
•*" "V

NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

THESIS

DecisionNet -■ A PROTOTYPE DISTRIBUTED
DECISION SUPPORT SYSTEM SERVER

by

Andrew S. King

September 1995

Thesis Advisor: Hemant K. Bhargava

■ \

w

Approved for public release; distribution is unlimited.

19960328 003

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

' September 1995
3. REPORT TYPE AND DATES COVERED

Master's Thesis

4. TITLE AND SUBTITLE: DecisionNet - A PROTOTYPE DISTRIBUTED DECISION
SUPPORT SYSTEM SERVER

6. AUTHOR(S) Andrew S. King

FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School

Monterey CA 93943-5000

PERFORMING
ORGANIZATION
REPORT NUMBER

SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the

official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

This thesis documents the design and prototyping of DecisionNet — a World Wide Web
accessible decision support system server. Most decision support software is sold as a product.
With DecisionNet, we attempt to shift this paradigm by providing decision support systems
as a service vice a -product.

DecisionNet takes advantage of the hardware and software independence of the World
Wide Web to provide connectivity between consumers, providers and DecisionNet. In the
DecisionNet environment, the decision technology resides on and is executed by the provider's
computer system. The consumer's data is set to the provider's computer via DecisionNet,
allowing for anonymity of the consumer, automating the format conversions required for the
decision technology, and minimizing the administration of user accounts for the provider.

14. SUBJECT TERMS Decision Support, Distributed Environment, Heterogeneous,

Models, Algorithms, Prototype,

15. NUMBER OF
PAGES 79

16. PRICE CODE

17. SECURITY CLASSIFICA-
TION OF REPORT

Unclassified

18. SECURITY CLASSIFI-
CATION OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICA-
TION OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18 298-102

11

Approved for public release; distribution is unlimited.

DecisionNet -- A PROTOTYPE DISTRIBUTED

DECISION SUPPORT SYSTEM SERVER

Andrew S. King
Lieutenant, United States Navy

B.S., Oregon State University, 1987

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL
September 1995

Author:

Approved by:

■*£. -I S^T:

Andrew S. King
"7

Hemant Bnargava, Thesis Advisor

.2L

Balasubramaniam Ramesh, Second Reader

iW^
Reuben T. Harris, Chairman

Department of Systems Management

in

IV

ABSTRACT

This thesis documents the design and prototyping of DecisionNet — a World

Wide Web accessible decision support system server. Most decision support

software is sold as a product. With DecisionNet, we attempt to shift this paradigm

by providing decision support systems as a service vice a product.

DecisionNet takes advantage of the hardware and software independence

of the World Wide Web to provide connectivity between consumers, providers and

DecisionNet. In the DecisionNet environment, the decision technology resides on

and is executed by the provider's computer system. The consumer's data is set to

the provider's computer via DecisionNet, allowing for anonymity of the consumer,

automating the format conversions required for the decision technology, and

minimizing the administration of user accounts for the provider.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. THE IDEA BEHIND DecisionNet 1

B. MOTIVATIONS FOR DecisionNet 2

C. ENVIRONMENT FOR DecisionNet 3

D. OUTLINE FOR REST OF THESIS 3

II. COSTS TO ACQUIRE DECISION TECHNOLOGIES 5

A. ACQUISITION OF AN INSTITUTIONAL DSS 5

B. CREATING QUICK HIT DSS 6

1. Creating "Reporting" DSS 6

2. Creating "Short Analysis Programs" 7

3. Building DSS with a DSS Generator 7

4. Basic Spreadsheet DSS 8

C. COMPARISON OF COSTS 8

D. CONCLUSIONS 9

m. DESIGN OF THE DecisionNet ENVIRONMENT 11

A. DESIGN OBJECTIVES 13

B. DESIGN PARAMETERS 15

1. Who May Communicate With Whom 15

2. Communication Paths 16

3. Communications Protocol selection 18

C STATUS OF DecisionNet 19

IV. SOFTWARE DESIGN AND IMPLEMENTATION 21

vu

A. MODULAR DESIGN 21

B. WHAT PROGRAMMING LANGUAGE TO USE 22

C. FULL TEXT SEARCH VICE RELATIONAL DATABASE 23

D. PLATFORM FOR DecisionNet SERVER(S) 24

E. CREATING A STATEFUL HTTP 25

F. STATUS OF DecisionNet DEVELOPMENT 26

V. CONCLUSIONS AND FURTHER RESEARCH 29

A. FURTHER RESEARCH TOPICS 29

B. CONCLUSIONS 30

APPENDIX A. FUNCTIONALITY TABLES 31

APPENDIX B. CGI-LIB.PL 33

APPENDIX C. DNETLIB1.PL 37

APPENDIX D. LOGIN 45

APPENDIX E. USER REGISTRATION 51

APPENDIX F. TECHNOLOGY REGISTRATION 57

LIST OF REFERENCES 67

INITIAL DISTRIBUTION LIST 69

Vlll

I. INTRODUCTION

This thesis describes the design and implementation of DecisionNet1 — a

distributed decision technologies2 server for the World Wide Web.3

DecisionNet utilizes the Internet and the Hypertext Transfer Protocol (HTTP) of

the World Wide Web for connectivity.

A. THE IDEA BEHIND DecisionNet

DecisionNet is based on the premise that decision technologies would be

distributed wider and used more if treated as services rather than as products.

The purchaser of a product — such as an automobile or computer hardware —

takes possession of and completely controls the item. A purchaser of a service —

such as cable television or a rental car — only uses the product, and pays the

owner for that usage.

In the computer software market, the purchaser of a software product is

responsible for having the correct hardware and software environment for the

new software. A person would not purchase a Macintosh version of a program

1 The initial development team for DecisionNet was Professor Hemant Bhargava,
Captain Danny McQuay, USMC, and Lieutenant Andrew King, USN, all of NPS, and
Professor Ramayya Krishnan, Carnegie Mellon University.

2 Decision technologies refers to a variety of software used to support decision
making and modeling for analysis of data.

3 The following acronyms are used in this paper: HTML (hypertext markup
language), DSS (decision support systems), OR (operations Research), WWW or the
Web (World Wide Web), the Net (Internet).

to run on an IBM compatible computer. The hardware and software

requirements are marked on each product available for purchase.

Under DecisionNet, software compatibility is no longer an issue, since the

only software actually executed on the local computer is the WWW browser and

Internet access software. Current mechanisms for distributing decision

technology software4 and compatibility issues are discussed in more detail in

Chapter II.

B. MOTIVATIONS FOR DecisionNet

What does DecisionNet offer that current mechanisms - including the

Internet - for the development, distribution and use of decision technologies do

not? Over the last few years, the Internet and WWW have allowed remote users

to "look up" or "download" data, documents, and executable software. Rarely

does this retrieval involve the real-time, and interactive specified, mathematical

processing of data. UNIX based computer system users have been able to

remotely execute programs via Telnet and rsh, however many new users are not

on UNIX based systems. That, effectively, means that the expertise encoded in

an OR/MS model or algorithm cannot be delivered in this fashion unless, of

course, a copy of that model or algorithm is transferred; this requires the receiver

to have a suitable hardware and software environment for working with that

copy. More motivations are detailed in Chapter II.

4 Software, Program, and Script are used interchangeably in this paper to refer to
an executable computer program regardless of the language used or the method of
execution - interpreted, compiled or assembled.

C. ENVIRONMENT FOR DecisionNet

There are three kinds of players in the DecisionNet environment —

consumers, and providers of decision technologies, and agents. Consumers have

decision problems to analyze. Providers have a decision technology or model

they wish to make available to the consumers. The DecisionNet server is a

collection of software agents that assist the interactions between the consumer

and provider. DecisionNet agents allow these interactions to take place over a

heterogeneous network with minimal requirements for both parties. Some of

the design factors for the DecisionNet environment are detailed in Chapter HI.

D. OUTLINE FOR REST OF THESIS

In Chapter II, I will discuss the current mechanisms for distributing

decision technologies. In Chapter El, I will discuss some of the design factors for

the DecisionNet environment. In Chapter IV, I will delve into the design of the

current DecisionNet software design and implementation including a designer's

notebook for the major software modules. Lastly, in Chapter V, I will

summarize the further research opportunities in the DecisionNet environment.

II. COSTS TO ACQUIRE DECISION TECHNOLOGIES

What are decision technologies? Decision Technologies are complex

software packages that are made up of multiple parts. These parts could be one

or more of the following - a database management system, a model-base

management system, a dialog generation and management system, and a user

interface. [Ref. 1; Ref. 2, p. 382]

DSS may be divided into two categories - the "institutional DSS" and the

"quick-hit DSS". [Ref. 2] The "Institutional DSS" is generally built by Information

Technology (IT) professionals and is intended to become a part of the

organizational infrastructure. The "quick-hit DSS" is generally built by

managers or end-users to help in making a decision. The decision may be a

reoccurring decision or a one-time decision. The three sub-types of a "quick hit

DSS" are a reporting DSS, short analysis programs, and those built with a DSS

generator. [Ref. 2]

ACQUISITION OF AN INSTITUTIONAL DSS

Institutional DSS are defined as

... systems built [and maintained] by professionals, often decision
support groups. These systems are intended for organizational
support on a continuing basis, and they are generally written using
a decision support language. [Ref. 2 p. 383]

Examples of institutional DSS include a marketing analysis DSS built for

Ore-Ida Foods, Inc. [Ref. 2, p. 383] and a system designed and built by

MicroStrategy for the Air Force to analyze over two hundred military, economic,

and social impact characteristics for each base recommended for closure to the

Base Closure and Realignment Commission (BRAC). [Ref. 4]

For a small business or individual without an IT staff, the development of

an institutional DSS would be contracted out to a consultant group. This option

is prohibitively expensive for most businesses, reducing the number of

businesses that use DSS products for problem solving.

B. CREATING QUICK HIT DSS

1. Creating "Reporting" DSS

Reporting DSS are

... used to select, summarize, and list data from existing data files
[italics mine] to meet managers' specific information needs. ... a
few mathematical operations may be performed. If computer
graphics are used, however, then trends, variances, and so on can
be shown. [Ref. 2, p. 385]

These DSS are closely related to the Executive Information Systems (EIS)

built for the highest levels of management, emphasizing collecting data from

various sources, reporting with fast response, flexibility, and graphical

presentation. The Reporting DSS is the most widely used, and will continue to

be used, by managers who are required to analyze information stored in

computer systems that are both internal and external to the business or

corporation. [Ref. 2, p. 385]

An example of a commonly used Reporting DSS for WWW servers is the

WWW server statistics programs. The statistics program scans the access log file

that is created by the server whenever an access is requested, and tabulates all of

the entries. The WWW access log for the DecisionNet Welcome server is located

at http://dnet.as.nps.navy.mil/WebStat/machttp.html.

2. Creating "Short Analysis Programs"

These programs analyze data as well as print or display the data ...
Managers can write these short programs themselves, and they
generally only use a small amount of data, which may be entered
manually [italics mine] [Ref. 2, p. 385]

An example of this type of program is one that determines the payment

schedule for a home mortgage at different interest rates. [Ref. 3] It is a simple

program that is extremely useful in relating the cost of various mortgage

options.

The short analysis DSS differs from the reporting DSS in the amount and

location of the data being analyzed. The reporting DSS might have large

amounts of data to scan through to find a few relevant data points, while the

short program DSS uses a limited amount of data.

3. Building DSS with a DSS Generator

A DSS generator allows a user to develop specific DSS by modifying the

modules provided with the generator program. The DSS modeling and database

components are modified to fit the new specific DSS and the user interface is

created to best display the data for interaction with the user. [Ref. 1, p. 292]

4. Basic Spreadsheet DSS

Modern spreadsheet programs, such as Lotus 1-2-3 and Microsoft Excel

provide extremely powerful analysis tools, allowing users to create simple DSS

that include mathematical functions and linear programming.

... spreadsheets are extremely strong in dialog support, [user
interface] They allow users to make corrections, additions, and
deletions quickly and easily as well as perform numerous what-if
analyses by changing some values and seeing the results. [Ref. 2,
p. 389]

In addition to the what-if analysis support, spreadsheets have graphing

modules that may display the results in a graphical form. Spreadsheets are

intuitive for most users to use, since they display the data and relationships in a

familiar table format and show the results instantly when a user changes

variables in the table.

C. COMPARISON OF COSTS

The lifecycle5 cost for the institutional DSS is high due to the IT staff that

is required to create, operate and maintain the DSS. The Quick-Hit DSS is costly

in a different manner. The person who created the DSS is likely to continue

development of the DSS on company time. With the institutional DSS, the

documentation is maintained within the organization, while with a quick-hit

DThe lifecycle of a DSS refers to the total cost of the system from inception until
the retirement of the system

DSS the documentation is usually not written. The person who built the

quick-hit DSS is the only person who understands the inner workings it. If this

individual leaves the organization, all working knowledge of the DSS leaves as

well.

D. CONCLUSIONS

Since institutional DSS are expensive in monetary terms, and quick hit

DSS are expensive in personnel time, perhaps a new paradigm needs to be used

— using a DSS service. In many areas of the economy, the service industry

thrives. Using a service is economically viable if the cost of using the service is

less than the cost of purchasing the product.

To use a DSS service, a business would need to establish a reliable source

of DSS services for a lower overall cost than owning a DSS product. The DSS

service should provide secure analysis of the data provided by the consumer.

The consumer should provide the data in a format acceptable to the DSS service

and receive the results of the analysis requested. The DSS service should

provide the widest selection of available DSS services for selection to the

consumer, and conduct any data conversions required.

For the provider of a DSS service, there should be a means of advertising

the analysis services available to the widest consumer base. Formatting of the

consumer's data could be preprocessed by a brokerage prior to being sent to the

provider. The brokerage should perform the same function for the outputs from

the provider.

DecisionNet is a prototype DSS service — providing consumers and

providers a DSS Service agency. DecisionNet provides the consumer with a

"Yellow Pages" of available DSS services, data formatting, and the generated

analysis outputs. DecisionNet delivers the providers of DSS services the widest

advertising of their services.

When DecisionNet is fully operational, the providers and consumers

would conduct business through DecisionNet's agents. Chapter III discusses the

design of the DecisionNet environment in more detail.

10

III. DESIGN OF THE DecisionNet ENVIRONMENT

During every design process, there are multiple decisions to be made.

Each decision shapes the final solution or product. With a different decision

early in the project, an alternative solution would be created. In this chapter, I

will show some of the thought processes that were followed during the initial

design of the DecisionNet environment.

Before designing DecisionNet, we made several assumptions. We

assumed that the World Wide Web would continue to grow at the same

tremendous rate that it has shown in since January 1993. [Ref. 5] The most

accurate tracking records for the number of bytes transmitted have been

maintained by the NSFNET since January 1988 until the decommissioning of the

network in April 1995. Figure 1 shows the monthly World Wide Web traffic

history for the NSFNET from December 1992 to April 1995. In "... December

1994, [traffic] numbers begin decreasing as traffic migrates to the new NSF

architecture, for which no comparable statistics are available." [Ref. 6] To reach

the largest possible number of consumer for DSS services, we decided to utilize

the WWW for connectivity in the DecisionNet environment.

A second assumption we made before designing DecisionNet was that if

we built a DSS service, both providers and consumers would use it. With the

explosion of information available to the on-line community, good analysis tools

need to be made available to assist in solving problems.

11

NSFNET Monthly World Wide Web Traffic History

(In Bytes Transmitted)

5000B

4500B

400ÜB

3500B

3000B

2500B

2000B

1500B

1000B

500B

Hi D ec 92

■ Jan 93

o Feb 93

□ Mar 93

m Apr 93

■ May 93

MH Jun 93

^^y Ju! 93

■ Aug 93

□ Sep 93
llSil Oct 93

[Wgjn Nov 93

□ Dec 93

■1 Jan 94

■ Feb 94 ■ Mar 94

Apr 94

n May 94

EEI Jun 94

□ Jul 94

Si Aug 94

■ Sep 94

i ~- ^* '.i Oct 94

Nov 94

[gy^i Dec 94

□ Jan 9 5

■1 Feb 95

Mar 95

o Apr 95

Figure 1: NSFNET Monthly World Wide Web Traffic History From
December 1992 to April 1995. From Ref. [6]

12

A. DESIGN OBJECTIVES

While designing DecisionNet, we had three objectives: to increase the

availability of decision technologies for problem solving, to ensure the system

designed requires only a minimal amount of human interaction to continue to

operate, and to allow simple single algorithm problems as well as complex

multiple algorithm problems to be solved across the Internet. The environment

we designed for DecisionNet to operate within must contribute to these

objectives.

By utilizing the WWW for connectivity, we eliminated many of the

specific hardware requirements imposed by many software products. HTTP is a

hardware independent protocol, allowing any person with a WWW connection

to participate as a consumer of DSS via DecisionNet. This helps DecisionNet

reach the first design objective - increase availability of decision technologies for

problem solving.

The second design objective, ensuring the system requires only a minimal

amount of human interaction to continue to operate, may be reached through the

use of software agents. These software agents can provide the functionality of a

human for a specific task, such as account registration and searching data files.

Maintenance of the HTML files is automated with exception reports sent to the

DecisionNet development team via Electronic Mail (E-Mail).

For example, when a new technology is added to DecisionNet, the system

automatically generates an E-Mail to the system administrator, and created a

13

new HTML for the technology. At a pre-determined time, during the time of

lowest system utilization, a DecisionNet agent moves the HTML file into the

indexable directories and re-indexes the directories. Through use of UNIX

system functions such as crontab and sendmail, DecisionNet can automate many

of the routine functions that normally require human interactions.

The third design objective is to allow simple single algorithm problems as

well as complex multiple algorithm problems — either sequential or parallel - to

be solved across the Internet. The concept is simple for single algorithm

problems - send the data to be analyzed to the remote site, log in to the remote

site and execute a program to analyze the data set sent previously, capture the

results and send them back to the remote user.

For sequential algorithmic problems, the results from one analysis are

used as the input for another algorithm. This forces either the consumer or

DecisionNet to convert the output format from one algorithm into the correct

input format for the next algorithm. These conversions can be non-trivial,

however intelligent agents may be developed to manage these conversions.

For parallel algorithmic problems, each parallel path could be treated like

a sequential problem, until the parallel paths are united. More research in the

area of intelligent agents which can control this parallel processing is needed.

14

B. DESIGN PARAMETERS

To achieve the design objectives, the design team defined an environment

for DecisionNet to operate within. We defined who may communicate with

whom, how do they communicate, and what protocols to use.

1. Who May Communicate With Whom

There are many different ways to design a communications infrastructure.

I will describe two design possibilities for the communications structure of the

DecisionNet environment.

One method is to design DecisionNet as a simple index, with pointers to

executable DSS already existing on the WWW. The consumer would

communicate with DecisionNet to view the index and then directly

communicate with the selected provider. This would provide a minimum level

of service to the consumers and providers in the environment. This approach is

not technically challenging, and may be accomplished through a simple HTML

homepage with hypertext links. Data conversions must be completed either by

the consumer or the provider. The accuracy of the index would be limited to

the last update of the HTML page.

This method requires that each consumer establish an individual account

with each provider's service they desire to use. This places an enormous

administrative burden on the providers. It requires each provider's system

administrator to establish short term (or one use) accounts and to maintain

15

security of their server. Despite all these limitations, the initial prototype of

DecisionNet was a simple set of linked HTML pages.

A second method is to make DecisionNet the center of all

communications. Figure 2 shows the DecisionNet centered communications

network. This method allows for data conversions, formatting of inputs and

outputs, monitoring of usage, and anonymity of the consumer and provider.

With this communications approach, the consumers obtain access to all

decision technologies simply via a WWW browser. For larger data sets, the

consumer would be required to have a FTP client to send the data files to

DecisionNet prior to execution of the decision technology.

The aforementioned problems with establishing short term accounts at

each server would be eliminated. Each consumer would establish an account

with DecisionNet which authorizes them to utilize any DSS listed on the index.

This is the method chosen for the current and future DecisionNet prototypes.

2. Communication Paths

Figure 2 shows a simplified communication path and protocols for a

WWW accessible decision technology in a DecisionNet centered environment.

In this example, it is assumed that DecisionNet has set up a consumer account.

The provider must have registered their technology with DecisionNet and

created an account for DecisionNet's use. This account is used by DecisionNet

agents only, acting for a consumer. The data required by the decision

technology is collected from the consumer and sent to the provider using the

16

DecisionNet account. The results are sent back to DecisionNet, which reformats

the data for presentation to the consumer as previously requested.

In this model, the consumer account problem is shifted away from each

provider and centralized with DecisionNet. The provider's administrative

burden is reduced to a single account for DecisionNet vice the multitude of short

term accounts for each user. DecisionNet assumes the responsibility for

maintaining the large number of short term accounts. DecisionNet also can

perform input and output conversions required between the provider and

consumer.

Consumer

WWW Client

HTTP

FTP

E-Mail

HTTP

FTP

E-Mail

Telnet
Provider

WWW Server

Figure 2: Communication Paths in The DecisionNet
Environment

17

3. Communications Protocol selection

In creating the DecisionNet environment, there are numerous choices for

communications protocols. The basic choices involved the use of a standard

protocol or a specialized protocol.

The specialized protocol could be designed to optimize the functionality

of the DSS and minimize the number of conversions required by any party. A

specialized protocol requires either a specialized browser or a new Multipurpose

Internet Mail Extensions (MIME) type with the required executable for the

specific computer being used by the consumer. [Ref. 8] An example of using a

MIME type is to have Word Perfect execute when ever a .wp file is downloaded.

Using a specialized protocol would restrict the number of providers and

consumers who would be able to use DecisionNet. Further research based on

this approach is currently in progress at Carnegie Mellon University (USA),

Monash University (Australia), Institut Fur Wirtschaftsinformatik (Germany)

and Arizona State University (USA). [Ref. 9; Ref. 10]

A standardized protocol, in particular HTTP and FTP, already has a large

user base on the Internet. The entire WWW is based on HTTP, and the Internet

is based on the TCP/IP protocol, which includes FTP. The current WWW

browsers, such as NSCA's Mosaic and Netscape Navigator, support HTTP and

the TCP/IP protocols from within the browser. This allows every WWW user to

be a potential consumer for DecisionNet.

18

Each has its advantages, but our overriding concern is to maximize the

available consumers and providers. To meet this objective, we chose to use a

standard HTTP protocol for the basic DecisionNet environment.

C. STATUS OF DecisionNet

We have defined two types of decision technologies that are executable on

the WWW. An independent technology is one that has been setup by a provider

to execute on the WWW. Providers of such technologies register their

technology with DecisionNet, and require no other action from DecisionNet to

execute their technology. At the current time, DecisionNet accepts all

independent technologies.

The dependent technology requires DecisionNet to process input and

output conversions for the consumer. Either the provider's technology is not

designed for execution via the WWW, or it may require a non-anonymous Telnet

session be established with their computer to execute the technology. This

requires the DecisionNet server to open sockets in the background to send the

information to the provider's server, while processing the information from the

consumer. At the current time, DecisionNet is not capable of accepting

registration of dependent technologies.

19

20

IV. SOFTWARE DESIGN AND IMPLEMENTATION

A. MODULAR DESIGN

The major functions of DecisionNet are Login, Registration of consumers

and providers, Registration of Decision Technologies, Search, and Execution.

Each major function is designed as a separate module. The modular design

allows for easier updates and modifications to a single function without affecting

the rest of DecisionNet. All modules use a set of Perl6 libraries — cgi-lib.pl and

dnetlibl.pl — for common functions such as checking the last modification time on

a file and verification of a user name and password.

Appendix A contains functionality tables, cross referencing the function to

the HTML file, data file(s) and Perl programs used. An annotated source code

listing of cgi-lib.pl is in Appendix B, dnetlibl.pl in Appendix C. Detailed

information for the Login module is in Appendix D, User Registration in

Appendix E, and Technology Registration in Appendix F.

6 "Perl" is an acronym for "Practical Extraction and Report Language," although
Larry [Wall] has been known to claim that it really stands for "Pathologically Eclectic
Rubbish Lister." [Ref. 11]

21

B. WHAT PROGRAMMING LANGUAGE TO USE

The processing of forms requires a program or script to receive and

process the data at the WWW server. On the UNIX platforms, the de facto

standard for a programming language for processing/orms is Perl. The PC

based platforms have a variety of scripting languages to process forms including

Visual Basic and AppleScript. During the initial development of DecisionNet,

Perl was not available for the PC based servers.

In choosing the programming language to use for forms processing, one

major consideration was the hardware executing the scripts. The PC platforms

are limited in the number of simultaneous connections - the IBM systems are

limited to 16 [Ref. 12] and the Macintosh platforms are limited to 48 connections

including all Telnet, FTP and WWW connections. [Ref. 13] The UNIX platforms

have a much larger capacity for simultaneous connections.

There are a large number of WWW server scripts written in Perl that are

in the public domain and available for modification to fit DecisionNet. Again,

during the initial development of DecisionNet, there were few scripts available

for the PC based servers.

In light of the limitations of the PC based servers, and the availability of

UNIX WWW server(s) at the Naval Postgraduate School, we decided to base the

forms processing portion of DecisionNet on the UNIX platform.

22

C. FULL TEXT SEARCH VICE RELATIONAL DATABASE

DecisionNet is more than just a simple "yellow pages" that could be

satisfied by a set of HTML pages. The dynamic nature of DecisionNet, with the

ability for providers to add their technologies to the index, some technique for

indexing the inputs needed to be established. Two of the methods currently

used on the WWW are full text searches of documents and database queries.

Full text search engines, such as Lycos [Ref. 14], Harvest [Ref. 15] and

SWISH [Ref. 16], index directory trees on a WWW server by document.

Currently all three of these search engines are only available for UNIX based

servers. If a word being searched for occurs in a document, the search results

will return the entire document, but not to the specific line where that word was

used.

Relational databases, such as Oracle or Sybase, store the information into

separate tables that allow a specific line of information to be retrieved. The

fields being retrieved are selectable by the query. The problem with relational

databases is the lack of a standard interface with the WWW via Structured

Query Language (SQL). Future research will examine how to execute searches

using SQL and display the results for the consumer via the WWW.

We implemented a SWISH search engine for indexing DecisionNet,

allowing full context searches of the registered decision technologies. To avoid

the problems inherent with a document based search, we save information on

each technology in a separate HTML file. This allows the SWISH search engine

23

to return a single decision technology as the results of a full text search for a

string.

D. PLATFORM FOR DecisionNet SERVER(S)

Each of the distinct functions -- Login, Registration, Search, Execution -

may be performed on multiple servers. As detailed in the last chapter, forms

processing will be performed on a UNIX based system.

One reason for splitting the modules among multiple servers is that in the

case of extremely heavy traffic, a single server might be overwhelmed by

requests. Appendix A shows the overlap between the various modules and the

data files. Due to these overlaps, we based DecisionNet on a Sun SparcStation 10

for everything except the static HTML files. All of the scripts, data files, access

records, the Harvest search engine, and HTML files for dynamically generated

HTML pages are on the SparcStation.

The static HTML files were placed on a PowerMac 7100 WWW server.

The static files are a simple "Welcome" and "about DecisionNet" HTML pages,

which will be accessed at a significantly lower rate than the main server. This

network design is also used as a proof of concept that the DecisionNet servers

can be separated and still function as a single unit to the outside world.

24

E. CREATING A STATEFUL HTTP

HTTP is a stateless protocol, which "... runs over a TCP connection that is

held only for the duration of one operation." [Ref. 17; Ref. 18] Each request from

the client to the server is a separate request, including graphics embedded on a

single HTML page. A portion of the sm.nps.navy.mil access log is reproduced

below, showing a request for a HTML document, dNetmenu.html, which contains

two graphics, home_btn.gifand go_top_b.gif, from a user in Japan. The first

document requested is dNetmenu.html, followed rapidly by two requests for the

embedded graphics.

prossl20.u-aizu.ac.jp - - [12/Aug/1995:03:47:49 -0700] "GET /dnet/dNetmenu.html
prossl20.u-aizu.ac.jp - - [12/Aug/1995:03:47:51 -0700] "GET /dnet/Gifs/home_btn.gif
prossl20.u-aizu.ac.jp - - [12/Aug/1995:03:47:51 -0700] "GET /dnet/Gifs/go_top_b.gif
[Ref. 19]

To maintain the account information between separate HTML requests for

DecisionNet, there are several options. One option requires the server to

maintain an Access Control List (ACL) for each directory of files to be accessed

[Ref. 20], or to embed hidden fields into the HTML document requested. The

first option requires the Webmaster of the WWW server to establish an ACL for

each directory to be accessed. In a dynamic environment such as DecisionNet,

the ACL would be changing many times, requiring modifications to the ACLs to

be done by script or by human intervention. This creates a possible security

problem for the rest of the WWW server.

The second option requires each script to check the password files each

time the script is executed. Buttons are presented to the user for each action.

25

Attached to each button, using hidden fields, is the user type, name and

password. When the button is pushed, causing the requested action to be sent

to the DecisionNet server, the hidden fields are sent with the data entered by the

user. This requires each script to verify the user name and password prior to

executing the remainder of the request. This process slows down the processing

of the primary request and requires the access data files be checked for each

request.

When designing DecisionNet, the ACLs for the original server processing

the forms were not accessible to the DecisionNet Programmers. In light of this,

we decided to maintain separate DecisionNet access files. This also reduces the

turn around time required when adding new users into the DecisionNet access

files.

F. STATUS OF DecisionNet DEVELOPMENT

The current working prototype for DecisionNet is located at

http://dnet.as.nps.navy.mil. The Consumer and Provider Registration, Login, and

Technology Registration are all functional through the use of Perl scripts. The

Search function uses a WAIS front end for the SWISH search engine. [Ref. 16]

The data provided by the providers in the initial registration of a decision

technology is stored in a temporary directory, and moved into correct directory

manually. The server must be re-indexed to include the new technology.

26

The modification and deletion of decision technologies is currently done

manually as well. The provider would send an E-Mail to request a deletion of

the technology. The system administrator would take the E-Mail, delete the

technology file, and re-index the server. All new accounts and new

technologies are verified via E-Mail to the consumer or provider and a copy is

sent to DecisionNet.

27

28

CONCLUSIONS AND FURTHER RESEARCH

This thesis accomplished the design and development of a prototype

distributed decision support system. By utilizing the World Wide Web for

connectivity, we have eliminated many of the hardware and software

restrictions that consumers have when attempting to use DSS services. The

current prototype is a modular framework which allows for future expansion

and continual improvement.

A. FURTHER RESEARCH TOPICS

The basic structure for DecisionNet has been established and is functional.

The following is a listing of areas where DecisionNet could be improved:

1. How should background process be utilized to telnet into a remote site
and perform transactions remotely.

2. How should raw data input from the consumer be processed into
formatted data usable by a functional model.

3. How should the collection of complex input sets be automated.

4. What set of taxonomies should be used for cataloging the decision
technologies.

5. Conversion from an HTML based search engine into a relational database,
allowing greater flexibility for searching and indexing the decision
technologies.

6. Programming of Intelligent agents for controlling parallel processing of
complex multiple algorithmic problems

29

The continued development of DecisionNet requires background

processing to connect with the provider and execute programs. Lacking these

developments restricts DecisionNet to processing independent technologies

only.

B. CONCLUSIONS

The prototype for DecisionNet is currently functional and on line at

http://dnet.as.nps.navy.mil/dnethome.html. Currently the functionality is minimal,

since DecisionNet only allows independent technologies to be accessed. The

concept of sending the data to be processed at a remote site is not a novel idea,

however our approach, using the World Wide Web for connectivity, is novel.

The DecisionNet design is a viable approach to placing executables which

require user data on the World Wide Web. In the future, one should expect to

see more implementations of the DecisionNet concept in areas unrelated to

decision support systems.

30

APPENDIX A. FUNCTIONALITY TABLES

The first table cross references all functions of DecisionNet with the Perl

programs, and HTML files used. There are two types of HTML files that are

used in DecisionNet — Static and Dynamic. The static files are complete HTML

files, while the dynamic files are split into three sections — headers, body and

footers. The header files include the title and header information of a HTML

document. The body section contains the body of the document and the footer

contains the ending of the HTML document, including the closing </HTML>

tags. The .html files in the main DecisionNet directory or in the html directory

on sm. The .body files are stored in the body directory.

The primary purpose for using dynamically generated HTML documents

is to allow the insertion of hidden fields into the document "on the fly." The

hidden fields are usually the usertype, used to determine the file to use for the

access datafile, username and password. The password is encrypted using a

UNIX system function, crypt, which uses the data encryption standard (DES).

The Perl scripts used in the generation of the HTML documents retrieve the

document pieces to be sent to the client in the order needed, parsing the correct

information into the hidden fields as required. All .pi files are Perl scripts stored

in the Scripts directory on the sm server.

31

Login of all Users Registration of

all Users

Registration of

Decision Technologies

Perl Programs Used login.pl register.pl Register.Form.pl

add.pl

HTML Page dNetmenu.html register.html N/A

HTML Body Prov_menu.body

User_menu.body

N/A Model.Register.body

Table 1: Cross Reference of Function to HTML And Perl Files Used

Each of the datafiles and Perl libraries is used by several of the functions.

The following table cross references the function to the datafile and library used.

dnetlibl.pl

cgi-lib.pl

Prov Address.txt

Login of all Users Registration of all

Users

X

Prov Access.txt

Prov_mail.txt

Prov.access. log

User_Address. txt

User Access.txt

User__mail.txt

X

X

Registration of

Decision

Technologies

X

X

X

User.access.log X

X

Table 2: Cross Reference of Function to Data Files And Perl Libraries Used

X

X

32

APPENDIX B. CGI-LIB.PL

This is a library of Perl routines to perform the Common Gateway Interface

(CGI) manipulations. DecisionNet uses the ReadParse function for every user input to

populate the associative array with the variables and data received. This library was

downloaded from Meng Wong's WWW pages at

http://www.seas.upenn.edu/~mengwong/forms/.

#!/usr/local/bin/perl - -*- C -*-

Perl Routines to Manipulate CGI input
S.E.Brenner@bioc.cam.ac.uk
$Header: /cys/people/sebl005/http/cgi-bin/RCS/cgi-lib.pl,v 1.7 1994/11/04
00:17:17 sebl005 Exp $

Copyright 1994 Steven E. Brenner
Unpublished work.
Permission granted to use and modify this library so long as the
copyright above is maintained, modifications are documented, and
credit is given for any use of the library.

Thanks are due to many people for reporting bugs and suggestions
especially Meng Weng Wong, Maki Watanabe, Bo Frese Rasmussen,
Andrew Dalke, Mark-Jason Dominus and Dave Dittrich.

see http://www.seas.upenn.edu/~mengwong/forms/ or
http://www.bio.cam.ac.uk/web/ for more information

Minimalist http form and script (http://www.bio.cain.ac.uk/web/mininial.cgi):
if (&MethGet) {
print &PrintHeader,
'<form method=POSTxinput type="submit">Data: <input name="myfield">';
#} else {
&ReadParse(*input);
print &PrintHeader, &PrintVariables (%input);
#}

33

MethGet
Return true if this cgi call was using the GET request, false otherwise
Now that cgi scripts can be put in the normal file space, it is useful
to combine both the form and the script in one place with GET used to
retrieve the form, and POST used to get the result.

sub MethGet {
return ($ENV{*REQUEST_METHOD'(eq "GET");

ReadParse
Reads in GET or POST data, converts it to unescaped text, and puts
one key=value in each member of the list "@in"
Also creates key/value pairs in %in, using '\0' to separate multiple
selections

If a variable-glob parameter (e.g., *cgi_input) is passed to ReadParse,
information is stored there, rather than in $in, @in, and %in.

sub ReadParse {
local (*in)■= @_ if @_j

local ($i, $loc, Skey, $val);

Read in text
if ($ENV{'REQUEST_METHOD'} eq "GET") {
$in = $ENV{'QUERY_STRrNG'};

} elsif ($ENV{'REQUEST_METHOD'} eq "POST") {
readtSTDrRSin^ENVfCONTEN^LENGTH'});

@in = split(/&/,$in);

foreach $i (0 .. $#in) {
Convert plus's to spaces
$in[$i] =~ s/\+/ /g;

Split into key and value.
($key, $val) = split(/=/,$in[$i],2); # splits on the first:

Convert %XX from hex numbers to alphanumeric
Skey =~ s/%(..)/pack("c",hex($l))/ge;

34

$val =~ s/%(..)/pack("c"/hex($l))/ge;

Associate key and value
$in{$key} .= "\0" if (defined($in{$key})); # \0 is the multiple separator
$in{$key} .= $val;

return 1; # just for fun

PrintHeader
Returns the magic line which tells WWW that we're an HTML document

sub PrintHeader {
return "Content-type: text/html\n\n";

Print Variables
Nicely formats variables in an associative array passed as a parameter
And returns the HTML string.

sub PrintVariables {
local (%in) = @_j
local (Sold, $out, Soutput);
Sold = $*; $* =1;
Soutput .= "<DL COMPACT>";
foreach $key (sort keys(%in)) {
foreach (split("\0", $in{$key})) {

($out = $_) — s/\n/
/g;
Soutput .= "<DT>$key</BxDD><I>$out</IxBR>";

$output.= "</DL>";
$* = Sold;

return Soutput;

Print VariablesShort
Nicely formats variables in an associative array passed as a parameter
Using one line per pair (unless value is multiline)
And returns the HTML string.

35

sub PrintVariablesShort {
local (%in) = @_j
local ($old, $out, Sourput);
Sold = $*; $* =1;
foreach $key (sort keys(%in)) {
foreach (split("\0", $in{$key})) {

($out = $_) =~ s/\n/
/g;
Soutput .= "$key is <I>$out</IxBR>";

$* = Sold;

return Soutput;

1; #return true

36

APPENDIX C. DNETLIB1.PL

This set of Perl routines are unique to DecisionNet, but common to all of the

modules. DecisionNet uses these routines to perform functions such as getting the

current system time and date, checking the access files for a registered consumer or

provider, and sending E-Mail from DecisionNet. Many of these routines were written

with the assistance of Larry Wall's and Randal Schwartz's book, Programming perl7.

#! /usr/bin/perl

DecisionNet Library

Written by Andrew King
These are common routines for DecisionNet modules
First Used: Feb 95
Last Modified: Aug 95

Sub DateTime
Get and format current Date and Time
Returns formatted Date and Time

sub DATETFME {

($sec,$imn,$hour,$mday,$mon,$year,$wday,$yday,$isdst) = localtime(time);
$thisday = (Sunday,Monday,Tuesday, Wednesday ^hursday/Friday^aturday) [$wday];
$thismonth = (Jan,Feb,Mar, Apr,May,Jun,Jul, Aug^ep^c^Nov^ec) [$mon];
$AccessDate = "$hour:$min:$sec $thisday $mday $thismonth 19$year";

return $AccessDate;

7 Wall, Larry and Randal L. Schwartz, Programming perl (Sebastopol, CA : O'Reilly
& Associates, Inc, 1992)

37

Check Duplicate : Given a File Name, Username, Encrypted Password, and divider
Check Duplicate returns either duplicate (1) or unique (0) to the
calling program.

sub CHECK_DUP {
local (SFile, $Usrname, $Pwd, $Div) = @_;
$Dup = 'Unique';

open (Input, $File) I I die "Can't open $File: $!\n";
while (<Input>) {
chop;
($User, $Password) = split(/$Div/, $_);
if ($User eq $Usrname) {
$Dup = 'Duplicate';

}
last if ($Dup eq 'Duplicate');
}
close (SFile);
return $Dup;

} # End of CHECK DUP

Sub Accesslog
Prep and send login data to access log file : name and date

sub ACCESSLOG {
local($File, $UserName) = @j

$AccessDate = &DATETIME;

» opens file in append mode
open (OutPutFile, ">>$File");

print OutPutFile "$UserName,$AccessDate\n";

close OutPutFile;
} # End Accesslog

#-

38

Check Last Access : Given a File Name, Username, Encrypted Password, and divider
Check LastAccess returns either No Access (1) or Access Date (0) to the
calling program.

sub LAST.ACCESS {
local ($File, $Usrname) = @_j

$LastAccess = "Never";

open (Input, $File) I I die "Can't open $File: $!\n";
while (<Input>) {

chop;
($User, $Access) = split(/,/, $_);

Debug line
print "$User, $Access, $LastAccess
\n";

if ($User eq $Usrname) {
$LastAccess = $Access;

close ($File);
return $LastAccess;

■ # End of LAST ACCESS

Validate Account: Validate account receives File, Username,
and Password and returns Valid (1) or invalid (0) to the
calling program

sub VALID {
local ($File, $Usrname, $Pwd, $Div) = @j
$Valid = 'Invalid';
open (Input, $File) I I die "Can't open $File: $!\n";
while (<Input>) {
chop;
($User, $Password) = split(/$Div/, $_);

Debugging lines
print "User Name from file: $User, From Form: $Usrname \n";
print "Password from File: $Password, From Form: $Pwd\n";

if ($User eq $Usrname) {
if ($Password eq $Pwd) {

39

$Valid = 'Valid';
}

}
last if ($Valid eq 'Valid');
} #End While

return $Valid;

End of VALID

Get POC Info from the datafiles

sub GetPOCInfo {
local (*data) = @^
$Found = 'No';

$InputFile = $data{'BaseFile'}.'data/'.$data{'UserType'}.'_Address.txt';

opens file in read mode

open (INPUTJFILE, $InputFile);
Write out the address to THE_FILE
Process each line in input file

while (<INPUT_FILE>) {

chop; # Remove newline from end of input string

Retreive the username and password from the password file
($UserName, $Company, $RealName, $EMail, SStreet, $City, $State, $Zip, $Country)

= split(/$data{'Comma'}/, $_);

$UserName =~ y/\xfb\xfc\xfd//d;

Check for matching username and Password
if (SUserName eq $data{'Usrname'}) {
SRealName =~ y/\xfb\xfc\xfd//d;
$EMail =~ y/\xfb\xfc\xfd//d;
SStreet =~ y/\xfb\xfc\xfd/[A\xfb\xfc\xfd]/d;
$Company =~ y/\xfb\xfc\xfd/[A\xfb\xfc\xfd]/d;
$City =~ y/\xfb\xfc\xfd//d;
SState =~ y/\xfb\xfc\xfd//d;

40

$Zip =~ y/\xfb\xfc\xfd//d;
SCountry =~ y/\xfb\xfc\xfd//d;
$Found = 'Yes';
}

last if ($Found eq 'Yes');
[# End of Loop

$data{'POCName'} = $RealName;
$data{'POCEMail'} = $EMail;
$data{'POCCompany'} - $Company;
$data{'POCStreet'} = $Street;
$data{'POCCity'} = $City;
$data{'POCState'} = $State;
$data{'POCZip'} = $Zip;
$data{'POCCountry'} = $Country;

End GetPOCInfo

Send File from Disk Header and Footer

sub HEADER {
local($File, $Titie, $Switch) = @_j

if ($Switch eq 'Header') {
print "Content-type: text/html\n\n"; #inform server what's coming

open (FILE1, $File) I I die "Can't open $File: $!\n";
while (<FILE1>) {
chop;
print $_;
if (/<TITLE>/) {
if ($Switch eq 'Header') {
print $Title;

elsif(/<Hl>/){
if ($Switch eq 'Header')
print $Title;

41

print "\n";
}
close (FILE1);

###############################
CheckFile Subroutine
Opens currentaccess files and compares
UserName and PassWord to names on File
All Usernames and Passwords are stored in an encrypted format
This subroutine encrypts the input to match with the stored name
###############################

sub CHECKFILE { # Check the new user name against the current users
local(*FORM) = @^

$InputFile = $FORM{,BaseFile'}.,data/'.$FORM{•UserType•}.,_Access.txt';

Load Initial Value for FormjDup}
$FORM{'Dup'} = 'No';
$FORM{'DupName'} = 'No';

open (INPUTJFILE, $InputFile);

Process each line in input file
while (<INPUT_FILE>) {

chop; # Remove newline from end of input string

Retreive the username and password from the password file
($UserName, $PassWord) = split(/$FORM{'Comma'}A $_);

$UserName =~ y/\xfb\xfc\xfd//d;
$PassWord =~ y/\xfb\xfc\xfd//d;

#encrypt the Received UserName and PassWord to compare with file
#Encryption salt changed to protect passwords
$UsrNm = crypt($FORM{'Usrname'},SALT);

$UsrNm = $FORM{'Usrname'};

42

$Pass = crypt($FORM{'Pwd'}/SALT);
$Pass = $FORM{Twd'};

debugging line
print "$UsrNm, $UserName
/n";

Check for matching username and Password
if ($UserName eq $UsrNm) {
$FORM{'DupName'} = 'Yes';
if ($PassWord eq $Pass) {

$FORM{'Dup'} - 'Yes';

last if ($FORM{'Dup'} eq 'Yes');
} # End of Loop

close INPUT_FILE;

#End Checkfile

Send E-Mail Verification : Send account information verification
to the user and dnet via E-Mail
Input: E-Mail Address, UserName
Output: Email to User And Dnet
Return: Nothing
Based on Mailto.pl by Doug Stevenson, doug+@osu.edu

sub EMAIL {
local($EMail, SUsrname, $Subject, $Body) = @_;

E-Mail for account verification for DecisionNet
$dnet = "dnet@sm.nps.navy.mil";

Location of sendmail
$sendmail = "/usr/lib/sendmail -t -n";

fork over the mail to sendmail and be done with it

open(MAIL," I Ssendmail");

43

Cc to DecisionNet

print MAIL «EOM;
From $dNet
Cc: $dnet
From: <$dnet>
To: $EMail
Reply-To: $dnet
Errors-To: $dnet
Sender: <$dnet>
Subject: SSubject
X-Mail-Gateway: DecisionNet
X-Real-Host-From: $dnet
$Body

If there are any problems, please contact $dnet

EOM

close(MAIL);

} #End of E-Mail

1; #return true for Library Routine

44

APPENDIX D. LOGIN

The Login module is called from the main DecisionNet menu,

dNetmenu.html, when a consumer or Provider requests access to DecisionNet.

The radio button on the form provides the variable UserType to login.pl This

allows the program to access the correct access records. By splitting the

provider's and consumer's access records, it is possible for two users, one a

provider and one consumer, to have the same login name.

After the user has been verified as a registered user, the access log is

checked and updated. Login.pl then sends the results back to the client, giving

them the correct menu - either the Consumer or Provider Menu. The HTML

form that is sent back is "generated" by using a header file, a body file, and a

footer file. This ensures that all documents look the same at the top and bottom

(return buttons etc.) and allows the body to be parsed to insert a few variables

before aliform submission buttons.

This is the third or fourth generation login script. The newer sections pass

only the variables that are needed by the sub-routines. The older sub-routines

pass pointers to the entire array of variables that was received from the forms

submitted.

45

The data files and HTML files that are used by login.pl are listed

Appendix A.

in

#! /usr/bin/perl
Function: Login
Written by: Andrew King
Date: 23 Apr 95
Parsing Using cgi-lib routines
Last Modified: 10 Aug 95
Version: 2.5
Purpose: Login Routine for DecisionNet

require 'dnetliblpl';
require 'cgi-lib.pl';

Output UserType Menu

sub OUTPUT { # Output the correct menu based on UserType from a file

local(*Input, $AccessData) = @_j

$HeaderFile = $Input{'BaseFile'}.'Head/header'.$Input{'Headnum'}.'.head';

Select correct Header - Else reject

if ($Input{UserType'} eq Trov') {
$Title = "Provider Menu for ".$Input{Usrname'} "\n"-

}
elsif ($Input{UserType'} eq User') {
$Title = "Consumer Menu for ".$Input{Usrname'}."\n";

else { # Bogus Entry for User Type
$Reject = 'Invalid Entry for User Type';
&Reject($Reject);

&HEADER($HeaderFile, $TiÜe, 'Header');

$InputFile = $Input{'BaseFile'}.'Body/'.$Input{UserType'}.'-menu.body';

stat($InputFile);

46

$Age = -M _;
$Age = int($Age);

print "Your last access was at $AccessData<b»\n";

open (File,$InputFile) I I die "Can't open $InputFile: $!\n";

while (<File>) {

chop;
$Line = $_;

if (/TYPE=submit/) {
Insert Usertype, Username, and Encoded password before each button.

print '<input name=UserType type=hidden value='",$Input{'UserType'},'">'."\n";
print '<input name=Usrname type=hidden value=',',$Input{'Usrname'},"'>'."\n'';
print '<input name=Pwd type=hidden value='",$Input{'Pwd'},'">'."\n";
print "$Line\n";

}
else {
print "$Line\n";

}

} # End While loop

close (InputFile);

print "<brxi>This file was last modified $Age Days ago</ixbr>\n";

$Title = "";
$OutputFüe = $Input{'BaseFile'}.Toot/footer,.$Input{,Headnum,}.'.foot';
&HEADER($OutputFile, $Title, 'Footer');

} # End Output

Subroutine Reject

sub REJECT {
local ($Reject) = @_j

47

$HeaderFile = $Input{'BaseFile'}.'Head/headerl.head';
STitle = "$Reject\n";
&HEADER($HeaderFile/ $Titie, 'Header');

print "<Hl>Rejected !!! </Hl>\n";

$Title = "";
$OutputFile = $Input{'BaseFile'}.'Foot/footerl.foot';
&HEADER($OutputFile, STitle, 'Footer');

} # End Reject

sub WHERETOGO { #Based on User Type Send different Printout

local($UserType) = @j

if (SUserType eq 'Unreg') {
$Header Number = 'Bogus';

}
elsif ($UserType eq 'User') {
$HeaderNumber = 2;

elsif ($UserType eq 'Prov')
$HeaderNumber = 3;

else {
SHeaderNumber = 'Bogus';

}
return $HeaderNumber;

Following deleted when included in dnetlibl.pl
left here in case all else fails!

Sub Accesslog
Prep and send login data to file : name and date

48

#sub ACCESSLOG {
local($File, SUserName) = @_;

$AccessDate = &DATETIME;

» opens file in append mode
open (OutPutFile, ">>$File");

print OutPutFile "$UserName,$AccessDate\n";

close OutPutFile;
#}

#sub LAST_ACCESS {
local ($File, $Usrname) = @_;
#$LastAccess = "Never";

open (Input, $File) I I die "Can't open $File: $!\n";
while (<Input>) {
chop;
($User, SAccess) = splitC/,/, $_);
if ($User eq SUsrname) {
$LastAccess = $Access;
}
}
close ($File);
return $LastAccess;

#} # End of LAST_ACCESS

Main Program

#These are markers in the data file for the beginning, commas, and end of text.

$Stuff{'Begin'} = "\xfb";
$Sruff{'End*} = "\xfd";

49

$Stuff{ 'Comma'} = "\xfc";
$Stuff{'BaseFile'} = '/home/dnet/DecisionNet/';

&ReadParse(*Stuff);
$Stuff{'Pwd'} = cryptCSStufff'Pwd'}, Dnet);

$Stuff{'HeadNum'} = &WHERETOGO($Stuff{UserType'});

$Stuff{'Headnum'} = 1;

if ($Stuff{'HeadNum'} eq 'Bogus') { # Bogus Entry for User Type
$Stuff{'Reject'} = 'Invalid Entry for User Type';
&REJECT ($Stuff{'Reject'});

}
else {

&CHECKFILE(*Stuff); # Check for duplicate entries in file

if ($Stuff{'Dup'} eq 'Yes') { # Login and Password match
Send client the correct main menu — Prov or User
$AccessFile = $Stuff{'BaseFile'}.'data/,.$Stuff{,User Type'}.'.access.log';
SLastAccess = &LAST_ACCESS($AccessFile/$Sruff{Usrname'});
&ACCESSLOG($AccessFüe/$Stuff{,Usmame'});
&OU"IPUT(*Stuff, $LastAccess);

}
else { # UserName or Password does not match
$Reject = "Consumer Name or Password not Matching: ";
&REJECT($Reject);

END

50

APPENDIX E. USER REGISTRATION

The User Registration is a common module for both Providers and

Consumers. The user information is parsed by cgi-lib.pl. After parsing out the

data, the passwords are checked for blank passwords. Assuming the passwords

are not blank, the current user accounts are checked to verify that the username

requested is not in use by another user of the same type - Provider or

Consumer. If this is a unique user name, then the passwords are checked to

ensure that the same password was entered twice.

If all of this is completed with out an error, then the user entered data is

split into three separate files — *_Address.txt, "_Access.txt, and *_mail.txt. The

user type variable is substituted for the *. All information is appended to a

single file and stored in the clear. The single exception is the user password,

which is stored in the encrypted form. Storing the encrypted form of the

password ensures that the only time the password is sent across the Internet in

the clear is during the initial registration of the account.

The account verification is sent back to the client via E-Mail — one of the

entered data fields. A short HTML document is generated and sent to the client

informing them that the verification of the account will be sent via E-Mail.

#! /usr/bin/perl
Title: register.pl
Written by: Andrew King
Date: 25 Jan 95
Last Modified: 3 May 95
Version: 2.2
Parsing by cgi-lib routines
Purpose: Capture the New Registration information into an

51

encrypted file and put username/email into separate file

require 'dnetlibl.pl';
require 'cgi-lib.pl';

#-
Sub OUTFILE
Output captured information to files

sub OUTFILE {
local(*FORM) = @^

» opens file in append mode

$FORM{'File'} = $FORM{'BaseFile'}.'data/'.$FORM{'UserType'}.'_Address.txt';
open (The_File, "»$FORM{'File'}");

Write out the address to THE_FILE

print The_File "SFORMCBegin'JSFORMCUsrname'JSFORMCComma'}";
print The_File"$FORM{'CompanyName'}$FORM{'Comma'}$FORM{'RealName'}";
print The_File"$FORM{'Comma'}$FORM{,EMair}$FORM{'Comma,}$FORM{,Street'}'';
print The_File M$FORM{'Corrmia*}$FORM{'City'}$FORM{'Cornma'}$FORM{'State'}'';
print The_File "SFORMI'Comma'JSFORMl'Zip'JSFORMi'Comma'}";
print The_File "$FORM{'Country'}$FORM{End'}\n";
close(The_File);

Write out the access info to THE_FILE

$FORM{'File'} = $FORM{'BaseFile'}.'data/'.$FORM{'UserType'}.'_Access.txt';
open (FILE_2, "»$FORM{'File'}");
print FILE_2

''SFORMf'Begin'lSFORMI'Usrname'lSFORMI'CorrmialSFORMI'Pass'JSFORMf'End'lXn"-
close(FILE_2);

Write out the email, and name to address to THE_FILE

SFORMi'File^SFORMCBaseFile'J.'data/'.SFORMCUserType'l.Lmair;
open(FILE_3/"»$FORM{'File'}");

print FILE3',$FORM{'Begin,}$FORM{'Usrname'}$FORM{'Comma'}$FORM{'Pwd'}',;

print FILE_3 "$FOm{'Corruna'}$FORM{'EMair}$FORM{'Comma'}";

print FILE_3 "$FORM{'Access'}$FORM{'End'}\n";
close(FILE_3);

52

#.
Output Subroutine
Encrypts Data, send data to file, Sends verification to client via E-Mail

sub OUTPUT { # Output to file and return verification to user
local(*FORM) = @^

The Encryption Salt has been removed to ensure all passwords are secure
Despite this thesis being released to the public.

$FORM{'Pass'} = crypt($FORM{'Pwd'},SALT);

Get Time and Date for new registration Time
$FORM{'Access'} = &DATETIME;
&OUTFILE(*FORM); # Output to the correct Files
$Subject = 'DecisionNet Account Verification';

$Body = "The following record has been added to the register as of $FORM{ Access'} \n
New User Name: $FORM{'Usrname'}\n \n Welcome to DecisionNet!\n";

&EMAIL($FORM{'EMail'}, $FORM{'Usrname'}, $Subject, $Body);

sub RESULTS {
local (*Input) = @_j
$HeaderFile = $Input{'BaseFile'}.'Head/headerl.head';
$Title = "$Input{'Reject'}\n";
&HEADER($HeaderFile, $Title, 'Header');

print "<H2>Your confirmation will be sent via E-Mail to : $Input{'EMail'}</H2>";
$Title = "";
SOutputFile = $Input{'BaseFile'}.'Foot/footerl.foot';
&HEADER($OutputFile, $Title, 'Footer');

} # End Reject

Subroutine Reject

53

sub REJECT {
local (*Input) = @_j

SHeaderFile = $Input{'BaseFile'}.'Head/headerl.head';
$Title = "Registration Failure \n";
&HEADER($HeaderFile/ $Titie, 'Header');

print "<H3>New Account registration failed</H3>\n";
print "Reason for failure: $Input{'Reject'}
\n";
STitle = "";

SOutputFile = $Input{'BaseFile'}.'Foot/footerl.foot';
&HEADER($OutputFile/ STitle, 'Footer');

End Reject

Main Program

$Sruff{'Begin'} = "\xfb";
$Stuff{'End'} = "\xfd";
$Stuff{'Comma'} = "\xfc";
$Stuff{'BaseFile'} = '/home/dnet/DecisionNet/';

#Debugging line
print "Content-type: text/html\n\n";

&ReadParse(*Stuff);

Check for blank password or username before continue
if ($Stuff{'Usrname'} eq "") {

$Stuff{'Reject'} = ' A blank Login Name.';
&REJECT(*Stuff);

}
elsif ($Stuff{'Pwd'} eq "") {

SStuff{'Reject'} = A blank Password.';
&REJECT(*Stuff);

}
else {

54

Password and Username filled in
&CHECKFILE(*Stuff); # Check for duplicate entries in file

if ($Stuff{'DupName'} eq 'Yes') { # New Registration is a duplicate
$Stuff{'Reject'} = 'Duplicate Registration.';
&REJECT(*Stuff);

}
elsif ($Stuff{'Pwd'} eq $Sruff{'PassWordl'}) { # Passwords match

&OUTPUT(*Stuff);
&RESULTS(*Stuff);
}

else { # Passwords do not match
$Stuff{'Reject'} = 'Passwords not matching.';
&REJECT(*Stuff);

END

55

56

APPENDIX F. TECHNOLOGY REGISTRATION

This function requires two Perl scripts — Register.Form.pl and register.pl.

Register.Form.pl generates the registration form for the Provider using the

information entered at the time of registration to fill in the point of contact (POC)

information, and insert the hidden fields for the user-type, user name and

password. When the data for the technology is completed, the data is sent to

register.pl. Register.pl verifies the account information, then uses the data entered

to fill in the HTML form that is stored in a temporary directory. The provider is

sent an E-Mail to verify that DecisionNet has received the information and will

post it shortly.

The posting is currently done automatically via a crontab job at midnight.

The verification of the technology is done after registration is accepted.

#! /usr/bin/perl
Title: Register.Form.pl
Based on: add.pl and login.pl
Written by: Andrew King
Date: 9 Aug 95
Last Modified: 9 Aug 95
Version: 2.0 '
Parsing by cgi-lib routines
Purpose: Capture the New Technology Registration information
into a HTML file to be included in the search routine.

require dnetlibl.pl';
require 'cgiTib.pl';

Output User Type Menu

57

sub OUTPUT { # Output the New Registration Form

local (*Input) = @_,
&GetPOCInfo(*Input);

$HeaderFile = $Input{'BaseFile'}.'Head/headerl.head';

STitle = "Register New Technology for ".$Input{'Usrname'}."\n";
Output Header to Client

&HEADER($HeaderFile, $Titie, 'Header');

SInputFile = $Input{'BaseFile'}.'Body/register.model.body';

Calculate the age of the html file
stat($InputFile);
$Age = -M _;
$Age = int($Age);

open (File,$InputFile) I I die "Can't open $InputFile: $!\n";

while (<File>) {

chop;
$Line = $_;

Check for submit button to insert hidden fields

if (/TYPE=submit/) { # Perhaps insert Hidden Fields

print '<input name=UserType type=hidden value=",
/$Input{'UserType'}/'">'."\n";

print '<input name=Usrname type=hidden value=''',$Input{'Usrname'}/"'>,.''\n";
print '<input name=Pwd type=hidden value="'/$Input{'Pwd'}/'">'."\n";
print "$Line\n";

}
else J # Perhaps insert POC Info
print "$Line\n";
if (/POCName/) {
print "$Input{'POCName'}";

}
elsif (/POCStreet/) {
print "$Input{'POCStreet'}";

}
elsif (/POCCity/) {
print "$Input{'POCCity'}";

58

elsif (/POCEMail/) {
print "$Input{'POCEMail'}";

}
elsif (/POCCompany/) {
print "$Input{POCCompany'}'';

}
elsif (/POCState/) {
print "$Input{'POCState'}";

}
elsif (/POCZip/) {
print "$Input{POCZip'}";

}
elsif (/POCCountry/) {
print "$Input{POCCountry'}";

} # End else

} # End While loop

close (InputFile);

print "<brxi>This file was last modified $Age Days ago</ixbr>\n";

$Title ="";
$OutputFile = $Input{'BaseFile'}.'Foot/footerl.foot';
&HEADER($OutputFile, STitle, 'Footer');

} # End Output

Subroutine Reject

sub REJECT {
local (*Input) = @_j

$HeaderFile = $Input{'BaseFüe'}.'Head/headerl.head';
$Title = "Registration Failure\n";
&HEADER($HeaderFile, $Title, 'Header');

59

print "<H3>New Technology registration failed</H3>\n";
print "Reason for failure: $Input{'Reject'}
\n";

$Title = "";
SOutputFile = $Input{'BaseFile'}.'Foot/footerl.foot';
&HEADER($OutputFile, $Titie, 'Footer');

End Reject

Main Program

$StufffBegin'} = "\xfb";
$Stuff{'End'} = "\xfd";
$Stuff{'Comma'} = "\xfc";
$Stuff{'BaseFile'} = '/home/dnet/DecisionNet/';

Debugging line uncomment to start debugging
print "Content-type: text/html\n\n";

&ReadParse(*Stuff);

if ($Stuff{'UserType'} ne 'Prov') { # Bogus Entry for User Type
$Stuff{'Reject'} = 'Your Provider Registration is not Valid. Please reregister with

DecisionNet prior to adding a new Technology.';
&REJECT(*Stuff);

}
else {

&CHECKFILE(*Stuff); # Check for duplicate entries in file

if ($Stuff{'Dup'} eq 'Yes') { # Login and Password match

Send client the correct main menu — Prov or User
$AccessFile = $Stuff{'BaseFile'}.'data/'.$Stuff{'UserType'}.,.access.log,

;

SLastAccess = &LASTACCESS($AccessFile,$Stuff{'Usmame'});
feACCESSLOGCSAccessFUe^StuffCUsmame'});
&OUTPUT(*Stuff);

60

else { # UserName or Password does not match
$Stuff{'Reject'} = 'You are not a registered Provider. Please register as a Provider

prior to adding a new technology.';
&REJECT(*Stuff);

_END (Register.Form.pl)

#! /usr/bin/perl
Title: add.pl
Based on: register.pl
Written by: Andrew King
Date: 25 Jan 95
Last Modified: 20 July 95
Version: 2.2
Parsing by cgi-lib routines
Purpose: Capture the New Technology Registration information
into a HTML file to be included in the search routine.

require 'dnetlibl.pl';
require 'cgi-lib.pl';

Sub OUTFILE
Output captured information to files

sub OUTFILE {
local(*FORM) - @^

» opens file in append mode
$FORM{'File'} = $FORM{'BaseFile,}.'Incoming/'.$FORM{'FileName'}.'.html';
open (The.File, "»$FORM{'File'}");

Write out the address to THE_FILE

print The_File '<h2>Run the <A href = '";
print The_File "$FORM{'URL'}";

print The_File '">';
print The_File "$FORM{'Name'}</h2>
\n";

61

print The_File 'Purpose,';
print The_File 'Construction/

print The_File 'Description/';
print The_File 'Comments';
print The_File "
\n";
print The_File "<hr noshade size = 10><p>\n";

print The_File "Name: $FORM{'Name'}
\n";
print The_File "ExecutionURL: $FORM{'URL'}
\n";
print The_File "Modeling Paradigm: $FORM{'paradigm'}
\n";
print The_File "Model Type: $FORM{'ModelType'}
\n";
print The_File "Date Implemented: $FORM{'Date'}
\n";
print The_File "Functional Area: $FORM{'Area'}
\n";
print The_File "Domain: $FORM{'Domain'}
\n";
print The_File '';
print The_File "Purpose: $FORM{'Purpose'}<p>\n";
print The_File "<hr noshade size = 10><p>\n";

print The_File "Point Of Contact Name: $FORM{'POCName'}
\n";
print The_File "Company Name: $FOKM{TOCCompany'}
\n";
print The_File "POC Street: $FORM{TOCStreet'}
\n";
print The_File "POC City: $FORM{POCCity'}
\n";
print The_File "POC State/Province: $FORM{POCState'}
\n";
print The_File "POC Postal Code: $FORM{'POCZip'}
\n";
print The_File "POC Country: $FORM{POCCountry'}
\n";
print The_File "POC Phone: $FORM{*POCPhone'}<P>\n";
print The_File "<hr noshade size = 10><p>\n";

print The_File '';
print The_File "Description: $FORM{'Descript'}
\n";
print The_File "<hr noshade size = 10><p>\n";

print The_File '<bxA NAME="construction"> Construction:';
print The_File "$FORM{'Const'}
\n";
print TheJFile "Human Partidpation:$FOPxM{'participation'}<p>\n";
print The_File " E^PUTS: $FORM{'Inputs'}
\n";
print The_File "OUTPUT: $FORM{'Outputs'}
\n";
print The_File "<hr noshade size = 10><p>\n";

print The_File '<BxA NAME="hwsw">Hardware and Software of system executing';
print The_File " this technology:</Ax/Bxp>\n";
print TheJFile "Computer: $FORM{'Computer'}
\n";
print The_File "Storage: $FORM{'Storage'}
\n";

62

print The_File "Peripherals: $FORM{Peri'}
\n";
print The_File "Language: $FORM{'Language'}
\n";
print TheJFile "Documentation: $FORM{'Docs'}<p>\n";
print The_File "Security Classification: $FORM{'Class'}
\n";
print TheJFile "<hr noshade size = 10><p>\n";

print The_File '<H2xA NAME="comments">Comments:';
print The_File "</h2>$FORM{,Comments'}
\n";
print The_File "<hr noshade size = 10><p>\n";

print The_File "Last Update: $FORM{'Access'}
\n";

close(TheJFile);

#.

Output Subroutine
Writes data file, Sends notification to user via E-Mail

sub OUTPUT { # Output to file and return verification to user
local(*FORM) = @j

Create filename (hopefully unique) for new file
$FORM{'FileName'} = $FORM{'Name'};

$FORM{'FüeName'} =~ y/a-zA-Z0-9//cd;

Get Time and Date for new registration Time
$FORM{Access'} = &DATETIME;

&OUTFILE(*FORM); # Output to the correct Files
SSubject = 'New Technology Registration';

$Body = "The following record has been added to the DecisionNet register as of
$FOPvM{Access'}\n New Technology Name: $FORM{'Name'}\n Added by:
$FORM{'Usrname'} \n";

fcEMAiLCSFORMCPOCEMail'}, SFORMCUsrname'}, SSubject, $Body);

63

Subroutine Reject

sub REJECT {
local (Input) = @_j

$HeaderFile = $Input{'BaseFile'}.'Head/headerl.head';
$Title = "Registration FailureXn";
&HEADER($HeaderFile/ $Titie, 'Header');

print "<H3>New Technology registration failed</H3>\n";
print "Reason for failure: $Input{'Reject'}
\n";

$Title = "";

SOutputFile = $Input{'BaseFile'}.'Foot/footerl.foot';
&HEADER($OutputFile/ $Title, 'Footer');

End Reject

sub RESULTS {
local ("Input) = @_j

$HeaderFile = SlnputfBaseFile'j.'Head/headerl.head';
$Title = "$Input{ 'Reject'} \n";
&HEADER($HeaderFile, $Titie, 'Header');

print "<H2>Your confirmation will be sent via E-Mail to : $Input{'POCEMail'}</H2>"-
$Title = "";

SOutputFile = $Input{'BaseFile'}.'Foot/footerl.foot';
&HEADER($OutputFile, $Title, 'Footer');

End Results

Main Program

$Stuff{'BaseFile'} = Vhome/dnet/DecisionNet/';

64

#Debugging line
print "Content-type: text/htrnl\n\n";

&ReadParse(*Stuff);

&CHECKFILE(*Sruff); # Check for valid Provider Name

#if ($Stuff{'Dup'} eq 'Yes') { # Provider Registered
&OUTPUT(*Stuff);
&RESULTS(*Stuff);

#}
else { # Provider Not Registered ... How did that happen?
$Stuff{'Reject'} = 'Your Provider Registration is not Valid. Please reregister with
DecisionNet prior to adding a new Technology.';
&REJECT(*Stuff);
#}

END

65

66

LIST OF REFERENCES

1. Sprague, Ralph H. Jr., and Eric D. Carlson, Building Effective Decision
Support Systems, (Englewood Cliffs, NJ: Prentice-Hall, Inc., 1982), 256-277
passim.

2. Sprague, Ralph H. Jr., and Barbara C. McNurlin, Information Systems
Management in Practice, Third Edition, (Englewood Cliffs, NJ: Prentice-Hall,
Inc., 1993), 382-385.

3. Chou, Hugh, Mortgage Paymeny Query, (http://ibc.wustl.edu/mort.html).

4. webmaster@strategy.com, MicroStrategy: Success,
(http://www.strategy.com/msi_sinl.htm).

5. Ayre, Rick, and Don Willmott, "The Internet Means Business", PC
Magazine, May 16,1995, Vol. 14, No. 9, p200.

6. www@www.merit.edu, Merit Network, Inc., (http://nic.merit.net).

7. NSFNET Packet Traffic History,
(gopher://nic.merit.edu:7043/00/nsfnet/statistics/history.packets).

8. Dern, Daniel P., Internet Guide for New Users, (New York: McGraw-Hill,
Inc., 1994), 190.

9. Bui, Tung X., ed., Proceedings of the Third International Conference on Decision
Support Systems, (Hong Kong: Elsevier Publishing Co., 1995), Vol. I and II,
137-146,499-528.

10. podonnel@fcit.monash.edu.au, Decision Support Systems Research Group,
(http://ponderosa.is.monash.edu.au/~podonnel/dss.html).

11. webmaster@cis.ufl.ed, UF/NA Perl Archive, (http://www.cis.ufl.edu/perl/).

12. Denny, Robert B., windows httpd, (http://www.city.net/win-httpd/).

67

13. Shotton, Chuck, MacHTTP Technical Reference,
(http://wzuw.biap.com/docunientation/technical_ref.html).

14. webmaster@lycos.com, The Lycos Home Page: Hunting WWW Information,
(http://lycos. cs. cmu.edu/).

15. Schwartz, Michael, and the Internet Research Task Force Research Group
on Resource Discovery (IRTF-RD), Harvest Information Discovery and Access
System, (http://rd.cs.colorado.edu/).

16. Hughes, Kevin Hughes (kevinh@eit.com), SWISH Documentation,
(http://www. eit.com/software/swish/swish.html).

17. Berners-Lee, Tim, Robert Cailliau, Ari Luotonen, Henrik Frystyk Nielsen,
and Arthur Secret, "The World-Wide Web", Communications of the ACM,
August 1994, vol. 37, No. 8, 82.

18. MacArthur, Karen, World Wide Web Initiative: The Project,
(http://www.zv3.org/).

19. Access log for sm.nps.navy.mil, parsed by Author.

20. Luotonen, Ari, Basic Protection Scheme for the WWW,
(http://www.w3.org/hypertext/WWW/AccessAuthorization/Basic.htm).

68

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5101

3. Professor Hemant Bhargava (Code SM/BH) 3
Naval Postgraduate School
Systems Management Department
Monterey, CA 93943-5000

4. Professor Balasubramaniam Ramesh (Code SM/RA) 2
Naval Postgraduate School
Systems Management Department
Monterey, CA 93943-5000

5. CAPT. Paul Bloch (Code OR/BC) 1
Naval Postgraduate School
Operations Research Department
Monterey, CA 93943-5000

6. Professor Frank Petho (Code OR/PC) 1
Naval Postgraduate School
Operations Research Department
Monterey, CA 93943-5000

7. CAPT. George Conner (Code OR/CO) 1
Naval Postgraduate School
Operations Research Department
Monterey, CA 93943-5000

69

Professor Michael Sovereign (Code OR/SM)
Naval Postgraduate School
Operations Research Department
Monterey, CA 93943-5000

9. Dr. Theodore Lewis (Code CS/LT) 1
Naval Postgraduate School
Computer Science Department
Monterey, CA 93943-5000

10. CAPT George Zolla (Code 05B) 1
Naval Postgraduate School
Monterey, CA 93943-5000

11. Professor Don Brutzman (Code UW/BR) 1
Naval Postgraduate School
Monterey, CA 93943-5000

12. Professor Ramayya Krishnan 1
Heinz School
Carnegie Mellon University
Pittsburg, PA 15213

13. LT Andrew King 2
P. O. Box 810
Fallon,NV 87409

14. Professor Richard King 1
921 Vista Way
Klamath Falls, OR 97601

15. Christopher King \
Director, Broadband Support Systems, Pacific Bell
2297 Plumleigh Drive
Fremont, CA 94539

70

