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ABSTRACT 

Remotely sensed imagery from space has typically been 

done by platforms using only one portion of the 

electromagnetic spectrum.  The SIR-C/X-SAR Space Shuttle 

mission, however, had the unique opportunity to obtain 

visible imagery and synthetic aperture radar data from the 

same platform.  SAR and visible images of Norfolk Navy Base 

in Norfolk, Virginia were successfully merged and analyzed, 

demonstrating that combining the information from two 

different parts of the electromagnetic spectrum increases 

the useful information content of an image.  Principal 

Component Analysis on the radar data demonstrated successful 

data reduction and feature extraction.  Attempts at 

unsupervised classification using neural network analysis 

were less successful. 
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I.  INTRODUCTION 

The Department of Defense has a continuous need for 

remotely sensed tactical information in areas inaccessible 

to friendly forces.  Since 1960, this has been done from 

space as well as from aircraft.  The spaceborne platforms 

performing this mission have usually done so using only one 

particular portion of the electromagnetic spectrum.  There 

have been sensors that span both the infrared and the 

visible wavelengths but there have been few spaceborne 

sensors dedicated to imaging vastly different portions of 

the electromagnetic spectrum concurrently, such as the 

microwave or radar portion of the spectrum, with wavelengths 

in the centimeter region, and the visible portion of the 

spectrum, with wavelengths in the hundreds of nanometers 

region.  The Spaceborne Imaging Radar (SIR-C) missions flown 

in April and October of 1994 on the Space Shuttle Endeavour, 

however, had the unique opportunity to provide coincident 

data from the SIR-C synthetic aperture radar, and the 70 mm 

medium format cameras mounted inside the shuttle.  This 

thesis explored the process of merging the two sets of data 

digitally to determine whether combining the visible and 

microwave portions of the electromagnetic spectrum provides 

more useful information than the individual parts.  These 

combined data sets were analyzed using Principal Component 

Analysis and a neural network classifier in order classify 

areas on the earth's surface. 



Specifically, images of the Norfolk Naval Base in 

Norfolk, Virginia were investigated, assuming, as in a 

tactical warfare situation, that terrain and object 

classification must be done with limited available ground 

truth. 



II.  BACKGROUND 

A.  HISTORY OF REMOTE SENSING IN THE VISIBLE WAVELENGTHS 

Remote sensing is defined as the acquisition of 

information about an object without being in direct contact 

with it (Elachi, 1987).  In the scientific community, it has 

evolved over time to mean the remote collection of 

information related in some way to the earth's natural 

resources or environment (Slater, 1980).  The history of 

remote sensing, however, demonstrates that improvements in 

capability have all been a function of technological 

advancements, many of them driven by the need for better 

military reconnaissance. 

The history of remote sensing began with aerial 

photography in 1858 when Gaspard Tournachon succeeded in 

taking a balloon photograph of the village Bievre, near 

Paris, France.  This historic event was due primarily to the 

invention of the wet plate process of photographic 

development, invented in 1851, which allowed exposures of 

less then a couple of seconds to be a suitable means of 

photography.  Still, an exposed plate required very still 

conditions and needed to be developed within twenty minutes 

of exposure. (Newhall, 1969) 

This new science of obtaining airborne imagery was 

exploited during the civil war, most notably by the Union 



General George McClellan, who used it to survey Confederate 

positions in Virginia (Avery and Berlin, 1992). 

The invention of the dry plate process of photographic 

development in 1871 allowed the next great improvement in 

aerial photography.  Dry plates did not have to be developed 

immediately and their exposure time was reduced to small 

fractions of a second, GO times faster than the wet plate 

process.  This allowed much higher quality images due to the 

reduced exposure time and many more images per flight, since 

they could be developed once on the ground.  (Newhall, 1969) 

As lens, film, and camera technology became more 

advanced, smaller, and lighter, cameras were attached to 

smaller less expensive balloons, kites, and even pigeons. 

In 1912, Julius Neubronner successfully attached cameras as 

light as 2 1/2 ounces to pigeons in Cronberg, Germany. 

(Newhall, 1969) 

The development of the airplane was the technological 

advancement that allowed photographers to take pictures of a 

particular predetermined site, instead of being at the mercy 

of the wind or a bird. The first recorded use of aircraft to 

obtain photography was in 1909 when Wilbur Wright flew a 

camera over Centotelli, Italy.  This method of remote 

sensing was widely used and improved out of necessity during 

World Wars I and II. The primary advancements in technology 

during World War II were the automation of the film 

advancement in the camera, and the speed of the film 

processing.  By 1943, it was standard for a Mosquitoe 



reconnaissance aircraft to carry three cameras each with 500 

film negatives.  (Newhall, 1969) 

Aerial photography reached new heights after World War 

II as a mission of V-2 rockets that were captured from 

Germany.  In an experiment performed by the Applied Physics 

Laboratory of The John Hopkins University, a 35 mm motion 

picture camera was launched on a V-2 rocket from the White 

Sands Proving Ground in New Mexico in 1946.  The camera took 

continuous pictures during ascent and descent and was 

ejected from the rocket during descent at approximately 

25,000 feet.  This was a precursor to the film return method 

used by satellites in subsequent decades.  An Atlas rocket 

carried a camera to 700 miles in 1959.  These rocket 

platforms, however, did not remain in space long enough to 

take photos during any time other than the ascent and 

descent.  The development of orbiting satellites allowed the 

first sustained spaceborne remote sensing platform, the 

Explorer VI, to be launched in September of 1959. (Newhall, 

1969) 

The images from the Explorer VI inspired the 

development of dedicated meteorology satellites.  The first 

of these, TIROS (Television and Infrared Observing 

Satellite), was a series of ten satellites, launched from 

1960 to 1965.  TIROS was improved upon in subsequent 

meteorological satellite systems.  The essential imagery of 

real time weather, short range prediction, and long range 

forecasts continued to be provided by the following 

systems; Environmental Science Services Administration, 



(ESSA), the Improved TIROS Operating System, (ITOS), and 

TIROS-N.  (Allison and Schnapf, 1983) 

Concurrently, the development of military 

reconnaissance capability was also being applied to orbiting 

satellite platforms in the top secret CORONA program.  In 

August of 1960, the KH-1 camera system launched on CORONA 

mission 9009 successfully returned film in a re-entry 

vehicle which was captured in mid-air by a U.S. Air Force 

C-119 aircraft.  The KH-1 camera had a resolution capability 

of 12 meters, providing this first successful mission with 

over 4.1 million square kilometers of Soviet Union 

reconnaissance coverage.  In the heat of the Cold War, rapid 

advancements were made to the reconnaissance camera systems. 

Most significantly, camera control, color film type and 

metering, faster lens systems, and spacecraft thermal 

control contributed to improvements in imaging systems.  The 

KH-4B camera system achieved a resolution capability of two 

meters in September of 1967.  (McDonald, 1995) 

Remote sensing from optical systems continued to 

diversify among spaceborne platforms for several reasons, 

most obviously because a much larger area could be imaged 

without the distortion of a wide angle lens.  Also, the 

orbital mechanics of spacecraft allowed for constant or 

repetitive observations.  (Slater, 1980) 

In 1965 the Defense Meteorological Satellite Program 

(DMSP) was originated with the objective to obtain and 

disseminate world wide meteorological data on a daily basis. 



The payload consisted of two vidicon cameras which provided 

TV pictures with a resolution of 2.4 km.  Relay satellites 

transmitted real time data to a data reconstruction site. 

In 1987, upgraded Block 5 series DMSP satellites carried a 

passive microwave radiometer, (SSM/I), in the first 

spaceborne attempt to combine both reflected and emitted 

energy in cloud analysis.  This passive microwave sensor 

operated in the K and Q bands, sensing wavelengths from 8.1 

to 15.5 mm.  (Kramer, 1992) 

In 1972, NASA launched the first Landsat satellite, 

which was historically significant for the fact that it 

produced digital imagery.  Digital imagery is far more 

amenable to computer processing techniques than analog 

imagery, allowing contrast enhancements and feature 

extraction not necessarily recognizable by the human eye 

(Strain and Engle, 1992).  At the time the satellite was 

called the Earth Resources Technology Satellite, (ERTS-1). 

Its primary payload was the Multi-Spectral Scanner, (MSS), 

which operated in four spectral bands from .5 to 1.1 um, 

including the near infrared.  Subsequently, Landsat 2 

through Landsat 5 have been successfully launched, with the 

last two Landsats carrying the Thematic Mapper, (TM), as the 

primary payload.  The TM is a scanning optical sensor that 

increased the resolution capability of Landsat from 79 

meters to 3 0 meters and increased the number of  operating 

spectral bands to seven in the visible and infrared regions, 

from .45 to 2.3 5 um.  Landsat has been a major supplier of 



earth imagery for both scientific and military applications 

over the course of its lifetime.  (Gupta, 1991) 

Continuing improvements in launch vehicle capability 

permitted satellites to reach geostationary altitudes.  This 

allowed continuous observation from a single platform that 

covered almost a third of the earth's surface.  In 1974, The 

National Oceanographic and Atmospheric Association ,(NOAA), 

began to launch the Geostationary Operational Environmental 

Satellites, (GOES), to take advantage of this capability as 

a geostationary meteorological satellite constellation.  The 

primary payload, Visible Infrared Spin Scan Radiometer, 

(VISSR), operates with 8 visible channel detectors and 12 

spectral bands of infrared information.  (Kramer, 1992) 

The latest major optical sensor system in orbit is the 

French SPOT satellite constellation (Systeme Probatoire 

d'Observation de la Terre).  SPOT-1 was launched in 1986, 

and carries a High Resolution Visible sensor, (HRV), as its 

primary payload.  The HRV operates in three spectral bands 

which cover the visible wavelengths from .5 to .89 (.im, 

with a resolution of 20 meters.  There is also a 

panchromatic mode (black and white imagery) which has a 

spatial resolution of ten meters, and covers the portion of 

the visible spectrum from .51 to .73 (am.  SPOT has 

increased commercially available resolution capability and 

made possible the  digital merging of its panchromatic band 

with other sensors to increase their spatial resolution 

capability as well.  This process is addressed later in this 

thesis.  (Kramer, 1992) 



B.  HISTORY OF REMOTE SENSING IN MICROWAVE WAVELENGTHS 

Radar as a remote sensing tool has its origins in Real 

Aperture Side Looking Radar, (SLAR), developed in the early 

1950's.  This was the result of advances in antenna design, 

microwave components, and radar recording techniques 

developed to provide high resolution imagery useful for 

military reconnaissance.  (Moore, 1983) 

SLAR systems do not have fine resolution capability 

from long range, since the along track range resolution, 

(ra ) , is a function of the radar wavelength, (A.), the 

antenna length, (D), and the range to the target, (R): 

ra = ^ Equation 2.1 

This limitation led to the development of synthetic aperture 

radar, (SAR), which has no range or wavelength dependence on 

the along track resolution or the cross track resolution. 

For synthetic aperture radar the resolution can approach the 

following theoretical limit: 

| Equation 2.2 

This feature makes SAR systems particularly attractive for 

long range and space based radar remote sensing 

applications.  (Moore, 1983) 

The first SAR imaging system used in earth orbit was 

the oceanographic satellite Seasat, launched in 1978. 



Seasat carried an L-band SAR, operating at approximately 

1.28 GHz, with a 25 meter resolution capability.  The radar 

transmitted and received horizontally polarized 

electromagnetic waves and had a 20 degree look angle 

relative to the vertical.  Seasat generated only 70 days of 

operational data before a power failure ended its mission, 

however this data was used extensively in ice and ocean 

monitoring.  (Kramer, 1992) 

The next spaceborne SAR was the Shuttle Imaging Radar, 

(SIR-A), launched on the Space Shuttle in November of 1981 

with the mission of evaluating SAR as a tool for geological 

mapping.  This radar was also an L-band HH radar.  It had a 

resolution cell size of approximately 40 meters and a 47 

degree look angle.  (Simonett, 1983) 

SIR-B was launched on the Space Shuttle in October of 

1984.  This was the first spaceborne SAR capable of varying 

the radar look angle at the earth's surface.  The three look 

angles of 28°, 45°, and 58° were analyzed in an attempt to 

understand the complexity of microwave backscatter at 

varying radar incidence angles.  SIR-B improved the 

resolution cell size of the radar pixels to 25 meters. 

(Lozano-Garcia and Hoffer, 1993) 

Numerous papers have been written using results from 

the SAR systems on the SIR-A and SIR-B shuttle missions. 

The most comprehensive source of these SAR references found 

in the search for background material is located on the NASA 

Jet Propulsion Lab, (JPL), home page on the World Wide Web. 

One publication on forest type classification by 
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Lozano-Garcia and Hoffer [1993], is reviewed further in this 

chapter. 

Each of the first two SIR missions was flown with a 

Large Format Camera, (LFC), on board the space shuttle. 

This 450 kg camera generated an image format size of 23 x 46 

centimeters and had a resolution capability of 15 meters. 

In a comprehensive literature review, several technical 

papers written on the earth observation imagery of the LFC 

were found from a search of the NASA Technical Report Server 

at the following World Wide Web address: 

http://techreports.larc.nasa.gov/cgi-bin/NTRS; however, no 

publications were found which addressed merging of synthetic 

aperture radar and LFC visible data. 

The most recently launched unmanned orbiting SAR 

platforms are the ERS-1 and the JERS-1, launched  in 1991 

and 1992 respectively.  The European Remote Sensing 

Satellite, (ERS-1), has an imaging mode capable of 30 meter 

resolution using C-band W polarization radar at an 

incidence angle of 23°.  The Japanese Earth Resources 

Satellite, (JERS-1), has an 18 meter resolution capability, 

using L-band HH polarization at a look angle of 35.2°. 

Several publications using the ERS-1 data are listed on 

the JPL document mentioned above.  One paper by R.M. Hoffer 

[1994], applied to the classification of Eucalyptus tree 

stands is reviewed later in this chapter.  A set of compact 

discs of excellent JERS imagery was released by the National 

Space Development Agency of Japan in 1994. 

11 



C. SHUTTLE IMAGING RADAR-C AND X BAND SYNTHETIC 

APERTURE RADAR (SIR-C/X-SAR) 

The synthetic aperture radar data used in this analysis 

was provided by the Shuttle Imaging Radar, SIR-C/XSAR.  This 

radar was flown on Space Shuttle flights STS-59 and STS-68 

in April and October of 1994.  The radar consists of an 

antenna structure and associated hardware designed to fit 

within the payload bay of the Space Shuttle.  The antenna is 

a 12 x 3.7 meter, 10,500 kg array of separate panels (Figure 

1).  The antenna consists of two planar arrays, one for 

L-band, operating at 23.5 cm wavelength and one for C-band, 

operating at 5.8 cm wavelength.  The power output of the 

radar is 5.2 kW for the L band and 1.3 kW for the C band. 

The X-band radar antenna operates separately from the L and 

C band antennas.  X-band radar data were not used in the 

analysis due to difficulty in acquiring and unpacking usable 

data.  Each planar array contains a grid of hundreds of 

small low power solid state dual polarized microstrip 

transmitters embedded in the surface of the antenna.  These 

radiators can transmit and receive both vertically and 

horizontally polarized waves.  This allows for the SIR-C to 

collect four different combinations of radar backscatter, HH 

(horizontally transmitted, horizontally received), HV 

(horizontally transmitted, vertically received), VH 

(vertically transmitted, horizontally received), and W 

(vertically transmitted, vertically received).  In addition, 

measurements include the relative phase difference between 

12 



the HH, W, VH, and HV returns.  This allows for the 

derivation of the complete scattering matrix of each pixel 

within a scene.  The beam can be steered +/- 23 degrees from 

the nominal 40 degree off nadir position.  (Freeman and 

Chapman, 1994) 

D.  PREVIOUS RESEARCH IN MULTISENSOR DATA FUSION 

Previous research in multisensor data fusion has 

investigated techniques to improve surface classification 

accuracy by using more of the information available from the 

electromagnetic spectrum. 

Guindon et al. [1980], from the Canada Center for 

Remote Sensing applied the fusion of airborne synthetic 

aperture radar, an airborne multispectral scanner, and 

Landsat data to the classification of forest types in 

British Columbia.  The radiometric and geometric correction 

procedures required in rugged topography received particular 

attention.  The conclusion was that the 11 channel airborne 

multispectral scanner, spanning from .38 to 14 fim provided 

the same weighted average classification accuracy of 88% 

that a combined 12 band SAR-Landsat data set provided.  The 

12 band data set was the best four bands from each of the 

three sensors.  The following table summarizes these 

results. 

13 



Data Set We icrhted Average 
classi fication accuracv 

11 Channel Airborne MSS 88% 

Best  4 Channel Airborne MSS 72% 

8 Channel SAR 69% 

Best  4 Channel SAR 49% 
j 

SAR (shallow incidence angle) 49% 

SAR  (steep incidence angle) 45% 

Landsat MSS 44% 

12 Best bands (SAR, AMSS, 88% 
LMSS) 

8 SAR + 4 Landsat 83% 

Table  2.1:     From  Guindon  et  al.    [1980],   Results  of 
combined airborne  SAR,   MSS,   and Landsat  data  applied   to 
Forest  Type  Classification  in British  Columbia 

S. T. Wu [1982], of NASA applied the fusion of Seasat 

L-band and aircraft X-band dual polarized synthetic aperture 

radar data with four band Landsat MSS data to the problem of 

land type classification in the Western Kentucky coal 

region.  Since there was a high degree of correlation 

between MSS bands, only two of the bands were used in the 

combined classification process.  In unsupervised 

classification of seven land cover types, the percentage of 

pixels classified correctly improved in every case for the 

combined five band data set over the SAR bands and the MSS 

bands separately. 

14 



Land Cover 
Types 

Pasture 

Forest 

Residential 

Soybean Field 

Corn Field 

Water 

Strip Mine 

Overall 

SAT? (3 bands) MSS (4 bands) SAR/MSS 
(5-bands) 

46.9% 81.3% 96.7% 

92.3% 88.0% 92.5% 

10.0% 59.4% 79.0% 

89.5% 59.4% 90.9% 

88.3% 32.5% 99.0% 

99.9% 97.4% 99.9% 

64.9% 47.7% 77.4% 

48.2% 64.2% 81.1% 

Table 2.2: From S. T. Wu [1982], Results of combined 
Seasat and Landsat data applied to the classification 
of  the Kentucky Coal  Region 

P.S. Chavez [1986], of the U.S. Geological Survey 

applied the process of sensor fusion to Landsat TM data and 

panchromatic photography from the National High Altitude 

Program (NHAP).  He successfully demonstrated the benefits 

of sensor fusion by maintaining the spectral resolution of 

Landsat TM while incorporating the spatial resolution of 

NHAP. 

R. Welch and M. Ehlers [1987], of the University of 

Georgia merged data from the newly launched SPOT-1 satellite 

with Landsat TM data.  After the TM data had been resampled 

to ten meter resolution using parametric cubic interpolation 

for smoothing purposes, they found striking success in 

merged image contrast and spectral discrimination by using 

an intensity-hue-saturation (IHS) transformation process. 

This process, which is fully documented in Haydn et al 

[1982], is started by transforming three resampled TM bands 

15 



from the Red-Green-Blue color space into the IHS domain. 

The ten meter panchromatic SPOT data is then substituted for 

the intensity band of the IHS image and the new IHS image is 

transformed back into the RGB color domain.  Although this 

research combined two different types of visible 

information, having nothing to do with SAR, it is relevant 

to this work in that the merged three band image contained 

information from four separate spectral bands of image data. 

D. G. Leckie [1990], of Petawawa National Forestry 

Institute demonstrated that registered radar, visible, and 

infrared data were better at forest type classification than 

any of the bands individually, (See Figure 2).  First, all 

possible combinations of the four polarization components of 

C and X band airborne SAR (8 total radar bands), five 

visible, three near infrared, and one mid infrared bands of 

an airborne multispectral scanner were analyzed.  It was 

found that a 5 band combination of near-IR, green, mid-IR, 

XVv and Chh provided close to the maximum classification 

accuracy obtainable using all bands. 

D. F. Lozano-Garcia and R.M. Hoffer [1993], combined 

SAR data from the SIR-B mission of the Space Shuttle with 

Landsat TM data in an effort to demonstrate synergistic 

classification capabilities over forests in Northern 

Florida.  This was the first time spaceborne radar data 

could be obtained and analyzed from different incidence 

angles; 28°, 45°, and 58°.  The best classification 

performance was obtained using a subset of 4 bands of data; 

green, near IR, and mid IR from the TM, and 28° Lhh radar 

16 



data from the SIR-B.  This provided better classification 

than even the combination of all ten bands.  This is 

demonstrated with respect to the classification of swamps, 

clear-cut, young pine, pine, old pine, and water in the 

following table. 

Number of Average Channels utilized* 

channels classification 
accuracy (%) 

2 79.6 5,10 

3 84.4 4,5,10 

4 88.4 2,4,5,10 

5 88.2 2,4,5,7,10 

6 86.8 2,4,5,7,9,10 

7 86.7 2,3,4,5,7,9,10 

8 84.6 2,3,4,5,7,8,9,10 

9 84.9 2,3,4,5,6,7,8,9,10 

10 84.2 1,2,3,4,5,6,7,8,9,10 

Table 2.3:     From Lozano-Garcia and Hoffer   [1993], 
Results  of combined SIR-B data and Landsat  TM data 
applied  to Forest  Classification  in Northern Florida 

*  where: channel 1 is Landsat .45-.52 (am 
channel 2 is Landsat .52-.60 urn 

channel 3 is Landsat .63-.69 |J.m 

channel 4 is Landsat .76-. 90 jam 

channel 5 is Landsat 1.55-1.75 ]J.m 

channel 6 is Landsat 2.08-2.35 (J.m 

channel 7 is Landsat 10.4-12.5 \xm 

channels 8,9,10 are SIR-B, L-band HH polarization 

at incidence angles 28°, 45°, and 

58° respectively 
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R.M. Hoffer [1994], applied this synergy of SAR and TM 

data to the classification of Eucalyptus stands in Gerais, 

Brazil.  The data source in this case for SAR was ERS-1. 

The results of this study demonstrated that TM data alone 

classified Eucalyptus stands better than the combined data 

set.  Apparently, adverse topographic effects in areas of 

rolling terrain degraded the SAR data.  The results of the 

study are summarized below. 

Classification Type Landsat TM ERS-1 SAR Combined 
accuracy accuracv accuracv 

Medium Euc alypt us 93 .4% 0.0% 91.0% 

Young Euca lyptus 92.7% 78.0% 91.1% 

Pasture 96.7% 51.7% 96.1% 

Bare Soil 83.9% 38.4% 62.5% 

Lake 94.7% 64.1% 92.7% 

River 98.0% 67.9% 67.3% 

Cloud 100% 67.8% 65.3% 

Overall 94.8% 35.7% 85.9% 
classification 
accuracy 

Table  2.4:     From Hoffer   [1994],   Results  of  combined 
ERS-1  data  and Landsat  TM data applied  to Eucalyptus 
stand  classification  in Gerais,   Brazil 

Chiuderi, et al., [1994] combined the concept of 

multisensor data fusion with neural network classifiers to 

demonstrate improved classification abilities of 

agricultural areas near Florence, Italy.  The data set 

included images from a P, L, and C band multipolarization 

SAR flown on board a DC-8 aircraft, and a 12 channel 



multispectral scanner, (TMS), covering visible and IR 

wavelengths flown on board an ER-2 aircraft.  Two separate 

neural network classification methods showed improved 

classification accuracy when SAR data was added to the MSS 

data set.  The first study employed a backpropogation neural 

network.  The classification accuracy of wheat, woods, 

alfalfa, vineyards, bare soil, and grassland was 65.68% 

using TMS data alone, but improved to 90.68% using the SAR 

data as well.  The second study employed a 

self-organizing-map neural network approach.  The 

classification accuracy improved from 97.88% to 98.73% when 

SAR data was added to the TMS data set. 

Previous work by this author was done with data from 

the STS-59 SIR-C Space Shuttle mission using SAR and Space 

Shuttle medium format photographic imagery of Mount 

Pinatubo, in the Republic of the Philippines.  Figure 3 is 

an R-G-B color image taken from the hand held Hasselblad 

camera onboard the space shuttle.  Figure 4 is a false color 

composite image of three of the radar bands; L-band HH, 

L-band HV, and C-band HV are color mapped in red, green, and 

blue respectively.  Clearly, there is much greater detail in 

the mountainous features of the radar composite image than 

in the photograph.  The mudflows, called 'lahars', in the 

radar image, however, show no radar return at all from 

their origin near the cinder cone all the way to the ocean 

at the left side of the image.  The visible photograph, on 

the other hand, shows significant variations in the detail 

of the lahars, while not breaking out any of the detail of 
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the mountainous terrain.  The L-band HH, the C-band HV, and 

the blue band of the rgb image were combined to show both 

the mountainous detail and the detail of the mudflows in one 

image (Figure 5).  This result is a clear demonstration that 

a combination of features in each of the two portions of the 

electromagnetic spectrum increases the overall information 

content of the image.  The objective of the following 

analysis is to demonstrate this in a scene of greater 

military relevance. 
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III.  THEORY 

A.  RADIATION-MATTER INTERACTION 

Electromagnetic energy is detectable only through its 

interaction with other matter.  When EM energy strikes 

matter, there are four fundamental interactions that can 

occur.  Transmission is the process by which EM energy 

passes through matter without any detectable attenuation. 

Specular reflection is the process of EM energy "bouncing 

off" matter in an equal and opposite direction from which it 

came.  Scattering, sometimes called diffuse reflection, 

involves the re-emissions of radiation from rough surfaces 

relative to the incident wavelength.  Absorption is the 

attenuation of EM energy within a medium.  In the process of 

absorption, radiation is converted into thermal energy 

within the medium, which is then re-radiated or emitted from 

the body.  Remote sensors detect and measure the reflected, 

scattered, or emitted electromagnetic radiation from an 

object or area from some distance.  (Avery and Berlin, 1985) 

The interaction of matter with EM radiation is clearly 

a function of the wavelength of the incident radiation.  The 

difference in wavelengths is the primary difference between 

the visible and the microwave portions of the 

electromagnetic spectrum (See Figure 6).  Another 

significant difference between the visible and radar remote 

sensing instruments used for this thesis study is the 

difference between an active and a passive system.  The 
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incident EM energy for visible wavelength remote sensing is 

provided by the sun, hence, no artificial radiation source 

is required.  Synthetic aperture radar, however, must 

provide its own source of microwave energy, then measure the 

received component.  This is an active system.  It is this 

feature that allows radar to be a viable sensor even at 

night. 

Every object interacting with electromagnetic energy 

emits and reflects energy with unique characteristics that 

are a function of its physical state and molecular and 

chemical properties.  This distinctive property is called a 

spectral signature.  For the purpose of classifying items in 

a remotely sensed image, it is desirable to expand the band 

of frequencies that are analyzed to ensure that the 

uniqueness of an objects spectral signature is identified. 

(Avery and Berlin, 1985) 

The purpose of this thesis study is to analyze the 

utility of combined radar and visible wavelengths when 

applied to the classification of objects based upon their 

spectral signatures.  The following discussion of the 

radiation-matter interactions of the different portions of 

the electromagnetic spectrum is intended to help understand 

what features cause differences in spectral signatures. 
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B.  RADIATION-MATTER INTERACTION IN VISIBLE WAVELENGTHS 

Specular reflection occurs in wave-matter interaction 

when the material is smooth relative to the incident 

wavelength.  The reflection coefficient, R, is a function of 

the incidence angle, 6, and the complex index of refraction, 

n.  This interaction varies for vertically and horizontally- 

polarized waves: 

,„ 12  sin2(6-9t) _    . .    -, -, Rh
z = —-i—V- Equation  3.1 

1    nl sin2(6+et) 

,„   i      tan2(6-8t) _ .   . -.    „ Rv =—^—- Equation  3.2 
1    vl      tan2(9-^,) ^ 

Where 6t is the transmission angle, and sin0 = nsin6t. 

The reflection coefficient as a function of incidence angle 

for two different values of the index of refraction is 

plotted in Figure 7.  (Elachi, 1987) 

Most natural surfaces, however, are rough relative to 

the incident wavelength, therefore scattering and absorption 

play a more predominant role.  Multiple scattering from a 

particulate surface results in some energy being reflected 

toward the  medium, sometimes penetrating the medium.  If 

the material has an absorption band, the reflected energy is 

depleted of energy in that band.  (Elachi, 1987) 

The result of this absorption in visible remote sensing 

is the cause of the colors we see in objects.  For example, 

an object that absorbs all wavelengths within the visible 

spectrum except for blue will appear blue to the human eye. 
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An object that absorbs all wavelengths will appear black and 

an object that reflects all wavelengths will appear white. 

The actual mechanisms responsible for different 

absorption bands are primarily electronic excitation 

processes within the atoms and molecules reacting with the 

impinging electromagnetic energy.,  The most important of 

these processes involve the crystal field effect, charge 

transfer, and conjugate bonds. 

1. Crystal Field Effect 

In solid materials, valence electrons of adjacent atoms 

form electron pairs that hold the atoms together.  In the 

case of certain elements, this leaves unpaired electrons in 

unfilled inner shells.  These electrons have excited states 

that are strongly affected by the electrostatic field of the 

surrounding crystalline structure.  These excited states of 

the unpaired electron often have frequency ranges that fall 

into the visible spectrum.  (Elachi, 1987) 

2. Charge Transfer 

In some cases, when the electron pairs described above 

are bound by less energy, they are not confined and can move 

about through a macroscopic solid.  These electron pairs 

have the ability to transfer charge from one ion to another. 
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For example, the blue sapphire contains the impurities Fe+2, 

and Ti44.  When an electron is transferred from the iron to 

the titanium, giving both ions a +3 charge, an excited state 

is formed, creating an absorption band from the yellow 

through the red.  The result is the deep blue color of the 

sapphire.  (Elachi, 1987) 

3.  Conjugate Bonds 

The loosely bound electron pair described above plays a 

major role in the spectral response of many organic 

compounds, including biological pigments.  These substances 

contain a system of alternating single and double atomic 

bonds called conjugate bonds.  The transfer of a pair of 

electrons from a single to a double bond causes a reversal 

of the bonds, resulting in an excited state with absorption 

in the visible wavelengths.  The chlorophyll in plants is a 

classic example of this type of spectral characteristic. 

(Elachi, 1987) 

C.  RADIATION-MATTER INTERACTION IN MICROWAVE WAVELENGTHS 

The uniqueness of the SIR-C synthetic aperture radar 

platform lies in its ability to both transmit and receive 

horizontally and vertically polarized waves.  The following 

discussion is the theory of radar backscatter and an attempt 

to understand the differences between like and cross 

polarized returns.  A more thorough understanding of these 
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differences will greatly aid in the exploitation of the 

SIR-C data. 

The classical radar equation expresses power returned 

to the receiving antenna as a function of the transmitter 

power, Pt , antenna gain, G, the radar cross section of the 

incident surface, art, and the receiving antenna area, A, 

modified by isotropic spreading functions and atmospheric 

attenuation. 

p  PjG^jAe-2ar Equation 3.3 

While the radar transmitting and receiving 

characteristics are fixed, having been designed into the 

radar, it is the interaction of the microwave signal with 

the surface of the earth which warrants thorough discussion. 

Radar images are representations of the power received 

for each of the individual picture elements, or pixels, 

within a scene.  Each pixel represents the average radar 

backscatter reflected to the radar antenna from that 

specific area on the earth.  The backscatter can be 

expressed as a coefficient, a, that is defined as the ratio 

of energy received by the receiving antenna over the energy 

that would have been received if the surface reflected the 

incident energy isotropically.  The scattering coefficient 

is a function of polarization, look angle, wavelength, and 

the interaction properties of the target; geometric, 

dielectric, and conductive.  Modeling the backscatter 

properties of a given area on the earth incorporates both 
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surface and volume scattering models.  For example, an area 

of vegetated terrain would involve surface scattering  from 

the air-vegetation and vegetation-ground interfaces as well 

as volume scattering from the zone within the vegetation. 

(Fung and Ulaby, 1983) 

1.  Surface Scattering 

A simple model of the surface scattering process 

involves a series of large facets with superimposed 

roughness.  An electromagnetic wave incident on the surface 

creates an electric field at the surface of the facet.  This 

will cause an excitation of the atomic oscillators within 

the material that is a function of the dielectric property 

of the medium.  These new electromagnetic oscillators then 

reradiate energy isotropically from the incident material. 

The re-radiated energy that is opposite in direction from 

the incident radiation minus the energy lost due to 

atmospheric attenuation and isotropic spreading is the 

energy received by the radar antenna. (Elachi, 1987) 

For a perfectly conducting, smooth rectangular facet of 

dimensions L and b parallel to the x and y axes 

respectively, an incident plane wave of either vertical or 

horizontal polarization in the x-z plane results in the 

following backscatter coefficient: 

CT(9) = ^[sing^)]2cos2e Equation  3 . 4 
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where: a(0) = the backscatter coefficient as a function 

of the angle of incidence relative to the vertical 

X=  wave1engt h 

k = 27tA. 

(Fung and Ulaby, 1983) 

This facet backscatter is plotted as a function of 9 in 

Figure 8.  A reradiated field from a single facet would have 

a field similar to an antenna with the dimensions of the 

facet.  This simple model, however, assumes roughness scales 

larger than the wavelength of the incident electromagnetic 

wave and incidence angles less than 3 0°.  For larger angles 

of 6, the primary surface scattering is due to Bragg 

scattering, or point source scattering, where roughness 

scales of horizontal dimension L are the predominant 

contributor when L meets the following condition. 

L = ^ Equation 3.5 

This is also demonstrated in Figure 8.  (Elachi, 1987) 

To account for the superimposed roughness on a facet, 

the model assumes incident electromagnetic waves upon a 

sphere. If the radius of the sphere is less than 1/10 of the 

incident wavelength, then the Rayleigh scattering cross 

section applies, which is expressed in the following 

equation and is independent of the angle 9. 

art = 647T5(^)2(J) Equation 3.6 
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where: art= the backscatter cross section expressed in 

meters 

r = radius of sphere 

s = complex dielectric constant 

If the sphere is greater than approximately 1.6 times 

the wavelength of the incident radiation, then Rayleigh 

scattering no longer applies and the spheres' radar cross 

section is equivalent to its geometric cross section, 

modified by the dielectric constant: 

CTrt = [^[]27ir2 Equation  3.7 

Combining these different shapes, sizes and slopes of 

slightly rough surfaces, polarized surface backscattering 

can be represented by the following first order expression 

according to Fung and Ulaby, 1983. 

aPp(6) = 8k4h2cos4e|app|
2W(2ksin0) Equation 3 . 8 

where pp  =  polarization 

k = ITIIX 

h2 = variance of surface heights 
app= Fresnel reflection coefficient for a 

given polarization 

W(2ksin6)  the Fourier transform of the 

correlation coefficient of the 

normalized roughness spectrum 
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This expression is valid only for small values of h 

compared to X.     The otpp Fresnel reflection coefficient is 

dependent upon the incidence angle and the properties of the 

material.  In the case of the W and HH polarization for 

example, 

avv = (sr - l)[sin
29 - er(l + sin29)][srcos9 + (sr - sin29)m]~2 Equat ion 3 . 9 

ahh = (1 - sr)(cos Q+Jsr- sin29 )"2 Equation 3.10 

where sr= the relative permittivity of the surface. 

Figures 9 and 10 show this difference in backscatter 

for horizontal and vertical polarization for slightly rough 

surfaces.  The three lines on each plot demonstrate the 

effect of the size of the roughness, 1.  For each plot the 

relative permittivity of the surface is assumed constant, 

and k = 2n/X.     For random surfaces of small scale roughness, 

these expressions are valid for incidence angles less than 

approximately 3 0 degrees. For larger angles of 9, the 

primary surface scattering is due to Bragg scattering as 

described earlier in the chapter. 

For large scale roughness, where h>X : 

cr = 7Tsec49|R|2p(tan9) Equation 3.11 

where p = slope probability 

R = specular reflection coefficient 

(Larson, 1994) 
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2.  Volume Scattering 

Volume scattering can be represented in a simple closed 

form solution for the case of a continuous inhomogeneous 

medium with small permittivity fluctuations and no 

discontinuities at the top surface of the volume.  The 

horizontally polarized backscatter coefficient for a 

horizontally polarized incident wave at incidence angle 0 

is : 

ahh(6) = 27r2 
kTicos8cos(9-<t>) 

cos<j>(eacos6+,/Er cos<|>) 
W(2ksin9) Equation 3 .12 

where:  <j) is related to 0 by Snells law 

k = 2-nlX 

Tx= Fresnel transmission coefficient for 

horizontal polarization 

W(2ksin0)  is the Fourier transform of the 

spectrum of the random permittivity 

function si(x,y) 

sa= The average value of the inhomogeneous 

permittivity, s(x,y,z) 

(Fung and Ulaby, 1983) 

This 0 dependence is plotted in Figure 11. In this 

plot, a2 is identical to h2 in the above equations, W is 

expressed as follows. 

W(2ksin0) = h2l2[l +4k2lW0] 2l20,-„2m_3/ Equation 3.13 
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The overall backscatter coefficient for a medium 

capable of both surface and volume scattering can be 

assessed using the principle of superposition of the above 

properties.  However, this is not the case when an area is 

dominated by multiple scattering.  A signal scattered 

multiple times before returning to the receiver antenna 

takes a slightly longer path than a signal scattered only 

once.  This results in a slight phase delay, increasing the 

cross polarization component of the return signal.  This is 

illustrated in Figure 12.  (Fung and Ulaby, 1983) 

Radar images produced by like polarizations (HH, W) 

are empirically different from those produced by cross 

polarizations (HV, VH) because of the differences in the 

physical processes involved during the interaction of the 

electromagnetic wave and the surface.  The primary process 

responsible for like polarized returns is the combined 

effect of surface and volume scattering.  The dominant 

mechanisms contributing to cross polarized returns are 

multiple scattering due to large scale target roughness and 

multiple volume scattering due to inhomogeneities.  Still, 

there are many differences between like and cross polarized 

returns that are not yet understood.  (Larson, 1994) 

3.  Scattering Matrix 

The fully polarametric capabilities of the SIR-C radar 

will help to increase our understanding of the polarization 

characterization of the scattered electromagnetic field. 
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The radar backscatter coefficient for each pixel is broken 

down into the scattering matrix.  The scattering matrix [S] 

is related to the backscatter cross section <jrt by the 

following expression: 

jo Sis = /cvTeJöiJ-7== Equation 3.14 

where  Sy = [_  _  ] Equation 3.15 

S is a complex value. 

If the scattering matrix is referenced in phase to Shh, then 

the scattering matrix is characterized by three amplitudes 

and two relative phases, Svh = Sh .  (Onstott, 1994) 

S = eie""[   ,?  A , *    L    6  . ]      Equation 3.16 

This breakdown of the radar backscatter coefficient is what 

allows for representation of an image in each of the like 

polarizations, W and HH, the cross polarization, HV, and 

the phase difference. 

4.  Radar Resolution 

The resolution cell of each pixel in a synthetic 

aperture radar image is measured in the along track and 

range direction.  The along track dimension, 5y, of the 

pixel is simply a function of the actual antenna array 

length, D. 
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8y=2 Equation 3.17 

The dimension in the range direction is a function of the 

frequency bandwidth, B, of the radar and the incidence angle 

9.  c is the speed of light. 

SX = ^TC0S9 Equation  3.18 

For the SIR-C radar, the 12 meter antenna length dictates an 

along track resolution cell capability of six meters. The 

actual demonstrated along track resolution, however, is 

eight meters, due to a weighting applied during processing 

to reduce sidelobe levels.  The incidence angle 9 varies 

from 17 to 63 degrees and the signal bandwidth varies from 

10 to 20 MHz, resulting in a worst case 15 meters range 

resolution.  To get a square pixel, several looks are 

averaged in azimuth, resulting in a higher quality image 

with the reduced resolution of 25 x 25 meters. 
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IV.  PROCESS 

The Norfolk Navy Base was selected as the site for this 

analysis after a comprehensive and unsuccessful search for 

visible and radar images that were obtained concurrently. 

Littoral sites of naval significance were checked for 

available radar data via the JPL SIR-C Home Page on the 

Internet.  Focusing on a geographic area was achieved with a 

point and click map index on this home page.  Individual 

datatake frames were then accessible for viewing.  This 

proved to be an effective yet time consuming process. 

Visible data were acquired from the Earth Observation 

Lab at Johnson Spaceflight Center in Houston, Texas.  Nadir 

lists of all photographs taken on the SIR-C flights were 

reviewed to narrow down the search to a particular 

geographic area.  Selected individual rolls of film were 

then viewed for images of littoral sites of naval interest. 

Radar and visible data of the Norfolk, Virginia area 

provided the best coincident data available; however, the 

time difference of these datatakes was seven hours and 45 

minutes.  Once the visible imagery was located and digitized 

in Houston, JPL provided data tapes of the same site. 

SIR-C radar data were labeled Datatake ID 97_20, taken 

by mission STS-68 at 09:29:56 GMT on 6 October, 1994.  The 

data product received was multi-look complex data containing 

like and cross polarized information for horizontally 

transmitted C and L band wavelengths.  Radar incidence angle 

was 34.7°.  The datatake provided a strip of radar imagery 
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approximately 100 by 43 kilometers which was cropped to 

cover the area of interest.  The data was unpacked using 

software provided by JPL, then scaled appropriately to 

capture the entire dynamic range.  Resolution of each pixel 

is approximately 25 x 25 meters.  An X-band data tape was 

received from the German Space Agency, DLR. This data was 

not extractable from the digital tape and therefore not used 

in the analysis. 

Visible imagery was in a positive 70mm film format, 

taken at 17:15:13 GMT on 6 October, 1994 from a modified 

medium format Hassleblad camera.  This image, labeled 

68-237-057, was then digitized using an Eikonix digitizer. 

It must be pointed out that digitization is a potentially 

error inducing process for the data.  The digitizer is a CCD 

array which digitizes the light received from a light table 

over which the film image is placed.  Adjusting tonal 

quality to match the original image is a subjective process 

of the human eye, aided by histogram optimization.  Focusing 

is done through a view finder and difficult to adjust 

precisely.  Finally, image scanning takes several minutes, 

during which any vibration to the light table affects image 

output quality.  This process was performed several times to 

best match the color, contrast, and tone of the digitized 

image to the original film image.  A 62.7 km square image 

was digitized to a 1696 x 1696 pixel array, resulting in a 

pixel resolution of approximately 37 x 37 meters. 

The visible data were geo-registered to the radar data 

using a 3rd order polynomial transformation and resampled 
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using bilinear interpolation.  This was done using the GCP 

Works package within PCI Remote Sensing software.  (PCI, 

1994) 

The individual bands of radar data and individual color 

bands of the R-G-B image were combined for observation 

purposes using the Environment for Visualization (ENVI) 

software package within IDL software.  Principal Component 

Analysis of the data was performed using PCI software. 

Finally, the neural network classification process was 

performed using a Kohonen Self Organizing Map program 

written in IDL.  (Gautreaux, 1995) 

37 



38 



V.  OBSERVATIONS 

The imagery used in the analysis is the immediate 

vicinity surrounding the Norfolk Navy Base in Norfolk, 

Virginia.  The overall region is known as the Tidewater Area 

of Virginia.  The Chesapeake Bay, the James River, and the 

Elizabeth River surround the Navy base on three sides.  The 

land mass on which the base lies, and the area across the 

James River is known to be a primarily residential and 

commercial area.  There is significant industry and 

commercial shipping activity along the Elizabeth River. 

Figure 13 shows a map that outlines the analyzed area. 

Figures 14 and 15 are C band HH and C band HV images 

respectively.  Figures 16 and 17 are the L band HH and 

L band HV images respectively.  There are several noteworthy 

differences in the radar images; differences between the two 

frequency bands and differences between the two polarization 

types.  These differences are described and explained when 

possible in the following paragraphs.  The observations 

acquired when adding the visible information, Figures 18 and 

19, to the radar data are then addressed.  Ground truth data 

for comparison is limited, as it would be in a tactical 

situation, to map data and some human intelligence 

information. 
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A.  DIFFERENCES BETWEEN LIKE AND CROSS POLARIZED RADAR 

IMAGES 

In the cross polarized images, Figures 14 and 16, the 

overall returns from the land areas are brighter than they 

are in the like polarized images, Figures 15 and 17.  These 

areas are known to be primarily residential, with a great 

number of buildings, neighborhoods, and shopping areas. 

This type of surface results in multiple scattering of the 

incident microwave radiation, therefore the brightness 

difference between polarization types supports the fact that 

multiple scattering causes depolarization of EM waves.  This 

overall increase of brightness in the returns over the like 

polarized images improves the contrast between the light and 

dark features on the cross polarized imagery.  This makes 

the roads and inland waterways more easily identifiable. 

The areas where there is little difference between the like 

polarized and crossed polarized images are not culturally 

built up areas. For example, the large square peninsula on 

the left side of the image, Craney Island, is known to be a 

once marshy area, recently having been used as a land fill 

area. 

Both like polarized images have more noticeable 

variations in the returns from the land areas than do the 

cross polarized images.  There are pockets of increased 

return intensity which indicate a different surface feature 

or different surface geometry that is not recognizable in 

the cross polarized imagery.  Some of these areas of 
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increased returns are completely saturated in the like 

polarized images, providing limited useful information. 

These same areas in the cross polarized images, however, are 

not saturated and do have identifiable detail.  For example, 

the peninsula of the southern portion of the Norfolk Naval 

Base is completely saturated in the Chh image of Figure 14, 
whereas, in the Chv image of Figure 15, the peninsula area 

is broken up into separate areas of recognizably different 

intensity returns.  This area is known to contain several 

warehouses and shipping storage facilities. 

A final noteworthy difference between the two different 

types of polarizations is in the representation of ships' 

wakes, visible in the like polarized imagery of Figures 14 

and 16, but not visible in the cross polarized imagery of 

Figures 15 and 17.  This is the only feature noticeable from 

the water areas in any of the images.  The water overall 

appears to have no return in all bands and polarizations, 

except for areas of wake activity.  This is explained by the 

predominance of specular reflection in the radars 

interaction with water.  The one exception to this 

observation is the lighter areas in the lower right portion 

of the water in the Chv image of Figure 15.  Since this 

lighter area appears over the land as well as the water, 

this is assumed to be noise in the data. 

B.  DIFFERENCES BETWEEN L AND C BAND RADAR IMAGES 

Both L band images clearly have more detail in some 

areas of the image than in the C Band.  This is most 
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apparent in the land-water interface area south of Craney 

Island and the Portsmouth Coast Guard Facility on the 

western shore of the Elizabeth River.  This region is known 

to be an undeveloped land area, containing primarily 

grassland, and marshland nearer the shore.  This difference 

in detail may be partially due to the power output of the 

transmitters and the receiver noise figures.  The power 

outputs are 5.2 kW for L band and 1.3 kW for C band. 

Both L band images show more sharpness between the 

light and dark areas than in the corresponding images for 

the C band.  This is most evident in the street and waterway 

definition in the entire Norfolk area. 

The most significant observable difference between the 

two frequency bands is the representation of the airfield on 

the Norfolk Naval Base.  This feature is clearly visible in 

both C band images, Figures 14 and 15, yet not visible at 

all in the L band images, Figures 16 and 17.  The airfield 

area could actually be misinterpreted as water in the L band 

images.  This is not a function of the printed image, the 

difference is the same on a digital display with all manners 

of contrast stretching applied.  This lack of return near 

the airport in L band is not clearly understood. 

C.  COMBINED FALSE COLOR RADAR IMAGES 

Based upon the above observations of the differences 

between each of the different radar/polarization images, 

several false color images were created, with three of the 
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four bands represented as red, green , and blue in each 

image.  The following table indicates which images are 

represented in the appropriate Figures. 

Fiqure Red Band Green Band Blue Band 

20 C band HH C band HV L band HV 

21 L band HH L band HV C band HH 

22 C band HH C band HV L band HH 

23 C band HV L band HV L band HH 

24 L band HH L band HV C band HV 

Table  5.1:     Composite Radar Image  Combinations 

The combination of the radar bands allows features from 

each of the bands to be portrayed in one image.  The Lhv 

band provides the best contrast between lines of 

communication and inland waterways, so false color images 

including this particular band were sharper.  Only those 

images with both C bands represented the Naval Airfield 

well.  All combinations represented the area south of the 

Portsmouth Coast Guard Facility and west of the Elizabeth 

River clearly.  For these reasons, the best combination of 

radar bands found to represent the scene is Figure 20.  The 

contrast of Figure 21 is actually better, but the airfield 

is nearly invisible in that image. 

Figure 20 portrays the strength of the cross polarized 

returns of the residential areas throughout the whole image 

in blue with the Lhv band.  The small areas within the 
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residential areas which were highlighted in both HH images 

are represented in red with the Chh band.  The land fill 

areas on Craney Island, the area south of the Coast Guard 

Facility and the area outlining the airport are represented 

in green with the CK band. There are also many significant 

returns represented in white; they are the objects which 

have strong returns in all radar bands, namely, the ships at 

pierside, the warehouses on the Naval Base, and the 

industrial areas and warehouses along the Elizabeth River. 

It is noteworthy that the colors in the image are fairly 

uniform in tone.  There is little significant variation 

within the blues the reds or the greens that is normally 

seen when combining these three colors into one image. 

D.  ADDITION OF VISIBLE IMAGERY TO THE RADAR INFORMATION 

The original visible image is shown in Figure 18.  The 

image is predominantly blue in color, with several shades of 

browns and dark greens.  The red, green, and blue pixels 

which comprise the image are depicted in the histogram plot 

of Figure 25.  This plot demonstrates that in the area of 

the greatest number of pixels (brightness values of 60 to 

180) the blue band is significantly brighter than the red or 

green bands.  It is the variety in shade and color 

throughout the image which is the major contribution that 

the visible bands can add to the radar information.  The 

R-G-B image which resulted from the registration with the 

radar images is presented in Figure 19.  Significant 
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resolution, sharpness, and detail has clearly been lost in 

the registration and warping process.  The first significant 

observation is the differences in the water area of the 

image.  The lighter shades of blue and shades of brown in 

the water are likely to be variations in sediment or water 

depth.  This is information unavailable in the radar bands. 

The land in the Norfolk area also has significant varieties 

in color, especially in the area of the Lafayette River, 

which is the inlet just south of the Norfolk Navy Base and 

the residential areas east of the base.  There is little 

other useful information in the image as it is by itself, 

however, its contribution to tonal variety is evident when 

displayed with the radar bands in one image. 

Based upon the predominance of the blue band in the 

R-G-B image, it was the visible band selected to display 

with the radar bands in false color composite images.  The 

correlation between both red and green when compared to the 

blue indicates that little information is lost when the 

green and red bands are eliminated.  This high degree of 

correlation is illustrated in Figure 26 and quantified in 

the next chapter. 

Figures 27-30 contain band combinations as listed in 

the following table. 
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Figure Red Band Green Band B] .ue Band 

27 C band HH L band HH Blue 

28 C band HH L band HV Blue 

29 C band HV L band HH Blue 

30 C band HH Green L band HH 

Table  5.2:     Composite Radar and  Visible Band 
Combinations 

The combined images of Figures 27 and 28 can be 

compared to the combined radar-only images of Figures 2 0 and 

21.  The obvious difference is the addition of variations in 

the once uniform colors of the combined radar image.  The 

homogeneously colored residential areas now display 

different shades of green and blue as well as areas of 

yellow.  No detail is lost in Figure 27, yet the variation 

in the water of the James River and Chesapeake Bay is 

retained.  An attempt was made at using a visible band other 

than the blue band in Figure 30.  This image appears to have 

lost significant detail and sharpness.  Clearly, this 

portion of the study requires more ground truth data to 

understand the reasons for the gradations in color and 

benefits of adding color imagery to radar data. 

There is a limitation to studying the combined effects 

of seven bands of radar and visible imagery by combining 

only three of the bands in one false color image.  This 

method entirely eliminates the information in the other four 

bands.  It is desirable to use all of the information 
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available from the seven bands and still present that 

information in one image.  This process is made possible 

using Principal Component Analysis and is addressed in the 

next section. 
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VI.  ANALYSIS 

The overall goal of analyzing remotely sensed imagery 

of the earth is to understand the images presented and the 

information contained within them.  The analysis in the 

previous chapter attempted to simply observe the images 

themselves and combine them in different ways to determine 

if there was an optimal way of organizing the data.  The 

following sections provide an alternative method of 

inspecting the data and organizing it based on spectral and 

spatial characteristics into different categories of 

information.  This was done using principal component 

analysis and neural network analysis. 

A.  PRINCIPAL COMPONENT ANALYSIS 

Given the georegistered four radar and three visible 

bands of data, each pixel in the scene represents a seven 

element vector, in which each element represents the 

brightness level in one of the seven bands.  This vector 

characteristic of the data permits spectral transformations, 

providing an alternative representation of the data to 

possibly discern features not evident in the original 

individual bands.  This process also has the potential to 

compress the useful information in the image into fewer 

bands for ease of data manipulation.  The following 

discussion of the covariance matrix and principal component 

transformation is simplified at times to two 
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dimensions.  However, the mathematical logic is applicable 

to an unlimited number of dimensions.  The discussion 

follows the logic of Richards, [1993]. 

1.  The Covariance and Correlation Matrix 

Given a scatter plot of any band of data with another, 

with each axis labeled from 0 to 255 as a brightness scale 

as shown in Figure 31, there is a mean value (m) of pixel 

brightness for each axis.  For example, on the x axis: 

l K m = 77 £ Xj Equation 6.1 
Kj=i 

where K = the total number of pixels 

The covariance matrix, Ex, describes the spread or 

scatter of the pixels in the scene from the average value m. 

l K 

Ex = rr-T Z (Xj - m)(xj - m)1 Equation 6.2 
j=i 

where t denotes the transpose of the matrix. 

The covariance matrix for a pair of spectral bands will 

demonstrate a high degree of correlation between the bands 

if the off diagonal elements of the matrix are large, 

approaching the magnitude of the diagonal elements.  No 

correlation between the bands will be represented by zero 

valued off diagonal elements. 
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The 4 radar bands and 3 visible bands have the 

following 7x7 symmetrical covariance matrix: 

chh chv lhh        lhv       red     green    blue 

chh   8300.64 
chv   1605.84 834.32 
lhh   5018.32 1061.53 4944.42 
lhv   1184.85 498.75 969.68  489.65 
red    725.86 225.29 494.47   193.26 664.79 

green   503.21 141.31 335.93   124.63 559.20 509.90 
blue   272.26 61.46 188.22    63.71   401.30 392.90 356.04 

Table  6.1:     Covariance Matrix of seven band Principal 
Component Analysis 

A more easily interpretable means of representing the 

correlation of the bands is the normalized correlation 

matrix R with matrix elements q: 

qij = Vij/^/ViiVjj Equation  6 . 3 

where v\\   and Vjj represent the elements of the covariance 

matrix. 

The following correlation matrix demonstrates more 

clearly the relationship between the 7 different bands: 
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chh chv lhh   lhv   red   green blue 
chh      1 
chv   .610    1 
lhh   .783 .523     1 
lhv   .588 .780 .623    1 
red    .309 .303 .273 .338     1 

green .245 .217 .212 .249 .960     1 
blue   .158 .113 .142 .153 .825   .922     1 

Table  6.2:     Correlation Matrix for seven band Principal 
Component Analysis 

This correlation matrix demonstrates that among the 

radar bands, the highest degrees of correlation are between 

the like polarized components for each frequency band, 

approximately 78%.  The degree of correlation between the 

like frequencies with different polarizations in the radar 

bands is between 61 and 62.3%.  Among the visible 

wavelengths, the green band is highly correlated with each 

of the red and blue bands, at 92.2 and 96%.  The correlation 

between the red band of the visible wavelengths and all of 

the radar bands varies from 27.3% to 33.8%.  This level of 

correlation between each of the radar bands and the visible 

bands becomes smaller as the wavelengths in the visible 

spectrum become shorter: i.e., the correlation between the 

green band and the radar bands varies from 21.2% to 24.9%, 

and the correlation between the blue band and the radar 

bands ranges only from 11.3% to 15.3%. 
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2.  Principal Component Transformation 

The principal component transformation is the 

coordinate rotation which removes all correlation from the 

bands, resulting in orthogonally related image spaces and a 

new covariance matrix with zero valued off diagonal 

elements.  In a two dimensional vector space, if the vectors 

representing the pixel brightness in the new coordinate 

system are displayed in the y direction, it can be shown 

that there is a linear transformation G of the original 

coordinates, such that: 

Sy =GSxG
l Equation 6.4 

where Ex is the covariance matrix Of the pixel data in x 
space, G is the matrix of eigenvectors of Xx, and Sy is the 
diagonal matrix of eigenvalues of Ex: 

Xi 0 0 

Ey = 0 Xi   0 Equation 6.5 

0 0 Xn 

where n is the dimensionality of the data. 

Xn= eigenvalues of Ex 

In the case of the seven bands under analysis, the G 

matrix, or eigenvector matrix,  and the Sy matrix are as 

follows: 
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band chh qhv lhh lhv red green blue 

1 -0.78861 -0.16721 -0.56742 -0.13183 -0.0807 -0.05682 -0.03223 

2 -0.34325 -0.11083 0.63379 -0.00584 -0.44871 -0.40802 -0.31679 

3 0.47957 -0.02003 -0.50722 -0.11641 -0.45964 -0.41758 -0.33636 

4 -0.16848 0.81739 -0.10274 0.51357 -0.03969 -0.1014 -0.1316 

5 0.04254 -0.53854 -0.09187 0.83278 0.03492 -0.03487 -0.06138 

6 0.00929 0.03476 -0.00862 0.10563 -0.60928 0.02879 0.78449 

7 -0.00058 0.00002 0.00147 0.02442 -0.45482 0.80224 -0.38594 

Table  6.3:     Eigenvectors  of Covariance Matrix for seven 
band Principal   Component Analysis 

This eigenvector matrix is the rotation or 

transformation matrix G that is applied to the original 

bands to create the principal component bands.  Each band 

listed represents one of the seven principal components. 

The table indicates that the first principal component band 

is most heavily weighted with information from the Chh radar 

band and also significantly weighted with information from 

the Lhh band based on the values for these bands that are 

relatively higher than the others.  The second principal 

component is most heavily weighted with information from the 

Lhh band, with significant contributions from all three 
visible bands as well as the Chh band.  Each of the 

principal component bands weightings can be determined from 

the above table.  The image representations of these bands 

are presented in Figures 32 - 38. 

The variances of the pixel data in the transformed 

coordinate system are presented in the Ey matrix, which is 

the covariance matrix of the new vector space. 
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>71 .2 
0 1371.6 
0 0 1313.6 
0 0 0 644.9 

0 0 0 0     118.9 
0 0 0 0        0     71.2 

0 0 0 0        0       0    7.9 

Equation 6.6 

From this matrix, it can be determined that the first 

principal component accounts for  78.09 % of the total 

variance of the entire data set.  This is determined with 

the following expression: 

A.i/2A,i 
i=l 

Equation 6.7 

Similar calculations can determine the variance accounted 

for in each of the subsequent principal component bands. 

The entire variance of the transformed coordinate system is 

accounted for as follows: 

Band Variance 

1 78.09% 

2 8.52% 

3 8.16% 

4 4.01% 

5 0.74% 

6 0.44% 

7 0.05% 

Table  6.4:     Variances  of Principal   Component bands one 
through  seven 
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This table demonstrates that 78.09% of the variance of 

the seven image bands is contained in the first principal 

component and that 98.78% of the total variance is contained 

in the first four bands. This process has effectively 

compressed the information contained in seven image bands 

into four.  It is not acceptable, however, to disregard the 

latter bands as pure noise because even though they 

represent a significant deviation from the mean of the data, 

they can sometimes represent localized detail.  (Richards, 

1993) 

The first principal component image in Figure 3 2 shows 

more detail and differentiation than any of the radar bands 

individually, particularly in defining roads and inland 

waterways.  It does not, however, contain the same detail as 

some of the combined radar images, Figures 2 0 - 24, or 

combined radar and visible images, Figures 27 - 29.  This is 

most evident in the returns that are almost entirely black. 

The southern portion of the Navy Base piers, for example, 

does not display any detail in the first principal 

component, whereas it does in the combined radar band 

images. 

The second and third principal components, Figures 3 3 

and 34, clearly contain significant amount of information 

from the visible bands.  This is not only evident in the 

images, but also in the G matrix, Table 6.3.  These images 

display the different shades throughout the residential 

areas of Norfolk, but significantly sacrifice detail over 

the entire image. 
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It is clear that the subsequent individual principal 

component band images contain less and less information and 

more noise in Figures 3 5 through 38.  This is supported by 

the variance values in Table 6.4.  Principal Component six, 

Figure 37, is noteworthy in that it appears to have had the 

majority of cultural objects removed from the scene, leaving 

only the local existing topography. 

The first three principal components are combined using 

red, green, and blue false colors to represent principal 

components one, two, and three respectively in Figure 39. 

This image clearly differentiates six categories of color; 

pink, red, light green, dark green, blue, and cyan.  This is 

more differentiation in color than the combined radar 

images, and is comparable to the color differentiation in 

the combined visible and radar images.  More ground truth 

would be required to determine whether these six colors 

classify six different types of terrain and structure. 

Detail is lost in many areas of the image, particularly the 

roads and inland waterways.  This is due to the 

contributions of principal components two and three, which 

contain significant information from the visible bands which 

have a poorer resolution in the georegistered image. 

It is important to note in this combined image, Figure 

39, that the red color of the cloud in the upper left corner 

does not necessarily indicate that the cloud, which is a 

visible feature only, is strongly represented in principal 

component one.  Table 6.3 clearly indicates limited amounts 

of visible information in the first principal component and 
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the cloud is not visible at all in Figure 32, which is the 

first principal component image.  This red feature actually 

indicates a complete lack of any information in that region 

in principal components two and three, which are the blue 

and green bands of Figure 39.  This ambiguity in combined 

principal component images should make an observer cautious 

of classification conclusions based solely on a color 

presentation of the principal component analysis. 

3.  Principal Component Analysis of Radar Bands Only 

A principal component analysis was performed on the 

four radar bands, Chh, Chv, Lhh / and Lhv to determine whether 

the principal components provided information on features 

not discernible in any of the individual bands or if it 

condensed the useful information of four bands or radar data 

into fewer bands of principal components. 

The correlation matrix, R, four this four band 

principal component analysis is a subset of the seven band 

correlation matrix, Table 6.2, minus the visible 

information.  The correlation between the radar bands is 

precisely the same, with a higher degree of correlation 

between like polarizations than between like radar 

frequencies.  The least amount of correlation is between 

bands with both different frequencies and polarizations. 

This is illustrated in the following table. 
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chh chv lhh lhv 

chh 1 
chv .610 1 

lhh .783 .523 1 
lhv .588 .780 .623 1 

Table  6.5:     Correlation Matrix of four band Principal 
Component Analysis 

The Eigenvectors of Covariance Matrix is in Table 6.6 

Unlike the correlation matrix, it is not a subset of the 

seven band Eigenvectors of Covariance Matrix. 

Band chh chv lhh UOSL 

l 0.7929 0.16745 0.57087 0 .13182 

2 -0.57952 -0.07023 0.80863 0 .07314 

3 -0.18368 0.82241 -0.10792 0 .52751 

4 0.04157 -0.53914 -0.09265 0 .83607 

Table  6.6:     Eigenvectors of Covariance Matrix for four 
band Principal   Component Analysis 

This matrix interestingly weighs the HH components of 

both frequencies higher than the HV components in the first 

two principal component bands.  The HV components do not 

receive significant weighting until the third and fourth 

principal components.  This is demonstrated in the images 

representing the principal components, Figures 40 through 

43.  The first principal component, Figure 40, looks more 

like the HH polarized images than the cross polarized 

images.  However, it contains the information from both 

frequencies.  This is most apparent in the representation of 
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the Navy airfield and the wetland area south of the 

Portsmouth Coast Guard Facility. 

The variances of the pixel data in the transformed 

coordinate system are presented in the following matrix. 

Sv = 

12449.81 

0 1343.45 

0     0  656.28 

0     0    0  119.48 

Equation 6.8 

This matrix demonstrates that 85.45% of the variance in 

the data set is in the first principal component, as per 

Equation 6.7. 

The percent variance for each of the principal 

component bands is listed below in Table 6.7. 

Table   6.7: 
Analysis 

Band % Variance 

1 85.45% 

2 9.22% 

3 4.50% 

4 0.82% 

Variances  of four band Principal   Component 

The principal component images directly reflect these 

values.  Figure 40 has almost all of the visually 

identifiable information from all of the radar images, 

however, it is heavily weighted with like polarized 

information.  The one noticeable contribution of the cross 

60 



polarizations that is missing is the ability to break out 

information within the saturated areas of the HH returns. 

This is most noticeable in the southern tip of the Navy 

piers and the bright returns on the south side of the 

Elizabeth River. 

The first three principal component bands were combined 

in a false color red, green, blue image in Figure 44.  This 

figure does an outstanding job of displaying all detail 

present in the four radar bands, while compressed into three 

bands of information.  This image shows more complete detail 

than any of the combined false color radar images in Figures 

2 0 through 24.  This is most evident in the detail around 

the piers on the Navy base portrayed in red, and the red 

returns within yellow areas throughout the entire image. 

These areas in the combined radar bands were significantly 

more uniform in color or in many cases saturated white, 

providing no detail.  The ships' wakes in the water also 

show a significant improvement in detail over any of the 

combined radar band images. 

This principal component analysis succeeded in 

compressing four bands of data into three while 

simultaneously gaining more discernible, useful information 

in the data. 

61 



B.  NEURAL NETWORK ANALYSIS 

Neural network analysis was performed on the data using 

the Kohonen Self Organizing Map.  This is an unsupervised 

classification process which categorizes the input data into 

a specified number of categories based on the spectral 

response of each pixel and the 'neighborhood' surrounding 

the pixel.  The Self Organizing Map learns what the 

categories are going to be as it processes the data. 

1.  Background 

The process of the Kohonen Self Organizing Map can be 

subdivided into a training and a classification process. 

The neural network used in the training process can be 

visualized as an array of highly interconnected elementary 

processors, called neurons (See Figure 45).  The neurons are 

organized in a bidimensional array with every neuron 

connected to the input data (Chiuderi, 1994).  In this case, 

there is a neuron for every pixel in the input image.  The 

neurons have initial weights that are adjusted based upon 

their processing of the data.  Each pixel input into the 

network is represented by a neuron.  One of the categories, 

called nodes, is declared the 'winner' in the competition to 

represent the data.  This is determined based on the weight 

values of the neurons.  Once the winner has been declared, 

the neuron weights are updated in the 'neighborhood' of the 

'won' neuron.  The radius of the neighborhood decreases as 
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the training process continues.  It can be nearly half of 

all the neurons at the beginning of the process but is 

reduced to the immediate vicinity of the 'won' neuron as the 

training process nears its conclusion.  The data is run 

through this training cycle for some preset number of 

iterations.  The optimum number of iterations is a 

subjective estimate with no empirical relationship existing 

to define it.  (Gautreaux, 1995) 

The network of neurons trains itself on the given data 

to categorize the pixels into the predetermined number of 

nodes.  A classification program is then run to sort the 

pixels spatially into the categories determined in the 

training process.  It is important to note that a category 

can be defined by a node during the training process to be a 

null category; i.e., the neural network may determine that 

there is not sufficient spectral differentiation in the data 

to justify a separate category when one does not necessarily 

exist. 

2.  Neural Network Results 

Six neural network classifications were done in this 

analysis.  In each case, eight categorizing nodes were used 

with 50,000 training iterations on the input data. 

Classifications were performed on the following input data 

sets. 
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Classific ation Input Bands Used 

1 C-Band HV, L-Band HV 

2 C-Band HH, L-band HH 

3 All 4 Radar Bands 

4 All 7 Bands (radar & visible) 

5 All 7 Principal Component Bands 

6 First 3 Principal Components of 
the 7 Band PCA 

Table  6.8:     Neural  Network Classifications  and input 
bands 

The results are presented in Figures 46 through 51. 

It is clear from inspecting Figures 46 and 47 that a neural 

network classification based upon the input of only two 

radar bands does not provide useful information.  In figure 

46, all null categories are represented in black, with only 

one category differentiated by the neural network.  This 

category, represented in white, appears to be those areas 

which had very low return values in the HV images. 

The neural network analysis done with the input of the 

like polarized radar images, Figure 47, resulted in six null 

categories, represented in white and two classified 

categories represented in red and blue.  The limited number 

of pixels categorized precludes any worthwhile conclusions 

from this image. 

When all four radar bands were used as input to the 

Self Organizing Map, four categories were differentiated, 

while the other four nodes produced null categories.  In 

Figure 48, the null categories are represented in black, the 

others are represented in red, green, blue, and white. 
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White appears to represent those areas which were saturated 

in the like polarized radar images and the blue category 

appears only in the water areas, yet does not define all 

water areas.  The red and green categories represent pixels 

in residential areas, land fill areas, the piers of the Navy 

base, and areas of high return values in all of the radar 

images.  These results allow little confidence in the 

categorization done by the neural network with the four 

radar bands as input. 

Figure 49 represents the classification of the neural 

network with all four radar bands and the three visible 

bands as input.  In this image the eight nodes produced 

three null categories, represented in black and five 

recognizable categories, represented in red, green, blue, 

yellow, and white.  Again, the white category appears to 

represent those features which have very strong returns in 

the like polarized radar imagery.  This includes the 

southern tip of the Navy base, some of the residential 

areas, and what could be ships at pierside.  Blue represents 

some of the land fill area, the land surrounding the Navy- 

airfield, and what is known to be a cloud in the visible 

images.  Yellow and green appear only in areas known to be 

water, yet do not relate to any recognizable features in the 

original images.  The red category ambiguously represents 

pixels in the land fill area, in the water, in residential 

areas, and along some roads as well. 
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The neural network run on the seven principal component 

bands resulted in four null categories, represented in black 

and four classified categories, represented in red, green, 

yellow, and white.  These results are displayed in Figure 

50.  Once again, white appears to represent a portion of 

those areas which had very nearly saturated returns in the 

like polarized radar imagery.  Green and yellow are mixed 

thoroughly together throughout the residential areas of the 

image.  The red category represents most of the land fill 

area, some shorelines,  many places within the residential 

areas, and an extensive area on the Navy base including the 

airfield area. 

Finally, Figure 51 displays the results from the neural 

network analysis using principal components one, two, and 

three as inputs from the seven band principal component 

analysis.  Four null categories were classified as well as 

four categories displayed in red, yellow, green, and white. 

The white pixels represent the returns that were saturated 

in the like polarized images, but in this case they are more 

clearly broken apart from neighboring pixels.  The red 

category appears to represent much of the coastline in the 

image and also some land fill area as well as the area 

surrounding the airfield.  Yellow and green pixels in this 

classification do not appear to represent any unique 

features.  Most of these pixels are in the water areas, yet 

some are in the residential areas as well. 

A summary of the results of the six neural network 

analyses are presented in the following table. 
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Input Bands Used        Number of Number of 
null      classified 
categories categories 

C-Band HV, L-Band HV          7         1 

C-Band HH, L-band HH          6         2 

All 4 Radar Bands            4         4 

All 7 Bands (radar & visible)      3         5 

All 7 Principal Component Bands     4         4 

First 3 Principal Components of     4         4 
the 7 Band PCA 

Table  6.9:     Categorization results of neural network 
classifiers 

This neural network analysis has demonstrated that the 

number of categories defined by the process is highest when 

the four radar bands and three visible bands are used as 

input.  However, it is not clear in the output images that 

each of the categories consistently represents the same type 

of surface feature.  Further study of smaller, known data 

sets is required to understand the categorization performed 

by the nodes within this Kohonen Self Organizing Map. 
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VII.  SUMMARY 

This thesis study successfully explored the process of 

digitally merging synthetic aperture radar data with visible 

imagery.  The visible and radar data analyzed were received 

from co-located sensors on the Space Shuttle during the 

STS-68  SIR-C/X-SAR mission of Endeavour in October, 1994. 

The radar data were excellent, including C and L band 

frequencies and like and cross polarized returns from 

horizontally transmitted electromagnetic waves.  The visible 

data used were less than adequate for outstanding results. 

The initial pixel resolution of approximately 3 7 meters was 

significantly larger than the 25 meter resolution of the SAR 

data.  This resulted in a significant loss of detail and 

information when the visible image was warped and 

georegistered to the radar data.  The initial goal of 

acquiring radar and visible data co-located in time and 

space proved impossible.  The two images used in the study 

were separated in time by a period of 7 hours and 4 5 

minutes.  Ideally, future studies will contain visible and 

radar data coincident in both time and space with identical 

digital resolution. 

In the radar data alone, several noteworthy differences 

between frequencies and polarizations were observed.  The 

most tactically significant differences were the ability to 

see ships' wakes only in like polarized images, the ability 

to see an airfield only in C band frequencies, and the 
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ability to see detail within a particular wetland area only 

in the L band images. 

The combination of radar frequencies and 

polarizations in false color composite images succeeded in 

representing most of the features of each of the individual 

bands in one image.  Figure 20 illustrates this feat by 

clearly showing the airfield and the wetland area, yet the 

image does not clearly illustrate the ships' wakes. 

The combination of the blue visible band to combined 

false color composite images succeeded in adding color and 

tone variation to the combined radar images.  This is 

especially evident in Figures 27 through 29 in the water and 

residential portions of the image.  More ground truth is 

required to understand the contributions of the tonal 

variation in the image. 

The reorganization of the data into principal component 

bands was most successful when using only the four radar 

bands as input.  The combined false color composite image of 

the first three principal components illustrated in Figure 

44 has the best detail resolution of any image in the entire 

analysis.  This is most evident in the red returns within 

areas that were saturated in many of the other images and in 

the representation of the ships' wakes.  This principal 

component analysis succeeded in compressing four bands of 

information into three bands while retaining all useful 

information and improving detail resolution. 

Results of the unsupervised classification attempt 

using neural networks provided limited useful results.  In 
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each of six separate analyses, classification resulted in 

several null and ambiguous categories.  Although one 

category repeatedly represented what could be ships at 

pierside, this categorization was performed better in the 

principal component analysis of radar imagery.  Further 

investigation of the neural network algorithm combined with 

some supervised classification may improve these results in 

the future. 
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VIII.  CONCLUSION 

Multi-frequency, multi-polarization synthetic aperture 

radar data from the SIR-C/X-SAR Space Shuttle mission of 

October, 1994 were successfully fused with visible imagery 

from the same mission.  Merged SAR and visible images of the 

Norfolk Navy Base in Norfolk, Virginia were analyzed by 

combining different bands from the different spectra in 

false color composite images and by performing Principal 

Component Analysis.  Several combinations of the different 

radar frequencies and polarizations, with and without 

visible data, demonstrated that fused data sets from 

different parts of the electromagnetic spectrum can increase 

the useful information content in an image.  Principal 

Component Analysis was performed using two different data 

sets.  Excellent data reduction and feature enhancement 

results were obtained when using only radar bands as input. 

Results were interesting yet ambiguous when combined radar 

and visible data were used as input.  Attempts at 

unsupervised classification using neural network analysis 

were not successful.  Further effort is required in refining 

the neural network classification algorithm, possibly 

incorporating supervised classification methods. 

A link between the indexing databases of visible 

imagery at Johnson Spaceflight Center and synthetic aperture 

radar data at JPL would allow for greater optimization of 

SIR-C data and permit more thorough spectral analysis of the 

earth's surface. 
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APPENDIX:  FIGURES AND IMAGES 
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Note: The Payload is located underneath the SAR Antenna 
The shuttle flies upside down for observations 
A]I dimensions are given in meters 
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Figure  1:     From Kramer   [1993],   SIR-C/X-SAR  synthetic 
aperture  radar  in   the payload bay of   the  Space  Shuttle 
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RADAR AND VISIBLE/INFRARED DATA 
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Figure 2:     From Leckie   [1990],   Results of forest   type 
classification using several   combinations of C and X band 
airborne SAR,   and visible and IR wavelengths  from an 
airborne multi-spectral  scanner 
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Figure  3:     Digitized medium format photograph of Mount 
Pinatubo,   Philippines   taken  from STS-59,   April,   1994 
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Figure  4:     False  color composite of SIR-C radar image of 
Mount  Pinatubo,   Philippines   taken  from STS-59,   April   1994. 
L-band HH is  red,   L-band HV is  green,   C-band HV is blue. 
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Figure  5:     Digitally combined false  color image  of radar and 
visible wavelengths  of Mount Pinatubo,   Philippines   taken 
from  STS-59,   April   1994.      L-band HH is  red,   C-band HV is 
green,   the blue band of  the  visible  image  is blue. 
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Figure  6:     From Avery and Berlin   [1985],   The  electromagnetic 
spectrum illustrates   the difference between microwave and 
visible  wavelengths 
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Figure  7:     From Elachi   [1987],   Reflection  coefficient as  a 
function of incidence angle for  two materials  of different 
indices  of refraction.     The dashed curve  corresponds   to 
vertical polarization,   the  solid curve  corresponds   to 
horizontal polarization. 

82 



Facets scattering 

Bragg scattering 

Figure  8:     From Elachi   [1987],   Facet and Bragg scattering as 
a  function of incidence angle. 
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Figure  9:     From  Ulaby   [1983],   Scattering coefficient as  a 
function  of angle  of incidence  for a horizontally polarized 
wave  on a  slightly rough  surface.     The   three  lines represent 
different  sizes  of roughness measurements   (1). 
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Figure  10:     From  Ulaby   [1983],   Scattering coefficient as a 
function of angle of incidence  for a  vertically polarized 
wave  on  a slightly rough  surface.      The   three  lines  represent 
different  sizes  of roughness measurements   (1). 
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Figure  11:     From  Ulaby   [1983],     Radar backscatter 
coefficient as  a  function  of angle of incidence  illustrates 
volume  scattering  for different mediums.     a2   represents   the 
height   variance  of   the medium,   kl   represents   the 
permittivity 
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Figure  12:     From  Ulaby   [1983],   Return power as a  function  of 
angle of incidence for several  like polarized and cross 
polarized conditions 
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CHESAPEAKE 
PORTSMOUTH 

VIRGINIA BEACH 

Figure   13:     Map  of   the  Norfolk,    Virginia   region.      North   is 
up.      The  James  River  is  at   the  NW corner of   this map,    the 
Chesapeake  Bay at   the  NE  corner.      The   Portsmouth   Coast   Guard 
Facility is  just  south  of  Craney Island Fuel   Depot. 
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Figure  14:     C-band HH polarization  image of Norfolk, 
Virginia.      Taken by  the SIR-C Synthetic Aperture-Radar on 
Space  Shuttle mission  STS-68   in  October of  1994 
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Figure  15:     C-band HV polarization  image of Norfgjk, 
Virginia.      Taken by  the SIR-C Synthetic Aperture Radar on 
Space  Shuttle mission  STS-68   in  October of  1994 
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Figure  16:     L-band HH polarization  image of Norfolk, 
Virginia.      Taken by  the SIR-C Synthetic Aperture tfadar on 
Space  Shuttle mission  STS-68  in  October of  1994 
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Figure  17:     L-band HV polarization  image  of Norfolk, 
Virginia.      Taken by  the SIR-C Synthetic Aperture iZadar on 
Space  Shuttle mission  STS-68   in  October of  1994 
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Figure  18:     Digitized medium  format  visible  image  of 
Norfolk,   Virginia   taken  from Space Shuttle mission STS-68  in 
October of  1994 
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Figure  19:     Warped medium format  visible  image  from Figure 
18  after geo-registration   to radar image 
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Figure 20:     False   color  composite  of SIR-C radar  image  of 
Norfolk,   Virginia   taken  from  Space  Shuttle mission  STS-68   m 
October,   1994.     C-band HH polarization  is  red,   C-band HV 
polarization   is  green,   L-band HV polarization  is blue 
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Figure 21:     False  color composite  of SIR-C radar image of 
Norfolk,   Virginia   taken from Space  Shuttle mission  STS-68  in 
October,   1994.     L-band HH polarization is red,   L-band HV 
polarization  is  green,   C-band HH polarization  is blue 
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Figure 22:     False  color composite of SIR-C radar image of 
Norfolk,   Virginia   taken  from Space  Shuttle mission  STS-68   m 
October,   1994.     C-band HH polarization  is red,   C-band HV 
polarization  is  green,   L-band HH polarization  is blue 
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Figure 23:     False  color composite  of SIR-C radar image of   ^ 
Norfolk,   Virginia   taken  from Space Shuttle mission  STS-68  in 
October,   1994.     C-band HV polarization  is  red,   L-band HV 
polarization  is  green,.  L-band HH polarization  is blue 
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Figure  24:     False  color composite  of SIR-C radar image of 
Norfolk,   Virginia   taken  from Space Shuttle mission STS-68  in 
October,   1994.     L-band HH polarization  is  red,   L-band HV 
polarization  is  green,   C-band HV polarization  is blue 
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Figure 25:     Histogram of red,   green,   and blue pixels  from 
visible  image  of Norfolk,   Virginia  in  Figure  19 
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Norfolk RGB Color Correlation 
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Figure  26:      Scatterplots  of blue pixels  vs  red  and  green 
pixel   from  visible  image  of Norfolk,   Virginia   in  Figure   19 
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Figure 27:     Radar and visible  wavelength false  color 
composite  image  of Norfolk,   Virginia   taken  from Space 
Shuttle mission  STS-68  in  October,   1994.      C-band HH 
polarization  is  red,   L-band HH polarization  is  green,   blue 
band  from   the  visible  image  is blue 
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Figure 28:     Radar and visible  wavelength false  color 
composite  image of Norfolk,   Virginia   taken  from Space 
Shuttle mission  STS-68  in  October,   1994.      C-band HH 
polarization  is  red,   L-band HV polarization  is green,   blue 
band from  the  visible  image  is blue 
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Figure 29:     Radar and visible  wavelength false  color 
composite  image  of Norfolk,   Virginia   taken  from Space 
Shuttle mission  STS-68   in  October,   1994.      C-band HV 
polarization  is red,   L-band HH polarization  is  green,   blue 
band from  the  visible  image  is blue 
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Figure  30:     Radar and visible  wavelength false  color 
composite  image  of Norfolk,   Virginia   taken  from Space 
Shuttle mission STS-68  in  October,   1994.     C-band HH 
polarization  is red,   green band from  the  visible  image  is 
green,   L-band HH polarization  is blue 
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Figure  31:     Scatterplot of C-band HH pixel  brightness  vs 
L-band HH pixel  brightness 
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Figure  32:     First principal   component   image  of Norfolk, 
Virginia.     Input  for principal   component analysis  was  four 
radar bands  and   three  visible  color bands 
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Figure  33:      Second principal   component   image  of Norfolk, 
Virginia.      Input   for principal   component  analysis   was  four 
radar bands  and   three  visible   color bands 
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Figure  34:      Third principal   component  image  of Norfolk, 
Virginia.      Input  for principal   component  analysis  was  four 
radar bands  and   three  visible  color bands 
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Figure  35:     Fourth principal   component  image  of  Norfolk, 
Virginia.      Input   for principal   component  analysis   was   four 
radar bands  and   three  visible   color bands 
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Figure  36:     Fifth principal   component  image  of Norfolk, 
Virginia.     Input  for principal   component analysis  was  four 
radar bands and  three  visible  color bands 

111 



Figure  37:     Sixth principal   component  image  of Norfolk, 
Virginia.      Input  for principal   component analysis  was  four 
radar bands  and   three  visible  color bands 
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Figure  38:     Seventh principal   component  image  of Norfolk, 
Virginia.      Input   for principal   component  analysis   was  four 
radar bands  and   three   visible   color bands 
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Figure  39:     False  color composite  image of first   three 
principal   component bands  out  of seven,   image  is  of Norfolk, 
Virginia.     Input  for principal   component analysis  was  four 
radar bands  and  three  visible  color bands.     First principal 
component  is red,   second principal   component  is  green,   third 
principal   component  is blue. 
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Figure  40:     First principal   component  image of Norfolk, 
Virginia.      Input  for principal   component  analysis  was  four 
radar bands. 
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Figure  41:     Second principal   component  image  of Norfolk, 
Virginia.     Input  for principal   component analysis  was  four 
radar bands. 
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Figure   42:      Third principal   component   image  of  Norfolk, 
Virginia.      Input   for principal   component  analysis   was   four 
radar bands. 
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Figure  43:     Fourth principal   component  image of Norfolk, 
Virginia.     Input  for principal   component analysis  was  four 
radar bands. 
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Figure 44:     False  color composite  image  of first   three 
principal   component tanas  out  of four,   image as of Jorfol* 
y        .. _  __ * ,'„^^=,7 ^mnnnsnt analysis  was  four Virginia.     Input  for principal   component analysis  was 
radar bands.     First principal   component  is  red,^cond 

principal   component  is 

blue. 

green,   third principal   component  is 
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Figure  45:     From Chiuderi   [1994],   Visual  representation  of 
neurons  in a neural  network classifier.     Input nodes 
represent pixels  of original   image 
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Figure  46:     Results  of neural  network analysis  based on   the 
input  of  C-band  HV and  L-band  HV radar.      seven  null 
categories  are  represented  in black,   one  classified  category 
is   white 
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Figure  47:     Results  of neural  network analysis based on   the 
input  of C-band HH and L-band HH radar.     six null   categories 
are  represented in  white,   two  classified categories are red 
and blue 
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Figure  48:     Results  of neural  network analysis based on   the 
input  of all   four radar bands.     Four null   categories are 
represented in black,   four classified  categories are 
represented in red,   green,   blue,   and white 
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Figure  49:     Results  of neural  network analysis based on  the 
input  of all   four radar bands and all   three  visible bands. 
Three null   categories  are represented in black,   five 
classified  categories  are represented in red,   green,   blue, 
yellow,   and white 

124 



Figure  50:     Results  of neural  network analysis based on   the 
input  of seven principal   component bands.     Inputs   to 
principal   component  analysis  were all  four radar bands and 
all   three  visible bands.     Four null   categories  are 
represented in black,   four classified  categories are 
represented in red,   green,   yellow,   and white 
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Figure  51:     Results  of neural  network analysis based on 
input  of  the  first   three  of seven principal   component bands. 
Inputs   to principal   component analysis  were all  four radar 
bands and all   three  visible bands.     Four null   categories  are 
represented in black,   four classified  categories  are 
represented in red,   green,   yellow,   and white 
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