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I. Summary
A. Task Objectives
Below we list the original statement of work.

1. Develop new statistical methodologies, parametric and nonpara-
metric, which are particularly applicable to the problems of
discriminant analysis, outlier detection, script matching and wave
form matching in the context of monitoring nuclear proliferation.

2.  Determine better methods for estimating statistical distributions
which may be used for both discrimination purposes and for
assessing system performance.

(U3

Develop a framework in which the results of monitoring and the
capability of the monitoring network can be usefully and correctly
stated.

4.  Apply the above developed methodology to data at the ARPA
Center for Seismic Studies to assess the effectiveness of the above
theoretical developments.

Item 1 was accomplished by developing several near optimal tests to determine
when observations should be regarded as "unusual." A paper developing a
nonparametric methodology for discriminating between two groups has been
accepted for publication in the journal Computational Statistics and Data Analysis.
An additional paper extending our outlier detection methodology to the important
missing data scenario was distributed as a technical report. Computer code to
implement these results can be obtained upon request by contacting Dr. H.L.

Gray, Department of Statistical Science, Southern Methodist University.

In addition, the results in outlier detection were extended to two outliers from a
mixture. For example, this latter test would allow one to test for an outlier from a
training set made up of mining explosions and earthquakes, rather than just one or
the other. Although this latter work is not 100% complete, it is to the state of
completion that it can be used in most settings. The code for this program has also
been passed on to MRC and is available upon request by contacting Dr. Gray. A
paper on this new outlier detection is being prepared for submission for
publication.

Other methodologies were also developed. Although the theory is basically now
developed, these latter methodologies are not ready for distribution.




Regarding items 2 and 3, the bootstrap methodology was introduced to effectively
solve both of those problems. To satisfy item 4, the outlier method developed
under this contract was applied to nuclear explosions, mining blasts, and

- earthquakes in diverse geological regions recorded by the ARCESS and GERESS
arrays, CDSN station WMQ, and LNN stations KNB and MNV. Most such tests
were run at MRC although some were also performed at SMU. At the .01
significance level, between 90-100% of the nuclear explosions and quarry blasts
were detected as outliers of the earthquake groups in the various regions. Overall,
209 of 229 (91%) explosions were detected and there were only 2 false alarms out
of 143 earthquakes (1.4%), not significantly higher than the targeted 1%. These
results were obtained for diverse regions, for a wide range of epicentral distances
and magnitudes, and for single stations and arrays. The methodology is, of course,
applicable to multiple stations, as well.

The application of the outlier detection method to data from multiple stations was
explored in detail, due to the concern that some data compression might be
required. Various data compression methods were considered and it was ultimately
decided that with proper computer code the so-called "full vector” MLE outlier
method was preferable to any compression methods. This problem is discussed in
detail in the paper "Outlier Tests with Multiple Stations" which is included in the
appendix.

In general, we feel this work has been very successful and when the methodology
we are currently developing is complete, we feel that the statistical methodology
developed will be nearly optimal for automated detection of suspicious events,
while at the same time furnishing the user with reliable estimates of the associated

error rates.
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A Bootstrap Generalized Likelihood Ratio Test in Discriminant Analysis
J. Baek, H. L. Gray, W. A. Woodward, J. Miller and M. Fisk

Abstract

A generalized likelihood ratio test is developed for classification in two populations
when one needs to control one of the probabilities of misclassification. The proposed
classification procedure is constructed by applying the parametric bootstrap to the
generalized likelihood ratio. There are known methods for controlling this
misclassification probability for the case where normal distributions with the same
covariance matrix are assumed. Our approach, however, can be applied to not only this
case but to the case of normal distributions with different covariance matrices and the
case of a mixture of discrete and continuous variables.

The results given here do not depend on normality but can, in fact, be applied to
any distribution for which the maximum likelihood estimates exist. We do, however,
restrict our simulation of these results to the normal distribution if the variates are all
continuous. Three cases are simulated: normal distributions with equal covariance
matrix, normal distributions with unequal covariance matrices, and mixture of
categorical and normal variables. An application to classifying seismic events is

presented.

Keywords: Bootstrap, hypothesis testing, discriminant analysis, miztures of continuous

and discrete variables, mized variables

This research was partially supported by ARPA Contracts F19628-90-C-0135,
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1. Introduction

One of the primary problems associated with monitoring worldwide nuclear
proliferation is the problem of distinguishing seismically between small earthquakes and
explosions. Although the statistical problem appears to be one of discriminant analysis,
it is actually one of testing hypotheses since the political and physical environment will
usually require one of the errors to be preassigned.

Classical approaches for discriminant analysis in two populations depend on the
ratio of the probabilities or probability density functions. The classification rule based
on the ratio is optimal in the sense that it minimizes the total probability of mis-
classification (Welch 1939). Under the assumptions of normality, equal covariances, and
unknown parameters for the variables, Anderson (1951) derived a classification rule
based on the linear discriminant function, which is known as Anderson’s W statistic, by
substituting estimates for the parameters in the ratio. When the covariance matrices are
not equal, replacing each parameter by its estimate gives the classical quadratic
discriminant function (Seber, 1984, p297; Anderson, 1984, p235).

Among other classification rules is a hypothesis-testing approach which is derived
by obtaining the generalized likelihood ratio. This rule based on the assumption of
normal distributions with equal covariance matrices, was proposed by Anderson (1958),
studied by John (1960, 1963), and has become known as John’s Z statistic. Krzanowski
(1982) extended this approach to mixed discrete and continuous variables. For more
discriminant procedures in the mixture case, see Knoke (1982), Krzanowski (1975, 1979,
1980), and Tu and Han (1982).

Most of these classical classification rules allocate the individual to be classified to

one of the populations if the ratio is less than a cut-off point ¢, and to the other




otherwise. The cut-off point ¢ is usually based on the probabilities of drawing an
observation from the individual populations and the costs of misclassification.
Associated with these procedures are the resulting misclassification probabilities.
When, as in the problem of interest here, it is important to fix one of these probabilities
of misclassification, the statistician will need to determine the cut-off point to allow this
probability of misclassification to be prespecified.

When this probability is prespecified the problem then becomes one of testing a
hypothesis. However, because of the setting of this problem we shall continue to refer
to it as a classification problem. When the p-dimensional characteristic variable V ~
Np(p(o), Y) for a population =y, V ~ Np(p(l), 3°) for another population =, and p(o),
41 ¥ are unknown, Anderson (1973) and Kanazawa (1979) obtained the
asymptotically normal expansion of the distribution of statistics W and Z respectively,
which are used to find the cut-off point for a fixed value of the particular misclassi-
fication probability. In other cases (for example E(O) # Z(l) or V not normal) the
asymptotic distribution of the classification statistics is, in general, unknown so that no
hypothesis test is available.

In this report we determine a test of the classification hypothesis that satisfies the

following requirements:

1) E(O) is not necessarily equal to Z(l)
ii) The p-dimensional discriminant variable may be a mixture of
continuous and discrete variables

iti) The continuous variables need not be normally distributed.

Examples of continuous discriminants that are commonly used in the nuclear

monitoring setting are ratios of amplitudes or spectra for different time windows and




frequency bands of the observed seismogram. Earthquakes typically generate more
shear energy than compressional emergy, while explosions usually have much more
compressional energy than shear. Since compressional waves propagate faster than
shear elastic waves, this leads to larger relative amplitudes in different time windows for
the two source types. Although explosive devices are expected to have more intrinsic
high frequency content than earthquakes, explosions are usually shallower, in more
anelastic materials than the deeper earthquakes, which tends to attenuate the high
frequency content. As a result, spectral ratios of particular portions of the seismograms
are useful discriminants in some regions of the world.

Some examples of categorical variables that are commonly used are presence of
cepstral peaks, regional seismicity (high/low), location (off-shore/on-shore), depth
(deep/shallow), and, in the context of associating mine blasts with a particular mine,
day of the week.

The inability to treat a mixture of discrete and continuous variables rigorously in
this setting has limited the application of many statistical classification methods in the
past. This has led to rule-based approaches (Sereno and Wahl, 1993) which are
somewhat ad hoc, artificial intelligence approaches (Baumgardt, et al, 1992), or
inappropriate applications of linear discriminant functions or chi-squared tests. It is
vital, however, for monitoring applications that these issues are all addressed with
statistical rigor so that the error rates involved have meaning. The classification
method proposed here satisfactorily addresses this problem by applying the bootstrap to
the generalized likelihood ratio. Although this method is actually a test of hypothesis,
it could just as well be used as a method for classification in the classical sense with the
bootstrap being used to determine the probabilities of misclassification. For additional
discussion of procedures for classifying seismic events see Shumway(1988).

In Section 2, we discuss the motivation for the proposed bootstrap likelihood ratio




classification procedure, show how to construct the bootstrap likelihood ratio statistic,

and explain how to determine the cut-off point for a desired misclassification
probability. Section 3 is devoted to the application of the procedure to three cases. In
Ezample 1, the bootstrap likelihood ratio statistic is shown to perform almost as well as
the statistics W and Z which are specifically designed for Ezample 1, i.e. the case where
two normal distributions with the same covariance matrix are considered. The bootstrap
also performs quite well for both the normal case with different covariance matrices
(Ezample 2) and the case of a mixture of continuous and discrete variates (Ezample 3),
where, in either case, classical classification rules cannot control the probability of
misclassification since their limiting distributions are unknown. In Ezample 4 we apply
the results developed here to some real seismic discriminant data and in Section 4 we

present some concluding remarks.

2. Bootstrap Generalized Likelihood Ratio Test for Classification
2.1. Motivation

Let V' = (Vy, . ..,V,) be a p-dimensional random vector which is used to classify
an individual into either population = or population 7. For i = 0, 1, let f{v | o(i)) be
the probability or probability density function of V evaluated at v, if v comes from
population =, where 6() is the set of unknown parameters. The components of V may
be all discrete, all continuous, or mixture of discrete and continuous variables. In the
mixed variables case, for example, let V/ = (Y, X) with Y = (Y;,...,Y;) and X =X, .

.., X 1, where Yy, ...,Y, are discrete and X, . . . ,Xp_k are continuous. Suppose Y has

p-k
the probability fi,Y(YW) ) and the conditional probability density function of X given Y

is i X Y(XlogaY’ Y). Then the joint probability density function of V in =;is given by

£16) = £, (718, x; ¢ 10y ¥, (1)




where 6() = {09 }, i =0, 1. See Olkin and Tate (1961) for the mixture of the
multinomial and the multivaria.te normal distributions.

For any given classification rule, suppose that the region R; is such that v € R;
implies that v is classified as belonging to =, Further assume that Ry n R, =0

The respective probabilities of misclassification are
P(1)0) = / f(v 1 69) v

P(O]1) = / fi(v 16Dy v,
Ry
where dv = dv;. . . dv,. The classical classification rules obtain the optimal regions R
and R; based on fy(v | 0(0)) / fv ] 9(1)) according to their classification principles (such
as minimization of the total probability of misclassification, minimization of the total
cost of misclassification, maximization of the posterior probability, minimax classifica-
tion, etc.). However under any one of these classification principles, neither P(1|0) nor

P(0|1) is fixed in advance at a certain value, which here we desire.

2.2. Bootstrapping the Log Likelihood Ratio Test Statistic

Suppose we have the training samples {VSO), vgo), e ,vsgg} of size Ny, and {vgl),
vgl), ce ey VS‘}I)} of size Nj from my and 7, respectively. A new observation whose value
is v must be classified as from either 7y or 7;. Now we employ a hypothesis-testing
approach to classify v. That is, the classification of v is accomplished by testing the

hypothesis
Hyt v, o0, 0, v emps oD W) ey




. v{0) (0) 0) . 1) 1) 1)
H;: vS ,vg ,...,vsvo Emy; v,vg ,vg "“’VS\’I € 7y
We use the generalized likelihood ratio method to construct a test. The likelihood of the

two training samples is given by
(0) (1) ) IR PN (O W () N S DG
26, 60 1, DAY, ) = T AGY160) T A 160 )

Consider now the new individual v to be classified. If this individual is included
with the training sample from =, then an extra multiplying factor
L(6D |v) = f(v | 69)
must be incorporated in (2). The generalized likelihood ratio is therefore either unity or

given by
(L6 1v) LE®, 60190, . VD D, V) )
(2,6 1v) 2@, 6 190, V@ Y, e))

R D!

LR

u
P{9<0),9<1> )

LO(%O) |v) L(égﬂ), 981) | v‘(10), L V5\93 vgl) VSV)
T L@ ) LD, 80 VD, D,y (3)

where %i) is the Maximum Likelihood Estimator (MLE) of 89 under Hj and égi) is the
MLE of 6 under Hy, i = 0, 1. Now let A = log(LR). It intuitively follows that small
values of A provide evidence against Hy and thus the generalized likelihood ratio test is
to reject Hy if A < Aq, where Ay is chosen to provide a size a test.

Let P(A < Ay | Hy) denote the size of the Type I error and P(A > A | H) denote
the size of the Type II error for a constant Ay. Then P(A < Ay | Hy) is the probability
of misclassification P(1]0), and P(A > Ay | Hy) is the probability of misclassification

P(0|1) when R; and R, are defined in terms of Aq. Therefore we can construct a




classification rule which can control one of the probabilities of misclassification by fixing
the size of the test if we know the distribution of A(V, Vg VSV) Vil) . ,VS\}I)).
In most cases it is difficult to obtain the exact distribution of the test statistic A. The
distribution, however, can be approximated by employing the bootstrap method (Efron
1979, 1982).

Since the form of the probability density function is assumed known, the
bootstrap samples can be obtained from the estimated density function. This is called
the parametric bootstrap (Efron 1979), and we employ it in this study. We have
examined the use of the nonparametric approach of resampling with replacement from
the training samples, and for the training samples of size 25 or larger, this
nonparametric bootstrapping yielded similar results to those reported here.

The likelihood ratio statistic for the test of the null hypothesis Hy versus the alter-
native H; can be parametrically bootstrapped as follows. Given the training samples
{v(o)}J__ , {v(l)} _1,, bootstrap samples {V*(O)}N0+1 {v;(l)}jvzll are generated randomly
from f(v | 91( )) and fi(v | 00( )), respectively, where @1(0) and 90(1) are obtained from
the original samples {V(O)}NO and {v(l)}l-\_r_ll, respectively. The value of A, to be denoted
\* is computed for the bootstrap samples by substituting v j\f Fon *(0 C LY A@)}

*(1) . Afl)} for v, {VSO) VS\,)} {vgl) . VSV)} in (3), respectively. This process
is repeated independently B times, and the replicated values of A¥, {/\*} =1 evaluated
from the successive bootstrap samples, can be used to assess the true null distribution of
). In particular, the ath empirical quantile of {/\;-‘}f;l, denoted by Ay, will essentially
approach Ay, the true critical value for the test of size a, for large Ny and N; as B
tends to infinity. (See Bickel and Freedman (1981) for some asymptotic theory on the
quantile process for the bootstrap.). Thus we use X%, as a critical value for the test of
size a. Therefore, we allocate v to 7y if A < A& and allocate v to 7, otherwise.

McLachlan (1987) showed the relationship between Ay and the bootstrap




replication size B for the specified test size a. In general, given a set of B order
statistics from a population, the probability that a randomly selected member from the
population is less than or equal to the jth order statistic is j/(B+1). Thus, if
o = j/(B+1), then Ay is the jth smallest value of | {M}B,, ie. if @=0.05 and B=299

then \% is the 15th smallest value of {\¥}2.

3. Applications

The bootstrap generalized likelihood ratio test proposed here allows the p-
dimensional characteristic variable V to be discrete, continuous, or a combination of
discrete and continuous variables, and its probability or probability density function
filV ] G(i)) for 7, is assumed to be known except for the value of the parameter 9(i), i=
0, 1. It can therefore be applied to the classification problem in each of these cases
when one needs to control one of the probabilities of misclassification. As we will see,
the bootstrap generalized likelihood ratio test essentially achieves the required
probability of misclassification for even a moderate size sample. Throughout, we assume
that we have random samples {vj(o)}ﬁl from =, and {vj(l)}j-ill from ;.

In the following four examples we consider four distinct scenarios. In the first
example we consider the simple case where the observations are all normal with equal
covariances. Of course this case is well established, but we consider it to demonstrate
that very little is lost by using the bootstrap rather than the exact distribution. In
Ezample 2, we continue to assume normality but drop the assumption of equal
covariances. In this case the bootstrap is necessary in order to determine the proper
critical point. However, it is not necessary to bootstrap the likelihood ratio, but instead
one could bootstrap the quadratic discriminant function, @. This example demonstrates
that these two bootstrap approaches yield essentially the same result. In Ezample 3 we

consider a mixture of normal and binomial variates where, to our knowledge, no alter-




native to the method introduced here is available. Finally, in Ezample 4 we consider a

set of real data which is treated as a mixture of normal and multinomial data.

Ezample 1: Normal Distributions with Equal Covariance Matriz

Suppose that f(v | O(i)) is the density function for Np(p(i), Z(i)) with 20 = 2(1),
(= X), where 69 = (p(i),Z). Replacing the unknown parameters in fy(v | (;1(0), )/ folv |
(p(l), ¥)) by their estimates leads to the well-known Anderson’s W statistic (A2) given
in the appendix. The likelihood ratio (A3) is characterized by John’s Z statistic (A4).
On the other hand, the log likelihood ratio statistic, A, is given in (A4) and is obtained
directly by taking the log of the expression (A3) and dividing it by a constant. The
monotonic relationship between Z and ) is obvious. If the values of W, Z, and X are
greater than their cut-off 'points, then 7 is favored for v, and 7, is preferred otherwise.

Now we want to choose the cut-off point so that one probability of
misclassification is controlled. Let a be the desired P(1]0). Anderson (1973) has
obtained from the asymptotic normal distribution of W, the following approximate cut-
off point Wy, which attains the desired probability o to within O(N "2). For large Ny

and Nl’

Wa=} 04 D[t - 25 F )+ He-P o+ 49).
0

where N=Ny+ N, -2, D = J (V(O)—V(l))'S'l(V(O)—V(l)), ug is such that &(ug) = a,
and @ (-) is the cumulative N(0, 1) distribution function. Kanazawa: (1979) has

obtained the asymptotic cut-off point Z, for the Z statistic. For large N, and Ny,

Zp= %D2 + D [y +2—A}01—3(u% + Duo—(p—l))

=3 1\}1D(u(2)+2Du0+ (p-1) + D?) + 24 + (4p-3)) ,

10




where D and u are the same as above.

Instead of deriving the limiting distribution, the cut-off point A%, of the bootstrap
log likelihood ratio statistic A is obtained by the parametric bootstrap procedure
described in Section 2.2. Using the MLEs of “(0)7 p(l), and ¥ from the training samples
{vj(i)};\;il, i = 0, 1, bootstrap samples {v;-‘(o)}j‘&’i* 1, {v;-‘(l)}jv__ll are generated from a
NI,(V(O), A/(Ny + Ny)) and 2 NP(V(I), A/(Ny + Ny)), respectively where A is defined in
the appendix. We compute the value of the log likelihood ratio statistic, X*
corresponding to (A4), for the bootstrap samples by replacing v, V(O), '\7(1), S by V?\@-l’
.‘.,.*(0)’ V*(l), S*, respectively, where v = Z;V___fl v;(i) /N, =0, 1, and S* is calculated
according to (A1) for the bootstrap samples. This process is repeated independently B
times. Then Aj is the ath empirical quantile of {/\}‘}j';l, where {/\;‘}ﬁ__l are the values
of \* evaluated from the successive bootstrap samples.

For given a, let Py{1]0), P4(1]0) and P,(1{0) be the probabilities that the new
individual is misclassified into 7 by the statistics W, Z and A using the cut-off points
We, Zay M, tespectively. Then Py(1]0) = P(W < Wylmg), PA(110) = P(Z < Zal7g),
and Py(1{0) = P(A < g | 7). We will examine how close PyA1]0), P41]0) and
P\(1{0) are to the desired misclassification probability, @ = P(1]0), for the normal
distributions with equal covariance matrix by Monte Carlo method. We generate two
sets of random samples {vi,{v(o) z_1, {{vsjl)}jvzll}g ; from Nz(p(o), ¥) and N2(p(1),

%), respectively, where

0 2 1 05
"(0)=(0)’ I‘(l)=(2)’ andz=<o.5 1)-

For each ¢t = 1, 2, , M, we obtain the values of the statistics W, Z, A, say W, Z,

A, using {v; {v(o)}]_l, {v(l)} "1}, and compare them to their corresponding critical

11




values Wy, Z;, A, for a fixed a. B = 499 bootstrap samples are used for A%,.
Then Py{1]0), Py(1/0) and P,(1|0) are estimated by the proportion of times that the
value of the statistic is less than or equal to its critical value among M trials. Since

Py/(1]0) is the usual estimate of a proportion, its standard deviation (s.d.) is estimated

byd Pyf1j0)(1- Py/1]0))/ M. The standard deviation estimates of P,(1]0) and IE’/\(IIO)
are obtained similarly. The first portion of Table 1 shows the estimates of the
probability of misclassification with their standard deviations (s.d.) for the different
sample sizes with a = 0.05, M = 10,000. The results for Py(10) and P,(1]0) are
identical when Ny = N; = 25 since Z = (Np/(Np + 1)) Wior Ny = N;. Although for the
sample sizes considered, the bootstrap estimate does not attain the same precision as

the Wor Z statistic’s estimate, it is clearly competitive.

Table 1. The estimates of the probability of misclassification, P(1]|0) = 0.05,
and the estimates of the power, P(1|1)

P,f(1)0) P1)0) By(1)0)
0.054 0.054 . 0.061
(0.002) (0.002) (0.002)

0.055 0.053 0.060
(0.002) (0.002) (0.002)
PyA1i1) P 1) By(1]1)

Ny = 30, Nj = 45

0.726 0.725 0.736
(0.004) (0.004) (0.004)

12




Now we compare the powers, P(1|1), for W, Z and A. Random samples
1

{{VS](-))}'ﬁ)l}fil, {vi,{vg)}]l-vzll}f‘_ﬁl are generated from Nz(,u(o), ¥) and Nz(p( ), %),
respectively with the same parameters as above. The power estimates for W, Z and A,
f’W(lll), 152(1|1) and PA(lll), are obtained in the same way as for PW(1|0), PZ(LI]O)
and IA’/\(IIO), respectively. For a = 0.05, Ny = 30, N} = 45, M = 10,000 and B = 499,
the power estimates are similar to each other with the bootstrap being slightly better
(undoubtedly, due to the slightly larger critical region) as shown in the second portion
of Table 1.

Ezample 2: Normal Distributions with Unequal Covariance Matrices

Let 7y and 7; be Np(p(o), )3(0)) and Np(p(l), 2(1)) with ;1(0) # p(l) and 0
# 3. When the parameters are unknown, a classical classification rule known as the
quadratic discriminant function is obtained by taking the log after substituting
estimates, V(O), Tr(l), SO and s of p(o), u(l), E(O), and T into the ratio of the two
multivariate normal probability density functions, fy(v |/z(0), Z‘(o)) /(v | p(l), 2(1)).
The quadratic discriminant function @ is given in (A5), and v is classified to 7 if @ >
0 and to 7y otherwise. The probabilities of misclassification of Q@ are difficult to control
since even its limiting distribution is unknown.

Following the hypothesis-testing approach of (2), the MLEs of p(o), p(l), 2(0),
1) under Hy and Hj are given in the Appendix. The log likelihood ratio statistic, A, is
given in (A6), and to evaluate the cut-off point Aj, for the desired probability of
misclassification, P(1|0) = «, we generate bootstrap samples {v;(o)}jli?f Y {v;(l)}j-vgl
from a NP(V(O), A(O)/Nl) and a NP(V(I), A(l)/Nz), respectively. Following the same
bootstrap procedure as in Ezample 1, the ath empirical quantile A is obtained from the
values of the log likelihood ratio statistic A for the successive bootstrap samples. The

bootstrap generalized likelihood ratio classification rule with misclassification
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probability P(1|0) = « is, therefore, to assign v to m; if A(v) < A&, and to m,
otherwise.

Consider two bivariate normal distributions N2(p(0), 2(0)), N2(p(1), 2(1)), where

o o o [f 0 o [ 0
0= () =) 5O =(os 1) =0 (s )

Suppose we apply the @ statistic for classification using the usual classification rule, i.e.
v is classified to 7y if @ > 0 and to m; otherwise. The probability of misclassification of
interest, i.e. Pp(1l0)is P(Q < 0 |7). In order to determine the probability of this
classification error we conduct a simulation. We generate {v,, {VIJ } 1—1} =1 and
{v(l)}]__l} from No(p (0), 2(0)) and N2(p(1), 2(1)), respectively. We obtain the @
statistics for {v; {v(o)} 9.} {v(l)}]_l, i=1, 2, , M, and denote these @, @, - .
@y Then PQ(1|O) is estimated by PQ(IIO) which is the proportion of @, values that are
less than or equal to zero. PQ(IIO) (with its standard deviation) is 0.274 (0.004) for N
= 100, N; = 150 and M = 10,000. When it is important to keep the probability of
misclassification PQ(1|0) small, an error this large may be unacceptable, resulting in the
need for the method we are describing.

Now we consider the log likelihood ratio statistic A. First, we would like to know
how well the parametric bootstrap procedure approximates the true null distribution of
). Since the true null distribution of X is not known, we generate samples {v;
{v(o) 0}¥, from N2(p(0) 2(0)) and {{v( )} 1}, from Nz(p(l), 2(1)) with M =
100,000. Applying {v;, {vg)) }]_1, {vg})}jzl}gl to (A6), we can obtain {)\}¥;. The
true null cumulative distribution function (cdf) of A is approximated by the empirical
cdf using {\} X, for (Np, N;) = (10, 15), (Ny, Ny) = (30,45), and (N, Np) = (100, 150).
The true critical value Ay is approximatéd by -1.900, -1.504, -1.353 respectively. These
are the ath quantiles of {);}}; where a = 0.05 for (Ny, Ny) = (10, 15), (Ny, V) = (30,
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45), and (N, Np) = (100, 150), respectively. In this simulation, B = 299 is used for
the bootstrap replication size because of computer-time constraints. Our investigation
indicates that the results using B = 299 and B = 499 are similar.

For a set of random samples {v, {vJ(O)}j‘&’l}, {v§1)};v=11} under Hj, with (N, Np) =
(10, 15), (Ny, Ny) = (30, 45), and (N, N;) = (100, 150), the empirical null distribution
of the bootstrap log likelihood statistic using {/\;}]1_;__1 with B =299 is also plotted
around the true null cdf in Figure 1. Inspection of this figure shows that the bootstrap
null distribution approximates the true null distribution of the log likelihood ratio stat-
istic quite well as the sample sizes increase and does surprisingly well for small samples.

Even though the null distribution of the @ statistic is unknown, the cut-off point,
Qg, for misclassification probability, P(1|0) = e, can be approximated by the same
parametric bootstrap procedure as for A. That is, we evaluate the @ statistic for B
successive bootstrap samples and call them @f, @3, ...,Q% Then Qg is approximated
by Q%, the oth empirical quantile of {QJ* }f;l Therefore, one can allocate v to 7y if Q
< Qg, and allocate v to 7, otherwise.

With the same simulation data used to get PQ(1|0) = 0.274 above, PQB(llO) (s.d.),
the estimate of a fixed P(1]0) = 0.05 by the parametrically bootstrapped @ statistic @B,
is 0.050 (0.002) for B = 499. 15/\(1]0) (s.d.) of the bootstrapped A, i.e. A, is 0.049
(0.002) for the same bootstrap samples as for QB. Both bootstrap estimates are close to
the true fixed misclassification probability P(1|0) = 0.05.

To further compare the two tests we now investigate their respective powers,
P(1|1), for different parameter values. Consider bivariate normal distributions N2(p(0),
E(O)) and N2([l(1), 2(1)). Let py and p; be the correlation coefficient for Nz(y(o), 2(0))
and N2(p(1), E(l)) respectively. We assume that py = 0.5, p; = -0.5 and that both

distributions have the same marginal variances, a% =1 and a% = 1. That is,
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For ]1(0) = (0, 0)', we examine the power, P(1|1) of the bootstrap @ statistic and the
bootstrap A statistic at p(l) = #(0) + Aoy, 09)', A =1, 2, 3, for small samples (Ny =
10, Ny = 15) and for large samples (Np = 100, Ny = 150). For each A =1, 2, 3 under
N, N.
H;, we randomly generate {{ng('))}jzol}gl from Nz(p(o), 2(0)) and {v;, {VS})}j=11}iM=1
from N2(p(1), 2(1)) with Ny =10, N; =15 and M = 10,000. For each i=1, ... ,M and
for & = 0.05, {v;, {vg’)}j‘]\i&’l, {vgjl)}fill} is used for the parametric bootstrap to obtain the
cut-off points Q} and X% for QB and ), respectively. The bootstrap replication size B
used here is 499. Then the power estimate PQ 5(1]1) for @B is the proportion of times
that the Q statistic value is less than or equal to Q% out of M trials. The power
estimate 15/\(1|1) for the bootstrap A is obtained similarly. .PQB(lll) and f’/\(lll) are
listed along with those for large samples (N, = 100, Ny = 150) in Table 2.

Table 2. Power comparison between the bootstrap A and the bootstrap Q (QB) with
B =499. Entry is power estimate with its standard deviation.

A=1 A=2 A =3

Py@h) 0.310 (0.0046)  0.815 (0.0039)  0.992 (0.0009)
Pop(1l) 0.302 (0.0046)  0.795 (0.0040)  0.990 (0.0010)

Py(111) 0.375 (0.0048)  0.884 (0.0032)  0.999 (0.0003)
Pop(1IL) 0.376 (0.0048)  0.884 (0.0032)  0.999 (0.0003)
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In this simulation, the bootstrap A has slightly higher power than the bootstrap @ for

small samples, but there is little difference for large samples.

Ezample 8: Mizture of Categorical and Continuous Variables

In this example we consider a mixture of continuous and discrete variates. Of the
discriminant functions in the previous sections, only the X statistic has been studied for
this case. Suppose the variable V is a mixture of discrete and continuous variables. Let
V' = (3, X) with Z=(Z, ..., Zy) and X = (Xy, . . . , X,) where Z, ... 2, are
discrete and Xj, . . . , X, are continuous, 7 and q are positive integers. Suppose further
the jth discrete variable Zj has kj categories, j = 1, . . ., 7. Then the vector of discrete
variables Z may be expressed as a multinomial random variable Y ' =(Y,..., Yk)’
where Y, = 0or 1, m=1,...,k Efn::l Yn=1 and k= ;-"___1 kj. Thus, each
distinct pattern of Z defines a multinomial cell of Y uniquely. It is assumed that the
probability of obtaining an observation in cell m for = is p%), (0 £ pg,? < 1, Efn=1
pgf;) = 1), i = 0, 1. Then the joint probability density function of Vin =, is given by (1),
where 0@’ - (psi),. . .,pg_)l) and O(J?lyis the set of parameters of X given Y.

For the population 7, the conditional pdf of X given Y, fi,XIY(X | Y), may be of
any proper type depending on the relationship between X and Y. Following Olkin and
Tate (1961), for this example we assume that X has a conditional multivariate normal
distribution with mean p%) given Y belonging to cell m and common covariance matrix
£ in all cells. If'Y belongs to cell m, ice., if Y = (Y; Y1, Y Yruyr - Yi ) = (0,
v+ 0, 1,0, -, 0), then f; (Y| 0@) and fi,X]Y(XI 0()3,{, Y) of (1) are given as follows:

i ¢(Y169) = o)
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Let the jth member of the training sample, {vgi), w“ oo, VS:)Z} from =, be
denoted by {vgi)’ = (ygi), xj(i))}, where ygi) is the vector of binary variables obtained
from the discrete components z of v](’), and x](i) is the vector of continuous variables. Let
ng,? denote the number of individuals of the training sample from =; that fall in cell m
defined by Y. Then N, = £f_ n{), i =0, 1. The likelihood of the two training
samples is given by N

L= T I 6™ et =0y

where p;; takes the value p%) if ygi) falls in the mth cell, m =1,. . .,k
Consider now the new individual v to be classified, and suppose that the
discrete components place it into cell L If this individual is included with the training

sample from ;, then an extra multiplying factor
L) = (@r) 9/ [E0r /2 eapl - Lix— pfy (20y 1 (- )}

must be incorporated in (4) to construct the generalized likelihood ratio test statistic of
(3). xgi) must belong to one of k subgroups corresponding to the conditional
distributions depending on the value of y§i) forj=1,...,N,i=0,1. Let xg:)n be the
sth member of mth subgroup of the continuous variable measurements whose discrete
covariates fall in the mth cell. Then any element of {xgi)}?r._:il belongs to one of k
subgroups {{xgt,}z g;('z’f} fn:l where, of course, some of the ng,';) could be zero. Hence we

can rewrite the exponent of (4) as
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The MLEs under Hy and H; are given in the appendix, and the log likelihood ratio
statistic is given in (AT7).

Krzanowski (1982) considered a similar likelihood ratio statistic when =0 = 2(1),
(= ), and pgfl) and ¥ are estimated by a second-order regression model of X on Y.
Then he allocated a new individual to 7 if his likelihood ratio statistic is greater than
or equal to 1 and to m; otherwise. He did not consider the problem when it is desired to
control one of the misclassification errors.

We investigate the performance of the bootstrap log likelihood ratio test by
examining the power with a simulation. We consider a simple situation in which we
have a discrete variable from a Bernoulli(p) distribution and an independent continuous
variable distributed My, o2). For 4 = 0, 1, let {v](i) = (zg-i), x](i))'}jvzil be a random
sample from 7;, where zgi) ~ Bernoulli(p;) and xgi) ~ N(u;, cr%). Let v=(z, ) be a
new observation to be classified where z ~ Bernoulli(p;) and £ ~ N(u, a?).

We examine the power of the bootstrap A, P /\(1|1), for different parameter values.
We set py = 0.1, pg = 0, oy = 0.5, and 0; = 1. For p; = 0.9, 0.7, and 0.5, the estimate
of P/\(1|1) is obtained for y; = 0.5 + Aoy where A = {0, 0.5, 1, 1.5, 2, 2.5, 3}. The
power estimate, }3)\(1|1), is the proportion of times that the X statistic value is less than
or equal to A% out of 2000 trials, where )y is the bootstrap cut-off point at «
significance level. With Ny = N} = 50, B = 299, and a = 0.05, these power estimates
are plotted in Figure 2. As the separation between pg and g, increases, the power of the
bootstrap likelihood ratio test increases. The plot also shows that the larger differences
between py and p; produces the better power curves. Simulations were also performed

to verify the significance level of the test. The results were good and essentially the
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same as Table 1.

Ezample 4: A Real Data Ezample

Unfortunately no suitable unclassified data with categorical variables comparing
nuclear explosions to earthquakes are available for this report. However, there is a
considerable amount of mining explosion data available as training data. Therefore, to
illustrate the method developed here, we have applied the bootstrap generalized
likelihood ratio test to observations at the ARCESS seismic array in Norway which
consist of mining blasts from two separate mines (HB6 and HD9) located in the Kola
Peninsula of the former Soviet Union. (For other applications of the bootstrap
generalized likelihood ratio test to seismic event identification, see Fisk and Gray
(1993); Fisk et al., (1993).) Fifteen blasts were observed from mine HB6 and sixteen
blasts were observed from mine HD9.

' The variables used here are day-of-the-week (DOW), slowness (inverse group
velocity measured in seconds/degree) of Pn (SLOW), and rectilinearity of Pn (RECT).
Pn is typically the first prominent portion of the seismogram to arrive for signals
observed at regional distances (<2000 km). These data are part of a data set
established by Sereno and Patnaik (1992) as a testbed for seismic signal identification
problems. Other features are also available in this data set, but most have many
missing data values, a problem we are currently addressing.

A histogram plot of DOW is plotted in Figure 3 for the two sets of mining blasts.
Note that the HD9 blasts occur predominantly on day 6, while the HB6 blasts occur
more uniformly throughout the week. Dot plots of the continuous variables are shown
in Figure 4. SLOW exhibits relatively good separation, while there is considerable
overlap for RECT.

20




In order to assess the value of the discrete variable we considered cases in which
DOW is either included or excluded. Since the day on which an event occurred has no
influence on the seismogram, we treated the continuous variables as independent of
DOW. Furthermore, we assumed unequal covariance matrices since the variances for
SLOW are significantly different. Setting the significance level at 0.01 and 0.05, we
estimated the power using the bootstrap with and without DOW. Table 3 gives the
results using both continuous variables, while Table 4 gives the results using only
RECT, with and without DOW. Since SLOW is such a strong discriminator, Table 4
better demonstrates the power that may be gained by making use of an available

discrete feature.

Table 3. Bootstrap estimates of power using both SLOW and RECT.

Significance DOW excluded DOW included
0.01 0.962 0.982
0.05 0.980 0.986

Table 4. Bootstrap estimates of power using RECT.

Significance DOW excluded DOW included
0.01 0.266 0.377
0.05 0.529 0.736

The power was estimated in these tables using a parametric bootstrap approach.
Specifically, given the training samples of size Ny =15 and N; = 16 available from the
two mines, 7y = HB6 and m; = HD9, ML estimates of the associated parameters are
obtained. For these data, the bootstrap is used to estimate the c-level critical value by

simulating B = 499 replications. Each replication consists of training samples of sizes
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Ny and N; from the models fit to 7y and 7, along with an observation to be classified
which is generated according to the model for mj. As in the previous examples, the a-
level critical value, A%, was obtained from the likelihood ratio statistics calculated from
these replicates. The power is then estimated by again simulating B bootstrap
replications, where each replicate consists of training samples of sizes Ny and N; from
the models fit to my and 7, along with an observation to be classified which this time is
generated according to the model for ;. The power is estimated as the proportion of
the resulting B likelihood ratio statistics that are less than or equal to A\y. A cross-
validation proceduré was also considered, and it gave results similar to those shown
here. Efron (1983) has suggested an alternative bootstrap approach to remove the bias

from the cross-validation estimate.

4. Concluding Remarks

When one needs to classify an individual with one of the misclassification
probabilities under control but does not know the exact or limiting distribution of the
statistic for classification, the bootstrap likelihood ratio method is shown to be useful.
The statistic used for classification is derived from the likelihood ratio, and its limiting
distribution furnishing the discriminant cut-off point is approximated successfully by
the parametric bootstrap.

- The bootstrap likelihood ratio statistic is shown to compete well with the
statistics W and Z whose limiting distributions are known, for moderate sample sizes
when two multivariate normal distributions with equal covariance matrices are
considered. It also performs quite well for both the multivariate normal case with
unequal covariance matrices and the case of a mixture of binary and normal variates,
where classical classification rules cannot control the probability of misclassification.

Moreover, the methodology considered here can be applied to any non-normal discrete
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or continuous variable, and to any mixture of continuous and discrete variables,
whenever the MLEs exist. It should be noted that the precision of the test depends on
the sample sizes Ny and Nj, and the bootstrap replication size B. Small sample sizes
may result in MLEs for the parametric bootstrap which are not close to the true
parameter values. Adequate sample sizes for different dimensions of the classification
variable may need to be studied. Finally, it should be noted that the method applied
here could be applied to any test of hypothesis based on the generalized likelihood ratio.
Actually, the approach considered here of calculating A based on normal likelihoods and
finding A%, should be a sensible approach for continuous, unimodal distributions. The

robustness of this procedure is the topic of current research.

Appendix: Formulas Related to Examples
Ezample 1
p(i) is estimated by v = 2?21 v](i)/ N;and ¥ is estimated by

(Ny-1)8©@ + (v, —1)s)
Ny + N —2 ’

S = (A1)

where 8 = E?;il(vgi)-—v(i)) (vgi) - V(i))'/(Ni—l), i =0, 1. Anderson’s W statistic
is given by '
w=[v - O +90) SO —9) (A2)

Under the null hypothesis Hy, the MLEs of ”(0), p(l), and ¥ are

#Y = (V7O + 9)/(3 + 1),
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where A = Ty oY (-v0) ) —vOy=Ny+N-2)S. Under the

alternative hypothesis H;, the MLEs of the parameters are

i = (7 + )/ + 1),

. N,
o= r|A w70 (=70

In this case the likelihood ratio given in (3), with 360) = (i‘SO)’ 20), @81) = (;‘181), 20), 350)
= (ﬁgo), %), and 351) = (;‘zgl), 3, ) is, therefore,

N (No+ N +1)/2
N+ L (v=vOysly - vy
N]1V+1 , (43
Nt g (v - vOys (v —v0)

where N= Ny + Nj — 2. The likelihood ratio (A3) is characterized by John’s Z statistic,

N N, ) _
7= %{NI L (=75 —v) - g0 e —vO)s(e _vw))} .

Thus
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A =log {N+ NlN-}- (v - v(l))’ g1 (v _7(1))}

N,
~log {N‘+ , Lo (v - vy s1(v -vO)}. (A4)

Ezample 2

The quadratic discriminant function is given by
Q= %log (W) +3 (v = YDyl —v)
— (v —vO)y(EOy! (v )] (A5)
The MLEs of g, p(), 5O, 5 ynder H, are
) = (N +v)/ (M + 1),
D =+

20 _ 1 [0
ES)—N0+1[A +

N,
e v(t))ﬂ ,

0

£ =4,

where A) = Zj-\i‘l (vgi) —v(’)) (v§i) —‘f(i))' , i = 0, 1. Under the alternative hypothesis

H,, the MLEs are
W0 = vO),
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i = (v 4 v)/(N + 1),
2 (0) _ 1 (0
RS

. N,
251)='N1—1'+‘T{ R v(l))],

The log likelihood ratio statistic is given by

1) N
A= log (I—(T): )+ 51 + Diog{(M 1) + 52 (v =7y Sy v v )]

— (M + Dog {(My ~ 1) + 27 (v =y (SO v O] o, ) (46)

where S()—A(z)/( N;,-1), i=0,1, and

(No—l)(NO +1-p)/2 (N, + 1)(N0 +1)p/2 N1N1P/2

C N, N ::10
( 0 1) g (Nl_l)(N1+l—p)/2 NONop/2 (N1+l)(N1+l)p/2

Ezample 3

We consider the log likelihood ratio statistic under the scenario discussed in Ezample 3,
i.e. the new individual v to be classified has discrete components that place it into cell

I. The likelihood functions on the numerator and denominator of (3) are given by
Lgi)L = {(g,r)4}'(N0+N1+1)/2|2(0)|'N0/2 12O M/2 g@p1/2

1 k

{11 1 6™ 6f)

h=0 m=1
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1k
ceap [ (O 68— Py Byl - W)

h=0 m=1s=1

~—

+ (= wN(S Oy x-uH]l, i=
Under H, the MLEs of p), p{), =9 are
O =nQ/(Ny+ 1), m=1,.. ., -1, 1L, ..k
89 = (") + 1)/ (% + 1),
M=%, m=1,. -1, 1,k

5 ) = (f9) <04 /(e 21),

)
0= gl (0)+N(N$+1 20—z .

AN =nD/N, m=1,...,k

where ¥ = T mx/al), AD = £, —xD)B-%DY, m =1,. . ., & and
A = Y = k A(') Under the alternative hypothesis H; the MLEs are

27




(0 1%_0 A©
A =2V +1), m=1 I—1, l+1 K,

M= =D m=1,...,1-1,141,...,k

i = P =+ )/ + 1)

)
(1) _ o, MYy
1 I:A i N(l) + 1 xsl))(x—xgl)) ] :

Since the exponential term of Lg')L after replacing the parameters by their MLEs, is
ezp{ — (1/2)g(Ny + N + 1)} for =0, 1, the log likelihood ratio statistic is given by

o Sl B0\ ¢ ASONN 1SN 172
vl (] AR E (I G ™ (50

1=0m=1D, =0 |3 Sl)l
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DELTA

Figure 2. Power curves of bootstrap A with mixed binary and continuous
variables. py = 0.1. DELTA denotes A.
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A HYPOTHESIS-TESTING APPROACH TO DISCRIMINANT ANALYSIS
WITH MIXED CATEGORICAL AND CONTINUOUS
VARIABLES WHEN DATA ARE MISSING

James W. Miller, Wayne A. Woodward, and Henry L. Gray

ABSTRACT

In this paper we consider the problem of discriminant analysis with
discrete (categorical) and continuous variables with data missing at
random. We use a hypothesis-testing approach based on the generalized
likelihood ratio as proposed by Baek, et al. (1994). We use bootstrapping
to determine critical values in order to control the Type I error rate. We
present three algorithms for dealing with this case, each assuming a
different model for the data: (1) The INDICATOR algorithm replaces
categorical variables with indicator variables, and treats these as if they
were continuous; (2) the FULL algorithm assumes a multinomial
distribution for the discrete part, and a multivariate normal distribution
(with mean and covariances depending on the discrete part) as the
conditional distribution of the continuous part given the discrete part; and
(3) the COMMON algorithm assumes a multinomial distribution for the
discrete part, and a multivariate normal distribution (with only the means
depending on the discrete part) as the conditional distribution of the
continuous part given the discrete part. (That is, a common covariance
matrix is assumed across all multinomial cells.) The performance of these
algorithms is compared through a simulation study. While the
INDICATOR algorithm seems to have highest power, it also tends to
display a higher Type I error rate than desired. The FULL and the
COMMON algorithms have very similar power, but the COMMON
algorithm appears to control the Type I error rate most effectively, and is
least susceptible to problems occurring when some multinomial cells are
sparsely represented.
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1. Introduction

In Baek, Gray, Woodward, Miller, and Fisk (1994) (subsequently abbreviated
BGWMF) techniques are given for a hypothesis-testing approach to discriminant analysis
in which one wishes to control one of the probabilities of misclassification. Methods are
presented for continuous variables only, as well as for a mixture of continuous and
categorical variables. Essentially, the hypothesis-testing approach based on the ratio of
maximized likelihood functions proposed by Krzanowski (1982) is employed and the test
statistic is bootstrapped in order to estimate critical values for the allocation rule in such a
way that the error rate is controlled. In Miller, Gray, and Woodward (1993)
(subsequently abbreviated (MGW)), a similar hypothesis-testing approach is used for
discriminant analysis and outlier detection in the presence of missing data. The EM
algorithm (Dempster, Laird, and Rubin (1977)) is employed to obtain maximum
likelihood estimates of model parameters and compute the maximized likelihoods based
on the available data. That paper, however, only considers the case in which all variables
are continuous and, in fact, normally distributed.

In this report, we wish to consider the remaining case in which we have a mixture
of continuous and categorical variables used as discriminants, and also missing data,
potentially in both the training sets and in the new observation to be classified. Once
again, we use a hypothesis-testing approach to classification and bootstrap the test
statistic in order to control the probability of a particular type of misclassification. We

present three algorithms for handling this situation:

(1) The INDICATOR élgorithm - This algorithm begins by converting each categorical
variable with j categories into j - 1 indicator variables. This results is a larger
number of variables (unless all categorical variables are already binary, in which
case the data set is unchanged). These indicator variables can be analyzed using

techniques for quantitative data. In this algorithm we make the (obviously
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incorrect) assumption that all variates are continuous and, in fact, normally
distributed. We then perform discriminant analysis using the transformed data and
the techniques of MGW.

The FULL algorithm - Next, we model the joint distribution of each observation in
the following manner: Suppose each observation consists of p categorical variables
and q continuous variables. The categorical variables define r cells of a contingency
table in which the observation could fall, where r is the product of the number of
categories possible within each categorical variable. ~We assume that the
observation will fall into cell i (i = 1, ..., r) with probability p;, and that the
conditional distribution of the continuous part given that the discrete part places the
observation into cell i is multivariate normal with mean p; and ;. We then employ
the EM algorithm to obtain maximum likelihood estimates of parameters in this
model and compute maximized likelihoods of the available data, and bootstrap the
ratio of maximized likelvihoods, as was done in BGWMEF.

The COMMON algorithm - This algorithm is essentially the same as the FULL
algorithm, except that we assume a common covariance matrix across all
multinomial cells. That is, the conditional distribution of the continuous part given
that the discrete part places the observation into cell i is assumed multivariate
normal with mean p; and 2, with = no longer depending on i. This reduces
considerably the number of parameters that need to be estimated and makes
possible calculation of the likelihood ratio statistic when some cells may be sparsely

represented, or not represented at all.

Simulation studies are conducted to compare and contrast the performance of each

of these procedures with regard to their ability to accurately control the Type I error rate,

and with regard to their power.
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7. Notation and Overview of the Generalized Likelihood Ratio Test Procedure

Suppose we wish to classify a (p+q)-dimensional random vector V into one of two
populations 7t; or 7. Suppose further that V can be partitioned as V = (X, Y), where X =
Xy Xy eees Xp) is a p-dimensional vector of categorical variables and Y = (Y, Yy, ...,
Yq) is a q-dimensional vector of continuous variables. Suppose that fori=1, ..., p, the
variable X, takes on one of the r; possible values 1, 2, ..., ;. Then the vector X takes on
one of r = Hfslri possible values. We let ¥ denote. the set of all possible values of the
vector X. Finally, suppose that training samples {Vgl)}, i=1,..,N; from n; and {ng)},
i=1, .., N, from 7,, each having the same structure as V, are available, and that data
may be missing at random from any part of V or from the training samples.

The generalized likelihood ratio test (GLRT) procedure for classifying V into 7

or 7, is based on a hypothesis testing approach. That is, the classification of V is done by

testing

. 1) (D (1) v@ v®@ (2
Hy: V,V1 ,V2 o ,VNl €ny; V1 ,V2 . ,VNz €,
versus 1)

. vD v (1 . (2) v@) 2)
Hi: V1 ,V2 y e ,VNI € Ty; V,V1 ,V2 -~ ,VNZ € Ty.

The two misclassification probabilities that we will be interested in are P(2{1) and P(1]2),
where P(i]j) denotes the probability of classifying V into m; when in fact V € . We will
refer to a. = P(2|1) as the significance level for the test and P(2|2) as the power.

Let m denote the number of elements in V that are missing and let V(z) = (X(z),
Y(Z))denote the (p - m)-variate vector of available data in V. Similarly, let miG) denote the
Vioy
available data in VO (= 1,2;i=1,2, .., N)). We assume that m; has joint density

number of elements missing from ViG) and let denote the (p - mi(i))—variate vector of

function f(V|6(1)) and that 7, has joint density function f(V 162)), where f is some
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parametric density function with parameters 6 and 6@ for populations n; and 7,

respectively. Then, under Hy, the likelihood of V and the training samples is given by
LOI(B(I)I V V(l) (1) ’VI(\}:)LOZ(G(Z)I Vi?-)’ V(z), ,VS;),

where )]

N
1) (1 (Dy {1
Loy @DV, Vi, V3, . VD) = (vie) Iy v D),
2 2 2 2 2
Lo 0@ VP, v, . ,V§3)= iEIlei(vf @),

fz(VIO(l)) is the marginal density function for V(2) evaluated at V(2) with parameters o),
(VO)IGO)) is the marginal density function for VO) evaluated at V(]) with
i2) i(2)

parameters 00). Under H;, the likelihood of V and the training samples is given by
(1 (1) (1 @ v@ (2)
L0 v7, Vo7, .. ,VNI)L12(9(2)| V, V.7, V7 ,VNz),

where (3)
D o) oy e oD
L, 0M V7, Va7, ,VN1)=iI;Ilf1i(Vi 1oL,

Ny
2) <2 T

L02(9(2)| V, V( ) ( ) ’VS;) = fZ(Vle(z)).Hlf_?,i(V?)ie(Z))’
1 =

and f2(V|e<2)) is the marginal density function for V(?_) evaluated at V(2) with parameters
0. We emphasize that these are the likelihood functions for the available data rather
than the likelihood functions for the complete data since f, and fji G=1,21=1,2, ..,
Nj) are marginal densities for the available part of each observation, rather than the

likelihood functions for the complete data.
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The GLRT procedure is based on the ratio

o0 B Lo @IV, vib v, . (1))1. 6@ v VP, vy
LR =& DB VO 6@y, v, (2> (23 )
@, 6@ L1 OV, Vs VL NCAAS V)

L@ v vy VL@ 1 VY v, . ,Vg)

T e vy (1) (l))L12(9(2)|V VoLV, L V)

where 68) and 6(1]) are maximum likelihood estimates of 60 (j = 1, 2) under the null and
alternative hypotheses, respectively. That is, 6(1) is the MLE of 6(1) based on the sample
v, v, v, L V(l)} 6% is the MLE of 6) based on the sample v, V9,
V(Z)} and 9( ) is the MLE of 8(1) based on the sample {V(l), V(l) V(l)} and 9(2)
the MLE of 6 based on the sample {V, V(z) V(z) . V(2)}

Equivalently, the test procedure may be based on the statistic

A =1og(LR) =Aq; +Agp - A1p - Ap2s ®)
where
A, L S AW
% o1 = loghy (V1B ) + i=leogf1 (V185 ) (6)

Np
_ @A)
xoz—glllocg,fﬁ(vi 1077,
U (1A
= Zlogfli(V. oty and

Ao = loghy(VI6P) + Zlogf G

A key step in evaluating A for a given sample is the computation of the maximum
likelihood estimates and the corresponding maximized log-likelihood functions Ay, Agy,

;> and A, in Equation (6). This is no trouble when the data are complete, as illustrated
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by (BGWMF). However, in the presence of missing data, the usual expressions for
maximum likelihood estimates are no longer valid. In this case, maximum likelihood
estimates are obtained via the EM algorithm (Dempster, Laird, and Rubin (1977)). The
EM algorithm is an iterative procedure for obtaining parameter estimates which

maximize the likelihood function of the available data. It involves two key steps:

(E -step) - Using current estimates 6(1() (where k now denotes the current iteration step,
rather than designating m; or 7)), estimate the values of the complete data
sufficient statistics by computing their expectations given the available data.

(M-step) - Determine the values of the parameters which maximize the likelihood for the
complete data based on the current estimates of the complete data sufficient

A
statistics, thus yielding gD,

The EM algorithm iteratively performs E- and M-steps until the sequence {é\(k)}

converges to an adequate approximation to the MLE. To evaluate the test statistic A of
Equation (5), we must implement the EM algorithm four times. That is, é\él) and A, are
based on the sample {V, V(ll), Vgl), s VS:}, 682) and A, are based on the sample {V(z),
ve, .., V;?;}, 8 and 1 are based on the sample v v, L Vgi}, and 67 and
A, are based on the sample {V, V7, V&2, .., VS;}.

The decision rule is described as follows: small values of A provide evidence in
favor of H,, hence, V is classified into 7, ifA<Ag, otherwise v is classified into ;. The
cut-off value A is chosen so that P(2]1) = o, the desired significance level for the test.
Since the null distribution of A is not known, the critical value is approximated by the
parametric bootstrap (Efron 1979). For some large integer B, B bootstrap samples {(v*,
vio, v, V;(ll)} are simulated from a distribution with density f(V[6”) and B
bootstrap samples {Vz(z) , V;(z), s V;(zz)} are simulated from a distribution with density

f(Vla(z)), where 6(1) and 6(2) are MLEs obtained from the samples {V(ll), Vgl), e s V](\} z},
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and {V(lz), V;z), s Vg;}, respectively. (Notice that in this case, 6(1) = 6(11) and 6(2) =
682).) When there are missing values, the simulated bootstrap samplc?s should also have
missing values in a configuration similar to that in the actual data. For each bootstrap
sample, the test statistic A is computed, thus generating a random sample {X:, k;, s }\.;}
of variates that have approximately the same distribution as A under H,. For an a-level
test, the cut-off value K; is chosen as the o-th empirical quantile of {K:, l;, - K;}.
Finally, V is classified into 7, if A > A_; V is classified into 7, if A < 2.

As was pointed out in (MGW), this test procedure is only an approximation to the
true GLRT procedure since the critical value is obtained via bootstrapping and we may
further relax our approximation to the true GLRT procedure by relaxing the number of
iterations performed by the EM algorithm. That is, we may choose a stopping criterion
for the EM algorithm that does not continue iteration until convergence has been obtained
to a high degree of accuracy. Whatever the stopping criterion, bootstrapping the test
statistic insures an approximate a-level test. As in (MGW), it would appear that very
little power is lost by only performing a very few iterations of the EM algorithm, as
opposed to carrying out iterations until MLEs are obtained with a high degree of
accuracy. In Section 6, we often use only three iterations as standard practice in our
simulation studies.

Our implementation of the GLRT procedure for discriminant analysis is
summarized in Figure 1. Figures 2, 3, and 4 further describe the bootstrapping module,
the computation of the test statistic A, and the EM algorithm for obtaining MLEs. Each
of the various algorithms discussed in this paper sﬁare this common skeletal structure.
The differences lie in the type of model being assumed for the data, the corresponding
implementation of the EM algorithm for obtaining MLEs, and the precise formulas used

to evaluate the maximized log-likelihood functions.
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3. The INDICATOR Algorithm

In our first attempt to implement an algorithm for discriminant analysis for mixed
categorical and continuous variables with missing data, we desired to use the methods
presented in MGW with as little adaptation as possible. One way to do this would be to
treat the categorical variables as if they were continuous and use the procedures of MGW
without any alteration at all. This is perhaps not such a bad idea if categorical variables
have a large number of categories, if these categories have a natural ordering, and if the
distribution of this variable has a somewhat normal shape. In most cases, however, these
conditions are not satisfied and the procedure would be totally inappropriate.

A modification to the above approach is to replace each categorical variable with
indicator variables in the following manner: We replace each categorical variable X

(i=1,...,p) from V with the r; - 1 indicator variables

< J1ifX.=j .
Wij =IX=0= {0 othelrwise G=L2,..,1; -1). ™

Hence, the vector X of categorical variables gets replaced by a vector W of binary
variables of length z?:ﬁi - p, producing the transformed vector V=W, Y). If X|1is
missing in X, then each Wij (G=1,2,...,1;- 1) is missing in W. We transform the
training samples Vi(j) G=1,21=1,2, .., Nj) in a similar manner producing Vi@ G=1,
2;1=1,2,..,N.

Now, having transformed each observation, we classify V by classifying v
according to the GLRT procedure as outlined in (MGW) for the continuous-variables-
only case with missing data using the transformed data V and T’?) G=1,2i=12,..,
Nj). That is, we proceed as if V and Viﬁ) G=1,21=1,2, .., Nj) were normally
distributed, ignoring the fact that many of the components are binary. In simulation

studies (see Section 6, below), we see that this method actually performs about as well as
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methods based on a more plausible model for the categorical variables, and is much

easier to implement.

4. The FULL Algorithm

Next, we derive the GLRT procedure using a more plausible model for the
distribution of V. In this case, we assume that the distribution of X follows a multinomial
distribution in the sense that Pr[X = x] = p, for each x € ¥, and the conditional
distribution of Y given X = x is multivariate normal with mean p, and covariance matrix

and Z,. Hence, 0={py Mg ZysXE ¥} and

f(v0) = pyMVN(ylky> Zy)» (®)

where MVN(y|u,, Z,) denotes the value of the multivariate normal density function with
parameters p, and Z, evaluated aty.

The first step in deriving the GLRT procedure is to develop the EM algorithm for
obtaining MLEs of 8 given a collection of observations (V{, V5, ..., V) with missing
values from such a population. The vectors V; may be partitioned as (X;, Y;), where X|
and Y; are the vectors of categorical variables, and continuous variables respectively, and
further partitioned as (Xy; Xop Yy Yop)s where X; and Yj; correspond to missing
observations, and X,; and Y,; correspond to available observations. (In this final
partitioning, the dimensions of the various pieces may vary with i, and elements may be
permuted differently for each i according to the pattern of missing values in each
observation.) We note that the complete-data sufficient statistics for the parameters in
this model are
N, =Z2 I(X;=x),

s, =X IX;=x)Y,and  (xe'¥) )
ss =L I(X; =YY,
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and that the MLEs for the parameters in this model based on the complete data are

A\
Py = Ny/n,
1, =S /N, and xe¥) (10)

A AN A

T
I, =SSNy - py B, -

The M-step in this setting simply amounts to evaluating each of the pieces of (10).
The main computational burden lies in computing the conditional expectations of the
complete data sufficient statistics given the available data under current parameter
estimates in each iteration (the E-step).

In the E-step, we wish to compute (under the distribution defined by 6(1())

E[N, | {Xpp Yoy, i=1,n}]=Z EIX; = %) | (X3 Yo7,
E[S, | {(Xop Yo i=1,n}]=Z2  BIX;=0)Y;| (Xy;, Yppl and (x € ¥) (11)
E[SS, | {Xy; Yop,i=1,0}]= Z?:lE[I(xi = x)YiYiT | Xy Yopl.

This computation is facilitated by the following identities:

E[I(X = 0h(Y) | Xy, Yp)] = PrX =x| (X5, Y] « E[h(Y) | X = x, Y] (12)

I(X'? = x?)pV(MVN(Y') | p'wp Zw)

PrX = x| (X,, Yo)l == 2 13
X = Yo = 5 1, = X, 0y MVNG, | g 59 (4

Xe¥

1 12 22), - 2
EIY, | X=x, Yl =+ 202800 - 1)) (14)
ElY; | X=x,Y,;]=Y; (15)
E[Y,Y; | X=x,Y,]= (16)

11 12 22). -1(21
U0 50D D158 By X = x, YIELY, X =%, Y]
T

E[Y,Ys | X=x Y] =E[Y, | X=X, Y,]* Y, 17)
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T T
E[Y2Y2 [ X= X, Y2] = Y2Y2 (18)

Here, pil), “5‘2)’ Zill), 25‘12), 25‘21)’ and 25(22) are appropriate partitions of py and Zy
corresponding to the missing and available parts of Y. Equations (14) - (18) are used to
estimate the missing parts of E[Y | X=x,Y,] and E[YYT | X =x, Y,]. Computation of
the expectations in (11) is then carried out as follows: For each observation in the data
set, compute E[I(X; = x) | Xy;, Yol EIX; = x)Y; | Kyp Yol and E[I(X; = x)YiY? l
X, Yyl for each x € ¥ via Equations (12) - (18). Accumulate these over all
observations to obtain (11).

In the case of continuous variables only, (MGW) used estimates of parameters
based on substituting means for missing observations as initial estimates in the iterative
process. This becomes more complicated in the presence of categorical variables. To
simplify initialization, we use “blind initialization™ we initialize each p, with 1/r, each
p, with 0, and each %, with L Experience so far indicates that the first iteration of the
EM algorithm substantially alters the parameter estimates to something comparable to
“mean substitution,” if that means anything in this context. In any case, this initialization
procedure has worked adequately so far in simulation studies.

Having evaluated the MLEs using the EM algorithm, we need a' method for
evaluating the maximized log-likelihood functions in Equation (6). The likelihood
function for the available data is the product of the likelihoods of the available parts of
each observation. The likelihood of the available part of a single observation is the
marginal density for (X,, Y,). This may be obtained from the density for (X, Y) by
integrating out X; and Y. This gives

fx, v,(X2:¥2) = }3\1’ I(x, =%,) px MVN(y, | p3g, 23)- (19)
Xe
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The maximized log-likelihood of the available data in a sample is obtained by
accumulating the values of the log of (19) over all observations in the sample. Thus, we
may evaluate each of the pieces Aqy, Agp, Ay, and App in Equation (6), from which we
may evaluate the test statistic A = log(LR) given in (5).

As will be seen in the simulation results of Section 6, the FULL Algorithm has
one major flaw that must be addressed. That is, it can only be used in cases in which
there is adequate representation in each cell to obtain a full-rank estimate of Z_ for each x
e ¥ in both populations. If r is large, ie., if there are a large number of categorical
variables, or a large number of categories within some categorical variables, or both, then
the training samples may need to be extremely large so that all parameters can be
estimated accurately. In practice, such large samples may not be available, and it
becomes necessary to impose further constraints on the parameters of the model so that
the number of parameters required is reduced. This leads us into our discussion of the

next algorithm.

5. The COMMON Algorithm

This last algorithm is very similar to the FULL Algorithm except that in our
model for the data, we assume that the conditional covariance matrix for the continuous
part given the discrete part is common for all x € ¥. That is, the conditional distribution
of Y given X = x is multivariate normal with mean p, and covariance matrix and Z not
depending on x. Hence, 8 = {p,, i, Z; x € ¥'}. This reduces the number of parameters
that need to be estimated considerably, and makes parameter estimation possible when
some cells are sparse, or not represented at all. We allow the possibility of different
pafameters for each of the two populations, but within each population, T is common
across all multinomial cells. This model gives precisely the general location model of
Olkin and Tate (1961). The EM algorithm for this model is developed by Little and

Schluchter (1985), and they point out that this can be used to implement the GLRT
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procedure proposed by Krzanowski (1982). What follows is precisely this procedure,
with the added feature that we bootstrap the distribution of the test statistic in order to
choose critical values to control the P(2|1) error rate. Although Little and Schluchter
(1985) describe the EM algorithm for this model in considerable detail, we present a
description of the algorithm here that is consistent with the notation of Section 4.

First, we observe that the complete-data sufficient statistics for the parameters in

this model are

n

N, ==, IX; =),

S, =2 IX;=x)Y,and (xe¥) (20)
n T

sS=x_ Y;Y,

and that the MLEs for the parameters in this model based on the complete data are

p, =N/m,

i, =S /N, and (xe W), 1)
A A A

Z=ZyeyPxy

where %x is given by equations (9) and (10). In other words, the MLE of Z in this case is
precisely a weighted average of MLEs of Z, for each x based on the FULL model with
weights gx. Hence, we may perform the M-step in this algorithm with exactly the same
formulas as the M-step in the FULL Algorithm, except that after each ‘/Z\lx is computed, we
average these according to (21) to obtain the updated estimate of the common 2. The
E-step for this algorithm is also identical to the E-step in the FULL Algorithm, except
that throughout formulas (12) - (18), each IZ\ZX is replaced by the common § The
evaluation of the maximized log-likelihood functions in (6) is also performed using (19),

as in the FULL algorithm, with again, the only difference being that each %x is replaced

by the common 5.
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6. Simulation Results

We have performed simulations of each of the three algorithms (INDICATOR,
FULL, and COMMON) based on several different parameter configurations in order to
determine how well the algorithm controls the Type I misclassification probability as
desired, and to assess the power P(2|2) of each algorithm. We also keep track of how
many times the algorithm fails to classify the observation at all. These failures occur
when for some reason the simulated data fails to yield full-rank estimates of all required
covariance matrix parameters. This results in an undefined test statistic A. This happens
most frequently in the FULL | algorithm, and is caused by a very few number of
observations falling into one or more of the multinomial cells. It happens occasionally in
the INDICATOR algorithm when at least one possible value of a categorical variable is
not represented. Failures may occur when the test statistic is undefined for the sample
which we are trying to classify, and also when the statistic is undefined for attempted
bootstrap samples. We see in our simulations that the COMMON algorithm is least
susceptible to these types of failures.

Our first simulation involved the same parameter configurations used in BGWMF
(Case 3: Mixture of Categorical and Continuous Variables). That is, we consider the case
in which the categorical part is a single Bernoulli variable and the continuous part isa
single normal random variable independent of the categorical variable. For population
7y, the Bernoulli parameter is p; = 0.1. The mean and variance of the continuous
variable are p; = 0 and c% = (.5, respectively. For population 7,, we use p, = 0.9, 0.7,
and 0.5, cé = 1.0, and p, = 0.5 + Acg where A takes on values 0, 1, 2, and 3. The
observed significance level §(2| 1) is the proportion of times out of 500 simulated trials in
which the variable V is classified into ©, when, in fact, it was simulated from nt;. The
estimated power 1/;(2|2) is the proportion of times out of 500 simulated trials in which the
variable V is classified into 7, when, in fact, it was simulated from m,. In order to

achieve an approximate significance level of a. = 0.05, the variable V was classified into
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7, if the test statistic A is less than or equal to 7»; , the 0.05-th empirical quantile of { XI,
Ay s Mg},

For Ny =N, = 50 and B = 99, the power estimates are plotted in Figure 5, based
on simulations with no missing data. We see that the FULL and COMMON algorithms
agree very well with the pbwer curves plotted in BGWMF (Figure 2). In fact, with no
missing data, the COMMON algorithm is essentially equivalent to the method of
BGWMTF, so these simulation results should agree very well, as they do. The
INDICATOR algorithm does not agree well with the FULL and COMMON algorithms.
For this reason, the points corresponding to the INDICATOR algorithm are not connected
with lines, since this would clutter the plot. It would seem that the INDICATOR
algorithm has higher power in general than the other two. This is surprising since this
algorithm does not model well the true distribution of the binary variable. A closer
examination of the simulation results shows that this is, in fact, misleading, since the
INDICATOR tends to yield a significance level nearly twice the desired 0.05 level. This
can be seen in Figure 6, which shows the power estimate plotted versus the observed
significance level. Each plot in Figure 6 corresponds to a specific value of A. We can
also see in Figure 6 that the COMMON algorithm most accurately achieves the desired o
= (.05 significance level.

In Figures 7 and 8, we show corresponding plots based on data with missing
values. In these simulations, each variable in each observation was deleted independently
with probability 0.1, so that roughly 10% of the data is missing. We see an overall
decrease in the power of all three algorithms compared to the full-data case, but this is to
be expected since the test is based on less available data. Otherwise, the results of the
missing-data case are comparable to the results of the full-data case.

We have tabulated the results of this simulation in Table 1. The ERROR column
shows the percentage of times out of the 500 simulations that the algorithm failed to

classify V due to singular parameter estimates. We see that the FULL algorithm is most
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susceptible to failures of this sort, failing as much as 6 to 7% of the time when p, = 0.9

and no data is missing. The INDICATOR algorithm failed somewhat less frequently, and
the COMMON algorithm never failed in this study.

In our next simulation study, we consider the case in which we have two
categorical variables, each with two categories, and two continuous variables. For
population 7;, each possible combination of the categorical part (X = (1,1), (1,2), (2,1)
and (2,2)) occurs with probability 1/4. The conditional distribution of the continuous part
is MVN(O, Z,), where

[1 05]

=L05 1 J’ (22)

Zl
within each multinomial cell (i.e., conditional on each possible value of the discrete part).
For population 7, the conditional covariance matrix for the continuous part is Z,, where
%, is given by

1 -05]

L—O.S 1 J’ 23)

Z,

We use three different probability distributions for the discrete part, and four different
configurations of mean vectors for the conditional distributions of the continuous part
given each possible discrete part. In the plots and tables which follow, the three
probability distributions are coded with the variable PCODE, which takes on values 1, 2,
and 3. The four mean vector configurations are coded with the variable MCODE, which
takes on values 1, 2, 3, and 4. The parameter configurations defined by these codes are

shown in Table 2.
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PCODE PX=(L1)] PrX=(,2)] PiX=Q, 0] PiX=(2,2)]
1 0.25 0.25 0.25 0.25
2 0.50 0.20 0.20 0.10
3 0.80 0.10 0.10 0.00
MCODE _ E[YX=(, )] EYX=(1,2)] EYIX=(, )] EYX=(@2,2)]
1 ©,0) (0,0) (0,0) (0,0)
2 2.2) (1,1) (1,1) (0,0)
3 (0,0) (1,1) (1,1) 2,2)
4 (2.2) 2,2) 2,2) (2,2)

Table 2. Definitions for parameter codes used in out second simulation study.

PCODE = 1 corresponds to a uniform distribution across all multinomial cells. PCODE
= 2 and PCODE = 3 comespond to distributions increasingly favoring cell (1,1).
MCODE = 1 corresponds to a mean configuration identical to that for population ;.
MCODE = 2 and MCODE = 3 correspond to changes in mean for certain cells, and

MCODE = 4 corresponds to the sum of these two changes. For PCODE = 1 and

I

MCODE

1, population m, is identical to population 7; except for the correlation
between the two continuous variables.

As in our first study, we take N; = N, = 50, B =99, a = 0.05, and base our
observed significance level and power estimates on 500 replications of the procedure in
each case. Figure 9 shows the power estimates plotted versus the mean configuration
when no data is missing. Figure 10 shows plots of the power estimate versus the
observed significance level for each mean configuration. Figures 11 and 12 are
corresponding plots for approximately 10% missing data, with data deleted at random in
the same tmanner as our previous study. Table 3 shows a listing of these results,
including the percentages of failures due to singular parameter estimates.

In Figure 9, we see the power increases in general as the separation between in
means increases (i.e., as MCODE changes from 1 to 4). MCODE = 2 and MCODE = 3

actually correspond to the same degree of difference in means, so the power for these are
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not expected to be too different. In fact, the power estimates for MCODE = 2 and
MCODE = 3 are very similar when PCODE = 1. However, they are not ;\Iery similar
when PCODE =2 or 3. In this case, power is lower for MCODE = 3 than for MCODE =
5 This results since for MCODE = 3, the means differ in sparse cells, whereas for
MCODE = 2, the means differ most in the most common cell (corresponding to X =
(1,1)), making it more easy to differentiate between the two populations. We see similar
patterns in Figure 11, and can also see a general decrease in power due to missing values.

These plots seem to indicate that the INDICATOR and COMMON algorithms
have very similar power, these being generally better than the FULL algorithm. As in our
first study, we notice in Figures 10 and 12 that the INDICATOR algorithm has a
tendency to yield a higher significance level than desired, especially when PCODE = 3
(i.e., when some cells are very sparse).

We see from Table 3 that the INDICATOR algorithm fails occasionally due to
singular covariance matrix, especially when PCODE = 3. The FULL algorithm does
much worse when cells are sparse. The FULL algorithm fails about two-thirds of the
time when PCODE = 3 and data is missing! When some cells occur with very low
probability, it is necessary to have very large samples so that each cell is represented
enough to obtain a full-rank estimate of the covariance matrix within that cell. Samples
of size 50, cells are not adequately represented about 2/3 of the time. Once again, we see
that the COMMON algorithm is least susceptible to failures due to singular parameter
estimates.

Readers may wonder why the algorithm doesn't fail every time for PCODE =3
since cell (1,1) is never represented. If a cell probability is estimated to be zero, the
covariance matrix estimate for that cell is never used in the computation of A, and can
therefore be disregarded. It is not cell (1,1) that is the problem here, rather it is cells 0,1
and (1,0). Readers may also find it strange that for PCODE = 2, there are fewer failures

in the FULL algorithm when data is missing than when all data is available. This may be
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explained intuitively as follows: When data is missing in the discrete part, there is some
possibility that the observation falls into any of a number of cells. This observation
contributes to the parameter estimates for all cells to which the observation might truly

belong, resulting in fewer rank problems in sparse cells.

7. Concluding Remarks
In this report, we have extended the results of BGWMF and MGW to perform

discriminant analysis with categorical and continuous variables when data is missing.
We presented three algorithms for doing so. In simulation studies, we have observed that
the INDICATOR algorithm has a tendency to yield a higher Type I error rate than
desired. The FULL algorithm often fails due to singular parameter estimates when some
value of the discrete part is sparsely represented. The COMMON algorithm seems to
avoid these problems, and is therefore the preferred algorithm, especially when samples
are small and the assumption of a common covariance matrix across all multinomial cells
is reasonable. The code has now been transferred to MRC and Dr. Mark Fisk is applying

these techniques to some existing seismic data.
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Figure 5. Power estimates when no data is missing for each of the three algorithms, with
data modeled as a Bernoulli random variable and an independent normal random variable.

Parameters for population m; are p; = 0.1, u; = 0, and o% = 0.5. Power estimates are
based on the following configurations for population 7,: p, = 0.9, 0.7, and 0.5, cg =1.0,

and p, =05 + Aci, where A takes on values 0, 1, 2, and 3. For each value of A, the
symbols L, F, and L are plotted at the corresponding power.
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Figure 7. Power estimates when approximately 10% of the data is missing for each of the
three algorithms, with data modeled as a Bernoulli random variable and an independent

normal random variable. Parameters for population  are p; = 0.1, p; =0, and c% =0.5.
Power estimates are based on the following configurations for population n,: p, = 0.9,

2
0.7,and 0.5,0,=1.0,and p, =0.5 + Aci, where A takes on values 0, 1, 2, and 3.
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Figure 9. Power estimates when no data is missing for each of the three algorithms when
data have two binary and two continuous variates, possibly dependent. For population x;,
each possible combination of the binary part occurs with probability 1/4. The conditional
distribution of the continuous part is MVN(0, Z,), where Z, is a 2x2 matrix with diagonal
elements of one and off-diagonal elements of 0.5, within each multinomial cell. For
population 7,, the conditional covariance matrix for the continuous part is Z,, where Z,
has ones on the diagonal and off-diagonal elements of -0.5. Several distributions for the
discrete part, and several choices of mean vectors are used, as defined in Table 2.
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Figure 11. Power estimates when approximately 10% of the data is missing for each of
the three algorithms when data have two binary and two continuous variates, possibly
dependent. For population 7, each possible combination of the binary part occurs with
probability 1/4. The conditional distribution of the continuous part is MVN(0, Z,), where
%, is a 2x2 matrix with diagonal elements of one and off-diagonal elements of 0.5, within
each multinomial cell. For population =,, the conditional covariance matrix for the
continuous part is Z,, where Z, has ones on the diagonal and off-diagonal elements of
-0.5. Several distributions for the discrete part, and several choices of mean vectors are
used, as defined in Table 2.
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Outlier Tests with Multiple Stations

H. L. Gray, Wayne A. Woodward and Zeynep T. Yiicel
Southern Methodist University

August 25, 1995

Abstract

Some techniques are discussed for dealing with the problem of dis-
tinguishing between earthquakes and explosions when data are avail-
able at more than one station. A simulation study, in which the
performance of these techniques are compared, is presented.
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1 Introduction

We consider the problem of observing seismic events for the purpose of dis-
tinguishing between earthquakes and explosions. Baek, et al. (1994) treat
this as an outlier problem which is to determine whether a new and possi-
bly a suspicious event should be classified as an earthquake, given a training
sample of data on earthquakes. In that paper, 1t was assumed that data on
several variables were available at a given station. It was also assumed that
the variables might be either continuous, discrete or a mixture of both types.

In this report, we address the issue of outlier testing when data are at
more than one station. In particular, we suppose that there are p feature
variables observed at each of m stations. A fundamental problem is how to
utilize the information from multiple stations in a test for outliers.

1.1 Test 1: Full Vector Approach

One technique for outlier detection in the multi-station case is to consider
the p features at each of m stations as a single vector consisting of mp
variables. That is, the observation vector for the 7th event in the training
sample is an mpx1 vector of the form

- - - - - - - s - /
X; = (X116, X1is - - - » Ximi, Xo1is Xozis -+ o s Xomie ooy Xotis Xp2is - oo s Xpmi)

i = 1,...,n, where Xjj; indicates the ) th feature measured at the kth

station for the ith earthquake. A new observation to be tested as an outlier
has then a similarly configured mpx1 vector of the form

/

We consider the training sample {X;}%; to be from the density function
f(; 1y, B), where

=

$(: ) = (25)F 217 exp{ —5 (X~ 5 X-m)}

i.e., we are assuming in this report that the feature variables have a mul-
tivariate normal distribution. Similarly, the new X,4+; is assumed to have
probability density f(.; #y, Z). Baek, et al. (1994) classify X,+1 by testing
the hypotheses

Ho:py=p,
Hy:py # o

The likelihood of X;,Xo,...,X,, X,+1 Is given by

L(6:X1,. ., X)) = L(6;Xy,...,Xn) (27) F [T[72

1 P
exp{‘; (Xpg1 = pq)' & ' (Xns1 —”'2)} ’

&~
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where L(0;X,...,X,) = [, f(Xi; py, E), thelikelihood of X, X, ..., X,
and 6 = (i, iy, &). The generalized likelihood ratio is therefore defined by

o \ SUP(feq,) L(6:X,y,....,Xnt1)
) Sup{eeg} L(0, X17 cee 7Xn+1)

(1)
L(60; Xy, ..., Xnt1)
L(G'Xl, PN Xn+1)

b

where @, is the maximum likelihood estimate (1 (\/ILE) of @ under the restric-
tion that Hy is true, and 8 = (p,l,p,z,_,) where f1, and S are the MLE’s of
i, and I based on X;,X,,...,X, and fi, = Xpyp. It intuitively follows
that small values of A provide evidence against Ho, and thus the generalized
likelihood ratio test is

reject Ho if X < Mea), : (2)

where () is chosen to provide a size « test. In the setting considered by
Baek, et al. (1994), i.e. the data are a mixture of continuous and discrete
types, the distribution of A is unknown: and bootstrap techniques were
applied in order to ascertain this distribution. Baek, et al. (1994) point out
that when all classification variables are continuous and have a multivariate
normal distribution, the setting considered here. the distribution of A is
known; and the critical values can be found based on the F-distribution. In
particular, in the current case of mp variables and a training sample of size
n, AMa) is given by

Moy = (14 =) T @

where F, is the (1 — a)th percentile of the F-distribution with mp and
n —mp degrees of freedom. In the multivariate normal case, calculating the
critical value M(a) by using the bootstrap procedure or from (3) produced

very similar results'. More details concerning the derivation of (3) are given
in Fisk (1995). '

In the full vector approach, no attempt is made to account for the fact
that the same p variables are being measured at the m stations. It should
be noted that this solution strategy actually does not require the same p
variables to be observed at each of the m stations.

1.2 Test 2: Minimum Variance Weighting

A second method that will be examined here is the combining of features
across stations by using minimum variance weighting. This procedure is

1These simulations results will not be given here.
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designed to reduce the dimensionality of the problem by taking advantage
of the correlation structure between stations. We construct a new feature
Y; associated with feature j. The new feature is the linear combination of
feature j at each of the m stations, i.e.,

Y= wir Xk, (4)
k=1

which minimizes the variance of Y; subject to the constraint that the weights
sum to one. Theoretically, the weights are given by
RC)
Wi = =g (:
BEB

where 8 = (1,1,...,1) and I; is the covariance matrix of Xji,..., Xjm.
In practice, &; will not be known, and will be estimated by the usual sample
covariance matrix based on events ¢ = 1,...,n. This weighting is not based
on the assumption that the means for the j th feature are constant across sta-
tions, but rather is combining the data across stations to create a new feature.
This procedure creates a new p-dimensional vector Y = (Yi,....Y0) .
{ = 1....,n. The (n -+ 1)st event, which is to be classified as a possible
outlier, is weighted by using the same weights, i.e.,

Ut
~—

m
Ying1 = ) @it Xjknet - (6)
k=1

This weighting reduces the dimension {rom mp variables to p variables. The
outlier detection is then based on a likelihood ratio as before but calculated
using only the p new variables. It should be noted that although the weights
are stochastic and depend on the data, for feature j the same m station
weights, wjr. k = 1,...,m, are used for each of the events. Thus. the
resulting new p features will be approximately normally distributed random
variables.

1.3 Test 3: Separate Tests Based on Each Station

It is possible for the test based on all stations to fail to declare an event to
be an outlier while the test based on one of the individual stations finds the
event to be an outlier. It seems plausible that a very noisy station could result
in the multi-station test losing power compared to that associated with an
individual “good” station?. The question is whether multi-station tests are
more powerful than simple use of individual station-based tests. An obvious
strategy for using station information at m stations is to declare an event

2The identification of “good” stations for use in the test is under investigation and will
be the subject of the future report.
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to be an outlier if any of the individual station-based tests finds the event
to be an outlier. This has the apparent advantage that if, for example, there
are two stations with one of the stations quite noisy, then the test has not
been penalized for inclusion of the noisy station, as may be the case with the
other two tests considered. However, if each of the tests at the m stations is
run at the a = 0.05 level, the result of such a procedure will be a test with
significance level larger than «, and according to Bonferroni’s inequality, the
overall significance level is less than or equal to ma. Thus, in order to assure
that the overall significance level is no more than «, each individual station-
based test should be run at level a/m. In the example of two stations, one
good and one noisy, this procedure also provides a penalty for incorporating
the noisy station since it requires implementation of a smaller significance
level, a = 0.025, for each test. Thus, if the second station is of no usefulness.
then the result of the procedure is to reduce the power over that of identifying
the useful station and applying the test using only that station. Note that
the weighting done here is optimal (in the estimation sense) for the case in
which the variables at different stations are independent, which is not the
case here.

In the following section, we present some simulation results in which we
compare the power of the three outlier testing procedures described here in
order to examine the conditions for which a particular test is favored over
the others.

2  Simulation Examination of the Tests

2.1 Two Stations and One Variable

In this subsection, we consider the 2-dimensional case of two stations and
one variable measured at each station. For the population of earthquakes.
we assume that

Xi = (—¥11i7X12i)/ ~ .’\’I‘/N([J,l, 2) , (7)

where
gy = (pa1, pa2) with pa1 = p12 =0
and
= ( ; ’1’ > for  p=-0.25,0.0,0.25,0.50,0.75 .
In Table 1, we present estimated power of the full vector, minimum vari-
ance weighting, and separate station-based tests when the potential outlier
is from

Xp1 ~ MVN(@p?, D), 8)
75




where /J,g ) = (,ugf), p&é)) In each case, a sample of size n = 50 is generated

from the earthquake distribution, i.e. JMVN((O 0)',Z), and a single outlier
is generated from the outher dxstubumon ie, MVN ((,ugf ), pﬁg‘))',“) for a
variety of values of /zn and ;z . The test determlnes whether this single
observation is classified as an outher The entire procedure is repeated 1000
times, and the power estimates given in the table are the proportion of times
that the single observation from MV N((pu),ng))’,S) was called as an
outlier. All tests presented in this report were run at the o = 0.05 overall

significance level.

We first focus on the full vector test. Test 1. There we can see in general,
as p§‘1 and p12 become further removed from the null values of 0, the power
of Test 1 increases as would be expected. However, some of the results in the
table may seem nonintuitive at first glance. For e\ample when p =0.75 the
power associated with the alternative /L(l) =2 and ,u 2 =0 is 0.738 which
is much higher than for the case p =0 in which the power is 0.377. In some
respects this seems to be an unusual result since intiutively it would seem that
highly correlated variables (stations) would tend to be providing redundant
information and hence might be expected to yvield lower power than in the
case in which the correlation is smaller. However, it should be pointed out
that while increased correlation reduces information in estimation, it may
dramatically increase information for purposes of outlier detection. Thus,
it is important to note that the shape of the bivariate distribution plays
a major role in determining this power, i.e., in determining what types of
values appear to be outliers. In Figure 1, we show contour plots of the
bivariate distributions assumed under the null hypothesis for the values of
p considered. There it can be seen that observations around Nn) =2 and
,ugf = 0 for station 1 and station 2. respectively, are much more unlikely
when p = 0.75 than for lower values of p. Interpretation of other powers
shown in Table 1 is aided by examination of Figure 1.

It can be seen from Table 1 that the minimum variance weighting test,
Test 2, results are sometimes comparable and in some instances superior
to those obtained using Test 1, the full vector approach. However, it is
also noted that in some cases these powers can be much worse than those
obtained using Test 1. In order to understand this phenomenon, consider
again the case in which ;Lu) =2 and p§2 =0 with p = 0.75. The effect
of the minimum variance welghtmg is to produce new feature Y; calculated
as Yi; = win X1 + wi2 X126, ¢ = 1,...,n. In this case, the weights will
both be approximately equal so that the mean of Y; will be about 1, and
in Table 1 it is seen that the power of Test 2 is only 0.185 when p = 0.75
as compared to 0.738 using Test 1. From Table 1 we see that for yﬁf’
relatively close to ,u (4) Test 2 tends to have higher power than Test 1. It is
clear from Table 1 that if Test 2 care must be taken. In the case of positive
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correlations between stations Test 2 will tend to perform poorly when the
potential outliers are not consistent with this correlation structure. The fact
that (2,0)’ is not consistent with the correlation structure can be measured
using the Mahalanobis distance, defined as

(g — ) =7 (1 — 1Y), (9)

between the null and the alternative populations. Thus, although the points
(2,0) and (v2, v/2)" have the same squared Euclidean distance, 4, from the
null mean of (0,0), the Mahalanobis distance for (2,0)" is 4 times as large as
that for (v/2, v2)" whenever p = 0.75. Thus, when the correlations between
stations are positive, a large Mahalanobis distance, compared to the range of
Mahalanobis distances possible for a given Euclidean distance, should serve
as an indication that Test 2 should not be used. The procedure we used in
the simulations for assessing whether minimum variance weighting should be
used in a situation in which the correlations between stations are positive is
given below:

1. Calculate the Euclidean distance dg = (gt; — Xp41) (# — Xn41) and
the Mahalanobis distance das = (g — Xnt1)' 571 (pty — Xny1) between
the null mean and the potential outlier, (for g, and X, use sample
values calculated from the training sample).

Calculate the minimum, d‘min), and first quartile, d(?”, of all possible
M 1 M P

Mahalanobis distances associated with means separated by a Euclidean
distance dg.

Lo

3. Whenever dy/ clf{?in) <2 and dy < dfv?l), minimum variance weight-
ing is appropriate. Otherwise. the full vector approach 1s recommended.

In Table 1. we give the power of a “combined test™. Test 4, which. for a
given training sample and potential outlier, uses Test 1 or Test 2 as indicated
by the Mahalanobis distance criterion mentioned above. The Mahalanobis
distance criterion is specifically designed for the case in which there is positive
correlation. It can be seen that in cases in which p > 0.25, Test 4 often
performed better than the other three tests and always had close to the
highest power. Test 4 did not perform as well for p = 0. However, this test
is designed for the case in which the correlation is positive, and the results
for p = 0 are included only for comparison. It should be noted that, in
practice, the decision concerning whether to use the Mahalanobis check will
be based on the correlations calculated from the training sample data; and
some rules should be obtained for deciding how large a sample correlation
should be before the Mahalanobis check is performed. It should be noted
that Test 4 tends to have slightly larger significance level, (i.e., power at the
alternative (0,0)") than the nominal level of o = 0.05.
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In Table 1, we also give the power results associated with Test 3. In
variable at each of two stations, the associated univariate test is run for each
of the two stations at o = 0.025, and an outlier is said to be detected if
either of the two univariate tests determines the event to be an outlier. As
indicated earlier, this assures that the overall test has significance level no
more than « = 0.05. In the table we see that the power is competitive with
Tests 1 and 4 except in the case in which the correlation is large (p > 0.50)

and one of ugf) or ug’;) is close to the null value of zero.

In Table 2, we present simulation results for a case in which the station
variances are not equal. In particular, we consider the case in which

9
© = ( Olp % > with p = —0.25,0.0,0.25,0.50, 0.75 . (10)

Figure 2 shows the contour plots of the bivariate distributions assumed under
the null hypothesis for the values of p considered. In this setting, we observe
that Test 1 and Test 2 behave similarly in the sense that, in general, as ,u(u)

and ;1.12 become further apart from the null values of 0, and as correlation
between stations increases, the powers of these tests increase. As in Table
1. while Test 2 results are often comparable or even superior to Test 1. for
some cases. Test 2 results are much worse than those for Test 1. This seems
particularly true for values of ,ug‘f) =0 and ;zgij) > 0 which, as can be seen
in Figure 2. are values that do not correspond to the correlation structure.
Using the Mahalanobis distance criterion as in Table 1 we obtained Test 4
which still has substantially lower power than Test 1 in the cases where Test
2 power is much less than Test 1. Asin Table 1 we see that Test 1 has power
which is always competitive with the best shown in the table whereas each
of the other tests can in some instances have substantially lower power than
Test 1.

We also have examined the use of outlier tests using model parameters
obtained from actual seismic data. Data are available on 36 earthquakes and
70 explosions for the logarithm of Pn/Lg(6-8Hz) at two stations, KNB and
MNV. Letting KNB be station 1 and MNYV station 2, the sample mean vector
and covariance matrix for this training sample of earthquakes is given by

. =y , - 0.235 0.046
X; = (X11,X12) = (—0.743,-1.672)" and %, = ( 0.046 0.173 ) , (11)

while the corresponding quantities for the training sample of explosions are

0.196 0.053 )

()
0.053 0.168 (12)

X, = (0.361,-0.010) and £, = (
The estimated correlation between stations is found to be 0.23 earthquakes;

and 0.29 for the training samples of explosions. The contour plots for the
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bivariate normals with means and covariances set equal to those observed
for the two training samples are given in Figure 3. There it can be seen
that there is a substantial separation between the two populations; and it
would be expected that the outlier test should be able to detect explosions as
outliers related to the earthquake population. In order to examine this, we
performed the outlier tests using samples of length 50 simulated from the
model with p, = X, and T; = 21 with outliers simulated from the bivariate
normal model with g, = X, and I, = iz. In this setting, an outlier was
detected 95.3%, 95.6%, 97.5% and 96.2% of the time by using the separate
station-based, full vector, minimum variance weighting and combined full

vector—minimum variance weighting tests, respectively.

2.2 Two Stations and Two Variables

In this subsection, we briefly consider the case in which there are two feature
variables measured at each of two stations.

To compare the performances of Test 1, Test 2, Test 3 and Test 4 of
section 1 under this setting, we have carried out some simulations on data
generated from multivariate normal distribution with various mean vectors
and covariance matrices. From the simulation study, we have observed that,
as in the case of two stations—one variable, the estimated powers of Test 2
are sometimes comparable and in some cases superior to those of Test 1: and
there are also some cases in which powers of Test 2 are much worse than
those of Test 1. The combined test, Test 4, performs fairly well, but it is
clear that the Mahalanobis decision rule on page 8 may not be optimal for a
wide range of parameter configurations.

We also have examined the powers of the outlier tests of section 1 using
model parameters obtained from actual seismic data. In the simulations. we
assume the observations X; = (X11:, Xi2:- Xo1:. X22:)', 1 = 1....,n are from
MV N(u,,%). Data are available on 36 earthquakes and 70 explosions for
the logarithm of Pn/Lg ratio in both the 4-6Hz and 6-8Hz frequency bands.
We let station 1 denote KNB and station 2 denote MNV, and we take the
log Pn/Lg ratio in the 6-8Hz and 4-6Hz frequency bands as features 1 and 2,
respectively. The sample mean vector and covariance matrix for this training
sample of earthquakes is given by

X; = (Xu1, Xuz, X, Koo)' = (<0712, -0.992, -1.657,-1.829)'  (13)

and
0.242 0.202 0.052 0.044

0.202 0.275 0.052 0.075
0.052 0.052 0.177 0.086
0.044 0.075 0.086 0.227

[Ng
flor
I
-
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while the corresponding quantities for the training sample of explosions are

X, = (0.362, —0.155, —0.032, —0.453)’' (14)
and
0.197 0.138 0.054 0.012
o _ | 0138 0195 0.050 —0.009
271 0.054 0.050 0.180 0.093
0.012 —0.009 0.093 0.207
Let pf”l’k") denote the estimated correlation between features j; and j, at

stations k; and kp. These quantities for the training sample of earthquakes
are

AL =03, p =025, 50 =043, %50 =078, i) =019, (15)

The corresponding quantities for the training sample of explosions are

A(2,2)

AP = —0.05, pP =028, ALY =048, 537 =0.70, p{57 = 0.06 .(16)

Figure 4 displays the contour plots for the bivariate normals with means
and covariances set equal to those observed for the two training samples for
each of the feature variables at two stations. There it can be seen that for
each of the feature variables, there is a reasonable separation between the
two populations; and it would be expected that the outlier test should be
able to detect explosions as outliers related to the earthquake population.
In order to examine this, we performed the outlier tests using samples of
Jength 50 simulated from the model with g, = X; and &; = I; with
outliers simulated from the multivariate normal model mth p, = X, and
Y, = ©,. In this setting. an outlier was detected 81.1%, 89.1%, 94.1% and
93.9% of the time by using the separate station-based, full vector, minimum
variance weighting and combined full vector-minimum variance weighting
tests, respectively. We have also examined the outlier tests of section 1
to determine their success rates in classifying the 70 events in the training
sample of explosions as outliers. The success rates® for Test 1, Test 2, Test
3 and the combined test are 92.9%, 92.9%, 77.1% and 91.4% respectively.
Test 1 and Test 2 agreed in classifying these 70 events except for two cases.
In one of these two cases Test 1 does not classify the event considered as an
outlier, and Mahalanobis distance criterion favors Test 1. In the second case,
Test 2 does not classify the event considered as an outlier, and Mahalanobis
distance criterion favors Test 2. The Mahalanobis distance criterion favors
Test 1 51.4% of the time, and favors Test 2 48.6% of the time.

3The test classifies the event from the training sample of explosions as outlier.
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3 Tables and Figures

e Table 1. Estimated powers of the outlier tests considered under the
setting:

= ( ; > ,S= ( i ’ ) with p = —0.25,0.0,0.25,0.50,0.75

and ugf) , u&;" =0,1,2,3,4. (The values in the parantheses are the

number of times that full vector approach and minimum variance weight-
ing approach performed, respectively, for the combined test.)

e Table 2. Estimated powers of the outlier tests considered under the
setting:

‘)
By = ( 8 ) T = ( 21/) “4” ) with p = —0.25,0.0,0.25,0.50,0.75

and pg‘f) , ugg) = 0.1,2,3.4. (The values in the parantheses are the
number of times that full vector approach and minimum variance weight-
ing approach performed, respectively, for the combined test.)

e Figure 1. Contour plots of bivariate normal distributions from

o= ( 8 ) = ( /1) f ) with p = —0.25,0.0.0.25.0.50,0.75 .

o Figure 2. Contour plots of bivariate normal distributions from

=) s=(1 27 with p=—025.0.0.0.25,050.0.75
R 2, 4 p .25.0.0.0.25,0.50.0.75 .

e Figure 3. (Two stations-one variable case) Contour plots of bivariate
normal distributions with means and covariances calculated from actual
seismic data:

. —0.743 ; 0.235 0.046
Xi= ( —1.672 ) , Bu= ( 0.046 0.173 ) ’
> 0.361 - 0.196 0.053
Xo = ( —0.010 ) ) B2 = ( 0.053 0.168 ) '
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o Figure 4. (Two stations-two variables case) Contour plots of bivari-
ate normal distributions of each variable with means and covariances
calculated from actual seismic data:

For variable 1;
S —0.712 A 0.242 0.052
xi= < —1.657 ) , B = < 0.052 0.177 > ’

o 0.362 - 0.197 0.054
X = ( —0.032 ) ) Bo = ( 0.054 0.180 ) '

For variable 2;
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Table 1.*

p=—0.25

Test

A)
N%z

y)
/'Lgl)

0

1|

f)

)

0.044

0.129

0.389

0.751

0.949

0.054

0.137

0.347

0.648

0.877

0.041

0.121

0.367

0.740

0.945

0.122

0.250

0.560

0.856

0.970

0.141

0.348

0.641

0.884

0.967

0.117

0.197

0.430

0.769

0.932

0.400

0.570

0.793

0.947

0.989

0.360

0.654

0.891

0.973

0.996

0.390

0.450

0.629

0.857

0.966

0.749

0.848

0.943

0.985

0.999

0.650

0.882

0.974

0.996

1.000

0.745

0.777

0.863

0.948

0.986

0.951

0.975

0.993

1.000

1.000

0.871

0.970

0.995

1.000

1.000

ol tol — | eol o] == ol o] =] wuf o ] W o

0.943

0.959

0.983

0.996

1.000

4One table for each p considered.
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Table 1. continues:

p=0.0 | Test ,ugf)
e 0 1 2 3 4

1 0.044 0.122 0.377 0.723 0.936

2 0.056 0.119 0.282 0.525 0.766

0 3 0.047 0.128 0.376 0.748 0.948

4 0.043 0.122 0.346 0.671 0.875
(751,249) | (743.257) | (752,248) | (726,274) | (725,275)

1 0.115 0.203 0.446 0.773 0.946

2 0.123 0.274 0.520 0.782 0.926

1 3 0.116 0.192 0.418 0.738 0.947

4 0.115 0.217 0.462 0.770 0.931
(763,237) | (764.236) | (746,254) | (743,252) | (733.267)

1 0.381 0.455 0.665 0.878 0.967

2 0.284 0.529 0.789 0.930 0.975

2 3 0.393 0.441 0.605 0.838 0.962

4 0.369 0.466 0.701 0.896 0.969
(765,235) | (736.244) | (760,240) | (754.246) | (741.259)

1 0.726 0.760 0.877 0.957 0.988

2 0.534 0.782 0.926 0.979 0.996

3 3 0.749 0.770 0.841 0.932 0.980

4 0.675 0.761 0.890 0.965 0.989
(754.246) | (751.249) | (752.248) | (764.236) | (747.253)

1 0.932 0.946 0.969 0.937 0.999

2 0.766 0.917 0.977 0.997 1.000

4 3 0.939 0.945 0.964 0.983 0.992

4 0.871 0.931 0.972 0.990 0.999
(753,247) | (756.244) | (751,249) | (758.242) | (763,237)
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Table 1. continues:

p =025 | Test yg‘f)
7 0 1 2 | ¢

1 0.044 0.140 0.399 0.756 0.957

2 0.056 0.105 0.245 0.458 0.678

0 3 0.045 0.128 0.378 0.750 0.950
4 0.055 0.157 0.415 0.743 .0.939
(696,304) | (717,283) (764,236) | (324,176) | (853,145)

1 0.122 0.1711 0.389 0.727 0.936

2 0.106 0.238 0.436 0.690 0.845

1 3 0.117 0.186 0.406 0.748 - 0.945
4 0.145 0.226 0.453 0.765 0.927
(735,265) | (377.423) | (335, 465) | (595,405) | (660.340)

1 0.400 0.397 0.560 0.802 0.949

2 0.245 0.442 0.691 0.868 0.953

2 3 0.383 0.414 0.562 0.805 0.951
4 0.417 0.454 0.671 0.364 0.963
(789.211) | (554 446) | (398,602) | (391.609) (464, 536)

1 0.749 0.723 0.793 0.906 0.970

2 0.452 0.674 0.868 0.958 0.984

3 3 0.736 0.745 0.800 0.900 0.963
4 0.741 0.754 0.853 0.941 0.933
(826.174) | (632.368) | (403.597) | (294.706) | (313.687)

1 0.951 0.934 0.943 0.974 0.939

2 0.674 0.857 0.952 0.933 0.997

4 3 0.942 0.939 0.950 0.970 0.986
4 0.938 0.934 0.959 0.982 0.996
(851,149) | (700,300) | (492,508) | (311.689) | (256, 744)
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Table 1. continues:

p =0.50 || Test pgf)
iy 0 1 2 3 4

1 0.044 0.161 0.481 0.865 0.992

2 0.056 0.098 0.213 0.410 0.583

0 3 0.046 0.128 0.379 0.752 0.954

4 0.063 0.183 0.501 0.863 0.987
(607,393) | (683,317) | (825,175) | (903,97) | (936,64)

1 0.149 0.151 0.377 0.742 0.961

2 0.096 0.214 0.378 0.603 0.783

1 3 0.123 0.180 0.393 0.741 0.946

4 0.176 0.222 0.446 0.772 0.953
(698,302) | (464.536) | (466,534) | (620,380) | (717,283)

1 0.489 0.371 0.474 0.733 0.936

2 0.221 0.388 0.604 0.798 0.909

2 3 0.374 0.391 0.518 0.775 0.947

4 0.499 0.438 0.605 0.822 0.948
(807,193) | (483.512) | (231,769) | (251,749) | (407,393)

1 0.842 0.736 0.740 0.851 0.954

2 0.404 0.594 0.794 0.929 . 0.969

3 3 0.737 0.735 0.774 0.873 0.962

4 0.838 0.758 0.822 0.923 0.972
(892.108) | (623.377) | (258.742) | (96.904) | (136.364)

1 0.982 0.951 0.935 0.950 0.976

2 0.591 0.783 0.917 0.969 0.990

4 3 0.940 0.935 0.938 0.957 0.978

4 0.980 0.946 0.951 0.967 0.990
(931,69) | (752,248) | (413,587) | (136,864) | (51,949)
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Table 1. continues:

p=0.75 || Test iy
A% 0 1 2 3 4

1 0.044 0.244 0.738 0.989 1.000

2 0.033 0.094 0.185 0.370 0.537

0 3 0.044 0.127 0.378 0.753 0.956
4 0.066 0.258 0.730 0.932 0.999
(513,487) | (705.293) | (882,118) (956,44) | (978,22)

1 0.238 0.135 0.425 0.880 0.999

2 0.099 0.188 0.348 0.545 0.701

1 3 0.113 0.154 0.370 0.740 0.946
4 0.259 0.204 0.485 0.865 0.994
(693,307) | (364,636) | (459,541) | (683,317) (843,157)

1 0.728 0.429 0.413 0.729 0.979

2 0.200 0.333 0.538 0.741 0.862

2 3 0.365 0.370 0.473 0.749 0.945
4 0.720 0.461 0.544 0.804 0.961
(869,131) | (466,534) | (130,870) | (224,776) (420, 580)

1 0.980 0.835 0.733 0.788 0.936

2 0.355 0.5331 0.728 0.874 0.950

3 3 0.740 0.732 0.747 0.837 0.948
4 0.974 0.830 0.789 0.876 0.964
(947,53) | (697,303) | (212.788) | (31.969) | (69,931)

1 1.000 0.992 0.952 0.939 0.961

2 0.543 0.693 0.862 0.948 0.980

4 3 0.953 0.947 0.947 0.951 0.972
4 1.000 0.981 0.945 0.953 0.980
(982,18) | (834,166) | (430,570) | (67,933) | (7,993)
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1 [0.044 | 0.129 | 0.389 | 0.751 | 0.949
0 2 110.056 | 0.166 | 0.436 | 0.785 | 0.953
3 [/ 0.041 | 0.121 | 0.367 | 0.740 | 0.945
1 [0.061]0.171 | 0.447 | 0.802 | 0.961
1 2 1[0.070 | 0.238 | 0.569 | 0.868 | 0.971
3 11 0.053 | 0.135 | 0.383 | 0.750 | 0.947
1 [0.122 | 0.250 | 0.360 | 0.856 | 0.970
2 2 [[0.106 | 0.328 | 0.691 | 0.926 | 0.934
3 || 0.117]0.197 | 0.430 | 0.769 | 0.952
1 [ 0.250 | 0.397 | 0.685 | 0.906 | 0.979
3 2 110.169 | 0.442 ] 0.793 | 0.958 | 0.990
3 110.233 ] 0.308 | 0.521 | 0.815 | 0.962
1 [ 0.400 | 0.570 | 0.793 | 0.947 | 0.939
4 2 [ 0.245 [ 0.563 | 0.868 | 0.972 | 0.997
3 10.390 | 0.450 | 0.629 | 0.857 | 0.966

5Qne table for each p considered.
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Table 2. continues:

p=0.0 || Test u%‘f)
uiy’ 0 1 2 3 4

1 0.044 0.122 0.377 0.723 0.936

2 0.051 0.154 0.400 0.739 0.928

0 3 0.047 0.128 0.376 0.748 0.948

4 0.035 0.121 0.369 0.715 0.934
(554, 446) | (684.316) (886,114) | (966, 34) | (995,5)

1 0.060 0.142 0.386 0.731 0.937

2 0.064 0.203 0.487 0.808 0.955

1 3 0.056 0.137 0.381 0.746 0.945

4 0.045 0.141 0.391 0.733 0.937
(526,474) | (666.334) | (859,141) | (967.33) | (997.3)

1 0.115 0.203 0.446 0.773 0.946

2 0.080 0.260 0.571 0.868 0.967

2 3 0.116 0.192 0.418 0.758 0.947

4 0.066 0.197 0.445 0.777 0.946
(451.549) | (558.442) | (788,212) | (944,56) | (992.8)

1 0.236 0.306 0.549 0.824 0.960

2 0.116 0.326 0.666 0.912 0.977

3 3 0.229 0.294 0.494 0.788 0.951

4 0.111 0.264 0.351 0.336 0.962
(341,659) | (447.533) | (714,286) | (893,107) (973,27)

1 0.381 0.455 0.665 0.878 0.967

2 0.162 0.409 0.741 0.933 0.986

4 3 0.393 0.441 0.605 0.838 0.962

4 0.161 0.366 0.657 0.879 0.969
(237,763) | (332,668) | (594,406) | (819,181) | (945, 55)
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Table 2. continues:

p =025 | Test /1&’11)
A% 0 1 2 3 | 4
1 0.044 0.140 0.399 0.756 0.957
2 0.054 0.147 0.418 0.760 0.928
0 3 0.045 0.128 0.378 0.750 0.950
4 0.035 0.130 0.399 0.753 0.957
(536,464) | (630,320) | (878,122) | (974, 26) | (996,4)
1 0.061 0.129 0.377 0.728 0.942
2 0.053 0.180 0.464 0.793 0.948
1 3 0.061 0.138 0.378 0.744 0.947
1 0.044 0.136 0.386 0.735 0.943
(534,466) | (611,339) | (800,200) | (954.46) | (990,10)
1 0.122 0.171 0.389 0.727 | 0.936
2 0.061 0.203 0.517 0.828 0.958
2 3 0.117 0.186 0.406 0.748 0.945
4 0.067 0.155 0.405 0.741 0.937
(462,538) | (475.523) | (711,289) | (886,114) | (974,26)
1 0.250 0.250 0.447 0.751 0.937
2 0.077 0.242 0.566 0.854 0.968
3 3 0.219 0.270 0.458 0.765 | 0.947
4 0.115 0.198 0.465 0.774 0.942
(366,634) | (335.665) | (545,453) | (787,213) | (924,76)
1 0.400 0.397 0.560 0.802 0.949
2 0.094 0.297 0.608 0.383 0.976
4 3 0.383 0.414 0.562 0.805 0.951
4 0.168 0.278 0.552 0.815 0.952
(293,707) | (218,782) | (386,614) | (646,354) | (341,159)
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Table 2. continues:

p = 0.50 || Test u%)
u) 0 1 2 3 4
1 0.044 0.161 0.481 0.865 0.992
2 0.055 0.166 0.501 0.828 0.969
0 3 0.046 0.128 0.379 0.752 0.954
4 0.043 0.155 0.486 0.864 0.992
(498,502) | (636,344) | (889,111) | (979,21) | (998,2)
1 0.065 0.122 0.407 0.793 0.983
2 0.053 0.162 0.492 0.831 0.971
1 3 0.061 0.135 0.374 0.747 0.950
4 0.049 0.126 0.431 0.800 0.983
(492,508) | (526,474) | (784,216) | (932,68) | (937.13)
1 0.149 0.151 0.377 0.742 0.961
2 0.050 0.166 0.497 0.839 0.972
2 3 0.123 0.180 0.393 0.741 0.946
4 0.083 0.138 0.410 0.769 0.963
(471,529) | (390,610) | (602,398) | (333.167) | (947,53)
1 0.294 0.232 0.397 0.723 0.942
2 0.053 0.169 0.494 0.837 0.973
3 3 0.219 0.258 0.439 0.753 0.945
4 0.142 0.154 0.427 0.765 0.947
(443,557) | (253.742) | (404.596) | (662. 338) | (358.142)
1 0.439 0.371 0.474 0.733 0.936
2 0.057 0.173 0.491 0.828 0.971
4 3 0.374 0.391 0.518 0.775 0.947
4 0.212 0.184 0.454 0.770 0.951
(408,592) | (173,827) | (233,767) | (472,528) | (707,293)
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Table 2. continues:

p=0.75 || Test u&f)

w5 0 1 2 | 3 4
1 0.044 0.244 0.738 0.989 1.000

2 0.045 0.263 0.734 0.977 1.000

0 3 0.044 0.127 0.378 . 0.733 0.956
4 0.033 0.244 0.736 0.990 1.000
(478,522) | (725,275) (951,49) (991.9) (998.2)

1 0.088 0.144 0.559 0.952 1.000

2 0.056 0.188 0.643 0.958 1.000

1 3 0.054 0.125 0.369 0.745 0.951
4 0.063 0.146 0.578 0.954 1.000
(527,473) | (523.477) | (839,161) | (966,34) (993.7)

1 0.238 0.135 0.425 0.880 0.999

2 0.087 0.128 0.548 0.926 0.998

2 3 0.113 0.154 0.370 0.740 0.946
4 0.163 0.111 0.459 0.892 0.999
(599,401) | (34+,636) | (636, 364) | (876.124) | (969,31)

1 0.477 0.229 0.377 0.793 0.991

2 0.145 0.089 0.438 0.833 0.996

3 3 0.219 0.239 0.402 0.740 0.945
4 0.334 0.102 - 0.377 0.826 0.991
(644.356) | (274,726) | (358,642) | (688. 312) | (898.102)

1 0.728 0.429 0.413 0.729 0.979

2 0.205 0.068 0.334 0.819 0.991

4 3 0.365 0.370 0.473 0.749 0.945
4 0.523 0.152 0.309 0.768 0.982
(687,313) | (263,732) | (163,837) | (407,593) | (740, 260)
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4 Concluding Remarks

We considered the problem of observing seismic events for the purpose of
distinguishing between earthquakes and explosions. We studied the case in
which data are available at more than one station. We discussed three outlier
tests, all based on likelihood ratio, for the cases in which there are p feature
variables at each of m stations. The tests utilize the data in different forms:
Test 1 treats p variables at m stations as mp variables, Test 2 combines
the information for each of p variables at m stations, Test 3 treats each
station separately. We also discussed a combined test, Test 4, which decides
to use Test 1 or Test 2 based on Mahalanobis distance criterion described in
section 1.

It seems that Test 1 gives powers that are sometimes best and always
comparable to the best powers, while for the other tests, scenarios existed in
which the power was substantially lower than that for Test 1. Thus, unless m
and p are sufficiently large to make Test 1, the full vector test, impractical,
we recommend its use.
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A New Test for Outlier Detection from
a Multivariate Mixture Distribution

Suojin Wang, Wayne A. Woodward, H.L. Gray, and Stephen Wiechecki
ABSTRACT

The problem of testing an outlier from a multivariate mixture distribution of several
populatio.ns has many important applications in practice. One particular example is in monitoring
worldwide nuclear testing, where we wish to detect whether an observed event is possibly a
nuclear explosion (an outlier) by comparing it with the training samples from mining blasts and
earthquakes. The combined population of seismic events from mining blasts and earthquakes can

be viewed as a mixture of two populations. The classical likelihood ratio test appears to be not
| applicable in our problem, and in spite of the importance of this problem, little progress has been
made in the literature. In this report we propose a simple modified likelihood ratio test that
overcomes the difficulties in the current problem. Bootstrap techniques are used to approximate
the distribution of the test statistic. The advantages of the new test are demonstrated via

simulation studies. Some new computational findings are also reported.
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1. Introduction

An extremely important practical problem is that of monitoring worldwide nuclear testing,
;vhere we wish to detect whether an observed seismic event may be a nuclear explosion by
comparing it with the training samples obtained from previous seismic activity in the region. In
this case, the training data will often be composed of data which are a composite of mining
explosions and earthquakes. Usual methods of outlier detection typically focus on the setting in
which observations are tested as outliers from a single population. However, in the case
considered here, there are two populations, and we wish to test whether a seismic event should be
considered to be an outlier from either or both of the populations. Actually, these results are
applicable to two or more populations but we focus on the case of two. Another point of interest
is the fact that the setting considered here differs from a common outlier scenario in which a
sample is given and the observations from the sample are tested to determine whether they should
be considered as outliers from the population from which the sémple was obtained. This,
however, is not the scenario considered here. Specifically, in our setting, "pure" samples from the
populations in question are available, and our desire is to test a new observation as an outlier from
these populations. We will refer to this testing procedure as outlier testing throughout the report.

The classical method for outlier detection of the type we are addressing is the likelihood
ratio test (Wilks (1963), Caroni and Prescott (1992)), usually under the normality assumption for
the multivariate distributions of the training sample population and the outlier population, and
under the assumption of equal covariance of the two populations under the alternative hypothesis.
The resulting test is essentially the Hotelling's T2 test (see Anderson (1984)). In our current
problem, because of the fact that there is not a single multivariate normal population associated
with the training sample, these assumptions are not satisfied. Thus, a direct application of the
standard likelihood ratio test does not seem possible. In spite of the importance of this problem,
to our knowledge little progress has been made in the literature. Baek et al. (1992) recently
considered the outlier testing in the seismic setting discussed here but in the special case in which

seismic events are tested as outliers from a single population, usually earthquakes. Baek et al.
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(1992) used a bootstrap approach to ascertain the distribution of the likelihood ratio when the
multivariate distribution associated with the training sample has both continuous components and
discrete components that have a finite number of possible outcomes. Some assumptions, such as
equality of covariances, are imposed to link the training sample population and the outlier
population. It is possible to apply the test of Baek et al. sequentially to each training sample
population, but this can be cumbersome, e.g. the training sample populations often have different
covariance structures. Furthermore, this procedure would result in substantial loss of power.

In this report we consider an approach to the practical problem at hand by considering
the combined population of seismic events of mining blasts and earthquakes as a mixture of two
populations. We propose a simple modified likelihood ratio test using bootstrap resampling that
appears to perform well in this setting. The methodology is presented in Section 2 for testing
outliers from a mixture population consisting of m components. Some numerical procedures are
addressed, including the use of the bootstrap for approximating the distribution of the test statistic
in Section 3. We also describe how the intensive computing time required for the bootstrap
resampling can be reduced without loss of accuracy when the training sample size is relatively
large. Section 4 provides the results of empirical studies. Some concluding remarks are given in

Section 5.

2. The Methodology

Suppose we have a mixture distribution IT of m populations, II;, 2 =1,..., m. In the
nuclear testing example mentioned above, m = 2 for mining explosions and earthquakes. Let d
be the dimension of the variables from the mixed population II, and for clarity in the presentation
assume all the distributions are continuous. Note that extensions to discrete or mixed cases are

mainly a matter of notational adjustments. The density of the mixture distribution is

f(=; 0) = zm:l’igi (z; 6:), 1)

=1
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m
where p; > 0 are mixing proportions with Y, p; = 1, g; are the densities of II;, 6; are unknown
=1

parameter vectors, & = (p1, ..., Pm, 0},...,0,,) and £ = (z1,...,z4)'. Inthe nuclear monitoring
scenario, we wish to test whether a new seismic event is an outlier to the mixture of earthquakes
and mining explosions. More generally, we wish to be able to test whether a new observation is
an outlier from the mixed population II.

Assume that we have a random training sample of size n from the mixture population
X,,...X, €ll,

and that we are able to identify the associated source population for n; < n members of the

training sample. For convenience, let

Xk 41y Xk 42,00 Xi €11, fori =1,...,m, )

where 0 = ky < k1 < ... < kp, =ng, ie,n; =k; — k;—1 (normally > 10) data points are
identified to be from II;. Additionally, we allow for the possibility that the training sample
contains ny unlabeled observations from the mixture. In the notation of Redner and Walker
(1984) we assume the sample X1, ..., X, is of Type 4, i.e. the training sample consists of labeled
and unlabeled observations. The associated n;'s, 2 = 1, ..., m are random variables following a
multinomial distribution, and they contain information about the mixing proportions. In this
notation, n =ny +ny. If in fact ny =0, then the training sample consists of only labeled
observations and is a sample of Type 3 using the Redner and Walker notation. Now a new

observation X, is obtained. Given (2) we want to test the following hypotheses:
H 0 - X, n+1 ell

vs. 3
' H1 . Xn+1 ¢ II.

The classical likelihood ratio test statistic is the ratio of the maximized likelihood functions

under Hy and Hy. Under H, the sample is of Redner and Walker Type 4, i.e. we assume that
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Xi,..., X, are as before while X, is unlabeled but from the same mixture distribution as
Xi,..., X, That is, we assume that all » +1 observations are from the mixture distribution
‘assumed under Hy with nz, of these labeled and ny + 1 unlabeled. The likelihood function under
Hyis

m k; n
Lo(®) = —2E— (H I1 pigi(xj;oi))( I1 f(Xs;o))f(XnH;o)-

! !
10 eee Nyt i=1 j=kig+1 s=nr+1

Let h(x; ) be the density associated with the outlier population from which X, ; is sampled,

where a is an unknown parameter vector. Then the likelihood function under H, is

m k; n
Li(6,a) = n—l,"—’“;——; (H I1 pigi(x,-;o,-)) ( II f(Xs;9)) h(Xni; @), (@)
Tt tmt \di=1 =k 4+l s=nz+1

Difficulties arise when maximizing L; since there is only a single observation from the outlier
population so that generally no suitable MLE is possible for a, unless a is assumed to directly link
to 6. Any such linkage assumption is quite questionable since we now have m individual
populations that make up the mixture distribution. Furthermore, with only one observation it is
impossible to do any model checking of h(z; a). To overcome these difficulties and to observe
the fact that little information is known about the outlier population from which X; is sampled,
we simply use a constant density h(z) = c over its practical (finite) support. Moreover, the
constant density is also assumed in the bootstrap procedure described below. Thus, dropping the
constant from the likelihood ratio test statistic will not affect any test conclusions. Therefore we
let

n m k; n
'El(o)=;——’*’—<1] II p,-gi(xj;ai)) ( II f(Xs;G)),

] ]
1 e Nyt =1 =k +1 s=nz+1

which is the likelihood based on the sample X3, ..., X, from the mixture. We define a simple

modified likelihood ratio test statistic
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sup Lo(6)
€6 (5)

sup L 1(6)°
e

where © is the entire parameter space. It is easily seen that the departure of X, from f will
reduce 052% Lo(8) making W small. Hence the rejection region is of the form W < W, for some
W, picked to provide a level o test. Since the null distribution of W has no known closed form,
we suggest the use of the parametric bootstrap method to approximate it, as shown in the next
section. Based on the discussion here the use of W seems to be a reasonable approach, and in
Section 4 we demonstrate that W performs well under all the simulation scenarios considered.
Concluding this section, we point out that asymptotically W =~ f(X, . 1; @n), as m — 00,
where 8, is the MLE using the training sample only. See the Appendix for the proof. Moreover,
the bootstrap-one method described in the next section is essentially equivalent to using this

asymptotic result.

3. The Bootstrap and Other Computational Procedures

In this section we discuss numerical issues associated with the test procedure described in
Section 3. It should be noted that often both the numerator and denominator of W in (5) may be
difficult to obtain since the individual densities are mixture distributions. Recall also that for the
numerator we assume that X, ..., X, can be identified with their component population, but
X .1 is only known to be from the mixture, not the exact component. However, if we consider

the setting of multivariate normality for each component, i.e.,
9i(z; 6;) ~ N(u;, L), (6)

and thus f(x; @)is a mixture of m multivariate normal distributions, a numerical iteration
algorithm based on the EM algorithm has been developed by Redner and Walker (1984), for
maximizing Lo(#). They extended Hosmer's (1973) algorithm for the case of two univariate

normal components to the multivariate normal components setting, and in our simulation studies,
we have adapted their method. Note that with (6), supf 1(6) iseasily obtained. Using the
)
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resulting estimator B, as an initial value in the numerator, it only takes at most a few steps to

obtain convergence.

We now turn to bootstrapping the null distribution of W. We will employ the parametric

bootstrap based on the training sample Xj,...,X,. The following algorithm is used which

mimics the original sampling plan.

Step 1:
Step 2:

Step 3:

Step 4.

Step 5:

Use (2) to obtain (p;, 4, $)fori=1,..,m.

For each integer b, b = 1, ..., B, draw a sample of size n, from the multinomial
distribution with P = (Py, ..., P,,) . We observe the frequencies n 1"L , nsz ) ees
and nnfL where nlbL + n2'}‘ + oot nni’L = ny. Additionally, we draw a sample

of size ny from the same multinomial distribution resulting in frequencies n 1';] ,

nz%, ...,and n"fU where nll}] + n;}] + - +nnfU = ny.

Draw samples of size n;and ni'[’, from N (q;, ff;) fori=1,..,m. Theng
observations associated with frequencies n?L, i =1, ..., m are treated as labeled
samples in the analysis, while the ny observations corresponding to nby;,

i =1, ..., m are treated as unlabeled observations. These resampled data are
used to compute the test statistic in (5). This test statistic is

denoted by W'; .

Draw a new, (n -+ 1)st, observation from the empirical mixture by randomly
selecting a single observation from the multinomial distribution in Step 2. This
multinomial will essentially select a component i between 1 and m, and we
generate an observation from the associated N (%, 5;) distribution.

Repeat Steps 2to 4 B times (b =1, ..., B). Then define W, to be the
(100a)th percentile of all W;'. Specifically, if « = j/(B + 1), then W, is
the jth smallest value of {W;} bfl (see McLachlan, 1987). Statistical decisions

can then be made.
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Notice that when n is large the bootstrap scheme may require considerable computing
time. However, when n; are not very small, this computational burden can be avoided by
employing an approximzite bootstrap scheme, called bootstrap-one. This technique uses the
original training sample in Steps 2 and 3 for all b = 1,..., B. It effectively eliminates these two
steps and many calculations in obtaining W,,.

The bootstrap-one method conceptually approximates the conditional distribution of W
given Xj,...,X,. When all n; are relatively large, the conditioning effect is minimal. The
accuracy and advantages of the bootstrap-one method are among the things studied in simulations

which are discussed in the next section.

4. Empirical Studies
In this section we report some results of a simulation study to illustrate the performances
of the new methods. In these simulations we focus on the case in which all training sample

observations are labeled, i.e. ny = 0.

Example 1. In this example, we choose m =1, d = 2, and n = 40 so that the training sample

is from a bivariate N'(u, ), where
0 1 5
o=(0) ==(} 1) ¢

were used. Obviously, in this case since there is only one component in the "mixture", all
observations in the training sample can be labeled, i.e. ny = 0. The reason for choosingm = 1 is
that in this case it is easy to apply the standard likelihood ratio test assuming that the outlier
population is normal with the same covariance X. In this case, there is a single training sample of

size n and an observation X,

to be tested as an outlier. Baek et al. (1992) discusses the
generalized likelihood ratio test in this setting. In particular, the likelihood ratio statistic is given
by
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sup Lo(6)

_ _beo
~ sup Ly(6,0) ’ @)
e

where L; (8, )is given in (4) and « is related to 6 in a certain way.

Specifically, A is the multivariate normal density associated with observation X, and
a = (2, X) is estimated by taking fi, = X,41and taking £ to be the MLE obtained from the
training sample. Under the normality assumption in this example, the test statistic in (8) is known
to be distributed as Hotelling's 72 (e.g. Anderson, 1984). Baek et al. (1992) considered the
likelihood ratio in (8), where the multivariate random variables could be composed of both
continuous and discrete components. They approximated the distribution of A in this case using
the bootstrap procedure described here. They applied the bootstrap procedure to the special case
in which the distributions were multivariate normal and approximated the distribution of A using
the bootstrap procedure. Simulations have shown that the power of the test based on the
bootstrap is very similar to that obtained based on Hotelling's T? in the multivariate normal case.
In this report all tests are based on the use of bootstrap resampling to approximate the distribution
of the test statistic. The test based on (8) will be called the "standard" likelihood ratio test.

Instead of including L; (f, ) in the denominator of (8) in this multivariate normal setting,
we could have used the test statistic given in (5) which is based on the use of a constant density
h(z) = c for over its support. The test statistic using (5) will be termed the "modified" likelihood
ratio test. For each of these tests, whenever we approximate the distribution of the test statistic
by a full bootstrapping of n + 1 observations, we will refer to this as the “full" procedure.
Alternatively, in each case we also consider the use of the bootstrap-one technique. In Table 1 we
denote them as "full" and "one" respectively.

Table 1 summarizes the simulation results of the two tests. One thousand replications

were used for each entry and we used B =499. The power was obtained with N ((g),
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( _1 5 _1'5)) as the outlier population. We have experimented with other covariance

values, including that in (7), and similar power patterns were observed.

First, we compare the standard and modified tests using full bootstrapping. In Table 1, it
can be seen that the significance levels for both tests are close to the nominal level of o = .05
with the modified tests having slightly larger levels. Additionally, the powers of the two tests are
similar with the modified tests having somewhat larger power. Thus, the use of W in (5), which
appropriately reflects our ignorance about the outlier population, performs as well as the full
likelihood ratio.

Next, comparing "One" columns to "Full" columns, we observe that the bootstrap-one has
significance levels that are artificially high for smaller sample sizes. However, for large n (say >
100) the significance levels are of appropriate size. For these larger sample sizes the bootstrap-
one procedure tended to have higher power than obtained using full bootstrapping. Based on
these results and the computational burden associated with large n suggests that the bootstrap-
one is a viable alternative. Finally, notice that the bootstrap-one method is identical for the
standard and new tests. In fact, the identity can be shown analytically under normality. However,

the identity is not true in general.

Example 2. In this example we consider the use of the likelihood ratio test to test for outliers
from the mixture model in (1) with m =2 and n = 60. Again we consider the case in which
d=2 and ny =0, and specifically, we assume that the component densities g; and g, are

multivariate normal densities associated with a
0 1 5
() (5 7))

and
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populations respectively.

Casea: py =p = .5.
We examine the power of the test for detecting outliers from
((Za5) GO)

population where k = 1,...,9. In Figure 1(a) we show data from a mixture of two populations
with p; = p; = 0.5 along with 5 outliers. In Figure 1(b) we show the same data with individual
observations labeled with regard to the associated component population or outlier population.
The outliers are indicated by solid dots. In Figure 1(c) we again show the labeled data along with
contours of the mixture population. Finally, in Figure 1(d) we show means and contours of the
two component populations and of the outlier population. In Figure 2 we show the contours of
the mixture components as in Figure 1(d) along with the outlier means (1+k —35,1— (k—5)),

k=1,..,9. Alsoin this figure we show the contour of the outlier population for the case
k = 2, ie. the meanis ( — 2, 4)'. In Table 2(a) » = 60 is used and the nominal level is & = 0.05.
As can be seen, the significance level is close to the nominal level. Whenever the outlier
population is well separated from the component distributions of the mixture we have good power
while as would be expected the power lowers dramatically for k near 5. The true powers for
k =1,2,3, and4 are the same as those for k£ = 9,8, 7and 6 respectively, due to symmetry. The

empirical results appear to verify this fact.

Case b: p; = 0.25 and p = 0.75.

In this case we consider the same scenario as Case a but with p; = 0.25 and p, = 0.75.
In Figure 3 we show the plots corresponding to Figure 1 for the case in which p; = 0.25 and
p2 = 0.75, and in Table 2(b) we show results corresponding to those in Table 2(a) for this case.
Again, we see that the significance levels are accurate and that powers are similar to those in

Table 2(a). It should be noted that due to smaller p; here, there was a very small fraction
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(< 0.2%) of all bootstrap simulation replications that did not converge with our current
program. This problem seems to become more serious when smaller values of n are used. In our
analysis we simply skip any bootstrap realization for which convergence was not obtained and
generate another one. Another possible approach would be to use the starting values as final

estimates for these bootstrap replications.

5. Concluding Remarks

In this report we have proposed a simple modified likelihood ratio test for multivariate
outlier detections. This new test is not only good for use in general outlier detection problems,
but especially applicable when the training sample population is a mixture of several populations.
In the new test no assumption is necessary for the covariance structure or any other moments of
the outlier population, and in fact no parametric modeling is required for the outlier population.
Furthermore, although with weaker assumptions it is more powerful than the standard likelihood
ratio test in the simpler non mixture situation in which the standard test applies.

We have also investigated bootstrapping the distributions of the test statistics. The
computationally intensive resampling method seems to be quite effective. When the training
sample size is large, we have also suggested the bootstrap-one method, which significantly
reduces the computing time and seems to have somewhat more power.

It should be noted that the procedure could be extended to cover the case in which all of
the training sample observations are unlabeled. This, however, will require dealing with issues

such as the use of appropriate starting values and is not considered here.
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APPENDIX

In this appendix, we show that W = f(X,41; 6,,), as n — oo, where W is given in (5). Let

7106) =n{Z 1(0)},
£(6) = In{Lo(6)} =7 1(6) +In{f(Xns1;6)}. (A1)

Suppose 5,, and 3n+1 satisfy the conditions that T 1(571) = supe T 1(6) and Lg (3n+1) =
fe

osupe Ly(0), respectively. Then %(5,,“) =0and? 1 (ﬁn) = 0. Thus, from
€

O@nr1) =2,6,) +258,)(@nsa — 8,) + smaller terms

2 (10{f(Xns1; O], +8@n) @ns1 — ) + smaller terms,

we have
01— 6, = p(;li)’ . (AZ)

since £y (Bns1) = 0, £1(8,) is of order Op(n), and Z[In{f(Xnt1; 6)}] |o:§ is 0,(1). Now by
(Al) and (A2),

W = exp{lo(Bns1) — 7 1(61)}
= exp{€o(Bn) + 2B Brs1 — Bn) + 0p(2) =7 1(61)}
= explIn{f(Xns1; 0)}] + Op(2)
= f<xn+1;3n) +0,(2),

completing the proof.
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Table 1. Comparisons of significant level and power of the standard likelihood ratio test
and modified likelihood ratio test, using two (Full and One) bootstrap approximations.

n Significance Level Power

Standard Modified Standard Modified
Full One Full | One | Full | One | Full | One
15 |.048 118 065 | .118 | .522 | .729 | .568 | .729
20 |.048 .100 .063 | .100 | .541 | .709 | .588 | .709
25 |.036 .081 .048 | .081 | .563 | .704 | .601 | .704
30 |.047 .084 051 | .084 | .579 | .718 | .609 | .718
50 | .046 .064 050 | .064 | .626 | .696 | .645 | .696
100 | .056 .059 057 | .059 | .646 | .677 | .657 | .677
150 | .059 .057 061 | .057 | .655 | .703 | .665 | .703
s.e. .007 .015

Table 2a. Significance level and power of new test in Example 2;
p1 = p2 = 0.5, n = 60, B = 199, 1000 replications

Level .050 (s.e. .007)

k 1 2 3 4 5 6 7 8 9
Power | 1.000 | .984 | .754 | .226 | .031 | .231 | .767 | .980 | 1.000
s.e. .001 |.004 | .014 | .013 | .006 | .013'| .014 | .004 | .001

Table 2b. Significance level and power of new test in Example 2;
p1 = 0.25, po = 0.75, n = 60, B = 199, 1000 replications

Level 055 (s.e. .007)

k 1 2 3 4 5 6 7 8 9
Power | 999 | 970 | .709 | .245 | .042 | .242 | .701 | .972 | .999
s.e. .001 | .005 | .014 | .014 | .006 | .014 | .014 | .005 | .001
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