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I. Summary 

A.    Task Objectives 

Below we list the original statement of work. 

1. Develop new statistical methodologies, parametric and nonpara- 
metric, which are particularly applicable to the problems of 
discriminant analysis, outlier detection, script matching and wave 
form matching in the context of monitoring nuclear proliferation. 

2. Determine better methods for estimating statistical distributions 
which may be used for both discrimination purposes and for 
assessing system performance. 

j. Develop a framework in which the results of monitoring and the 
capability of the monitoring network can be usefully and correctly 
stated. 

4.    Apply the above developed methodology to data at the ARPA 
Center for Seismic Studies to assess the effectiveness of the above 
theoretical developments. 

Item 1 was accomplished by developing several near optimal tests to determine 
when observations should be regarded as "unusual." A paper developing a 
nonparametric methodology for discriminating between two groups has been 
accepted for publication in the journal Computational Statistics and Data Analysis. 
An additional paper extending our outlier detection methodology to the important 
missing data scenario was distributed as a technical report. Computer code to 
implement these results can be obtained upon request by contacting Dr. H.L. 
Gray, Department of Statistical Science, Southern Methodist University. 

In addition, the results in outlier detection were extended to two outliers from a 
mixture. For example, this latter test would allow one to test for an outlier from a 
training set made up of mining explosions and earthquakes, rather than just one or 
the other. Although this latter work is not 100% complete, it is to the state of 
completion that it can be used in most settings. The code for this program has also 
been passed on to MRC and is available upon request by contacting Dr. Gray. A 
paper on this new outlier detection is being prepared for submission for 
publication. 

Other methodologies were also developed. Although the theory is basically now 
developed, these latter methodologies are not ready for distribution. 

v 



Regarding items 2 and 3, the bootstrap methodology was introduced to effectively 
solve both of those problems. To satisfy item 4, the outlier method developed 
under this contract was applied to nuclear explosions, mining blasts, and 
earthquakes in diverse geological regions recorded by the ARCESS and GERES S 
arrays, CDSN station WMQ, and LNN stations KNB and MNV. Most such tests 
were run at MRC although some were also performed at SMU. At the .01 
significance level, between 90-100% of the nuclear explosions and quarry blasts 
were detected as outliers of the earthquake groups in the various regions. Overall, 
209 of 229 (91%) explosions were detected and there were only 2 false alarms out 
of 143 earthquakes (1.4%), not significantly higher than the targeted 1%. These 
results were obtained for diverse regions, for a wide range of epicentral distances 
and magnitudes, and for single stations and arrays. The methodology is, of course, 
applicable to multiple stations, as well. 

The application of the outlier detection method to data from multiple stations was 
explored in detail, due to the concern that some data compression might be 
required. Various data compression methods were considered and it was ultimately 
decided that with proper computer code the so-called "full vector" MLE outlier 
method was preferable to any compression methods. This problem is discussed in 
detail in the paper "Outlier Tests with Multiple Stations" which is included in the 

appendix. 

In general, we feel this work has been very successful and when the methodology 
we°are currently developing is complete, we feel that the statistical methodology 
developed will be nearly optimal for automated detection of suspicious events, 
while at the same time furnishing the user with reliable estimates of the associated 

error rates. 

VI 
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A Bootstrap Generalized Likelihood Ratio Test in Discriminant Analysis 

J. Baek, H. L. Gray, W. A. Woodward,  J. Miller and M. Fisk 

Abstract 

A generalized likelihood ratio test is developed for classification in two populations 

when one needs to control one of the probabilities of misclassification. The proposed 

classification procedure is constructed by applying the parametric bootstrap to the 

generalized likelihood ratio. There are known methods for controlling this 

misclassification probability for the case where normal distributions with the same 

covariance matrix are assumed. Our approach, however, can be applied to not only this 

case but to the case of normal distributions with different covariance matrices and the 

case of a mixture of discrete and continuous variables. 

The results given here do not depend on normality but can, in fact, be applied to 

any distribution for which the maximum likelihood estimates exist. We do, however, 

restrict our simulation of these results to the normal distribution if the variates are all 

continuous. Three cases are simulated: normal distributions with equal covariance 

matrix, normal distributions with unequal covariance matrices, and mixture of 

categorical and normal variables. An application to classifying seismic events is 

presented. 

Keywords:   Bootstrap, hypothesis testing, discriminant analysis, mixtures of continuous 

and discrete variables, mixed variables 

This research was partially supported by ARPA Contracts F19628-90-C-0135, 

F29601-91-K-DB25, and F19628-93-C-0199. 



1. Introduction 

One of the primary problems associated with monitoring worldwide nuclear 

proliferation is the problem of distinguishing seismically between small earthquakes and 

explosions. Although the statistical problem appears to be one of discriminant analysis, 

it is actually one of testing hypotheses since the political and physical environment will 

usually require one of the errors to be preassigned. 

Classical approaches for discriminant analysis in two populations depend on the 

ratio of the probabilities or probability density functions. The classification rule based 

on the ratio is optimal in the sense that it minimizes the total probability of mis- 

classification (Welch 1939). Under the assumptions of normality, equal covariances, and 

unknown parameters for the variables, Anderson (1951) derived a classification rule 

based on the linear discriminant function, which is known as Anderson's W statistic, by 

substituting estimates for the parameters in the ratio. When the covariance matrices are 

not equal, replacing each parameter by its estimate gives the classical quadratic 

discriminant function (Seber, 1984, p297; Anderson, 1984, p235). 

Among other classification rules is a hypothesis-testing approach which is derived 

by obtaining the generalized likelihood ratio. This rule based on the assumption of 

normal distributions with equal covariance matrices, was proposed by Anderson (1958), 

studied by John (1960, 1963), and has become known as John's £ statistic. Krzanowski 

(1982) extended this approach to mixed discrete and continuous variables. For more 

discriminant procedures in the mixture case, see Knoke (1982), Krzanowski (1975, 1979, 

1980), and Tu and Han (1982). 

Most of these classical classification rules allocate the individual to be classified to 

one of the populations if the ratio is less than a cut-off point c, and to the other 



otherwise. The cut-off point c is usually based on the probabilities of drawing an 

observation from the individual populations and the costs of misclassification. 

Associated with these procedures are the resulting misclassification probabilities. 

When, as in the problem of interest here, it is important to fix one of these probabilities 

of misclassification, the statistician will need to determine the cut-off point to allow this 

probability of misclassification to be prespecified. 

When this probability is prespecified the problem then becomes one of testing a 

hypothesis. However, because of the setting of this problem we shall continue to refer 

to it as a classification problem. When the p-dimensional characteristic variable V~ 

Np(it(°\ E) for a population xQ, V ~ Np(iS
l\ £) for another population *v and // \ 

lt^\ J2 are unknown, Anderson (1973) and Kanazawa (1979) obtained the 

asymptotically normal expansion of the distribution of statistics W and Z respectively, 

which are used to find the cut-off point for a fixed value of the particular misclassi- 

fication probability. In other cases (for example £^ ^# £^ or V not normal) the 

asymptotic distribution of the classification statistics is, in general, unknown so that no 

hypothesis test is available. 

In this report we determine a test of the classification hypothesis that satisfies the 

following requirements: 

i)   Y,      1S n°t necessarily equal to £ 

ii)  The p-dimensional discriminant variable may be a mixture of 

continuous and discrete variables 

iii)  The continuous variables need not be normally distributed. 

Examples   of   continuous   discriminants   that   are   commonly   used   in   the   nuclear 

monitoring setting are ratios of amplitudes or spectra for different time windows and 



frequency bands of the observed seismogram. Earthquakes typically generate more 

shear energy than compressional energy, while explosions usually have much more 

compressional energy than shear. Since compressional waves propagate faster than 

shear elastic waves, this leads to larger relative amplitudes in different time windows for 

the two source types. Although explosive devices are expected to have more intrinsic 

high frequency content than earthquakes, explosions are usually shallower, in more 

anelastic materials than the deeper earthquakes, which tends to attenuate the high 

frequency content. As a result, spectral ratios of particular portions of the seismograms 

are useful discriminants in some regions of the world. 

Some examples of categorical variables that are commonly used are presence of 

cepstral peaks, regional seismicity (high/low), location (off-shore/on-shore), depth 

(deep/shallow), and, in the context of associating mine blasts with a particular mine, 

day of the week. 

The inability to treat a mixture of discrete and continuous variables rigorously in 

this setting has limited the application of many statistical classification methods in the 

past. This has led to rule-based approaches (Sereno and Wahl, 1993) which are 

somewhat ad hoc, artificial intelligence approaches (Baumgardt, et al, 1992), or 

inappropriate applications of linear discriminant functions or chi-squared tests. It is 

vital, however, for monitoring applications that these issues are all addressed with 

statistical rigor so that the error rates involved have meaning. The classification 

method proposed here satisfactorily addresses this problem by applying the bootstrap to 

the generalized likelihood ratio. Although this method is actually a test of hypothesis, 

it could just as well be used as a method for classification in the classical sense with the 

bootstrap being used to determine the probabilities of misclassification. For additional 

discussion of procedures for classifying seismic events see Shumway(1988). 

In Section 2, we discuss the motivation for the proposed bootstrap likelihood ratio 



classification procedure, show how to construct the bootstrap likelihood ratio statistic, 

and explain how to determine the cut-off point for a desired misclassification 

probability. Section 3 is devoted to the application of the procedure to three cases. In 

Example 1, the bootstrap likelihood ratio statistic is shown to perform almost as well as 

the statistics W and Z which are specifically designed for Example 1, i.e. the case where 

two normal distributions with the same covariance matrix are considered. The bootstrap 

also performs quite well for both the normal case with different covariance matrices 

(Example 2) and the case of a mixture of continuous and discrete variates (Example 5), 

where, in either case, classical classification rules cannot control the probability of 

misclassification since their limiting distributions are unknown. In Example 4 we apply 

the results developed here to some real seismic discriminant data and in Section 4 we 

present some concluding remarks. 

2.  Bootstrap Generalized Likelihood Ratio Test for Classification 

2.1. Motivation 

Let V = (Fl5 • • • ,Vp) be a p-dimensional random vector which is used to classify 

an individual into either population JT0 or population irv For i — 0, 1, let /e(v | 6^') be 

the probability or probability density function of V evaluated at v, if v comes from 

population w-, where 0^ is the set of unknown parameters. The components of V may 

be all discrete, all continuous, or mixture of discrete and continuous variables. In the 

mixed variables case, for example, let V = (Y, X) with Y = (Yl5... ,Yk) and X = Xv . 

. . ,X _£, where Ylt ... .Y^ are discrete and Xlt. . . .X^ are continuous. Suppose Y has 

the probability f{ Y(Y|0$) and the conditional probability density function of X given Y 

is ft x, Y(
X

I
ö

X]Y' 
Y)- Then the J°int Probability density faction of V in iri is given by 

m&) = Myl^Xxi YW
ö

X]Y> y). W 



where 0(,) = {0$, 0$Y}, t = 0, 1. See Olkin and Täte (1961) for the mixture of the 

multinomial and the multivariate normal distributions. 

For any given classification rule, suppose that the region R{ is such that v € Rj 

implies that v is classified as belonging to TT{. Further assume that RQ n R1 = 0. 

The respective probabilities of misclassification are 

P(1|0) = / /0(v | 0(O)) dv 
Rl 

P(oji) = / A(v | *(1)) dv, 
RQ 

where dv = dv-^. . . dvp. The classical classification rules obtain the optimal regions RQ 

and Rx based on /0(v | 0^) //[(v | 0^) according to their classification principles (such 

as minimization of the total probability of misclassification, minimization of the total 

cost of misclassification, maximization of the posterior probability, minimax classifica- 

tion, etc.). However under any one of these classification principles, neither P(ljO) nor 

JP(0|1) is fixed in advance at a certain value, which here we desire. 

2.2.  Bootstrapping the Log Likelihood Ratio Test Statistic 

Suppose we have the training samples {vj°\ v^\ . . . ,v^} of size NQ, and {v\ \ 

vtt\ . . . , v$} of size JVj from 7r0 and 7r1? respectively. A new observation whose value 

is v must be classified as from either TT0 or TTV NOW we employ a hypothesis-testing 

approach to classify v. That is, the classification of v is accomplished by testing the 

hypothesis 



Hl= vf», 4»),..., TJg 6 r, ; T, vi1», 4»,..., vg>   € ^ 

We use the generalized likelihood ratio method to construct a test. The likelihood of the 

two training samples is given by 

L(fi\ |M I vf),... M vi1»,.... vU>) = n° /0(vf) | «0») ft   /l(f> | «M).    (2) 

Consider now the new individual v to be classified. If this individual is included 

with the training sample from 7rf, then an extra multiplying factor 

L,(*(f) I v) = /?(v | &) 

must be incorporated in (2). The generalized likelihood ratio is therefore either unity or 

given by 

LR =■ 

"V^ I Hl}^
(*(1) ' V) ^ 9il) ' ^ • • • ' ^ ^ ■ • ■ ' ^ 

I0(^)|v)Z(^)^)lvl0)...,v^v^ vff) 

"   L1(^)|v)I(^),^)|viO),...,v^v^...,vSl))    ' 
(3) 

where ($ is the Maximum Likelihood Estimator (MLE) of fr1' under HQ and &£> is the 

MLE of 0^ under H1? i = 0, 1. Now let A = log(Ii2). It intuitively follows that small 

values of A provide evidence against HQ and thus the generalized likelihood ratio test is 

to reject HQ if A < Aa, where Aa is chosen to provide a size a test. 

Let P(X < AQ | H0) denote the size of the Type I error and P(X > Xa \ H1) denote 

the size of the Type II error for a constant Aa. Then P(\ < \a | HQ) is the probability 

of misclassification P(1[0), and P(\ > Xa \ E{) is the probability of misclassification 

P(0|1) when RQ and i?j are defined in terms of Aa. Therefore we can construct a 



classification rule which can control one of the probabilities of misclassification by fixing 

the size of the test if we know the distribution of A(V, Vy\ . . . ,V^, V\K ■ . ■ iV)^). 

In most cases it is difficult to obtain the exact distribution of the test statistic A. The 

distribution, however, can be approximated by employing the bootstrap method (Efron 

1979, 1982). 

Since the form of the probability density function is assumed known, the 

bootstrap samples can be obtained from the estimated density function. This is called 

the parametric bootstrap (Efron 1979), and we employ it in this study. We have 

examined the use of the nonparametric approach of resampling with replacement from 

the training samples, and for the training samples of size 25 or larger, this 

nonparametric bootstrapping yielded similar results to those reported here. 

The likelihood ratio statistic for the test of the null hypothesis H0 versus the alter- 

native Hx can be parametrically bootstrapped as follows. Given the training samples 

{v(°>A, {y{1)}% bootstrap samples {v*^}^1, {v*^}^ are generated randomly 
J J      ■*- J J 

from /0(v | 6^) and /x(v | 0o
(l)), respectively, where 9^ and 0o

(l) are obtained from 

the original samples {v^}^ and {v^}^, respectively. The value of A, to be denoted 

A*, is computed for the bootstrap samples by substituting vjf^, {v? \ . . ■ ,v#0
J}, 

v^1), . . . , v^1)} for v, {v{°\ . . . ,▼$>}, {v[l\ . . . ,▼$} in (3), respectively. This process 

is repeated independently B times, and the replicated values of A*, {AJ}jLl5 evaluated 

from the successive bootstrap samples, can be used to assess the true null distribution of 

A. In particular, the oAh. empirical quantile of {AJ}^, denoted by A&, will essentially 

approach Aa, the true critical value for the test of size a, for large NQ and i^ as B 

tends to infinity. (See Bickel and Freedman (1981) for some asymptotic theory on the 

quantile process for the bootstrap.). Thus we use A£ as a critical value for the test of 

size a.  Therefore, we allocate v to ^ if A < X%, and allocate v to irQ, otherwise. 

McLachlan   (1987)   showed   the   relationship   between   A£   and   the   bootstrap 



replication size B for the specified test size a. In general, given a set of B order 

statistics from a population, the probability that a randomly selected member from the 

population is less than or equal to the jth order statistic is j/(B+l). Thus, if 

a = j/(B+l), then A& is the jth smallest value of {A?}g_ 1? i.e. if a = 0.05 and B = 299 

then \% is the 15th smallest value of {Af}^- 

3. Applications 

The bootstrap generalized likelihood ratio test proposed here allows the p- 

dimensional characteristic variable V to be discrete, continuous, or a combination of 

discrete and continuous variables, and its probability or probability density function 

fi(V | 0^) for ir- is assumed to be known except for the value of the parameter (r%\ i = 

0,1. It can therefore be applied to the classification problem in each of these cases 

when one needs to control one of the probabilities of misclassification. As we will see, 

the bootstrap generalized likelihood ratio test essentially achieves the required 

probability of misclassification for even a moderate size sample. Throughout, we assume 

that we have random samples {v^}^ from TT0, and {vj1)}^ from 7^. 

In the following four examples we consider four distinct scenarios. In the first 

example we consider the simple case where the observations are all normal with equal 

covariances. Of course this case is well established, but we consider it to demonstrate 

that very little is lost by using the bootstrap rather than the exact distribution. In 

Example 2, we continue to assume normality but drop the assumption of equal 

covariances. In this case the bootstrap is necessary in order to determine the proper 

critical point. However, it is not necessary to bootstrap the likelihood ratio, but instead 

one could bootstrap the quadratic discriminant function, Q. This example demonstrates 

that these two bootstrap approaches yield essentially the same result. In Example 3 we 

consider a mixture of normal and binomial variates where, to our knowledge, no alter- 



native to the method introduced here is available.   Finally, in Example 4 we consider a 

set of real data which is treated as a mixture of normal and multinomial data. 

Example 1: Normal Distributions with Equal Covariance Matrix 

Suppose that ft{v | 0(i)) is the density function for Np(/iW, EW) with S(0) = E(1), 

(= E), where 0^ = (fi^X). Replacing the unknown parameters in /0(v | (// \ E))//2(v | 

(lP-\ S)) by their estimates leads to the well-known Anderson's W statistic (A2) given 

in the appendix. The likelihood ratio (A3) is characterized by John's Z statistic (A4). 

On the other hand, the log likelihood ratio statistic, A, is given in (A4) and is obtained 

directly by taking the log of the expression (A3) and dividing it by a constant. The 

monotonic relationship between Z and A is obvious. If the values of W, Z, and A are 

greater than their cut-off points, then 7rQ is favored for v, and irl is preferred otherwise. 

Now we want to choose the cut-off point so that one probability of 

misclassification is controlled. Let a be the desired P(1|0). Anderson (1973) has 

obtained from the asymptotic normal distribution of W, the following approximate cut- 

off point Wa, which attains the desired probability a to within 0(N~2). For large NQ 

and N±, 

where N=NQ + N1-2,D = >| (vW-v^S^v^-v^), ^ is such that *(«„) = a, 

and $ (•) is the cumulative iV(0, 1) distribution function. Kanazawa-(1979) has 

obtained the asymptotic cut-off point Za for the Z statistic. For large NQ and Nv 

Za= ^rf + D^ + ^^l + DuQ-ip-lj) 

-TN^D(^ 
+
 
W

^
+

  
{P~l)  +^) + 4^0 + ^-3H)> 

10 



where D and u§ are the same as above. 

Instead of deriving the limiting distribution, the cut-off point \% of the bootstrap 

log likelihood ratio statistic A is obtained by the parametric bootstrap procedure 

described in Section 2.2. Using the MLEs of fP\ ^l\ and S from the training samples 

{vW}^i, t = 0, 1, bootstrap samples {vj^^i"1, {▼J^}jbh are generated from a 

N^v(0\ A/{NQ + iVj)) and a Np(v(1), A/(tf„ + i^)), respectively where A is defined in 

the appendix. We compute the value of the log likelihood ratio statistic, A 

corresponding to (A4), for the bootstrap samples by replacing v, v^ ', v^ \ S by v^ji, 

v*W Y*(l)j s*, respectively, where v*(i) = £ ^ vj(0/^ i=0> *> and S* is calculated 

according to (Al) for the bootstrap samples. This process is repeated independently B 

times. Then A£ is the ath. empirical quantile of {AJ}^, where {AJ}^ are the values 

of A* evaluated from the successive bootstrap samples. 

For given a, let Pj^l|0), PrfMO) and P^(1|0) be the probabilities that the new 

individual is misclassified into TT1 by the statistics W, Z and A using the cut-off points 

Wa, Za, \*a, respectively. Then P^(1|0) = P( W < Wa\irQ), Prfl\0) = P(Z < Za\H), 

and PA(1|0) = P(A < \*a | TT0). We will examine how close P^1|0), P^(1|0) and 

P\(1|0) are to the desired misclassification probability, a = P(1|0), for the normal 

distributions with equal covariance matrix by Monte Carlo method. We generate two 

sets of random samples {v^v^}^}^, {{^jj&i^l ^m N2(^°\ E) and N2(^, 

S), respectively, where 

0\      ..      /2\ /l      0.5 

0.5     1 „<»>= ,  ;i. 2, »d£ = 

For each i = 1, 2, . . . , M, we obtain the values of the statistics W, Z, A, say W^ Z^ 

\-, using {vf, {vW}^, {v^}^}, and compare them to their corresponding critical 
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values Wia, Zia, Afa for a fixed a. B = 499 bootstrap samples are used for Afa. 

Then P^1|0), P^(1|0) and P\(1|0) are estimated by the proportion of times that the 

value of the statistic is less than or equal to its critical value among M trials. Since 

Prp(l|0) is the usual estimate of a proportion, its standard deviation (s.d.) is estimated 

byJ Pjy(l|0)(l- P^1|0))/M. The standard deviation estimates of Prfl\0) and P^(ljO) 

are obtained similarly. The first portion of Table 1 shows the estimates of the 

probability of misclassification with their standard deviations (s.d.) for the different 

sample sizes with a = 0.05, M = 10,000. The results for Pjp(l|0) and P^(1|0) are 

identical when NQ = N1 = 25 since Z = {NQ/{NQ + 1)) Wfor N0 = Nv Although for the 

sample sizes considered, the bootstrap estimate does not attain the same precision as 

the W or Z statistic's estimate, it is clearly competitive. 

Table 1.    The estimates of the probability of misclassification, P(1|0) = 0.05, 
and the estimates of the power, P(l|l) 

*Wi|o) Pfi\0) hm 
NQ = Nl = 25 

0.054 
(0.002) 

0.054 
(0.002) 

NQ = 30, Nx = 45 

. 0.061 
(0.002) 

0.055 
(0.002) 

0.055 
(0.002) 

0.060 
(0.002) 

>w(i|i) ^1|1) hm 
NQ = 30, Nx = 45 

0.726 
(0.004) 

0.725 
(0.004) 

0.736 
(0.004) 
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Now we compare the powers, P(l|l), for W, Z and A. Random samples 

{{vf}?^}^, {v-,^)}^}^ are generated from N2(^°), E) and N2(^\ S), 

respectively with the same parameters as above. The power estimates for W, Z and A, 

Pjp(l|l), ^1|1) and P^ClJl), are obtained in the same way as for P^1|0), P^(1|0) 

and PA(1|0), respectively. For a = 0.05, JV0 = 30, Nx = 45, M= 10,000 and P = 499, 

the power estimates are similar to each other with the bootstrap being slightly better 

(undoubtedly, due to the slightly larger critical region) as shown in the second portion 

of Table 1. 

Example 2: Normal Distributions with Unequal Covariance Matrices 

Let TT0 and *x be Np(//°), E^) and N^1), E^) with ,i<0) ± p® ^d j](0) 

7^ T? '. When the parameters are unknown, a classical classification rule known as the 

quadratic discriminant function is obtained by taking the log after substituting 

estimates, v(0), v(1), S(0) and S(1) of /z(0), /i(1), £(0), and £(1) into the ratio of the two 

multivariate normal probability density functions, /0(v |// \ E^ ') /f^v | // >, E^ '). 

The quadratic discriminant function Q is given in (A5), and v is classified to 7TQ if Q > 

0 and to ir-, otherwise. The probabilities of misclassification of Q are difficult to control 

since even its limiting distribution is unknown. 

Following the hypothesis-testing approach of (2), the MLEs of // ', // ', YJ- \ 

E'
1
' under HQ and Hx are given in the Appendix. The log likelihood ratio statistic, A, is 

given in (A6), and to evaluate the cut-off point AQ, for the desired probability of 

misclassification, P(1|0) = a, we generate bootstrap samples {v;*^ '}J=?i"\ {vf }j=i 

from a Np(v(0), A(°V^i) and a Np(v(1), A(1)/N2), respectively. Following the same 

bootstrap procedure as in Example 1, the ath empirical quantile A# is obtained from the 

values of the log likelihood ratio statistic A for the successive bootstrap samples. The 

bootstrap    generalized   likelihood    ratio    classification   rule   with    misclassification 
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probability P(1[0) = a is, therefore, to assign v to xj if A(v) < A£, and to TT0, 

otherwise. 

Consider two bivariate normal distributions N2(/t(0), E(0)), N2(/t(1), E(1)), where 

Suppose we apply the Q statistic for classification using the usual classification rule, i.e. 

v is classified to irQ if Q > 0 and to TT1 otherwise. The probability of misclassification of 

interest, i.e. PQ(1|0) is P(Q < 0 |TT0). In order to determine the probability of this 

classification error we conduct a simulation. We generate {v{, {v^}^}^, and 

{▼SJ^JLMSI 
from N2^(0)' s(0)) and N2(^(1)' s(1))' respectively. We obtain the Q 

statistics for {vf, {v^}^}, {v^}^, » = 1, 2, . . . , M, and denote these Qv Q2, . . . , 

QM. Then PQ(1|0) is estimated by PQ(1|0) which is the proportion of Qi values that are 

less than or equal to zero. PQ(1\0) (with its standard deviation) is 0.274 (0.004) for NQ 

= 100, Ni = 150 and M = 10,000. When it is important to keep the probability of 

misclassification PQ(1|0) small, an error this large may be unacceptable, resulting in the 

need for the method we are describing. 

Now we consider the log likelihood ratio statistic A. First, we would like to know 

how well the parametric bootstrap procedure approximates the true null distribution of 

A.  Since  the  true null distribution of A is not known,  we generate samples     {v,-, 

{v(,?)}j&}£i fr°m N2(^(0)> s(0)) **d {H-^MSi from N2(/*(1)' s(1)) with M = 
100,000. Applying {v,, {vg» }^, {v^}^}^ to (A6), we can obtain {AJ&. The 

true null cumulative distribution function (cdf) of A is approximated by the empirical 

cdf using {AJj^ for (iV0, Nx) = (10, 15), (JV0> Nx) = (30,45), and (JV0, Nx) = (100, 150). 

The true critical value Aa is approximated by -1.900, -1.504, -1.353 respectively. These 

are the ath quantiles of {A,}^ where a = 0.05 for {NQ, Nx) = (10, 15), (JV0, N{) = (30, 
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45), and (JV0, Nx) = (100, 150), respectively. In this simulation, B = 299 is used for 

the bootstrap replication size because of computer-time constraints. Our investigation 

indicates that the results using B = 299 and B = 499 are similar. 

For a set of random samples {v, {vj0)}^}, {v^J^i) under HQ with (iV0, NJ = 

(10, 15), (JV0 N{) = (30, 45), and {NQ, NJ = (100, 150), the empirical null distribution 

of the bootstrap log likelihood statistic using {tf}f=i with 5 = 299 is also plotted 

around the true null cdf in Figure 1. Inspection of this figure shows that the bootstrap 

null distribution approximates the true null distribution of the log likelihood ratio stat- 

istic quite well as the sample sizes increase and does surprisingly well for small samples. 

Even though the null distribution of the Q statistic is unknown, the cut-off point, 

Qa, for misclassification probability, P(1|0) = a, can be approximated by the same 

parametric bootstrap procedure as for A. That is, we evaluate the Q statistic for B 

successive bootstrap samples and call them Q[, % . . . ,Q% Then Qa is approximated 

by Qa, the ath empirical quantile of {Q-}f=i- Therefore, one can allocate v to TT1 if Q 

<  Qa, and allocate v to 7TQ, otherwise. 

With the same simulation data used to get PQ(1|0) = 0.274 above, PQB(1\0) (s.d.), 

the estimate of a fixed P(1|0) = 0.05 by the parametrically bootstrapped Q statistic QB, 

is 0.050 (0.002) for B = 499. PA(1|0) (s.d.) of the bootstrapped A, i.e. A*, is 0.049 

(0.002) for the same bootstrap samples as for QB. Both bootstrap estimates are close to 

the true fixed misclassification probability P(1|0) = 0.05. 

To further compare the two tests we now investigate their respective powers, 

P(l|l), for different parameter values. Consider bivariate normal distributions N2(/r ', 

E(°)) and N2(/i^\ E^). Let pQ and px be the correlation coefficient for N2(/°\ E(
0)

) 

and N2(/i^, E^) respectively. We assume that pQ = 0.5, pl = -0.5 and that both 

distributions have the same marginal variances, a\ = 1 and <r2 = 1- That is, 
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For p^ = (0, 0)', we examine the power, P(l|l) of the bootstrap Q statistic and the 

bootstrap A statistic at /x(1) = /*(0) + A(<r1, <T2)', A = 1, 2, 3, for small samples (NQ = 

10, Nx = 15) and for large samples (JV0 = 100, Nx = 150). For each A = 1, 2, 3 under 

Hlt we randomly generate {{v^j^l from JX^°\ E(0)) and {v,, {v«}^}^ 

from N2(ift\ S
(1)) with #0 = 10, JVj = 15 and M= 10,000. For each i = 1, . . . ,Mand 

for a = 0.05, {v,-, {vWjj^, {v^}^J is used for the parametric bootstrap to obtain the 

cut-off points Qa and A£ for QB and A, respectively. The bootstrap replication size B 

used here is 499. Then the power estimate PQB(1\1) for QB is the proportion of times 

that the Q statistic value is less than or equal to Q& out of M trials. The power 

estimate ^(1|1) k>r tne bootstrap A is obtained similarly. PQB{\\\) and -P^(l|l) are 

listed along with those for large samples  (JV0 = 100, Nx = 150) in Table 2. 

Table 2.   Power comparison between the bootstrap A and the bootstrap Q (QB) with 
B = 499.    Entry is power estimate with its standard deviation. 

A=l A=2 A=3 

NQ = 10, #! = 15 

PA(1|1)     0.310 (0.0046)  0.815 (0.0039) 0.992 (0.0009) 

PQB(l\l) 0.302(0.0046)  0.795(0.0040) 0.990(0.0010) 

N0 = 100, Nx = 150 

PA(1|1)     0.375 (0.0048)  0.884 (0.0032) 0.999 (0.0003) 

PQB(l\l) 0.376(0.0048)  0.884(0.0032) 0.999(0.0003) 
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In this simulation, the bootstrap A has slightly higher power than the bootstrap Q for 

small samples, but there is little difference for large samples. 

Example 3: Mixture of Categorical and Continuous Variables 

In this example we consider a mixture of continuous and discrete variates. Of the 

discriminant functions in the previous sections, only the A statistic has been studied for 

this case. Suppose the variable V is a mixture of discrete and continuous variables. Let 

V' = (Z, X) with Z = {Zv . . . , Zr) and X = (X1? . . . , Xg) where Zv . . . ,Zr are 

discrete and X1? . . . , Xq are continuous, r and q are positive integers. Suppose further 

the jth discrete variable Zj has *• categories, j = 1, . . . , r. Then the vector of discrete 

variables iJ'may be expressed as a multinomial random variable Y = (Yj, . • • , Yy, 

where Ym = 0 or 1, TO =1, . . . , k, £^=1 Ym = 1, and h = nj=i *,■• Thus, each 

distinct pattern of Z defines a multinomial cell of Y uniquely. It is assumed that the 

probability of obtaining an observation in cell m for TC{ is p$, (0 < p% < 1, Em=i 

p(0 = i); i = 0, 1. Then the joint probability density function of V in TT- is given by (1), 

where ($' = {p^\.. .,p£\) and ßtyy is the set of parameters of X given Y. 

For the population *-,-, the conditional pdf of X given Y, /^X|Y(X I Y)> ma5r be of 

any proper type depending on the relationship between X and Y. Following Olkin and 

Täte (1961), for this example we assume that X has a conditional multivariate normal 

distribution with mean jijj given Y belonging to cell TO and common covariance matrix 

S(i) in all cells. If Y belongs to cell TO, i.e., if Y = (Yh-,Ym_1 Ym Yro+1;-,Yfc ) = (0, 

..., 0, 1, 0, -.., 0), then fify(Y | 6$) and /ix|Y(X| ^Y, Y) of (1) are given as follows: 

/iY(Yrt?) = P' >iX 
,(0 m 
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WX|ÖX|Y' Y) = (27r)"3/2 ' s(0r1/2exP{-(l/2)(x-^))'(S^'))-1(x-^)}. 

Let the jth member of the training sample, {v[l\ v^, . . . , v$} from ^ be 

denoted by {v^' = (y^, x^)}, where jy is the vector of binary variables obtained 

from the discrete components z of vy\ and xy is the vector of continuous variables. Let 

4$ denote the number of individuals of the training sample from Ti that fall in cell m 

defined by Y. Then N{ = £^=1 rSJj, i = 0, 1. The likelihood of the two training 

samples is given by _^y 

j=0    m=l 

• «K- i E(^° " *«)' (S(°)"1 ^ - "«)}] ' (4) 

where p^ takes the value /*$ if jy falls in the mth cell, m =1,. . .,k. 

Consider now the new individual v to be classified, and suppose that the 

discrete components place it into cell I. If this individual is included with the training 

sample from -K ■, then an extra multiplying factor 

l{0 = (2,r)-s/2 ll/'V1^0 exp[-±(x-tfy (£< V(x-#)} 

must be incorporated in (4) to construct the generalized likelihood ratio test statistic of 

(3). x$ must belong to one of k subgroups corresponding to the conditional 

distributions depending on the value of jy for j = 1, . . . , N^ i = 0, 1. Let xy^ be the 

5th member of mth subgroup of the continuous variable measurements whose discrete 

covariates fall in the mth cell. Then any element of {xy}^ belongs to one of k 

subgroups {{x^}!^}^-! where, of course, some of the n$ could be zero. Hence we 

can rewrite the exponent of (4) as 
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-jEiUi (E|(XS-ä (s(,V(*ä-/42)). 

The MLEs under HQ and #} axe given in the appendix, and the log likelihood ratio 

statistic is given in (A7). 

Krzanowski (1982) considered a similar likelihood ratio statistic when S^ ' = I? ', 

(= S), and p\$ and S are estimated by a second-order regression model of X on Y. 

Then he allocated a new individual to 7r0 if his likelihood ratio statistic is greater than 

or equal to 1 and to 71^ otherwise. He did not consider the problem when it is desired to 

control one of the misclassification errors. 

We investigate the performance of the bootstrap log likelihood ratio test by- 

examining the power with a simulation. We consider a simple situation in which we 

have a discrete variable from a Bernoulli(p) distribution and an independent continuous 

variable distributed N((x, a2). For i = 0, 1, let {vf = {Jj\ 4'V}jJi be a random 

sample from 7rf, where 2^ ~ Bernoulli^,) and x^ ~ N[nit a2). Let v = (z, x)' be a 

new observation to be classified where z ~ Bernoulli^) and x ~  Nffi^, c^). 

We examine the power of the bootstrap A, P^(l|l), for different parameter values. 

We set PQ = 0.1, //0 = 0, aQ = 0.5, and <r1 = 1. For p1 = 0.9, 0.7, and 0.5, the estimate 

of PA(1|1) is obtained for ^ = 0.5 + A^ where A = {0, 0.5, 1, 1.5, 2, 2.5, 3}. The 

power estimate, A(l|l), is the proportion of times that the A statistic value is less than 

or equal to AQ out of 2000 trials, where A# is the bootstrap cut-off point at a 

significance level. With NQ = Nx = 50, B = 299, and a = 0.05, these power estimates 

are plotted in Figure 2. As the separation between HQ and /z1 increases, the power of the 

bootstrap likelihood ratio test increases. The plot also shows that the larger differences 

between p0 and p^ produces the better power curves. Simulations were also performed 

to verify the significance level of the test.   The results were good and essentially the 
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same as Table 1. 

Example 4-  A. Real Data Example 

Unfortunately no suitable unclassified data with categorical variables comparing 

nuclear explosions to earthquakes are available for this report. However, there is a 

considerable amount of mining explosion data available as training data. Therefore, to 

illustrate the method developed here, we have applied the bootstrap generalized 

likelihood ratio test to observations at the ARCESS seismic array in Norway which 

consist of mining blasts from two separate mines (HB6 and HD9) located in the Kola 

Peninsula of the former Soviet Union. (For other applications of the bootstrap 

generalized likelihood ratio test to seismic event identification, see Fisk and Gray 

(1993); Fisk et al., (1993).) Fifteen blasts were observed from mine HB6 and sixteen 

blasts were observed from mine HD9. 

' The variables used here are day-of-the-week (DOW), slowness (inverse group 

velocity measured in seconds/degree) of Pn (SLOW), and rectilinearity of Pn (RECT). 

Pn is typically the first prominent portion of the seismogram to arrive for signals 

observed at regional distances (<2000 km). These data are part of a data set 

established by Sereno and Patnaik (1992) as a testbed for seismic signal identification 

problems. Other features are also available in this data set, but most have many 

missing data values, a problem we are currently addressing. 

A histogram plot of DOW is plotted in Figure 3 for the two sets of mining blasts. 

Note that the HD9 blasts occur predominantly on day 6, while the HB6 blasts occur 

more uniformly throughout the week. Dot plots of the continuous variables are shown 

in Figure 4. SLOW exhibits relatively good separation, while there is considerable 

overlap for RECT. 
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In order to assess the value of the discrete variable we considered cases in which 

DOW is either included or excluded. Since the day on which an event occurred has no 

influence on the seismogram, we treated the continuous variables as independent of 

DOW. Furthermore, we assumed unequal covariance matrices since the variances for 

SLOW are significantly different. Setting the significance level at 0.01 and 0.05, we 

estimated the power using the bootstrap with and without DOW. Table 3 gives the 

results using both continuous variables, while Table 4 gives the results using only 

RECT, with and without DOW. Since SLOW is such a strong discriminator, Table 4 

better demonstrates the power that may be gained by making use of an available 

discrete feature. 

Table 3.  Bootstrap estimates of power using both SLOW and RECT. 

Significance DOW excluded DOW included 

0.01 0.962 0.982 

0.05 0.980 0.986 

Table 4.  Bootstrap estimates of power using RECT. 

Significance DOW excluded DOW included 

0.01 0.266 0.377 

0.05 0.529 0.736 

The power was estimated in these tables using a parametric bootstrap approach. 

Specifically, given the training samples of size NQ = 15 and JVX = 16 available from the 

two mines, 7TQ = HB6 and T^ = HD9, ML estimates of the associated parameters are 

obtained. For these data, the bootstrap is used to estimate the a-level critical value by 

simulating B = 499 replications.   Each replication consists of training samples of sizes 
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N0 and JVj from the models fit to TTQ and irl along with an observation to be classified 

which is generated according to the model for TTQ. As in the previous examples, the a- 

level critical value, A£, was obtained from the likelihood ratio statistics calculated from 

these replicates. The power is then estimated by again simulating B bootstrap 

replications, where each replicate consists of training samples of sizes NQ and Nx from 

the models fit to 7r0 and v1 along with an observation to be classified which this time is 

generated according to the model for vv The power is estimated as the proportion of 

the resulting B likelihood ratio statistics that are less than or equal to X%. A cross- 

validation procedure was also considered, and it gave results similar to those shown 

here. Efron (1983) has suggested an alternative bootstrap approach to remove the bias 

from the cross-validation estimate. 

4.  Concluding Remarks 

When one needs to classify an individual with one of the misclassification 

probabilities under control but does not know the exact or limiting distribution of the 

statistic for classification, the bootstrap likelihood ratio method is shown to be useful. 

The statistic used for classification is derived from the likelihood ratio, and its limiting 

distribution furnishing the discriminant cut-off point is approximated successfully by 

the parametric bootstrap. 

The bootstrap likelihood ratio statistic is shown to compete well with the 

statistics W and Z whose limiting distributions are known, for moderate sample sizes 

when two multivariate normal distributions with equal covariance matrices are 

considered. It also performs quite well for both the multivariate normal case with 

unequal covariance matrices and the case of a mixture of binary and normal variates, 

where classical classification rules cannot control the probability of misclassification. 

Moreover, the methodology considered here can be applied to any non-normal discrete 
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or continuous variable, and to any mixture of continuous and discrete variables, 

whenever the MLEs exist. It should be noted that the precision of the test depends on 

the sample sizes iV0 and Nv and the bootstrap replication size B. Small sample sizes 

may result in MLEs for the parametric bootstrap which are not close to the true 

parameter values. Adequate sample sizes for different dimensions of the classification 

variable may need to be studied. Finally, it should be noted that the method applied 

here could be applied to any test of hypothesis based on the generalized likelihood ratio. 

Actually, the approach considered here of calculating A based on normal likelihoods and 

finding A#, should be a sensible approach for continuous, unimodal distributions. The 

robustness of this procedure is the topic of current research. 

Appendix: Formulas Related to Examples 

Example 1 

iß is estimated by v ^ = £ fjx vW/JV,- and £ is estimated by 

b_ NQ + Nx-2 ' v    ; 

where SW = E^v^-v^) {tf - v^)'/^-1), i = 0, 1.   Anderson's W statistic 

is given by 

W=[y- i(vW + ▼(!))]' S-1^0) - v(D) . (A2) 

Under the null hypothesis HQ, the MLEs of // \ // \ and S are 

$) = (j\r0v(°) + v)/(j\r0 +1), 
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.1)=*(1) 
#>- 

En = o- NQ + ^ + I A + Ä(--(0))(v-(0))' 

where   A  =   E}=0   E£I   (^-▼(0)   (V;
(0
   -V

(I)
)' = (^ + ^-2)S.      Under  the 

alternative hypothesis Hl5 the MLEs of the parameters are 

ri°) =v(°) 

#) = (i^iv(1) + v)/(^ + 1), 

En = o-^ + ^ + i A + ^l('-'(1,)('-'(1)y 

In this case the likelihood ratio given in (3), with 8^ = ($\ S0), flj,1) = (^ EQ), 0^ 

= (^0), Sx), and &f> = (pP, Ej) is, therefore, 

N, 
-fN0+Nl+l)/2 

(A3) 

where N= NQ + N^ — 2. The likelihood ratio (A3) is characterized by John's Z statistic, 

7-1 

TJL^W/S-V-^')- T&i^M* -<0)) 

Thus 
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iV, „(')V S-l U -v«1) A = log{ff+]^LT(v-vl1))'S-l(v-v' )} 

-lo«{Ar+7^T(T-y(0))'S"1(v^(0))}- (A4) 

Example 2 

The quadratic discriminant function is given by 

?(1) g=llog(i^)+l[(v-^V(s(V(v-^) 

-(v-v(°))'(s(V(v-vW)]. (A5) 

The MLEs of /z(0),  /i(1), E(0), E(1) under HQ are 

4°) = (iV0v(°) + v)/(7\T0 + 1), 

tfwu 

where A^   = E"^i (v^-v^) (v^-v^)', i = 0, 1. Under the alternative hypothesis 

#!, the MLEs axe 
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Ei»» =^A<»), 

^i   ~ Ax + 1 *(1,+^(-' (1)x—(1))'. 

The log likelihood ratio statistic is given by 

!(1) 
A = 1 log (iy ) + I [(^ + l)log{(^ -1) + ^ (v -TW)'(SC V(T -T«)} 

^ 

(Ab + l)log {(A0 -1) + J^_ (v -v(°))'(s(V(v -▼«»)}] + C(A0, Al}       (A6) 

where S(i) = A(i)/(A-- 1),  i =0, 1, and 

qAo.A^log 
"(A0-l)

(iV° + 1-p)/2 (N0 + l)^o + 1^2 N^2' 

Example 3 

We consider the log likelihood ratio statistic under the scenario discussed in Example S, 

i.e. the new individual v to be classified has discrete components that place it into cell 

I.  The likelihood functions on the numerator and denominator of (3) are given by 

L\H = {(27r)n"(iVo+"ri+1)/2is(0)rV2 is(1)f "i/2 is(z)r1/2 

1    ifc ßk 
{n liiÄY-W1) 

A=0 m=l 
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(A) 
1      k    «m 

«pl-ME E(2 (»S - /4Ä))'(£(V(*ä-,£>)) 
A=0 m=l s=l 

+ (x-/iS,)),(E^))-1(x-^'))}],  «- = 0,1. 

Under H0 the MLEs of j>$, ^, S(,) are 

ÄB = «»W + 1).  m =1, • • • , *-l, *+l, ••.,*» 

#(! = (»i0) + i)/(^o + i). 

M2<S = x£?,  m=l, . ..,/-!, f+1, ...,*, 

^0J = (n(0)^)+X)/(nj0)+l) 

y(0)_      1 A(0)+     ^ 
JVJ°) + 1 

(x-x{°))(x-xj°)y 

AS = «SV^i,  m = 1, . . . , fc, 

Äd = XS?>  m = 1, . . . , fc, 

£l1,-3JIA
(l). 

where I» = E^ä/'Ä A» = £$(*& -*&)(>&-*#)'. m =1,. . ., i, and 

A^ = Em=l ^-m-  Under the alternative hypothesis H-^ the MLEs are 
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*2ä=^/^m=i. • • • > *> 

^l = xW   m=l,...,k, 

Ei°) = ^A(0), 

Al = «ÜVW + 1).  m= 1, . . . , Z-l, Z+l, ...,*, 

$> = (nj1)+ !)/(*! + 1), 

M ■21= xW m =!,...,/-!,/+!,..., Ä, 

/#> = (»j1) x J1) + x)/(nP + 1) , 

f<(l)__L A«+    ^ 
JV}1) + 1 

(x-x^Cx-xj1))' 

Since the exponential term of I)^L after replacing the parameters by their MLEs, is 

exp{ - (l/2)g(iV0 + JVj + 1)} for t = 0, 1, the log likelihood ratio statistic is given by 
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Figure 2. Power curves of bootstrap X with mixed binary and continuous 
variables. p0 = 0.1. DELTA denotes A. 
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A HYPOTHESIS-TESTING APPROACH TO DISCRIMINANT ANALYSIS 

WITH MIXED CATEGORICAL AND CONTINUOUS 

VARIABLES WHEN DATA ARE MISSING 

James W. Miller, Wayne A. Woodward, and Henry L. Gray 

ABSTRACT 
In this paper we consider the problem of discriminant analysis with 
discrete (categorical) and continuous variables with data missing at 
random. We use a hypothesis-testing approach based on the generalized 
likelihood ratio as proposed by Baek, et al. (1994). We use bootstrapping 
to determine critical values in order to control the Type I error rate. We 
present three algorithms for dealing with this case, each assuming a 
different model for the data: (1) The INDICATOR algorithm replaces 
categorical variables with indicator variables, and treats these as if they 
were continuous; (2) the FULL algorithm assumes a multinomial 
distribution for the discrete part, and a multivariate normal distribution 
(with mean and covariances depending on the discrete part) as the 
conditional distribution of the continuous part given the discrete part; and 
(3) the COMMON algorithm assumes a multinomial distribution for the 
discrete part, and a multivariate normal distribution (with only the means 
depending on the discrete part) as the conditional distribution of the 
continuous part given the discrete part. (That is, a common covariance 
matrix is assumed across all multinomial cells.) The performance of these 
algorithms is compared through a simulation study. While the 
INDICATOR algorithm seems to have highest power, it also tends to 
display a higher Type I error rate than desired. The FULL and the 
COMMON algorithms have very similar power, but the COMMON 
algorithm appears to control the Type I error rate most effectively, and is 
least susceptible to problems occurring when some multinomial cells are 
sparsely represented. 
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1. Introduction 

In Baek, Gray, Woodward, Miller, and Fisk (1994) (subsequently abbreviated 

BGWMF) techniques are given for a hypothesis-testing approach to discriminant analysis 

in which one wishes to control one of the probabilities of misclassification. Methods are 

presented for continuous variables only, as well as for a mixture of continuous and 

categorical variables. Essentially, the hypothesis-testing approach based on the ratio of 

maximized likelihood functions proposed by Krzanowski (1982) is employed and the test 

statistic is bootstrapped in order to estimate critical values for the allocation rule in such a 

way that the error rate is controlled. In Miller, Gray, and Woodward (1993) 

(subsequently abbreviated (MGW)), a similar hypothesis-testing approach is used for 

discriminant analysis and outlier detection in the presence of missing data. The EM 

algorithm (Dempster, Laird, and Rubin (1977)) is employed to obtain maximum 

likelihood estimates of model parameters and compute the maximized likelihoods based 

on the available data. That paper, however, only considers the case in which all variables 

are continuous and, in fact, normally distributed. 

In this report, we wish to consider the remaining case in which we have a mixture 

of continuous and categorical variables used as discriminants, and also missing data, 

potentially in both the training sets and in the new observation to be classified. Once 

again, we use a hypothesis-testing approach to classification and bootstrap the test 

statistic in order to control the probability of a particular type of misclassification. We 

present three algorithms for handling this situation: 

(1) The INDICATOR algorithm - This algorithm begins by converting each categorical 

variable with j categories into j - 1 indicator variables. This results is a larger 

number of variables (unless all categorical variables are already binary, in which 

case the data set is unchanged). These indicator variables can be analyzed using 

techniques for quantitative data.    In this algorithm we make the (obviously 
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incorrect) assumption that all variates are continuous and, in fact, normally 

distributed. We then perform discriminant analysis using the transformed data and 

the techniques of MGW. 

(2) The FULL algorithm - Next, we model the joint distribution of each observation in 

the following manner: Suppose each observation consists of p categorical variables 

and q continuous variables. The categorical variables define r cells of a contingency 

table in which the observation could fall, where r is the product of the number of 

categories possible within each categorical variable. We assume that the 

observation will fall into cell i (i = 1, ..., r) with probability pi; and that the 

conditional distribution of the continuous part given that the discrete part places the 

observation into cell i is multivariate normal with mean \i{ and Zj. We then employ 

the EM algorithm to obtain maximum likelihood estimates of parameters in this 

model and compute maximized likelihoods of the available data, and bootstrap the 

ratio of maximized likelihoods, as was done in BGWMF. 

(3) The COMMON algorithm - This algorithm is essentially the same as the FULL 

algorithm, except that we assume a common covariance matrix across all 

multinomial cells. That is, the conditional distribution of the continuous part given 

that the discrete part places the observation into cell i is assumed multivariate 

normal with mean \i{ and I, with S no longer depending on i. This reduces 

considerably the number of parameters that need to be estimated and makes 

possible calculation of the likelihood ratio statistic when some cells may be sparsely 

represented, or not represented at all. 

Simulation studies are conducted to compare and contrast the performance of each 

of these procedures with regard to their ability to accurately control the Type I error rate, 

and with regard to their power. 
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7. Notation and Overview of the Generated Likelihood Ratio Test Procedure 

Suppose we wish to classify a (p+q)-dimensional random vector V into one of two 

populations 7^ or %2- Suppose further that V can be partitioned as V = (X, Y), where X = 

(X,, X2, .-., X_) is a p-dimensional vector of categorical variables and Y = (Yls Y2, -, 

Y ) is a q-dimensional vector of continuous variables. Suppose that for i = 1, ..., p, the 

variable Xj takes on one of the r{ possible values 1, 2,..., r{. Then the vector X takes on 

one of r = EßL.rj possible values. We let ¥ denote the set of all possible values of the 

vector X. Finally, suppose that training samples {v[1}}, i = 1,..., N2 from TTJ and {V{ }, 

i = 1,..., N2 from TC2, each having the same structure as V, are available, and that data 

may be missing at random from any part of V or from the training samples. 

The generalized likelihood ratio test (GLRT) procedure for classifying V into n{ 

or TX2 is based on a hypothesis testing approach. That is, the classification of V is done by 

testing 

H0:V,V«V<",...,V<|;eIIi;vf',vf,...,vg>£It2 

versus 

H • vW V(1)      V(1) e n • V V(2) V(2)      V(2) e TT0 HJ. Vj , V2 ,... ,vN   enl,\,\l , v2 ,... ,vN  <= ;i2. 

(1) 

The two misclassification probabilities that we will be interested in are P(2|l) and P(l|2), 

where P(ijj) denotes the probability of classifying V into n{ when in fact V e TTJ. We will 

refer to a = P(2|l) as the significance level for the test and P(2|2) as the power. 

Let m denote the number of elements in V that are missing and let V(2) - (X(2), 

Y(20denote the (p - m)-variate vector of available data in V. Similarly, let nx denote the 

number of elements missing from \f> and let v9(2) denote the (p - mPVvariate vector of 

available data in \f (j = 1, 2; i = 1, 2, ..., Nj). We assume that nx has joint density 

function f^e^) and that n2 has joint density function f(V|9(2>), where f is some 
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parametric density function with parameters 0(*) and Q^> for populations nY and TC2, 

respectively. Then, under H0, the likelihood of V and the training samples is given by 

L01(9<»I v, v'», vf,... ,v<j;)L02(eCT| vc), vm ... >vcx 

where (2) 

Nl 

L01 m v, yQ\ v2
1},... .vgb = ^(vied^nfüCvj V>), 

i        ^ 1N1 i=l 

N2 

.02(e^l vf>, vf,... ,v£>) = nf2i(vf >ie<2)), 

f^V^1)) is the marginal density function for V(2) evaluated at V(2) with parameters QV\ 

and f-jCVp-'lG'J)) is the marginal density function for vjj^ evaluated at v9(2) with 

parameters 00). Under H1? the likelihood of V and the training samples is given by 

Ln(8(')i V<", V<», ... ,vV\)Ln(&W\ V, Vf>. Vf,... ,V«), 

where (3) 

LH(GW| v™, v2
1},... ,v^) = n fh<yf¥% 

Lo2(9(2)l V> Vf}, Vf, ... ,v£>) = f2(V|e(2)) n f2i(vf )|0(2)), 

and f2(V|0(2)) is the marginal density function for V(2) evaluated at V(2) with parameters 

0(2). We emphasize that these are the likelihood functions for the available data rather 

than the likelihood functions for the complete data since f2 and fjj (j = 1, 2; i = 1, 2, ..., 

N-) are marginal densities for the available part of each observation, rather than the 

likelihood functions for the complete data. 
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The GLRT procedure is based on the ratio 

SU
P   T   rt»(i)i v v(1) v(1)    V

(1)
->L re(2)i v{2) v(2)    v(2)) 

(9(l)t e(2))L01^9    I V' Vl   ' V2 ' - 'VN,)L02^    1 Vl   » V2 ' - »VN,J 
SUP    T   «»(Di vW v(1)     V(1

\T    mC2)i v v(2) V(2)     V{2}-) (9(l),e(2))Lll(eWlVl   'V2 » - .VN,>L12^    lV'Vl   'V2 '-'VN2' 

T   fflO): v v^ v(1)    V
(1)

->L re(2)i v(2) v(2)    v(2)) L01(60 IV.V,  ,V2 ,-,VNi)lQ2tB0 |V1  'V2 '->VN/ 
=
 T   rfl(1)iv(1) v(1)    V

(1)
IL fe(2)ivv(2)v(2)    vgV Lll(ei  lvi  'v2 '•"'VN1-'L12^öl  lv'vl  ' v2 '-'VN2^ 

where 9® and df are maximum likelihood estimates of Q® (j = 1, 2) under the null and 

alternative hypotheses, respectively. That is, 9^1} is the MLE of 9^ based on the sample 

{V, V(1), V^1}, ... , V^}}, df] is the MLE of 9^2> based on the sample {V(2), vf, ... , 

v[2)}, and 9(,1} is the MLE of 90) based on the sample {V(1), V0),..., V°>}, and 9(2) is 
N2

J' 1 1 

the MLE of B&> based on the sample {V, V(2), V^2),..., V^}. 

Equivalently, the test procedure may be based on the statistic 

A. = log(LR) = X,01 + A,02-^n-A.12, (5) 

where 
Nl 

X 01 = logf2(V|90)) + Z logfuOf^, (6) 

N2 

^-Siogfjicvf^b, 
1=1 

X11 = Slogfli(Vp)|9(
1
1)),and 

i=i 1     * 

Ni 
Xn = logf2(V|9(2)) + I logf2i(vf }|9(2)). 

A key step in evaluating X for a given sample is the computation of the maximum 

likelihood estimates and the corresponding maximized log-likelihood functions XQl, X02, 

XY j, and Xn in Equation (6). This is no trouble when the data are complete, as illustrated 
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by (BGWMF). However, in the presence of missing data, the usual expressions for 

maximum likelihood estimates are no longer valid. In this case, maximum likelihood 

estimates are obtained via the EM algorithm (Dempster, Laird, and Rubin (1977)). The 

EM algorithm is an iterative procedure for obtaining parameter estimates which 

maximize the likelihood function of the available data. It involves two key steps: 

(E -step) - Using current estimates 0(k) (where k now denotes the current iteration step, 

rather than designating nl or 7t2), estimate the values of the complete data 

sufficient statistics by computing their expectations given the available data. 

(M-step) - Determine the values of the parameters which maximize the likelihood for the 

complete data based on the current estimates of the complete data sufficient 

statistics, thus yielding 0^      . 

The EM algorithm iteratively performs E- and M-steps until the sequence  {9    } 

converges to an adequate approximation to the MLE. To evaluate the test statistic X of 
A(l) 

Equation (5), we must implement the EM algorithm four times. That is, 90   and A.01 are 

based on the sample {V, V^, V^1},..., V^}, of and XQ2 are based on the sample {V(2), 

V(2),..., V<2)}, Q{P and Xu are based on the sample {V^, V^,..., V^j}, and 0(2) and 
2 

Xu are based on the sample {V, Vj , V2 ,..., VN }. 

The decision rule is described as follows: small values of X provide evidence in 

favor of Hl5 hence, V is classified into n2 if X < Xa, otherwise v is classified into nv The 

cut-off value Xa is chosen so that P(2|l) = a, the desired significance level for the test. 

Since the null distribution of X. is not known, the critical value is approximated by the 

parametric bootstrap (Efron 1979). For some large integer B, B bootstrap samples {V , 

y*(D5 y*(1)j _ ^ v*(1)} are simulated from a distribution with density f(V|0(1)) and B 

bootstrap samples {V*(2), V*(2),..., V^(2)} are simulated from a distribution with density 

f(V|0(2)), where 0(1) and 0(2) are MLEs obtained from the samples {V^, V^1 ,..., V^}, 
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and {V(2), vS,2), ..., V^}, respectively.  (Notice that in this case, 9(1) = 9^ and 9(2) = 

9(2).) When there are missing values, the simulated bootstrap samples should also have 

missing values in a configuration similar to that in the actual data.   For each bootstrap 
*    * * 

sample, the test statistic X is computed, thus generating a random sample {Xv X2,..., A.ß} 

of variates that have approximately the same distribution as X under H0. For an a-level 
* *    * * 

test, the cut-off value X   is chosen as the cc-th empirical quantile of {Xv X2, ... , XB}. 
* * 

Finally, V is classified into T^ if X > Xa; V is classified into n2 if X < Xa. 

As was pointed out in (MGW), this test procedure is only an approximation to the 

true GLRT procedure since the critical value is obtained via bootstrapping and we may 

further relax our approximation to the true GLRT procedure by relaxing the number of 

iterations performed by the EM algorithm. That is, we may choose a stopping criterion 

for the EM algorithm that does not continue iteration until convergence has been obtained 

to a high degree of accuracy.   Whatever the stopping criterion, bootstrapping the test 

statistic insures an approximate a-level test.   As in (MGW), it would appear that very 

little power is lost by only performing a very few iterations of the EM algorithm, as 

opposed to carrying out iterations until MLEs are obtained with a high degree of 

accuracy.   In Section 6, we often use only three iterations as standard practice in our 

simulation studies. 

Our implementation of the GLRT procedure for discriminant analysis is 

summarized in Figure 1. Figures 2, 3, and 4 further describe the bootstrapping module, 

the computation of the test statistic X, and the EM algorithm for obtaining MLEs. Each 

of the various algorithms discussed in this paper share this common skeletal structure. 

The differences lie in the type of model being assumed for the data, the corresponding 

implementation of the EM algorithm for obtaining MLEs, and the precise formulas used 

to evaluate the maximized log-likelihood functions. 
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3. The INDICATOR Algorithm 

In our first attempt to implement an algorithm for discriminant analysis for mixed 

categorical and continuous variables with missing data, we desired to use the methods 

presented in MGW with as little adaptation as possible. One way to do this would be to 

treat the categorical variables as if they were continuous and use the procedures of MGW 

without any alteration at all. This is perhaps not such a bad idea if categorical variables 

have a large number of categories, if these categories have a natural ordering, and if the 

distribution of this variable has a somewhat normal shape. In most cases, however, these 

conditions are not satisfied and the procedure would be totally inappropriate. 

A modification to the above approach is to replace each categorical variable with 

indicator variables in the following manner: We replace each categorical variable Xj 

(i = 1,..., p) from V with the r{ -1 indicator variables 

Hence, the vector X of categorical variables gets replaced by a vector W of binary 

variables of length Sf^rj - p, producing the transformed vector V = (W, Y). If X; is 

missing in X, then each Wy (j = 1,2,... ,rrl) is missing in W. We transform the 

training samples VP-
1
 (j = 1,2; i = 1, 2,..., Nj) in a similar manner producing Vj   (j = 1, 

2;i = l,2,...,Nj). 

Now, having transformed each observation, we classify V by classifying V 

according to the GLRT procedure as outlined in (MGW) for the continuous-variables- 

only case with missing data using the transformed data V and V. (j = 1, 2; i = 1, 2, ..., 

N-). That is, we proceed as if V and vP (j = 1, 2; i = 1, 2, ..., Nj) were normally 

distributed, ignoring the fact that many of the components are binary. In simulation 

studies (see Section 6, below), we see that this method actually performs about as well as 
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methods based on a more plausible model for the categorical variables, and is much 

easier to implement. 

4   The FULT, Algorithm 

Next, we derive the GLRT procedure using a more plausible model for the 

distribution of V. In this case, we assume that the distribution of X follows a multinomial 

distribution in the sense that Pr[X = x] = px for each x e Y, and the conditional 

distribution of Y given X = x is multivariate normal with mean \ix and covariance matrix 

and Sx. Hence, 0 = {px, nx, Zx; x e ¥} and 

f(v|9) = pxMVN(y|ux,2x), (8) 

where MVN(y|ja , Sx) denotes the value of the multivariate normal density function with 

parameters ux and Ex evaluated at y. 

The first step in deriving the GLRT procedure is to develop the EM algorithm for 

obtaining MLEs of G given a collection of observations (Vls V2, ..., Vn) with missing 

values from such a population. The vectors Vj may be partitioned as (Xi? Y;), where Xj 

and Y are the vectors of categorical variables, and continuous variables respectively, and 

further partitioned as (XH, X2i, Yn, Y2i), where XH and Yn correspond to missing 

observations, and X2i and Y2i correspond to available observations. (In this final 

partitioning, the dimensions of the various pieces may vary with i, and elements may be 

permuted differently for each i according to the pattern of missing values in each 

observation.)  We note that the complete-data sufficient statistics for the parameters in 

this model are 

Nx = 2i=1I(Xi = x), 

Sx = Ii=1I(Xi = x)Yi,and        (x e ¥) (9) 

SSX = I^KXj = x)YiY^, 
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and that the MLEs for the parameters in this model based on the complete data are 

Px = Nx/n> 

£X = SX/Nx,and (xe¥) (10) 
A A     A-r 
EX = SSX/NX-^^X. 

The M-step in this setting simply amounts to evaluating each of the pieces of (10). 

The main computational burden lies in computing the conditional expectations of the 

complete data sufficient statistics given the available data under current parameter 

estimates in each iteration (the E-step). 
A(k) 

In the E-step, we wish to compute (under the distribution defined by 0V J) 

E[NX | {(X2i, Y2i), i = 1, n}] = S^EtKXj = x) | (X2i, Y2i)], 

E[SX | {(X2i, Y2i), i = 1, n}] = Z^JEPECXJ = x)Yj | (X2i, Y2i)], and  (xe'P) (11) 

E[SSX | {(X2i, Y2i), i = 1, n}] = S^EPCXi = x)Y^ | (X2i, Y2i)]. 

This computation is facilitated by the following identities: 

E[I(X = x)h(Y) | (X2, Y2)] = Pr[X = x | (X2, Y2)] • E[h(Y) | X = x, Y2] (12) 

PrrX = xl(X   Y)l =    KX9 = x,)pvMVN(y9luvSx) } 
Pr[X   x|(X2,Y2)J     Sl(X2 = x9)PxMVN(y,|^5Sx) 

E^IX-x.YJ-^ + ^O'^-M®) (14) 

E[Y2|X = x,Y2] = Y2 (15) 

(16) 

E(li)_   H2)    r22)}-iE(2l) + E[Yi| x = Xj Y2]E[YI| x = x Y2]T 

E[Y1Yj'|X = x,Y2] = 

E\Y{YI I X = x, Y2] = E[Yi I X = x, Y2] • \\ (17) l2 
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E[Y2Y^|X = X,Y2]=Y2YJ (18) 

Here, £\ uf, I*11', ^ ^\ *°* ^ ** appropriate partitions of nx and Sx 

corresponding to the missing and available parts of Y. Equations (14) - (18) are used to 

estimate the missing parts of E[Y | X = x, Y2] and E[YYT | X = x, Y2]. Computation of 

the expectations in (11) is then carried out as follows: For each observation in the data 

set, compute E[KXj = x) | (X2i, Y2i)], E^ = x)Y{ | (X2i, Y2i)], and E[I(Xi = x)Y-tf | 

(X?i, Y2i)] for each x e W via Equations (12) - (18).    Accumulate these over all 

observations to obtain (11). 

In the case of continuous variables only, (MGW) used estimates of parameters 

based on substituting means for missing observations as initial estimates in the iterative 

process. This becomes more complicated in the presence of categorical variables. To 

simplify initialization, we use "blind initialization": we initialize each px with 1/r, each 

(i with 0, and each Sx with I. Experience so far indicates that the first iteration of the 

EM algorithm substantially alters the parameter estimates to something comparable to 

"mean substitution," if that means anything in this context. In any case, this initialization 

procedure has worked adequately so far in simulation studies. 

Having evaluated the MLEs using the EM algorithm, we need a method for 

evaluating the maximized log-likelihood functions in Equation (6). The likelihood 

function for the available data is the product of the likelihoods of the available parts of 

each observation. The likelihood of the available part of a single observation is the 

marginal density for (X2, Y2). This may be obtained from the density for (X, Y) by 

integrating out X{ and Y{. This gives 

fxoY,(x2>y2)= 
2 ^2=x2)PxMVN(y2i^

2x)- (19> 
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The maximized log-likelihood of the available data in a sample is obtained by 

accumulating the values of the log of (19) over all observations in the sample. Thus, we 

may evaluate each of the pieces X0l, k02, Xn, and Xl2 in Equation (6), from which we 

may evaluate the test statistic X = log(LR) given in (5). 

As will be seen in the simulation results of Section 6, the FULL Algorithm has 

one major flaw that must be addressed. That is, it can only be used in cases in which 

there is adequate representation in each cell to obtain a full-rank estimate of 2X for each x 

e ¥ in both populations. If r is large, i.e., if there are a large number of categorical 

variables, or a large number of categories within some categorical variables, or both, then 

the training samples may need to be extremely large so that all parameters can be 

estimated accurately. In practice, such large samples may not be available, and it 

becomes necessary to impose further constraints on the parameters of the model so that 

the number of parameters required is reduced. This leads us into our discussion of the 

next algorithm. 

5   The COMMON Algorithm 

This last algorithm is very similar to the FULL Algorithm except that in our 

model for the data, we assume that the conditional covariance matrix for the continuous 

part given the discrete part is common for all x e VF. That is, the conditional distribution 

of Y given X = x is multivariate normal with mean \xx and covariance matrix and S not 

depending on x. Hence, 0 = {px, ux, 2; x e ¥}. This reduces the number of parameters 

that need to be estimated considerably, and makes parameter estimation possible when 

some cells are sparse, or not represented at all.   We allow the possibility of different 

parameters for each of the two populations, but within each population, E is common 

across all multinomial cells.  This model gives precisely the general location model of 

Olkin and Täte (1961).   The EM algorithm for this model is developed by Little and 

Schluchter (1985), and they point out that this can be used to implement the GLRT 
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procedure proposed by Krzanowski (1982). What follows is precisely this procedure, 

with the added feature that we bootstrap the distribution of the test statistic in order to 

choose critical values to control the P(2|l) error rate. Although Little and Schluchter 

(1985) describe the EM algorithm for this model in considerable detail, we present a 

description of the algorithm here that is consistent with the notation of Section 4. 

First, we observe that the complete-data sufficient statistics for the parameters in 

this model are 

N^Z^KX-x), 

Sx = 2tiI(Xi = x)Yi'and      (%e^ (20) 

SS = ^=1YiY^, 

and that the MLEs for the parameters in this model based on the complete data are 

(xen (21) 

where 2 is given by equations (9) and (10). In other words, the MLE of 2 in this case is 

precisely a weighted average of MLEs of 2X for each x based on the FULL model with 

weights p . Hence, we may perform the M-step in this algorithm with exactly the same 
A 

formulas as the M-step in the FULL Algorithm, except that after each 2X is computed, we 

average these according to (21) to obtain the updated estimate of the common 2. The 

E-step for this algorithm is also identical to the E-step in the FULL Algorithm, except 
A A 

that throughout formulas (12) - (18), each 2X is replaced by the common 2. The 

evaluation of the maximized log-likelihood functions in (6) is also performed using (19), 
A 

as in the FULL algorithm, with again, the only difference being that each 2X is replaced 
A 

by the common 2. 
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h = Sx/Nx, and 
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6. Simulation Results 

We have performed simulations of each of the three algorithms (INDICATOR, 

FULL, and COMMON) based on several different parameter configurations in order to 

determine how well the algorithm controls the Type I misclassification probability as 

desired, and to assess the power P(2|2) of each algorithm. We also keep track of how 

many times the algorithm fails to classify the observation at all. These failures occur 

when for some reason the simulated data fails to yield full-rank estimates of all required 

covariance matrix parameters. This results in an undefined test statistic X. This happens 

most frequently in the FULL algorithm, and is caused by a very few number of 

observations falling into one or more of the multinomial cells. It happens occasionally in 

the INDICATOR algorithm when at least one possible value of a categorical variable is 

not represented. Failures may occur when the test statistic is undefined for the sample 

which we are trying to classify, and also when the statistic is undefined for attempted 

bootstrap samples. We see in our simulations that the COMMON algorithm is least 

susceptible to these types of failures. 

Our first simulation involved the same parameter configurations used in BGWMF 

(Case 3: Mixture of Categorical and Continuous Variables). That is, we consider the case 

in which the categorical part is a single Bernoulli variable and the continuous part is a 

single normal random variable independent of the categorical variable. For population 

7cls the Bernoulli parameter is px = 0.1. The mean and variance of the continuous 

variable are \ix = 0 and a\ = 0.5, respectively. For population 7t2, we use p2 = 0.9, 0.7, 

and 0.5, a2 = 1.0, and ja2 = 0.5 + Aa2 where A takes on values 0, 1, 2, and 3. The 

observed significance level P(2|l) is the proportion of times out of 500 simulated trials in 

which the variable V is classified into 7t2 when, in fact, it was simulated from -xv The 

estimated power P(2|2) is the proportion of times out of 500 simulated trials in which the 

variable V is classified into %2 
when' in fact' lt was simulated from %2-   In order t0 

achieve an approximate significance level of a = 0.05, the variable V was classified into 
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7c2 if the test statistic X is less than or equal to Xa , the 0.05-th empirical quantile of {Xp 

* * 
A-2,..., A.g}. 

For Nj = N2 = 50 and B = 99, the power estimates are plotted in Figure 5, based 

on simulations with no missing data. We see that the FULL and COMMON algorithms 

agree very well with the power curves plotted in BGWMF (Figure 2). In fact, with no 

missing data, the COMMON algorithm is essentially equivalent to the method of 

BGWMF, so these simulation results should agree very well, as they do. The 

INDICATOR algorithm does not agree well with the FULL and COMMON algorithms. 

For this reason, the points corresponding to the INDICATOR algorithm are not connected 

with lines, since this would clutter the plot. It would seem that the INDICATOR 

algorithm has higher power in general than the other two. This is surprising since this 

algorithm does not model well the true distribution of the binary variable. A closer 

examination of the simulation results shows that this is, in fact, misleading, since the 

INDICATOR tends to yield a significance level nearly twice the desired 0.05 level. This 

can be seen in Figure 6, which shows the power estimate plotted versus the observed 

significance level. Each plot in Figure 6 corresponds to a specific value of A. We can 

also see in Figure 6 that the COMMON algorithm most accurately achieves the desired a 

= 0.05 significance level. 

In Figures 7 and 8, we show corresponding plots based on data with missing 

values. In these simulations, each variable in each observation was deleted independently 

with probability 0.1, so that roughly 10% of the data is missing. We see an overall 

decrease in the power of all three algorithms compared to the full-data case, but this is to 

be expected since the test is based on less available data. Otherwise, the results of the 

missing-data case are comparable to the results of the full-data case. 

We have tabulated the results of this simulation in Table 1. The ERROR column 

shows the percentage of times out of the 500 simulations that the algorithm failed to 

classify V due to singular parameter estimates. We see that the FULL algorithm is most 
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susceptible to failures of this sort, failing as much as 6 to 7% of the time when p2 = 0.9 

and no data is missing. The INDICATOR algorithm failed somewhat less frequently, and 

the COMMON algorithm never failed in this study. 

In our next simulation study, we consider the case in which we have two 

categorical variables, each with two categories, and two continuous variables. For 

population Tij, each possible combination of the categorical part (X = (1,1), (1,2), (2,1) 

and (2,2)) occurs with probability 1/4. The conditional distribution of the continuous part 

is MVN(0, Zj), where 

2> = 
' 1    0.5' 

0.5    1 
(22) 

within each multinomial cell (i.e., conditional on each possible value of the discrete part). 

For population n2, the conditional covariance matrix for the continuous part is I2, where 

£2 is given by 

2,= 
1     -0.5 

-0.5      1 
(23) 

We use three different probability distributions for the discrete part, and four different 

configurations of mean vectors for the conditional distributions of the continuous part 

given each possible discrete part. In the plots and tables which follow, the three 

probability distributions are coded with the variable PCODE, which takes on values 1, 2, 

and 3. The four mean vector configurations are coded with the variable MCODE, which 

takes on values 1, 2, 3, and 4. The parameter configurations defined by these codes are 

shown in Table 2. 
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PCODE Pr[X = (l,l)] Pr[X = (l,2)] Pr[X = (2,l)] Pr[X = (2,2)] 

1 0.25 0.25 0.25 0.25 

2 0.50 0.20 0.20 0.10 

3 0.80 0.10 0.10 0.00 

MCODE E[Y|X = (1,1)] E[Y|X = (1,2)] E[Y|X = (2,1)] E[Y|X = (2,2)] 

1 (0,0) (0,0) (0,0) (0,0) 

2 (2,2) (1,1) (1,1) (0,0) 

3 (0,0) (1,1) (1,1) (2,2) 

4 (2,2) (2,2) (2,2) (2,2) 

Table 2. Definitions for parameter codes used in out second simulation study. 

PCODE = 1 corresponds to a uniform distribution across all multinomial cells. PCODE 

= 2 and PCODE = 3 correspond to distributions increasingly favoring cell (1,1). 

MCODE = 1 corresponds to a mean configuration identical to that for population TCJ. 

MCODE = 2 and MCODE = 3 correspond to changes in mean for certain cells, and 

MCODE = 4 corresponds to the sum of these two changes. For PCODE = 1 and 

MCODE = 1, population TI7 is identical to population nl except for the correlation 

between the two continuous variables. 

As in our first study, we take Nj = N2 = 50, B = 99, a = 0.05, and base our 

observed significance level and power estimates on 500 replications of the procedure in 

each case. Figure 9 shows the power estimates plotted versus the mean configuration 

when no data is missing. Figure 10 shows plots of the power estimate versus the 

observed significance level for each mean configuration. Figures 11 and 12 are 

corresponding plots for approximately 10% missing data, with data deleted at random in 

the same manner as our previous study. Table 3 shows a listing of these results, 

including the percentages of failures due to singular parameter estimates. 

In Figure 9, we see the power increases in general as the separation between in 

means increases (i.e., as MCODE changes from 1 to 4). MCODE = 2 and MCODE = 3 

actually correspond to the same degree of difference in means, so the power for these are 

56 



tfOONOONOOMOOMONISOOaOCOOOONOOOOOOOOOOOO 

aoocsloooq'oofvJoocsj'o^^Or-Iroo^oorHgoooooooooooo 

»orMooooo(x>ooir)OO0-.omi0O03r~oin03Oooooooooooo 

o o o o o o ooooooooooooooooo ooooooooooooo 

OTOoSoOOOOrHOOOOOOOOOOOOOOOOOOOOOOOOOOO 

ooooooooo ooooooooooooooooooooooooooo 

Ü 
e> a 
s 
M 
CO 
CO 
H H 
SOHNnHNnHNnHN!OH(NinHNnHNfnH(MMHNnHNnHCMnHO)fO 

HO 
2 CU 
w u 
DJ 
W 

o 
S^MHMHMHHHHHHHfaDufafafafafafafc.^fcfaOOOCJUOOCJOOOO 

3 

c 
.9 
J2 
3 
E 
*o c 
o o u 

OS O O O O O O O O O O O O O VO CO CM 00 CM CN <N CN O <N VO O O O O O O O O O O O O 
goorn'oo^do^oo^ooo'oo^^ocrl^or-'cjoooooooooooo 

^        ^J*        ^        ^* 

iIIIllIIIIllIIIlHlillllllllllllillii 
oodoooodoooooooooooooooooooooooooooo 

gllllllllallilllillllllliillllllillli 
dddddddddooooooooooooooooooooooooooo 

g^^^cNNCNjMc^cn^^^^H^csicNiCNicnnfO^^M'^^^cocsi^roforo^-a-'a- 
u 
a 

< 
< a 
O  Q (OHNnHNClHNfOHNn OHNnHNnHNnHNnHN(OrlN(OHNnHN 

u» o 
H 
CO 
CO 
H 

s es 
ggHHHHHHHHHHHHfa(llfcfafc.fafafofob.fc.fc.OÜCJOOOOOOOOO 

2 
O 

O a 
i 

o 

D 
Du 

fa 

DJ o 

O 
H 
Q 
Z 
H 

W o o o 

o 

CD 

"-3 
en 

m 

x> 
cs 
H 

57 



not expected to be too different. In fact, the power estimates for MCODE = 2 and 

MCODE = 3 are very similar when PCODE = 1. However, they are not very similar 

when PCODE = 2 or 3. In this case, power is lower for MCODE = 3 than for MCODE = 

2. This results since for MCODE = 3, the means differ in sparse cells, whereas for 

MCODE = 2, the means differ most in the most common cell (corresponding to X = 

(1,1)), making it more easy to differentiate between the two populations. We see similar 

patterns in Figure 11, and can also see a general decrease in power due to missing values. 

These plots seem to indicate that the INDICATOR and COMMON algorithms 

have very similar power, these being generally better than the FULL algorithm. As in our 

first study, we notice in Figures 10 and 12 that the INDICATOR algorithm has a 

tendency to yield a higher significance level than desired, especially when PCODE = 3 

(i.e., when some cells are very sparse). 

We see from Table 3 that the INDICATOR algorithm fails occasionally due to 

singular covariance matrix, especially when PCODE = 3. The FULL algorithm does 

much worse when cells are sparse. The FULL algorithm fails about two-thirds of the 

time when PCODE = 3 and data is missing! When some cells occur with very low 

probability, it is necessary to have very large samples so that each cell is represented 

enough to obtain a full-rank estimate of the covariance matrix within that cell. Samples 

of size 50, cells are not adequately represented about 2/3 of the time. Once again, we see 

that the COMMON algorithm is least susceptible to failures due to singular parameter 

estimates. 

Readers may wonder why the algorithm doesn't fail every time for PCODE = 3 

since cell (1,1) is never represented. If a cell probability is estimated to be zero, the 

covariance matrix estimate for that cell is never used in the computation of X, and can 

therefore be disregarded. It is not cell (1,1) that is the problem here, rather it is cells (0,1) 

and (1,0). Readers may also find it strange that for PCODE = 2, there are fewer failures 

in the FULL algorithm when data is missing than when all data is available. This may be 
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explained intuitively as follows: When data is missing in the discrete part, there is some 

possibility that the observation falls into any of a number of cells. This observation 

contributes to the parameter estimates for all cells to which the observation might truly 

belong, resulting in fewer rank problems in sparse cells. 

7. Concluding Remarks 

In this report, we have extended the results of BGWMF and MGW to perform 

discriminant analysis with categorical and continuous variables when data is missing. 

We presented three algorithms for doing so. In simulation studies, we have observed that 

the INDICATOR algorithm has a tendency to yield a higher Type I error rate than 

desired. The FULL algorithm often fails due to singular parameter estimates when some 

value of the discrete part is sparsely represented. The COMMON algorithm seems to 

avoid these problems, and is therefore the preferred algorithm, especially when samples 

are small and the assumption of a common covariance matrix across all multinomial cells 

is reasonable. The code has now been transferred to MRC and Dr. Mark Fisk is applying 

these techniques to some existing seismic data. 
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Figure 5. Power estimates when no data is missing for each of the three algorithms, with 
data modeled as a Bernoulli random variable and an independent normal random variable. 

2 
Parameters for population %x are px = 0.1, ut = 0, and ox = 0.5.  Power estimates are 

2 
based on the following configurations for population %2

: P2 = 0-9, 0-?» and 0.5, o2 = 1.0, 

and u2 = 0.5 + Ao^, where A takes on values 0, 1, 2, and 3.  For each value of A, the 

symbols I, F, and L are plotted at the corresponding power. 
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Figure 7. Power estimates when approximately 10% of the data is missing for each of the 
three algorithms, with data modeled as a Bernoulli random variable and an independent 

2 
normal random variable. Parameters for population 7^ are pj = 0.1, u.j = 0, and Cj = 0.5. 

Power estimates are based on the following configurations for population 7t2:  p2 
= 0-9, 

2 2 
0.7, and 0.5, c2 = 1.0, and u.2 = 0.5 + Aa2, where A takes on values 0, 1, 2, and 3. 
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Figure 9. Power estimates when no data is missing for each of the three algorithms when 
data have two binary and two continuous variates, possibly dependent. For population jtj, 
each possible combination of the binary part occurs with probability 1/4. The conditional 
distribution of the continuous part is MVN(0, Ej), where Zj is a 2x2 matrix with diagonal 
elements of one and off-diagonal elements of 0.5, within each multinomial cell. For 
population 7i2, the conditional covariance matrix for the continuous part is Z2, where E2 

has ones on the diagonal and off-diagonal elements of-0.5. Several distributions for the 
discrete part, and several choices of mean vectors are used, as defined in Table 2. 
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MCODE 

Figure 11. Power estimates when approximately 10% of the data is missing for each of 
the three algorithms when data have two binary and two continuous variates, possibly 
dependent. For population Jtj, each possible combination of the binary part occurs with 
probability 1/4. The conditional distribution of the continuous part is MVN(0, Zj), where 
Sx is a 2x2 matrix with diagonal elements of one and off-diagonal elements of 0.5, within 
each multinomial cell. For population TZ2, the conditional covariance matrix for the 
continuous part is Z2, where E2 has ones on the diagonal and off-diagonal elements of 
-0.5. Several distributions for the discrete part, and several choices of mean vectors are 
used, as defined in Table 2. 
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Outlier Tests with Multiple Stations 

H. L. Gray, Wayne A. Woodward and Zeynep T. Yücel 
Southern Methodist University 

August 25, 1995 

Abstract 

Some techniques are discussed for dealing with the problem of dis- 
tinguishing between earthquakes and explosions when data are avail- 
able at more than one station. A simulation study, in which the 
performance of these techniques are compared, is presented. 
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1     Introduction 
We consider the problem of observing seismic events for the purpose of dis- 
tinguishing between earthquakes and explosions. Baek, et al. (1994) treat 
this as an outlier problem which is to determine whether a new and possi- 
bly a suspicious event should be classified as an earthquake, given a training 
sample of data on earthquakes. In that paper, it was assumed that data on 
several variables were available at a given station. It was also assumed that 
the variables might be either continuous, discrete or a mixture of both types. 

In this report, we address the issue of outlier testing when data are at 
more than one station. In particular, we suppose that there are p feature 
variables observed at each of m stations. A fundamental problem is how to 
utilize the information from multiple stations in a test for outliers. 

1.1     Test 1: Full Vector Approach 

One technique for outlier detection in the multi-station case is to consider 
the p features at each of m stations as a single vector consisting of mp 
variables. That is, the observation vector for the ith event in the training 
sample is an mp x 1 vector of the form 

X; = (A'ni, A"i2t, ■■■: Xlmi, &21i- A*22i, ■••-. ^2mi , Apii, Xp2i, ■ ■ ■ : Apmi)    ; 

i = 1.....U. where Xjki indicates tlie j th feature measured at the kth 
station for the i th earthquake. A new observation to be tested as an outlier 
has then a similarly configured mpx 1  vector of the form 

X„+i  = (A'u.n+i, A12.n+1: Alm,n+l. . . . . Api.n+i, Ap2,n+1, • • • « Xpm.n+1)    • 

We consider the training sample {X,-}?=1 to be from the density function 
/(.;/*!,£), where 

/(X: Aix, S) = (2 TT)-^ |£|-* exp | -i (X - jxj' E"1 (X - /xx)} , 

i.e., we are assuming in this report that the feature variables have a mul- 
tivariate normal distribution. Similarly, the new Xn+X is assumed to have 
probability density /(.;/*2,S). Baek, et al. (1994) classify Xn+1 by testing 
the hypotheses 

Hi : Ah # P2- 

-^ivi-l 
The likelihood of Xl5 X2,..., Xn, X„+i is given by 

L(fl;X1,...,XlH.i)   =   I(fl;X1,...,XB)(27rr»   |2 

exp < -- (Xn+i - ^2)'^" (Xn+i - P2) r ' 
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where L(6;XU... ,X„) = ÜLi /P^ A*i, S), the likelihood of XX,X2,... ,Xn, 
and 9 = (/il5 JA2, S). The generalized likelihood ratio is therefore defined by 

sup{fleno} I(fl;Xi,...,Xn+i) 
suP{öen> -^(^;Xi,...,Xn+i) 

(1) 
—     -^(^0;Xi, ■ ■ ■ ,Xn+i) 

i(ö;Xi,... ,X„+i) 

where 90 is the maximum likelihood estimate (MLE) of 0 under the restric- 
tion that Ho is true, and 9 = (/tl5 /*2, S) where \ix and S are the MLE's of 
\ix and S based on Xi,X2,...,Xn and /t2 = Xn+i. It intuitively follows 
that small values of A provide evidence against H0, and thus the generalized 
likelihood ratio test is 

reject    H0    if    A < A(a) , (2) 

where A(a) is chosen to provide a size a test. In the setting considered by 
Baek, et al. (1994), i.e. the data are a mixture of continuous and discrete 
types, the distribution of A is unknown: and bootstrap techniques were 
applied in order to ascertain this distribution. Baek, et al. (1994) point out 
that when all classification variables are continuous and have a multivariate 
normal distribution, the setting considered here, the distribution of A is 
known; and the critical values can be found based on the F-distribution. In 
particular, in the current case of mp variables and a training sample of size 
n, A(a) is given by 

AH^l + ^^Y^, (3) 
\        n — rnpj 

where Fa is the (1 - a) th percentile of the F-distribution with mp and 
n — mp degrees of freedom. In the multivariate normal case, calculating the 
critical value X(a) by using the bootstrap procedure or from (3) produced 
very similar results1. More details concerning the derivation of (3) are given 
in Fisk (1995). 

In the full vector approach, no attempt is made to account for the fact 
that the same p variables are being measured at the m stations. It should 
be noted that this solution strategy actually does not require the same p 
variables to be observed at each of the m stations. 

1.2    Test 2: Minimum Variance Weighting 

A second method that will be examined here is the combining of features 
across stations by using minimum variance weighting.   This procedure is 

1 These simulations results will not be given here. 
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designed to reduce the dimensionality of the problem by taking advantage 
of the correlation structure between stations. We construct a new feature 
Yj associated with feature j. The new feature is the linear combination of 
feature j at each of the m stations, i.e., 

m 

Yj = Y/ <** X* , (4) 
fc=i 

which minimizes the variance of Yj subject to the constraint that the weights 
sum to one. Theoretically, the weights are given by 

£7X/3 j 

/3'SJ1 (5) 

where ß = (1,1,...,1)' and Sj is the covariance matrix of Xj±,.. .,Xjm- 
In practice, Sj will not be known, and will be estimated by the usual sample 
covariance matrix based on events i = 1,..., n. This weighting is not based 
on the assumption that the means for the j th feature are constant across sta- 
tions, but rather is combining the data across stations to create a new feature. 
This procedure creates a new p-dimensional vector Y,- = (l'i;,... • 1P;)' • 
i = 1 ,n.   The  (n + l)st event, which is to be classified as a possible 
outlier, is weighted by using the same weights, i.e., 

m 

yj>+i = 2^ wjfcAjfc,n+i. (6) 

This weighting reduces the dimension from mp variables to p variables. The 
outlier detection is then based on a likelihood ratio as before but calculated 
using only the p new variables. It should be noted that although the weights 
are stochastic and depend on the data, for feature j the same m station 
weights, u?jfc. k = l,...,m, are used for each of the events. Thus, the 
resulting new p features will be approximately normally distributed random 
variables. 

1.3     Test 3: Separate Tests Based on Each Station 

It is possible for the test based on all stations to fail to declare an event to 
be an outlier while the test based on one of the individual stations finds the 
event to be an outlier. It seems plausible that a very noisy station could result 
in the multi-station test losing power compared to that associated with an 
individual "good" station2. The question is whether multi-station tests are 
more powerful than simple use of individual station-based tests. An obvious 
strategy for using station information at m stations is to declare an event 

2The identification of "good" stations for use in the test is under investigation and will 
be the subject of the future report. 
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to be an outlier if any of the individual station-based tests finds the event 
to be an outlier. This has the apparent advantage that if, for example, there 
are two stations with one of the stations quite noisy, then the test has not 
been penalized for inclusion of the noisy station, as may be the case with the 
other two tests considered. However, if each of the tests at the m stations is 
run at the a = 0.05 level, the result of such a procedure will be a test with 
significance level larger than a, and according to Bonferroni's inequality, the 
overall significance level is less than or equal to ma . Thus, in order to assure 
that the overall significance level is no more than a, each individual station- 
based test should be run at level a/m. In the example of two stations, one 
good and one noisy, this procedure also provides a penalty for incorporating 
the noisy station since it requires implementation of a smaller significance 
level, a = 0.025, for each test. Thus, if the second station is of no usefulness, 
then the result of the procedure is to reduce the power over that of identifying 
the useful station and applying the test using only that station. Note that 
the weighting done here is optimal (in the estimation sense) for the case in 
which the variables at different stations are independent, which is not the 
case here. 

In the following section, we present some simulation results in which we 
compare the power of the three outlier testing procedures described here in 
order to examine the conditions for which a particular test is favored over 
the others. 

2     Simulation Examination of the Tests 

2.1     Two Stations and One Variable 

In this subsection, we consider the 2-dimensional case of two stations and 
one variable measured at each station. For the population of earthquakes, 
we assume that 

X, = (Ini,AW ~ MVN(^,Z), (7) 

Ah = (i"n,Mi2)'        with        /in = fin = 0 

for      p = -0.25,0.0,0.25,0.50,0.75 . 

where 

and 

In Table 1, we present estimated power of the full vector, minimum vari- 
ance weighting, and separate station-based tests when the potential outlier 

is from 

Xn+1 ~ MVN(n[A\X), (8) 
75 



where fx[A) = {p[A\p[A))'- In each case, a sample of size n = 50 is generated 
from the earthquake distribution, i.e., MVJV((0,0)', S), and a single outlier 

is generated from the outlier distribution, i.e., MVA'((^n),A'i2))/> S) for a 

variety of values of p[A) and p,[A). The test determines whether this single 
observation is classified as an outlier. The entire procedure is repeated 1000 
times, and the power estimates given in the table are the proportion of times 
that the single observation from MVN({p[A\ p^)',^) was called as an 
outlier. All tests presented in this report were run at the a = 0.05 overall 

significance level. 

We first focus on the full vector test. Test 1. There we can see in general, 
as p[A) and p[A) become further removed from the null values of 0, the power 
of Test 1 increases as would be expected. However, some of the results in the 
table may seem nonintuitive at first glance. For example, when p = 0.75 the 
power associated with the alternative p[A} = 2 and p[A) = 0 is 0.738 which 
is much higher than for the case p = 0 in which the power is 0.377. In some 
respects this seems to be an unusual result since intiutively it would seem that 
highly correlated variables (stations) would tend to be providing redundant 
information and hence might be expected to yield lower power than in the 
case in which the correlation is smaller. However, it should be pointed out 
that while increased correlation reduces information in estimation, it may 
dramatically increase information for purposes of outlier detection. Thus, 
it is important to note that the shape of the bivariate distribution plays 
a major role in determining this power, i.e., in determining what types of 
values appear to be outliers. In Figure 1, we show contour plots of the 
bivariate distributions assumed under the null hypothesis for the values of 
p considered. There it can be seen that observations around p{x> = 2 and 

fi$ = 0 for station 1 and station 2. respectively, are much more unlikely 
when p = 0.75 than for lower values of p. Interpretation of other powers 
shown in Table 1 is aided by examination of Figure 1. 

It can be seen from Table 1 that the minimum variance weighting test, 
Test 2, results are sometimes comparable and in some instances superior 
to those obtained using Test 1, the full vector approach. However, it is 
also noted that in some cases these powers can be much worse than those 
obtained using Test 1. In order to understand this phenomenon, consider 
again the case in which p[A) = 2 and p\\] = 0 with p = 0.75. The effect 
of the minimum variance weighting is to produce new feature Y\ calculated 
as Yu = wnliii +w12A"12i, i = l,...,n. In this case, the weights will 
both be approximately equal so that the mean of Yi will be about 1, and 
in Table 1 it is seen that the power of Test 2 is only 0.185 when p = 0.75 
as compared to 0.738 using Test 1. From Table 1 we see that for pu 

relatively close to p[A) Test 2 tends to have higher power than Test 1. It is 
clear from Table 1 that if Test 2 care must be taken. In the case of positive 
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correlations between stations Test 2 will tend to perform poorly when the 
potential outliers are not consistent with this correlation structure. The fact 
that (2,0)' is not consistent with the correlation structure can be measured 

using the Mahalanobis distance, defined as 

(/h-M^'E-M/*!-/^). (9) 

between the null and the alternative populations. Thus, although the points 
(2,0)' and (y/2, V2)' have the same squared Euclidean distance, 4, from the 
null mean of (0,0)', the Mahalanobis distance for (2,0)' is 4 times as large as 
that for (\/2, y/2)' whenever p = 0.75. Thus, when the correlations between 
stations are positive, a large Mahalanobis distance, compared to the range of 
Mahalanobis distances possible for a given Euclidean distance, should serve 
as an indication that Test 2 should not be used. The procedure we used in 
the simulations for assessing whether minimum variance weighting should be 
used in a situation in which the correlations between stations are positive is 

given below: 

1. Calculate the Euclidean distance dE = (Ah - Xn+iY (Ah - A"n+i) and 
the Mahalanobis distance dM = (Ah - A^+O'S-1 (^-Xn+j) between 
the null mean and the potential outlier, (for Ah an<^ S. use sample 
values calculated from the training sample). 

2. Calculate the minimum, d{™n). and first quartile, d(^\ of all possible 
Mahalanobis distances associated with means separated by a Euclidean 

distance dß- 

3. Whenever dM/d{^n) < 2 and clXI < d[^l]. minimum variance weight- 
ing is appropriate. Otherwise, the full vector approach is recommended. 

In Table 1. we give the power of a "combined test"'. Test 4, which, for a 
given training sample and potential outlier, uses Test 1 or Test 2 as indicated 
by the Mahalanobis distance criterion mentioned above. The Mahalanobis 
distance criterion is specifically designed for the case in which there is positive 
correlation. It can be seen that in cases in which p > 0.25, Test 4 often 
performed better than the other three tests and always had close to the 
highest power. Test 4 did not perform as well for p = 0. However, this test 
is designed for the case in which the correlation is positive, and the results 
for p = 0 are included only for comparison. It should be noted that, in 
practice, the decision concerning whether to use the Mahalanobis check will 
be based on the correlations calculated from the training sample data; and 
some rules should be obtained for deciding how large a sample correlation 
should be before the Mahalanobis check is performed. It should be noted 
that Test 4 tends to have slightly larger significance level, (i.e., power at the 
alternative (0,0)') than the nominal level of a = 0.05. 
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In Table 1, we also give the power results associated with Test 3. In 
variable at each of two stations, the associated univariate test is run for each 
of the two stations at a — 0.025, and an outlier is said to be detected if 
either of the two univariate tests determines the event to be an outlier. As 
indicated earlier, this assures that the overall test has significance level no 
more than a = 0.05. In the table we see that the power is competitive with 
Tests 1 and 4 except in the case in which the correlation is large (p > 0.50) 

and one of /4i) or P-ri  is ciose to ^e nu^ va^ue °* zera 

In Table 2, we present simulation results for a case in which the station 
variances are not equal. In particular, we consider the case in which 

S = ( 9     2/ )     with    />= -0.25,0.0,0.25,0.50,0.75 . (10) 

Figure 2 shows the contour plots of the bivariate distributions assumed under 
the null hypothesis for the values of p considered. In this setting, we observe 
that Test 1 and Test 2 behave similarly in the sense that, in general, as /t^ 
and //i2J become further apart from the null values of 0, and as correlation 
between stations increases, the powers of these tests increase. As in Table 
1. while Test 2 results are often comparable or even superior to Test 1. for 
some cases. Test 2 results are much worse than those for Test 1. This seems 
particularly true for values of f.i[^ = 0 and /.$ > 0 which, as can be seen 
in Figure 2. are values that do not correspond to the correlation structure. 
Using the Mahalanobis distance criterion as in Table 1 we obtained Test 4 
which still has substantially lower power than Test 1 in the cases where Test 
2 power is much less than Test 1. As in Table 1 we see that Test 1 has power 
which is always competitive with the best shown in the table whereas each 
of the other tests can in some instances have substantially lower power than 
Test 1. 

We also have examined the use of outlier tests using model parameters 
obtained from actual seismic data. Data are available on 36 earthquakes and 
70 explosions for the logarithm of Pn/Lg(6-8Hz) at two stations, KNB and 
MNV. Letting KNB be station 1 and MNV station 2, the sample mean vector 
and covariance matrix for this training sample of earthquakes is given by 

X^iX^Xii)'^ (-0.743,-1.672)'   and   Ex = ( jj^g   ^73 J  , (11) 

while the corresponding quantities for the training sample of explosions are 

n   A       ( 0.196   0.053 \ ,10X X2 = (0.361,-0.010)'   and   S2 = { ^   Q m j , (12) 

The estimated correlation between stations is found to be 0.23 earthquakes; 
and 0.29 for the training samples of explosions. The contour plots for the 
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bivariate normals with means and covariances set equal to those observed 
for the two training samples are given in Figure 3. There it can be seen 
that there is a substantial separation between the two populations; and it 
would be expected that the outlier test should be able to detect explosions as 
outliers related to the earthquake population. In order to examine this, we 
performed the outlier tests using samples of length 50 simulated from the 
model with ß1 = Xx and Si = Si with outliers simulated from the bivariate 
normal model with fi2 = X2 and S2 = S2. In this setting, an outlier was 
detected 95.3%, 95.6%, 97.5% and 96.2% of the time by using the separate 
station-based, full vector, minimum variance weighting and combined full 
vector-minimum variance weighting tests, respectively. 

2.2    Two Stations and Two Variables 

In this subsection, we briefly consider the case in which there are two feature 
variables measured at each of two stations. 

To compare the performances of Test 1, Test 2, Test 3 and Test 4 of 
section 1 under this setting, we have carried out some simulations on data 
generated from multivariate normal distribution with various mean vectors 
and covariance matrices. From the simulation study, we have observed that, 
as in the case of two stations-one variable, the estimated powers of Test 2 
are sometimes comparable and in some cases superior to those of Test 1: and 
there are also some cases in which powers of Test 2 are much worse than 
those of Test 1. The combined test, Test 4, performs fairly well, but it is 
clear that the Mahalanobis decision rule on page 8 may not be optimal for a 
wide range of parameter configurations. 

We also have examined the powers of the outlier tests of section 1 using 
model parameters obtained from actual seismic data. In the simulations, we 
assume the observations X; = (Xm, Xui- X2u-A22i)' ? i = 1 ,n are from 
MV"iV(/x1,S). Data are available on 36 earthquakes and 70 explosions for 
the logarithm of Pn/Lg ratio in both the 4-6Hz and 6-8Hz frequency bands. 
We let station 1 denote KNB and station 2 denote MNV, and we take the 
log Pn/Lg ratio in the 6-8Hz and 4-6Hz frequency bands as features 1 and 2, 
respectively. The sample mean vector and covariance matrix for this training 
sample of earthquakes is given by 

Xi = {X1UX12,X21,X22)' = (-0.712,-0.992,-1.657,-1.829)'       (13) 

and 

Si = 

/ 0.242 0.202 0.052 0.044 \ 
0.202 0.275 0.052 0.075 
0.052 0.052 0.177 0.086 

\ 0.044 0.075 0.086 0.227 / 
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while the corresponding quantities for the training sample of explosions are 

X2 = (0.362, -0.155, -0.032, -0.453)' (14) 

/ 0.197 0.138 0.054 0.012   \ 
^   _      0.138 0.195 0.050 -0.009 
~2 ~      0.054 0.050 0.180 0.093 

\ 0.012 -0.009 0.093 0.207   / 

Let p{kl'^ denote the estimated correlation between features ji and j2 at 
stations fci and fc2- These quantities for the training sample of earthquakes 
are 

& = 0-3 , ft? = 0-25 , ft? = 0.43 , ft? = 0.78 , ft? = 0.19 .  (15) Pi 

The corresponding quantities for the training sample of explosions are 

ft? = -0.05 , ft? = 0-28 , ft? = 0.48 , ft? = 0.70 , ft? = 0.06 .(16) 

Figure 4 displays the contour plots for the bivariate normals with means 
and covariances set equal to those observed for the two training samples for 
each of the feature variables at two stations. There it can be seen that for 
each of the feature variables, there is a reasonable separation between the 
two populations; and it would be expected that the outlier test should be 
able to detect explosions as outliers related to the earthquake population. 
In order to examine this, we performed the outlier tests using samples of 
length 50 simulated from the model with ^ = Xi and Si = Si with 
outliers simulated from the multivariate normal model with fx2 — X2 and 
S-2 = S2. In this setting, an outlier was detected 81.1%, 89.1%, 94.1% and 
93.9% of the time by using the separate station-based, full vector, minimum 
variance weighting and combined full vector-minimum variance weighting 
tests, respectively. We have also examined the outlier tests of section 1 
to determine their success rates in classifying the 70 events in the training 
sample of explosions as outliers. The success rates3 for Test 1, Test 2, Test 
3 and the combined test are 92.9%, 92.9%, 77.1% and 91.4% respectively. 
Test 1 and Test 2 agreed in classifying these 70 events except for two cases. 
In one of these two cases Test 1 does not classify the event considered as an 
outlier, and Mahalanobis distance criterion favors Test 1. In the second case, 
Test 2 does not classify the event considered as an outlier, and Mahalanobis 
distance criterion favors Test 2. The Mahalanobis distance criterion favors 
Test 1 51.4% of the time, and favors Test 2 48.6% of the time. 

3The test classifies the event from the training sample of explosions as outlier. 
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3    Tables and Figures 

• Table 1.  Estimated powers of the outlier tests considered under the 
setting: 

ti1=(°},X=(1   PA   with p = -0.25,0.0,0.25,0.50,0.75 

and p[f , iJ$ = 0.1,2,3,4.   (The values in the parantheses are the 
number of times that full vector approach and minimum variance weight- 
ing approach performed, respectively, for the combined test.) 

• Table 2.  Estimated powers of the outlier tests considered under the 
setting: 

/*1 = CJVS=C9
1
    ^ )   with p = -0.25,0.0,0.25,0.50,0.75 

and fx[^ , //^2) = 0.1,2,3.4.   (The values in the parantheses are the 
number of times that full vector approach and minimum variance weight- 
ing approach performed, respectively, for the combined test.) 

• Figure 1. Contour plots of bivariate normal distributions from 

f 0\     r 
»={ 0 

v = ( l   M   with p = -0.25,0.0.0.25.0.50,0.75 . 

• Figure 2. Contour plots of bivariate normal distributions from 

^[J]^^1    2£ }   with p = -0.25.0.0.0.25,0.50.0.75 . 

• Figure 3. (Two stations-one variable case) Contour plots of bivariate 
normal distributions with means and covariances calculated from actual 
seismic data: 

^  _ ( -0.743 \       f  _ ( 0.235   0.046 \ 
Al ~ I -1.672 J   '     x ~ I 0.046   0.173 ) ' 

0.361   \       y  _ ( 0-196   0.053 
-0.010 J   '     2 " V 0.053   0.168 x2 =    u;Tn    , s2 = 
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Figure 4. (Two stations-two variables case) Contour plots of bivari- 
ate normal distributions of each variable with means and covariances 
calculated from actual seismic data: 

For variable 1; 

-   _ / -0.712 \        -  _ ( 0.242   0.052 
Xl ~ I  -1.657 J   '     * ~ V 0.052   0.177 

0.362   \       A       ( 0.197   0.054 
X2 - I   -0.032 I   '   "2     V O-O54   °-180 

For variable 2; 

-0.992 \       ^       ( 0.275   0.075 
Xl    — 1    Q0Ü 5        "1 1.829 )   ' V 0.075   0.227 

0.155 \       ^       (   0.195     -0.009 
X2 ~ '     -0.453 j   '   "2 ~ V -0.009     0.207 
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Table l.4 

p=-0.25 Test u[A} 

u(A) 0 1 2 3 ^    1 
0 

1 0.044 0.129 0.389 0.751 0.949 
2 0.054 0.137 0.347 0.648 0.S77 

3 0.041 0.121 0.367 0.740 0.945 

1 
1 0.122 0.250 0.560 0.856 0.970 
2 0.141 0.348 0.641 0.884 0.967 
3 0.117 0.197 [ 0.430 0.769 0.952 

2 
1 0.400 0.570 0.793 0.947 0.989 
2 0.360 0.654 0.891 0.973 0.996 

3 0.390 0.450 0.629 0.857 0.966 

3 
1 0.749 0.848 0.943 0.985 0.999 
2 0.650 0.8S2 0.974 0.996 1.000 

3 [ 0.745 0.777 0.S63 0.948 0.9S6 

4 
1 0.951 0.975 0.993 1.000 1.000 
2 0.871 0.970 0.995 1.000 1.000 

3 0.948 0.959 0.983 0.996 1.000 

4One table for each p considered. 
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Table 1. continues: 

,0 = 0.0 Test a(A) 
Mil 

(4) 
fH2 0 1 2 3 4 

0 

1 0.044 0.122 0.377 0.723 0.936 

2 0.056 0.119 0.282 0.525 0.766 

3 0.047 0.128 0.376 0.748 0.948 

4 0.043 
(751,249) 

0.122 
(743,257) 

0.346 
(752,248) 

0.671 
(726,274) 

0.875 
(725,275) 

1 

1 0.115 0.203 0.446 0.773 0.946 
2 0.123 0.274 0.520 0.782 0.926 
3 0.116 0.192 0.418 0.758 0.947 

4 0.115 
(763,237) 

0.217 
(764.236) 

0.462 
(746,254) 

0.770 
(748,252) 

0.931 
(733.267) 

2 

1 0.381 0.455 0.665 0.878 0.967 
2 0.284 0.529 0.7S9 0.930 0.975 

3 0.393 0.441 0.605 0.838 0.962 

4 0.369 
(765,235) 

0.466 
(756.244) 

0.701 
(760,240) 

0.S96 
(754.246) 

0.969 
(741.259) 

3 

1 0.726 0.760 0.877 0.957 0.988 
2 0.534 0.782 0.926 0.979 0.996 

3 0.749 0.770 0.841 0.932 0.980 
4 0.675 

(754.246) 
0.761 

(751.249) 
0.S90 

(752.248) 
0.965 

(764.236) 
0.989 

(747.253) 

4 

1 0.932 0.946 0.969 0.987 0.999 

2 0.766 0.917 0.977 0.997 1.000 

3 0.939 0.945 0.964 0.983 0.992 
4 0.871 

(753,247) 
0.931 

(756.244) 
0.972 

(751,249) 
0.990 

(758.242) 
0.999 

(763,237) 
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Table 1. continues: 

p = 0.25 Test 

Ml2 0 1 2 3 4 

0 

1 0.044 0.140 0.399 0.756 0.957 

2 0.056 0.105 0.245 0.458 0.678 

3 0.045 0.128 0.378 0.750 0.950 

4 0.055 
(696,304) 

0.157 
(717,283) 

0.415 
(764,236) 

0.748 
(824,176) 

.0.939 
(855,145) 

1 

1 0.122 0.171 0.389 0.727 0.936 
2 0.106 0.238 0.436 0.690 0.845 

3 0.117 0.186 0.406 0.748 0.945 

4 0.145 
(735,265) 

0.226 
(577,423) 

0.453 
(535,465) 

0.765 
(595,405) 

0.927 
(660,340) 

2 

1 0.400 0.397 0.560 0.802 0.949 
2 0.245 0.442 0.691 0.868 0.953 

3 0.383 0.414 0.562 0.805 0.951 

4 0.417 
(789,211) 

0.454 
(554.446) 

0.671 
(398,602) 

0.864 
(391.609) 

0.963 
(464,536) 

3 

1 0.749 0.723 0.793 0.906 0.970 
2 0.452 0.674 0.868 0.958 0.984 

3 0.736 0.745 0.800 0.900 0.968 

4 0.741 
(826.174) 

0.754 
(632.368) 

0.853 
(403,597) 

0.941 
(294.706) 

0.983 
(313.687) 

4 

1 0.951 0.934 0.943 0.974 0.989 

2 0.674 0.857 0.952 0.983 0.997 

3 0.942 0.939 0.950 0.970 0.986 

4 0.938 
(851,149) 

0.934 
(700,300) 

0.959 
(492,508) 

0.982 
(311.689) 

0.996 
(256,744) 
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Table 1. continues: 

p = 0.50 Test Mil 

012 0 1 2 3 4 

0 

1 0.044 0.161 0.481 0.865 0.992 

2 0.056 0.098 0.213 0.410 0.588 

3 0.046 0.128 0.379 0.752 0.954 
4 0.063 

(607,393) 
0.183 

(683.317) 
0.501 

(825,175) 
0.863 

(903,97) 
0.987 

(936,64) 

1 

1 0.149 0.151 0.377 0.742 0.961 
2 0.096 0.214 0.378 0.603 0.783 
3 0.123 0.180 0.393 0.741 0.946 
4 0.176 

(698,302) 
0.222 

(464,536) 
0.446 

(466,534) 
0.772 

(620,380) 
0.953 

(717,283) 

2 

1 0.489 0.371 0.474 0.733 0.936 
2 0.221 0.388 0.604 0.798 0.909 

3 0.374 0.391 0.518 0.775 0.947 

4 0.499 
(807,193) 

Ü.43S 
(488.512) 

0.605 
(231,769) 

0.822 
(251,749) 

0.948 
(407,593) 

3 

1 0.842 0.736 0.740 0.851 0.954 
2 0.404 0.594 0.794 0.929 . 0.969 

3 0.737 0.735 0.774 0.873 0.962 
4 0.838 

(892.108) 
0.758 

(623.377) 
0.822 

(258.742) 
0.923 

(96,904) 
0.972 

(136.864) 

4 

1 0.982 0.951 0.935 0.950 0.976 
2 0.591 0.783 0.917 0.969 0.990 
3 0.940 0.935 0.938 0.957 0.978 
4 0.980 

(931,69) 
0.946 

(752,248) 
0.951 

(413,587) 
0.967 

(136,864) 
0.990 

(51,949) 
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Table 1. continues: 

p = 0.75 Test 
(A) 

A*ii 

P-Yl 0 1 2 3 4 

0 

1 0.044 0.244 0.738 0.989 1.000 

2 0.053 0.094 0.185 0.370 0.537 

3 0.044 0.127 0.378 0.753 0.956 

4 0.066 
(513,4S7) 

0.258 
(705.295) 

0.730 
(882,118) 

0.982 
(956,44) 

0.999 
(978,22) 

1 

1 0.238 0.135 0.425 0.880 0.999 
2 0.099 0.188 0.348 0.545 0.701 

3 0.113 0.154 0.370 0.740 0.946 

4 0.259 
(693,307) 

0.204 
(364,636) 

0.485 
(459,541) 

0.S65 
(683,317) 

0.994 
(843,157) 

2 

1 0.728 0.429 0.413 0.729 0.979 
2 0.200 0.338 0.538 0.741 0.862 

3 0.365 0.370 0.473 0.749 0.945 

4 0.720 
(869,131) 

0.461 
(466,534) 

0.544 
(130,870) 

0.804 
(224,776) 

0.961 
(420,580) 

3 

1 0.980 0.855 0.733 0.788 0.936 
2 0.355 0.531 0.728 0.874 0.950 

3 0.740 0.732 0.747 0.837 0.948 

4 0.974 
(947,53) 

0.S50 
(697,303) 

0.789 
(212.788) 

0.876 
(31.969) 

0.964 
(69,931) 

4 

1 1.000 0.992 0.952 0.939 0.961 
2 0.543 0.693 0.862 0.948 0.980 

3 0.953 0.947 0.947 0.951 0.972 

4 1.000 
(982,18) 

0.981 
(834,166) 

0.945 
(430,570) 

0.953 
(67,933) 

0.980 
(7,993) 
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Table 2.5 

p = -0.25 Test Mil 
(A) 

012 0 1 2 3 4 

0 
1 0.044 0.129 0.389 0.751 0.949 

2 0.056 0.166 0.436 0.785 0.953 

3 0.041 0.121 0.367 0.740 0.945 

1 
1 0.061 0.171 0.447 0.802 0.961 

2 0.070 0.238 0.569 0.868 0.971 

3 0.053 0.135 0.383 0.750 0.947 

2 
1 0.122 0.250 0.560 0.S56 0.970 
2 0.106 0.328 0.691 0.926 0.984 

3 0.117 0.197 0.430 0.769 0.952 

3 
1 0.250 0.397 0.685 0.906 0.979 
2 0.169 0.442 0.793 0.958 0.990 

3 0.233 0.308 0.521 0.815 0.962 

4 
1 0.400 0.570 0.793 0.947 0.989 
2 0.245 0.563 0.868 0.972 0.997 

3 0.390 0.450 0.629 0.857 0.966 

5One table for each p considered. 88 



Table 2. continues: 

p = 0.0 Test 
(A) 

Ml2 0 1 2 3 4 

0 

1 0.044 0.122 0.377 0.723 0.936 

2 0.051 0.154 0.400 0.739 0.928 

3 0.047 0.128 0.376 0.748 0.948 

4 0.035 
(554,446) 

0.121 
(684.316) 

0.369 
(886,114) 

0.715 
(966.34) 

0.934 
(995,5) 

1 

1 0.060 0.142 0.386 0.731 0.937 
2 0.064 0.203 0.487 0.808 0.955 

3 0.056 0.137 0.381 0.746 0.945 

4 0.045 
(526,474) 

0.141 
(666,334) 

0.391 
(859,141) 

0.733 
(967,33) 

0.937 
(997,3) 

2 

1 0.115 0.203 0.446 0.773 0.946 
2 0.080 0.260 0.571 0.868 0.967 

3 0.116 0.192 0.418 0.75S 0.947 

4 0.066 
(451.549) 

0.197 
(558.442) 

0.445 
(788,212) 

0.777 
(944,56) 

0.946 
(992,8) 

3 

1 0.236 0.306 0.549 0.824 0.960 

2 0.116 0.326 0.666 0.912 0.977 

3 0.229 0.294 0.494 0.788 0.951 

4 0.111 
(341,659) 

0.264 
(447.553) 

0.551 
(714,286) 

0.836 
(893,107) 

0.962 
(973,27) 

4 

1 0.381 0.455 0.665 0.87S 0.967 
2 0.162 0.409 0.741 0.938 0.986 

3 0.393 0.441 0.605 0.S38 0.962 

4 0.161 
(237,763) 

0.366 
(332,668) 

0.657 
(594,406) 

0.879 
(819,181) 

0.969 
(945,55) 
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Table 2. continues: 

p = 0.25 Test 
(A) 

Mi2 0 1 2 3 4 

0 

1 0.044 0.140 0.399 0.756 0.957 

2 0.054 0.147 0.418 0.760 0.928 

3 0.045 0.128 0.378 0.750 0.950 

4 0.035 
(536,464) 

0.130 
(680,320) 

0.399 
(878,122) 

0.753 
(974,26) 

0.957 
(996,4) 

1 

1 0.061 0.129 0.377 0.728 0.942 
2 0.053 0.180 0.464 0.793 0.948 

3 0.061 0.138 0.378 0.744 0.947 

4 0.044 
(534,466) 

0.136 
(611,389) 

0.386 
(800,200) 

0.735 
(954.46) 

0.943 
(990,10) 

2 

1 0.122 0.171 0.389 0.727 0.936 
2 0.061 0.203 0.517 0.828 0.958 

3 0.117 0.186 0.406 0.748 0.945 

4 0.067 
(462,538) 

0.155 
(475.525) 

0.405 
(711,289) 

0.741 
(886,114) 

0.937 
(974,26) 

3 

1 0.250 0.250 0.447 0.751 0.937 
2 0.077 0.242 0.566 0.854 0.968 

3 0.219 0.270 0.458 0.765 0.947 

4 0.115 
(366,634) 

0.198 
(335.665) 

0.465 
(545,455) 

0.774 
(787,213) 

0.942 
(924,76) 

4 

1 0.400 0.397 0.560 0.802 1     0.949 
2 0.094 0.297 0.608 0.883 0.976 

3 0.383 0.414 0.562 0.805 0.951 

4 0.168 
(293,707) 

0.278 
(218,782) 

0.552 
(386,614) 

0.815 
(646,354) 

0.952 
(841,159) 
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Table 2. continues: 

p = 0.50 Test 

M12 0 1 2 3 4 

0 

1 0.044 0.161 0.481 0.865 0.992 
2 0.055 0.166 0.501 0.828 0.969 

3 0.046 0.128 0.379 0.752 0.954 

4 0.048 
(498,502) 

0.155 
(656.344) 

0.486 
(889,111) 

0.864 
(979,21) 

0.992 
(998,2) 

1 

1 0.065 0.122 0.407 0.793 0.983 
2 0.053 0.162 0.492 0.831 0.971 

3 0.061 0.135 0.374 0.747 0.950 

4 0.049 
(492,508) 

0.126 
(526,474) 

0.431 
(784,216) 

0.800 
(932,68) 

0.983 
(987.13) 

2 

1 0.149 0.151 0.377 0.742 0.961 
2 0.050 0.166 0.497 0.839 0.972 

3 0.123 0.180 0.393 0.741 0.946 

4 0.083 
(471,529) 

0.138 
(390.610) 

0.410 
(602,398) 

0.769 
(S33.167) 

0.963 
(947.53) 

3 

1 0.294 0.232 0.397 0.723 0.942 
2 0.053 0.169 0.494 0.S37 0.973 

3 0.219 0.258 0.439 0.753 0.945 

4 0.142 
(443,557) 

0.154 
(25$.742) 

0.427 
(404.596) 

0.765 
(662.338) 

0.947 
(858.142) 

4 

1 0.489 0.371 0.474 0.733 0.936 
2 0.057 0.173 0.491 0.828 0.971 

3 0.374 0.391 0.518 0.775 0.947 

4 0.212 
(408,592) 

0.184 
(173,827) 

0.454 
(233,767) 

0.770 
(472,528) 

0.951 
(707,293) 
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Table 2. continues: 

p = 0.75 Test 

Ml2 0 1 2 3 4 

0 

1 0.044 0.244 0.738 0.989 1.000 

2 0.045 0.263 0.734 0.977 1.000 

3 0.044 0.127 0.378 0.753 0.956 

4 0.033 
(478,522) 

0.244 
(725,275) 

0.736 
(951,49) 

0.990 
(991.9) 

1.000 
(998,2) 

1 

1 0.088 0.144 0.559 0.952 1.000 
2 0.056 0.188 0.643 0.958 1.000 

3 0.054 0.125 0.369 0.745 0.951 

4 0.063 
(527,473) 

0.146 
(523.477) 

0.578 
(839,161) 

0.954 
(966,34) 

1.000 
(993,7) 

2 

1 0.238 0.135 0.425 0.880 0.999 
2 0.087 0.128 0.548 0.926 0.99S 

3 0.113 0.154 0.370 0.740 0.946 

4 0.163 
(599,401) 

0.111 
(344,656) 

0.459 
(636,364) 

0.892 
(876.124) 

0.999 
(969,31) 

3 

1 0.477 0.229 0.377 0.793 0.991 
2 0.145 0.089 0.438 0.SS3 0.996 

3 0.219 0.239 0.402 0.740 0.945 

4 0.334 
(644,356) 

0.102 
(274,726) 

0.377 
(358,642) 

0.826 
(688.312) 

0.991 
(898.102) 

4 

1 0.728 0.429 0.413 0.729 0.979 
2 0.205 0.068 0.334 0.819 0.991 

3 0.365 0.370 0.473 0.749 0.945 

4 0.523 
(687,313) 

0.152 
(268,732) 

0.309 
(163,837) 

0.768 
(407,593) 

0.982 
(740,260) 
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4 Concluding Remarks 

We considered the problem of observing seismic events for the purpose of 
distinguishing between earthquakes and explosions. We studied the case in 
which data are available at more than one station. We discussed three outlier 
tests, all based on likelihood ratio, for the cases in which there are p feature 
variables at each of m stations. The tests utilize the data in different forms: 
Test 1 treats p variables at m stations as mp variables, Test 2 combines 
the information for each of p variables at m stations, Test 3 treats each 
station separately. We also discussed a combined test, Test 4, which decides 
to use Test 1 or Test 2 based on Mahalanobis distance criterion described in 
section 1. 

It seems that Test 1 gives powers that are sometimes best and always 
comparable to the best powers, while for the other tests, scenarios existed in 
which the power was substantially lower than that for Test 1. Thus, unless m 
and p are sufficiently large to make Test 1, the full vector test, impractical, 
we recommend its use. 
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A New Test for Outlier Detection from 

a Multivariate Mixture Distribution 

Suojin Wang, Wayne A. Woodward, H.L. Gray, and Stephen Wiechecki 

ABSTRACT 

The problem of testing an outlier from a multivariate mixture distribution of several 

populations has many important applications in practice. One particular example is in monitoring 

worldwide nuclear testing, where we wish to detect whether an observed event is possibly a 

nuclear explosion (an outlier) by comparing it with the training samples from mining blasts and 

earthquakes. The combined population of seismic events from mining blasts and earthquakes can 

be viewed as a mixture of two populations. The classical likelihood ratio test appears to be not 

applicable in our problem, and in spite of the importance of this problem, little progress has been 

made in the literature. In this report we propose a simple modified likelihood ratio test that 

overcomes the difficulties in the current problem. Bootstrap techniques are used to approximate 

the distribution of the test statistic. The advantages of the new test are demonstrated via 

simulation studies. Some new computational findings are also reported. 
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1. Introduction 

An extremely important practical problem is that of monitoring worldwide nuclear testing, 

where we wish to detect whether an observed seismic event may be a nuclear explosion by 

comparing it with the training samples obtained from previous seismic activity in the region. In 

this case, the training data will often be composed of data which are a composite of mining 

explosions and earthquakes. Usual methods of outlier detection typically focus on the setting in 

which observations are tested as outliers from a single population. However, in the case 

considered here, there are two populations, and we wish to test whether a seismic event should be 

considered to be an outlier from either or both of the populations. Actually, these results are 

applicable to two or more populations but we focus on the case of two. Another point of interest 

is the fact that the setting considered here differs from a common outlier scenario in which a 

sample is given and the observations from the sample are tested to determine whether they should 

be considered as outliers from the population from which the sample was obtained. This, 

however, is not the scenario considered here. Specifically, in our setting, "pure" samples from the 

populations in question are available, and our desire is to test a new observation as an outlier from 

these populations. We will refer to this testing procedure as outlier testing throughout the report. 

The classical method for outlier detection of the type we are addressing is the likelihood 

ratio test (Wilks (1963), Caroni and Prescott (1992)), usually under the normality assumption for 

the multivariate distributions of the training sample population and the outlier population, and 

under the assumption of equal covariance of the two populations under the alternative hypothesis. 

The resulting test is essentially the Hotelling's T2 test (see Anderson (1984)). In our current 

problem, because of the fact that there is not a single multivariate normal population associated 

with the training sample, these assumptions are not satisfied. Thus, a direct application of the 

standard likelihood ratio test does not seem possible. In spite of the importance of this problem, 

to our knowledge little progress has been made in the literature. Baek et al. (1992) recently 

considered the outlier testing in the seismic setting discussed here but in the special case in which 

seismic events are tested as outliers from a single population, usually earthquakes.  Baek et al. 
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(1992) used a bootstrap approach to ascertain the distribution of the likelihood ratio when the 

multivariate distribution associated with the training sample has both continuous components and 

discrete components that have a finite number of possible outcomes. Some assumptions, such as 

equality of covariances, are imposed to link the training sample population and the outlier 

population. It is possible to apply the test of Baek et al. sequentially to each training sample 

population, but this can be cumbersome, e.g. the training sample populations often have different 

covariance structures. Furthermore, this procedure would result in substantial loss of power. 

In this report we consider an approach to the practical problem at hand by considering 

the combined population of seismic events of mining blasts and earthquakes as a mixture of two 

populations. We propose a simple modified likelihood ratio test using bootstrap resampling that 

appears to perform well in this setting. The methodology is presented in Section 2 for testing 

outliers from a mixture population consisting of m components. Some numerical procedures are 

addressed, including the use of the bootstrap for approximating the distribution of the test statistic 

in Section 3. We also describe how the intensive computing time required for the bootstrap 

resampling can be reduced without loss of accuracy when the training sample size is relatively 

large. Section 4 provides the results of empirical studies. Some concluding remarks are given in 

Section 5. 

2. The Methodology 

Suppose we have a mixture distribution II of m populations, IL;, i = 1,..., m. In the 

nuclear testing example mentioned above, m = 2 for mining explosions and earthquakes. Let d 

be the dimension of the variables from the mixed population n, and for clarity in the presentation 

assume all the distributions are continuous. Note that extensions to discrete or mixed cases are 

mainly a matter of notational adjustments. The density of the mixture distribution is 
TO 

/(*; 0) = £>&• Or; 0;), (1) 
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where pi > 0 are mixing proportions with ^ p» = 1, 9i are the densities of 11», 0* are unknown 
t=i 

parameter vectors, 9 = (pi,...,pm, ffly...,ffm)'zaAx = (xu...,xdy. In the nuclear monitoring 

scenario, we wish to test whether a new seismic event is an outlier to the mixture of earthquakes 

and mining explosions. More generally, we wish to be able to test whether a new observation is 

an outlier from the mixed population II. 

Assume that we have a random training sample of size n from the mixture population 

Xlt...tXneTL, 

and that we are able to identify the associated source population for nL <n members of the 

training sample. For convenience, let 

Xjt,_1+i, X^+2,■■■■)Xki elli, for i = 1, ...,m, (2) 

where 0 = fco < h < ... < km = nL, i.e.,n; = fc; - fcj_i (normally > 10) data points are 

identified to be from 11;. Additionally, we allow for the possibility that the training sample 

contains nu unlabeled observations from the mixture. In the notation of Redner and Walker 

(1984) we assume the sample X\, ...,Xn is of Type 4, i.e. the training sample consists of labeled 

and unlabeled observations. The associated n^s, i = 1, ..., m are random variables following a 

multinomial distribution, and they contain information about the mixing proportions. In this 

notation, n = nL+nu. If in fact nu = 0, then the training sample consists of only labeled 

observations and is a sample of Type 3 using the Redner and Walker notation. Now a new 

observation Xn+i is obtained. Given (2) we want to test the following hypotheses: 

-Ho : Xn+i € II 

vs. (3) 

Hi : Xn+i $. II. 

The classical likelihood ratio test statistic is the ratio of the maximized likelihood functions 

under HQ and H\.  Under HQ the sample is of Redner and Walker Type 4, i.e. we assume that 

101 



JSTi,..., Xn are as before while Xn+i is unlabeled but from the same mixture distribution as 

Xu—,Xn/That is, we assume that all n + 1 observations are from the mixture distribution 

assumed under H0 with nL of these labeled and nv +1 unlabeled. The likelihood function under 

H0is 

I / m ki \    /      n \ 
L

»V) = ,ni", n n Pi9i<xfA)}[ n /(*.;•)/(*»«;*)• 

Let h(x; a) be the density associated with the outlier population from which Xn+1 is sampled, 

where a is an unknown parameter vector. Then the likelihood function under Hi is 

Li($,a)=      ,nJ    , (ft     f[   Pi9i(Xs;eA ( f[   f(Xs;0))h(Xn+1; a).       (4) 
m!...nj Vii^ü+1 / V.4+1 / 

Difficulties arise when maximizing L\ since there is only a single observation from the outlier 

population so that generally no suitable MLE is possible for a, unless a is assumed to directly link 

to 6. Any such linkage assumption is quite questionable since we now have m individual 

populations that make up the mixture distribution. Furthermore, with only one observation it is 

impossible to do any model checking of h(x; a). To overcome these difficulties and to observe 

the fact that little information is known about the outlier population from which Xj is sampled, 

we simply use a constant density h(x) = c over its practical (finite) support. Moreover, the 

constant density is also assumed in the bootstrap procedure described below. Thus, dropping the 

constant from the likelihood ratio test statistic will not affect any test conclusions. Therefore we 

let 
. / m ki \    /     n \ 

Z'W-jsrVfin n **(*•*«( n /(*.;•)). 

which is the likelihood based on the sample X\, ...,XK from the mixture. We define a simple 

modified likelihood ratio test statistic 
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supXo(ö) 
W= e*% (5) 

sup L \{p) 

where 6 is the entire parameter space. It is easily seen that the departure of Xn+\ from / will 
reduce sup£o(0) making W small. Hence the rejection region is of the form W <Wa for some 

Wa picked to provide a level a test. Since the null distribution of W has no known closed form, 

we suggest the use of the parametric bootstrap method to approximate it, as shown in the next 

section. Based on the discussion here the use of W seems to be a reasonable approach, and in 

Section 4 we demonstrate that W performs well under all the simulation scenarios considered. 

Concluding this section, we point out that asymptotically W « f(Xn+1; 6n), as n —> oo, 

where 0n is the MLE using the training sample only. See the Appendix for the proof. Moreover, 

the bootstrap-one method described in the next section is essentially equivalent to using this 

asymptotic result. 

3.   The Bootstrap and Other Computational Procedures 

In this section we discuss numerical issues associated with the test procedure described in 

Section 3. It should be noted that often both the numerator and denominator of W in (5) may be 

difficult to obtain since the individual densities are mixture distributions. Recall also that for the 

numerator we assume that Xi,...,Xn can be identified with their component population, but 

Xn+i is only known to be from the mixture, not the exact component. However, if we consider 

the setting of multivariate normality for each component, i.e., 

9i(x; 6i) ~ N(ui,Ei), (6) 

and thus f(x; 6) is a mixture of m multivariate normal distributions, a numerical iteration 

algorithm based on the  EM algorithm has been developed by Redner and Walker (1984), for 

maximizing LQ(6).   They extended Hosmer's (1973) algorithm for the case of two univariate 

normal components to the multivariate normal components setting, and in our simulation studies, 
we have adapted their method.   Note that with (6), supL i(0) is easily obtained.   Using the 
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resulting estimator 0n as an initial value in the numerator, it only takes at most a few steps to 

obtain convergence. 

We now turn to bootstrapping the null distribution of W. We will employ the parametric 

bootstrap based on the training sample Xi,...,Xn. The following algorithm is used which 

mimics the original sampling plan. 

Step 1: Use (2) to obtain (#, %, %) for i = 1, ...,m . 

Step 2: For each integer 6, b = 1,..., B, draw a sample of size nL from the multinomial 

distribution with p= (pj, ...3m)'- We observe the frequencies n^, n£L, ..., 

and n^L where n*L + n*L + • • • + n^L = nL. Additionally, we draw a sample 

of size nv from the same multinomial distribution resulting in frequencies n *v, 

n*j,..., and nm^ where n *j + n£, + • • • + n^v = nv. 

Step 3: Draw samples of size riband n^ from N(ui, Ei) for i = 1,..., m. The nL 

observations associated with frequencies nb
iL, i = 1, ..., m are treated as labeled 

samples in the analysis, while the n\j observations corresponding to n^, 

i = l, ..., m are treated as unlabeled observations. These resampled data are 

used to compute the test statistic in (5). This test statistic is 

denoted by W*h. 

Step 4: Draw a new, (n + l)st, observation from the empirical mixture by randomly 

selecting a single observation from the multinomial distribution in Step 2. This 

multinomial will essentially select a component i between 1 and m, and we 

generate an observation from the associated N(ui, £j) distribution. 

Step 5: Repeat Steps 2 to 4 B times (b = 1,..., B).  Then define Wa to be the 

(100a)th percentile of all W6*. Specifically, if a = j/(B +1), then Wa is 

the jth smallest value of {W*b} ^ (see McLachlan, 1987). Statistical decisions 

can then be made. 
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Notice that when n is large the bootstrap scheme may require considerable computing 

time. However, when ri{ are not very small, this computational burden can be avoided by 

employing an approximate bootstrap scheme, called bootstrap-one. This technique uses the 

original training sample in Steps 2 and 3 for all b = 1,..., B. It effectively eliminates these two 

steps and many calculations in obtaining Wa- 

The bootstrap-one method conceptually approximates the conditional distribution of W 

given Xi,...,Xn. When all n; are relatively large, the conditioning effect is minimal. The 

accuracy and advantages of the bootstrap-one method are among the things studied in simulations 

which are discussed in the next section. 

4. Empirical Studies 

In this section we report some results of a simulation study to illustrate the performances 

of the new methods. In these simulations we focus on the case in which all training sample 

observations are labeled, i.e. nu = 0. 

Example 1. In this example, we choose m = 1, d = 2, and n = 40 so that the training sample 

is from a bivariate N(p, E), where 

were used. Obviously, in this case since there is only one component in the "mixture", all 

observations in the training sample can be labeled, i.e. nu = 0. The reason for choosing m = 1 is 

that in this case it is easy to apply the standard likelihood ratio test assuming that the outlier 

population is normal with the same covariance E. In this case, there is a single training sample of 

size n and an observation -X^to be tested as an outlier. Baek et al. (1992) discusses the 

generalized likelihood ratio test in this setting. In particular, the likelihood ratio statistic is given 

by 
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sup Lo(0) 
A =   g€9

r.,    , , (8) 
sup L\{o,a) 

where L\ (6, a) is given in (4) and a is related to 8 in a certain way. 

Specifically, h is the multivariate normal density associated with observation Xn+i and 

a = (/*2,£) is estimated by taking jl2 = Xn+iand taking £ to be the MLE obtained from the 

training sample. Under the normality assumption in this example, the test statistic in (8) is known 

to be distributed as Hotelling's T2 (e.g. Anderson, 1984). Baek et al. (1992) considered the 

likelihood ratio in (8), where the multivariate random variables could be composed of both 

continuous and discrete components. They approximated the distribution of A in this case using 

the bootstrap procedure described here. They applied the bootstrap procedure to the special case 

in which the distributions were multivariate normal and approximated the distribution of A using 

the bootstrap procedure. Simulations have shown that the power of the test based on the 

bootstrap is very similar to that obtained based on Hotelling's T2 in the multivariate normal case. 

In this report all tests are based on the use of bootstrap resampling to approximate the distribution 

of the test statistic. The test based on (8) will be called the "standard" likelihood ratio test. 

Instead of including L\(6, a) in the denominator of (8) in this multivariate normal setting, 

we could have used the test statistic given in (5) which is based on the use of a constant density 

h{x) = c for over its support. The test statistic using (5) will be termed the "modified" likelihood 

ratio test. For each of these tests, whenever we approximate the distribution of the test statistic 

by a full bootstrapping of n +1 observations, we will refer to this as the "full" procedure. 

Alternatively, in each case we also consider the use of the bootstrap-one technique. In Table 1 we 

denote them as "full" and "one" respectively. 

Table 1 summarizes the simulation results of the two tests. One thousand replications 

were used for each entry and we used B = 499.   The power was obtained with NI (2), 
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(-'. v5)) as the outlier population.    We have experimented with other covariance 

values, including that in (7), and similar power patterns were observed. 

First, we compare the standard and modified tests using full bootstrapping. In Table 1, it 

can be seen that the significance levels for both tests are close to the nominal level of a = .05 

with the modified tests having slightly larger levels. Additionally, the powers of the two tests are 

similar with the modified tests having somewhat larger power. Thus, the use of W in (5), which 

appropriately reflects our ignorance about the outlier population, performs as well as the full 

likelihood ratio. 

Next, comparing "One" columns to "Full" columns, we observe that the bootstrap-one has 

significance levels that are artificially high for smaller sample sizes. However, for large n (say > 

100) the significance levels are of appropriate size. For these larger sample sizes the bootstrap- 

one procedure tended to have higher power than obtained using full bootstrapping. Based on 

these results and the computational burden associated with large n suggests that the bootstrap- 

one is a viable alternative. Finally, notice that the bootstrap-one method is identical for the 

standard and new tests. In fact, the identity can be shown analytically under normality. However, 

the identity is not true in general. 

Example 2. In this example we consider the use of the likelihood ratio test to test for outliers 

from the mixture model in (1) with m — 2 and n — 60. Again we consider the case in which 

d = 2 and nu = 0, and specifically, we assume that the component densities g\ and Q<L are 

multivariate normal densities associated with a 

and 
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populations respectively. 

Case a: pi=P2 = -5. 

We examine the power of the test for detecting outliers from 

population where k = 1,..., 9. In Figure 1(a) we show data from a mixture of two populations 

with pi = P2 = 0.5 along with 5 outliers. In Figure 1(b) we show the same data with individual 

observations labeled with regard to the associated component population or outlier population. 

The outliers are indicated by solid dots. In Figure 1(c) we again show the labeled data along with 

contours of the mixture population. Finally, in Figure 1(d) we show means and contours of the 

two component populations and of the outlier population. In Figure 2 we show the contours of 

the mixture components as in Figure 1(d) along with the outlier means (1+A; - 5, 1 - (fc - 5))', 

k = 1, ...,9. Also in this figure we show the contour of the outlier population for the case 

k = 2, i.e. the mean is (- 2, 4)'. In Table 2(a) n = 60 is used and the nominal level is a = 0.05. 

As can be seen, the significance level is close to the nominal level. Whenever the outlier 

population is well separated from the component distributions of the mixture we have good power 

while as would be expected the power lowers dramatically for k near 5. The true powers for 

k = 1,2,3, and 4 are the same as those for k = 9,8,7 and 6 respectively, due to symmetry. The 

empirical results appear to verify this fact. 

Case b:pi = 0.25 and pa = 0.75. 

In this case we consider the same scenario as Case a but with pi = 0.25 and & = 0.75. 

In Figure 3 we show the plots corresponding to Figure 1 for the case in which pi = 0.25 and 

P2 = 0.75, and in Table 2(b) we show results corresponding to those in Table 2(a) for this case. 

Again, we see that the significance levels are accurate and that powers are similar to those in 

Table 2(a).   It should be noted that due to smaller pi here, there was a very small fraction 
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(< 0.2%) of all bootstrap simulation replications that did not converge with our current 

program. This problem seems to become more serious when smaller values of n are used. In our 

analysis we simply skip any bootstrap realization for which convergence was not obtained and 

generate another one. Another possible approach would be to use the starting values as final 

estimates for these bootstrap replications. 

5. Concluding Remarks 

In this report we have proposed a simple modified likelihood ratio test for multivariate 

outlier detections. This new test is not only good for use in general outlier detection problems, 

but especially applicable when the training sample population is a mixture of several populations. 

In the new test no assumption is necessary for the covariance structure or any other moments of 

the outlier population, and in fact no parametric modeling is required for the outlier population. 

Furthermore, although with weaker assumptions it is more powerful than the standard likelihood 

ratio test in the simpler non mixture situation in which the standard test applies. 

We have also investigated bootstrapping the distributions of the test statistics. The 

computationally intensive resampling method seems to be quite effective. When the training 

sample size is large, we have also suggested the bootstrap-one method, which significantly 

reduces the computing time and seems to have somewhat more power. 

It should be noted that the procedure could be extended to cover the case in which all of 

the training sample observations are unlabeled. This, however, will require dealing with issues 

such as the use of appropriate starting values and is not considered here. 
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APPENDIX 

In this appendix, we show that W « f(Xn+i; 0n), as n -+ oo, where W is given in (5). Let 

71(0) = ]n{L1(9)h 

£o(0) = ln{L0(ö)} =? m +ln{/(Xn+1;0)}. (Al) 

Suppose 0n and 0n+i satisfy the conditions that L i(0n) = sup L i(0) and Lo(0n+i) = 
~ öee 

sup Lo(Ö), respectively. Then i'Q0n+\) = 0 and? [ (?„) = 0. Thus, from 
0eQ 

t'o$n+i)   =^(?n)+^'(?„)(?„+i-Ön)+smaller terms 

= |[ln{/(Xn+1; 0)}]        +^'(?n)(?n+i -?„) + smaller terms, 
8=8„ 

we have 
?n+1-?n = Op(i), (A2) 

= U,   tQ\yn) 15 Ul U1UCI KJp\IL), OllU — 

(Al) and (A2): 

since ^(?n+1) = 0, 4|(?n) is of order Op(n), and |[ln{/(Xn+1; 0)}]       is Op(l). Now by 
u—on 

w = «p{^o(?B+i)-2'1(ön)} 

= exp{4>(ö„) + 4Ä»)ft»+l " ?») + Op(i) "7 i(?„)} 

= exp[ln{/(Xn+1;?n)}]+Op(i) 

= /(Xn+1;?n)+Op(i), 

completing the proof. 
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Table 1. Comparisons of significant level and power of the standard likelihood ratio test 
and modified likelihood ratio test, using two (Full and One) bootstrap approximations. 

n Significance Level Power 
Standard Modified Standard Modified 

Full One Full One Full One Full One 
15 .048 .118 .065 .118 .522 .729 .568 .729 
20 .048 .100 .063 .100 .541 .709 .588 .709 
25 .036 .081 .048 .081 .563 .704 .601 .704 
30 .047 .084 .051 .084 .579 .718 .609 .718 
50 .046 .064 .050 .064 .626 .696 .645 .696 
100 .056 .059 .057 .059 .646 .677 .657 .677 
150 .059 .057 .061 .057 .655 .703 .665 .703 
s.e. .007 .015 

Table 2a.   Significance level and power of new test in Example 2; 
•py = p2 = 0.5, n = 60, B = 199, 1000 replications 

Level .050 (s.e. .007) 
k 1 2 3 4 5 6 7 8 9 

Power 1.000 .984 .754 .226 .031 .231 .767 .980 1.000 
s.e. .001 .004 .014 .013 .006 .013 .014 .004 .001 

Table 2b.   Significance level and power of new test in Example 2; 
Pi = 0.25, p2 = 0.75, n = 60, B = 199, 1000 replications 

Level .055 (s.e. .007) 
k 1 2 3 4 5 6 7 8 9 

Power .999 .970 .709 .245 .042 .242 .701 .972 .999 
s.e. .001 .005 .014 .014 .006 .014 .014 .005 .001 
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