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Confined Two-Phase Incompressible Flows

T. S. Mautner
NCCOSC RDTE Division1

San Diego, CA 92152-6171

Abstract translating container. The MAC method2' 3 has been
extended to allow for variable fluid properties and

The variable density, incompressible Navier-Stokes surface tension. Results of the flow field and the
equations are solved using a technique based upon the interface motion will be presented along with estimates
Marker-and-Cell (MAC) method. The flow equations of the conservation of mass and stability requirements.
have been supplemented with the level set approach for
interface tracking, and the required modifications to the Nomenclature
MAC method are presented. This formulation has been
used to solve several example problems, for closed D divergence
containers, involving single and two-phase flows, FR Froude number = U/Lg
various boundary conditions and several types of wall Fs force due to surface tension
motion. g acceleration due to gravity

h grid cell dimension - (Ax,Ay)
Introduction L characteristic length

n unit normal vector
A survey of recent literature indicates a strong p pressure

interest in the computation of incompressible flows Re Reynolds number = UL/v
with density variations, free surfaces and bubbles rising t time
and interacting with one another and with walls-6',",`-. At time step
An integral part of these problems is the computation of At, time step due to convection
the interface between the various fluid regions. In At, time step due to viscous terms
contrast to Lagrangian methods and the use of mass-less u fluid velocity (u,v)
particles2, various interface tracking and volume-of- Uo magnitude for translating box
fluid methods have been developed and provide an u.• wall velocity
effective way to compute multi-phase flows (for U characteristic velocity
examples, see Refs. 4-7, 9-11, 13-16). We Weber number = pU2L/o

x,y Cartesian coordinates
Recently Osher and Sethian" introduced a 6 delta function

"Hamilton-Jacobi" level set formulation of the p fluid density
equations for propagating interfaces. The level set p, density ratio = p/p,
approach implicitly captures the interface location, as v kinematic viscosity
the zero level of a smooth function, rather than P dynamic viscosity
explicitly tracking the front. With this method steep tr viscosity ratio = p,/V,
fluid gradients can be handled as well as the merging ' viscous stress tensor
and breaking of fluid regions. The level set approach 0n rotation angle
has been used to study fluid instabilities in compressible a surface tension coefficient
flows and incompressible flows with flame burning, curvature
shear layers, driven cavities and bubbles. frequency

Wo over-relaxation parameter
This paper applies the level set approach"" 3 to a interface thickness

problems of fluids in closed containers with various 4) level set function
forms of wall motion such as the driven cavity and 4b level set function at previous time

'This paper is declared work of the U.S. Government and
is not subject to copyright protection in the United States.



Governine Eguations
V. = pV2b + Vp.Tu (6)

The equations of motion are the variable
density, incompressible Navier-Stokes equations'

In general the velocities computed from Eqn
(2) will not satisfy the continuity equation Eqn. (1). The

V7"U=0 (1) SOLA method does not solve an elliptic equation for

the pressure; however, the divergence free condition is
obtained by adjusting the cell pressures. The pressures

(p0), + V(na. )= are determined iteratively, and the divergence D in each
- r (2) cell is computed using the most current values of the

V + VT + p + Fvelocity components. The pressure change, Ap,
required to make the divergence equal zero is

For immiscible liquids, the density and viscosity are -(o D
constant along particle paths, thus they can be Ap = - (7)
computed using 2At { (Ax)-2 + (Ay)- 2}

Pt + ('Vr)p = 0 (3) and the new pressure, at the k(th) iteration, is

Pk. = Pik + Ap (8)

,+ (t.V)p = 0 (4)
The velocity components, at the cell faces, are

adjusted to reflect the change in pressure using the
following relationships

Using characteristic length, velocity, density and
viscosity parameters, the non-dimensional form of the k.1 k At (9
momentum equation is uij = uij + ' x (9)

Axk - 1 k A t ( 1 0
( lt -~ p .~l -P---g Ui-l'J = ui'l'j - -AXlO

(pbti) = -V(pbit) - 2-A
(5)

+ (-Vp + "-V1 t• + Fs ) k+1 k AtAp
Re vij =vi + A(11)

The Navier-Stokes equations are solved using k.1 k At
a modified form of the SOLA 3 formulation of the MAC vi1 = vij- 1  Ap (12)
method of Harlow and Welch2. The method was
modified to account for variable fluid properties, and
the finite-difference expressions for the equations
utilized the staggered MAC grid presented in Fig. 1.
Even though this formulation is for constant density where the density is evaluated at the cell faces using, for
fluids, the pressure and density are considered separate example,
terms instead of a single term, i.e. the kinematic
pressure (p/p), as in the majority of incompressible (p.i + i.j) (13)
models. Additionally, the viscosity is considered a Pi21/2j 2 2

variable in the viscous term formulation given by

2



Convergence of the pressure solution can be accelerated

by multiplying Ap by an over-relaxation parameter, w, i f 43>0

where 10o2. PPI if 43<0 (17)
p +Ap s i n (Ttcbl2a) otherwise

Since the density and viscosity change sharply

across an interface, conventional finite-difference
techniques may not be able to handle the steep and

derivatives that would occur at these points. Thus, to

capture the fluid interface, the level set technique", 3

will be used. The level set function (43) will be zero 1 if 43>0

along the interface, positive in one fluid and negative in p(43) = 9t2/PlI if 43<0 (18)

the other. The level set function is initialized as the pt+Apj sin(#t43/2a) otherwise

signed normal distance to the interface and has the form

It should be noted that both the density and viscosity

ýt + (11V)4 = 0 (14) are smoothed across the interface region in contrast

to Sussman et. al' 3 who did not smooth the viscosity
in this manner.

This equation will transport the zero level set of 43
exactly as the fluid interface moves. Also, since 43 is a Reinitialization of the distance function is

smooth function, it is more easily solved than Eqns. (3) performed using the equation

and (4) for the density and viscosity. Now, in this

formulation, the density and viscosity are defined by
qbt Sqb)/ -•qb+(e2yt (19)

if 43>0

p = P2P 1  if 3<0 (15){

(pI+p2)/P2 if 43=0 where

S(3o) - (20)

if 43>0

PP i f 43<0 (20)
= I2/P2 if 4=<0 (16) Applying the technique given by Sussman et.

al.' 3, the following expressions are used to solve Eqn.
(19)

The level set technique may develop jumps a=(43ij- i_4, )/Ax c=(4i3j-qbij-)/Ay

when interfaces interact, thus the level set function will (21)

be reinitialized to keep the distance function a distance

function. First, to prevent instabilities at the interface,

especially for large density/viscosity ratios, the density 0 if 43=0

and viscosity can be smoothed according to I - ( max(b,0) 2 +min(a,0)2 if 43<0

G(qb)= +max(d,0)2+min(c,0)2 )1/2 (22)
(p,+p 2)/2p, • : (Pl+i 2)/2pj 11-(Gmax(a,0) 2 +min(b,0) 2 if (2>O

Ap (P1-P2)/2p 1  P (1,-1t2)/2Vt +max(c,0)2 +min(d,0)2  f 42
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Using these expressions, Eqn (19) now has the form In the translating container case, an additional term was
added to the x momentum equation to account for the
coordinate translation. The term is

dok.,= ok+At S(do) G(d) (23)

- p u, 6o s i n (ot) (29)

and an iterative technique is used to drive the solution
to steady state.

and for container rotation, the gravity term becomes
The surface tension term in Eqn (2) is

F•=oic 6(d)h (24) POt sin(it) n 2 (30)(24) FR

and can be expressed in terms of the distance function Finally, at the solid walls, the level set function
as maintained a zero normal gradient. However, other

boundary conditions could have been applied.

- 1c(do) 8(4i) tV4 (25) It is well known that the explicit formulations
We

have time step limitations based upon the CFL
condition for the convective terms, the viscous terms

where the curvature is and the stiff source terms due to gravity and surface
tension. The criteria used herein are based on the

(26) recommendations in Refs. 3, 6, and 13. For example,rc(cO =7 (26) one can use

mainf IAx Ay}
At. lvi (31)

and the delta function 6(4ý) can be approximated by

and

6(4) =2 thr (27) At •. mU'injconst pReh 1  (32)
0 other- (2)AV•mnI

wise - //t

In smoothing the fluid properties and in the surface then
tension term, a reasonable value for the interface
thickness is a!52Ax. The examples in this paper were At • mi (At , Atv) (33)
obtained using a--0 and no surface tension effects were
included.

where the constant was suggested to be (3/14)."3
The boundary conditions applied to the However, a value of approximately 0.043- 0.13 was

examples in this paper are both the no-slip and slip used to obtain the time steps for the example cases. The
conditions at the solid walls. For the driven cavity time step data, obatained using Eqn. (32) exclusively,
problem, the top wall has a prescribed velocity of are shown in Table 1.

uwaiisin(wt) (28)
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Finally, the solution algorithm can be Both the velocity field and pressure contour data show
summarized as follows: the expected shift of the fluid's center of rotation due to

the time-dependent lid velocity. At the points of

Step 1. Initialize 4) to be the signed normal maximum lid velocity, the results compare well with the
distance to the interface, uniform lid velocity case. Comparison of the data in
Step 2. Initialize the fluid regions with the Figs 3 and 4 shows the shift of the velocity's center of
appropriate density and viscosity values, rotation with the change in boundary conditions.
Step 3. Compute the (u,v) velocity components
using Eqns. (5)-(6). Next, using a small density ratio, p,=0.9,
Step 4. Compute the change in pressure to constant viscosity and w=0.315, the effect of grid
obtain a divergence free flow and update the density was examined. The results for the 50x50 grid
(u,v) velocity components, Eqns. (7)-(12). are presented in Fig. 5 and the 100x100 grid results are
Step 5. Construct a new distance function by given in Fig. 6. It is clear from the time histories of the
solving Eqn. (14) to steady state. interface location and the velocity field that the solution
Step 6. Adjust the density and viscosity in the has not converged. Higher grid densities should be used
fluid regions, Eqns. (17)-(18). to determine solution convergence. Another

comparison, using the 100xlOO00 grid, was made between

Repeat steps 3-6 for each At. the results obtained using the no-slip and slip boundary
conditions. The results found in Figs. 6 and 7 once

Example Calculations again show the differences in the computed results for
the no-slip and slip boundary conditions. These

The computational method described above differences are not unexpected and should remind one
was applied to several problems involving confined of the importance of using appropriate boundary
flows. The results for a driven cavity, translating conditions. The results also show that the level set
container, rotating container and a density driven flow formulation has no problem following the interface as
will be given below. The input parameters are it moves along the cavity wall and when it wraps up due
summarized in Table 1, and the arrangement of to the rotating velocity field.
variables in a typical computational cell is shown in
Figure 1. It should be noted that, in all computations, The final driven cavity example uses density
surface tension was not imposed, g/(FR) 2=I, and the and viscosity ratios of 0.5 and 0.2 respectively and a
interface between the two fluid densities is located at frequency co=0.63. The computed results are given in
the middle of the container at t=0. Fig. 8 and show that, with this higher density ratio, the

velocity field has a large rotation confined to the lower

1. Driven Cavity density region (top) while a smaller velocity rotation
occurs in the heavy fluid region (bottom). In this case

The constant fluid property formulation of the interface had only a small oscillatory motion. When

the method was tested using a driven cavity having one increases the density ratio to 10, the fluid motion is
from 5x5 to 200x200 rectangular grids. The results almost entirely confined to the lighter (top) fluid region
compared very favorably with, for example, SOLA3  with little or no interface motion. The pr=-O.'1 results are
results. Figure 2 presents the velocity and pressure not shown here.
fields for a cavity with Re=1000 with a constant lid
velocity, and the results agree well with computations 2. Translating Container
made using a vorticity-stream function method.

The next case considered was that of a
The next case considered was the driven container, having a 2:1 aspect ratio, translating,

cavity having a sinusoidal lid velocity with frequency sinusoidally in the horizontal direction, with frequency
w=0.63 and Re=100. The frequency of oscillation c.-=0.63 and magnitudes u-=l.0 and 0.25, see Eqn. (29).
produces two complete cycles in approximately t=20 Both cases used the same density (p,--0. 5 ) and viscosity
non-dimensional time units. The results for the constant (pi=0. 2 ) ratios, and the time histories of the interface
fluid property case are a given in Figs. 3 and 4 where motion and velocity fields are shown in Figs. 9 and 10.
the no-slip and slip boundary conditions were used. From the results of the higher magnitude of oscillation

5



case shown in Fig. 9 (uo=1.0), the ability of the level Stability and Conservation
set method to follow highly convoluted interface motion
is clearly demonstrated. The interface contours look Use of the stability criteria given in Eqns.
somewhat like that of a breaking wave. In contrast, the (31)- (33) provided reasonable values for the time step
uo=0.25 case shows a gentle sloshing of the fluid. in this explicit, finite-difference computation provided

that the constant value in Eqn. (32) was reduced from

3. Rotatine Container 3/14"' to approximately 0.043-0.13. The time step
values given in Table 1 are conservative; however, the

Rotation of a rectangular container about its computation remained stable over long computation
mid-point, aspect ratio of 4: 1, was considered using the times. The computations also showed that the density
same density ratios as above but now considering a and viscosity ratios play an important role in
maximum rotation angle of 30 degrees with frequencies determining the appropriate time step. Also, an estimate
of rotation ()=0.315 and cw=0.628. The results of the of mass conservation (area in two dimensions) was
interface motion and velocity field, over time, are made by simply counting the number of cell center
plotted in Figs. 11 and 12. As before, the level set points in the positive and negative regions of the level
method follows the interface at all times and indicates set function 4ý. The maximum error results are given in
a wave breaking like shape for the &)--0.315 case. The Table 1 and were determined from the maximum area
data in Fig. 12, co=0.628, indicates that the flow has ratios greater than and less than the nominal area ratio
assumed a gentle sloshing pattern, at t=0. It is encouraging that, even for the "zero"

thickness interface, the maximum errors are less than

4. Density Driven Flow 10% with the largest errors occurring during large
distortions of the interface.

The final example considered was a
Rayleigh-Taylor instability problem. A density ratio of Conclusion
p,--0.5 and a viscosity ratio of p,=0. 2 were used where
the heavy fluid was located in the upper half of the The computed results presented above
domain. The problem was started with the application indicate successful modification of the incompressible
of a small negative velocity (v=-0.25) along the middle MAC/SOLA method to include variable density flows
1/3 of the interface. The time evolution of the interface augmented with the level set approach for interface
is given in Fig. 13 and shows the typical behavior found tracking. The finite-difference expressions followed the
by many researchers. The slight asymmetric result is work of Daly' and Hirt et. al? for the Navier-Stokes
due to the uneven number of grid cells on each side of equations and a second order formulation for the level
the mid-point along the interface. As in the many recent set method. The example problems demonstrated the
bubble computations, the interface moves smoothly ability of the method to track interface motion using a
along the wall at large times. "zero" thickness interface (1 grid cell width) for density

ratios up to 10. Higher density ratios could also be

5. Interface Resolution handled using some smoothing of the density and
viscosity across the interface, for example Eqns. (17)-

To illustrate the transition of fluid (18). The effects of grid density, wall motion and
properties across the interface, selected portions of the boundary conditions on the solution were also
interface from the rotating container at t=17 (Fig. 11) presented. Potential uses of this method could be the
and the Rayleigh-Taylor problem at t=10 (Fig. 13) are study of breaking waves and the transport of immiscible
shown in Fig. 14. It can be seen that for the "zero" material.
interface thickness used in these examples, the density
transitions over one grid cell with the zero of the level Acknowledgments
set function falling within. The interface locations and
these density contours were obtained using the data This work was supported in part by this
computed at the cell centers shown in Fig. 1. If one Center's High Performance Computing Fellowship
plots interface and density contours using node point Program and the Acoustic Analysis Branch (E. Rynne).
averaged data, the interface will be smeared over Thanks go to Dan Park for his suggestions and
approximately 3 grid cells. discussions.
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Table 1. Input parameters and error estimates for example problems.

Fig. Grid Size c)2, 0rot % Max

Example .No. h Pr lPr B. C.' At u0 , u, Error3

Driven 2 200x200 1.0 1.0 No-Slip 0.001 --=0

Cavity 0.005 u~a= 1.0

Driven 3 50x5O 1.0 1.0 No-Slip 0.005 w=0.630
Cavity 0.02 u,,=l.0

Driven 4 50x50 1.0 1.0 Slip 0.005 w=0.630

Cavity 0.02 U 1=l.0

Driven 5 50x50 0.9 1.0 No-Slip 0.005 (o=0.315 6.62/2.30
Cavity 0.02 u,=l.

Driven 6 100x100 0.9 1.0 No-Slip 0.001 co=0.315 7.96/0.19
Cavity 0.01 u,= 1.0

Driven 7 100x100 0.9 1.0 Slip 0.001 w=0.315 2.55/2.71
Cavity 0.01 u,=1.

Driven 8 50x50 0.5 0.2 No-Slip 0.005 (o=0.630 1.54/0.86
Cavity 0.02 u,= 1.0

Translating 9 100x50 0.5 0.2 No-Slip 0.005 w=0.63 3.45/1.63
Container 0.02 Uo=1.0

Translating 10 100x50 0.5 0.2 No-Slip 0.005 o=0.63 0.96/0.77
Container 0.02 u,=0.25

Rotating 11 200x50 0.5 0.2 No-Slip 0.005 tY=0.315 7.58/2.50
Container 0.02 0•=30 _

Rotating 12 200x50 0.5 0.2 No-Slip 0.005 w--0.628 0.77/0.38
Container 0.02 0t=30°

Rayleigh- 13 100x200 0.5 0.2 Slip 0.001 -...------- 2.84/5.16
Taylor 0.01

Notes: 1. B.C. - Boundary Condition
2. Frequency used in: a) Eqn(28) for Figs. 2-8, b) Eqn(29) for Figs. 9-10;

c) Eqn.(30) for Figs. 11-12.
3. Max error refers to % greater/less than nominal area ratio for interface.

8
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Figure 1. Arrangement of the variables in a typical computation cell.
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Figure 2. Velocity and pressure fields at t=4.9 for a driven cavity, Re= 1000, no-
slip boundary conditions and constant fluid properties.
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Figure 3. Velocity and pressure fields at t=5 and t=lO for a driven cavity, Re=1O0,

no-slip boundary conditions and constant fluid properties.
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Figure 4. Velocity and pressure fields at t=5 for a driven cavity, Re= 100, slip

boundary conditions and constant fluid properties.
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Figure 10. Interface location and velocity field for a translating box, Re.=l00,
11o=0.25, p,=0.5 and p,=0.2.
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Figure 11. Interface location and velocity filed for a rotating box, Re= 100,
8Ot=3O*sin(O.3l5.t), p,=0.5 and gp-=O.2.
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Figure 13. Interface location for a two fluid Rayleigh-Taylor instability, pr= 0 .5

and p•=0. 2 .
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