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Confined Two-Phase Incompressible Flows

T. S. Mautner
NCCOSC RDTE Division!
San Diego, CA 92152-6171

Abstract

The variable density, incompressible Navier-Stokes
equations are solved using a technique based upon the
Marker-and-Cell (MAC) method. The flow equations
have been supplemented with the level set approach for
interface tracking, and the required modifications to the
MAC method are presented. This formulation has been
used to solve several example problems, for closed
containers, involving single and two-phase flows,
various boundary conditions and several types of wall
motion.

Introduction

A survey of recent literature indicates a strong
interest in the computation of incompressible flows
with density variations, free surfaces and bubbles rising
and interacting with one another and with walls'4101215,
An integral part of these problems is the computation of
the interface between the various fluid regions. In
contrast to Lagrangian methods and the use of mass-less
particles?, various interface tracking and volume-of-
fluid methods have been developed and provide an
effective way to compute multi-phase flows (for
examples, see Refs. 4-7, 9-11, 13-16).

Recently Osher and Sethian!' introduced a
"Hamilton-Jacobi” level set formulation of the
equations for propagating interfaces. The level set
approach implicitly captures the interface location, as
the zero level of a smooth function, rather than
explicitly tracking the front. With this method steep
fluid gradients can be handled as well as the merging
and breaking of fluid regions. The leve! set approach
has been used to study fluid instabilities in compressible
flows and incompressible flows with flame burning,
shear layers, driven cavities and bubbles.

This paper applies the level set approach'™* to
problems of fluids in closed containers with various
forms of wall motion such as the driven cavity and

l'I‘his paper is declared work of the U.S. Government and

is not subject to copyright protection in the United States.

translating container. The MAC method*® has been
extended to allow for variable fluid properties and
surface tension. Results of the flow field and the
interface motion will be presented along with estimates
of the conservation of mass and stability requirements.

Nomenclature
D divergence
Fr Froude number = U/Lg
F force due to surface tension
g acceleration due to gravity
h grid cell dimension - (Ax,Ay)
L characteristic length
n unit normal vector
p pressure
Re Reynolds number = UL/v
t time
At time step
Aty time step due to convection
At, time step due to viscous terms
u fluid velocity (u,v)
u, magnitude for translating box
Wy wall velocity
U characteristic velocity
We Weber number = pU2L/o
X,y Cartesian coordinates
delta function
p fluid density
p: density ratio = p,/p,
v kinematic viscosity
n dynamic viscosity
U, viscosity ratio = p,/y,
T viscous stress tensor
0 rotation angle
o surface tension coefficient
X curvature
A} frequency
W, over-relaxation parameter
o interface thickness
¢ level set function
b, level set function at previous time




Governing Equations

The equations of motion are the variable
density, incompressible Navier-Stokes equations’

" V=0 6))

(pn), + V(puil) = ®
-Vp + V1 + pg + F

For immiscible liquids, the density and viscosity are
constant along particle paths, thus they can be
computed using
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Using characteristic length, velocity, density and
viscosity parameters, the non-dimensional form of the
mormentum equation is

(o0, = -V(ptn) - ££
L 5)
+ (-Vp + =Vt + F
(-Vp + == s)

The Navier-Stokes equations are solved using
a modified form of the SOLA?® formulation of the MAC
method of Harlow and Welch®. The method was
modified to account for variable fluid properties, and
the finite-difference expressions for the equations
utilized the staggered MAC grid presented in Fig. 1.
Even though this formulation is for constant density
fluids, the pressure and density are considered separate
terms instead of a single term, i.e. the kinematic
pressure (p/p), as in the majority of incompressible
models. Additionally, the viscosity is considered a
variable in the viscous term formulation given by

Vo= V% + WuVa (6)

In general the velocities computed from Egn
(2) will not satisfy the continuity equation Eqn. (1). The
SOLA method does not solve an elliptic equation for
the pressure; however, the divergence free condition is
obtained by adjusting the cell pressures. The pressures
are determined iteratively, and the divergence D in each
cell is computed using the most current values of the
velocity components. The pressure change, Ap,
required to make the divergence equal zero is

A -w, D
p = 7
2At {(Ax)? + (Ay)?) @
and the new pressure, at the k(th) iteration, is
Pil:;l = F’i:,F + Ap (®)

The velocity components, at the cell faces, are
adjusted to reflect the change in pressure using the
following relationships

5= e Shap ©
Ul =ty - —AA—;AP (10)
TR -AA—;AP (1
Vi = Vigr - -ﬁ—;AP (12)

where the density is evaluated at the cell faces using, for
example,

Pinny = By 7 P +2pi"“') (13)




Convergence of the pressure solution can be accelerated
by multiplying Ap by an over-relaxation parameter, ,,
where 1,52,

Since the density and viscosity change sharply
across an interface, conventional finite-difference
techniques may not be able to handle the steep
derivatives that would occur at these points. Thus, to
capture the fluid interface, the level set technique'"?
will be used. The level set function (¢) will be zero
along the interface, positive in one fluid and negative in
the other. The level set function is initialized as the
signed normal distance to the interface and has the form

¢, + @NP =0 (14)

This equation will transport the zero level set of ¢
exactly as the fluid interface moves. Also, since ¢ is a
smooth function, it is more easily solved than Eqns. (3)
and (4) for the density and viscosity. Now, in this
formulation, the density and viscosity are defined by

1 if ¢>0
P./P, if ¢<0 (15)
(p1+p2)/p2 if ¢=0

©
[}

1 if ¢>0
MoKy if ¢<0 (16)
(M *up, if $=0

The level set technique may develop jumps
when interfaces interact, thus the level set function will
be reinitialized to keep the distance function a distance
function. First, to prevent instabilities at the interface,
especially for large density/viscosity ratios, the density
and viscosity can be smoothed according to

p
Ap

(P1+P2)/291 B= (p1+p2)/2p1
(py-p2p, Ap = (u,-p)/2u,

1 if ¢>0
p(d) =4 PP, if <0 (7
p+Apsin(nd/2a) otherwise

and

1 if ¢>0
n(d) =4 upfh, if $<0  (18)
fp+Ap sin(nd/2a) otherwise

1t should be noted that both the density and viscosity
are smoothed across the interface region in contrast
to Sussman et. al'® who did not smooth the viscosity
in this manner.

Reinitialization of the distance function is
performed using the equation

o, - S { 1-/0707 | (19)

where
&
;

S(Cbo) = (20)

Applying the technique given by Sussman et.
al.’?, the following expressions are used to solve Eqn.

(19)

a=(¢ij—¢i—lj)/Ax C=(¢§J"¢iJ_1)/Ay

b=(¢i»lJ—¢iJ)/Ax d=(¢iJ+1—¢iJ)/Ay @D
(. if =0
1-( max(b,0)>+min(a,0)® if <0

G(d) ={ +max(d,0)>+min(c,0? )'? (22)

1-( max(a,02+min(b,0® if $>0
+max(c,0)*+min(d,0)* }*




Using these expressions, Eqn (19) now has the form
PFl= k+At S(d,)) G($) (23)

and an iterative technique is used to drive the solution
to steady state.

The surface tension term in Eqn (2) is
F =ox&d)n (24)

and can be expressed in terms of the distance function
as

-v;—ex@) 5(¢) Vb (25)

where the curvature is

x<¢)=<7-{%} 26)

G

and the delta function &(¢) can be approximated by

51:{1 +cos(nd/a)}ia  Ipe

5(9) = 27

other-
wise

In smoothing the fluid properties and in the surface
tension term, a reasonable value for the interface
thickness is ®<2Ax. The examples in this paper were
obtained using =0 and no surface tension effects were
included.

The boundary conditions applied to the
examples in this paper are both the no-slip and slip
conditions at the solid walls. For the driven cavity
problem, the top wall has a prescribed velocity of

U,y Sin(wt) (28)

In the translating container case, an additional term was
added to the x momentum equation to account for the
coordinate translation. The term is

-pu,wsin(wt) (29)

and for container rotation, the gravity term becomes

: g
pB,, sin(wt) = (30)

R

Finally, at the solid walls, the level set function
maintained a zero normal gradient. However, other
boundary conditions could have been applied.

It is well known that the explicit formulations
have time step limitations based upon the CFL
condition for the convective terms, the viscous terms
and the stiff source terms due to gravity and surface
tension. The criteria used herein are based on the
recommendations in Refs. 3, 6, and 13. For example,
one can use

in jJAx A
At g JUR)AX Ay
+ 77 {Iul v 1)
and
H 2
At, < M{const pReh } (32)
Q v
—# ya
then

At s min (At, , At) (33)
H1 L

where the constant was suggested to be (3/14)."
However, a value of approximately 0.043- 0.13 was
used to obtain the time steps for the example cases. The
time step data, obatained using Egn. (32) exclusively,
are shown in Table 1.




Finally, the solution algorithm can be
summarized as follows:

Step 1. Initialize ¢ to be the signed normal
distance to the interface.

Step 2. Initialize the fluid regions with the
appropriate density and viscosity values.

Step 3. Compute the (u,v) velocity components
using Eqns. (5)~(6).

Step 4. Compute the change in pressure to
obtain a divergence free flow and update the
(u,v) velocity components, Eqns. (7)-(12).
Step 5. Construct a new distance function by
solving Eqn. (14) to steady state.

Step 6. Adjust the density and viscosity in the
fluid regions, Eqns. (17)-(18).

Repeat steps 3-6 for each At.

Example Calculations

The computational method described above
was applied to several problems involving confined
flows. The results for a driven cavity, translating
container, rotating container and a density driven flow
will be given below. The input parameters are
summarized in Table 1, and the arrangement of
variables in a typical computational cell is shown in
Figure 1. It should be noted that, in all computations,
surface tension was not imposed, g/(Fg)*=1, and the
interface between the two fluid densities is located at
the middle of the container at t=0.

1. Driven Cavity

The constant fluid property formulation of
the method was tested using a driven cavity having
from 5x5 to 200x200 rectangular grids. The results
compared very favorably with, for example, SOLA®
results. Figure 2 presents the velocity and pressure
fields for a cavity with Re=1000 with a constant lid
velocity, and the results agree well with computations
made using a vorticity-stream function method.

The next case considered was the driven
cavity having a sinusoidal lid velocity with frequency
©=0.63 and Re=100. The frequency of oscillation
produces two complete cycles in approximately t=20
non-dimensional time units. The results for the constant
fluid property case are a given in Figs. 3 and 4 where
the no-slip and slip boundary conditions were used.

Bath the velocity field and pressure contour data show
the expected shift of the fluid's center of rotation due to
the time-dependent lid velocity. At the points of
maximum lid velocity, the results compare well with the
uniform lid velocity case. Comparison of the data in
Figs 3 and 4 shows the shift of the velocity’s center of
rotation with the change in boundary conditions.

Next, using a small density ratio, p,=0.9,
constant viscosity and w=0.315, the effect of grid
density was examined. The results for the 50x50 grid
are presented in Fig. 5 and the 100x100 grid results are
given in Fig. 6. It is clear from the time histories of the
interface location and the velocity field that the solution
has not converged. Higher grid densities should be used
to determine solution convergence. Another
comparison, using the 100x100 grid, was made between
the results obtained using the no-slip and slip boundary
conditions. The results found in Figs. 6 and 7 once
again show the differences in the computed results for
the no-slip and slip boundary conditions. These
differences are not unexpected and should remind one
of the importance of using appropriate boundary
conditions. The results also show that the level set
formulation has no problem following the interface as
it moves along the cavity wall and when it wraps up due
to the rotating velocity field.

The final driven cavity example uses density
and viscosity ratios of 0.5 and 0.2 respectively and a
frequency w=0.63. The computed results are given in
Fig. 8 and show that, with this higher density ratio, the
velocity field has a large rotation confined to the lower
density region (top) while a smaller velocity rotation
occurs in the heavy fluid region (bottom). In this case
the interface had only a small oscillatory motion. When
one increases the density ratio to 10, the fluid motion is
almost entirely confined to the lighter (top) fluid region
with little or no interface motion. The p,=0.1 results are
not shown here.

2. Translating Container

The next case considered was that of a
container, having a 2:1 aspect ratio, translating,
sinusoidally in the horizontal direction, with frequency
«©=0.63 and magnitudes u=1.0 and 0.25, see Eqn. (29).
Both cases used the same density (p=0.5) and viscosity
(1,=0.2) ratios, and the time histories of the interface
motion and velocity fields are shown in Figs. 9 and 10.
From the results of the higher magnitude of oscillation




case shown in Fig. 9 (u,=1.0), the ability of the level
set method to follow highly convoluted interface motion
is clearly demonstrated. The interface contours look
somewhat like that of a breaking wave. In contrast, the
u,=0.25 case shows a gentle sloshing of the fluid.

3-M

Rotation of a rectangular container about its
mid-point, aspect ratio of 4:1, was considered using the
same density ratios as above but now considering a
maximum rotation angle of 30 degrees with frequencies
of rotation w=0.315 and w=0.628. The results of the
interface motion and velocity field, over time, are
plotted in Figs. 11 and 12. As before, the level set
method follows the interface at all times and indicates
a wave breaking like shape for the w=0.315 case. The
data in Fig. 12, v=0.628, indicates that the flow has
assumed a gentle sloshing pattern.

4. Density Driven Flow

The final example considered was a
Rayleigh-Taylor instability problem. A density ratio of
p=0.5 and a viscosity ratio of p=0.2 were used where
the heavy fluid was located in the upper half of the
domain. The problem was started with the application
of a small negative velocity (v=-0.25) along the middie
1/3 of the interface. The time evolution of the interface
is given in Fig. 13 and shows the typical behavior found
by many researchers. The slight asymmetric result is
due to the uneven number of grid cells on each side of
the mid-point along the interface. As in the many recent
bubble computations, the interface moves smoothly
along the wall at large times.

5. Interface Resolution

To illustrate the transition of  fluid
properties across the interface, selected portions of the
interface from the rotating container at t=17 (Fig. 11)
and the Rayleigh-Taylor problem at t=10 (Fig. 13) are
shown in Fig. 14. It can be seen that for the “zero”
interface thickness used in these examples, the density
transitions over one grid cell with the zero of the level
set function falling within. The interface locations and
these density contours were obtained using the data
computed at the cell centers shown in Fig. 1. If one
plots interface and density contours using node point
averaged data, the interface will be smeared over
approximately 3 grid cells.

Stability and Conservation

Use of the stability criteria given in Egns.
(31)- (33) provided reasonable values for the time step
in this explicit, finite-difference computation provided
that the constant value in Eqn. (32) was reduced from
3/14" to approximately 0.043-0.13. The time step
values given in Table 1 are conservative; however, the
computation remained stable over long computation
times. The computations also showed that the density
and viscosity ratios play an important role in
determining the appropriate time step. Also, an estimate
of mass conservation (area in two dimensions) was
made by simply counting the number of cell center
points in the positive and negative regions of the level
set function ¢. The maximum error results are given in
Table 1 and were determined from the maximum area
ratios greater than and less than the nominal area ratio
at t=0. It is encouraging that, even for the “zero”
thickness interface, the maximum errors are less than
10% with the largest errors occurring during large
distortions of the interface.

Conclusion

The computed results presented above
indicate successful modification of the incompressible
MAC/SOLA method to include variable density flows
augmented with the level set approach for interface
tracking. The finite-difference expressions followed the
work of Daly’ and Hirt et. al> for the Navier-Stokes
equations and a second order formulation for the level
set method. The example problems demonstrated the
ability of the method to track interface motion using a
“zero” thickness interface (1 grid cell width) for density
ratios up to 10. Higher density ratios could also be
handled using some smoothing of the density and
viscosity across the interface, for example Eqgns. (17)-
(18). The effects of grid density, wall motion and
boundary conditions on the solution were also
presented. Potential uses of this method could be the
study of breaking waves and the transport of immiscible
material. -
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Table 1. Input parameters and error estimates for example problems.

Fig. | Grid Size W%, B % Max
Example .No. h P, T B.C.! At Uy, Wy Error’
Driven 2 200x200 1.0 1.0 No-Slip 0.001 w=0 |
Cavity 0.005 u,,=1.0
Driven 3 50x50 1.0 1.0 No-Slip 0.005 ©=0.630 | ----eeem-
Cavity 0.02 u,,,=1.0
Driven 4 50x50 1.0 1.0 Stip 0.005 w=0.630 | -
Cavity 0.02 Uyy=1.0
Driven 5 50x50 0.9 1.0 No-Slip 0.005 ©=0.315 6.62/2.30
Cavity 0.02 U,y=1.0
Driven 6 100x100 | 09 1.0 No-Slip 0.001 w=0.315 7.96/0.19
Cavity 0.01 Uy=1.0
Driven 7 100x100 | 09 1.0 Stip 0.001 w=0.315 2.55/2.71
Cavity 0.01 =10
Driven 8 50x50 0.5 0.2 No-Slip 0.005 ©=0.630 1.54/0.86
Cavity 0.02 u,,;=1.0
Translating 9 100x50 0.5 0.2 No-Slip 0.005 ©=0.63 3.45/1.63
Container 0.02 u=1.0
Translating 10 100x50 0.5 0.2 No-Slip 0.005 w=0.63 0.96/0.77
Container 0.02 u,=0.25
Rotating 11 200x50 0.5 0.2 No-Slip 0.005 w=0.315 7.58/2.50
Container 0.02 0,,=30°
Rotating 12 200x50 0.5 0.2 No-Slip 0.005 w=0.628 0.77/0.38
Container 0.02 0,,=30°
Rayleigh- 13 100x200 | 0.5 0.2 Slip 0.001 e 2.84/5.16
Taylor 0.01

Notes: 1. B.C. - Boundary Condition
2. Frequency used in: a) Eqn(28) for Figs. 2-8, b) Eqn(29) for Figs. 9-10;
c) Eqn.(30) for Figs. 11-12.
3. Max error refers to % greater/less than nominal area ratio for interface.
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Figure 1. Arrangement of the variables in a typical computation cell.
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Figure 2. Velocity and pressure fields at t=4.9 for a driven cavity, Re=1000, no-
slip boundary conditions and constant fluid properties.




I:;j/“/'* SN / \_.———-"74
[ e e
X 1447 Seas \J L 0040
M 777w \\Y < K oo
o L T2 J 002
Vol ((//,_\"\ \ 1 o02e
v \\\,"'l\\ H 0024
NN s oo
'.H\\\\\ \\\;:/ 7/ | \ < : :.:::
.|\\\\\\\ \\\._’__/ // { 7, ° 0.004
.\\\\\\\\\\\.s___,/ /// \ c o
LA NN S //// ' 0.004
.|\\\\\_\\\\.~.‘_./j///4f, 8 0000
.\\\\\\\\\M__/////éé,,, A -0.00¢
Coy VAN SNS—— .. $ -0.008
NEENRY \\\\\\W,‘:ﬁCii i i . \ L] ~0.012
NSNS NS ———— P A A 7 -0.018
NI RS A s -0.020
e, s -0.024
e e 4 -0.028
I 3 000
t:s'o ............. . t<5.0 2 -o.os:
1 -0.0d0
"o —_—— . = .7 ] v
oo e =~ N
1] f =000 ) Vi J\_ Lt obde
i /"‘,,—\\%\ H v
ﬁ _\\\\\\ \ l:: - 1 ooz
g’\’l-"»// i
s/ [ a 0.020
NN\ IAN AR N \ Foots
NS ANARNE '
\\\\\\“_//////////::. / ~ o e
\\\ \*////////III. C  0.004
N\\\:‘""’”/////”"" ' B a0
,\\§§\\ s AN N ooos
NN \\\\\\\,__,_.’w///// YA s -0.008
CNNNINYTTT I : on2
.::::\\\::_.———-azzzf;.., T -0.016
S 6 -00
CiIIITIIooIIIUILLL ~ 5 aon
. e e e e e +«  -002¢
t=10.0 CCiIiiiiiIi t=10. \ ? oo
1 -0.040

Figure 3. Velocity and pressure fields at t=5 and t=10 for a driven cavity, Re=100,
no-slip boundary conditions and constant fluid properties.
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1=1.0 and grid size of 50x50.
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Figure 5. Interface location and velocity field for a driven cavity, Re=100, no-slip

boundary conditions, p;
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Figure 7. Interface location and velocity field for.the driven cavity, Re=100, slip
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