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Foreword 

The Mission Statement for the Advanced Artificial Intelligence Technology 
Testbed (AAITT) program called for the AAlTT's developers "to specify, design, 
construct, demonstrate, and document a testbed which will allow its users to (1) 
easily configure numerous application suites, composed of both conventional 
and knowledge-based components, by adding, deleting, or intermixing various 
problem solving modules, (2) observe these modules' actions and interactions, 
(3) gather and later analyze statistics about the occurrence of key events; and, 
finally, in response to control strategies, distributions, and allocations in need of 
improvement, (4) rapidly change the flavor of the interactions among the suite's 
components for further study." 

Where can the motivation for the tool supporting the engineering of software 
systems described in this mission statement be found? Although examples 
come to mind in a variety of domains, one need look no further than Command, 
Control, Communications and Intelligence (C3I) to uncover just such a need to 
facilitate the development of tomorrow's Command Centers. 

Today's Command Centers were planned and built for responding to a threat 
which no longer exists in its past form. Their design was predicated around the 
notion of using large, monolithic, single-purpose systems to deal with a similarly 
large and monolithic enemy. The development of these Centers occurs over an 
extended period of time. Many of the resulting capabilities are essentially 
outdated before they are placed in operation, necessitating a constant stream of 
upgrades. This slow modernization process has not yielded significant 
improvements because, although more and more electronic systems are being 
integrated, ongoing advancements in both hardware and software are not being 
incorporated in a timely fashion. In many cases, new information processing 
technology which is commonly found within the commercial sector has not 
found its way into most Command Centers. Unique support infrastructures are 
subsequently established to overcome each Center's limitations. The 
consequence is that these Centers are neither adaptable, fully achievable, nor 
affordable. 

Despite their expense, these Centers remain plagued with difficulties. 
Interoperability is rarely achieved between the multitude of special-purpose 
systems which have arisen to support today's Command Centers and 
Commanders. Information and data flow to, and within, these Centers is 
antiquated, inflexible, and inefficient despite the upgrades being put in place. 
Resources are being expended to establish custom interchange capabilities 
which rapidly get out of date. Furthermore, the use of decision aids and tools 
has not reached the appropriate level, forcing decision makers to continue 
relying on manual methods. 

Tomorrow's requirements only compound the aforementioned problems. 
Reduced force structures will increase the pressure to "accomplish more with 



less." Diminished budgets are forcing duplicate capabilities to be eliminated 
across the services. Thus, each service will eventually have a mission and 
assigned responsibilities possessing little overlap with its peers. Regional 
conflicts, often against new and/or unknown threats, will predominate. These 
conditions point to the use of Joint Task Forces (JTFs) as the most effective 
means of response. In addition, given our nation's increasing desire to build 
coalitions among its many allies, Command Centers will be called upon to go 
beyond overseeing operations involving multiple services to directing activity 
combining the forces of various agencies, NATO members, and allied countries. 
Their respective systems must be accommodated. These coordinated 
operations will be centered at the location of the JTF CINC (Commander-in- 
Chief) because the days of "fighting the war out of the Pentagon" are over. 
Commanders are much better able to assess the situation and select the most 
appropriate course of action when they have firsthand access to the essential 
elements of information on which they will base their decisions. 

Further complicating these factors is the fact that the occurrence of multiple, 
simultaneous crises is highly likely. Each crisis may involve a variety of 
participants, changing levels of hostility, and different locations. We have 
already witnessed examples where international humanitarian operations have 
escalated into armed conflicts. Thus, to the US, the relative priorities among 
these operations will also dynamically change. The fluid nature within and 
among crises requires the capability to support varying "stand-up levels." 

It is foreseen that the military's role in responding to civil disasters at home will 
also continue to grow. The reasons for being increasingly assigned this type of 
responsibility are numerous. In addition to a successful record demonstrating 
their skills in carrying out these emergency relief operations on a world-wide 
basis, the military is best equipped to meet the challenge on our own soil due to 
the personnel, command and control structure, and materiel which they already 
possess. Decreasing budgets will not permit these capabilities to be duplicated 
between the military and civil response agencies. However, acting in this 
capacity will require the services to achieve coordination and interoperability 
with non-military entities, including the aforementioned civil agencies as well as 
commercial companies willing to lend a hand. 

Rapid crisis response, demanding immediate solutions, will be expected, 
regardless of the situation and any exacerbating circumstances. Systems 
meeting tomorrow's challenges cannot be pre-determined, pre-assembled, or 
pre-positioned. Yet the immediacy of each situation challenges us to deftly 
assemble readily-available and integrated systems without the luxury of time. 
These systems must utilize and leverage ongoing advances in information 
technology and provide portable, adaptable, rapidly (re)configurable decision 
support, integrated to operate in tandem with existing infrastructure capabilities. 
The level of operational success will be a direct function of the extent to which 
diverse,  necessary,  existing  computer hardware,  communications,  data 



processing, and decision support capabilities can be identified and rapidly 
integrated. 

The integration of existing hardware and communications systems is certainly 
an important issue. However, it is an issue already receiving a great deal of 
attention by commercial vendors implementing the foundations of tomorrow's 
networks of information systems. Additionally, efforts such as Rome 
Laboratory's Knowledge-Based Software Assistant program are addressing the 
need to support and automate the process of developing new software 
components and systems. However, swiftly establishing, adjusting, and 
dissolving decision support for the variety of situations which a JTF must face 
can only be accomplished by providing automated support for flexibly 
constructing and operating applications consisting of "legacy" (existing) 
software. There is not enough time to develop solutions from scratch. One must 
build new solutions by integrating pieces^of old solutions. This process requires 
rapid component incorporation as well as adaptable application assembly. 
Investing in this type of capability will have a multiplicative effect by fostering the 
reuse of off-the-shelf components. 

Abstracting the process of integrating legacy software into rapid component 
incorporation and adaptable application assembly is driven by a number of 
factors. 

Legacy software represents both an opportunity as well as an intimidating 
challenge. A wealth of both conventional and knowledge-based military 
software and data management capabilities exist. New systems and upgrades 
are constantly being added to the inventory. On the other hand, some subset of 
these systems are no longer being maintained. Some of these capabilities 
already have been used to establish information infrastructures supporting 
various functional areas, such as Personnel, Intelligence, Operations, Logistics, 
Plans and Policy, as well as Command, Control, And Communications. Civil 
crisis response will add the burden of interacting with non-Government 
organizations and their respective software. Capitalizing on the investment 
behind these systems is the paramount requirement. Yet, synergistically 
combining this legacy software and achieving interoperability between them 
was never considered. 

Interoperability can be achieved in many ways and at many levels. However, it 
is also important to stress that interoperability at the manual process level is 
unacceptable due to the sheer volume of data which must be captured, 
processed, and disseminated, as well as the speed at which the overall crisis 
must be adaptively managed. 

Universal data interpreters offer another approach. Here, the goal is to find a 
way to move data transparently between a variety of data sources and sinks. 
Success is achieved by identifying a universal representation and constructing 
interpreters into and out of each supported protocol.  Results have proved to be 
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limited, at best. Common representations are difficult to identify outside of very 
tightly-bounded domains. The central role which these interpreters play 
transforms the process into a system bottleneck. Semantic inaccuracies may 
begin to creep into the translation process and the introduction of even a single 
new protocol can wreak havoc. 

Reimplementation and data migration will, certainly, not provide the solution for 
these requirements. This process is, at best, prohibitively expensive, and, at 
worst, impossible to achieve. The capabilities offered by legacy software must 
be transparently available within their native user environments. Otherwise, 
decision makers will be faced with a learning curve offering lessened 
productivity and possibly counterproductive errors. 

The aforementioned approaches strive for precise solutions. Thus, they 
frequently cannot be achieved within the crucial deadlines which must be met to 
successfully provide dynamic crisis response. Furthermore, the best or most 
elegant answer may be neither possible nor desired. A sufficient solution may 
be the most worthwhile due to the brief period of time during which any given 
decision support configuration remains valid. 

The solution embodied within the notion of Rapid Component Incorporation 
calls for the use of standard, customizable, automatically-generated, reusable, 
control and information-exchange "adapters" for both new as well as existing 
components and systems. These adapters facilitate interaction with other 
similarly-equipped modules. 

The resulting modules, each of which provides an answer for a discrete portion 
of the entire solution, must be subsequently transformed into a cohesively 
operating package through the second step of the process, Adaptable 
Application Assembly. This notion implies a number of capabilities because 
one is faced with the challenge of taking a set of building blocks and turning 
them into a properly interacting whole. Thus, users must be able to specify how 
each piece will act; identify how the pieces will cooperatively interact; and, most 
importantly, gain insight into and understand why the resulting system does not 
operate exactly as required, desired, or envisioned so that corrective action can 
be taken. 

Successfully implementing Rapid Component Incorporation and Adaptable 
Application Assembly permits a "divide and conquer" strategy to be employed in 
realizing tomorrow's distributed decision support systems. This strategy is 
congruent with the fact that large, ready-made, one-of-a-kind systems do not 
offer the required level of agility. Dividing and conquering does require 
candidate components, capable of satisfying the specified requirements, to be 
initially identified and subsequently integrated. However, these disadvantages 
are far outweighed by the advantages of this approach. 

IV 



Dividing and conquering allows distributed application developers to only 
construct what is needed. The resulting system is not encumbered with 
extraneous, complicating capabilities. Each subproblem is addressed using the 
most appropriate software and hardware paradigms. Solutions are not force- 
fitted into a constrictive, homogeneous approach. Furthermore, technology 
upgrades are incorporated into the solution as they become available with 
minimal disruption. Alternate approaches are swapped in or out to facilitate 
component evaluation and solution Improvement. A total reconstruction is not 
required each time the situation requires that functionality be added or 
subtracted. More importantly, component reuse is greatly facilitated. Finally, 
this philosophy promotes investigations into competing interaction and control 
approaches allowing continuous solution refinement to occur. 

The potentially important role of the AAITT in facilitating tomorrow's distributed, 
decision support systems, such as^those found within JTF Command Centers, 
and the power wielded by a user able to effect these systems by dividing and 
conquering served to focus the development efforts throughout this program. 

The AAITT takes a just place among the limited ranks of tools which have truly 
advanced distributed systems technology. By building on the paradigm of 
"Programming in the Large" established by Cimflex Teknowledge's ABE™ 
product, the AAITT embodies a graphical Modeling, Control, and Monitoring 
methodology and associated toolkit to facilitate heterogeneous component 
integration. With the testbed, users have realized large productivity gains (> 
10x) in the tasks of Rapid Component Incorporation and Adaptive Application 
Assembly. 

By exploiting research in distributed computing, module-oriented programming, 
and object-oriented simulation, a disciplined technique for integrating both 
knowledge-based and conventional software components is now available. 
The testbed allows the performance of these integrated applications to be 
measured at various levels of granularity using substantial instrumentation. The 
result? Distributed application developers arrive at high-quality solutions 
through low-cost experimentation. 

The AAITT has been used to successfully construct applications within several 
domains by its developers. It is time for it to be examined by more distributed 
system builders as a possible paradigm shift in their work. The AAITT needs 
this trial to further gauge the effectiveness of its capabilities, the power behind 
some of which has yet to be discovered. 

Russell E. Frew, LTC, USA (Ret.) 
Director, Artificial Intelligence Laboratory 
Lockheed Martin Advanced Technology Laboratories 
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1   Summary 

Over the past 4.5 years, a team consisting of Lockheed Martin Advanced 
Technology Laboratories, Teknowledge Federal Systems, GE Corporate 
Research and Development, and dek M&TS have developed and demonstrated 
the Advanced Artificial Intelligence Technology Testbed (AAITT). This 
laboratory testbed embodies a structured development paradigm and 
associated toolkit to support the design, analysis, integration, evaluation, and 
execution of large-scale, complex, distributed software systems, composed of 
knowledge-based and conventional components, in the context of various 
USAF (United States Air Force) domains, particularly Tactical C3I (Command, 
Control, Communications, and Intelligence). 

The AAlTT's unified modeling, control, and monitoring facilities permit unrelated 
software components to be integrated without extensive re-engineering by 
allowing users to easily (1) configure various application suites; (2) observe and 
measure the behavior of applications as well as the interactions between their 
constituent modules; (3) gather and analyze statistics about the occurrence of 
key events; and (4) flexibly and quickly alter the interaction of modules within 
the application for further study. Thus, capabilities neither designed nor 
originally intended to work together can be transformed into integrated problem- 
solving suites composed of intelligent information technologies, diverse 
functional specialties, "best-of-breed" applications, off-the-shelf software, and, 
significantly, legacy systems. 

The underlying need for such a distributed system development, test, and 
evaluation environment is both powerful and ever increasing. The role and 
complexity of the various decision aids that will be prevalent throughout every 
aspect of both military and commercial operations will continue to grow in the 
future. These decision aids will be solving large, decomposable problems 
within intricate and data-rich domains. They will be composed of both 
knowledge-based and conventional software modules interacting as part of 
some predefined problem-solving strategy. The ability to iteratively build, cost- 
effectively integrate, and most importantly, deploy these multi-agent 
applications suites will depend on the existence of a facility in which these 
suites can be studied under an "electronic microscope," such as the AAITT, so 
that they can be better understood. 

The design of the AAITT was driven by the desire to provide comprehensive 
support for Component Embedders, individuals tasked with transforming stand- 
alone components into testbed-compliant modules; Application Architects, 
users responsible for taking multiple modules and assembling them into 
distributed applications; and Component Evaluators, who are interested in 
analyzing the behavior of components along multiple dimensions. A key 
concept within the testbed was that "wrappers" would be used to envelop 
components and effect communications as well as control. 



To realize the testbed, core Simulation and Database capabilities were teamed 
with a Modeling, Control, and Monitoring workstation (MCM). These items 
communicate and interact via a Distributed Processing Substrate (DPS). 
Together, they constitute the AAITT. 

The MCM supports modeling, offering users the ability to construct a graphical 
representation of an application's solution strategy. The workstation also acts 
as the testbed's control panel, permitting users to start, stop and suspend 
application or module execution. Finally, the MCM possesses measurement, 
instrumentation, and monitoring capabilities to support the synthesis, analysis, 
and evaluation of AAlTT-resident applications. 

The DPS provides distributed processing and communication capabilities that 
support the integration and concurrent execution of multiple, independent, 
knowledge-based and conventional software components across 
heterogeneous computing systems. 

Testbed development and documentation followed a tailored DoD-STD-2167A 
process. The AAITT was validated through three separate Formal Qualification 
Tests, conducted to assess the software's compliance with identified 
qualification requirements. In addition, user and programming manuals, as well 
as a week-long training course were developed. 

The completed AAITT offers a wide range of tools and capabilities, including a 
graphical approach to configuring, encapsulating, and integrating components; 
customizable, automatically-generated component wrappers providing 
immediate productivity gains; application monitoring at several levels, from 
resource usage to solution quality; and a user-customizable graphic interface 
for control and instrumentation. These features permit unparalleled advances 
in distributed system construction, such as the accelerated establishment of 
interoperable suites of scalable software tools; rapid system prototyping 
centered around adaptive component composition and reuse; as well as metric- 
based architecture and component assessments. 

Three significant demonstrations were successfully conducted during the 
course of the base program. These events presented the testbed's ability to, 
respectively, integrate and execute a basic, distributed suite of knowledge- 
based and conventional components; expand the basic suite into a large-scale 
application; and support domains other than Tactical C3I. A fourth 
demonstration, completed under the auspices of an engineering change, 
showed the AAITT providing effective support for performing "Instrumented 
Domain Experiments." 

The program's demonstrations repeatedly underscored the testbed's role in 
decreasing the software integration costs associated with distributed, 
heterogeneous applications. The second, Large-Scale Demonstration, offered 
evidence worthy of emphasis.    A distributed system composed of nine 



independent, contractor- and Government-developed components was 
integrated, debugged , and executed in only 25 days using the AAITT. In the 
absence of the testbed, a similar development effort on the ARPA/AFWL 
(Advanced Research Projects Agency/Air Force Wright Laboratory) Pilot's 
Associate program required approximately 250 days — use of the AAITT 
yielded a 10:1 integration improvement. 



2   Introduction 

This section presents the impetus for the Advanced Artificial Intelligence 
Technology Testbed program, related work existing at the time the effort was 
initiated, the team which was assembled, and the organization of this document. 

2.1 Motivation 

On 9 March 1990, the Rome Air Development Center (now called Rome 
Laboratory) issued the AAITT Request for Proposal (RFP). The Statement of 
Work contained in the RFP described the state-of-the-art in this area as follows: 

"Over the past several years RADC has been conducting research 
and development (R&D) in various subdisciplines of Artificial 
Intelligence (Al) technology and in the development of applied 
systems that embody Al technology. Typically, the research 
projects have been focused in specific areas (reasoning with 
uncertainty, planning) and have used diverse problem domains as 
a context for the research. Similarly, application projects have 
typically addressed a sub-function of some larger problem domain 
(C3 Counter Measures Battle Management Decision Aid as a sub- 
function in a Tactical Air Control System). Fielding robust systems 
that embody Al technology requires integration of several 
technical approaches, integration of subsystems, and scaling up of 
the technology in dynamic, complex, and time-constrained military 
environments. Although there are several research projects 
involving integration and scaling of Al technology, in general there 
is a lack of fundamental understanding in this area. Several 
approaches and solutions have been attempted, but an optimal or 
even sufficient solution is usually not known a priori and often not 
found until the second or third implementation. We believe an 
experimental approach is dictated. The testbed developed under 
this effort will serve as a vehicle for the integration, analysis, 
design and evaluation of large (primarily multi-agent) knowledge- 
based systems in complex military problem domains." 

This description was referring to the need for an environment that would allow 
both related and unrelated software components to be assembled into more 
complex systems than could currently be easily constructed. This environment 
would be called a testbed because it would allow for the rapid (re)configuration 
of these systems and would allow them to be instrumented so that their 
architectures and behaviors could be better understood. 

2.2 Relevant Work 

Several efforts were cited for their relevance within the RFP. The first was 
COPES (Cooperating Expert Systems), "... an analysis and design project to 



develop an architecture to support [the] integration of three specific decision 
aids to form a system of cooperative agents." This work emphasized the use of 
"wrappers" to act as intermediaries for component communication. The second 
project noted was ABE™ (A Better Environment), a software system to support 
the design and development of intelligent systems using module-oriented 
programming. ABE™ provided an excellent foundation for developing a multi- 
module application development environment. The third program mentioned 
was TAC-2, a Testbed For Integrating Cooperating Knowledge-Based Air Force 
Decision Aids. Under this effort, an architecture to support the integration of 
loosely coupled decision aids, based on the notion of a centralized router, was 
implemented. 

2.3    Team  Members 

Given this background, a combined team from the Lockheed Martin Advanced 
Technology Laboratories (ATL, formerly GE Aerospace Advanced Technology 
Laboratories), Teknowledge Federal Systems, and dek Marketing & Technical 
Services, proposed to build an environment to advance the state-of-the-art in 
distributed application development. Among their strengths, the team cited 
extensive experience in the development of distributed multi-agent systems. In 
particular, members of the team had collective responsibility for both the System 
Status module during Phase One of the Air Force Wright Laboratory Pilot's 
Associate (PA) program as well as the development of realtime system 
transition tools for that effort. In addition, ATL was also the prime contractor for 
ARPA's Submarine Operational Automation System (SOAS). Teknowledge 
Federal Systems possesses some of industry's leading authorities on 
distributed Al control strategies. USAF-related domain expertise would be 
provided by dek Marketing & Technical Services. Due to an internal transfer of 
personnel following award, GE Corporate Research and Development 
subsequently joined the original team. 

The proposed testbed would facilitate the recurring process of configuring 
application suites by permitting users to (1) add, delete, or intermix various 
problem-solving modules; (2) observe the nature of the modules' actions and 
interactions; (3) gather and, later, analyze statistics about the application, its 
constituent modules, and the occurrence of key events, to pinpoint control 
strategies and module-to-host assignments in need of improvement; and (4) 
rapidly change the flavor of the interactions among the suite's components for 
further study. 

Under the base program, three applications were developed and delivered to 
demonstrate the feasibility, scalability, and reusability of the resulting testbed, 
which is built atop ABE™ and greatly expands upon the "wrapper" concept 
described in the COPES report. Initially, the TAC-2 application was re- 
implemented within the AAITT to show feasibility. Next, the size of this 
application was tripled via the inclusion of additional, independently-developed 



components to demonstrate scalability. Finally, an application composed of 
planning- and scheduling-related components was developed to substantiate 
reusability. 

2.4    Report Organization 

This Final Report is intended to provide a complete picture of the Advanced 
Artificial Intelligence Technology Testbed program. The need for and potential 
operational use of such a testbed was discussed earlier within the Foreword. 
An executive-level description of the entire effort can be found in Section 1, 
Summary. The current, introductory section has set the stage by focusing on 
various pre-award topics. 

The organization of the remainder of the Final Report is described below. 

Section 3, AAITT Definitions, Roles, and Requirements, presents the team's 
view of both the issues to be addressed and the problems to be solved by this 
effort as well as its initial approach to defining the AAlTT's functionality. Section 
4, The AAITT Architecture, provides an overview of the solution which was 
realized by the team. Section 5, AAITT Features, describes the testbed's major 
attributes. Section 6, AAITT Applications, discusses the scenarios and 
underlying architectures of the three major applications constructed to 
demonstrate the AAlTT's capabilities under the base program. Section 7, 
Where to Find More Information, offers readers a road map to related 
documents providing amplifying data about the effort. Section 8,. Results and 
Discussion, enumerates the contract's broad range of results for both the 
technical community as well as operational users. Section 9, Conclusions, 
presents the team's perspective on what was accomplished. Section 10, 
Recommendations, suggests a number of judicious extensions to the testbed 
which would further increase its value to the USAF technical and operational 
communities. 

Appendix A, Instrumented Domain Experiments (IDEs), documents the team's 
efforts to investigate and demonstrate the AAlTT's ability to support IDEs, 
conducted under the auspices of an engineering change. Finally, the Glossary 
as well as List of Acronyms and Abbreviations will aid readers in understanding 
this Final Report. 



3   AAITT Definitions, Roles, and Objectives 

It was important to standardize terminology from the project's outset. Thus, the 
following definitions were adopted. Remembering these terms will greatly aid in 
understanding much of this Report. 

Component. A stand-alone conventional or knowledge- 
based program. 

Component Interface Manager An encapsulating software element, or 
wrapper, responsible for managing the 
interface between a component and the 
remainder of the testbed. 

Module A  (possibly  modified)  component  and 
associated component interface manager. 

Application / Subapplication An assemblage of subapplications and/or 
modules. 

Building on these definitions, the testbed team then considered, "Who are the 
testbed's users and what will they want to accomplish?" This led to the term 
'user role.' The inclusion of the word 'role' is an important distinction because a 
single Individual may, at various times, operate within one or more of these 
roles. The following user roles were identified: 

Testbed Developers The builders of the testbed software, to 
include the original program team as well 
as the eventual inheritors of the AAITT, 
responsible for maintaining and extending 
it following delivery to Rome Laboratory. 

Component Developers The  builders of the  knowledge-based 
software or conventional components 
which can be used as the constituents of a 
testbed application. These individuals 
may require some level of support from 
the testbed in cases where these 
components will be completely, or largely, 
developed within the testbed. On the 
other hand, in the case of legacy or "off- 
the-shelf" components, these developers 
will not be AAITT users. 

Component Embedders These individuals create AAlTT-compliant 
modules from stand-alone components 
using their detailed understanding of the 



testbed's control and communication 
protocols as well as varying levels of 
knowledge about the components which 
they are embedding. Possession of an in- 
depth awareness of the target application 
architecture is not always necessary 
within this role. 

Application Architects These  users  define  the  multi-module 
application architecture by identifying the 
application's constituent modules and 
subsequently specifying inter-module 
connectivity and interaction. This role 
does not require a detailed understanding 
of the AAlTT's underlying communication 
layer. Instead, the focus is on application- 
level modeling, control, and monitoring. 
Application Architects are the most likely 
to be found conducting demonstrations. 

Component Evaluators This user role determines how well one or 
more of an application's modules are 
operating along a variety of dimensions. 
The scope of these evaluations can range 
from simple issues such as resource 
utilization to complex domain-specific 
questions such as solution quality. 

Application Fielders These   individuals   take   a  completed, 
testbed-resident application and generate 
a strategy for porting it to a target 
computer configuration which may or may 
not include the AAITT. Accomplishing this 
task would require modeling the 
processing and communications 
resources available within the target 
configuration before conducting trade-off 
analyses to compare application 
architecture alternatives. 

Application Users. These customers for fielded applications 
are AAITT users only in cases where the 
Application Fielder made the decision to 
include the testbed, or some portion of it, 
as an element of his/her fielding strategy. 

8 



After identifying these user roles and understanding their respective needs, the 
decision was made to place the most emphasis on supporting Component 
Embedders, Application Architects, and Component Evaluators. This decision 
was predicated on the fact that, at least initially, these three roles would be the 
predominant users of the testbed. It was envisioned that the needs of the other 
roles could be even better understood and more effectively addressed after 
several applications were successfully constructed within the confines of the 
testbed. This is not to say that the needs of other roles would be forgotten. In 
fact, the AAlTT's initial, core set of capabilities would provide a substantial level 
of support for these other roles as well. However, in many cases, the needs of 
these roles would be met implicitly. For example, the Application User would 
still have the powerful ability to execute and control often unwieldy, distributed 
applications using the testbed. 

Figure 1 summarizes the relationships between the aforementioned user roles, 
the AAITT, components, modules, as well as the resulting applications and 
solutions produced using the testbed. 

Next, the types of questions which these user roles might pose were 
considered.  These envisioned user questions included: 

• "How do I load the application?" 

• "What is consuming most of my available resources?" 

• "Why aren't these modules talking to each other?" 

• "How is the application performing?" 

A large matrix was subsequently constructed. The rows consisted of the 
aforementioned user roles. Their questions became the columns. Whenever a 
question pertained to a particular user role, the intersecting matrix position was 
checked off. In many cases, a single question was relevant to several users. 
The completed matrix became the starting point for defining required AAITT 
functionality beyond the initial requirements stated earlier. The satisfaction of 
these requirements became the organizing principle for the Formal Qualification 
Tests used to validate the testbed software. 

Seven top-level requirements established the project's overall direction: 

1. The testbed will provide run-time communications facilities for multi- 
component applications. 

2. The  testbed  will  support  components   running  in   heterogeneous 
hardware and software environments. 
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Figure 1. Testbed User Roles and Relationships 

3. The testbed will support the concurrent execution of the multiple 
components. 

4. The AAITT testbed will support and facilitate the process of assembling, 
and integrating multi-component applications. 

5. The testbed will provide a run-time control  mechanism for multi- 
component applications. 

6. The testbed will provide run-time monitoring, as well as measurement 
and data logging to support post-processing performance analysis. 

7. The testbed will contain core Simulation and Database modules. 

10 



The full set of AAITT requirements are recorded in the AAITT Software 
Requirements Specification. Information on obtaining this document can be 
found in Section 7, Where To Find More Information. 

11 



4   The AAITT Architecture 

The AAITT program's design effort commenced after the completion of the 
testbed's requirements specification phase. This section presents an overview 
of the phase's results and begins with a discussion of the AAlTT's three major 
elements. Two additional architectural elements normally required within a 
testbed-resident application are subsequently covered. Finally, this 
architectural overview is concluded with a brief narrative of the manner in which 
distributed applications reside atop the testbed. Amplifying information can be 
found within the AAITT Software Design Document. 

4.1     Major Architectural  Elements 

The top-level AAITT architecture is shown in Figure 2. Although a typical AAITT 
Application is included as part of the diagram, the intent here is to focus on the 
testbed's three major elements: 

1. Distributed Processing Substrate (DPS), 

2. Modeling, Control, and Monitoring Workstation (MCM), and 

3. Core Simulation (LACE/ERIC) and Database (TAC-DB) modules. 

Each of these major elements is described below. 

4.1.1       Distributed  Processing Substrate 

The DPS offers distributed processing and communications capabilities that 
support the integration of multiple, independent, conventional and knowledge- 
based software components executing concurrently across heterogeneous 
computing systems. It also provides reliable, transparently-routed inter-module 
communication and supports the MCM's control and monitoring requirements. 

The Distributed Processing Substrate is composed of an underlying Distributed 
Processing and Communication System residing between the AAITT Protocol 
layer and TCP/IP. This intermediate element, a non-developmental item, was 
realized using BBN's Cronus distributed computing environment, following an 
analysis which compared six candidates using a set of pre-defined criteria as 
well as additional qualitative measures. In general, the AAITT Protocol layer 
defines both module-module and module-MCM communication. It also defines, 
among other things, how modules are to log data, suspend execution to effect 
breakpointing, and respond to control directives from the testbed. The protocol 
consists of 25 separate application, state transition, logging, breakpoint and 
CIM (Component Interface Manager)-query operations. 

12 
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4.1.2      Modeling, Control and Monitoring Workstation 

As its name implies, the MCM Workstation is an integral testbed-resident facility 
that provides the means to model, control and monitor applications. Thus, the 
workstation supports the construction of a graphical model that represents the 
application's solution strategy; acts as the testbed's control panel, permitting 
users to start, stop, as well as suspend and resume execution of the application 
via the same graphical model; and possesses measurement, instrumentation 
and monitoring capabilities to facilitate the synthesis, analysis, and evaluation 
of large-scale, multi-agent, distributed applications executing within the testbed. 
In this context, a system is monitored to collect measurements, which are 
analyzed by the application developer via instrumentation. 

Both modeling and the display of measurement information are accomplished 
at the MCM Workstation. However, as shown in the diagram, all communication 
between the MCM and an application's constituent modules for control, status, 
as well as logging purposes conforms to the AAITT Protocol and utilizes the 
testbed's Distributed Processing Substrate as a conduit. The MCM was built by 
adding Datatype, Module and Application "Frameworks" atop Cimflex 
Teknowledge's ABE™ system to support the MCM's modeling needs. Extensive 
use of ABE's existing monitoring and metrics analysis capabilities was also 
made. 

The MCM Workstation was originally hosted on a Symbolics special-purpose 
workstation. As shown in Figure 2, the MCM was later ported to a Sun™ 
general-purpose computer under the auspices of an engineering change. 

4.1.3      Core Simulation  and  Database  Modules 

The testbed's core simulation and relational database capabilities are 
implemented as integral, testbed-resident modules, that can be, but do not 
necessarily have to be, constituents of any application constructed within the 
testbed (either individually or together). 

Both modules were Government-furnished software packages. The first 
provides a generic capability for simulating objects and events within USAF C3I 
problem domains using the Rome Laboratory (RL)-developed ERIC/LACE 
simulator. The second offers an integrated and shared repository for the 
representation and maintenance of domain-specific data using the RL- 
sponsored TAC-DB database, acting as an information source for an 
application's other modules. This Oracle-based database supports SQL 
(Structured Query Language) and assists in the realization of C3I applications 
by managing unclassified intelligence data about various friendly and enemy 
units, equipment, and installations. 

14 



Table 1, below, provides a summary mapping between the AAlTT's top-level 
requirements and its Distributed Processing Substrate  (DPS);  Modeling, 
Control,   and   Monitoring   Workstation   (MCM);  and  Core   Simulation   and 
Database (Sim/DB) elements. 

Requirement DPS MCM Sim/DB 

1. The testbed will provide run-time 
communications facilities for multi- 
component applications. 

V 

2. The testbed will support components 
running in heterogeneous hardware 
and software environments. 

V V 

3.  The testbed will support the 
concurrent execution of the multiple 
components. 

V V 

4.  The AAITT testbed will support and 
facilitate the process of assembling 
and integrating multi-component 
applications. 

V 

5.  The testbed will provide a run-time 
control mechanism for multi- 
component applications. 

V 

6. The testbed will provide run-time 
monitoring, as well as measurement 
and data logging to support post- 
processing performance analysis. 

V 

7.  The testbed will contain core 
Simulation and Database modules. V 
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constituent CIM, CCC, and Component; as well as the various Operations which 
form the AAITT protocol. CIM and CCC overviews are presented below. 

Figure 3. Exploded View of Module Constituents 

4.2.1      Component  Interface  Managers 

In order for a software component to be embedded into the testbed, a model of 
how the component will interact with other modules must be constructed."This 
model  of  interaction   will  subsequently  be   embodied  within   an  AAITT 
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Component Interface Manager for that component. The CIM is analogous to the 
more commonly used term "wrapper." 

Each component's attendant CIM is specified graphically via the MCM's Module 
Framework and includes all of the module's inputs and outputs as well as any 
additional preprocessing and postprocessing steps which must be completed 
before data can be presented to or received from the component, respectively. 
The interconnected icons shown in Figure 3 are representative of a graphical 
model generated by a Component Embedder. The testbed's code generation 
capabilities transform the graphical model into executable code. 

Within the AAITT, the module's inputs and outputs are referred to as "ports." 
The CIM also contains code or "port bodies" for each of the ports that have been 
defined for the module. In addition to ports, the module's graphical model 
supports the definition of data structures ("data stores" in AAITT terminology), 
subroutines, CIM-to-Component-Communication (CCC) interfaces, breakpoints, 
and logging taps. The inclusion of each of these objects is subsequently 
reflected as additional functionality within the automatically-generated CIM. 

4.2.2      CIM-to-Component-Communication 

A critical aspect of every AAITT application is the communication mechanism 
employed between a component and its associated CIM. A number of CCC 
strategies are presently supported within the AAITT, such as: 

• UNIX Sockets 
• Files (Pipes) 
"    Cronus 
"    Direct Subroutine Call (LISP-language only) 
• Queue Variables (LISP-language only) 
o    Other Inter-Process Communication, including shared memory or 

message passing. 

The MCM's modeling mechanism provides the ability to isolate the CCC portion 
of a CIM to aid in its development and analysis. In addition, a generic, socket- 
based CCC library for UNIX-hosted components is available within the AAITT. 

4.3     AÄITT  Applications 

AAITT applications execute atop the testbed. Applications are configured as 
one or more modules. Modules are shown as the upright elements within 
Figure 2. For each module, its CIM acts as the interface between the module 
and the remainder of the testbed, including peer modules and the MCM. Within 
the CIM, the CCC acts as the bridge between the CIM and the component. 

Generally, applications can be composed of two module types. Core modules 
offer capabilities frequently required within many C3l-centered problem-solving 
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suites. Optional modules can be embedded into the testbed at the discretion of 
the Application Architect to provide additional functionality. Once a baseline 
application is created, supplementary architectures can be easily constructed, 
tested, and catalogued with minimal modification to support experimentation. 
As detailed in Appendix A, this process was used to facilitate the conduct of an 
example Instrumented Domain Experiment using the AAITT. 
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5   AAITT  Features 

The AAlTT's features are best used at the MCM Workstation. Users access it to 
model applications, compile them, specify host assignments for their constituent 
modules, as well as execute, monitor, and analyze their performance. The 
MCM Workstation acts as a control panel, permitting users to start, stop, as well 
as suspend and resume application execution via its graphical model. The 
Workstation also provides measurement, instrumentation and monitoring 
capabilities to facilitate the synthesis, analysis, and evaluation of large-scale, 
multi-agent, distributed applications executing within the testbed. 

As its name implies, the MCM Workstation provides Modeling Tools, Control 
Tools, and Monitoring Tools. This section is organized in the same manner. 

5.1     Modeling  Tools 

The MCM Workstation's Modeling Tools facilitate the graphical model 
construction process via the Application, Module, and Datatype Frameworks. 
An integral Catalog System is used to store and reuse these models. 

The Application Architect uses the Application Framework to retrieve cataloged 
module models for ensuing inclusion within an application. The Framework is 
also used to specify the links between these modules; make default module-to- 
host assignments; and save the completed application in the catalog. 

The development of graphical models for each of an application's modules is 
accomplished by the Component Embedder using the Module Framework's 
capabilities. These models can be added to the catalog and subsequently 
made available to the Application Architect. 

The Datatype Framework is used by the Component Embedder to define the set 
of basic datatypes, called "cantypes" (a contraction of "canonical types"), used 
within an application. Named sequences of required and optional cantypes are 
then assembled into "signatures" using the framework. Signatures define the 
data communicated in to, within, and out of a module. 

The Catalog System serves as a library manager for completed applications, 
modules, and datatypes. Previously constructed applications, modules, and 
datatypes can be adapted or reused to create new, or variations of existing, 
applications, modules, or datatypes. 

5.1.1       Application   Framework 

The Application Framework (AF) is a tool used by the Application Architect to 
construct new AAITT applications. Figure 4 shows a nine-module application, 
graphically modeled in an Application Framework window. Also shown is the 
Application Operations menu. 

19 
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The Application Architect starts with a concept of operations for the application 
and a catalog of modules, i.e., embedded components, and graphically 
produces a module configuration which describes the desired application. The 
result is not the application itself, but a model of the application from which the 
actual application can be constructed via compilation. It is important to note that 
the MCM Workstation uses this same graphical application diagram as the 
interface for the Application Architect or Application User to execute and control 
the application. 

5.1.1.1   Application Framework Objects 

The AF implements an object-oriented language for expressing the design of an 
application. The key elements of this design are the set of modules and the 
interconnections between them. Additional objects support runtime data 
collection and debugging. Thus, modules, connections, logging taps, and 
breakpoints constitute the Application Framework's primary objects. 

5.1.1.1.1 Modules 

The AF allows the Application Architect to select a module object for inclusion 
within an application. This selection process results in an instance of the 
module being added to an application, thereby allowing multiple instances of a 
module to exist within a single application. All module objects to be included in 
an application must have been previously built with the Module Framework and 
placed in the module catalog. Any documented runtime requirements specified 
for a module by the Component Embedder are accessible from within the AF. 
This information helps the Application Architect to specify a default host 
assignment for each module within an application. 

5.1.1.1.2 (-unnerfir 

The AF allows the Application Architect to specify connections between module 
objects delineating the flow of application-level (inter-module) messages. A 
connection is a link from an output port of the module initiating the message as 
the sender, to an input port of another module acting as the receiver. The 
message may or may not result in an acknowledgment. The behavior of a 
connection is determined by the options defined for each port associated with 
the connection as well as the signatures of those ports. 

Port connections must have compatible signatures. Signatures are compatible 
if the port parameters match in number and datatype for both initial and reply 
parameters. Corresponding parameters in each port signature may have 
different names but must be typed using the same datatype. 

Output port options define the acknowledge requirements as one of "none," 
"immediate," or "future." if "none" is specified, the sender passes data to the 
receiver and does not wait for a reply.   Any reply information which may be 



generated by the receiver is simply ignored. An "immediate" acknowledge 
requires the sender to wait indefinitely until the receiver acknowledges the 
message. Finally, choosing the "future" option allows the sender to perform 
additional processing before eventually verifying that the receiver has indeed 
acknowledged the message. 

5.1.1.1.3 Logging Taps 

Application-level logging taps provide the means to easily (1) globally enable 
and monitor the same type of taps across multiple modules, and (2) define and 
enable user-defined groups of logging taps. An Application Architect's desire to 
log all port activity would be an example of the former capability. In this case, a 
single, global enabling step would result in all modules having the logging taps 
associated with each of their ports selected. The latter capability allows the 
user to group seemingly unrelated logging taps under a single, user-named 
group to facilitate application-level debugging, monitoring, and analysis. In 
either case, the enabling of application-level logging taps results in the MCM 
Workstation individually enabling each affected logging tap on each affected 
module. 

5.1.1.1.4 Breakpoints 

Breakpoints are provided at the application level to support the global enabling 
and monitoring of breakpoints in a manner analogous to that provided for 
logging taps. Groups of similar breakpoints or user-defined groups of 
breakpoints may be defined at the MCM Workstation." The enabling of each 
application-level breakpoint results in the MCM Workstation individually 
enabling each affected breakpoint on each affected module. 

5.1.1.2   Application  Framework  Editor 

The Application Framework provides a graphical editor, referred to as the AF 
Editor, to support the Application Architect both in defining the connections 
between modules and in defining application-level logging taps and 
breakpoints. Creating an application in the AF is accomplished by initially 
identifying the specific modules to include in the desired application from the 
catalog of modules previously defined using the Module Framework. The 
connections between these modules are then specified graphically by selecting 
pairs of ports to connect. These links are checked for argument and datatype 
compatibility by the testbed to avoid the generation of illegal configurations. 

A menu-oriented approach is used to define application-level breakpoints or 
logging taps. For example, to define a new group of logging taps, the user is 
provided with a menu of available modules. Each selected module, in turn, 
provides a menu of available logging taps within that module for possible 
inclusion in the new group. Existing user-defined groups may have their 
members individually deleted using a similar menu-oriented approach. 
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Finally, the AF Editor allows the Application Architect to invoke other operations 
on the application as required, such as storing an application definition in the 
application catalog or retrieving an existing definition from the catalog. 

5.1.1.3   Distribution  Information 

Designing an application architecture requires the assignment of individual 
modules to specific computing resources within the AAITT. This process is 
supported by Distribution Information, which includes any Component 
Embedder-generated comments associated with a module. These comments 
are used to describe any hardware, language, processing, or resource 
requirements imposed by the module. The Application Framework provides the 
Application Architect with a means of reviewing this data. The Application 
Architect is, in turn, responsible for interpreting these requirements and devising 
module-to-host assignments which satisfy established goals using available 
resources. 

This Distribution Information is specified using the same menu-based selection 
of host assignments and status provided for other MCM Workstation actions. 

5.1.2      Module   Framework 

The Module Framework (MF) is the tool used by a Component Embedder to 
construct new AAITT modules. Figure 5 shows a Module Framework window 
and a menu of Module Operations. The Embedder starts with the component to 
be embedded (either actual code or a description of the code) as well as a 
concept of how that component might be used in an AAITT application and 
proceeds to construct a graphical module model. The model represents the 
Component Interface Manager, implementing the runtime interface between the 
component and the AAITT.  Figure 6 shows a Planning Module Model. 

5.1.2.1   MF Objects 

The MF implements an object-oriented language for expressing the design of a 
module. The framework separates the external specification of a module into 
two parts: (1) the manner in which the module interacts with its peers within an 
application (i.e., the module's application protocol), and (2) the manner in which 
the module interacts with the DPS as a generic AAlTT-compliant module (i.e., its 
AAITT protocol). The MF is used to graphically define, annotate, and connect 
various objects allowing the Component Embedder to express both parts of the 
module's external specification. In addition, the MF provides objects which 
define the interface to the component, the logging of various runtime data, and 
the specification of breakpoints. 
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5.1.2.1.1 Ports 

The MF provides objects called ports as the means to specify a module's 
application protocol. Each port corresponds to a specific message type that the 
module can use to communicate with its peers. An MF-resident module initially 
starts with no ports. The Component Embedder has the responsibility to 
determine and define the set of ports for the module. 

The definition of each port consists of a pair of signatures, a definition of 
options, and a port body. The port body for an input port is implemented as a 
procedure which is invoked when data transits the port. The definition of 
options associated with a port provides the user with a supplementary means of 
specifying the behavior of a port and results in additional code and/or 
comments being automatically created for the port body by the testbed's code 
generators. 

5.1.2.1.2 Operations 

Operations are used to specify a module's standard set of actions, one for each 
of the messages defined by the fixed, DPS protocol. As with ports, each 
operation consists of a pair of signatures and an implementation, which is 
called an operation body. Each operation has predetermined signatures 
established as part of the DPS protocol. The MF requires the Component 
Embedder to extend some of these operations with component-specific actions, 
and provides the option to augment others. 

An operation body defines the means for invoking a DPS operation (e.g., 
Execute, Suspend, Terminate) on a component. It is implemented as a 
procedure executed when an operation in invoked by the DPS and depends on 
the particular implementation parameters of the component. In many cases, the 
operation bodies automatically generated by the MF can be used with little or 
no modification. Just as with port bodies, the Component Embedder is 
responsible for programmatically defining the method for interfacing to the 
component and for controlling the component. Some components may not 
easily support the implementation of all DPS operations (e.g., Suspend). It is 
the responsibility of the Component Embedder to determine whether such an 
operation should generate a warning message to the calling routine or simply 
be treated as a "no-op." 

5.1.2.1.3     Subroutines 

Subroutine objects are a way of organizing code specified by the Component 
Embedder. As with ports and operations, a subroutine consists of an 
associated subroutine body. However, unlike ports and operations, subroutines 
are not part of the module's external interface. Subroutines may be used to 
encapsulate code which is called by other ports, operations, and subroutines. 
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Due to the similarity of the code used to implement ports, operations, and 
subroutines, this user-supplied code is often referred to as a "code body." 

5.1.2.1.4 Data  Stores 

Using the MF, the Component Embedder is capable of defining data stores 
which aid in the definition of port and operation bodies. Data stores can contain 
both application- and testbed-level data. Each data store definition consists of a 
name and cantype. In addition, multi-valued data stores (FIFO, LIFO and 
Sorted) possess an integer parameter indicating the maximum number of data 
values which may be stored. The special value "0" for this parameter indicates 
that the stores can contain an arbitrary number of data items. The priority 
function for sorted queues is specified dynamically at runtime and is not part of 
the data store's definition. 

Each data store provides a set of functions which can be called from within port, 
operation, or subroutine code bodies to store and retrieve its data; determine 
the number of elements it contains; as well as ascertain if it is empty or full. 

5.1.2.1.5 Logging Taps 

Module-specific logging taps, which record dynamic information about the 
module at runtime, can be defined by the Component Embedder using the 
Module Framework. These logging taps are in addition to the default logging 
taps defined implicitly within port, subroutine, and data store definitions. 

Each logging tap definition consists of a name and the signature of runtime data 
to be recorded. The logging tap definition implicitly defines a logging function 
which can be called from within a code body. Component Embedders 
determine the conditions under which a logging tap is called by placing explicit 
calls to the tap in their code. Logging taps, whether defined explicitly or 
implicitly, can have their logging activity enabled and disabled dynamically at 
runtime. 

5.1.2.1.6 Breakpoints 

Application execution can be suspended using module-specific breakpoints 
defined using the Module Framework. These breakpoints are in addition to the 
implicit breakpoints found within port, subroutine, and data store definitions. 

A breakpoint definition consists simply of a name and implicitly denotes a break 
function which can be called from within a code body. Component Embedders 
specify the breakpoint's triggering conditions by placing explicit calls to it in their 
code. 
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5.1.2.1.7     CIM-to-Componsnt-ComriiiunsGaxIon 

A generic CIM-to-Component-Communication mechanism is available from the 
Module Framework for UNIX-hosted components. This socket-based model 
can be used to exchange messages between C!Ms and their corresponding 
components. Implemented as a subroutine library, the generic CCC interface 
can be invoked from either the C!M or the component. 

5.1.2.2   Module Framework Editor 

The Module Framework provides a graphical editor, known as the MF Editor, to 
support the Component Embedder in the task of either defining new modules or 
viewing and modifying existing modules. The definition of a module in the MF 
Framework consists of interconnected graphical icons which correspond to the 
port, operation, subroutine, data store, logging tap, 'breakpoint, and CCC 
objects discussed above. 

In general, each different object type has a unique graphical representation. In 
addition, the links between these graphical objects indicate the underlying 
relationships between the entities. For example, an arrow from a data store to a 
port signifies that the port's body reads a value from the data store. 

The MF Editor allows the user to modify the module by creating new objects, 
modifying or deleting existing objects, and connecting objects. The Editor 
possesses knowledge of the legal graphical syntax of a. module model and 
prevents the Component Embedder from making illegal modifications, e.g., 
renaming or deleting standard operations defined by the DPS. 

Each graphical object placed within the model using the MF Editor results in the 
corresponding programmatic definition of that object being inserted into the 
automatically-generated code frame, or skeleton, for that module. The 
programmatic definition includes the specification of any access or monitoring 
functions required to interface code bodies with the object. 

Finally, the MF Editor allows the Component Embedder to both store a 
completed module definition in the module catalog as well as retrieve an 
existing definition from the catalog. 

5.1.3      Datatype   Framework 

The Datatype Framework is a forms-based tool used to extend the AAlTT's 
basic set of datatypes, or cantypes, as well as define signatures in terms of both 
required and optional sets of cantypes. Cantypes and signatures are saved in 
the catalog for later use by the Component Embedder. 
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5.1.3.1   Ca 

The testbed provides thirteen primitive cantypes, as shown in Table 2. These 
cantypes include integers, booleans, strings, and arrays, as well as Cronus- 
specific types that are used internally by the DPS. This basic set of cantypes 
can be extended by defining enumerations and structures. 

Datatype   Wame Description 

U16I Unsigned 16-bit integer 

S16I Signed 16-bit integer 

U32I Unsigned 32-bit integer 

S32I Signed 32-bit integer 

F32 Floating point single 

F64 Floating point double 

ENUM Enumerated type 

EBOOL Boolean 

ASC ASCII string 

ARRAY Array of some simple type 

EDATE Timestamp 

EINTERVAL Time difference 

UNDEF Application private type 

Table 2.   AAITT Canonical Types 

5.1.3.2   Signatures 

Signatures define the information which is passed between modules as well as 
the information passed to objects inside the module. A signature is a collection 
of named arguments. Each argument is either required or optional. It should be 
noted that each port and internal object actually require two signatures. The 
first defines the data passed in, while the second defines the data returned. 
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5.1.4      Catalog  System 

The MCM Workstation provides a Catalog which includes applications defined 
with the Application Framework, modules created with the Module Framework, 
as well as cantypes and signatures defined using the Datatype Framework. 

5.1.4.1 Structure 

The Catalog is an abstract representation of a file system directory, allowing the 
Component Embedder or Application Architect to organize AAITT entities 
without having to be familiar with the underlying operating system file structure 
by managing all of the required details. The catalog hierarchy corresponds 
precisely to the underlying directory structure. A catalog specifies the directory 
in the file system that corresponds to the root of a catalog hierarchy. Thus, each 
catalog corresponds to a directory "tree" in the file system. 

The catalog supports a user-defined hierarchy of files to provide the Application 
Architect with the freedom to separate stable configurations from experimental 
or developmental configurations. It is the responsibility of the Application 
Architect to define, maintain, and organize this catalog to support the needs of 
all AAITT users. 

5.1.4.2 Version  Control 

Version control is offered for the Catalog. However, the versioning mechanism 
provided by the file system of the computer used to host the MCM Workstation 
directly determines the extent of this capability. 

5.2     Control 

Control Tools allow the Application Architect or Application User to control and 
interrogate AAITT applications. The selection of a previously-defined AAITT 
application causes the application's graphical representation to be displayed. 
This graphic display becomes the control interface for the application at the 
MCM. The interactive control interface serves the dual purpose of displaying 
application status as well as providing the means to control either the entire 
application or individual modules. 

5.2.1       Status   Display 

The MCM Workstation's Control Tools provide the Application Architect or 
Application User with a continuously-updated graphical display of module 
status for the selected application. Figure 7 shows an MCM Control Tools 
display along with the MCM Control Tools menu. The status of each module 
within the application as well as the connections between modules is indicated 
graphically as described in Table 3. 
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Status Corresponding   Display 

Application Selected The model of the application is displayed with 
low-contrast or dashed borders and labels. 
Connections are also shown with the same low- 
contrast representation. 

CIM Loaded A module is said to have its CIM Loaded once 
the CIM has been distributed to the assigned 
host and the assigned host is executing the CIM. 
This state is represented graphically with a solid 
border for the module icon. 

CIM Connected A module is in the CIM Connected state after 
performing any initialization steps required to 
establish connectivity between that CIM's output 
ports and any other CIMs in the application. 
This state is represented by showing the 
relevant connection as a solid line. 

Loaded A module has been loaded when the CIM has 
loaded the associated component on the 
assigned host computer.  A loaded module is 
represented graphically by a module icon with a 
dark/solid border and dark/solid text. 

Initialized An initialized module is represented graphically 
with dark/solid/thick borders and text and a low- 
contrast background. 

Running An executing module (CIM and component) is 
indicated by highlighting the entire graphic icon 
for the module. 

Paused A paused module is shown by altering either the 
module's border or entire icon. 

Table 3.   Status Display Descriptions 

5.2.2      Compile / Assign Modules 

The executable CIM for each module within an application is generated as a 
result of compiling the application model using the Control Tools. Figure 8 
shows the MCM Control Tools menu used to compile applications as well as a 
Host Assignment window for assigning modules to host machines. 
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The AAITT compilation process requires three items: the definitions of each 
module in the application; the datatype definitions referenced by each module; 
and the links defined for the application. 

An application model may be developed entirely at the MCM Workstation, 
without involving the specific host computers associated with each module in 
the application. However, compiling the application model to generate CIMs for 
each module requires access to some or all of the hosts due to local 
compilation activity. 

The compilation process uses the application and module models, along with 
any code annotations, to produce a set of AAITT modules which can be 
executed. The AAITT compiler first produces a set of source files corresponding 
to each module in the application. It then invokes the appropriate language 
compilers as well as manages the process of linking the resulting object files to 
the appropriate AAITT and language libraries to produce executable files. This 
process is initiated and controlled entirely by the MCM. No user intervention is 
required, even in cases where the compilation process is occurring on several 
different host machines. 

As with any programming activity, the user's code may contain errors which 
become apparent at either compile or runtime. The MCM displays any 
warnings or errors detected at application compilation time. Similarly, the 
application's design may be incomplete or incorrect, necessitating changes in 
the application architecture. The compiler records all relevant aspects of the 
application being compiled to support incremental compilation. Thus, when the 
application's structure or code is changed and the application is recompiled, the 
compiler intelligently performs the minimal amount of work necessary to 
properly reflect changes within the new executable code. 

After compilation, each module is assigned to a host machine. A CIM can be 
distributed to any machine that supports the CIM's full computing environment, 
including any supporting software, such as an expert system shell, a GUI 
(Graphical User Interface) package, and so on. Therefore, a CIM compiled on a 
Sun computer can be assigned to any compatible Sun machine supporting the 
CIM's configuration. 

5.2.3      State  Transition 

Once an application has been compiled, the MCM Workstation's Control Tools 
are used to transition modules through their available states. The set of states 
defined for a module are {CIM LOADED, CIM CONNECTED, LOADED, 
INITIALIZED, RUNNING, PAUSED}. Note that these states apply to each 
individual module within an application. All modules within the application are 
not required to be in the same state. 
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The first two of the states, CIM LOADED and CIM CONNECTED, reflect a 
change in the process state of the CIM. The remaining CIM states, LOADED, 
INITIALIZED, RUNNING, and PAUSED, all reflect a change in the process state 
of the component associated with the CIM. 

Unlike all other state transition messages, the DPS command "Distribute" is not 
sent to a module but, instead, is implemented directly by the Distributed 
Processing Substrate. The command creates a CIM on the appropriate host 
and places the CIM in the CIM LOADED state. Once a CIM has been placed in 
this state, the CIM's full functionality is enabled and it may be controlled using 
the AAlTT's DPS protocol. 

The AAlTT's state transition commands are presented below and include an 
explanation of the activity initiated by each command. 

5.2.3.1 Distribute 

The "Distribute" command instantiates the CIM associated with the selected 
module on the appropriate host processor. If there is no host assignment, the 
MCM host processor is used. 

5.2.3.2 Connect 

The "Connect" command establishes the connections associated with the input 
and output ports of the selected module. The links between modules, in effect, 
become instantiated with the DPS-level address(es) needed by that link to pass 
or receive data. The connections are then tested to ensure that communication 
can occur. 

5.2.3.3 Load 

The "Load" command instructs a CIM to load its associated component on the 
local computer. This capability is particularly useful in persistent environments, 
such as on Symbolics machines, where applications must be loaded into the 
current image. 

5.2.3.4 Initialize 

Modules may require various forms of initialization activity to occur prior to 
execution. The "Initialize" command was specifically provided to support these 
type of operations. Examples of initialization activity include establishing the 
module's configuration, the definition of a goal or context, or access to a startup 
file. This command is also intended to support the reinstantiation of any 
previously saved module instances. 
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5.2.3.5 Execute 

The "Execute" command initiates execution of the component associated with a 
CIM. This command's activity is frequently simplified because the "Initialize" 
command is often used to resolve the component's startup and/or configuration 
issues. 

5.2.3.6 Suspend! 

The "Suspend" command allows the Application Architect or the Application 
User to stop module processing at any time. However, it is important to note 
that the effect of this operation depends on the selected component. Some 
components may not be easily suspended in a manner which allows them to 
cleanly resume operation at a later time. Other components may readily 
support this operation, it is the responsibility of the Component Embedder to 
either support this capability or note its absence. 

5.2.3.7 Resume 

The "Resume" command is used to restart a module previously suspended by a 
breakpoint or by the "Suspend" command. The effect of this operation depends 
on the component being resumed. Some components may not support the 
resumption of execution once they have been suspended. 

5.2.3.8 Terminate 

The "Terminate" command halts the selected module's component and 
terminates its CIM. Once terminated, a module must be restarted beginning 
with the "Distribute" and "Load" command sequence. 

5.2.3.9 Reset 

The "Reset" command suspends the associated component and resets a 
module to its Loaded state. The module must be subsequently Initialized before 
it may be Executed again. 

5.2.3.10 Unload 

The "Unload" command results in the termination of the associated component. 
However, the module's CIM remains loaded and all connections remain intact. 
This command places a module in the CIM Connected state. 

5.2.3.11 CSSVä   Reset 

The "CIM Reset" command results in the termination of the associated 
component.   In addition, ali connections associated with the CIM are reset.  The 
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CIM continues executing on its assigned host. This command places the 
module in the CIM Loaded state. 

5.2.4 

The MCM Workstation's Control "Tools provide a means for setting, detecting 
and reviewing breakpoints within an application. The setting of a breakpoint at 
the MCM Workstation results in a flag being set within the appropriate CIM. The 
CiM then checks this breakpoint flag during the normal execution of the code 
body associated with the particular CiM port or operation selected as a 
breakpoint. The setting or resetting of a breakpoint is performed at the MCM 
Workstatlun by selecting the module of interest and choosing the breakpoint 
command using the mouse. This results in the display of a menu showing all of 
the breakpoints associated with the module, including those defined by the 
Component Embadder using the Module Framework, as well as the set of all 
default breakpoints associated with each port or operation. 

The AAiTT automatically defines several types of breakpoints as a result of the 
module- or application-definition process. These breakpoints as referred to as 
built-in breakpoints. The testbecl also supports the definition of additional 
breakpoints to augment the built-in breakpoints. These breakpoints are referred 
to as user-defined breakpoints. 

5.2.4.1    Bum-iT   Breakpoints 

The AAITT provides several types of built-in breakpoints to monitor DPS-level, 
module-level, and application-level events within the testbed. 

DPS-level events Include all operation activity. An operation event is triggered 
when the appropriate DPS message is received or sent by the module. 

Module-level events include all port activity and data store access. A port event 
is triggered when data passes through that port. A data store event is defined 
as reading/writing from/to a data store. 

Application-level events provide an easy means of globally enabling and 
monitoring the same type of breakpoints across multiple modules. The 
enabling of an application-level breakpoint results in the MCM Workstation's 
Control Tools individually enabling each affected breakpoint within each 
module. Several application-level breakpoints of this type are provided as part 
of the Control Tools, including: (1) All Port Activity Within the Application, (2) All 
Operation Activity Within the Application, (3) All Operation Activity Of <a 
particular type> Within the Application, and (4) All DPS-Level Events Of <a 
particular type> Within the Application. 



5.2.4.2   User-Defined   Breakpoints 

The Component Embedder is provided with the means to specify user-defined 
breakpoints, either within the CIM or within the component itself. A breakpoint 
within the CIM can be defined within a port, operation, or subroutine body, i.e., a 
code body, by the Component Embedder. A breakpoint of this type will typically 
be triggered by a particular pattern of messages, arbitrary variable values, or 
combinations of these and other predicates. The Component Embedder may 
also modify the component itself to signal an event that would otherwise not be 
available to the CIM. The CIM could, in turn, trigger the breakpoint based either 
simply on the new event or in combination with any other activity within the CIM. 

The Application User is also able to specify user-defined breakpoints as well as 
group seemingly unrelated breakpoints into a user-named-group to facilitate 
application-level debugging, monitoring and analysis. The Control Tools' 
menu-oriented interface provides the user with a mousable list of breakpoints 
for inclusion in a new breakpoint. Breakpoints defined in this manner can also 
be edited, with new breakpoints added or existing breakpoints deleted. 

5.3     Monitoring 

The MCM Workstation's Monitoring Tools provide the means to review and 
interrogate an application without pausing or halting normal processing. The 
Monitoring Tools allow the Application Architect or Application User to turn 
logging taps on/off, collect logging tap data, analyze and filter logging tap data, 
as well as review these results in a tabular or graphic fashion. The Monitoring 
Tools also permit the dynamic query of status within each CIM. 

5.3.1       Logging and Analysis 

The AAITT provides a logging capability to capture dynamic information at 
runtime for later analysis and presentation to the Application Architect. A 
logging tap is a piece of code which, when enabled, stores a datum known as a 
log entry in a log database. Typically, the log entry datum is a structured object 
which contains several fields. Each field contains a subdatum, or element, 
describing the particular circumstances surrounding the invocation of the 
logging tap, e.g., the time the tap was called, the task that contained the tap, 
variable values, etc. The placement of logging taps and the data they record is 
determined by the kinds of analyses in which the Application Architect is 
interested. Generally, taps are used to record activity within modules and the 
flow of messages between modules. 

The Application Architect or Application User identifies logging taps in the same 
manner that breakpoints are specified using the Application Framework. Figure 
9 shows the View/Set Logging Taps selection menu. 
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Several types of logging taps are automatically defined as a result of creating a 
module or an application. These logging taps as referred to as built-in logging 
taps. The testbed also supports the definition of user-defined logging taps to 
augment the built-in taps.  Both types are discussed next. 

5.3.1.1 Built-in  Logging Taps 

The built-in logging taps provided by the AAITT monitor DPS-level, module- 
level, and application-level events. These are the same events which trigger 
the built-in breakpoints described above. In addition to regular logging, the 
testbed offers the ability to capture the entire contents of messages sent to and 
replied from input ports. These long-form log messages are available to AAITT 
users in a human-readable form to facilitate debugging. This data can also be 
saved within a file and edited for use as input to the AAlTT's Dynamic Message 
Facility, discussed below. 

5.3.1.2 User-Defined   Logging  Taps 

The support for user-defined logging taps within the testbed is similar to that 
which is provided for user-defined breakpoints. The Component Embedder 
may add logging taps to the CIM's code bodies or modify the component itself to 
signal an event that would otherwise not be available to the CIM. The 
Application User is also able to define logging taps by grouping seemingly 
unrelated logging taps into a user-named group to facilitate application-level 
debugging, monitoring, and analysis. 

5.3.1.3 Logging Tap Control 

When a standard or long-form logging tap is enabled at the MCM Workstation, a 
flag is set within the appropriate CIM. This logging flag is checked as part of the 
normal processing of the code body associated with the particular CIM port, 
operation, or subroutine selected for logging. The enabling or disabling of a 
logging tap is performed at the MCM Workstation by using the mouse to select 
the module of interest and then choosing the Logging command. A menu of the 
operations which may be performed on the module's logging taps is presented 
to the user. 

Both built-in and user-defined logging taps are handled in the same manner by 
the testbed. The logging operations which may be performed at the MCM 
Workstation include: (1) Logging Control, (2) Collection, (3) Analysis and 
Filtering, (4) Presentation, (5) Save, as well as (6) Restore. These operations 
may be performed while the application is running, or after the application has 
been paused due to the triggering of a breakpoint or the invocation of the 
"Suspend" command. Some operations, such as Collection, may cause 
elapsed application execution times to increase due to the potentially large data 
transfers required of the DPS. This overhead is not reflected in the log data. In 
this way, logs truly represent what they were intended to measure. 
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Logging taps may also be dynamically enabled or disabled at the MCM. When 
an application is executed, all enabled logging taps will insert entries into the 
AAITT log file maintained on each local host. The MCM Workstation provides 
for the subsequent collection and transfer of these logs from the various hosts 
within the AAITT to the MCM. Typically, log collection and transfer is requested 
when a breakpoint has been reached or upon the completion of an application 
run. The MCM is also capable of gathering logs during application execution. 
However, this activity may adversely affect timing. 

5.3.1.4   Filters 

Once the desired logs have been transferred to the MCM Workstation, 
additional AAITT tools are provided for combining, filtering, and analyzing these 
logs. These tools are collectively referred to as filters. Examples of filters which 
might be found at the MCM Workstation include: 

• Merge Logs 
• Time Extraction/Exclusion 
• Event Type Extraction/Exclusion 
• Relationship or Pattern Recognition 
• Data Transformation Algorithms 

The MCM offers the ability to locally store and retrieve both raw and filtered log 
files, thereby eliminating the need for users to repetitively perform basic filtering 
tasks in cases where they are interested in performing multiple analyses of the 
same data. All log data, whether raw or filtered, may be viewed at the MCM 
Workstation using either a graphical display for time-dependent information or a 
tabular display. 

5.3.2      Debugging 

Logging taps and breakpoints provide both Application Architects and 
Application Users with a robust means of monitoring, controlling and analyzing 
an application. Thus, they act as the primary tools for debugging AAITT 
applications and are meant to supplement each individual component's logging 
and breakpoint capabilities. The analysis of breakpoint and logging tap data as 
described above is ideally suited for the debugging of an application or module 
that is not executing as expected or desired. The same techniques are also 
valuable for assessing various architectures by quantifying application-level 
processing efficiency measurements or processing results. Figure 10 shows 
the AAITT Metrics Analyzer, which is used to display events recorded during 
application execution. It is used extensively to help resolve timing problems 
and debug new module connections. 
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5.3.3 Dynamic Message  Facility 

The Dynamic Message Facility supports the user's ability to dynamically 
generate and send application protocol messages to a receiving CIM, enabling 
the progressive, interactive testing of a particular application message interface. 
Thus, the facility can be used to test the interface of a particular port within a 
partially or fully-completed 'receiver module' without the need for developing 
the 'sending module,' as long as the relevant port signature(s) and interface 
were previously defined using the Module Framework. In addition, the 
receiving module and its CIM must be in the execute state to run the facility. 

The Dynamic Message Facility's human-computer interface is menu-driven, 
allowing the user to easily select a message-generation mechanism, specify the 
message's contents, and identify the receiver module. The interface module 
collects the user's typed .entries as well as menu selections, and uses this data 
as parameters to remotely invoked UNIX shell scripts and their supporting 
binary programs. 

Based on the input parameters received, the shell scripts either generate a new 
message template or parse an existing message template or long-form log 
output. A file of data suitable for use as input to the Cronus tropic tool is then 
dynamically constructed before tropic is invoked to send the dynamic message. 

Any results from the message invocation are stored in a file. If the appropriate 
menu selection has been made, the information returned from a module that 
received a request for data Via a dynamic message will be displayed in a pop- 
up editor window. Dynamic messages which are not data requests will result in 
the name of the port being displayed followed by a colon. An error message 
will be returned if the message was not successfully delivered or processed. 

Although the Dynamic Message Facility ultimately relies on the invocation of 
tropic, the facility represents an improved testing capability for message 
interfaces which is an integral part of the AAlTT's MCM Workstation. In addition, 
the facility presents a uniform interface already familiar to the AAITT Component 
Embedder through the use of entities such as signatures, ports, and modules. 

5.3.4 Measurements 

The AAITT also defines automatic logging taps which record various low-level 
measurements of system resource usage, such as CPU, memory, etc. These 
performance logs, called 'measurements' may be enabled and disabled on a 
per-resource basis. That is, if the user turns on the "CPU-Usage" measurement, 
then CPU-usage will be recorded at the occurrence of every DPS event in the 
module. Measurements are dynamically enabled or disabled at the MCM 
Workstation using the View/Set Measurements menu, as shown in Figure 11. 
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The particular resources which may be measured depends upon the type of 
support provided by each host's operating system. Measurements are collected 
and otherwise treated as ordinary log events. 

The AAlTT's development paradigm utilizes iterative modeling, control, and 
monitoring activities. Users are asked to (1) configure application suites 
graphically to effect encapsulation, (2) measure application and component 
behavior during execution, and (3) analyze information about key events. This 
cycle is repeated to investigate alternate solution strategies. 

The testbed's toolkit embodies advances in modeling, code generation, control, 
and the use of performance metrics to raise distributed system development to 
new levels. 

Modeling Frameworks allow users to graphically introduce desired 
intercomponent communication and data processing approaches into the 
testbed. Distributed systems are built via Module-Oriented Programming. 
Competing architectures can be pictorially expressed and investigated. Crucial 
data flow and control issues are identified prior to full implementation. 

State-of-the-art code generators subsequently transform the models into 
executable wrappers permitting components to become embedded within the 
AAITT. Both C- and LISP-language implementations are supported. 
Incremental compilation dramatically diminishes development cycles. 
Automated mechanisms manage the complex compilation process. 

Control tools minimize the possibility of 'run away' applications. Distributed 
systems are brought up and down in a controlled fashion. Both conventional 
and knowledge-based software is accommodated. Breakpoints can be 
triggered by user-defined conditions or standard events. The ability to single- 
step applications at the message-level aids debugging. 

Finally, measurement, instrumentation, and monitoring capabilities facilitate 
iterative application development and performance tuning. Selectively-enabled 
built-in and user-defined measurements drive analyses. Non-intrusive 
application monitoring minimally impacts performance. An integral Metrics 
Analyzer displays all time-dependent information. 

The resultant AAITT permits testbed users to reap the benefits of applying a 
comprehensive toolkit within a structured development paradigm. 
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6   AAITT Applications 

The base AAITT program required three specific demonstrations of the testbed's 
capabilities "in the context of the USAF C2I problem domain." The defined 
purpose of each was as follows: 

Preliminary Demonstration 

Large Scale Demonstration. 

 "to demonstrate the testbed facilities 
necessary to integrate a minimum set of 
separate knowledge-based systems 
sufficient for a serious application 
demonstration." 

 "to demonstrate the testbed facilities 
necessary to integrate a full-scale 
application suite of knowledge-based 
and conventional systems." 

Reusability Demonstration "to   demonstrate   that   the   testbed 
concept and architecture was 
applicable to multiple domains." 

Guidance received from Rome Laboratory during the program's kick-off meeting 
resulted in the implementation of a plan that emphasized the use of existing 
conventional and knowledge-based components for all demonstrations. The 
motivation for this prudent strategy was to maximize the resources applied tp 
testbed development and minimize expenditures on the applications employed 
within the demonstrations. An additional benefit of this approach was that each 
resulting application would consist of mature components. As a result, the 
team's originally-proposed scenarios for the demonstrations were adapted to 
fully implement this plan. 

Each of the three demonstrations are presented below. 

6.1     Preliminary   Demonstration 

The Preliminary Demonstration integrated the following three Government- 
furnished components to show the interoperability of existing, independently- 
developed planning, database, and simulation capabilities, respectively: 

• AMPS — Air Force Tactical Mission Planning System 

• TAC-DB — Tactical Red and Blue Force Database 

• LACE —Land Air Combat in ERIC 

More specifically, the Preliminary Demonstration's application utilized AMPS as 
a mission planner which was responsible for generating an Air Tasking Order 
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(ATO); TAC-DB for managing all of the operational data required for mission 
planning and execution within the European theater; and LACE to simulate 
execution of the AMPS-generated ATO. Figure 12 shows the application 
architecture for the Preliminary Demonstration as well as the AMPS module 
model. The demonstration successfully illustrated the testbed's ability to 
support the embedding and integration of the disparate USAF components into 
a cohesive problem-solving suite. 

The following types of mission simulations were supported by LACE and 
executed using the Preliminary Demonstration application: 

• Offensive Counter Air (OCA) 

• Surface-to-Air Missile Suppression (SAM) 

• Air-to-Air Refueling (AAR) 

Additionally, as presented in Figure 13, the Demonstration displayed the user- 
oriented, on-line, graphical presentation of system activity which had been 
specifically included in the AAITT. The testbed's ability to perform monitoring 
and measurement actions during application execution was also demonstrated. 
Figure 14 shows an example subset of the raw measurement data captured by 
the testbed. 

A list of suggested additions, changes, and improvements to the testbed was 
generated as a result of the Preliminary Demonstration. These items can be 
found in Table 4, along with the specific actions taken by the team to address 
each suggestion. 

6.2    Large  Scale  Demonstration 

To meet the requirements of the Large Scale Demonstration, the team had to 
establish a coherent problem-solving suite within the domain of USAF Tactical 
C2I by using the testbed to embed and integrate a full-scale application of 
knowledge-based and conventional components. The identified problem set 
would also reuse the AMPS, TAC-DB, and LACE modules and be augmented 
with at least two more existing components. Additionally, the completed 
application had to: 

• be multi-agent, time sensitive, and factorable into sub-problems; 

• possess spatial and temporal aspects, requiring the use of database and 
planning capabilities, as well as reasoning under uncertainty; and 

• be valid with respect to current or proposed concepts of operation, as 
well as demonstrate the use of the testbed as a training tool and a 
planning/decision support vehicle. 
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Suggested  Addition, 
Change, or Improvement 

Comment / Action Taken 

Investigate transitioning the MCM 
to a SUN workstation. 

Implemented and shown at the 
Reusability Demonstration. 

Investigate testbed support for Ada 
and an upgrade to Cronus 2.0. 

Use of Ada-based components not 
precluded in AAITT. Ada modules 
can use UNIX-based CCC library. 
Upgrade to Cronus 2.0 completed 
by the Reusability Demonstration. 

The interface between a CIM and 
its Component should be 
generated "automatically." 

A UNIX CCC library was 
implemented prior to the 
Reusability Demonstration. 

The testbed should permit 
concurrent activity.  For example, 
users should be able to conduct 
several mission planning tasks 
simultaneously using multiple 
threads of control. 

This capability is implicit in the 
design of the AAITT. Concurrent 
activity is achievable if tasks can 
either be distributed to different 
machines or be performed on a 
single machine which supports 
multiprocessing. 

An applications "switch" is needed. A switch module was included in 
the Large-Scale Demonstration. 

Testbed users should be able to 
plug/unplug both measurement 
and control. 

Measurement and control activity 
is enabled/disabled via point-and- 
click menus. 

The ability to stop simulations, as 
well as rewind and replay them 
should be incorporated. 

Single-stepping at the message- 
level was available by the Large- 
Scale Demonstration.   Rewinding 
and replaying simulations is totally 
dependent on the simulator's 
capabilities. 

Rome Laboratory personnel 
should receive a training course 
covering AAITT use and operation. 

A week-long training course was 
prepared and conducted prior to 
the Reusability Demonstration. 

Table 4.   Suggested Testbed Development and Actions 
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Using Tactical C2I domain expertise present on the team, a fictitious operational 
scenario was developed for the Large Scale Demonstration. The scenario 
capitalized on the existence of the TAC-DB unclassified database and can be 
summarized as follows: 

°    A European Theater of Operations, including what was once East 
Germany and the southern region of the former West Germany, was 
employed to remain within the boundaries of LACE's existing map 
facilities. 

°    Politico/ethnic divisions between neighboring factions triggered 
hostilities between the US-aligned Blueiand and aggressors operating 
from within Redland. 

°    Rediand inflicted significant military and civilian casualties on Blueiand 
using their extensive Close Air Support assets. 

•    Blueland's premier appealed directly to the President of the United 
States for assistance in intercepting Redland's air assets and denying 
Redland operational autonomy by cratering the runways of airbases from 
which its acts of aggression were being initiated. 

°    The President issued a directive to the Chairman, Joint Chiefs of Staff, to 
conduct a military air campaign within the Blueland/Redland Theater of 
Operations with an overall objective of terminating Redland's hostile air 
operations. 

A comprehensive search was then conducted to identify, evaluate, and acquire 
additional components relevant to the Tactical C2! domain in keeping with the 
desire to use existing, unclassified components to assemble the Large Scale 
Demonstration's application. This search was exhaustive throughout the USAF. 
Other locations within the other services as well as several offices within the 
OSD community anticipated to possess relevant components were also 
canvassed. Generally, small "pockets" of Al use were located throughout DoD. 
Most of the identified components were not suitable for use because they were 
designed to satisfy the very narrow and specialized mission requirements of 
individual systems. 

The testbed's hardware- and software-related constraints were then applied to 
the set of candidate components identified during the search across the DoD. 
The final set of nine components was determined after ensuring that each met a 
subset of the criteria for the Demonstration and could operate in concert with the 
aforementioned scenario. The application architecture for the Large Scale 
Demonstration is shown in Figure 15. 

Each of the Demonstration's components, including their respective sources 
and roles, are discussed below. 

52 



CD 

rj 
o 
CD 

-♦—* 

JZ 
o 
< 

o 
CO o 
"5. a. 
< 

o 
•4—' 

CO 

V) 
<z 
o 
E 
CD 
Q 

CO o 
°? 

CD 
CD 

CC 

LO 

CD 

CO 

53 



Rome Laboratory was the source of five of the Large Scale Demonstration's 
nine components: TAC-DB, AMPS, ATMP, LACE, and a Route Planner. The 
TAC-DB database was used to maintain information regarding tactical map 
features, attribute updates, aircraft, beddown airbases, sortie scenarios, and 
SAM (Surface to Air Missile) locations. Both AMPS and ATMP (A Tactical 
Mission Planner) generated ATOs and optional route requests. As before, 
LACE was responsible for scenario execution and monitoring. The simulator 
also provided narrative descriptions of mission performance as well as post 
mission reports upon the successful completion of a mission. Finally, RL's 
Route Planner supplied a list of waypoints between the friendly airbase and the 
target based on the most currently available threat data. 

Two components were acquired from the USAF's 7th Communications Group at 
The Pentagon. FAMES (Functional Area Manager's Expert System) used data 
about the number of US aircraft at the host beddown airbase to determine the 
type and number of personnel and transportation vehicles required to support 
friendly airbase operations at that site. The Airfield Attack Advisor (AAA) 
identified the beddown airbase, the type and number of aircraft required, 
recommended weapons, the number of sorties required for specified target 
destruction, as well as required replacement assets based upon post mission 
report information received. 

Lockheed Martin's Advanced Technology Laboratories constructed a Selector 
(or Switch) Module which enabled the operator to select either the AMPS- or 
ATMP-generated ATO, and optionally accept the planned navigational route 
received from the Route Planner. 

General Electric's Corporate Research and Development Center developed a 
sophisticated Mission Evaluator which provided planning recommendations to 
the operator by assessing and analyzing the currently simulated mission. The 
component accomplished its task using reasoning under uncertainty as well as 
user-developed Measures of Effectiveness. 

Given today's levels of automation, most activities associated with the Large 
Scale Demonstration's problem-solving suite would, typically, be carried out 
manually by numerous personnel possessing the requisite functional expertise. 
The results of their efforts would be reported to and displayed manually at a 
Tactical Air Control Center (TACC). This process is graphically depicted in 
Figure 16. Successfully completing the Large Scale Demonstration showed 
how operations within the TACC could be automated using an integrated suite 
of components providing electronic coordination between the functional areas. 
In addition to providing users with the capability to plan an entire operation, the 
resulting TACC-oriented application, more importantly, also offered the ability to 
automatically simulate the planned missions and provide valuable feedback 
and recommendations to facilitate Battle Staff training. Figure 17 shows the 
AAlTT-supported Tactical Air Control Center. 
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6.3    Reusability  Demonstration 

Programmatic requirements for the Reusability Demonstration necessitated a 
demonstration illustrating that the testbed's concept and architecture were 
applicable across multiple domains. Thus, this demonstration's problem 
domain had to be relevant to the USAF, but outside of C3I. In addition, the 
application had to contain multiple agents and involve the use of the testbed's 
simulation capability. In concord with RL, a decision was made to capitalize on 
the USAF's investment in the fruits of the ARPA/Rome Laboratory Planning 
Initiative (ARPI) by using the components which comprised ARPI's second 
Integrated Feasibility Demonstration within the Reusability Demonstration. The 
three components were SOCAP, FMERG, and DART. Each of these mature 
packages is described next. 

SOCAP (SIPE for Operations Crisis Action Planning) assists Crisis Action 
Planners in generating multiple Courses of Action (COAs) to the major force 
level. The COAs include initial plans for force phasing as well as logistics 
requirements. SOCAP produces a Time Phased Major Force List (TPMFL) and 
is based on SIPE, a knowledge-based generative planner. 

FMERG (Force Module Enhancer and Requirements Generator) aids the Crisis 
Action Planner by retrieving and supporting the editing of pre-packaged forces 
from a Force Module Library, which includes combat support provisions for the 
specific Course of Action specified. FMERG produces a full TPFDD (Time 
Phased Force Deployment Data). 

DART .(Dynamic Analysis and Replanning Tool) is a relational database and 
closely-coupled simulation capability that facilitates the analysis of TPFDDs 
using simulation as well as modification or replanning. 

In general, integrating these components allows a Crisis Action Planner to 
determine the transportational feasibility of a SOCAP-generated COA. Once 
SOCAP is given the specific mission objectives, politico/military guidance, and 
required resources, it develops a COA. FMERG then takes the SOCAP- 
generated TPMFL, which is a skeletal Deployment Plan, and creates a standard 
TPFDD by instantiating both specific force units as well as accompanying 
support and sustainment resources. The resulting full TPFDD is then "tested" by 
DART using transportation feasibility estimators. Shortfalls are fed back to 
SOCAP, which can modify the plan in an attempt to overcome any 
transportation problems identified in the simulation. 

The completed application was established five months ahead of schedule. 
Additionally, due to the AAlTT's graphical interface and powerful, automated 
tools for embedding components, the integration effort was accomplished in 
only five days and required no modifications to the testbed. The application and 
module models developed for the Demonstration are shown in Figure 18. 
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During the Reusability Demonstration, an additional, important capability was 
presented. The MCM Workstation had been ported from a special-purpose, 
Symbolics computer, and was running on a general-purpose, Sun platform. 
This considerably broadened the AAlTT's potential user base. 
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ire Information 

Tailored DoD-STD-2167A documentation was prepared to preserve various 
aspects of the AAITT program. The documentation serves as a rich source of 
information to explore the testbed in greater depth. Figure 19 provides a road 
map to locate the appropriate document covering a particular topic of interest. 

Road Map  Key 

Symbol Document Information   about 

sss System Segment Specification Top-Level Overview and Requirements 

SRS Software Requirements Specification Detailed System Requirements 

SDD Software Design Document Detailed Design Data 

DPS Distributed Processing Substrate Analysis Distributed Communications Software Analysis 

SUM Software User's Manual Modeling, Control, and Monitoring 

TPM Testbed Programmer's Manual Communication and Message-Level Programming 

Figure 19.     AAITT Documentation Road Map 

Copies of these documents can be obtained from the contracting agency or as 
directed by the contracting officer.   Documents should be formally referred to as 
follows: 

AAITT-A003,    Technical Information Report (DPS Analysis), February 1991. 
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AAITT-A004,    Software Design Document for the Advanced Artificial 
Intelligence Technology Testbed CSCI, October 1992. 

AAITT-A005,    Segment Specification for the Advanced Artificial Intelligence 
Technology Testbed, April 1991. 

AAITT-A006,    Software Requirements Specification for the Advanced 
Artificial Intelligence Technology Testbed CSCI, (Revision A), 
June 1992. 

AAITT-A009,    Software User's Manual for the Advanced Artificial 
Intelligence Technology Testbed CSCI, June 1991. 

AAITT-A010,    Technical Information Report (Testbed Programmer's 
Manual), June 1991. 

The following document was referenced in this report.  As before, copies can be 
obtained from the contracting agency or as directed by the contracting officer. 

Cooperating Expert Systems (COPES) Final Report, submitted by Grumman 
Corporation to United States Air Force Rome Air Development Center under 
Government Contract Number F30602-88-D-0004, June 27, 1989. 
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The principal result arising from the AAITT program is a successful, high-quality, 
laboratory testbed which embodies a structured development paradigm and 
associated toolkit to support the design, analysis, integration, evaluation, and 
execution of large distributed software systems. As demonstrated, use of the 
AAITT can significantly decrease the software integration costs associated with 
these complex systems. 

Overall, quality was increased and cost was decreased by leveraging two 
mature capabilities. The testbed's DPS, based on the Rome Laboratory- 
sponsored Cronus distributed object environment, is a flexible software 
backplane that accepts an arbitrary number of stand-alone components and 
provides heterogeneous interprocessor support for the concurrent execution of 
multi-agent applications. Similarly, the ARPA-sponsored ABE systems 
engineering tool acted as the foundation of the AAlTT's Modeling, Control, and 
Monitoring Workstation, a graphical, module-oriented programming facility for 
embedding, integrating, executing, and analyzing independently-developed, 
cooperative, problem-solving software components. 

The AAITT program's derived results can be categorized in two ways. Some 
outcomes directly support the needs of the DoD technical community. Others 
can be utilized by operational users. The advantages available to each group 
are discussed below. It is interesting to note that different aspects of the same 
result may provide benefits to both groups. 

8.1     Technical   Results 

As more and more individuals recognize and seek to utilize the inherent power 
found within distributed systems, software developers will become increasingly 
dependent on the ability to assemble solutions from disparate pieces. It is here 
that the AAlTT's strengths lie. The testbed's support for the complex process of 
distributed system integration, debugging, and evaluation, as well as the 
elimination of the need to extensively re-engineer components prior to 
integration, allows scarce time and resources to be prudently focused around 
component development. This focus is paramount because the completed 
application's problem-solving capabilities are found within its components, not 
within the distributed infrastructure which permits the components to interact. In 
the absence of the AAITT, many efforts have shortchanged component 
development to otherwise concentrate on integration. 

The testbed's flexibility allows knowledge-based and conventional components 
to exist within the same application. Developers are able to selectively employ 
the most appropriate paradigms. Force-fitting a solution to a technology is no 
longer required. 
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The AAITT transforms graphical models into customizable code skeletons to 
facilitate component embedding and supports the development of various 
problem-solving and control strategies. In most cases, low-level details are 
handled automatically. Component Embedders and Application Architects are 
immediately productive and able to apply their energies where it is most 
needed. In addition, this approach has introduced a level of abstraction, 
making future upgrades to, or replacement of, the DPS easily accomplished. 
Changes will result in minimal disruption to existing component and application 
models. 

One of the most important and interesting aspects of the testbed's capabilities 
comes to light once an application has been initially established. Application 
monitoring, capturing measurements at levels ranging from resource usage to 
domain-dependent solution quality, when coupled with the ability to rapidly alter 
the nature of component interactions, allows numerous, repeatable experiments 
to be performed. These experiments allow users to fine-tune their applications 
through the use of empirical data. Decreasing the effort and cost associated 
with experimentation improves quality by encouraging developers to not be 
satisfied with their first answer, seek better solutions, and not pursue 
alternatives based simply on intuition. An excellent example of this process is 
documented in Appendix A, Instrumented Domain Experiments. 

Component reuse and the development of new solutions by adapting past 
successes is further facilitated by the testbed's module and application 
catalogues. 

The technical community can also take advantage of the AAlTT's approach to 
human-computer interaction for modeling, control, and monitoring. Initially, 
during the modeling phase, "the picture is the program." Next, the graphical 
model constructed during the application development process is the same one 
used to control application execution. Finally, monitoring activities are 
supported by a user-configurable graphic interface. 

8.2     Operational   Results 

Unanticipated conflicts will become the norm now that we have witnessed the 
end of the Cold War. These hostilities are often termed "come as you are" wars 
because one does not have the luxury of time to methodically prepare for them. 
They can occur at anytime and anywhere, generally planned by the enemy to 
be the most inconvenient to the US. The ability to rapidly assemble and 
(re)configure software applications to automate and facilitate the decision 
making process is an essential part of responding effectively to new or 
escalating situations. 

Successfully establishing each of the AAITT program's applications clearly 
demonstrated that the testbed can provide this capability. In every case, 
interoperable sets of software components were established quickly, although 
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the application's elements were never initially designed or developed to 
function together. Completed applications were not limited to a single USAF 
domain and integrated problem-solving aids supporting various functional 
areas. 

Applications developed using the AAITT do not represent custom, inflexible 
"point solutions." Constituent components can be introduced, removed, or 
combined as desired, offering the opportunity to constantly adapt, improve, and 
scale-up the functionality provided to the Warfighter with minimal disruption to 
existing capabilities. The ability to intermix conventional and knowledge-based 
modules within a single application allows today's legacy systems to take 
advantage of tomorrow's advanced technology. 

In addition to the obvious time and cost benefits that result from eliminating the 
need to extensively re-engineer components during the embedding and 
integration process when using the AAITT, quality and productivity gains will 
accrue to the application's operational users. In many cases, the re- 
engineering process can introduce both anomalies and sources of failure into a 
component. Retesting is expensive and, more importantly, not guaranteed to 
uncover new problems. The heat of battle is not the time for surprises to come 
to light. It is also crucial for users, particularly those operating in critical 
situations, to continue utilizing their "native" decision aids. Otherwise, 
productivity will suffer and the opportunity to commit errors of both omission and 
commission will increase. Encapsulation, as supported by the testbed, permits 
components to retain their original "look and feel." 

The development model embodied by the AAITT is also consistent with the 
DoD's ongoing acquisition initiatives. The testbed supports the recent 
emphasis placed on the incorporation and reuse of both commercial- and 
government-off-the-shelf (COTS & GOTS) components to construct systems. 
Furthermore, the AAlTT's entire iterative modeling, control, and monitoring 
paradigm is centered around the notion of realizing solutions using a rapid 
prototyping strategy, where results are placed into the hands of users as soon 
as possible for evaluation and feedback. Finally, the testbed facilitates 
evaluations which can be used to control the process of judiciously introducing 
only sufficiently-mature technology into operational systems. 
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9   Conclusions 

The most important conclusion which can be reached from this effort is that the 
AAITT program's numerous successes conclusively validated the software 
integration paradigm embodied within the testbed. An innovative approach to 
encapsulation, using graphically-specified and automatically-generated 
wrappers, was repeatedly demonstrated to be a cost-effective means of building 
distributed software applications without the need for extensive component re- 
engineering. Accomplishing the same using more expensive and complex 
strategies, such as reimplementation or universal data/information interpreters, 
is no longer the only option available to developers. 

The testbed's paradigm and toolkit resulted in dramatic productivity gains and 
equivalent decreases in integration costs for tasks of the same magnitude. It is 
interesting to note that during the development of the applications for the Large 
Scale and Reusability Demonstrations, considerably more effort was expended 
identifying and acquiring suitably mature decision aids than was spent actually 
embedding and integrating the selected components. 

A wide range of accomplishments laid the groundwork for the successes which 
validated the AAlTT's software integration paradigm. These accomplishments 
are grouped by functional area and enumerated below. 

9.1 Distributed   Processing  Substrate 

-fr Cronus, an existing commercial distributed object environment, was 
provided with a mouse-and-menu interface to improve its usability and 
operability. Without the interface, Cronus is simply a procedural, message- 
driven system. In the future, this layer of the AAlTT's DPS may be replaced 
with a CORBA (Common Object Request Broker Architecture)-compliant 
product, as availability allows. The DPS was intentionally implemented 
using a level of abstraction to facilitate this type of interchange. Among other 
things, a CORBA-compliant system would offer the added feature of 
maintaining persistent objects within the testbed. 

9.2 Modeling 

-fr A graphical notation for the specification of a component's communication 
interface to other components within a distributed heterogeneous system 
was developed for the testbed. This notation was then mapped into an 
equivalent, tangible processing implementation. When combined, the 
notation and mapping form the foundation of the visual modeling 
environment used to construct module wrappers. 

ir The communication models developed using the aforementioned graphical 
notation are subsequently used to ensure module compatibility during 
application modeling. 
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-ft Modeling within the testbed does not depend on the actual existence of the 
components at the time they are being modeled, i.e., the use of stubs is 
supported. 

-ft At the outset of the program, a goal was established to provide tools 
supporting a Component Interface Manager's capability to communicate 
with its associated component. Although a library of routines implementing 
a (UNIX) socket-based communication scheme was developed for this need, 
this area deserves additional attention. 

-ft The AAlTT's catalogue capabilities facilitate the organization, management, 
and reuse of module and application models, as well as related metrics. 

-ft- During the course of developing the AAITT, assembling the applications 
used to demonstrate the testbed, conducting the AAITT Training Course, 
and, in particular, performing the testbed-supported analyses that acted as 
the foundation of the Instrumented Domain Experiment discussed in 
Appendix A, the power placed in the hands of users by the testbed's high 
level of flexibility became increasingly evident. Testbed Developers, 
Component Embedders, and Application Architects alike, were able to 
transparently redistribute modules, adapt/reuse existing components and 
applications, as well as rapidly alter control strategies using the testbed's 
graphical Frameworks.  These capabilities cannot be overemphasized. 

9.3 Code   Generation 

-ft The AAlTT's code generators significantly advanced the state-of-the-art in 
automatic code generation, based on their ability to transform complex, 
graphical models into executable images, distributable across a network of 
heterogeneous machines. 

-ft Compiling a distributed heterogeneous system is an intricate and time- 
consuming task. The AAITT incorporates both an automated mechanism to 
manage this process for the user as well as an incremental compilation 
capability to conserve resources and increase productivity by recompiling 
only the minimum required to reflect the changes which have been made. 

9.4 Control 

-ft A state diagram for distributed heterogeneous systems, accommodating 
both conventional and knowledge-based components, was developed and 
realized within the testbed to provide users with the means to achieve any 
desired level of control in a flexible, yet disciplined, fashion. 

-ft- The AAlTT's control software provides visual feedback to the user so that an 
application's current state(s) can be easily discerned. 
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iz The testbed's module-to-host assignment process emerged as a mouse- 
and-menu task during this program. By leveraging Cronus' capabilities, 
assignments can be transparently handled within the same processor family. 

9.5 Monitoring 

ix Under the auspices of the AAITT program, a methodology was established 
for synchronizing the time stamps of logs captured on distributed processors, 
collecting those logs, and merging their contents to support module and 
application analysis. 

ix Collected logs are intentionally maintained in a simple, ASCII representation 
so that the data can be easily filtered and introduced into other data analysis 
tools such as spreadsheets and statistical packages. This process was used 
to establish a loose coupling between the AAITT and the University of 
Massachusetts' CLASP (CommonLISP Analytical Statistics Package) 
software and facilitate the analyses conducted for the Instrumented Domain 
Experiment discussed in Appendix A. 

-fr Each testbed-resident module is provided with built-in measurements 
capable of capturing low-level resource utilization metrics, such as CPU- 
usage and memory swapping data. 

•fr Information regarding intra-module communication can also be captured 
using the testbed. Message content and timing can be reviewed using a 
graphical, "logic analyzer"-style display that aids debugging. 

■fc The issue of domain-specific metrics was also addressed during the AAITT 
program. Although a sophisticated "Evaluator Module" was developed for 
the Large-Scale Demonstration to examine the topic of solution-quality, this 
area could benefit from additional attention and research. 

9.6 Debugging 

■ft In general, building a distributed system is very complex and chaotic. The 
development process begins as a two-dimensional situation and frequently 
escalates into a three-dimensional problem. Successfully debugging these 
systems is a skill which often approaches an art. The team's extensive 
experience constructing these types of systems led to the incorporation of 
many control and monitoring features specifically designed to aid with 
debugging, including breakpoints, logging taps, CIM-query capabilities, 
long-form logs, a dynamic message facility, as well as a state transition 
strategy permitting modules to be paused and single-stepped. 

The resulting AAITT raises distributed system development to the next level. 
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The AAITT is a high-quality laboratory testbed, capable of filling a critical 
technology role for both technical and operational users. It provides a vital 
software integration and evaluation toolkit of immediate utility to the DoD, in 
general, and the USAF, in particular. It is clear that the requirement for and the 
value of these capabilities is ongoing and will continue to increase in the future. 
Why? The number of independently-developed, conventional and knowledge- 
based automation aids, offering problem-solving support across a wide array of 
functional areas, will explode. The benefits of stand-alone components are 
limited, at best. True, integrated decision support will occur when these pieces 
can be rapidly and cost-effectively combined into interoperable, situation- 
specific applications which meet a commander's operational or scientist's 
technical needs. A commercial.equivalent does not exist at this time. Thus, the 
Lockheed Martin team recommends that an AAITT productization effort be 
undertaken to move the testbed out of the laboratory and in to widespread use. 

A parallel, dual-track strategy is suggested, where extensive testbed evaluation 
would be conducted concurrently with an iterative development effort. 

Assessing the AAITT is best accomplished by placing successive versions of it 
into the hands of a wide range of technical and operational users, training them 
in its use, providing support, and periodically following-up to solicit feedback on 
its strengths and weaknesses. This invaluable feedback would then be 
incorporated into the requirement set for the next development cycle. The set of 
users would potentially include participants in field exercises and 
interoperability demonstrations; organizations interested in establishing 
"software test ranges," permitting the insertion and assessment of new 
components within a standard evaluation suite; efforts to construct "anchor 
desks" incorporating capabilities from existing, legacy infrastructures; as well as 
initiatives strongly focused around component development, where frequent 
integration and ongoing experimentation may be desired but unaffordable in 
the absence of a powerful tool such as the AAITT. 

In addition to prudently responding to the suggestions obtained from user 
feedback, the development effort must begin by defining the form of the final, 
productized testbed. A number of the issues which must be addressed are 
briefly discussed below. In general, there will need to be an increase in 
emphasis on meeting the specific requirements of the operational community. 

Users The testbed is presently oriented to supporting the 
technical user community. However, in contrast to 
Application Users, who depend on the Component 
Developers behind each constituent decision aid, the 
fielded AAITT product must support the needs of the 
SC/J6 staff assigned to assemble mission-specific 
decision support applications. 
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Hardware The range of hardware capable of hosting either the 
AAITT or individual components within testbed- 
resident applications must be expanded. Particular 
attention should be paid to the DoD's installed base 
of personal computers, including laptops. 

Software Support for components implemented in the C or 
LISP languages currently exists explicitly within the 
AAITT. Other languages are implicitly supported; the 
only requirement being the ability to link the "foreign" 
language with any of the supported languages. 
Additionally, virtually all candidate components can 
be treated as "black boxes" in cases where a less 
dependent level of coupling is acceptable or the 
Component Embedder simply has no other choice. 
Thus, although few restrictions exist, augmenting the 
AAITT with explicit support for additional languages 
such as Ada as well as making the Distributed 
Processing Substrate CORBA-compliant may be 
both desirable and worth the cost. 

Communications Communication is a crucial capability for operational 
users in particular. The testbed must be compatible 
with and leverage the advances envisioned for the 
Global Grid and National Information Infrastructure, 
as well as the means to access various tactical links 
using the appropriate protocols and formats. 

Security Protecting information at multiple classification levels 
as it is passed between components has not been 
addressed to-date within the AAITT program. This 
crucial capability must become an integral portion of 
the MCM Workstation, the Distributed Processing 
Substrate, as well as each module's wrapper. 

Portability This issue spans, and is dependent on, a number of 
the topics presented above. However, it warrants 
special mention because operational users 
distributed world-wide must be able to engage in 
problem-solving activities regardless of location, 
continue operating while en route, and maintain 
seamless contact despite transportational transitions. 

User-Friendliness Although the AAITT already incorporates a highly- 
graphical, context-driven human-computer interface 
within its frameworks and makes extensive use of 
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point-and-click menus to guide user selections, the 
testbed needs to be exercised by a wider audience 
to identify areas where the interface and concept of 
operation need improvement. 

Recoverability. The AAITT must be able to rapidly and accurately 
recover from unforeseen events, including computer 
system failures caused by battle damage as well as 
operator-originated errors. Adaptive fault resistant 
techniques currently under development hold the 
promise of helping in this regard. 

Training Obtaining the full benefit of the testbed's capabilities 
would be better ensured by offering users on-line 
tutorial and help information, as well as knowledge- 
based assistance for debugging and application 
performance analysis. 

An item orthogonal to these issues is the need to provide distributed modeling, 
control, and monitoring capabilities within the testbed. This would allow 
multiple, non-contending instantiations of the MCM Workstation to execute 
simultaneously across a wide-area network (WAN). Although the Distributed 
Processing Substrate presently supports modules communicating across a 
WAN, stand-alone components, Component Embedders, as well as Application 
Architects must all be co-located before component embedding and integration 
can take place. The cost to augment the AAITT with the ability to permit these 
procedures to occur remotely would be easily dwarfed by the savings accrued 
from eliminating required travel alone. 

These general requirements for a productized testbed need to be confirmed 
with a full, representative cross section of users, who will undoubtedly provide 
valuable amplifying details. Finally, once the AAITT is functionally complete, the 
product must be "bulletproofed," to minimize the possibility that user activity can 
unintentionally disrupt the testbed's operations. 

This productization effort deserves immediate consideration. Leveraging the 
current endeavor's accomplishments and momentum into a follow-on program 
is vitally important to cost-effectively facilitating the insertion of decision support 
assistance into an operational community which continues to grow increasingly 
dependent on automation aids as budgets continue to shrink and commanders 
are forced to deal with reduced numbers of functional area experts and staff 
personnel. Otherwise, this technology's benefits will never reach tomorrow's 
Command Centers. 
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Appendix Ä     Instrumented  Domain  Experiments 

This appendix describes the results of an effort which explored the concept of 
"Instrumented Domain Experiments," or IDEs, successfully performed under the 
auspices of an engineering change to the base AAITT contract. This effort can 
be viewed as a two-phase undertaking — an initial investigation into the 
principles behind IDEs, followed by a practical application of the concept using 
the AAITT. 

Thus, this section begins by discussing the motivation for Instrumented Domain 
Experiments. The formulation of an IDE questionnaire, distributed within 
government, academia, and industry, is then presented. Survey results are 
subsequently summarized. These responses helped the team arrive at the IDE 
definition offered here. 

The testbed was used to perform an IDE. The conduct and results of the IDE 
are described next, and include a discussion of the loose-coupling which was 
achieved between the AAITT and the University of Massachusetts' CLASP 
package. Finally, the appendix concludes by presenting the specific support 
which the testbed provides for IDEs, affirming our belief that the AAITT can act 
as an effective foundation for the experimentation activity which forms the heart 
of the Instrumented Domain Experiment process. 

Ä.1     Background 

One of the obstacles to developing software applications for complex, real- 
world problems has been the difficulty of evaluating candidate technologies as 
well as prototype systems to determine their promise or degree of success. 
Determining the answer to questions such as the degree of a technology's 
scalability or whether one technology holds more promise than another for a 
given application has proven to be a very difficult proposition. Frequently, 
software technologies end up being evaluated on the basis of prototype 
demonstrations, often using a single, possibly unrepresentative, input scenario. 
Thus, the evaluator is hard-pressed to judge the depth and robustness of the 
prototype's functionality. Since the current limitations of the prototype are 
usually avoided in these demonstrations, it is also difficult to assess progress 
and judge the potential for further development. 

There is an increasing need to both better focus application-oriented software 
R&D (Research and Development) and achieve faster, more cost-effective 
technology insertion. Thus, there is a corresponding increase in the importance 
of improving the ability to evaluate technologies for use in real-world domain 
applications. The goal is to define an evaluation methodology which will 
support the more systematic and thorough evaluation of new technologies, 
specifically, the potential utility of these technologies for solving problems within 
application domains. 
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The possibility of using some type of software experiments to address these 
goals was raised, and the term "instrumented Domain Experiment" was coined 
by Dr. Stephen Cross at ARPA to denote the concept of using software 
experiments to evaluate technologies for domain application. However, the 
issues involved and the question of exactly how one might go about conducting 
such experiments required additional investigation. 

The term IDE indicates a focus on two key elements. First, the use of actual 
problem domains rather than artificial, simplistic problem spaces. Second, the 
employment of experimentation instead of restricted "feasibility" demonstrations. 

One obstacle to reliable technology evaluation has been the common practice 
of demonstrating systems using inputs based on overly-simplified problems. 
Often, only a few examples are applied; in extreme cases, only a single 
instance is used. It is not unreasonable to expect that better technology 
evaluation would occur if systems were exercised against problems 
representative of the target domain's scope and complexity. However, this 
notion then raises a number of questions, such as: 

°    "How can one determine whether or not a given problem case is 
representative?" 

a    "Is it necessary to use only "real" problem cases, with all of their attendant 
ambiguities and complications, or should problems be limited to some 
degree?" 

°    "If so, how does one recognize when a problem case is too limited?" 

°    "Where does one obtain acceptable problem examples?" 

Thus, although the general notion of seeking more rigorous evaluation through 
use of more demanding test cases seems sensible, instituting such a practice is 
likely to require careful thought and investigation. 

Similarly, it has long been a common practice in software R&D for developers to 
"prove" the value of their systems by demonstrating that they, indeed, run and 
produce apparently correct output when exercised on the types of test cases 
described above. Such demonstrations often provide little in the way of useful 
information to the evaluator. In fact, they provide no answers to the evaluator's 
questions about issues such as the demonstrated system's efficiency, the 
quality of its output, its merits relative to other technical approaches, and so on. 
These kinds of questions could be addressed if one could replace the 
traditional feasibility demonstration with one or more rigorous experiments. 

Similar to the idea of using more representative problem spaces, substituting 
demonstration with experimentation raises a number of practical questions, 
such as: 
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• "What kinds of questions should be experimentally tested?" 

°    "How can these questions be formulated as testable hypotheses?" 

'    "What measurements should be used to evaluate a hypothesis?" 

°    "Must all 'experiments' follow the classical model by providing an 
explicitly formulated hypothesis to test?" 

• "In summary, what are the effects of focusing the general concept of 
software experimentation on the evaluation of software technologies for 
domain applications?" 

Ultimately-, the answers to all of these questions must be answered through 
experience. However, the team concluded that initial efforts to gain such 
experience would be more fruitful if preceded by an analysis of the IDE concept 
and its attendant issues. Thus, some of the issues which must be addressed in 
applying experimentation within this context are presented next, and the 
discussion then goes on to describe candidate definitions of an IDE and an 
associated methodology. 

A.2    Approach 

Beginning with the general idea of using software experimentation to evaluate 
technology for domain applications, several areas for analysis were identified: 

• The overall goals for IDEs 

• A candidate IDE methodology 

• The relationship between IDEs and the software engineering process 

First, it is interesting to consider the underlying reasons for performing IDEs. 
Software experiments performed for basic research would, presumably, have 
the goal of establishing the fundamental principles and properties of, for 
instance, planning or computer learning. On the other hand, the types of goals 
that would make sense for IDEs would likely be different. A variety of interested 
parties are likely to be involved in an IDE, including operational Application 
Users, Application Architects, (Government) sponsors, as well as the individuals 
conducting the IDE. Each of these parties will, in all likelihood, be pursuing 
different goals. Thus, identifying likely categories of IDE goals was considered 
the first important area of investigation. 

The question of how an IDE should be conducted is also critical. Issues which 
must be addressed here include the nature of the input data to be used, 
approaches to  measuring  results, and the characteristics of appropriate 
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experimental hypotheses. Therefore, formulating an IDE methodology was 
identified as the second area of investigation. 

Finally, it is important to consider when, in general, IDEs should be performed. 
In particular, the team was interested in identifying the best insertion point for 
IDEs within the software development process. This question required attention 
because the answer might depend, at least in part, on the particular software 
development model, e.g. "waterfall" versus "spiral," being adopted. 

In summary, the intention of the preliminary analysis was to establish a starting 
position on the three basic questions of why, how, and when to perform IDEs. 

The team created a questionnaire addressing issues in each of the three topic 
areas to facilitate data gathering. The questionnaire was distributed within the 
operational and technical communities for advanced software R&D. Responses 
were compared and analyzed to develop recommendations for IDE goals, an 
IDE methodology, and the place for IDEs in the software development cycle. 
Survey responses will be summarized below, along with a discussion of the 
team's analysis and recommendations. 

A.3    Initial   Methodology 

A strawman IDE methodology was defined and inserted into the questionnaire 
to stimulate the canvassing process.  It consisted of the following steps: 

1. Produce the specification of a particular experiment, including 

a. The application suite selected for evaluation; 
b. The overall goal(s) of the experiment; 
c. The evaluation metrics to be applied; 
d. The rationale for the choice of metrics; 
e. The measurement strategy for the metrics; 
f. The data-capture strategy for the measurements; 
g. The inputs to drive system execution; and 
h. The rationale for choice of input set. 

2. Introduce the application suite into the instrumentation facility by 
embedding and integrating the application's constituent components. 

3. Implement or integrate the experiment's required data-capture 
mechanisms. 

4. Conduct the experiment under controlled conditions. 

5. Analyze the data captured during the conduct of the experiment. 

6. Present analytical results to the targeted audience for review. 
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A.4    Questionnaire   Results 

The completed questionnaire was distributed to individuals in government, 
academia, and industry. Table A-1, below, characterizes those who responded. 

Category Responding   Organization(s) 

Academic Research <^ University of Massachusetts 

Industrial Research 
(Both defense and 

^ Lockheed Martin Advanced Technology 
Laboratories 

non-defense) <& GE Corporate Research & Development 

♦ Teknowledge Federal Systems 

DoD Developers ♦ Headquarters, US Army Al Center 

DoD Sponsors and 
Operational Users 

USAF Rome Laboratory 

US Army Intelligence Center 

♦ Joint National Intelligence Development Staff 

DoD Verification and ♦ USAF 7th Communications Group 
Validation (V&V)/. 
Testing 

♦ - Air Combat Command / 1912 Computer 
Systems Group 

♦ Ogden Air Logistics Center / SCTE 
(Computer Support Group) 

Table A-1.     IDE Questionnaire Respondents 

The questionnaire contained approximately 20 questions distributed among the 
topics of IDE goals, methodology, and relationship to the software development 
process. Below, the questions which produced the most substantive responses 
are presented, along with specific examples or characterizations of the answers 
received. 

Q:     What types of questions would you want answered as the outcome of 
an evaluation? 
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A: Sponsors and operational users expressed an interest in determining 
whether operational needs were being satisfied as well as evaluating 
added value. As might be expected, the test and evaluation community 
wanted to know whether the system met user requirements. Multiple 
themes from "Did it work?" to "What are the data requirements?" were 
raised by industry developers. DoD developers also felt that various 
issues should be addressed, but felt that the specifics would be a 
function of the iterative development process. The sense from the 
academic community was that it was important to consider whether the 
science or technology was being advanced, using both sensitivity and 
parametric estimation studies. 

Q:     What issues should not be addressed by these experiments? 

A: The consensus was that any issue should be fair game. However, 
several interesting exceptions arose. An individual from the sponsor 
and operations group felt that it was crucial to agree on a subjective 
evaluation scale before considering qualitative questions. One industry 
developer believed that the presence or absence of a specific 
technology should be off-limits, while an academic researcher wanted 
to avoid treating the experiments as "bake-offs" requiring clear-cut 
winners and losers. 

Q:     What kinds of metrics would assist in meeting your evaluation goals ? 

A: Due to the clear relationship between experiment goals and metrics, 
responses here paralleled the answers received to the goals portion of 
the questionnaire. Sponsors and operational users wanted metrics that 
measure value-added for the user. Respondents in the evaluation and 
testing groups uniformly focused on users as the best source of metrics. 

Q: Would the experiment be scenario driven? Would more than one be 
used? 

A: Although nearly everyone favored the use of scenarios, the term was 
not universally interpreted in the same way. While some believed that 
a scenario was an artificially-created entity, others felt that scenarios 
were datasets captured from actual operations or exercises. However, 
there was general agreement that it was largely infeasible to prepare 
multiple, real-data scenarios. 
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Q: How would one demonstrate the typicality or generality of the 
scenario(s) or other inputs? 

A: The answers to this question gave rise to the notion of a certifying 
authority, an individual or organization associated with the application 
domain, capable of authenticating the scenario or other inputs. The 
result would be scenarios that are user-defined; identified as typical by 
a domain expert; possibly of historical significance; and/or DoD- or 
Service-validated. It would be the responsibility of the certifying 
authority to characterize the overall bounds of the scenario space as 
well as the coverage of the space afforded by any particular scenario. 

Q: Should the experiment be done within a real world or "near-real" world 
context, e.g., as part of a planned military exercise or installed on a 
factory floor? 

A: Most respondents believed that there would be a direct correlation 
between the authenticity of an experiment's context and its value. It is 
interesting to note that members of the sponsor and operational user 
groups, although agreeing that it was preferable to conduct these 
experiments within a real world context, also felt that some experiments 
should be carried out initially in a near-real world situation and 
subsequently transitioned into the real world. A glimpse into the 
reasoning behind the latter, phased approach can be found next. 

Q: Have you participated in evaluations of this kind? If so, what was good 
and what was bad about them? 

A: One answer deserves particular consideration. The respondent, 
possessing experience with these types of evaluations during military 
exercises, liked the intensity of the user-developer interaction during 
the evaluations but cautioned that prototypes frequently fail because of 
known limitations or unexpected changes in exercise conditions. 
However, although the reasons behind these failures are frequently 
well understood and known beforehand, one does not get a second 
chance to make a good first impression. Thus, a possible outcome of 
these failures is irreparable damage to the user's confidence in the 
capability being evaluated. 
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Q:     Where would an IDE fit in the software development process? 

A: The consensus was that, regardless of the particular development 
model being employed, experimentation could be valuably applied 
throughout the entire process. 

Q: Would the IDE replace or add to the steps in the software engineering 
cycle? Where would the IDE be added, or if steps would be replaced, 
which ones? 

A: There was no clear agreement among the respondents to this question. 
Some individuals felt that IDEs might replace portions of the testing 
process. Others believed that IDEs address issues other than testing, 
such as the definition of requirements. 

Q:     What fraction of project resources should be applied to IDEs and from 
where should it be taken ? 

A:     Answers here covered the entire spectrum, from "insignificant" to "half 
of the effort." 

The implications of these responses are examined next. 

A.5    Analysis 

A number of tentative conclusions regarding IDE goals, the IDE methodology, 
and the relationship between IDEs and the software engineering process, can 
be drawn from the answers provided by our respondents. 

A.5.1      IDE  Goals 

First, with regard to IDE goals, the team concluded that the IDE must be focused 
on evaluating the technology's ability to satisfy operational needs. This means 
that IDEs should not be seen as vehicles for the advancement of basic 
research. Emphasizing operational needs as an evaluation driver is a natural 
consequence of the IDE's stated purpose as a tool for evaluating technology in 
application domains. However, it is not uncommon for researchers to feel that 
one should be able to both advance the science and satisfy application needs 
at the same time. The academic respondent's answers and associated 
comments express this belief. In contrast, all of the other respondents 
emphasized the importance of determining whether the technology met 
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operational needs. They used such terms as "requirements," "user-determined 
questions," and "operational needs." Thus, evaluation against operational 
needs as opposed to evaluation of technology advancement represent 
generally divergent goals. 

To illustrate this divergence, consider a case where two planning technologies, 
referred to here as A and B, are to be evaluated.. Suppose these technologies 
are evaluated by performing one or more experiments in a certain application 
domain. Furthermore, suppose it is determined that technology A is significantly 
faster than technology B. Such a result may be of vital interest to the 
researcher, but would not be important in evaluating the technology within the 
chosen domain unless B failed to meet a time requirement imposed by an 
operational need within that domain. In other words, if the goal is to improve the 
capability of those who plan in the chosen domain, A's speed advantage would 
not be a sufficient reason to spend resources on developing A rather than B. 
On the other hand, if the goal is to determine basic differences between A and 
B, the speed difference is important, and one might well be justified in 
expending additional resources to, for example, attempt to identify the reason(s) 
for the difference. 

Thus, the basic purpose of IDEs is to reduce the set of possible experiment 
goals down to those which will aid in ascertaining the relationship between the 
technologies to be evaluated and the application domain's operational needs. 

A.5.2      IDE  Methodology 

Respondents to the questionnaire also provided useful insights to methodology 
issues. Several points regarding the specification of metrics, evaluation criteria, 
scenarios, and experimental hypotheses were made. 

It was stated that it is crucial to agree on a subjective evaluation scale before 
considering qualitative questions. The academic respondent stated that little 
can be said, in general, about issues such as metrics because the critical 
details depend on specific circumstances. However, respondents from the 
Sponsor and Operational as well as the Testing and Evaluation communities 
emphasized the importance of both measuring value-added from the user's 
point of view and looking to the user as the definitive source of metrics. Several 
important conclusions may be drawn from these points. 

First, the user and his/her operational needs must be the source of IDE 
evaluation criteria and metrics. As discussed earlier, factors such as a software 
system's execution speed are only significant in the context of an IDE to the 
extent that the user's speed requirements are significant in the given domain. 

Second, evaluation criteria and their corresponding metrics, whether qualitative 
or quantitative, must be agreed to in advance by all relevant parties. This is a 
practical necessity because, in many cases, there may be no obvious best 
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choices for criteria or measurement methods. The difficulties associated with 
choosing a subjective scale for qualitative conditions represents an excellent 
example here. 

Finally, if we are to take the word "Experiment" in instrumented Domain 
Experiment seriously, it is important to transform the evaluation criteria drawn 
from operational needs into clear-cut test conditions or hypotheses. This point, 
although straightforward, is frequently ignored in the "feasibility demonstrations" 
often offered to software technology evaluators. As an example, consider the 
domain of logistics planning. It is insufficient to use a statement such as "There 
is a need to increase the speed of logistics planning..." as an evaluation 
criterion. By this criterion, any software system which reduces planning time is 
a success. Using such a standard gives rise to problems because the 
technology evaluator, shown that System X reduces planning time, has no 
basis for judging whether the reduction achieved will result in a legitimate 
operational benefit and/or whether that benefit would be worth System X's likely 
fielding costs. Clearly achieving the intention of the IDE concept in this example 
would require establishing concrete criteria based on precisely-defined 
operational needs. Thus, suppose that a study of the logistics planning process 
revealed that planners could revise plans quickly enough to handle most 
unforeseen events or changes to planning assumptions without incurring 
significant operational delays if the time to generate a plan could be reduced by 
a factor of ten. This provides a clear basis for defining an IDE test hypothesis. 

Questions regarding the nature and context of IDEs input sets also yielded 
beneficial responses. First, respondents were asked whether experiments 
should be driven by a scenario, defined as a dataset representing a coherent, 
essentially complete instance of the type of operational activity that occurs in the 
chosen domain. The alternative would be to choose an artificial dataset 
representing only certain aspects of the domain's properties. The respondents' 
uniform preference for scenario-based experiments appears to be a function of 
their emphasis on basing evaluations around operational needs. However, the 
use of an artificial dataset might be appropriate for an experiment aimed at pure 
research. Still, it is clearly critical that the data driving the experiment must 
accurately represent the domain in scope and complexity when the goal is to 
evaluate technology for its utility in that domain. 

Of course, even a scenario-based experiment will not yield reliable results 
unless the scenario represents a typical case from the target domain. In 
defining the strawman IDE methodology, the team felt that one of the key 
challenges would be identifying representative scenarios and demonstrating 
their typicality. The respondents offered the very practical solution of relying on 
domain expertise to overcome this hurdle. 

Members of the Sponsor and Operational as well as the Test and Evaluation 
groups recommended that scenarios constructed from live exercises or 
operations, and judged to be typical by domain experts, should be employed 
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within !DEs. At least one respondent noted that many such scenarios already 
exist and are maintained throughout DoD for various applications. Although 
several Developer respondents raised the possibility of creating artificial 
scenarios, the respondents with the greatest experience in delivering 
technology to operational users, namely the Sponsor and Operational as well 
as Test and Evaluation groups, felt that the use of real scenarios is the only 
approach to constructing datasets which accurately represent the domain's true 
scope and complexity. Thus, IDEs must be driven by scenarios that are 
composed of real domain data and judged representative by suitable experts. 

IDE context is an important factor not explicitly mentioned in the questionnaire's 
strawman methodology. One might reasonably assume that, since the purpose 
of the IDE is to evaluate technologies for real-world application, IDEs should be 
conducted in the real world. Although most of our respondents felt "the more 
real the better," the experiences of some in the Sponsor and Operational 
community led them to recommend the more cautious strategy of evaluating in 
"near-real world" conditions before venturing into the real world. 

The motivation for this recommendation can be found in the comments provided 
by one member of this group in response to the question asking each individual 
to indicate whether they had ever participated in an evaluation similar to an IDE. 
The respondent had been involved in evaluations performed as part of live 
military exercises and felt that, although assessments performed under these 
conditions could be beneficial, they also presented serious risks because the 
unpredictability of live operations, even carefully planned exercises, frequently 
resulted in circumstances which caused the prototype under evaluation to fail in 
an unfavorable way. For example, unexpected conditions might induce a 
failure due to previously known limitations of the prototype or necessitate that 
the prototype be used in an unintended or unconventional manner. Each 
successive failure can further decrease the willingness of operational users to 
accept a system. Examining this observation from the perspective of trying to 
replace demonstration with experimentation, it is clear that the underlying 
problem is lack of control. That is, one important characteristic differentiating 
experimentation from other forms of assessment is the ability to control the 
conditions under which the evaluation is performed. If conditions are controlled, 
any failure of the prototype represents additional data from which conclusions 
can be drawn. Otherwise, failures may be due to either previously known 
deficiencies or indeterminable reasons. In either case, nothing additional has 
been learned about the technology under evaluation. Therefore, although IDEs 
should be performed using real world data as discussed earlier, they should 
only be performed under laboratory conditions and not conducted in either the 
real world or the near-real world of exercises. 
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A.5.3    Relationship    between    SDEs   and    Software    Development 
Models 

The final major area of investigation is the relationship between IDEs and 
software development models. Most of the respondents used some form of 
iterative development model as a frame of reference, but some worked from the 
waterfall-style model. Surprisingly, regardless of the assumed development 
model, virtually all of the respondents felt that experimentation would be 
employed throughout the development process. One could certainly envision 
IDEs performed as part of each prototype cycle under an iterative development 
model. However, respondents who assumed the use of a waterfall model also 
believed that IDEs could be conducted early in the development process to 
assist with phases such as requirements definition. 

It is important to note that performing an IDE in the early stages of waterfall- 
oriented development requires either a simulator or an adaptation to the 
development model because the IDE depends on the existence of some 
software to act as the subject of the experiment. The simulator is used to 
approximate the behavior of the intended final capability during the IDE. The 
adaptation alternative is similar since, in a digression from the model, an early 
prototype of the desired system is constructed. Either approach involves 
additional cost and blurs the distinction between the two models. Thus, the 
team concluded that IDEs are best used with iterative development models. 

There was no consensus about whether IDEs would supplement or partially 
replace other forms of test and evaluation. This disagreement may have been 
the source of the wide range of answers provided to the question asking about 
the relative magnitude of resources which should be applied against IDEs. 
Despite this lack of agreement, it is clear that successful IDEs will reduce costs 
due to effects such as increased process discipline. 

A final point relevant to the role of IDEs in the development process was 
provided by our academic respondent. In response to a question regarding 
whether any IDE-related issues should be off-limits, he recommended that 
these experiments should not be used to downselect technology. This appears 
to be inconsistent with the notion that improved methods of evaluation enable 
Sponsors to make better decisions regarding the allocation of funds. However, 
his advice provides valuable IDE-related insight — experiments should occur 
earlier, rather than later, in the development process when their purpose is to 
evaluate technological potential and/or domain applicability. Otherwise, a 
downselection experiment, taking place after two or more contending 
approaches have already undergone lengthy development efforts, would occur 
too late to achieve its intended purpose of guiding a funding decision. Allowing 
extensive resources to be indiscriminately expended on development prior to 
the conduct of such an evaluation would relegate IDEs to no more than tools for 
deciding, in hindsight, which approaches were wasteful or had simply failed. 
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IDEs should act as tools to aid foresight, rather than hindsight, for it is here that 
they show promise in facilitating cost reduction. 

This observation suggests a strategy where IDEs are performed early in the 
development process, in contrast to the belief expressed by many of our 
respondents that these experiments should be frequently conducted throughout 
development. Earlier, the counsel to avoid real world situations where control 
may be lost over events was discussed. It is interesting to note that this advice 
is compatible with the former viewpoint. Thus, with regard to the relationship 
between IDEs and the software development model being employed, the team 
concluded that IDEs are best carried out early in the development process; that 
they are best used within an iterative process; as well as that their overall effect 
on the model is not fully understood and will become clearer with more use. 

A.5.4      Survey   Conclusions 

The views offered by the survey's respondents and the team's analysis of their 
answers permits the nature of IDEs to be clarified. This can be accomplished by 
identifying the necessary or desirable characteristics which these experiments 
must possess if they are to be successfully used to evaluate the potential use of 
a software technology in a specific application domain. 

First, because the IDE's foremost purpose is evaluating the use of particular 
software technologies in an application domain, the goal of an IDE must be 
based on the operational needs of that domain. Other issues, such as .the 
investigation of basic scientific principles, are secondary in this context and 
should not be allowed to impede the essential determination of the technology's 
value to the target domain's users. 

Second, the team's initially proposed IDE methodology should be adapted by 
modifying items c. and g. of step 1, experiment specification, to incorporate the 
notions that: 

c.   The evaluation metrics to be applied should be defined by users to the 
greatest extent possible; and 

g.  The scenario(s) identified to drive the experiment must be as realistic as 
possible and authenticated by domain experts and/or the appropriate 
certifying organization(s). 

Third, the underlying intent of the IDE concept, which can be summarized as 
experimental evaluation to guide pending and programmatic decisions, 
coupled with the impracticality of maintaining experimental control in real or 
near-real operating conditions, implies that IDEs must be performed in the 
earlier stages of software development. This, in turn, implies that the use of 
IDEs is better suited to an iterative software development model. Thus, as an 
example, IDEs might be incorporated into the well-known spiral model. 
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Ä.6    The IDE Definition and Its Implications 

The following IDE definition is offered as a result of the questionnaire responses 
which were received as well as the team's experience and subsequent analysis 
of the relevant issues: 

IDEs are experiments which test specific hypotheses derived from 
requirements reflecting operational needs and performed repeatedly 
throughout the development cycle. 

The definition incorporates several key ideas which were stressed by the survey 
respondents, including: 

°   Testing specific hypotheses. 

Repeated evaluation to guide development. 

°    Explicit requirements as the standard of evaluation. 

e    Operational need as the ultimate driver. 

The following IDE-related conclusions augment the aforementioned definition: 

°    Conceptually, IDEs lie at the intersection of rapid prototyping, software 
experimentation, as well as verification and validation. 

°    IDEs are used to evaluate software intended to perform a distinct 
domain-related function. 

"    IDEs foster technology insertion, not technology advancement. 

•    IDEs are employed within a rapid prototyping development model to both 
leverage the existence of functional prototypes and avoid the additional 
cost of simulating functionality. 

IDEs can be conducted during numerous phases of the development 
cycle, including, without limitation:  requirements definition and 
validation; design trade-off studies and design V&V; as well as 
integration and test. 

"    IDEs occur before software is exercised in the field. 

°    An IDE is not used as a downselection vehicle between two or more 
large systems or technologies primarily because it is inefficient and costly 
to do so.   In addition, conducting IDEs earlier can avoid "sunk" costs. 
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e    IDEs represent a special class of software experiments whose purpose is 
to evaluate progress toward meeting operational needs. 

•    IDEs yield benefits despite their costs. The benefits of IDEs include 
increased process discipline, clearer research and development goals, 
closer couplings to operational users, and improved decision making at 
technology and funding judgment points.  IDE costs are centered around 
obtaining and (pre)processing authenticated data, performing repeated 
integrations, as well as conducting each separate IDE and analyzing the 
experiment's results. The disadvantages are clearly outweighed by the 
advantages. 

A.7    Using the AAITT to Perform Instrumented Domain Experiments 

Theory was placed into practice with the conduct of the Instrumented Domain 
Demonstration (IDD) as an example Instrumented Domain Experiment. The 
primary goal of the IDD was to show that the testbed could facilitate the IDE 
process. Therefore, as before, an existing distributed software system, in this 
case a Theater Missile Defense application, was embedded and integrated 
using the AAITT so that an IDE could be performed. This successful effort and 
the results obtained by the team are presented below. 

The distributed application provided Battle Management/Command, Control, 
and Communications support for a Theater Missile Defense (TMD) Command 
Center. A scenario centered in the Middle East was used for the IDE. The 
Command Center was transitioned through three distinct modes of operation. 
Each mode imposed a different set of objectives on the Center. The 
application's decision aids were used to ultimately help the commander defend 
Saudi Arabia against threats launched from Iran. 

The TMD application's human-computer interface was composed of five 
displays. The CINC Theater Command screen displayed the decision aids' 
assessments and was used to trigger all command functions. The Event 
Indicator screen showed the state of incoming threats. The Map Display screen 
overlaid weapon locations and missile tracks on the theater map. The Threat 
Assessment screen evaluated each country's threat posture. Finally, the 
Weapon-Target Assignment screen displayed weapon-to-target pairings. 

Once embedded and integrated using the testbed, the IDD application was 
composed of the following six modules: 

Batman acted as a scenario generator for the war mode of 
operation   by   propagating   all   weapon   firings   and 
performing weapon-to-target assignments. 

Astrocalc predicted weapon impact points and times. 
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Adaptnet dynamically adapted various internal neural networks by 
reconfiguring and retraining them based on changes in 
weapon site locations. 

Map provided a map of the theater.    It displayed missile 
trajectories and allowed defensive weapon sites to be 
repositioned. 

CINC Theater facilitated analysis by providing the commander with 
weapon and target location data. The module also 
allowed decisions about defensive weapon placement 
and civilian alerts to be introduced into the application. 

Table Server functioned as a memory-resident data repository offering 
an SQL-like interface. It offered rapid query operations 
by eliminating the overhead associated with commercial 
database management systems. 

The baseline IDD application architecture's topology is shown in Figure A-1. In 
this and subsequent figures the Batman, Astrocalc, Adaptnet, Map, CINC 
Theater and Table Server modules are referred to as "Batman," "Astro," "Check 
Nets," "CINC Theater," and "Run DB," respectively. The figures also depict the 
distribution of modules across host machines. 

Embedding and integrating the six components using the AAITT allowed the 
team to gain valuable insight into the application's performance. Performance 
problems were detected and the database's role as a central repository 
suggested that it might be a source of observed bottlenecks. Initial analyses 
indicated that, due to the observed variability in the time spent waiting for the 
completion of a requested database transaction, application execution time was 
potentially being affected by contention among the modules for access to the 
database. 

Using this information, the hypothesis for the example IDE was cast as: 

Reducing the number of modules contending for a given copy of the 
database will produce a distinct effect on performance. 

Two alternative architectures were subsequently designed and implemented as 
additional AAITT applications to test this hypothesis. These architectures 
duplicated the database on each host machine in the testbed, thereby reducing 
contention for any given copy of the repository. 

The alternative architectures, shown as Figures A-2 and A-3 below, included 
two and three copies of "Run DB," respectively. In each case, every duplicate of 
the Table Server received data generated by "Batman." 
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Map 

Figure A-1.   TMD Application Architecture with One Database 

The AAITT allowed the team to rapidly construct, execute, instrument, and 
monitor each of the applications. Extensive logs were captured during the 
execution of the baseline and alternatives. Preliminary examinations of log 
information related to application-level communication traffic seemed to indicate 
that reducing the number of modules contending for a given copy of the 
database did, indeed, produce a distinct effect on performance. However, 
quantitative results with a greater level of detail needed to be established. 
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Hostl 

Astro 

Figure A-2.   TMD Application Architecture with Two Database Copies 

For this reason, an analytical statistics package, the CommonLISP Analytical 
Statistics Package (CLASP) from the Experimental Knowledge Systems 
Laboratory of the University of Massachusetts at Amherst, was used to explore 
the data in the log files. In general, CLASP can take a dataset and calculate a 
large number of descriptive statistics, including the mean, median, and standard 
deviation. Using these statistics, tests such as the t test and an Analysis of 
Variance can be computed. 
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Figure A-3.   TMD Application Architecture with Three Database Copies 

The format of the AAlTT's log files is very similar to the input format required by 
CLASP. Several emacs macros were generated to effect the transformation, 
namely, by eliminating unreadable LISP characters; inserting a dataset name 
into the log file; and introducing column, or variable, names for the data. The 
transformed log files were then loaded into CLASP and statistical summaries 
were prepared using the package.  From these summaries, statistics describing 
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database queries were used as the foundation of the two graphs shown in 
Figures A-4 and A-5.    Note that in both figures, the terms "tmd_good," 
"tmd2_good," and "tmd3_good" along the x-axis representing "Architecture" 
refer to the topologies presented in Figures A-1, A-2, and A-3, respectively. 
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Figure A-4.    Number of Hosts Affecting DB Query Time 

The graph of Figure A-4 shows that, as the database is replicated (number of 
hosts greater than 1), the database query time drops from 0.21 to 0.05 seconds. 
The observed fourfold speedup confirmed the team's hypothesis.   Figure A-5 
shows a latent effect of reduced query time as the time between queries grows. 
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Figure A-5.    Number of Hosts Affecting Time Between DB Queries 

Table A-2, below, summarizes the application of the team's Instrumented 
Domain   Experiment   methodology  to   realize   the   Instrumented   Domain 
Demonstration, a specific instance of an IDE.  The table's left column presents 
each of the methodology steps introduced earlier in section A-3 and the entries 
found in the right column list the corresponding task(s) completed by the team to 
prepare the IDD. 
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£6| !DD   Development  Task(s) 

1.   Produce the specification of a 
particular experiment. 

o   The TMD application was 
identified for the IDE. 

o   Investigating the effect of 
database contention on 
performance was established 
as the goal. 

o   A scenario centered in the 
Middle East was selected. 

o   The AAlTT's instrumentation 
and monitoring capabilities 
were used as the measurement 
and data-capture strategy. 

♦   "DB Query Time" was the 
experiment's evaluation metric. 

2.   Introduce the application suite 
into the instrumentation facility 
by embedding and integrating 
the application's constituent 
components. 

o   The TMD application's original, 
custom communication layer 
was removed. 

o   The AAlTT's Frameworks were 
used to successfully embed 
and integrate the problem- 
solving suite. 

3.   Implement or integrate the 
experiment's required data- 
capture mechanisms. 

o   The testbed's built-in 
measurements were sufficient 
to capture the required data. 

Conduct the experiment under 
controlled conditions. 

o   The MCM Workstation's 
features permitted experiments 
to be conducted in a controlled 
and repeatable fashion. 

5.  Analyze the data captured 
during the conduct of the 
experiment. 

♦   Logged data was initially 
analyzed using the AAlTT's 
Metrics Analyzer, and later 
examined within CLASP. 

Present analytical results to the 
targeted audience for review. 

o   Results were presented to 
RL/C3CA during the IDD. 

Table A-2.     Realizing the IDD by Applying the IDE Methodology 
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A.8    IDE Support Provided by the ÄA1TT 

The Instrumented Domain Demonstration was auspiciously completed. The 
feasibility of using the AAITT as a foundation for conducting Instrumented 
Domain Experiments was convincingly confirmed. In addition, the value of an 
environment for the design, analysis, integration, evaluation, and execution of 
large-scale, complex, distributed software systems was strongly revalidated. 
The entire process of embedding and integrating the Theater Missile Defense 
decision support suite, including application familiarization and replacement of 
the communication layer, required only approximately two staff-weeks of effort. 
Constructing alternative architectures in support of the experiment was 
effortlessly accomplished once the embedded components were catalogued as 
AAITT modules and available for adaptation and reuse. Realizing the IDD 
application and conducting the Experiment with the AAITT led the team to 
conclude that the testbed strongly supports IDEs in a variety of ways. Table A-3, 
below, highlights these facts. The table's left column reiterates the IDE 
methodology. Summaries of the relevant testbed capabilities supporting each 
step appear in the right column. 

The AAlTT's capabilities were also extended with the development of an 
integrated approach to effecting detailed data exploration using CLASP. A 
graphical overview of this process is presented in Figure A-6. 

IDE Methodology Step AAITT Support Feature(s) 

1.   Produce the specification of a 
particular experiment. 

<?>   This portion of the IDE 
methodology is primarily a 
planning step.  However, the 
testbed's cataloguing 
capabilities promotes reuse by 
allowing users to easily 
compare what they already 
have with what they need. 

2.   Introduce the application suite 
into the instrumentation facility 
by embedding and integrating 
the application's constituent 
components. 

♦ The MCM Workstation's 
modeling, code generation, 
and compilation capabilities 
allow components to be rapidly 
and cost-effectively embedded, 
integrated, and (re)configured. 

♦ Extensive distributed system 
debugging tools facilitate the 
realization of properly- 
functioning solutions. 
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3.   Implement or integrate the 
experiment's required data- 
capture mechanisms. 

4.  Conduct the experiment under 
controlled conditions. 

o 

<3> 

The AAITT provides a wide 
assortment of built-in 
measurements for any 
application. 

The development and insertion 
of custom, user-defined 
measurements is also 
supported to meet situation- 
specific needs. 

Analyze the data captured 
during the conduct of the 
experiment. 

o   Application execution follows a 
strictly-enforced state transition 
strategy providing control and 
repeatability. 

o   Monitoring, or execution-time 
data-capture, is a non-intrusive 
facility that minimizes the 
introduction of false artifacts. 

#   Flexible, menu-driven host 
(re)assignment facilitates the 
investigation of resource usage 
and communication issues. 

6.   Present analytical results to the 
targeted audience for review. 

The AAlTT's Metrics Analyzer 
and Log Viewers both provide 
facilities for examining log data 
in both graphical and tabular 
forms. 

The log data is well-formed and 
maintained in the ASCII format. 
Thus, the data can be easily 
translated into other formats 
required for incorporating it into 
analysis tools such as CLASP 
or spreadsheets. 

The graphs created by the 
Metrics Analyzer are easily 
understood and suitable for 
incorporation into technical 
presentations. 

Table A-3.     AAITT Support for Instrumented Domain Experiments 
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In this figure, a testbed-resident application is constructed, instrumented, 
executed and monitored to collect data logs. These data logs may first be 
viewed with the AAlTT's Metrics Analyzer. The logs can then be transformed, 
introduced into CLASP, and analyzed to uncover latent information. The user, 
an Application Architect, then uses the information from the analysis to further 
refine the application. This process parallels the iterative nature of IDEs. 

Application 
Refinement 

Output of 
LoggingFacility 

Feedback 
and Analysis 

Add headers and 
remove illegal characters 

Input to CLASP 
to make dataset 

Figure A-6.    Using CLASP for Data Exploration to Complement AAITT 
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Glossai 

Allowable AAITT States 

Application 

Application Architect 

Asynchronous 

Breakpoint 

Channel 

CIM Connected 

CIM Loaded 

CIM Reset 

Code Frame 

Code Frame Generation 

The permissible modes in which an AAITT 
application or module can be found. The 
allowable states are: Unloaded, CIM Loaded, 
CIM Connected, Loaded, Initialized, Running, 
and Paused. 

An    assemblage    of 
subapplications. 

modules    and/or 

The user role responsible for defining the 
multi-module application and determining how 
modules interact. 

In the context of AAITT, the type of concurrent 
processing where process completion is not 
predetermined. 

Processing instruction that is triggered by the 
occurrence of a specific predetermined 
condition. This processing instruction 
suspends program execution. 

A single row of data within a time-dependent 
measurement display. 

An allowable AAITT module state defined as 
one where communications have been 
established by the module with the DPS. In 
this state the component of the module is not 
in main memory. 

An allowable AAITT module state defined as 
one where a module's CIM is in main memory 
but the component part of the module is not. 

An allowable AAITT module state transition 
defined as placing a module from the CIM 
Connected, Loaded, Running, or Paused state 
to the CIM Loaded state. 

Skeletal Component Interface Manager code 
requiring subsequent customization. 

The automated production of a code frame 
based on a user-specified graphical model. 
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Component 

Component Embedder 

A stand-alone  conventional 
based program. 

or knowledge- 

The user role responsible for transforming an 
independent component into an AAITT- 
compatible module. 

Component Interface Manager    A software element responsible for managing 
the interface between a component and the 
rest of the testbed. 

Connect 

Conventional Software 

An allowable AAITT module state transition 
defined as placing a module from the CIM 
Loaded state to the CIM Connected state. 

Software that does not utilize any special 
Artificial Intelligence techniques or use any 
special knowledge representations. 

Database Management System  A software system that  makes uses of a 
specially designed language and logical 
structure for data that optimizes data 
organization and access. 

Distribute 

Dynamic Message 

Execute 

Filter 

Filtering 

An allowable AAITT module state transition 
defined as placing a module from the 
Unloaded state to the CIM Loaded state. 

A data structure which is passed between the 
message template generating facility and an 
AAITT entity to test communication interfaces. 

An allowable AAITT module state transition 
defined as placing a module from the 
Initialized state to the Running state. 

Program that takes, as input, a measurement 
log and produces, as output, a subset of the 
log expressed as a data structure containing 
only the desired features of the original log, as 
specified by the user. 

The act of applying a filter to a measurement 
log. 
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Graphical Application Model The representation of an AAITT application in 
the form of a schematic diagram showing the 
application's constituent modules and their 
respective port connections. 

Initialize An allowable AAITT module state transition 
defined as placing a module from the Loaded 
state to the Initialized state. 

Initialized An allowable AAITT module state defined as 
one where the module is in main memory, the 
CIM is connected to the DPS, and pre-run 
inter-module messages have been sent (e.g. 
mission-context has been established). 

Instrumentation Used to display measurements. 

Knowledge -Based Software Software  that  makes  use  of inductive  or 
deductive reasoning about the data it has 
access to in order to form hypothesis or reach 
conclusions. 

Load An allowable AAITT module state transition 
defined as placing a module from the CIM 
Connected state to the Loaded state. 

Loaded An allowable AAITT module state defined as 
one where the module is in the memory of an 
AAITT machine. 

Log Data   structure   containing   time-stamped 
records  of user-designated  measurements 
that is collected during application execution. 

Logging The act of accumulating a log.   The AAITT 
provides a facility for the creation of logs. 

Long-Form Logs Time-stamped   records  of  user-designated 
message  flows  that  are  collected  during 
application execution. 

Measurement Quantifies    features    that    aid    in    the 
understanding of system performance. 

Measurement Logs Time-stamped   records  of  user-designated 
measurements   that   are   collected   during 
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Message 

Mixed State 

Modeling 

Module 

Monitoring 

Operating System 

Paused 

Port 

Relational Database 

Remote Procedure Call 

application execution. A Measurement Log is 
also referred to as a Short-Form Log. 

A data structure passed between any two 
AAITT entities to effect communication. 

An AAITT application mode in which all 
constituent modules are not in the same 
allowable AAITT state. 

The act of specifying an AAITT graphical 
representation or structure. 

A component (possibly modified) plus its 
associated component interface manager. 

The set of procedures through which 
measurements are captured so that 
instrumentation can be applied to them. 

The layer of software that controls resources 
and hardware. This layer may also direct 
firmware. The operating system supports and 
is utilized by both application software and 
users. 

An allowable AAITT module state defined as 
one where the module has been taken out of 
the running state (whether by self- 
breakpointing, external suspension, or due to 
an error) and can be returned to the running 
state directly, without having to enter any other 
state first. 

A communications interface point for an AAITT 
module. 

A data organization where the data is made 
up tables. Each table is comprised of records. 
Each record in the same table has the same 
logical fields. Data in two or more tables can 
be joined if they have one or more related 
fields. 

One of the AAlTT-supported methods of 
invoking   an   operation   or  process.     It   is 
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essentially a "call and block until complete" 
style of invocation. 

Rendezvous One   of the  AAlTT-supported   methods  of 
invoking an operation or process.   It uses a 
"futures" paradigm of calling that provides a 
"call  and don't block"  style of invocation, 
where   a   "handle"   is   provided   for   each 
invocation.   The "handle" can be claimed at 
some future time to verify that the invoked 
operation has completed. 

Reset An allowable AAITT module state transition 
defined   as   placing   a   module   from   the 
Initialized, Running, or Paused state to the 
Loaded state. 

Resume An allowable AAITT module state transition 
defined as placing a module from the Paused 
state to the Running state. 

Running An allowable AAITT state that signifies that 
either the application or a specific module is 
executing program instructions. 

Self-Test The ability of an entity to determine its own 
status.    For AAITT, this term refers to the 
testbed software's ability to determine if it is 
installed correctly. 

Short-Form Logs See Measurement Logs. 

State Restore The act of placing an AAITT application or 
module in a state that had been previously 
saved. 

States The conditions or modes in which AAITT 
applications or modules can exist.. 

State Save Saving the current state values of a CIM to a 
file for later CIM state restoration. 

State Transitions The passage from one allowable AAITT state 
to another. 

Step An allowable AAITT module state transition 
defined as placing a module from the Paused 

100 



State to the Running state, allowing the 
module to either receive one application 
message or send one out, and then place the 
module back into the Paused state. 

Subapplication An    assemblage    of    modules    and/or 
subapplications. 

Suspend An allowable AAITT module state transition 
defined as placing a module from the Running 
state to the Paused state. 

Suspending Placing the application into a paused state 
from the running state. 

Synchronous In the context of AAITT, the type of concurrent 
processing in which the order of process 
completion is predetermined. 

Terminate An allowable AAITT module state transition 
defined as placing a module from any 
allowable AAITT state, except Unloaded, to 
the Unloaded state. 

Testbed Facility that provides tools for experimenting 
with software system configurations in order 
optimize performance and solutions. 

Unload An allowable AAITT module state transition 
defined as placing a module from the Loaded, 
Initialized, Running, or Paused state to the 
CIM Connected state. 

Unloaded An allowable AAITT module state defined as 
one where the module is not in the main 
memory of any AAITT machine. 

Unloading Removing an entire application (all modules 
and associated component interface 
managers) out of the main memories of all 
AAITT computers. 

Versioning System Facility provided by an operating system that 
enables the tracking of file creation and 
modification. 
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iations and Acronyms 

AAITT Advanced Artificial Intelligence Technology Testbed 

ABE™ A Better Environment 

AFWL Air Force Wright Laboratory 

Al Artificial Intelligence 

AMPS A Mission Planning System 

ARPA Advanced Research Projects Agency 

ARPI ARPA/Rome Laboratory Planning Initiative 

ATO Air Tasking Order 

BBN Bolt, Beranek, and Newman 

CIM Component Interface Manager 

CLASP CommonLISP Analytical Statistics Package 

CORBA Common Object Request Broker Architecture 

COTS Commercial-off-the-Shelf 

CPU Central Processing Unit 

CSCI Computer Software Configuration Item 

C3I Command, Control, Communications and Intelligence 

DART Dynamic Analysis and Replanning Tool 

DBMS Database Management System 

DoD Department of Defense 

DPS Distributed Processing Substrate 

ERIC Extensions to Ross In Common LISP 

FIFO First In, First Out 

FMERG Force Module Enhancer and Requirements Generator 

GFS Government Furnished Software 

GOTS Government-off-the-Shelf 

GUI Graphical User Interface 

IEEE The Institute of Electrical and Electronics Engineers 

LIFO Last In, First Out 

LISP List Processing 

MCM Modeling, Control and Monitoring Workstation 

N/A Not Applicable 

OSD Office of the Secretary of Defense 
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R&D Research and Development 

RFP Request for Proposal 

RL Rome Laboratory 

SAM Surface to Air Missile 

SOCAP SIPE for Operations Crisis Action Planning 

SQL Structured Query Language 

SSS System / Segment Specification 

SRS Software Requirements Specification 

TAC-DB Tactical Database 
TCP / IP Transmission Control Protocol / Internet Protocol 

TMD Theater Missile Defense 

USAF United States Air Force 

WAN Wide-Area Network 

ftU.S. GOVERNMENT PRINTING OFFICE:    1996-710-126-20105 
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MISSION 

OF 

MOME LABOMA TOM V 

Mission. The mission of Rom© Laboratory is to advance the science and 
technologies of command, control, communications and intelligence and to 
transition them into systems to meet customer needs. To achieve this, 
Rome Lab: 

a. Conducts vigorous research, development and test programs in all 
applicable technologies; 

b. Transitions technology to current and future systems to improve 
operational capability, readiness, and supportabilüy; 

c. Provides a full rang© of technical support to Air Force Materiel 
Command product centers and other Air Fore© organizations; 

d. Promotes transfer of technology to the privat® sector; 

e. Maintains leading edge technological expertise in the areas of 
surveillance, communications, command and control, intelligence, reliability 
science, electro-magnetic technology, photonics, signal processing, and 
computationai science. 

The thrust areas of technical competence include: Surveillance, 
Communications, Command and Control, Intelligence, Signal Processing, 
Computer Scisoc© and Technology, Electromagnetic Technology, 
Photonics and Reliability Sciences. 
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