RL-TR-95-189
Final Technical Report
October 1995

ADVANCED ARTIFICIAL
INTELLIGENCE TECHNOLOGY
TESTBED

‘

Martin Marietta Corporation

John Zapriala, Thomas Geigel, David Hollingsworth,
Henry Mendenhall, Kenneth Whitebread, Russell Irving,
Michael Wiley, Terry Barnes, Lee Erman, and Dan Kuebler

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

10960327 019 ...

SIS T e
Sedld Ledolta TR B

Rome Laboratory
Air Force Materiel Command
Griffiss Air Force Base, New York

This report has been reviewed Ey the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). at
NTIS it will be releasable to the general public, including foreign nations.

RL-TR-95-189 has been reviewed and is approved for publication.

APPROVED: CAQ"% g a""g'vv—\

CRAIG S. ANKEN
Project Engineer

FOR THE COMMANDER: qﬂ/fl%d%

JOHN A. GRANIERO
Chief Scientist
Command, Control & Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,

please notify RL ((C3CA) Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

REPORT DOCUMENTATION PAGE | owBRe6o0ko1es

Publc reporting burden for this collection of Information s estimeted to sverage 1 howr per responss, INGlding the time for reviewing iNstructions, searching edsting Gt saurces,

gatherng snd meirtaining the deta needed, and cormplsting and reviewing the collsction of rformetion. Send corm ments regarding this burden estimats or ary other aspect of this
colection of information, ncluding sLggeations for reducing this burden, to Washington Headaquerters Services, Drectorste for Information Operstions andReparts, 1215 Jefferson
Davis Highway, Suts 1204, Adngton, VA 22202-4302, ard to the Office of Manegerment and Budget, Paperwork Reduction Project (0704-0186), Washington, DC 20503

1. AGENCY USE ONLY (Leave Blank) 2 REPORT DATE 3. REPORT TYPE AND DATES COVERED
October 1995 Final Aug 90 - Feb 95
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
C - F30602-90-C-0079
ADVANCED ARTIFICIAL INTELLIGENCE TECHNOLOGY TESTBED PE - 63728F
6. AUTHOR(S) PR - 2532
John Zapriala, Thomas Geigel, David Hollingsworth, TA - 01
Henry Mendenhall, Kenneth Whltebread Russell Irv1n§ WU - 37
Michael Wiley, Terry Barnes, Lee Erman, and Dan Kuebler
7. PERFQHMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFOBMING ORGANIZATION
tin Marietta Corporatl REPORT NUMBER
Advanced Technology Laboratorles
Moorestown Corporate Center
Route #38
Moorestown NJ 08057 N/A
9. SPONSORING/MONITORING AGENCY NAME (S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Rome Laboratory (C3CA) AGENCY REPORT NUMBER
525 Brooks Rd
Rome NY 13441-4505 RL-TR-95-189

11. SUPPLEMENTARY NOTES
Rome Laboratory Project Engineer: Craig S. Anken/C3CA/(315) 330-4833

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Madmum 200 wards)
This report describes the development and demonstration of the Advanced Artificial

Intelligence Technology Testbed (AAITT). The AAITT embodies a structured development
paradigm and associated toolkit supporting the design, analysis, integration,
evaluation, and execution of large-scale, complex, distributed systems, composed of
knowledge-based and conventional components, in the context of various United States
Air Force domains, particularly Tactical Commmand, Control, Communcations, and
Intelligence. The AAITT's unified modeling, control, and monitoring facilities permit
unrelated software components to be integrated without extensive re-engineering by
allowing users to easily: (1) configure various application suites; (2) observe and
measure the behavior of applications as well as the interactions between their
constituent modules; (3) gather and analyze statistics about the occurrence of key
events; and (4) flexibly and quickly alter the interaction of modules within the
application for further study. Using the AAITT, capabilities neither designed nor
originally intended to work together were transformed into integrated problem-solving
suites. Four significant demonstrations were successfully conducted and showed that
10:1 integration improvements could be obtained by using the testbed. AAITT develop-

manuals, as well as a week-long training course, were developed.

ment and documentation followed a tailored DoD-STD-2167A process. User and programming

14. SUBJECT TERMS 15 NUMBER OF PAGES
Artificial intelligence, Software integration, Testbed, 120
Encapsulatlon, Distributed system, ABE, Cronus, 18 PRICE CODE

Code generation

17. SECURITY CLASS!FICA'HON 18. SECURITY CLASSIFICATION [19. SECURITY CLASSIFICATION {20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 754001 - 280-5500 tarcaa Form <& Tev 7
cirbec y £h5 5 226
‘o2

gt !

a; w)u)

‘8

Foreword

The Mission Statement for the Advanced Artificial Intelligence Technology
Testbed (AAITT) program called for the AAITT’s developers “to specify, design,
construct, demonstrate, and document a testbed which will allow its users to (1)
easily configure numerous application suites, composed of both conventional
and knowledge-based components, by adding, deleting, or intermixing various
problem solving modules, (2) observe these modules’ actions and interactions,
(3) gather and later analyze statistics about the occurrence of key events; and,
finally, in response to control strategies, distributions, and allocations in need of
improvement, (4) rapidly change the flavor of the interactions among the suite’s
components for further study.” :

Where can the motivation for the tool supporting the engineering of software
systems described in this mission statement be found? Although examples
come to mind in a variety of domains, one need look no further than Command,
Control, Communications and Intelligence (C31) to uncover just such a need to
facilitate the development of tomorrow’s Command Centers.

Today's Command Centers were planned and built for responding to a threat
which no longer exists in its past form. Their design was predicated around the
notion of using large, monolithic, single-purpose systems to deal with a similarly
large and monolithic enemy. The development of these Centers occurs over an
extended period of time. Many of the resulting capabilities are essentially
outdated before they are placed in operation, necessitating a constant stream of
upgrades. This slow modernization process has not yielded significant
improvements because, although more and more electronic systems are being
integrated, ongoing advancements in both hardware and software are not being
incorporated in a timely fashion. In many cases, new information processing
technology which is commonly found within the commercial sector has not
found its way into most Command Centers. Unique support infrastructures are
subsequently established to overcome each Center's limitations. The
~ consequence is that these Centers are neither adaptable, fully achievable, nor
affordable.

Despite their expense, these Centers remain plagued with difficulties.
Interoperability is rarely achieved between the multitude of special-purpose
systems which have arisen to support today’s Command Centers and
Commanders. Information and data flow to, and within, these Centers is
antiquated, inflexible, and inefficient despite the upgrades being put in place.
Resources are being expended to establish custom interchange capabilities
which rapidly get out of date. Furthermore, the use of decision aids and tools
has not reached the appropriate level, forcing decision makers to continue
relying on manual methods.

Tomorrow’s requirements only compound the aforementioned problems.
Reduced force structures will increase the pressure to “accomplish more with

less.” Diminished budgets are forcing duplicate capabilities to be eliminated
across the services. Thus, each service will eventually have a mission and
assigned responsibilities possessing little overlap with its peers. Regional
conflicts, often against new and/or unknown threats, will predominate. These
conditions point to the use of Joint Task Forces (JTFs) as the most effective
means of response. In addition, given our nation’s increasing desire to build
coalitions among its many allies, Command Centers will be called upon to go
beyond overseeing operations involving multiple services to directing activity
combining the forces of various agencies, NATO members, and allied countries.
Their respective systems must be accommodated. These coordinated
operations will be centered at the location of the JTF CINC (Commander-in-
Chief) because the days of “fighting the war out of the Pentagon” are over.
Commanders are much better able to assess the situation and select the most
appropriate course of action when they have firsthand access to the essential
elements of information on which they will base their decisions.

Further complicating these factors is the fact that the occurrence of multiple,
simultaneous crises is highly likely. Each crisis may involve a variety of
participants, changing levels of hostility, and different locations. We have
already witnessed examples where international humanitarian operations have
escalated into armed conflicts. Thus, to the US, the relative priorities among
these operations will also dynamically change. The fluid nature within and
among crises requires the capability to support varying “stand-up levels.”

It is foreseen that the military’s role in responding to civil disasters at home will
also continue to grow. The reasons for being increasingly assigned this type of
responsibility are numerous. In addition to a successful record demonstrating
their skills in carrying out these emergency relief operations on a world-wide
basis, the military is best equipped to meet the challenge on our own soil due to
the personnel, command and control structure, and materiel which they already
possess. Decreasing budgets will not permit these capabilities to be duplicated
between the military and civil response agencies. However, acting in this
capacity will require the services to achieve coordination and interoperability
with non-military entities, including the aforementioned civil agencies as well as
commercial companies willing to lend a hand.

Rapid crisis response, demanding immediate solutions, will be expected,
regardless of the situation and any exacerbating circumstances. Systems
meeting tomorrow’s challenges cannot be pre-determined, pre-assembled, or
pre-positioned. Yet the immediacy of each situation challenges us to deftly
assemble readily-available and integrated systems without the luxury of time.
These systems must utilize and leverage ongoing advances in information
technology and provide portable, adaptable, rapidly (re)configurable decision
support, integrated to operate in tandem with existing infrastructure capabilities.
The level of operational success will be a direct function of the extent to which
diverse, necessary, existing computer hardware, communications, data

processing, and decision support capabilities can be identified and rapidly
integrated. :

The integration of existing hardware and communications systems is certainly
an important issue. However, it is an issue already receiving a great deal of
attention by commercial vendors implementing the foundations of tomorrow's
networks of information systems. Additionally, efforts such as Rome
Laboratory’s Knowledge-Based Software Assistant program are addressing the
need to support and automate the process of developing new software
components and systems. However, swiftly establishing, adjusting, and
dissolving decision support for the variety of situations which a JTF must face
can only be accomplished by providing automated support for flexibly
constructing and operating applications consisting of “legacy” (existing)
software. There is not enough time to develop solutions from scratch. One must
build new solutions by integrating pieces-of old solutions. This process requires
rapid component incorporation as well as adaptable application assembly.
Investing in this type of capability will have a multiplicative effect by fostering the
reuse of off-the-shelf components.

Abstracting the process of integrating legacy software into rapid component
incorporation and adaptable application assembly is driven by a number of
factors.

Legacy software represents both an opportunity as well as an intimidating
challenge. A wealth of both conventional and knowledge-based military
software and data management capabilities exist. New systems and upgrades
are constantly being added to the inventory. On the other hand, some subset of
these systems are no longer being maintained. Some of these capabilities
already have been used to establish information infrastructures supporting
various functional areas, such as Personnel, Intelligence, Operations, Logistics,
Plans and Policy, as well as Command, Control, And Communications. Civil
crisis response will add the burden of interacting with non-Government
organizations and their respective software. Capitalizing on the investment
behind these systems is the paramount requirement. Yet, synergistically
combining this legacy software and achieving interoperability between them
was never considered.

Interoperability can be achieved in many ways and at many levels. However, it
is also important to stress that interoperability at the manual process level is
‘unacceptable due to the sheer volume of data which must be captured,
processed, and disseminated, as well as the speed at which the overall crisis
must be adaptively managed.

Universal data interpréters offer another approach. Here, the goal is to find a
way to move data transparently between a variety of data sources and sinks.
Success is achieved by identifying a universal representation and constructing
interpreters into and out of each supported protocol. Results have proved to be

limited, at best. Common representations are difficult to identify outside of very
tightly-bounded domains. The central role which these interpreters play
transforms the process into a system bottleneck. Semantic inaccuracies may
begin to creep into the translation process and the introduction of even a single
new protocol can wreak havoc.

Reimplementation and data migration will, certainly, not provide the solution for
these requirements. This process is, at best, prohibitively expensive, and, at
worst, impossible to achieve. The capabilities offered by legacy software must
be transparently available within their native user environments. Otherwise,
decision makers will be faced with a learning curve offering lessened
productivity and possibly counterproductive errors.

The aforementioned approaches strive for precise solutions. Thus, they
frequently cannot be achieved within the crucial deadlines which must be met to
successfully provide dynamic crisis response. Furthermore, the best or most
elegant answer may be neither possible nor desired. A sufficient solution may
be the most worthwhile due to the brief period of time during which any given
decision support configuration remains valid.

The solution embodied within the notion of Rapid Component Incorporation
calls for the use of standard, customizable, automatically-generated, reusable,
control and information-exchange “adapters” for both new as well as existing
components and systems. These adapters facilitate interaction with other
similarly-equipped modules.

The resulting modules, each of which provides an answer for a discrete portion
of the entire solution, must be subsequently transformed into a cohesively
operating package through the second step of the process, Adaptable
Application Assembly. This notion implies a number of capabilities because
one is faced with the challenge of taking a set of building blocks and turning
them into a properly interacting whole. Thus, users must be able to specify how
each piece will act; identify how the pieces will cooperatively interact; and, most
importantly, gain insight into and understand why the resulting system does not
operate exactly as required, desired, or envisioned so that corrective action can
be taken. :

Successfully implementing Rapid Component Incorporation and Adaptable
Application Assembly permits a “divide and conquer” strategy to be employed in
realizing tomorrow’s distributed decision support systems. This strategy is
congruent with the fact that large, ready-made, one-of-a-kind systems do not
offer the required level of agility. Dividing and conquering does require
candidate components, capable of satisfying the specified requirements, to be
initially identified and subsequently integrated. However, these disadvantages
are far outweighed by the advantages of this approach.

Dividing and conquering allows distributed application developers to only
construct what is needed. The resulting system is not encumbered with
extraneous, complicating capabilities. Each subproblem is addressed using the
most appropriate software and hardware paradigms. Solutions are not force-
fitted into a constrictive, homogeneous approach. Furthermore, technology
upgrades are incorporated into the solution as they become available with
minimal disruption. Alternate approaches are swapped in or out to facilitate
component evaluation and solution improvement. A total reconstruction is not
required each time the situation requires that functionality be added or
subtracted. More importantly, component reuse is greatly facilitated. Finally,
this philosophy promotes investigations into competing interaction and control
approaches allowing continuous solution refinement to occur.

The potentially important role of the AAITT in facilitating tomorrow’s distributed,
decision support systems, such as-those found within JTF Command Centers,
and the power wielded by a user able to effect these systems by dividing and
conquering served to focus the development efforts throughout this program.

The AAITT takes a just place among the limited ranks of tools which have truly
advanced distributed systems technology. By building on the paradigm of
“Programming in the Large” established by Cimflex Teknowledge's ABE™
product, the AAITT embodies a graphical Modeling, Control, and Monitoring
methodology and associated toolkit to facilitate heterogeneous component
integration. With the testbed, users have realized large productivity gains (>
10x) in the tasks of Rapid Component Incorporation and Adaptive Application
Assembly.

By exploiting research in distributed computing, module-oriented programming,
and object-oriented simulation, a disciplined technique for integrating both
knowledge-based and conventional software components is now available.
The testbed allows the performance of these integrated applications to be
measured at various levels of granularity using substantial instrumentation. The
result? Distributed application developers arrive at high-quality solutions
through low-cost experimentation.

The AAITT has been used to successfully construct applications within several
domains by its developers. It is time for it to be examined by more distributed
system builders as a possible paradigm shift in their work. The AAITT needs
this trial to further gauge the effectiveness of its capabilities, the power behind
some of which has yet to be discovered.

Russell E. Frew, LTC., USA (Ret.)
Director, Artificial Intelligence Laboratory
Lockheed Martin Advanced Technology Laboratories

Contents

SUMMEIY ..ot s s e sae e s 1
INEFOQUCHION .t e e e 4
2.7 MOLIVAHION. ..ottt e s s e 4
2.2 Relevant WOrK ...ttt ettt e 4
2.3 Team Members....crereneeneneceneenes ettt n ettt b e e na e nes 5
2.4 Report Organization................. PO U SOOI OPOTRUIN 6
AAITT Definitions, Roles, and ODjJeCtiVES..........cccviiren e 7

The AAITT ArCIILECIUE. ..coueeeeeie ittt e e s 12

4.1 Major Architectural Elements...........cccoueuuee. s 12

4.1.1 Distributed Processing Substrate.........cccoocvccervincennnnn e 12

4.1.2 Modeling, Control and Monitoring WOrkstationoeeeeeeeeeeeeenes 14

4.1.3 Core Simulation and Database Modulesccccoeveeniiinnececnnnne. 14

4.2 Additional Architectural Elementsccovevneiiinncci e 15

4.2.1 Component Interface Managers.........cccovreerneerererernireeesenenns 16

4.2.2 CIM-to-Component-Communication........c.cceeeevienienreenieeiveienennes 17

4.3 AAITT APPUCAtIONS ..ot 17

AAITT FEAIUIES .ttt ettt 19

5.1 MOdEeliNG TOOIS .ot e seeae e 19

5.1.1 Application FrameworK.........cceeerienniiiienienieesesieeee s seeseenns 19

5.1.1.1 Application Framework Objectsccccoeevnrriciricnecenne. 21

511101 MOdUIES. ... 21

5.1.1.1.2 Connections ..ccccceveccvvcineerereeeeeereeeenns 21

5.1.1.1.3 Logging Taps ..ccceerenmeinennnreeere e 22

5.1.1.1.4 Breakpoints......ccconeririniceninieeiececcnieeen 22

5.1.1.2 Application Framework Editor.......ccevvnvvviinccenennnn 22

5.1.1.3 Distribution Information..........cccoeeeiiiinie s 23

5.1.2 Module FrameworK ...t 23

5,121 MF ODJECES ettt eeenens 23

5.1.2.1.1 POMS ot 26

5.1.2.1.2 Operationscveeeveeeree e 26

5.1.2.1.3 Subroutines ... 26

5.1.2.1.4 Data Stores......coeeeeeereceeiesceree et 27

5.1.2.1.5 Logging Taps .ccccceevevmerieerneneceeeeerecennns 27

5.1.2.1.6 BreakpointS......cccceveveereareniniieenieeeecveeen. 27

5.1.2.1.7 CIM-to-Component-Communication......... 28

5.1.2.2 Module Framework EditOr......cccevvevnicnececninreriiennes 28

5.1.3 Datatype FrameworK..........cccooirviiiineniiiiereeneee e 28

5.1.3.1 CantyPes .ottt 29

5.1.3.2 SIgNaUreS...cceemieeeeierciieerrecte et 29

5.1.4 Catalog SYSEM ..ottt 30

5.1.4.1 SHUCIUIE oottt e 30

5.1.4.2 Version Control ... 30

Vi

5.2 CONION et ere sttt st r et en e ne e e seeene reereee e ereeesereenes 30
5.2.1 Status Display ...l ettt 30
5.2.2 Compile / Assign MOAUIES..........ccvmrieiircss e 32
5.2.3 State TranSitioN. ...c.cceieeeeeeeieeeeeee ettt 34

5.2.3.1 DiStHDULE cecviieeeeie ettt s 35
5.2.3.2 CONNECE ettt 35
5.2.3.3 L0Ad i 35
5.2.3.4 INIIAHZO....c.eeeeereeeeeeee e 35
5.2.3.5 EXEGCULB ..cvoieeeceeeeeec e 36
5.2.3.6 SUSPENA. .o 36
5.2.3.7 BRESUME...cicii ettt 36
5.2.3.8 TermiNate ..ot 36
5.2.3.9 BRESEl .t e 36
5.2.3.10 Unloadcoevevenieciiiercicieicnes ettt eares 36
5.2.3.11 CIM RESEL ...ttt st 36
5.2.4 Breakpoint Control ... e 37
5.2.4.1 Built-In Breakpoints ..o 37
5.2.4.2 User-Defined BreakpointS.......ccooveciviivieniiiiininiiiinnnanns 38

5.3 MONIOTING .ot e 38

5.3.1 Logging and AnalySiS.....cuuiinniceesri i 38
5.3.1.1 Built-In Logging Taps.....cccceevveemnn. eeeee ettt enens 40
5.3.1.2 User-Defined Logging Tapsccovmvenininennnicennnnnns 40
5.3.1.3 Logging Tap Control ... 40
5.3.1.4 FIROIS ettt e 41

5.3.2 DebUGQING ittt ST 41

5.3.3 Dynamic Message Facility ... 43

5.3.4 MEASUIEMENTS ...oeeiiitiecreee sttt st s ess st e b e sr s e sraesnens 43

B.4 SYNOPSIS oottt sttt sttt s 45

AAITT APPHCAtONS . 46

6.1 Preliminary Demonstration ... 46

6.2 Large Scale Demonstration ... 47

6.3 Reusability DemMONSration..........ccooviiiimiiiinee e 57

Where To Find More Information.......cccceeceveniniiininnineiee e eseeessaens 60

Results and DiSCUSSIONcueviceieece ettt s b sa e e s 62

8.1 Technical RESURSccveeee et 62

8.2 Operational RESURS.......cccccviviniiiiieieiciie teereereeenee e sreereeesnesane e 63

CONCIUSIONS. ..ottt et ea et bbb g sa e b ee st 65

9.1 Distributed Processing Substrate.........ccccocivviiiiiiiin s 65

0.2 MOAEIING 1ottt 65

9.3 Code GeneratioN ..o ettt s e s e 66

9.4 Control....cccocveeiiiicieenn A eanasennsanasse st shananas ohasaase asanen R et sanan ot et Akt sasa e s na s 66

9.5 MONITOIING c.veeeee ettt s et 67

0.6 DeDUGUING ottt 67

10 RecomMmENdAtiONS ettt 68

vii

Appendix A Instrumented Domain EXPeriments.........mrrisssessssesssennens 71

A1
A2
A3
A4
A5

BACKGIOUNG ..ottt s s st 71
ADPPIOGCH. ...ttt s s e s 73
Initial MethodOIOgY ...ccvoveeeerececeercrertetere ettt 74
Questionnaire RESURS ...ccocerciirreecrr s 75
ANGIYSIS ...t e 78
A.5.1 IDE GOAIS.....oeeiereieirieeeerere st eeererescre i sa b s ssse s sssanes 78
A.5.2 IDE MethOodoIOgY ..coeevuireriiereceiictiiiicrese st seseens 79
A.5.3 Relationship between IDEs and Software Development

MOAEBIS ..ottt s 82
A.5.4 Survey CONCIUSIONS.......coccriiiiiniiiirnrere st 83
The IDE Definition and Its Implications........cc.ccoveeivnnniniiiiiineees 84
Using the AAITT to Perform Instrumented Domain Experiments......... 85
IDE Support Provided by the AAITT ..o 93

viii

CoONOOTAhWN—

Figures

Testbed User Roles and RelationShips ...
Top-Level AAITT ArchiteClure. ..o e
Exploded View of Module Constituents............cccoververvniinincnine s
The Application FrameworK ...
The Module FrameWOIK..........c et cte e cee st e ssve s s ssd e e e s ssaassnenens
Planning Module Mode! ...t
MCM CONrOl TOOIS. ...ttt nens
Application Compilation and Host Assignment........cccccooeviniiiiiiiiiceccienns
Viewing and Setting Logging TapsS ..c.cvrrieermnenecnrenereenetee e
AAITT MEtrCS ANGIYZEL ..ottt
Viewing and Setting Measurements.......ccccvvneveccecvninninsessseesenne
Preliminary Demonstration’s Application Architecture and AMPS
MOUIE MOEL..... ... e e sttt
Preliminary Demonstration’s Application Framework and TAC-DB'’s
MOodUlE FrameWOIK........o ettt srne e
Raw Measurement Data from Preliminary Demonstration........c...cccceoveeeeeen.
Large-Scale Demonstration’s Application Architecturecoccvevennennne.
Manual Operations at a Tactical Air Control Center.........ccovvvveviniiiienennennee.
AAITT-Supported Tactical Air Control Centercoevnevncnecencerecrne.
Reusability Demonstration’s Module and Application Models....................
AAITT Documentation Road Map ...t

TMD Application Architecture with One Databaseccccoevvevicevcnrenienene.
TMD Application Architecture with Two Database Copies......ccccecevvevmruenene
TMD Application Architecture with Three Database Copies......ccccoenueneee.
Number of Hosts Affecting DB Query Time ...
Number of Hosts Affecting Time Between DB Queries.......ccccvvvevicviiveenennns
Using CLASP for Data Exploration to Complement AAITT.......ccccoceceeeenne

> SwN-

Tables

Mapping between Top-Level Requirements and Major Elements............. 15
AAITT CanoniCal TYPES ettt st sbs saae s s neas 29
Status Display DesSCrptioNS.......c.cceiereriireneeeereerssise s 32
Suggested Testbed Development and ACLiONSc.oocvievirinnnineenne, 51
-1 IDE Questionnaire Respondents ... 75
-2 Realizing the IDD by Applying the IDE Methodology........ccccoveviiineiieniinnns 92
-3 AAITT Support for Instrumented Domain Experiments.......c.ccocoeiniienenniens 94

1 Summary

Over the past 4.5 years, a team consisting of Lockheed Martin Advanced
Technology Laboratories, Teknowledge Federal Systems, GE Corporate
Research and Development, and dek M&TS have developed and demonstrated
the Advanced Artificial Intelligence Technology Testbed (AAITT). This
laboratory testbed -embodies a structured development paradigm and
associated toolkit to support the design, analysis, integration, evaluation, and
execution of large-scale, complex, distributed software systems, composed of
knowledge-based and conventional components, in the context of various
USAF (United States Air Force) domains, particularly Tactical C3! (Command,
Control, Communications, and Intelligence).

The AAITT’s unified-modeling, control, and monitoring facilities permit unrelated
software components to be integrated without extensive re-engineering by
allowing users to easily (1) configure various application suites; (2) observe and
measure the behavior of applications as well as the interactions between their
constituent modules; (3) gather and analyze statistics about the occurrence of
key events; and (4) flexibly and quickly alter the interaction of modules within
the application for further study. Thus, capabilities neither designed nor
- originally intended to work together can be transformed into integrated problem-
solving suites composed of intelligent information technologies, diverse
functional specialties, “best-of-breed” applications, off-the-shelf software, and,
significantly, legacy systems.

‘The underlying need.for such a distributed system development, test, and
evaluation environment is both powerful and ever increasing. The role and
complexity of the various decision aids that will be prevalent throughout every
aspect of both military and commercial operations will continue to grow in the
future. These decision aids will be solving large, decomposable problems
within intricate and data-rich domains. They will be composed of both
knowledge-based and conventional software modules interacting as part of
some predefined problem-solving strategy. The ability to iteratively build, cost-
effectively integrate, and most importantly, deploy these multi-agent
applications suites will depend on the existence of a facility in which these
suites can be studied under an “electronic microscope,” such as the AAITT, so
that they can be better understood.

The design of the AAITT was driven by the desire to provide comprehensive
support for Component Embedders, individuals tasked with transforming stand-
alone components into testbed-compliant modules; Application Architects,
users responsible for taking multiple modules and assembling them into
distributed applications; and Component Evaluators, who are interested in
analyzing the behavior of components along multiple dimensions. A key
concept within the testbed was that “wrappers” would be used to envelop

components and effect communications as well as control. '

To realize the testbed, core Simulation and Database capabilities were teamed
with a Modeling, Control, and Monitoring workstation (MCM). These items
communicate and interact via a Distributed Processing Substrate (DPS).
Together, they constitute the AAITT.

The MCM supports modeling, offering users the ability to construct a graphical
representation of an application’s solution strategy. The workstation also acts
as the testbed’s control panel, permitting users to start, stop and suspend
application or module execution. Finally, the MCM possesses measurement,
instrumentation, and monitoring capabilities to support the synthesis, analysis,
and evaluation of AAITT-resident applications.

The DPS provides distributed processing and communication capabilities that
support the integration and concurrent execution of multiple, independent,
knowledge-based and conventional software components across
heterogeneous computing systems.

Testbed development and documentation followed a tailored DoD-STD-2167A
process. The AAITT was validated through three separate Formal Qualification
Tests, conducted to assess the software’s compliance with identified
qualification requirements. In addition, user and programming manuals, as well
as a week-long training course were developed. ‘

The completed AAITT offers a wide range of tools and capabilities, including a
graphical approach to configuring, encapsulating, and integrating-components;
customizable, automatically-generated component wrappers providing
immediate productivity gains; application monitoring at several levels, from
resource usage to solution quality; and a user-customizable graphic interface
for control and instrumentation. These features permit unparalleled advances
in distributed system construction, such as the accelerated establishment of
interoperable suites of scalable software tools; rapid system prototyping
centered around adaptive component composition and reuse; as well as metric-
based architecture and component assessments. -

Three significant demonstrations were successfully conducted during the
course of the base program. These events presented the testbed’s ability to,
respectively, integrate and execute a basic, distributed suite of knowledge-
based and conventional components; expand the basic suite into a large-scale
application; and support domains other than Tactical C3l. A fourth
demonstration, completed under the auspices of an engineering change,
showed the AAITT providing effective support for performing “Instrumented
Domain Experiments.” _

The program’s demonstrations repeatedly underscored the testbed’s role in
decreasing the software integration costs associated with distributed,
heterogeneous applications. The second, Large-Scale Demonstration, offered
evidence worthy of emphasis. A distributed system composed of nine

independent, contractor- and Government-developed components was
integrated, debugged , and executed in only 25 days using the AAITT. - In the
absence of the testbed, a similar development effort on the ARPA/AFWL
(Advanced Research Projects Agency/Air Force -Wright Laboratory) Pilot’s
Associate program required approximately 250 days — use of the AAITT
yielded a 10:1 integration improvement.

2 Introduction

This section‘ presents the impetus for the Advanced Artificial Intelligence
Technology Testbed program, related work existing at the time the effort was
initiated, the team which was assembled, and the organization of this document.

2.1 Motivation

On 9 March 1990, the Rome Air Development Center (now called Rome
Laboratory) issued the AAITT Request for Proposal (RFP). The Statement of
Work contained in the RFP described the state-of-the-art in this area as follows:

“Over the past several years RADC has been conducting research
and development (R&D) in various subdisciplines of Artificial
Intelligence (Al) technology and in the development of applied
systems that embody Al technology. Typically, the research
projects have been focused in specific areas (reasoning with
uncertainty, planning) and have used diverse problem domains as
a context for the research. Similarly, application projects have
typically addressed a sub-function of some larger problem domain
(C3 Counter Measures Battle Management Decision Aid as a sub-
function in a Tactical Air Control System). Fielding robust systems
that embody Al technology requires integration of several
technical approaches, integration of subsystems, and scaling up of
the technology in dynamic, complex, and time-constrained military
environments. Although there are several research projects
involving integration and scaling of Al technology, in general there
is a lack of fundamental understanding in this area. Several
approaches and solutions have been attempted, but an optimal or
even sufficient solution is usually not known a priori and often not
found until the second or third implementation. We believe an
experimental approach is dictated. The testbed developed under
this effort will serve as a vehicle for the integration, analysis,
design and evaluation of large (primarily multi-agent) knowledge-
based systems in complex military problem domains.”

This description was referring to the need for an environment that would allow
both related and unrelated software components to be assembled into more
complex systems than could currently be easily constructed. This environment
would be called a testbed because it would allow for the rapid (re)configuration
of these systems and would allow them to be instrumented so that their
architectures and behaviors could be better understood.

2.2 Relevant Work

Several efforts were cited for their relevance within the RFP. The first was
COPES (Cooperating Expert Systems), “.. an analysis and design project to

develop an architecture to support [the] integration of three specific decision
aids to form a system of cooperative agents.” This work emphasized the use of
“wrappers” to act as intermediaries for component communication. The second
project noted was ABE™ (A Better Environment), a software system to support
the design and development of intelligent systems using module-oriented
programming. ABE™ provided an excellent foundation for developing a multi-
module application development environment. The third program mentioned
was TAC-2, a Testbed For Integrating Cooperating Knowledge-Based Air Force
Decision Aids. Under this effort, an architecture to support the integration of
loosely coupled decision aids, based on the notion of a centralized router, was
implemented.

2.3 Team Members

Given this background, a combined team from the Lockheed Martin Advanced
Technology Laboratories (ATL, formerly GE Aerospace Advanced Technology
Laboratories), Teknowledge Federal Systems, and dek Marketing & Technical
Services, proposed to build an environment to advance the state-of-the-art in
distributed application development. Among their strengths, the team cited
extensive experience in the development of distributed multi-agent systems. In
particular, members of the team had collective responsibility for both the System
Status module during Phase One of the Air Force Wright Laboratory Pilot's
Associate (PA) program as well as the development of realtime system
transition tools for that effort. In addition, ATL was also the prime contractor for
ARPA’s Submarine Operational Automation System (SOAS). Teknowledge
Federal Systems possesses some of industry’s leading authorities on
distributed Al control strategies. USAF-related domain expertise would be
provided by dek Marketing & Technical Services. Due to an internal transter of
personnel following award, GE Corporate Research and Development
subsequently joined the original team.

The proposed testbed would facilitate the recurring process of configuring
application suites by permitting users to (1) add, delete, or intermix various
problem-solving modules; (2) observe the nature of the modules’ actions and
interactions; (3) gather and, later, analyze statistics about the application, its
constituent modules, and the occurrence of key events, to pinpoint control
strategies and module-to-host assignments in need of improvement; and (4)
rapidly change the flavor of the interactions among the suite’s components for
further study.

Under the base program, three applications were developed and delivered to
demonstrate the feasibility, scalability, and reusability of the resulting testbed,
which is built atop ABE™ and greatly expands upon the “wrapper” concept
described in the COPES report. Initially, the TAC-2 application was re-
implemented within the AAITT to show feasibility. Next, the size of this
application was tripled via the inclusion of additional, independently-developed

components to demonstrate scalability. Finally, an application composed of -
planning- and scheduling-related components was developed to substantiate

reusability.
2.4 Report Organization

This Final Report is intended to. provide a complete picture of the Advanced
Artificial Intelligence Technology Testbed program. The need for and potential
operational use of such a testbed was discussed earlier within the Foreword.
An executive-level description of the entire effort can be found in Section 1,
Summary. The current, introductory section has set the stage by focusing on
various pre-award topics.

The organization of the remainder of the Final Report is described below.

Section 3, AAITT Definitions, Roles, and Requirements, presents the team’s
view of both the issues to be addressed and the problems to be solved by this
effort as well as its initial approach to defining the AAITT's functionality. Section
4, The AAITT Architecture, provides an overview of the solution which was
realized by the team. Section 5, AAITT Features, describes the testbed’s major
attributes. Section 6, AAITT Applications, discusses the scenarios and
underlying architectures of the three major applications constructed to
demonstrate the AAITT's capabilities under the base program. Section 7,
Where to Find More Information, offers readers a road map to related
documents providing amplifying data about the effort. Section 8, Results and
Discussion, enumerates the contract’s broad range of results for both the
technical community as well as operational users. Section 9, Conclusions,
presents the team’s perspective on what was accomplished. Section 10,
Recommendations, suggests a number of judicious extensions to the testbed
which would further increase its value to the USAF technical and operational
communities.

Appendix A, Instrumented Domain Experiments (IDEs), documents the team’s
efforts to investigate and demonstrate the AAITT’s ability to support IDEs,
conducted under the auspices of an engineering change. Finally, the Glossary
as well as List of Acronyms and Abbreviations will aid readers in understanding
this Final Report.

3 AAITT Definitions, Roles, and Obijectives

It was important to standardize terminology from the project’'s outset. Thus, the
following definitions were adopted. Remembering these terms will greatly aid in
understanding much of this Report.

Component. ... A stand-alone conventional or knowledge-
- based program.

An encapsulating software element, or
wrapper, responsible for managing the
interface between a component and the
remainder of the testbed.

Module , A (possibly modified) component and

associated component interface manager.

An assemblage of subapplications and/or
modules.

Application / Subapplication

Building on these definitions, the testbed team then considered, “Who are the
testbed's users and what will they want to accomplish?” This led to the term
‘user role.” The inclusion of the word ‘role’ is an important distinction because a
single individual may, at various times, operate within one or more of these
roles. The following user roles were identified:

The builders of the testbed software, to
include the original program team as well
as the eventual inheritors of the AAITT,
responsible for maintaining and extending
it following delivery to Rome Laboratory.

Testbed Developers

The builders of the knowledge-based
software or conventional components
which can be used as the constituents of a
testbed application. These individuals
may require some level of support from
the testbed in cases where these
components will be completely, or largely,
developed within the testbed. On the
other-hand, in the case of legacy or “off-
the-shelf” components, these developers
will not be AAITT users.

Component Developers

These individuals create AAITT-compliant
modules from stand-alone components
using their detailed understanding of the

Application Archit

ects

testbed's control and communication
protocols as well as varying levels of
knowledge about the components which
they are embedding. Possession of an in-
depth awareness of the target application
architecture is not always necessary
within this role.

These users define the multi-module
application architecture by identifying the
application’s constituent modules and
subsequently specifying inter-module
connectivity and interaction. This role
does not require a detailed understanding
of the AAITT’s underlying communication
layer. Instead, the focus is on application-
level modeling, control, and monitoring.
Application Architects are the most likely
to be found conducting demonstrations.

This user role determines how well one or
more of an application’s modules are
operating along a variety of dimensions.
The scope of these evaluations can range
from simple issues such as resource
utilization to complex . .domain-specific
questions such as solution quality.

These individuals take a completed,
testbed-resident application and generate
a strategy for porting it to a target
computer configuration which may or may
not include the AAITT. Accomplishing this
task would require modeling the
processing and communications
resources available within the target
configuration before conducting trade-off
analyses to compare application
architecture alternatives.

These customers for fielded applications
are AAITT users only in cases where the
Application Fielder made the decision to
include the testbed, or some portion of it,
as an element of his/her fielding strategy.

After identifying these user roles and understanding their respective needs, the
decision was made to place the most emphasis on supporting Component
Embedders, Application Architects, and Component Evaluators. This decision
was predicated on the fact that, at least initially, these three roles would be the
predominant users of the testbed. It was envisioned that the needs of the other
roles could be even better understood and more effectively addressed after
several applications were successfully constructed within the confines of the
testbed. This is not to say that the needs of other roles would be forgotten. In
fact, the AAITT s initial, core set of capabilities would provide a substantial level
of support for these other roles as well. However, in many cases, the needs of
these roles would be met implicitly. For example, the Application User would
still have the powerful ability to execute and control often unwieldy, distributed
applications using the testbed.

Figure 1 summarizes the relationships between the aforementioned user roles,
the AAITT, components, modules, as well as the resulting applications and
solutions produced using the testbed.

Next, the types of questions which these user roles might pose were
considered. These envisioned user questions included:

 “How do | load the application?”

» “What is consuming most of my available resources?”

« “Why aren’t these modules talking to each other?”

» “How is the application performing?”
A large matrix was subsequently constructed. The rows consisted of the
aforementioned user roles. Their questions became the columns. Whenever a
question pertained to a particular user role, the intersecting matrix position was
checked off. In many cases, a single question was relevant to several users.
The completed matrix became the starting point for defining required AAITT
functionality beyond the initial requirements stated earlier. The satisfaction of
these requirements became the organizing principle for the Formal Qualification
Tests used to validate the testbed software.
Seven top-level requirements established the project's overall direction:

1. The testbed will provide run-time communications facilities for multi-
‘component applications.

2. The testbed will support components running in heterogeneous
hardware and software environments. '

Testbed Component

Developers Developers
Testbed ! Y Components T E%?gggsgnﬁg
<« | Component Component
Embedders Evaluators

Feedback
on Testbed Application
Archltects

Appllcatlons Apphcatlons

- Application |4 ~Application
Domain Users Fieldeq | Fielder/Analysts
Solutions Applications

Figure 1. Testbed User Roles and Relationships

3. The testbed will support the concurrent execution of the multiple
components.

4. The AAITT testbed will support and facilitate the process of assembling.
and integrating multi-component applications.

5. The testbed will provide a run-time control mechanism for multi-
component applications.

6. The testbed will provide run-time monitoring, as well as measurement
and data logging to support post-processing performance analysis.

7. The testbed will contain core Simulation and Database modules.

10

The full set of AAITT requirements are recorded in the AAITT Software
Requirements Specification. Information on obtaining this document can be
found in Section 7, Where To Find More Information. ‘

11

4 The AAITT Architecture

The AAITT program’s design effort commenced after the completion of the
testbed’s requirements specification phase. This section presents an overview
of the phase’s results and begins with a discussion of the AAITT’s three major
elements. Two additional architectural elements normally required within a
testbed-resident application are subsequently covered. Finally, this
architectural overview is concluded with a brief narrative of the manner in which
distributed applications reside atop the testbed. Amplifying information can be
found within the AAITT Software Design Document.

4.1 Major Architectural Elements

The top-level AAITT architecture is shown in Figure 2. Although a typical AAITT
Application is included as part of the diagram, the intent here is to focus on the
testbed’s three major elements:

1. Distributed Procelssin‘g Substrate (DPS), .

2. Modeling, Control, and Monitoring Workstation (MCM), and

3. Core Simulation (LACE/ERIC) and Database (TAC-DB) modules.
Each of these major elements is described below.
4.1.1 Distributed Processing Substrate

The DPS offers distributed processing and communications capabilities that
support the integration of multiple, independent, conventional and knowledge-
based software components executing concurrently across heterogeneous
computing systems. It also provides reliable, transparently-routed inter-module
communication and supports the MCM’s control and monitoring requirements.

The Distributed Processing Substrate is composed of an underlying Distributed
Processing and Communication System residing between the AAITT Protocol
layer and TCP/IP. This intermediate element, a non-developmental item, was
realized using BBN’s Cronus distributed computing environment, following an
analysis which compared six candidates using a set of pre-defined criteria as
well as additional qualitative measures. In general, the AAITT Protocol layer
defines both module-module and module-MCM communication. It also defines,
among other things, how modules are to log data, suspend execution to effect
breakpointing, and respond to control directives from the testbed. The protocol
consists of 25 separate application, state transition, logging, breakpoint and
CIM (Component Interface Manager)-query operations.

12

8IN108NYAIY L LIVY |8A87-do) g 8inbi

/

LOIIEOIUNLILIOD
di / dOL
193005 |0JUOD) PUE 195005
snuoly 7 5dd - WID

/sda-Won .~ Burionuop

T L T

TR RS T

saueIq]

sj00L
1041U0T

|syiomeueid |

Buiepo

aleiisgns
V buisseoold
painqiisid

Y a|npoyy

RN

Now

uoneonddy 1 11yy /dwex3

Y
sadA | ajnpoyy 1eoIdAL

13

4.1.2 Modeling, Control and Monitoring Workstation

As its name implies, the MCM Workstation is an integral testbed-resident facility
that provides the means to model, control and monitor applications. Thus, the
workstation supports the construction of a graphical model that represents the
application’s solution strategy; acts as the testbed’s control panel, permitting
users to start, stop, as well as suspend and resume execution of the application
via the same graphical model; and possesses measurement, instrumentation
and monitoring capabilities to facilitate the synthesis, analysis, and evaluation
of large-scale, multi-agent, distributed applications executing within the testbed.
In this context, a system is monitored to collect measurements, which are
analyzed by the application developer via instrumentation.

Both modeling and the display of measurement information are accomplished
at the MCM Workstation. However, as shown in the diagram, all communication
between the MCM and an application’s constituent modules for control, status,
as well as logging purposes conforms to the AAITT Protocol and utilizes the
testbed’s Distributed Processing Substrate as a conduit. The MCM was built by
adding Datatype, Module and Application “Frameworks” atop Cimflex
Teknowledge's ABE™ system to support the MCM’s modeling needs. Extensive
use of ABE’s existing monitoring and metrics analysis capabilities was also
made.

The MCM Workstation was originally hosted on a Symbolics™ special-purpose
workstation. As shown in Figure 2, the MCM was later ported to a Sun™
general-purpose computer under the auspices of an engineering change.

4.1.3 Core Simulation and Database Movdules

The testbed’'s core simulation and relational database capabilities are
implemented as integral, testbed-resident modules, that can be, but do not
necessarily have to be, constituents of any application constructed within the
testbed (either individually or together).

Both modules were Government-furnished software packages. The first
provides a generic capability for simulating objects and events within USAF C3l
problem domains using the Rome Laboratory (RL)-developed ERIC/LACE
simulator. The second offers an integrated and shared repository for the
representation and maintenance of domain-specific data using the RL-
sponsored TAC-DB database, acting as an information source for an
application’s other modules. This Oracle-based database supports SQL
(Structured Query Language) and assists in the realization of C3| applications
by managing unclassified intelligence data about various friendly and enemy
units, equipment, and installations.

14

Table 1, below, provides a summary mapping between the AAITT’s top-level
requirements and its Distributed Processing Substrate (DPS); Modeling,
Control, and Monitoring Workstation (MCM); and Core Simulation and
Database (Sim/DB) elements.

Requirement DPS MCM |Sim/DB

1. The testbed will provide run-time J
communications facilities for multi-
component applications.

2. The testbed will support components N J
running in heterogeneous hardware
and software environments.

3. The testbed will support the N J
concurrent execution of the multiple
components.

4. The AAITT testbed will support and J
facilitate the process of assembling
and integrating multi-component
applications.

5. The testbed will provide a run-time J
control mechanism for multi-
component applications.

6. The testbed will provide run-time J
monitoring, as well as measurement
and data logging to support post-
processing performance analysis.

7. The testbed will contain core J
Simulation and Database modules.

Table 1. Mapping between Top-Level Requirements and Major Elements

4.2 Additional Architectural Elements

Fully realizing an application normally requires the inclusion of two additional
architectural elements as part of each module — a Component Interface
Manager (CIM) and associated CIM-to-Component-Communication (CCC)
strategy. Figure 3 presents an exploded view of an example Module; its

constituent CIM, CCC, and Component; as well as the various Operations which
form the AAITT protocol. CIM and CCC overviews are presented below.

' Component
Interface
Manager

.
:
'g
!

(T

Convert
. Data Stor

= CIM Query =
Operations

= Application |
Operations |

Breakpoint £
Operation

% -Logging
Operations &

i

i

Figure 3. Exploded View of Module Constituents

4.2.1 Component Interface Managers
In order for a software component to be embedded into the testbed, a model of

how the component will interact with other modules must be constructed.” This
model of interaction will subsequently be embodied within an AAITT

16

Component Interface Manager for that component. The CIM is analogous to the
more commonly used term “wrapper.”

Each component’s attendant CIM is specified graphically via the MCM's Module
Framework and includes all of the module’s inputs and outputs as well as any
additional preprocessing and postprocessing steps which must be completed
before data can be presented to or received from the component, respectively.
The interconnected icons shown in Figure 3 are representative of a graphical
model generated by a Component Embedder. The testbed’s code generation
capabilities transform the graphical model into executable code.

Within the AAITT, the module’s inputs and outputs are referred to as “ports.”
The CIM also contains code or “port bodies” for each of the ports that have been
defined for the module. In addition to ports, the module’s graphical mode!
supports the definition of data structures (“data stores” in AAITT terminology),
subroutines, CIM-to-Component-Communication (CCC) interfaces, breakpoints,
and logging taps. The inclusion of each of these objects is subsequently
reflected as additional functionality within the automatically-generated CIM.

4.2.2 CiM-to-Component-Communication

A critical aspect of every AAITT application is the communication mechanism
employed between a component and its associated CIM. A number of CCC
strategies are presently supported within the AAITT, such as:

UNIX Sockets

Files (Pipes)

Cronus

Direct Subroutine Call (LISP-language only)

Queue Variables (LISP-language only)

Other Inter-Process Communication, including shared memory or
message passing.

© ® £l L3 - o

The MCM's modeling mechanism provides the ability to isolate the CCC portion
of a CIM to aid in its development and analysis. In addition, a generic, socket-
based CCC library for UNIX-hosted components is available within the AAITT.

4.3 AAITT Applications

AAITT applications execute atop the testbed. Applications are configured as
one or more modules. Modules are shown as the upright elements within
Figure 2. For each module, its CIM acts as the interface between the module
and the remainder of the testbed, including peer modules and the MCM. Within
the CIM, the CCC acts as the bridge between the CIM and the component.

Generally, applications can be composed of two module types. Core modules
offer capabilities frequently required within many C3l-centered problem-solving

suites. Optional modules can be embedded into the testbed at the discretion of
the Application Architect to provide additional functionality. Once a baseline
application is created, supplementary architectures can be easily constructed,
tested, and catalogued with minimal modification to support experimentation.
As detailed in Appendix A, this process was used to facilitate the conduct of an
example Instrumented Domain Experiment using the AAITT.

18

5 AAITT Features

The AAITT’s features are best used at the MCM Workstation. Users access it to
model applications, compile them, specify host assignments for their constituent
modules, as well as execute, monitor, and analyze their performance. The
MCM Workstation acts as a control panel, permitting users to start, stop, as well
as suspend and resume application execution via its graphical model. The
Workstation also provides measurement, instrumentation and monitoring
capabilities to facilitate the synthesis, analysis, and evaluation of large-scale,
multi-agent, distributed applications executing within the testbed.

As its name implies, the MCM Workstation provides Modeling Tools, Control
Tools, and Monitoring Tools. This section is organized in the same manner.

5.1 Modeling Tools

The MCM Workstation’s Modeling Tools facilitate the graphical model
construction process via the Application, Module, and Datatype Frameworks.
An integral Catalog System is used to store and reuse these models.

The Application Architect uses the Application Framework to retrieve cataloged
module models for ensuing inclusion within an application. The Framework is
also used to specify the links between these modules; make default module-to-
host assignments; and save the completed application in the catalog.

The development of graphical models for each of an application’s modules is
accomplished by the Component Embedder using the Module Framework’s
capabilities. These models can be added to the catalog and subsequently
made available to the Application Architect.

The Datatype Framework is used by the Component Embedder to define the set
of basic datatypes, called “cantypes” (a contraction of “canonical types”), used
within an application. Named sequences of required and optional cantypes are
then assembled into “signatures” using the framework. Signatures define the
data communicated in to, within, and out of a module.

The Catalog System serves as a library manager for completed applications,
modules, and datatypes. Previously constructed applications, modules, and
datatypes can be adapted or reused to create new, or variations of existing,
applications, modules, or datatypes.

5.1.1 Application Framework

The Application Framework (AF) is a tool used by the Application Architect to
construct new AAITT applications. Figure 4 shows a nine-module application,
graphically modeled in an Application Framework window. Also shown is the
Application Operations menu.

yomewel - uoniedlddy auy “y 8inbig

Is00y] NUaY 13350 13 puarogAsy [1@:gE:Z 60y 8z nul)

OB DEOND G 1) QEeNLRG erpeul s DEs)

onpow~aouuvid”oin0S

7]

GIRpoW ™ J0320)00

M ¥ 9

o|npow = odww

onpow~ooey ojnpow ™ s0lenRieAe T UCIASIUS

g

(e

apojy (0.nuoy

onpow~goweyg

40M1p7 [2A27~do| 250|)
s36uBY) ARG

be|4 paljipoy 3(660]

129dsu]
314 Boere] uiuex]
6o(eq8) uadg

JUILIWOT NP MaLA
3|Npol 1UpP3

sinpows T vUL

1023(q() 2deysay
193(qQ ubllY
193(q 20K
19340 213(2(]

122(qQ Jweuzy

1t 9340 ppy
suoleiadg uoneol|ddy

20

The Application Architect staris with a concept of cperations for the application
and a catalog of modules, i.e., embedded components, and graphically
produces a module configuration which describes the desired application. The
result is not the application itself, bui a model of the application from which the
actual application can be constructed via compilation. It is important to note that
the MCM Workstation uses this same graphical application diagram as the
interface for the Application Architect or Application User to execute and control
the application.

5.1.1.1 Application Framewaork Objecis

The AF implemenis an objeci-orienied language for expressing the design of an
application. The key elements of this design are the set of modules and the
interconnections between them. Additional objects support runtime data
collection and debugging. Thus, modules, connections, logging taps, and
breakpoints constitute the Application Framework's primary objects.

5.1.1.1.1 WModules

The AF allows the Application Archiiect to select a module object for inclusion
within an application. This selection process results in an instance of the
module being added to an application, thereby allowing multiple instances of a
module to exist within a single application. All module objects to be included in
an application must have been previously built with the Module Framework and
placed in the module catalog. Any docurnentied runtime requirements specified
for a module by the Component Embedder are accessible from within the AF.
This information helps the Applicaiion Architect to specify a default host
assignment for each module withiin an application.

5.1.1.1.2 Connectio

The AF allows the Apolication Architect to specify connections between module
objects delineating the flow of application-level (inter-module) messages. A
connection is a link from an output port of the module initiating the message as
the sender, to an inpui pori of another module acting as the receiver. The
message may or may not result in an acknowledgment. The behavior of a
connection is determined by the options defined for each port associated with
the connection as well as the signatures of those ports.

Port connections must have compatible signatures. Signatures are compatible
if the port parameters match in number and datatype for both initial and reply
parameters. Corresponding parameters in each port signature may have
different names but must be iyped using the same datatype.

Output port options define the acknowledge requirements as one of “none,”

“immediate,” or “future.” if “none” is specified, the sender passes data to the
receiver and does not wait for a reply. Any reply information which may be

21

generated by the receiver is simply ignored. An “immediate” acknowledge
requires the sender to wait indefinitely until the receiver acknowledges the
message. Finally, choosing the “future” option allows the sender to perform
additional processing before eventually verifying that the receiver has indeed
acknowledged the message.

5.1.1.1.3 Logging Taps

Application-level logging taps provide the means to easily (1) globally enable
and monitor the same type of taps across multiple modules, and (2) define and
enable user-defined groups of logging taps. An Application Architect’s desire to
log all port activity would be an example of the former capability. In this case, a
single, global enabling step would result in all modules having the logging taps
associated with each of their ports selected. The latter capability ailows the
user to group seemingly unrelated logging taps under a single, user-named
group to facilitate application-level debugging, monitoring, and analysis. In
either case, the enabling of application-level logging taps results in the MCM
Workstation individually enabling each affected logging tap on each affected
module.

5.1.1.1.4 Breakpoints

Breakpoints are provided at the application level to support the global enabling
and monitoring of breakpoints in a manner analogous to that provided for
logging taps. Groups of similar breakpoints or user-defined groups of
breakpoints may be defined at the MCM Workstation. The enabling of each
application-level breakpoint results in the MCM Workstation individually
enabling each affected breakpoint on each affected module.

5.1.1.2 Application Framework Editor

The Application Framework provides a graphical editor, referred to as the AF
Editor, to support the Application Architect both in defining the connections
between modules and in defining application-level logging taps and
breakpoints. Creating an application in the AF is accomplished by initially
identifying the specific modules to include in the desired application from the
catalog of modules previously defined using the Module Framework. The
connections between these modules are then specified graphically by selecting
pairs of ports to connect. These links are checked for argument and datatype
compatibility by the testbed to avoid the generation of illegal configurations.

A menu-oriented approach is used to define application-level breakpoints or
logging taps. For example, to define a new group of logging taps, the user is
provided with a menu of available modules. Each selected module, in turn,
provides a menu of available logging taps within that module for possible
inclusion in the new group. Existing user-defined groups may have their
members individually deleted using a similar menu-oriented approach.

22

Finally, the AF Editor allows the Application Architect to invoke other operations
on the application as required, such as storing an application definition in the
application catalog or retrieving an existing definition from the catalog.

5.1.1.3 Distribution Information

Designing an application architecture requires the assignment of individual
modules to specific computing resources within the AAITT. This process is
supported by Distribution Information, which includes any Component
Embedder-generated comments associated with a module. These comments
are used to describe any hardware, language, processing, or resource
requirements imposed by the module. The Application Framework provides the
Application Architect with a means of reviewing this data. The Application
Architect is, in turn, responsible for interpreting these requirements and devising
module-to-host assignments which satisfy established goals using available
resources.

This Distribution Information is specified using the same menu-based selection
of host assignments and status provided for other MCM Workstation actions.

5.1.2 Module Framework

The Module Framework (MF) is the tool used by a Component Embedder to
construct new AAITT modules. Figure 5 shows a Module Framework window
and a menu of Module Operations. The Embedder starts with the component to
be embedded (either actual code or a description of the code) as well as a
concept of how that component might be used in an AAITT application and
proceeds to construct a graphical module model. The model represents the
Component Interface Manager, implementing the runtime interface between the
component and the AAITT. Figure 6 shows a Planning Module Model.

5.1.2.1 MF Objects

The MF implements an object-oriented language for expressing the design of a
module. The framework separates the external specification of a module into
two parts: (1) the manner in which the module interacts with its peers within an
application (i.e., the module's application protocol), and (2) the manner in which
the module interacts with the DPS as a generic AAITT-compliant module (i.e., its
AAITT protocol). The MF is used to graphically define, annotate, and connect
various objects allowing the Component Embedder to express both parts of the
module's external specification. In addition, the MF provides objects which
define the interface to the component, the logging of various runtime data, and
the specification of breakpoints.

23

l

YIOMBWEI-] 8|NPOY 8y | G ainbi

2800y]j NuUaYy td3sn 13 Bu}| oy aneq [eSi6piE 60y pz Ny|

“293- qpowi(owap-a(eIs-abiviQieec | L-OW3A- m._(Om 30UV Yy wJDDOE mOU(._. 4W D33Q-31v08-30HY u(
jnged4eer " 04014
glapowT 04 e = = 580
2A37]-do
D20 weo 306 @o)3a0|] LS_UMN_OCQ.UQ w)%m §] e Y:1) sogus
N 68|4 payipo 3(860]
_H 103dsu]
3|14 Boje1e] Jujwexy
sepa23in~ied bojeie) uadg
afenbuey uolEuawa|dw] abuey) <
BT 2(NPO P] N,
einpows”) o= | §3ULIN0Y 2{NPOY 1tp]3
3p0J quauodwo]) 11p3
@ ¥ 193(qQ 2deysay
§ 9920qQ ublly
493090 2A0)
122(40 21213
492(Q() 2Wieu3Y
030~ odusu - 19200 11p3
£ ~* 193(qg ppy o]
= suolleiad() a|NPOW
m puGy
e|npou
uuoccco
guc:_::c»m m@uamlz.: w m E::::lz z 808y x
7

N T O

T P T I Ty y T

|8POW 8inpo Buluueld "9 8inbi

creseressnesrasssanranaransan 34RH PURUUO]

.

e
SRR

IN3Q-21vOS-30uvi | avll

—
swnsoy
9 qpoaviT 03" 03w pues
prasjw
eavg
ojuiTwew
— puadons _
2092 aeenbes™ginoy
m 23naex3 _
ojui~edaniea;”106

e3v)~ 01T DAR T puss

12euuo)

ejeujwaial 1089y~ WD peojun esey

NIRRT

T A

SNVRI

AN NN

|

25

5.1.2.1.1 Ports

The MF provides objects called ports as the means to specify a module's
application protocol. Each port corresponds to a specific message type that the
module can use to communicate with its peers. An MF-resident module initially
starts with no ports. The Component Embedder has the responsibility to
determine and define the set of ports for the module.

The definition of each port consists of a pair of signatures, a definition of
options, and a port body. The port body for an input port is implemented as a
procedure which is invoked when data transits the port. The definition of
options associated with a port provides the user with a supplementary means of
specifying the behavior of a port and results in additional code and/or
comments being automatically created for the port body by the testbed’s code
generators.

5.1.2.1.2 Operations

Operations are used to specify a module's standard set of actions, one for each
of the messages defined by the fixed, DPS protocol. As with ports, each
operation consists of a pair of signatures and an implementation, which is
called an operation body. Each operation has predetermined signatures
established as part of the DPS protocol. The MF requires the Component
Embedder to extend some of these operations with component-specific actions,
and provides the option to augment others.

An operation body defines the means for invoking a DPS operation (e.g.,
Execute, Suspend, Terminate) on a component. It is implemented as a
procedure executed when an operation in invoked by the DPS and depends on
the particular implementation parameters of the component. In many cases, the
operation bodies automatically generated by the MF can be used with little or
no modification. Just as with port bodies, the Component Embedder is
responsible for programmatically defining the method for interfacing to the
component and for controlling the component. Some components may not
easily support the implementation of all DPS operations (e.g., Suspend). It is
the responsibility of the Component Embedder to determine whether such an
operation should generate a warning message to the calling routine or simply
be treated as a “no-op.”

5.1.2.1.3 Subroutines

Subroutine objects are a way of organizing code specified by the Component
Embedder. As with ports and operations, a subroutine consists of an
associated subroutine body. However, unlike ports and operations, subroutines
are not part of the module's external interface. Subroutines may be used to
encapsulate code which is called by other ports, operations, and subroutines.

26

Due to the similarity of the code used to implement ports, operations, and
subroutines, this user-supplied code is often referred to as a “code body.”

5.1.2.1.4 Data Stores

Using the MF, the Component Embedder is capable of defining data stores
which aid in the definition of port and operation bodies. Data stores can contain
both application- and testbed-level data. Each data store definition consists of a
name and cantype. In addition, multi-valued data stores (FIFO, LIFO and
Sorted) possess an integer parameter indicating the maximum number of data
values which may be stored. The special value “0” for this parameter indicates
that the stores can contain an arbitrary number of data items. The priority
function for sorted queues is specified dynamically at runtime and is not part of
the data store’s definition.

Each data store provides a set of functions which can be called from within port,
operation, or subroutine code bodies to store and retrieve its data; determine
the number of elements it contains; as well as ascertain if it is empty or full.

5.1.2.1.5 Logging Taps

Module-specific logging taps, which record dynamic information about the
module at runtime, can be defined by the Component Embedder using the
Module Framework. These logging taps are in addition to the default logging
taps defined implicitly within port, subroutine, and data store definitions.

Each logging tap definition consists of a name and the signature of runtime data
to be recorded. The logging tap definition implicitly defines a logging function
which can be called from within a code body. Component Embedders
determine the conditions under which a logging tap is called by placing explicit
calls to the tap in their code. Logging taps, whether defined explicitly or
implicitly, can have their logging activity enabled and disabled dynamically at
runtime.

5.1.2.1.6 Breakpoints
Application execution can be suspended using module-specific breakpoints

defined using the Module Framework. These breakpoints are in addition to the
implicit breakpoints found within port, subroutine, and data store definitions.

A breakpoint definition consists simply of a name and implicitly denotes a break
function which can be called from within a code body. Component Embedders
specify the breakpoint’s triggering conditions by placing explicit calls to it in their
code.

27

5.1.2.1.7 ClM-to-Componani-Communicaiion

A generic CIM-to-Component-Communication mechanism is available from the
Module Framework for UNIX-hosted components. This sockei-based model
can be used to exchange messages veiween CiMs and their corresponding
components. Implemented as a subrouiine library, ihe generic CCC interface
can be invoked from either the CIM or the compaonent.

5.1.2.2 Wodule Framework Ediior

The Module Framework provides a giaphical ediior, knawn as the MF Editor, {o
support the Component Embedder in ihe task of either defining new modules or
viewing and modifying existing modules. The definition of 2 module in the MF
Framework consists of interconnected graphical icons which correspond o the
port, operation, subroutine, data siore, logging tap, Lreakpoint, and CCC
objects discussed above.

In general, each different object type has a unicgue graphical representation. In
addition, the links between these graphical objects indicaie the underlying
relationships between the entities. For example, an arrow from a data store to a
port signifies that the port's body reads a value from the data store.

The MF Editor allows the user to modify the module by creating new objects,
modifying or deleting existing objects, and connecting objects. The Editor
possesses knowledge of the legal graphical syntax of a module model and
prevents the Component Embedder from making illegal modifications, e.g.,
renaming or deleting standard operations defined by the DPS.

Each graphical object placed within the model using the MF Editor results in the
corresponding programmatic definition of thai object being inseried into the
automatically-generated code frame, or skeleton, for that module. The
programmatic definition includes the specification of any access or monitoring
functions required to interface code bodies with the object.

Finally, the MF Editor allows the Component Embedder to both store a
completed module definition in the module catalog as well as retrieve an
existing definition from the catalog.

5.1.3 Datatype Framework
The Datatype Framework is a forms-based iool used to extend the AAITT's
basic set of datatypes, or cantypes, as well as define signatures in terms of both

required and optional sets of cantypes. Cantypes and signatures are saved in
the catalog for later use by the Component Embedder.

28

5.1.3.1 Cantypes

The testbed provides thirteen primitive cantypes, as shown in Table 2. These
cantypes include integers, booleans, strings, and arrays, as well as Cronus-
specific types that are used internally by the DPS. This basic set of cantypes
can be extended by defining enumerations and structures.

Datatype Name Description
u1iel Unsigned 16-bit integer
S161 Signed 16-bit integer
u32l Unsigned 32-bit integer
S321 Signed 32-bit integer
F32 Floating point single
F64 Floating point double
ENUM Enumerated type
EBOOL Boolean
ASC ASCII string
ARRAY Array of some simple type
EDATE Timestamp
EINTERVAL Time difference
UNDEF Application private type

Table 2. AAITT Canonical Types

5.1.3.2 Signatures

Signatures define the information which is passed between modules as well as
the information passed to objects inside the module. A signature is a collection
of named arguments. Each argument is either required or optional. It should be
noted that each port and internal object actually require two signatures. The
first defines the data passed in, while the second defines the data returned.

29

5.1.4 Catalog System

The MCM Workstation provides a Catalog which includes applications defined
with the Application Framework, modules created with the Module Framework,
as well as cantypes and signatures defined using the Datatype Framework.

5.1.4.1 Structure

The Catalog is an abstract representation of a file system directory, allowing the
Component Embedder or Application Architect to organize AAITT entities
without having to be familiar with the underlying operating system file structure
by managing all of the required details. The catalog hierarchy corresponds
precisely to the underlying directory structure. A catalog specifies the directory
in the file system that corresponds to the root of a catalog hierarchy. Thus, each
catalog corresponds to a directory “tree” in the file system.

The catalog supports a user-defined hierarchy of files to provide the Application
Architect with the freedom to separate stable configurations from experimental
or developmental configurations. It is the responsibility of the Application
Architect to define, maintain, and organize this catalog to support the needs of
all AAITT users.

5.1.4.2 Version Control

Version control is offered for the Catalog. However, the versioning mechanism
provided by the file system of the computer used to host the MCM Workstation
directly determines the extent of this capability.

5.2 Control

Control Tools allow the Application Architect or Application User to control and
interrogate AAITT applications. The selection of a previously-defined AAITT
application causes the application’s graphical representation to be displayed.
This graphic display becomes the control interface for the application at the
MCM. The interactive control interface serves the dual purpose of displaying
application status as well as providing the means to control either the entire
application or individual modules.

5.2.1 Status Display

The MCM Workstation's Control Tools provide the Application Architect or
Application User with a continuously-updated graphical display of module
status for the selected application. Figure 7 shows an MCM Control Tools
display along with the MCM Control Tools menu. The status of each module
within the application as well as the connections between modules is indicated
graphically as described in Table 3.

30

S|001 [0J1U0D WOW Z 8Inbi4

£1001 |0J3U0D WO

2poK P13

DHINNNY 102dsu]
Aj1{10e 4 268Es3) dlweud() DNINNNY

&)

w_svcﬂ.l._e-¢=_l>nl:u_m-.:._

sInpows=seuue)d—e1nos (6)607 w0 J-6uU0 Mmaip pue 123||0)
mn (6)607 malp pus 122(10) _—

§320() 3ZIUCUYIUAG
$1UIWIIUNSBIL 135/ MIIA
sde) BuiB607 135/ matp

sqUL0d%BIUg 135/ MIIN

N
DHIN 2|NpO Pe2(ZIBUILIZ | ONINNNY
2BUILIT |
1953y WIJ —{
a|hpow~J03120|08 m peojun
M ¥ 1353 —{5j
winsay
dng
aneg
puadsng
3IN23%3
azijeniu]
peoq
Joauod DHINNNY
2nqLasig

anpowTrawr;}

OHINNNY

2|npoy ubissy

sdwe UIWWOT INPOJ M31A e(npawsTrew
uor1ed1ddy 3|1dwo)

8|00 | |ouo] WOW

TN N R e €

e(npows

=

- Moy rerr e rrrrrrvyyy.

¢

31

Status

Corresponding Display

Application Selected

The model of the application is displayed with
low-contrast or dashed borders and labels.
Connections are also shown with the same low-
contrast representation.

CIM Loaded

A module is said to have its CIM Loaded once
the CIM has been distributed to the assigned
host and the assigned host is executing the CIM.
This state is represented graphically with a solid
border for the module icon.

CIM Connected

A module is in the CIM Connected state after
performing any initialization steps required to
establish connectivity between that CIM's output
ports and any other CIMs in the application.
This state is represented by showing the
relevant connection as a solid line.

Loaded

A module has been loaded when the CIM has
loaded the associated component on the
assigned host computer. A loaded module is
represented graphically by a module icon with a
dark/solid border and dark/solid text.

Initialized

An initialized module is represented graphically
with dark/solid/thick borders and text and a low-
contrast background.

Running

An executing module (CIM and component) is
indicated by highlighting the entire graphic icon
for the module.

Paused

A paused module is shown by altering either the
module’s border or entire icon.

Table 3. Status Display Descriptions

5.2.2 Compile / Assign Modules

The executable CIM for each module within an application is generated as a
result of compiling the application model using the Control Tools.
shows the MCM Control Tools menu used to compile applications as well as a

Host Assignment window for assigning modules to host machines.

32

Figure 8

Juswubissy 1s0H pue uonepdwo) uoneo)ddy ‘g ainbi4

ag3L23138

2o

=
2poW 1pP3

193dsu]
A31(108 4 26eSSa} JlWeudq

(s)607 wiio -6u0T M3l pue 493{|0)
(5)607 M3l pue 193]|0]

$%90(] 2ZIUOJYIUAG
SIUBWIUNSBI 135/ M3LA
sde] 6ulb607 413G/ Malp
squtodieadg 125/ maln

3|npoy peag 21BUlUIZ |
31BULLUI3 |
1953y WIJ
peojun
LEEER|
3WNsay
dais
aneg
puadsng
31N23x]

a1ngLnsig

a|npoy ubtssy
JUILILIOT I[NPO M3l
[uonesyddy ajidwe) | X

ag3L 33138

grnpow T aavef

Jnpow qpae?

iog4 bEoJe
1 \ \
\ \

TR TV e s

19!
|

J 33

uoayy

TUOLQRZ| | @IPUT
: auel 3S0H

TTNU0N _dWIH_ST7poy

IG5] S3USUUBTESY

03433738

ag3iL2313s

spnpow” sIwR)

e e e e

g3L 33138

Jnpow " eve

S{00] [oNuc) WOW

2

33

The AAITT compilation process requires three items: the definitions of each
module in the application; the datatype definitions referenced by each module;
and the links defined for the application.

An application model may be developed entirely at the MCM Workstation,
without involving the specific host computers associated with each module in
the application. However, compiling the application model to generate CIMs for
each module requires access to some or all of the hosts due to local
compilation activity.

The compilation process uses the application and module models, along with
any code annotations, to produce a set of AAITT modules which can be
executed. The AAITT compiler first produces a set of source files corresponding
to each module in the application. It then invokes the -appropriate language
compilers as well as manages the process of linking the resulting object files to
the appropriate AAITT and language libraries to produce executable files. This
process is initiated and controlled entirely by the MCM. No user intervention is
required, even in cases where the compilation process is occurring on several
different host machines.

As with any programming activity, the user's code may contain errors which
become apparent at either compile or runtime. The MCM displays any
warnings or errors detected at application compilation time. Similarly, the
application's design may be incomplete or incorrect, necessitating changes in
the application architecture. The compiler records all relevant aspects of the
application being compiled to support incremental compilation. Thus, when the
application's structure or code is changed and the application is recompiled, the
compiler intelligently performs the minimal amount of work necessary to
properly reflect changes within the new executable code.

After compilation, each module is assigned to a host machine. A CIM can be
distributed to any machine that supports the CIM's full computing environment,
including any supporiing software, such as an expert system shell, a GUI
(Graphical User Interface) package, and so on. Therefore, a CIM compiled on a
Sun computer can be assigned to any compatible Sun machine supporting the
CIM's configuration.

5.2.3 State Transition

Once an application has been compiled, the MCM Workstation's Control Tools
are used to transition modules through their available states. The set of states
defined for a module are {CIM LOADED, CIM CONNECTED, LOADED,
INITIALIZED, RUNNING, PAUSED}. Note that these states apply to each
individual module within an application. All modules within the application are
not required to be in the same state.

34

The first two of the states, CIM LOADED and CIM CONNECTED, reflect a
change in the process state of the CIM. The remaining CIM states, LOADED,
INITIALIZED, RUNNING, and PAUSED, all reflect a change in the process state
of the component associated with the CIM.

Unlike all other state transition messages, the DPS command “Distribute” is not
sent to a module but, instead, is implemented directly by the Distributed
Processing Substrate. The command creates a CIM on the appropriate host
and places the CIM in the CIM LOADED state. Once a CIM has been placed in
this state, the CIM’s full functionality is enabled and it may be controlled using
the AAITT's DPS protocol.

The AAITT’s state transition commands are presented below and include an
explanation of the activity initiated by each command.

5.2.3.1 Distribute

The “Distribute” command instantiates the CIM associated with the selected
module on the appropriate host processor. If there is no host assignment, the
MCM host processor is used.

5.2.3.2 Connect

The “Connect” command establishes the connections associated with the input
and output ports of the selected module. The links between modules, in effect,
become instantiated with the DPS-level address(es) needed by that link to pass
or receive data. The connections are then tested to ensure that communication
can occur.

5.2.3.3 Load

The “Load” command instructs a CIM to load its associated component on the
local computer. This capability is particularly useful in persistent environments,
such as on Symbolics machines, where applications must be loaded into the
current image.

5.2.3.4 Initialize

Modules may require various forms of initialization activity to occur prior to
execution. The “Initialize” command was specifically provided to support these
type of operations. Examples of initialization activity include establishing the
module’s configuration, the definition of a goal or context, or access to a startup
file. This command is also intended to support the reinstantiation of any
previously saved module instances.

35

5.2.3.5 Execute

The “Execute” command initiates execution of the component associated with a
CIM. This command’s activity is frequently simplified because the “Initialize”
command is often used to resolve the component's startup and/or configuration
issues.

5.2.3.6 Suspend

The “Suspend” command allows the Application Architect or the Application
User to stop module processing at any time. However, it is important to note
that the effect of this operaiion depends on the selected component. Some
components may not be easily suspended in a manner which allows them to
cleanly resume operaiion at a later time. Other components may readily
support this operation. It is the responsibility of the Component Embedder to
either support this capability or note its absence.

5.2.3.7 Resume
The “Resume” command is used to restart a module previously suspended by a
breakpoint or by the “Suspend” command. The effect of this operation depends

on the component being resumed. Some components may not support the
resumption of execution once they have been suspended.

5.2.3.8 Terminate
The “Terminate” command halts the selected module's component and

terminates its CIM. Once terminated, a module must be restarted beginning
with the “Distribute” and “Load” command sequence.

5.2.3.9 Reset

The “Reset” command suspends the associated component and resets a
module to its Loaded state. The module must be subsequently Initialized before
it may be Executed again.

5.2.3.10 Unload

The “Unload” command resulis in the termination of the assocciated component.
However, the module’s CIM remains loaded and all connections remain intact.
This command places a module in the CIM Connected state.

5.2.3.11 CiM Reset

The “CIM Reset” command results in the termination of the associated
component. In addition, all connections associated with the CIM are reset. The

36

CIM coniinu

N gned host. This command places the
module irn ifie

PR

5.2.4 Byaai

The MCM Workstation's Conirol Tools provide a means for setting, detecting
and reviewi oinis within an apmhcauou The setting of a breakpoint at
the MCM W ion resulis in a flag being set within the appropriate CIM. The
CiM then checks this breakpoint flag curing the normal execution of the code
body assu bowith the particular CiM port or operation selected as a
breakpoirii. seiiing or resetiing of a breakpoint is performed at the MCM
Workstatiun by seleciing ine module of interest and choosing the breakpoint
COi’T'l"HE’Hﬁ L ne mouse. This resulis in the display of a menu showing all of
e associaied with ihe module, including those defined by the
Compmm,‘ —ribedder using the Module F as well as the set of all
defauli breskooints associaied with each port or operation.

The AAITY al s»o: mucllj/ cefines several lyDLS of breakpoints as a result of the
module- ur application-definition process. These bfeal\pomts as referred to as
built-in breakpoinis. T

uoints. The testbed also supporis the definition of additional
breakpoinis io a.i_,ss;u'nom mf\ '”um in breakpoints. These breakpoints are referred
TO as user \)vl”l&?ﬁ',‘%

5.2.4.7 &

The AAITT provides several iypes of buili-in breakpoints to monitor DPS-level,
module-level, and apy llmuon level events within the testbed.

DPS-level everiis |
when the E»[.‘)plr\,:;.maie DPS

~

nclude all oparation activity. An operation event is triggered
sssage is received or sent by the module.

Module-leve! events include all poii activity and data store access. A port event
is triggered whei data passes thiough that port. A data store event is defined
as reading/writing from/io & daia siore.

Application-ievel evenis provide an easy means of globally enabling and
monitaring ihe same ivpe of birezkpoints across multiple modules. The
enabling of an m,,m:a.l(n-level bireaknoint results in the MCM Workstation's
Control Tools ir ilvwml'\ enabling each affecied breakpoint within each
module. Several ac IILP!UOI! leve! preakpoints of this type are provided as part
of the Conirol Too Is, including: (1) All Port Activity Within the Application, (2) All
Operation Aciivity Within the Application, (3) All Operation Activity Of <a
particular ivpes Within the Application, and (4) All DPS-Level Events Of <a
particular tyoe:x Within the Ap ﬂlu;duo]

LA
D

5.2.4.2 User-Defined Breakpoints

The Component Embedder is provided with the means to specify user-defined
breakpoints, either within the CIM or within the component itself. A breakpoint
within the CIM can be defined within a port, operation, or subroutine body, i.e., a
code body, by the Component Embedder. A breakpoint of this type will typically
be triggered by a particular pattern of messages, arbitrary variable values, or
combinations of these and other predicates. The Component Embedder may
also modify the component itself to signal an event that would otherwise not be
available to the CIM. The CIM could, in turn, trigger the breakpoint based either
simply on the new event or in combination with any other activity within the CIM.

The Application User is also able to specify user-defined breakpoints as well as
group seemingly unrelated breakpoints into a user-named-group to facilitate
application-level debugging, monitoring and analysis. The Control Tools’
menu-oriented interface provides the user with a mousable list of breakpoints
for inclusion in a new breakpoint. Breakpoints defined in this manner can also
be edited, with new breakpoints added or existing breakpoints deleted.

5.3 Monitoring

The MCM Workstation's Monitoring Tools provide the means to review and
interrogate an application without pausing or halting normal processing. The
Monitoring Tools allow the Application Architect or Application User to turn
logging taps on/off, collect logging tap data, analyze and filter logging tap data,
as well as review these results in a tabular or graphic fashion.. The Monitoring
Tools also permit the dynamic query of status within each CIM.

5.3.1 Logging and Analysis

The AAITT provides a logging capability to capture dynamic information at
runtime for later analysis and presentation to the Application Architect. A
logging tap is a piece of code which, when enabled, stores a datum known as a
log entry in a log database. Typically, the log entry datum is a structured object
which contains several fields. Each field contains a subdatum, or element,
describing the particular circumstances surrounding the invocation of the
logging tap, e.g., the time the tap was called, the task that contained the tap,
variable values, etc. The placement of logging taps and the data they record is
determined by the kinds of analyses in which the Application Architect is
interested. Generally, taps are used to record activity within modules and the
flow of messages between modules.

The Application Architect or Application User identifies logging taps in the same

manner that breakpoints are specified using the Application Framework. Figure
9 shows the View/Set Logging Taps selection menu.

38

sde] Buibbo-} Bunies pue Bumaip "6 8inbid

ONINNNY

gnpow~ Jauuv|dTeInod

4]

i
DHNIN

einpow ™ 1032008

IR 19

2

DNINRNY

enpow ™ pduse

S

LR X R

pus-smeis-q.40d
pua-21816-3|Npowl
pU3-SNEIS-UIWIAINSBIW

PuU3-qU3WIINEBIW~3|qESIDP QJBIS-qUBWAINSBIW-3|qeS|p

pu3a-quUaWI3aINSBII-2{GBUI
pua~smels-qulodyeaiq
pua-quiodyesuq-ajqestip
pua-quiodyeauq-23|qeua
pus-snieis-6u1Bboy
pua-dej-ajqesip
pus-del-3aj|qeus
pua-1asad
pus-peojun
pu3a-13s534-tu12
pus-ajeuIuIa)
pU3-3WNs a4
pua-anes
pua-das
pua-puadsns
puUI-aINd3x3a
pua-azijeiiiu
pua-peo|
pua-423uuod
SpuUad pauljap-waiIsSAg
pua-qdiddsus.n

pua-Jwid~owtid
pauyap-1asM)

(Ajuo sjiod indup ioy)
boq wioH4-buo7

14e16-smeis-140d
14816-21816-3{Npow
14816 -61MB} 6 -1ULUIINEBIW

14816 -qU3WaUNseaW-3|qeus
14e15~-6Me)s-quiod3eadq
34e18-qu100>e34q-3|gBSip
1415 -qutodyeaUq-2|qeud

24816-6M@16-6u1660|
1J4es~del-3|qesip
14e16-dey-2|qeua
14816-19524
14B1§-peojun
14B}6-13634-WID
14815 -27BUIWIZY
14B}6-3WNS I
14B)6-3ABS
q4e16-dals
14816-puadsns
14B6-INIIX3I
14816-221|B171UI
q4e15-peoy
14816~123UU0D
914818 pPauUlIp-wWIISAg
14es-1diddsuedy
e s—Jwd - owud
pauljap-1asn

Y 81qesia
il og

DHINNNY

JwTa0ien|vAS T LOIBS|W

ORINNNY

snpow gewe}

ONINNNY

ajnpow"eve

I N A R RN AR

RN AN Y

INIEEACIAAR T AR AN

ERNNENNINN

|

E
|

%
4

B

39

Several types of logging taps are automatically defined as a result of creating a
module or an application. These logging taps as referred to as built-in logging
taps. The testbed also supports the definition of user-defined logging taps to
augment the built-in taps. Both types are discussed next.

5.3.1.1 Built-In Logging Taps

The built-in logging taps provided by the AAITT monitor DPS-level, module-
level, and application-level events. These are the same events which trigger
the built-in breakpoints described above. In addition to regular logging, the
testbed offers the ability to capture the entire contents of messages sent to and
replied from input ports. These long-form log messages are available to AAITT
users in a human-readable form to facilitate debugging. This data can also be
saved within a file and edited for use as input to the AAITT's Dynamic Message
Facility, discussed below.

5.3.1.2 User-Defined Logging Taps

The support for user-defined logging taps within the testbed is similar to that
which is provided for user-defined breakpoints. The Component Embedder
may add logging taps to the CIM's code bodies or modify the component itself to
signal an event that would otherwise not be available toc the CIM. The
Application User is also able to define logging taps by grouping seemingly
unrelated logging taps into a user-named group to facilitate application-level
debugging, monitoring, and analysis.

5.3.1.3 Logging Tap Control

When a standard or long-form logging tap is enabled at the MCM Workstation, a
flag is set within the appropriate CIM. This logging flag is checked as part of the
normal processing of the code body associated with the particular CIM port,
operation, or subroutine selected for logging. The enabling or disabling of a
logging tap is performed at the MCM Workstation by using the mouse to select
the module of interest and then choosing the Logging command. A menu of the
operations which may be performed on the module's logging taps is presented
to the user.

Both built-in and user-defined logging taps are handled in the same manner by
the testbed. The logging operations which may be performed at the MCM
Workstation include: (1) Logging Control, (2) Collection, (3) Analysis and
Filtering, (4) Presentation, (5) Save, as well as (6) Restore. These operations
may be performed while the application is running, or after the application has
been paused due to the triggering of a breakpoint or the invocation of the
“Suspend” command. Some operations, such as Collection, may cause
elapsed application execution times to increase due to the potentially large data
transfers required of the DPS. This overhead is not reflected in the log data. In
this way, logs truly represent what they were intended to measure.

40

Logging taps may also be dynamically enabled or disabled at the MCM. When
an application is executed, all enabled logging taps will insert entries into the
AAITT log file maintained on each local host. The MCM Workstation provides
for the subsequent collection and transfer of these logs from the various hosts
within the AAITT to the MCM. Typically, log collection and transfer is requested
when a breakpoint has been reached or upon the completion of an application
run. The MCM is also capable of gathering logs during application execution.
However, this activity may adversely affect timing.

5.3.1.4 Filters

Once the desired logs have been transferred to the MCM Workstation,
additional AAITT tools are provided for combining, filtering, and analyzing these
logs. These tools are collectively referred to as filters. Examples of filters which
might be found at the MCM Workstation include:

Merge Logs

Time Extraction/Exclusion

Event Type Extraction/Exclusion
Relationship or Pattern Recognition
Data Transformation Algorithms

L] o o © *

The MCM offers the ability to locally store and retrieve both raw and filtered log
files, thereby eliminating the need for users to repetitively perform basic filtering
tasks in cases where they are interested in performing multiple analyses of the
same data. All log data, whether raw or filtered, may be viewed at the MCM
Workstation using either a graphical display for time-dependent information or a
tabular display.

5.8.2 Debugging

Logging taps and breakpoints provide both Application Architects and
Application Users with a robust means of monitoring, controlling and analyzing
an application. Thus, they act as the primary tools for debugging AAITT
applications and are meant to supplement each individual component’s logging
and breakpoint capabilities. The analysis of breakpoint and logging tap data as
described above is ideally suited for the debugging of an application or module
that is not executing as expected or desired. The same techniques are also
valuable for assessing various architectures by quantifying application-level
processing efficiency measurements or processing results. Figure 10 shows
the AAITT Metrics Analyzer, which is used to display events recorded during
application execution. It is used extensively to help resolve timing problems
and debug new module connections.

41

18zAjeuy soueN L LIVY "0l 8.nbig

£3350 13

wooz /110438

Ae|ds}g 123las

970091

9°90021

9°008

0 00b

2°9

ey

3D 4RI L (515~ 1NPOY-0
2{oyn-20ads (915-2 1NPOY-0
30-AJ oudn-XeWR (91 G~D | NPe
2 {oUn—AIouP-RTWS (]G-0(
21 0un-Nd0 (91 §-2 | NPOY-Ou
o8 {9162 L NPOY—ou | Id
do—08ada (9150 NPeyl-on| 4
038t {pi5~01NPOY-433}
2an—cb2ds (p1g-21APOL-0
do-00eds (515-2 1NPOY-532
2| OyP-AsOuLM-RTUS (p [G-0 |
d0-ndos (p1G-B {NPOY-002}
81 OYA—ODS (B]G-0 | NPOY~0I
B0 At ONDM-XTWG (| GO | NPO

4 IBR AN (p15-0| NP0}

mnmx |2uuey’

[eAJ2IUT

Ys34jay

96484

peo]

Lmupu

JIZA|BUY BI2(J3aW 111vY

42

5.3.3 Dynamic Message Facility

The Dynamic Message Facility supports the user's ability to dynamically
generate and send application protocol messages to a receiving CIM, enabling
the progressive, interactive testing of a particular application message interface.
Thus, the facility can be used to test the interface of a particular port within a
partially or fully-completed ‘receiver module’ without the need for developing
the ‘sending module,” as long as the relevant port signature(s) and interface
were previously defined using the Module Framework. In addition, the
receiving module and its CIM must be in the execute state to run the facility.

The Dynamic Message Facility’s human-computer interface is menu-driven,
allowing the user to easily select a message-generation mechanism, specify the
message's contents, and identify the receiver module. The interface module
collects the user's typed entries as well as menu selections, and uses this data
as parameters to remotely invoked UNIX shell scripts and their supporting
binary programs.

Based on the input parameters received, the shell scripts either generate a new
message template or parse an existing message template or long-form log
output. A file of data suitable for use as input to the Cronus tropic tool is then
dynamically constructed before tropic is invoked to send the dynamic message.

Any results from the message invocation are stored in a file. If the appropriate
menu selection has been made, the information returned from a module that
received a request for data via a dynamic message will be displayed in a pop-
up editor window. Dynamic messages which are not data requests will result in
the name of the port being displayed followed by a colon. An error message
will be returned if the message was not successfully delivered or processed.

Although the Dynamic Message Facility ultimately relies on the invocation of
tropic, the facility represents an improved testing capability for message
interfaces which is an integral part of the AAITT's MCM Workstation. In addition,
the facility presents a uniform interface already familiar to the AAITT Component
Embedder through the use of entities such as signatures, ports, and modules.

5.3.4 Measurements

The AAITT also defines automatic logging taps which record various low-level
measurements of system resource usage, such as CPU, memory, etc. These
performance logs, called ‘measurements’ may be enabled and disabled on a
per-resource basis. That is, if the user turns on the "“CPU-Usage” measurement,
then CPU-usage will be recorded at the occurrence of every DPS event in the
module. Measurements are dynamically enabled or disabled at the MCM
Workstation using the View/Set Measurements menu, as shown in Figure 11.

43

swewalnsesyy bumeg pue Bumelp "L 8inbi

2800yg AUAY) 8z nut]

GHINKAD DNINNBY

oynpowsTeoeg

?:1: N
!
Aluo-uoijedado-sy|nelt~abed
2[npowt-gi|ng f-a6ed .
s | ‘ Dt it DNINMOY ;
- A|U0-UOIBADGO-PIEN~AIOWIDW <
i 2{NPOW=-2|0YM—P26N-AI0WIUW-XE] q
AlUo~-uolyetado-26esn~d]
CINRoW T A@33050

m//\ a|Npow-2{oum-28esn—1d3 ompewToowy
1y ,!\ \” PoUYIP-DISAS i

v
//
paujjep-123n)

Wy siqes|g
iy s/qely
i og

DHINNNY i DHINNNY i DNINNNY

ojnpows~oduse ompous~dwae o|ppow T ewR

The particular resources which may be measured depends upon the type of
support provided by each host's operating system. Measurements are collected
and otherwise treated as ordinary log events.

5.4 Synopsis

The AAITT’s development paradigm utilizes iterafive modeling, control, and
monitoring activities. Users are asked to (1) configure application suites
graphically to effect encapsulation, (2) measure application and component
behavior during execution, and (3) analyze information about key events. This
cycle is repeated to investigate aliernate solution strategies.

The testbed’s toolkit embodies advances in modeling, code generation, control,
and the use of performance metrics {o raise distributed system development to
new levels.

Modeling Frameworks allow users to graphically introduce desired
intercomponent communication and data processing approaches into the
testbed. Distributed systems are built via Module-Oriented Programming.
Competing architectures can be pictorially expressed and investigated. Crucial
data flow and control issues are identified prior to full implementation.

State-of-the-art code generators subsequently transform the models into
executabie wrappers permitting components to become embedded within the
AAITT. Both C- and LISP-language implementations are supported.
Incremental compilation dramatically diminishes development cycles.
Automated mechanisms manage the complex compilation process.

Control tools minimize the possibility of ‘run away’ applications. Distributed
systems are brought up and down in a controlled fashion. Both conventional
and knowledge-based software is accommodated. Breakpoints can be
triggered by user-defined conditions or standard events. The ability to single-
step applications at the message-level aids debugging.

Finally, measurement, instrumentation, and monitoring capabilities facilitate
iterative application development and performance tuning. Selectively-enabled
built-in and user-defined measurements drive analyses. Non-intrusive
application monitoring minimally impacts performance. An integral Metrics
Analyzer displays all time-dependent information.

The resultant AAITT permits testbed users to reap the benefits of applying a
comprehensive toolkit within a structured development paradigm.

45

6 AAITT Applications

The base AAITT program required three specific demonstrations of the testbed’s
capabilities “in the context of the USAF C2I problem domain.” The defined
purpose of each was as follows:

Preliminary Demonstration.............. “to demonstrate the testbed facilities
necessary to integrate a minimum set of
separate knowledge-based systems
sufficient for a serious application

demonstration.”

Large Scale Demonstration. ... “to demonstrate the testbed facilities
necessary to integrate a full-scale
application suite of knowledge-based

and conventional systems.”

Reusability Demonstration.................. “to demonstrate that the testbed

concept and architecture was
applicable to multiple domains.”

Guidance received from Rome Laboratory during the program’s kick-off meeting
resulted in the implementation of a plan that emphasized the use of existing
conventional and knowledge-based components for all demonstrations. The
motivation for this prudent strategy was to maximize the resources applied to
testbed development and minimize expenditures on the applications employed
within the demonstrations. An additional benefit of this approach was that each
resulting application would consist of mature components. As a result, the
team’s originally-proposed scenarios for the demonstrations were adapted to
fully implement this plan.

Each of the three demonstrations are presented below.
6.1 Preliminary Demonstration
The Preliminary Demonstration integrated the following three Government-
furnished components to show the interoperability of existing, independently-
developed planning, database, and simulation capabilities, respectively:

> AMPS — Air Force Tactical Mission Planning System

¢ TAC-DB — Tactical Red and Blue Force Database

» LACE — Land Air Combat in ERIC

More specifically, the Preliminary Demonstration’s application utilized AMPS as
a mission planner which was responsible for generating an Air Tasking Order

46

(ATO); TAC-DB for managing all of the operational data required for mission
planning and execution within the European theater; and LACE to simulate
execution of the AMPS-generated ATO. Figure 12 shows the application
architecture for the Preliminary Demonstration as well as the AMPS module
model. The demonstration successfully illustrated the testbed’s ability to
support the embedding and integration of the disparate USAF components into
a cohesive problem-solving suite.

The following types of mission simulations were supported by LACE and
executed using the Preliminary Demonstration application:

« Offensive Counter Air (OCA)
- Surface-to-Air Missile Suppression (SAM)
> Air-to-Air Refueling (AAR)

Additionally, as presented in Figure 13, the Demonstration displayed the user-
oriented, on-line, graphical presentation of system activity which had been
specifically included in the AAITT. The testbed’s ability to perform monitoring
and measurement actions during application execution was also demonstrated.
Figure 14 shows an example subset of the raw measurement data captured by
the testbed.

A list of suggested additions, changes, and improvements to the testbed was
generated as a result of the Preliminary Demonstration. These items can be
found in Table 4, along with the specific actions taken by the team to address
each suggestion.

6.2 Large Scale Demonstration

To meet the requirements of the Large Scale Demonstration, the team had to
establish a coherent problem-solving suite within the domain of USAF Tactical
C21 by using the testbed to embed and integrate a full-scale application of
knowledge-based and conventional components. The identified problem set
would also reuse the AMPS, TAC-DB, and LACE modules and be augmented
with at least two more existing components. Additionally, the completed
application had to:

* be multi-agent, time sensitive, and factorable into sub-problems;

* possess spatial and temporal aspects, requiring the use of database and
planning capabilities, as well as reasoning under uncertainty; and

* be valid with respect to current or proposed concepts of operation, as

well as demonstrate the use of the testbed as a training tool and a
planning/decision support vehicle.

47

ISPON SINPON SJNY PUE

8Jn108]1ydly uoneolddy s,uonelisuowsq Aleuiwliaid gL ainbi4

ewnsey

e
e

%
0%

SRR

qpavy~ 63T 030" puss

yepdnToangleieTared

owap-wiatd

aeed | 1-0W3a-WNaud | 4y

[+
=]

1 ° -]
i ezqenauy

02w~ 01" 030 puss

i

|

7_

06T WD

| = |

jeoey m

Ty T g s ST T e

L

DA T R T R R NSRRI

[2unsay] :puewuo)

*310b 03 (IRID 4O PNULIUOD 0} (EEEID S824d CHUIIE Iutodyesage
UJN3Y pUBULWOD Jndu} unrocuqun

[3Joqy] [3unsay] :pueuuc)

*34nb 03 (EPEP 4O 3NUIUCD 03 (EEFID 883Jd 'HYING ujodyeadge

UJN33ay puURUUOD JNdu} URoUNUR

AN

009,

48

yiomaweld 8|npo S.gd-dOVY.L Pue omawel4 uoljedlddy s,uonesisuowsq Aeulwiaid "€l ainbi

pueoqday [zgigriel €ny gz nuy

kbt ‘43sn 19

9pIvIN R | $-OWIQ-WIMIHd Ul §AOVL | 4N O

$|00 L |0J3U0D WO

nyves“dvwTeapov)y

gpdnTeinqinie " puosd

sdwe

T = = a3loatis

Joded"uoysgpmuTiso

031123138

EELT

ma:::Eso.—.m muauemlE_um m projun m m jas0y m

NN KRN R T

: T e 8
g [aunsay] "nccc:oo.l

85244 *HYING Upodrealge
[Sunsay] :puewuo)

“31nb 03 R J0 INULIUDD 03

‘3pnb 03 (ORIED 40 2NUPjU0D 03 GEFEED SS2Jd " XHIYG Iujodyeauge
[2uns3y] :pusuuoy

e AL NS R PN A

49

uonelIsuoWa(] AlBUIWIBId WOIS BIR(] lUBWaINSEa\ meY 1| ainbi4

((.00008. w0000GZu .S®INIEEI dPw TEDT
{(.0000TLu wOOOQOLEw

30e3,,)
w03e,)

((.0000€9. +0000ZE. ws@3epPdn B3nqTIIFe pues,)
((.00000Ln w0000SE. «Se3PPdn ®3NQYIl3je puss,)

((w0000¥¥s «00008T. nS@IN3E2J dew TeDT

30®3,)

({.0000T94 »0000IE. ~€©38PdN ©3NQTIIIT pues,)

((w0000TLw wDO009€w

w03e,)

((.000089« w0000ZE. wns@3epdn @3nQgTalle puses,,

({n00008Tu w00006Lu
({.000002. 4000008
({.0000TTu «0000LLM
((.000096. w00000Lw
((.0000€6. »00000L. .S@3€Pdn ®3NQTI3IE
((«0000€u w00009Lu
((.0000964 «00002Lu
({.000066. u0000VL.
({u0000€Tu w00006Ln
((.0000L6u wOO0OELW
({.000006. «000069. .se3epdn @3ngiajje
((4000094 w0000LLM

«03%,)
n03e,)
w03%,)
w01%,)
“puss,,)
wO3®,)
w03e,)
w03e,}
wo3e,)
n03®,,)
“pues,,)
wo3e,)

21
61
ST
L1

- OoOWVwowm
L e B B I

FOoOTONnm MW AN

TIN
TIN
TIN
TIN
TIN
TIN
TIN
TIN
TIN
TIN
TIN
TIN
TIN
TIN
TIN
TIN
TIN
TIN
TIN
TIN

[FE A VR N T S N N A a2l Al

«{qpoel},,
w{dpoea},,
«{apoea},,
w{gpoel),
w{dqpoe3},,
u{qpoed},
«{gpoe3l},,
o {qpoe3},,
« {qpoed}.,
w{dpoei}.,
o {qpoel},,
u{qpoel),
w{ap2ea},
w{gpoel).,
u {qpoel},,
w{dqpoea},,
w{gpoe3}.,
uw{qpoed},,
w{qpoel}.,
« {apoea},,

P = e T e i B B e B B B B I B B B B B]

+deq sbesnijab,
:QmunDmm:uuwm:
deq ebesnijyeb,,
de3 ebesniqsbh,,
.deq ebesnijeb,
.deq ebesnijeb,,
«dey ebesnijeb,,
+dey ebesnijeb,,
+dey sbesnijeb,,
«de3 ebesnijeb,,
«dey ebesnigzeb,,
wde3 abesnijeb,,
wdeq sbesnigeb,,
«dey ebesnijeb,,
.deq sbesnijeb,,
.dey ebesnijyeb,,
+dey ebesnijeb,,
-deq ebesnijeb,,
«dey ebesnijeb,,
.dey ebesnajeb,,

€98916289)
869916289)
229916289)
€L2916289)
8652916289)
961916289)
vG0916289)
500916289)
668€16289)
8ZEET6289)
216216289)
568216289)
118216289}
2v9216289)
909216289}
605216289)
08€216289)
882216289)
182216289)
090216289)

50

Suggested Addition,
Change, or Improvement

Comment / Action Taken

Investigate transitioning the MCM
to a SUN workstation.

Implemented and shown at the
Reusability Demonstration.

Investigate testbed support for Ada
and an upgrade to Cronus 2.0.

Use of Ada-based components not
precluded in AAITT. Ada modules
can use UNIX-based CCC library.
Upgrade to Cronus 2.0 completed
by the Reusability Demonstration.

The interface between a CIM and
its Component should be
generated “automatically.”

A UNIX CCC library was
implemented prior to the
Reusability Demonstration.

The testbed should permit
concurrent activity. For example,
users should be able to conduct
several mission planning tasks
simultaneously using multiple
threads of control.

This capability is implicit in the
design of the AAITT. Concurrent
activity is achievable if tasks can
either be distributed to different
machines or be performed on a
single machine which supports
multiprocessing.

An applications “switch” is needed.

A switch module was included in
the Large-Scale Demonstration.

Testbed users should be able to
plug/unplug both measurement
and control.

Measurement and control activity
is enabled/disabled via point-and-
click menus.

The ability to stop simulations, as
well as rewind and replay them
should be incorporated.

Single-stepping at the message-
level was available by the Large-
Scale Demonstration. Rewinding
and replaying simulations is totally
dependent on the simulator’s
capabilities.

Rome Laboratory personnel
should receive a training course
covering AAITT use and operation.

A week-long training course was
prepared and conducted prior to
the Reusability Demonstration.

Table 4. Suggested Testbed Development and Actions

51

0

Using Tactical C2! domain expertise present on the team, a fictitious operational
scenario was developed for the Large Scale Demonsiration. The scenario
capitalized on the existence of the TAC-DB unclassified database and can be
summarized as follows:

- A European Theater of Operations, including whai was once tast
Germany and the southern region of the former West Germany, was
employed to remain within the boundaries of LACE's existing map
facilities.

» Politico/ethnic divisions beiween neighboring factions triggered
hostilities between the US-aligned Bluslznd and aggressors operating
from within Fedland.

« Rediand inflicted significant military and civilian casualties on Blueland

using their extensive Close Air Support assets.

- Blueland’s premier appealed directly to the President of the United
States for assistance in intercepting Redland’s air assets and denying
Redland operational autonomy by cratering the runways of airbases ifrom
which its acts of aggression were being initiated.

> The President issued a directive to the Chairman, Joint Chiefs of Staff, 1o
conduct a military air carmnpaign within the Blueland/Hedland Theater of
Operations with an overall objective of terminating Rediand’s hostile air
operations.

A comprehensive search was then conducted to identity, evaluate, and acquire
additional components relevant to the Tactical C2! domain in keeping with the
desire to use existing, unclassified compornients to assemble the Large Scale
Demonstration’s application. This search was exhaustive throughout the USAF.
Other locations within the other services as well as several offices within the
OSD community anticipated to possess relevant components were also
canvassed. Generally, smzll “pockets” of Al use were located throughout DoD.
Most of the identified componerits were not suitable for use because they were
designed to satisfy the very narrow and specialized mission requirernents of
individual systems.

The iestbed’s hardware- and sofiware-related constraints were then applied 1o
the set of candidate componenis identified during the search across the DoD.
The final set of nine components was determined afier ensuring that each met a
subset of the criteria for the Demonstration and could operate in concert witn the
aforementioned scenaric. The application architecture for the Large Scale
Demonstration is shown in Figure 15.

Each of the Demonstration’s components, including their respective sources
and roles, are discussed below.

52

8injosllyoly uoneslddy s,uonelisuowaq ojeog-abie gL 8inbiy

2|npow

Jauue|dTeinoa

)

2|npowTaav]

-

e|npourTgpoey

enpow

sdwe

atnpow~ duwie

fut]
[ud]

s|npow™ao3enjeAd T UO|SS[W

anpowTsouwey

anpowTeer

TpurwwOg

53

Rome Laboratory was the source of five of the Large Scale Demonstration’s
nine components: TAC-DB, AMPS, ATMP, LACE, and a Route Planner. The
TAC-DB database was used to maintain information regarding tactical map
features, attribute updates, aircraft, beddown airbases, sortie scenarios, and
SAM (Surface to Air Missile) locations. Both AMPS and ATMP (A Tactical
Mission Planner) generated ATOs and optional route requests. As before,
LACE was responsible for scenario execution and monitoring. The simulator
also provided narrative descriptions of mission performance as well as post
mission reports upon the successful completion of a mission. Finally, RL’s
Route Planner supplied a list of waypoints between the friendly airbase and the
target based on the most currently available threat data.

Two components were acquired from the USAF’s 7th Communications Group at
The Pentagon. FAMES (Functional Area Manager's Expert System) used data
about the number of US aircraft at the host beddown airbase to determine the
type and number of personnel and transportation vehicles required to support
friendly airbase operations at that site. The Airfield Attack Advisor (AAA)
identified the beddown airbase, the type and number of aircraft required,
recommended weapons, the number of sorties required for specified target
destruction, as well as required replacement assets based upon post mission
report information received.

Lockheed Martin’s Advanced Technology Laboratories constructed a Selector
(or Switch) Module which enabled the operator to select either the AMPS- or
ATMP-generated ATO, and optionally accept the planned navigational route
received from the Route Planner.

General Electric’s Corporate Research and Development Center developed a
sophisticated Mission Evaluator which provided planning recommendations to
the operator by assessing and analyzing the currently simulated mission. The
component accomplished its task using reasoning under uncertainty as well as
user-developed Measures of Effectiveness.

Given today’s levels of automation, most activities associated with the Large
Scale Demonstration’s problem-solving suite would, typically, be carried out
manually by numerous personnel possessing the requisite functional expertise.
The results of their efforts would be reported to and displayed manually at a
Tactical Air Control Center (TACC). This process is graphically depicted in
Figure 16. Successfully completing the Large Scale Demonstration showed
how operations within the TACC could be automated using an integrated suite
of components providing electronic coordination between the functional areas.
In addition to providing users with the capability to plan an entire operation, the
resulting TACC-oriented application, more importantly, also offered the ability to
automatically simulate the planned missions and provide valuable feedback
and recommendations to facilitate Battle Staff training. Figure 17 shows the
AAITT-supported Tactical Air Contro! Center.

54

181Us)) |041U0D A1y [BOIOE] B e suolielad(jenuepy 9| 8inbig

aaNt e) AlddNs
QgnI £2 v LNIVR
ONYL Z 56 s t6
ONYHL £ ve s4¢2
agnt v zo SHOOH
NOUDV | NviN% | UNN
IINNOSH3d

— T N

S
oD

© S0

FONLEOITIZLINI

44v1s 37111vd

EEBRRE

juswdinb3j ruoctrey
suodeepy
end
Addng
ususdinby voddng
BEPRJOA

-

oovz| o33 | uno | sar
NE | sev
geso|oazi | uo3d| eas 008t | TEN4 | UNO | 688
ST

CEL0| 888 | SHOIN| Lév
9140} 2eL6 {SIUIVEA]| 663
1140 9980 | 2€9 | HAO3H| 689

vb10 | 220 | eselL [ATI04| 688 SNLVLS 14VHOHIY

a1 | ovi | nswsl 1o o uvL

31NA3HOS SAVAOL

vovt | nowE | 1no | ess
oua [nowov | snuvis | e vl

55

J8uen |04u0) Jiy [eonoe] peuoddng-111vy /L 8inbid

YOLVNTYAT NOISSIN
44vis 31iive |

A3
AN
ad ¥o

g @
OENI 6T
oxL T
Sl L
TogsNIY

G4 22
BUODGH

33838

ROUDY | nviws | umn

TINNGSETY
SIWTL

"
fos 1Y Tng ANO [
Nl £E9
omi{ MON3 | IO | o
au3 | nouov [snuvie | o e

SMIVIS VESHNY
GadIOVL

HINNVId 3LNOYH

£aLo
o320

et
257
©z3
[=cc]
fes=:1

=43
&3

%329
831008
ouo{zass [sauva
10| os20 | zo | uo2m
w020 | 8220 | oess | ATTOR
aent ot | wenl 1omalo wa

TINGSHDS SAVAoT
SdWY B JNLY

56

6.3 Reusability Demonstration

Programmatic requirements for the Reusability Demonstration necessitated a
demonstration illustrating that the testbed’s concept and architecture were
applicable across multiple domains. Thus, this demonstration’s problem
domain had to be relevant to the USAF, but outside of C3l. In addition, the
application had to contain multiple agents and involve the use of the testbed's
simulation capability. In concord with RL, a decision was made to capitalize on
the USAF’s investment in the fruits of the ARPA/Rome Laboratory Planning
Initiative (ARPI) by using the components which comprised ARPI's second
Integrated Feasibility Demonstration within the Reusability Demonstration. The
three components were SOCAP, FMERG, and DART. Each of these mature
packages is described next.

SOCAP (SIPE for Operations Crisis Action Planning) assists*Crisis Action
Planners in generating multiple Courses of Action (COAs) to the major force
level. The COAs include initial plans for force phasing as well as logistics
requirements. SOCAP produces a Time Phased Major Force List (TPMFL) and
is based on SIPE, a knowledge-based generative planner.

FMERG (Force Module Enhancer and Requirements Generator) aids the Crisis
Action Planner by retrieving and supporting the editing of pre-packaged forces
from a Force Module Library, which includes combat support provisions for the
specific Course of Action specified. FMERG produces a full TPFDD (Time
Phased Force Deployment Data).

DART (Dynamic Analysis and Replanning Tool) is a relational database and
closely-coupled simulation capability that facilitates the analysis of TPFDDs
using simulation as well as modification or replanning.

In general, integrating these components allows a Crisis Action Planner to
determine the transportational feasibility of a SOCAP-generated COA. Once
SOCAP is given the specific mission objectives, politico/military guidance, and
required resources, it develops a COA. FMERG then takes the SOCAP-
generated TPMFL, which is a skeletal Deployment Plan, and creates a standard
TPFDD by instantiating both specific force units as well as accompanying
support and sustainment resources. The resulting full TPFDD is then “tested” by
DART using transportation feasibility estimators. Shortfalls are fed back to
SOCAP, which can modify the plan in an attempt to overcome any
transportation problems identified in the simulation.

The completed application was established five months ahead of schedule.
Additionally, due to the AAITT's graphical interface and powerful, automated
tools for embedding components, the integration effort was accomplished in
only five days and required no modifications to the testbed. The application and
module models developed for the Demonstration are shown in Figure 18.

57

S|epoyy uonedljddy pue e|npoyy s,uoBIISUOWS(] Angesney gl einbiy

DORINRAY

ejnpow” yop

DNINNOY

ompow dusoa

(4
uordde”esnas

JELYI ULV 3T NETE

N

vpp derosTyob

L

BeujuLa |

]] [

ooy _

N
,

puedeng m

PR 0} 613208

m’%sézg m!z:z-s_o m f 30_54 _ wsay f_

58

During the Reusability Demonstration, an additional, important capability was
presented. The MCM Workstation had been ported from a special-purpose,
Symbolics computer, and was running on a general-purpose, Sun platform.
This considerably broadened the AAITT's potential user base.

59

7 Where To Find More Information

Tailored DoD-STD-2167A documentation was prepared to preserve various
aspects of the AAITT program. The documentation serves as a rich source of
information to explore the testbed in greater depth. Figure 19 provides a road
map to locate the appropriate document covering a particular topic of interest.

\\Application Architects

[sum]

Component Developers
| TP <t

e Component Embedders Application Users
| TPM =T

\ Component Evaluatorg/ K\\Appl. Fielder/Analyst \

SUM

T
s

Testbed w7 Developers

(SSSISRSISDDIDPS]

Road RMap Key

Symbol Document Information about

SSS System Segment Specification Top-Level Overview and Requirements

SRS Software Requirements Specification Detailed System Requirements

SDD Software Design Document Detailed Design Data

DPS Distributed Processing Substrate Analysis [Distributed Communications Software Analysis
SUM Software User's Manual Modeling, Control, and Monitoring

TPM Testbed Programmer's Manual Communication and Message-Leve! Programming

Figure 19. AAITT Documentation Road Map

Copies of these documents can be obtained from the contracting agency or as
directed by the contracting officer. Documents should be formally referred to as
follows:

AAITT-A003, Technical Information Report (DPS Analysis), February 1991.

60

AAITT-A004,

AAITT-AQ00S5,

AAITT-A006,

AAITT-A009,

AAITT-A010,

Software Design Document for the Advanced Artificial
Intelligence Technology Testbed CSCI, October 1992.

Segment Specification for the Advanced Artificial Intelligence
Technology Testbed, April 1991.

Software Requirements Specification for the Advanced
Artificial Intelligence Technology Testbed CSCI, (Revision A),
June 1992.

Software User’s Manual for the Advanced Artificial
Intelligence Technology Testbed CSCI, June 1991.

Technical Information Report (Testbed Programmer's
Manual), June 1991.

The following document was referenced in this report. As before, copies can be
obtained from the contracting agency or as directed by the contracting officer.

Cooperating Expert Systems (COPES) Final Report, submitted by Grumman
Corporation to United States Air Force Rome Air Development Center under
Government Contract Number F30602-88-D-0004, June 27, 1989.

61

8 Results and Discussion

The principal result arising from the AAITT program is a successful, high-quality,
laboratory testbed which embodies a structured development paradigm and
associated toolkit to support the design, analysis, integration, evaluation, and
execution of large distributed software systems. As demonstrated, use of the
AAITT can significantly decrease the software integration costs associated with
these complex systems.

Overall, quality was increased and cost was decreased by leveraging two
mature capabilities. The testbed’s DPS, based on the Rome Laboratory-
sponsored Cronus distributed object environment, is a flexible software
backplane that accepts an arbitrary number of stand-alone components and
provides heterogeneous interprocessor support for the concurrent execution of
multi-agent applications. Similarly, the ARPA-sponsored ABE systems
engineering tool acted as the foundation of the AAITT's Modeling, Control, and
Monitoring Workstation, a graphical, module-oriented programming facility for
embedding, integrating, executing, and analyzing independently-developed,
cooperative, problem-solving software components.

The AAITT program’s derived results can be categorized in two ways. Some
outcomes directly support the needs of the DoD technical community. Others
can be utilized by operational users. The advantages available to each group
are discussed below. It is interesting to note that different aspects of the same
result may provide benefits to both groups.

8.1 Technical Results

As more and more individuals recognize and seek to utilize the inherent power
found within distributed systems, software developers will become increasingly
dependent on the ability to assemble solutions from disparate pieces. lt is here
that the AAITT’s strengths lie. The testbed’s support for the complex process of
distributed system integration, debugging, and evaluation, as well as the
elimination of the need to extensively re-engineer components prior to
integration, allows scarce time and resources to be prudently focused around
component development. This focus is paramount because the completed
application’s problem-solving capabilities are found within its components, not
within the distributed infrastructure which permits the components to interact. In
the absence of the AAITT, many efforts have shortchanged component
development to otherwise concentrate on integration.

The testbed’s flexibility allows knowledge-based and conventional components
to exist within the same application. Developers are able to selectively employ
the most appropriate paradigms. Force-fitting a solution to a technology is no
longer required.

62

The AAITT transforms graphical models into customizable code skeletons to
facilitate component embedding and supports the development of various
problem-solving and control strategies. In most cases, low-level details are
handled automatically. Component Embedders and Application Architects are
immediately productive and able to apply their energies where it is most
needed. In addition, this approach has introduced a level of abstraction,
making future upgrades to, or replacement of, the DPS easily accomplished.
Changes will result in minimal disruption to existing component and application
models.

One of the most important and interesting aspects of the testbed’s capabilities
comes to light once an application has been initially established. Application
monitoring, capturing measurements at levels ranging from resource usage to
domain-dependent solution quality, when coupled with the ability to rapidly alter
the nature of component interactions, allows numerous, repeatable experiments
to be performed. These experiments allow users to fine-tune their applications
through the use of empirical data. Decreasing the effort and cost associated
with experimentation improves quality by encouraging developers to not be
satisfied with their first answer, seek better solutions, and not pursue
alternatives based simply on intuition. An excellent example of this process is
documented in Appendix A, Instrumented Domain Experiments.

Component reuse and the development of new solutions by adapting past
successes is further facilitated by the testbed’s module and application
catalogues.

The technical community can also take advantage of the AAITT’s approach to
human-computer interaction for modeling, control, and monitoring. Initially,
during the modeling phase, “the picture is the program.” Next, the graphical
model constructed during the application development process is the same one
used to control application execution. Finally, monitoring activities are
supported by a user-configurable graphic interface.

8.2 Operational Resulis

Unanticipated conflicts will become the norm now that we have witnessed the
end of the Cold War. These hostilities are often termed “come as you are” wars
because one does not have the luxury of time to methodically prepare for them.
They can occur at anytime and anywhere, generally planned by the enemy to
be the most inconvenient to the US. The ability to rapidly assemble and
(re)configure software applications to automate and facilitate the decision
making process is an essential part of responding effectively to new or
escalating situations.

Successfully establishing each of the AAITT program’s applications clearly

demonstrated that the testbed can provide this capability. In every case,
interoperable sets of software components were established quickly, although

63

the application’s elements were never initially designed or developed to
function together. Completed applications were not limited to a single USAF
domain and integrated problem-solving aids supporting various functional
areas.

Applications developed using the AAITT do not represent custom, inflexible
“point solutions.” Constituent components can be introduced, removed, or
combined as desired, offering the opportunity to constantly adapt, improve, and
scale-up the functionality provided to the Warfighter with minimal disruption to
existing capabilities. The ability to intermix conventional and knowledge-based
modules within a single application allows today’s legacy systems to take
advantage of tomorrow’s advanced technology.

In addition to the obvious time and cost benefits that result from eliminating the
need to extensively re-engineer components during the embedding and
integration process when using the AAITT, quality and productivity gains will
accrue to the application’s operational users. In many cases, the re-
engineering process can introduce both anomalies and sources of failure into a
component. Retesting is expensive and, more importantly, not guaranteed to
uncover new problems. The heat of battle is not the time for surprises to come
to light. It is also crucial for users, particularly those operating in critical
situations, to continue utilizing their “native” decision aids. Otherwise,
productivity will suffer and the opportunity to commit errors of both omission and
commission will increase. Encapsulation, as supported by the testbed, permits
components to retain their original “look and feel.”

The development model embodied by the AAITT is also consistent with the
DoD’s ongoing acquisition initiatives. The testbed supports the recent
emphasis placed on the incorporation and reuse of both commercial- and
government-off-the-shelf (COTS & GOTS) components to construct systems.
Furthermore, the AAITT's entire iterative modeling, control, and monitoring
paradigm is centered around the notion of realizing solutions using a rapid
prototyping strategy, where results are placed into the hands of users as soon
as possible for evaluation and feedback. Finally, the testbed facilitates
evaluations which can be used to control the process of judiciously introducing
only sufficiently-mature technology into operational systems.

64

9 Conclusions

The most important conclusion which can be reached from this effort is that the
AAITT program’s numerous successes conclusively validated the software
integration paradigm embodied within the testbed. An innovative approach to
encapsulation, using graphically-specified and automatically-generated
wrappers, was repeatedly demonstrated to be a cost-effective means of building
distributed software applications without the need for extensive component re-
engineering. Accomplishing the same using more expensive and complex
strategies, such as reimplementation or universal data/information interpreters,
is no longer the only option available to developers.

The testbed’s paradigm and toolkit resulted in dramatic productivity gains and
equivalent decreases in integration costs for tasks of the same magnitude. It is
interesting to note that during the development of the applications for the Large
Scale and Reusability Demonstrations, considerably more effort was expended
identifying and acquiring suitably mature decision aids than was spent actually
embedding and integrating the selected components.

A wide range of accomplishments laid the groundwork for the successes which
validated the AAITT's software integration paradigm. These accomplishments
are grouped by functional area and enumerated below.

9.1 Distributed Processing Substrate

v Cronus, an existing commercial distributed object environment, was
provided with a mouse-and-menu interface to improve its usability and
operability. Without the interface, Cronus is simply a procedural, message-
driven system. In the future, this layer of the AAITT's DPS may be replaced
with a CORBA (Common Object Request Broker Architecture)-compliant
product, as availability allows. The DPS was intentionally implemented
using a level of abstraction to facilitate this type of interchange. Among other
things, a CORBA-compliant system would offer the added feature of
maintaining persistent objects within the testbed.

9.2 Modeling

v¢ A graphical notation for the specification of a component’'s communication
interface to other components within a distributed heterogeneous system
was developed for the testbed. This notation was then mapped into an
equivalent, tangible processing implementation. When combined, the
notation and mapping form the foundation of the visual modeling
environment used to construct module wrappers.

v¢ The communication models developed using the aforementioned graphical

notation are subsequently used to ensure module compatibility during
application modeling.

65

Modeling within the testbed does not depend on the actual existence of the
components at the time they are being modeled, i.e., the use of stubs is
supported.

At the outset of the program, a goal was established to provide tools
supporting a Component Interface Manager's capability to communicate
with its associated component. Although a library of routines implementing
a (UNIX) socket-based communication scheme was developed for this need,
this area deserves additional attention.

The AAITT's catalogue capabilities facilitate the organization, management,
and reuse of module and application models, as well as related metrics.

During the course of developing the AAITT, assembling the applications
used to demonstrate the testbed, conducting the AAITT Training Course,
and, in particular, performing the testbed-supported analyses that acted as
the foundation of the Instrumented Domain Experiment discussed in
Appendix A, the power placed in the hands of users by the testbed’s high
level of flexibility became increasingly evident. Testbed Developers,
Component Embedders, and Application Architects alike, were able to
transparently redistribute modules, adapt/reuse existing components and
applications, as well as rapidly alter control strategies using the testbed's
graphical Frameworks. These capabilities cannot be overemphasized.

9.3 Code Generation

¥¢r The AAITT's code generators significantly advanced the state-of-the-art in

automatic code generation, based on their ability to transform complex,
graphical models into executable images, distributable across a network of
heterogeneous machines.

Compiling a distributed heterogeneous system is an intricate and time-
consuming task. The AAITT incorporates both an automated mechanism 1o
manage this process for the user as well as an incremental compilation
capability to conserve resources and increase productivity by recompiling
only the minimum required to reflect the changes which have been made.

9.4 Conirol

Yr A state diagram for distributed heterogeneous systems, accommodating

both conventional and knowledge-based components, was developed and
realized within the testbed to provide users with the means to achieve any
desired level of control in a flexible, yet disciplined, fashion.

¥¢ The AAITT’s control software provides visual feedback to the user so that an

application’s current state(s) can be easily discerned.

66

v¢ The testbed’s module-to-host assignment process emerged as a mouse-
and-menu task during this program. By leveraging Cronus’ capabilities,
assignments can be transparently handled within the same processor family.

9.5 Monitoring

¢ Under the auspices of the AAITT program, a methodology was established
for synchronizing the time stamps of logs captured on distributed processors,
collecting those logs, and merging their contents to support module and
application analysis.

v Collected logs are intentionally maintained in a simple, ASCII representation
so that the data can be easily filtered and introduced into other data analysis
tools such as spreadsheets and statistical packages. This process was used
to establish a loose coupling between the AAITT and the University of
Massachusetts” CLASP (CommonLISP Analytical Statistics Package)
software and facilitate the analyses conducted for the Instrumented Domain
Experiment discussed in Appendix A.

v¢ Each testbed-resident module is provided with built-in measurements
capable of capturing low-level resource utilization metrics, such as CPU-
usage and memory swapping data.

v Information regarding intra-module communication can also be captured
using the testbed. Message content and timing can be reviewed using a
graphical, “logic analyzer’-style display that aids debugging.

v The issue of domain-specific metrics was also addressed during the AAITT
program. Although a sophisticated “Evaluator Module” was developed for
the Large-Scale Demonstration to examine the topic of solution-quality, this
area could benefit from additional attention and research.

9.6 Debugging

Y¢ In general, building a distributed system is very complex and chaotic. The
development process begins as a two-dimensional situation and frequently
escalates into a three-dimensional problem. Successfully debugging these
systems is a skill which often approaches an art. The team’s extensive
experience constructing these types of systems led to the incorporation of
many control and monitoring features specifically designed to aid with
debugging, including breakpoints, logging taps, CIM-query capabilities,
long-form logs, a dynamic message facility, as well as a state transition
strategy permitting modules to be paused and single-stepped.

The resulting AAITT raises distributed system development to the next level.

67

10 Recommendations

The AAITT is a high-quality laboratory testbed, capable of filling a critical
technology role for both technical and operational users. It provides a vital
software integration and evaluation toolkit of immediate utility to the DoD, in
general, and the USAF, in particular. 1t is clear that the requirement for and the
value of these capabilities is ongoing and will continue io increase in the future.
Why? The number of independently-developed, conventional and knowledge-
based automation aids, offering problem-solving support across a wide array of
functional areas, will explode. The benefits of stand-alone components are
limited, at best. True, integrated decision support will occur when these pieces
can be rapidly and cost-effectively combined into interoperable, situation-
specific applications which meet a commander’s operational or scientist’s
technical needs. A commercial.equivalent does not exist at this time. Thus, the
Lockheed Martin team recommends that an AAITT productization effort be
undertaken to move the testbed out of the laboratory and in to widespread use.

A parallel, dual-track strategy is suggested, where extensive testbed evaluation
would be conducted concurrently with an iterative development effort.

Assessing the AAITT is best accomplished by placing successive versions of it
into the hands of a wide range of technical and operational users, training them
in its use, providing support, and periodically following-up to solicit feedback on
its strengths and weaknesses. This invaluable feedback would then be
incorporated into the requirement set for the next development cycle. The set of
users would potentially include participants in field exercises and
interoperability demonstrations; organizations interested in establishing
“software test ranges,” permitting the insertion and assessment of new
components within a standard evaluation suite; efforts to construct “anchor
desks” incorporating capabilities from existing, legacy infrastructures; as well as
initiatives strongly focused around component development, where frequent
integration and ongoing experimentation may be desired but unaffordable in
the absence of a poweiiul tool such as the AAITT.

In addition to prudently responding to the suggestions obtained from user
feedback, the development effort must begin by defining the form of the final,
productized testbed. A number of the issues which must be addressed are
briefly discussed below. In general, there will need to be an increase in
emphasis on meeting the specific requirements of the operational community.

Users The testbed is presently oriented to supporting the
technical user community. However, in contrast to
Application Users, who depend on the Component
Developers behind each constituent decision aid, the
fielded AAITT product must support the needs of the
SC/J6 staff assigned to assemble mission-specific
decision support applications.

68

Hardware

Software

Communications

Security

Portability

User-Friendliness

The range of hardware capable of hosting either the
AAITT or individual components within testbed-
resident applications must be expanded. Particular
attention should be paid to the DoD’s installed base
of personal computers, including laptops.

Support for components implemented in the C or
LISP languages currently exists explicitly within the
AAITT. Other languages are implicitly supported; the
only requirement being the ability to link the “foreign”
language with any of the supported languages.
Additionally, virtually all candidate components can
be treated as “black boxes” in cases where a less
dependent level of coupling is acceptable or the
Component Embedder simply has no other choice.
Thus, although few restrictions exist, augmenting the
AAITT with explicit support for additional languages
such as Ada as well as making the Distributed
Processing Substrate CORBA-compliant may be
both desirable and worth the cost.

Communication is a crucial capability for operational
users in particular. The testbed must be compatible
with and leverage the advances envisioned for the
Global Grid and National Information Infrastructure,
as well as the means to access various tactical links
using the appropriate protocols and formats.

Protecting information at multiple classification levels
as it is passed between components has not been
addressed to-date within the AAITT program. This
crucial capability must become an integral portion of
the MCM Workstation, the Distributed Processing
Substrate, as well as each module’s wrapper.

This issue spans, and is dependent on, a number of
the topics presented above. However, it warrants
special mention because operational users
distributed world-wide must be able to engage in
problem-solving activities regardless of location,
continue operating while en route, and maintain
seamless contact despite transportational transitions.

Although the AAITT already incorporates a highly-

graphical, context-driven human-computer interface
within its frameworks and makes extensive use of

69

point-and-click menus to guide user selections, the
testbed needs to be exercised by a wider audience
to identify areas where the interface and concept of
operation need improvement.

The AAITT must be able to rapidly and accurately
recover from unforeseen events, including computer
system failures caused by battle damage as well as
operator-originated errors. Adaptive fault resistant
techniques currently under development hold the
promise of helping in this regard.

Recoverability

Obtaining the full benefit of the testbed’s capabilities
would be better ensured by offering users on-line
tutorial and help information, as well as knowledge-
based assistance for debugging and application
performance analysis.

Training

An item orthogonal to these issues is the need to provide distributed modeling,
control, and monitoring capabilities within the testbed. This would allow
multiple, non-contending instantiations of the MCM Workstation to execute
simultaneously across a wide-area network (WAN). Although the Distributed
Processing Substrate presently supports modules communicating across a
WAN, stand-alone components, Component Embedders, as well as Application
Architects must all be co-located before component embedding and integration
can take place. The cost to augment the AAITT with the ability to permit these
procedures to occur remotely would be easily dwarfed by the savings accrued
from eliminating required travel alone.

These general requirements for a productized testbed need to be confirmed
with a full, representative cross section of users, who will undoubtedly provide
valuable amplifying details. Finally, once the AAITT is functionally complete, the
product must be “bulletproofed,” to minimize the possibility that user activity can
unintentionally disrupt the testbed’s operations. :

This productization effort deserves immediate consideration. Leveraging the
current endeavor’'s accomplishments and momentum into a follow-on program
is vitally important to cost-effectively facilitating the insertion of decision support
assistance into an operational community which continues to grow increasingly
dependent on automation aids as budgets continue to shrink and commanders
are forced to deal with reduced numbers of functional area experts and staff
personnel. Otherwise, this technology’s benefits will never reach tomorrow’s
Command Centers.

70

Appendix A Instrumented Domain Experiments

This appendix describes the results of an effort which explored the concept of
“Instrumented Domain Experiments,” or IDEs, successfully performed under the
auspices of an engineering change to the base AAITT contract. This eftort can
be viewed as a two-phase undertaking — an initial investigation into the
principles behind IDEs, followed by a practical application of the concept using
the AAITT.

Thus, this section begins by discussing the motivation for Instrumented Domain
Experiments. The formulation of an IDE questionnaire, distributed within
government, academia, and industry, is then presented. Survey results are
subsequently summarized. These responses helped the team arrive at the IDE
definition offered here.

The testbed was used to perform an IDE. The conduct and results of the IDE
are described next, and include a discussion of the loose-coupling which was
achieved between the AAITT and the University of Massachusetts’ CLASP
package. Finally, the appendix concludes by presenting the specific support
which the testbed provides for IDEs, affirming our belief that the AAITT can act
as an effective foundation for the experimentation activity which forms the heart
of the Instrumented Domain Experiment process.

A.1 Background

One of the obstacles to developing software applications for complex, real-
world problems has been the difficulty of evaluating candidate technologies as
well as prototype systems to determine their promise or degree of success.
Determining the answer to questions such as the degree of a technology’s
scalability or whether one technology holds more promise than another for a
given application has proven to be a very difficult proposition. Frequently,
software technologies end up being evaluated on the basis of prototype
demonstrations, often using a single, possibly unrepresentative, input scenario.
Thus, the evaluator is hard-pressed to judge the depth and robustness of the
prototype's functionality. Since the current limitations of the prototype are
usually avoided in these demonstrations, it is also difficult to assess progress
and judge the potential for further development.

There is an increasing need to both better focus application-oriented software
R&D (Research and Development) and achieve faster, more cost-effective
technology insertion. Thus, there is a corresponding increase in the importance
of improving the ability to evaluate technologies for use in real-world domain
applications. The goal is to define an evaluation methodology which will
support the more systematic and thorough evaluation of new technologies,
specifically, the potential utility of these technologies for solving problems within
application domains.

71

The possibility of using some type of software experiments to address these
goals was raised, and the term "Instrumented Domain Experiment" was coined
by Dr. Stephen Cross at ARPA to denote the concept of using software
experiments to evaluate technologies for domain application. However, the
issues involved and the question of exactly how one might go about conducting
such experiments required additional investigation.

The term IDE indicates a focus on two key elements. First, the use of actual
problem domains rather than artificial, simplistic problem spaces. Second, the
employment of experimentation instead of restricted "feasibility" demonstrations.

One obstacle to reliable technology evaluation has been the common practice
of demonstrating systems using inputs based on overly-simplified problems.
Often, only a few examples are applied; in extreme cases, only a single
instance is used. It is not unreasonable to expect that better technology
evaluation would occur if systems were exercised against problems
representative of the target domain’s scope and complexity. However, this
notion then raises a number of questions, such as:

o “How can one determine whether or not a given problem case is
representative?”

- “Is jt necessary to use only "real" problem cases, with all of their attendant
ambiguities and complications, or should problems be limited to some
degree?”

- “If so, how does one recognize when a problem case is too limited?”
> “Where does one obtain acceptable problem examples?”

Thus, although the general notion of seeking more rigorous evaluation through
use of more demanding test cases seems sensible, instituting such a practice is
likely to require careful thought and investigation.

Similarly, it has long been a common practice in software R&D for developers to
“prove” the value of their systems by demonstrating that they, indeed, run and
produce apparently correct output when exercised on the types of test cases
described above. Such demonstrations often provide liitle in the way of useful
information to the evaluator. In fact, they provide no answers to the evaluator's
questions about issues such as the demonstrated system's efficiency, the
quality of its output, its merits relative to cther technical approaches, and so on.
These kinds of questions could be addressed if one could replace the
traditional feasibility demonstration with one or more rigorous experiments.

Similar to the idea of using more representative problem spaces, substituting

demonstration with experimentation raises a number of practical questions,
such as:

72

- “What kinds of questions should be experimentally tested?”
- “How can these questions be formulated as testable hypotheses?”
- “What measurements should be used to evaluate a hypothesis?”

- “Must all ‘experiments’ follow the classical model by providing an
explicitly formulated hypothesis to test?”

. “In summary, what are the effects of focusing the general concept of
software experimentation on the evaluation of software technologies for
domain applications?”

Ultimately, the answers to all of these questions must be answered through
experience. However, the team concluded that initial efforts to gain such
experience would be more fruitful if preceded by an analysis of the IDE concept
and its attendant issues. Thus, some of the issues which must be addressed in
applying experimentation within this context are presented next, and the
discussion then goes on to describe candidate definitions of an IDE and an
associated methodology.

A.2 Approach

Beginning with the general idea of using software experimentation to evaluate
technology for domain applications, several areas for analysis were identified:

« The overall goals for IDEs
- A candidate IDE methodology
« The relationship between IDEs and the software engineering process

First, it is interesting to consider the underlying reasons for performing IDEs.
Software experiments performed for basic research would, presumably, have
the goal of establishing the fundamental principles and properties of, for
instance, planning or computer learning. On the other hand, the types of goals
that would make sense for IDEs would likely be different. A variety of interested
parties are likely to be involved in an IDE, including operational Application
Users, Application Architects, (Government) sponsors, as well as the individuals
conducting the IDE. Each of these parties will, in all likelihood, be pursuing
different goals. Thus, identifying likely categories of IDE goals was considered
the first important area of investigation.

The question of how an IDE should be conducted is also critical. Issues which

must be addressed here include the nature of the input data to be used,
approaches to measuring results, and the characteristics of appropriate

73

experimental hypotheses. Therefore, formulating an IDE methodology was
identified as the second area of investigation.

Finally, it is important to consider when, in general, IDEs should be performed.
In particular, the team was interested in identifying the best insertion point for
IDEs within the software development process. This question required attention
because the answer might depend, at least in part, on the particular software
development model, e.g. “waterfall” versus “spiral,” being adopted.

In summary, the intention of the preliminary analysis was to establish a starting
position on the three basic questions of why, how, and when to perform IDEs.

The team created a questionnaire addressing issues in each of the three topic
areas to facilitate data gathering. The questionnaire was distributed within the
operational and technical communities for advanced software R&D. Responses
were compared and analyzed to develop recommendations for IDE goals, an
IDE methodology, and the place for IDEs in the software development cycle.
Survey responses will be summarized below, along with a discussion of the
team’s analysis and recommendations.

A.3 Initial Methodology

A strawman IDE methodology was defined and inserted into the questionnaire
to stimulate the canvassing process. It consisted of the following steps:

1. Produce the specification of a particular experiment, including

The application suite selected for evaluation;
The overall goal(s) of the experiment;

The evaluation metrics to be applied,;

The rationale for the choice of metrics;

The measurement strategy for the metrics;

The data-capture strategy for the measurements;
The inputs to drive system execution; and

The rationale for choice of input set.

"0 Q0o

TQ

2. Introduce the application suite into the instrumentation facility by
embedding and integrating the application's constituent components.

3. Implement or integrate the experiment's required data-capture
mechanisms.

4. Conduct the experiment under controlled conditions.
S. Analyze the data captured during the conduct of the experiment.

6. Present analytical results to the targeted audience for review.

74

A.4 Questionnaire Results

The completed questionnaire was distributed to individuals in government,
academia, and industry. Table A-1, below, characterizes those who responded.

Category Responding Organization(s)
Academic Research | ¢ University of Massachusetts
Industrial Research | e Lockheed Martin Advanced Technology
(Both defense and Laboratories
non-defense) v ¢ GE Corporate Research & Development
¢ Teknowledge Federal Systems
DoD Developers ¢ Headquarters, US Army Al Center
DoD Sponsors and | e USAF Rome Laboratory
Operational Users ¢ US Army Intelligence Center
¢ Joint National Intelligence Development Staff
DoD Verification and | ¢ USAF 7th Communications Group
¥223§gon (V&) /. & - Air Combat Command / 1912 Computer
Systems Group
¢ Ogden Air Logistics Center / SCTE
(Computer Support Group)

Table A-1. IDE Questionnaire Respondents

The questionnaire contained approximately 20 questions distributed among the
topics of IDE goals, methodology, and relationship to the software development
process. Below, the questions which produced the most substantive responses
are presented, along with specific examples or characterizations of the answers
received.

Q: What types of questions would you want answered as the outcome of
an evaluation?

75

Sponsors and operational users expressed an interest in determining
whether operational needs were being satisfied as well as evaluating
added value. As might be expected, the test and evaluation community
wanted to know whether the system met user requirements. Multiple
themes from “Did it work?” to “What are the data requirements?” were
raised by industry developers. DoD developers also felt that various
issues should be addressed, but felt that the specifics would be a
function of the iterative development process. The sense from the
academic community was that it was important to consider whether the
science or technology was being advanced, using both sensitivity and
parametric estimation studies.

What issues should not be addressed by these experiments?

The consensus was that any issue should be fair game. However,
several interesting exceptions arose. An individual from the sponsor
and operations group felt that it was crucial to agree on a subjective
evaluation scale before considering qualitative questions. One industry
developer believed that the presence or absence of a specific
technology should be off-limits, while an academic researcher wanted
to avoid treating the experiments as “bake-offs” requiring clear-cut
winners and losers.

What kinds of metrics would assist in meeting your evaluation goals?

Due to the clear relationship between experiment goals and metrics,
responses here paralleled the answers received to the goals portion of
the questionnaire. Sponsors and operational users wanted metrics that
measure value-added for the user. Respondents in the evaluation and
testing groups uniformly focused on users as the best source of metrics.

Would the experiment be scenario driven? Would more than one be
used?

Although nearly everyone favored the use of scenarios, the term was
not universally interpreted in the same way. While some believed that
a scenario was an attificially-created entity, others felt that scenarios
were datasets captured from actual operations or exercises. However,
there was general agreement that it was largely infeasible to prepare
multiple, real-data scenarios.

76

How would one demonstrate the typicality or generality of the
scenario(s) or other inputs?

The answers to this question gave rise to the notion of a certifying
authority, an individual or organization associated with the application
domain, capable of authenticating the scenario or other inputs. The
result would be scenarios that are user-defined; identified as typical by
a domain expert; possibly of historical significance; and/or DoD- or
Service-validated. It would be the responsibility of the certifying
authority to characterize the overall bounds of the scenario space as
well as the coverage of the space afforded by any particular scenario.

Should the experiment be done within a real world or “near-real” world
context, e.qg., as part of a planned military exercise or installed on a
factory floor?

Most respondents believed that there would be a direct correlation
between the authenticity of an experiment’s context and its value. ltis
interesting to note that members of the sponsor and operational user
groups, although agreeing that it was preferable to conduct these
experiments within a real world context, also felt that some experiments
should be carried out initially in a near-real world situation and
subsequently transitioned into the real world. A glimpse into the
reasoning behind the latter, phased approach can be found next.

Have you participated in evaluations of this kind? If so, what was good
and what was bad about them?

One answer deserves particular consideration. The respondent,
possessing experience with these types of evaluations during military
exercises, liked the intensity of the user-developer interaction during
the evaluations but cautioned that prototypes frequently fail because of
known limitations or unexpected changes in exercise conditions.
However, although the reasons behind these failures are frequently
well understood and known beforehand, one does not get a second
chance to make a good first impression. Thus, a possible outcome of
these failures is irreparable damage to the user’s confidence in the
capability being evaluated.

77

Q: Where would an IDE fit in the software development process?

The consensus was that, regardless of the particular development
mode! being employed, experimentation could be valuably applied
throughout the entire process.

Q: Would the IDE replace or add to the steps in the software engineering
cycle? Where would the IDE be added, or if steps would be replaceq,
which ones?

A: There was no clear agreement among the respondents to this question.
Some individuals felt that IDEs might replace portions of the testing
process. Others believed that IDEs address issues other than testing,
such as the definition of requirements.

Q: What fraction of project resources should be applied to IDEs and from
where should it be taken?

A: Answers here covered the entire spectrum, from “insignificant” to “half
of the effort.”

The implications of these responses are examined next.
A.5 Analysis

A number of tentative conclusions regarding IDE goals, the IDE methodology,
and the relationship between IDEs and the software engineering process, can
be drawn from the answers provided by our respondents.

A.5.1 IDE Goals

First, with regard to IDE goals, the team concluded that the IDE must be focused
on evaluating the technology's ability to satisfy operational needs. This means
that IDEs should not be seen as vehicles for the advancement of basic
research. Emphasizing operational needs as an evaluation driver is a natural
consequence of the IDE’s stated purpose as a tool for evaluating technology in
application domains. However, it is not uncommon for researchers to feel that
one should be able to both advance the science and satisfy application needs
at the same time. The academic respondent’s answers and associated
comments express this belief. In contrast, all of the other respondents
emphasized the importance of determining whether the technology met

78

operational needs. They used such terms as “requirements,” “user-determined
questions,” and “operational needs.” Thus, evaluation against operational
needs as opposed to evaluation of technology advancement represent
generally divergent goals.

To illustrate this divergence, consider a case where two planning technologies,
referred to here as A and B, are to be evaluated. . Suppose these technologies
are evaluated by performing one or more experiments in a certain application
domain. Furthermore, suppose it is determined that technology A is significantly
faster than technology B. Such a result may be of vital interest to the
researcher, but would not be important in evaluating the technology within the
chosen domain unless B failed to meet a time requirement imposed by an
operational need within that domain. In other words, if the goal is to improve the
capability of those who plan in the chosen domain, A's speed advantage would
not be a sufficient reason to spend resources on developing A rather than B.
On the other hand, if the goal is to determine basic differences between A and
B, the speed difference is important, and one might well be justified in
expending additional resources to, for example, attempt to identify the reason(s)
for the difference.

Thus, the basic purpose of IDEs is to reduce the set of possible experiment
goals down to those which will aid in ascertaining the relationship between the
technologies to be evaluated and the application domain’s operational needs.

A.5.2 IDE Methodology

Respondents to the questionnaire also provided useful insights to methodology
issues. Several points regarding the specification of metrics, evaluation criteria,
scenarios, and experimental hypotheses were made.

It was stated that it is crucial to agree on a subjective evaluation scale before
considering qualitative questions. The academic respondent stated that little
can be said, in general, about issues such as metrics because the critical
details depend on specific circumstances. However, respondents from the
Sponsor and Operational as well as the Testing and Evaluation communities
emphasized the importance of both measuring value-added from the user’s
point of view and looking to the user as the definitive source of metrics. Several
important conclusions may be drawn from these points.

First, the user and his/her operational needs must be the source of IDE
evaluation criteria and metrics. As discussed earlier, factors such as a software
system’s execution speed are only significant in the context of an IDE to the
extent that the user's speed requirements are significant in the given domain.

Second, evaluation criteria and their corresponding metrics, whether qualitative

or quantitative, must be agreed to in advance by all relevant parties. This is a
practical necessity because, in many cases, there may be no obvious best

79

choices for criteria or measurement methods. The difficulties associated with
choosing a subjective scale for qualitative conditions represents an excellent

example here.

Finally, if we are to take the word “Experiment” in Instrumented Domain
Experiment seriously, it is important to transform the evaluation criteria drawn
from operational needs into clear-cut test conditions or hypotheses. This point,
although straightforward, is frequently ignored in the “feasibility demonstrations”
often offered to software technology evaluators. As an example, consider the
domain of logistics planning. lt is insufficient to use a statement such as “There
is a need to increase the speed of logistics planning...” as an evaluation
criterion. By this criterion, any software system which reduces planning time is
a success. Using such a standard gives rise to problems because the
technology evaluator, shown that System X reduces planning time, has no
basis for judging whether the reduction achieved will result in a legitimate
operational benefit and/or whether that benefit would be worth System X’s likely
fielding costs. Clearly achieving the intention of the IDE concept in this example
would require establishing concrete criteria based on precisely-defined
operational needs. Thus, suppose that a study of the logistics planning process
revealed that planners could revise plans quickly enough to handle most
unforeseen events or changes to planning assumptions without incurring
significant operational delays if the time to generate a plan could be reduced by
a factor of ten. This provides a clear basis for defining an IDE test hypothesis.

Questions regarding the nature and context of IDEs input sets also yielded
beneficial responses. First, respondents were asked whether experiments
should be driven by a scenario, defined as a dataset representing a coherent,
essentially complete instance of the type of operational activity that occurs in the
chosen domain. The alternative would be to choose an artificial dataset
representing only certain aspects of the domain's properties. The respondents’
uniform preference for scenario-based experiments appears to be a function of
their emphasis on basing evaluations around operational needs. However, the
use of an artificial dataset might be appropriate for an experiment aimed at pure
research. Still, it is clearly critical that the data driving the experiment must
accurately represent the domain in scope and complexity when the goal is to
evaluate technology for its utility in that domain.

Of course, even a scenario-based experiment will not yield reliable resulls
unless the scenario represents a typical case from the target domain. In
defining the strawman IDE methodology, the team felt that one of the key
challenges would be identifying representative scenarios and demonstrating
their typicality. The respondents offered the very practical solution of relying on
domain expertise to overcome this hurdle.

Members of the Sponsor and Operational as well as the Test and Evaluation

groups recommended that scenarios constructed from live exercises or
operations, and judged to be typical by domain experts, should be employed

80

within IDEs. At least one respondent noted that many such scenarios already
exist and are maintained throughout DoD for various applications. Although
several Developer respondents raised the possibility of creating artificial
scenarios, the respondents with the greatest experience in delivering
technology to operational users, namely the Sponsor and Operational as well
as Test and Evaluation groups, felt that the use of real scenarios is the only
approach to constructing datasets which accurately represent the domain’s true
scope and complexity. Thus, IDEs must be driven by scenarios that are
composed of real domain data and judged representative by suitable experts.

IDE context is an important factor not explicitly mentioned in the questionnaire’s
strawman methodology. One might reasonably assume that, since the purpose
of the IDE is to evaluate technologies for real-world application, IDEs should be
conducted in the real world. Although most of our respondents felt “the more
real the better,” the experiences of some in the Sponsor and Operational
community led them to recommend the more cautious strategy of evaluating in
"near-real world" conditions before venturing into the real world.

The motivation for this recommendation can be found in the comments provided
by one member of this group in response to the question asking each individual
to indicate whether they had ever participated in an evaluation similar to an IDE.
The respondent had been involved in evaluations performed as part of live
military exercises and felt that, although assessments performed under these
conditions could be beneficial, they also presented serious risks because the
unpredictability of live operations, even carefully planned exercises, frequently
resulted in circumstances which caused the prototype under evaluation to fail in
an unfavorable way. For example, unexpected conditions might induce a
failure due to previously known limitations of the prototype or necessitate that
the prototype be used in an unintended or unconventional manner. Each
successive failure can further decrease the willingness of operational users to
accept a system. Examining this observation from the perspective of trying to
replace demonstration with experimentation, it is clear that the underlying
problem is lack of control. That is, one important characteristic differentiating
experimentation from other forms of assessment is the ability to control the
conditions under which the evaluation is performed. If conditions are controlled,
any failure of the prototype represents additional data from which conclusions
can be drawn. Otherwise, failures may be due to either previously known
deficiencies or indeterminable reasons. In either case, nothing additional has
been learned about the technology under evaluation. Therefore, although IDEs
should be performed using real world data as discussed earlier, they should
only be performed under laboratory conditions and not conducted in either the
real world or the near-real world of exercises.

81

A.5.3 Relationship between IDEs and Sofiware Development
Models

The final major area of investigation is the relationship between IDEs and
software development models. Most of the respondents used some form of
iterative development model as a frame of reference, but some worked from the
waterfall-style model. Surprisingly, regardless of the assumed development
model, virtually all of the respondents felt that experimentation would be
employed throughout the development process. One could certainly envision
IDEs performed as part of each prototype cycle under an iterative development
model. However, respondents who assumed the use of a waterfall model also
believed that IDEs could be conducted early in the development process to
assist with phases such as requirements definition.

It is important to note that performing an IDE in the early stages of waterfall-
oriented development requires either a simulator or an adaptation to the
development model because the IDE depends on the existence of some
software to act as the subject of the experiment. The simulator is used to
approximate the behavior of the intended final capability during the IDE. The
adaptation alternative is similar since, in a digression from the model, an early
prototype of the desired system is constructed. Either approach involves
additional cost and blurs the distinction between the two models. Thus, the
team concluded that IDEs are best used with iterative development models.

There was no consensus about whether IDEs would supplement or partially
replace other forms of test and evaluation. This disagreement may have been
the source of the wide range of answers provided to the question asking about
the relative magnitude of resources which should be applied against IDEs.
Despite this lack of agreement, it is clear that successful IDEs will reduce costs
due to effects such as increased process discipline.

A final point relevant to the role of IDEs in the development process was
provided by our academic respondent. In response to a question regarding
whether any IDE-related issues should be off-limits, he recommended that
these experiments should not be used to downselect technology. This appears
to be inconsistent with the notion that improved methods of evaluation enable
Sponsors to make better decisions regarding the allocation of funds. However,
his advice provides valuable IDE-related insight — experiments should occur
earlier, rather than later, in the development process when their purpose is to
evaluate technological potential and/or domain applicability. Otherwise, a
downselection experiment, taking place after two or more contending
approaches have already undergone lengthy development efforts, would occur
too late to achieve its intended purpose of guiding a funding decision. Allowing
extensive resources to be indiscriminately expended on development prior to
the conduct of such an evaluation would relegate IDEs to no more than tools for
deciding, in hindsight, which approaches were wasteful or had simply failed.

82

IDEs should act as tools to aid foresight, rather than hindsight, for it is here that
they show promise in facilitating cost reduction.

This observation suggests a strategy where IDEs are performed early in the
development process, in contrast to the belief expressed by many of our
respondents that these experiments should be frequently conducted throughout
development. Earlier, the counsel to avoid real world situations where control
may be lost over events was discussed. It is interesting to note that this advice
is compatible with the former viewpoint. Thus, with regard to the relationship
between IDEs and the software development model being employed, the team
concluded that IDEs are best carried out early in the development process; that
they are best used within an iterative process; as well as that their overall effect
on the model is not fully understood and will become clearer with more use.

A.5.4 Survey Conclusions

The views offered by the survey’s respondents and the team’s analysis of their
answers permits the nature of IDEs to be clarified. This can be accomplished by
identifying the necessary or desirable characteristics which these experiments
must possess if they are to be successfully used to evaluate the potential use of
a software technology in a specific application domain.

First, because the IDE’s foremost purpose is evaluating the use of particular
software technologies in an application domain, the goal of an IDE must be
based on the operational needs of that domain. Other issues, such as the
investigation of basic scientific principles, are secondary in this context and
should not be allowed to impede the essential determination of the technology’s
value to the target domain’s users.

Second, the team’s initially proposed IDE methodology should be adapted by
modifying items c. and g. of step 1, experiment specification, to incorporate the
notions that:

c. The evaluation metrics to be applied should be defined by users to the
greatest extent possible; and

g. The scenario(s) identified to drive the experiment must be as realistic as
possible and authenticated by domain experts and/or the appropriate
certifying organization(s).

Third, the underlying intent of the IDE concept, which can be summarized as
experimental evaluation to guide pending and programmatic decisions,
coupled with the impracticality of maintaining experimental control in real or
near-real operating conditions, implies that IDEs must be performed in the
earlier stages of software development. This, in turn, implies that the use of
IDEs is better suited to an iterative software development model. Thus, as an
example, IDEs might be incorporated into the well-known spiral model.

83

A.6

The IDE Definition and lts Implications

The following IDE definition is offered as a result of the questionnaire responses
which were received as well as the team’s experience and subsequent analysis
of the relevant issues:

IDEs are experiments which test specific hypotheses derived from
requirements reflecting operational needs and performed repeatedly
throughout the development cycle.

The definition incorporates several key ideas which were stressed by the survey
respondents, including:

o

-Testing specific hypotheses.

Repeated evaiuation to guide development.
Explicit requirements as the standard of evaluation.

Operational need as the ultimate driver.

following IDE-related conclusions augment the aforementioned definition:

Conceptually, IDEs lie at the intersection of rapid prototyping, software
experimentation, as well as verification and validation.

IDEs are used to evaluate software intended to perform a distinct
domain-related function.

IDEs foster technology insertion, not technology advancement.

IDEs are employed within a rapid prototyping development model to both
leverage the existence of functional prototypes and avoid the additional
cost of simulating functionality.

IDEs can be conducted during numerous phases of the development
cycle, including, without limitation: requirements definition and
validation; design trade-off studies and design V&V, as well as
integration and test.

IDEs occur before software is exercised in the field.
An IDE is not used as a downselection vehicle between two or more

large systems or technologies primarily because it is inefficient and costly
to do so. In addition, conducting IDEs earlier can avoid “sunk” costs.

84

» IDEs represent a special class of software experiments whose purpose is
to evaluate progress toward meeting operational needs.

- IDEs yield benefits despite their costs. The benefits of IDEs include
increased process discipline, clearer research and development goals,
closer couplings to operational users, and improved decision making at
technology and funding judgment points. IDE costs are centered around
obtaining and (pre)processing authenticated data, performing repeated
integrations, as well as conducting each separate IDE and analyzing the
experiment’s results. The disadvantages are clearly outweighed by the
advantages.

A.7 Using the AAITT to Perform Instrumented Domain Experiments

Theory was placed into practice with the conduct of the Instrumented Domain
Demonstration (IDD) as an example Instrumented Domain Experiment. The
primary goal of the IDD was to show that the testbed could facilitate the IDE
process. Therefore, as before, an existing distributed software system, in this
case a Theater Missile Defense application, was embedded and integrated
using the AAITT so that an IDE could be performed. This successful effort and
the results obtained by the team are presented below.

The distributed application provided Battle Management/Command, Control,
and Communications support for a Theater Missile Defense (TMD) Command
Center. A scenario centered in the Middle East was used for the IDE. The
Command Center was transitioned through three distinct modes of operation.
Each mode imposed a different set of objectives on the Center. The
application’s decision aids were used to ultimately help the commander defend
Saudi Arabia against threats launched from Iran.

The TMD application’s human-computer interface was composed of five
displays. The CINC Theater Command screen displayed the decision aids’
assessments and was used to trigger all command functions. The Event
Indicator screen showed the state of incoming threats. The Map Display screen
overlaid weapon locations and missile tracks on the theater map. The Threat
Assessment screen evaluated each country’s threat posture. Finally, the
Weapon-Target Assignment screen displayed weapon-to-target pairings.

Once embedded and integrated using the testbed, the IDD application was
composed of the following six modules:

Batman,___.......... acted as a scenario generator for the war mode of

operation by propagating all weapon firings and
performing weapon-to-target assignments.

Astrocalc predicted weapon impact points and times.

85

dynamically adapted various internal neural networks by
reconfiguring and retraining them based on changes in
weapon site locations.

provided a map of the theater. It displayed missile
trajectories and allowed defensive weapon sites to be
repositioned.

CINC Theater.___.... facilitated analysis by providing the commander with
weapon and target location data. The module also
allowed decisions about defensive weapon placement
and civilian alerts to be introduced into the application.

Table Server. ... functioned as a memory-resident data repository offering
an SQL-like interface. It offered rapid query operations
by eliminating the overhead associated with commercial

database management systems.

The baseline IDD application architecture’s topology is shown in Figure A-1. In
this and subsequent figures the Batman, Astrocalc, Adaptnet, Map, CINC
Theater and Table Server modules are referred to as “Batman,” “Astro,” “Check
Nets,” “CINC Theater,” and “Run DB,” respectively. The figures also depict the
distribution of modules across host machines.

Embedding and integrating the six components using the AAITT allowed the
team to gain valuable insight into the application’s performance. Performance
problems were detected and the database’s role as a central repository
suggested that it might be a source of observed bottlenecks. Initial analyses
indicated that, due to the observed variability in the time spent waiting for the
completion of a requested database transaction, application execution time was
potentially being affected by contention among the modules for access to the
database.

Using this information, the hypothesis for the example IDE was cast as:

Reducing the number of modules contending for a given copy of the
gatabase will produce a distinct effect on performance.

Two alternative architectures were subsequently designed and implemented as
additional AAITT applications to test this hypothesis. These architectures
duplicated the database on each host machine in the testbed, thereby reducing
contention for any given copy of the repository.

The alternative architectures, shown as Figures A-2 and A-3 below, included

two and three copies of “Run DB,” respectively. In each case, every duplicate of
the Table Server received data generated by “Batman.”

86

Astro
MANNNSG

25

Host 1 DB == DBatman

Check
Nets

CINC
Theater

Host 2

Map

Figure A-1. TMD Application Architecture with One Database

The AAITT allowed the team to rapidly construct, execute, instrument, and
monitor each of the applications. Extensive logs were captured during the
execution of the baseline and alternatives. Preliminary examinations of log
information related to application-level communication traffic seemed to indicate
that reducing the number of modules contending for a given copy of the
database did, indeed, produce a distinct effect on performance. However,
quantitative results with a greater level of detail needed to be established.

87

Mapg
\\k\\\\\\\\\\\

Run) (CINC
Host 2 DB2 || Theater

[Check
Nets

R un iy
o [R HBath

AN\

Figure A-2. TMD Application Architecture with Two Database Copies

For this reason, an analytical statistics package, the CommonLISP Analytical
Statistics Package (CLASP) from the Experimental Knowledge Systems
Laboratory of the University of Massachusetts at Amherst, was used to explore
the data in the log files. In general, CLASP can take a dataset and calculate a
large number of descriptive statistics, including the mean, median, and standard
deviation. Using these statistics, tests such as the f test and an Analysis of

Variance can be computed.

88

Map\g
\\\\\\\\\\\\

CINC
Theat

Check
Nets
NI

Host 1 &(Batmag
AU

Astro

Run
Host 3 [DB3 |
A\ DT

_aOT’ a

Figure A-3. TMD Application Architecture with Three Database Copies

The format of the AAITT’s log files is very similar to the input format required by
CLASP. Several emacs macros were generated to effect the transformation,
namely, by eliminating unreadable LISP characters; inserting a dataset name
into the log file; and introducing column, or variable, names for the data. The
transformed log files were then loaded into CLASP and statistical summaries
were prepared using the package. From these summaries, statistics describing

89

database queries were used as the foundation of the two graphs shown in
Figures A-4 and A-5. Note that in both figures, the terms “tmd_good,”
“tmd2_good,” and “tmd3_good” along the x-axis representing “Architecture”
refer to the topologies presented in Figures A-1, A-2, and A-3, respectively.

Number of Hosts Affecting DB Query Time

3 T : T 0.25
2.5 4+ & 0.2
Q
& 2 + E
(/7] e
9 +015 @
- g
S 15 4 o
g <L
E 1 0.1 g
= 1 4 &
. m
| Loos ©
05 + e :
0 : e 0

tmd_good tmd2_good tmd3_good

Architecture

2]

Num of Hosts DB Query

Figure A-4. Number of Hosts Affecting DB Query Time

The graph of Figure A-4 shows that, as the database is replicated (number of
hosts greater than 1), the database query time drops from 0.21 to 0.05 seconds.
The observed fourfold speedup confirmed the team’s hypothesis. Figure A-5
shows a latent effect of reduced query time as the time between queries grows.

90

Number of Hosts Affecting
Time Between DB Queries

3 - T+ 07
25 1 T 06
/2]
+o5 @
2 2y :
o
T Loa €
S Q
g 15 + g
o 4+ 03 @
g o
z 14 &
1o2 E
0.5 + 1 o1
0 - 0

tmd_good tmd2_good tmd3_good

Architecture

22} Num of Hosts ——=+—— Time Between Queries

Figure A-5. Number of Hosts Affecting Time Between DB Queries

Table A-2, below, summarizes the application of the team’s Instrumented
Domain Experiment methodology to realize the Instrumented Domain
Demonstration, a specific instance of an IDE. The table’s left column presents
each of the methodology steps introduced earlier in section A-3 and the entries
found in the right column list the corresponding task(s) completed by the team to
prepare the IDD.

91

IDE Methodology Step IDD Development Taslk(s)

1. Produce the specification of a [¢ The TMD application was
particular experiment. identified for the IDE.

¢ Investigating the effect of
database contention on
performance was established
as the goal.

¢ A scenario centered in the
Middle East was selected.

¢ The AAITT's instrumentation
and monitoring capabilities
were used as the measurement
and data-capture strategy.

¢ “DB Query Time” was the
experiment’s evaluation metric.

2. Introduce the application suite | ¢ The TMD application’s original,
into the instrumentation facility custom communication layer
by embedding and integrating was removed.
themapalécritslon s constituent ¢ The AAITT's Frameworks were
compo : used to successfully embed

and integrate the problem-
solving suite.

3. Implement or integrate the & The testbed’s built-in
experiment's required data- measurements were sufficient
capture mechanisms. to capture the required data.

4. Conduct the experiment under |¢ The MCM Workstation’s
controlled conditions. features permitted experiments

to be conducted in a controlled
and repeatable fashion.

5. Analyze the data captured ¢ Logged data was initially
during the conduct of the analyzed using the AAITT's
experiment. Metrics Analyzer, and later

examined within CLASP.

6. Present analytical results to the | ¢ Results were presented to

- targeted audience for review. RL/C3CA during the I1DD.

Table A-2.

92

Realizing the IDD by Applying the IDE Methodology

A.8 IDE Support Provided by the AAITT

The Instrumented Domain Demonstration was auspiciously completed. The
feasibility of using the AAITT as a foundation for conducting Instrumented
Domain Experiments was convincingly confirmed. In addition, the value of an
environment for the design, analysis, integration, evaluation, and execution of
large-scale, complex, distributed software systems was strongly revalidated.
The entire process of embedding and integrating the Theater Missile Defense
decision support suite, including application familiarization and replacement of
the communication layer, required only approximately two staff-weeks of effort.
Constructing alternative architectures in support of the experiment was
effortlessly accomplished once the embedded components were catalogued as
AAITT modules and available for adaptation and reuse. Realizing the IDD
application and conducting the Experiment with the AAITT led the team to
conclude that the testbed strongly supports IDEs in a variety of ways. Tabie A-3,
below, highlights these facts. The table’s left column reiterates the IDE
methodology. Summaries of the relevant testbed capabilities supporting each
step appear in the right column.

The AAITT's capabilities were also extended with the develcpment of an
integrated approach to effecting detailed data exploration using CLASP. A
graphical overview of this process is presented in Figure A-6.

IDE Methodology Step AAITT Support Feature(s)

1. Produce the specification of a | ¢ This portion of the IDE
particular experiment. methodology is primarily a
planning step. However, the
testbed’s cataloguing
capabilities promotes reuse by
allowing users to easily
compare what they already
have with what they need.

2. Introduce the application suite | ¢ The MCM Workstation's

into the instrumentation facility modeling, code generation,
by embedding and integrating and compilation capabilities
the application's constituent allow components to be rapidly
components. and cost-effectively embedded,

integrated, and (re)configured.

¢ Extensive distributed system
debugging tools facilitate the
realization of properly-
functioning solutions.

93

3. Implement or integrate the
experiment's required data-
capture mechanisms.

The AAITT provides a wide
assortment of built-in
measurements for any
application.

The development and insertion
of custom, user-defined
measurements is also
supported to meet situation-
specific needs.

4. Conduct the experiment under

controlled conditions.

Application execution follows a
strictly-enforced state transition
strategy providing control and
repeatability.

Monitoring, or execution-time
data-capture, is a non-intrusive
facility that minimizes the
introduction of false artifacts.

Flexible, menu-driven host
(re)assignment facilitates the
investigation of resource usage
and communication issues.

5. Analyze the data captured
during the conduct of the
experiment.

The AAITT’s Metrics Analyzer
and Log Viewers both provide
facilities for examining log data
in both graphical and tabular
forms.

The log data is well-formed and
maintained in the ASCII format.
Thus, the data can be easily
translated into other formats
required for incorporating it into
analysis tools such as CLASP
or spreadsheets.

6. Present analytical results to the

targeted audience for review.

The graphs created by the
Metrics Analyzer are easily
understood and suitable for
incorporation into technical
presentations.

Table A-3.

94

AAITT Support for Instrumented Domain Experiments

In this figure, a testbed-resident application is constructed, instrumented,
executed, and monitored to collect data logs. These data logs may first be
viewed with the AAITT's Metrics Analyzer. The logs can then be transformed,
introduced into CLASP, and analyzed to uncover latent information. The user,
an Application Architect, then uses the information from the analysis to further
refine the application. This process parallels the iterative nature of IDEs.

Typicat Module Typas Example AAITT Appiicaten

Mo S cronus e, ors
TCP/IP
Communication
(Sun3 r Sun4d T Symbolics iﬁﬁ Sun 4 w
Application Output of
Refinement LoggingFacility

Jogc File

Add headers and
remove illegal characters

Feedback
and Analysis

CLASP v
Input to CLASP Readable
to make dataset File

Figure A-6. Using CLASP for Data Exploration to Complement AAITT

95

Allowable AAITT States

Application

Application Architect

Asynchronous

Breakpoint

Channel

CIM Connected

CIM Loaded

CIM Reset

Code Frame

Code Frame Generation

Glossary

The permissible modes in which an AAITT
application or module can be found. The
allowable states are: Unloaded, CIM Loaded,
CIM Connected, Loaded, Initialized, Running,
and Paused.

An assemblage of modules and/or
subapplications.

The user role responsible for defining the
multi-module application and determining how
modules interact.

In the context of AAITT, the type of concurrent
processing where process completion is not
predetermined.

Processing instruction that is triggered by the
occurrence of a specific predetermined
condition. This processing instruction
suspends program execution.

A single row of data within a time-dependent
measurement display.

An allowable AAITT module state defined as
one where communications have been
established by the module with the DPS. In
this state the component of the module is not
in main memory.

An allowable AAITT module state defined as
one where a module's CIM is in main memory
but the component part of the module is not.

An allowable AAITT module state transition
defined as placing a module from the CIM
Connected, Loaded, Running, or Paused state
to the CIM Loaded state.

Skeletal Component Interface Manager code
requiring subsequent customization.

The automated production of a code frame
based on a user-specified graphical model.

96

AAITT-A013 — 28 April 1995

Component

Component Embedder

Component Interface Manager

Connect

Conventional Software

Database Management System

Distribute

Dynamic Message

Execute

Filter

Filtering

A stand-alone conventional or knowledge-
based program.

The user role responsible for transforming an
independent component into an AAITT-
compatible module.

A software element responsible for managing
the interface between a component and the
rest of the testbed.

An allowable AAITT module state transition
defined as placing a module from the CIM
Loaded state to the CIM Connected state.

Software that does not utilize any special
Artificial Intelligence techniques or use any
special knowledge representations.

A software system that makes uses of a
specially designed language and logical
structure for data that optimizes data
organization and access.

An allowable AAITT module state transition
defined as placing a module from the
Unloaded state to the CIM Loaded state.

A data structure which is passed between the
message template generating facility and an
AAITT entity to test communication interfaces.

An allowable AAITT module state transition
defined as placing a module from the
Initialized state to the Running state.

Program that takes, as input, a measurement
log and produces, as output, a subset of the
log expressed as a data structure containing
only the desired features of the original log, as
specified by the user.

The act of applying a filter to a measurement

log.

97

Graphical Application Model

Initialize

Initialized

Instrumentation

Knowledge-Based Software

Load

Loaded

Log

Logging

Long-Form Logs

Measurement

Measurement Logs

The representation of an AAITT application in
the form of a schematic diagram showing the
application's constituent modules and their
respective port connections.

An allowable AAITT module state transition
defined as placing a module from the Loaded
state to the Initialized state.

An allowable AAITT module state defined as
one where the module is in main memory, the
CIM is connected to the DPS, and pre-run
inter-module messages have been sent (e.g.
mission-context has been established).

Used to display measurements.

Software that makes use of inductive or
deductive reasoning about the data it has
access to in order to form hypothesis or reach
conclusions.

An allowable AAITT module state transition
defined as placing a module from the CIM
Connected state to the Loaded state.

An allowable AAITT module state defined as
one where the module is in the memory of an
AAITT machine.

Data structure containing time-stamped
records of user-designated measurements
that is collected during application execution.

The act of accumulating a log. The AAITT
provides a facility for the creation of logs.

Time-stamped records of user-designated
message flows that are collected during
application execution.

Quantifies features that aid in the
understanding of system performance.

Time-stamped records of user-designated
measurements that are collected during

98

Message

Mixed State

Modeling
Module

Monitoring

Operating System

Paused

Port

Relational Database

Remote Procedure Call

application execution. A Measurement Log is
also referred to as a Short-Form Log.

A data structure passed between any two
AAITT entities to effect communication.

An AAITT application mode in which all
constituent modules are not in the same
allowable AAITT state.

The act of specifying an AAITT graphical
representation or structure.

A component (possibly modified) plus its
associated component interface manager.

The set of procedures through which
measurements are captured so that
instrumentation can be applied to them.

The layer of software that controls resources
and hardware. This layer may also direct
firmware. The operating system supports and
is utilized by both application software and
users.

An allowable AAITT module state defined as
one where the module has been taken out of
the running state (whether by self-
breakpointing, external suspension, or due to
an error) and can be returned to the running
state directly, without having to enter any other
state first.

A communications interface point for an AAITT
module.

A data organization where the data is made
up tables. Each table is comprised of records.
Each record in the same table has the same
logical fields. Data in two or more tables can
be joined if they have one or more related
fields.

One of the AAITT-supported methods of
invoking an operation or process. It is

99

Rendezvous

Reset

Resume

Running

Self-Test

Short-Form Logs

State Restore-

States

State Save

State Transitions

Step

essentially a "call and block until complete”
style of invocation.

One of the AAITT-supported methods of
invoking an operation or process. It uses a
"futures" paradigm of calling that provides a
"call and don't block" style of invocation,
where a "handle" is provided for each
invocation. The "handle" can be claimed at
some future time to verify that the invoked
operation has completed.

An allowable AAITT module state transition
defined as placing a module from the
Initialized, Running, or Paused state to the
Loaded state.

An allowable AAITT module state transition
defined as placing a module from the Paused
state to the Running state.

An allowable AAITT state that signifies that
either the application or a specific module is
executing program instructions.

The ability of an entity to determine its own
status. For AAITT, this term refers to the
testbed software's ability to determine if it is
installed correctly.

See Measurement Logs.

The act of placing an AAITT application or
module in a state that had been previously
saved.

The conditions or modes in which AAITT
applications or modules can exist..

Saving the current state values of a CIM to a
file for later CIM state restoration.

The passage from one allowable AAITT state
to another.

An allowable AAITT module state transition
defined as placing a module from the Paused

100

Subapplication

Suspend

Suspending

Synchronous

Terminate

Testbed

Unload

Unloaded

Unloading

Versioning System

state to the Running state, allowing the
module to either receive one application
message or send one out, and then place the
module back into the Paused state.

An assemblage of modules and/or
subapplications.

An allowable AAITT module state transition
defined as placing a module from the Running
state to the Paused state.

Placing the application into a paused state
from the running state.

in the context of AAITT, the type of concurrent
processing in which the order of process
completion is predetermined.

An allowable AAITT module state transition
defined as placing a module from any
allowable AAITT state, except Unloaded, to
the Unloaded state.

Facility that provides tools for experimenting
with software system configurations in order
optimize performance and solutions.

An allowable AAITT module state transition
defined as placing a module from the Loaded,
Initialized, Running, or Paused state to the
CIM Connected state.

An allowable AAITT module state defined as
one where the module is not in the main
memory of any AAITT machine.

Removing an entire application (all modules
and associated component interface
managers) out of the main memories of all
AAITT computers.

Facility provided by an operating system that

enables the tracking of file creation and
modification.

101

ABE™
AFWL
A
AMPS
ARPA
ARPI
ATO
BBN
CIM
CLASP
CORBA
COTS
CPU
CSCl
C3l
DART
DBMS
DoD
DPS
ERIC
FIFO
FMERG
GFS
GOTS
GUI
IEEE
LIFO
LISP
MCM
N/A
OSD

Abbreviations and Acronyms

Advanced Artificial Intelligence Technology Testbed
A Better Environment

Air Force Wright Laboratory

Artificial Intelligence

A Mission Planning System

Advanced Research Projects Agency

ARPA/Rome Laboratory Planning Initiative

Air Tasking Order

Bolt, Beranek, and Newman

Component Interface Manager

CommonLISP Analytical Statistics Package
Common Object Request Broker Architecture
Commercial-off-the-Shelf

Central Processing Unit

Computer Software Configuration Item

Command, Control, Communications and Intelligence
Dynamic Analysis and Replanning Tool

Database Management System
Department of Defense

Distributed Processing Substrate
Extensions to Ross In Common LISP

First In, First Out

Force Module Enhancer and Requirements Generator
Government Furnished Software
Government-off-the-Shelf

Graphical User Interface

The Institute of Electrical and Electronics Engineers
Last In, First Out

List Processing

Modeling, Control and Monitoring Workstation

Not Applicable

Office of the Secretary of Defense

102

R&D
RFP

RL
SAM
SOCAP
saL
SSS
SRS
TAC-DB
TCP /1P
TMD
USAF
WAN

Research and Development

Request for Proposal

Rome Laboratory

Surface to Air Missile

SIPE for Operations Crisis Action Planning
Structured Query Language

System / Segment Specification

Software Requirements Specification
Tactical Database

Transmission Control Protocol / Internet Protocol
Theater Missile Defense

United States Air Force

Wide-Area Network

#U.S. GOVERNMENT PRINTING OFFICE: 1996-710-126-20105

103

MISSION
OF
ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems t0 meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intslligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillancs,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnsiic Technology,
Photonics and Reliability Sciences.

