
RL-TR-95-128
Final Technical Report
July 1995

PERFORMANCE
OPTIMIZATION IN ADA

Kestrel Development Corporation

Richard Jullig and Y.V. Srinivas

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

19960327 018
Rome Laboratory

Air Force Materiel Command
Griffiss Air Force Base, New York

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

RL-TR-95-128 has been reviewed and is approved for publication.

JpSyVL i^c APPROVED: ^^f^ LsOJuTfyOM

JOSEPH CAROZZONI
Project Engineer

FOR THE COMMANDER:

JOHN A. GRANIERO
Chief Scientist
Command, Control & Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,
please notify RL (C3CA) Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

Form Approved
OMB No. 0704-0188 REPORT DOCUMENTATION PAGE

Pubic reporting burden for thai uJmJXt i of ifomaUur i ■ eanmeted to average 1 hour pit reeponse, ndurjng Dm ant for reviewing ngRjctcna, i—ü ■ g adsang date sources.
yuJ »rig and meruiiirqj the data i »era» i md mnJeljg and reviewng thecceacixri of ifmnliurL Srt eormm regelte-g in» bLrdm «ornate or any amer aspect of ths
erjeecäon of ifuiraUui ndudng »qgeelr»» for reducing the) burden to Waahngton Haadquartars Service«. Drectorate for rtormeDon OpararJona and Reports, 1215 Jefferson
Daw» Highway, Sute 1204, Art-gory VA 22202-4302, and to tna Office of Management and Budget, Paperwork Reduction Project (0704-0188), Waahrigton, DC 20503

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

July 1995
a REPORT TYPE AND DATES COVERED

Final Sep 91 - Nov 94
4. TITLE AND SUBTITLE

PERFORMANCE OPTIMIZATION IN ADA

5. FUNDING NUMBERS

6. AUTHOR(S)

Richard Jullig and Y.V. Srlnivas

c - F30602- -91- -C- -0080
PE - 63728F
PR - 2532
TA - 01
WU - 39

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES)

Kestrel Development Corporation
3260 Hillview Avenue
Palo Alto CA 94304

a PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSES)
Rome Laboratory (C3CA)
525 Brooks Rd
Griffiss AFB NY 13441-4505

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

RL-TR-95-128

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Joseph A. Carozzoni/C3CA/(315) 330-3564

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited,

12b. DISTRIBUTION CODE

1 a ABSTRACT(MxTTun 200 words)

This report describes the research performed to develop the first prototype of the
SPECWARE system. SPECWARE supports the systematic construction of formal
specifications and their stepwise refinement into programs. The formal specification
language developed under the research, SLANG, is the substrate for further SPECWARE
development currently in progress. The research resulted in a software development
prototype offering machine-mediated production of optimized, real-time Ada code.

14. SUBJECT TERMS
Software, Automatic programming, Formal methods, Knowledge-based
system

15. NUMBER OF PAGES
96

18, PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

1 a SECURITY CLASSIFICATION
OF THIS PAGE
UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT
UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280*00 Standard Farm 298 :Pe> . iSl

PrescrtoedbyANSi Sia JJ9--8
298-102

Contents

1 Introduction 1

1 Description of Earlier Prototypes 3

2 KlDS: Algorithm Synthesis 3

2.1 Overview • 3

2.2 Domain Theories and Problem Specifications 4

2.3 Directed Inference 4

2.4 Algorithm Design 6

2.5 Algorithm Optimization 6

2.6 Derivation History 8

3 DTRE: Data Type Refinement 8

3.1 DTRE 8

3.2 Data Type Theories, Interpretations, and Implementations 9

3.3 DSS 11

3.4 Quantitative and Qualitative Performance Measures 12

3.5 Automated Implementation Selection 13

3.6 Assertions, Analyses, and Bounds 13

4 REACTO: Reactive System Development 13

4.1 Overview 13

4.2 The FSM Formalism and Specification Acquisition 14

4.3 The Functional Language and the Transformation System 16

4.4 The Verifier 16

4.5 The Simulator 17

II Core Slang 18

5 Names in SLANG 19

5.1 Naming and Scoping Rules 19

5.2 Lexical Conventions 20

6 Specifications 21

6.1 Sorts 21

6.2 Sort Constructors 23

6.3 Sort Axioms 24

6.4 Operations 25

6.5 Built-in Sorts and Operations 25

6.5.1 Boolean 25

6.5.2 Quantifiers 26

6.5.3 Equality. 26

6.5.4 Function Sorts 26

6.5.5 Product Sorts 27

6.5.6 Coproduct Sorts 27

6.5.7 Quotient Sorts 28

6.5.8 Subsorts 28

6.5.9 Implicit Axioms 28

6.6 Terms and Formulas 29

.6.7 Axioms and Theorems 31

6.8 Definitions 31

6.9 Constructor Sets . 32

7 Overview of Specification Constructing Operations 32

li

8 Morphisms 33

8.1 Local Morphisms 35

8.2 Morphism Terms 35

9 Diagrams 36

10 Specification Building Operations 40

10.1 The Translate Operation 40

10.2 The Colimit Operation 41

10.2.1 The Colimit Construction Algorithm 43

10.2.2 Qualified Names 45

10.3 Imports 47

III Refinement Constructs in Slang 49

11 Overview of Refinement 50

11.1 Refinement of Basic Specifications 50

11.2 Refinement of Structured Specifications 50

12 Interpretations 51

12.1 Interpretations in SLANG . 51

12.1.1 Definitional Extensions 54

12.2 Interpretations as Model Constructions 55

12.2.1 Semantics of Morphisms 55

12.2.2 Semantics of Definitional Extensions 56

12.2.3 Semantics of Interpretations 56

12.3 Sequential (Vertical) Composition of Interpretations 56

12.4 Parallel (Horizontal) Composition of Interpretations 58

m

12.4.1 Interpretation Morphisms 59

12.4.2 Interpretation Colimits 59

12.4.3 Interpretation Schemes and Morphisms 61

12.5 Lifting Spec Operations to Interpretation Operations 61

13 Putting Code Fragments Together 63

13.1 Entailment Systems and their Morphisms 63

13.2 Translating from Slang to Lisp 64

13.2.1 Translating Constructed Sorts 65

13.3 Translation of Colimits: Putting Code Fragments Together 65

IV Assessment 67

14 Conclusions 67

14.1 Focus and Results 67

14.2 Beyond DTRE, KIDS, and REACTO 67

V Appendices 71

A SLANG Syntax 72

A.l Notation 72

A.2 Core Slang Grammar 72

A.2.1 Top-Level Objects 72

A.2.2 Specifications 72

A.2.3 Import Declarations 73

A.2.4 Specification Elements . . 73

A.2.5 Sort Terms 74

A.2.5.1 Precedence and associativity for sort terms 74

iv

A.2.6 Terms and Formulas 74

A.2.7 Specification Terms 75

A.2.8 Specification Morphisms 75

A.2.9 Specification Morphism Terms 76

A.2.10 Diagrams 76

A.2.11 Diagram Terms 76

A.2.12 Diagram Elements 76

A.2.13 Qualified Names 77

A.2.14 Simple Names • 77

A.2.15 Comments 77

A.3 Refinement Constructs in Slang 77

A.3.1 Interpretations and Interpretation Schemes 77

A.3.2 Interpretation (Scheme) Terms 78

A.3.3 Interpretation (Scheme) Morphisms 78

A.3.4 Interpretation (Scheme) Morphism Terms 78

Index 79

List of Figures

1 Fragment of the k-queens theory 5

2 Specification of k-queens problem 5

3 Abstract Global Search theory 7

4 Abstract Global Search program 7

5 Global search theory for fc-queens 8

6 Interpretation from sets to integer bitvectors 10

7 Horizontal and vertical composition of implementations 11

8 Fragment of the Voting-Machine Specification 15

9 Example of a basic specification 22

10 SLANG Diagram for CONTAINER-COLIMIT 38

11 ORDER-HIERARCHY diagram 39

12 Colimit for PRE-ORDER 42

13 Interpretation Colimit—Spec Diagram 60

14 Interpretation Colimit—Interpretation Diagram 60

15 Interpretation Colimit—Transposed Diagram 60

16 Fragment of entailment system morphism from SLANG to LlSP . 66

17 The representation of coproduct sorts as variant records 66

VI

List of Tables

1 KIDS algorithm design phases 4

2 Selection of data type implementations in DTRE 9

3 DSS Prototype operations 12

4 Performance characterization of set implementations 12

5 REACTO development phases 14

vn

1 Introduction

This document describes the background, motivation, and results of the Performance-
Optimized Ada Assistant (POAA) effort sponsored by Rome Laboratories under the
KBSA program.

This effort builds upon and continues Kestrel's research into knowledge-based soft-
ware synthesis technology, i.e. the development of methods and tools that exploit a
formal representation of the software process to produce high-quality software via an
automated, reliable, machine-supported process.

An initial goal of the POAA effort was the integration of several Kestrel-developed
prototype systems embodying different software specification, synthesis, and opti-
mization capabilities. The feasibility of the goal was strongly indicated by the emer-
gence of a common conceptual basis. The pay-off of the integration lies in the leverage
achieved through the synergy of the different capabilities.

This initial goal was achieved one year into the project. The resulting integrated
system demonstrated the breadth and interplay of software synthesis capabilities on
a highly stylized air traffic control problem (cf. [8]).

This integration effort also raised some serious questions about the viability of in-
tegrating the existing prototypes into a robust, usable system. Each component
prototype came with its own set of engineering and usability problems. In addition,
a perhaps even more serious obstacle became clear: the component systems without
a doubt shared a common conceptual basis but the common conceptual primitives
were not apparent in the implementation or were used under somewhat differing as-
sumptions.

Because of the inherent complexity of software synthesis technology conceptual econ-
omy and clarity is a necessary pre-requisite for robust tools with which users can
cognitively cope. Therefore the engineering of the primitive concepts and their real-
ization within a robust system became the focus for the remainder of the project. An
initial vision of how the existing capabilities would be recast using these primitives is
laid out in [9].

The careful elaboration of the conceptual primitives lead to the specification language
SLANG, and the development of the SPECWARE system that provides SLANG-based
tools. The present SPECWARE implementation should be thought of as a system ker-
nel: it provides basic objects and operations directly corresponding to the conceptual
primitives. A more theoretical account of SLANG and SPECWARE is given in [13].

This document is divided in four parts.

Part I gives a summary description of the foundation and capabilities of the proto-
types on which the effort was initially based.

Part II introduces the basic concepts of the specification language SLANG, i.e. spec-
ifications, specification morphisms, and diagrams of specifications and specification
morphisms.

Part III develops from the basic building blocks in Part II a notion of specification
refinement. It also gives brief description of the approach that we adopted to code
generation. For simplicity of exposition, the description is given using LISP as a target
language. As part of the SPEC WARE prototype we developed an initial ADA backend
using the same principles.

A summary of the syntax of SLANG appears in the appendix.

Part IV gives a retrospective on the effort, summarizes the achievements, and gives
an outlook on future work. In particular, we briefly discuss to what extent the
capabilities of the earlier prototypes have been recovered in SPECWARE and which
features remain to be recreated in the future.

Part I

Description of Earlier Prototypes

KlDS, DTRE, and REACTO KIDS, DTRE, and REACTO constitute the knowledge-
intensive components of the initial POAA. KlDS is primarily oriented toward creating
algorithms given an input/output relation and toward optimizing algorithms in an
applicative framework. DTRE is a data type refinement environment that supports
the implementation of the Refine high-level data types used in both KIDS and RE-
ACTO. DTRE'S partially implemented twin component Dss (data structure selection)
supports the automated selection of date type implementations. REACTO'S focus is
the specification and development of reactive systems, i.e. systems that continually
react to external stimuli (inputs) by producing outputs and changing their internal
state. Embedded systems fall in this class, e.g. avionics or air traffic control systems.

2 KlDS: Algorithm Synthesis

2.1 Overview

The construction of a computer program is based on several kinds of knowledge:
knowledge about the particular problem being solved, general knowledge about the
application domain, programming knowledge peculiar to the domain, and general
programming knowledge about algorithms, data structures, optimization techniques,
performance analysis, etc. KIDS (Kestrel Interactive Development System [12]) is an
ongoing effort to formalize and automate various sources of programming knowledge
and to integrate them into a highly automated environment for developing formal
specifications into correct and efficient programs (c.f. [1]).

KIDS provides tools for performing deductive inference, algorithm design, expression
simplification, finite differencing, partial evaluation, and other transformations. The
KIDS tools serve to raise the level of language from which the programmer can obtain
correct and efficient executable code through the use of automated tools.

In interaction with KIDS the user may freely select any of the design, optimization
or inference functions that are meaningful within the given context. KlDS provides
context-sensitive operation filtering, argument type checking and online help. When
developing an algorithm with KIDS, the user typically proceeds through several con-
ceptual phases (which may be interleaved); these are depicted in Table 1. The lan-
guage used in algorithm design is currently an extended functional subset of REFINE.

Development Step Description Examples
Develop
domain theory-

Define types and operations
Derive laws

Costas array theory
k-queens theory

Create
specification

Define problem in terms of
underlying theory-

Find one Costas array
Find all Costas arrays

Apply
design tactic

Select tactic from menu
Apply to chosen problem spec

Global search tactic
Divide&Conquer tactic

Perform
Optimizations

Select optimiz'n from menu
Apply to chosen expression

Simplification
Finite Differencing

Select
data type refinements

Annotate variables with
implementation directives

Cf. section 3
sets to bitvectors

Compile Choose target language
Invoke compiler

Common Lisp
Ada

Table 1: KiDS algorithm design phases

2.2 Domain Theories and Problem Specifications

KIDS has a basic capability for creating and managing domain theories in KIDS. In
KIDS' theory development mode users can enter definitions of new functions or create
new definitions by abstraction on existing expressions. The inference system can be
used to verify common properties such as associativity, commutativity, or idempo-
tence. More interestingly, we have used RAINBOW II (cf. below) to automatically
derive distributive and monotonicity laws. A theory is comprised of a list of imported
theories, a set of introduced types, new operations and their definitions, laws, and
rules. A hierarchic library of theories is maintained with importation as the principle
link. Figure 1 shows the definition of four concepts from the domain theory for the
fc-queens problem.

Figure 2 shows the formalization (specification) of the fc-queens problem.

2.3 Directed Inference

Deductive inference is necessary for applying general knowledge to particular prob-
lems. The RAINBOW II system performs a form of deduction called directed infer-
ence. In directed inference, a source term (or formula) is transformed into a target
term (or formula) bearing a specified relationship to the first [11]. As special cases it
can perform first-order theorem-proving and formula simplification. It also allows the
inference of sufficient conditions (antecedents) or necessary conditions (consequents)
of a formula. This flexibility allows us to formulate a variety of design and optimiza-

injedive(M: seq(integer), S: set(integer)): boolean
= range(M) C 5

and V{i,j)(i € domain(M) and j e domain(M) and i ^ ;' =» M(i) ^ M(j))

bijective(M: seq(integer), S: set(integer)): boolean
= injedive(M, S) and range(M) = S

no.two. queens _per_up_diagonal(S: seqiinteger)): boolean
- V{hj)(i € domain(S) and j € domain(S) and i ^ j => (5(i) - i / S(j) - j))

no_two_queens_per_down_diagonal(S: seq(integer)): boolean
= ^(i, j)(i € domain(S) and j € domain(S) and z ^ ; =>■ (5(z) + i ^ S(j) + j))

Figure 1: Fragment of the k-queens theory-

function :: Queens :: (k::: integer)::: set(seq(integer))
where :: 1 < k
returns :: {assign :: | :: bijedive(assign.,:: {1..&})

and:: no_two_queens_per_up_diagonal(assign)
and:: no_two_queens_per_down_diagonal(assign)}.

Figure 2: Specification of k-queens problem

tion problems as inference tasks. Directed inference can play a constructive role in
design rather than simply verifying work done by the user or by some system.

The conceptual coherence of KIDS derivations depends partly on the large "grain-size"
of the KIDS operations and their high level of automation (effectiveness). Directed
inference provides a technical unifying foundation. Term simplification is naturally
performed as the search for a minimal complexity equivalent term. Finite differencing
can be decomposed into an abstraction operation followed by simplification of some
subterms. Partial evaluation and specialization are both decomposed into an unfold
step followed by simplification. Algorithm design tactics make repeated use of directed
inference - for example, the global search tactic requires the derivation of a necessary
condition in order to obtain a search tree pruning mechanism. Data type refinement
uses inference to check applicability conditions by deriving properties such as upper
and lower bounds of sets. The coherence of this view of the various development steps
stems from the common underlying set of rules (axioms) used by the inference system.
Furthermore, all of these development operations mainly depend on the existence of
distributive, monotonicity, and other laws concerning the preservation of structure
under change.

2.4 Algorithm Design

KIDS supports algorithm design as a process of interpreting, intuitively and techni-
cally, a given problem as an instance of a particular class of algorithms. Associated
with each algorithm class are program schemes (proved correct), that under the given
interpretation yield programs that solve the specified problem.

Figure 3 shows the global search theory, i.e. the operations for creating and splitting
search spaces and for extracting solutions, and axioms that govern the interaction of
the operations.

Figure 4 shows an abstract program whose primitive operations are the ones intro-
duced by the global search theory.

Finally, Figure 5 shows an interpretation of the abstract global search theory into the
fc-queens theory. This interpretation formally specifies how the Ar-queens problem can
be viewed as a global search problem. By applying this interpretation to the abstract
global search program of Figure 4 we obtain a program that solves the fc-queens
problem.

2.5 Algorithm Optimization

The initially derived program is correct, but usually very inefficient. KIDS provides a
suite of simplification and optimization functions that the user can interactively apply.

Theory Q
Sorts D,R,R
Operations

/:£>—» boolean
0:D x R —► boolean
I: D x Ä —> boolean

■r0:D->R
Satisfies: R x R -+ boolean
5pHi: D x Rx R -+ boolean
Extract: R x R —>• boolean
y :Rx R-+ boolean

Axioms
GSO. /(x) =» /(x,r0(i))
GS1. /(z) and I(x,f) and Split(x,r, s) =$■ /(i,s)andr >- s
Gs2. /(i)ajadO(i,z) =>■ Satisfies(z,r0(x))
GS3. /(s) and I(z, r) =*

(Satisfies(z, r) = 3(a) (Split"(x, r, s) and Extract(z, s)))
GS4. Well-foundedness of >-

Figure 3: Abstract Global Search theory-

function F(x: D): sei(Ä)
where I(x)
returns {z \ 0(x,z)}
= if $(x,rö(z))

then F_gs(x,f0(x))
else {::}

function F_gs(x: D, f: R): set{R)
where I(x) and I(x, r) and $(i, r)
returns {z | Satisfies(z,r) and 0(x,2)}
= {2 I Extract(z,f) and 0(z,;z)}

U reduce(U, { F_gs(x,s) | Splü(x,r,s) and *(ar,a)}).

Figure 4: Abstract Global Search program

F i—*• queens
D i—► integer
I >-»• 1 < jfc
i? H-> set(seq(integer))
0 H-> AA:, assign. bijedive(assign,:: {l..k})

and:: no_two_queens_per_up_diagonal(assign)
and:: no_two_queens_per_down_diagonal(assign)}

R i—► seq(integer)
1 t-> \k,part_sol. length(part_sol) < k and range(part_sol) C {1..&}

Satisfies •-»• \assign,part_sol.3(r)(assign,concat{part_sol,r))
T0 ^ [::]

5p/i£ H-> \k, part_sol, part_sol'. length(part_sol) < k
and 3(i: integer) (i € {1..A;} and part_sol' = append(part_sol, i))

Extract ■-»■ Xassign, part.sol. assign — part_sol

Figure 5: Global search theory for fc-queens

However, there are several opportunities for automating the selection and application
of KIDS operations. The steps of the queens derivation are typical of almost all the
global search algorithms that we have derived. After algorithm design the program
bodies are fully simplified, partial evaluation is applied, followed by finite differencing,
and data type refinement.

2.6 Derivation History

KlDS' history mechanism support the recording, browsing, and saving of derivation
histories; the reloading and re-enacting of a saved histories, and the replay of (portions
of) a derivation thread in a different context [6]. Facilities are available for producing
pretty-printed hardcopies of derivation histories, that highlight the program portions
affected by a derivation step.

3 DTRE: Data Type Refinement

3.1 DTRE

We have extended the REFINE language with a language for describing implementa-
tions. Correspondingly, we extended the underlying transformation system to compile
specifications annotated with implementation directives. The resulting environment
is called DTRE (Data Type Refinement Environment) [4].

Set Seq Tuple Map
List List Pair aList
BitVector Arrayl List Arrayl
iBitVector String-Seq Code
Stack BitVector Lambda

Table 2: Selection of data type implementations in DTRE

As an example of an implementation directive, assume that V is a set of sets of
integers. To achieve an implementation of V as a list of bitvectors we annotate V as
follows:

V: set(set(integer)) impl-by set-to-list(set-to-bitvector(std-integer))

During compilation, DTRE interprets the implementation directives when refining op-
erations on V. In our example, it would refine set operations on V into list operations
and operations on elements of V into operations on bitvectors.

3.2 Data Type Theories, Interpretations, and Implementa-
tions

In DTRE knowledge is expressed and captured at a very high level: at the level
of theories of abstract data types, (e.g. sets), provably correct implementations of
abstract data types, qualitative approximations to quantitative methods, program
analysis methods, and data structure selection rules [3].

DTRE'S current refinement knowledge is based on REFINE'S atomic types (boolean,
character, symbol, integer, etc.) and set-theoretic compound types (set(a), set(a),
map(a, ß), tuple(a, ß), where a and ß range over types.

The properties (behavior) of types is defined by type theories; thus the knowledge base
contains theories about sets, sequences, etc, as well as theories about implementation
types including lists, stacks, queues. An implementation (e.g. Set-to-List is expressed
as a theory interpretation, i.e. a map between the theory of sets and the theory of lists
such that the translation of the set axioms follow from the list axioms. This ensures
that the interpretation (translation) preserves the semantics of the set operations.
Figure 6 shows a fragment of a theory interpretation that trannslates set operations
into Common Lisp integer bitvectors.

Table 2 shows a selection of implementations for set-theoretic types currently provided
by DTRE.

Theory-Interpretation SET-TO-CL-IBITVECTOR

Source-Theory Set-Theory
Target-Theory CL-iBitVector-Theory

Type-Parameters alpha
Impl-Parameters beta, betaO, betal, beta2

Interpretation-Vars
x : alpha impl-by beta,

S : set(alpha) impl-by set-to-cl-ibitvector(betaO),
51 : set(alpha) impl-by set-to-cl-ibitvector(betal),
52 : set(alpha) impl-by set-to-cl-ibitvector(beta2)

Interpretation-Specs

EmptySet: {} tr==> o,
Empty: Empty(S) tr—> (Zerop S),
Size: Size(S) tr==> (LogCount S),
Membership : x in S tr==> (LogBitP x S),
With: S With x tr==> (Loglor S (ASH
Equality: SI = S2 tr==> (eql SI S2),
Intersect: SI Intersect S2 tr==> (LogAnd SI S2),

1 x)),
. = S2 tr==> (eql SI S2),
;ersect S2 tr==> (LogAnd SI S2),

end-interpretation

Figure 6: Interpretation from sets to integer bit vectors

10

< horizontal composition >

seq (set (integer)) <- specification type

seq set integer 1
to to to 1

list seq

1
seq
to

vector

std-integer vertical
composition

1
1
1

list (vector (std-integer)) <- implementation type

Figure 7: Horizontal and vertical composition of implementations

Since implementations are simply maps between theories they are composable, hori-
zontally and vertically, as illustrated in in Figure 7. Composability of interpretations
makes the DTRE approach to refinement by far more flexible than typical object-
oriented approaches, e.g. libraries of C++ object classes or Ada package libraries.
Nevertheless, DTRE can exploit existing libraries as convenient refinement targets.

3.3 Dss

While DTRE provides a language and tools for stating and realizing data type imple-
mentation decisions, Dss (data structure selection aids in the decision making process
itself [2]. In its current implementation Dss supports data collection needed for mak-
ing implementation choices but is not very knowledgeable about making appropriate
choices. However, we have developed qualitative performance characteristics (con-
tinuing our work on the KBSA Peformance Assistant) that will allow Dss to make
implementation selection decisions. In a fully implemented Dss we expect the user
to make certain key decisions and Dss to appropriately "fill in the rest".

In the current Dss prototype, the primary mode of user interaction is to iteratively
select data type implementations, run a test suite, and analyze performance data.
The primary operations available to the user are shown in Table 3.

11

Operation Explanation
Focus Select specification to work on
DSS Select implementation from context-sensitive menu
Instrument Instrument spec for metering or animation
Compile Compile (annotated/instrumented) specification
Animate Run test with animation instrumentation
Test Run testing suite and collect execution time data

Table 3: DSS Prototype operations

Operation {} empty size in with
Implement 'n asympt. rank asympt. rank asympt. rank asympt. rank asympt. ra
Bitvector O(M) 3 0(M) 3 0(M) 3 0(1)- 0 0(1)- (

List 0(1)- 0 0(1)- 0 0(M) 3 0(M) 3 0(M)

Table 4: Performance characterization of set implementations

3.4 Quantitative and Qualitative Performance Measures

Running a program on a test suite provides accurate performance of limited gen-
erality. Ideally, we would like to estimate the performance of implementations by
calculating the true expected cost of the operations for the actual distribution of in-
puts to the program. Unfortunately, the state of the art of this sort of quantitative
performance estimation is still far from being practicable [16]. Experimentation with
different implementations is equally costly in conventional approaches but is made
feasible by DSS/DTRE since the effort of creating a new implementation is reduced
to a menu selection and a compiler invocation. To alleviate the analysis and deci-
sion burden on the user, we have (as yet unimplemented) qualitative methods that
approximate the ideal quantitative analysis, trading sharpness of the estimates for
reduced computation cost. We explain our approach by example.

We arranged eleven asymptotic measures on a scale from 0 to 10, 0 meaning "a
few instructions" and 10 meaning superexponential. For each high-level data type
implementation, we associate one of these asymptotic estimates with the operations
of the type. Table 4 shows this for some set operations implemented as Bitvectors or
Lists.

To make an implementation choice for a particular set-valued variable we need to
determine which set operations are actually performed on that variable. If the only
the operations {}, empty, and size are performed, then we should select the Bitvector
implementations over the List implementations since, relative to these operations,

12

the Bitvector implementation of sets strongly dominates the List implementation, i.e.
performs as well or better for each operation. The converse choice is indicated if only
the operations size, in, and with occur (on the variable under consideration). If all
five operations occur then the choice is not clear. It then depends on the relative
frequency of each operations. We approximate the relative frequency by qualitative
weights computed as a function of the loop nesting level at which an operation occurs.

3.5 Automated Implementation Selection

Automated implementation selection takes place in two steps: (1) Identify plausible
implementations. For instance, the implementation of sets as stacks depends on
certain data flow conditions being true. (2) From the set of plausible implementations,
identify the strongly dominating ones, if any, or the maximally good ones. The final
choice is made after experimentation and testing.

3.6 Assertions, Analyses, and Bounds

Determination of plausible implementations requires substantial program analysis.
Data and value flow analysis, and bounds analysis, for instance, are needed to deter-
mine whether compound structures are safely accessed, can be updated in place, can
share structure, can be statically allocated, or fulfil certain special-case conditions.
The Dss/DTREprototype provides intra-procedural data flow analysis and bounds
analysis.

4 REACTO: Reactive System Development

4.1 Overview

REACTO is a system that supports the acquisition and correct implementation of
software specifications for reactive systems [5]. The system utilizes a finite state ma-
chine formalism derived from the work of Harel ([7]), set-theoretic data structures,
and relies on both classic verification techniques and consistency-preserving transfor-
mational implementation of specifications.

Formal reasoning and manipulation of programs is greatly simplified by referential
transparency, which insures that the meaning of a program fragment is not depen-
dent on context or state. The attractiveness of functional and logic programming
derive from their maintenance of referential transparency. Although suppression of
the notion of state makes manipulation of programs easier, it seriously detracts from

13

Development Phase Description Tools
Specification
acquisition

Specify a reactive problem
Edit and browse REACTO specs
Save/restore specs to/from library

Graphics editor
Hierarchy editor
Spec library management

Specification
compilation

Consistency check, compile,
and verify REACTO specs

Consistency checker
Compiler, Verifier

Specification
simulation

Simulate the execution of
REACTO specs

Simulator, Variable trace
Graphics display

Table 5: REACTO development phases

their expressiveness. In particular, specification of a reactive system is extremely
awkward without the notion of state. The challenge addressed in the REACTOeffort
is to provide a notion of state and state change in a way that supports analysis and
manipulation similar to that possible in functional and logic languages. The idea is
to isolate state changes to those specified using a finite state machine formalism and
to provide a functional language that specifies changes to abstract data structures
when finite state machine transitions are executed.

Reliability requirements are addressed in two ways. First vthe correctness of the
transformations implementing the compiler will be proved. Second the user may
associate assertions with states. These assertions are redundant in the sense that the
execution of the machine is not determined by the assertions. Their purpose is to
specify invariants that the specifier believes must be true whenever the associated
state is entered. Traditional verification technology is used to discharge (verify) these
assertions at compile time. Any remaining assertions are checked (by computation)
upon entry to the associated state at run-time.

When developing a reactive specification with REACTO, the user typically proceeds
through several development phases (which may be interleaved); the system provides
various tools to ease the development tasks in each phase (see Table 5).

4.2 The FSM Formalism and Specification Acquisition

REACTO uses graphically presented finite state machines (FSM) as the underlying
framework to model reactive systems. A hierarchical notion of state is employed
by REACTO to model the hierarchical, modularized structure of a complex reactive
system, and to support stepwise refinement of the design. States are composed of
substates in such a way that properties that are associated with a state apply to all
of its substates. Thus a transition leaving a state is equivalent to a set of transitions
each of which exits from a substate of that state.

14

state voter„select
own_vars (selection: map(tuple(integer, integer), integer))
assertion V(x)(X G domain(M)

=► reduce(+, {tally{< x,y>)\ (y) y G [l..M(x)]})
< size(votersjwho_voted) — 1)

consists_of (select Jnit, castjoop, validate_entry)
initial_state (selectjnit)

"done"
transition cast Joop .transition Jl

from castjoop to newjvoter
predicate examine Jnterface_var(*keyboardJnput*) = done
action tally +— {| < I, J >—> tally(< i,j >) + selection(< i,j >)

| (i,j) i G domain(M) and j G [l..M(i)] |};
number_of „votes_cast <— size({< i,j > | (i,j)

i G domain(M) and j G [l..M(i)]
and selection(< i,j >) = 1});

clear jinter f ace joar(*keyboard_input*)

Figure 8: Fragment of the Voting-Machine Specification

The FSM formalism provides the top-level control structure allowing the specification
of the state hierarchy of a reactive system. Associated with each state are variables,
scoped with respect to the state hierarchy. Associated with each transition is a
predicate over visible variables which guards the execution of the transition and an
action which consists of assignments of values to visible variables. The values assigned
to variables are specified as an expression in a functional language. Figure 8 shows the
definition of a state and a transition from a RJEACTO specification Voting-Machine.

Specification acquisition is done via an interface consisting of a nested icon graphic
display and hierarchy browser. The graphic display presents the finite state machine
hierarchy of states and transitions. Text, such as variables associated with a state,
and actions associated with a transitions are presented using the hierarchy browser.
Within the browser there is mouse sensitivity to the syntax of program text.

15

4.3 The Functional Language and the Transformation Sys-
tem

The functional language used in REACTO specifications is a functional subset of ex-
tended REFINE. This language provides set-theoretic type constructors, such as finite
sets, sequences, maps, tuples, and relations, which substantially relieve the program-
mer from having to choose data representations. A rich set of operations are defined
on these types including reduction, bounded quantification, set and sequence forma-
tion, lambda definitions, etc. allowing concise algorithmic description. REACTO uses
the DTRE compiler as its transformation system.

4.4 The Verifier

The REACTO verifier is designed to prove the consistency of the assertions associated
with the state of a REACTO specification with its operational behavior. It is based on
an extension of Floyd's inductive assertions method. Since the underlying structure
of a REACTO specification is a variant of a flowchart program, the use of Floyd's
inductive assertion method is natural and convenient. Formally the approach is to
prove by induction over execution sequences that each time a state s is entered the
associated assertion is satisfied. One can use as an induction hypothesis the claim
that assertions associated with other states (in particular those with transitions into
5) are true. Thus the task is to verify that for each transition t into s if the assertions
in its originating state are true, and it is enabled, then the assertion associated with s
is true. Although verification technology has been limited in its success there are two
important advantages that this approach has that limits the burden placed on the
theorem prover. First, the problem is factored into small pieces, namely of verifying
the correctness of each transition. Second, verification occurs at the specification level
where operations are still suitably abstract and the theorem prover not overwhelmed
by implementation detail.

Verification is done in two steps. The first step is to deduce the verification condi-
tions. This is done mechanically by a verification condition generator. The second
step is proving the truth of the verification conditions. This is done with a mechanical
theorem prover. The theorem prover is designed to support verification activities. It
is based on a goal-oriented proof procedure hierarchical deduction ([14], [15]) incorpo-
rated with term-rewriting, partial-evaluation, and forward-inference procedures. The
prover can be used as an automated system, or as an interactive proof checker.

The verifier also provides a proof management facility, which helps extract the un-
proven verification conditions, and permits the user to make off-line development of
proofs for them. A knowledge-base manager is designed to support a flexible use of a
large set of axioms and rules derived from the domain theory of the specification lan-
guage. A dependency maintenance procedure is incorporated which permits the user

16

to trace the history of a derivation, and supports efficient addition and/or retraction
of assumptions.

4.5 The Simulator

REACTO provides an execution simulator that supports rapid prototyping of REACTO
specifications. With a graphics-based environment, it allows the user to quickly exe-
cute a specification to see that its behavior is that which is intended. While a specifi-
cation is simulated, the simulator will display the dynamic state changes graphically
and print the current values of the state variables being traced by the user.

17

Part II

Core Slang

In this paxt, we describe the core concepts of SLANG:

specifications, which are theories in a higher order logic, i.e., typed lambda calculus1

extended with products, coproducts, quotients and subsorts,

morphisms, which are symbol to symbol translations between specifications such
that the axioms of the source specification are translated into theorems of the
target specification, and

diagrams, which are directed multigraphs with the nodes labeled by specifications
and the arcs labeled by specification morphisms.

The interconnection of specifications via diagrams is the primary way of putting sys-
tems together out of smaller pieces. In particular, diagrams are used to express pa-
rameterization, instantiation, importation, and the refinement of specifications. The
power of the notation arises from the explicit semantics for specifications and mor-
phisms, and the ability of diagrams to express exactly the structure of specifications
and their refinement.

Convention. In Part III, we will encounter other kinds of morphisms and diagrams,
e.g., interpretation morphisms and interpretation diagrams. Hence, we have the con-
vention that when "morphism" (or "diagram") is used without a qualifier, it means
"specification morphism" (resp., "specification diagram"). Other uses are qualified
with the kind of objects involved.

*We assume the standard inference rules for typed lambda calculus; the additional rules are in
the section on implicit axioms for built-in operations (see section6.5.9)

18

5 Names in SLANG2

Specifications, morphisms and diagrams can each be named, as can many of their
components, such as nodes and arcs of diagrams. There is a consistent syntax for
introducing names as is illustrated below.3

NAMED NOT NAMED

spec <name> is
<development-element>*

end-spec

morphism m : <name> -> <name>
is { <sm-rales> }

spec

<development-element>*

end-spec

{ <sm-rules> }

diagram <name> is
<nodes-and-arcs>

end-diagram

diagram
<nodes-and-arcs>

end-diagram

The keyword is may be replaced with the symbol =. Names are used in the usual
way to denote the objects to which they are bound. Thus, for example, in any
syntactic context in which a specification is required, a name of a specification may
be substituted.

5.1 Naming and Scoping Rules

Specifications, diagrams, and morphisms each have their own individual, global names-
pace. Thus the same name may be used to denote, say, a specification and a mor-
phism. Because these namespaces are global two different specifications (respectively,
morphisms, diagrams) must have different names—there is no context that can dis-
ambiguate which specification a name refers to. If a specification, diagram or mor-
phism appears as a top-level expression, i.e., it is not a subexpression of a diagram-,
morphism- or specification-returning expression, it must be named. Otherwise, there
is no way to refer to such an object. Conversely, a subexpression, if it is not a name
denoting a specification, morphism, or diagram, cannot be named. For example,

2The discussion in this section refers to concepts introduced in later sections. So, the reader may
wish to re-read this section after the rest of the manual. The reason for this forward reference is so
that all the information about names is in one place.

3In this dicussion and in others throughout the manual, a BNF syntax description language is
used. See section A.l in the appendix containing the BNF for SLANG. Note that, as in the syntax
for diagrams in the example, some small liberties are taken in the interest of brevity.

19

diagram FOO is

nodes X: spec Y is
end-diagram

end-spec

is illegal since the specification at node X cannot introduce the name Y.

The names of nodes and arcs are local to a diagram and have their own namespaces.
This means that two diagrams may use the same name as a node name, and within
the same diagram a node and an arc may have the same name.

Similarly the names used in a specification are local to the specification. Sorts,
operations, definitions, and theorems all have distinct namespaces. However, because
of type inference, it is generally not an error for two operations to have the same
name as long as context can be used to disambiguate references.

5.2 Lexical Conventions

Valid names start with either an upper or lower case letter or an asterisk (*), and are
followed by any letter, digit, an asterisk (*), exclamation point (!), hyphen (-), or
question mark (?). (Also, see section A.2.14 in the BNF appendix.) Names are not
case sensitive: all names are converted to uppercase internally.

The keywords in SLANG are:

arcs

axiom

body-ip

by
cocone-morphism

cod-to-med
codomain-sm
codomain-to-mediator

colimit
const
construct

constructors

definition

diagram

dom-to-med

domain-sm
domain-to-mediator

embed

end-definition

end-diagram

end-spec
ex
fa
from
identity-morphism

import
imp o rt-morphism
instantiate

interpretation

ip-scheme
ip-scheme-morphism

is

lambda

mediator

mediator-sm

morphism

nodes

of
op
project
quotient
relax
sort
sort-axiom
sorts

spec
spec-interpretation

theorem

translate
translation-morphism

The following characters have special meaning depending upon the context:

20

()->, I : = .<>{}[]/ +

6 Specifications

A specification is a theory presentation, a finite description of a formal theory. A
theory consists of a signature (a set of sorts and and a set of operations whose domains
and ranges are constructed from the given sorts) and a set of closed formulas (over
the signature) that is closed under logical entailment. A theory presentation consists
of a finite signature and a finite set of closed formulas. Such a presentation generates
a theory consisting of the given signature and all closed formulas entailed by the given
formulas.

A SLANG specification consists of a set (possibly empty) of specification elements.4

Each specification element is a declaration which introduces one or more primitive
sorts, an operation, an axiom, a theorem, a definition, or a constructor set. The order
of the declarations is not relevant. We discuss each of these specification elements
below.

Specifications are either given as basic specifications or constructed via specification
operations. This section introduces basic specifications, i.e., primitive specification ex-
pressions in which all specification elements are explicitly given. Section 10 describes
specification-building operations. Figure 9 shows an example of a basic specification.

6.1 Sorts

The primitive sorts of a specification are introduced via sort declarations. For in-
stance, in the NAT-SPEC example below,

sorts NAT, NZ-NAT

introduces the sorts NAT and NZ-NAT. Note that each ? ; declaration consists of the
keyword sort or sorts followed by a list of one or m< , sort idemi \ers separated by
comma.5

4In the BNF description of SLANG these are called devil, ment-ekmenls
5 In general, we will give examples in the running text, p. ips accomphajied by some description

of the syntax. Again, the precise syntax can always be found in the BNF grammar in the appendix.

21

*/.'/. This is am example to illustrate the elements of a specification.

'/.•/. This specification is NOT INTENDED to
'/,'/, completely or correctly characterize the natural numbers.

spec NAT-SPEC is

sorts NAT, NZ-NAT

sort-axiom NZ-NAT = NAT I non-zero?

const zero NAT
const one NAT
op non-zero? NAT -> Boolean

op plus NAT, NAT -> NAT

op times NAT, NAT -> NAT

op div NAT, NZ-NAT -> NAT

constructors {zero, one, plus} construct NAT

axiom (equal (plus zero x) x)
axiom commutativity-of-plus is

(fa (x y) (equal (plus x y) (plus y x)))
axiom (equal (plus x (plus y z)) ((plus x y) z))

axiom (fa (x : NZ-NAT) (ex (y : NAT) (equal (times x y) one)))

theorem (fa x (equal (plus x zero) x))

definition of times is
axiom (equal (times x zero) zero)
axiom (equal (times x one) x)
axiom (equal (times x (plus y z)) (plus (times x y) (times x z)))

end-definition

end-spec

Figure 9: Example of a basic specification

22

6.2 Sort Constructors

Sort constructors are functions which operate on sorts. They are used to generate
compound sorts from primitive sorts or other compound sorts. SLANG has five sort
constructors:

product Product sorts are denoted by a sequence of two or more sorts separated by
commas. The empty product, i.e., the product of zero components, containing
the empty tuple as its unique member, is denoted by (); when the empty
product occurs as the domain of a function sort, its syntax may be omitted (see
the examples below).

coproduct Coproduct sorts are denoted by a sequence of two or more sorts sepa-
rated by "+". The empty coproduct, i.e., the coproduct of zero components is
denoted by [].

function A function sort is denoted by giving its domain sort and range sort
separated by "->".

quotient Quotient sorts are denoted by a sort and an equivalence relation separated
by V.

subsort Subsorts are denoted by a sort and a predicate separated by " I".

A sort term is either the name of a primitive sort or a term constructed from other
sort terms via the operators "->", ",", "+", "/", and "I". Given primitive sorts A,
B, and C, here are some examples of sort terms denoting constructed sorts.

(1) A, B, C product sort of A, B, and C

(2) () empty product sort

(3) A + B + C coproduct sort of A, B, and C

(4) [] empty coproduct sort

(5) A -> B, C function sort with domain A

and range the product sort of B and C

(6) -> A function sort with empty product as domain

(7) Alp subsort of A consisting of those elements

which satisfy the predicate p : A -> Boolean

(8) A/e quotient of A consisting of equivalence

classes of elements of A generated by the

equivalence relation e : A, A -> Boolean

For an explanation of the semantics of constructed sorts, see Section 6.5.

23

Precedence. The sort constructors "," and "+" have equal precedence which is
higher than that of "->". Similarly, " I" and "/" have equal precedence which is higher
than that of "," or "+". This precedence may be overridden by using parentheses,
T and ")". The function sort constructor "->" is right associative. The product
and coproduct sort constructors are not associative; hence, insertion of parentheses
corresponds to grouping, and will generate different products/coproducts from the
ungrouped version.

The following examples of constructed sorts illustrate precedence and associativity:

(1) A, B -> B, C parses as the function sort (A,B) -> (B,C)
(2) A, (B -> B), C parses as the product sort of A, (B -> B) and C
(3) A -> B -> C parses as A -> (B -> C)
(4) A, (B, C) is different from both A,B,C and (A,B),C

(5) Alp -> B + C parses as the function sort (Alp) -> (B + C)

(6) Alp/e parses as the quotient sort (A|p)/e
(7) Alplq parses as the subsort (Alp)lq

6.3 Sort Axioms

Sort axioms can be used to equivalence (already introduced) sorts to constructed
sorts. Here are some examples; note that the sorts and ops used in a sort-axiom must
be declared separately.

sorts NAT, NZ-NAT, COST
sort-axiom NZ-NAT = NAT I non-zero?
sort-axiom COST = NAT
op non-zero? : NAT -> Boolean

sorts ARROW, CPOA '/. composable pair of arrows
sort-axiom CPOA = (ARROW, ARROW) I composable?
op composable? : ARROW, ARROW -> Boolean

The left hand side of a sort axiom must be a primitive sort; the right hand side can
be either a primitive sort or a constructed sort.

There is a semantic restriction. The sort algebra is a free algebra: two sorts are
equal iff they are structurally equivalent. The semantic restriction is that sort axioms
cannot be used to equivalence constructed sorts that are not structurally equivalent.
Simple uses of sort axioms will not violate this restriction; however, the equivalencing
of sorts (see Section 10.2) that occurs during colimit constructions could possibly
violate the restriction. If such a violation is detected during the colimit construction,
the construction will be stopped and an error message generated.

24

6.4 Operations

Specifications introduce operations as named constants of a specified sort. For exam-
ple, NAT-SPEC contains the following operation declarations:

const zero NAT
const one NAT
op non-zero? NAT -> Boolean

op plus NAT, NAT -> NAT

Each operation declaration consists of the keyword op or const followed by the name
of the operation, followed by a colon and a sort term which specifies the rank or
signature of the operation. Typically, the rank is a function sort.

Although either the keyword op or the keyword const can be used for parsing an
operation, the system chooses a specific keyword while printing: op if the signature
of the operation is a function sort, and const otherwise.

Constants vs. Nullary Operations. Note that the two declarations

op f : s
op f : -> s

introduce two different operations; the former denotes a constant while the latter
denotes a nullary function. The difference between them becomes apparent when
they are used in a term or formula (see Section 6.6): the former appears as f while
the latter appears as (f).

6.5 Built-in Sorts and Operations

6.5.1 Boolean.

The sort Boolean (the sort of truth-values) and the normal operations on it are built-
in, i.e., they are implicitly present in every specification. The names and signatures
of these operations are given below for reference:

sort Boolean
const true : Boolean
const false : Boolean
op not : Boolean -> Boolean

25

op and : Boolean, Boolean -> Boolean
op or : Boolean, Boolean -> Boolean
op implies : Boolean, Boolean -> Boolean
op iff : Boolean, Boolean -> Boolean

6.5.2 Quantifiers.

The quantifiers fa and ex axe also built-in. The syntax for these quantifiers is similar
to that of terms (see Section 6.6), except that bound variables are allowed. For
example:

(fa (x y) (equal (plus x y) (plus y x)))

(fa (x : NZ-NAT) (ex (y : NAT) (equal (times x y) one)))

A quantified formula consists of three elements enclosed in parentheses: a quantifier
name (fa or ex), a sequence of bound variables enclosed in parentheses, and a term
of sort Boolean. Each bound variable consists of a name and an optional data type,
which is either a primitive sort or a constructed sort such as product or function sort.
See the paragraph Implicit Axioms for further examples.

6.5.3 Equality.

Each sort comes equipped with a predefined equality. Operations defined in a speci-
fication are congruences with respect to such equalities.

The operation symbol for this equality is always equal (type-inference will resolve
the overloading). It is not necessary to declare the equality for a sort, although one
may add axioms which constrain its meaning.6

6.5.4 Function Sorts.

There are two built-in operations on function sorts: a quantifier lambda which builds
elements of function sorts, and an implicit apply operation that applies a function
to its argument. The syntax for apply is Lisp-like: (F a). (See section 6.6.) The
syntax for lambda is analogous to that of the boolean quantifiers:

(lambda (x y) (plus (times x x) y))

6Note that if an operation such as op equal : S, S -> Boolean is declared, it will be treated
as an operation distinct from the built-in equality for the sort S.

26

Note, however, that the order of bound variables in a lambda-expression is important
(it is irrelevant for boolean quantifiers).

6.5.5 Product Sorts.

There are two kinds of built-in operations on every product sort: an n-ary tuple
constructor that constructs elements of the product sort and projections that select
components of tuples. The syntax of the tuple constructor is "<al ... an>", with
the following judgement7 indicating the typing:

al: SI, ...,an: Sn
< al ... an >: Sl,...,Sn

There is also a family of projection functions, one for each element of a tuple:

(project i) : SI,... ,Sn -> Si one each, for i = 1,... ,n

Note that, since project is a higher order function, the application of a projection
function is written as ((project i) <al . .. an>). Also, project is polymorphic.
Hence, it is implicitly indexed by the product sort, as is (projectsit..vsn i).

Here are some more examples of tuples:

<> empty tuple (the unique element in the empty product sort)
<a b> if a is of sort A and b is of sort B,

then <a b> is an element of the product sort A,B
<a <b c>> tuples can be nested

6.5.6 Coproduct Sorts.

The coproduct of a set of sorts is intuitively their disjoint union.8 For every coproduct
sort, there is a family of embedding operations, one for each component sort. The
embeddings map elements of the component sorts into the coproduct sort. They are
duals to the projections associated with product sorts.

(embed i): Si -> Sl+...+Sn one each for i = l,...,n

embed is a higher order function and is polymorphic (similar to project,. So applica-
tion is written as ((embed i) ai) with the embed implicitly indexed: (embedsi+...+sn i).

7I.e., if al thru an have types SI thru Sn resp, then the sort of the tuple <ai . .. an> is the
product SI,... ,Sn.

8 Known as variant records in some programming languages.

27

6.5.7 Quotient Sorts.

Given a sort A and an equivalence relation e: A, A -> Boolean on it, the sort A/e
denotes the quotient sort of A generated by e. The elements of the quotient sort A/e
are equivalence classes of elements of the base sort A. For each quotient sort A/e,
there is a built-in abstraction function which maps elements of the base sort to the
equivalence classes containing them. This abstraction function is called quotient,
and is a higher order polymorphic function:

(quotient e) : A -> A/e

6.5.8 Subsorts.

Given a sort A and a predicate p: A -> Boolean on it, the sort A | p denotes the sub-
sort of A generated by p. The subsort AI p consists of those elements of the supersort
A which satisfy the predicate p. For each subsort Alp, there is a built-in inclusion
function which maps elements of the subsort to the corresponding elements of the
supersort. This inclusion function is called relax, and is a higher order polymorphic
function:

(relax p) : Alp -> A

6.5.9 Implicit Axioms.

Besides the normal congruence axioms for equality, a-equivalence, and the /5-rule for
application, every specification implicitly contains the following axioms characterizing
the various constructed sorts. These axioms are generated by the system before a
specification is passed to the prover.

1. For every product sort s-1,..., s-n,

'/. one axiom each, for i = 1,... ,n
(fa (x-1 : s-1 ... x-n : s-n) (equal ((project i) <x-l...x-n>) x-i))
(fa (z : s-1,...,s-n) (equal <((project 1) z)...((project n) z)> z))

2. For every coproduct sort s-l+.. .+s-n,

28

'/, embeddings axe injective
'/, one axiom each for i = 1, . . . ,n
(fa (x : s-i y : s-i) (implies (equal ((embed i) x) ((embed i) y))

(equal x y)))

'/. embeddings are collectively surjective

(fa (z : s-l+...+s-n)
(or (ex (x-1 : s-1) (equal ((embed 1) x-1) z))

(ex (x-n : s-n) (equal ((embed n) x-n) z))))

'/, images of embeddings are disjoint
'/. one axiom each for i = 1,. . . ,n and j = i+1,. . . ,n
(fa (x : s-i y : s-j) (not (equal ((embed i) x) ((embed j) y))))

3. For every subsort sip,

'/. (relax p) is inject ive
(fa (x : sip y : sip) (implies (equal ((relax p) x) ((relax p) y))

(equal x y)))

'/, these two axioms characterize the image of (relax p)

(fa (x : s|p) (p ((relax p) x)))

(fa (y : s) (implies (p x)
(ex (x : s|p) (equal ((relax p) x) y))))

4. For every quotient sort s/q,

'/, (quotient q) is surjective
(fa (x : s/q) (ex (y : s) (equal ((quotient q) y) x)))
'/, equality on s/q is the equivalence q
(fa (x : s y : s) (iff (q x y)

(equal ((quotient q) x) ((quotient q) y))))

6.6 Terms and Formulas

Terms axe constructed as is usual for typed lambda calculus or higher order logic.
Formulas are just terms of sort Boolean.

All functions in SLANG accept one argument and return one result. Multiple argu-
ments and multi-valued returns along with functions with no arguments are handled
by accepting and returning tuples. The function application notation implicitly builds
tuples if there is more than one argument. For example,

(make-tree left node right) is parsed as (make-tree <left, node, right>)

29

When there is only one argument, a tuple is not automatically constructed. As a
consequence, the composition (union (split s)) below is well-formed:

op union : Set, Set -> Set
op split : Set -> Set, Set
axiom (equal (union (split s)) s)

The following tables summarizes the construction of terms in SLANG, and their sorts.

Given sorted terms —, — is a term of sort -

Constants
c:s c

<>
s
0

Products
al:sl,a2:s2
al:sl,...,an:sn
a: sl,s2
a:sl,s2
a: s 1, . . ., sn

<al a2>
<al ... an>
((project 1) a)
((project 2) a)
((project i) a)

sl,s2
si,...,sn
si
s2
si

Functions and Application
f:-> s
f :s -> t, a:s
f:sl,...,sn -> t, a:sl,...,sn
f :sl,...,sn -> t, al:sl,...,an:sn
v:s, e:t
vl:sl,...,vn:sn, e:t

(f)
(f a)
(f a)
(f al ... an)
(lambda (v:s) e)
(lambda (vl;sl...vn:sn) e)

s
t
t
t
s -> t
si,...,sn -> t

Coproducts
al:sl
a2:s2

((embed 1) al)
((embed 2) a2)

sl+s2
sl+s2

Subsorts and Quotient Sorts
a:s|p
a:s

((relax p) a)
((quotient e) a)

s
s/e

Quantifiers
v:s, e:Boolean
vl:sl,...,vn:sn, e:Boolean
v:s, e:Boolean
vl:sl,...,vn:sn, e:Boolean

(fa (v:s) e)
(fa (vl:sl ... vn:sn) e)
(ex (v:s) e)
(ex (vl:sl ... vn:sn) e)

Boolean
Boolean
Boolean
Boolean

30

6.7 Axioms and Theorems

Axioms and theorems in a specification are closed formulas that use the symbols
(sorts and operations) appearing in the signature of that specification. The distinction
between axioms and theorems is that theorems can be proved9 from the rest of the
specification, and thus do not add to the theory generated by the specification.

Here are some examples:

axiom (equal (plus zero x) x)

axiom commutativity-of-plus is
(fa (x y) (equal (plus x y) (plus y x)))

theorem (fa x (equal (plus x zero) x))

Note that the name is optional as is the initial universal quantifier. If you omit the
inital universalquantifier, it will be added internally; however, the system will print
it in the original form without the quantifier prefix.

6.8 Definitions

A definition for an operation f: A -> B in SLANG is a set of axioms which generates
a provably10 functional relation from A to B. Here is an example from NAT-SPEC:

definition, of times is
axiom (equal (times x zero) zero)
axiom (equal (times x one) x)
axiom (equal (times x (plus y z)) (plus (times x y) (times x z)))

end-definition

Syntactically, a definition is a set of axioms enclosed by the pair of keywords def init ion
and end-definition. Optionally, the definition may have a name and/or the name
of the operation being defined. See the BNF grammar for the precise syntax of the
various options.

9This is not currently verified in the system.
10This is not currently checked in the system.

31

6.9 Constructor Sets

A constructor set is a set of operations with the same range sort, and implicitly
introduces an induction axiom for that range sort.

Consider the specification NAT-SPEC introduced at the beginning of Section 6. The
constructor set

constructors {zero, one, plus} construct NAT

implicitly introduces the following induction axiom:

(fa (P) (implies
(and (and (P zero) (P one))

(fa (x y) (implies (and (P x) (P y)) (P (plus x y)))))
(fa (n) (P n))))

Freeness and reachability. Note that a constructor declaration does not imply
that the images of the constructors are disjoint, nor does it imply that all elements
in the carrier of a constructed sort are representable by some term. Sometimes, these
properties can be asserted by explicit axioms, e.g.,

(not (equal zero one))

7 Overview of Specification Constructing Opera-
tions

There are four ways of constructing a specification in SLANG:

basic—form a basic specification as a set of specification elements (sorts, sort-
axioms, operations, axioms/theorems, definitions, and constructor sets).

translate—copy a specification while renaming11 some symbols (see Section 10.1).

colimit—take the colimit of a diagram of specifications (see Section 10.2),

import—enrich an imported specification with a set of specification elements (see
Section 10.3)

11A renaming is a set of rules of the form { <name> -> <name>, . . } which indicates how the
symbols of a specification are to be renamed.

32

The first form explicitly constructs a specification, while the next three are specifi-
cation constructing operations which take as arguments specifications and diagrams,
and yield specifications. The four ways of constructing specifications should be con-
sidered as expressions which yield specifications. Wherever a specification is expected
in these or other expressions, the name of a specification can be substituted.

The operations translate, colimit and import will be described in Section 10.
However, before these operations can be explained, morphisms and diagrams need to
be described.

8 Morphisms

A morphism is a mapping from a specification called the source specification to a
specification called the the target specification. Intuitively, it describes how the source
specification is "embedded" in the target. A morphism m from a source specification
A to a target specification B maps the sorts of A into the sorts of B, and the operations
of A into the operations of B such that

1. the signatures of the operations are translated compatibly, and

2. the axioms of A are translated into theorems of B.

Morphisms are described in SLANG by listing the translations of the explicitly de-
clated sorts and operations. The translation of constructed sorts and formulas is
then computed inductively.

As an example, consider embedding the MONOID spec (just below) into the SEQ spec.
(See the online library for a version of the SEQ spec.)

spec MONOID is

sort E
op binop : E, E -> E
const unit : E

axiom associativity is
(equal (binop x (binop y z)) (binop (binop x y) z))

axiom left-unit-axiom is (equal (binop x unit) x)
axiom right-unit-axiom is (equal (binop unit x) x)

end-spec

33

morphism MONOID-TO-SEQ : MONOID -> SEQ
is { E -> Seq, binop -> concat, unit -> empty-seq }

The keyword morphism introduces a morphism definition. As usual it is followed by
an optional name. The source specification is an expression yielding a specification,
typically just the name of a specification. This is followed by the keyword symbol "->"
and a target specification. This is followed by the symbol "{" and a comma-separated
list of symbol-pair associations. Each symbol-pair association (known as an sm-rule)
associates a primitive sort (respectively, operation) symbol in the source specification
with a primitive sort (respectively, operation) symbol in the target specification. The
symbol-pair association is terminated by "}". A morphism is required to map every
sort and operation of the source specification to a symbol in the target specification.
However, if a symbol of the source specification is not mentioned in the symbol pair
association, then it is assumed that the symbol is mapped to a symbol with the same
name in the target specification.

Here is a simple example of a morphism that does not map signatures compatibly:

spec F00 is spec BAR
sort A, B sort C, D, E
op f: A -> B op g: C -> D
end op h: C -> E

end

morphism Ml: F00 -> BAR is {A -> C, B -> D, f -> h}

morphism M2: F00 -> BAR is {A -> C, B -> D, f -> g}

Morphism Ml is not well-formed since the sort B is mapped to D but the function f
whose codomain is B is mapped to an operation whose codomain is E. Morphism M2
is a well-formed morphism: it translates signatures compatibly.

Morphisms and Built-in Constructs. The translations for built-in sorts and
operations cannot be specified in a morphism. These entities are automatically trans-
lated to the corresponding built-in entities in the target. Examples of built-in entities
are the sort Boolean, the Boolean operations (and, or, not, etc.), quantifiers (fa,
ex, lambda, etc.), and equality. This latter is an important point: if the morphism
m maps the sort S to the sort T, then m maps the built-in equal on S to the built-in
equal on T. You cannot use a morphism to map an equality to a congruence on the
target sort.

34

Morphisms and Constructed Sorts. Morphisms are defined as symbol maps of
the basic sorts and are extended to maps on sort expressions in the natural way. This
means that since morphism Ml above maps sorts {A -> C, B -> D} then it maps,
for example, the constructed sort A, B -> A to C, D -> C.

8.1 Local Morphisms

In contexts where a morphism needs to be mentioned and the domain and the
codomain of the morphism can be inferred, it is only necessary to specify the rules
which make up the morphism. Here is an example where the morphism labeling an
arc in a diagram12 is specified by just listing the rules; the specifications labeling the
nodes at either end of the arc determine the domain and codomain of the morphism,
and hence they need not be specified.

diagram BASIC-BAG-IMPORT-DIAGRAM is
nodes BIN-OP, COMMUTATIVE, BASIC-SEQ
arcs BIN-OP -> COMMUTATIVE : {}

, BIN-OP -> BASIC-SEq : {E -> Seq, binop -> concat}
end-diagram

8.2 Morphism Terms

The specification-building operations which are introduced briefly in Section 7 and are
fully described in Section 10 not only construct specifications but also construct one
or more morphisms which relate the constructed specifications and their components.
See the relevant subsections of section 10 for more on the morphisms constructed
by the various specification-building operations. These morphisms can be mentioned
(referred to) using the keywords below, provided the context determines the domain
and codomain.

For example, given the spec IDEMPOTENT (below), we can use import-morphism to
refer to its import morphism in the BASIC-SET-IMPORT-DIAGRAM diagram (see below).

spec IDEMPOTENT is
import BIN-OP
axiom idempotence is (equal (binop x x) x)

end-spec

spec BASIC-BAG is colimit of BASIC-BAG-IMPORT-DIAGRAM

12See Section 9 for a description of diagrams.

35

diagram BASIC-SET-IMPORT-DIAGRAM is
nodes BIN-OP, IDEMPOTENT, BASIC-BAG
arcs BIN-OP -> IDEMPOTENT : import-morphism

, BIN-OP -> BASIC-BAG : cocone-morphism from BIN-OP
end-diagram

Given that the domain and codomain are determined by the surrounding context,
the keywords translation-morphism and import-morphism can be used to specify
the corresponding morphisms (as above). The keyword cocone-morphism requires a
node as an additional parameter because there is one such morphism from each node
of a diagram to the colimit specification (see Section 10.2).

To illustrate, we continue the example above.

spec BASIC-BAG is colimit of BASIC-BAG-IMPORT-DIAGRAM

diagram BASIC-SET-IMPORT-DIAGRAM is
nodes BIN-OP, IDEMPOTENT, BASIC-BAG
arcs BIN-OP -> IDEMPOTENT : import-morphism

, BIN-OP -> BASIC-BAG : cocone-morphism from BIN-OP
end-diagram

Identity morphisms. Associated with every specification is an identity morphism
which maps every sort and operation to itself. This morphism can be mentioned using
the keyword ident ity-morphism (again, assuming that the domain and codomain are
determined by the context). Note that the difference between using ident ity-morphism
and {} is that the former uses actual identity whereas the latter utilizes name identity
to specify a morphism. I. e., it maps source object with name n to target object with
the same name. Hence, if there are (say) two sorts with the same name, {} will fail
to denote a morphism.

9 Diagrams

A diagram is a directed multi-graph whose nodes are labeled with specifications and
whose arcs are labeled with morphisms. A multi-graph differs from a graph in that
there may be more than one arc between nodes. For a diagram to be well formed,
the obvious condition that must be met is that the source (target) specification of the
morphism labeling an arc must be the same as the specification labeling the source
(target) node of the arc. Here are two examples of diagrams: one very simple diagram
used to specify a specification as a colimit and another rather more complex diagram

36

used to specify the embedding relations in a hierarchy of orders. The are many more
examples in the library.

37

;ij^qi^ii^iji^i^ji{DiJi^j

Coatalner-coUmit

Figure 10: SLANG Diagram for CONTAINER-COLIMIT

spec CONTAINER-COLIMIT is
colimit of diagram

nodes CONTAINER-SIG, JOIN-CONTAINER, INSERT-CONTAINER
arcs CONTAINER-SIG -> JOIN-CONTAINER : {}

, CONTAINER-SIG -> INSERT-CONTAINER : {}
end-diagram

In this example, the diagram is presented in two forms: in a graphical form13 and in a
textual form. It is a diagram for a colimit.14 There are four nodes: CONTAINER-SIG,
JOIN-CONTAINER, INSERT-CONTAINER, and CONTAINER-COLIMIT. There are also five
arcs: two from CONTAINER-SIG to JOIN-CONTAINER and INSERT-CONTAINER, resp.
Both these arcs arc specified by O (map a symbol in CONTAINER-SIG to the identi-
cal symbol in JOIN-CONTAINER or INSERT-CONTAINER as appropriate). There are also
three cocone arcs: one from each of CONTAINER-SIG, JOIN-CONTAINER, INSERT-CONTAINER
to CONTAINER-COLIMIT.

13This diagram was created in SPECWARE from standard online library files.
14See section 10.2 for a dicussion of colimits, cocones, and cocone morphisms.

38

Bta-re}

Total-order

Figure 11: ORDER-HIERARCHY diagram

diagram ORDER-HIERARCHY is
nodes

BIN-REL, REFLEXIVE, TRANSITIVE, ANTI-SYMMETRIC, TOTAL-REL,
PRE-QRDER, PARTIAL-ORDER, TOTAL-ORDER, SYMMETRIC,
EQUIVALENCE

arcs BIN-REL -> REFLEXIVE: {}, BIN-REL -> TRANSITIVE: {},
BIN-REL -> ANTI-SYMMETRIC: {}, BIN-REL -> TOTAL-REL: {},
REFLEXIVE -> PRE-ORDER: {E -> E, BINREL -> LE},
TRANSITIVE -> PRE-ORDER: {E -> E, BINREL -> LE},
PRE-ORDER -> PARTIAL-ORDER: {},
ANTI-SYMMETRIC -> PARTIAL-ORDER: {E -> E, BINREL -> LE},
PARTIAL-ORDER -> TOTAL-ORDER: {},
TOTAL-REL -> TOTAL-ORDER: {E -> E, BINREL -> LE},
BIN-REL -> SYMMETRIC: {},
SYMMETRIC -> EQUIVALENCE: {E -> E, BINREL -> EQUIV},
PRE-ORDER -> EQUIVALENCE: {E -> E, LE -> EQUIV}

end-diagram

The diagram in this example specifies the embedding relationships in a hierarchy of
orders. Each arc has an associated morphism specifying how its domain is embedded
in its codomain. Again the diagram is presented in two forms: in a graphical form
and in a textual form.

In a diagram, the (optional) name is followed by the keyword nodes which is followed
by a list of nodes. A node may be optionally named, and is then followed by a

39

specification (as usual, this means an expression that yields a specification, be it a
specification name or an expression).

If an explicit node name is not given, then the name of the specification at the node
is used as the name of the node. This convention may lead to two nodes having the
same name; the remedy, of course, is to explicitly name at least one of the nodes.
Note that it is illegal to provide a name for a specification explicitly defined as the
label of a node of a diagram.

Following the nodes is the keyword axes and a list of arcs. Each arc may be optionally
named. It is then followed by the name of the source node followed by a "->" and the
name of the target node. This is followed by ":" and a morphism. This morphism
can be given either by its name, a set of rules, or a morphism term.

10 Specification Building Operations

10.1 The Translate Operation

The translate operation creates a copy of a specification with the option of renaming
some components. Here is an example:

EXAMPLE 10.1. The expression

translate
spec

sort E
op le : E, E -> Boolean
axiom reflexivity is (fa (x) (le x x))

end-spec
by { E -> F, le -> ge }

evaluates to the specification

spec
sort F

op ge : F, F -> Boolean
axiom reflexivity is (fa (x) (ge x x))

end-spec

Note that the axioms are also translated to reflect the new names of the sorts and
operations; however, the names of axioms, theorems, etc., remain the same. □

40

A translation is given by the keyword translate followed by a specification and a set
of renaming rules that indicate how the symbols of a specification are to be renamed.

A renaming map is a one-to-one map used for copying a specification. Thus, if a
renaming maps two sorts onto the same sort name, or two operations onto the same
operation name, then there will be multiple sorts or operations with the same name
in the copied specification. Although this is not illegal, it is inconvenient in that
references to these sorts or operations will be ambiguous.

A common use of the translate operation is to rename colimit specifications (see
Section 10.2 below):

spec BASIC-SET is
translate co-limit of IMPORT-DIAGRAM-FOR-BASIC-SET
by {C -> Set, empty -> empty-set, join -> union}

Translation morphisms. The translate operation also constructs a morphism
(actually, an isomorphism) which maps the elements of the original specification to
the corresponding elements of the copied specification. This morphism can be ac-
cessed using the syntax translation-morphism in a context where the domain and
codomain can be inferred (see Section 8.2).

10.2 The Colimit Operation

The colimit operation is fundamental to the SLANG system.

The colimit operation takes a diagram as input and yields a specification, commonly
referred to as the colimit of the diagram.

EXAMPLE 10.2. Here is a simple example in which the REFLEXIVE and TRANSITIVE
specs are glued together on BIN-REL to construct a spec for pre-orders.

spec BIN-REL is
sorts E

op binrel : E, E -> Boolean
end-spec

spec REFLEXIVE is
import BIN-REL
axiom reflexivity-axiom is (binrel x x)

end-spec

41

Bin^ral

TransiUTO c Rrfl«j*«

Pro-ordwr-ooUmlt

Figure 12: Colimit for PRE-ORDER

spec TRANSITIVE is

import BIN-REL

axiom transitivity-axiom is

(implies (and (binrel x y) (binrel y z)) (binrel x z))
end-spec

spec PRE-ORDER is
colimit of diagram

nodes BIN-REL, REFLEXIVE, TRANSITIVE

arcs BIN-REL -> REFLEXIVE : {E -> E, binrel -> binrel}

, BIN-REL -> TRANSITIVE : {E -> E, binrel -> binrel}
end-diagram

The resulting PRE-ORDER spec is equivalent to

spec PRE-ORDER is
sorts E

op binrel : E, E -> Boolean

axiom reflexivity-axiom is (binrel x x)

axiom transitivity-axiom is

(implies (and (binrel x y) (binrel y z)) (binrel x z))
end-spec

D

Informally, the colimit specification is a "shared" union of the specifications associated
with each node of the original diagram. Shared here means that, based on morphisms
in the diagram, sorts (respectively, operations) appearing' in specifications labeling
nodes of the diagram are identified as a single sort (respectively, operation) in the
colimit specification.

42

Formally, given a diagram, the colimit operation creates a new specification, the
colimit or apex specification, and a cocone, which assigns a new cocone morphism
to each node in the given diagram, such that the domain (source) of that morphism
is the specification labeling the node and the codomain (target) is the new colimit
specification. The colimit specification and the cocone morphisms leading into it
satisfy the property that, for every node in the diagram and for every sort or operation
in the specification labeling that node, the translation of the sort or operation along
any path leading from the node to the colimit specification is the same. Moreover,
the colimit specification only contains those sorts and operations which arise as the
translations of some sort or operation in the specification attached to some node in
the diagram.

Cocone morphisms. As dicussed just above, for each node the colimit operation
constructs a cocone morphism from the specification labeling that node in the source
diagram to the colimit specification. These morphisms can be accessed using the
syntax cocone-morphism from <node-name> in a context where the domain and
codomain can be inferred (see Section 8.2).

10.2.1 The Colimit Construction Algorithm

The colimit specification and the associated cocone morphisms are constructed using
the standard union-find algorithm for computing the connected components of a
graph. The disjoint union of the sorts and operations contained in the specifications
attached to all nodes in the diagram15 is partitioned into equivalence classes according
to the mappings given by the morphisms labeling the arcs in the diagram.

To be precise, let the disjoint union U of all signatures in a diagram D be

U = { (n, x) | n <= nodes(-D) An:S/\(x€ sorts(S) V16 operations(5)) },

where S is the specification labeling the node n.

Define an equivalence16 relation = on the set U by '

(ni,x) = {ri2,y) 4=» (3a)a € arcs(D) A a:rii —► n^-.m A m(x) = y,
15Note that, if the same specification labels two different nodes in a diagram, then two copies of

the sorts and operations in that specification are generated in the disjoint union.
The relation defined is an equivalence if we consider all the composition morphisms that are

implicitly present in a diagram.

43

where m is the morphism labeling the axe a. That is, two sorts (operations) are
equivalenced iff there is an arc whose morphism maps the one to the other.

This equivalence relation partitions the disjoint union U into equivalence classes of
sorts or operations (since morphisms map sorts to sorts and operations to operations,
each equivalence class will contain only one kind of object). The colimit specification
contains one sort or operation corresponding to each equivalence class. The cocone
morphism from the specification labeling each node in the diagram is obtained as
that map which takes each sort or operation to the the sort or op corresponding to
the equivalence class containing it.

In the presence of sort axioms, it is possible for the basic equivalence classes to
contain constructed sorts. Hence, when using sort axioms you must ensure that no
two distinct constructed sorts are equivalenced: this would violate the restriction that
the sort algebra be a free algebra-see the discussion of sort axioms in Section 6.3.

As a special case of the colimit operation, if a diagram consists of just nodes with no
arcs between them, the colimit is the disjoint union of the specifications labeling the
nodes of the diagram. I.e., the equivalence classes are all singletons.

It is time for an example.

EXAMPLE 10.3. Consider the following diagram whose purpose is to produce a basic
specification for sets by combining a specification of containers with the specifications
describing properties of idempotence and commutative monoids.17

diagram IMPORT-DIAGRAM-FOR-BASIC-SET is
nodes M0N0ID-SIG, BINOP,

COMMUTATIVE-MONOID, CONTAINER, IDEMPOTENT
arcs MONOID-SIG -> COMMUTATIVE-MONOID

: {A -> M, b -> plus, u -> unit}
, M0N0ID-SIG -> CONTAINER : {A -> C, b -> join, u -> empty}
, BINOP -> CONTAINER : {B -> C, f -> join}
, BINOP -> IDEMPOTENT : {B -> X, f -> idemop}

end-diagram

Here are the specifications attached to the nodes in the diagram. Most of the axioms
are omitted.

spec M0N0ID-SIG is spec BINOP is
sort A sort B

17Some of the sort and operation names have been altered from the corresponding specifications
in the SPECWARE online library to more clearly illustrate the action of the colimit operation.

44

op b : A, A -> A op f : B, B -> B

op u : A end-spec

end-spec

spec COMMUTATIVE-MONOID is spec CONTAINER is spec IDEMPOTENT is

sort M sorts C, E sort X
op plus : M, M -> M op empty : C op idemop : X, X -> X

op unit : M op singleton : E -> C
op join : C,C -> C end-spec

axiom
(equal (plus x unit) x) end-spec

end-spec

The colimit specification generated by the operation colimit of
IMPORT-DIAGRAM-FOR-BASIC-SETis the following (again most of the axioms are omit-
ted):

spec

sorts {M,A,C,B,X}, E
op {plus,b,join,f,idemop} : {M,A,C,B,X}, {M,A,C,B,X} -> {M,A,C,B,X}

op {unit,u,empty} : {M,A,C,B,X}
op singleton : E -> {M,A,C,B,X}

axiom (equal ({plus.b,join,f,idemop} x {unit,u,empty}) x)

end-spec

The sorts in the five specifications in our diagram are partitioned into two equivalence
classes; the operations get partitioned into three. Note that the signatures of the
operations in the colimit specification are relinked to refer to the sorts in the colimit
specification, and the operations in the axioms are relinked to refer to the operations
in the colimit.

The qualified names example (example 10.4) below illustrates the case where two
nodes in a diagram are labeled by the same specification. □

10.2.2 Qualified Names

As explained above, the sorts and operations in a colimit specification are equivalence
classes. Each such sort or operation inherits all the names of its elements as aliases,
and may be referred to (in a specification which imports the colimit) by any one of

45

these aliases. However, it is frequently the case that the name of an element of an
equivalence class does not uniquely determine the class.

Thus, to denote these equivalence classes qualified names are used. A simple qualified
name is a name of the form <qualif ier>. <name>. The qualifier is the name of a node
in the diagram used to construct the colimit. The denotation of such a qualified name
is the equivalence class that contains the sort or operation denoted by the unqualified
name in the specification attached to the qualifier node. Qualified names need not
be used if a sort (or operation) name alone uniquely identifies an equivalence class.
This is true even if the equivalence class contains many names.

EXAMPLE 10.4. To illustrate the need for qualified names, consider the following
specification in which two partial order relations are defined on the same sort. This is
done by taking the colimit of a diagram which contains two nodes labeled by the same
specification, that of a partial order. The diagram also contains another node and
two arcs labeled with morphisms which ensure that the two sorts in the two copies
of the partial order specification are collapsed into one.

spec TRIV is spec PARTIAL-ORDER is
sorts E sorts P

end-spec op le : P, P -> Boolean
axiom (le x x)
axiom (implies (and (le x y) (le y x)) (equal x y))
axiom (implies (and (le x y) (le y z)) (le x z))

end-spec

morphism TRIV-T0-P0: TRIV -> PARTIAL-ORDER = { E -> P }

spec DOUBLE-PARTIAL-ORDER is
colimit of diagram

nodes A: TRIV,
B: PARTIAL-ORDER,
C: PARTIAL-ORDER

arcs A -> C: triv-to-po,
A -> B: triv-to-po

46

end-diagram

The colimit specification will contain a single sort {E,P} with aliases E and P and
two operations with the same name: le : {E,P}, {E,P} -> Boolean. If, in an-
other specification which imports DOUBLE-PARTIAL-ORDER, we want to refer to these
operations, we have to use qualified names: B.le and C.le. For example, we could
require that the two orders be converses of each other:

axiom (iff (B.le i y) (C.le y x))

Or, we could rename these operations using:

spec DOUBLE-PARTIAL-ORDER-1 is
translate DOUBLE-PARTIAL-ORDER by { B.le -> le, C.le -> ge }

D

In general, to handle the case of the specification attached to a node being itself a
colimit, cascaded qualifiers are allowed. That is, the most general form of a reference
in SLANG is:

<qualifier>.<qualifier>....<qualifier>.<name>

Such a reference is resolved by starting with the outermost qualifier and proceeding
inwards. I.e., the outermost qualifier must be the name of a node in the diagram used
to construct the current colimit, etc. To resolve a qualifier, there must be a colimit
specification containing the node denoted by the qualifier.

While qualified names can be used to refer to a sort or operation of a colimit spec-
ification, the system does not display specifications using qualified names. If an
equivalence class with more than one element is formed in a colimit specification it
is printed as an equivalence class, i.e., as the set containing all of the names of the
sorts (operations) in the class. If the class contains just a single name, the name is
printed and the set brackets are suppressed.

10.3 Imports

The fourth operation for constructing specifications in SLANG is import. Although
it is not technically necessary, i.e., the specification generated using import can also
be generated using the other operations, it is convenient. The purpose of the import
operation is to enrich a specification with new sorts, operations, axioms, etc.

47

EXAMPLE 10.5. Here is a specification in which we import the DOUBLE-PARTIAL-ORDER
specification defined in Example 10.4 above and extend it with an axiom which asserts
that the two orders are converses of each other.

spec D0UBLE-PARTIAL-0RDER-2 is

import DOUBLE-PARTIAL-ORDER

axiom (iff (B.le x y) (C.le y x))
end-spec

D

There can be only one import in a specification. The denotation of a spec term
containing an import declaration (as in the example above) is a specification which
contains all the elements of the imported specification together with any sorts, oper-
ations, axioms added in the term.

SLANG extends the notation for import with the following syntax to accommodate
two frequently occurring constructs for building specifications:

1. spec import <diagram> ... end-spec

which expands to

spec import colimit of diagram ... end-spec

2. spec import <spec-l>, <spec-2>, ..., <spec-n> ... end-spec

which expands to

spec

import colimit of diagram

nodes <spec-l>, <spec-2>, ..., <spec-n>

end-diagram

end-spec

Import morphisms. The import operation also constructs a morphism which
maps the elements of the imported specification to the corresponding elements of the
importing specification. This morphism can be accessed using the syntax import-morphism
in a context where the domain and codomain can be inferred (see Section 8.2).

48

Part III

Refinement Constructs in Slang

The development process of SPECWARE is intended to support the refinement of
a problem (source) specification into a solution (target) specification. Refinements
introduce additional components and behavioral constraints. Source and target spec-
ification as well as the refinement between them are precise, formal objects. SLANG'S
refinement constructs, introduced below and defined in subsequent chapters, address
three important aspects of refinement: (1) construction of a solution relative to some
base (problem reduction); (2) sequential (vertical) composition of refinements (re-
finement layers); and (3) parallel (horizontal) composition of refinements (refinement
components).

49

11 Overview of Refinement

In SPECWARE refinement of specifications proceeds by induction on the specification
structure. The next section gives an overview of refinement of basic specs and the
following section gives an overview of the refinement of structured specs. The notions
are more fully discussed in section 12. In the section on interpretations it will be
seen that refinement of structured specs requires a systematic lifting of specification
notions (specifications, spec morphisms, and specification constructing operations)
to corresponding refinement notions (interpretations, interpretation morphisms, and
interpretation constructing operations). See especially section 12.5.

11.1 Refinement of Basic Specifications

The basic refinement construct in SLANG is an interpretation (see section 12). Inter-
pretations generalize morphisms as follows. A morphism from A to B specifies an
"embedding" of the spec A into the spec B; an interpretation from A to B specifies
an "embedding" of A into a definitional extension of B, i.e. a specification consisting
of B and definitions of further sorts and operations. Both morphisms and interpreta-
tions are closed under sequential composition-this allows us to follow one refinement
by another.

Semantically speaking, a morphism corresponds to a simple construction of models
of A from models of B: from any model of B, we obtain a model of A by simply
"forgetting" those sorts and operations of B that have no counterpart in A, i.e. that
are outside the image of the morphism. An interpretation from A to B corresponds to
a more complicated construction: first, expand the given model of B by the sorts and
operations defined in the definitional extension component of the interpretation, then
reduce the resulting model to the signature of A (along the embedding morphism).

Prom a semantic point of view, refinement (morphism or interpretation) of a spec A
to spec B amounts to a restriction of the model class of A: there is an associated
construction that yields an A-model for each 5-model, but not every A-model can
(in general) be constructed from a 5-model.

11.2 Refinement of Structured Specifications

We systematically exploit the specification structure to construct interpretations for
complex specs.

50

Colimit Refinement The colimit of a diagram of interpretations yields an inter-
pretation from the colimit of the interpretations sources to the colimit of the inter-
pretation targets.

Translation Refinement If spec B is a translation of spec A, then there is a
translation of any interpretation with source A into an interpretation with source B.

Import Refinement If spec B imports spec A, it is not in general possible to
construct an interpretation for B from an interpretation for A. However, it is possible
if the import morphism is a definitional extension.

Translation morphisms and definitional extensions can be seen as degenerate interpre-
tations (the source embedding morphism is the identity). Propagation of an interpre-
tation along a translation or definitional extension is then a special case of sequential
composition of interpretations.

12 Interpretations

Interpretations generalize morphisms to capture a more general notion of specification
refinement (for an overview of refinement, see 11). We first introduce the syntax for
interpretations in SLANG and then characterize their semantics as model construc-
tions. Subsequently, we discuss the sequential (vertical) and parallel (horizontal)
composition of interpretations. The horizontal compositions, i.e. the gluing of inter-
pretations from pieces leads us to interpretation morphisms, and to a generalization
of interpretations, interpretation schemes. Finally, we show how to lift specification
construction operations to interpretation construction operations.

12.1 Interpretations in SLANG

A prototypical example of a named SLANG interpretation is of the form

interpretation a-to-b: A => B is
mediator A-as-B
dom-to-med s
cod-to-med t

A possible graphical rendering of this construct is as follows:

51

interpretation a-to-b is
s t

A > A-as-B < d— B
dom-to-med cod-to-med

domain mediator codomain

Just like spec morphisms, interpretations have a domain (A) and codomain (B), both
specifications. We refer to the domain and codomain also as the source and target
specification, respectively. The interpretation is defined by a source morphism (s)
whose domain is the source of the interpretations, and a target morphism (<), whose
domain is the target of the interpretation. Both morphisms have the same codomain,
the mediator specification (A-as-B) of the interpretation.

The target morphism must be a definitional extension. The mediator A-as-B "medi-
ates" between source A and target B by adding definitions to B so that "A can be
expressed as Bn via source morphism s.

EXAMPLE 12.1. Here is a prototypical example of the use of an interpretation to
refine a data type specification: the representation of sets by bags with no duplicate
elements.

interpretation SET-TO-BAG-SUBSORT : BASIC-SET => BASIC-BAG is
mediator SET-AS-BAG-SUBSORT
domain-to-mediator {Set -> Set-as-Bag,

empty-set -> empty-set,
singleton -> singleton-set,
union -> set-union,
insert -> set-insert,
empty? -> set-empty?,
in -> set-in}

codomain-to-mediator import-morphism

where the mediating specification is

spec SET-AS-BAG-SUBSORT is
import BASIC-BAG

sort Set-as-Bag
sort-axiom Set-as-Bag = Bag I no-dup?

op no-dup? : Bag -> Boolean

52

definition, of no-dup? is

axiom (equal (no-dup? empty-bag) true)

axiom (equal (no-dup? (insert x B))

(and (no-dup? B) (not (in x B))))

end-definition

op empty-set : Set-as-Bag
op singleton-set : E -> Set-as-Bag
op set-union : Set-as-Bag, Set-as-Bag -> Set-as-Bag
op set-insert : E, Set-as-Bag -> Set-as-Bag
op set-empty? : Set-as-Bag -> Boolean

op set-in : E, Set-as-Bag -> Boolean

definition of empty-set is

axiom (equal ((relax no-dup?) empty-set) empty-bag)
end-definition

definition of singleton-set is

axiom (equal ((relax no-dup?) (singleton-set x)) (singleton x))
end-def init ion

definition of set-union is

axiom (equal (set-union empty-set S2) S2)
axiom (equal

(set-union (set-insert x SI) S2)
(set-insert x (set-union SI S2)))

end-definition

definition of set-insert is
axiom (implies

(in x ((relax no-dup?) S))

(equal ((relax no-dup?) (set-insert x S))
((relax no-dup?) S)))

axiom (implies

(not (in x ((relax no-dup?) S)))

(equal ((relax no-dup?) (set-insert x S))

(insert x ((relax no-dup?) S))))
end-definition

definition of set-empty? is

axiom (equal (set-empty? S) (empty? ((relax no-dup?) S)))
end-definition

53

definition of set-in is

axiom (equal

(set-in x S)
(in x ((relax no-dup?) S)))

end-definition

end-spec

12.1.1 Definitional Extensions

A morphism m:B —> C is a definitional extension if (1) m is injective; (2) each
sort and operation of C outside the image of m C is defined in terms of sorts and
operations within the image m, and (3) every axiom of C outside the image of m is
provable from the definitions plus the translations of the axioms of B along m.

If m: B —»■ C is a definitional extension, we also say that C is a definitional extension
of B. If C is a definitional extension of B, then C is consistent if and only if B is
consistent.

In the present implementation, the test whether a morphism m is a definitional ex-
tension checks properties (1) and (2) above,18 but will fail if additional theorems are
present (as allowed by (3)).

A definitional extension will graphically be shown as

B—**-C

Pushouts (base form of colimit) "preserve" definitional extensions. Consider the
following pushout (colimit) diagram:

B^—C

D^-PE
m

If m is a definitional extension, then the corresponding (cocone) morphism m' is also
a definitional extension. Furthermore, definitional extensions are closed under (se-
quential) composition. Both properties, preservation by pushouts and closure under
composition, are needed for sequential composition of interpretations.

18The system only makes a syntactic check on operation definitions.

54

EXAMPLE 12.2. The taxget morphism in example 12.1 is an import morphism which
is a definitional extension (as is the case with all interpretations). Here is another
example of a definitional extension.

spec SET is

import BASIC-SET

op delete : E, Set -> Set

definition of delete is
axiom (equal (delete x empty-set) empty-set)

axiom (equal (delete x (insert x S)) S)

axiom (implies (not (equal xl x2))
(equal (delete xl (insert x2 S))

(insert x2 (delete xl S))))

end-def init ion

definition set-equal-def of equal is

axiom (iff (equal S T)
(fa (x) (iff (in x S) (in x T))))

end-definition

end-spec

D

12.2 Interpretations as Model Constructions

12.2.1 Semantics of Morphisms

The semantics of a specification A is a class of models, Mod [A]. The semantics of
a morphism a: A -* B is a mapping _|0.:Mod[2?]->Mod[A], called the cr-reduct of
Mod[B] to Mod [A]. Note that the morphism a and its cr-reduct are mappings in
opposite directions.

Each model TUB of a spec B is an assignment of semantic objects, (e.g. sets) and
operations (e.g. functions on sets) to the sorts and operations of B. The cr-reduct of
a model TUB is then defined as follows: for any sort SA in spec A,

mB\ff(sA) = rng((r(sA))

and likewise for each operation fA in spec A,

TTIBIMA) = TUBWA))

55

The (7-reduct indeed "reduces" TUB to a model TUA of A by picking out those compo-
nents present in A and by "forgetting" all other components of B.

Note that in general the cr-reduct transforms each model of B into a model of A,
but not every model of A can necessarily be generated from a model of B. Thus,
in general the image of the cr-reduct is a proper subclass of Mod [A]. In this sense
refinement amounts to a restriction of the class of models considered.

12.2.2 Semantics of Definitional Extensions

For an arbitrary spec morphism a: A —► B the <7-reduct J^rModfi?]—»Modf-A] is
in general neither injective (one-to-one) nor surjective (onto). If a is a definitional
extension then _\„ is bijective, i.e. both injective and surjective, and therefore has an
inverse .+(r:Mod[A]—>Mod[J5], called <r-expansion with

("lflU)+<r = ™>B

(mA+<r)\<T = mA

for all models TUA of A and all models TUB of B.

12.2.3 Semantics of Interpretations

Given the semantics of morphisms and definitional extensions above, we define the
semantics of an interpretation x: A =» B. If a is the source morphism and r the target
morphism (a definitional extension), then the model construction _t„.:Mod[.S] —»-Mod[A]
corresponding to K is the composition of the r-expansion followed by the cr-reduction,
i.e.

-t* = Jo- ° -+T

In words: Given a model TUB of B, we construct a model of A by first expanding TUB

along r and then reducing the result along a.

12.3 Sequential (Vertical) Composition of Interpretations

Given two interpretations i?i:A =>■ B and 7r2:5 =$> C, the sequential composition
7T = 7Ti; 7T2 of 7t"i and 7T2 is obtained as follows (see the diagram below).

56

(71 1

-*• A-as-B *- A-as-B-as-C

-I 4
B ^-*B-as-C

"1
Let <n and r,- be the source and target morphism of m, respectively for i = 1,2. The
pushout of TI and <r2 yields two morphisms r{ and a'2. Since pushouts preserve defi-
nitional extensions (see 12.1.1), T{ is a definitional extension. Definitional extensions
are closed under (sequential) composition. Therefore we can define the composition
of n and 7T2 as the interpretation with source morphism <n; a'2 and target morphism

r[O T219.

Sequential composition of interpretations facilitates incremental, layered refinement.

EXAMPLE 12.3. As an example of the sequential composition of two interpretations,
consider the interpretation of sets as bags in Example 12.1 together with the following
interpretation which refines bags to sequences.

interpretation BAG-TO-SEQ-QUOTIENT : BASIC-BAG => SEQ is
mediator BAG-AS-SEQ-QUOTIENT
domain-to-mediator {Bag -> Bag-as-Seq,

empty-bag -> empty-bag,
singleton -> singleton-bag,
bag-union -> bag-union,
insert -> bag-insert,
empty? -> bag-empty?,
in -> bag-in}

codomain-to-mediator import-morphism

spec BAG-AS-SEQ-qUQTIENT is
import SEQ

sort Bag-as-Seq
sort-axiom Bag-as-Seq = Seq / bag-equal

19 "<T; r" is sequential composition in diagrammatic order: read V then r"
"r o <r" is sequential composition in application order: read "r after <rB

57

end-spec

These two interpretations can be composed to yield an interpretation from sets to
sequences; here are the relevant constructions.

diagram SET-AS-BAG-AS-SEQ-DIAGRAM is
nodes BASIC-BAG, SET-AS-BAG-SUBSQRT, BAG-AS-SEQ-QUOTIENT
arcs BASIC-BAG -> SET-AS-BAG-SUBSORT : import-morphism,

BASIC-BAG -> BAG-AS-SEQ-QUOTIENT :
{Bag -> Bag-as-Seq,
empty-bag -> empty-bag,
singleton -> singleton-bag,
bag-union -> bag-union,
insert -> bag-insert,
empty? -> bag-empty?,
in -> bag-in}

end-diagram

spec SET-AS-BAG-AS-SEQ is
colimit of SET-AS-BAG-AS-SEQ-DIAGRAM

interpretation SET-TO-SUBSORT-OF-SEQ-qUOTIENT : BASIC-SET => SEQ is
mediator SET-AS-BAG-AS-SEQ

domain-to-mediator {Set -> Set-as-Bag,

empty-set -> empty-set,

singleton -> singleton-set,
union -> set-union,
insert -> set-insert,
empty? -> set-empty?,
in -> set-in}

codomain-to-mediator {in -> BAG-AS-SEQ-QUOTIENT.in,

empty? -> BAG-AS-SEQ-QUOTIENT.empty?,
singleton -> BAG-AS-SEQ-QUOTIENT.singleton}

12.4 Parallel (Horizontal) Composition of Interpretations

Analogous to the colimit operation on diagrams over specs and spec morphisms, we de-
fine a colimit operation on diagrams of interpretations and interpretation morphisms.
I.e., the nodes of the diagram are interpretations and the arcs are interpretation
morphisms (morphisms between interpretations).

58

12.4.1 Interpretation Morphisms

A prototypical definition of a named interpretation morphism takes the form

ip-scheme-morphism i-to-j: I -> J is
domain-sm s

mediator-sm m
codomain-sm t

A depiction of this structure is shown below.

domain I A > A-as-B < d- B
I I I I

i-to-j I s| Im It
v v v v

codomain J C > C-as-D < d- D

An interpretation morphism has a domain and codomain, both interpretations. An
interpretation morphism is defined by a triple of morphisms between the domains, me-
diators, and codomains of its source and target interpretation such that the diagram
above commutes.20

12.4.2 Interpretation Colimits21

In figure 13, the interpretation for DO is the colimit (pushout) of the interpretations for
BO and CO glued on the interpretation for AO. This view can be seen by transforming
the diagram in figure 13 into the diagram in figure 14 which is a diagram whose nodes
are (labeled with) interpretations and whose arcs are (labeled with) interpretation
morphisms.

To compute the colimit interpretation (from DO to Dl in the diagram in figure 14), we
transpose the diagram of interpretations into a diagram whose nodes axe specification
diagrams of the same shape and whose arcs are diagram morphisms.22 (figure 15).

20To say that a diagram commutes means that for any two nodes r»i and n-i, and any two paths
pi and p2 between the nodes ri\ and r»2, the functions obtained by composing the functions along
the arcs of the paths p\ and pi are equal.

21This section presupposes some familiarity with category theory.
22I.e. natural transformations between the diagrams (viewed as functors from the common shape

category into the category of specs and spec morphism).

59

Ao- ■ AQüSAX ■Ax

C0 ■ CQQSCI -d Ci

Bo -*■ BQüSB\ ■*- -d Bx

Do -*- DQCLSDI •* d D\

Figure 13: Interpretation Colimit—Spec Diagram

Ao-

Co-

*Ai

Bo-

Do-

=>Ci

=>5i

=>D\

Figure 14: Interpretation Colimit—Interpretation Diagram

do: > doOLsd\ < rf= :dX

Ao- ■*■ AQüSAX ■* rf- ■Ax

Co CQUSCX •*-

Bo ■ BQüSBX ■*- Bx

t* Cx

Figure 15: Interpretation Colimit—Transposed Diagram

60

In this transposed diagram, there are three nodes labeled with spec diagrams and
two arcs labeled with diagram morphisms. That is, dO is a spec diagram with nodes
AO, BO, CO, etc. If dl has a colimit, then we can compute an interpretation for DO
by taking the colimit of each of the diagrams dO, dO-as-dl, and dl to yield the specs
DO, DO-as-Dl, and Dl (as in the diagram in figure 13 above). These three specs,
together the with witness arrows for the universality of DO and Dl with respect to
DO-as-Dl form an interpretation from DO to Dl. We use the following facts about
the category of spec diagrams with common shape:

1. If a diagram dl has a colimit, and tl:dl =>• d2 is a diagram morphism with
all pieces definitional extensions, then dl has a colimit and the unique arrow
between the colimit of dl and the colimit of d2 is a definitional extension.

2. If a diagram dl has a colimit, and £0: dO =» d2 is a diagram morphism, then dO
has a colimit.

12.4.3 Interpretation Schemes and Morphisms

For practical purposes it is not sufficient to cover interpretations by pieces that are
themselves interpretations. We therefore introduce interpretation schemes as a suit-
able generalization of interpretations. Interpretation schemes can be be thought of
as interpretations with holes, or as interpretation specifications.

An interpretation scheme has the same structure as an interpretation, but the target
morphism can be an arbitrary morphism; it need not be a definitional extension.
Interpretation scheme morphisms (ip-scheme morphisms) are as defined in 12.4.1
with ip-schemes as domains and targets.

Colimits of ip-scheme diagrams exist provided the underlying spec diagrams have
colimits. In general, the colimit of an ip-scheme diagram is an interpretation scheme,
not an interpretation.

Note that for arbitrary source spec A and target spec B there is no most general
interpretation but there is a most general interpretation scheme, namely the one
consisting of the inclusion morphisms from A and B into the coproduct (disjoint
union) of A and B.

12.5 Lifting Spec Operations to Interpretation Operations

Any specification morphism m can be "lifted" to an interpretation by taking m as
the source morphism and the identity on the codomain of m as the target morphism.
(Note that the identity is a definitional extension.)

61

s
morphism A m > B

I
v st

interpretation. A m > B < id B

A definitional extension can be lifted to an interpretation by taking the identity on
its domain as the source morphism:

t
definitional ezt. B < d A

I
v st

interpretation B id > B < d A

62

Translation of a spec A results in a spec B and a spec isomorphism r from A to B.
Isomorphisms are trivial definitional extensions. Hence, by the above on definitional
extensions, translations can be lifted to interpretations.

Sequential composition of interpretations then yields rules for propagating interpre-
tations along morphisms in the following situations:

(1) A (2) A => B (3) B => C
I I I
I Id
I I I

V V V

B => C C A

In each case, sequential composition produces an interpretation from A to C.

13 Putting Code Fragments Together

When specifications are sufficiently refined, they can be converted into programs
which realize them. This involves a switching of logics. We use the theory of logic
morphisms described in [10]. We will confine our attention to entailment systems
and their morphisms, rather than logics (which include models and institutions).
Entailment systems are sufficient for the purpose of code generation.

13.1 Entailment Systems and their Morphisms

An entailment system is a 3-tuple (Sig, sen, h) consisting of a category Sig of sig-
natures and signature morphisms, a functor sen: Sig —*■ Set which assigns to each
signature a set of "sentences", and a function h which associates to each signature
an entailment relation (satisfying the expected axioms).

To map one entailment system into another, we map the syntax (i.e., signatures and
sentences) while preserving entailment. Preservation of entailment represents the
relevant correctness criterion for translating specifications from one logic to another.
Note that this is similar to the correctness criterion for refinement within a single
logic.

63

13.2 Translating from Slang to Lisp

The specification language used in SPECWARE is called SLANG. We distinguish
SLANG because SPECWARE may have multiple back-ends, Lisp, C, Ada, etc., each
with its own logic.

We consider a sub-logic of SLANG, called the abstract target language (for LISP); there
is one sub-logic for each language into which SLANG specifications can be translated.
We will denote this sub-logic by SLANG . The sub-logic SLANG is defined by
starting with a set of basic specifications, such as integers, sequences, etc., which have
direct realizations in the target language. All specifications which can be constructed
from the base specifications, with the following restrictions, are then included in the
sub-logic:

• for colimit specifications, only injective morphisms are allowed in the diagram;23

• all definitions must be constructive, i.e., they must either be explicit definitions
(e.g., (equal (squaxe z) (times x x))), or, if they are recursive, they must
be given as conditional equations using a constructor set.

The goal of the refinement process is to arrive at a sufficiently detailed specification
which satisfies the restrictions above.

The sub-logic SLANG will be translated into a functional subset of LISP. TO facili-
tate this translation, we couch this subset as an entailment system, denoted LISP .
The signatures of this entailment system are finite sets of untyped operations and the
sentences are function definitions of the form

(defun f (x)
(cond ((p x) (g x))

and generated conditional equations of the form

(if (p x) (equal (f x) (g x))).

The entailment relation is that of rewriting, since theories in LISP can be viewed
as conditional-equational theories over the simply-typed A-calculus.

In Figure 16, we show a fragment of an entailment system morphism from SLANG

to LISP . Note, in particular, the translations from and to empty specifications.
23For colimit specifications which can be construed as "instantiations" of a "generic" specification,

the morphisms from the formal to the actual may be non-injective.

64

The set of sentences in the SLANG specification INT translates to the empty set; this
is because integers axe primitive in LISP. Similarly, the empty SLANG specification
translates to a non-empty LISP specification; this is because some built-in operations
of SLANG are not primitive in LISP.

13.2.1 Translating Constructed Sorts

There are numerous details in entailment system morphisms such as that from SLANG
-

"

to LISP—. We will briefly consider the translation of constructed sorts. Subsorts can
be handled by representing elements of a subsort by the corresponding elements of the
supersort. Similarly, quotient sorts can be handled by representing their elements by
the elements of the base sort. Sentences have to be translated consistently with such
representation choices: e.g., injections associated with subsorts ((relax p)) and the
surjections associated with quotient sorts ((quotient e)) must be dropped. Also,
the equality on a quotient sort must be replaced by the equivalence relation defining
the quotient sort.

In Figure 17, we show the representation of coproduct sorts by variant records. This
translation exploits the generality of entailment system morphisms: a signature is
mapped into a theory.

13.3 Translation of Colimits: Putting Code Fragments To-
gether

If an entailment system morphism is defined in such a way that it is co-continuous,
i.e., colimits are preserved, then we obtain a recursive procedure for translation,
which is similar to that of refinement: the code for a specification can be obtained by
assembling the code for smaller specifications which cover it.

The entailment system morphism from SLANG
-
" to LISP

--
 briefly described above

does preserve colimits because of our restriction to injective morphisms. In general,
this is true for most programming languages because they only allow imports, which
are inclusion morphisms.

65

SLANG" LISP

spec SLANG-BASE is
ops implies, iff
(defun implies (x y)

(or (not x) y))
(defun iff (x y)

(or (and x y)
(and (not x) (not y))))

end-spec
INT SLANG-BASE

spec F00 is
import INT
op abs : Int -> Int
definition of abs is

axiom
(implies (ge x zero)

(equal (abs x) x))
axiom
(implies (It x zero)

(equal (abs x) (minus zero x)))
end-definition
end-spec

spec F00' is
import SLANG-BASE
op abs
(defun abs (x)

(cond ((>= x 0) x)
(« x 0) (-0 x))))

end-spec

Figure 16: Fragment of entailment system morphism from SLANG— to LISP—

spec STACK is
import INT

sort-axiom
Stack = E-Stack + NE-Stack

spec STACK' is
import SLANG-BASE
op size, E-Stack?, NE-Stack?
(defun E-Stack? (s)

(= (car s) 1))

op size : Stack -> Int
definition of size is

axiom
(equal (size ((embed 1) s))

zero)
axiom
(equal (size ((embed 2) s))

(succ (size (pop s))))
end-def init ion
end-spec

(defun size (s)
(cond

((E-Stack? s) 0)
((NE-Stack? s)

(1+ (size (pop (cdr s)))))
))

end-definition
end-spec

Figure 17: The representation of coproduct sorts as variant records

66

Part IV

Assessment

14 Conclusions

14.1 Focus and Results

The primary focus of this effort was on the basic concepts and operations that enable a
scalable technology for system synthesis. Synthesis technology is inherently complex;
the primitive concepts must therefore be both simple and general so that tractable
implementations of powerful, but usable tools can be constructed.

SPECWARE is intended as a system for composing software: specifications, refine-
ments, and code. Composition is crucial both for complexity management and reuse.
SPECWARE therefore provides operations for composing specifications from pieces
(smaller specifications), for constructing refinements of specification from refinements
of the pieces, and for constructing system code from code modules.

The presence of both parallel and sequential refinement composition allows system
development from parts through several architectural layers, from composition of an
initial specification to generation of a system of code modules, e.g. in Ada, linked
by a precise, richly structured design record. Such design records enable accurate
requirements traceability and controlled system evolution as well as high degree of
reuse.

14.2 Beyond DTRE, KIDS, and REACTO

At present, not all of the capabilities for which the earlier Kestrel prototypes present a
proof of concept have been realized in SPECWARE. SPECWARE, however, does present
a carefully constructed, coherent framework for the integration of these capabilities,
often in more general yet simpler form.

DTRE The data type refinement capabilities of DTRE have been fully recreated in a
generalized form in SPECWARE. The underlying theory has been significantly refined.
The notions of parallel composition of interpretations, interpretation Schemas, and
parameterized interpretations are original results of this effort. It would useful to
revisit and incorporate the automated data structure selection ideas explored in Dss.

67

KIDS The theories in KIDS axe theories about the REFINE language; in SPECWARE,

the specification logic is completely independent of any target language. While the
development process in KlDS includes data refinement in principal, such a capabil-
ity does not exist in the implemented KIDS system. The specification framework of
SPECWARE is richer than that of KIDS, and provides a much richer framework for
the representation of taxonomic design knowledge. SPECWARE is now at a stage at
which, after careful analysis, adding KlDS' automated algorithm design and optimiza-
tion capabilities will lead to a cleaner and more general re-incarnation of the KIDS

technology. In particular, first attempts to perform algorithm design in the presence
of data type refinement have led to the discovery of subtle interactions.

REACTO There are several ways of adding a state machine formalism to SPECWARE.

One of the most attractive approaches is to specify state machines as SLANG theories.
This creates the opportunity to use the refinement machinery of SPECWARE to derive
different representations for the finite-state control. This degree of system design
flexibility is not present in the original prototype.

We believe that SPECWARE represents a significant advance toward scalable technol-
ogy for system synthesis.

68

References

[I] BALZER, R., CHEATHAM, T. E., AND GREEN, C. Software technology in the
1990's: Using a new paradigm. IEEE Computer 16, 11 (November 1983), 39-45.

[2] BLAINE, L. Semi-automatic data structure selection. Tech. rep., Kestrel Insti-
tute, August 1990. Kestrel Institute Internal Report.

[3] BLAINE, L., AND GOLDBERG, A. Verifiably correct data type refinement. Tech.
rep., Kestrel Institute, November 1990.

[4] BLAINE, L., AND GOLDBERG, A. DTRE - a semi-automatic transformation
system. In Constructing Programs from Specifications, B. Möller, Ed. North-
Holland, Amsterdam, 1991, pp. 165-204.

[5] GILHAM, L.-M., GOLDBERG, A., AND WANG, T. C. Toward reliable reactive
systems. In Proceedings of the 5th International Workshop on Software Specifi-
cation and Design (Pittsburgh, PA, May 1989).

[6] GOLDBERG, A. Reusing software developments. In Proceedings of the ACM
SIGSOFT 4th Symposium on Software Development Environments (Irvine, CA,
December 6-8, 1990), pp. 107-119.

[7] HAREL, D. Statecharts: A visual approach to complex systems. Science of
Computer Programming 8, 3 (June 1987), 231-274.

[8] JÜLLIG, R. Applying formal software synthesis. IEEE Software 10, 3 (May
1993), 11-22. (also Technical Report KES.U.93.1, Kestrel Institute, May 1993).

[9] JÜLLIG, R., AND SRINIVAS, Y. V. Diagrams for software synthesis. In Proceed-
ings of the 8th Knowledge-Based Software Engineering Conference (Chicago, IL,
September 20-23, 1993), IEEE Computer Society Press, pp. 10-19.

[10] MESEGUER, J. General logics. In Logic Colloquium '87, H.-D. Ebbinghaus et al.,
Eds. North-Holland, 1989, pp. 275-329.

[II] SMITH, D. R. Derived preconditions and their use in program synthesis, LNCS
138. In Sixth Conference on Automated Deduction (Berlin, 1982), D. W. Love-
land, Ed., Springer-Verlag, pp. 172-193.

[12] SMITH, D. R. KIDS - a semi-automatic program development system. IEEE
Transactions on Software Engineering Special Issue on Formal Methods in Soft-
ware Engineering 16,9 (September 1990), 1024-1043.

[13] SRINIVAS, Y. V., AND JÜLLIG, R. Specware:tm formal support for composing
software. Tech. Rep. KES.U.94.5, Kestrel Institute, December 1994. To appear in
Proceedings of the Conference on Mathematics of Program Construction, Kloster
Irsee, Germany, July 1995.

69

[14] WANG, T. C. Shd-prover at University of Texas at Austin. In Proceedings of
8th Conference on Automated Deduction, J. H. Siekmann, Ed. Springer-Verlag,
Berlin, 1986, pp. 707-708. Lecture Notes in Computer Science, Vol. 230.

[15] WANG, T. C, AND BLEDSOE, W. W. Hierarchical deduction. Journal of
Automated Reasoning 3, 1 (March 1987), 35-77.

[16] ZIMMERMANN, P., AND ZIMMERMANN, W. The automatic complexity analysis
of divide-and-conquer algorithms. Tech. Rep. INRIA-RR-1134, INRIA, Decem-
ber 1989.

70

Part V

Appendices

71

A SLANG Syntax

In this appendix, we define the syntax of SLANG. Readers familiar with REFINE may
also wish to consult the file <slang-top-level>/core4/code/language/spec-grammar. re.
As with the rest of the language manual, the grammar is divided into a core part and
an extension for refinements.

A.l Notation

To describe the syntax, we use BNF augmented with regular expression constructs.
Non-terminals are enclosed in angle brackets, "(...)"• Terminals are indicated by
typewriter font. Syntax alternatives are separated by "|". Parentheses, "(...)", are
used for grouping, e.g., for inline alternatives. Optional entities are enclosed in square
brackets, "[...]". A "*" after a syntactic element indicates zero or more repetitions of
that element; a "+" indicates one or more repetitions.

A.2 Core Slang Grammar

A.2.1 Top-Level Objects

The top-level objects of CORE SLANG are specifications, morphisms, and diagrams.
Each such object class appears twice in the grammar, once with the prefix "global-"
and once with the prefix "local-". Global objects must be named; local objects must
not be named. Global objects can only appear at the top-level; local objects can
appear within other expressions.

(top-level-slang-object) —►
(global-spec) | (global-signature-morphism) | (global-sm-diagram)

A. 2.2 Specifications

(global-spec) —►
spec (symbol) (is | ■)

[(import-declaration)]
(development-element)*

end-spec

spec (symbol) (is | -) (spec-operation)

72

A.2.3 Import Declarations

(import-declaration.) —►
import (spec-term) (, (spec-term))*
import (diagram-term)

A.2.4 Specification Elements

(development-element) —►
(sort-declaration) | (sort-axiom) | (op-declaration) |
(constmctor-set) | (theorem) | (definition)

(sort-declaration) —► (sorts | sort) (spec-sort) (, (spec-sort))*

(spec-sort) —► (symbol)

(sort-axiom) —► sort-axiom (spec-sort-ref) = (spec-sort-term)

(op-declaration) —► (op | const) (symbol) : (spec-sort-term)

(constructor-set) —►
constructors { (spec-op-ref) (, (spec-op-ref))* } construct (spec-sort-term)

(theorem) —►(axiom | theorem)[(symbol) (is | =)] (spec-op-term)

(definition) —►
definition [(symbol) [of (spec-op-ref)] (is | =)]

(definition-clause)+

end-definition

(definition-clause) —>■ (theorem)

73

A.2.5 Sort Terms

(spec-sort-term) —►
(spec-sort-ref) | (spec-sort-function) | (spec-sort-subsort) |
(spec-sort-quotient) | (spec-sort-coproduct) | (spec-sort-product)

(spec-sort-ref) —► (qualified-name)

(spec-sort-function) —► [(spec-sort-term)] -> (spec-sort-term)

(spec-sort-subsort) —► (spec-sort-term) I (spec-op-term)

(spec-sort-quotient) —► (spec-sort-term) / (spec-op-term)

(spec-sort-coproduct) —> [] | (spec-sort-term) (+ (spec-sort-term))+

(spec-sort-product) —► () | (spec-sort-term) (, (spec-sort-term))+

A.2.5.1 Precedence and associativity for sort terms. The different opera-
tors for constructing sort terms are listed below in the order of increasing precedence.
Precedence can be overridden with parentheses.

precedence for (spec-sort-term)
brackets (matching)
same-level -> associativity right
same-level , + associativity none
same-level I /

A.2.6 Terms and Formulas

(spec-op-term) —► .
(spec-op-ref) | (spec-op-operation) | (spec-op-binding-operation) | (spec-op-product)

(spec-op-ref) —► (qualified-name) [: (spec-sort-term)]

(spec-op-operation) —►
((spec-op-term) (spec-op-term)*) |
((project | embed) (positive-integer))

74

(spec-op-binding-operation) —►
((spec-op-binding-rator) ((bound-var) *) (spec-op-term))

(spec-op-binding-rator) —► (fa | ex | lambda)

(bound-var) —► (symbol) [: (spec-sort-term)]

(spec-op-product) —► < (spec-op-term)* >

A.2.7 Specification Terms

Specification terms are terms which denote specifications. Generally, terms are of
three kinds: references to named objects, operations, and explicit terms for anony-
mous (or local) objects.

(spec-term) —► (spec-ref) | (local-spec) | (spec-operation)

(spec-ref) —> (symbol)

(local-spec) —►
spec

[(import-declaration)]
(development-element)*

end-spec

(spec-operation) —► (spec-translation) | (spec-colimit)

(spec-translation) —► translate (spec-term) by { [(sm-rules)] }

(spec-colimit) —► colimit of (diagram-term)

A.2.8 Specification Morphisms

(global-signature-morphism) —►
morphism (symbol) : (spec-term) -> (spec-term) (is | =) { [(sm-rules)] }

(sm-rules) —► (sm-rule) (, (sm-rule))*

(sm-rule) —► (sort-or-op-ref) -> (sort-or-op-ref)

(sort-or-op-ref) —► (qualified-name) | ((qualified-name) : (spec-sort-term))

75

A.2.9 Specification Morphism Terms

(sm-term) —► (sm-ref) | (local-signature-morpbism) | (sm-operation)

(sm-ref) —► (symbol)

(local-signature-morpbism) —► •
[morphism (spec-term) -> (spec-term)] { [(sm-rules)] }

(sm-operation) —►
identity-morphism | translation-morphism [import-morphism |
cocone-morphism from (symbol)

A. 2.10 Diagrams

(global-sm-diagram) —►
diagram (symbol) (is | =)

[nodes (sm-node) (, (sm-node))*]
[arcs (sm-arc) (, (sm-arc))*]

end-diagram

A.2.11 Diagram Terms

(diagram-term) —► (diagram-ref) | (local-sm-diagram)

(diagram-ref) —► (symbol)

(local-sm-diagram) —►
diagram

[nodes (sm-node) (, (sm-node))*]
[arcs (sm-arc) (, (sm-arc))*]

end-diagram

A.2.12 Diagram Elements

(sm-node) —► [(symbol) :] (spec-term)

(sm-arc) —► [(symbol) :] (sm-node-ref) -> (sm-node-ref) : (sm-term)

(sm-node-ref) —+ (symbol)

76

A.2.13 Qualified Names

(qualified-name) —► ((node-name) .)* (sort-or-op-name)

(node-name) —► (symbol)

(sort-or-op-name) —► (symbol)

A.2.14 Simple Names

(symbol) —► (symbol-start-char) (symbol-continue-char)*

(symbol-staxt-char) €
♦abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ

(symbol-continue-char) €
-*abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMN0PQRSTUVWXYZ1234567890?!

A.2.15 Comments

The character "'/." indicates the start of a comment; everything which follows until the
end of the line is ignored. Larger pieces of text can be commented out by enclosing
them in "# 11... 11 #"; these characters function as brackets and can be nested.

A.3 Refinement Constructs in Slang

In addition to specifications, morphisms, and diagrams, there are two additional top-
level constructs in SLANG: interpretation schemes and interpretation scheme mor-
phisms.

(top-level-slang-object) —>• (global-ip-scheme) | (global-ips-morphism)

A.3.1 Interpretations and Interpretation Schemes

(global-ip-scheme) -—►
(interpretation | ip-scheme) (symbol) : (spec-term) => (spec-term) (is | =)

mediator (spec-term)
(dom-to-med | domain-to-mediator) (sm-term)
(cod-to-med | codomain-to-mediator) (sm-term)

77

A.3.2 Interpretation (Scheme) Terms

(ips-tenn) —► (ips-ref) | (local-ip-scheme)

(ips-ref) —► (symbol)

(local-ip-scheme) —-*
(interpretation | ip-scheme) [(spec-term) => (spec-term)]

mediator (spec-term)
(dom-to-med | domain-to-mediator) (sm-term)
(cod-to-med | codomain-to-mediator) (sm-term)

A.3.3 Interpretation (Scheme) Morphisms

(global-ips-morphism) —►
ip-scheme-morphism (symbol) : (ips-term) -> (ips-term) (is | =)

domain-sm (sm-term)
mediator-sm (sm-term)
codomain-sm (sm-term)

A.3.4 Interpretation (Scheme) Morphism Terms

(ipsm-term) —► (ipsm-ref) | (local-ips-morphism)

(ipsm-ref) —► (symbol)

(local-ips-morphism) —►
ip-scheme-morphism

domain-sm (sm-term)
mediator-sm (sm-term)
codomain-sm (sm-term)

78

Index

This index contains entries for the reserved words and nonterminals in the BNF
description of SLANG in addition to entries for the main body of the text. The
entries for the nonterminals and reserved words precede the standard entries.

There are three levels of indexing: main entry; subentry; and subsubentry. Also, "-"
is sometimes used as a surrogate for the main entry.

(bound-var), 75
(constructor-set), 73
(definition-clause), 73
(definition), 73
(development-element), 73
(diagram-ref), 76
(diagram-term), 76
(global-ip-scheme), 77
(global-ips-morphism), 78
(global-signature-morphism), 75
(global-sm-diagram), 76
(global-spec), 72
(import-declaration), 72
(ips-ref), 78
(ips-tenn), 77
(ipsm-ref), 78
(ipsm-term), 78
(local-ip-scheme), 78
(local-ips-morphism), 78
(local-signature-morphism), 76
(local-sm-diagram), 76
(local-spec), 75
(node-name), 77
(op-declaration), 73
(qualified-name), 76
(sm-arc), 76
(sm-node-ref), 76
(sm-node), 76
(sm-operation), 76
(sm-ref), 76
(sm-rule), 75
(sm-rules), 75
(sm-term), 75

(sort-axiom), 73
(sort-declaration), 73
(sort-or-op-name), 77
(sort-or-op-ref), 75
(spec-colimit), 75
(spec-op-binding-operation), 74
(spec-op-binding-rator), 74
(spec-op-operation), 74
(spec-op-product), 75
(spec-op-ref), 74
(spec-op-term), 74
(spec-operation), 75
(spec-ref), 75
(spec-sort-coproduct), 74
(spec-sort-function), 73
(spec-sort-product), 74
(spec-sort-quotient), 74
(spec-sort-ref), 73
(spec-sort-subsort), 73
(spec-sort-term), 73
(spec-sort), 73
(spec-term), 75
(spec-translation), 75
(symbol-continue-char), 77
(symbol-start-char), 77
(symbol), 77
(theorem), 73
(top-level-slang-object), 72, 77
arcs, 76
axiom, 73
by, 75
cocone-morphism, 76
cod-to-med, , 578 77
codomain-sm, 78
codomain—to-mediator, ,578 77

79

colimit, 75

const, 73

construct, 73

constructors, 73

definition, 73

diagram, 76

dom-to-med, ,578 77

domain-sm, 78

domain-to-mediator, , 578 77

embed, 74

end-definition, 73
end-diagram, 76
end-spec, 72, 75
ex, 74
fa, 74
from, 76
identity-morphism, 76
import, 72
import-morphism, 76

interpretation, , 578 77

ip-scheme, ,578 77
ip-scheme-morphism, 78
is, ,573 72, -578 75
lambda, 74
mediator, , 578 77
mediator-sm, 78
morphism, ,576 75
nodes, 76
of, 73, 75
op, 73
project, 74
sort, 73
sort-axiom, 73
sorts, 73
spec, 72, 75
theorem, 73
translate, 75
translation-morphism, 76

arcs, 40
axiom, 30

bound-variable, 26

character
allowed in names, see name,allowed

character
special, 20

cocone
cocone morphism, , 543 42

cocone-morphism, see morphism term
colimit, 41

algorithm, 43
apex, 42
cocone, see cocone
equivalence class, 43, 45
example, 41, 44, 46
sort-axiom, 44
spec building operation

arg is a diagram, 41
value is a spec, 41

constructors, 31
rreeness, 32
induction-axiom, 31
reachability, 32

declaration, 21
definition, 31

name, 31
diagram, 18, 36

arcs labeled with morphisms, 36
nodes labeled with specs, 36

equality, 26

formula, 29
quantified, 26

function, 29
arguments

0-ary, 29
n-ary, 29
unary, 29

value
multi-valued, 29
single-valued, 29

identity-morphism, see morphism term
import, 18
import-morphism, see morphism term
induction-axiom

example, 32
instantiation, 18

80

interpretation, , 551 50 name, 19
codomain, 52 allowed character, 20, 77
composition bnf, 77

horizontal, see-,composition,parallel case insensitive, 20
parallel, 58 disambiguate, , 520 19
sequential, 54, 56 global, 19
vertical, see -,composition,sequential local, 20

domain, 52 qualified, see qualified name
generalizes morphisms, 50 syntax, 20
interpretation morphism, 58 namespace, 19
mediator spec, 52 nodes,39
source morpnism, 52
source spec, 52 operation, 24

target morpnism, 52 built-in, 25

is a dem extn, 52 apply, 26
target spec, 52 Boolean, 25

interpretation scheme, 61 embed, 27
morpnism, 61 lambda, 26

projection, 27
keywords quantifiers, 26

list of keywords, 20 quotient, 27
relax, 28

lambda calculus tuple, 27
typed, 18, 29 const, 25

extensions in SLANG, 18 constants, 25
lifting constructors, 31

spec ops to interpretation ops, 61 nullary, 25
logic op, 25

higher order, 18 rank,25
of SLANG, 18 within specifications, 24

morphism, 18, 33 parameterization, 18
definitional extension, 54
local, 35 qualified name, 45
source specification, 33 example, 46
target specification, 33
translation of built-ins, 34 refinement, 18

translation of constructed sorts, 34 composition

morphism term, 35 parallel, 49
cocone-morphism, 36 sequential, 49

identity-morphism, 36 development by, 49
import-morphism, 36 of structured specs, 50

translation-morphism, 36 colimit, 50

constructed by spec-building ops, 35 import, 51
translate, 51

problem reduction as, 49
renaming map, see translate,renaming map

81

semantics
interpretation, 50, 56
morphism, 50

a-reduct, 55
defh extn, 56

refinement, 50
signature, 21
sm-rule, 34
sort, 21

built-in, 25
constructor, 21
coproduct, 27

empty, 23
declaration, 21
equality is structural, 24
examples, 23
function

built in operations, 26
precedence, 23
product, 27

empty, 23
quotient, 27
sort-algebra is free, 24, 44
sort-axiom, 24
sort-term, 23
subsort, 28

specification, 18, 21
basic, 21
definitional extension, 54
specification constructors, 21
specification-element, 21

specification building operation
colimit, see colimit
import, see import
translate, see translate

specification diagram, see diagram
specification morpnism, see morpnism

term, 29
examples, 30

theorem, 30
theory, 21

presentation, 21
top-level, 19

translate, 40
translate, 40
morpnism constructed by, 41
renaming map

can create ambiguity, 41
cannot rename axioms etc, 40

translation-morphism, see morpnism term
tuple

for multi valued returns, 29

82

Rome Laboratory

Customer Satisfaction Survey

RL-TR-

Please complete this survey, and mail to RL/IMPS,
26 Electronic Pky, Griffiss AFB NY 13441-4514. Your assessment and
feedback regarding this technical report will allow Rome Laboratory
to have a vehicle to continuously improve our methods of research,
publication, and customer satisfaction. Your assistance is greatly
appreciated.
Thank You

Organization Name: (Optional)

Organization POC: (Optional)

Address:

1. On a scale of 1 to 5 how would you rate the technology
developed under this research?

5-Extremely Useful 1-Not Useful/Wasteful

Rating

Please use the space below to comment on your rating. Please
suggest improvements. Use the back of this sheet if necessary.

2. Do any specific areas of the report stand out as exceptional?

Yes No

If yes, please identify the area(s) , and comment on what
aspects make them "stand out."

3. Do any specific areas of the report stand out as inferior?

Yes No

If yes, please identify the area(s), and comment on what
aspects make them "stand out."

4. Please utilize the space below to comment on any other aspects
of the report. Comments on both technical content and reporting
format are desired.

MJ.S. GOVERNMENT PRINTING OFFICE: 1996-710-126-20101

MISSION

OF

ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

