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1     Introduction 

This document describes the background, motivation, and results of the Performance- 
Optimized Ada Assistant (POAA) effort sponsored by Rome Laboratories under the 
KBSA program. 

This effort builds upon and continues Kestrel's research into knowledge-based soft- 
ware synthesis technology, i.e. the development of methods and tools that exploit a 
formal representation of the software process to produce high-quality software via an 
automated, reliable, machine-supported process. 

An initial goal of the POAA effort was the integration of several Kestrel-developed 
prototype systems embodying different software specification, synthesis, and opti- 
mization capabilities. The feasibility of the goal was strongly indicated by the emer- 
gence of a common conceptual basis. The pay-off of the integration lies in the leverage 
achieved through the synergy of the different capabilities. 

This initial goal was achieved one year into the project. The resulting integrated 
system demonstrated the breadth and interplay of software synthesis capabilities on 
a highly stylized air traffic control problem (cf. [8]). 

This integration effort also raised some serious questions about the viability of in- 
tegrating the existing prototypes into a robust, usable system. Each component 
prototype came with its own set of engineering and usability problems. In addition, 
a perhaps even more serious obstacle became clear: the component systems without 
a doubt shared a common conceptual basis but the common conceptual primitives 
were not apparent in the implementation or were used under somewhat differing as- 
sumptions. 

Because of the inherent complexity of software synthesis technology conceptual econ- 
omy and clarity is a necessary pre-requisite for robust tools with which users can 
cognitively cope. Therefore the engineering of the primitive concepts and their real- 
ization within a robust system became the focus for the remainder of the project. An 
initial vision of how the existing capabilities would be recast using these primitives is 
laid out in [9]. 

The careful elaboration of the conceptual primitives lead to the specification language 
SLANG, and the development of the SPECWARE system that provides SLANG-based 
tools. The present SPECWARE implementation should be thought of as a system ker- 
nel: it provides basic objects and operations directly corresponding to the conceptual 
primitives. A more theoretical account of SLANG and SPECWARE is given in [13]. 

This document is divided in four parts. 

Part I gives a summary description of the foundation and capabilities of the proto- 
types on which the effort was initially based. 



Part II introduces the basic concepts of the specification language SLANG, i.e. spec- 
ifications, specification morphisms, and diagrams of specifications and specification 
morphisms. 

Part III develops from the basic building blocks in Part II a notion of specification 
refinement. It also gives brief description of the approach that we adopted to code 
generation. For simplicity of exposition, the description is given using LISP as a target 
language. As part of the SPEC WARE prototype we developed an initial ADA backend 
using the same principles. 

A summary of the syntax of SLANG appears in the appendix. 

Part IV gives a retrospective on the effort, summarizes the achievements, and gives 
an outlook on future work. In particular, we briefly discuss to what extent the 
capabilities of the earlier prototypes have been recovered in SPECWARE and which 
features remain to be recreated in the future. 



Part I 

Description of Earlier Prototypes 

KlDS, DTRE, and REACTO KIDS, DTRE, and REACTO constitute the knowledge- 
intensive components of the initial POAA. KlDS is primarily oriented toward creating 
algorithms given an input/output relation and toward optimizing algorithms in an 
applicative framework. DTRE is a data type refinement environment that supports 
the implementation of the Refine high-level data types used in both KIDS and RE- 
ACTO. DTRE'S partially implemented twin component Dss (data structure selection) 
supports the automated selection of date type implementations. REACTO'S focus is 
the specification and development of reactive systems, i.e. systems that continually 
react to external stimuli (inputs) by producing outputs and changing their internal 
state. Embedded systems fall in this class, e.g. avionics or air traffic control systems. 

2     KlDS: Algorithm Synthesis 

2.1    Overview 

The construction of a computer program is based on several kinds of knowledge: 
knowledge about the particular problem being solved, general knowledge about the 
application domain, programming knowledge peculiar to the domain, and general 
programming knowledge about algorithms, data structures, optimization techniques, 
performance analysis, etc. KIDS (Kestrel Interactive Development System [12]) is an 
ongoing effort to formalize and automate various sources of programming knowledge 
and to integrate them into a highly automated environment for developing formal 
specifications into correct and efficient programs (c.f. [1]). 

KIDS provides tools for performing deductive inference, algorithm design, expression 
simplification, finite differencing, partial evaluation, and other transformations. The 
KIDS tools serve to raise the level of language from which the programmer can obtain 
correct and efficient executable code through the use of automated tools. 

In interaction with KIDS the user may freely select any of the design, optimization 
or inference functions that are meaningful within the given context. KlDS provides 
context-sensitive operation filtering, argument type checking and online help. When 
developing an algorithm with KIDS, the user typically proceeds through several con- 
ceptual phases (which may be interleaved); these are depicted in Table 1. The lan- 
guage used in algorithm design is currently an extended functional subset of REFINE. 



Development Step Description Examples 
Develop 
domain theory- 

Define types and operations 
Derive laws 

Costas array theory 
k-queens theory 

Create 
specification 

Define problem in terms of 
underlying theory- 

Find one Costas array 
Find all Costas arrays 

Apply 
design tactic 

Select tactic from menu 
Apply to chosen problem spec 

Global search tactic 
Divide&Conquer tactic 

Perform 
Optimizations 

Select optimiz'n from menu 
Apply to chosen expression 

Simplification 
Finite Differencing 

Select 
data type refinements 

Annotate variables with 
implementation directives 

Cf. section 3 
sets to bitvectors 

Compile Choose target language 
Invoke compiler 

Common Lisp 
Ada 

Table 1: KiDS algorithm design phases 

2.2     Domain Theories and Problem Specifications 

KIDS has a basic capability for creating and managing domain theories in KIDS. In 
KIDS' theory development mode users can enter definitions of new functions or create 
new definitions by abstraction on existing expressions. The inference system can be 
used to verify common properties such as associativity, commutativity, or idempo- 
tence. More interestingly, we have used RAINBOW II (cf. below) to automatically 
derive distributive and monotonicity laws. A theory is comprised of a list of imported 
theories, a set of introduced types, new operations and their definitions, laws, and 
rules. A hierarchic library of theories is maintained with importation as the principle 
link. Figure 1 shows the definition of four concepts from the domain theory for the 
fc-queens problem. 

Figure 2 shows the formalization (specification) of the fc-queens problem. 

2.3    Directed Inference 

Deductive inference is necessary for applying general knowledge to particular prob- 
lems. The RAINBOW II system performs a form of deduction called directed infer- 
ence. In directed inference, a source term (or formula) is transformed into a target 
term (or formula) bearing a specified relationship to the first [11]. As special cases it 
can perform first-order theorem-proving and formula simplification. It also allows the 
inference of sufficient conditions (antecedents) or necessary conditions (consequents) 
of a formula. This flexibility allows us to formulate a variety of design and optimiza- 



injedive(M: seq(integer), S: set(integer)): boolean 
= range(M) C 5 

and V{i,j)(i € domain(M) and j e domain(M) and i ^ ;' =» M(i) ^ M(j)) 

bijective(M: seq(integer), S: set(integer)): boolean 
= injedive(M, S) and range(M) = S 

no.two. queens _per_up_diagonal(S: seqiinteger)): boolean 
- V{hj)(i € domain(S) and j € domain(S) and i ^ j => (5(i) - i / S(j) - j)) 

no_two_queens_per_down_diagonal(S: seq(integer)): boolean 
= ^(i, j)(i € domain(S) and j € domain(S) and z ^ ;  =>■ (5(z) + i ^ S(j) + j)) 

Figure 1: Fragment of the k-queens theory- 

function :: Queens :: (k::: integer)::: set(seq(integer)) 
where :: 1 < k 
returns :: {assign :: | :: bijedive(assign.,:: {1..&}) 

and:: no_two_queens_per_up_diagonal(assign) 
and:: no_two_queens_per_down_diagonal(assign)}. 

Figure 2: Specification of k-queens problem 



tion problems as inference tasks. Directed inference can play a constructive role in 
design rather than simply verifying work done by the user or by some system. 

The conceptual coherence of KIDS derivations depends partly on the large "grain-size" 
of the KIDS operations and their high level of automation (effectiveness). Directed 
inference provides a technical unifying foundation. Term simplification is naturally 
performed as the search for a minimal complexity equivalent term. Finite differencing 
can be decomposed into an abstraction operation followed by simplification of some 
subterms. Partial evaluation and specialization are both decomposed into an unfold 
step followed by simplification. Algorithm design tactics make repeated use of directed 
inference - for example, the global search tactic requires the derivation of a necessary 
condition in order to obtain a search tree pruning mechanism. Data type refinement 
uses inference to check applicability conditions by deriving properties such as upper 
and lower bounds of sets. The coherence of this view of the various development steps 
stems from the common underlying set of rules (axioms) used by the inference system. 
Furthermore, all of these development operations mainly depend on the existence of 
distributive, monotonicity, and other laws concerning the preservation of structure 
under change. 

2.4    Algorithm Design 

KIDS supports algorithm design as a process of interpreting, intuitively and techni- 
cally, a given problem as an instance of a particular class of algorithms. Associated 
with each algorithm class are program schemes (proved correct), that under the given 
interpretation yield programs that solve the specified problem. 

Figure 3 shows the global search theory, i.e. the operations for creating and splitting 
search spaces and for extracting solutions, and axioms that govern the interaction of 
the operations. 

Figure 4 shows an abstract program whose primitive operations are the ones intro- 
duced by the global search theory. 

Finally, Figure 5 shows an interpretation of the abstract global search theory into the 
fc-queens theory. This interpretation formally specifies how the Ar-queens problem can 
be viewed as a global search problem. By applying this interpretation to the abstract 
global search program of Figure 4 we obtain a program that solves the fc-queens 
problem. 

2.5     Algorithm Optimization 

The initially derived program is correct, but usually very inefficient. KIDS provides a 
suite of simplification and optimization functions that the user can interactively apply. 



Theory Q 
Sorts D,R,R 
Operations 

/:£>—» boolean 
0:D x R —► boolean 
I: D x Ä —> boolean 

■r0:D->R 
Satisfies: R x R -+ boolean 
5pHi: D x Rx R -+ boolean 
Extract: R x R —>• boolean 
y :Rx R-+ boolean 

Axioms 
GSO.    /(x) =» /(x,r0(i)) 
GS1.    /(z) and I(x,f) and Split(x,r, s) =$■ /(i,s)andr >- s 
Gs2.    /(i)ajadO(i,z) =>■ Satisfies(z,r0(x)) 
GS3.    /(s) and I(z, r) =* 

(Satisfies(z, r) = 3(a) ( Split"(x, r, s) and Extract(z, s))) 
GS4. Well-foundedness of >- 

Figure 3: Abstract Global Search theory- 

function F(x: D): sei(Ä) 
where I(x) 
returns {z \ 0(x,z)} 
= if $(x,rö(z)) 

then F_gs(x,f0(x)) 
else {::} 

function F_gs(x: D, f: R): set{R) 
where I(x) and I(x, r) and $(i, r) 
returns {z | Satisfies(z,r) and 0(x,2)} 
= {2 I Extract(z,f) and 0(z,;z)} 

U reduce(U, { F_gs(x,s) | Splü(x,r,s) and *(ar,a)}). 

Figure 4: Abstract Global Search program 



F     i—*•     queens 
D     i—►     integer 
I     >-»•     1 < jfc 
i?     H->     set(seq(integer)) 
0 H->     AA:, assign. bijedive(assign,:: {l..k}) 

and:: no_two_queens_per_up_diagonal(assign) 
and:: no_two_queens_per_down_diagonal(assign)} 

R     i—►     seq(integer) 
1 t->     \k,part_sol. length(part_sol) < k and range(part_sol) C {1..&} 

Satisfies     •-»•     \assign,part_sol.3(r)(assign,concat{part_sol,r)) 
T0     ^     [::] 

5p/i£     H->     \k, part_sol, part_sol'. length(part_sol) < k 
and 3(i: integer) (i € {1..A;} and part_sol' = append(part_sol, i)) 

Extract     ■-»■     Xassign, part.sol. assign — part_sol 

Figure 5: Global search theory for fc-queens 

However, there are several opportunities for automating the selection and application 
of KIDS operations. The steps of the queens derivation are typical of almost all the 
global search algorithms that we have derived. After algorithm design the program 
bodies are fully simplified, partial evaluation is applied, followed by finite differencing, 
and data type refinement. 

2.6    Derivation History 

KlDS' history mechanism support the recording, browsing, and saving of derivation 
histories; the reloading and re-enacting of a saved histories, and the replay of (portions 
of) a derivation thread in a different context [6]. Facilities are available for producing 
pretty-printed hardcopies of derivation histories, that highlight the program portions 
affected by a derivation step. 

3    DTRE: Data Type Refinement 

3.1    DTRE 

We have extended the REFINE language with a language for describing implementa- 
tions. Correspondingly, we extended the underlying transformation system to compile 
specifications annotated with implementation directives. The resulting environment 
is called DTRE (Data Type Refinement Environment) [4]. 



Set Seq Tuple Map 
List List Pair aList 
BitVector Arrayl List Arrayl 
iBitVector String-Seq Code 
Stack BitVector Lambda 

Table 2: Selection of data type implementations in DTRE 

As an example of an implementation directive, assume that V is a set of sets of 
integers. To achieve an implementation of V as a list of bitvectors we annotate V as 
follows: 

V: set(set(integer)) impl-by set-to-list(set-to-bitvector(std-integer)) 

During compilation, DTRE interprets the implementation directives when refining op- 
erations on V. In our example, it would refine set operations on V into list operations 
and operations on elements of V into operations on bitvectors. 

3.2    Data Type Theories, Interpretations, and Implementa- 
tions 

In DTRE knowledge is expressed and captured at a very high level: at the level 
of theories of abstract data types, (e.g. sets), provably correct implementations of 
abstract data types, qualitative approximations to quantitative methods, program 
analysis methods, and data structure selection rules [3]. 

DTRE'S current refinement knowledge is based on REFINE'S atomic types (boolean, 
character, symbol, integer, etc.) and set-theoretic compound types (set(a), set(a), 
map(a, ß), tuple(a, ß), where a and ß range over types. 

The properties (behavior) of types is defined by type theories; thus the knowledge base 
contains theories about sets, sequences, etc, as well as theories about implementation 
types including lists, stacks, queues. An implementation (e.g. Set-to-List is expressed 
as a theory interpretation, i.e. a map between the theory of sets and the theory of lists 
such that the translation of the set axioms follow from the list axioms. This ensures 
that the interpretation (translation) preserves the semantics of the set operations. 
Figure 6 shows a fragment of a theory interpretation that trannslates set operations 
into Common Lisp integer bitvectors. 

Table 2 shows a selection of implementations for set-theoretic types currently provided 
by DTRE. 



Theory-Interpretation        SET-TO-CL-IBITVECTOR 

Source-Theory    Set-Theory 
Target-Theory    CL-iBitVector-Theory 

Type-Parameters alpha 
Impl-Parameters beta, betaO, betal, beta2 

Interpretation-Vars 
x   :   alpha impl-by beta, 

S   :   set(alpha)  impl-by set-to-cl-ibitvector(betaO), 
51 :   set(alpha)  impl-by set-to-cl-ibitvector(betal), 
52 :  set(alpha) impl-by set-to-cl-ibitvector(beta2) 

Interpretation-Specs 

EmptySet: {} tr==> o, 
Empty: Empty(S) tr—> (Zerop S), 
Size: Size(S) tr==> (LogCount S), 
Membership :   x in S tr==> (LogBitP x S), 
With: S With x tr==> (Loglor S (ASH 
Equality: SI = S2 tr==> (eql SI S2), 
Intersect: SI Intersect S2 tr==> (LogAnd SI S2), 

1 x)), 
. = S2 tr==>     (eql SI S2), 
;ersect S2 tr==>     (LogAnd SI S2), 

end-interpretation 

Figure 6: Interpretation from sets to integer bit vectors 
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< horizontal composition > 

seq    (set (integer)) <- specification type 

seq set integer 1 
to to to 1 

list seq 

1 
seq 
to 

vector 

std-integer vertical 
composition 

1 
1 
1 

list (vector (std-integer)) <- implementation type 

Figure 7: Horizontal and vertical composition of implementations 

Since implementations are simply maps between theories they are composable, hori- 
zontally and vertically, as illustrated in in Figure 7. Composability of interpretations 
makes the DTRE approach to refinement by far more flexible than typical object- 
oriented approaches, e.g. libraries of C++ object classes or Ada package libraries. 
Nevertheless, DTRE can exploit existing libraries as convenient refinement targets. 

3.3    Dss 

While DTRE provides a language and tools for stating and realizing data type imple- 
mentation decisions, Dss (data structure selection aids in the decision making process 
itself [2]. In its current implementation Dss supports data collection needed for mak- 
ing implementation choices but is not very knowledgeable about making appropriate 
choices. However, we have developed qualitative performance characteristics (con- 
tinuing our work on the KBSA Peformance Assistant) that will allow Dss to make 
implementation selection decisions. In a fully implemented Dss we expect the user 
to make certain key decisions and Dss to appropriately "fill in the rest". 

In the current Dss prototype, the primary mode of user interaction is to iteratively 
select data type implementations, run a test suite, and analyze performance data. 
The primary operations available to the user are shown in Table 3. 

11 



Operation Explanation 
Focus Select specification to work on 
DSS Select implementation from context-sensitive menu 
Instrument Instrument spec for metering or animation 
Compile Compile (annotated/instrumented) specification 
Animate Run test with animation instrumentation 
Test Run testing suite and collect execution time data 

Table 3: DSS Prototype operations 

Operation {} empty size in with 
Implement 'n asympt. rank asympt. rank asympt. rank asympt. rank asympt. ra 
Bitvector O(M) 3 0(M) 3 0(M) 3 0(1)- 0 0(1)- ( 

List 0(1)- 0 0(1)- 0 0(M) 3 0(M) 3 0(M) 

Table 4: Performance characterization of set implementations 

3.4    Quantitative and Qualitative Performance Measures 

Running a program on a test suite provides accurate performance of limited gen- 
erality. Ideally, we would like to estimate the performance of implementations by 
calculating the true expected cost of the operations for the actual distribution of in- 
puts to the program. Unfortunately, the state of the art of this sort of quantitative 
performance estimation is still far from being practicable [16]. Experimentation with 
different implementations is equally costly in conventional approaches but is made 
feasible by DSS/DTRE since the effort of creating a new implementation is reduced 
to a menu selection and a compiler invocation. To alleviate the analysis and deci- 
sion burden on the user, we have (as yet unimplemented) qualitative methods that 
approximate the ideal quantitative analysis, trading sharpness of the estimates for 
reduced computation cost. We explain our approach by example. 

We arranged eleven asymptotic measures on a scale from 0 to 10, 0 meaning "a 
few instructions" and 10 meaning superexponential. For each high-level data type 
implementation, we associate one of these asymptotic estimates with the operations 
of the type. Table 4 shows this for some set operations implemented as Bitvectors or 
Lists. 

To make an implementation choice for a particular set-valued variable we need to 
determine which set operations are actually performed on that variable. If the only 
the operations {}, empty, and size are performed, then we should select the Bitvector 
implementations over the List implementations since, relative to these operations, 
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the Bitvector implementation of sets strongly dominates the List implementation, i.e. 
performs as well or better for each operation. The converse choice is indicated if only 
the operations size, in, and with occur (on the variable under consideration). If all 
five operations occur then the choice is not clear. It then depends on the relative 
frequency of each operations. We approximate the relative frequency by qualitative 
weights computed as a function of the loop nesting level at which an operation occurs. 

3.5    Automated Implementation Selection 

Automated implementation selection takes place in two steps: (1) Identify plausible 
implementations. For instance, the implementation of sets as stacks depends on 
certain data flow conditions being true. (2) From the set of plausible implementations, 
identify the strongly dominating ones, if any, or the maximally good ones. The final 
choice is made after experimentation and testing. 

3.6    Assertions, Analyses, and Bounds 

Determination of plausible implementations requires substantial program analysis. 
Data and value flow analysis, and bounds analysis, for instance, are needed to deter- 
mine whether compound structures are safely accessed, can be updated in place, can 
share structure, can be statically allocated, or fulfil certain special-case conditions. 
The Dss/DTREprototype provides intra-procedural data flow analysis and bounds 
analysis. 

4    REACTO: Reactive System Development 

4.1    Overview 

REACTO is a system that supports the acquisition and correct implementation of 
software specifications for reactive systems [5]. The system utilizes a finite state ma- 
chine formalism derived from the work of Harel ([7]), set-theoretic data structures, 
and relies on both classic verification techniques and consistency-preserving transfor- 
mational implementation of specifications. 

Formal reasoning and manipulation of programs is greatly simplified by referential 
transparency, which insures that the meaning of a program fragment is not depen- 
dent on context or state. The attractiveness of functional and logic programming 
derive from their maintenance of referential transparency. Although suppression of 
the notion of state makes manipulation of programs easier, it seriously detracts from 
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Development Phase Description Tools 
Specification 
acquisition 

Specify a reactive problem 
Edit and browse REACTO specs 
Save/restore specs to/from library 

Graphics editor 
Hierarchy editor 
Spec library management 

Specification 
compilation 

Consistency check, compile, 
and verify REACTO specs 

Consistency checker 
Compiler, Verifier 

Specification 
simulation 

Simulate the execution of 
REACTO specs 

Simulator, Variable trace 
Graphics display 

Table 5: REACTO development phases 

their expressiveness. In particular, specification of a reactive system is extremely 
awkward without the notion of state. The challenge addressed in the REACTOeffort 
is to provide a notion of state and state change in a way that supports analysis and 
manipulation similar to that possible in functional and logic languages. The idea is 
to isolate state changes to those specified using a finite state machine formalism and 
to provide a functional language that specifies changes to abstract data structures 
when finite state machine transitions are executed. 

Reliability requirements are addressed in two ways. First vthe correctness of the 
transformations implementing the compiler will be proved. Second the user may 
associate assertions with states. These assertions are redundant in the sense that the 
execution of the machine is not determined by the assertions. Their purpose is to 
specify invariants that the specifier believes must be true whenever the associated 
state is entered. Traditional verification technology is used to discharge (verify) these 
assertions at compile time. Any remaining assertions are checked (by computation) 
upon entry to the associated state at run-time. 

When developing a reactive specification with REACTO, the user typically proceeds 
through several development phases (which may be interleaved); the system provides 
various tools to ease the development tasks in each phase (see Table 5). 

4.2    The FSM Formalism and Specification Acquisition 

REACTO uses graphically presented finite state machines (FSM) as the underlying 
framework to model reactive systems. A hierarchical notion of state is employed 
by REACTO to model the hierarchical, modularized structure of a complex reactive 
system, and to support stepwise refinement of the design. States are composed of 
substates in such a way that properties that are associated with a state apply to all 
of its substates. Thus a transition leaving a state is equivalent to a set of transitions 
each of which exits from a substate of that state. 
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state voter„select 
own_vars (selection: map(tuple(integer, integer), integer)) 
assertion V(x)(X G domain(M) 

=► reduce(+, {tally{< x,y>)\ (y) y G [l..M(x)]}) 
< size(votersjwho_voted) — 1) 

consists_of (select Jnit, castjoop, validate_entry) 
initial_state (selectjnit) 

"done" 
transition cast Joop .transition Jl 

from castjoop to newjvoter 
predicate examine Jnterface_var(*keyboardJnput*) = done 
action tally +— {| < I, J >—> tally(< i,j >) + selection(< i,j >) 

| (i,j) i G domain(M) and j G [l..M(i)] |}; 
number_of „votes_cast <— size({< i,j >  | (i,j) 

i G domain(M) and j G [l..M(i)] 
and selection(< i,j >) = 1}); 

clear jinter f ace joar(*keyboard_input*) 

Figure 8: Fragment of the Voting-Machine Specification 

The FSM formalism provides the top-level control structure allowing the specification 
of the state hierarchy of a reactive system. Associated with each state are variables, 
scoped with respect to the state hierarchy. Associated with each transition is a 
predicate over visible variables which guards the execution of the transition and an 
action which consists of assignments of values to visible variables. The values assigned 
to variables are specified as an expression in a functional language. Figure 8 shows the 
definition of a state and a transition from a RJEACTO specification Voting-Machine. 

Specification acquisition is done via an interface consisting of a nested icon graphic 
display and hierarchy browser. The graphic display presents the finite state machine 
hierarchy of states and transitions. Text, such as variables associated with a state, 
and actions associated with a transitions are presented using the hierarchy browser. 
Within the browser there is mouse sensitivity to the syntax of program text. 
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4.3     The Functional Language and the Transformation Sys- 
tem 

The functional language used in REACTO specifications is a functional subset of ex- 
tended REFINE. This language provides set-theoretic type constructors, such as finite 
sets, sequences, maps, tuples, and relations, which substantially relieve the program- 
mer from having to choose data representations. A rich set of operations are defined 
on these types including reduction, bounded quantification, set and sequence forma- 
tion, lambda definitions, etc. allowing concise algorithmic description. REACTO uses 
the DTRE compiler as its transformation system. 

4.4    The Verifier 

The REACTO verifier is designed to prove the consistency of the assertions associated 
with the state of a REACTO specification with its operational behavior. It is based on 
an extension of Floyd's inductive assertions method. Since the underlying structure 
of a REACTO specification is a variant of a flowchart program, the use of Floyd's 
inductive assertion method is natural and convenient. Formally the approach is to 
prove by induction over execution sequences that each time a state s is entered the 
associated assertion is satisfied. One can use as an induction hypothesis the claim 
that assertions associated with other states (in particular those with transitions into 
5) are true. Thus the task is to verify that for each transition t into s if the assertions 
in its originating state are true, and it is enabled, then the assertion associated with s 
is true. Although verification technology has been limited in its success there are two 
important advantages that this approach has that limits the burden placed on the 
theorem prover. First, the problem is factored into small pieces, namely of verifying 
the correctness of each transition. Second, verification occurs at the specification level 
where operations are still suitably abstract and the theorem prover not overwhelmed 
by implementation detail. 

Verification is done in two steps. The first step is to deduce the verification condi- 
tions. This is done mechanically by a verification condition generator. The second 
step is proving the truth of the verification conditions. This is done with a mechanical 
theorem prover. The theorem prover is designed to support verification activities. It 
is based on a goal-oriented proof procedure hierarchical deduction ([14], [15]) incorpo- 
rated with term-rewriting, partial-evaluation, and forward-inference procedures. The 
prover can be used as an automated system, or as an interactive proof checker. 

The verifier also provides a proof management facility, which helps extract the un- 
proven verification conditions, and permits the user to make off-line development of 
proofs for them. A knowledge-base manager is designed to support a flexible use of a 
large set of axioms and rules derived from the domain theory of the specification lan- 
guage. A dependency maintenance procedure is incorporated which permits the user 
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to trace the history of a derivation, and supports efficient addition and/or retraction 
of assumptions. 

4.5    The Simulator 

REACTO provides an execution simulator that supports rapid prototyping of REACTO 
specifications. With a graphics-based environment, it allows the user to quickly exe- 
cute a specification to see that its behavior is that which is intended. While a specifi- 
cation is simulated, the simulator will display the dynamic state changes graphically 
and print the current values of the state variables being traced by the user. 
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Part II 

Core Slang 

In this paxt, we describe the core concepts of SLANG: 

specifications, which are theories in a higher order logic, i.e., typed lambda calculus1 

extended with products, coproducts, quotients and subsorts, 

morphisms, which are symbol to symbol translations between specifications such 
that the axioms of the source specification are translated into theorems of the 
target specification, and 

diagrams, which are directed multigraphs with the nodes labeled by specifications 
and the arcs labeled by specification morphisms. 

The interconnection of specifications via diagrams is the primary way of putting sys- 
tems together out of smaller pieces. In particular, diagrams are used to express pa- 
rameterization, instantiation, importation, and the refinement of specifications. The 
power of the notation arises from the explicit semantics for specifications and mor- 
phisms, and the ability of diagrams to express exactly the structure of specifications 
and their refinement. 

Convention. In Part III, we will encounter other kinds of morphisms and diagrams, 
e.g., interpretation morphisms and interpretation diagrams. Hence, we have the con- 
vention that when "morphism" (or "diagram") is used without a qualifier, it means 
"specification morphism" (resp., "specification diagram"). Other uses are qualified 
with the kind of objects involved. 

*We assume the standard inference rules for typed lambda calculus; the additional rules are in 
the section on implicit axioms for built-in operations (see section6.5.9) 

18 



5    Names in SLANG2 

Specifications, morphisms and diagrams can each be named, as can many of their 
components, such as nodes and arcs of diagrams. There is a consistent syntax for 
introducing names as is illustrated below.3 

NAMED NOT NAMED 

spec <name> is 
<development-element>* 

end-spec 

morphism m  :  <name> -> <name> 
is    { <sm-rales> } 

spec 

<development-element>* 

end-spec 

{ <sm-rules> } 

diagram <name> is 
<nodes-and-arcs> 

end-diagram 

diagram 
<nodes-and-arcs> 

end-diagram 

The keyword is may be replaced with the symbol =. Names are used in the usual 
way to denote the objects to which they are bound. Thus, for example, in any 
syntactic context in which a specification is required, a name of a specification may 
be substituted. 

5.1    Naming and Scoping Rules 

Specifications, diagrams, and morphisms each have their own individual, global names- 
pace. Thus the same name may be used to denote, say, a specification and a mor- 
phism. Because these namespaces are global two different specifications (respectively, 
morphisms, diagrams) must have different names—there is no context that can dis- 
ambiguate which specification a name refers to. If a specification, diagram or mor- 
phism appears as a top-level expression, i.e., it is not a subexpression of a diagram-, 
morphism- or specification-returning expression, it must be named. Otherwise, there 
is no way to refer to such an object. Conversely, a subexpression, if it is not a name 
denoting a specification, morphism, or diagram, cannot be named. For example, 

2The discussion in this section refers to concepts introduced in later sections. So, the reader may 
wish to re-read this section after the rest of the manual. The reason for this forward reference is so 
that all the information about names is in one place. 

3In this dicussion and in others throughout the manual, a BNF syntax description language is 
used. See section A.l in the appendix containing the BNF for SLANG. Note that, as in the syntax 
for diagrams in the example, some small liberties are taken in the interest of brevity. 
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diagram FOO is 

nodes X: spec Y is 
end-diagram 

end-spec 

is illegal since the specification at node X cannot introduce the name Y. 

The names of nodes and arcs are local to a diagram and have their own namespaces. 
This means that two diagrams may use the same name as a node name, and within 
the same diagram a node and an arc may have the same name. 

Similarly the names used in a specification are local to the specification. Sorts, 
operations, definitions, and theorems all have distinct namespaces. However, because 
of type inference, it is generally not an error for two operations to have the same 
name as long as context can be used to disambiguate references. 

5.2     Lexical Conventions 

Valid names start with either an upper or lower case letter or an asterisk (*), and are 
followed by any letter, digit, an asterisk (*), exclamation point (!), hyphen (-), or 
question mark (?). (Also, see section A.2.14 in the BNF appendix.) Names are not 
case sensitive: all names are converted to uppercase internally. 

The keywords in SLANG are: 

arcs 

axiom 

body-ip 

by 
cocone-morphism 

cod-to-med 
codomain-sm 
codomain-to-mediator 

colimit 
const 
construct 

constructors 

definition 

diagram 

dom-to-med 

domain-sm 
domain-to-mediator 

embed 

end-definition 

end-diagram 

end-spec 
ex 
fa 
from 
identity-morphism 

import 
imp o rt-morphism 
instantiate 

interpretation 

ip-scheme 
ip-scheme-morphism 

is 

lambda 

mediator 

mediator-sm 

morphism 

nodes 

of 
op 
project 
quotient 
relax 
sort 
sort-axiom 
sorts 

spec 
spec-interpretation 

theorem 

translate 
translation-morphism 

The following characters have special meaning depending upon the context: 
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()->,    I   :   =   .<>{}[]/  + 

6    Specifications 

A specification is a theory presentation, a finite description of a formal theory. A 
theory consists of a signature (a set of sorts and and a set of operations whose domains 
and ranges are constructed from the given sorts) and a set of closed formulas (over 
the signature) that is closed under logical entailment. A theory presentation consists 
of a finite signature and a finite set of closed formulas. Such a presentation generates 
a theory consisting of the given signature and all closed formulas entailed by the given 
formulas. 

A SLANG specification consists of a set (possibly empty) of specification elements.4 

Each specification element is a declaration which introduces one or more primitive 
sorts, an operation, an axiom, a theorem, a definition, or a constructor set. The order 
of the declarations is not relevant. We discuss each of these specification elements 
below. 

Specifications are either given as basic specifications or constructed via specification 
operations. This section introduces basic specifications, i.e., primitive specification ex- 
pressions in which all specification elements are explicitly given. Section 10 describes 
specification-building operations. Figure 9 shows an example of a basic specification. 

6.1    Sorts 

The primitive sorts of a specification are introduced via sort declarations. For in- 
stance, in the NAT-SPEC example below, 

sorts NAT, NZ-NAT 

introduces the sorts NAT and NZ-NAT. Note that each ? ; declaration consists of the 
keyword sort or sorts followed by a list of one or m< , sort idemi \ers separated by 
comma.5 

4In the BNF description of SLANG these are called devil, ment-ekmenls 
5 In general, we will give examples in the running text, p.    ips accomphajied by some description 

of the syntax. Again, the precise syntax can always be found in the BNF grammar in the appendix. 
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*/.'/. This is am example to illustrate the elements of a specification. 

'/.•/. This specification is NOT INTENDED to 
'/,'/,      completely or correctly characterize the natural numbers. 

spec NAT-SPEC is 

sorts NAT, NZ-NAT 

sort-axiom NZ-NAT = NAT I non-zero? 

const zero NAT 
const one NAT 
op non-zero? NAT -> Boolean 

op plus NAT, NAT -> NAT 

op times NAT, NAT -> NAT 

op div NAT, NZ-NAT -> NAT 

constructors {zero, one, plus} construct NAT 

axiom (equal (plus zero x) x) 
axiom commutativity-of-plus is 

(fa (x y) (equal (plus x y) (plus y x))) 
axiom (equal (plus x (plus y z)) ((plus x y) z)) 

axiom (fa (x : NZ-NAT) (ex (y : NAT) (equal (times x y) one))) 

theorem (fa x (equal (plus x zero) x)) 

definition of times is 
axiom (equal (times x zero) zero) 
axiom (equal (times x one) x) 
axiom (equal (times x (plus y z)) (plus (times x y) (times x z))) 

end-definition 

end-spec 

Figure 9: Example of a basic specification 
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6.2     Sort Constructors 

Sort constructors are functions which operate on sorts. They are used to generate 
compound sorts from primitive sorts or other compound sorts. SLANG has five sort 
constructors: 

product Product sorts are denoted by a sequence of two or more sorts separated by 
commas. The empty product, i.e., the product of zero components, containing 
the empty tuple as its unique member, is denoted by (); when the empty 
product occurs as the domain of a function sort, its syntax may be omitted (see 
the examples below). 

coproduct Coproduct sorts are denoted by a sequence of two or more sorts sepa- 
rated by "+". The empty coproduct, i.e., the coproduct of zero components is 
denoted by []. 

function A function sort is denoted by giving its domain sort and range sort 
separated by "->". 

quotient Quotient sorts are denoted by a sort and an equivalence relation separated 
by V. 

subsort  Subsorts are denoted by a sort and a predicate separated by " I". 

A sort term is either the name of a primitive sort or a term constructed from other 
sort terms via the operators "->", ",", "+", "/", and "I". Given primitive sorts A, 
B, and C, here are some examples of sort terms denoting constructed sorts. 

(1) A, B, C product sort of A, B, and C 

(2) () empty product sort 

(3) A + B + C coproduct sort of A, B, and C 

(4) [] empty coproduct sort 

(5) A -> B, C function sort with domain A 

and range the product sort of B and C 

(6) -> A function sort with empty product as domain 

(7) Alp subsort of A consisting of those elements 

which satisfy the predicate p : A -> Boolean 

(8) A/e quotient of A consisting of equivalence 

classes of elements of A generated by the 

equivalence relation e : A, A -> Boolean 

For an explanation of the semantics of constructed sorts, see Section 6.5. 
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Precedence. The sort constructors "," and "+" have equal precedence which is 
higher than that of "->". Similarly, " I" and "/" have equal precedence which is higher 
than that of "," or "+". This precedence may be overridden by using parentheses, 
T and ")". The function sort constructor "->" is right associative. The product 
and coproduct sort constructors are not associative; hence, insertion of parentheses 
corresponds to grouping, and will generate different products/coproducts from the 
ungrouped version. 

The following examples of constructed sorts illustrate precedence and associativity: 

(1) A,  B -> B,  C parses as the function sort  (A,B)  ->   (B,C) 
(2) A,   (B -> B),  C parses as the product sort of A,   (B -> B)  and C 
(3) A -> B -> C parses as A ->  (B -> C) 
(4) A, (B, C) is different from both A,B,C and (A,B),C 

(5) Alp -> B + C parses as the function sort (Alp) -> (B + C) 

(6) Alp/e parses as the quotient sort (A|p)/e 
(7) Alplq parses as the subsort (Alp)lq 

6.3    Sort Axioms 

Sort axioms can be used to equivalence (already introduced) sorts to constructed 
sorts. Here are some examples; note that the sorts and ops used in a sort-axiom must 
be declared separately. 

sorts NAT, NZ-NAT, COST 
sort-axiom NZ-NAT = NAT  I  non-zero? 
sort-axiom COST = NAT 
op non-zero?  :  NAT -> Boolean 

sorts ARROW, CPOA '/. composable pair of arrows 
sort-axiom CPOA = (ARROW, ARROW)   I  composable? 
op composable?  :   ARROW, ARROW -> Boolean 

The left hand side of a sort axiom must be a primitive sort; the right hand side can 
be either a primitive sort or a constructed sort. 

There is a semantic restriction. The sort algebra is a free algebra: two sorts are 
equal iff they are structurally equivalent. The semantic restriction is that sort axioms 
cannot be used to equivalence constructed sorts that are not structurally equivalent. 
Simple uses of sort axioms will not violate this restriction; however, the equivalencing 
of sorts (see Section 10.2) that occurs during colimit constructions could possibly 
violate the restriction. If such a violation is detected during the colimit construction, 
the construction will be stopped and an error message generated. 
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6.4    Operations 

Specifications introduce operations as named constants of a specified sort. For exam- 
ple, NAT-SPEC contains the following operation declarations: 

const zero NAT 
const one NAT 
op non-zero? NAT -> Boolean 

op plus NAT, NAT -> NAT 

Each operation declaration consists of the keyword op or const followed by the name 
of the operation, followed by a colon and a sort term which specifies the rank or 
signature of the operation. Typically, the rank is a function sort. 

Although either the keyword op or the keyword const can be used for parsing an 
operation, the system chooses a specific keyword while printing: op if the signature 
of the operation is a function sort, and const otherwise. 

Constants vs. Nullary Operations.   Note that the two declarations 

op f  :  s 
op f  :  -> s 

introduce two different operations; the former denotes a constant while the latter 
denotes a nullary function. The difference between them becomes apparent when 
they are used in a term or formula (see Section 6.6): the former appears as f while 
the latter appears as (f). 

6.5    Built-in Sorts and Operations 

6.5.1    Boolean. 

The sort Boolean (the sort of truth-values) and the normal operations on it are built- 
in, i.e., they are implicitly present in every specification. The names and signatures 
of these operations are given below for reference: 

sort Boolean 
const true     : Boolean 
const false  : Boolean 
op not : Boolean -> Boolean 
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op and : Boolean, Boolean -> Boolean 
op or : Boolean, Boolean -> Boolean 
op implies : Boolean, Boolean -> Boolean 
op iff : Boolean, Boolean -> Boolean 

6.5.2 Quantifiers. 

The quantifiers fa and ex axe also built-in. The syntax for these quantifiers is similar 
to that of terms (see Section 6.6), except that bound variables are allowed. For 
example: 

(fa (x y)   (equal (plus x y)   (plus y x))) 

(fa (x  : NZ-NAT)   (ex (y  :  NAT)   (equal (times x y)  one))) 

A quantified formula consists of three elements enclosed in parentheses: a quantifier 
name (fa or ex), a sequence of bound variables enclosed in parentheses, and a term 
of sort Boolean. Each bound variable consists of a name and an optional data type, 
which is either a primitive sort or a constructed sort such as product or function sort. 
See the paragraph Implicit Axioms for further examples. 

6.5.3 Equality. 

Each sort comes equipped with a predefined equality. Operations defined in a speci- 
fication are congruences with respect to such equalities. 

The operation symbol for this equality is always equal (type-inference will resolve 
the overloading). It is not necessary to declare the equality for a sort, although one 
may add axioms which constrain its meaning.6 

6.5.4 Function Sorts. 

There are two built-in operations on function sorts: a quantifier lambda which builds 
elements of function sorts, and an implicit apply operation that applies a function 
to its argument. The syntax for apply is Lisp-like: (F a). (See section 6.6.) The 
syntax for lambda is analogous to that of the boolean quantifiers: 

(lambda (x y)   (plus  (times x x)  y)) 

6Note that if an operation such as op equal :  S, S -> Boolean is declared, it will be treated 
as an operation distinct from the built-in equality for the sort S. 

26 



Note, however, that the order of bound variables in a lambda-expression is important 
(it is irrelevant for boolean quantifiers). 

6.5.5    Product Sorts. 

There are two kinds of built-in operations on every product sort: an n-ary tuple 
constructor that constructs elements of the product sort and projections that select 
components of tuples. The syntax of the tuple constructor is "<al ... an>", with 
the following judgement7 indicating the typing: 

al: SI, ...,an: Sn 
< al ... an >:   Sl,...,Sn 

There is also a family of projection functions, one for each element of a tuple: 

(project i) :  SI,... ,Sn -> Si        one each, for i = 1,... ,n 

Note that, since project is a higher order function, the application of a projection 
function is written as ((project i) <al . .. an>). Also, project is polymorphic. 
Hence, it is implicitly indexed by the product sort, as is (projectsit..vsn i). 

Here are some more examples of tuples: 

<> empty tuple (the unique element in the empty product sort) 
<a b> if a is of sort A and b is of sort B, 

then <a b> is an element of the product sort A,B 
<a <b c>>    tuples can be nested 

6.5.6    Coproduct Sorts. 

The coproduct of a set of sorts is intuitively their disjoint union.8 For every coproduct 
sort, there is a family of embedding operations, one for each component sort. The 
embeddings map elements of the component sorts into the coproduct sort. They are 
duals to the projections associated with product sorts. 

(embed i):   Si -> Sl+...+Sn        one each for i = l,...,n 

embed is a higher order function and is polymorphic (similar to project,. So applica- 
tion is written as ((embed i)  ai) with the embed implicitly indexed: (embedsi+...+sn i). 

7I.e., if al thru an have types SI thru Sn resp, then the sort of the tuple <ai   . ..   an> is the 
product SI,... ,Sn. 

8 Known as variant records in some programming languages. 
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6.5.7    Quotient Sorts. 

Given a sort A and an equivalence relation e: A, A -> Boolean on it, the sort A/e 
denotes the quotient sort of A generated by e. The elements of the quotient sort A/e 
are equivalence classes of elements of the base sort A. For each quotient sort A/e, 
there is a built-in abstraction function which maps elements of the base sort to the 
equivalence classes containing them. This abstraction function is called quotient, 
and is a higher order polymorphic function: 

(quotient e)   :  A -> A/e 

6.5.8    Subsorts. 

Given a sort A and a predicate p: A -> Boolean on it, the sort A | p denotes the sub- 
sort of A generated by p. The subsort AI p consists of those elements of the supersort 
A which satisfy the predicate p. For each subsort Alp, there is a built-in inclusion 
function which maps elements of the subsort to the corresponding elements of the 
supersort. This inclusion function is called relax, and is a higher order polymorphic 
function: 

(relax p)   :  Alp -> A 

6.5.9    Implicit Axioms. 

Besides the normal congruence axioms for equality, a-equivalence, and the /5-rule for 
application, every specification implicitly contains the following axioms characterizing 
the various constructed sorts. These axioms are generated by the system before a 
specification is passed to the prover. 

1. For every product sort s-1,..., s-n, 

'/. one axiom each, for i = 1,... ,n 
(fa (x-1   :   s-1  ...  x-n  :  s-n)   (equal ((project i)  <x-l...x-n>) x-i)) 
(fa (z  :   s-1,...,s-n)   (equal <((project 1)  z)...((project n)  z)> z)) 

2. For every coproduct sort s-l+.. .+s-n, 
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'/, embeddings axe injective 
'/, one axiom each for i = 1, . . . ,n 
(fa (x : s-i y : s-i) (implies (equal ((embed i) x) ((embed i) y)) 

(equal x y))) 

'/. embeddings are collectively surjective 

(fa (z : s-l+...+s-n) 
(or (ex (x-1 : s-1) (equal ((embed 1) x-1) z)) 

(ex (x-n : s-n) (equal ((embed n) x-n) z)))) 

'/,  images of embeddings are disjoint 
'/. one axiom each for i = 1,. . . ,n and j = i+1,. . . ,n 
(fa (x : s-i y : s-j) (not (equal ((embed i) x) ((embed j) y)))) 

3. For every subsort sip, 

'/.  (relax p) is inject ive 
(fa (x : sip y : sip) (implies (equal ((relax p) x) ((relax p) y)) 

(equal x y))) 

'/, these two axioms characterize the image of (relax p) 

(fa (x : s|p) (p ((relax p) x))) 

(fa (y : s) (implies (p x) 
(ex (x : s|p) (equal ((relax p) x) y)))) 

4. For every quotient sort s/q, 

'/, (quotient q) is surjective 
(fa (x : s/q) (ex (y : s) (equal ((quotient q) y) x))) 
'/, equality on s/q is the equivalence q 
(fa (x : s y : s) (iff (q x y) 

(equal ((quotient q) x) ((quotient q) y)))) 

6.6    Terms and Formulas 

Terms axe constructed as is usual for typed lambda calculus or higher order logic. 
Formulas are just terms of sort Boolean. 

All functions in SLANG accept one argument and return one result. Multiple argu- 
ments and multi-valued returns along with functions with no arguments are handled 
by accepting and returning tuples. The function application notation implicitly builds 
tuples if there is more than one argument. For example, 

(make-tree left node right)   is parsed as  (make-tree <left, node,  right>) 
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When there is only one argument, a tuple is not automatically constructed.   As a 
consequence, the composition (union (split s)) below is well-formed: 

op union : Set, Set -> Set 
op split : Set -> Set, Set 
axiom (equal (union (split s))  s) 

The following tables summarizes the construction of terms in SLANG, and their sorts. 

Given sorted terms —, — is a term of sort - 

Constants 
c:s c 

<> 
s 
0 

Products 
al:sl,a2:s2 
al:sl,...,an:sn 
a: sl,s2 
a:sl,s2 
a: s 1, . . ., sn 

<al a2> 
<al   ...     an> 
((project 1)   a) 
((project 2)  a) 
((project i)  a) 

sl,s2 
si,...,sn 
si 
s2 
si 

Functions and Application 
f:-> s 
f :s -> t,  a:s 
f:sl,...,sn -> t,  a:sl,...,sn 
f :sl,...,sn -> t,  al:sl,...,an:sn 
v:s,  e:t 
vl:sl,...,vn:sn,  e:t 

(f) 
(f a) 
(f a) 
(f al   ...    an) 
(lambda (v:s)  e) 
(lambda (vl;sl...vn:sn)  e) 

s 
t 
t 
t 
s -> t 
si,...,sn -> t 

Coproducts 
al:sl 
a2:s2 

((embed 1)  al) 
((embed 2)  a2) 

sl+s2 
sl+s2 

Subsorts and Quotient Sorts 
a:s|p 
a:s 

((relax p)  a) 
((quotient e)  a) 

s 
s/e 

Quantifiers 
v:s,   e:Boolean 
vl:sl,...,vn:sn,  e:Boolean 
v:s,  e:Boolean 
vl:sl,...,vn:sn, e:Boolean 

(fa (v:s)  e) 
(fa (vl:sl   ...    vn:sn)  e) 
(ex (v:s)  e) 
(ex (vl:sl   ...    vn:sn)  e) 

Boolean 
Boolean 
Boolean 
Boolean 
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6.7    Axioms and Theorems 

Axioms and theorems in a specification are closed formulas that use the symbols 
(sorts and operations) appearing in the signature of that specification. The distinction 
between axioms and theorems is that theorems can be proved9 from the rest of the 
specification, and thus do not add to the theory generated by the specification. 

Here are some examples: 

axiom (equal (plus zero x)  x) 

axiom commutativity-of-plus is 
(fa (x y)   (equal  (plus x y)   (plus y x))) 

theorem (fa x  (equal (plus x zero) x)) 

Note that the name is optional as is the initial universal quantifier. If you omit the 
inital universalquantifier, it will be added internally; however, the system will print 
it in the original form without the quantifier prefix. 

6.8    Definitions 

A definition for an operation f: A -> B in SLANG is a set of axioms which generates 
a provably10 functional relation from A to B. Here is an example from NAT-SPEC: 

definition, of times is 
axiom (equal (times x zero) zero) 
axiom (equal (times x one) x) 
axiom (equal (times x  (plus y z))   (plus  (times x y)   (times x z))) 

end-definition 

Syntactically, a definition is a set of axioms enclosed by the pair of keywords def init ion 
and end-definition. Optionally, the definition may have a name and/or the name 
of the operation being defined. See the BNF grammar for the precise syntax of the 
various options. 

9This is not currently verified in the system. 
10This is not currently checked in the system. 
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6.9     Constructor Sets 

A constructor set is a set of operations with the same range sort, and implicitly 
introduces an induction axiom for that range sort. 

Consider the specification NAT-SPEC introduced at the beginning of Section 6. The 
constructor set 

constructors {zero,  one, plus} construct NAT 

implicitly introduces the following induction axiom: 

(fa (P)   (implies 
(and (and (P zero)   (P one)) 

(fa (x y)   (implies (and (P x)   (P y))   (P  (plus x y))))) 
(fa (n)   (P n)))) 

Freeness and reachability. Note that a constructor declaration does not imply 
that the images of the constructors are disjoint, nor does it imply that all elements 
in the carrier of a constructed sort are representable by some term. Sometimes, these 
properties can be asserted by explicit axioms, e.g., 

(not   (equal zero one)) 

7    Overview of Specification Constructing Opera- 
tions 

There are four ways of constructing a specification in SLANG: 

basic—form a basic specification as a set of specification elements (sorts, sort- 
axioms, operations, axioms/theorems, definitions, and constructor sets). 

translate—copy a specification while renaming11 some symbols (see Section 10.1). 

colimit—take the colimit of a diagram of specifications (see Section 10.2), 

import—enrich an imported specification with a set of specification elements (see 
Section 10.3) 

11A renaming is a set of rules of the form { <name> -> <name>,   . .     } which indicates how the 
symbols of a specification are to be renamed. 
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The first form explicitly constructs a specification, while the next three are specifi- 
cation constructing operations which take as arguments specifications and diagrams, 
and yield specifications. The four ways of constructing specifications should be con- 
sidered as expressions which yield specifications. Wherever a specification is expected 
in these or other expressions, the name of a specification can be substituted. 

The operations translate, colimit and import will be described in Section 10. 
However, before these operations can be explained, morphisms and diagrams need to 
be described. 

8    Morphisms 

A morphism is a mapping from a specification called the source specification to a 
specification called the the target specification. Intuitively, it describes how the source 
specification is "embedded" in the target. A morphism m from a source specification 
A to a target specification B maps the sorts of A into the sorts of B, and the operations 
of A into the operations of B such that 

1. the signatures of the operations are translated compatibly, and 

2. the axioms of A are translated into theorems of B. 

Morphisms are described in SLANG by listing the translations of the explicitly de- 
clated sorts and operations. The translation of constructed sorts and formulas is 
then computed inductively. 

As an example, consider embedding the MONOID spec (just below) into the SEQ spec. 
(See the online library for a version of the SEQ spec.) 

spec MONOID is 

sort E 
op binop : E, E -> E 
const unit : E 

axiom associativity is 
(equal (binop x (binop y z)) (binop (binop x y) z)) 

axiom left-unit-axiom is (equal (binop x unit) x) 
axiom right-unit-axiom is (equal (binop unit x) x) 

end-spec 
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morphism    MONOID-TO-SEQ  :  MONOID -> SEQ 
is { E -> Seq, binop -> concat, unit -> empty-seq } 

The keyword morphism introduces a morphism definition. As usual it is followed by 
an optional name. The source specification is an expression yielding a specification, 
typically just the name of a specification. This is followed by the keyword symbol "->" 
and a target specification. This is followed by the symbol "{" and a comma-separated 
list of symbol-pair associations. Each symbol-pair association (known as an sm-rule) 
associates a primitive sort (respectively, operation) symbol in the source specification 
with a primitive sort (respectively, operation) symbol in the target specification. The 
symbol-pair association is terminated by "}". A morphism is required to map every 
sort and operation of the source specification to a symbol in the target specification. 
However, if a symbol of the source specification is not mentioned in the symbol pair 
association, then it is assumed that the symbol is mapped to a symbol with the same 
name in the target specification. 

Here is a simple example of a morphism that does not map signatures compatibly: 

spec F00 is spec BAR 
sort A,  B sort C,  D,  E 
op f:   A -> B op g:  C -> D 
end op h:  C -> E 

end 

morphism Ml:  F00 -> BAR is {A -> C,  B -> D,  f -> h} 

morphism M2:  F00 -> BAR is {A -> C,  B -> D, f -> g} 

Morphism Ml is not well-formed since the sort B is mapped to D but the function f 
whose codomain is B is mapped to an operation whose codomain is E. Morphism M2 
is a well-formed morphism: it translates signatures compatibly. 

Morphisms and Built-in Constructs. The translations for built-in sorts and 
operations cannot be specified in a morphism. These entities are automatically trans- 
lated to the corresponding built-in entities in the target. Examples of built-in entities 
are the sort Boolean, the Boolean operations (and, or, not, etc.), quantifiers (fa, 
ex, lambda, etc.), and equality. This latter is an important point: if the morphism 
m maps the sort S to the sort T, then m maps the built-in equal on S to the built-in 
equal on T. You cannot use a morphism to map an equality to a congruence on the 
target sort. 
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Morphisms and Constructed Sorts. Morphisms are defined as symbol maps of 
the basic sorts and are extended to maps on sort expressions in the natural way. This 
means that since morphism Ml above maps sorts {A -> C, B -> D} then it maps, 
for example, the constructed sort A, B -> A to C, D -> C. 

8.1    Local Morphisms 

In contexts where a morphism needs to be mentioned and the domain and the 
codomain of the morphism can be inferred, it is only necessary to specify the rules 
which make up the morphism. Here is an example where the morphism labeling an 
arc in a diagram12 is specified by just listing the rules; the specifications labeling the 
nodes at either end of the arc determine the domain and codomain of the morphism, 
and hence they need not be specified. 

diagram BASIC-BAG-IMPORT-DIAGRAM is 
nodes BIN-OP, COMMUTATIVE, BASIC-SEQ 
arcs    BIN-OP -> COMMUTATIVE :   {} 

,    BIN-OP -> BASIC-SEq      :  {E -> Seq, binop -> concat} 
end-diagram 

8.2    Morphism Terms 

The specification-building operations which are introduced briefly in Section 7 and are 
fully described in Section 10 not only construct specifications but also construct one 
or more morphisms which relate the constructed specifications and their components. 
See the relevant subsections of section 10 for more on the morphisms constructed 
by the various specification-building operations. These morphisms can be mentioned 
(referred to) using the keywords below, provided the context determines the domain 
and codomain. 

For example, given the spec IDEMPOTENT (below), we can use import-morphism to 
refer to its import morphism in the BASIC-SET-IMPORT-DIAGRAM diagram (see below). 

spec IDEMPOTENT is 
import BIN-OP 
axiom idempotence is  (equal (binop x x) x) 

end-spec 

spec BASIC-BAG is colimit of BASIC-BAG-IMPORT-DIAGRAM 

12See Section 9 for a description of diagrams. 
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diagram BASIC-SET-IMPORT-DIAGRAM is 
nodes BIN-OP,  IDEMPOTENT, BASIC-BAG 
arcs    BIN-OP -> IDEMPOTENT  :   import-morphism 

,     BIN-OP -> BASIC-BAG    :   cocone-morphism from BIN-OP 
end-diagram 

Given that the domain and codomain are determined by the surrounding context, 
the keywords translation-morphism and import-morphism can be used to specify 
the corresponding morphisms (as above). The keyword cocone-morphism requires a 
node as an additional parameter because there is one such morphism from each node 
of a diagram to the colimit specification (see Section 10.2). 

To illustrate, we continue the example above. 

spec BASIC-BAG is colimit of BASIC-BAG-IMPORT-DIAGRAM 

diagram BASIC-SET-IMPORT-DIAGRAM is 
nodes BIN-OP,  IDEMPOTENT, BASIC-BAG 
arcs    BIN-OP -> IDEMPOTENT :   import-morphism 

,     BIN-OP -> BASIC-BAG     :   cocone-morphism from BIN-OP 
end-diagram 

Identity morphisms. Associated with every specification is an identity morphism 
which maps every sort and operation to itself. This morphism can be mentioned using 
the keyword ident ity-morphism (again, assuming that the domain and codomain are 
determined by the context). Note that the difference between using ident ity-morphism 
and {} is that the former uses actual identity whereas the latter utilizes name identity 
to specify a morphism. I. e., it maps source object with name n to target object with 
the same name. Hence, if there are (say) two sorts with the same name, {} will fail 
to denote a morphism. 

9    Diagrams 

A diagram is a directed multi-graph whose nodes are labeled with specifications and 
whose arcs are labeled with morphisms. A multi-graph differs from a graph in that 
there may be more than one arc between nodes. For a diagram to be well formed, 
the obvious condition that must be met is that the source (target) specification of the 
morphism labeling an arc must be the same as the specification labeling the source 
(target) node of the arc. Here are two examples of diagrams: one very simple diagram 
used to specify a specification as a colimit and another rather more complex diagram 
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used to specify the embedding relations in a hierarchy of orders. The are many more 
examples in the library. 
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Coatalner-coUmit 

Figure 10: SLANG Diagram for CONTAINER-COLIMIT 

spec CONTAINER-COLIMIT is 
colimit of diagram 

nodes CONTAINER-SIG,  JOIN-CONTAINER,  INSERT-CONTAINER 
arcs    CONTAINER-SIG -> JOIN-CONTAINER      :   {} 

,     CONTAINER-SIG ->  INSERT-CONTAINER  :   {} 
end-diagram 

In this example, the diagram is presented in two forms: in a graphical form13 and in a 
textual form. It is a diagram for a colimit.14 There are four nodes: CONTAINER-SIG, 
JOIN-CONTAINER, INSERT-CONTAINER, and CONTAINER-COLIMIT. There are also five 
arcs: two from CONTAINER-SIG to JOIN-CONTAINER and INSERT-CONTAINER, resp. 
Both these arcs arc specified by O (map a symbol in CONTAINER-SIG to the identi- 
cal symbol in JOIN-CONTAINER or INSERT-CONTAINER as appropriate). There are also 
three cocone arcs: one from each of CONTAINER-SIG, JOIN-CONTAINER, INSERT-CONTAINER 
to CONTAINER-COLIMIT. 

13This diagram was created in SPECWARE from standard online library files. 
14See section 10.2 for a dicussion of colimits, cocones, and cocone morphisms. 
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Total-order 

Figure 11: ORDER-HIERARCHY diagram 

diagram ORDER-HIERARCHY is 
nodes 

BIN-REL, REFLEXIVE, TRANSITIVE, ANTI-SYMMETRIC, TOTAL-REL, 
PRE-QRDER, PARTIAL-ORDER, TOTAL-ORDER, SYMMETRIC, 
EQUIVALENCE 

arcs BIN-REL -> REFLEXIVE:  {},  BIN-REL -> TRANSITIVE:  {}, 
BIN-REL -> ANTI-SYMMETRIC:  {},  BIN-REL -> TOTAL-REL:  {}, 
REFLEXIVE -> PRE-ORDER:  {E -> E,  BINREL -> LE}, 
TRANSITIVE -> PRE-ORDER: {E -> E,  BINREL -> LE}, 
PRE-ORDER -> PARTIAL-ORDER:  {}, 
ANTI-SYMMETRIC -> PARTIAL-ORDER:  {E -> E,  BINREL -> LE}, 
PARTIAL-ORDER -> TOTAL-ORDER:  {}, 
TOTAL-REL -> TOTAL-ORDER:  {E -> E,  BINREL -> LE}, 
BIN-REL -> SYMMETRIC: {}, 
SYMMETRIC -> EQUIVALENCE:  {E -> E,  BINREL -> EQUIV}, 
PRE-ORDER -> EQUIVALENCE:  {E -> E,  LE -> EQUIV} 

end-diagram 

The diagram in this example specifies the embedding relationships in a hierarchy of 
orders. Each arc has an associated morphism specifying how its domain is embedded 
in its codomain. Again the diagram is presented in two forms: in a graphical form 
and in a textual form. 

In a diagram, the (optional) name is followed by the keyword nodes which is followed 
by a list of nodes.   A node may be optionally named, and is then followed by a 
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specification (as usual, this means an expression that yields a specification, be it a 
specification name or an expression). 

If an explicit node name is not given, then the name of the specification at the node 
is used as the name of the node. This convention may lead to two nodes having the 
same name; the remedy, of course, is to explicitly name at least one of the nodes. 
Note that it is illegal to provide a name for a specification explicitly defined as the 
label of a node of a diagram. 

Following the nodes is the keyword axes and a list of arcs. Each arc may be optionally 
named. It is then followed by the name of the source node followed by a "->" and the 
name of the target node. This is followed by ":" and a morphism. This morphism 
can be given either by its name, a set of rules, or a morphism term. 

10     Specification Building Operations 

10.1     The Translate Operation 

The translate operation creates a copy of a specification with the option of renaming 
some components. Here is an example: 

EXAMPLE 10.1. The expression 

translate 
spec 

sort E 
op le   :  E,  E -> Boolean 
axiom reflexivity is  (fa (x)   (le x x)) 

end-spec 
by { E -> F,  le -> ge } 

evaluates to the specification 

spec 
sort F 

op ge   :  F,  F -> Boolean 
axiom reflexivity is  (fa (x)   (ge x x)) 

end-spec 

Note that the axioms are also translated to reflect the new names of the sorts and 
operations; however, the names of axioms, theorems, etc., remain the same. □ 
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A translation is given by the keyword translate followed by a specification and a set 
of renaming rules that indicate how the symbols of a specification are to be renamed. 

A renaming map is a one-to-one map used for copying a specification. Thus, if a 
renaming maps two sorts onto the same sort name, or two operations onto the same 
operation name, then there will be multiple sorts or operations with the same name 
in the copied specification. Although this is not illegal, it is inconvenient in that 
references to these sorts or operations will be ambiguous. 

A common use of the translate operation is to rename colimit specifications (see 
Section 10.2 below): 

spec BASIC-SET is 
translate co-limit of IMPORT-DIAGRAM-FOR-BASIC-SET 
by {C -> Set,  empty -> empty-set,  join -> union} 

Translation morphisms. The translate operation also constructs a morphism 
(actually, an isomorphism) which maps the elements of the original specification to 
the corresponding elements of the copied specification. This morphism can be ac- 
cessed using the syntax translation-morphism in a context where the domain and 
codomain can be inferred (see Section 8.2). 

10.2    The Colimit Operation 

The colimit operation is fundamental to the SLANG system. 

The colimit operation takes a diagram as input and yields a specification, commonly 
referred to as the colimit of the diagram. 

EXAMPLE 10.2. Here is a simple example in which the REFLEXIVE and TRANSITIVE 
specs are glued together on BIN-REL to construct a spec for pre-orders. 

spec BIN-REL is 
sorts E 

op binrel : E, E -> Boolean 
end-spec 

spec REFLEXIVE is 
import BIN-REL 
axiom reflexivity-axiom is (binrel x x) 

end-spec 
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Figure 12: Colimit for PRE-ORDER 

spec TRANSITIVE is 

import BIN-REL 

axiom transitivity-axiom is 

(implies (and (binrel x y) (binrel y z)) (binrel x z)) 
end-spec 

spec PRE-ORDER is 
colimit of diagram 

nodes BIN-REL, REFLEXIVE, TRANSITIVE 

arcs BIN-REL -> REFLEXIVE : {E -> E, binrel -> binrel} 

, BIN-REL -> TRANSITIVE : {E -> E, binrel -> binrel} 
end-diagram 

The resulting PRE-ORDER spec is equivalent to 

spec PRE-ORDER is 
sorts E 

op binrel : E, E -> Boolean 

axiom reflexivity-axiom is (binrel x x) 

axiom transitivity-axiom is 

(implies (and (binrel x y) (binrel y z)) (binrel x z)) 
end-spec 

D 

Informally, the colimit specification is a "shared" union of the specifications associated 
with each node of the original diagram. Shared here means that, based on morphisms 
in the diagram, sorts (respectively, operations) appearing' in specifications labeling 
nodes of the diagram are identified as a single sort (respectively, operation) in the 
colimit specification. 

42 



Formally, given a diagram, the colimit operation creates a new specification, the 
colimit or apex specification, and a cocone, which assigns a new cocone morphism 
to each node in the given diagram, such that the domain (source) of that morphism 
is the specification labeling the node and the codomain (target) is the new colimit 
specification. The colimit specification and the cocone morphisms leading into it 
satisfy the property that, for every node in the diagram and for every sort or operation 
in the specification labeling that node, the translation of the sort or operation along 
any path leading from the node to the colimit specification is the same. Moreover, 
the colimit specification only contains those sorts and operations which arise as the 
translations of some sort or operation in the specification attached to some node in 
the diagram. 

Cocone morphisms. As dicussed just above, for each node the colimit operation 
constructs a cocone morphism from the specification labeling that node in the source 
diagram to the colimit specification. These morphisms can be accessed using the 
syntax cocone-morphism from <node-name> in a context where the domain and 
codomain can be inferred (see Section 8.2). 

10.2.1    The Colimit Construction Algorithm 

The colimit specification and the associated cocone morphisms are constructed using 
the standard union-find algorithm for computing the connected components of a 
graph. The disjoint union of the sorts and operations contained in the specifications 
attached to all nodes in the diagram15 is partitioned into equivalence classes according 
to the mappings given by the morphisms labeling the arcs in the diagram. 

To be precise, let the disjoint union U of all signatures in a diagram D be 

U = { (n, x) | n <= nodes(-D) An:S/\(x€ sorts(S) V16 operations(5)) }, 

where S is the specification labeling the node n. 

Define an equivalence16 relation = on the set U by ' 

(ni,x) = {ri2,y) 4=» (3a)a € arcs(D) A a:rii —► n^-.m A m(x) = y, 
15Note that, if the same specification labels two different nodes in a diagram, then two copies of 

the sorts and operations in that specification are generated in the disjoint union. 
The relation defined is an equivalence if we consider all the composition morphisms that are 

implicitly present in a diagram. 
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where m is the morphism labeling the axe a. That is, two sorts (operations) are 
equivalenced iff there is an arc whose morphism maps the one to the other. 

This equivalence relation partitions the disjoint union U into equivalence classes of 
sorts or operations (since morphisms map sorts to sorts and operations to operations, 
each equivalence class will contain only one kind of object). The colimit specification 
contains one sort or operation corresponding to each equivalence class. The cocone 
morphism from the specification labeling each node in the diagram is obtained as 
that map which takes each sort or operation to the the sort or op corresponding to 
the equivalence class containing it. 

In the presence of sort axioms, it is possible for the basic equivalence classes to 
contain constructed sorts. Hence, when using sort axioms you must ensure that no 
two distinct constructed sorts are equivalenced: this would violate the restriction that 
the sort algebra be a free algebra-see the discussion of sort axioms in Section 6.3. 

As a special case of the colimit operation, if a diagram consists of just nodes with no 
arcs between them, the colimit is the disjoint union of the specifications labeling the 
nodes of the diagram. I.e., the equivalence classes are all singletons. 

It is time for an example. 

EXAMPLE 10.3. Consider the following diagram whose purpose is to produce a basic 
specification for sets by combining a specification of containers with the specifications 
describing properties of idempotence and commutative monoids.17 

diagram IMPORT-DIAGRAM-FOR-BASIC-SET is 
nodes M0N0ID-SIG, BINOP, 

COMMUTATIVE-MONOID, CONTAINER, IDEMPOTENT 
arcs    MONOID-SIG -> COMMUTATIVE-MONOID 

:  {A -> M, b -> plus, u -> unit} 
,    M0N0ID-SIG -> CONTAINER :  {A -> C, b -> join, u -> empty} 
,     BINOP -> CONTAINER :   {B -> C,  f -> join} 
,     BINOP -> IDEMPOTENT :   {B -> X,  f -> idemop} 

end-diagram 

Here are the specifications attached to the nodes in the diagram. Most of the axioms 
are omitted. 

spec M0N0ID-SIG is spec BINOP is 
sort A sort B 

17Some of the sort and operation names have been altered from the corresponding specifications 
in the SPECWARE online library to more clearly illustrate the action of the colimit operation. 
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op b : A, A -> A        op f : B, B -> B 

op u : A end-spec 

end-spec 

spec COMMUTATIVE-MONOID is spec CONTAINER is       spec IDEMPOTENT is 

sort M sorts C, E sort X 
op plus : M, M -> M op empty    : C        op idemop : X, X -> X 

op unit : M op singleton : E  -> C 
op join     : C,C -> C end-spec 

axiom 
(equal (plus x unit) x) end-spec 

end-spec 

The colimit specification generated by the operation colimit of 
IMPORT-DIAGRAM-FOR-BASIC-SETis the following (again most of the axioms are omit- 
ted): 

spec 

sorts {M,A,C,B,X}, E 
op {plus,b,join,f,idemop} : {M,A,C,B,X}, {M,A,C,B,X} -> {M,A,C,B,X} 

op {unit,u,empty}       : {M,A,C,B,X} 
op singleton : E -> {M,A,C,B,X} 

axiom (equal ({plus.b,join,f,idemop} x {unit,u,empty}) x) 

end-spec 

The sorts in the five specifications in our diagram are partitioned into two equivalence 
classes; the operations get partitioned into three. Note that the signatures of the 
operations in the colimit specification are relinked to refer to the sorts in the colimit 
specification, and the operations in the axioms are relinked to refer to the operations 
in the colimit. 

The qualified names example (example 10.4) below illustrates the case where two 
nodes in a diagram are labeled by the same specification. □ 

10.2.2    Qualified Names 

As explained above, the sorts and operations in a colimit specification are equivalence 
classes. Each such sort or operation inherits all the names of its elements as aliases, 
and may be referred to (in a specification which imports the colimit) by any one of 
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these aliases. However, it is frequently the case that the name of an element of an 
equivalence class does not uniquely determine the class. 

Thus, to denote these equivalence classes qualified names are used. A simple qualified 
name is a name of the form <qualif ier>. <name>. The qualifier is the name of a node 
in the diagram used to construct the colimit. The denotation of such a qualified name 
is the equivalence class that contains the sort or operation denoted by the unqualified 
name in the specification attached to the qualifier node. Qualified names need not 
be used if a sort (or operation) name alone uniquely identifies an equivalence class. 
This is true even if the equivalence class contains many names. 

EXAMPLE 10.4. To illustrate the need for qualified names, consider the following 
specification in which two partial order relations are defined on the same sort. This is 
done by taking the colimit of a diagram which contains two nodes labeled by the same 
specification, that of a partial order. The diagram also contains another node and 
two arcs labeled with morphisms which ensure that the two sorts in the two copies 
of the partial order specification are collapsed into one. 

spec TRIV is      spec PARTIAL-ORDER is 
sorts E sorts P 

end-spec op le  :  P,  P -> Boolean 
axiom (le x x) 
axiom (implies (and (le x y)   (le y x))   (equal x y)) 
axiom (implies (and (le x y)   (le y z))   (le x z)) 

end-spec 

morphism TRIV-T0-P0: TRIV -> PARTIAL-ORDER = { E -> P } 

spec DOUBLE-PARTIAL-ORDER is 
colimit of diagram 

nodes A:  TRIV, 
B: PARTIAL-ORDER, 
C: PARTIAL-ORDER 

arcs A -> C: triv-to-po, 
A -> B: triv-to-po 
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end-diagram 

The colimit specification will contain a single sort {E,P} with aliases E and P and 
two operations with the same name: le : {E,P}, {E,P} -> Boolean. If, in an- 
other specification which imports DOUBLE-PARTIAL-ORDER, we want to refer to these 
operations, we have to use qualified names: B.le and C.le. For example, we could 
require that the two orders be converses of each other: 

axiom (iff  (B.le i y)   (C.le y x)) 

Or, we could rename these operations using: 

spec DOUBLE-PARTIAL-ORDER-1 is 
translate DOUBLE-PARTIAL-ORDER by { B.le -> le, C.le -> ge } 

D 

In general, to handle the case of the specification attached to a node being itself a 
colimit, cascaded qualifiers are allowed. That is, the most general form of a reference 
in SLANG is: 

<qualifier>.<qualifier>....<qualifier>.<name> 

Such a reference is resolved by starting with the outermost qualifier and proceeding 
inwards. I.e., the outermost qualifier must be the name of a node in the diagram used 
to construct the current colimit, etc. To resolve a qualifier, there must be a colimit 
specification containing the node denoted by the qualifier. 

While qualified names can be used to refer to a sort or operation of a colimit spec- 
ification, the system does not display specifications using qualified names. If an 
equivalence class with more than one element is formed in a colimit specification it 
is printed as an equivalence class, i.e., as the set containing all of the names of the 
sorts (operations) in the class. If the class contains just a single name, the name is 
printed and the set brackets are suppressed. 

10.3    Imports 

The fourth operation for constructing specifications in SLANG is import. Although 
it is not technically necessary, i.e., the specification generated using import can also 
be generated using the other operations, it is convenient. The purpose of the import 
operation is to enrich a specification with new sorts, operations, axioms, etc. 
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EXAMPLE 10.5. Here is a specification in which we import the DOUBLE-PARTIAL-ORDER 
specification defined in Example 10.4 above and extend it with an axiom which asserts 
that the two orders are converses of each other. 

spec D0UBLE-PARTIAL-0RDER-2 is 

import DOUBLE-PARTIAL-ORDER 

axiom (iff (B.le x y) (C.le y x)) 
end-spec 

D 

There can be only one import in a specification. The denotation of a spec term 
containing an import declaration (as in the example above) is a specification which 
contains all the elements of the imported specification together with any sorts, oper- 
ations, axioms added in the term. 

SLANG extends the notation for import with the following syntax to accommodate 
two frequently occurring constructs for building specifications: 

1. spec import <diagram>  ...  end-spec 

which expands to 

spec import colimit of diagram  ...  end-spec 

2. spec import <spec-l>, <spec-2>,   ...,  <spec-n>  ...  end-spec 

which expands to 

spec 

import colimit of diagram 

nodes <spec-l>, <spec-2>, ..., <spec-n> 

end-diagram 

end-spec 

Import morphisms.    The import operation also constructs a morphism which 
maps the elements of the imported specification to the corresponding elements of the 
importing specification. This morphism can be accessed using the syntax import-morphism 
in a context where the domain and codomain can be inferred (see Section 8.2). 

48 



Part III 

Refinement Constructs in Slang 

The development process of SPECWARE is intended to support the refinement of 
a problem (source) specification into a solution (target) specification. Refinements 
introduce additional components and behavioral constraints. Source and target spec- 
ification as well as the refinement between them are precise, formal objects. SLANG'S 
refinement constructs, introduced below and defined in subsequent chapters, address 
three important aspects of refinement: (1) construction of a solution relative to some 
base (problem reduction); (2) sequential (vertical) composition of refinements (re- 
finement layers); and (3) parallel (horizontal) composition of refinements (refinement 
components). 
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11     Overview of Refinement 

In SPECWARE refinement of specifications proceeds by induction on the specification 
structure. The next section gives an overview of refinement of basic specs and the 
following section gives an overview of the refinement of structured specs. The notions 
are more fully discussed in section 12. In the section on interpretations it will be 
seen that refinement of structured specs requires a systematic lifting of specification 
notions (specifications, spec morphisms, and specification constructing operations) 
to corresponding refinement notions (interpretations, interpretation morphisms, and 
interpretation constructing operations). See especially section 12.5. 

11.1    Refinement of Basic Specifications 

The basic refinement construct in SLANG is an interpretation (see section 12). Inter- 
pretations generalize morphisms as follows. A morphism from A to B specifies an 
"embedding" of the spec A into the spec B; an interpretation from A to B specifies 
an "embedding" of A into a definitional extension of B, i.e. a specification consisting 
of B and definitions of further sorts and operations. Both morphisms and interpreta- 
tions are closed under sequential composition-this allows us to follow one refinement 
by another. 

Semantically speaking, a morphism corresponds to a simple construction of models 
of A from models of B: from any model of B, we obtain a model of A by simply 
"forgetting" those sorts and operations of B that have no counterpart in A, i.e. that 
are outside the image of the morphism. An interpretation from A to B corresponds to 
a more complicated construction: first, expand the given model of B by the sorts and 
operations defined in the definitional extension component of the interpretation, then 
reduce the resulting model to the signature of A (along the embedding morphism). 

Prom a semantic point of view, refinement (morphism or interpretation) of a spec A 
to spec B amounts to a restriction of the model class of A: there is an associated 
construction that yields an A-model for each 5-model, but not every A-model can 
(in general) be constructed from a 5-model. 

11.2    Refinement of Structured Specifications 

We systematically exploit the specification structure to construct interpretations for 
complex specs. 
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Colimit Refinement The colimit of a diagram of interpretations yields an inter- 
pretation from the colimit of the interpretations sources to the colimit of the inter- 
pretation targets. 

Translation Refinement If spec B is a translation of spec A, then there is a 
translation of any interpretation with source A into an interpretation with source B. 

Import Refinement If spec B imports spec A, it is not in general possible to 
construct an interpretation for B from an interpretation for A. However, it is possible 
if the import morphism is a definitional extension. 

Translation morphisms and definitional extensions can be seen as degenerate interpre- 
tations (the source embedding morphism is the identity). Propagation of an interpre- 
tation along a translation or definitional extension is then a special case of sequential 
composition of interpretations. 

12    Interpretations 

Interpretations generalize morphisms to capture a more general notion of specification 
refinement (for an overview of refinement, see 11). We first introduce the syntax for 
interpretations in SLANG and then characterize their semantics as model construc- 
tions. Subsequently, we discuss the sequential (vertical) and parallel (horizontal) 
composition of interpretations. The horizontal compositions, i.e. the gluing of inter- 
pretations from pieces leads us to interpretation morphisms, and to a generalization 
of interpretations, interpretation schemes. Finally, we show how to lift specification 
construction operations to interpretation construction operations. 

12.1    Interpretations in SLANG 

A prototypical example of a named SLANG interpretation is of the form 

interpretation a-to-b:  A => B is 
mediator      A-as-B 
dom-to-med s 
cod-to-med t 

A possible graphical rendering of this construct is as follows: 
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interpretation a-to-b is 
s t 

A > A-as-B < d— B 
dom-to-med cod-to-med 

domain mediator codomain 

Just like spec morphisms, interpretations have a domain (A) and codomain (B), both 
specifications. We refer to the domain and codomain also as the source and target 
specification, respectively. The interpretation is defined by a source morphism (s) 
whose domain is the source of the interpretations, and a target morphism (<), whose 
domain is the target of the interpretation. Both morphisms have the same codomain, 
the mediator specification (A-as-B) of the interpretation. 

The target morphism must be a definitional extension. The mediator A-as-B "medi- 
ates" between source A and target B by adding definitions to B so that "A can be 
expressed as Bn via source morphism s. 

EXAMPLE 12.1. Here is a prototypical example of the use of an interpretation to 
refine a data type specification: the representation of sets by bags with no duplicate 
elements. 

interpretation SET-TO-BAG-SUBSORT :  BASIC-SET => BASIC-BAG is 
mediator SET-AS-BAG-SUBSORT 
domain-to-mediator {Set -> Set-as-Bag, 

empty-set -> empty-set, 
singleton -> singleton-set, 
union -> set-union, 
insert        -> set-insert, 
empty?        -> set-empty?, 
in -> set-in} 

codomain-to-mediator import-morphism 

where the mediating specification is 

spec SET-AS-BAG-SUBSORT is 
import BASIC-BAG 

sort Set-as-Bag 
sort-axiom Set-as-Bag = Bag  I  no-dup? 

op no-dup?   :  Bag -> Boolean 
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definition, of no-dup? is 

axiom (equal (no-dup? empty-bag) true) 

axiom (equal (no-dup? (insert x B)) 

(and (no-dup? B) (not (in x B)))) 

end-definition 

op empty-set : Set-as-Bag 
op singleton-set : E -> Set-as-Bag 
op set-union : Set-as-Bag, Set-as-Bag -> Set-as-Bag 
op set-insert : E, Set-as-Bag        -> Set-as-Bag 
op set-empty? : Set-as-Bag -> Boolean 

op set-in : E, Set-as-Bag        -> Boolean 

definition of empty-set is 

axiom (equal ((relax no-dup?) empty-set) empty-bag) 
end-definition 

definition of singleton-set is 

axiom (equal ((relax no-dup?) (singleton-set x)) (singleton x)) 
end-def init ion 

definition of set-union is 

axiom (equal (set-union empty-set S2) S2) 
axiom (equal 

(set-union (set-insert x SI) S2) 
(set-insert x (set-union SI S2))) 

end-definition 

definition of set-insert is 
axiom (implies 

(in x ((relax no-dup?) S)) 

(equal ((relax no-dup?) (set-insert x S)) 
((relax no-dup?) S))) 

axiom (implies 

(not (in x ((relax no-dup?) S))) 

(equal ((relax no-dup?) (set-insert x S)) 

(insert x ((relax no-dup?) S)))) 
end-definition 

definition of set-empty? is 

axiom (equal (set-empty? S) (empty? ((relax no-dup?) S))) 
end-definition 
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definition of set-in is 

axiom (equal 

(set-in x S) 
(in x  ((relax no-dup?)  S))) 

end-definition 

end-spec 

12.1.1    Definitional Extensions 

A morphism m:B —> C is a definitional extension if (1) m is injective; (2) each 
sort and operation of C outside the image of m C is defined in terms of sorts and 
operations within the image m, and (3) every axiom of C outside the image of m is 
provable from the definitions plus the translations of the axioms of B along m. 

If m: B —»■ C is a definitional extension, we also say that C is a definitional extension 
of B. If C is a definitional extension of B, then C is consistent if and only if B is 
consistent. 

In the present implementation, the test whether a morphism m is a definitional ex- 
tension checks properties (1) and (2) above,18 but will fail if additional theorems are 
present (as allowed by (3)). 

A definitional extension will graphically be shown as 

B—**-C 

Pushouts (base form of colimit) "preserve" definitional extensions.   Consider the 
following pushout (colimit) diagram: 

B^—C 

D^-PE 
m 

If m is a definitional extension, then the corresponding (cocone) morphism m' is also 
a definitional extension. Furthermore, definitional extensions are closed under (se- 
quential) composition. Both properties, preservation by pushouts and closure under 
composition, are needed for sequential composition of interpretations. 

18The system only makes a syntactic check on operation definitions. 
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EXAMPLE 12.2. The taxget morphism in example 12.1 is an import morphism which 
is a definitional extension (as is the case with all interpretations). Here is another 
example of a definitional extension. 

spec SET is 

import BASIC-SET 

op delete : E, Set -> Set 

definition of delete is 
axiom (equal (delete x empty-set) empty-set) 

axiom (equal (delete x (insert x S)) S) 

axiom (implies (not (equal xl x2)) 
(equal (delete xl (insert x2 S)) 

(insert x2 (delete xl S)))) 

end-def init ion 

definition set-equal-def of equal is 

axiom (iff (equal S T) 
(fa (x) (iff (in x S) (in x T)))) 

end-definition 

end-spec 

D 

12.2    Interpretations as Model Constructions 

12.2.1    Semantics of Morphisms 

The semantics of a specification A is a class of models, Mod [A]. The semantics of 
a morphism a: A -* B is a mapping _|0.:Mod[2?]->Mod[A], called the cr-reduct of 
Mod[B] to Mod [A]. Note that the morphism a and its cr-reduct are mappings in 
opposite directions. 

Each model TUB of a spec B is an assignment of semantic objects, (e.g. sets) and 
operations (e.g. functions on sets) to the sorts and operations of B. The cr-reduct of 
a model TUB is then defined as follows: for any sort SA in spec A, 

mB\ff(sA) = rng((r(sA)) 

and likewise for each operation fA in spec A, 

TTIBIMA) = TUBWA)) 
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The (7-reduct indeed "reduces" TUB to a model TUA of A by picking out those compo- 
nents present in A and by "forgetting" all other components of B. 

Note that in general the cr-reduct transforms each model of B into a model of A, 
but not every model of A can necessarily be generated from a model of B. Thus, 
in general the image of the cr-reduct is a proper subclass of Mod [A]. In this sense 
refinement amounts to a restriction of the class of models considered. 

12.2.2    Semantics of Definitional Extensions 

For an arbitrary spec morphism a: A —► B the <7-reduct J^rModfi?]—»Modf-A] is 
in general neither injective (one-to-one) nor surjective (onto). If a is a definitional 
extension then _\„ is bijective, i.e. both injective and surjective, and therefore has an 
inverse .+(r:Mod[A]—>Mod[J5], called <r-expansion with 

("lflU)+<r = ™>B 

(mA+<r)\<T = mA 

for all models TUA of A and all models TUB of B. 

12.2.3    Semantics of Interpretations 

Given the semantics of morphisms and definitional extensions above, we define the 
semantics of an interpretation x: A =» B. If a is the source morphism and r the target 
morphism (a definitional extension), then the model construction _t„.:Mod[.S] —»-Mod[A] 
corresponding to K is the composition of the r-expansion followed by the cr-reduction, 
i.e. 

-t* = Jo- ° -+T 

In words: Given a model TUB of B, we construct a model of A by first expanding TUB 

along r and then reducing the result along a. 

12.3    Sequential (Vertical) Composition of Interpretations 

Given two interpretations i?i:A =>■ B and 7r2:5 =$> C, the sequential composition 
7T = 7Ti; 7T2 of 7t"i and 7T2 is obtained as follows (see the diagram below). 
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(71 1 

-*• A-as-B *- A-as-B-as-C 

-I       4 
B ^-*B-as-C 

"1 
Let <n and r,- be the source and target morphism of m, respectively for i = 1,2. The 
pushout of TI and <r2 yields two morphisms r{ and a'2. Since pushouts preserve defi- 
nitional extensions (see 12.1.1), T{ is a definitional extension. Definitional extensions 
are closed under (sequential) composition. Therefore we can define the composition 
of n and 7T2 as the interpretation with source morphism <n; a'2 and target morphism 

r[ O T219. 

Sequential composition of interpretations facilitates incremental, layered refinement. 

EXAMPLE 12.3. As an example of the sequential composition of two interpretations, 
consider the interpretation of sets as bags in Example 12.1 together with the following 
interpretation which refines bags to sequences. 

interpretation BAG-TO-SEQ-QUOTIENT :  BASIC-BAG => SEQ is 
mediator BAG-AS-SEQ-QUOTIENT 
domain-to-mediator {Bag -> Bag-as-Seq, 

empty-bag -> empty-bag, 
singleton -> singleton-bag, 
bag-union -> bag-union, 
insert        -> bag-insert, 
empty?        -> bag-empty?, 
in -> bag-in} 

codomain-to-mediator import-morphism 

spec BAG-AS-SEQ-qUQTIENT is 
import SEQ 

sort Bag-as-Seq 
sort-axiom Bag-as-Seq = Seq / bag-equal 

19 "<T; r" is sequential composition in diagrammatic order: read V then r" 
"r o <r" is sequential composition in application order: read "r after <rB 
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end-spec 

These two interpretations can be composed to yield an interpretation from sets to 
sequences; here are the relevant constructions. 

diagram SET-AS-BAG-AS-SEQ-DIAGRAM is 
nodes BASIC-BAG, SET-AS-BAG-SUBSQRT, BAG-AS-SEQ-QUOTIENT 
arcs    BASIC-BAG -> SET-AS-BAG-SUBSORT :   import-morphism, 

BASIC-BAG -> BAG-AS-SEQ-QUOTIENT : 
{Bag -> Bag-as-Seq, 
empty-bag -> empty-bag, 
singleton -> singleton-bag, 
bag-union -> bag-union, 
insert        -> bag-insert, 
empty?        -> bag-empty?, 
in -> bag-in} 

end-diagram 

spec SET-AS-BAG-AS-SEQ is 
colimit of SET-AS-BAG-AS-SEQ-DIAGRAM 

interpretation SET-TO-SUBSORT-OF-SEQ-qUOTIENT : BASIC-SET => SEQ is 
mediator SET-AS-BAG-AS-SEQ 

domain-to-mediator {Set     -> Set-as-Bag, 

empty-set -> empty-set, 

singleton -> singleton-set, 
union   -> set-union, 
insert   -> set-insert, 
empty?   -> set-empty?, 
in      -> set-in} 

codomain-to-mediator {in      -> BAG-AS-SEQ-QUOTIENT.in, 

empty?   -> BAG-AS-SEQ-QUOTIENT.empty?, 
singleton -> BAG-AS-SEQ-QUOTIENT.singleton} 

12.4    Parallel (Horizontal) Composition of Interpretations 

Analogous to the colimit operation on diagrams over specs and spec morphisms, we de- 
fine a colimit operation on diagrams of interpretations and interpretation morphisms. 
I.e., the nodes of the diagram are interpretations and the arcs are interpretation 
morphisms (morphisms between interpretations). 
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12.4.1    Interpretation Morphisms 

A prototypical definition of a named interpretation morphism takes the form 

ip-scheme-morphism i-to-j:  I -> J is 
domain-sm s 

mediator-sm m 
codomain-sm t 

A depiction of this structure is shown below. 

domain I A > A-as-B < d- B 
I I I I 

i-to-j I s| Im It 
v v v v 

codomain J C > C-as-D < d- D 

An interpretation morphism has a domain and codomain, both interpretations. An 
interpretation morphism is defined by a triple of morphisms between the domains, me- 
diators, and codomains of its source and target interpretation such that the diagram 
above commutes.20 

12.4.2    Interpretation Colimits21 

In figure 13, the interpretation for DO is the colimit (pushout) of the interpretations for 
BO and CO glued on the interpretation for AO. This view can be seen by transforming 
the diagram in figure 13 into the diagram in figure 14 which is a diagram whose nodes 
are (labeled with) interpretations and whose arcs are (labeled with) interpretation 
morphisms. 

To compute the colimit interpretation (from DO to Dl in the diagram in figure 14), we 
transpose the diagram of interpretations into a diagram whose nodes axe specification 
diagrams of the same shape and whose arcs are diagram morphisms.22 (figure 15). 

20To say that a diagram commutes means that for any two nodes r»i and n-i, and any two paths 
pi and p2 between the nodes ri\ and r»2, the functions obtained by composing the functions along 
the arcs of the paths p\ and pi are equal. 

21This section presupposes some familiarity with category theory. 
22I.e. natural transformations between the diagrams (viewed as functors from the common shape 

category into the category of specs and spec morphism). 
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Ao- ■ AQüSAX ■Ax 

C0 ■ CQQSCI -d Ci 

Bo -*■ BQüSB\ ■*- -d Bx 

Do -*- DQCLSDI •* d D\ 

Figure 13: Interpretation Colimit—Spec Diagram 

Ao- 

Co- 

*Ai 

Bo- 

Do- 

=>Ci 

=>5i 

=>D\ 

Figure 14: Interpretation Colimit—Interpretation Diagram 

do: > doOLsd\ < rf= :dX 

Ao- ■*■ AQüSAX ■* rf- ■Ax 

Co CQUSCX •*- 

Bo ■ BQüSBX ■*- Bx 

t* Cx 

Figure 15: Interpretation Colimit—Transposed Diagram 
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In this transposed diagram, there are three nodes labeled with spec diagrams and 
two arcs labeled with diagram morphisms. That is, dO is a spec diagram with nodes 
AO, BO, CO, etc. If dl has a colimit, then we can compute an interpretation for DO 
by taking the colimit of each of the diagrams dO, dO-as-dl, and dl to yield the specs 
DO, DO-as-Dl, and Dl (as in the diagram in figure 13 above ). These three specs, 
together the with witness arrows for the universality of DO and Dl with respect to 
DO-as-Dl form an interpretation from DO to Dl. We use the following facts about 
the category of spec diagrams with common shape: 

1. If a diagram dl has a colimit, and tl:dl =>• d2 is a diagram morphism with 
all pieces definitional extensions, then dl has a colimit and the unique arrow 
between the colimit of dl and the colimit of d2 is a definitional extension. 

2. If a diagram dl has a colimit, and £0: dO =» d2 is a diagram morphism, then dO 
has a colimit. 

12.4.3    Interpretation Schemes and Morphisms 

For practical purposes it is not sufficient to cover interpretations by pieces that are 
themselves interpretations. We therefore introduce interpretation schemes as a suit- 
able generalization of interpretations. Interpretation schemes can be be thought of 
as interpretations with holes, or as interpretation specifications. 

An interpretation scheme has the same structure as an interpretation, but the target 
morphism can be an arbitrary morphism; it need not be a definitional extension. 
Interpretation scheme morphisms (ip-scheme morphisms) are as defined in 12.4.1 
with ip-schemes as domains and targets. 

Colimits of ip-scheme diagrams exist provided the underlying spec diagrams have 
colimits. In general, the colimit of an ip-scheme diagram is an interpretation scheme, 
not an interpretation. 

Note that for arbitrary source spec A and target spec B there is no most general 
interpretation but there is a most general interpretation scheme, namely the one 
consisting of the inclusion morphisms from A and B into the coproduct (disjoint 
union) of A and B. 

12.5    Lifting Spec Operations to Interpretation Operations 

Any specification morphism m can be "lifted" to an interpretation by taking m as 
the source morphism and the identity on the codomain of m as the target morphism. 
(Note that the identity is a definitional extension.) 
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s 
morphism A m > B 

I 
v                                        st 

interpretation. A m > B < id B 

A definitional extension can be lifted to an interpretation by taking the identity on 
its domain as the source morphism: 

t 
definitional ezt. B < d A 

I 
v                                        st 

interpretation B id > B < d A 
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Translation of a spec A results in a spec B and a spec isomorphism r from A to B. 
Isomorphisms are trivial definitional extensions. Hence, by the above on definitional 
extensions, translations can be lifted to interpretations. 

Sequential composition of interpretations then yields rules for propagating interpre- 
tations along morphisms in the following situations: 

(1)      A (2)      A => B        (3)      B => C 
I I I 
I Id 
I I I 

V V V 

B => C C A 

In each case, sequential composition produces an interpretation from A to C. 

13    Putting Code Fragments Together 

When specifications are sufficiently refined, they can be converted into programs 
which realize them. This involves a switching of logics. We use the theory of logic 
morphisms described in [10]. We will confine our attention to entailment systems 
and their morphisms, rather than logics (which include models and institutions). 
Entailment systems are sufficient for the purpose of code generation. 

13.1    Entailment Systems and their Morphisms 

An entailment system is a 3-tuple (Sig, sen, h) consisting of a category Sig of sig- 
natures and signature morphisms, a functor sen: Sig —*■ Set which assigns to each 
signature a set of "sentences", and a function h which associates to each signature 
an entailment relation (satisfying the expected axioms). 

To map one entailment system into another, we map the syntax (i.e., signatures and 
sentences) while preserving entailment. Preservation of entailment represents the 
relevant correctness criterion for translating specifications from one logic to another. 
Note that this is similar to the correctness criterion for refinement within a single 
logic. 
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13.2    Translating from Slang to Lisp 

The specification language used in SPECWARE is called SLANG. We distinguish 
SLANG because SPECWARE may have multiple back-ends, Lisp, C, Ada, etc., each 
with its own logic. 

We consider a sub-logic of SLANG, called the abstract target language (for LISP); there 
is one sub-logic for each language into which SLANG specifications can be translated. 
We will denote this sub-logic by SLANG . The sub-logic SLANG is defined by 
starting with a set of basic specifications, such as integers, sequences, etc., which have 
direct realizations in the target language. All specifications which can be constructed 
from the base specifications, with the following restrictions, are then included in the 
sub-logic: 

• for colimit specifications, only injective morphisms are allowed in the diagram;23 

• all definitions must be constructive, i.e., they must either be explicit definitions 
(e.g., (equal (squaxe z) (times x x))), or, if they are recursive, they must 
be given as conditional equations using a constructor set. 

The goal of the refinement process is to arrive at a sufficiently detailed specification 
which satisfies the restrictions above. 

The sub-logic SLANG will be translated into a functional subset of LISP. TO facili- 
tate this translation, we couch this subset as an entailment system, denoted LISP . 
The signatures of this entailment system are finite sets of untyped operations and the 
sentences are function definitions of the form 

(defun f  (x) 
(cond ((p x)   (g x)) 

and generated conditional equations of the form 

(if  (p x)   (equal  (f x)   (g x))). 

The entailment relation is that of rewriting, since theories in LISP can be viewed 
as conditional-equational theories over the simply-typed A-calculus. 

In Figure 16, we show a fragment of an entailment system morphism from SLANG 

to LISP    .  Note, in particular, the translations from and to empty specifications. 
23For colimit specifications which can be construed as "instantiations" of a "generic" specification, 

the morphisms from the formal to the actual may be non-injective. 
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The set of sentences in the SLANG specification INT translates to the empty set; this 
is because integers axe primitive in LISP. Similarly, the empty SLANG specification 
translates to a non-empty LISP specification; this is because some built-in operations 
of SLANG are not primitive in LISP. 

13.2.1    Translating Constructed Sorts 

There are numerous details in entailment system morphisms such as that from SLANG
-

" 

to LISP—. We will briefly consider the translation of constructed sorts. Subsorts can 
be handled by representing elements of a subsort by the corresponding elements of the 
supersort. Similarly, quotient sorts can be handled by representing their elements by 
the elements of the base sort. Sentences have to be translated consistently with such 
representation choices: e.g., injections associated with subsorts ((relax p)) and the 
surjections associated with quotient sorts ((quotient e)) must be dropped. Also, 
the equality on a quotient sort must be replaced by the equivalence relation defining 
the quotient sort. 

In Figure 17, we show the representation of coproduct sorts by variant records. This 
translation exploits the generality of entailment system morphisms: a signature is 
mapped into a theory. 

13.3    Translation of Colimits: Putting Code Fragments To- 
gether 

If an entailment system morphism is defined in such a way that it is co-continuous, 
i.e., colimits are preserved, then we obtain a recursive procedure for translation, 
which is similar to that of refinement: the code for a specification can be obtained by 
assembling the code for smaller specifications which cover it. 

The entailment system morphism from SLANG
-
" to LISP

--
 briefly described above 

does preserve colimits because of our restriction to injective morphisms. In general, 
this is true for most programming languages because they only allow imports, which 
are inclusion morphisms. 
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SLANG" LISP 

spec SLANG-BASE is 
ops implies, iff 
(defun implies (x y) 

(or (not x) y)) 
(defun iff (x y) 

(or (and x y) 
(and (not x) (not y)))) 

end-spec  
INT SLANG-BASE 

spec F00 is 
import INT 
op abs : Int -> Int 
definition of abs is 

axiom 
(implies (ge x zero) 

(equal (abs x) x)) 
axiom 
(implies (It x zero) 

(equal (abs x) (minus zero x))) 
end-definition 
end-spec 

spec F00' is 
import SLANG-BASE 
op abs 
(defun abs (x) 

(cond ((>= x 0) x) 
(« x 0) (-0 x)))) 

end-spec 

Figure 16: Fragment of entailment system morphism from SLANG— to LISP— 

spec STACK is 
import INT 

sort-axiom 
Stack = E-Stack + NE-Stack 

spec STACK'  is 
import SLANG-BASE 
op size,  E-Stack?, NE-Stack? 
(defun E-Stack? (s) 

(= (car s)  1)) 

op size    : Stack -> Int 
definition of size is 

axiom 
(equal (size ((embed 1)  s)) 

zero) 
axiom 
(equal (size ((embed 2) s)) 

(succ  (size  (pop s)))) 
end-def init ion 
end-spec 

(defun size (s) 
(cond 

((E-Stack? s) 0) 
((NE-Stack? s) 

(1+ (size (pop (cdr s))))) 
)) 

end-definition 
end-spec 

Figure 17: The representation of coproduct sorts as variant records 
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Part IV 

Assessment 

14    Conclusions 

14.1 Focus and Results 

The primary focus of this effort was on the basic concepts and operations that enable a 
scalable technology for system synthesis. Synthesis technology is inherently complex; 
the primitive concepts must therefore be both simple and general so that tractable 
implementations of powerful, but usable tools can be constructed. 

SPECWARE is intended as a system for composing software: specifications, refine- 
ments, and code. Composition is crucial both for complexity management and reuse. 
SPECWARE therefore provides operations for composing specifications from pieces 
(smaller specifications), for constructing refinements of specification from refinements 
of the pieces, and for constructing system code from code modules. 

The presence of both parallel and sequential refinement composition allows system 
development from parts through several architectural layers, from composition of an 
initial specification to generation of a system of code modules, e.g. in Ada, linked 
by a precise, richly structured design record. Such design records enable accurate 
requirements traceability and controlled system evolution as well as high degree of 
reuse. 

14.2 Beyond DTRE, KIDS, and REACTO 

At present, not all of the capabilities for which the earlier Kestrel prototypes present a 
proof of concept have been realized in SPECWARE. SPECWARE, however, does present 
a carefully constructed, coherent framework for the integration of these capabilities, 
often in more general yet simpler form. 

DTRE The data type refinement capabilities of DTRE have been fully recreated in a 
generalized form in SPECWARE. The underlying theory has been significantly refined. 
The notions of parallel composition of interpretations, interpretation Schemas, and 
parameterized interpretations are original results of this effort. It would useful to 
revisit and incorporate the automated data structure selection ideas explored in Dss. 
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KIDS The theories in KIDS axe theories about the REFINE language; in SPECWARE, 

the specification logic is completely independent of any target language. While the 
development process in KlDS includes data refinement in principal, such a capabil- 
ity does not exist in the implemented KIDS system. The specification framework of 
SPECWARE is richer than that of KIDS, and provides a much richer framework for 
the representation of taxonomic design knowledge. SPECWARE is now at a stage at 
which, after careful analysis, adding KlDS' automated algorithm design and optimiza- 
tion capabilities will lead to a cleaner and more general re-incarnation of the KIDS 

technology. In particular, first attempts to perform algorithm design in the presence 
of data type refinement have led to the discovery of subtle interactions. 

REACTO There are several ways of adding a state machine formalism to SPECWARE. 

One of the most attractive approaches is to specify state machines as SLANG theories. 
This creates the opportunity to use the refinement machinery of SPECWARE to derive 
different representations for the finite-state control. This degree of system design 
flexibility is not present in the original prototype. 

We believe that SPECWARE represents a significant advance toward scalable technol- 
ogy for system synthesis. 
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A    SLANG Syntax 

In this appendix, we define the syntax of SLANG. Readers familiar with REFINE may 
also wish to consult the file <slang-top-level>/core4/code/language/spec-grammar. re. 
As with the rest of the language manual, the grammar is divided into a core part and 
an extension for refinements. 

A.l    Notation 

To describe the syntax, we use BNF augmented with regular expression constructs. 
Non-terminals are enclosed in angle brackets, "(...)"• Terminals are indicated by 
typewriter font. Syntax alternatives are separated by "|". Parentheses, "(...)", are 
used for grouping, e.g., for inline alternatives. Optional entities are enclosed in square 
brackets, "[...]". A "*" after a syntactic element indicates zero or more repetitions of 
that element; a "+" indicates one or more repetitions. 

A.2     Core Slang Grammar 

A.2.1    Top-Level Objects 

The top-level objects of CORE SLANG are specifications, morphisms, and diagrams. 
Each such object class appears twice in the grammar, once with the prefix "global-" 
and once with the prefix "local-". Global objects must be named; local objects must 
not be named. Global objects can only appear at the top-level; local objects can 
appear within other expressions. 

(top-level-slang-object) —► 
(global-spec) | (global-signature-morphism) | (global-sm-diagram) 

A. 2.2    Specifications 

(global-spec) —► 
spec  (symbol) (is | ■) 

[ (import-declaration) ] 
(development-element )* 

end-spec 

spec  (symbol) (is | -) (spec-operation) 
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A.2.3    Import Declarations 

(import-declaration.) —► 
import  (spec-term) (,   (spec-term) )* 
import  (diagram-term) 

A.2.4    Specification Elements 

(development-element) —► 
(sort-declaration) | (sort-axiom) | (op-declaration) | 
(constmctor-set) | (theorem) | (definition) 

(sort-declaration) —► (sorts | sort) (spec-sort) (,   (spec-sort) )* 

(spec-sort) —► (symbol) 

(sort-axiom) —► sort-axiom (spec-sort-ref)   =  (spec-sort-term) 

(op-declaration) —► (op | const) (symbol)   :   (spec-sort-term) 

(constructor-set) —► 
constructors { (spec-op-ref) (,   (spec-op-ref) )* }  construct (spec-sort-term) 

(theorem) —►(axiom | theorem)[(symbol) (is | =)] (spec-op-term) 

(definition) —► 
definition [(symbol) [of  (spec-op-ref)] (is | =)] 

(definition-clause)+ 

end-definition 

(definition-clause) —>■ (theorem) 

73 



A.2.5    Sort Terms 

(spec-sort-term) —► 
(spec-sort-ref) | (spec-sort-function) | (spec-sort-subsort)  | 
(spec-sort-quotient) | (spec-sort-coproduct)  | (spec-sort-product) 

(spec-sort-ref) —► (qualified-name) 

(spec-sort-function) —► [ (spec-sort-term) ] ->  (spec-sort-term) 

(spec-sort-subsort) —► (spec-sort-term)   I   (spec-op-term) 

(spec-sort-quotient) —► (spec-sort-term)  /  (spec-op-term) 

(spec-sort-coproduct) —> [ ]  | (spec-sort-term) (+  (spec-sort-term) )+ 

(spec-sort-product) —► (  ) | (spec-sort-term) (,   (spec-sort-term))+ 

A.2.5.1 Precedence and associativity for sort terms. The different opera- 
tors for constructing sort terms are listed below in the order of increasing precedence. 
Precedence can be overridden with parentheses. 

precedence for (spec-sort-term) 
brackets ( matching ) 
same-level -> associativity right 
same-level ,   + associativity none 
same-level I   / 

A.2.6    Terms and Formulas 

(spec-op-term) —► . 
(spec-op-ref) | (spec-op-operation) | (spec-op-binding-operation) | (spec-op-product) 

(spec-op-ref) —► (qualified-name) [:   (spec-sort-term) ] 

(spec-op-operation) —► 
(  (spec-op-term)   (spec-op-term)* )  | 
( (project | embed) (positive-integer)   ) 
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(spec-op-binding-operation) —► 
(  (spec-op-binding-rator)   (  (bound-var) * )   (spec-op-term)  ) 

(spec-op-binding-rator) —► (fa | ex | lambda) 

(bound-var) —► (symbol) [:   (spec-sort-term) ] 

(spec-op-product) —► <  (spec-op-term)* > 

A.2.7    Specification Terms 

Specification terms are terms which denote specifications. Generally, terms are of 
three kinds: references to named objects, operations, and explicit terms for anony- 
mous (or local) objects. 

(spec-term) —► (spec-ref) | (local-spec) | (spec-operation) 

(spec-ref) —> (symbol) 

(local-spec) —► 
spec 

[ (import-declaration) ] 
(development-element)* 

end-spec 

(spec-operation) —► (spec-translation) | (spec-colimit) 

(spec-translation) —► translate (spec-term)  by { [(sm-rules)] } 

(spec-colimit) —► colimit of  (diagram-term) 

A.2.8    Specification Morphisms 

(global-signature-morphism) —► 
morphism (symbol) : (spec-term)  ->  (spec-term) (is | =) { [(sm-rules)] } 

(sm-rules) —► (sm-rule) (,   (sm-rule) )* 

(sm-rule) —► (sort-or-op-ref)   ->  (sort-or-op-ref) 

(sort-or-op-ref) —► (qualified-name) | (   (qualified-name)   :   (spec-sort-term)   ) 
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A.2.9    Specification Morphism Terms 

(sm-term) —► (sm-ref) | (local-signature-morpbism) | (sm-operation) 

(sm-ref) —► (symbol) 

(local-signature-morpbism) —►   • 
[morphism (spec-term)   ->  (spec-term)] { [(sm-rules)] } 

(sm-operation) —► 
identity-morphism | translation-morphism [ import-morphism | 
cocone-morphism from (symbol) 

A. 2.10    Diagrams 

(global-sm-diagram) —► 
diagram  (symbol) (is | =) 

[nodes  (sm-node) (,   (sm-node))*] 
[arcs  (sm-arc) (,   (sm-arc))*] 

end-diagram 

A.2.11    Diagram Terms 

(diagram-term) —► (diagram-ref) | (local-sm-diagram) 

(diagram-ref) —► (symbol) 

(local-sm-diagram) —► 
diagram 

[nodes  (sm-node) (,   (sm-node))*] 
[arcs  (sm-arc) (,   (sm-arc))*] 

end-diagram 

A.2.12    Diagram Elements 

(sm-node) —► [ (symbol)   : ] (spec-term) 

(sm-arc) —► [ (symbol)   : ] (sm-node-ref)   ->  (sm-node-ref)   :   (sm-term) 

(sm-node-ref) —+ (symbol) 
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A.2.13    Qualified Names 

(qualified-name) —► ((node-name)   . )* (sort-or-op-name) 

(node-name) —► (symbol) 

(sort-or-op-name) —► (symbol) 

A.2.14    Simple Names 

(symbol) —► (symbol-start-char)   (symbol-continue-char)* 

(symbol-staxt-char) € 
♦abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ 

(symbol-continue-char) € 
-*abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMN0PQRSTUVWXYZ1234567890?! 

A.2.15 Comments 

The character "'/." indicates the start of a comment; everything which follows until the 
end of the line is ignored. Larger pieces of text can be commented out by enclosing 
them in "# 11... 11 #"; these characters function as brackets and can be nested. 

A.3    Refinement Constructs in Slang 

In addition to specifications, morphisms, and diagrams, there are two additional top- 
level constructs in SLANG: interpretation schemes and interpretation scheme mor- 
phisms. 

(top-level-slang-object) —>• (global-ip-scheme) | (global-ips-morphism) 

A.3.1    Interpretations and Interpretation Schemes 

(global-ip-scheme) -—► 
(interpretation | ip-scheme) (symbol) : (spec-term)   =>   (spec-term) (is | =) 

mediator (spec-term) 
(dom-to-med | domain-to-mediator) (sm-term) 
(cod-to-med | codomain-to-mediator) (sm-term) 

77 



A.3.2    Interpretation (Scheme) Terms 

(ips-tenn) —► (ips-ref) | (local-ip-scheme) 

(ips-ref) —► (symbol) 

(local-ip-scheme) —-* 
(interpretation | ip-scheme) [(spec-term)  =>   (spec-term)] 

mediator (spec-term) 
(dom-to-med | domain-to-mediator) (sm-term) 
(cod-to-med | codomain-to-mediator) (sm-term) 

A.3.3    Interpretation (Scheme) Morphisms 

(global-ips-morphism) —► 
ip-scheme-morphism (symbol) : (ips-term)   ->   (ips-term) (is | =) 

domain-sm (sm-term) 
mediator-sm (sm-term) 
codomain-sm (sm-term) 

A.3.4    Interpretation (Scheme) Morphism Terms 

(ipsm-term) —► (ipsm-ref) | (local-ips-morphism) 

(ipsm-ref) —► (symbol) 

(local-ips-morphism) —► 
ip-scheme-morphism 

domain-sm (sm-term) 
mediator-sm (sm-term) 
codomain-sm (sm-term) 
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Index 

This index contains entries for the reserved words and nonterminals in the BNF 
description of SLANG in addition to entries for the main body of the text. The 
entries for the nonterminals and reserved words precede the standard entries. 

There are three levels of indexing: main entry; subentry; and subsubentry. Also, "-" 
is sometimes used as a surrogate for the main entry. 

(bound-var), 75 
(constructor-set), 73 
(definition-clause), 73 
(definition), 73 
(development-element), 73 
(diagram-ref), 76 
(diagram-term), 76 
(global-ip-scheme), 77 
(global-ips-morphism), 78 
(global-signature-morphism), 75 
(global-sm-diagram), 76 
(global-spec), 72 
(import-declaration), 72 
(ips-ref), 78 
(ips-tenn), 77 
(ipsm-ref), 78 
(ipsm-term), 78 
(local-ip-scheme), 78 
(local-ips-morphism), 78 
(local-signature-morphism), 76 
(local-sm-diagram), 76 
(local-spec), 75 
(node-name), 77 
(op-declaration), 73 
(qualified-name), 76 
(sm-arc), 76 
(sm-node-ref), 76 
(sm-node), 76 
(sm-operation), 76 
(sm-ref), 76 
(sm-rule), 75 
(sm-rules), 75 
(sm-term), 75 

(sort-axiom), 73 
(sort-declaration), 73 
(sort-or-op-name), 77 
(sort-or-op-ref), 75 
(spec-colimit), 75 
(spec-op-binding-operation), 74 
(spec-op-binding-rator), 74 
(spec-op-operation), 74 
(spec-op-product), 75 
(spec-op-ref), 74 
(spec-op-term), 74 
(spec-operation), 75 
(spec-ref), 75 
(spec-sort-coproduct), 74 
(spec-sort-function), 73 
(spec-sort-product), 74 
(spec-sort-quotient), 74 
(spec-sort-ref), 73 
(spec-sort-subsort), 73 
(spec-sort-term), 73 
(spec-sort), 73 
(spec-term), 75 
(spec-translation), 75 
(symbol-continue-char), 77 
(symbol-start-char), 77 
(symbol), 77 
(theorem), 73 
(top-level-slang-object), 72, 77 
arcs, 76 
axiom, 73 
by, 75 
cocone-morphism, 76 
cod-to-med, , 578 77 
codomain-sm, 78 
codomain—to-mediator, ,578 77 
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colimit, 75 

const, 73 

construct, 73 

constructors, 73 

definition, 73 

diagram, 76 

dom-to-med, ,578 77 

domain-sm, 78 

domain-to-mediator, , 578 77 

embed, 74 

end-definition,  73 
end-diagram,  76 
end-spec,  72,  75 
ex,  74 
fa,  74 
from, 76 
identity-morphism, 76 
import, 72 
import-morphism, 76 

interpretation, , 578 77 

ip-scheme, ,578 77 
ip-scheme-morphism,  78 
is,  ,573 72, -578 75 
lambda, 74 
mediator,  , 578 77 
mediator-sm, 78 
morphism,  ,576 75 
nodes, 76 
of,  73,  75 
op, 73 
project, 74 
sort, 73 
sort-axiom, 73 
sorts,  73 
spec, 72, 75 
theorem,  73 
translate, 75 
translation-morphism, 76 

arcs, 40 
axiom, 30 

bound-variable, 26 

character 
allowed in names, see name,allowed 

character 
special, 20 

cocone 
cocone morphism, , 543 42 

cocone-morphism, see morphism term 
colimit, 41 

algorithm, 43 
apex, 42 
cocone, see cocone 
equivalence class, 43, 45 
example, 41, 44, 46 
sort-axiom, 44 
spec building operation 

arg is a diagram, 41 
value is a spec, 41 

constructors, 31 
rreeness, 32 
induction-axiom, 31 
reachability, 32 

declaration, 21 
definition, 31 

name, 31 
diagram, 18, 36 

arcs labeled with morphisms, 36 
nodes labeled with specs, 36 

equality, 26 

formula, 29 
quantified, 26 

function, 29 
arguments 

0-ary, 29 
n-ary, 29 
unary, 29 

value 
multi-valued, 29 
single-valued, 29 

identity-morphism, see morphism term 
import, 18 
import-morphism, see morphism term 
induction-axiom 

example, 32 
instantiation, 18 
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interpretation, , 551 50 name, 19 
codomain, 52 allowed character, 20, 77 
composition bnf, 77 

horizontal, see-,composition,parallel case insensitive, 20 
parallel, 58 disambiguate, , 520 19 
sequential, 54, 56 global, 19 
vertical, see -,composition,sequential local, 20 

domain, 52 qualified, see qualified name 
generalizes morphisms, 50 syntax, 20 
interpretation morphism, 58 namespace, 19 
mediator spec, 52 nodes,39 
source morpnism, 52 
source spec, 52 operation, 24 

target morpnism, 52 built-in, 25 

is a dem extn, 52 apply, 26 
target spec, 52 Boolean, 25 

interpretation scheme, 61 embed, 27 
morpnism, 61 lambda, 26 

projection, 27 
keywords quantifiers, 26 

list of keywords, 20 quotient, 27 
relax, 28 

lambda calculus tuple, 27 
typed, 18, 29 const, 25 

extensions in SLANG, 18 constants, 25 
lifting constructors, 31 

spec ops to interpretation ops, 61 nullary, 25 
logic op, 25 

higher order, 18 rank,25 
of SLANG, 18 within specifications, 24 

morphism, 18, 33 parameterization, 18 
definitional extension, 54 
local, 35 qualified name, 45 
source specification, 33 example, 46 
target specification, 33 
translation of built-ins, 34 refinement, 18 

translation of constructed sorts, 34 composition 

morphism term, 35 parallel, 49 
cocone-morphism, 36 sequential, 49 

identity-morphism, 36 development by, 49 
import-morphism, 36 of structured specs, 50 

translation-morphism, 36 colimit, 50 

constructed by spec-building ops, 35 import, 51 
translate, 51 

problem reduction as, 49 
renaming map, see translate,renaming map 
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semantics 
interpretation, 50, 56 
morphism, 50 

a-reduct, 55 
defh extn, 56 

refinement, 50 
signature, 21 
sm-rule, 34 
sort, 21 

built-in, 25 
constructor, 21 
coproduct, 27 

empty, 23 
declaration, 21 
equality is structural, 24 
examples, 23 
function 

built in operations, 26 
precedence, 23 
product, 27 

empty, 23 
quotient, 27 
sort-algebra is free, 24, 44 
sort-axiom, 24 
sort-term, 23 
subsort, 28 

specification, 18, 21 
basic, 21 
definitional extension, 54 
specification constructors, 21 
specification-element, 21 

specification building operation 
colimit, see colimit 
import, see import 
translate, see translate 

specification diagram, see diagram 
specification morpnism, see morpnism 

term, 29 
examples, 30 

theorem, 30 
theory, 21 

presentation, 21 
top-level, 19 

translate, 40 
translate, 40 
morpnism constructed by, 41 
renaming map 

can create ambiguity, 41 
cannot rename axioms etc, 40 

translation-morphism, see morpnism term 
tuple 

for multi valued returns, 29 

82 



Rome Laboratory 

Customer Satisfaction Survey 

RL-TR- 

Please complete this survey, and mail to RL/IMPS, 
26 Electronic Pky, Griffiss AFB NY 13441-4514. Your assessment and 
feedback regarding this technical report will allow Rome Laboratory 
to have a vehicle to continuously improve our methods of research, 
publication, and customer satisfaction. Your assistance is greatly 
appreciated. 
Thank You 

Organization Name: (Optional) 

Organization POC: (Optional) 

Address:  

1.   On a scale of 1 to 5 how would you rate the technology 
developed under this research? 

5-Extremely Useful    1-Not Useful/Wasteful 

Rating  

Please use the space below to comment on your rating.  Please 
suggest improvements.  Use the back of this sheet if necessary. 

2.  Do any specific areas of the report stand out as exceptional? 

Yes  No  

If yes, please identify the area(s) , and comment on what 
aspects make them "stand out." 



3. Do any specific areas of the report stand out as inferior? 

Yes  No  

If yes, please identify the area(s), and comment on what 
aspects make them "stand out." 

4. Please utilize the space below to comment on any other aspects 
of the report. Comments on both technical content and reporting 
format are desired. 
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MISSION 

OF 

ROME LABORATORY 

Mission. The mission of Rome Laboratory is to advance the science and 
technologies of command, control, communications and intelligence and to 
transition them into systems to meet customer needs. To achieve this, 
Rome Lab: 

a. Conducts vigorous research, development and test programs in all 
applicable technologies; 

b. Transitions technology to current and future systems to improve 
operational capability, readiness, and supportability; 

c. Provides a full range of technical support to Air Force Materiel 
Command product centers and other Air Force organizations; 

d. Promotes transfer of technology to the private sector; 

e. Maintains leading edge technological expertise in the areas of 
surveillance, communications, command and control, intelligence, reliability 
science, electro-magnetic technology, photonics, signal processing, and 
computational science. 

The thrust areas of technical competence include: Surveillance, 
Communications, Command and Control, Intelligence, Signal Processing, 
Computer Science and Technology, Electromagnetic Technology, 
Photonics and Reliability Sciences. 


