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Chapter 1

Introduction

A time domain version of the uniform geometrical theory of diffraction (UTD), hence-
forth abbreviated as TD-UTD, is developed in this study for describing in relatively
simple form the transient radiation and scattering from a class of perfectly conduct-
ing configurations when they are excited by an electromagnetic pulse. In particular,
a TD-UTD formulation is obtained for describing the scattering from an arbitrary
curved wedge, and also the scattering from an arbitrary convex surface. Due to the
fact that the TD-UTD is developed via an analytical inversion into the time domain
(TD) of the corresponding high frequency asymptotic results obtained previously in
the frequency domain based UTD, the TD-UTD therefore provides an “early time”
asymptotic representation that is valid close to the arrival times of each of the various
wave fronts. More specifically, each term in the TD-UTD formulation is asymptot-
ically valid at and near a particular arrival time associated with the path length of
the corresponding ray (i.e. incident ray, reflected ray, diffracted ray, etc.) which con-
tributes at a given observation point. Due to this “early time” asymptotic nature of
the TD-UTD fepresentation, each TD ray field may not hﬁve a causal {impulse re-
sponse since there may be information in the time domain occurring é.fter and before
the arrival time of the ray. This is an important observation since earlier attempts
at the interpretation of approximate impulse responses of scattering targets did not
fully understand the possible non-causal nature of “early time” solutions [1]. Since

the TD-UTD employs the same rays as the corresponding frequency domain UTD,




it provides a clear physical picture for radiation and scattering in exactly the same
manner as does the UTD on which it is based.

The development of the TD-UTD is based on an integral transform which is called
the analytic time transform (ATT) in this report. The ATT is a one-sided transform
which transforms a frequency domain function (which is a function of a real frequency
variable w) into an analytic time function which is analytic in the upper half time
plane (Im (t) > 0). By construction, the real part of the analytic time function
when evaluated for real time ( Im (t) = 0) is exactly the inverse Fourier transform
of the frequency domain function whenever the frequency domain function obeys the
conjugate symmetry relationship (F(—w) = F*(w)) which guarantees that the inverse
Fourier transform is a real time function. The imaginary part of the analytic time
function is the Hilbert transform of the real part as expected from complex function
theory since the analytic time function is analytic in the upper half time plane.

The ATT is developed because the traditional Fourier transform and Laplace
transform are not convenient for transforming the asymptotic high frequency UTD
results into the time domain. The main reason for the difficulty in using the traditional
Fourier or Laplace transforms on the frequency domain UTD results lies in the fact
that the resulting time functions may not be one-sided (i.e. may not be causal). Such a
difficulty can occur for even the simplest of examples, such as an incident geometrical
optics ray which is reflected from a smooth concave surface and passes through one
caustic before reaching the observer. The reflected ray field after the caustic has an
extra factor of €/*/? in the frequency domain which makes the use of the conventional
inverse Laplace or Fourier transforms inconvenient. In principle, a two-sided Laplace
transform or a Fourier transform can be used to derive the results in this report, but
would require a much greater effort and the resulting time domain formulas would
have been much more complicated.

In addition to tﬂe convenience of using the ATT on the frequency domain UTD
results, there is the added benefit of the ability of performing efficient convolutions
with a broad class of excitation pulses. An algorithm is developed to convolve any

analytic time function obtained by using the ATT with an excitation with a frequency




response which can be written as a series of complex exponentials. This is a very
general description of an excitation pulse, but it is especially useful when the pulse
has a narrow temporal width and a broad banded frequency response. When this is
the case, the excitation pulse can be modeled with only a few basis functions (around
10 or 15 basis functions for many practical cases) and the convolution is a simple
summation over a few terms.

Although the term “UTD” encompasses a number of different asymptotic solutions
for various special geometries, only two specific but most often required geometries
are analyzed here; namely, an arbitrary curved wedge, and an arbitrary smooth con-
vex surface. These geometries can be used to build up the solution to a more general
complex configuration (in terms of wedges, plates, and cylinders or ellipsoids, etc.)
when the standard assumption of localization of UTD fields is invoked. A TD-UTD
formulation for the transient scattering from a pulse excited general curved wedge is
accomplished by applying the ATT to the well understood frequency domain UTD
formulas that have been obtained previously by Kouyoumjian and Pathak [2]. In
particular, the transient response of the various ray mechanisms—such as incident,
reflected and diffracted rays—is explicitly obtained in closed form when the excita-
tion is a time impulsive, general astigmatic wavefront. There are explicit and easy
to calculate formulas for the TD-GO rays, both incident and reflected, for the first
order diffracted ray and also for the slope diffracted ray. The slope diffraction con-
tribution is important when the incident field at the edge is rapidly varying with
respect to space (not time). Likewise, the TD-UTD solution for the diffraction by a
smooth convex surface is developed via the ATT, by analytical inversion of the corre-
sponding frequency domain UTD solution obtained previously by Pathak et al. [3, 4].
The analytic time functions obtained from this transformation can not be obtained
completely in closed form, but efficient algorithms are developed for their calculation
where new special functions are defined for the computation of the TD-UTD con-
vex surface diffraction. The scattering case where the observer and the source are

removed from the surface is analyzed here; on the other hand, the case of a source




(pulsed antenna) and/or the observer located on the surface can be dealt with in a
similar manner in the future.

The interest in transient electromagnetic analysis where the excitation is a rel-
atively short pulse has been increasing over the years and it constitutes an area of
research which will continue to receive attention. This is mainly due to the increased
use of ultra-wide band radars and the development of impulse radiating systems.
Also, there has been a long time interest in the effects of natural and manmade short
electromagnetic pulses (EMPs) on communication and radar systems. It is most nat-
ural to analyze such transient problems directly in the time domain. This is especially
true when the scattering objects are large in terms of pulse width.

To analyze the scattering or radiation from complex structures, one could alterna-
tively perform a frequency domain UTD analysis at a series of frequencies, then simply
apply an appropriate window and use the inverse fast Fourier transform (IFFT) to
obtain the scattered field due to a transient pulse excitation. However, a direct TD-
UTD analysis of the same problem is more efficient when the pulse is very narrow (for
example a pulse with a frequency response with more than 100 percent bandwidth).
Also, the TD-UTD can be used to compute an approximate impulse response which
can usually provide more insight since the impulse response is essentially independent
of the excitation, whereas the response to a particular excitation is obtained from the
convolution operation. The TD-UTD provides a new way of examining electromag-
netic radiating and scattering phenomena as compared to what has been done in the
past, and it therefore could lead to new insights for other applications. Some other
applications which may result from this TD-UTD development are parametric mod-
els used for radar data analysis [5, 6] and also the development of a new hybrid time
domain integral equation based numerical method.

There exist various methods for the numerical analysis of transient electromag-
netic problems such as the finite difference time domain (FDTD) method or the time
domain integral equation (TD-IE) approaches. These methods have been found to
be very useful for a great many problems, but become very cumbersome or even in-

tractable for problems where the geometry is large in terms of pulse width (or in terms




of the smallest wavelength of interest). Because of this, the TD-UTD should provide

a very useful complement to these more robust numerical methods when analyzing
general problems. Also, the robust numerical methods such as the FDTD and the
TD-IE are not well suited for computing approximate impulse responses.

There is an abundance of research which has been done in the past on transient
electromagnetic (or acoustic) analysis. In fact, there are some books dedicated to
this subject [7, 8, 9]. There is also a large amount of literature on the subject of
numerical time domain methods which are not discussed here. There is some work on
the formulation of a time domain version of the UTD for wedge diffraction [10, 11, 12],
but this previous work concentrates on the time domain analysis of the diffraction
from a straight perfectly conducting wedge. Unfortunately, this analysis uses an
inverse Laplace transform to obtain the time domain formulas and is thus limited to
simple excitations and straight wedges. In contrast, the work in this report can easily
handle general astigmatic inéident ray fields which may have passed through a caustic
before arriving at the edge of the wedge. Also, in this report, the wedge is a general
curved wedge which can have curved faces or a curved edge. Other research which
is most similar to the TD-UTD development in this report is the spectral theory of
transients (STT) [13, 14, 15, 16, 17, 18, 19]. In the STT, an analytic time transform
is used which is essentially the same as the ATT of this report except that their time
convention for the frequency domain fields is e=** whereas the time convention used in
this report is e’“!. The important difference between the STT and the TD-UTD is that
the STT is used to find the exact time domain solution to canonical geometries which
can then be approximated for “early time”, whereas the TD-UTD obtains an “early
time” solution directly by using the ATT on the frequency domain UTD formulas.
In principle, the STT is a very powerful and accurate method but unfortunately
the “early time” solutions obtained by the STT method are not generalized to handle
relatively arbitrary geometries such as the arbitrary curved wedge analyzed in Chapter
3 of this report. Furthermore, it appears to be rather complicated to extend the STT
to deal with smooth convex surfaces as are analyzed in Chapter 4 of this report. The

STT has been used to obtain some interesting solutions for straight wedge diffraction



due to a collimated pulsed beam type illumination. It should be mentioned that the
STT also provides inspiration especially for the use of the analytic time transform in
the present research which may not have been accomplished otherwise.

This report is organized as follows. Chapter 2 discusses the analytic time trans-
form (ATT). The general properties of the ATT and its relations to the traditional
Fourier and Laplace transforms are given. The ATT of a frequency domain function
produces a complex time function which is analytic in the upper half t-plane, where
t is the complex time variable. But there are special properties of the analytic time
function when it is evaluated on its boundary of analyticity, the real time axis. These
special properties are explained in Chapter 2. There are times when the ATT of a
particular frequency domain function can not be obtained in closed form and therefore
it is important to be able to calculate the analytic time function for complex time
values. For some functions, an early time representation can be obtained from an
asymptotic high frequency domain expansion; while, a late time representation can
be obtained from a frequency domain power series (i.e. low frequency) expansion.
When these two representations overlap for intermediate time values, then these rep-
resentations can be used to calculate the ATT of the original function. This procedure
is explained in Chapter 2 and a particular example is provided for demonstration. Fi-
nally, a method for performing an efficient convolution on a broad class of excitation
functions with the analytic time impulse response is presented. Further, Appendix
A presents a simple method for synthesizing a given smooth transient pulse function
in terms of a set of special basis functions which provide the efficient closed form
convolution.

Chapter 3 presents the derivation of the TD-UTD analysis of the scattering from
a perfectly conducting curved wedge where the curved wedge may have curved faces
and also a curved edge. There are four important scattering mechanisms for this
geometry; namely, the geometrical optics (GO) ray fields (an incident ray field and
a reflected ray field), the first order edge diffracted field, and the higher order slope
" *diffracted field. The incident GO ray may have any polarization including circular

polarization or in general elliptical polarization and the ray tube may be an astigmatic



ray tube which has possibly passed through some caustics. The impulse response in
Chapter 3 is defined in terms of the temporal behavior of the incident field (which is an
analytic delta function for the impulse response computation); while, the geometrical
and polarization properties of the incident field are completely general. Two versions
of the TD-UTD slope diffraction coefficient are derived; one is based on the frequency
domain slope diffraction coefficient by Veruttipong and Kouyoumjian [20]; while, the
other is based on the frequency domain slope diffraction coefficient by Hwang and
Kouyoumjian [21]. The details of the derivation of these slope diffraction coefficients
are presented in Appendix C. These two slope diffraction formulations are compared
in the numerical examples in Chapter 3. An exact solution for the scattering from
a straight wedge when it is illuminated by an electric or magnetic dipole is used as
a reference here. This exact solution is based on Felsen’s work [22] and is summa-
rized in Appendix B. The numerical examples also reveal how the impulse response
approximated by the asymptotic ”early time” TD-UTD may not be causal.

Chapter 4 presents the derivation of the TD-UTD analysis for the scattering from
a smooth convex surface. The scattering case is the only one considered here where
the source and observer are removed from the boundary. Smooth convex surface
diffraction can be modeled by creeping wave modes when the observer is in the deep
shadow region, or for multiple encirclements around closed bodies. These creep-
ing wave modes are dispersive in the frequency domain and therefore their impulse
response is effectively delayed in time. In other words, the impulse response of a
creeping wave mode starts with zero amplitude and gradually builds up to a peak
value occurring after the arrival time corresponding to a simple surface diffracted
ray path. The ATT of the frequency domain fields for smooth surface diffraction is
not obtained in closed form, so a numerical procedure is developed to compute the
ATT of the creeping wave mode with extreme efficiency. This numerical algorithm
is presented in Appendix D. Chapter 4 also includes the development of a uniform
TD-UTD formulation which is valid in the lit region, the shadow region, é,nd across
the shadow boundary. To obtain this uniform result, the ATT of the Fock type

functions Wﬁ,,h(wl/ 3E) occurring in the corresponding frequency domain UTD



representation are needed. These transforms are not obtained in closed form, but
instead approximate expansions for early, late and intermediate time values are ob-
tained, and the ATT of the Fock type functions are thus calculated using an algorithm
which chooses the appropriate representation depending on the time variable. This
numerical algorithm is presented in Appendix E

Finally, some conclusions are made in Chapter 5. This chapter also discusses
some ideas for continuing the development of the TD-UTD so that even more general
geometries can be analyzed. The possible impact of the present TD-UTD development
along with the use of the ATT is also discussed. In particular, one of the possible
applications which might benefit from the TD-UTD is the use of parametric models
in the time domain for the analysis of radar scattering data.

An ! time convention for the frequency domain fields is assumed and suppressed

in the following analysis.



Chapter 2

Analytic Time Functions

The Analytic Time Transform (ATT) is fully explained in this chapter. Since many
texts define the conventional Fourier Transform (FT) or the Laplace Transform (LT)
in slightly different ways, these conventional transforms are explicitly defined here.
Also, the relationship between all three transforms is presented. The properties of
the ATT are then explored including the important time convolution formula. When
the analytic time function obtained from the ATT is evaluated on the real time axis
(Im t = 0), some very useful properties arise and these real time properties are ex-
plained. Some important examples of analytic time functions which are useful in the
TD-UTD are presented in an easy to use table. Also, the ATT of a generic asymp-
totic high frequency series and a generic low frequency power series are investigated.
The ATT of an asymptotic high frequency series or a low frequency power series pro-
duces an early time or late time representation, respectively. These “early” time and
“late” time representations are sometimes useful in the calculation of special func-
tions. A method for efficiently computing the time convolution of two analytic time
functions is also presented. This efficient convolution is especially important for the
implementation of the TD-UTD.

It is appropriate at this juncture to describe some of the notation used in this
chapter. Throughout this chapter, time domain functions which are real functions of

real time, are written in the usual way, for example

F(t) for real t.




Note that these real time functions (when used with the Fourier transform) may be
two sided (i.e. not causal). The topic of causality is further discussed later. On the
other hand, the analytic time functions obtained from the ATT are analytic (complex)

functions of complex time and are denoted by a ’+’ sign on top, such as
+
F (t) for complex ¢.

The frequency (or Fourier) domain and Laplace domain functions are denoted by a
'~’ on top. A Laplace domain function is an analytic function of a complex variable

s, for example

F(s) for complex s = ¢ + jw.

where o and w are real. In many instances, the frequency domain function F (w) can
be obtained from an evaluation of the Laplace domain function F(s) at imaginary
s values (i.e. o = 0), which motivates the use of similar notation for the frequency

domain functions, such as

F(w) for real w.

Although the notation for F(s) and F(w) appear the same, there are many instances
when the functions are different. For example, if F(s) = 1/s then F(w) = m§(w) +
pv [1/(jw)] where “pv” denotes Cauchy’s principle value. Nonetheless, the same
notation is used for convenience, and it is obvious from the context whether the
function is a Laplace domain function F(s) or a frequency (Fourier) domain function
F(w).

The word “function” is used loosely here since F(t), or F (w), may in general
be a distl;ibution (or what is sometimes called a generalized function). Although
most mathematicians will not be happy with the use of the word “function”, it is
nevertheless used in this loose sense throughout this report. This is consistent with
much of the engineering literature which, for example, calls the impulse distribution
8(t) as an impulse function.

All of the frequency domain functions, such as F‘(w), are assumed to be of expo-
nential order o where a < 0. This means that o is the largest constant such that

F(w)e?! — 0 when |w| — co. Notice that there may be times when a is arbitrarily
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less than 0 but not equal to zero. For example, when F(w) = w then a = € < 0 where

€ is a constant arbitrarily close to 0.

2.1 Definitions

The Fourier transform as used in this report is defined as follows. The Fourier trans-
form is an integral transform that relates a time domain function F(t), which is a
function of a real time variable £, to a frequency domain function F(w) which is a

function of a real frequency variable w. This transform is defined as

Flw) = / Z F(t)e 'dw (2.1)

and the inverse Fourier transform is

F(t) = = [° e (2.2)

T Jw
The above convention for the Fourier transform is what is typically used in engineering

texts. The Fourier transform may also be written as an operator F as in
F(w) = FIF(t))
and the inverse Fourier transform denoted by
F(t)= F7 [F(w)]
or one can write the relationship between the pair of functions simply as
F(t) < Fw).

It should be kept in mind, for the Fourier transform, that the time d;majn func-
tion F(t) and the frequency domain function F' (w) are actually distributions. Also,
although in general the Fourier transform is defined for complex time functions, in
this report the time domain functions (without the + on top) is always assumed real.
‘This implies the following conjugate symmetry relationship for the frequency domain

function

F(—w) = F*(w) (2.3)

11



where * denotes a complex conjugate. This conjugate symmetry relationship is used
when finding the connection between the ATT and the Fourier transform. Finally,
notice that F(t) may be a two-sided function; this fact turns out to be an important
property when one transforms asymptotic high frequency solutions into the time
' domain which is examined later in this chapter.

The Laplace transform is defined as follows. In this report, only the one-sided
Laplace transform is discussed. Although there are some benefits from using the two-
sided Laplace transform (such as the ability to transform two-sided time functions)
only the one-sided version is used here for two reasons. The first reason is that there is
not a sufficient benefit from using the two-sided Laplace transform on the applications
discussed in this report. On the other hand, the ATT is far more versatile especially
when dealing with asymptotic high frequency results. The second reason is that the
one-sided version of the Laplace transform is more widely used and understood. The

Laplace transform is defined by

ﬁ'(s) = /oo F(t)e™*'dt for Res>§ (2.4)
0
and the inverse Laplace transform is
Fit) = = [T F(s)erd 2.5)
0= 5 [ Flo)eds .

where € > § and F(t) is of exponential order § (i.e. § is the largest value such that
F(t)e" — 0 when t — co). The Laplace transform is defined whenever the integral
in Equation (2.4) exists, and can be extended to include distributions for which the
integral will not, in general, exist in the usual sense [23]. The Laplace transform may

also be written as an operator £ as in
P(s) = LIF(t)]
and the inverse Laplace transform denoted by
F(t)= L™ [F(s)]
or one can write the relationship between the pair of functions simply as
F(t) <& F(s).

12



Now the analytic time transform (ATT) is defined as follows. There are two
versions of this transform. One version transforms a frequency domain function F (w)
into a complex analytic time function f’ (t), while the other version transforms a real
time domain function F(t) into a complex analytic time function ;‘ (t). When F(w)
is the Fourier transform of F(¢) then both versions produce the same 1-4t' (t). The first

version is defined as follows

F (t) = l/m Fw)u(w)e™'dw for Imt> a (2.6)

T /-0
When F(w) contains no impulses at w = 0, the above integral can be written as

F (t) = 1/00 F(w)e™'dw for Imt> a (2.7)
0

T

The corresponding inverse ATT is

oco+je .
F(w)u(w 2/ . F(t)e"""tdt for e> a (2.8)

oo+J€

where u(w) is the Heaviside unit step function defined as

0 w<0
ww)=¢1/2 w=0 (2.9)
1 w>0

This first version of the ATT may be also written as an operator A, as in
+ -
F(t) = A [Fw)

and the inverse ATT is
~ +
Flw)u(w) = AZ' [F (¢)]
or one can write the relationship between the pair of functions simply as
+ Ao
B (1) 2 Fw).
The second version of the ATT is defined by
F(r
F(t)—]/ tf}d‘r for Imt>0 (2.10)

13



(where a < 0 has been assumed). Equation (2.10) is sometimes called the Cauchy

Representation [24]. The inverse ATT for the second version is
+
F(ty= Re [F(t)] for Imt=0 (2.11)

where Re (z) denotes the real part of a complex z. Notice that (2.11) uses 1-<'+‘ (t)
at Imt = 0 even though in (2.10) it is only defined for Im ¢ > 0. If F () turns
out to be analytic at Im ¢ = 0 then this poses no difficulty, on the other hand, if
F (t) is not analytic on the real time axis (Im ¢ = 0) then P2 (t) at Im¢ = 0 is the
distribution defined by ;‘ (t) (Im ¢ > 0) on its boundary of analyticity [24, 25]. One
may refer to the -book by Beltrami and Wohlers for a thorough explanation of the
connection between distributions and analytic functions evaluated on their boundaries
of analyticity [25]. The second version of the ATT in (2.10) may also be written as

an operator 4, as in

F () = AF()]

and the inverse ATT is

or one can write the relationship between the pair of functions simply as
+
F(t) <2 F(t).

Whenever it is obvious from the context which version of the ATT is being used, the
subscript on the operator 4 is dropped.

Figure 2.1 shows the relationship between the Laplace transform, Fourier trans-
form and the ATT. The H operator in the figure represents a Hilbert transform
which is defined shortly. Notice that the transformation from 114-‘ (t) (Imt > 0) to
- F(t)+jHF(t) (Im t = 0) is simply evaluating l-?t (t) on the real time axis (Im t = 0).
But, the function f‘ (t) may not be analytic for Im ¢ = 0. In fact, IJ«E' (t)at (Im ¢t = 0)

+
may be a distribution which appears quite different from the analytic function F (t)

at Im ¢ > 0. An important example of this is the analytic delta function defined by
L Imt>0

t t
§(t) = { 51 (2.12)

+ pv;}t Imt=0
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- - A, +
F(s) ——> F(w) > KRt ——> Fv+j HF®
(Res>0) (Im w=0) (Imt>0) (Imt=0)

I
| FT A,
I
! LT A
-------> Fy <

Figure 2.1: Diagram showing the relationship between the Laplace transform (LT),
Fourier transform (FT) and analytic time transform (ATT). Notice that F(t) can be
obtained directly from an inverse Laplace transform only if F(t) is one-sided since
the one-sided Laplace transform is used here.

where “pv” denotes that a Cauchy principal value is understood when integrating over
this function. Notice that the frequency response corresponding to the analytic delta
function is F(w) = 1. Also notice that the inverse Fourier transform of F(w) = 1,
which is the Dirac delta function 6(t), is properly obtained from Re [b+” (t)]} when
Imt=0.

An obvious yet very useful observation is now made. The ATT defined by the
integral (2.6) is proportional to a one-sided Laplace transform of the frequency domain
function F(w) where the frequency variable w acts as the time variable in (2.4) and the
Laplace variable s in (2.4) is related to the complex time variable ¢ in (2.6) by s = —jt.
This is a very useful observation because it allows one to use the extensive tables of
one-sided Laplace transforms that exist to evaluate the ATT. This relationship can

be written symbolically as

F )= L. [F() (2.13)

s=—jt

where the subscript = on the Laplace operator signifies that z is the variable of
integration. This relationship is also used to find the ATT of distributions which
are not typically included in Laplace transform theory, but can be found within the

context of distribution theory [23].
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Table 2.1: Properties of the analytic time transform (ATT)

L%, Fw)u(w)e™! dw Flw)
40 Lprie B (t)edt
%;’(ai) Flaw), a>0
F(t-a) e P (w)
Im (¢) > a+ Im (a)
e F (t) F(w - BYu(w ~ B)
g>0
e [F (1) + L [ Flw)e™ du] F(w—p)
2 (1) jwF(w)
2 F () (jw) F(w)
—jt F (t) - LF(0) 2 F(w)
(—jt)" F (8) = 2(=jt)" ' F(0) - - — LF=D(0) 2 f(w)
LF (& (0) = LS B (r) G (¢ —m)dr F(w)G(w)
Imt>oar+a
Im (¢) —ag > €e> ay

2.2 Properties of the Analytic Time Transform
(ATT)

Some important properties of the analytic time transform (ATT) are presented in
this section. Also, some useful special properties of the analytic time function when

it is evaluated for real time (Im ¢ = 0) are explored.

Table 2.1 summarizes the properties of the ATT. Most of these properties can be
easily derived using a change of variables as in (2.13) and a good reference on Laplace

transforms [26, 23].

2.2.1 Properties of Analytic Time Functions for Real Time

The properties of the analytic time functions evaluated on the real time axis (Im ¢ =

0) are now examined. During this discussion, it is assumed that F(t) and F(w)
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Table 2.2: Properties of the Hilbert transform. The Hilbert transform of F(t) is
denoted by HF(t) or F(t) and similarly for G(2).

HIHF(t)] = -F(t)
H[F(t +a)] = (HF)(t + a)
H[F(t)* G(t)] = [HF(t)] *» G(t) = F(t) * [HG(t)]
[HF(t)] * [HG(t)] = —F(t)  H(t)
H[SF(t)] = §[HF(?)
| Z F$)G(t)dt= [ ~ Bt
J F2(t)dt = [ F2(t)dt

are square integrable functions unless specified otherwise. Nonetheless, many of the
properties discussed here can be easily generalized for the case when F(t) and F(w)
are distributions [25, 23].

When the analytic time function ﬁ+’ (t) is evaluated on the real time axis, Im ¢ = 0,

it can be written as
F(t) = F(t) + jHF(t) for Imt=0 (2.14)
where F(t) is the inverse Fourier transform of F(w)
F(t) = F'[F(w) (2.15)

assuming that (—w) = F*(w) where * denotes a complex conjugate. The H operator

denotes a Hilbert transform

HF(t) = F'[~jogn(w)F(w)) (2.16)
- 71_rpv /_ ] thi):d:c (2.17)

Table 2.2 shows a list of useful properties of the Hilbert transform [27]. Another

notation which is used for the Hilbert transform is
F(t) = HF(t)
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The following Fourier transform pairs

F) & 2F(w)u(w) (2.18)
F(t) <& F(w) (2.19)
F(t) <& —jsgn(w)F(w) (2.20)

(and similarly for EJ (t), G(t) and G(t)) can be used to derive some additional inter-

esting relationships, such as

[ e = SRe [ B0 E (2.21)
[ rwa = 5 [T [F@f (.22
%IT“ D& (t) = F(8)xC)
= FtG (@) (2.23)
3Re [F0:60] = FO)»60) (2.24)

for real time, Im ¢t = 0, and * here denotes a convolution along the real time axis.

2.3 Some Important Analytic Time Functions

Table 2.4 summarizes some useful ATT transform pairs. Most of the transforms in
Table 2.4 can be derived by using (2.13) along with a good table of Laplace transforms
[28, 23]. Nonetheless, some care must be taken when using this table, especially if one
is applying the ATT to an asymptotic high frequency representation. This is discussed
in more detail later in this chapter. If one is working with a Laplace domain function
then Table 2.3 can be used to find the corresponding Fourier domain function before
using Table 2.4. Note that the “Pf” in Table 2.3 stands for pseudofunction as defined
by Zemanian [23]. When one integrates over a pseudofunction, one takes Hadamard’s
finite part of the integral which may be thought of qualitatively as a generalization
of Cauchy’s principle value for higher order singular integrands. For the Laplace
domain function F(s) = s" where 7 is not an integer, the branch cut is chosen to lie

on the negative real s axis ( Re s < 0, Im s = 0) as usual. For the analytic time
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Table 2.3: Relationship between some Laplace domain functions, F(s) and corre-
sponding frequency (or Fourier) domain functions, F(w)

F(s) F(w)
8=0+jw (w is real)
: w8(w) + pv;.l‘;
1
n+1l .
) 58"(w) + Piggmr
n=0,1,2,
1
ghtl
u>-1 Pl
p#integer
sﬂ
(jw)
n=0,1,2,...
s"
(jw)
n#integer
1 1
s+a’ a>0 Jwta
—8('0—§:) _ e—ﬂ(¢o+3§)
g : Te!osinc(4L)
toZ%

function (—35t)~""?, the branch cut is on the negative real axis in the —jt plane, which

corresponds the the negative imaginary axis in the ¢ plane (Re ¢ =0, Im ¢ < 0).
The notation for special functions in Table 2.4, such as E;(z) to denote the ex-

ponential integral or erfc(z) to denote the complementary error function follows the

notation in the standard reference of Abramowitz and Stegun [29]. ‘

2.4 Representations of Analytic Time Functions

This section is concerned with various representations of analytic time functions which
may be useful for both analytical and computational reasons. A late time series in

terms of inverse powers of time, (1/t), is derived by the ATT from a low frequency
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Table 2.4: The analytic time transform (ATT) of some useful functions. In this table,

n is a non-negative integer, g > —1 is not an integer, and 7 is not an integer.

-~ + ,
F(w) F(t) F(t)+ HF(¢)
Imt>0 Imt=0
1 z 5(t) +pvd
1 _larg(—jt :
w)rpvt | 2w u(t) + ifln ¢] + ]
+2(In f¢] + 7]
58"(w) o [-;— — Larg(—jt)] mu(t)
+Pigmr | Higalnft - $(n+1)] Lo In Jt] — (n + 1))
. M=g);  +py I10“_1)(1 +jcotwpu) t>0
PfWT xjAtl (—3t) 5
j csc wy—(—)—P(Ml) t<0
. " n! n —1)7tin!
(jw) (=) 6" (t) + j}rgn+1
( .w)n J(n+1) Tr(gl;’%l] e]""l t>0
I w(=gt)7* =Cntl) 4 o
m(=t)7%)
_°t1+1E,'at t>0
e Lo B (~at) B
—e"“t%El(—at), t<0
2 9 N e_tQ/(2”2)
Ome= w2 e~ /(27" erfc( =it )
ﬁ +‘Lpr > t_ dz
. . T u(t—to+z)—u(—t0—%)
Tel“sinc( <L Lln (‘:ﬂii) 2 . .
) e +im|ed]
e—al“}] J a : t
2> 0 =(t+7a) w@+a7) T I tan)

20




i

power series. Then an early time series in terms of powers of time, ¢, is derived
by the ATT from a high frequency asymptotic series. It is shown, by an example,
that an early time series obtained by a term-by-term application of the ATT may be
incomplete. The mathematical justification for these representations may be found in

[26, 30, 31] where the roles of time and frequency are switched as compared to here.

2.4.1 Analytic Time Transform of Low Frequency Power
Series

The ATT of a series which is accurate at low frequencies produces a time represen-
tation which is asymptotically valid at late times. The mathematical basis for this
fact is well known and can be found in texts on Laplace transform theory [30, 26]
where the connection between the ATT and the Laplace transform in (2.13) is un-
derstood. In particular, the general theorem on the Laplace transform of asymptotic
representations is on page 6 in Seigel [32].

Consider the following asymptotic representation
N
F(w) ~ Y Au(jw)n for w— 0F (2.25)

where g, > —1 and p, T o0 as n — oo. Then the “early time” analytic time

representation corresponding to this asymptotic low frequency representation is

g T (pn + 1
F (t) ~ EA ——(—“:-1-—2 for |t| — oo (2.26)

where Im ¢ > 0.

2.4.2 Analytic Time Transform of High Frequency Asymp-
totic Series

When solving for “early time” solutions to electromagnetic radiation or scattering
problems, one may solve the frequency domain (FD) (i.e. time harmonic) problem
first, then obtain a high frequency asymptotic expansion of this FD solution and
finally perform an inverse Laplace transform to obtain a time domain power series

[33, 34, 9]. Let the asymptotic expansion of the FD solution have the form

N
F(s) ~ eoto [00 +) sf ';1] Res >0 (2.27)
n=1
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for |s| — oo , where s = 0 + jw, Cy and C,, are constant with respect to frequency,
to is some time delay dependent on the problem geometry and v, > —1. Note that
Vn is not necessarily an integer. Also, notice that N in (2.27) is not the same as the
N in (2.26). Typically, an inverse Laplace transform is applied to (2.27) to find the

corresponding “early time” power series [33, 34]

F(t) ~ Cob(t — to) + Z F( + 1) —to)"u(t — to) (2.28)

for t — 0, where §(t) is the Dirac delta function, I'(z) is the Gamma function, and u(t)
is the Heaviside unit step function. This time domain series provides a satisfactory
solution if the cénstants Co and {C,} are real, but unfortunately this is not always
the case. Consider the extremely simple case of the plane wave reflection from a
concave surface. The first term in the high frequency asymptotic expansion is the
geometrical optics (GO) reflected field which may pass through a caustic and will then
gain a factor of e/™/2. This factor e/™/? makes the constant C in the FD asymptotic
expansion in (2.27) complex and then the time domain series in (2.28) no longer
makes sense since the time domain solution should be a real function.

When the constants {Co,C,} in (2.27) are complex, one can obtain a real time
domain solution F(t) by first evaluating F(s) for Re (s) = 0 (0 = 0) to obtain
F(w) and then enforcing the relationship F(—w) = F*(w) for negative frequencies
(w < 0) and applying an inverse Fourier transform, where the frequency variable w
and the time variable ¢ are real. For example, the exp(j7/2) factor discussed above
applies only for positive frequencies and more generally one would use a factor of
exp(jsgn(w)m/2) to ensure that F(t) is a real function. Notice that each term in
(2.27) is not absolutely integrable (when Re (s) = 0), and therefore, each te;m must
be considered a distribution, see Table 2.3, and one must resort to using the theory
of distributions [23, 24] or generalized functions [35, 36] to find the inverse Fourier
transform.

Alternatively, one could obtain a real time domain function F(t) from the Laplace

domain function F(s) by enforcing the conjugate symmetry relationship F(s*) =
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F-'*(s) and applying an inverse two-sided Laplace transform. But this can be quite
complicated even for a simple algebraic F(s) function.

Instead of using an inverse Fourier transform or an inverse two-sided Laplace
transform as just described, it may be easier to obtain the inverse Fourier transform
via the analytic signal representation described earlier. First find the ATT of (2.27)
to provide an analytic function of time. Then evaluate this analytic function for real
time (Im ¢ = 0) and take the real part to obtain the final real time function which
equals the inverse Fourier transform [25, 37]. Note that the analytic time function is
analytic for Im ¢ > 0 and its boundary value at Im ¢ = 0 is a distribution [25, 37].

The form of the early time asymptotic expansion obtained from the high frequency
asymptotic expansion using the analytic time transform depends on the form of the
high frequency expansion. Three particular cases are presented here. The following
early time expansions are derived by using the results in Chapter 4 of Bleistein and
Handelsman’s book [31] and the relationship between Laplace transforms and the
analytic time transform in (2.13).

Consider the following high frequency asymptotic expansion

; oo
Fw)~ Y An(jw)™ for w— oo (2.29)

m=0
where 7., is not a positive integer here and Re (r,,) T oo as m — oo. Then the early
time expansion corresponding to the function in (2.29) obtained from the asymptotic

results in Bleistein and Handelsman [31] and (2.13) is

+
F(

3 A (1 = 1)t
% >

where M[F;m + 1] is the generalized Mellin transform of F(w) which is defined

3=

1)m

MFym + 1)(=jt)™ T (2.30)

shortly. Notice that the first summation in (2.30) is exactly what would be obtained
if the analytic time transform in (2.6) is applied to the frequency domain asymptotic
expansion in (2.29) term-by-term. Also, notice that Tables 2.3 and 2.4 are very

useful for this term-by-term transformation. But the second summation in (2.30)
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is not predicted by applying the analytic time transform term-by-term and yet it is
obviously important. In fact, the example in the next section demonstrates this fact.
The ordinary (i.e. not generalized) Mellin transform, denoted by the operator

symbol M is defined as
M[F;z] = /Ooo F(w)w*dw (2.31)

The generalized Mellin transform is defined by
M(F; z) = M[Fy; 2] + M[Fy; 2] (2.32)

where

MiE;2] = | | F(w)o = dw (2.33)

which can usually be analytically extended as a meromorphic function into the entire

z-plane and
M([Fy; 2] = / " Bw)w* dw (2.34)
1

which can usually also be analytically extended as a meromorphic function into the
entire z-plane. So the expression in (2.32) should be interpreted as a meromorphic
function in the z-plane even though the integral expressions in (2.33) and (2.34) may
not converge for the same z values. See Chapter 4 of [31] for more information on
the generalized Mellin transform.
Now consider the following possible high frequency asymptotic expansion
Fw)~e™® Y An(jw)™ for w— oo (2.35)
m=0
where Re (d) > 0, v > 0 and Re (r,) T 0o as m — oco. The early time asymptotic
expansion corresponding to (2.35) is i

b

m.

m

M[F;m + 1)(—jt)™ (2.36)

F ()~

3 |

where M[F; m+1] is the generalized Mellin transform of F(w). If the Mellin transform
M([F;m + 1] exists in the ordinary sense (i.e. the integral in (2.31) is convergent) for
m = 0,1,2,... then the expansion in (2.36) is an “expansion by moments”. This

expansion is used in Appendix D to derive (D.12).
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Finally, consider a third possible high frequency expansion which has the form

w)~ Y An(jw)™ for w— oo (2.37)

m=0
where Re (7,,) T oo as m — oo. This is the same as the high frequency expansion in
(2.29) and for the terms where 7,,, is not an integer one could use the result in (2.30).
However if r,, is an integer, there exists a different corresponding mt term in the
early time series. So, consider the case when 7y, is an integer (say 7, = n+1 where n

is an integer), then the corresponding term in the early time expansion has the form

a0 Y it ha(=t) ~ 9+ 1)

+im Y e, (238
where
X 0
Cn = z-»l%rr.rin {Bz(z —1—n)MJF; ]} (2.39)
and
P(1) = —y=—0577216... (2.40)
1
P(n+1) = —7-{—2—[— for n>1 (2.41)
=1 '
where 74 is Euler’s constant. For example, consider the following high frequency
expansion
w)~ Y An(jw)™™ ! for w— o0 (2.42)
m=0 .

where m is an integer then the corresponding early time expansion is

57 Tty in(j) - p(om + 1)

3=
M

+j7™ Aﬂ?"‘ Crn(— ]t)’"} ' (2.43)

Notice that if one assumes that the expansion in (2.42) can be transformed term-by-
term and uses the results in Table 2.4 for each term, then the constant C, in (2.43)
would be Cy,, = j5 Am. Further, notice that if the one sided inverse Laplace transform
is applied to a function with the following asymptotic series, which has a finite radius

of convergence [30],

F(s) ~ Y Ams™™ ! for [s| - oo (2.44)

m=0
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where |arg(s)| < 7/2 , then one obtains a corresponding early time expansion

00 Am
F(t)~ Y —t™ u(t) (2.45)

[~ m!
Now, if one uses Cr, = j5Am in (2.43) and takes the real part of F (t) than one
recovers the result in (2.45). It is now reasonable to conjecture that the formula in

(2.39) for C, could be simplified to Cn = j5Am (Where r, = n + 1) although this

result has yet to be shown.

2.4.3 Example: The TD-UTD Edge Diffraction Transition
Function

An example is now examined to demonstrate some of the formulas presented in the
previous section. The particular function which is examined is the TD-UTD edge
diffraction transition function which is used in Chapter 3. This function is well
understood and the analytic time transform is known in closed form. So, although
one would normally not need the early or late time expansions of this function for
computations, it is an interesting example since the early and late time expansions
can be verified by examining the closed form time domain function.

The frequency domain function of interest is

Fw) = yrze/cerfc (\/%—E) (2.46)
) aan

I7/4  pootje —wp?fc
[ S (2.48)
\/7? —oo+je [ -+ Jz

where € > 0 and F},(z) is the usual frequency domain UTD transition function defined
in (3.33). For now, simply assume that = and c are positive constants. Their physical
meaning is fully explained in Chapter 3. The analytic time transform of (2.46) can

be obtained in closed form as

+ 2:/7\'
_ 2.49
i V=it (V=it + \ie/e (249
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Now, a low frequency power series expansion of (2.46) which happens to be con-

vergent for all finite values of w is

F(w) = v/rzeie [1 - % f; (‘131'!'((2];‘2’1/ 3"”} (2.50)

Using (2.26), one can write down the corresponding late time expansion of the analytic

time transform of (2.50)

.1/2 2 -3/2
F o ] A— ] (2.51)

z
O~ 35 [ e s
where

T=t+e/c

Notice that (2.51) is convergent for |z/(c7)| < 1. Now, the late time expansion in

(2.51) can also be obtained directly from the closed form result in (2.49). First rewrite

(2.49) as
Fo- G ()] e

and then use

(422 =1—Zz+"2z%.. for |z|<1

to obtain (2.51). Although, using the closed form time domain function to obtain
the late time expansion is trivial for this particular function one should keep in mind
that for some other frequency domain functions one doesn’t have a closed form time
domain formula and may need the late time expansion to perform computations.
An alternate late time expansion whose convergence is centered at ¢ = 0 (instead
of t = —z/c as in (2.51)) can be obtained. To obtain this alternate expansion, first

substitute

eiwsle — f: 1 (J“’_"”)m

!
m=0 m. c

into (2.50) and after a good deal of algebra obtain

(2.53)




Now use (2.25) and (2.26) to obtain the alternate late time expansion

\/g L |, _ap(_z ”2+ (=
7 (—jt) J —jte J —jtc
s \3/? 2 \?
_13/2 2 e 9
J (—jtc) +37 (——jtc) ] (2.54)

where this series is convergent for |z/(ct)| < 1. The late time series in (2.54) can also

be obtained directly form the closed form time function in (2.49). Rewrite (2.49) as

b= LT [1 ; (l,’”—)m} ) (2.55)

—Jt —jtc

and then use

(1+2) ' =1-2+422-22+2%- for || <1

to derive the late time series in (2.54).

Now an early time expansion is derived from a high frequency asymptotic expan-

sion of F(w) in (2.46), which can be written as

1/2 3/2 5/2
— c - 1 ¢ 3 c
Fl) ~ (7) ‘%(32:) *r(r)

15 (c 7/2+ 105 ( ¢\’ (2.56)
" 8z? Jjw 16z* \ jw '

for w — oo, or more generally,

F(w) ~ \/]Zw [1 + i(—l)’"1 : 3"'2(,fm =) (M)m] (2.57)

To obtain the early time expansion of F (t) from (2.57), use (2.30). Notice that if

the ATT is applied to the asymptotic expansion in (2.57) term-by-term then only
the first summation in (2.30) is obtained. But, the second summation is obviously

important as will be seen shortly. Using (2.30) on (2.57), the first summation is

—jct
melis ()
which is the result which could be obtained by a term-by-term transformation. The

second summation in (2.30) contains the Mellin transform of the frequency domain
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function F'(w). This can be evaluated as follows

oo ze.‘i"’/" cotje pTWH 2/c

M[Fim+1] = Ay~ B s

———dp W™ dw (2.58)

Jn/4 oo+je 0o

= e / g / w™e™ ¥ 4w dp (2.59)
\/7_1' —oo+je ﬂz‘!‘]z
zei‘ﬂ'/‘i 41 oo+ je ]_

- ™ (m + 1 / : du  (2.60
vr ecoss G oy v 80
zei™/4 1 1

= T 1)2 ‘ 2.61
E A e a0

m-+1

= —mlyrz— (2.62)

and then the second summation in (2.30) is

S5 o

Finally, the total early time expansion can now be written as

- i () B () o e

Notice that this series is convergent for |ct/z| < 1. If the time variable is allowed to

be real Im (t) = 0 then it is more convenient to write (2.63) as

P~ S () L (Y ew

m—O

Recall that a term-by-term transformation would provide the first summation in
(2.64) and therefore for this example a term-by-term transformation correctly predicts
the early time behavior of the real part of 1'«t' (t) when evaluated for real time (Im (¢) =
0) but the imaginary part of 1-4t‘ (t) can not be correctly obtained from a term-by-term
transformation. Now, the early time expansion in (2.63) can also be derived directly

from the closed form result in (2.49). First, write the closed form formula in (2.49)

Sl E e

(1+2)1= Y. (-1)"z" for |z| <1

m=0

as

and use
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to obtain the early time expansion in (2.63).
The important observation to be made from this example is that one can not
_ apply the analytic time transformation to a high frequency asymptotic series term by

term. Instead one must use a more careful asymptotic analysis such as in Bleistein

and Handelsman’s book [31].

2.5 Efficient Time Convolution

Consider the problem of finding the ATT of the product of two frequency domain

functions F(w)H(w). The time convolution property can be used here

Fw)H(w) < % IO 40 (2.66)

where the time convolution integration path is placed above the real time axis in the
complex time plane. If the frequency domain function F’(w) can be modeled using

exponential functions

N
Flw)y=Y A.e™ for w>0 (2.67)

n=1

or equivalently, if

An

. N
J
- < 2.68
O @55
N4
= Z A, 5 (t+ja,) (2.69)
n=1
then the convolution can be evaluated in closed form as
1+ + N4 _
5 F ()« H(t)=Y An H(t+jon) (2.70)
n=1 .
where the shifting property of the analytic delta function
1+ + . + )
5 H (8)x 6 (t+3B) =H (t +3F) (2.71)

was used.

A useful approximate formula for the convolution operation may be obtained

when the frequency response of the excitation is bandlimited (i.e. Fi(w)u(w) = 0
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when w > w,, for some constant wy,). This useful approximate formula is derived

+.
with the knowledge that Fj (t) is analytic in the entire ¢-plane.

SHOS IO | °:+ Fi (t - a) £ (o)da (2.72)
- Fi (¢~ B— ) B (B + je)aB (2.73)
= 2/ F’ (y = je) H (t — 7+ je)dy (2.74)
R~ d f F} (md — je) i (t — md + je) (2.75)
m—-—M

+.
The above approximation is obviously the same as (2.70) with 4, = g F§ (md — je),

a,=€¢+jmdand m=n— N + 1.
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Chapter 3
TD-UTD for a Curved Wedge

This chapter presents the development of the TD-UTD solution for the scattering
from a perfectly electrically conducting (PEC) arbitrary curved wedge when it is
illuminated by an analytic time impulsive astigmatic wavefront. This solution is
obtained by an analytic time transform (ATT), as defined in the previous chapter, of
the corresponding frequency domain UTD solution for a perfectly conducting curved
wedge [2, 4, 38]. Thus, the present solution constitutes a time domain UTD (TD-
UTD) for a curved wedge in which the transient fields propagate along the ray paths
of the UTD. The TD ray solution (or TD-UTD) is only valid for “early to intermediate
times” since the UTD is an asymptotic solution in the frequency domain that remains
accurate for moderate to high frequencies. Thus, each TD-UTD ray contribution is
most accurate in the neighborhood of the time required to traverse its geometric
ray path length from the source to the observer (i.e. the ray arrival time). It is
noted that the transient response in intervals close to ray arrival times of the TD-
UTD are generally the strongest and are directly associated with the waves arriving
from the local features of the radiating (scattering) object. The TD-UTD-has the
same geometrical ray paths as the frequency domain UTD except that each incident,
reflected or diffracted TD ray is associated with its corresponding progressing wave
in space-time. The TD-UTD fields are polarized transverse to their ray paths as in
the conventional frequency domain UTD.

There have been many investigations on the TD diffraction by a straight wedge.

Keller and Blank solve the problem of electromagnetic diffraction and reflection of

32




plane wave pulses by perfectly conducting wedges using the conical flow method [39].
Friedlander solves the corresponding acoustic problem of wedge diffraction [7]. Felsen
derives the scattering from a straight wedge (and some other canonical geometries)
with various types of illumination [34, 9, 22]. Nikoskinen et al. use a transient
image theory to obtain the transient scattering from a PEC wedge [40]. Ianconescu
and Heyman solve the pulsed electromagnetic field diffraction by a straight wedge
using the Spectral Theory of Transients (STT) [19, 14, 15, 16]. Using the STT,
they also extend their results for an incident field which is an astigmatic collimated
wavepacket [18, 17]. The work by Ianconescu and Heyman is relevant to the work
in this report since they use an analytic time function representation similar to the
one used here. Veruttipong and Kouyoumjian obtain a time domain version of the
UTD for a straight perfectly conducting wedge [12, 11, 10] by applying an inverse
Laplace transform to the corresponding frequency domain UTD wedge diffraction
coefficient [2]. Unfortunately, Veruttipong’s solution is not easily generalized to the
curved wedge case—where the reflected or diffracted rays may pass through smooth
or line caustics.

The TD-UTD solution for a perfectly conducting wedge presented in this chapter
differs from previous solutions in that the present solution is applicable to the more
general problem of diffraction from an arbitrary curved wedge which may contain
curved faces and/or a curved edge, while the incident time dependent wavefront is
allowed to be astigmatic. It is noted that plane, cylindrical, conical and spherical
wavefronts are all special cases of the general astigmatic wavefront which is char-
acterized by two distinct radii of curvature. In rfact, Veruttipong’s TD diffraction
coefficient for the straight wedge [12] can be found as a special case of the solution in
this chapter. In addition, this work employs an analytic time function representation
for the transient fields where the actual time response is simply the real part of the
analytic function, as discussed in the previous chapter. It is shown in this TD-UTD
development that the use of analytic time functions allows one to circumvent in a
simple manner some complexities that arise when inverting into the TD the UTD ray

fields which pass through caustics. These caustics may be produced by reflection and
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edge diffraction from general curved geometries. The analytic time functions used
here are closely related to the analytic time functions used in the STT [14, 15, 16].
The STT can in general provide an analytical TD impulse response which is valid at
all times for some special canonical geometries, but the TD-UTD which is valid for
early to intermediate times is immediately applicable to more general and relatively
complex geometries due to its ray interpretation.

The format of this chapter is as follows. First the well known frequency domain
UTD solution for the curved wedge is briefly presented. In the UTD, the dominant
response from the PEC curved wedge is decomposed into the incident field, the re-
flected field and the edge diffracted field. The edge diffracted field may contain two
terms, one is the first order diffracted field while the other is a higher order slope
diffracted field. The slope diffracted field is significant when the field incident at the
point of diffraction is rapidly varying as a function of space. Then the time domain
analytic signal representation for each of these mechanisms is derived to obtain a
TD-UTD for the curved wedge. This chapter does not include an analysis of the
surface rays excited and diffracted by the edge of a wedge with convex faces, nor does
it include the diffraction and excitation of whispering gallery type fields by the edge
of a wedge with concave faces. Nonetheless, some curved surface diffraction effects
for smooth surfaces are discussed in Chapter IV. The simplification of the TD-UTD
wedge diffraction coefficient for some important special cases is also presented. The
convolution of the TD-UTD curved wedge impulse response with a more general tran-
sient excitation is discussed. Some numerical examples are presented to illustrate the

utility of these developments.

3.1 The Frequency Domain UTD Solution for
Scattering from a Curved Wedge

The general forms in the frequency domain of the incident, reflected and edge
diffracted UTD rays, illustrated in Figures 3.1, 3.2 and 3.3 respectively, are now
presented [2, 4, 38].
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Figure 3.1: An incident geometrical optics (GO) ray tube.

3.1.1 The Frequency Domain Geometrical Optics (GO)
Fields

The incident ray shown in Figure 3.1 is a diverging (i.e. convex) wavefront but one
could also allow the wavefront to be convergent (i.e. concave) or even saddle shaped.
The incident field at the point of reflection or point of diffraction is assumed to be

ray optical and may be written as a geometrical optics (GO) ray field such that

Bi(w) = Bj(w) |4i(s")| e (3.1)

where n' is the number of line or smooth caustics that the incident GO ray has

traversed as in Figure 3.1 and 4;(s') is the spreading (or spatial divergence) factor

Ale) = \j () (25+) (32

Note that p} and p}, are the principal radii of curvature of the corresponding wavefront

which may be written as

at the reference point 0. A GO field reflected from the point Qr as in Figure 3.2

may be written as

B(w) = B(w)],, - RIA(s")] e (3.3)

where the dyadic reflection coefficient R is assumed to be independent of frequency

and can be written as

R = &i&lRy +¢,8,R, | (3.4)
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Figure 3.2: A reflected geometrical optics (GO) ray.
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where R, = —1 and R, = 1 for a perfect electric conductor. The A,(s") is the
spreading factor for the reflected ray which is given by (3.2) with the superscript ¢
replaced by r, and n, is the number of smooth or line caustics that the reflected ray
has traversed after leaving the reflection point @Qg. It is assumed in the UTD that
(3.3) represents the field reflected from the unperturbed surface formed by a smooth
extension of the original surface past the edge (so that there is no edge effect present

in the evaluation of (3.3) as in Figure 3.2).

3.1.2 The Frequency Domain UTD Edge Diffracted Field

The edge diffracted field may be modeled by an edge-diffracted ray as

B(w) = E'(w)|,, - D(w) |Aa(s?)] 54 (3.5)

where A4(s?) is the spreading factor for the edge diffracted ray, D is the UTD dyadic
diffraction coefficient [4, 2] and ng4 is the number of line or smooth caustics that the
edge diffracted ray has traversed after leaving the diffraction point @z. Note that
Equation (3.5) does not include slope diffraction [38, 4].

3.1.3 The Frequency Domain UTD Slope Edge Diffraction

The UTD Slope diffraction is a higher order term which must be added to the edge
diffraction term described above when the incident field at the point of diffraction is
rapidly varying in a direction transverse to the direction of incidence. In the frequency
domain, the slope diffraction is proportional to a spatial derivative of the incident field
at the point of edge diffraction. Two versions of the slope diffraction are used here.
The first one is by Y. M. Hwang [21, 4]. While the other one is by Veruttipong [20].
The slope diffraction by Hwang is more widely used than Veruttipong’s formulation
since Hwang’s result has a more compact form. Nonetheless, it is interesting to
compare these two solutions in the time domain as is done later in this chapter.
The UTD slope diffracted field for both versions has the same form, only the
slope diffraction coefficient is different. In general, one can write the total UTD edge
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Figure 3.3: Coordinate systems for the TD-UTD dyadic diffraction coefficient.
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diffracted field as the sum of two terms
E¥(w) = B4(w) + E*(w) (3.6)

where the first order term E%(w) is given in (3.5) and E*)(w) is the higher order

slope diffraction term. The slope diffracted field for a curved wedge can be written

as B*d = B E5d + pE? with

. 0K}, . OE

Egd -D on' D; on”
0 _ A d\| ng _—jks? 3.7
e | T a(8%)| g™ (3.7)

¢ . .a'i . 6Evr

st ¢ _ sr &}

-D B Dy} .

The extra superscript s on the diffraction coefficients indicates slope diffraction. The
result in (3.7) assumes that the incident and reflected field vary rapidly at the edge
in the n' and the n" directions, respectively. On the other hand, if the diffracted field
spreading facter A4(s?) is a rapidly varying function then the result in (3.7) is not
accurate.

For a straight wedge, this can be simplified to

. O,
- —Dj——+
Egd * Ont y
E: = | Aa(s?)| 5mee ", (3.8)
L . OE:
_ps e
‘Dh ant

where D¢ = D¥ + D and Dj = D* + D;". The expressions for the slope diffraction
coefficient for both Hwang’s and Veruttipong’s versions are given in Appendix C
where the time domain version of these quantities are derived.

For more information about the parameters in the UTD ray expréssions, one
may consult the literature [2, 38, 4]. It should be noted that there are also edge
excited surface diffracted rays or whispering gallery effects present for a curved wedge
geometry; however, the present chapter does not deal with these surface diffracted
and whispering gallery type ray fields. Surface diffraction by smooth convex surfaces

is addressed in Chapter 4.

39



3.2 The TD-UTD Impulse Response for a PEC
Curved Wedge

The TD-UTD analytic impulse response for a PEC Curved Wedge (not including

surface diffracted rays and whispering gallery effects) may be written as
+ +; +y + +g
By (t) =E; (Uit B} ()U-+ E7 ()+ BT (¢) (39)

where fEL}'I (t), E); (t), ﬁ}i (t) and ]E;d (t) are the analytic signal representations for
the incident field, the reflected field, the first order edge diffracted field and the
slope edge diffracted field, respectively. The field in (3.9) results from an impulsive
transient illumination of the wedge as denoted by the subscript I. The analytic
impulse response is defined as the response which results when the incident field
E)} (t) has an analytic delta function, Z(t), time behavior. The spatial unit step
functions U; and U, are 1 on the lit side of the incident shadow boundary and the
reflection shadow boundary, respectively, and 0 otherwise.

Specifically, it is noted that the TD-UTD analytic impulse response of the curved
wedge is the response due to an excitation of an astigmatic wavefront with an analytic
delta function time behavior. This analytic impulse response is found by setting
Ei(w) = Ej in (3.1), (3.3), and (3.5), where Ej is a complex constant with respect to
frequency, and then applying the analytic time transform in (2.6) to these equations.
Finally, these results are combined as shown in (3.9). This procedure provides analytic
functions of time where the actual real time responses are found from the real part
of these functions evaluated for real time, as discussed in Chapter 2. The response to
any desired finite energy pulsed excitation is obtained by performing a convolution

of the finite pulsed field excitation with the TD-UTD analytic impulse response.

3.2.1 The TD-UTD Geometrical Optics Field

The incident GO ray field with an analytic impulse time behavior is obtained from
(3.1) and (2.6)

By (t) = Eig™ |Ais")| § (¢ - 5'/) (3.10)
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with the understanding that the actual real time incident field Ei(t) is given by
"(t) = Re [EI (t)] for Imt=0 (3.11)

It is important to note that in general Ej is a complex vector which is constant with
respect to frequency for the analytic impulse response and n; may not be zero; it
therefore becomes necessary to define the incident field excitation more precisely as
a generalized impulse (or analytic delta function), Z (t). As long as the analytic
signal representation of the incident field is a complex constant times the analytic
delta function, then the transient response is called the “impulse response”. This is
consistent when using the analytic time signals, since any transient response due to
any other excitation can be found by convolution. The analytic delta function E (t)
was discussed earlier and is given in (2.12). One of the benefits of using the analytic
time representation, which is now clearly evident from equations (3.10) and (2.12), is
that the analytic time function automatically represents the TD ray field before and
after the ray has traversed a caustic or any number of caustics. For example, if the
incident ray has not traversed any caustics then n; = 0 and, assuming E} is real, the

real time incident field behavior is
Ej(t) = E} |4:(s")| &(t — 5/c) (3.12)

but if the incident ray has traversed one smooth or line caustic then n; = 1 and the

real time behavior, assuming E} is real, is

1

Ej(t) = —E{ |Ai(s") TS

(3.13)

When the analytic signal representation in (3.10) is used, one does not have to be
concerned about the number of caustics that the ray has traversed, and it avoids the
need to do a separate analysis for each case; this is especially important in inverting
the diffracted field E%(w) when a ray caustic is traversed making the analysis of
this case rather complicated to get E4(t) if the analytic signal representation is not
used. Note that the ray field description (3.10) breaks down if the observation point

is located near a caustic. The reflected ray contribution to the TD-UTD impulse
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response is

B () = ES - Ry™+ | A(5) A, (s7)] § (7) (3.14)

where 7, = t —s'/c— s"/c. Note that the variable s' in (3.14) is the distance from the
source to the point of reflection Qr; whereas, s' in (3.10) is the straight line distance

from the source to the observer. Also, note that the convolution

§(t—sijc)xb(t—s/c)=b(t—s/c—s/c) (3.15)

N =

is used to obtain (3.14).

3.2.2 The TD-UTD Edge Diffracted Field

The first order edge diffracted ray contribution to the TD-UTD impulse response is

BY (t) = B D (ra)y™*™ [ A(s) Ad(s")| (3.16)

where 74 = t — 5'/c — s%/c, and s' in (3.16) denotes the distance from the source to
the point of edge diffraction Q5. The TD-UTD dyadic diffraction coefficient for a
PEC curved wedge is

+ ol o+ ala +
D (t) = —BoBo D. (t) — ¢ ¢ Da (2) (3.17)

where the unit vectors in (3.17) are depicted in Figure 3.3.

Derivation of the TD-UTD Wedge Diffraction Coefficient

The derivation of the TD-UTD dyadic diffraction coefficient for a PEC curved wedge
is now presented. The corresponding time harmonic dyadic diffraction coefficient [2]

can be written in the following form [11]

D(w) = —ByBoDs(w) — ¢ $Di(w) (3.18)
where )
Don(w) = “'27\/2__;576? Y. K3 F(zn,w) (3.19)

42



The parameters K" are given by

K™ = cot ( ) (3.20)
K* = cot ( > ) (3.21)
s T+ B+
K* = Fcot ( om ) (3.22)
s ™= :3+
K = Fcot ( o ) (3.23)
with 8% = ¢+ ¢'. The z,, are defined by
Ty = L]G,+(IB_) (3.24)
z, = Lya™(B87) (3.25)
T3 = L3a+(ﬁ+) (3.26)
Ty = L4a'(ﬁ+) (3.27)
where the L,, parameters are related to the L parameters in [2, 38, 4] by
L, = L (3.28)
L, = I (3.29)
Ly = L™ (3.30)
Ly, = L (3.31)

and a*(B) = 2cos?[(2nwN* — 8)/2] where N* is the nearest integer solution of
2rnN* — B = +7. For a thorough explanation of the parameters used in the UTD
edge diffraction coeflicient, one is referred to the literature [2, 38, 4].. All of the

frequency dependence has been collected in the function

Fam,w) = \/J: 7 (“’:m) (3.32)

where Fy,(z) is the conventional UTD transition function defined by

Fu(2) = 2j+/7e" /; e~ dr (3.33)

2z
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The F(&m,w) function can also be written as

JwTy,

F(@m,w) = /mEme/%erfc ( (3.34)

c

where the complement of the error function is defined as
erfc(z) = 2 /oo et dt (3.35)
VA '

Note that the function F’(zm,w) is not the same as the transition function defined in
[2].
The analytic time transform of the frequency domain function F(mm,w) is now

derived. The foll&wing integral (which may be found in a table of Laplace transforms

[28]) is used

¥ eor c axre””"rz——l—-—— .
/0 e erfe(y/aT)e""d N IR (3.36)

where —7 < arg(p) < 7 and —7 < arg(a) < . Note that —7 < arg(jzm) < 7 and
therefore —37/2 < arg(zm) < 7/2. Now, using the integral in (3.36), the analytic

signal corresponding to the frequency domain function f‘(mm,w) is

Von/T (3.37)
V=3t(v/=3t + \/izm/c)

for Im t > 0 where —7 < arg(—jt) < m. Notice that the singularity on the real time

+
F (zm,t) =

axis (Im ¢ = 0) is only a branch point singularity and not a pole, and that there is
+

no difficulty in using the expression for F' (zm,t) in (3.37) for real time (Im ¢t = 0).

Paying close attention to the Riemann sheet on which the parameter @, is defined

(i.e. —37/2 < arg(zn) < m/2), (3.37) may be recast into a more convenient form

"’.7‘\/ —zm/"r
_ (3.38)
V=it(v/=jt + eI/ [~z /)

+
F (zm7t) -

for Im t > 0 where

) /Zmy Tm >0
Jmm={ VI ® (3.39)
V—Tm, Tm <0

and Re (1/—jt) > 0. The form in (3.38) is more convenient for numerical computa-

tions since most calculators and computer programming languages choose the branch
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cut of the square root function to be the negative real axis and then (3.38) may be
directly implemented without any ”if-then” conditions. Finally, the TD-UTD dyadic

diffraction coefficient is given by

+ al a

D (t) = ~BoBo Ds (t) — &

!

é Dn (t) (3.40)

where

+ sh
Do (t) = o \/ﬂsm 7 2 }: K% F (2m,t) (3.41)

The dyadic diffraction coefficient in (3.17) can be applied to the general geometry
of a PEC curved wedge which may have curved faces and a curved edge. Nevertheless,

it is interesting to examine some special cases such as a straight wedge and a straight

half plane.

Simplification of TD-UTD Diffraction Coefficient for Some Important Spe-

cial Cases

First, the behavior of the diffraction coeflicient near a shadow boundary (SB) is
investigated, then the special case geometries of a straight wedge and flat but possibly
curved screen are examined.

There are four possible SB locations corresponding to the four terms in (3.41).

Define four corresponding angles

&6 = m+(d—¢) (3.42)
@ = 17— (¢-4¢) (3.43)
& = 7+ (p+d)—2ur (3.44)
e = T—(+¢). - (3.45)

When €, — 07 the observer is approaching the mt" SB from the lit side. When

€n — 0 then z,, — 0 and it can be shown

K2t fzom ~ CiPny/2n L., sgn(en) (3.46)

where C3P = 1if m = 1,2 and C3* = F1 if m = 3,4. Using (3.46), it can be
shown that the TD-UTD wedge solution has the same behavior near a SB as the
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exact solution in [19] (where A, in Equation (27) in [19] is related to z; in this report
by A; &~ y/z2/c near the SB). By using

+

F (2myt) ~ /ZmT § (t) for zm — 0 (3.47)

with (3.46), it can be shown that the TD-UTD diffracted field has the proper dis-
continuity which when added to the GO field produces a continuous total field across
the SB. This is expected since the same behavior across a SB occurs in the frequency
domain UTD.

Assume the two faces of the wedge are flat and the incident GO field is a real
impulse in time (i.e. §(t)) so that all of the L parameters are positive and therefore

z,, > 0. Now, the analytic time function in (3.38) may be simplified to

\/xm/"r(]\/—'i'\/mm/c) 3.48
\/—( +wm/c) ( ' )

for Im ¢ > 0, and the corresponding real time function is

_ Tm/V7E
\/(t e/ u(t) (3.49)

at Im t = 0 where u(t) is the Heaviside unit step function. Equation (3.49) along with

F(zm,t) = Re [I-IJ~1 (zm,t)] =

(3.41) is exactly the TD-UTD diffraction coefficient derived by Veruttipong [12], which
therefore is a special case of the more general TD-UTD diffraction coefficient presented
in this report. The solution may be further simplified by letting |¢ /(ct)] — oo, which
is justified when the observation point is far away from any SB. When this is done
the result in (3.49) may be further simplified to
F(t) = %u(t)

Equation (3.50) together with (3.41) is what one obtains by taking the inverse Fourier

(3.50)

transform of Keller’s frequency domain GTD diffraction coefficient [12].
The TD-UTD diffraction coefficient for a flat screen (which may be curved) is
found by setting n = 2 in (3.41) to obtain

+ +
B N (t): —1 F(mA’t) T F(zB,t)
' 2v/27sin By | cos (9—"2—92) cos (4’—?—')

(3.51)
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where

Y
¢4 = 2L cos?® (d) 2¢) (3.52)

!
zg = 2L cos® (—tg-—(E) (3.53)

and
i ',
L' = pi+sd sin ,30 (354)
d_r

I = pf :s - sin? fg (3.55)

3.2.3 The TD-UTD Slope Diffraction

The analytic time transform (ATT) can be applied to the higher order frequency
domain UTD slope diffraction term in (3.7) to obtain a TD-UTD slope diffraction in
closed form.

The TD response corresponding to slope diffraction is

(

6 : W +r’ 3
Esd t) (t) Eﬂ ( ) B B“" () » aEEi’(t)
+f§E) =-;-‘ , Ag(s)  (3.56)
Eg , tr
B AU T2 AU

with f);d t) = B, E;;: (ra) + ¢ E; (14). The * denotes a TD convolution. The
analytic impulse response is obtained by letting the incident field (and therefore also
the reflected field) in (3.56) be impulsive in time.

The TD-UTD slope diffraction coefficient obtained from Hwang’s formulation for
a straight wedge is derived in Appendix C. Here is the same coefficient sgeneralized

for a curved wedge

+az -1 + +
t) = Cy Fs (21,t) — C2 F, (22, 3.57
D () = 4n24/27 sin’ B, [ 1 Fy (21,8) = Co Fs (2 )] (3.57)
+sr F1 + +
ah ( ) nzﬂ;sinz ,30 [03 F, (33,t) —Cy F, (z4,t)] y (358)

+ C 2, e~ i/4
Fy (2m,t) = \/: : 3.59
= T a—r (3.59)
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Ci = csc? (";’nﬁ_) (3.60)
Gy = csc? (’r ;nﬂ_) (3.61)
C; = csc? (’”;nﬁ +) (3.62)
C; = osc? (”;f) (3.63)

The TD-UTD slope diffraction coefficient for a straight wedge obtained from
Veruttipong’s formulation is derived in Appendix C. Here is the same coefficient

generalized for a curved wedge

+ i -1 2

()= 4n2+/27 sin? B, ,,,Xz:l

+ or F1
Ds,h (t)

Am Fos @mot) + B By (2myt)  (3.64)

4

+ +
= A Fuos (Zmyt) + By Fs (Tm,t 3.65
T 2 Am P (e (mt)  (365)

where P, (zm,t) is defined in (3.59),

A} = csc? (W ;nﬂ—) - B (3.66)
Ay = o (’r ;nﬂ _) _B, (3.67)
A; = csc? (T -2I_nﬂ+) — Bs (3.68)
A; = csc? (W ;nﬂ+) — B, (3.69)
and
_,na*(B7) T+ 6
Bl = + a+(ﬁ‘) cot ( on ) (370)
_ na7(B7) (m—B |
B, = - (6 cot( o ) (3.71)
nat (Bt +
Bs - :((ﬂ[i)) cot (7’ ;rnﬂ ) (3.72)
__na (BY) m—pB*
B, = — (67 cot ( o ) (3.73)
with .
a*(B) = 2 cos? (2—‘“}-{2—:—@> (3.74)



a*(B) = sin(2nr N* — j) (3.75)
The other analytic time function is

+ 2¢/— e\ /=jct + /—Tm
b - ST

+ jarg (ej"/‘l\/—jct + \/——:vm> - ]g] (3.76)

where arg(z) is the argument (phase angle) of the complex number z, /=&, is defined
in (3.39) and Re /—jt > 0.

Although the slope diffraction coefficients in (3.57) and (3.58) (or (3.64) and
(3.65)) have been generalized for a curved wedge, one must be careful when the
illuminated wedge face is curved. In fact, the slope diffracted field presented here
will not fully compensate for the discontinuous spatial derivative in the reflected field
when the reflecting surface is curved. Nonetheless, the slope diffracted field presented
here will provide a good af;proximation for many pratical situations. For a more

detailed discussion on the this problem one is referred to the thesis by Zheng [41].

3.3 Some Numerical Examples

First, this section presents a convenient expansion of a general transient wave exci-
tation which can be convolved in closed form with the TD-UTD impulse response of
the curved wedge, next some numerical examples are included to illustrate the utility
of the concepts developed in this chapter. In this section, Hwang’s version of slope

diffraction (instead of Veruttipong’s version) is used unless stated otherwise.

Convolution of the TD-UTD Impulse Response with a Gen-
eral Pulsed Astigmatic Wave Excitation

It is easy to examine the impulse response provided by the TD-UTD formulas derived
in the last section, but there are two important reasons why one should be interested
in different types of excitations besides an impulsive wavefront. The first reason is
because the TD-UTD is based on the asymptotic (high frequency) formulas of the
time harmonic UTD and therefore the “late time” behavior of the TD-UTD impulse

49




response is expected to be erroneous. On the other hand, if the TD-UTD impulse
response is convolved with an excitation waveform which has a frequency spectrum,
Ei(w) as in (3.1), dominated by frequencies for which the time harmonic UTD solution
is expected to be accurate then the transient waveforms predicted by the TD-UTD
should be very accurate also. The second reason is because in real physical situations
the frequency spectrum of pulsed fields which can propagate without dispersion is
limited. Also, there is typically a lower limit on the frequency which a source can
radiate. Therefore the response due to an excitation waveform which has an effectively
band limited frequency spectrum, E}(w), and of finite time duration is more realistic.
Furthermore, one must convolve the TD-UTD impulse response with a more realistic
excitation in order to predict or compare with measurements or other numerical
calculations.

Numerical convolution of any given excitation time waveform with the impulse
response formulas in the previous section is always possible, but it may not be the most
efficient approach. A different approach which is typically more efficient for narrow
pulse (i.e. wide band) excitations is to express the excitation waveform as a sum of
a small number of simple expansion functions which can be convolved with the TD-
UTD impulse response in closed form. One choice of a very simple expansion function
is a waveform whose analytic signal representation is a simple pole in the complex
time plane. First, assume that the frequency response of each vector component in

the excitation Ei(w) is the same, so that
Ef(w) = pFi(w) (3.77)

where p is a polarization unit vector, and Fg(w) is the Fourier transform of the

excitation time waveform Fj(t). Let

; 1 | & An
Fi(t)= Re [Fy(t)] = Re %z , ] (3.78)
with a frequency response of

N
Fiw)=Y A.e™™™, w>0 (3.79)
n=1
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The parameters {A,} and {a,} are in general complex. Now, suppose the analytic
+ . .

impulse response is EIIJTD (t), then using the convolution property in Table 2.1 and

the excitation in (3.78), the response of the curved wedge to a pulsed astigmatic wave

is

1 +;
B (1) = 5 Fo (B (1) (3.80)
N +uTD .
= Y AE; (t+jon) (3.81)
n=1

and the real response E'™(t) is the real part of (3.80) with Im ¢ = 0. Notice that as
long as Re a,, > 0 for all n, the analytic function resulting from the convolution in
(3.80) is analyfic on the real time axis (Im ¢ = 0) and therefore EV™(t) is bounded
and well behaved.

A convenient frequency domain window function, which satisfies the more general

form in (3.79), is

Fi(w) = Co(1 — e “T)Ne=wMT (3.82)
where
1 M+ N
T = fcln( _ ) (3.83)

. and f, is the center frequency. The peak of the window F’é(w) is normalized to one

by choosing

0= (M) (Y -

An Example: Scattering from a Two-dimensional Curved
Strip

Figure 3.4 shows the geometry of a two dimensional curved parabolic strip. The strip
is excited by an incident plane wave with the electric field polarized perpendicular to
the plane of the paper. The observation point P, as shown in Figure 3.4, is near the
reflection shadow boundary (RSB) of edge (1). Figure 3.5 shows the impulse response
calculated using the TD-UTD when the dominant three scattering mechanisms are
included. Figure 3.6 shows the impulse response corresponding to each scattering

mechanism separately, namely the reflected field, the diffracted field from edge (1)
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and the diffracted field from edge (2). Notice that the contribution to the impulse
response from the edge diffracted ray from edge (1) appears to be very close to -0.5
times the reflected ray contribution to the impulse response. This is to be expected
since the observation point is very near to the RSB of edge (1). For verification, the
impulse response predicted by the TD-UTD is convolved with a finite (band limited)
excitation and then compared with a reference solution. For the frequency domain
window shown in the inset in Figure 3.7, the parameters in the window function of
(3.82) are f. =20 GHz, M =1 and N = 2.

The reference solution is based on a frequency domain method of moments (MM)
analysis which has been weighted by the appropriate frequency window and trans-
formed numerically into the time domain using an inverse fast Fourier transform
(FFT). As can be seen in Figure 3.7, the reference solution MM+FFT and the TD-

UTD result are almost indistinguishable from each other.

Electric Dipole Illuminating a Wedge

Figure 3.8 shows the space-time behavior of the total far zone field as predicted by
the TD-UTD when a PEC wedge is illuminated by an infinitesimal electric current
element. The curves are calculated by a convolution of the TD-UTD impulse response

with a smooth finite energy time pulse with a frequency response described by
F(w)=Ce™(1—e ™) for w>0 (3.85)

where C and o are constants. The dipole is pointed just 5 degrees off the direction to
the edge, so that the incident field is non-zero and rapidly varying at the edge. This is
done so that both the first order and slope diffraction are significant. The diffracted
field is much smaller than the incident or reflected field and is difficult to see in Figure
3.8. Nonetheless, notice that the total field is a smooth and continuous function of
both space and time. This is expected since the TD-UTD diffracted field corrects the
discontinuities of the geometrical optics (GO) field at the shadow boundaries.
Figure 3.9 is similar to Figure 3.8 except it shows the first order diffracted field.
The field is also multiplied by a factor of 10 to make it visible on this plot scale.
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@ " RSB

Figure 3.4: Two dimensional parabolic strip geometry. The focus is located at
F(x=0,2=4), the width of the aperture is 8, and the observation point is P(x=4,z=8).
All linear dimensions are in centimeters.
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Figure 3.5: The TD-UTD scattered field at the observation point P when the 2-D
parabolic strip in Figure 5 is excited by an impulsive plane wave. The time axis is

shifted by p/c for convenience where p is the distance of P from the origin and c is
the speed of light.
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Figure 3.6: The impulse response for each scattering mechanism is plotted here sep-
arately, where E'(t), E*(t) and E%*(t) correspond to the impulse response of the
reflected ray, the edge-diffracted ray from edge (1) and the edge-diffracted ray from
edge (2), respectively. The time axis is shifted by p/c for convenience.
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Notice that the first order diffracted field is discontinuous as a function of angle at
the shadow boundaries. This discontinuity corrects the discontinuous GO field at
these boundaries.

Figure 3.10 is similar to Figures 3.9 and 3.8, except it shows the slope diffracted
field. Notice that the slope diffracted field is a smooth function of both space (angle)
and time, but it does have a discontinuous derivative as a function of angle at the
shadow boundaries, which corrects the discontinuous derivative of the GO plus first
order diffracted field.

Figures 3.11, 3.12 and 3.13 compare the TD-UTD impulse response with an exact
solution. The exact solution is presented in Appendix B and is based on Felsen’s
work [22]. The PEC wedge is illuminated by a infinitesimal current element where
the current has a unit step function time dependence. This illuminates the wedge with
a spherical wave, and the first order term in (1/r) has an impulsive time dependence.
The TD-UTD solution assumes that the incident field is a time impulsive spherical
wave with a (1/r) distance dependence. Figure 3.14 is a closeup view of the plots in
Figure 3.13. The TD-UTD based on Veruttipong’s work is labeled “TD-UTD (Ver)”
and the one based on Hwang’s work is labeled “TD-UTD (Hwa)”. Notice that the
TD-UTD slope diffraction solution based on Veruttipong’s work is more accurate for
early time, whereas the TD-UTD slope diffraction based on Hwang’s work is more
accurate for intermediate to late time. This is anticipated from the equations since
the formulation based on Veruttipong’s work contains an approximation for a higher
order term in the frequency domain asymptotic expansion. Nonetheless, it appears
from these simple examples that the solution based on Hwang’s work is adequate for

many applications and is still a simple and more compact formulation. *

Magnetic Dipole Illuminating a Wedge

The comparison iﬁ Figures 3.15 and 3.16 is similar to Figures 3.13 and 3.14 except the
wedge is excited by an infinitesimal magnetic current element. Figure 3.16 is simply a
close up view of the bottom plot in Figure 3.15. The TD-UTD slope diffraction based
on Veruttipong’s work is labeled “TD-UTD (Ver)” and the one based on Hwang’s
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Electric Dipole and PEC Wedge, Total Field
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Figure 3.8: A waterfall plot showing the space-time behavior of the total field when
an electric dipole illuminates a PEC wedge. The observer is in the far zone and the
incident field at the edge is rapidly varying so slope diffraction is significant.
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Figure 3.9: A waterfall plot showing the space-time behavior of the first order
diffracted field when an electric dipole illuminates a PEC wedge and the observer
is in the far zone. The field here is multiplied by a factor of 10 as compared with

Figure 3.8.
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Electric Dipole and PEC Wedge, Slope Diffraction (10x)
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Figure 3.10: A waterfall plot showing the space-time behavior of the slope diffracted

field (Hwang’s version) when an electric dipole illuminates a PEC wedge. The observer
is in the far zone. The field here is multiplied by a factor of 10 as compared with

Figure 3.8.
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Figure 3.11: The TD-UTD impulse response is compared with an exact result. The
infinitesimal electric current has a unit step time behavior which approximately illu-
minates the wedge with an impulsive spherical wave.
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Electric Dipole and PEC Wedge
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Figure 3.12: The TD-UTD impulse response is compared with an exact result. The
infinitesimal electric current has a unit step time behavior which approximately il-
luminates the wedge with an impulsive spherical wave. The slope diffraction is zero
when the dipole is oriented perpendicular to the incident direction.
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Electric Dipole and PEC Wedge
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Figure 3.13: The two versions of the TD-UTD slope diffraction are compared with an
exact result. The infinitesimal electric current has a unit step time behavior which
approximately illuminates the wedge with an impulsive spherical wave.
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Figure 3.14: The two versions of the TD-UTD slope diffraction are compared with an
exact result. The infinitesimal electric current has a unit step time behavior which
approximately illuminates the wedge with an impulsive spherical wave.
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work is labeled “TD-UTD (Hwa)”. The magnetic current element is placed directly
on one of the wedge faces, since this could be used to model a small slot antenna.

Notice that there is excellent agreement for an observer near the shadow boundary
and far from the shadow boundary. Also, notice that once again the TD-UTD based
on Veruttipong’s work is more accurate for early time; whereas, the formulation based

on Hwang’s work is more accurate for intermediate to late time as expected.

3.4 Conclusions

The TD-UTD solution for the scattered field from a general curved wedge is sum-
marized as follows. The TD-UTD impulse response for the field in the presense of a

general curved wedge may be written as

EY™ (t) =7 (90t B (904 B (0)+ B () (3.86)
where the spatial unit step functions U; and U, are 1 on the lit side of the incident
shadow boundary and the reflection shadow boundary, respectively, and 0 otherwise.
The TD-UTD incident GO field E}', (t) is in (3.10) and the TD-UTD reflected field
IT'J; (t) is in (3.14). The first order TD-UTD edge diffracted field E}? (t) is in (3.16)
where the TD-UTD dyadic diffraction coeflicient is defined in (3.40) and (3.41). The
higher order edge diffracted field called the slope diffracted field f};d (t) is in (3.56)
where the TD-UTD dyadic slope diffraction coefficient based on Hwang’s frequency
domain UTD slope result is given in (3.57) and (3.58) while the slope diffraction
coefficient based on Veruttipong’s frequency domain UTD result is given in (3.64)
and (3.65). Finally, the impulse response formulas, denoted by the subscript I, may
" be convolved with an excitation in closed form as in (3.80) and (3.81?) when the
excitation has the form in (3.77) or (3.78).

This chapter presents a time domain version of the UTD (TD-UTD) for the general
case of a curved PEC wedge, where the wedge faces and the edge may be curved. This

time domain solution can handle more general geometries than what has been done

in the past and supplies a good stepping stone for the development of a complete
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o1 Magnetic Dipole on PEC Wedge
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Figure 3.15: The two versions of the TD-UTD slope diffraction are compared with an
exact result. The infinitesimal magnetic current has a unit step time behavior which
approximately illuminates the wedge with an impulsive spherical wave.
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Figure 3.16: The two versions of the TD-UTD slope diffraction are compared with an
exact result. The infinitesimal magnetic current has a unit step time behavior which
approximately illuminates the wedge with an impulsive spherical wave.
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TD-UTD which includes multiple diffractions, caustic corrections, surface diffraction,

etc.
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Chapter 4

TD-UTD for a Smooth Convex
Surface

The study of electromagnetic surface diffraction has been an active area of research for
many years both in the frequency domain (i.e. the time harmonic case) and also in the
time domain. Smooth surface diffraction as described here assumes that the surface
is a perfect electric conductor. Even with this assumption, smooth surface diffraction
is a very important phenomena since many geometries encountered in engineering
contain conducting smooth surfaces, such as airplanes, automobiles, etc. The work
in this report is based on the frequency domain UTD solution and Pathak provides
an excellent summary of this work in [4].

There is an abundance of past research on the topic of diffraction from smooth
surfaces which are excited by short pulses, either acoustic pulses or electromagnetic
pulses. One of the classic works on acoustic pulse scattering is a book by Friedlander
[7]. In chapter 6 of [7], Friedlander formulates the time domain acoustic Green’s func-
tion (i.e. impulse response) for a circular cylinder and also for a sphere. He obtains
an approximate “early time” formula for the diffraction from a circular%ylinder by
implementing an asymptotic evaluation of an inverse Laplace transform of the fre-
quency domain rgsult. This early time result is a summation of time domain creeping
wave modes and therefore is not valid when the observer is near the surface shadow
boundary (SSB), but it is still very useful for “deep shadow” observer locations or
backscatter calculations. Friedlander solves the acoustic scattering from a sphere sim-

ilarly. Also, he finds an explicit early time formula for when the observer is located at

67




the caustic in the shadow region. But, Friedlander does not obtain the solution to the
sphere problem for the case when the diffracted ray field has passed through a caus-
tic. In [42], Weston obtains the back-scattered electromagnetic field from a perfectly
conducting sphere when the incident field is a plane wave and the temporal excitation
is a modulated square pulse. Weston finds a power series approximation for small
(or early) time from the inverse Laplace transform of the Luneberg-Kline expansion.

For large (or late) time, Weston uses an eigenfunction representation and when the

" sphere radius is large in terms of the wavelength of the modulation frequency he used

a creeping wave representation. Wait and Conda discussed diffraction of electromag-
netic pulses by curved surfaces in [43]. The first section of Wait and Conda’s paper
is devoted to finding the electric currents induced on a circular cylinder when it is
excited by a plane wave. The temporal excitation is a step function. The currents in
the frequency domain are expressed as an approximate integral expression containing
an Airy integral. This approximate frequency domain result is valid when the radius
of the cylinder is large in terms of wavelength. They then expand this frequency
domain expression into a power series and use an inverse Laplace transform to obtain
an asymptotic time series in terms of inverse powers of time. Although it appears
that they use both high frequency and low frequency approximations here, one can
interpret their solution to be valid for intermediate time values and observations near
the shadow boundary. In the second half of the paper, Wait and Conda [43] dis-
cuss the diffraction from a smooth surface when the source and observer are removed
from the surface. They solve the specific case of a circular cylinder, although they
mention at the end of the paper that these results could be easily generalized. This
solution is valid for observations near the shadow boundary. In [44], Chen computes
the large-time transient behavior of the diffracted field from a circular cylinder ex-
cited by a plane wave with a step function temporal behavior. He solves the problem
for various types of boundary conditions at the surface and also pays close attention
to causality. Chen bases his solution on the exact frequency domain eigenfunction
summation. He uses an inverse Laplace transform on the eigenfunction summation,

applies the transform term by term, and then evaluates each term asymptotically for
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large time. I“Jbera]l, Doolittle and McNicholas solve the acoustic scattering problem
of a cylinder excited by an impulsive plane wave (i.e. the impulse response) [45].
They first solve the frequency domain problem and then obtain the impulse response
by using an inverse Laplace transform. Since their frequency domain solution is an
asymptotic high frequency result, their impulse response is valid for early (or small)
times. Also, in their solution the scattered field is decomposed into a reflected field
and diffracted field which is written as a sum of creeping wave modes. Therefore,
their solution is not valid near the shadow boundary. In [46] and Appendix II of [1],
Moffatt explores that nature of the creeping wave. He does this by examining the
early time backscattered electromagnetic field from a circular cylinder and a sphere
which he obtains by using an inverse Laplace transform on the asymptotic high fre-
quency results. He discovers that the early time backscattered diffracted field from
the sphere is the Hilbert transform of a causal time function and then correctly pre-
dicts that the early time approximate backscattered diffracted field from a sphere
is not causal. This is easily understood now, since we know that the arrival of the
reflected field represents the “turn on” time of the total scattered field, and therefore
the “small time” solution for the diffracted field contribution may contain information
before and after the time of arrival of the diffracted ray. This is consistent with the
asymptotic nature of the “small time” solution. Wait investigates the currents on a
cylinder when the cylinder is excited by an impulsive plane wave in [47]. Wait first
formulates the solution in the frequency domain and approximates the currents in the
penumbral (near the shadow boundary) region as a contour integral containing Airy
functions. He expands this representation into a creeping wave mode series and uses
an inverse Laplace transform term by term to obtain a time domain creeping wave
mode series. He is able to transform each creeping wave mode (for the currents in the
shadow region) in closed form in terms of Airy functions. In [48, 49], Schafer calcu-
lates the currents on a circular cylinder when the cylinder is excited by an impulsive
plane wave. He finds an early (small) time representation in the lit region by using an
inverse Laplace transform on the frequency domain Luneberg-Kline series which gives

a power series time representation. He obtains an early (small) time representation
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in the shadow region by applying the inverse Laplace transform to the high frequency
creeping wave summation. He obtains a large time representation by applying the
inverse Laplace transform to the frequency domain eigenfunction summation term
by term. Finally, for intermediate time values he uses an interpolation scheme to
combine the small and large time representations. Lee, Jamnejad and Mittra exam-
ine the early time response for the scattered field and current on a circular cylinder
by using an inverse Laplace transform on the high frequency creeping wave repre-
sentation [33]. In [50], Heyman and Felsen develop a solution for the currents on a
circular cylinder (or a smooth surface in general) when the excitation is located on the
cylinder. Their solution combines a low frequency eigenfunction representation with
a high frequency creeping wave representation, then they do a similar combination in
the time domain. Ma and Ciric in [51], obtain an early time solution for the currents
on a circular cylinder when it is excited by a line current. Their solution is similar to
Schafer’s for the plane wave case. In [52], Naishadham and Yao present the transient
scattering by a circular cylinder when it is excited by magnetic line source when the
source and observation point are on the cylinder. They obtain their solution using
an efficient numerical evaluation of a contour integral which approximates the exact
contour integral solution.

The time domain curved surface diffraction presented in this chapter is different
from the solutions discussed above since the present work is based on the frequency
domain UTD [4]. The frequency domain UTD formulation of surface diffraction can
be applied to a very general class of smooth surfaces, whereas most of the previous
time domain solutions discussed above involve canonical geometries such as cylinders
or spheres. More importantly, the previous time domain solutions discusséd above
assume simple excitations such as a plane wave or line source, whereas in the TD-
UTD solution presented here, the excitation is an astigmatic ray field where plane,
cylindrical and spherical wavefronts are special cases. Also, with the analytic time
representation used here, one could easily incorporate incident ray fields which have

passed through a smooth caustic, incident ray fields that are circularly polarized and
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diffracted ray fields which have passed through a smooth caustic. This greatly in-
creases the usefulness of the present TD-UTD solution for smooth surface diffraction.

The content of this chapter is as follows. First there is a brief review of the
frequency domain UTD formulation for smooth surface diffraction. Then the TD-
UTD is obtained for observers in the deep lit and deep shadow regions by applying
the analytic time transform to the frequency domain UTD formulas. Also, a TD-
UTD solution is obtained for observers near the shadow boundary. Finally, all of
these solutions are combined to obtain a uniform TD-UTD surface diffraction solution
which remains valid in the deep shadow region, near the shadow boundary and deep
in the lit region. This uniform TD-UTD solution is the time domain version of the
UTD solution in Pathak [4]. This solution is restricted to the “scattering case” where
the observer and source are located off the smooth surface, although the radiation
and coupling problems could be dealt with in a similar fashion. Finally, some simple
numerical results are presented to demonstrate the TD-UTD and compare it with a

reference solution.

4.1 General Formulation in the Frequency Do-
main

This chapter discusses only the smooth surface scattering situation where the source
and observer are off of the surface. Although the radiation and coupling situations
where the source or/and the observer are located on the smooth surface are of con-
siderable interest only the scattering situation is considered here. The radiation and

coupling situations could be analyzed in a similar fashion as the scattering problem

F3

studied here.
The frequency domain UTD solution for the smooth surface diffraction geometry
shown in Figure 4.1 is as follows. The UTD formulation for smooth surface diffraction

briefly presented here is based on the summary by Pathak [4]. For the scattering case
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SOURCE

Figure 4.1: Geometry of the smooth surface scattering situation where the source and
observer are off the surface.

shown in Figure 4.1, the total field as approximated by the UTD may be written as

E‘(P.)+ E9(P,) P = P in lit region

- (1)
E4(Ps) P = Ps in shadow

EUTD ( P) — {

The surface diffracted field Ed(Ps) may also appear in the lit region when the surface

is closed and one includes multiple encirclements around the surface. The incident

field E*(Py) is the usual GO incident field which exists in the lit region. The reflected

field E9"(PL) is a generalized reflected field which behaves as the usual GO reflected

field deep in the lit region, but behaves quite differently near the surface shadow
boundary (SSB), it can be expressed in terms of generalized reflection coefficients

Eo(PL) ~ EY(QR) - [RaéLéL + Ruéjé]| Ar(sT)e™?* (42)

where B¥(QRr) is the incident field at the point of reflection Qg. The unit vectors in

(4.2) are the same as in the usual GO reflection formula discussed in the previous

chapter. The spreading factor for the reflected field is given by
PiPh
A (s") = \/ 4.3
=T ()

where p’ and p} are the reflected ray caustic distances and s” is the distance from the

reflection point Qg to the observer at P. The surface diffracted field can be written
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Figure 4.2: Ray vectors for surface diffraction.

as

EY(Ps) ~ B (Q1) - [D,b1bs + Dutisfiy| Aa(s?)e=7** (4.4)
where E'(Q;) is the incident field at the attachment point as shown in Figure 4.1.
The unit ray vectors in (4.4) are shown in Figure 4.1. The unit vectors n; and fi, are
normal to the surface at points Q; and Q, respectively. The unit tangent vectors t;
and t, point in the direction in which the “surface ray” is moving at points Q; and
@), respectively. The other tangent vectors 51,2 are defined by 131,2 = £1,2 X Ny 9. The
spreading factor for the diffracted ray is

Ay(s?) = ;;(‘fﬁj (4.5)

where p, is the caustic distance of the diffracted ray and s? is the distance from
the point of diffraction to the observer. The frequency domain generalized reflection

coefficient can be written as

- -4 . = - -
Rop = — e iw(ERP 12 [1-— Ftr(wml’)] + —l-Ps,h(w%Eb)} (4.6)

1
"tV EL {ZEL\/E\/jE w
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where

M(-) = (&Q)% (4.7)

2¢
=L = —2M(QRr) cos 6" (4.8)
L_oL o4
" = 2—cos’§ (4.9)
c

and @' is the angle between the surface normal vector and incident ray direction at
the point of reflection. The function ﬁ't,(z) is the UTD transition function given in
(3.33) and the Fock type function P,(z) is described shortly. The pg(Qr) in the
above equations is the radius of curvature of the surface at the point of reflection Qr

in the plane of incidence. The frequency domain UTD surface diffraction coefficient

is given by
Dn = —y/2M(Q1)M(Q2) {mﬂ — Fy(wz?)]
15 Lo dﬂ(Ql)e_jwl/c
) \] (@) w10
where
Q2 U
== /Ql %(ZT))dl' (4.11)
=2
¥ = BM(QIM(Q) (12
I= ; dr (4.13)

The path from Q; to Q; on the surface is a geodesic where the path length is a

minimum. The p,(I') in (4.11) is the radius of curvature of the surface at I’ on the

geodesic path in the I’ (or t) direction. The distance parameter in (4.9) and (4.12)

when evaluated at the shadow boundary is given by |

__ A(QuA(Q)  s(Ai(@1) +3) (4.19)
(P1(Q1) + 8)(pa(@1) +5)  p(@1)

where p} ,(Q1) are the principle radii of curvature of the incident ray field at @, and

L

pi(@1) is the radius of curvature of the incident ray field in the b, direction at Q;.
Note that the distance parameter L in (4.9) and (4.12) would in general be different
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for the lit and shadow regions but it is usually more convenient to approximate L by
its value at the shadow boundary given by (4.14) [3].

For the special case of an incident spherical wave

s's
L= (4.15)
and
' = pi(Q1) = p5(@1) = pi(Q1) (4.16)

where s’ is the distance from the source to the point @; on the surface.

The Fock type functions Ps,h(m) are related to the soft and hard Pekeris functions
p*(z) and ¢*(z) by

- () | _juja e
P, (z) = e Im/4 _ 4.17
where 5*(z) and §*(z) are bounded and well behaved. The Fock type function P, ;(z)

can also be written as

- _e—ivr/4 w© QV(z) —joz
Pp(z) = T ) QWg(z)e dz (4.18)

where the operator Q is

1 soft case
Q= (4.19)

0/0z hard case

The Fock type Airy functions are
2]V(Z) = Wl(Z) - Wz(Z) (420)
1 o0 3

Wi(z) = — eVv /3¢ 4.21
1( ) \/-7F oo exp(—j27/3) y # ( )

W, eV 3y (4.22)

1 oo
=75 Locoisirs
4.2 Deep Lit Region

The frequency domain UTD formulation for the fields in the lit region can be simplified

when the observer is far from the shadow boundary. When the observer is in the deep
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lit region (i.e. far from the shadow boundary), z* is large and —= is large (or 2% < 0)

and the following approximations can be made

F,,(wa:l’) ~1 for ¥ — oo (4.23)
. =L
P, j(wSEL) ~ tw' (P12 for 2 - —o0 (4.24)

Using the above approximations for the deep lit region, the generalized reflection
coefficient becomes

Rsh ~ F1 deep lit region (4.25)
where the ~ above the reflection coefficient R has been dropped since it is no longer a
function of frequency with this approximation. It is now obvious that the generalized
reflection coefficient ’fZS,h simply becomes the ordinary GO reflection coefficient R,
discussed in Chapter 3 when the observer is in the deep lit region. Now the TD-UTD

field in the deep lit region can be written as
+ gr +4 r A A af Ay r
E” (Pr;t) ~E (Qr;t —s"/c) - [R,€16. + Rhe”e”]Ar(s ) (4.26)

where R, is given in (4.25). Notice that this is an early time deep lit region result
which directly corresponds to the high frequency deep lit region approximations. The
early time deep lit region result in (4.26) is not expected to be accurate for late
times, since the deep lit region approximations made in the frequency domain are
increasingly accurate as the frequency increases. Nonetheless, the result in (4.26) is

a good approximation for early time and for an observer deep in the lit region.

4.3. Deep Shadow Region

The frequency domain UTD formulation can be simplified when the observer is deep
in the shadow region. When the observer is in the deep shadow region, z? in (4.12)

and Z in (4.11) are large and positive and the following approximations can be made

Fy(wa?) ~ 1 for 27 — oo (4.27)
—emith 2 F exp(—(ju)t g

BatE) VT oo 2A(-a))? (4.28)

~) —e i/t N o3 exp(—(jw)$EG,)

\/7_" n=1 2qu [Ai("Qn)]2
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for £ — oco. In (4.28), Ai(z) = V(z)/4/7 is a Miller type Airy function and Ai'(z) =
OAi(z)/0z is its derivative [29]. The nth roots of Ai(—g,) = 0 and Ai'(—g,) =0,
denoted by g, and g, respectively, are also used in (4.28). Typically two terms (N = 2)
are used for the summation in (4.28) [4]. The surface diffraction coefficient in (4.10)
can now be simplified for an observer in the deep shadow region by

1 X exp(—(jw)3Ega)

S ’ 2@ o) GaF 2 2AAT (g )P

Don ~ | —M(Q)M golfe § \JW)® n=1 o 4.29

sh T (Ql) (Q2) (Qz) 1 N CXP(-—(]UJ)%:@,) ( )
(jw)t st 20n[AN(=3a)2

Finally, the analytic time transform can be applied to (4.29) to obtain the analytic

time representations of the surface diffraction coefficient

N & =
dn(Ql) > 2[AT(~ga))? (4.30)
dn(@2) | - Few (g ™)
n=1 28n[Ai(-2,))?

Den (t) ~ ——M(Q YM(Q2)

where 7p =t — [/c and
L
Few (ant) / (jw)~Eemalio)s givtq, (4.31)

for Im ¢t > 0. The analytic time function in (4.31) is a new special function which
must be calculated. Appendix D explains in detail how to calculate ;’cw (a,t) in
(4.31).

4.4 Observer Near the Shadow Boundary

This section presents the TD-UTD smooth surface reflection and diffraction coeffi-
cients for when the observer is near the shadow boundary. First rewrite the frequency

domain generalized reflection coefficient in (4.6) as the following

fon = || e | Fulot) e gl ]
’ =L =L /rjw  (jw)l/e G (/32D

and the surface diffraction coefficient of (4.10) as

Fyp(we?)

Dop = —/2cM(Q1)M(Q,) [m
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~ e=i/6 | p*(w'/3E) dn(@1) _ju/e
(,-w)l/s{ 2) }J (00" (4.33)

Now apply the ATT to (4.32) and (4.33) to obtain

+
+ [—4 (F (calymr) + 1
Rs,h: —é—L_ {—W— Fp,q (.: ,T’R) (4.34)

where
=t — (EL)3/12 (4.35)
and
F czd, T dn(Q:
58,11: \/2CM(Q1)M(Q2) [Fz(?m;)— E’p,q (E,T’D)] dzgg;; (4.36)
where
m=t—1/c (4.37)

. . . + p— . . . _—
See Appendix E for a series expansion for F,, (E,t) which is appropriate when ||
is small (i.e. when the observer is close to the shadow boundary). The other time

function used in (4.34) and (4.36) is related to the TD-UTD wedge transition function
in (3.37) by

F‘tr(ww)] 1 +
A [ : = — F(cz,t 4.38
2l - F (et (439)
e/
- . - (4.39)
V=3Uv/~3t + V/7z)
At the shadow boundary, ¢ — 0 and z* — 0, therefore
+ + 5
F (cz,t) ~ /mez § (1) : 7 (4.40)
Also, ZI' — 0~ and Z — 0% so that the following could be used
+ _T(5/6) e ™2 | po
FPKI (O,t) - jﬂ' ('—‘jt)s/s qO (4.41)

where py = 0.354064 and go = —0.307177. Equations (4.40) and (4.41) could be used

to demonstrate that the TD-UTD is continuous across the surface shadow boundary,
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just as is done in 3] for the frequency domain case. The term containing 2 (t) function
will produce minus one half of the incident field when used in the reflection coefficient
and plus one half of the incident field when used in the diffraction coefficient. But,
the term containing (—jt)~%/® produces a diffracted field effect even on the shadow
boundary. This is in contrast to the first order diffraction from the wedgei which

becomes one half of the incident field at the shadow boundary.

4.5 Uniform TD-UTD Surface Diffraction

This section presents the uniform TD-UTD formulation for the scattering from a
smooth convex surface. This requires the analytic time transform (ATT) of the
corresponding frequency domain UTD generalized reflection coefficient in (4.6) and
surface diffraction coefficient in (4.10). The following transform pairs are used

e—ir/4

[m] NNe=T (4.42)
and
A [w—ll/—s ',,,,(wI/BE)] = H A (B,1) (4.43)

along with (4.38). The transform in (4.43) can be used when = < 0 and when Z > 0,
so it can be used for the generalized reflection coefficient and the surface diffraction
coefficient. The special time function f‘ih (E,t) is not known in closed form, but
instead it can be calculated using various expansions for early time, late time and so
forth. Appendix E fully explains the properties of the j‘tih (2,t) function and explains
the algorithm used for its calculation. Nonetheless, some basic results concerning the

+P
F,h (E,t) are now summarized.

o

In the shadow region, = > 0 and the following expansions can be used. When
the observer is in the deep shadow region (or for very early time) a creeping wave

expansion can be used

"'1 f: ch '-'qn’t)

2

Fou (1)~ VT i 2 (A ()] (4.44)

_1 N ch ('—'qn, )
\/—n=1 2qn [Al( qﬂ)]2
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+
for |t/=3| — 0, where F., (a,t) are the time domain creeping wave mode functions
described in Appendix D. When the observer is near the shadow boundary (or for

late time) an inverse time power series can be used

+P + 1 eI7/4
Fs,h (‘:',t) =Fp,q ‘:'7t) - —2_% —]t (4.45)
where
Loz eim/12 2 | pn | (n/3 +5/6)e™/° =
=t) = ——————— 4.46
Fpq(E,t) w(—jt)5/6 n=0{ o } n! (—jt)n/S ( )

for [t/=3| # 0.
For the lit region, E% < 0, and (4.46) can be used when [t/(E%)?| — oo by simply
replacing Z in (4.46) with ZL. But, for [t/(E%)?| — 0 the creeping wave mode series

in (4.44) is not valid in the lit region, instead one can use

+ —=L 4
Fon (B,8) ~ £/ = 8 (¢ + (31)°/12) (4.47)

for ‘[t + (EL)3/12J/(EL)3| — 0. See Appendix E for more details about the computa-

+
tion of these expansions and F:h (E,1) in general.

Now, using the transform relationships in (4.38), (4.42) and (4.43), transform (4.6)

into
+ —4 eI/ +P
sh= —Al =L + Fop (25 mr) (4.48)
=4 | 2ztn (Vg + o ieE)

and transform (4.10) into

e—jr/4

2=r (, /7% + +/jz?

Don= —/2¢M(Q1)M(Q2) )+iih (Em)p © (449)

It is interesting to notice how
e—jr/4

behaves for ¢ > 0 and real time Im (t) = 0. The above can be rewritten as

Vi-jVE

t+cz
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and notice that this gives

Re ( e/t ) — Viu(t)
V=it++iz) t+e
for £ > 0 and Im (¢) = 0. This is the same type of transient behavior observed for

the slope diffraction transition function (C.17).

4.6 Numerical Example

Figures 4.4 through 4.8 show a comparison between a TD-UTD solution and an
eigenfunction reference solution for the TE, (soft) far zone scattering from a two
dimensional (2-D) cylinder at various bistatic angles. The reference eigenfunction
solution is a frequency domain solution [53] which is multiplied by the frequency
domain window in Figure 4.3 and transformed into the time domain using the IFFT.
The time pulse excitation, in the top plot of Figure 4.3, corresponding to the frequency
window in the bottom plot of Figure 4.3, is convolved with the TD-UTD analytic
impulse response in closed form where only two frequency domain exponentials are
used (see (2.67) in Chapter 2). In the far zone, z¢ — oo and z¥ — oo so that the
coefficients 7-%3,;, and 53,;, are proportional to the ;'f,h (Z,t) function. The source and
observer locations are chosen to be in the far zone for this comparison because the
f’ih (E,t) function is more difficult to calculate than the other terms in reflection
coefficient 7+ls,h and diffraction coeflicient f)s,h and it is therefore desirable to check
the accuracy of this I—F’ih (2,t) function. The radius of the cylinder is 7 = 1 meter
which makes the radius one wavelength at the peak frequency of the window fanction
in Figure 4.3. In Figures 4.4 through 4.13, the top plot shows the magx{iytude of the
analytic time function while the bottom plot shows the real part of the analytic time
function. Although the bottom plots (i.e. the real part) are the actual time signals
arising from the excitation in Figure 4.3, the top plots (i.e. the magnitude) may be
thought of qualitatively as the signal from an envelope detector. Notice that there is
excellent agreement between the TD-UTD solution and the eigenfunction reference

+
solution, which confirms that the numerical algorithm for computing Ff,h (2,t) in
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Figure 4.3: Excitation pulse w(¢) and corresponding frequency response (or frequency
window) W (f) used for the scattering from a 2-D cylinder example.
Appendix E is working well for this case and that the TD-UTD is very accurate for

this case.

Figures 4.9 through 4.13 are essentially the same as the Figures 4.4 through 4.8 just
discussed except that Figures 4.9 through 4.13 are for the TM, (hard) polarization

case.

4.7 Conclusions

g

This chapter presents a TD-UTD formulation for the scattering from a smooth per-
fectly conducting convex surface. The TD-UTD impulse response for the field in the

presence of a convex smooth surface may be written as

It‘,} (t)+ f)?r (t) lit region
BV (1) = (4.50)

]45-}? () shadow region
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Figure 4.4: Comparison of the TD-UTD solution and an eigenfunction reference
solution (eigen) which is transformed into time domain with the IFFT after the
window in Figure 4.3 is applied. The far zone backscatter from a 2-D circular cylinder,
for TE, (hard) polarization and the radius is » = 1 meter.
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* Figure 4.5: Comparison of the TD-UTD versus a reference eigenfunction solution
(“eigen”) which is transformed into the time domain with the IFFT after the window
in Figure 4.3 is applied. The far zone bistatic scattering (at bistatic angle ¥ = 90°)
from 2-D cylinder, for TE, (hard) polarization and radius r = 1 meter.
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Figure 4.6: Comparison of the TD-UTD versus a reference eigenfunction solution
(“eigen”) which is transformed into the time domain with the IFFT after the window
in Figure 4.3 is applied. The far zone bistatic scattering (at bistatic angle ¢ = 135°)
from 2-D cylinder, for TE, (hard) polarization and radius » = 1 meter.
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Figure 4.7: Comparison of the TD-UTD versus a reference eigenfunction solution
(“eigen”) which is transformed into the time domain with the IFFT after the window
in Figure 4.3 is applied. The far zone bistatic scattering (at bistatic angle ¢ = 165°)
from 2-D cylinder, for TE, (hard) polarization and radius » = 1 meter.
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Figure 4.8: Comparison of the TD-UTD versus a reference eigenfunction solution
(“eigen”) which is transformed into the time domain with the IFFT after the window
in Figure 4.3 is applied. The far zone bistatic scattering (at bistatic angle 9 = 175°)
from 2-D cylinder, for TE, (hard) polarization and radius » = 1 meter.
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Figure 4.9: Comparison of the TD-UTD versus a reference eigenfunction solution
(“eigen”) which is transformed into the time domain with the IFFT after the window
in Figure 4.3 is applied. The far zone backscatter from 2-D cylinder, for TM, (soft)
polarization and radius » = 1 meter.

88




v
[0}
S 1 ]
c
(@]
1]
=0.5¢ 1
0 -5 0 5
Time (ns)
¢ 0 A
©
o
©-0.5 -- TD-UTD |
o :
— Eigen
—1F .
-5 0 _ 5 ;
Time (ns)

Figure 4.10: Comparison of the TD-UTD versus a reference eigenfunction solution
(“eigen”) which is transformed into the time domain with the IFFT after the window
in Figure 4.3 is applied. The far zone bistatic scattering (bistatic angle 1 = 90°) from
2-D cylinder, for TM, (soft) polarization and radius r = 1 meter.
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Figure 4.11: Comparison of the TD-UTD versus a reference eigenfunction solution
(“eigen”) which is transformed into the time domain with the IFFT after the window
in Figure 4.3 is applied. The far zone bistatic scattering (bistatic angle ¢/ = 135°)
from 2-D cylinder, for TM, (soft) polarization and radius r = 1 meter.
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Figure 4.12: Comparison of the TD-UTD versus a reference eigenfunction solution
(“eigen”) which is transformed into the time domain with the IFFT after the window
in Figure 4.3 is applied. The far zone bistatic scattering (bistatic angle ¢ = 165°)
from 2-D cylinder, for TM, (soft) polarization and radius r = 1 meter.
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Figure 4.13: Comparison of the TD-UTD versus a reference eigenfunction solution
(“eigen”) which is transformed into the time domain with the IFFT after the window
in Figure 4.3 is applied. The far zone bistatic scattering (bistatic angle ¢ = 175°)
from 2-D cylinder, for TM, (soft) polarization and radius » = 1 meter.




where the impulse response of the incident GO field is

B) (t) = EAi(s) § (= 5'/c) (451)
with E! being an initial value vector which is a constant with respect to time (or
frequency) and contains the polarization information of the incident field. Note that
the field in (4.51) is from the source and travels to the observer along a straight line
of length s'. The fields incident at the point of reflection Qg and the attachment
point @; have the same form as in (4.51). The TD-UTD generalized reflected field is

+gr i[5 A A + afar r i

EY () = By - [R, (rr)e16.+ R (1:)8]8]] Ar(s7)Ai(s") (4.52)
where 7, =t — s'/c — s"/c, and the TD-UTD surface diffracted field is

+d i [& N N - d i

E7 () = B} - [Da (ra)b1bo+ Di (7a)iisiiy] Aa(s?) Ai(s") (4.53)

where 7; = t — s'/c — s%/c. Note that the variable s* in (4.52) is the distance from the
source to the reflection point Qg but the variable s in (4.53) is the distance from the
source to the point of attanchment @;. The TD-UTD coefficients R, and D, can be
found in (4.48) and (4.49), respectively. The special function IJv'r’f,h (E,t), used in the
uniform coefficients R, and D, 4, can be calculated using the numerical algorithm
in Appendix E for all values of = and Im (t) > 0.002|Z3| (or Im (t) > 0.002|(ZF)3)).
Finally, the impulse response formulas, denoted by the subscript I, may be convolved

with an excitation in closed form as in (3.80) and (3.81) when the excitation has the

form in (3.77) and (3.78).
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Chapter 5

Conclusions

This report presents a development of a time domain version of the uniform geometri-
cal theory of diffraction (TD-UTD). The analytic time transform (ATT) is formulated
and is shown to be very useful in deriving the TD-UTD solution to the scattering from
an arbitrary curved wedge and also from an arbitrary smooth convex surface, both
of which configurations are perfectly conducting. These two types of configurations
constitute a very important set because many complex geometries can be built up
from these configurations as has already been demonstrated in the frequency domain
UTD based ray approach. This same ray picture is valid in the TD-UTD developed
here, and therefore the TD-UTD retains all the advantages of the frequency domain
UTD.

The ATT is defined and its properties are discussed in Chapter 2. An important
observation is that the ATT may be expressed as a one-sided forward Laplace trans-
form when the roles of time and frequency are interchanged as expressed in (2.13).
This is an important observation since it implies that the abundant math texts and
tables on the one-sided Laplace transform may be applied in deriving results for the
ATT. Another important result presented in Chapter 2 is the ATT applied to an
asymptotic high frequency power series expansion, which is useful when deriving ex-
pressions for the nﬂmerica.l computation of special functions. It is noted that the
ATT can not simply be applied to an asymptotic frequency domain power series
term-by-term, nonetheless more rigorous results are presented in Chapter 2. When

an impulse response is represented by an analytic time function (obtained by the
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ATT), the convolution with an excitation pulse function can be performed in closed
form as in (2.70) when the frequency response of the excitation is modeled as a series
of exponential functions as in (2.67).

The TD-UTD formulation for the scattered field from a general curved wedge when
the wedge is illuminated by an astigmatic wavefront is presented in Chapter 3. The
TD-UTD impulse response for the curved wedge is obtained by an application of the
ATT to the frequency domain UTD formulation. This TD-UTD impulse response may
then be convolved with a more general time pulse excitation where the convolution
may be performed efliciently as described in Chapter 2. In general, the TD-UTD

impulse response for the curved wedge may be expressed as
+ +; +p + +s
By (8) =E; (Uit B} (0U-+ 7 ()+ BT (1) (5.1)

where the spatial unit step functions U; and U, are 1 on the lit side of the incident
shadow boundary and the reflection shadow boundary, respectively, and 0 otherwise.
The TD-UTD incident GO field E)} (t) is in (3.10) and the TD-UTD reflected field
E); (t) is in (3.14). The first order TD-UTD edge diffracted field f}'} (t) is in (3.16)
where the TD-UTD dyadic diffraction coefficient is defined in (3.40) and (3.41). The
higher order edge diffracted field called the slope diffracted field E;d (t) is in (3.56)
where the TD-UTD dyadic slope diffraction coefficient based on Hwang’s frequency
domain UTD slope result is given in (3.57) and (3.58) while the slope diffraction
coefficient based on Veruttipong’s frequency domain UTD result is given in (3.64)
and (3.65). The two versions of the slope diffraction coefficient are derived in detail
in Appendix C.

Chapter 4 presents a TD-UTD formulation for the scattering from smooth con-
ducting convex surfaces. Only the scattering case where the source and observer are
removed from the surface is analyzed in Chapter 4, but the radiation and coupling

cases could be handled in a similar fashion. The TD-UTD impulse response for the
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field in the presence of a convex smooth surface may be written as

lJir)} (t)+ ]E?r (t) lit region
+
E; ()= (5.2)

E}CII (t) shadow region

where the impulse response of the incident GO field is
+:' . R .
E; (t) = EyAi(s") § (t —5*/c) (5.3)

with E{ being an initial value vector which is a constant with respect to time (or
frequency) and contains the polarization information of the incident field. Note that
the field in (5.3) is from the source and travels to the observer along a straight line
of length s'. The TD-UTD generalized reflected field fﬁr (t) is given in (4.52) and
the TD-UTD surface diffracted field E}‘; (t) is in (4.53). The surface diffracted field
}5? (t) may also exist in the lit region for closed surfaces when multiple encirclements
are included. In the same manner as the TD-UTD wedge scattering formulation, the
impulse response formulas for the émooth surface scattering, denoted by the subscript
I, may be convolved with an excitation in closed form as in (3.80) and (3.81) when
the excitation has the form in (3.77) and (3.78).

The development of the TD-UTD is important for many reasons. There are many
problems of engineering interest for which the more robust time domain numerical
methods (such as the finite difference time domain (FDTD), or the time domain
integral equations (TD-IE) method) are not well suited, because the geometries are
too large in terms of pulse width. Also, the TD-UTD can provide an approximate
impulse response which may provide more interesting information about a gcatterer
or an antenna, since the impulse response is essentially independent of excitation
waveform shape. In addition, the development of the TD-UTD has requires the use
of some novel techniques such as the anal};tic time transform (ATT) and so forth,
there are many other research topics which the development of the TD-UTD and the
ATT may have a positive benefit.

An important observation from the development of the TD-UTD is that the early

time asymptotic results obtained from the high frequency asymptotic frequency do-
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main solutions are not necessarily causal. This is understood now, because the early
time results correspond to scattering from localized portions of an object, and the
shifted times about which they are asymptotically valid is NOT the so called “turn
on time” for the general geometry. This is an important observation, because it rules
out using an inverse Laplace transform for solving general problems since the inverse
Laplace transform only provides one-sided time functions. Although, in principle a
two-sided Laplace transform or a Fourier transform could be used, the ATT developed
in Chapter 2 is much more convenient. The analytic time signals obtained from the
ATT provide a very compact general solution which can be convolved with a broad
class of excitation functions in closed form.

The TD-UTD formulations developed in this report for a general curved wedge
including slope diffraction and for the diffraction from smooth convex curved surfaces
(scattering case) represent a substantial progress towards achieving a full TD-UTD
framework which is just as ﬁseful as the frequency domain UTD. Nonetheless, there
is a lot of research which still must be done to extend the usefulness of the TD-
UTD even farther. First of all, work should be done on improving the efficiency of
computing the TD-UTD transition functions (related to the Fock type function) in the
smooth surface diffraction coefficient. Although the numerical algorithm described in
Appendix E is adequate for most purposes, it is likely that there is a more efficient
method for the calculation since accuracy not efficiency was the primary concern in
the development of the numerical algorithm in Appendix E. Next, there are still some
canonical (localized) geometries to be analyzed such as the coupling and radiation
problems for antennas located on smooth convex surfaces, diffraction from a vertex,
a general equivalent current type of formulation for observations near gaustics, an
impedance wedge, and so on. In particular, the development of the TD-UTD solution
to the coupling and radiation on/from smooth convex surfaces should essentially
follow the approach used for the scattering case considered in this report.

In addition to the obvious potential research topics concerning the TD-UTD men-
tioned above, there are some other potential research problems related to the TD-

UTD. One of these topics is using the TD-UTD as the guiding principle in the de-
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velopment of new parametric models used in the analysis of radar scattering data
[5, 6]. There are some inherent benefits of formulating parametric scattering models
in the time domain (or more generally the image domain) instead of the frequency
domain since for scatterers large in terms of wavelength (or pulse width) the terms
in the parametric model naturally become isolated in time. Another potential use of
the TD-UTD is in the development of a hybrid numerical method combining a robust
numerical approach such as the finite difference time domain (FDTD) or time domain
integral equations (TD-IE) with an asymptotic ray based methodology. Although,
it is not currently known how a hybrid time domain numerical method such as this
would perform, it is felt that the TD-UTD formulation as presented in this report
would be helpful in its development.

Recently, there has been a great interest in a new type of transform called the
wavelet transform [54, 55]. There are fundamentally two types of wavelet transforms;
the discrete wavelet transform (DWT) and continuous wavelet transform (CWT). It
appears that the DWT is more popular because there have been recent developments
in fast algorithms for the computation of the DWT. Nonetheless, it turns out that the
second time derivative of the ATT defined in (2.11) is a continuous wavelet expansion.
See Kaiser [56] to understand this relationship. In particular, Chapter 9 of [56]
“Introduction to Wavelet Electromagnetics” is very helpful. To utilize this CWT,
there may be further modifications necessary to compensate for the poor behavior of
the asymptotic high frequency results at the low frequencies, but these modifications
should be trivial. Because of the observation that the ATT is actually a CWT, the
TD-UTD which uses the ATT may be applied to compute time-scale or time-frequency
distributions of various diffraction phenomena directly or essentially in closed form.
It is not known if looking at the TD-UTD formulation from a wavelet transform
perspective would be helpful, but there may be future research opportunities here.

In summary, the current development of the TD-UTD will likely impact many
areas of research beyond just the analysis of electromagnetic radiation and scattering
phenomena, because of the novel use of the ATT and also the increased insight into

transient electromagnetics.
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Appendix A

Synthesis of an Arbitrary Finite
Energy Time Pulse for Efficient
Convolution

This appendix describes one practical method of obtaining the parameters in the
model of the excitation waveform in (2.68) or (3.78). As discussed earlier, the advan-
tage of using the model in (2.68) or (3.78) is that the convolution of this model with
the TD-UTD impulse response can be performed in closed form as shown in (2.70)
or (3.80).

Assume that the constants {A,} are real and o, = a}, + ja| where o, and o, are
real for n = 1,...,N. Now, the real time waveform constructed by the model (using

the series in (2.68) or (3.78)) is

+ 1 X Anaj,
F(t)= Re F(t)——;z(t_amz_*_a;?

n=1

for Imt=0 (A.1)

Assume that the entire excitation pulse Fi(t) is contained in the time interval 0 <
t < a (or at least approximately contained within this interval). Notice that the

h

parameter al controls the position of the nt expansion term on the ¢ axis while o,
controls the “width” of the nt® term. It would be convenient to select explicit values
(which may depend on the index n) for the parameters o/, and o/, so that the solution
for the A, parameters will be a ”system of linear equations” type of problem. Let

the expansion functions be equally spaced along the ¢ axis and choose

a
N -1

ol = (n—1)

(A.2)
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forn = 1,...,N. Let the “width” of the expansion functions be constant (o], = o'

for all n) and enforce
a

N-1
to make sure the expansion functions are wide enough. Typically, one can choose

a = 0.75(a/(N — 1)) or &/ = 1.0(a/(N — 1)) for satisfactory results. Note that

o >

DN =

choosing an o value that is too large may make the expansion approximation have a
large “tail” for times where the excitation waveform is actually zero, on the other hand
choosing o’ too small may cause too much “ripple” in the expansion approximation.

Now sample the excitation waveform Fi(t) at M points defined by

a

tmz(m——l)M_l

form =1,2,...,M and M > N. The expansion in (A.1) is set equal to the excitation

waveform Fj(t) at these sample points to form an overdetermined system of linear

equations
[Cl[A] = [B] (A.3)

where
[Clmn = %(tm—azi)'ua;? (A.4)
[Bl, = Foltm) (A.5)
(4], = An (A.6)

One can solve the overdetermined system of equations in (A.3) in a least squares sense
by using the singular value decomposition (SVD) [57]. Or, a simpler but less robust

approach to solve (A.3) in a least squares sense is to form the moment equations
[CIF[C)[A] = [C]'(B] (A.7)

and then use Cholesky decomposition on (A.7) to solve for the unknown vector [A]
[57]. The solution of these equations provides the {A,} parameters and all the pa-

rameters in the expansion are now specified.
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Appendix B

Exact Time Domain Field of an

Arbitrarily Oriented Electric or
Magnetic Dipole in the Presence
of a Perfectly Conducting Wedge

This appendix summarizes an exact time domain solution for the electromagnetic field
from an arbitrarily oriented electric or magnetic dipole in the presence of a perfectly
conducting wedge. The solution in this appendix is based on Felsen’s work [22]. In
this appendix, a “~” on top of a variable indicates that it is a frequency domain
quantity. An e’** time convention is used for the frequency domain quantities in this
appendix.

The coordinate system used here is shown in Figure B.1. Without loss of generality
the source is assumed to lie in the z = 0 plane and the observer may be out of this
plane. The wedge angle  is assumed to be less than 180 degrees, but the solution
for the general case is given by Felsen [22]. The more general case simply includes
more image contributions, whereas for the a‘ < 180 case there is at mos} one image

contribution to the geometrical optics field corresponding to the reflected ray.

B.1 Electric Dipole Case

Electromagnetic fields can be expressed in terms of vector potentials. Felsen chooses
to use Hertz vector potentials in [22] so they are also used here. The electric field E

and magnetic field H can be expressed in terms of the electric Hertz vector potential
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Figure B.1: An electric (or magnetic) dipole radiating in the presence of a PEC wedge.
The dipole is in the z = 0 plane but the observer may be out of this plane.

IT by [58]
92
= VV.II - peﬁﬂ (B.1)
H = €Vx %H (B.2)
in the time domain, or
E = VV.II+4w?uedl (B.3)
H = jweVxII (B.4)

in the frequency domain. The space surronding the wedge is assumed to be a linear ho-

mogeneous isotropic nonconducting medium, and the permittivity e and permeability
5

p are constants with respect to space and time (or frequency). The electromagnetic

fields satisfy Maxwell’s Equations
O0E 0P

VxH = E—a'?-i--é? (BS)
6H

VXE = _lLE (B6)

V.E = —%V-P (B.7)

V.H = 0 (B.8)
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where P is an electric dipole moment density which is related to the electric current

density J by

0
= — B.
J= atP (B.9)
The Hertz electric vector II satisfies the wave equation
o2 1
V21'I 56—51'[ = ——P (B.].O)

Notice that the Hertz electric vector Il is related to the conventional vector potential

A by [59] -

A=
iy

(B.11)

or in the frequency domain
A = jwpell. (B.12)
In the far zone, defined here as the limit » — oo, the Hertz vector can be written

as

. e-—_;kr
II ~ £,(0,¢) for r — o0 (B.13)
and the electric field becomes
w2 e-—]kr
EN_ZZ— #x & x£,(60,4) for r— oo (B.14)

where ¢? = 1/(pe). In the time domain, these far zone relationships become

1

II ~ ;fp(ﬁ,qb,t —r/c) for r — o0 (B.15)
1 6
~ 62r><r><f(l9 ¢t —r/c) for r— oo. (B.16)

Usually, the 1/7 factor and r/c time delay in (B.15) or (B.16) are not included in far
zone calculations.

The “impulse response” in this appendix is defined in terms of the dominant term
of the electric field incident on the wedge, therefore to obtain the impufse response

let the electric dipole moment density have a ramp time dependence as in

P(t) = pé(r — r')tu(t) (B.17)
or equivalently let the electric current element be

J(t) = pé(r — r')u(t) (B.18)
where u(t) is the unit step function.
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The Geometrical Optics Field

It is assumed here that the orientation of the dipole p is contained in the z = 0 plane
(i.e. a transverse source). The solution for a longitudinal source can be found in
Felsen’s book [34].

The Hertz vector can be written as
IT = I18° + ¢ (B.19)

where T18° corresponds to the geometrical optics (GO) field, while md corresponds
to the diffracted field. When the wedge angle « is less than 180 degrees, the GO

Hertz vector can be written as two terms

E=rD e 16— g

L1 (= |r—r|)u(t -
g — —_
& = Pyre |r — /|
.1 (—e—ru(t—fr—-xl)
hip — ur—lg-¢l)  (B20)

where the orientation of the dipole is
- p=%Xcosv+ysinv , (B.21)
and the orientation of the image is
p: = —Xcosv + ¥sinv. (B.22)

The position of the dipole in cylindrical coordinates is r' = (p’,¢,0), while the
position of the image source is r} = (p, ¢},0) where ¢! = 2m — ¢'.
To obtain the far zone (r — 0o0) expressions use
T in magnitude :
Ir —rg| ~ 8 (B.23)
r —F-rg in phase (or time delay)

where rg may be r’ or r.. Using the above far zone approximation, the Hertz vector

becomes
& ~ f)zlr_e_(T+f"l"/c)7:(7'+f"l"/c)u(7r — 16— &)
i B RS-y B2y
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where 7 = t — r/c. Using the above result together with (B.15) and (B.16), the far

zone geometrical optics electric field can be written down from inspection as

Z
go ~ B A ~ 0 L _ 'y
E FXFX p47rr05(7-+r r'/c)u(r —|¢p — ¢|)
Py A A ZO A / Yy
b B (e b el - - d)  (B25)

where Zy = y/p/e.

The Diffracted Field

The Hertz vector corresponding to the diffracted field 9 as presented by Felsen is
repeated here for convenience [22]. Also, the simplification of 114 for an observer in
the far zone and the electric field in the far zone is derived.

When the orientation of the dipole p is transverse to z the solution is obtained
from only the transverse components of the Hertz vector Il = XII, + yII,. Felsen

gives [22]

62 - Cc Re [Az,y(¢a¢,’ _7’:3)]
otz oY 47%e pp'sinhf

where the double time derivative on Hg , occurs because Felsen uses the source P =

u(t —r/c) (B.26)

pé(r — r')8(t) which is the double time derivative of the source used here. The other

parameters in (B.26) are

(B.27)

242 _ 52 _ 222
,Bzcosh'l[c PP z]

r=y/(p+p)+2 (B.28)

and

>

A9, ¢w) = —o={Q(# - ¢,0) — Qu(d+ ¢, w)] cosv
— [Q2(¢ — ¢',w) + Q2 + ¢/, w)]sinv} (B.29)

Ay(¢, ¢, w) = —% {[Q2(¢ — ¢',w) — Q2(d + ¢',w)] cos v
+ [@1(¢ — ¢',w) + Q1(¢ + ¢/, w)]sin v} (B.30)
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with

Qu,w) = cos($ —w— ) cot (_“ﬁ;T“;W‘I)

— cos(¢ +w + 7) cot (1/)—-12-—&1%—7{) (B.31)
Q2(¢,w) = sin(yp —w — 7)cot (-——;a—/;—)
—sin(y + w + ) cot (%) (B.32)

To obtain the far zone expressions, the following far zone approximation is used

242 2 02 2
ctr—p-p -2 c:r for r - o (B.33)
2pp’ p'siné
where
T=t—r/c (B.34)
and notice that
. -1 cT _ 1 272 2gin?g B
sinh [cosh (p’ sinﬂ)] " sinﬂ\/c 72 — p*sin“ 6. (B.35)

So, in the far zone, the Hertz vector Hiy becomes

52 . = Re [A; (¢, ¢/, —jﬁ)]u (7- _F sin 6) (B.36)

2ty 2 ; o
ot 4mier \/c21'2 — sin? @

c

where

| er
B ~ cosh [p’sinﬂl° (B.37)

Now the far zone diffracted electric field can be written down

Zy . . A .
E ~ —47r2rr x X {X Re [A.(¢,4',—38)]
' u (T — %l sin 0)

\/czr2 — p'sin’® 6

+ 5’ Re [Au(¢, ¢,’ —]ﬂ)]} (B38)
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B.2 Magnetic Dipole Case

Once again, the electromagnetic fields can be expressed in terms of vector potentials.
Felsen chooses to use Hertz vector potentials in [22] so they are also used here. The
electric field E can be expressed in terms of the magnetic Hertz vector potential IT™

by [58]

0
- _ m B.
E p,atV x IT (B.39)
in the time domain, or
E = —jwuV xHI" (B.40)

in the frequency domain. The electromagnetic fields satisfy Maxwell’s Equations

0E

VxH = eg (B.41)
0H oM

VXE = —[LE— —52— (B42)

V-E =0 (B.43)

V-H = -V-M (B.44)

where M is a magnetic dipole moment density which is related to the magnetic current

K by

K = p,gt-M. (B.45)

The magnetic Hertz vector II™ satisfies the wave equation
2

VI — pe;%;nm = —M.  (B.46)

Notice that the Hertz magnetic vector II™ is related to the conventional vector po-

tential F by [59]

oI
F = .
pe—o, (B.47)
or in the frequency domain
F = jwpel™. , (B.48)
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In the far zone, defined here as the limit » — oo, the Hertz vector can be written

as
. e—jkr
" ~ - gm(0,¢) for r— oo (B.49)
and the electric field becomes
. 2 —Jjkr .
EN—%er Fxgm(0,¢4) for r— . (B.50)

In the time domain, these far zone relationships become

IIm ~ %gm(ﬁ,é,t —r/c) for r— oo (B.51)

E ~ c—/:.-——i' x g™(8,¢,t —r/c) for r — oo (B.52)

Usually, the 1/r factor and 7/c time delay are not included in the far zone calculations.
The “impulse response” in this appendix is defined in terms of the dominant term
of the electric field incident on the wedge, therefore to obtain the impulse response

let the magnetic dipole moment density have a ramp time dependence as in
1., '
M(t) = —mé(r — r')tu(t) (B.53)
I
or equivalently let the magnetic current element have a step time dependence as in
K(t) = mé(r — r')u(t) (B.54)
where u(t) is the unit step function.

The Geometrical Optics Field

It is assumed here that the orientation of the magnetic dipole 1 is contained in the

z = 0 plane (i.e. a transverse source). The longitudinal source case can be found in

Felsen’s book [34].

The Hertz vector can be written as

" = rm&° 4 imd (B.55)
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where II™8° corresponds to the geometrical optics (GO) field, while 4 corre-
sponds to the diffracted field. When the wedge angle « is less than 180 degrees, the

GO Hertz vector can be written as two terms

1 (t—r—x'u(t—|r—r') :
47”1' Il‘—l"| u(w_ |¢_¢I)

.1 (¢ Ir—ri-l)u(t—lr—ri‘l)u(,,_ 6—¢)  (B.56)

e =

T e — x|

where the orientation of the magnetic dipole is

m = Xcosv + ysinv (B.57)
and the orientation of the image is

m; = Xcosv — ysinv.. (B.58)

The position of the magnetié dipole in cylindrical coordinates is ' = (p’, ¢’,0), while
the position of the image source is r; = (p', ¢},0) where ¢, = 27 — ¢'.

To obtain the far zone (r — 00) expressions use

(B.59)

T in magnitude
[r —ro| ~ )
r—F-rg in phase (or time delay)

where ro may be r’ or r;. Using the above far zone approximation, the magnetic

Hertz vector becomes

1 (r4+f-2/c)u(t+F-1r'/c)

™8 ~ 1 rem . u(r —|¢— ¢])
. 1 (r+r-rl/c r-r./c ,
i I E S s ) (Bo0)

where 7 =t — r/c. Using the above result together with (B.51) and (B.52), the far

zone geometrical optics electric field can be written down from inspection as

1
go ~ A a A . /] _ _ /
E F X m47rrc6(T +t-r'/c)u(r — | — ¢|)
~ " 1 A ’ 7
+1 X mi47rrc5(r +t.r;/c)u(r — ¢ — &i]). (B.61)
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The Diffracted Field

The magnetic Hertz vector corresponding to the diffracted field md g presented
by Felsen is repeated here for convenience [22]. Also, the simplification of 14 for
an observer in the far zone and the electric field in the far zone are presented.
When the orientation of the magnetic dipole 1 is transverse to z the solution is
obtained from only the transverse components of the Hertz vector IT™ = XII7" + y1I7".

Felsen gives [22]

& .4 ¢ RelAT,(d,9,-iB)]
@Hx,y =1 op'sinhf u(t —r/c) (B.62)

where the double time derivative on H;"&d occurs because Felsen uses the source
b

= i—rhb'(r — r')8(t) which is the double time derivative of the source used here.

The parameters in (B.62) are the same as in the electric dipole case, except

AT($, ¢ w) = “'% {[@:1(¢ — ¢'yw) + Q:1(d+ ¢',w)] cosv
- [Q2(¢ - ¢Iaw) - Q2(¢ + ¢’,w)] sin V} (B63)

™

ALn(¢7 (}5’,11)) = __2-‘; {[Q2(¢ - ¢I’w) + Q2(¢ + ¢I7w)] cos v
+[Q:(¢ — ¢',w) — Qi + ¢, w)]sin v} (B.64)
The far zone expressions are obtained in the same manner as in the electric dipole

case. In the far zone, the Hertz vector IIZT;Jd becomes

2 _ R Am 7 —a /
iH;"'d PO [ ”‘(d)’qs’ Jﬁ)]u T — L sin 6 (B.65)
ot2 Y 472y \/c27'2 _ p/2 sin? @ c

where

. cT
~ B.
B ~ cosh [p’ i 0] (B.66)
as r — 00, and
T=t-—r/c (B.67)
Now the far zone diffracted electric field can be written down
d _ 1. . m r
E 42y rx{x Re [Az (d’,d’) .7:3)]

(T — & sin 9)

+ ¥ Re [47($,4',-18)]} N (B.68)

c*1? — p?sin? @

as r — 00.
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Appendix C

Derivation of Two TD-UTD Slope
Diffraction Coefficients, One
Based on Veruttipong’s Work and
the Other on Hwang’s Work

This appendix derives two versions of the TD-UTD slope diffraction coefficient; one
version is based on a frequency domain slope diffraction coefficient derived by Hwang
and Kouyoumjian [21, 4] and the other is based on a frequency domain slope diffrac-
tion coefficient derived by Veruttipong and Kouyoumjian [20]. For simplicity, these
two results will be referred to as Hwang’s version and Veruttipong’s version of slope
diffraction, respectively. The TD-UTD slope diffraction coefficient for either case is
obtained by an application of the analytic time transform (ATT) described in Chapter
2.

Hwang obtains the slope diffraction coefficient by taking the derivative with re-
spect to ¢’ of the exact straight wedge diffraction coeflicient, where this exact coeffi-
cient is written as a spectral integral. The operations of integration and differentiation
are interchanged and the new spectral integral is evaluated asymptotically. On the
other hand, Veruttipong finds the slope diffraction coefficient by taking the derivative
with respect to ¢’ of the UTD wedge diffraction coefficient, where the UTD coeffi-
cient is obtained by an asymptotic evaluation of the exact diffraction coeflicient. So,

Veruttipong takes the derivative of an asymptotic expression whereas Hwang inter-
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changes the derivative and integration operations first and then does the asymptotic
evaluation.
This appendix derives the time domain slope diffraction coeflicients for the straight

wedge, but these slope diffraction coeflicients can be generalized to the curved wedge

case as is done in Chapter 3.

C.1 Hwang’s Slope Diffraction Coefficient

Hwang’s frequency domain slope diffraction coefficient for a straight wedge can be

written as
Din= i o O Flem ) 1)
where
Ci* = +esc?((m+B87)/(2n)] (C.2)
Cy* = —csc[(n—B7)/(2n)] (C.3)
Ci* = Lesc?[(m+BT)/(2n)] (C4)
it = Fosctl(m — )/ (2n) (C.5)
and
Fy(2m,w) = 22, [% - F(mm,w)] (C.6)
with

Flamw) = \/JZwFt (“’i"‘) (C.7)

where Fi,(z) is the UTD transition function defined by
I*-},(z) = 2j4/ze’ /oo e~ dr (C.8)
N
The F(&,,,w) function can also be written as

F(mmyw) = szejwzm/cel'fc (V ]w:m ' (C.g)

as is done in Chapter 3. The z,, for a straight wedge are defined by

2, = La*(8") (C.10)
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g, = La (B7) (C.11)
T3 = La+(,3+) (012)
zs = La (BY) (C.13)

where a*(8) = 2cos?[(2nwN* — B)/2] and N* is the nearest integer solution of
2rnN* — B = +7n. The L parameter for a straight wedge can be found in [4, 2].
Now the TD-UTD slope diffraction coefficient based on Hwang’s coefficient is

+4 -1 ! +
t) = Ct By (@, t C.14
Ds,h ( ) 4n2\/2—7r sin2 ,BO m£=:1 m (:B ) ) ( )

where f‘, (Zm,t) is the analytic time transform of Fy(2p,w) given by
e'j”/“\/c_: + .7\/ —zm/ﬂ. (C 15)
VIVt =T + el [—am ) |

which can be easily simplified into

—jn/4
I-i’:‘s (zm,t) = @ 2mme (0.16)

V=it + e i [~z e

It is interesting to examine some special cases. Consider the straight wedge when

IJ& (2m,t) = 2z,

it is illuminated by a transient pulse which is a real time impulse §(¢). For this case,
z,, > 0 and we are only interested in the real part of the slope transition function in
(C.16). First ;«’3 (2m,t) can be written as

+ 2T, 4/C \/Z—ej"/z\/;m—/—c

Now the real time function is the real part of (C.17) evaluated at real time (Im ¢ = 0)

Fi(om 1) = (“\';7;/5) an alt) (C.18)

Notice that this function is zero at ¢ = 0 and has a peak at ¢t = z,,,/c. This signifies

that the impulse response of the slope diffracted field for the straight wedge is a
continuous time function and has a maximum after the time of arrival of the wavefront
(i.e. the time corresponding to the diffracted ray path length). If the observation point

is far from the mth

shadow boundary, then z,, can be consider