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Chapter 1 

Introduction 

A time domain version of the uniform geometrical theory of diffraction (UTD), hence- 

forth abbreviated as TD-UTD, is developed in this study for describing in relatively 

simple form the transient radiation and scattering from a class of perfectly conduct- 

ing configurations when they are excited by an electromagnetic pulse. In particular, 

a TD-UTD formulation is obtained for describing the scattering from an arbitrary 

curved wedge, and also the scattering from an arbitrary convex surface. Due to the 

fact that the TD-UTD is developed via an analytical inversion into the time domain 

(TD) of the corresponding high frequency asymptotic results obtained previously in 

the frequency domain based UTD, the TD-UTD therefore provides an "early time" 

asymptotic representation that is valid close to the arrival times of each of the various 

wave fronts. More specifically, each term in the TD-UTD formulation is asymptot- 

ically valid at and near a particular arrival time associated with the path length of 

the corresponding ray (i.e. incident ray, reflected ray, diffracted ray, etc.) which con- 

tributes at a given observation point. Due to this "early time" asymptotic nature of 

the TD-UTD representation, each TD ray field may not have a causal impulse re- 

sponse since there may be information in the time domain occurring after and before 

the arrival time of the ray. This is an important observation since earlier attempts 

at the interpretation of approximate impulse responses of scattering targets did not 

fully understand the possible non-causal nature of "early time" solutions [1]. Since 

the TD-UTD employs the same rays as the corresponding frequency domain UTD, 



it provides a clear physical picture for radiation and scattering in exactly the same 

manner as does the UTD on which it is based. 

The development of the TD-UTD is based on an integral transform which is called 

the analytic time transform (ATT) in this report. The ATT is a one-sided transform 

which transforms a frequency domain function (which is a function of a real frequency 

variable u) into an analytic time function which is analytic in the upper half time 

plane (Im (t) > 0). By construction, the real part of the "analytic time function 

when evaluated for real time ( Im (t) — 0) is exactly the inverse Fourier transform 

of the frequency domain function whenever the frequency domain function obeys the 

conjugate symmetry relationship (F(-u) = F*(w)) which guarantees that the inverse 

Fourier transform is a real time function. The imaginary part of the analytic time 

function is the Hubert transform of the real part as expected from complex function 

theory since the analytic time function is analytic in the upper half time plane. 

The ATT is developed because the traditional Fourier transform and Laplace 

transform are not convenient for transforming the asymptotic high frequency UTD 

results into the time domain. The main reason for the difficulty in using the traditional 

Fourier or Laplace transforms on the frequency domain UTD results lies in the fact 

that the resulting time functions may not be one-sided (i.e. may not be causal). Such a 

difficulty can occur for even the simplest of examples, such as an incident geometrical 

optics ray which is reflected from a smooth concave surface and passes through one 

caustic before reaching the observer. The reflected ray field after the caustic has an 

extra factor of e-7^2 in the frequency domain which makes the use of the conventional 

inverse Laplace or Fourier transforms inconvenient. In principle, a two-sided Laplace 

transform or a Fourier transform can be used to derive the results in this report, but 

would require a much greater effort and the resulting time domain formulas would 

have been much more complicated. 

In addition to the convenience of using the ATT on the frequency domain UTD 

results, there is the added benefit of the ability of performing efficient convolutions 

with a broad class of excitation pulses. An algorithm is developed to convolve any 

analytic time function obtained by using the ATT with an excitation with a frequency 



response which can be written as a series of complex exponentials. This is a very 

general description of an excitation pulse, but it is especially useful when the pulse 

has a narrow temporal width and a broad banded frequency response. When this is 

the case, the excitation pulse can be modeled with only a few basis functions (around 

10 or 15 basis functions for many practical cases) and the convolution is a simple 

summation over a few terms. 

Although the term "UTD" encompasses a number of different asymptotic solutions 

for various special geometries, only two specific but most often required geometries 

are analyzed here; namely, an arbitrary curved wedge, and an arbitrary smooth con- 

vex surface. These geometries can be used to build up the solution to a more general 

complex configuration (in terms of wedges, plates, and cylinders or ellipsoids, etc.) 

when the standard assumption of localization of UTD fields is invoked. A TD-UTD 

formulation for the transient scattering from a pulse excited general curved wedge is 

accomplished by applying the ATT to the well understood frequency domain UTD 

formulas that have been obtained previously by Kouyoumjian and Pathak [2]. In 

particular, the transient response of the various ray mechanisms—such as incident, 

reflected and diffracted rays—is explicitly obtained in closed form when the excita- 

tion is a time impulsive, general astigmatic wavefront. There are explicit and easy 

to calculate formulas for the TD-GO rays, both incident and reflected, for the first 

order diffracted ray and also for the slope diffracted ray. The slope diffraction con- 

tribution is important when the incident field at the edge is rapidly varying with 

respect to space (not time). Likewise, the TD-UTD solution for the diffraction by a 

smooth convex surface is developed via the ATT, by analytical inversion of the corre- 

sponding frequency domain UTD solution obtained previously by Pathak et al. [3, 4]. 

The analytic time functions obtained from this transformation can not be obtained 

completely in closed form, but efficient algorithms are developed for their calculation 

where new special functions are defined for the computation of the TD-UTD con- 

vex surface diffraction. The scattering case where the observer and the source are 

removed from the surface is analyzed here; on the other hand, the case of a source 



(pulsed antenna) and/or the observer located on the surface can be dealt with in a 

similar manner in the future. 

The interest in transient electromagnetic analysis where the excitation is a rel- 

atively short pulse has been increasing over the years and it constitutes an area of 

research which will continue to receive attention. This is mainly due to the increased 

use of ultra-wide band radars and the development of impulse radiating systems. 

Also, there has been a long time interest in the effects of natural and manmade short 

electromagnetic pulses (EMPs) on communication and radar systems. It is most nat- 

ural to analyze such transient problems directly in the time domain. This is especially 

true when the scattering objects are large in terms of pulse width. 

To analyze the scattering or radiation from complex structures, one could alterna- 

tively perform a frequency domain UTD analysis at a series of frequencies, then simply 

apply an appropriate window and use the inverse fast Fourier transform (IFFT) to 

obtain the scattered field due to a transient pulse excitation. However, a direct TD- 

UTD analysis of the same problem is more efficient when the pulse is very narrow (for 

example a pulse with a frequency response with more than 100 percent bandwidth). 

Also, the TD-UTD can be used to compute an approximate impulse response which 

can usually provide more insight since the impulse response is essentially independent 

of the excitation, whereas the response to a particular excitation is obtained from the 

convolution operation. The TD-UTD provides a new way of examining electromag- 

netic radiating and scattering phenomena as compared to what has been done in the 

past, and it therefore could lead to new insights for other applications. Some other 

applications which may result from this TD-UTD development are parametric mod- 

els used for radar data analysis [5, 6] and also the development of a new hybrid time 

domain integral equation based numerical method. 

There exist various methods for the numerical analysis of transient electromag- 

netic problems such as the finite difference time domain (FDTD) method or the time 

domain integral equation (TD-IE) approaches. These methods have been found to 

be very useful for a great many problems, but become very cumbersome or even in- 

tractable for problems where the geometry is large in terms of pulse width (or in terms 



of the smallest wavelength of interest). Because of this, the TD-UTD should provide 

a very useful complement to these more robust numerical methods when analyzing 

general problems. Also, the robust numerical methods such as the FDTD and the 

TD-IE are not well suited for computing approximate impulse responses. 

There is an abundance of research which has been done in the past on transient 

electromagnetic (or acoustic) analysis. In fact, there are some books dedicated to 

this subject [7, 8, 9]. There is also a large amount of literature on the subject of 

numerical time domain methods which are not discussed here. There is some work on 

the formulation of a time domain version of the UTD for wedge diffraction [10,11,12], 

but this previous work concentrates on the time domain analysis of the diffraction 

from a straight perfectly conducting wedge. Unfortunately, this analysis uses an 

inverse Laplace transform to obtain the time domain formulas and is thus limited to 

simple excitations and straight wedges. In contrast, the work in this report can easily 

handle general astigmatic incident ray fields which may have passed through a caustic 

before arriving at the edge of the wedge. Also, in this report, the wedge is a general 

curved wedge which can have curved faces or a curved edge. Other research which 

is most similar to the TD-UTD development in this report is the spectral theory of 

transients (STT) [13, 14, 15, 16, 17, 18, 19]. In the STT, an analytic time transform 

is used which is essentially the same as the ATT of this report except that their time 

convention for the frequency domain fields is e~'ut whereas the time convention used in 

this report is e'ut. The important difference between the STT and the TD-UTD is that 

the STT is used to find the exact time domain solution to canonical geometries which 

can then be approximated for "early time", whereas the TD-UTD obtains an "early 

time" solution directly by using the ATT on the frequency domain UTD formulas. 

In principle, the STT is a very powerful and accurate method but unfortunately 

the "early time" solutions obtained by the STT method are not generalized to handle 

relatively arbitrary geometries such as the arbitrary curved wedge analyzed in Chapter 

3 of this report. Furthermore, it appears to be rather complicated to extend the STT 

to deal with smooth convex surfaces as are analyzed in Chapter 4 of this report. The 

STT has been used to obtain some interesting solutions for straight wedge diffraction 



due to a collimated pulsed beam type illumination. It should be mentioned that the 

STT also provides inspiration especially for the use of the analytic time transform in 

the present research which may not have been accomplished otherwise. 

This report is organized as follows. Chapter 2 discusses the analytic time trans- 

form (ATT). The general properties of the ATT and its relations to the traditional 

Fourier and Laplace transforms are given. The ATT of a frequency domain function 

produces a complex time function which is analytic in the upper half t-plane, where 

t is the complex time variable. But there are special properties of the analytic time 

function when it is evaluated on its boundary of analyticity, the real time axis. These 

special properties are explained in Chapter 2. There are times when the ATT of a 

particular frequency domain function can not be obtained in closed form and therefore 

it is important to be able to calculate the analytic time function for complex time 

values. For some functions, an early time representation can be obtained from an 

asymptotic high frequency domain expansion; while, a late time representation can 

be obtained from a frequency domain power series (i.e. low frequency) expansion. 

When these two representations overlap for intermediate time values, then these rep- 

resentations can be used to calculate the ATT of the original function. This procedure 

is explained in Chapter 2 and a particular example is provided for demonstration. Fi- 

nally, a method for performing an efficient convolution on a broad class of excitation 

functions with the analytic time impulse response is presented. Further, Appendix 

A presents a simple method for synthesizing a given smooth transient pulse function 

in terms of a set of special basis functions which provide the efficient closed form 

convolution. 

Chapter 3 presents the derivation of the TD-UTD analysis of the scattering from 

a perfectly conducting curved wedge where the curved wedge may have curved faces 

and also a curved edge. There are four important scattering mechanisms for this 

geometry; namely, the geometrical optics (GO) ray fields (an incident ray field and 

a reflected ray field), the first order edge diffracted field, and the higher order slope 

diffracted field. The incident GO ray may have any polarization including circular 

polarization or in general elliptical polarization and the ray tube may be an astigmatic 



ray tube which has possibly passed through some caustics. The impulse response in 

Chapter 3 is defined in terms of the temporal behavior of the incident field (which is an 

analytic delta function for the impulse response computation); while, the geometrical 

and polarization properties of the incident field are completely general. Two versions 

of the TD-UTD slope diffraction coefficient are derived; one is based on the frequency 

domain slope diffraction coefficient by Veruttipong and Kouyoumjian [20]; while, the 

other is based on the frequency domain slope diffraction coefficient by Hwang and 

Kouyoumjian [21]. The details of the derivation of these slope diffraction coefficients 

are presented in Appendix C. These two slope diffraction formulations are compared 

in the numerical examples in Chapter 3. An exact solution for the scattering from 

a straight wedge when it is illuminated by an electric or magnetic dipole is used as 

a reference here. This exact solution is based on Felsen's work [22] and is summa- 

rized in Appendix B. The numerical examples also reveal how the impulse response 

approximated by the asymptotic "early time" TD-UTD may not be causal. 

Chapter 4 presents the derivation of the TD-UTD analysis for the scattering from 

a smooth convex surface. The scattering case is the only one considered here where 

the source and observer are removed from the boundary. Smooth convex surface 

diffraction can be modeled by creeping wave modes when the observer is in the deep 

shadow region, or for multiple encirclements around closed bodies. These creep- 

ing wave modes are dispersive in the frequency domain and therefore their impulse 

response is effectively delayed in time. In other words, the impulse response of a 

creeping wave mode starts with zero amplitude and gradually builds up to a peak 

value occurring after the arrival time corresponding to a simple surface diffracted 

ray path. The ATT of the frequency domain fields for smooth surface diffraction is 

not obtained in closed form, so a numerical procedure is developed to compute the 

ATT of the creeping wave mode with extreme efficiency. This numerical algorithm 

is presented in Appendix D. Chapter 4 also includes the development of a uniform 

TD-UTD formulation which is valid in the lit region, the shadow region, and across 

the shadow boundary. To obtain this uniform result, the ATT of the Fock type 

functions , .\l/6Path(u)l/3E) occurring in the corresponding frequency domain UTD 



representation are needed. These transforms are not obtained in closed form, but 

instead approximate expansions for early, late and intermediate time values are ob- 

tained, and the ATT of the Fock type functions are thus calculated using an algorithm 

which chooses the appropriate representation depending on the time variable. This 

numerical algorithm is presented in Appendix E 

Finally, some conclusions are made in Chapter 5. This chapter also discusses 

some ideas for continuing the development of the TD-UTD so that even more general 

geometries can be analyzed. The possible impact of the present TD-UTD development 

along with the use of the ATT is also discussed. In particular, one of the possible 

applications which might benefit from the TD-UTD is the use of parametric models 

in the time domain for the analysis of radar scattering data. 

An ejult time convention for the frequency domain fields is assumed and suppressed 

in the following analysis. 



Chapter 2 

Analytic Time Functions 

The Analytic Time Transform (ATT) is fully explained in this chapter. Since many 

texts define the conventional Fourier Transform (FT) or the Laplace Transform (LT) 

in slightly different ways, these conventional transforms are explicitly defined here. 

Also, the relationship between all three transforms is presented. The properties of 

the ATT are then explored including the important time convolution formula. When 

the analytic time function obtained from the ATT is evaluated on the real time axis 

(Im t — 0), some very useful properties arise and these real time properties are ex- 

plained. Some important examples of analytic time functions which are useful in the 

TD-UTD are presented in an easy to use table. Also, the ATT of a generic asymp- 

totic high frequency series and a generic low frequency power series are investigated. 

The ATT of an asymptotic high frequency series or a low frequency power series pro- 

duces an early time or late time representation, respectively. These "early" time and 

"late" time representations are sometimes useful in the calculation of special func- 

tions. A method for efficiently computing the time convolution of two analytic time 

functions is also presented. This efficient convolution is especially important for the 

implementation of the TD-UTD. 

It is appropriate at this juncture to describe some of the notation used in this 

chapter. Throughout this chapter, time domain functions which are real functions of 

real time, are written in the usual way, for example 

F(t) for real t. 



Note that these real time functions (when used with the Fourier transform) may be 

two sided (i.e. not causal). The topic of causality is further discussed later. On the 

other hand, the analytic time functions obtained from the ATT are analytic (complex) 

functions of complex time and are denoted by a '+' sign on top, such as 

F (t) for complex t. 

The frequency (or Fourier) domain and Laplace domain functions are denoted by a 

'~' on top. A Laplace domain function is an analytic function of a complex variable 

5, for example 

F(s) for complex s = a + ju>. 

where a and u> are real. In many instances, the frequency domain function F(w) can 

be obtained from an evaluation of the Laplace domain function F(s) at imaginary 

s values (i.e. a = 0), which motivates the use of similar notation for the frequency 

domain functions, such as 

F(w) for real u>. 

Although the notation for F(s) and F(u) appear the same, there are many instances 

when the functions are different. For example, if F(s) = 1/s then F(u) = IT8(UJ) + 

pv [l/(ju>)] where "pv" denotes Cauchy's principle value. Nonetheless, the same 

notation is used for convenience, and it is obvious from the context whether the 

function is a Laplace domain function F(s) or a frequency (Fourier) domain function 

F(u). 

The word "function" is used loosely here since F(t), or F(ui), may in general 

be a distribution (or what is sometimes called a generalized function). Although 

most mathematicians will not be happy with the use of the word "function", it is 

nevertheless used in this loose sense throughout this report. This is consistent with 

much of the engineering literature which, for example, calls the impulse distribution 

S(t) as an impulse function. 

All of the frequency domain functions, such as F(u), are assumed to be of expo- 

nential order a where a < 0. This means that a is the largest constant such that 

F(u})ea^ —> 0 when \u>\ —> oo. Notice that there may be times when a is arbitrarily 
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less than 0 but not equal to zero. For example, when F(w) = u> then a = e < 0 where 

e is a constant arbitrarily close to 0. 

2.1     Definitions 

The Fourier transform as used in this report is denned as follows. The Fourier trans- 

form is an integral transform that relates a time domain function F(t), which is a 

function of a real time variable t, to a. frequency domain function F(u) which is a 

function of a real frequency variable tv. This transform is defined as 

F(w) = /     F(t)e-3Utdu; (2.1) 
J—oo 

and the inverse Fourier transform is 

1    r°°  - 
m = ^ /_ FW'dt (2.2) 

The above convention for the Fourier transform is what is typically used in engineering 

texts. The Fourier transform may also be written as an operator T as in 

F{u,) = F[F(t)] 

and the inverse Fourier transform denoted by 

F(t) = J-1 [/■(«)] 

or one can write the relationship between the pair of functions simply as 

F(t) Ä F(u). 

It should be kept in mind, for the Fourier transform, that the time domain func- 

tion F(t) and the frequency domain function F(w) are actually distributions. Also, 

although in general the Fourier transform is defined for complex time functions, in 

this report the time domain functions (without the + on top) is always assumed real. 

This implies the following conjugate symmetry relationship for the frequency domain 

function 

F(-v) = F» (2.3) 

11 



where * denotes a complex conjugate. This conjugate symmetry relationship is used 

when finding the connection between the ATT and the Fourier transform. Finally, 

notice that F(t) may be a two-sided function; this fact turns out to be an important 

property when one transforms asymptotic high frequency solutions into the time 

domain which is examined later in this chapter. 

The Laplace transform is defined as follows. In this report, only the one-sided 

Laplace transform is discussed. Although there are some benefits from using the two- 

sided Laplace transform (such as the ability to transform two-sided time functions) 

only the one-sided version is used here for two reasons. The first reason is that there is 

not a sufficient benefit from using the two-sided Laplace transform on the applications 

discussed in this report. On the other hand, the ATT is far more versatile especially 

when dealing with asymptotic high frequency results. The second reason is that the 

one-sided version of the Laplace transform is more widely used and understood. The 

Laplace transform is defined by 

F(s) = /    F(t)e~stdt   for   Re a > 8 (2.4) 
Jo 

and the inverse Laplace transform is 

F(t) = -^ / F(s)eatds (2.5) 

where e > 8 and F(t) is of exponential order 8 (i.e. 8 is the largest value such that 

F(t)esM -> 0 when t —> oo). The Laplace transform is defined whenever the integral 

in Equation (2.4) exists, and can be extended to include distributions for which the 

integral will not, in general, exist in the usual sense [23]. The Laplace transform may 

also be written as an operator C as in 

F(s) = C [F(t)\ 

and the inverse Laplace transform denoted by 

F(t) = c-1 [/■(*)] 

or one can write the relationship between the pair of functions simply as 

F{t) «-£* *■(*)• 
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Now the analytic time transform (ATT) is denned as follows. There are two 

versions of this transform. One version transforms a frequency domain function F(u>) 

into a complex analytic time function F (t), while the other version transforms a real 
+ 

time domain function F(t) into a complex analytic time function F {t). When F(u>) 

is the Fourier transform of F(t) then both versions produce the same F (t)- The first 

version is denned as follows 

+ 1    F°°   - 
F(t) = -        F{w)u{u)e3UlidLü   for   Imf>a (2.6) 

7T J-oo 

When F{u)) contains no impulses at u = 0, the above integral can be written as 

+ 1   t°° - 
F(t) = -       F(u,)eJutdw   for   Im t> a (2.7) 

7T JO 

The corresponding inverse ATT is 

1   /"°°+ie   + • , 
F{w)u(u) = - F {t)e-3U,tdt    for  e > a (2.8) 

2i J — oo+jt 

where u(u) is the Heaviside unit step function defined as 

u(u) 

0 u < 0 

1/2   w = 0 

1 u > 0 

This first version of the ATT may be also written as an operator Au as in 

+ 
F(t) = A, [/■(«)] 

and the inverse ATT is 

F{u,W») = A,1 [F (t)] 

or one can write the relationship between the pair of functions simply as 

F (t) ^^ F{u). 

The second version of the ATT is defined by 

F(r) 
F(t) = - r -^-dr   for   Im t> 0 

7T J-oo t — T 

(2.9) 

(2.10) 
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(where a < 0 has been assumed). Equation (2.10) is sometimes called the Cauchy 

Representation [24]. The inverse ATT for the second version is 

F(t)= Re  [F(0]    for   Im t = 0 (2.11) 

where Re (z) denotes the real part of a complex z. Notice that (2.11) uses ft (t) 

at Im t = 0 even though in (2.10) it is only defined for Im t > 0. If ft (t) turns 

out to be analytic at Im t = 0 then this poses no difficulty, on the other hand, if 

ft (t) is not analytic on the real time axis (Im t = 0) then ft (t) at Im t = 0 is the 

distribution denned by F {t) (Im t > 0) on its boundary of analyticity [24, 25]. One 

may refer to the book by Beltrami and Wohlers for a thorough explanation of the 

connection between distributions and analytic functions evaluated on their boundaries 

of analyticity [25]. The second version of the ATT in (2.10) may also be written as 

an operator At as in 

F (t) = A [F(t)} 

and the inverse ATT is 

F(t) = A"1 [F (tj\ 

or one can write the relationship between the pair of functions simply as 

F (t) ^-^ F(t). 

Whenever it is obvious from the context which version of the ATT is being used, the 

subscript on the operator A is dropped. 

Figure 2.1 shows the relationship between the Laplace transform, Fourier trans- 

form and the ATT. The H operator in the figure represents a Hubert transform 

which is defined shortly. Notice that the transformation from ft (t) (Im t > 0) to 

F(t)+jHF(t) (Im t = 0) is simply evaluating F (t) on the real time axis (Imi = 0). 

But, the function F (t) may not be analytic for Im t = 0. In fact, F (t) at (Im t = 0) 

may be a distribution which appears quite different from the analytic function ft (t) 

at  Im t > 0. An important example of this is the analytic delta function defined by 

Ut) 
■h lm*>0 , 
** (2.12) 

6{t) + pv ^    Im t = 0 
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F(s) - 

(Re s > 0) 

A 
I 

I 

■> F(co) - 
(Im co = 0) 

CO 

■> 

+ 
F(t)   - 

(Im t > 0) 
> F(t)+j ffF(t) 

(Im t = 0) 

LT 
-l 

i ^ F(t) <  

Figure 2.1: Diagram showing the relationship between the Laplace transform (LT), 
Fourier transform (FT) and analytic time transform (ATT). Notice that F(t) can be 
obtained directly from an inverse Laplace transform only if F(t) is one-sided since 
the one-sided Laplace transform is used here. 

where "pv" denotes that a Cauchy principal value is understood when integrating over 

this function. Notice that the frequency response corresponding to the analytic delta 

function is F(w) = 1. Also notice that the inverse Fourier transform of F(w) = 1, 

which is the Dirac delta function S(t), is properly obtained from Re [S (t)] when 

Im t = 0. 

An obvious yet very useful observation is now made. The ATT defined by the 

integral (2.6) is proportional to a one-sided Laplace transform of the frequency domain 

function F(UJ) where the frequency variable w acts as the time variable in (2.4) and the 

Laplace variable s in (2.4) is related to the complex time variable t in (2.6) by s = —jt. 

This is a very useful observation because it allows one to use the extensive tables of 

one-sided Laplace transforms that exist to evaluate the ATT. This relationship can 

be written symbolically as 

F (t) = \CX [F(x)\ 
s=-jt 

(2.13) 

where the subscript x on the Laplace operator signifies that x is the variable of 

integration. This relationship is also used to find the ATT of distributions which 

are not typically included in Laplace transform theory, but can be found within the 

context of distribution theory [23]. 
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Table 2.1: Properties of the analytic time transform (ATT) 

i Ho F^Mefdü, FH 

F(t) U-^1% F (t)e~^dt 

i*(i) F(au), a > 0 

F(t-a) 

Im (t) > a + Im (a) 

e-*"0^) 

ß>0 

F(w - /3)«(w - ß) 

** [F (t) + i !% F{u>)<**dJ\ F{u,-ß) 

§iht) jwF{u) 

&F{t) {jiüTF{w) 

-jt F (t) - JF(0) in») 
(-i0B * (0 - i(-J'*)B-^(o) ^-^(o) &n») 

| F (0* G (t) = | nige F (r) S (t - r)rfr 
Im £ > a/ + ag 

Im (*) — ag > e > ay 

F{u)G{u;) 

2.2     Properties of the Analytic Time Transform 
(ATT) 

Some important properties of the analytic time transform (ATT) are presented in 

this section. Also, some useful special properties of the analytic time function when 

it is evaluated for real time (Im t — 0) are explored. 

Table 2.1 summarizes the properties of the ATT. Most of these properties can be 

easily derived using a change of variables as in (2.13) and a good reference on Laplace 

transforms [26, 23]. 

2.2.1    Properties of Analytic Time Functions for Real Time 

The properties of the analytic time functions evaluated on the real time axis (Im t — 

0) are now examined.   During this discussion, it is assumed that F(t) and F(u>) 
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Table 2.2:   Properties of the Hubert transform.   The Hubert transform of F(t) is 
denoted by HF{t) or F{t) and similarly for G(t). 

H [HF{t)\ = -F(t) 

H[F{t + a)] = CHF)(t + a) 

H [F(t) * G{t)] = \HF{t)) * G(t) = F(t) * [HG{t)} 

[HF(t)} * [HG{t)\ = -F{t) * H{t) 

n JF(t)] = §-t [HF(t)] 

F(t)G(t)dt = /    F{t)G{t)dt 
 -so J—oo  

Ho F\t)dt = Ho F\t)dt 

are square integrable functions unless specified otherwise. Nonetheless, many of the 

properties discussed here can be easily generalized for the case when F(t) and F(u>) 

are distributions [25, 23]. 

When the analytic time function p [t) is evaluated on the real time axis, Im t = 0, 

it can be written as 

F (t) = F{t) + jHF(t)   for   lm< = 0 

where F{t) is the inverse Fourier transform of F(w) 

F(t) = ?-*[F(u,)] 

(2.14) 

(2.15) 

assuming that F(—u) = F*(u) where * denotes a complex conjugate. The Ti operator 

denotes a Hilbert transform 

7iF{t)   =   r-^-jsgaWFiu,)] 

1      /■« F(i 
=    -PV /      T— 

7T        J—oo t — 

F(x) 
dx 

(2.16) 

(2.17) 

Table 2.2 shows a list of useful properties of the Hilbert transform [27].   Another 

notation which is used for the Hilbert transform is 

F(t) = HF(t) 

17 



The following Fourier transform pairs 

F{t)   *^->   2F(u)u(u) (2.18) 

F(t)   <£-*   F(u) (2.19) 

F(t)   +^->   -jsgn(w)F(w) (2.20) 

(and similarly for G (t), G(t) and G(t)) can be used to derive some additional inter- 

esting relationships, such as 

f°° F(t)G{t)dt   =   I Re  f°° F (t) G" (t)dt (2.21) 
J— OO 2 J—oo 

I00 F\t)dt   =   l f°° \F (t)2 dt (2.22) 
J — oo 2 J — oo ' 

lF(t)*G(t)   =   F(t)*G{t) 

=  1^(0* S(0 (2-23) 

^Re [>(0*£(0]   =   ^(0*G(0 (2-24) 

for real time,  Im t = 0, and * here denotes a convolution along the real time axis. 

2.3     Some Important Analytic Time Functions 

Table 2.4 summarizes some useful ATT transform pairs. Most of the transforms in 

Table 2.4 can be derived by using (2.13) along with a good table of Laplace transforms 

[28, 23]. Nonetheless, some care must be taken when using this table, especially if one 

is applying the ATT to an asymptotic high frequency representation. This is discussed 

in more detail later in this chapter. If one is working with a Laplace domain function 

then Table 2.3 can be used to find the corresponding Fourier domain function before 

using Table 2.4. Note that the "Pf" in Table 2.3 stands for pseudofunction as defined 

by Zemanian [23]. When one integrates over a pseudofunction, one takes Hadamard's 

finite part of the integral which may be thought of qualitatively as a generalization 

of Cauchy's principle value for higher order singular integrands. For the Laplace 

domain function F(s) = s* where 77 is not an integer, the branch cut is chosen to lie 

on the negative real s axis ( Re s < 0, Im s = 0) as usual.   For the analytic time 
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Table 2.3:   Relationship between some Laplace domain functions, F(s) and corre- 
sponding frequency (or Fourier) domain functions, F(u) 

F(s) 

s = er + jw 

F(«) 

(u> is real) 

l 
s vS(u) + pv4; 
1 

n=0,l,2,... 

3*f.n(. ,\    1   pr       1 
n]0    (U)    |    1*1 (,•„)„+! 

1 

^integer 

Pf       1 

sn 

n=0,l,2,... 
(i«)B 

5" 

^integer 
CH" 

;ir>a>° i 
jw+a 

e-('o-£)        e-('o + ^) 
s                         s 

«0>f 

Te^°sinc(if) 

function (— ji)-''-1, the branch cut is on the negative real axis in the —jt plane, which 

corresponds the the negative imaginary axis in the t plane (Re t = 0, Im t < 0). 

The notation for special functions in Table 2.4, such as E\(z) to denote the ex- 

ponential integral or erfc(z) to denote the complementary error function follows the 

notation in the standard reference of Abramowitz and Stegun [29]. 

2.4    Representations of Analytic Time Functions 

This section is concerned with various representations of analytic time functions which 

may be useful for both analytical and computational reasons. A late time series in 

terms of inverse powers of time, (1/t), is derived by the ATT from a low frequency 
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Table 2.4: The analytic time transform (ATT) of some useful functions. In this table, 
n is a non-negative integer, fi > —1 is not an integer, and 77 is not an integer. 

FH 

7T%) + pv4 
JÜ! 

Pf 1  

U"Y 

(*")" 

1 
ju+a 

a^e-^l' 

Te^sinc^) 

a> 0 

ImOO 

7T< 

§ - iarg(-ii) 

[§-*«8(-;o] 
+;£T[ln|i|-^ + l)] 

§^(-;0" 

-7t1"+l T(-Jt) 

jTfo+l) 
5r(-i()"+1 

Le-'^C-o*) 

e-'2/(^)erfc(^) 

ilnf^± 

<r(t+ja) 

F(t) + jHF{t) 

lm* = 0 

S(t) + pv^- nt 

tt(o+iPni«i+7] 

<n 

+;£7[ln|^|-V(n + l)] 

^(l+jCOtTT^)    t>0 

j'CSC7IWägiy      *<o 

*"(*) +^g 
^i^je^",   *>0 nti+1 

-jr(»+i)       * < 0 

e-«*[l + ij5,.(a0],   i>0 

-e-*i£;i(-aO,    *<0 

-«V(2<^2) 

tt(«-«o + ?)-«(«-*o-f) 
+ ^ln t-«o+? 

t-tp--J 

r(t2+a2) + -7*-(t2+a2) 
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power series. Then an early time series in terms of powers of time, t, is derived 

by the ATT from a high frequency asymptotic series. It is shown, by an example, 

that an early time series obtained by a term-by-term application of the ATT may be 

incomplete. The mathematical justification for these representations may be found in 

[26, 30, 31] where the roles of time and frequency are switched as compared to here. 

2.4.1 Analytic Time Transform of Low Frequency Power 
Series 

The ATT of a series which is accurate at low frequencies produces a time represen- 

tation which is asymptotically valid at late times. The mathematical basis for this 

fact is well known and can be found in texts on Laplace transform theory [30, 26] 

where the connection between the ATT and the Laplace transform in (2.13) is un- 

derstood. In particular, the general theorem on the Laplace transform of asymptotic 

representations is on page 6 in Seigel [32]. 

Consider the following asymptotic representation 
N 

F{u) ~ £ AJJuY"    for u -+ 0+ (2.25) 
n=l 

where fin > — 1 and fin f oo as n —► oo. Then the "early time" analytic time 

representation corresponding to this asymptotic low frequency representation is 

* W ~ i I ^^"..t.1'    *»  1*1 - - (2^) 
where  Im t > 0. 

2.4.2 Analytic Time Transform of High Frequency Asymp- 
totic Series 

When solving for "early time" solutions to electromagnetic radiation or scattering 

problems, one may solve the frequency domain (FD) (i.e. time harmonic) problem 

first, then obtain a high frequency asymptotic expansion of this FD solution and 

finally perform an inverse Laplace transform to obtain a time domain power series 

[33, 34, 9]. Let the asymptotic expansion of the FD solution have the form 

F(s) ~ e -»to 
N 

Co + E 
cn 

n=l s 
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for \s\ —> oo , where s = a + jui, Co and Cn are constant with respect to frequency, 

to is some time delay dependent on the problem geometry and un > — 1. Note that 

vn is not necessarily an integer. Also, notice that N in (2.27) is not the same as the 

N in (2.26). Typically, an inverse Laplace transform is applied to (2.27) to find the 

corresponding "early time" power series [33, 34] 

F(t) ~ C08(t - t0) + £       Cn      (t - toy"u(t - to) (2.28) 

for t —> 0, where S(t) is the Dirac delta function, T(z) is the Gamma function, and u(t) 

is the Heaviside unit step function. This time domain series provides a satisfactory 

solution if the constants Co and {C„} are real, but unfortunately this is not always 

the case. Consider the extremely simple case of the plane wave reflection from a 

concave surface. The first term in the high frequency asymptotic expansion is the 

geometrical optics (GO) reflected field which may pass through a caustic and will then 

gain a factor of eJ7r/2. This factor e-7*"/2 makes the constant Co in the FD asymptotic 

expansion in (2.27) complex and then the time domain series in (2.28) no longer 

makes sense since the time domain solution should be a real function. 

When the constants {C0,Cn} in (2.27) are complex, one can obtain a real time 

domain solution F(t) by first evaluating F(s) for Re (s) = 0 (a = 0) to obtain 

F(u) and then enforcing the relationship F(-u) = F*(u) for negative frequencies 

(a> < 0) and applying an inverse Fourier transform, where the frequency variable u 

and the time variable t are real. For example, the exp(j7r/2) factor discussed above 

applies only for positive frequencies and more generally one would use a factor of 

exp(<7sgn(a;)7r/2) to ensure that F(t) is a real function. Notice that each term in 

(2.27) is not absolutely integrable (when Re (s) = 0), and therefore, each term must 

be considered a distribution, see Table 2.3, and one must resort to using the theory 

of distributions [23, 24] or generalized functions [35, 36] to find the inverse Fourier 

transform. 

Alternatively, one could obtain a real time domain function F(t) from the Laplace 

domain function F(s) by enforcing the conjugate symmetry relationship F(s*) = 
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F*(s) and applying an inverse two-sided Laplace transform. But this can be quite 

complicated even for a simple algebraic F(s) function. 

Instead of using an inverse Fourier transform or an inverse two-sided Laplace 

transform as just described, it may be easier to obtain the inverse Fourier transform 

via the analytic signal representation described earlier. First find the ATT of (2.27) 

to provide an analytic function of time. Then evaluate this analytic function for real 

time (Im t = 0) and take the real part to obtain the final real time function which 

equals the inverse Fourier transform [25, 37]. Note that the analytic time function is 

analytic for  Im t > 0 and its boundary value at  Im t = 0 is a distribution [25, 37]. 

The form of the early time asymptotic expansion obtained from the high frequency 

asymptotic expansion using the analytic time transform depends on the form of the 

high frequency expansion. Three particular cases are presented here. The following 

early time expansions are derived by using the results in Chapter 4 of Bleistein and 

Handelsman's book [31] and the relationship between Laplace transforms and the 

analytic time transform in (2.13). 

Consider the following high frequency asymptotic expansion 

oo 

F(u) ~ £ Am(juj)-rm    for u -> oo (2.29) 
m=0 

where rm is not a positive integer here and Re (rm) f oo as m —> oo. Then the early 

time expansion corresponding to the function in (2.29) obtained from the asymptotic 

results in Bleistein and Handelsman [31] and (2.13) is 

1      oo 

F(t) £Amr
rmr(l-rm)(-;*)r™-1 

T
m=0 

I     oo    /_i\m 

+- £ {—i-M[F;m + l](-jt)m (2.30) 
m=U 

where M[F;m + 1] is the generalized Mellin transform of F(u;) which is defined 

shortly. Notice that the first summation in (2.30) is exactly what would be obtained 

if the analytic time transform in (2.6) is applied to the frequency domain asymptotic 

expansion in (2.29) term-by-term. Also, notice that Tables 2.3 and 2.4 are very 

useful for this term-by-term transformation.   But the second summation in (2.30) 
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is not predicted by applying the analytic time transform term-by-term and yet it is 

obviously important. In fact, the example in the next section demonstrates this fact. 

The ordinary (i.e. not generalized) Mellin transform, denoted by the operator 

symbol M. is defined as 
r°° ~ 

M[F;z}=        F^w^du (2.31) 
Jo 

The generalized Mellin transform is defined by 

M[F;z] = M[F1;z] + M[F2;z} (2.32) 

where 

M[F1]z]= I1 F(u)uz-ldu (2.33) 
JO 

which can usually be analytically extended as a meromorphic function into the entire 

z-plane and 

M[F2;z]=l    F^u^du, (2.34) 

which can usually also be analytically extended as a meromorphic function into the 

entire z-plane. So the expression in (2.32) should be interpreted as a meromorphic 

function in the z-plane even though the integral expressions in (2.33) and (2.34) may 

not converge for the same z values. See Chapter 4 of [31] for more information on 

the generalized Mellin transform. 

Now consider the following possible high frequency asymptotic expansion 

oo 

F(w) ~ e-""d J2 Arn(J"YTm   for a; ^ oo (2.35) 
m=0 

where  Re (d) > 0, u > 0 and   Re (rm) | oo as m -^ oo. The early time asymptotic 

expansion corresponding to (2.35) is 

+ 1    oo   (—l)m 

F(t)~Li: Ljr-^[f; m + l}(-jt)m (2.36) 
m=U 

where M[F;m+l] is the generalized Mellin transform of F(u). If the Mellin transform 

M[F;m + 1] exists in the ordinary sense (i.e. the integral in (2.31) is convergent) for 

m = 0,1,2,... then the expansion in (2.36) is an "expansion by moments". This 

expansion is used in Appendix D to derive (D.12). 
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Finally, consider a third possible high frequency expansion which has the form 
oo 

F(v) ~ Y, Am(jw)-rm   for w -» oo (2.37) 
m=0 

where Re (rm) | oo as m —» oo. This is the same as the high frequency expansion in 

(2.29) and for the terms where rm is not an integer one could use the result in (2.30). 

However if rm is an integer, there exists a different corresponding m term in the 

early time series. So, consider the case when rm is an integer (say rm = n-f 1 where TO 

is an integer), then the corresponding term in the early time expansion has the form 

-Amr
n-l{-=^(-jty M-JO - V>(n +1)] 

TO! 

+ j-n-1^-(-3t)nCn (2.38) 
TO! 

where 

and 

C,
n = _limi^^:(z-l-n)A^[J,;z]j (2.39) 

z—(n+1) 1 ÖZ 

^(1)   =   -7 = -0.577216... (2.40) 
"  1 

V>(TO + 1)   =   -7 + £ 7   for TO > 1 (2.41) 

where 7 is Euler's constant.    For example, consider the following high frequency 

expansion 
00 

F{u) ~ Y, Aniju)-™-1    for u -> 00 (2.42) 
m=0 

where m is an integer, then the corresponding early time expansion is 

+ 1   °°   f ( — \)m 

F(t)   ~    -E\-^-m-lL-T-Ut)mM-3t)-1>(rn+l)] 
* m=0 I m! 

+j-m-1t:^Cm(-ji)m} (2.43) 
m 

Notice that if one assumes that the expansion in (2.42) can be transformed term-by- 

term and uses the results in Table 2.4 for each term, then the constant Cm in (2.43) 

would be Cm = j\Am. Further, notice that if the one sided inverse Laplace transform 

is applied to a function with the following asymptotic series, which has a finite radius 

of convergence [30], 
00 

F(s) ~ £ i.s"""1   for   I« I -> 00 (2.44) 
m=0 
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where |arg(3)| < 7r/2 , then one obtains a corresponding early time expansion 

m ~ E ^m «(o (2-45) 
m=0 m- 

Now, if one uses Cm — j\Am in (2.43) and takes the real part of F (t) than one 

recovers the result in (2.45). It is now reasonable to conjecture that the formula in 

(2.39) for C„ could be simplified to C„ = j\Am (where rm = n + 1) although this 

result has yet to be shown. 

2.4.3    Example: The TD-UTD Edge Diffraction Transition 
Function 

An example is now examined to demonstrate some of the formulas presented in the 

previous section. The particular function which is examined is the TD-UTD edge 

diffraction transition function which is used in Chapter 3. This function is well 

understood and the analytic time transform is known in closed form. So, although 

one would normally not need the early or late time expansions of this function for 

computations, it is an interesting example since the early and late time expansions 

can be verified by examining the closed form time domain function. 

The frequency domain function of interest is 

1W        \ c J 

xeJ«/4    roo+jt    e-uS/c 

F(u)   =   v/^eWcerfc ( \\3-^-) (2.46) 

(2.47) 

y/TT     J-oo+jt \Ll + JX 

where e > 0 and Ftr(z) is the usual frequency domain UTD transition function denned 

in (3.33). For now, simply assume that x and c are positive constants. Their physical 

meaning is fully explained in Chapter 3. The analytic time transform of (2.46) can 

be obtained in closed form as 

F (t) = r-X-1 J=^ (2.49) 
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Now, a low frequency power series expansion of (2.46) which happens to be con- 

vergent for all finite values of a; is 

F(u) = irxe jux/c ^^»(-lJV/^ 
\/^„=o      n!(2n + l) 

(2.50) 

Using (2.26), one can write down the corresponding late time expansion of the analytic 

time transform of (2.50) 

F(t) 
\/x X 

;l/2 ,'3/2 

+ 

where 

-JT     V~C(-JT)
3
/

2
  '  2c3/2 (-jr)5/2 

r = t + x/c 

(2.51) 

Notice that (2.51) is convergent for \X/(CT)\ < 1.  Now, the late time expansion in 

(2.51) can also be obtained directly from the closed form result in (2.49). First rewrite 

(2.49) as 
xJj/c 

*<«)=   ^ 
y/n(-3r)     V*(-3T)3/2 

1 + 
/    .     \1-1/2 

\-JTC). 
(2.52) 

and then use 

(1 + *) 
-1/2 _ 1-3 

= 1-2*+2.4 
for   \z\ < 1 

to obtain (2.51). Although, using the closed form time domain function to obtain 

the late time expansion is trivial for this particular function one should keep in mind 

that for some other frequency domain functions one doesn't have a closed form time 

domain formula and may need the late time expansion to perform computations. 

An alternate late time expansion whose convergence is centered at t = 0 (instead 

of t = —x/c as in (2.51)) can be obtained. To obtain this alternate expansion, first 

substitute 
Juix/c 

^rnlK   c  ) 

into (2.50) and after a good deal of algebra obtain 

F(UJ)   =   \/irx 
1/2 

4    fjux\3'2     1 (jux\2     1 
3y/t\  c  )     +2l  c  J   *'*J 

(2.53) 
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Now use (2.25) and (2.26) to obtain the alternate late time expansion 

/—  i    r /     \i/2 X       1 I     -     \    i 

r(=Tt i-jt) 

_j3/2 X 

1-3 

\ 3/2 

1/2 

-jtCj 
+ 3 -jtc. 

-jtc. +? 
X 

-jtc. 
(2.54) 

where this series is convergent for |a:/(rf)| < 1. The late time series in (2.54) can also 

be obtained directly form the closed form time function in (2.49). Rewrite (2.49) as 

H)-& 1 + 
-jtc. 

1/2' T -1 

(2.55) 

and then use 

(1 + z)-1 = l-z + z2-z3 + for  \z\ < 1 

to derive the late time series in (2.54). 

Now an early time expansion is derived from a high frequency asymptotic expan- 

sion of F(u;) in (2.46), which can be written as 

T(U) 

15 

1/2 

1   - 2x uw 

3/2 

+ 

-) 

7/2 

+ 105 

Ax2 \ju)) 
9/2 

5/2 

-V 
8a;3 \jw) 16a;4 \jwJ 

(2.56) 

for tjj —* oo, or more generally, 

F{u) i+E(-i)r 1 • 3 • • • (2m - 1) /  c 

m=l vJWX 
(2.57) 

To obtain the early time expansion of F {t) from (2.57), use (2.30). Notice that if 

the ATT is applied to the asymptotic expansion in (2.57) term-by-term then only 

the first summation in (2.30) is obtained. But, the second summation is obviously 

important as will be seen shortly. Using (2.30) on (2.57), the first summation is 

^M -jcf 

\ft\FTt\j^ \ j* J 
which is the result which could be obtained by a term-by-term transformation. The 

second summation in (2.30) contains the Mellin transform of the frequency domain 
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function F(u>). This can be evaluated as follows 

rc» jeJi/4   roo+jt   e-w/j2/c f°° xe? i     roo+jt   e_u'^ /<- 
M[F]m + l]   =    /    —=- \ —0 -dnu>mdu> (2.58) 

JO y7T     J-oo+jt \Ll + JX 

=   ¥—- I ,    /    uTe-^I'dw dfi (2.59) 
0T     J-oo+jt (MZ + JX Jo 

^^CwTik^-^ (2-6o) 

i        i 
(2.61) 

„">+ii 

ei*/4 1 1 
-^-cm+1r(m + 1)2TTJ-       . IA   r-,    .  ,   X1 y^F V ; 2e~3*/4y/x (-JX)m+a 

ze-7'*/4 

-Tn.!\/7ra;- 
r.m+1 

and then the second summation in (2.30) is 

(2.62) 

°°   / „ \ m 

,    _ ,    ,  (-J'0m 

'™^o \3XJ 

Finally, the total early time expansion can now be written as 

1 ß ~   /-jet" ~ 
F(t)~ + 3 

C       v—v   /   C 
(-jty (2.63) 

Notice that this series is convergent for \ct/x\ < 1. If the time variable is allowed to 

be real  Im (t) = 0 then it is more convenient to write (2.63) as 

t, u\       Vc   ^ /   ct\m c      ~   /   ctV 
^O^-T^El-r)  + •?-/= E (-7) (2.64) 

Recall that a term-by-term transformation would provide the first summation in 

(2.64) and therefore for this example a term-by-term transformation correctly predicts 

the early time behavior of the real part of F {t) when evaluated for real time (Im (t) = 

0) but the imaginary part of F (t) can not be correctly obtained from a term-by-term 

transformation. Now, the early time expansion in (2.63) can also be derived directly 

from the closed form result in (2.49). First, write the closed form formula in (2.49) 

as 
-•        1        /— r l—:—1_1 
1 1 lr I — tin 

(2.65) 1 + 
l-jtc 
jx 

and use 
oo 

(l+,z)-1=^2(-l)mzm   for   |*| <1 
m=0 
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to obtain the early time expansion in (2.63). 

The important observation to be made from this example is that one can not 

apply the analytic time transformation to a high frequency asymptotic series term by 

term. Instead one must use a more careful asymptotic analysis such as in Bleistein 

and Handelsman's book [31]. 

2.5    Efficient Time Convolution 

Consider the problem of finding the ATT of the product of two frequency domain 

functions F{U)H(UJ). The time convolution property can be used here 

F{u)H(w) ^\F (*)* H (t) (2.66) 

where the time convolution integration path is placed above the real time axis in the 

complex time plane. If the frequency domain function F{UJ) can be modeled using 

exponential functions 
N 

F(u) = Y, Ane-anU   for u > 0 (2.67) 
n=l 

or equivalently, if 

F(t)   =   ^-^- (2.68) 

N + 
=    £A„*(* + ian) (2.69) 

n=l 

then the convolution can be evaluated in closed form as 

\ F (0* H (t) = £ An H (t + jan) (2.70) 
^ n=l 

where the shifting property of the analytic delta function 

\H(t)*Ut + Jß)=H(t+jß) (2.71) 

was used. 

A useful approximate formula for the convolution operation may be obtained 

when the frequency response of the excitation is bandlimited (i.e.   Fo(u>)u(u;) — 0 
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when (v > wm for some constant u;m).   This useful approximate formula is derived 
+ . 

with the knowledge that FQ (t) is analytic in the entire £-plane. 

\ k (*)* H{t)   =   \ r+3t k (t-a)H (a)da (2.72) 

=   \r k(t~ß- Je) H(ß + je)dß (2.73) 
1   t°°   +. + 

=   ^J_ooFo('r-3e)H(t-y + je)d7 (2.74) 

d    M     + + 
~   ö   E   F^(md-je)H(t-md + je) (2.75) 

^ m=-M 

+ . 
The above approximation is obviously the same as (2.70) with An = | FQ (md — je), 

an — e + jmd and m = n — N + 1. 
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Chapter 3 

TD-UTD for a Curved Wedge 

This chapter presents the development of the TD-UTD solution for the scattering 

from a perfectly electrically conducting (PEC) arbitrary curved wedge when it is 

illuminated by an analytic time impulsive astigmatic wavefront. This solution is 

obtained by an analytic time transform (ATT), as defined in the previous chapter, of 

the corresponding frequency domain UTD solution for a perfectly conducting curved 

wedge [2, 4, 38]. Thus, the present solution constitutes a time domain UTD (TD- 

UTD) for a curved wedge in which the transient fields propagate along the ray paths 

of the UTD. The TD ray solution (or TD-UTD) is only valid for "early to intermediate 

times" since the UTD is an asymptotic solution in the frequency domain that remains 

accurate for moderate to high frequencies. Thus, each TD-UTD ray contribution is 

most accurate in the neighborhood of the time required to traverse its geometric 

ray path length from the source to the observer (i.e. the ray arrival time). It is 

noted that the transient response in intervals close to ray arrival times of the TD- 

UTD are generally the strongest and are directly associated with the waves arriving 

from the local features of the radiating (scattering) object. The TD-UTD*has the 

same geometrical ray paths as the frequency domain UTD except that each incident, 

reflected or diffracted TD ray is associated with its corresponding progressing wave 

in space-time. The TD-UTD fields are polarized transverse to their ray paths as in 

the conventional frequency domain UTD. 

There have been many investigations on the TD diffraction by a straight wedge. 

Keller and Blank solve the problem of electromagnetic diffraction and reflection of 
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plane wave pulses by perfectly conducting wedges using the conical flow method [39]. 

Friedlander solves the corresponding acoustic problem of wedge diffraction [7]. Felsen 

derives the scattering from a straight wedge (and some other canonical geometries) 

with various types of illumination [34, 9, 22]. Nikoskinen et al. use a transient 

image theory to obtain the transient scattering from a PEC wedge [40]. Ianconescu 

and Heyman solve the pulsed electromagnetic field diffraction by a straight wedge 

using the Spectral Theory of Transients (STT) [19, 14, 15, 16]. Using the STT, 

they also extend their results for an incident field which is an astigmatic collimated 

wavepacket [18, 17]. The work by Ianconescu and Heyman is relevant to the work 

in this report since they use an analytic time function representation similar to the 

one used here. Veruttipong and Kouyoumjian obtain a time domain version of the 

UTD for a straight perfectly conducting wedge [12, 11, 10] by applying an inverse 

Laplace transform to the corresponding frequency domain UTD wedge diffraction 

coefficient [2]. Unfortunately, Veruttipong's solution is not easily generalized to the 

curved wedge case-where the reflected or diffracted rays may pass through smooth 

or line caustics. 

The TD-UTD solution for a perfectly conducting wedge presented in this chapter 

differs from previous solutions in that the present solution is applicable to the more 

general problem of diffraction from an arbitrary curved wedge which may contain 

curved faces and/or a curved edge, while the incident time dependent wavefront is 

allowed to be astigmatic. It is noted that plane, cylindrical, conical and spherical 

wavefronts are all special cases of the general astigmatic wavefront which is char- 

acterized by two distinct radii of curvature. In fact, Veruttipong's TD diffraction 

coefficient for the straight wedge [12] can be found as a special case of the solution in 

this chapter. In addition, this work employs an analytic time function representation 

for the transient fields where the actual time response is simply the real part of the 

analytic function, as discussed in the previous chapter. It is shown in this TD-UTD 

development that the use of analytic time functions allows one to circumvent in a 

simple manner some complexities that arise when inverting into the TD the UTD ray 

fields which pass through caustics. These caustics may be produced by reflection and 
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edge diffraction from general curved geometries. The analytic time functions used 

here are closely related to the analytic time functions used in the STT [14, 15, 16]. 

The STT can in general provide an analytical TD impulse response which is valid at 

all times for some special canonical geometries, but the TD-UTD which is valid for 

early to intermediate times is immediately applicable to more general and relatively 

complex geometries due to its ray interpretation. 

The format of this chapter is as follows. First the well known frequency domain 

UTD solution for the curved wedge is briefly presented. In the UTD, the dominant 

response from the PEC curved wedge is decomposed into the incident field, the re- 

flected field and the edge diffracted field. The edge diffracted field may contain two 

terms, one is the first order diffracted field while the other is a higher order slope 

diffracted field. The slope diffracted field is significant when the field incident at the 

point of diffraction is rapidly varying as a function of space. Then the time domain 

analytic signal representation for each of these mechanisms is derived to obtain a 

TD-UTD for the curved wedge. This chapter does not include an analysis of the 

surface rays excited and diffracted by the edge of a wedge with convex faces, nor does 

it include the diffraction and excitation of whispering gallery type fields by the edge 

of a wedge with concave faces. Nonetheless, some curved surface diffraction effects 

for smooth surfaces are discussed in Chapter IV. The simplification of the TD-UTD 

wedge diffraction coefficient for some important special cases is also presented. The 

convolution of the TD-UTD curved wedge impulse response with a more general tran- 

sient excitation is discussed. Some numerical examples are presented to illustrate the 

utility of these developments. 

3.1     The  Frequency  Domain  UTD   Solution  for 
Scattering from a Curved Wedge 

The general forms in the frequency domain of the incident, reflected and edge 

diffracted UTD rays, illustrated in Figures 3.1, 3.2 and 3.3 respectively, are now 

presented [2, 4, 38]. 
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CAUSTICS 

Figure 3.1: An incident geometrical optics (GO) ray tube. 

3.1.1    The  Frequency  Domain  Geometrical  Optics   (GO) 
Fields 

The incident ray shown in Figure 3.1 is a diverging (i.e. convex) wavefront but one 

could also allow the wavefront to be convergent (i.e. concave) or even saddle shaped. 

The incident field at the point of reflection or point of diffraction is assumed to be 

ray optical and may be written as a geometrical optics (GO) ray field such that 

B'H = E£(«) M»') jnie-jka' (3.1) 

where n* is the number of line or smooth caustics that the incident GO ray has 

traversed as in Figure 3.1 and Ai(s') is the spreading (or spatial divergence) factor 

which may be written as 

M»') p\ p\ (3.2) 
\ \p\ + ^J {pi + s'j 

Note that p\ and p\ are the principal radii of curvature of the corresponding wavefront 

at the reference point 0. A GO field reflected from the point QR as in Figure 3.2 

may be written as 

E» = E'H n   .-R.\AT{s
T)\jn'e-ikar (3.3) 

QR 

where the dyadic reflection coefficient R is assumed to be independent of frequency 

and can be written as 

R = efiefjÄfc + e±e±Rs (3.4) 
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(a) (b) 

Figure 3.2: A reflected geometrical optics (GO) ray. 
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where Ra = — 1 and Rh — 1 for a perfect electric conductor. The Ar(s
r) is the 

spreading factor for the reflected ray which is given by (3.2) with the superscript i 

replaced by r, and nr is the number of smooth or line caustics that the reflected ray 

has traversed after leaving the reflection point QR. It is assumed in the UTD that 

(3.3) represents the field reflected from the unperturbed surface formed by a smooth 

extension of the original surface past the edge (so that there is no edge effect present 

in the evaluation of (3.3) as in Figure 3.2). 

3.1.2 The Frequency Domain UTD Edge Diffracted Field 

The edge diffracted field may be modeled by an edge-diffracted ray as 

EV) = E'(u>) n   ■ D(w) M*d) 3nde-jksd (3.5) 
WE 

where Ad(sd) is the spreading factor for the edge diffracted ray, D is the UTD dyadic 

diffraction coefficient [4, 2] and nj is the number of line or smooth caustics that the 

edge diffracted ray has traversed after leaving the diffraction point QE- Note that 

Equation (3.5) does not include slope diffraction [38, 4]. 

3.1.3 The Frequency Domain UTD Slope Edge Diffraction 

The UTD Slope diffraction is a higher order term which must be added to the edge 

diffraction term described above when the incident field at the point of diffraction is 

rapidly varying in a direction transverse to the direction of incidence. In the frequency 

domain, the slope diffraction is proportional to a spatial derivative of the incident field 

at the point of edge diffraction. Two versions of the slope diffraction are used here. 

The first one is by Y. M. Hwang [21, 4]. While the other one is by Veruttipong [20]. 

The slope diffraction by Hwang is more widely used than Veruttipong's formulation 

since Hwang's result has a more compact form. Nonetheless, it is interesting to 

compare these two solutions in the time domain as is done later in this chapter. 

The UTD slope diffracted field for both versions has the same form, only the 

slope diffraction coefficient is different. In general, one can write the total UTD edge 
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Figure 3.3: Coordinate systems for the TD-UTD dyadic diffraction coefficient. 

38 



diffracted field as the sum of two terms 

Edt(u) = Ed(u) + ESV) (3.6) 

where the first order term Ed(u>) is given in (3.5) and Esd(u) is the higher order 

slope diffraction term. The slope diffracted field for a curved wedge can be written 

Hi 
= < 

. .dEL 
U    dn' 

■dE\, 
-D° 4L 

dnl 

nor      PT 

Ad(s
d) jnde~ikad ^ (3.7) 

The extra superscript s on the diffraction coefficients indicates slope diffraction. The 

result in (3.7) assumes that the incident and reflected field vary rapidly at the edge 

in the nl and the nr directions, respectively. On the other hand, if the diffracted field 

spreading facter Ad(sd) is a rapidly varying function then the result in (3.7) is not 

accurate. 

For a straight wedge, this can be simplified to 

r>sd 
-D 

dEL ^ 
s Pp 

dn1 

h dnf 

Ad(sd) j"dg-ifcsd # (3.8) 

where Ds
s - i)si + Ds

s
r and Ds

h = Dsi + Ds
h
r. The expressions for the slope diffraction 

coefficient for both Hwang's and Veruttipong's versions are given in Appendix C 

where the time domain version of these quantities are derived. 

For more information about the parameters in the UTD ray expressions, one 

may consult the literature [2, 38, 4]. It should be noted that there are also edge 

excited surface diffracted rays or whispering gallery effects present for a curved wedge 

geometry; however, the present chapter does not deal with these surface diffracted 

and whispering gallery type ray fields. Surface diffraction by smooth convex surfaces 

is addressed in Chapter 4. 
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3.2     The TD-UTD Impulse Response for a PEC 
Curved Wedge 

The TD-UTD analytic impulse response for a PEC Curved Wedge (not including 

surface diffracted rays and whispering gallery effects) may be written as 

Er (t) =E) (W+ fc (t)Ur+ Edj (t)+ if (t) (3.9) 

where E) (*), E/ (t), E/ (t) and E/ (t) are the analytic signal representations for 

the incident field, the reflected field, the first order edge diffracted field and the 

slope edge diffracted field, respectively. The field in (3.9) results from an impulsive 

transient illumination of the wedge as denoted by the subscript /. The analytic 

impulse response is defined as the response which results when the incident field 

E/ (t) has an analytic delta function, 8 (*), time behavior. The spatial unit step 

functions t/, and Ur are 1 on the lit side of the incident shadow boundary and the 

reflection shadow boundary, respectively, and 0 otherwise. 

Specifically, it is noted that the TD-UTD analytic impulse response of the curved 

wedge is the response due to an excitation of an astigmatic wavefront with an analytic 

delta function time behavior. This analytic impulse response is found by setting 

Ej,(w) = Ej, in (3.1), (3.3), and (3.5), where Ej, is a complex constant with respect to 

frequency, and then applying the analytic time transform in (2.6) to these equations. 

Finally, these results are combined as shown in (3.9). This procedure provides analytic 

functions of time where the actual real time responses are found from the real part 

of these functions evaluated for real time, as discussed in Chapter 2. The response to 

any desired finite energy pulsed excitation is obtained by performing a convolution 

of the finite pulsed field excitation with the TD-UTD analytic impulse response. 

3.2.1    The TD-UTD Geometrical Optics Field 

The incident GO ray field with an analytic impulse time behavior is obtained from 

(3.1) and (2.6) 
±i + 
E/ (t) = Eijni MS) 8 (t - sljc) (3.10) 
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with the understanding that the actual real time incident field E7(£) is given by 

E*7(*)= Re [E'/(0]     
for   lm« = 0 (3.11) 

It is important to note that in general EQ is a complex vector which is constant with 

respect to frequency for the analytic impulse response and n, may not be zero; it 

therefore becomes necessary to define the incident field excitation more precisely as 

a generalized impulse (or analytic delta function), fj (t). As long as the analytic 

signal representation of the incident field is a complex constant times the analytic 

delta function, then the transient response is called the "impulse response". This is 

consistent when using the analytic time signals, since any transient response due to 

any other excitation can be found by convolution. The analytic delta function 8 (t) 

was discussed earlier and is given in (2.12). One of the benefits of using the analytic 

time representation, which is now clearly evident from equations (3.10) and (2.12), is 

that the analytic time function automatically represents the TD ray field before and 

after the ray has traversed a caustic or any number of caustics. For example, if the 

incident ray has not traversed any caustics then n, = 0 and, assuming Ef, is real, the 

real time incident field behavior is 

E)(t) = Ej, \Mai)\ 6(t ~ *'7c) (3.12) 

but if the incident ray has traversed one smooth or line caustic then n, = 1 and the 

real time behavior, assuming EJ, is real, is 

""^^N^ (3-13) 

When the analytic signal representation in (3.10) is used, one does not have to be 

concerned about the number of caustics that the ray has traversed, and it avoids the 

need to do a separate analysis for each case; this is especially important in inverting 

the diffracted field Ed(o;) when a ray caustic is traversed making the analysis of 

this case rather complicated to get Ej(i) if the analytic signal representation is not 

used. Note that the ray field description (3.10) breaks down if the observation point 

is located near a caustic.   The reflected ray contribution to the TD-UTD impulse 
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response is 
+ i + 

-     E, (0 = E« • Rjn'-+n- AiWM*')  S (rr) (3.14) 

where rr — t — s'/c — sr/c. Note that the variable s* in (3.14) is the distance from the 

source to the point of reflection QR\ whereas, s' in (3.10) is the straight Hne distance 

from the source to the observer. Also, note that the convolution 

Is (t - s'/c)* 6{t- *TIC) =S (t - s'/c - sr/c) (3.15) 

is used to obtain (3.14). 

3.2.2    The TD-UTD Edge Diffracted Field 

The first order edge diffracted ray contribution to the TD-UTD impulse response is 

E? (t) = E* • D (rd)r
i+nd iMs^A^l (3.16) 

where TJ = t — sl/c — sd/c, and s' in (3.16) denotes the distance from the source to 

the point of edge diffraction QE- The TD-UTD dyadic diffraction coefficient for a 

PEC curved wedge is 

D (0 = -ß0ß0 Ds (t) - $4> DH (t) (3.17) 

where the unit vectors in (3.17) are depicted in Figure 3.3. 

Derivation of the TD-UTD Wedge Diffraction Coefficient 

The derivation of the TD-UTD dyadic diffraction coefficient for a PEC curved wedge 

is now presented. The corresponding time harmonic dyadic diffraction coefficient [2] 

can be written in the following form [11] 

D(w) = -ß'0ß0Ds(u) - 4>'4>i)h(u,) (3.18) 

where 

D.M = -0    /*-.   a  ■£ KfFi**»») (3-19) 2nV27r sin fl0 m=1 
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The parameters K^h are given by 

r8,h (49 K{ = cot,
k^f"' (3-20) 

*? = cot i^Pj (3-21) 

^ = Tcot(!4^") (3-22) 

K? = Tcot(^=^) (3.23) 

with ß± = <j>±<f>'. The a:m are defined by 

xl = Lia+(ß-) (3.24) 

x2 = L2a~{ß-) (3.25) 

x3 = L3a
+(ß+) (3.26) 

SB4 = L4a-(ß+) (3.27) 

where the Xm parameters are related to the X parameters in [2, 38, 4] by 

Xi = V (3.28) 

X2 = X* (3.29) 

X3 = Xrn (3.30) 

X4 = Xro (3.31) 

and a±(ß) = 2cos2[(2n7rJV± — ß)/2] where N± is the nearest integer solution of 

2i:nN± — ß — ±7T. For a thorough explanation of the parameters used in the UTD 

edge diffraction coefficient, one is referred to the literature [2, 38, 4].... All of the 

frequency dependence has been collected in the function 

F(xm,u,) = .[^Ftr(^) (3.32) 
y jo;     \ c J 

where Ftr(z) is the conventional UTD transition function defined by 

Ftr(z) = 2j^Ge]Z /    e~3T dr (3.33) 
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The F(xm,u>) function can also be written as 

juxr 
F{xm,«,) = y/^et^'edcU'—^-} (3.34) 

where the complement of the error function is defined as 

2    r°°     •> 
erfc(z) = -== /    e~l dt (3.35) 

y 7r ■'* 

Note that the function F(ira,w) is not the same as the transition function defined in 

[2]- 

The analytic time transform of the frequency domain function F(xm,uj) is now 

derived. The following integral (which may be found in a table of Laplace transforms 

[28]) is used 
fOO   1 

/    eaTeric(V^)e-pTdT = r^    „ (3.36) 
Jo s/p{y/P + Va) 

where — TT < arg(p) < ir and —ir < arg(a) < 7r. Note that —T < a,tg(jxm) < w and 

therefore -37r/2 < arg(2m) < 7r/2. NOW, using the integral in (3.36), the analytic 

signal corresponding to the frequency domain function F(xm,u;) is 

>(-,«)=   ^,;yV- (3.37) 
for Im t > 0 where -7r < &Tg(-jt) < IT. Notice that the singularity on the real time 

axis (Im t = 0) is only a branch point singularity and not a pole, and that there is 

no difficulty in using the expression for F (xm,t) in (3.37) for real time (Im t = 0). 

Paying close attention to the Riemann sheet on which the parameter xm is defined 

(i.e. -37I-/2 < arg(sm) < 7r/2), (3.37) may be recast into a more convenient form 

F(xm,t)= v ,       ,  (3-38) 

for  Im t > 0 where 

Jy/X^,       Xm>0 
V~xm =  < (3.39) 

y/~xm,    xm < 0 

and  Re (y/—jt) > 0. The form in (3.38) is more convenient for numerical computa- 

tions since most calculators and computer programming languages choose the branch 
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cut of the square root function to be the negative real axis and then (3.38) may be 

directly implemented without any "if-then" conditions. Finally, the TD-UTD dyadic 

diffraction coefficient is given by 

D (t) = -ß'0ß0 bs (t) - $4> Dh (t) (3.40) 

where 

*>•* w = o   AT- a £ K~ $ (*-»*) (3-41) 2n\/2ir sin ß0 m=1 

The dyadic diffraction coefficient in (3.17) can be applied to the general geometry 

of a PEC curved wedge which may have curved faces and a curved edge. Nevertheless, 

it is interesting to examine some special cases such as a straight wedge and a straight 

half plane. 

Simplification of TD-UTD Diffraction Coefficient for Some Important Spe- 

cial Cases 

First, the behavior of the diffraction coefficient near a shadow boundary (SB) is 

investigated, then the special case geometries of a straight wedge and flat but possibly 

curved screen are examined. 

There are four possible SB locations corresponding to the four terms in (3.41). 

Define four corresponding angles 

Cl = * + ($-</>') (3.42) 

e2 = -a-_(«£_(£') (3.43) 

e3 = 7T + (</> + #) - In-K (3.44) 

e4 = v-tf + fl). •        (3.45) 

When em —> 0+ the observer is approaching the mth SB from the lit side. When 

em —> 0 then xm —> 0 and it can be shown 

K'^y/^R ~ C^ny^rX^sgn(em) (3.46) 

where C£* = 1 if m = 1,2 and Ctf1 = ^1 if m = 3,4. Using (3.46), it can be 

shown that the TD-UTD wedge solution has the same behavior near a SB as the 
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exact solution in [19] (where A, in Equation (27) in [19] is related to x2 in this report 

by A; « ya^/c near the SB). By using 

F (xm,t) ~ v^ 8 (t)   for xm -> 0 (3.47) 

with (3.46), it can be shown that the TD-UTD diffracted field has the proper dis- 

continuity which when added to the GO field produces a continuous total field across 

the SB. This is expected since the same behavior across a SB occurs in the frequency 

domain UTD. 

Assume the two faces of the wedge are flat and the incident GO field is a real 

impulse in time (i.e. 8(t)) so that all of the L parameters are positive and therefore 

xm > 0. Now, the analytic time function in (3.38) may be simplified to 

p v^MM+S (3.48) 
y/t{t + xm/c) 

for  Im t > 0, and the corresponding real time function is 

/<-■')- M^-'^vtSö"® (3'49) 

at Im t = 0 where u(t) is the Heaviside unit step function. Equation (3.49) along with 

(3.41) is exactly the TD-UTD diffraction coefficient derived by Veruttipong [12], which 

therefore is a special case of the more general TD-UTD diffraction coefficient presented 

in this report. The solution may be further simplified by letting |sm/(c*)| -» oo, which 

is justified when the observation point is far away from any SB. When this is done 

the result in (3.49) may be further simplified to 

F(t) = ^Lu(t) .   (3.50) 

Equation (3.50) together with (3.41) is what one obtains by taking the inverse Fourier 

transform of Keller's frequency domain GTD diffraction coefficient [12]. 

The TD-UTD diffraction coefficient for a flat screen (which may be curved) is 

found by setting n = 2 in (3.41) to obtain 

+ , -1 
Ds,h  \t) = nr-   .      o 

2 v 27T sin po 

*" F{xA,t)       F{xB,t) 

cos (*=*) T COS (*±*)_ 
(3.51) 
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where 

XA   =   IV cos 2 I <f>- <f>' 

w(*±£) 

(3.52) 

(3.53) 

and 

V 

u 

sdpi 

pi + 5' 

sdpr 

sin2 ß0 

sin2 /30 
pr + sd 

3.2.3    The TD-UTD Slope Diffraction 

(3.54) 

(3.55) 

The analytic time transform (ATT) can be applied to the higher order frequency 

domain UTD slope diffraction term in (3.7) to obtain a TD-UTD slope diffraction in 

closed form. 

The TD response corresponding to slope diffraction is 

it (0 
it (o 

_ i 
~ 2 < 

i-W.*&W Arw.^ö 
yn- 

-i-w.^0 -k(^d-%M dnl 

»Ad(sd)     (3.56) 

with E/ (t) = /30 E^0 (rj) + <j> E^ (rj). The * denotes a TD convolution. The 

analytic impulse response is obtained by letting the incident field (and therefore also 

the reflected field) in (3.56) be impulsive in time. 

The TD-UTD slope diffraction coefficient obtained from Hwang's formulation for 

a straight wedge is derived in Appendix C. Here is the same coefficient »generalized 

for a curved wedge 

Dsi (t) = 
-1 

[Ci Fs(xi,t)-C2Fs(x2,t)] 

Dl* (0 = 

4n2v/27r"sin2/30 

2xme~^4 

Fs {xm,t) = J- 
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2l* + ß- c- = csc hsr (3-60) 

JI*-0" 

c> = ~" (4r) <3-62> 
c< = «""pir) <3-63> 

The TD-UTD slope diffraction coefficient for a straight wedge obtained from 

Veruttipong's formulation is derived in Appendix C. Here is the same coefficient 

generalized for a curved wedge 

Dsi(0 = , , /^-1. 2o EA™F"(*"»>*) + 5-^(*»»*)      (3-64) 47rv27rsm p0 m-l 

&i W = „  2^. 2z,   E ^ A» (*•»,*) + Bm Fa {zm,t) (3.65) 4raV27rsm ß0 m=3 

where J^s (a:m,£) is defined in (3.59), 

Ax   =   ca^f^f-^-B, (3.66) 

4a   =   esc2 f11-^1) - B2 (3.67) 

CSC m- B3 (3.68) 

A,   =   esc2 f1^") - B* (3-69) 

and 

B3   = 
na 

with 

"!&„>(!+£) (3.72) 
a+(/?+)        1   2»    j 

Bi   =   _2^_)cot(£^l) (3.73) 
a-(ß+)        \    In    j 

.±W = w(*=£^) (3.74) 
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ä^ß) = Bin(2n7rJV± - ß) (3.75) 

The other analytic time function is 

+    (      ,x   _    2cvc=ä^ 
if vs lä"tnj t)     — 

V^ 
In e^v/^+v^ 

v^ 
+ jarg (j^y/^jä + v^) - i|] (3.76) 

where arg(z) is the argument (phase angle) of the complex number z, y/—xm is defined 

in (3.39) and  Re yf^ji > 0. 

Although the slope diffraction coefficients in (3.57) and (3.58) (or (3.64) and 

(3.65)) have been generalized for a curved wedge, one must be careful when the 

illuminated wedge face is curved. In fact, the slope diffracted field presented here 

will not fully compensate for the discontinuous spatial derivative in the reflected field 

when the reflecting surface is curved. Nonetheless, the slope diffracted field presented 

here will provide a good approximation for many pratical situations. For a more 

detailed discussion on the this problem one is referred to the thesis by Zheng [41]. 

3.3    Some Numerical Examples 

First, this section presents a convenient expansion of a general transient wave exci- 

tation which can be convolved in closed form with the TD-UTD impulse response of 

the curved wedge, next some numerical examples are included to illustrate the utility 

of the concepts developed in this chapter. In this section, Hwang's version of slope 

diffraction (instead of Veruttipong's version) is used unless stated otherwise. 

Convolution of the TD-UTD Impulse Response with a Gen- 
eral Pulsed Astigmatic Wave Excitation 

It is easy to examine the impulse response provided by the TD-UTD formulas derived 

in the last section, but there are two important reasons why one should be interested 

in different types of excitations besides an impulsive wavefront. The first reason is 

because the TD-UTD is based on the asymptotic (high frequency) formulas of the 

time harmonic UTD and therefore the "late time" behavior of the TD-UTD impulse 
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response is expected to be erroneous. On the other hand, if the TD-UTD impulse 

response is convolved with an excitation waveform which has a frequency spectrum, 

EQ(U;) as in (3.1), dominated by frequencies for which the time harmonic UTD solution 

is expected to be accurate then the transient waveforms predicted by the TD-UTD 

should be very accurate also. The second reason is because in real physical situations 

the frequency spectrum of pulsed fields which can propagate without dispersion is 

limited. Also, there is typically a lower limit on the frequency which a source can 

radiate. Therefore the response due to an excitation waveform which has an effectively 

band limited frequency spectrum, EJ,(a;), and of finite time duration is more realistic. 

Furthermore, one must convolve the TD-UTD impulse response with a more realistic 

excitation in order to predict or compare with measurements or other numerical 

calculations. 

Numerical convolution of any given excitation time waveform with the impulse 

response formulas in the previous section is always possible, but it may not be the most 

efficient approach. A different approach which is typically more efficient for narrow 

pulse (i.e. wide band) excitations is to express the excitation waveform as a sum of 

a small number of simple expansion functions which can be convolved with the TD- 

UTD impulse response in closed form. One choice of a very simple expansion function 

is a waveform whose analytic signal representation is a simple pole in the complex 

time plane. First, assume that the frequency response of each vector component in 

the excitation EJ,(a;) is the same, so that 

E<(«) = p/SM (3.77) 

where p is a polarization unit vector, and FQ(W) is the Fourier transform of the 

excitation time waveform F^t). Let 

F0{t) = Re  [F(
0 (*)] =  R« 

with a frequency response of 

i  N      A 

7T ~ t + jan 

(3.78) 

H(v) = 52A«e~0",u> u^° (3-79) 
n=l 
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The parameters {An} and {an} are in general complex. Now, suppose the analytic 

impulse response is E/ (t), then using the convolution property in Table 2.1 and 

the excitation in (3.78), the response of the curved wedge to a pulsed astigmatic wave 

is 

EUTD(0   =   |J{(t)*irW (3.80) 

=   i>„E7TD(i + Ja») (3.81) 
n=l 

and the real response EUTD(£) is the real part of (3.80) with Im t = 0. Notice that as 

long as Re a„ > 0 for all n, the analytic function resulting from the convolution in 

(3.80) is analytic on the real time axis (Im t = 0) and therefore EUTD(i) is bounded 

and well behaved. 

A convenient frequency domain window function, which satisfies the more general 

form in (3.79), is 

F'(w) = C0(l - e-uT)Ne-uMT (3.82) 

where 

and fc is the center frequency. The peak of the window FQ(W) is normalized to one 

by choosing 

ft _(* + *)« (« + *)» (3g4) 

An Example: Scattering from a Two-dimensional Curved 
Strip 

Figure 3.4 shows the geometry of a two dimensional curved parabolic strip. The strip 

is excited by an incident plane wave with the electric field polarized perpendicular to 

the plane of the paper. The observation point P, as shown in Figure 3.4, is near the 

reflection shadow boundary (RSB) of edge (1). Figure 3.5 shows the impulse response 

calculated using the TD-UTD when the dominant three scattering mechanisms are 

included. Figure 3.6 shows the impulse response corresponding to each scattering 

mechanism separately, namely the reflected field, the diffracted field from edge (1) 
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and the diffracted field from edge (2). Notice that the contribution to the impulse 

response from the edge diffracted ray from edge (1) appears to be very close to -0.5 

times the reflected ray contribution to the impulse response. This is to be expected 

since the observation point is very near to the RSB of edge (1). For verification, the 

impulse response predicted by the TD-UTD is convolved with a finite (band limited) 

excitation and then compared with a reference solution. For the frequency domain 

window shown in the inset in Figure 3.7, the parameters in the window function of 

(3.82) are fc = 20 GHz, M = 1 and N = 2. 

The reference solution is based on a frequency domain method of moments (MM) 

analysis which has been weighted by the appropriate frequency window and trans- 

formed numerically into the time domain using an inverse fast Fourier transform 

(FFT). As can be seen in Figure 3.7, the reference solution MM+FFT and the TD- 

UTD result are almost indistinguishable from each other. 

Electric Dipole Illuminating a Wedge 

Figure 3.8 shows the space-time behavior of the total far zone field as predicted by 

the TD-UTD when a PEC wedge is illuminated by an infinitesimal electric current 

element. The curves are calculated by a convolution of the TD-UTD impulse response 

with a smooth finite energy time pulse with a frequency response described by 

F(u) = Ce~auJ{l - e~aui)   for u > 0 (3.85) 

where C and a are constants. The dipole is pointed just 5 degrees off the direction to 

the edge, so that the incident field is non-zero and rapidly varying at the edge. This is 

done so that both the first order and slope diffraction are significant. The diffracted 

field is much smaller than the incident or reflected field and is difficult to see in Figure 

3.8. Nonetheless, notice that the total field is a smooth and continuous function of 

both space and time. This is expected since the TD-UTD diffracted field corrects the 

discontinuities of the geometrical optics (GO) field at the shadow boundaries. 

Figure 3.9 is similar to Figure 3.8 except it shows the first order diffracted field. 

The field is also multiplied by a factor of 10 to make it visible on this plot scale. 
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Figure 3.4: Two dimensional parabolic strip geometry. The focus is located at 
F(x=0,z=4), the width of the aperture is 8, and the observation point is P(x=4,z=8). 
All linear dimensions are in centimeters. 
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Figure 3.5: The TD-UTD scattered field at the observation point P when the 2-D 
parabolic strip in Figure 5 is excited by an impulsive plane wave. The time axis is 
shifted by p/c for convenience where p is the distance of P from the origin and c is 
the speed of light. 
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Figure 3.6: The impulse response for each scattering mechanism is plotted here sep- 
arately, where Er(t), Edl(t) and Ed2{t) correspond to the impulse response of the 
reflected ray, the edge-diffracted ray from edge (1) and the edge-diffracted ray from 
edge (2), respectively. The time axis is shifted by p/c for convenience. 
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Figure 3.7:   Same as in Figure 6 except that the incident temporal excitation is a 
finite energy time waveform. 
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Notice that the first order diffracted field is discontinuous as a function of angle at 

the shadow boundaries. This discontinuity corrects the discontinuous GO field at 

these boundaries. 

Figure 3.10 is similar to Figures 3.9 and 3.8, except it shows the slope diffracted 

field. Notice that the slope diffracted field is a smooth function of both space (angle) 

and time, but it does have a discontinuous derivative as a function of angle at the 

shadow boundaries, which corrects the discontinuous derivative of the GO plus first 

order diffracted field. 

Figures 3.11, 3.12 and 3.13 compare the TD-UTD impulse response with an exact 

solution. The exact solution is presented in Appendix B and is based on Felsen's 

work [22]. The PEC wedge is illuminated by a infinitesimal current element where 

the current has a unit step function time dependence. This illuminates the wedge with 

a spherical wave, and the first order term in (1/r) has an impulsive time dependence. 

The TD-UTD solution assumes that the incident field is a time impulsive spherical 

wave with a (1/r) distance dependence. Figure 3.14 is a closeup view of the plots in 

Figure 3.13. The TD-UTD based on Veruttipong's work is labeled "TD-UTD (Ver)" 

and the one based on Hwang's work is labeled "TD-UTD (Hwa)". Notice that the 

TD-UTD slope diffraction solution based on Veruttipong's work is more accurate for 

early time, whereas the TD-UTD slope diffraction based on Hwang's work is more 

accurate for intermediate to late time. This is anticipated from the equations since 

the formulation based on Veruttipong's work contains an approximation for a higher 

order term in the frequency domain asymptotic expansion. Nonetheless, it appears 

from these simple examples that the solution based on Hwang's work is adequate for 

many applications and is still a simple and more compact formulation.   * 

Magnetic Dipole Illuminating a Wedge 

The comparison in Figures 3.15 and 3.16 is similar to Figures 3.13 and 3.14 except the 

wedge is excited by an infinitesimal magnetic current element. Figure 3.16 is simply a 

close up view of the bottom plot in Figure 3.15. The TD-UTD slope diffraction based 

on Veruttipong's work is labeled "TD-UTD (Ver)" and the one based on Hwang's 
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Figure 3.8: A waterfall plot showing the space-time behavior of the total field when 
an electric dipole illuminates a PEC wedge. The observer is in the far zone and the 
incident field at the edge is rapidly varying so slope diffraction is significant. 
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Figure 3.9: A waterfall plot showing the space-time behavior of the first order 
diffracted field when an electric dipole illuminates a PEC wedge and the observer 
is in the far zone. The field here is multiplied by a factor of 10 as compared with 
Figure 3.8. 
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Figure 3.10: A waterfall plot showing the space-time behavior of the slope diffracted 
field (Hwang's version) when an electric dipole illuminates a PEC wedge. The observer 
is in the far zone. The field here is multiplied by a factor of 10 as compared with 
Figure 3.8. 

58 



Electric Dipole and PEC Wedge, Diffraction 
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Figure 3.11: The TD-UTD impulse response is compared with an exact result. The 
infinitesimal electric current has a unit step time behavior which approximately illu- 
minates the wedge with an impulsive spherical wave. 
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Figure 3.12: The TD-UTD impulse response is compared with an exact result. The 
infinitesimal electric current has a unit step time behavior which approximately il- 
luminates the wedge with an impulsive spherical wave. The slope diffraction is zero 
when the dipole is oriented perpendicular to the incident direction. 
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Electric Dipole and PEC Wedge 
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Figure 3.13: The two versions of the TD-UTD slope diffraction are compared with an 
exact result. The infinitesimal electric current has a unit step time behavior which 
approximately illuminates the wedge with an impulsive spherical wave. 
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Figure 3.14: The two versions of the TD-UTD slope diffraction are compared with an 
exact result. The infinitesimal electric current has a unit step time behavior which 
approximately illuminates the wedge with an impulsive spherical wave. 

62 



work is labeled "TD-UTD (Hwa)". The magnetic current element is placed directly 

on one of the wedge faces, since this could be used to model a small slot antenna. 

Notice that there is excellent agreement for an observer near the shadow boundary 

and far from the shadow boundary. Also, notice that once again the TD-UTD based 

on Veruttipong's work is more accurate for early time; whereas, the formulation based 

on Hwang's work is more accurate for intermediate to late time as expected. 

3.4     Conclusions 

The TD-UTD solution for the scattered field from a general curved wedge is sum- 

marized as follows. The TD-UTD impulse response for the field in the presense of a 

general curved wedge may be written as 

ET* (t) =E*/ (t)Ui+ E] (t)Ur+ E; (t)+ Ef (t) (3.86) 

where the spatial unit step functions [7, and Ur are 1 on the lit side of the incident 

shadow boundary and the reflection shadow boundary, respectively, and 0 otherwise. 

The TD-UTD incident GO field E7 (t) is in (3.10) and the TD-UTD reflected field 

E/ (t) is in (3.14). The first order TD-UTD edge diffracted field E? (t) is in (3.16) 

where the TD-UTD dyadic diffraction coefficient is defined in (3.40) and (3.41). The 

higher order edge diffracted field called the slope diffracted field E/ (t) is in (3.56) 

where the TD-UTD dyadic slope diffraction coefficient based on Hwang's frequency 

domain UTD slope result is given in (3.57) and (3.58) while the slope diffraction 

coefficient based on Veruttipong's frequency domain UTD result is given in (3.64) 

and (3.65). Finally, the impulse response formulas, denoted by the subscript J, may 

be convolved with an excitation in closed form as in (3.80) and (3.81) when the 

excitation has the form in (3.77) or (3.78). 

This chapter presents a time domain version of the UTD (TD-UTD) for the general 

case of a curved PEC wedge, where the wedge faces and the edge may be curved. This 

time domain solution can handle more general geometries than what has been done 

in the past and supplies a good stepping stone for the development of a complete 
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Figure 3.15: The two versions of the TD-UTD slope diffraction are compared with an 
exact result. The infinitesimal magnetic current has a unit step time behavior which 
approximately illuminates the wedge with an impulsive spherical wave. 
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Figure 3.16: The two versions of the TD-UTD slope diffraction are compared with an 
exact result. The infinitesimal magnetic current has a unit step time behavior which 
approximately illuminates the wedge with an impulsive spherical wave. 
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TD-UTD which includes multiple diffractions, caustic corrections, surface diffraction, 

etc. 
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Chapter 4 

TD-UTD for a Smooth Convex 
Surface 

The study of electromagnetic surface diffraction has been an active area of research for 

many years both in the frequency domain (i.e. the time harmonic case) and also in the 

time domain. Smooth surface diffraction as described here assumes that the surface 

is a perfect electric conductor. Even with this assumption, smooth surface diffraction 

is a very important phenomena since many geometries encountered in engineering 

contain conducting smooth surfaces, such as airplanes, automobiles, etc. The work 

in this report is based on the frequency domain UTD solution and Pathak provides 

an excellent summary of this work in [4]. 

There is an abundance of past research on the topic of diffraction from smooth 

surfaces which are excited by short pulses, either acoustic pulses or electromagnetic 

pulses. One of the classic works on acoustic pulse scattering is a book by Friedlander 

[7]. In chapter 6 of [7], Friedlander formulates the time domain acoustic Green's func- 

tion (i.e. impulse response) for a circular cylinder and also for a sphere. He obtains 

an approximate "early time" formula for the diffraction from a circular «cylinder by 

implementing an asymptotic evaluation of an inverse Laplace transform of the fre- 

quency domain result. This early time result is a summation of time domain creeping 

wave modes and therefore is not valid when the observer is near the surface shadow 

boundary (SSB), but it is still very useful for "deep shadow" observer locations or 

backscatter calculations. Friedlander solves the acoustic scattering from a sphere sim- 

ilarly. Also, he finds an explicit early time formula for when the observer is located at 
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the caustic in the shadow region. But, Friedlander does not obtain the solution to the 

sphere problem for the case when the diffracted ray field has passed through a caus- 

tic. In [42], Weston obtains the back-scattered electromagnetic field from a perfectly 

conducting sphere when the incident field is a plane wave and the temporal excitation 

is a modulated square pulse. Weston finds a power series approximation for small 

(or early) time from the inverse Laplace transform of the Luneberg-Kline expansion. 

For large (or late) time, Weston uses an eigenfunction representation and when the 

sphere radius is large in terms of the wavelength of the modulation frequency he used 

a creeping wave representation. Wait and Conda discussed diffraction of electromag- 

netic pulses by curved surfaces in [43]. The first section of Wait and Conda's paper 

is devoted to finding the electric currents induced on a circular cylinder when it is 

excited by a plane wave. The temporal excitation is a step function. The currents in 

the frequency domain are expressed as an approximate integral expression containing 

an Airy integral. This approximate frequency domain result is valid when the radius 

of the cylinder is large in terms of wavelength. They then expand this frequency 

domain expression into a power series and use an inverse Laplace transform to obtain 

an asymptotic time series in terms of inverse powers of time. Although it appears 

that they use both high frequency and low frequency approximations here, one can 

interpret their solution to be valid for intermediate time values and observations near 

the shadow boundary. In the second half of the paper, Wait and Conda [43] dis- 

cuss the diffraction from a smooth surface when the source and observer are removed 

from the surface. They solve the specific case of a circular cylinder, although they 

mention at the end of the paper that these results could be easily generalized. This 

solution is valid for observations near the shadow boundary. In [44], Chen dbmputes 

the large-time transient behavior of the diffracted field from a circular cylinder ex- 

cited by a plane wave with a step function temporal behavior. He solves the problem 

for various types of boundary conditions at the surface and also pays close attention 

to causality. Chen bases his solution on the exact frequency domain eigenfunction 

summation. He uses an inverse Laplace transform on the eigenfunction summation, 

applies the transform term by term, and then evaluates each term asymptotically for 
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large time. Überall, Doolittle and McNicholas solve the acoustic scattering problem 

of a cylinder excited by an impulsive plane wave (i.e. the impulse response) [45]. 

They first solve the frequency domain problem and then obtain the impulse response 

by using an inverse Laplace transform. Since their frequency domain solution is an 

asymptotic high frequency result, their impulse response is valid for early (or small) 

times. Also, in their solution the scattered field is decomposed into a reflected field 

and diffracted field which is written as a sum of creeping wave modes. Therefore, 

their solution is not valid near the shadow boundary. In [46] and Appendix II of [1], 

Moffatt explores that nature of the creeping wave. He does this by examining the 

early time backscattered electromagnetic field from a circular cylinder and a sphere 

which he obtains by using an inverse Laplace transform on the asymptotic high fre- 

quency results. He discovers that the early time backscattered diffracted field from 

the sphere is the Hilbert transform of a causal time function and then correctly pre- 

dicts that the early time approximate backscattered diffracted field from a sphere 

is not causal. This is easily understood now, since we know that the arrival of the 

reflected field represents the "turn on" time of the total scattered field, and therefore 

the "small time" solution for the diffracted field contribution may contain information 

before and after the time of arrival of the diffracted ray. This is consistent with the 

asymptotic nature of the "small time" solution. Wait investigates the currents on a 

cylinder when the cylinder is excited by an impulsive plane wave in [47]. Wait first 

formulates the solution in the frequency domain and approximates the currents in the 

penumbra! (near the shadow boundary) region as a contour integral containing Airy 

functions. He expands this representation into a creeping wave mode series and uses 

an inverse Laplace transform term by term to obtain a time domain creeping wave 

mode series. He is able to transform each creeping wave mode (for the currents in the 

shadow region) in closed form in terms of Airy functions. In [48, 49], Schäfer calcu- 

lates the currents on a circular cylinder when the cylinder is excited by an impulsive 

plane wave. He finds an early (small) time representation in the lit region by using an 

inverse Laplace transform on the frequency domain Luneberg-Kline series which gives 

a power series time representation. He obtains an early (small) time representation 
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in the shadow region by applying the inverse Laplace transform to the high frequency 

creeping wave summation. He obtains a large time representation by applying the 

inverse Laplace transform to the frequency domain eigenfunction summation term 

by term. Finally, for intermediate time values he uses an interpolation scheme to 

combine the small and large time representations. Lee, Jamnejad and Mittra exam- 

ine the early time response for the scattered field and current on a circular cylinder 

by using an inverse Laplace transform on the high frequency creeping wave repre- 

sentation [33]. In [50], Heyman and Felsen develop a solution for the currents on a 

circular cylinder (or a smooth surface in general) when the excitation is located on the 

cylinder. Their solution combines a low frequency eigenfunction representation with 

a high frequency creeping wave representation, then they do a similar combination in 

the time domain. Ma and Ciric in [51], obtain an early time solution for the currents 

on a circular cylinder when it is excited by a line current. Their solution is similar to 

Schafer's for the plane wave case. In [52], Naishadham and Yao present the transient 

scattering by a circular cylinder when it is excited by magnetic line source when the 

source and observation point are on the cylinder. They obtain their solution using 

an efficient numerical evaluation of a contour integral which approximates the exact 

contour integral solution. 

The time domain curved surface diffraction presented in this chapter is different 

from the solutions discussed above since the present work is based on the frequency 

domain UTD [4]. The frequency domain UTD formulation of surface diffraction can 

be applied to a very general class of smooth surfaces, whereas most of the previous 

time domain solutions discussed above involve canonical geometries such as cylinders 

or spheres. More importantly, the previous time domain solutions discussed above 

assume simple excitations such as a plane wave or line source, whereas in the TD- 

UTD solution presented here, the excitation is an astigmatic ray field where plane, 

cylindrical and spherical wavefronts are special cases. Also, with the analytic time 

representation used here, one could easily incorporate incident ray fields which have 

passed through a smooth caustic, incident ray fields that are circularly polarized and 
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diffracted ray fields which have passed through a smooth caustic. This greatly in- 

creases the usefulness of the present TD-UTD solution for smooth surface diffraction. 

The content of this chapter is as follows. First there is a brief review of the 

frequency domain UTD formulation for smooth surface diffraction. Then the TD- 

UTD is obtained for observers in the deep lit and deep shadow regions by applying 

the analytic time transform to the frequency domain UTD formulas. Also, a TD- 

UTD solution is obtained for observers near the shadow boundary. Finally, all of 

these solutions are combined to obtain a uniform TD-UTD surface diffraction solution 

which remains valid in the deep shadow region, near the shadow boundary and deep 

in the lit region. This uniform TD-UTD solution is the time domain version of the 

UTD solution in Pathak [4]. This solution is restricted to the "scattering case" where 

the observer and source are located off the smooth surface, although the radiation 

and coupling problems could be dealt with in a similar fashion. Finally, some simple 

numerical results are presented to demonstrate the TD-UTD and compare it with a 

reference solution. 

4.1     General Formulation in the Frequency Do- 
main 

This chapter discusses only the smooth surface scattering situation where the source 

and observer are off of the surface. Although the radiation and coupling situations 

where the source or/and the observer are located on the smooth surface are of con- 

siderable interest only the scattering situation is considered here. The radiation and 

coupling situations could be analyzed in a similar fashion as the scattering problem 

studied here. 

The frequency domain UTD solution for the smooth surface diffraction geometry 

shown in Figure 4.1 is as follows. The UTD formulation for smooth surface diffraction 

briefly presented here is based on the summary by Pathak [4]. For the scattering case 
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SOURCE 

Figure 4.1: Geometry of the smooth surface scattering situation where the source and 
observer are off the surface. 

EUTD(P) = , 

shown in Figure 4.1, the total field as approximated by the UTD may be written as 

E«'(PL) + WT{PL)   P = PL in lit region 

Ed(Ps) P = Ps in shadow 

The surface diffracted field Ed(Ps) may also appear in the lit region when the surface 

is closed and one includes multiple encirclements around the surface. The incident 

field E'(PL) is the usual GO incident field which exists in the lit region. The reflected 

field E9T
(PL) is a generalized reflected field which behaves as the usual GO reflected 

field deep in the lit region, but behaves quite differently near the surface shadow 

boundary (SSB), it can be expressed in terms of generalized reflection coefficients 

Wr(PL) ~ E\QR) ■ [Üse±e± + £hef|e|j] M**)**'*"' (4.2) 

where E'(QR) is the incident field at the point of reflection QR. The unit vectors in 

(4.2) are the same as in the usual GO reflection formula discussed in the previous 

chapter. The spreading factor for the reflected field is given by 

W-LJ&+') (4-3) 

where p\ and pr
2 are the reflected ray caustic distances and sr is the distance from the 

reflection point QR to the observer at P. The surface diffracted field can be written 
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Figure 4.2: Ray vectors for surface diffraction. 

as 

Ed(Ps) ~ E'^x) • [ü.bab2 + üÄnin2] Ad(sd)e^k (4.4) 

where E'(Qi) is the incident field at the attachment point as shown in Figure 4.1. 

The unit ray vectors in (4.4) are shown in Figure 4.1. The unit vectors ni and n2 are 

normal to the surface at points Q\ and Q2 respectively. The unit tangent vectors ti 

and t2 point in the direction in which the "surface ray" is moving at points Q\ and 

Q2 respectively. The other tangent vectors b1]2 are defined by bi>2 = ti)2 x n1>2. The 

spreading factor for the diffracted ray is 

Ad(sd) (4.5) 
/ Sd{p3 -f 3d) 

where ps is the caustic distance of the diffracted ray and sd is the distance from 

the point of diffraction to the observer. The frequency domain generalized reflection 

coefficient can be written as 

Tl>a,h — e -M5L)3/ 12 ( 1 

\ 2SL-v/7r-v/J^ 

1   - 
[1 - Ftr(uxL)] + —P,jh{ui* &)} (4.6) 
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where 

M(.)=(^)" (4.7) 

ZL = -2M(QR)cos8i (4.8) 

xL = 2-cos26i (4.9) 
c 

and Bl is the angle between the surface normal vector and incident ray direction at 

the point of reflection. The function Ftr(z) is the UTD transition function given in 

(3.33) and the Fock type function Ps,h(z) is described shortly. The pg(QR) in the 

above equations is the radius of curvature of the surface at the point of reflection QR 

in the plane of incidence. The frequency domain UTD surface diffraction coefficient 

is given by 

P.ifc   =    -)/2cM(Q1)M(Q2) |25 J^[l ~ FtT{u>xd)} 

4-A,fc(««s)} + 
\ 

dr)(Qi) e-jui/c (410) 

dr)(Q2) 

where 

B = f »®* (4.1.) 
JQI   PA1) 

LE2 

2cM(Q1)M{Q2) 
(4'12) 

= I     dl' (4.13) 
Jo, 

xd = 

I 
IQ 

The path from Q\ to Q2 on the surface is a geodesic where the path length is a 

minimum. The pg(l') in (4.11) is the radius of curvature of the surface at V on the 

geodesic path in the 1' (or t) direction. The distance parameter in (4.9) and (4.12) 

when evaluated at the shadow boundary is given by 

WQi) + »M(Qi) + »)    fi(Qi) ' 

where p\ 2(Qi) are the principle radii of curvature of the incident ray field at Q\ and 

p*b(Qi) is the radius of curvature of the incident ray field in the bi direction at Q\. 

Note that the distance parameter L in (4.9) and (4.12) would in general be different 
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for the lit and shadow regions but it is usually more convenient to approximate L by 

its value at the shadow boundary given by (4.14) [3]. 

For the special case of an incident spherical wave 

s's 
(4.15) 

s' + s 

and 

*' = A(Qi) = PJ(Qi) = PKQI) (4-16) 

where s' is the distance from the source to the point Q\ on the surface. 

The Fock type functions PSih(x) are related to the soft and hard Pekeris functions 

p*(x) and q*(x) by 

'   P"0O   1     _W4        6-W4 
P»A*) = { (4.17) 

q*(x)  j 2V*X 

where p*(x) and q*(x) are bounded and well behaved. The Fock type function Pa,h(x) 

can also be written as 

,-J>/4     ,oo     QV"(z) 

^w=V£s™>«-J"* (4-18) 
V^  J-oo QW2{z) 

where the operator Q is 

Q=< 
1 soft case 

d/dz     hard case 
(4.19) 

The Fock type Airy functions are 

2jV(z) = Wx{z) - W2(z) (4.20) 

1     f°° i, 
W&) =-= [ ezy~y >*dy (4.21) 

y 7T Joo exp(-J2T/3) 

W2(z) = -p / ezy-^'zdy (4.22) 
y 7T Joo exp(+j'27r/3) 

4.2    Deep Lit Region 

The frequency domain UTD formulation for the fields in the lit region can be simplified 

when the observer is far from the shadow boundary. When the observer is in the deep 
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lit region (i.e. far from the shadow boundary), xL is large and — EL is large (or S   <0) 

and the following approximations can be made 

Ftr(u)xL) ~ 1        for xL -» oo (4.23) 

Ps,h(u>ZL)~±jJ-^eju^3/u        forEL-+-oo (4.24) 

Using the above approximations for the deep lit region, the generalized reflection 

coefficient becomes 

*R>s,h ~ Tl  deep lit region (4.25) 

where the ~ above the reflection coefficient % has been dropped since it is no longer a 

function of frequency with this approximation. It is now obvious that the generalized 

reflection coefficient %s<h simply becomes the ordinary GO reflection coefficient ÄS:/, 

discussed in Chapter 3 when the observer is in the deep lit region. Now the TD-UTD 

field in the deep lit region can be written as 

E9r (PL; t) ~E*' (QR; t - sr/c) ■ [Kse±e± + ftfceje|j]Ar(s
r) (4.26) 

where 7£s>/, is given in (4.25). Notice that this is an early time deep lit region result 

which directly corresponds to the high frequency deep lit region approximations. The 

early time deep lit region result in (4.26) is not expected to be accurate for late 

times, since the deep lit region approximations made in the frequency domain are 

increasingly accurate as the frequency increases. Nonetheless, the result in (4.26) is 

a good approximation for early time and for an observer deep in the lit region. 

4.3    Deep Shadow Region 

The frequency domain UTD formulation can be simplified when the observer is deep 

in the shadow region. When the observer is in the deep shadow region, xd in (4.12) 

and S in (4.11) are large and positive and the following approximations can be made 

Ftr(uxd) ~ 1 for xd -* oo (4.27) 

A,A(«»S)~ < 

-e-W4^eifeXp(-(ja;)fsgn) 

^    tr       2[Ai'(-9n)]2 .      , 

E A     £i       2qn[M(-qn)y 
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for S —> oo. In (4.28), Ai(x) = V(X)/-^/TT is a Miller type Airy function and Ai'(a;) = 

dA\(x)/dx is its derivative [29]. The nth roots of Ai(-g„) = 0 and Ai'(-g„) = 0, 

denoted by qn and qn respectively, are also used in (4.28). Typically two terms (N = 2) 

are used for the summation in (4.28) [4]. The surface diffraction coefficient in (4.10) 

can now be simplified for an observer in the deep shadow region by 

V 
2c 

s.h 
■K 

M(Q1)M{Q2)( (4.29) MQi)    ju>l/c, 
'\ HQ2) 

[ (jw)i^   2g„[Ai(-g„)]5 

Finally, the analytic time transform can be applied to (4.29) to obtain the analytic 

time representations of the surface diffraction coefficient 

J_" ex-p(-(ju)3Zqn) 

(j*)«ti    2[Ai'(-g„)P 
1     <y exp(-(jo;)3Egn) 

Vs,h (t) 

where r-p = t — l/c and 

2c 

7T 
M(Q1)M(Q2) 

dy(Qi) 

dr,{Q2) 

y^ Few (5gn,Tp) 

h 2[Ai'(-ft,)]» 

y^  Few ("grpTg) 

I h 2g„[Ai(-g„)]2 

(4.30) 

+ 1    r°° 1       ,. ,1   . 
Few (a,t) = - I    (j^-e-^^e^dw 

7T JO 
(4.31) 

for Im t > 0. The analytic time function in (4.31) is a new special function which 

must be calculated. Appendix D explains in detail how to calculate Few {a,t) in 

(4.31). 

4.4    Observer Near the Shadow Boundary 

This section presents the TD-UTD smooth surface reflection and diffraction coeffi- 

cients for when the observer is near the shadow boundary. First rewrite the frequency 

domain generalized reflection coefficient in (4.6) as the following 

p*(u;1/3EL) n** = \ =7-e -ju,(E*)3/12 Ftr(uXL) ,-jir/6 

and the surface diffraction coefficient of (4.10) as 

Ftr(«»xd) 

$V/33*) 
(4.32) 

V ■t,h   =   -^2cM(Q1)M(Q2) 
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Now apply the ATT to (4.32) and (4.33) to obtain 

\ 

drj(Qi) 

dv(Q2)< 
-jul/c (4.33) 

+ ri(F(cxL,Tn)     +    ,-L r A 

where 

and 

T% = t - (HL)3/12 

i.ih= ^2cM(Q,)M{Q2) 
r + 
F{cXd,TT))        + 

2V/TTCS 
FP,,(E,TD) 

\ 

<Wi) 
^(02) 

where 

(4.34) 

(4.35) 

(4.36) 

(4.37) Tx> = t — l/c 

See Appendix E for a series expansion for Fp,q (2,2) which is appropriate when |S| 

is small (i.e. when the observer is close to the shadow boundary). The other time 

function used in (4.34) and (4.36) is related to the TD-UTD wedge transition function 

in (3.37) by 

'Ftr(u>x)' 
/jw 

1    + , -=F{cx,t) 

yw^ 
v/=^(\/=7< + Vfi) 

At the shadow boundary, xd —> 0 and xL —» 0, therefore 

F (cx,t) ~ y/ircx S (t) 

Also, 5L —> 0~ and S —* 0+ so that the following could be used 

(4.38) 

(4.39) 

*   (4.40) 

F   (Q t) _ 
r(5/6) e~W12 

*V,9(MJ-  i7r (_if)5/6 
9o 

(4.41) 

where p0 = 0.354064 and q0 = -0.307177. Equations (4.40) and (4.41) could be used 

to demonstrate that the TD-UTD is continuous across the surface shadow boundary, 
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just as is done in [3] for the frequency domain case. The term containing 8 (t) function 

will produce minus one half of the incident field when used in the reflection coefficient 

and plus one half of the incident field when used in the diffraction coefficient. But, 

the term containing {—jt)~5^6 produces a diffracted field effect even on the shadow 

boundary. This is in contrast to the first order diffraction from the wedge which 

becomes one half of the incident field at the shadow boundary. 

4.5    Uniform TD-UTD Surface Diffraction 

This section presents the uniform TD-UTD formulation for the scattering from a 

smooth convex surface. This requires the analytic time transform (ATT) of the 

corresponding frequency domain UTD generalized reflection coefficient in (4.6) and 

surface diffraction coefficient in (4.10). The following transform pairs are used 

/JU) 

5-j7r/4 

V*V^ji 

and 

+P   i~ ^A^^sjJ =1^(2,0 

(4.42) 

(4.43) 

along with (4.38). The transform in (4.43) can be used when 2 < 0 and when 2 > 0, 

so it can be used for the generalized reflection coefficient and the surface diffraction 

coefficient. The special time function pa^ (2,0 is not known in closed form, but 

instead it can be calculated using various expansions for early time, late time and so 

forth. Appendix E fully explains the properties of the Fa<h (2, t) function and explains 

the algorithm used for its calculation. Nonetheless, some basic results concerning the 

Fah (2,i) are now summarized. -. 

In the shadow region, 2 > 0 and the following expansions can be used. When 

the observer is in the deep shadow region (or for very early time) a creeping wave 

expansion can be used 

F,,k(z.,t)~< 

(S?„,*) zLsrL 
1    N      S      ,~-    , -1 Few {^In^*) 

(4.44) 

I   V^^[2qn[Ai(-qn)Y 
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for \t/E3\ —> 0, where Few (<M) are the time domain creeping wave mode functions 

described in Appendix D. When the observer is near the shadow boundary (or for 

late time) an inverse time power series can be used 

1   e~j*/4 

^(H,i)=FPl9(E,0 
27T~ v/=7* 

(4.45) 

where 

Pn T(n/3 + 5/6)ejW/6      E' 

n! {-jt) ,n/3 
(4.46) 

for |i/~3| + 0. 

For the lit region, EL < 0, and (4.46) can be used when \t/(EL)3\ -> oo by simply 

replacing S in (4.46) with EL. But, for \t/(EL)3\ -> 0 the creeping wave mode series 

in (4.44) is not valid in the lit region, instead one can use 

i^(s,*)~±i 
-EL + 

6(t + (EL)3/12) (4.47) 

for  [t + (EL)3/12j/(HL)3  -» 0. See Appendix E for more details about the computa- 

tion of these expansions and F h (E,t) in general. 

Now, using the transform relationships in (4.38), (4.42) and (4.43), transform (4.6) 

into 

+ /-4 -j'x/4 
±P    ,-L 

1EL-K LfTt + yfj^A 
Fa,h{EL,Tn) (4.48) 

and transform (4.10) into 

Vs,h= -^2cM(Q1)M(Q2) 

It is interesting to notice how 

-jir/4 

2ETr(y=fi+y/j^^ 

-jw/4 

Fa,h(z>,TV) (4.49) 

yj~it + yßx 
behaves for x > 0 and real time  Im (t) = 0. The above can be rewritten as 

y/i- jy/x 

t + x 
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and notice that this gives 

pjf/4 

Re 
eJ"'"       \      y/iu(t) 

for x > 0 and  Im (t) = 0. This is the same type of transient behavior observed for 

the slope diffraction transition function (C.17). 

4.6    Numerical Example 

Figures 4.4 through 4.8 show a comparison between a TD-UTD solution and an 

eigenfunction reference solution for the TE2 (soft) far zone scattering from a two 

dimensional (2-D) cylinder at various bistatic angles.   The reference eigenfunction 

solution is a frequency domain solution [53] which is multiplied by the frequency 

domain window in Figure 4.3 and transformed into the time domain using the IFFT. 

The time pulse excitation, in the top plot of Figure 4.3, corresponding to the frequency 

window in the bottom plot of Figure 4.3, is convolved with the TD-UTD analytic 

impulse response in closed form where only two frequency domain exponentials are 

used (see (2.67) in Chapter 2). In the far zone, xd —► oo and xL —> oo so that the 

coefficients Jls,h and VSth are proportional to the Fa /, (—,£) function. The source and 

observer locations are chosen to be in the far zone for this comparison because the 
+P 
Fsh (2,£) function is more difficult to calculate than the other terms in reflection 

coefficient JlSth and diffraction coefficient Vs,h and it is therefore desirable to check 

the accuracy of this Fsh ("?0 function.  The radius of the cylinder is r = 1 meter 

which makes the radius one wavelength at the peak frequency of the window function 

in Figure 4.3. In Figures 4.4 through 4.13, the top plot shows the magnitude of the 

analytic time function while the bottom plot shows the real part of the analytic time 

function.  Although the bottom plots (i.e. the real part) are the actual time signals 

arising from the excitation in Figure 4.3, the top plots (i.e. the magnitude) may be 

thought of qualitatively as the signal from an envelope detector. Notice that there is 

excellent agreement between the TD-UTD solution and the eigenfunction reference 

solution, which confirms that the numerical algorithm for computing Fsh (^-»0 m 
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Figure 4.3: Excitation pulse w(t) and corresponding frequency response (or frequency 
window) W(f) used for the scattering from a 2-D cylinder example. 

Appendix E is working well for this case and that the TD-UTD is very accurate for 

this case. 

Figures 4.9 through 4.13 are essentially the same as the Figures 4.4 through 4.8 just 

discussed except that Figures 4.9 through 4.13 are for the TM2 (hard) polarization 

case. 

4.7     Conclusions 

This chapter presents a TD-UTD formulation for the scattering from a smooth per- 

fectly conducting convex surface. The TD-UTD impulse response for the field in the 

presence of a convex smooth surface may be written as 

r ±i...   +< 

+ UTD   ,,v E,     (0 = < 

E/ (t)+ E/  (t)    lit region 

iUt) shadow region 

(4.50) 
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Figure 4.4: Comparison of the TD-UTD solution and an eigenfunction reference 
solution (eigen) which is transformed into time domain with the IFFT after the 
window in Figure 4.3 is applied. The far zone backscatter from a 2-D circular cylinder, 
for TEZ (hard) polarization and the radius is r = 1 meter. 
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Figure 4.5: Comparison of the TD-UTD versus a reference eigenfunction solution 
("eigen") which is transformed into the time domain with the IFFT after the window 
in Figure 4.3 is applied. The far zone bistatic scattering (at bistatic angle if) = 90°) 
from 2-D cylinder, for TEZ (hard) polarization and radius r = 1 meter. 
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Figure 4.6: Comparison of the TD-UTD versus a reference eigenfunction solution 
("eigen") which is transformed into the time domain with the IFFT after the window 
in Figure 4.3 is applied. The far zone bistatic scattering (at bistatic angle if) = 135°) 
from 2-D cylinder, for TEZ (hard) polarization and radius r = 1 meter. 
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Figure 4.7: Comparison of the TD-UTD versus a reference eigenfunction solution 
("eigen") which is transformed into the time domain with the IFFT after the window 
in Figure 4.3 is applied. The far zone bistatic scattering (at bistatic angle ip = 165°) 
from 2-D cylinder, for TE2 (hard) polarization and radius r = 1 meter. 
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Figure 4.8: Comparison of the TD-UTD versus a reference eigenfunction solution 
("eigen") which is transformed into the time domain with the IFFT after the window 
in Figure 4.3 is applied. The far zone bistatic scattering (at bistatic angle V> = 175°) 
from 2-D cylinder, for TE* (hard) polarization and radius r = 1 meter. 
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Figure 4.9: Comparison of the TD-UTD versus a reference eigenfunction solution 
("eigen") which is transformed into the time domain with the IFFT after the window 
in Figure 4.3 is applied. The far zone backscatter from 2-D cylinder, for TM* (soft) 
polarization and radius r = 1 meter. 
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Figure 4.10: Comparison of the TD-UTD versus a reference eigenfunction solution 
("eigen") which is transformed into the time domain with the IFFT after the window 
in Figure 4.3 is applied. The far zone bistatic scattering (bistatic angle ij) = 90°) from 
2-D cylinder, for TMZ (soft) polarization and radius r = 1 meter. 
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Figuye 4.11: Comparison of the TD-UTD versus a reference eigenfunction solution 
("eigen") which is transformed into the time domain with the IFFT after the window 
in Figure 4.3 is applied. The far zone bistatic scattering (bistatic angle ip = 135°) 
from 2-D cylinder, for TM* (soft) polarization and radius r = 1 meter. 
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Figure 4.12: Comparison of the TD-UTD versus a reference eigenfunction solution 
("eigen") which is transformed into the time domain with the IFFT after the window 
in Figure 4.3 is applied. The far zone bistatic scattering (bistatic angle if) = 165°) 
from 2-D cylinder, for TM* (soft) polarization and radius r = 1 meter. 
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Figure 4.13: Comparison of the TD-UTD versus a reference eigenfunction solution 
("eigen") which is transformed into the time domain with the IFFT after the window 
in Figure 4.3 is applied. The far zone bistatic scattering (bistatic angle if) = 175°) 
from 2-D cylinder, for TM* (soft) polarization and radius r = 1 meter. 
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where the impulse response of the incident GO field is 

E'7 (0 = EU(^) 6 (t - s{/c) (4.51) 

with EQ being an initial value vector which is a constant with respect to time (or 

frequency) and contains the polarization information of the incident field. Note that 

the field in (4.51) is from the source and travels to the observer along a straight line 

of length s\ The fields incident at the point of reflection QR and the attachment 

point <3i have the same form as in (4.51). The TD-UTD generalized reflected field is 

Ef (t) = K ■ [KS (rr)e±e±+ %h (rP)e;,ejj] A(sr)A,(sl) (4.52) 

where rr = t — sl/c — sr/c, and the TD-UTD surface diffracted field is 

E; (0 = K • [is (rd)b1b2+ Vh (rd)nin2] A^Ms*) (4.53) 

where Ta = t — s,/c — sd/c. Note that the variable s* in (4.52) is the distance from the 

source to the reflection point QR but the variable s' in (4.53) is the distance from the 

source to the point of attanchment Q\. The TD-UTD coefficients Ha,h and "Da,h can be 
+P 

found in (4.48) and (4.49), respectively. The special function FSih ("5^)j used m the 

uniform coefficients 72-Si/, and VSth, can be calculated using the numerical algorithm 

in Appendix E for all values of E and  Im (t) > 0.002|E3| (or  Im (t) > 0.002|(HL)3|). 

Finally, the impulse response formulas, denoted by the subscript I, may be convolved 

with an excitation in closed form as in (3.80) and (3.81) when the excitation has the 

form in (3.77) and (3.78). 
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Chapter 5 

Conclusions 

This report presents a development of a time domain version of the uniform geometri- 

cal theory of diffraction (TD-UTD). The analytic time transform (ATT) is formulated 

and is shown to be very useful in deriving the TD-UTD solution to the scattering from 

an arbitrary curved wedge and also from an arbitrary smooth convex surface, both 

of which configurations are perfectly conducting. These two types of configurations 

constitute a very important set because many complex geometries can be built up 

from these configurations as has already been demonstrated in the frequency domain 

UTD based ray approach. This same ray picture is valid in the TD-UTD developed 

here, and therefore the TD-UTD retains all the advantages of the frequency domain 

UTD. 

The ATT is defined and its properties are discussed in Chapter 2. An important 

observation is that the ATT may be expressed as a one-sided forward Laplace trans- 

form when the roles of time and frequency are interchanged as expressed in (2.13). 

This is an important observation since it implies that the abundant math texts and 

tables on the one-sided Laplace transform may be applied in deriving results for the 

ATT. Another important result presented in Chapter 2 is the ATT applied to an 

asymptotic high frequency power series expansion, which is useful when deriving ex- 

pressions for the numerical computation of special functions. It is noted that the 

ATT can not simply be applied to an asymptotic frequency domain power series 

term-by-term, nonetheless more rigorous results are presented in Chapter 2. When 

an impulse response is represented by an analytic time function (obtained by the 
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ATT), the convolution with an excitation pulse function can be performed in closed 

form as in (2.70) when the frequency response of the excitation is modeled as a series 

of exponential functions as in (2.67). 

The TD-UTD formulation for the scattered field from a general curved wedge when 

the wedge is illuminated by an astigmatic wavefront is presented in Chapter 3. The 

TD-UTD impulse response for the curved wedge is obtained by an application of the 

ATT to the frequency domain UTD formulation. This TD-UTD impulse response may 

then be convolved with a more general time pulse excitation where the convolution 

may be performed efficiently as described in Chapter 2. In general, the TD-UTD 

impulse response for the curved wedge may be expressed as 

EJ
TD
 (t) =E'7 (t)Ui+ E7 (t)ur+ &i (*)+ kd (0 (5-1) 

where the spatial unit step functions [/, and Ur are 1 on the lit side of the incident 

shadow boundary and the reflection shadow boundary, respectively, and 0 otherwise. 

The TD-UTD incident GO field E7 (*) is in (3.10) and the TD-UTD reflected field 

E/ (0 is in (3.14). The first order TD-UTD edge diffracted field E? (t) is in (3.16) 

where the TD-UTD dyadic diffraction coefficient is defined in (3.40) and (3.41). The 
-f" sd 

higher order edge diffracted field called the slope diffracted field E7 (t) is in (3.56) 

where the TD-UTD dyadic slope diffraction coefficient based on Hwang's frequency 

domain UTD slope result is given in (3.57) and (3.58) while the slope diffraction 

coefficient based on Veruttipong's frequency domain UTD result is given in (3.64) 

and (3.65). The two versions of the slope diffraction coefficient are derived in detail 

in Appendix 0. 

Chapter 4 presents a TD-UTD formulation for the scattering from smooth con- 

ducting convex surfaces. Only the scattering case where the source and observer are 

removed from the surface is analyzed in Chapter 4, but the radiation and coupling 

cases could be handled in a similar fashion. The TD-UTD impulse response for the 
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field in the presence of a convex smooth surface may be written as 

r +,■,.,   +< 

+ UTD   /.•. 
E/     (0 = { 

E/ {t)+ E/  (t)    lit region 

E/ {t) shadow region 

(5.2) 

where the impulse response of the incident GO field is 

with EQ being an initial value vector which is a constant with respect to time (or 

frequency) and contains the polarization information of the incident field. Note that 

the field in (5.3) is from the source and travels to the observer along a straight line 

of length 5*. The TD-UTD generalized reflected field Ef (0 is given in (4.52) and 

the TD-UTD surface diffracted field E? (0 is in (4.53). The surface diffracted field 

E; (t) may also exist in the lit region for closed surfaces when multiple encirclements 

are included. In the same manner as the TD-UTD wedge scattering formulation, the 

impulse response formulas for the smooth surface scattering, denoted by the subscript 

7, may be convolved with an excitation in closed form as in (3.80) and (3.81) when 

the excitation has the form in (3.77) and (3.78). 

The development of the TD-UTD is important for many reasons. There are many 

problems of engineering interest for which the more robust time domain numerical 

methods (such as the finite difference time domain (FDTD), or the time domain 

integral equations (TD-IE) method) are not well suited, because the geometries are 

too large in terms of pulse width. Also, the TD-UTD can provide an approximate 

impulse response which may provide more interesting information about a scatterer 

or an antenna, since the impulse response is essentially independent of excitation 

waveform shape. In addition, the development of the TD-UTD has requires the use 

of some novel techniques such as the analytic time transform (ATT) and so forth, 

there are many other research topics which the development of the TD-UTD and the 

ATT may have a positive benefit. 

An important observation from the development of the TD-UTD is that the early 

time asymptotic results obtained from the high frequency asymptotic frequency do- 
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main solutions are not necessarily causal. This is understood now, because the early 

time results correspond to scattering from localized portions of an object, and the 

shifted times about which they are asymptotically valid is NOT the so called "turn 

on time" for the general geometry. This is an important observation, because it rules 

out using an inverse Laplace transform for solving general problems since the inverse 

Laplace transform only provides one-sided time functions. Although, in principle a 

two-sided Laplace transform or a Fourier transform could be used, the ATT developed 

in Chapter 2 is much more convenient. The analytic time signals obtained from the 

ATT provide a very compact general solution which can be convolved with a broad 

class of excitation functions in closed form. 

The TD-UTD formulations developed in this report for a general curved wedge 

including slope diffraction and for the diffraction from smooth convex curved surfaces 

(scattering case) represent a substantial progress towards achieving a full TD-UTD 

framework which is just as useful as the frequency domain UTD. Nonetheless, there 

is a lot of research which still must be done to extend the usefulness of the TD- 

UTD even farther. First of all, work should be done on improving the efficiency of 

computing the TD-UTD transition functions (related to the Fock type function) in the 

smooth surface diffraction coefficient. Although the numerical algorithm described in 

Appendix E is adequate for most purposes, it is likely that there is a more efficient 

method for the calculation since accuracy not efficiency was the primary concern in 

the development of the numerical algorithm in Appendix E. Next, there are still some 

canonical (localized) geometries to be analyzed such as the coupling and radiation 

problems for antennas located on smooth convex surfaces, diffraction from a vertex, 

a general equivalent current type of formulation for observations near paustics, an 

impedance wedge, and so on. In particular, the development of the TD-UTD solution 

to the coupling and radiation on/from smooth convex surfaces should essentially 

follow the approach used for the scattering case considered in this report. 

In addition to the obvious potential research topics concerning the TD-UTD men- 

tioned above, there are some other potential research problems related to the TD- 

UTD. One of these topics is using the TD-UTD as the guiding principle in the de- 
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velopment of new parametric models used in the analysis of radar scattering data 

[5, 6]. There are some inherent benefits of formulating parametric scattering models 

in the time domain (or more generally the image domain) instead of the frequency 

domain since for scatterers large in terms of wavelength (or pulse width) the terms 

in the parametric model naturally become isolated in time. Another potential use of 

the TD-UTD is in the development of a hybrid numerical method combining a robust 

numerical approach such as the finite difference time domain (FDTD) or time domain 

integral equations (TD-IE) with an asymptotic ray based methodology. Although, 

it is not currently known how a hybrid time domain numerical method such as this 

would perform, it is felt that the TD-UTD formulation as presented in this report 

would be helpful in its development. 

Recently, there has been a great interest in a new type of transform called the 

wavelet transform [54, 55]. There are fundamentally two types of wavelet transforms; 

the discrete wavelet transform (DWT) and continuous wavelet transform (CWT). It 

appears that the DWT is more popular because there have been recent developments 

in fast algorithms for the computation of the DWT. Nonetheless, it turns out that the 

second time derivative of the ATT defined in (2.11) is a continuous wavelet expansion. 

See Kaiser [56] to understand this relationship. In particular, Chapter 9 of [56] 

"Introduction to Wavelet Electromagnetics" is very helpful. To utilize this CWT, 

there may be further modifications necessary to compensate for the poor behavior of 

the asymptotic high frequency results at the low frequencies, but these modifications 

should be trivial. Because of the observation that the ATT is actually a CWT, the 

TD-UTD which uses the ATT may be applied to compute time-scale or time-frequency 

distributions of various diffraction phenomena directly or essentially in closed form. 

It is not known if looking at the TD-UTD formulation from a wavelet transform 

perspective would be helpful, but there may be future research opportunities here. 

In summary, the current development of the TD-UTD will likely impact many 

areas of research beyond just the analysis of electromagnetic radiation and scattering 

phenomena, because of the novel use of the ATT and also the increased insight into 

transient electromagnetics. 
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Appendix A 

Synthesis of an Arbitrary Finite 
Energy Time Pulse for Efficient 
Convolution 

This appendix describes one practical method of obtaining the parameters in the 

model of the excitation waveform in (2.68) or (3.78). As discussed earlier, the advan- 

tage of using the model in (2.68) or (3.78) is that the convolution of this model with 

the TD-UTD impulse response can be performed in closed form as shown in (2.70) 

or (3.80). 

Assume that the constants {An} are real and an = a'n + ja" where a'n and a„ are 

real for n = 1,..., N. Now, the real time waveform constructed by the model (using 

the series in (2.68) or (3.78)) is 

F{t) =ReP(t) = l £ {t_ffi+<*     for   Im * = 0 (A.l) 

Assume that the entire excitation pulse F^t) is contained in the time interval 0 < 

t < a (or at least approximately contained within this interval). Notice that the 

parameter a" controls the position of the n expansion term on the t axis while a'n 

controls the "width" of the n term. It would be convenient to select explicit values 

(which may depend on the index n) for the parameters a'n and a|( so that the solution 

for the A„ parameters will be a "system of linear equations" type of problem. Let 

the expansion functions be equally spaced along the t axis and choose 

a" = (n_1)]v3T (A-2) 
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for n = 1,...,N. Let the "width" of the expansion functions be constant (a'n = a' 

for all n) and enforce 
,      1     a 

a' > 
2N-1 

to make sure the expansion functions are wide enough. Typically, one can choose 

a' = 0.75(a/(JV - 1)) or a' = 1.0(a/(JV - 1)) for satisfactory results. Note that 

choosing an a' value that is too large may make the expansion approximation have a 

large "tail" for times where the excitation waveform is actually zero, on the other hand 

choosing a' too small may cause too much "ripple" in the expansion approximation. 

Now sample the excitation waveform F^t) at M points defined by 

tm = (m- 1) 

[C^Jmn = 
l < 
7T(*m - <)2 + <2 

[B)m 
= F&tm) 

[4 = An 

M-l 

for m = 1,2,..., M and M > N. The expansion in (A.l) is set equal to the excitation 

waveform F^t) at these sample points to form an overdetermined system of linear 

equations 

[C][A] = [B] (A.3) 

where 

(A.4) 

(A.5) 

(A.6) 

One can solve the overdetermined system of equations in (A.3) in a least squares sense 

by using the singular value decomposition (SVD) [57]. Or, a simpler but less robust 

approach to solve (A.3) in a least squares sense is to form the moment equations 

[C}T[C}[A]=[C}T[B] (A.7) 

and then use Cholesky decomposition on (A.7) to solve for the unknown vector [A] 

[57]. The solution of these equations provides the {An} parameters and all the pa- 

rameters in the expansion are now specified. 
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Appendix B 

Exact Time Domain Field of an 
Arbitrarily Oriented Electric or 
Magnetic Dipole in the Presence 
of a Perfectly Conducting Wedge 

This appendix summarizes an exact time domain solution for the electromagnetic field 

from an arbitrarily oriented electric or magnetic dipole in the presence of a perfectly 

conducting wedge. The solution in this appendix is based on Felsen's work [22]. In 

this appendix, a "~" on top of a variable indicates that it is a frequency domain 

quantity. An eJ,u;t time convention is used for the frequency domain quantities in this 

appendix. 

The coordinate system used here is shown in Figure B.l. Without loss of generality 

the source is assumed to lie in the z = 0 plane and the observer may be out of this 

plane. The wedge angle a is assumed to be less than 180 degrees, but the solution 

for the general case is given by Felsen [22]. The more general case simply includes 

more image contributions, whereas for the a < 180 case there is at most one image 

contribution to the geometrical optics field corresponding to the reflected ray. 

B.l    Electric Dipole Case 

Electromagnetic fields can be expressed in terms of vector potentials. Felsen chooses 

to use Hertz vector potentials in [22] so they are also used here. The electric field E 

and magnetic field H can be expressed in terms of the electric Hertz vector potential 
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X 

Figure B.l: An electric (or magnetic) dipole radiating in the presence of a PEC wedge. 
The dipole is in the z = 0 plane but the observer may be out of this plane. 

n by [58] 

E = vv-n-^n 

H cVxsn 

in the time domain, or 

E = vvn + wVn 

H   =   jweV x Ö 

(B.l) 

(B.2) 

(B.3) 

(B.4) 

in the frequency domain. The space surronding the wedge is assumed to be a linear ho- 

mogeneous isotropic nonconducting medium, and the permittivity e and permeability 
*' 

fi are constants with respect to space and time (or frequency). The electromagnetic 

fields satisfy Maxwell's Equations 

dE     dP (B.5) 

(B.6) 

(B.7) 

(B.8) 

VxH 

Vx E 

edt + dt 
an 

VE = -Iv-p 
e 

VH =   0 
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where P is an electric dipole moment density which is related to the electric current 

density J by 

J - |P. (B.9) 

The Hertz electric vector II satisfies the wave equation 

v2n-(ie^-2n = --p. (B.io) 

Notice that the Hertz electric vector II is related to the conventional vector potential 

A by [59] 

A = ^ (B.11) 

or in the frequency domain 

Ä = jufiefl. (B.12) 

In the far zone, defined here as the limit r —> oo, the Hertz vector can be written 

as 

fl~?—ip(0,(i>)   forr^oo (B.13) 
T 

and the electric field becomes 

u2 e-*r 

E rxrxfp(0,<£)   for r -> oo (B.14) 
c2    r 

where c2 = l/(/xe). In the time domain, these far zone relationships become 

n ~ -fp(6,<f>,t - r/c)   for T -> oo (B.15) 
r 

1   d2 

E~ ——rxf xfp(8,<j),t- r/c)   for r -> oo. (B.16) 
clr otl 

Usually, the 1/r factor and r/c time delay in (B.15) or (B.16) are not included in far 

zone calculations. 

The "impulse response" in this appendix is defined in terms of the dominant term 

of the electric field incident on the wedge, therefore to obtain the impulse response 

let the electric dipole moment density have a ramp time dependence as in 

P(«) = p£(r - v')tu{t) (B.17) 

or equivalently let the electric current element be 

J(*) = p£(r - r>(i) (B.18) 

where u{t) is the unit step function. 
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The Geometrical Optics Field 

It is assumed here that the orientation of the dipole p is contained in the z = 0 plane 

(i.e. a transverse source). The solution for a longitudinal source can be found in 

Felsen's book [34]. 

The Hertz vector can be written as 

n = ns° + nd (B.19) 

where II^0 corresponds to the geometrical optics (GO) field, while II corresponds 

to the diffracted field. When the wedge angle a is less than 180 degrees, the GO 

Hertz vector can be written as two terms 

TTKO -   1   (( - |r - r'\)u(t - |r - r'|) 118     =   Pte \^7\ «('-I*-'I) 
l(,-|r-,;|Wi    |r_r;|) 

47T6 lr-ril 

where the orientation of the dipole is 

p = xcosi/ + y sini/ (B.21) 

and the orientation of the image is 

p, = —x cos v + y sin v. (B.22) 

The position of the dipole in cylindrical coordinates is r' =  (p',(f>',0), while the 

position of the image source is r- = (p',^,0) where <$>\ = 2ir — <f>'. 

To obtain the far zone (r —> oo) expressions use 

r-r0  ~ < 
in magnitude ^^ 

T — r • ro    in phase (or time delay) 

where ro may be r' or r(. Using the above far zone approximation, the Hertz vector 

becomes 

ngo   „    .Kr + gV/cMr + rV/c) 
iire r 

i (r+M/«>(T + i.w 

Aire r 
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where r = t — r/c. Using the above result together with (B.15) and (B.16), the far 

zone geometrical optics electric field can be written down from inspection as 

ES°   ~   rxf xp-^(T + r-r7C)u(7r-|<£-^|) 
47rrc 

+fxrx Vi^-S(r + f • r;/c)u(7r - \</> - <#|) (B.25) 

where ZQ = Jp./t. 

The Diffracted Field 

The Hertz vector corresponding to the diffracted field II    as presented by Felsen is 

repeated here for convenience [22]. Also, the simplification of II   for an observer in 

the far zone and the electric field in the far zone is derived. 

When the orientation of the dipole p is transverse to z the solution is obtained 

from only the transverse components of the Hertz vector II = xHx -f yHy.   Felsen 

gives [22] 
^ =__^Re[^y(^^-^)] 
dt2   x'y 47T2e pp'smhß K        '  ' K        ' 

where the double time derivative on n^ „ occurs because Felsen uses the source P = 

p£(r — T')6(t) which is the double time derivative of the source used here. The other 

parameters in (B.26) are 

ß = cosh -l cH2-p2-p'2-z2 

(B.27) 

r = ^{p + p'f + z2 (B.28) 

and 

7T 
Ax((j),<f>',w)   =   ——{[Qxi^-<f>',w)-Q!((/) +(j>',w)] cos u 

la 

- [Q2{<j> - <j>', w) + Q2(<f> + <f>', w)} sin i/} (B.29) 

Mfafi'™)     =     -fo{[Q2(<l>-4>',V>)-Q2(<l>+<l>',V))]cOBU 

+ [QM - <f>',w) + Q^ + <£»] smv} (B.30) 
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with 

Qi(ip,w)   =   cos('0 — w — 7r)cot 

— cos(,0 + w + 7r) cot 

lj) — W — 7r\ 

2a/?r     J 
'■0 + iu + 7T 

2a/?r 
(B.31) 

Q2{'4>-Iw)   =   sin(,0 — w — 7r) cot 

— sin(,0 + w + 7r) cot 

V> — it; — 7r\ 

laj-K     ) 

''iff + W + 7T 

2a/7r 
(B.32) 

To obtain the far zone expressions, the following far zone approximation is used 

c2t2 -p2- p'2 - z2 

2pp> 

CT 

p' sin 6 
for T —> oo 

where 

r = t — r/c 

and notice that 

sinh   cosh-   I ——;—- I 
\p'smVj 

So, in the far zone, the Hertz vector Ilf y becomes 

-c    Re[AXiV(cf>,4>',-jß)} 

= —*—-Jc*T2-p'2 sin2 6. 

dt2   x'v      4?r2er    ./^2_,/2^2 
    ii I r sin 0 

^c2r2 - p'2 sin2 0       V        c > 

where 

/? ~ cosh -l CT 

p' sin 0 

Now the far zone diffracted electric field can be written down 

E° ■ixfx{xRe[4(^'r^)] 

+ yRe[Ay(<f>,<f>',-jß)]} 
u (T - £ sin 6) 

^/c2r2 _ p/2 sin2 ß 

(B.33) 

(B.34) 

(B.35) 

(B.36) 

(B.37) 

(B.38) 
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B.2    Magnetic Dipole Case 

Once again, the electromagnetic fields can be expressed in terms of vector potentials. 

Felsen chooses to use Hertz vector potentials in [22] so they are also used here. The 

electric field E can be expressed in terms of the magnetic Hertz vector potential IIm 

by [58] 

E   =   -fi^-VxU."1 (B.39) 
at 

in the time domain, or 

E   =   -iw/iVxnra (B.40) 

in the frequency domain. The electromagnetic fields satisfy Maxwell's Equations 

/9E 
VxH   =   e— (B.41) 

V-E   =   0 (B.43) 

VH   =   -V-M (B.44) 

where M is a magnetic dipole moment density which is related to the magnetic current 

Kby 

K = fi^-M. (B.45) 

The magnetic Hertz vector IIm satisfies the wave equation 

V2nm - fie^-rll"1 = -M. (B.46) 
at1 

Notice that the Hertz magnetic vector IIm is related to the conventional vector po- 

tential F by [59] 

F = ^e— (B.47) 

or in the frequency domain 

F = juftefr. (B.48) 
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In the far zone, defined here as the limit r —> oo, the Hertz vector can be written 

as 

Öm ~ ^—^m{B,<f>)   for r -» oo (B.49) 
T 

and the electric field becomes 

2        —jkr 

E^_^ü! TXgm(e,(f>)   forr^oo. (B.50) 
c      r 

In the time domain, these far zone relationships become 

nm ~ -gm(0, <f>, t - r/c)   for r -» oo (B.51) 
r 

E~-^rxgm(M,<- r/c)   for r -> oo (B.52) 
er ö^ 

Usually, the 1/r factor and r/c time delay are not included in the far zone calculations. 

The "impulse response" in this appendix is denned in terms of the dominant term 

of the electric field incident on the wedge, therefore to obtain the impulse response 

let the magnetic dipole moment density have a ramp time dependence as in 

M(0 = -m8{v - v')tu{t) (B.53) 
A* 

or equivalently let the magnetic current element have a step time dependence as in 

K(0 = m£(r - r>(<) (B.54) 

where u(t) is the unit step function. 

The Geometrical Optics Field 

It is assumed here that the orientation of the magnetic dipole m is contained in the 

z = 0 plane (i.e. a transverse source). The longitudinal source case can be found in 

Felsen's book [34]. 

The Hertz vector can be written as 

jjm = nm,gO + jjm.d (ß 55) 
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where Hm^° corresponds to the geometrical optics (GO) field, while nm'd corre- 

sponds to the diffracted field. When the wedge angle a is less than 180 degrees, the 

GO Hertz vector can be written as two terms 

D-*>   =   Al   C-lr-rXt-lr-r'l) ^_ 
4-Kn |r — r'| 

+   A   1   {t-\,-^t-\,-^\) (B.66) 

where the orientation of the magnetic dipole is 

rh = xcosi/ + y sini/ (B.57) 

and the orientation of the image is 

m, = x cos v — y sin v. (B.58) 

The position of the magnetic dipole in cylindrical coordinates is r' = (p',(f)',0), while 

the position of the image source is r( = (p',^,0) where $ = 1-K — ft. 

To obtain the far zone (r —> oo) expressions use 

r — ro ~ < 
r in magnitude 5 (B.59) 

r — T 'To    in phase (or time delay) 

where ro may be r' or r(-.   Using the above far zone approximation, the magnetic 

Hertz vector becomes 

ir»*° ~ 1i1J-(r + '-r,/c)lt(T + '-r,/c)
tt(y-|^-^|) 

A-Kfi r 

+lh,.J-(r + '^-/cMr + rT;./C) 
Airfi r 

where r = t — r/c. Using the above result together with (B.51) and (B.52), the far 

zone geometrical optics electric field can be written down from inspection as 

E6°   ~   rxm-!— 6{T+ T-T'IC)U{-K-\<f>-<j>'\) 
%irrc 

+r x m,—!— s(T + r • P-/C)«(IT - \<f> - #|). (B.61) 
47rrc 
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The Diffracted Field 

The magnetic Hertz vector corresponding to the diffracted field nm' as presented 

by Felsen is repeated here for convenience [22]. Also, the simplification of nmd for 

an observer in the far zone and the electric field in the far zone are presented. 

When the orientation of the magnetic dipole rh is transverse to z the solution is 

obtained from only the transverse components of the Hertz vector IIm = xn™ + yn™. 

Felsen gives [22] 

Otz     'v VKl pp'smhp 

where the double time derivative on II!!1' occurs because Felsen uses the source 

M = -rh£(r — v')8{t) which is the double time derivative of the source used here. 

The parameters in (B.62) are the same as in the electric dipole case, except 

ZiOt 

- [Q2{<j> - 4>\ w) -Q2Ü + (/>', w)] sin u) (B.63) 

A™(cf>,<f>',w)   =   -^{{Q2(4>-<f>',w) + Q2((f> + <l>',w)}cosu 

+ [Qi(<l>-<f>',w)-Q1{<f> + <l>,,w)}smv} (B.64) 

The far zone expressions are obtained in the same manner as in the electric dipole 

case. In the far zone, the Hertz vector n™j" becomes 

»   *   -c **\AÜ*<*>-m\j_ ?',.„)       (B.65) 

where 

ß ~ cosh 1 CT 

p' sin 6 
(B.66) 

as r —> 00, and 

T = t-r/c. (B.67) 

Now the far zone diffracted electric field can be written down 

E" -^rrxiicReiA^i't-jß)} 

+yRe[^.^-^)]};i;;_°:il     <B-68> v/c2r2 _ p>2 gin2 Q 

as r —> 00. 
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Appendix C 

Derivation of Two TD-UTD Slope 
Diffraction Coefficients, One 
Based on Veruttipong's Work and 
the Other on Hwang's Work 

This appendix derives two versions of the TD-UTD slope diffraction coefficient; one 

version is based on a frequency domain slope diffraction coefficient derived by Hwang 

and Kouyoumjian [21, 4] and the other is based on a frequency domain slope diffrac- 

tion coefficient, derived by Veruttipong and Kouyoumjian [20]. For simplicity, these 

two results will be referred to as Hwang's version and Veruttipong's version of slope 

diffraction, respectively. The TD-UTD slope diffraction coefficient for either case is 

obtained by an application of the analytic time transform (ATT) described in Chapter 

2. 

Hwang obtains the slope diffraction coefficient by taking the derivative with re- 

spect to <f>' of the exact straight wedge diffraction coefficient, where this exact coeffi- 

cient is written as a spectral integral. The operations of integration and differentiation 

are interchanged and the new spectral integral is evaluated asymptotically. On the 

other hand, Veruttipong finds the slope diffraction coefficient by taking the derivative 

with respect to <f>' of the UTD wedge diffraction coefficient, where the UTD coeffi- 

cient is obtained by an asymptotic evaluation of the exact diffraction coefficient. So, 

Veruttipong takes the derivative of an asymptotic expression whereas Hwang inter- 
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changes the derivative and integration operations first and then does the asymptotic 

evaluation. 

This appendix derives the time domain slope diffraction coefficients for the straight 

wedge, but these slope diffraction coefficients can be generalized to the curved wedge 

case as is done in Chapter 3. 

C.l    Hwang's Slope Diffraction Coefficient 

Hwang's frequency domain slope diffraction coefficient for a straight wedge can be 

written as 

where 

DU 
-1 

4raV27r snr/30m=i 
£ C'*F,{zmiu>) (C.l) 

C'{h 

Cl'h 

+ csc2[(7r + /r)/(2n)] 

-csc2[(7r-/r)/(2n)] 

±csc2[(7r + /3+)/(2n)] 

Tcsc2[(7T-/?+)/(2n)] 

(C.2) 

(C.3) 

(C.4) 

(C.5) 

and 

with 

Fs(xm,u) = 2xr 
Vc F(xm,u;) 

Vju       \   c   J 

where Ftr(z) is the UTD transition function defined by 

f°°     ■ •> 
Ftr(z) = 2j^e'z        e~>T dr 

The F{xm,ui) function can also be written as 

F{xm,u>) = v^F^e^-^erfc U3J^\ 

as is done in Chapter 3. The xm for a straight wedge are defined by 

sei    =   La+(ß~) 
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x2   =   La-{ß-) (C.ll) 

x3   =   La+{ß+) (C.12) 

x4   =   La~(ß+) (C.13) 

where a^{ß) = 2cos2[(2n7riV± — /3)/2] and JV± is the nearest integer solution of 

2irnN± — ß = ±7r. The L parameter for a straight wedge can be found in [4, 2]. 

Now the TD-UTD slope diffraction coefficient based on Hwang's coefficient is 

*>'•* W = A 2fiT' >R   £ C™   ^ ('"'*) (C-14) 
4n2V27T sm'ftmri 

where j*^ (aJro,£) is the analytic time transform of Fa(xm,u>) given by 

-W 
-Fs (3m,£) — "25r 

7/4 v^C 3\J-Zm/T 
(C.15) 

y^V1^     V^iV1^ + e-^4y/-xm/c)_ 
which can be easily simplified into 

Fs (xm,t) = Jl 2Xme~'"')        , (C16) 

It is interesting to examine some special cases. Consider the straight wedge when 

it is illuminated by a transient pulse which is a real time impulse 8{i). For this case, 

xm > 0 and we are only interested in the real part of the slope transition function in 

(C.16). First Fs (vm,t) can be written as 

FS (xm,t) = [-^-)        t + xm/c (C.17) 

Now the real time function is the real part of (C.17) evaluated at real time (Im t = 0) 

Fs(xm,t) = (2^)-^u(t) (C.18) 
\      y/TT      )   t + Xm/C 

Notice that this function is zero at t = 0 and has a peak at t = xm/c. This signifies 

that the impulse response of the slope diffracted field for the straight wedge is a 

continuous time function and has a maximum after the time of arrival of the wavefront 

(i.e. the time corresponding to the diffracted ray path length). If the observation point 

is far from the m     shadow boundary, then xm can be considered much greater than 

ct and we find 
2c3/2   _ x 

F.(xm,t) j^Vtutt) for  -j-->oo (C.19) 
y7r ct 
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C.2     Veruttipong's Slope Diffraction Coefficient 

Veruttipong's frequency domain slope diffraction coefficient for a straight wedge can 

be written as 

D°     - -1 
L> . h      — 

where 

and 

°'h 4n2s/2^ sin2 ßQ 

+A1Fva(x1,u) + BiFa{xi,w) 

-A2FV9(X2,UJ) - B2Fa(x2,u) 

±A3Fva(x3,u>) ±B3Fa(x3,u;) 

TiÄI^,«)^^^)] (C.20) 

A1 = csc2((7r + /5-)/27i)-51 (C.21) 

A2 = CBC
2
((T - ß-)/2n) - B2 (C22) 

A3 = csc2((ir + ß+)/2n)-B3 (C.23) 

AA = csc2({T-ß+)/2n)-B4 (C.24) 

B1   =   +^^cot((7T + /r)/(2n)) (C.25) 

B*   =   -!^frcot((7r-/3-)/(2n)) (C.26) 
a  (ß  ) 

B3   = 

B4   = 

.^^oot((* + j9+)/(2n)) (C.27) 

-2£^cat((ir-/3+)/(2n)) (C.28) 

a^) = 2cos2(^^) (C.29) 

^(ß) = tön{2nirN± - ß) (C.30) 

All the other parameters in (C.20) are defined in the previous section of this appendix. 

The transition function Fa(xm,w) is defined in (C.6) and its analytic time transform is 
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(C.16). The other transition function, which only arises in Veruttipong's formulation, 

is 
,3/2 

F„(zmtU) = -A-^=FtT (^) (C.31) 
JWy/JUJ \    c    J 

where FtT{z) is the UTD transition function denned in (C.8). The FV3(xm,u)) function 

can also be written as 

F(zmtu) = ^V^^Wcerfc I f—f1 J (C.32) 

where the complement of the error function is defined as 

2    r°°     i 
erfc(z) = -7= /    e"' (ft (C.33) 

The analytic time transform of Fvs(xm,uj) is derived as follows. First notice that 

Fva(xm,w) =-^F(xm,u) (C.34) 

where F(xm,u>) is defined in Chapter 3 for use in the first order diffraction and is given 

in (3.32) or (3.34). The analytic time transform of F(xm,u) denoted by F (xm,t) in 

(3.38) is derived in Chapter 3. It is repeated here for convenience 

#(-,.) = -■ -^^  

1 + j^ (C.35) 

(C.36) 

</ircy/i(t + xm/c)       t + xm/c 

for  Im t > 0 where 

V~xm =  < 
V     "mi     *"m ^- " 

and  Re (\/—jt) > 0. The following property of the analytic time transform is used 

±-H{u,) <A>fr-V(t) + Co (C.37) 

where H       (t) is the anti-derivative (or primitive) of H (t) and Co is a constant 

which must be determined. Using (C.37), the analytic time transform of Fva(xm,u>) 
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IS 

Fvs(Xm,t)     =     jcJ — In I — v
/ I + ln(* + xm/c) 

\Jt - j^/xm/c 
+ C0 

J'2c^ln (v£ + jyfijc) + Co 

;'2c Vt + j^Jxm/c 

+jarg f v^ + j\Jxm/c) + C0 (C.38) 

where arg(z) is the argument of the complex number z. The constant Co are chosen 

such that Fvs (%m,t) — 0 when t = 0 (for xm > 0). This is a reasonable requirement 

since in general 

lim iwfff«) =    lim 
W-K» (-jt)-»0 

.  +   . .        .   Ö    +   . . 
-jH(t)-jt-H(t) 

and 

lim juFvs(xm,(jü) = 0 
W—»CO 

So, the analytic time transform of F„s(a;m,a;) can be written as 

(C.39) 

(C.40) 

Fvs (xm,t) = jcJ— In 
y/i + jyxm/c 

y/Xm/c 
+ arg U/t + jy/xm/cj -j- (C.41) 

To obtain a more convenient form for calculations, use ■s/x^ — —j\/—xm (since 

-7I-/2 < arg(-jcm) < 37r/2) and yfi = eivlA>/=Ji (since -ir < &ig(-jt) < ir) to arrive 

at 

+ v 2Cy/—Xr 
■tvs [Xm^tj     = y= In 

V^ 

+j arg (e*lA<f^7t + V^) - j| (C.42) 
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Appendix D 

Computation of the Time Domain 
Creeping Wave Function 

This appendix discusses the analytic time function which is used in the TD-UTD 

creeping wave analysis in Chapter 4. The layout of this appendix is as follows. First 

the creeping wave time function is defined and some of its properties are examined. 

Then some simple approximate formulas for small time values or large time values 

are derived. Finally, an efficient numerical algorithm is presented to compute the 

creeping wave time function for all intermediate time values. 

D.l     Definitions and Properties 

The creeping wave time function is defined as 

+ 1        f°° 1 / ■    vl       . 
Fcw(a,t) = -       CH-Se-^V'^L; (D.l) 

17 JO 

where  Im t > 0, a is a real constant and a > 0. 

By taking the appropriate derivatives and interchanging the differentiation oper- 

ation with the integration, it is easy to show that Few (a>0 satisfies the following 

differential equation 

0^3 Fcw (a, t) + — Few (a,t) = 0 (D.2) 

This differential equation with appropriate boundary conditions could be used to 

derive a series expansion in t or a series in a of Few (aj0> although this approach is 

not used here. 
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Some special values of the creeping wave time function are 

r(5/6)e-^/12 

Few (a = 0,4) 

9   +    /    ,x 
■Q- Few (a,t) 

Q=0 

dn   + 
d_   Jc cw (a,t) 

a=0 

TT(-jf)5/6 

T(7/6)e^/12 

7r(-i07/6 

7r(-ji)C   6   ) 

and 

i^ (a,4 = -oo) =FCW (t = oo,a) = 0 

(D.3) 

(D.4) 

(D.5) 

(D.6) 

Friedlander derived the following early time approximation by evaluating the in 

verse Laplace transform integral asymptotically [7] 

-2H(a/3)§] 
•-1 s  6 e 

a 2   exp 
A*) (D.7) 

2^ < 

for t —> 0+, and u(i) is the Heaviside unit step function. Notice that (D.7) is only 

valid for real time (i.e. Im t = 0). Because of the relationships between the Laplace 

transform and the Fourier transform, (D.7) is an approximation of the real part of 

Few (<*,t) in (D.l). Using (D.7) it can be deduced that 

~     r+ o        «2 

Re   [Few((X,t)\ ~ —= 
a 2   exp -2rs(a/3)l 

u(t) (D.8) 

for Im t = 0 and t —> 0+. Notice that (D.8) goes to zero as t -> 0+, and in fact 

any order of time derivative of (D.8) goes to zero as t —* 0+. Figure D.l shows a 

comparison between a numerical calculation of the creeping wave time function in 

(D.l) and the early time asymptotic result in (D.8). Notice that only the real part of 

(D.l) is plotted in Figure D.I. Also notice that the peak location of the asymptotic 

result, which in general occurs at t = |y, is very close to the peak location of the exact 

result. The comparison in Figure D.l is for the case of a = 1 but the comparison 

is essentially the same for other values of a (except for a change in height and scale 

change in t) because of the scaling properties of Few (<*,£) and the asymptotic result 

in (D.8). 
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Figure D.l: Comparison between a numerical calculation of the real part of the 
creeping wave time function in (D.l) ("Exact") and the asymptotic early time ap- 
proximation in (D.7) ("Asymptotic"), where a = 1. 
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The creeping wave time function has the following scale change properties. 

iL(a,^=^iL(a/61/3,0 (D.9) 

or 

Fcw (ba,t) = ~ Feu, (a,t/b3) (D.10) 

where b > 0. 

An early time power series representation for Few (a>t) can De derived by substi- 

tuting 
OO     111 

*jut = £ -u»r (D-n) 
into (D.l) and integrating term by term to obtain 

^(M)^£E(Vi±M(±y (D,2) 

for |^/o;3| —» 0. This type of early time series is sometimes called an "expansion by 

moments". Notice that this series gives   Re [Few (<M)] = 0 for \t/a3\ —> 0. So, the 

series in (D.12) is only useful if \t/a3\ is "very small".   Also notice that this series 

is divergent, but it is asymptotic for \t/a3\ -» 0.   This type of asymptotic series is 

sometimes called "semi-convergent" [60]. The method used to obtain the asymptotic 

series in (D.12) is valid when all of the integrals are convergent (see page 134 in 

Bleistein and Handelsman's book [31]). 

A late time (or large |£/a:3|) series representation can be derived by expanding the 

frequency domain function in the integrand of the transform integral of (D.l) into a 

low frequency series expansion and integrating term by term. This is done with the 

help of 

e-«U<*)lfi = £ L?$L(ju)»/3 (D.13) 
n=0      "'• 

which is used in (D.l) to obtain 

i    I    ,1 e->5     ^ T(5/6 + n/3)«*S   (-a)" , 

The series in (D.14) is convergent for t ^ 0 which can be shown with some effort 

by using the ratio test.  From a practical stand point the series in (D.14) has good 
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convergence when \t\ > a3. Note that the peak of Re [Few (a,t)] occurs close to 

t = a3/27, as seen in Figure D.l, which is significantly smaller than t = a3. So, the 

series in (D.14) is only useful when t is "very large". 

D.2    Numerical Algorithm 

This section describes an efficient algorithm which can be used to evaluate the integral 

in (D.l) numerically. This algorithm can theoretically be used for large or small values 

of \t\ (provided that Im t > 0). But, a more practical approach is to use the early 

time series in (D.12) when |i| «C a3/27, use the late time series in (D.14) when 

\t\ >> a3 and use the numerical algorithm for all other |i| values. 

The numerical algorithm is derived by first applying a "change of variables" on 

the integral of (D.l). Then it is noticed that the resulting integrand contains a slowly 

varying factor and a rapidly varying exponential factor. So, the slowly varying factor 

can be approximated by a simple polynomial or series of exponentials and then the 

integration is performed in closed form. 

The following change of variables 

z = (ju)3 = e^uj* (D.15) 

is used to change (D.l) into 

Fcw (a,t) = ^ f°°6XP(W6) zte-^dz (D.16) 
7T     JO 

Now, let 

y=z(
z±Y=z 

zi\it>t/2 (D17) 
3* 

a 

where t = \t\e^' and 0 < <j>t < 7r, to change (D.16) into 

lcw (a,() = ^ jT-^'Vexp [« (-, + i/)] äy (D.18) 

where 

n=(^)2 = |fi|e_jW2 (D,19) 

The integration contour of (D.18), shown in Figure D.2, lies in the valley because of 
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Till + <\>/6 Im(y) 71/3 + (|>/6 

A A 
7C/6 + <|>/2 

7C/6 + (j)/6 

Re(y) 

Figure D.2: The integration contour in the complex y plane. The shaded regions are 
valleys where the integral in (D.18) is convergent and the saddle points at y = ±1 are 
shown. The (f) is this figure is the phase angle of the complex time variable t = |t|eJ'*. 
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the following observation 

7T (l>t 7T d>t 7T St ,_   „„> 
- + — <- + — <- + — (D.20) 
66_62_26 V        ; 

for 0 < 4>t < 7T. The integration contour in (D.18) (shown in Figure D.2 as a solid line) 

is shifted to a new contour (shown in Figure D.2 as a dashed line) which goes straight 

down the valley. This contour shift is valid, since no singularities of the integrand 

exist in this particular shaded valley region and the integrand decays exponentially 

in the valley as \t\ —> oo. So, the new integral expression for Few (a,t) is 

+        . , -2JÜ5/2    rcoexpU*/3+j*t/6) r      / 1      \"| 

F™ (a'0 = Ja6/2 I y  exp [ü {-y + 3» JJ dy     (D-21) 

It is now convenient to map this contour integral such that the contour is along a real 

axis. This can be done by letting 

z=j,exp(-J7r/3-j&/6) (D.22) 

and noticing that 

=    \il\ Lze**-*'»3 - ^xA 

the integral can now be written as 

7ra ^(«,0="^'"::,;    jw P.») 

where 

I (t) = r x3/2e-sMx3e-MAxdx (D.24) 
Jo 

and 

4 = e;(*-<M/3 (D-25) 

Notice that  Re [A] > 0 for Im t > 0 (or 0 < <f>t < ir). Now the integral I (t) is what 

must be evaluated numerically. First I (t) is broken into two integrals 

I (t) =h (t)+ I2 (t) (D.26) 
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where 
rBx 

h(t)= I XmxV2e-iM*3e-MAxdx (D.27) 
Jo 

h (t) = f°°  x3/2e->Mx3e-MAxdx (D.28) 
J Bxm 

where 
/      3      \  3 

-=\m) (D-29) 

Notice that x = xm is the location of the maximum of x3^2e~ä^x where this is 

considered the "slowly varying" factor in the integrand, whereas e~^Ax is considered 

the "rapidly varying" factor in the integrand. The constant B is chosen such that 

the integrand of (D.24) is very small at x = Bxm. This guarantees that Ii (t) is the 

significant term in (D.26) and I2 (t) is only a small correction term. The constant B 

is chosen to be 

B = 2.7 (D.30) 

A different value for B could also be chosen as long as5>l 

The 12 (t) integral c 

tion by parts procedure 

The I2 (t) integral can be approximated by using the first term from the integra- 

+ (Bxm)Uxp[-l\n\(Bxmr-\n\ABxm] 
12 W m{Bxmy + A]  (D-31) 

but xm = (3/2)1/3|fi|-1/3 so 

+ (3/2)M exp[-|i?3- (3/2)* \U\UB] 
J2 (0 ~   .     ,   ,1 5 T^  (D-32) 

(3/2)» B2\n\*+A\n\ 2 

+ The accuracy of the above equation is not critical, since I2 (t) is much smaller than 

Ii (t). Also, notice that the approximation in (D.32) improves when |fi| increases 

(i.e. when t decreases). 

Now all that remains is the calculation of Ii (t) in (D.27). It is convenient to 

make another change of variables on Ii (t) so that the slowly varying factor in the 

integrand is independent of t and a. It is very useful for the slowly varying factor to 

be independent of t and a because it can then be approximated by a series of simple 

functions just once and the integration can be performed in closed form for any values 
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Figure D.3:  The slowly varying factor in the integrand of I\ (t) in (D.34), where 
B = 2.7. 

of t and a without finding a new approximation for the slowly varying factor. This 
+ 

turns out be a very efficient method for calculating the integral Ii (£). So, make the 

following change of variables 
x 

u 
Bxr 

to arrive at 

Ix (t) = (Bxm)l fuh-^e-W^^du 
Jo 

(D.33) 

(D.34) 

Notice that the slowly varying factor in the integrand u*e~? is now independent 

of t and a. Also, recall that the constant B = 2.7 is simply a fixed constant. Let the 

slowly varying factor in the integrand be called g{u) so that 

r \       - --1 g[u) = u?e  2 (D.35) 

Notice from Figure D.3 that g(u) is a smooth and continuous function. The next 

step is to approximate g(u) with a series of simple functions which, when substituted 

into (D.34), allows the integration to be done in closed form. One could achieve this 

by using global expansion functions denned on tt € [0,1] or by using subsectional 

expansion functions. The algorithm in this appendix uses global expansion functions. 
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Two types of approximations of g(u) are now explored, one uses a polynomial and 

the other uses a series of exponential functions. The polynomial approximation can 

be easily implemented using a general least squares procedure [57]. The approximate 

polynomial can be written as 
N 

0(«)«5>"u" (D.36) 
n=0 

where the coefficients {<7n}^=o are found from the general least squares procedure. 

This is done by sampling the equation in (D.36) at many values of u, obtaining an 

over determined system of linear equations, and then solving this system of equations 

in a least squares sense. After (D.36) is substituted into the integral of (D.34), the 

integration may be done term by term to obtain the following approximation 

ii(t)H(Bzm)Sy£lgnhn (D.37) 
71=0 

where 

h° = wk (*-|nMe- -x) (D-38) 
_„-\n\ABxm 

Although the polynomial approximation for g(u) described above is straight for- 

ward, an exponential series gave better performance (i.e. the exponential series ap- 

proximation for g(u) is more accurate for a smaller number of terms). An exponential 

series approximation for g[u) may be written as 

M 

9(u) « £ 9me-b-u (D.40) 
m=l 

where the parameters {gm}^=0 and {bm}!^=0 can be obtained by using the extended 

Prony method (see page 623 in [61], or page 225 in [62]). Notice that the {gm} 

parameters here are different from the {gn} described earlier for the polynomial ap- 

proximation. The extended Prony's method provides a very good approximation 

although it is not guaranteed to give a "least squares" approximation. For the prob- 

lem of concern here the extended Prony's method gives an excellent approximation. 

Tables D.l and D.2 list the parameters in the exponential series approximation of 
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Table D.l: The exponential factors for the series of exponentials approximation to 
the g(u) function in (D.40). These parameters are the result from using the extended 
Prony's method with 100 sample points. 

m Re (M Im (bm) 

1 2.492857990298293e+00 - 1.838078138920067e+01 

2 2.492857990298293e+00 + 1.838078138920067e+01 

3 3.699029046816519e+00 - 1.178361372269887e+01 

4 3.699029046816519e+00 + 1.178361372269887e+01 

5 4.522095825495970e+00 0 

6 4.368725008737067e+00 - 5.860005489119182e+00 

7 4.368725008737067e+00 + 5.860005489119182e+00 

8 6.547833511389427e+01 0 

9 1.501055435645317e+02 0 

10 3.732424459349517e+02 0 

(D.40) when M = 10 and (D.40) is sampled 100 times.  If one defines the relative 

error of the approximation as 

2 

ERR = 
E^fcM-E^frne-6-" 

(D.41) 
E?=1 [g(un)}2 

where {un}^=1 are the sampled u values, then ERR = 2.937e —9 when the parameters 

in Tables D.l and D.2 are used. Finally, substitute the approximation in (D.40) into 

the integral (D.34) to obtain 

M 

Ia (t)« {BxmY £ gn 

1 — exp(—bm — \Q,\ABxmY 
(D.42) 

m=l bm + \n\ABxr 

where xm = (^i)      and A = exp[j(7r - ^t)/3]. 

The approximation (D.42) eventually breaks down if \t\ is very small or if |i| is 

very large. So, when \t\ < 0.021(a3/40) use the first three terms of (D.12) 

3-5-7---15 / t ^21 + 
1 + 39 »(?) + 3-27 U3J (D.43) 
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Table D.2: Coefficients for the series of exponentials approximation to the g{u) func- 
tion in (D.40). These parameters are the result from using the extended Prony's 
method with 100 sample points. 

m Re (gm) Im (gm) 

1 -1.309449928924531e-03 - 4.143903979100756e-04 

2 -1.309449928924775e-03 + 4.143903979100027e-04 

3 3.377694133016045e-02 + 1.639435160611527e-02 

4 3.377694133016031e-02 - 1.639435160611565e-02 

5 3.798712810824805e-01 + 5.480557524830053e-16 

6 -2.228939771564507e-01 - 4.408366701346665e-02 

7 -2.228939771564497e-01 + 4.408366701346653e-02 

8 6.785853728064312e-04 - 1.098566438683437e-15 

9 2.525319404875919e-04 + 1.430649359954744e-15 

10 5.057254010578827e-05 - 5.842608514406963e-16 

When \t\ > 15a3 use the first three terms of (D.14) 

pi*/3 + 
Few (a,t) 

TCt5/6 
r(5/6) - TW*)f,3a + r(9/6)e 

J2n/3a2 

il/3 2f2/3 (D.44) 

Figures D.4, D.5 and D.6 show the time domain creeping wave function Few (oL,t) 

when a = 1 for various time values. The function is computed using the numerical 

algorithm described above which uses a series of exponential functions to approximate 

the "slowly varying" factor in the integral. Notice that when Few (<M) is plotted on 

a large time scale, as shown in Figure D.4, it appears to be vary sharp and almost 

singular in nature. But when one "zooms in" on the plot of Few (<*>0> as 1S done in 

Figure D.6, the function is seen to be smooth and continuous. In fact, the real part 

of Few (cM) is infinitely smooth at t —> 0 since all of its time derivatives go to zero 

as explained earlier. 
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Figure D.4: The time domain creeping wave function Few (<*,£) when a = 1, plotted 
for te [-10,10]. 
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Figure D.5: The time domain creeping wave function Few (<M) when a = 1, plotted 
forte [-1,1]. 
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131 



Appendix E 

Computation of Special Function 
Used in TD-UTD Surface 
Diffraction 

This appendix discusses the special function denoted by Fs,h (-?0 m Chapter 4 used 

in the TD-UTD surface diffraction coefficient. Some of the properties of this function 

are discussed, but more importantly, a method to compute the FSth (—>*) f°r complex 

time values t and both positive E and negative E values is presented. 

The special function is defined as the analytic time transform (ATT) of the fre- 

quency domain Fock type function (or Pekeris's caret function) divided by a;1/6 

1 +P   t~ 2^(5,0   =   Al-tfP.+VE) (E.l) 

where E is a parameter which depends on the source and observer locations as defined 

in Chapter 4. One E parameter is used (instead of E and EL as is in Chapter 4). If 

E > 0 then it is interpreted as the shadow region parameter in (4.11), but if E < 0 

then it is interpreted as the lit region parameter EL given in (4.8). This should not 

cause any confusion, since this appendix is solely concerned with the computation of 

the function in (E.l) with little regard to its actual physical significance. 
+p 

From the definition in (E.l) it can be shown that the Fs/l (E,t) function satisfies 

the following scale change property for b > 0 

Kh(^)=^j-6F:<h(E/b^t) (E.2) 
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or 

F^h(bZ,t)=-^-2Flh(Z,t/b3) (E.3) 

Notice that the above scale change property is the same as for the time domain 

creeping wave function Few (<M) discussed in Appendix D. 

E.l     Shadow Region 

In the shadow region, the S parameter is positive 5 > 0. When the observer is deep 

within the shadow region (or when wE3 —> oo), the frequency domain function of 

(E.l) may be written as a series of creeping wave modes 

;M^'/3E> ~ 
N. ex?[-(j^3Eqn) 

V^2[Ai'(-*,)]» W 
Nh «phCiaO^SftJ (E.4) 

This creeping wave mode series of (E.4) is asymptotically valid as u>E3 —> oo therefore 

one can use (E.4) to find an expansion of the analytic time transform of (D.l) which 

is asymptotically valid as \t/E3\ —> 0. The corresponding analytic time creeping wave 

mode series is 

#!fc(2>o~< 

N. 1     ^Fcw{Eqn,t) 

Nh 
+ 
Few v1-1?«» 'j 

(E.5) 

where qn is the n™ zero of the Airy function, Ai(—qn) = 0, and qn is the ntil zero 

of the derivative of the Airy function Ai'(—qn) = 0. See Table E.l for a list of some 

of these roots and the associated values of the Airy function. Using the table and 

asymptotic formulas in (E.6) through (E.13) [29] one can continue the list in Table 

E.l ad infinitum. The asymptotic formulas for the roots of the Airy function are [29] 

(E.6) 

(E.7) 

(E.8) 

(E.9) 

qn   =   /[37r(4n - l)/8] 

qn   =   0[37r(4n - l)/3] 

Ai'(-9n)   =   (-l)"-7i[3?r(4n- - l)/3] 

Ai(-&)   =   (-l)n-Vi[37r(4n- - l)/3] 

133 



Table E.l: Zeros of the Airy function and associated values of the Airy function. 

n 9n Ai'(-g„) <7n Ai(-9n) 

1 2.33811 +0.70121 1.01879 +0.53566 

2 4.08795 -0.80311 3.24820 -0.41902 

3 5.52056 +0.86520 4.82010 +0.38041 

4 6.78671 -0.91085 6.16331 -0.35791 

where 

/(*) ~ z 2/3 
'   5  2  5 _4  77125 

,48    36    82944' 
108056875 

6967296 
-z-° + 

162375596875 

334430208 
-10 (E.10) 

M '   48  288 
z-4- 

181223 -6 

207360 
18683371 

1244160 
■z-8- 

91145884361 

191102976 ■-) 

i \    zl/6 (i    7 

1525 
4608 

z~4 + 
2397875 
663552 6) 

(E.ll) 

(E.12) 

-    , (E.13) 
6144 26542080      J v       ' 

For observation locations near the shadow boundary (or if we let u>E3 —> 0) we 

can use a power series representation. This is obtained by first using 

1673 .-4 84394709 

U} 
y^-/>s)=^(s,«)-ä^g^ 

where 
o-J>/6 

*™(->u) - Üüft*' 
pW3*) 

(E.14) 

(E.15) 
I ?V/3H) j 

Now, using the work of Logan [63] we can derive the following power series for 

n=on- [ an J 
(E.16) 
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Table E.2: Constants used in the power series expansion of the Pekeris functions p(x) 

and q{x) and therefore also in the expansion of Fpg(S,a;) and Fp,q (£)£) 

n Pn o-„ 

0 3.54064e-01 -3.07177e-01 

1 -1.50139e-01 2.63755e-01 

2 -1.91020e-02 -4.02720e-02 

3 2.07797e-01 -2.52283e-01 

4 -3.04017e-01 4.17454e-01 

5 -1.68300e-02 -3.34820e-02 

6 1.16557e+00 -1.37979e+00 

7 -2.61483e+00 3.13568e+00 

8 -5.03520e-02 -8.66800e-02 

9 1.77043e+01 -1.99933e+01 

10 -5.10111e+01 5.73522e+01 

11 -3.12482e-01 -4.75105e-01 

12 5.15502e+02 -5.64431e+02 

13 -1.77677e+03 1.93449e+03 

14 -3.27929e-01 -4.55469e+00 

15 2.45097e+04 -2.62961e+04 

16 -9.71193e+04 1.03833e+05 

17 -5.20334e+01 -6.78254e+01 

18 1.72330e+06 -1.82875e+06 

19 -7.67284e+06 8.10881e+06 

20 -1.16244e+03 -1.44881e+03 
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Table E.2: (continued) 

n Pn cr„ 

21 1.68425e+08 -1.73093e+08 

22 -8.27602e+08 8.67552e+08 

23 0.00000e+00 0.00000e+00 

24 2.18280e+10 -2.23551e+10 

25 -1.16876e+ll 1.19558e+ll 

26 0.00000e+00 0.00000e+00 

27 3.62274e+12 -3.69876e+ll 

28 -2.09315e+13 2.13544e+13 

29 0.00000e+00 0.00000e+00 

30 7.49321e+14 -3.87390e+14 

31 -4.63552e+15 4.71980e+15 

32 0.00000e+00 0.00000e+00 

33 1.88985e+17 -1.69216e+17 

34 -1.24387e+18 1.26448e+18 

35 0.00000e+00 0.00000e+00 

36 5.70892e+19 -5.79813e+19 

37 -3.97672e+20 4.03714e+20 

38 0.00000e+00 0.00000e+00 

39 2.03497e+22 -2.06426e+22 
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Table E.2: (continued) 

n Pn <*n 

40 -1.49357e+23 7.57602e+22 

41 0.00000e+00 0.00000e+00 

42 8.45181e+24 -8.65857e+24 

43 -6.51126e+25 6.66674e+25 

44 0.00000e+00 0.00000e+00 

45 4.04588e+27 -4.13808e+27 

46 -3.26101e+28 3.33365e+28 

47 0.00000e+00 0.00000e+00 

48 2.21139e+30 -2.25854e+30 

49 -1.85943e+31 1.89825e+31 

The late time expansion corresponding to the power series expansion in (E.14) and 

(E.16) is 
+ p + e-i«-/4 
FS,H (2,0 =FP,q (S,t) - 2TB(_i01/2 (E.17) 

where 

+ e~Wl2       oo Pn r(n/3 + 5/6)e ,jnir/6 "Zfn 

n! (_^)"/3 (E.18) 

E.2    Lit Region 

In the lit region, the parameter S is negative S < 0. In Chapter 4, the lit region 

parameter is denoted by EL and is defined in (4.8). Here the notation S is used to 

denote both S > 0 for the shadow region and E = EL < 0 for the lit region. 

For an observer in the lit region near the shadow boundary (or late time where 

\t/E3\ —> oo), one can use the power series in (E.17) and (E.18). 

For an observer deep in the lit region (or for early time) where \t/33\ —> 0 one can 

use an early time asymptotic series derived from a high frequency asymptotic series 
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in Logan [63]. Note that the high frequency creeping wave mode expansion in (E.4) 

is not valid in the lit region where E < 0. The high frequency asymptotic series valid 

in the lit region E < 0 is 

1 

e-j«(-E)Vl2   " 

+  2(-S)«/»   to fir. [(-S)
3
JW]»+I 

(E.19) 

where {sn} = {2,-20,560,...} and {hn} = {2,-28,896,...}. Assuming that the 

ATT can be applied to (E.19) term-by-term (see Chapter 2) then the early time 

expansion for the lit region (E < 0) is 

AT 
+ P   /_    N        , V—" + /   \ ± r> 

for |r/E3| —> 0, where 

r = i-(-E)712 

(E.20) 

(E.21) 

^»(S'*)   -    2n! V(-=)3J 

,(-2> ■="\3 '} 
^(1)   =   -7 

V»(n + 1)   =   -7 + £ —   for n > 0 
„-i  x 

m=l m 

V>(n + 1) }      (E.22) 

(E.23) 

(E.24) 

with 7 = 0.5772... being Euler's constant. Notice that the expansion in (E.20) is 

centered at r = 0 or t = (—E)3/12. Because of this, the expansion in (E.20) is less 

useful for numerical purposes, because it is not centered at the same t value as the late 

time expansion in (E.18). So, an alternate early time representation may be needed. 

An alternate early time expansion can be obtained by using the following power 

series form 

KH (2,o.- ±^ * [t- (-2)3/i2] + (zipE*:•* (jE§y)N"   (E-25) 
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From the results in Chapter 2, it is known that (E.25) has the proper form for an 

early time representation centered at t = 0, the problem lies in obtaining the values 

of the coefficients. Notice that the early time series centered at t = 0 in (E.25) is an 

expansion of pah (E,t) minus the geometrical optics (GO) term containing the ana- 

lytic delta function. This formulation is very effective since the GO term is dominant 

in the deep lit region (where \[t — (—E)3]/E3| —> 0) and the early time series in (E.25) 

therefore represents a remainder which becomes important for intermediate time val- 

ues. Also, notice that the expansion in (E.25) explicitly satisfies the scale properties 

in (E.2) or (E.3). It is known by numerical experimentation that the late time series 

in (E.18) can be trusted (to within at least 3 significant digits) for |£/(E)3| > 0.15. 

Because of this, an approximation of the coefficients {B„'h} in the early time series 

of (E.25) is obtained by setting the early time expansion in (E.25) equal to the late 

time expansion in (E.17) with (E.18) at \t/E?\ = 0.15 and 0 < arg(<) < iz in a least 

squares sense. This provides approximate values of the coefficients {B„'h} which are 

most accurate at |i/^3| = 0.15. This is very desirable, since one can use the late 

time series representation for |£/E3| > 0.15 and then switch over to the early time 

representation for |£/E3| < 0.15 without any significant discontinuities. Table E.3 

lists the coefficients {B„,h} obtained in this least squares sense. Now, since the co- 

efficients {B„'h} are obtained in this approximate manner to minimize the error at 

\t/E3\ = 0.15, the early time series in (E.25) may not work as \t/E3\ —> 0. In fact, it 

is known from numerical experimentation that the early time power series in (E.25) 

may not be accurate when \t/E3| < 0.15 and Im (£/(—E)3) < 0.002. Nonetheless, 

when the imaginary part oft is this small ( Im (t/(—E)3) < 0.002) the analytic delta 

function (i.e. the GO term) in (E.25) is the dominant term so for practical applica- 

tions this representation works quite well. On the other hand, if one is interested in 

computing an impulse response, where Im (t) = 0 it is difficult to compute the early 

time behavior besides the dominant impulse time function. 
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Table E.3: Coefficients {B„} used in the early time representation in (E.25) used in 
the lit region S < 0 and for soft polarization 

n Re m Im [*'] 

1 -2.082816029604068e+09 - 1.934225071410909e+09 

2 2.231501364264926e+09 + 2.248973125688412e+09 

3 -1.252865898123653e+09 - 1.373344664977570e+09 

4 4.788187068366086e+08 + 5.744350921182956e+08 

5 -1.371893503363450e+08 - 1.820181556200502e+08 

6 3.078719411539325e+07 +4.590574642077959e+07 

7 -5.503967634776822e+06 - 9.456164234707374e+06 

8 7.803327956948597e+05 + 1.609576880445286e+06 

9 -8.475429971667759e+04 - 2.264583143400559e+05 

10 6.299138967200948e+03 + 2.600865565917071e+04 

11 -1.674918333321921e+02 - 2.357302083687360e+03 

12 -2.947872815842084e+01 + 1.543029977826218e+02 

13 4.483644084797442e+00 - 4.980881275349820e+00 

14 -6.216333948603559e-02 - 4.140469301332007e-01 
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Table E.4: Coefficients {B%} used in the early time representation in (E.25) used in 
the lit region E < 0 and for hard polarization 

n Re [Bh
n] im m 

1 -1.145347064563553e+09 + 2.321104859253427e+08 

2 1.247217383801985e+09 - 6.159421376984853e+07 

3 -7.075526321707213e+08 - 7.680045275028466e+07 

4 2.716051094355760e+08 + 7.653405928940107e+07 

5 -7.758226975004484e+07 - 3.753779340973016e+07 

6 1.717005587168613e+07 + 1.266153768031792e+07 

7 -2.972294299624093e+06 - 3.237541175734916e+06 

8 3.933478822263941e+05 + 6.531900019204784e+05 

9 -3.619503051989348e+04 - 1.054006228018756e+05 

10 1.374538560322166e+03 + 1.350912057659442e+04 

11 2.200490845152954e+02 - 1.327895365123774e+03 

12 -5.070700867343560e+01 + 9.003798728735892e+01 

13 5.004751143977662e+00 - 2.421287171291755e+00 

14 -7.860467067425439e-02 - 3.708472052078492e-01 
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E.3    Numerical Algorithm 

This section presents an algorithm using the results of this appendix for the compu- 

tation of the Fsh (—»0 f°r any real vame of S and f°r any complex value of t for 

Im (t) > 0. 

Before the numerical algorithm for the computation of the pSih (—>*) *s presented, 

a small correction term for the creeping wave series of (E.5) is derived. In general, 

one would like to use the early time representation in (E.5) up to some time, say 

\t/E3\ = To, and then switch over to the late time representation in (E.17) (with 

(E.18)) for \t/E3\ > T0. But, in order to do this the two representations (late time 

and early time) must overlap at \t/E3\ = T0 so that the resulting function does 

not contain a discontinuity. It is known from numerical experimentation that the 

creeping wave mode series of (E.5) for soft polarization is not accurate enough for 

large \t/E3\ values even when 50 creeping wave modes are included in the summation. 

An estimate for the infinite number of remaining creeping wave modes (from the 51s 

on to infinity) can be obtained as follows. First, write the following creeping wave 

mode summation for soft polarization as 

** = £ ferif (E-26) 
n=N0 

2 lAl {-Qn)\ 

where N0 = 51 for the numerical algorithm to be described shortly. Now, from the 

asymptotic formula in (E.6) with (E.10), 

Mfa-m2/3 (E27) 

and for n > 51 this is accurate to five significant figures. From the asymptotic formula 

in(E.8) with (E.12), 

A,(_,„) „ tgL pi^i))"6 (E.28) 

which is accurate to six significant figures when n > 51. When \t/E3\ < 1 and n > 51 

the creeping wave mode function Few (<M) mav be approximated with the first term 

in the power series expansion of (D.12) as 

t    /-.,x..-?2W2) 

In ~ ( 

*-(«.0~^i (E.29) 
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which is accurate to within 0.1 percent. Equations (E.27), (E.28) and (E.29) can be 

substituted into (E.26) to obtain 

,  a  >. 2     oo -I -3jT(5/2) / 8 \2   »    1 
'N«~      2S«/2      UJJ^o(4n-l)* 

which is approximate for iVo = 51 and asymptotically valid as JVo —> oo. The Euler- 

Maclaurin summation formula can be used to approximate the infinite summation in 

(E.30) [57]. 

V        1 ~ 1 1 8 
n^0(4n-l)2    ~   4(4iVo - 1) + 2(47Vo - l)2 + 12(47Vo - l)3 

1536 (E.31) 
720(4iVo - l)5 

which gives 
OO 1 

E u   _,v K !-243740E - 3 (E.32) 
n=51 l4n        1) 

Finally, the infinite summation of remaining time domain creeping wave mode func- 

tions is 
—jl.786878JE? — 3    ,     R7      Ci ,_, __, 

SN
° ~    —=5/2   for ^ = 51 (E-33) 

+p 
Now, the numerical algorithm which can be used to compute the j1 h (S,£) func- 

tion is 

• For observers in the shadow region, E > 0: 

— When \t/E3\ < 1 use the creeping wave mode summation in (E.5), with 

Nh = 20 and Ns = 50. Also, add the extra term in (E.33) times ( — 1/sqrtTr) 

to the creeping wave mode sum in (E.5) for the soft polarization case, 

approximating an infinite creeping wave mode sum. 

— When \t/E3\ > 1 use the late time inverse power series in (E.17) with 

(E.18) including 50 terms in the series. 

• For observers in the lit region, S < 0 : 

— When \t/"E3\ < 0.15 use the approximate early time representation in 

(E.25) including 14 terms in the power series. 
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- When \t/E3\ > 0.15 use the late time inverse power series in (E.17) with 

(E.18) including 50 terms in the series. 

The algorithm described above is not the most efficient method of using the equa- 

tions of this Appendix, but it is robust and works well as long as Im (t) > 0.002|S3|. 

Future research can be done on more efficient representations, such as rational func- 

tion approximations and so forth. The challenge of approximating the analytic time 

function p h (E,t) lies in the ability to compute this function for all complex time 

values in the upper half time plane (Im (t) > 0). This is a more difficult task then 

the more common problem of approximating a given function of a real variable. 

Figures E.l and E.2 show a comparison between the late time representation 

for FP
sh (E,t) found in (E.17) and (E.18) versus the early time creeping wave mode 

representation for Fs /, (£,£) found in (E.5) when the observer is in the shadow region 

(E > 0). The geometry parameter H is set equal to E = 1 for Figures E.l and E.2 

without loss of generality, since a different E value only causes a simple scale change as 

in (E.3) but leaves the comparison valid. Notice the the two representations overlap 

very closely, except when \t\ is very small such as \t/E3\ < 0.1. Recall, in the numerical 

algorithm outlined earlier that, in the shadow region, the early time creeping wave 

mode representation of (E.5) is used for \t/E3\ < 1.0 while the late time inverse power 

series of (E.17) with (E.18) is used when \t/E3\ > 1.0. 

Figures E.3 and E.4 show a comparison between the late time representation 

for F^h (E,t) found in (E.17) and (E.18) versus the approximate early time power 

series representation in (E.25) when the observer is in the lit region (E < 0) and 

the imaginary part of time is held constant at Im (t/(-E)3) = 0.01. The geometry 

parameter E is set equal to E = —1 for these figures without loss of generality, since 

different E values simply cause a change in scale. Notice that the two representations 

overlap very closely when Re (t)/(-E)3 « 0.15 and more generally they overlap very 

closely whenever \t/E3\ = 0.15. Also, the early time representation breaks down 

violently as \t/E3\ —> 0 and the approximate early time representation breaks down 

as \t/E3\ —* oo. 
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