WL-TR-95-1120

AVIONICS SOFTWARE REENGINEERING
TECHNOLOGY (ASRET) PROJECT
VOLUME 2

Reengineering Tool (RET) Diagrams

D.E. WILKENING

TASC
55 Walkers Brook Drive
Reading, Massachusetts 01867

MAY 1995
Project Final Report for 5/1/92 - 5/1/95

Approved for public release; distribution is unlimited.

19960325 035

AVIONICS DIRECTORATE DER0GOATINY moonopeys o

WRIGHT LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-7409

NOTICE

When Government drawings, specifications or other data are used for any purpose other
than in connection with a definitely Government-related procurement, the United States
Government incurs no responsibility or any obligation whatsoever. The fact that the government
may have formulated or in any way supplied the said drawings, specifications, or other data, is not
to be regarded by implication, or otherwise in any manner construed, as licensing the holder, or
any other person or corporation; or as conveying any rights or permission to manufacture, use, or
sell any patented invention that may in any way be related thereto.

This report is releasable to the National Technical Information Service (NTIS). At NTIS,
it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

A e

KENNETH LITTLEJOHN/Project Engineer WILLIAM R. BAKER, Acting Chief
Software Concepts Section Avionics Logistics Branch
WL/AAAF-2 WL/AAAF

STEPHAN G. PETERS, Lt Col, USAF
Deputy Chief

System Avionics Division
Avionics Directorate

If your address has changed, if you wish to be removed from our mailing list, or if the
addressee is no longer employed by your organization, please notify WL/AAAF, WPAFB, OH
45433-7301 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security
considerations, contractual obligations, or notice on a specific document.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Publicreportingburdenforthis collection ofinformationis estimatedtoaverage one hourperresponse, includingthe time forreviewinginstructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1.

AGENCY USE ONLY (Leave blank) 2. REPORT DATE

3. REPORT TYPE AND DATES COVERED

May 1995 Final 5/1/92 — 5/1/95
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Avionics Software Reengineering Technology (ASRET) Project, C F33615-92-D-1052
Volume 2 Reengineering Tool (RET) Diagrams PE 78012
6. AUTHORC(S) PR 3090
D.E. Wilkening (TASC TA 01
9 (TASC) WU 14
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER
TASC
55 Walkers Brook Drive TASC: TR-06661-5
Reading, MA 01867
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

Avionics Directorate

Wright Laboratory

Air Force Materiel Command
Wright-Patterson AFB, Ohio 45433-7409

AGENCY REPORT NUMBER

WL-TR-95-1120

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This document presents results of the Avionics Software Reengineering Technology (ASRET) project. It provides samples of
output that we created using the Reengineering Tool (RET) prototype that we developed under ASRET, narrates our efforts to
produce the output, and reports on insights that we gained in the process.

A companion document, Volume I, Project Summary, Account, and Results (Ref. 1), presents the findings of the ASRET Project
and describes the RET prototype and the context within which we produced the output.

14. SUBJECT TERMS

Reengineering, Reverse Engineering, Reuse

15. NUMBER OF PAGES
174

16. PRICE CODE

17. SECURITY CLASSIFICATION

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

OF REPORT
Unclassified

19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF ABSTRACT

Unclassified UL

NSN 7540-01-280-5500

i

STANDARD FORM 298 (Rev. 2-89)
Prescribed by ANSI Std 239-18
298-102

MI009

1-22-92

I

 DSCLAMERNOTICE

} THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE
COPY FURNISHED TO DTIC
CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO
NOT REPRODUCE LEGIBLY.

TABLE OF CONTENTS

LIST OF TABLES ...ttt e e ittt

1.

INTRODUCTION ...ttt et e e e ettt
1.1 Backgroundoiiiiiiii i i it
1.2 ASRETProjectOverviewccooiiiiiiiiiniiiiiiinnnannnnnn.
1.2.1 Project Goalso e
1.2.2 Task Structurecciiiiiiiiiiiiiiiiiii ittt

1.3 Report Organizationooiiiiiiiiiii ittt

c RET VIEWS e

2.1 FCRSubsystemocuiiiiiii i i ettt e e
2.2 GPSSubsystemooiii i e e e
2.3 INSSubsystemooiiiiiiiiiii i i it e
24 MFDSubsystemcooiiiiiiiiiii i i e e
2.5 RLT Subsystemooiiiiiiii i i it eie
2.6 UFCSubsystemc.oovii it i et et et et i
2.7 SMS Subsystemooiie i e e e e

- REFERENCES e e e e e

R« Hm oM BHEOOQwW P

Exhibit FCR-D e
Exhibit GPS-P ... e
Exhibit GPS-D ... o e e
Exhibit INS-P
Exhibit INS-D ... e
Exhibit MED-P ... e
Exhibit MFD-D e
Exhibit RLT-P e
Exhibit RLT-D e
Exhibit UFC-P ... e
Exhibit UFC-D ... e e

Page

iv

WO DN NN = -

© O

LIST OF TABLES

Table
1 ASRET Task Structureouiuiiniiiiie it neannenenn.
2 Block 40 Subsystemsttt e

v

1. INTRODUCTION

This document presents results of the Avionics Software Reengineering Technology
(ASRET) project. It provides samples of output that we created using the Reengineering
Tool (RET) prototype that we developed under ASRET, narrates our efforts to produce the
output, and reports on insights that we gained in the process.

A companion document, Volume I, Project Summary, Account, and Results (Ref. 1),
presents the findings of the ASRET Project and describes the RET prototype and the con-
text within which we produced the output.

1.1 BACKGROUND

Context — The Avionics Software Technology Support (ASTS) program is an ongo-
ing activity of the Software Concepts Group, Avionics Logistics Branch at Wright Labora-
tory (WL/AAAF-3), Wright Patterson Air Force Base, Ohio. The objective of the ASTS
program is to perform research and development for enhancing Embedded Computer Sys-
tem (ECS) software development and postdeployment support.

The ASRET project is the second delivery order (DO) issued to TASC under the
ASTS program. The main objective of ASRET was to develop an automated Reengineer-
ing Tool (RET) prototype for avionics support software. The specific goals included investi-
gating existing reengineering and reverse engineering processes, techniques, and
software tools, defining a reengineering process model, and building the RET prototype
software tool.

Rationale — The reengineering of software from one language to another is be-
coming a necessity as Air Force organizations strive to modernize and improve the main-
tainability of their systems while avoiding the excessive costs of new development.
Systems that have been in use for years often incur large maintenance costs (Ref. 2) for
a number of reasons:

e Continual maintenance has made the current implementation and original de-
sign inconsistent, made the code harder to understand and error-prone, and
made the documentation out-of-date.

e - They are written in languages that have fallen out of favor. The limited selec-
tion of support tools for these languages, the corresponding expense of these
tools, and the shrinking pool of qualified programmers to maintain the soft-
ware adds to the expense of maintenance.

o They were developed without modern software engineering practices, result-
ing in code that lacks structure and is difficult to understand.

e Employee turnover has reduced the staff’s understandmg and “intimate”
knowledge of the system.

Wright Laboratory initiated the ASRET project to help reduce maintenance costs for
legacy systems and to assist in the evolution to Ada. To this end, we developed an environ-
ment for reengineering software from one language to another. We concentrated on the
reengineering of avionics simulation software written in FORTRAN to Ada, and designed
the RET so that additional languages could be supported in the future.

1.2 ASRET PROJECT OVERVIEW

1.2.1 Project Goals

The objective of the ASRET project was to develop an automated Reengineering Tool
(RET) prototype for avionics support software. The specific goals included investigating ex-
isting reengineering and reverse engineering processes, techniques, and software tools, de-
fining a reengineering process model, and building a RET prototype that supports:

e Translating avionics simulation software written in FORTRAN to Ada
¢ Improving the software through restructuring techniques

e Changing the design of the software so that it is consistent with modern soft-
ware engineering principles

e Adding documentation that is consistent with the software.

1.2.2 Task Structure
The ASRET project was structured as shown in Table 1.

Table 1 ASRET Task Structure

NUMBER NAME
1 Software Reengineering Study
2 Reengineering Process Model Development
3 Reengineering Tool Development
4 Reengineering Tool Testing and Evaluation

For Task 1, Software Reengineering Study, we conducted an extensive investigation
of software reengineering tools and methods. The goal was to collect, organize, and pres-
ent information on software reengineering tools and methods that might be relevant to
ASRET, and to record the information for use in the subsequent tasks. The results of
Task 1 are documented in the Software Reengineering Study Report (Ref. 3).

During Task 2, Reengineering Process Model Development, we developed a reengi-
neering process model based upon the results of Task 1, and developed the Software Re-
quirements Specification (Ref. 4) for the Reengineering Tool (RET) prototype.

In Task 3, Reengineering Tool Development, we designed (Ref. 5) and implemented
the RET prototype and exercised the RET by transforming the Fire Control Radar (FCR)
subsystem of the F-16 Operational Flight Program (OFP) simulation software provided
to us by Wright Laboratory for this purpose.

We executed the RET prototype and converted most of the other subsystems from
Block 40 of the F-16 OFP simulation software to Ada in Task 4, Reengineering Tool Testing
and Evaluation.

1.3 REPORT ORGANIZATION

The Avionics Software Reengineering Technology (ASRET) Project Final Report
comprises two volumes. This document, Volume II, Reengineering Tool (RET) Diagrams,
provides sample hardcopy that we produced with the RET. Section 1 describes the ASRET
Project and provides background information. Section 2 describes each of the diagrams

 that we created during the Reengineering Tool Testing and Evaluation task. The exhibits

contain the Packager and Dataflow Diagrams.

A companion document, Volume I, Project Summary, Account, and Results (Ref. 1),
presents the findings of the ASRET Project and describes the RET prototype and the con-
text within which we produced the diagrams in Vol. II.

2. - RET VIEWS

This section describes the views provided in the exhibits. We discuss the activities
that we performed under the Reengineering Tool Testing and Evaluation task (Task 4) to
create the views and some insights that we gained during the exercise.

During Task 4, we analyzed six subsystems from Block 40 of the F-16 OFP simula-
tion software provided to us by WL/AAAF-3. Table 2 names the subsystems and lists the
sections and corresponding exhibits containing the graphs. We did not analyze the SMS
subsystem so this document doesn’t provide a corresponding exhibit.

Identifiers for individual graphs in the exhibits take the form SSS-V-n, where SSS
denotes the subsystem, V is P for Packager or D for DFD, and n enumerates the graphs
within each subsystem’s view. For example, FCR-P-3 identifies the third graph in the
Packager view for the FCR subsystem.

Table 2 Block 40 Subsystems

EXHIBIT
SUBSYSTEM SECTION

PACKAGER ~ DFD
FCR 2.1 FCR-P FCR-D
GPS 2.2 GPS-P GPS-D
INS 2.3 INS-P INS-D
MFD 2.4 MFD-P MFD-D
RLT 25 RLT-P RLT-D
UFC 26 UFC-P UFC-D
SMS 27 none none

Volume II does not explain many of the terms defined in Vol. I (Ref. 1). It assumes
that the reader is familiar with the Packager and Dataflow Diagram views described in Vol.
I. For each subsystem, we discuss only the graphs that illustrate our activities and the in-
sights that we gained during Task 4. We do not attempt to describe every graph in detail.

Despite our efforts to focus only on the most important portions of the graphs, the
narrative is sometimes dense. We provide the details because examples are the most effec-
tive way to convey much of the information. Vol. I summarizes the information, but the
examples in Vol. II substantiate our statements.

We designed the RET prototype views for an interactive environment. We did not
intend them to be used in hardcopy form. The interactive views provide information that
may not appear on a sample printout. The views allow the engineer to filter the informa-
tion and control the degree of detail shown. For example, the edge labels in the Packager
and DFD views each provide three different levels of detail, but only one may appear in
a given printout.

The engineer forms a composite understanding of the information in the views by
alternating among various perspectives and controlling what information is shown. The
hardcopy samples do not convey the depth and variety of information available to the en-
gineer. We present them as a means of explaining features of the RET prototype rather
than to document the Block 40 code.

The process by which we created the hardcopy demanded more attention to the
technical details of interacting with the RET prototype than we would have liked. For ex-
ample, we arranged the graphs by dragging nodes with the mouse because the RET proto-
type doesn’t automatically arrange them. We focused on implementing reengineering
methods and techniques rather than on the prototype’s user interface. We assume that a
production version of the RET would address the user interface and other usability issues,
as we recommend in Vol. I.

The impact of this on our efforts to produce the graphs was that most of our atten-
tion was initially absorbed in the process of creating the diagrams as opposed to studying
their content. We assessed the diagrams during a subsequent review. This highlights the
importance of addressing the usability issues of the RET to reduce distractions during the
reengineering process. Our experience also validates the iterative top-down approach rec-
ommended by the ASRET process model (described in Vol. I).

2.1 FCR SUBSYSTEM

Packager — Exhibit FCR-P contains samples of the Packager view for the FCR
subsystem. FCR-P-1 depicts five packages as nodes or rectangles and the data binding
relationships among them as thin undirected edges or lines. The package “dead code” is
so named because we initially found no calls to any of its subprograms, but the edges with
“fer_df” and “modes” show that the package is not isolated. The graph does not show
whether any of the packages are referenced from outside the FCR subsystem.

FCR-P-2 shows the five subprograms in “dead code.” We see that they do not share
any data bindings. FCR-P-3 shows the nineteen subprograms in the package “main.” The
edges show the interconnection strength between the subprograms. Many of the edges
show only one data binding, but due to our definition of data binding, a value of one may
indicate zero bindings and one subprogram call.

This ambiguity is the main reason that we recommend reversing our decision to
add one to the interconnection strength for subprogram calls. In an interactive display, we
could click on any edge to expand the label and determine if a subprogram call is involved,
but we can’t tell from the hardcopy. We have found in the FCR code, however, that most
edges with an interconnection strength of one indicate subprogram calls.

Although the subprograms are highly interrelated, most of the edges have very low
interconnection strengths. The highest value is four, and most of the edges are less than
three. FCR-P-4 through FCR-P-7 show the subprograms in the package “modes.” The first
two show only select edges, but the last two graphs are hopelessly cluttered. They show
only that the subprograms in “modes” are very highly interrelated.

FCR-P-8 shows the fifteen subprograms in the package “fer_dr.” The interconnec-
tion strength values shown on the edges imply that the edges represent subprogram calls
rather than data bindings. While interacting with the first graph, we determined that the
subprogram “fer_output” is called from “main” and that the subprograms named
“fer_drxxx” are called from “modes.” This is not shown in the sample hardcopy.

We address the general difficulties of managing the kind of complexity apparent in
FCR-P-3 through FCR-P-7 at various points below with similar examples drawn from oth-
er subsystems, primarily the UFC (Section 2.6). This challenge is ubiquitous in reengi-
neering large systems and we will discuss several ways that the RET prototype combats
the problem in both the Packager and DFD views.

DFD — Exhibit FCR-D contains samples of the DFD view for the FCR subsystem.
The top level graph (FCR-D-1) of the DFD shows transform nodes as ellipses and buffer
nodes as rectangles. The transform nodes correspond to subprograms. The buffer nodes
correspond to global variables. Most of the subprograms in the FCR subsystem don’t have
arguments, so there are no buffers that correspond to formal parameters. The arrows in
the graph indicate the direction of dataflow between the transform and buffer nodes.

The transform nodes in FCR-D-1 represent subprograms that are not called by any
other subprogram in the FCR subsystem. They are probably called by other subsystems.
We didn’t realize this when we created the Packager view which is why four of the subpro-
grams (FCR_TERM, FCR_SUSPEND, SET SCALED_MUX, and READ_SCALED
_MUZX) appear in the “dead code” package in the Packager view.

We did not go back to fix the package structure because we were only performing an
evaluation of the RET prototype. In an actual reengineering project, the engineer would
take advantage of insights gained by examining the DFD and fix the structure through the
Packager view on the next iteration in accordance with the ASRET process model (Ref. 1).

The rectangle labeled “DR*” is a buffer collection that contains a set of buffer nodes
representing variables that begin with “DR.” In the interactive view, the engineer may
click on the node to show the buffers nested under the collection. Buffer collection nodes
are identified by the presence of asterisks in their labels.

The label of the buffer collection node is determined by the buffer mapping that we
coded for the FCR subsystem. We defined a mapping for the FCR code that takes any buff-
er that begins with “DR” to “DR*.” We observed the convention that an asterisk represents
zero or more characters, but the engineer is free to provide an arbitrary mapping; the do-
main and range of the mapping are sets of strings that the engineer specifies.

The bidirectional arrow between DR* and FCR_OUTPUT shows that the latter reads
and writes variables with names that begin with “DR.” The arrow from the buffer node di-
rectly below FCR_OUTPUT indicates that the latter reads variables IIFCRQ and IFCRRQ,
but doesn’t write them. The arrow to the buffer node on the right of FCR_OUTPUT shows
that FCR_OUTPUT writes the variable named FCR_IFILL, but doesn’t read it.

The large buffer node on the far left contains one buffer named “FPSKTS” and six
collections. The buffer collection node to the immediate right contains 32 buffers. The la-
bel begins with the integer because the number of nested buffers exceeds the predefined
threshold. The node is not large enough to display all the nested buffer names so the label
is clipped after the first buffer node name, “IS17J.”

FCR-D-2 shows that FCR_OUTPUT calls 11 subprograms. Terminal transform
nodes named FCR_DRnnn, where nnn denotes various integers between 003 and 033,
represent nine of the subprograms. The presence of the FCR_DRnnn nodes in the graph
implies the existence of the subprogram calls, by definition of the DFD. The graph clearly
shows that the subprograms read variables named MDR* and write variables named

DR*.

The nodes that represent subprograms FCR_SYMBOLS and FCR_ADO are also
terminal transform nodes. The body transform node labeled FCR_OUTPUT represents
the statements in the body of subprogram FCR_OUTPUT, by definition of the DFD. The
arrow to that node in the graph shows that the statements read variables named DR*.

The DFD does not visually distinguish the three kinds of transform nodes (body,
terminal, and nonterminal) due to limitations of INTERVISTA. We know that FCR_OUT-
PUT is a body transform node because it appears in the graph for FCR_OUTPUT. We
know that the nodes named FCR_DRnnn are nonterminal transform nodes because the
DFD provides graphs for them, but the engineer can only determine that fact by interact-
ing with the view (clicking on the nodes with the mouse to bring up the graphs). Nontermi-
nal transform nodes represent subprograms that call other subprograms.

FCR-D-3 shows that FCR_INPUT calls subprograms named FCR_DFnnn that
read variables named DF* and write variables named MDF*. The structure is similar to
that of FCR_OUTPUT. Apparently, FCR_INPUT transfers data from DF* to MDF* via
the FCR_DFnnn subprograms whereas FCR_OUTPUT transfers data from MDR* to DR*
via the FCR_DRnnn subprograms.

The dataflow between MDR* and DR* through FCR_OUTPUT is shown in FCR-D-1,
but the dataflow between MDF* and DF* through FCR_INPUT isn’t prominent. The buff-
er for MDF* is hidden in the buffer collection node that shows 32 in the label, but we can’t
see it unless we examine the graph for the collection. The buffer for DF* does appear in
one of the buffer collections in the first graph, but it’s inconspicuous.

This is one reason that we would like to allow the engineer to edit the DFD. In this
case, the engineer might highlight the structural similarity between FCR_INPUT and
FCR_OUTPUT by bringing the MDF* buffer to the top graph and moving the DF* buffer
to its own node on that graph.

FCR-D-4 shows the dataflow within FCR_DF033. The graph points out an anomaly
in the DFD. The graph should show an arrow from READ_MUX to DF033. The RET did
not correctly interpret the dataflow across the parameter chain, in this case, because the
parameter is an element of an array. The same problem shows up in the graph for
FCR_DF031 (FCR-D-5). This is an example of a problem that must be corrected before
applying the RET to other applications. FCR-D-6 and FCR-D-7 represent relatively sim-
ple subprograms.

The graph for subprogram FCR (FCR-D-8) typifies the degenerate case of an overly
complicated DFD. We include a version (FCR-D-8) in which the edges are hidden and one
(FCR-D-9) that shows all edges. About all that the engineer can tell from these graphs is
that FCR calls many subprograms and references many variables. The graphs for
FCRMOD (FCR-D-12 through FCR-D-15) and FCRS16 (FCR-D-10 through FCR-D-11)
exhibit the same problem. FCR-D-16 through FCR-D-18 are much simpler.

2.2 GPS SUBSYSTEM

Packager — Exhibit GPS-P contains samples of the Packager view for the GPS
subsystem. GPS-P-1 shows four packages that contain subprograms from the GPS sub-
system; their names are shown in lower-case. The generated packages are on the left. We
know from examining the interactive views that subprograms GPS_PROCESS, GPS_IN-
PUT, and GPS_OUTPUT are the primary subprograms that are called from outside the
GPS subsystem.

GPS-P-2 through GPS-P-4 show the packager views for packages gps_interface,
gps_process_gp, and gps_process_fc, respectively. We learned from the DFD (after we had
created this Packager view) that GPS_INPUT calls subprograms in gps_process_fc, and
GPS_OUTPUT calls subprograms in gps_process_gp. After looking at the DFD, we think
that either GPS_OUTPUT belongs in gps_process_gp, or GPS_INPUT belongs in gps_in-
terface. We would need to examine the source code views to decide which alternative is
better, but we can see that they are treated asymmetrically in this Packager view, and this
suggests to us that we must investigate further.

Our first thought was to place all subprograms that are called from outside of GPS

in package gps_interface. This results in a relatively large number of data bindings be-
tween the packages and a very small number of bindings among the subprograms within
any given package. For example, the edges in GPS-P-2 through GPS-P-4 show few, if any
bindings. GPS-P-5 shows what may be utility subprograms.

We see in GPS-P-1 that gps_interface shares a relatively great number of data
bindings with gps_process_gp. Out of the 37 bindings 29 are due to GPS_INIT and 12
(possibly overlapping) bindings are with GPSINT. Both subprograms are related to ini-
tialization. We are unconcerned by the number of bindings because we would expect ini-
tialization routines to affect many variables. We can’t see the numbers in the hardcopy,
but we can display them on the label of the edge between the two packages in the interac-

tive view.

DFD — Exhibit GPS-D contains samples of the DFD view for the GPS subsystem.
GPS-D-1 shows the variables that are used by the input and output subprograms. It
shows the subprograms (as transform nodes) that are not called from within the GPS sub-
system. It shows, for example, that subprograms PROCESS_GPS00n, where nis 7, 8, and
9, are not called from within GPS. (They may be called from outside the GPS subsystem,
but the DFD provides no information on this.)

GPS-D-2 shows that subprograms PROCESS_GPS00n, wherenis 1,2, 3, 5, and 6,
are called by GPS_OUTPUT. This asymmetry for the subprograms PROCESS_GPS00n
piqued our curiosity, so we examined the Source Code Listings by clicking on the trans-
form nodes. We found that all statements in PROCESS_GPS007 and PROCESS_GPS008

are commented-out.

Comments in each PROCESS_GPS00n state that “this subroutine is called by
GPS_OUTPUT to pack data for Mux messate GP0OOn.” PROCESS_GPS009 doesn’t appear
in the graph for GPS_OUTPUT and when we looked at the Source Code Listing for
GPS_OUTPUT, we found that the call to PROCESS_GPS009 is commented out. The sub-
programs named PROCESS_GPS00n that appear in the GPS_OUTPUT graph (GPS-D-2)
do contain numerous statements, suggesting that they are still in use.

GPS-D-3 through GPS-D-7 show the details of the PROCESS_GPS00n subpro-
grams that are still in use. The graph for PROCESS_GPS001 (GPS-D-3) shows which
variables it outputs through SET_MUX. The graph doesn’t show that it implements an
output function, but we know that it is called from within GPS_OUTPUT. The arrows in

10

the graph are bidirectional because all formal parameters in the generated Ada code have
mode “in out.” When the Transformer is enhanced to generate more discriminating formal
parameter modes, the arrows in the DFD that correspond to mode “in” and mode “out”
parameters will be unidirectional. The implication for GPS-D-3 is that the direction of
dataflow would be more accurate.

GPS-D-8 through GPS-D-10 show a structure for GPS_INPUT that is analogous to
that of GPS_OUTPUT. The graphs for GPS_COMPUTE (GPS-D-11) and GPSNAV
(GPS-D-12) show how GPSNAV, GPSTMR, GPSINT, and GPSERR are local to the gps_in-
terface package in the sense that they are within the calling scope of GPS_COMPUTE. We
discussed moving GPS_OUTPUT out of that package above, and it now looks like the

gps_interface package might be more appropriately named the gps_compute package.
GPS-D-13 shows subprogram GPS_INIT.

When we get to the graph for GPSBIT (GPS-D-14), we become suspicious that perhaps
it isn’t really called from outside the GPS subsystem, as might be implied by it’s appearance
on the top-level graph (GPS-D-1). Its name doesn’t fit the pattern for such externally-called
subprograms that we feel is emerging. After looking at the GPS_COMPUTE structure in
GPS-D-11, we wonder why GPSBIT isn’t present, since other similarly-named GPSxxx sub-
programs are declared with GPS_COMPUTE in the gps_interface package.

When we inspect the Source Code Listing for GPSBIT, we find a comment (“ZER-
OUT - GPS OUTPUT BLANKING ROUTINE”) that leads us to think it should be in the
GPS_OUTPUT structure. We inspect the Source Code Listing for GPS_OUTPUT and find
that all calls to GPSBIT are commented-out. That is why it appears on the top-level DFD
graph (GPS-D-1). We deduce that it is dead code.

If we could delete the nodes representing dead code that we found in the top-level
DFD graph (GPS-D-1), the graph would be less complicated. This is one reason that we
recommend additional editing capabilities for the DFD. In any case, we would remove the
~ dead code from the system during the next iteration through the Packager view.

2.3 INS SUBSYSTEM

Packager — Exhibit INS-P contains samples of the Packager view for the INS
subsystem. INS-P-1 through INS-P-5 show the library units generated by the Packager
(upper-case) and the packages that we formed by clustering (lower-case). INS-P-1 shows

11

the number of data bindings on each edge. INS-P-2 shows the calling relations. INS-P-3
shows which subprograms are involved in the calls, but we can’t see which calls which. We
can infer this from the direction of the arrows for all but one, the bidirectional arrow be-
tween ins_utilities and ins_processing. INS-P-4 explicitly shows the individual calls, but
doesn’t show which package the subprograms are declared in. The information on the ar-
rows in INS-P-3 and INS-P-4 are complementary.

The arrow between ins_utilities and ins_processing is interesting because it shows
that calls are made in both directions. We would prefer a layered calling structure for the
packages to reduce the effects of dependencies during maintenance and because a layered
structure is easier to understand. INS-P-6 and INS-P-7 show the subprograms in
ins_processing and ins_utilities, respectively.

We separated the subprograms into the two packages based upon their names (all
subprograms in ins_processing begin with INS), and the fact that only the subprograms in
ins_utilities share data bindings. These are two very weak reasons for clustering. The sub-
system might be better structured if these two packages were combined. We also tried to
minimize the number of data bindings between these two packages, and also the
Ins_io_processing package (INS-P-8), during clustering. To improve the package structure
beyond what we have developed requires examining the Source Code Listings, but we did
not go to that level of detail for this subsystem during the RET prototype evaluation.

INS-P-9 shows the ins_interface_routines package. We placed subprograms that
appear to be called from outside the INS subsystem into this package.

We applied several techniques to form the ins_ad_io, ins_fecc_io, and ins_model_io
packages, INS-P-10 through INS-P-12, respectively. Clustering by common clients and
suppliers revealed that the subprograms in these packages are the only ones called by
INS_INPUT and INS_OUTPUT. This can also be seen in the library-level graphs
(INS-P-1). We differentiated the packages based on the similarity of the names of the sub-
programs and our examination of comments in the Source Code Listings. Based on the
comments, we added the parenthetical information in the labels that helps distinguish
the purpose of each subprogram in the io packages.

DFD — Exhibit INS-D contains samples of the DFD view for the INS subsystem.
The top-level graph (INS-D-1) is very busy due to the number of buffers and problems clip-
ping their labels. With so much information in the graph, we can make only general ob-
servations. The transformations represent subprograms that are not called from within

12

the INS subsystem. They correspond with the subprograms that we placed in the ins_in-
terface_routines package (INS-P-9).

INS-D-2 shows details on the INS_INIT subprogram. We are not surprised that an
initialization subprogram writes sixty-seven variables. The INS_INPUT (INS-D-3) and
INS_OUTPUT (INS-D-4) graphs show the structure of the subprograms. The dataflow
would be much improved if the code generator generated the appropriate formal parame-
ter modes. The graphs show the subprograms that the input and output routines call and
the data that is affected.

The graph for INS_INPUT (INS-D-3) shows five connected components. The pack-
ager graphs reveal that INS_INPUT makes calls to subprograms in three packages
(ins_fcc_io, ins_model_io, and ins_ad_io) and the subprograms in any given connected
component are declared in the same package. For example, subprograms INS021,
INS022, INS023, INS010, and INS108 are all declared in ins_fcc_io. The assertion is trivi-
ally true for the other subprograms in the INS_INPUT graph (INS-D-3). We observe that
no data flows between packages under the control of INS_INPUT, because the compo-
nents in the graph are not connected. The input functions of these three packages are not
data coupled.

INS-D-4 shows that the output functions are data coupled. The packager shows
that subprograms INSENV, INSPLN, INSOTW, and INSAVL are declared in ins_mod-
el_io. INSADO is declared in ins_ad_io. INS501 and INS502 are declared in ins_fec_io. If
we were to draw dashed lines to reflect these groupings, INS-D-4 would show the data
coupling of the output functions among the packages.

The dataflow graphs do not plainly show the data coupling between the separate
spans of control (i.e., input and output). For example, the graph for INS_INPUT (INS-D-3)
shows that PLNINS writes variable PSITQ, and the graph for INS_OUTPUT (INS-D-4)
shows that INS501 reads (and writes) it. PSITQ is written by a subprogram in ins_mod-
el_io and read by one in ins_fec_io. INS-P-5 clearly shows this data binding and others
between the two packages.

This is another example of one way in which the Packager and DFD views are com-
plementary. As we studied these graphs, we realized that grouping subprograms in a DFD
graph by package may be another good way to simplify the DFD. The INS_OUTPUT DFD,
for example, would be replaced by one graph with three of what we might call “package
transform” nodes, and the three corresponding subgraphs. This technique merits further
investigation.

13

We noticed that INS-P-5 indicates the wrong direction for the PSITQ data binding,
and for others as well. In each case where the Packager view is wrong, the DFD is correct.
We traced the problem to the use of “reduction over union” in the implementation of the
pak-edge-global-exact-provisions and pak-edge-global-exact-requisitions attributes in
the Packager. The attributes should be corrected in a production version of the RET to
take into account the direction of the base edges.

2.4 MFD SUBSYSTEM

Packager — Exhibit MFD-P contains samples of the Packager view for the MFD
subsystem. We organized the Packager graphs for MFD (MFD-P-1 through MFD-P-9) ac-
cording to the call edges or relations. The call edges appear as thick arrows. This illus-
trates that the Packager graphs are effectively call diagrams when they are configured to
show call edges instead of data bindings. We achieved a layered design among the pack-
ages and note that the interconnection strength numbers shown on MFD-P-1 are small
relative to some of the other subsystems.

We will not describe each of the graphs due to the size of the MFD subsystem. We
note that package mfd_keyboard (MFD-P-7) contains a number of subprograms that call
each other, but the greatest number of data bindings that the package shares with anoth-
er is four. We find this high cohesion and small coupling pleasing.

The graphs entitled mfd_d* (MFD-P-8) and mfd_dmf* (MFD-P-9) correspond with
package nodes labeled mfd_dmfand mfd_d, respectively, in the library graph. We changed
the labels while printing the hardcopy; the Packager does not automatically generate
asterisks.

DFD — Exhibit MFD-D contains samples of the DFD view for the MFD subsystem.
We will not give details on the MFD Dataflow Diagrams (MFD-D-1 through MFD-D-34)
due to the size of the MFD subsystem. We note that the number of graphs is great in part
because MFD makes nine calls to subprogram CHGREQ, resulting in nine graphs, and
MFD_COMPUTE and STRSKB are printed on four pages each due to their size.

2.5 RLT SUBSYSTEM

Packager — Exhibit RLT-P contains samples of the Packager view for the RLT
subsystem. RLT-P-1 shows the library units. The Packager generates upper-case node

14

names. We entered only lower-case node names to distinguish packages formed while in-
teracting with the Packager from the generated nodes. In most of the graphs, the lower-
case nodes represent packages and the upper-case nodes represent subprograms.

The Packager generates some of the packages in the library graph (RLT-P-1) and
they have upper-case names, so the convention doesn’t hold at the library level. It’s not
hard to distinguish packages from subprograms in the library graph in practice because
the engineer sees the packages appear on the screen as they are generated. In retrospect,
we should have used ellipses for packages. We didn’t do that at first because we wanted
to discriminate another way, such as with dashed rectangles, but found INTERVISTA
didn’t support them. We should have reverted to the ellipse, but never did.

The Packager generated the nodes without edges in RLT-P-1. All but two of them
represent package specifications that contain only data object declarations. We refer to
these as data packages. They are derived from FORTRAN common blocks. The other two,
EXTERNALS and INTRINSICS, contain subprogram declarations and body stubs
derived from FORTRAN external subprograms and intrinsic functions, respectively.

The packages rlt_interface, rlt_in, and rlt_out contain subprograms that are not
referenced from within the RLT subsystem. The edges between these packages and the
subprogram RLT_COMPUTE show the data bindings. The hardcopy doesn’t show it, but
when we direct the Packager to show subprogram call edges, there are none. From this
we deduce that RLT_COMPUTE is called only from outside of the RLT subsystem.

The labels on the edges show the direction of dataflow, but we didn’t design the
Packager view to serve as a dataflow diagram. One advantage of the DFD over the Pack-
ager for inspecting dataflow is that a data object appears only once in a DFD, but may be
referenced more than once in a Packager graph. For example, the variable IRARDQ ap-
pears on the labels of both edges of rlt_out. This is a convenient feature of the Packager
view, but would be disadvantageous in a dataflow diagram.

RLT-P-2 shows the subprograms in package rlt_interface. We know from interact-
ing with this view that there are no call edges, so all three subprograms are called from
another subsystem. RLT-P-3 shows edges with interconnection strength values of one.
This implies that they represent call relations, which we confirmed by displaying the call
edges (not shown). RLT-P-4 is similar, but shows one data binding.

15

RLT-P-5 and RLT-P-6 show the subprograms generated to take the place of
FORTRAN intrinsic functions and external subprograms, respectively. The node labels
show the subprogram names, formal parameter types, and return types (for functions), all
automatically generated by the RET prototype. The graph for the EXTERNALS package
shows three subroutines and one function (IS_SET). The Packager generated all four ex-
ternal subprograms because we inadvertantly omitted their FORTRAN source code files

from the analysis.

DFD — Exhibit RLT-D contains samples of the DFD view for the RLT subsystem.
RLT-D-1 shows seven transform nodes. We will focus on the nonterminal transform node
RLT_INPUT first. It represents the transformation of one set of variables (DEGSEM,
F066_FLAG, et al.) into another set (MWZ, PHIDQ, et al.). The graph shows this via ar-
rows directed from the buffer with the first set towards RLT _INPUT, and arrows directed
from RLT_INPUT towards the buffer with the second set. RLT-D-1 shows several trans-
formations, of which RLT_INPUT is one, at the highest level of abstraction provided in the
RLT DFD.

RLT-D-2 shows a more detailed level of abstraction for the same transformation
that we discussed above. RLT-D-1 clumps the variables together as discussed, and sum-
marizes the transformation of one set into the other. RLT-D-2 elaborates on how the indi-
vidual variables in the sets are transformed. It shows that RLT REF_IN transforms
DEGSEM into PHIDQ, and statements in the body of RLT_INPUT transform

F066_FLAG into MWZ.

RLT-D-1 suffers from an anomaly that causes too many arrows to local buffers in
a graph. It shows that RLT_INPUT transforms the variables DBLINT, IF66J, DUMMY4,
and PAD. These variables should rnot appear in the graph because they are local to the
transforms by which they are referenced by and they are not used by another transform.
As local variables that are not used by another transform, they are not relevant to the in-
terprocedural dataflow. They are noise that should be removed from the DFD. Ignoring
this anomaly, the variables transformed by RLT_INPUT in the first graph are the same
ones that appear in the second graph. The second graph just shows more detail for this
particular transformation.

RLT-D-3 suffers from an anomaly that causes too few arrows to local buffers. The
identifier MUX_PACKET declares formal parameters in subprograms RLT_RL00On_OUT,
where n is 1, 3, and 4, and a local variable in RLT OUTPUT. RLT-D-3 shows that
RLT_RL001_OUT transforms the buffer MUX_PACKET. The buffer represents the local

16

variable that is passed through a formal parameter that happens to have the same name.
The buffer is thus not local to RLT RL0O01_OUT, so the graph does show
RLT_RLO01_OUT transforming the buffer. This part is correct.

RLT-D-3 should also show an arrow from RLT_OUTPUT to MUX_PACKET. The
MUX_PACKET buffer is local to RLT_OUTPUT, but because it is used by
RLT_RLO001_OUT, the graph should show that RLT_OUTPUT transforms the buffer. In
contrast with the anomaly discussed above, this relationship is relevant to the interproce-
dural dataflow because the buffer is used by another transform. Both anomalies should
be corrected in a production version of the RET.

All of the other buffers in RLT-D-3 are involved in the RLT_OUTPUT transforma-
tion on RLT-D-1. RLT-D-3 just shows more detail on the RLT_OUTPUT transformation
than RLT-D-1. For example, RLT-D-1 shows that RLT OUTPUT transforms
RLO01_FLAG, CURRENT_POWER, IRARDQ, and MRL01J into RL001 and RLD0Op,
where p is between 1 and 4. RLT-D-3 reveals that RLT_RLTADO takes IRARDQ and
MRLO1J into RLD00Op, RLT_RL001_OUT derives RLO001 from a different source, and
RL001_FLAG and CURRENT_POWER are transformed by statements in the body of
RLT_OUTPUT. Due to the missing arrow, we can’t tell that RLT OUTPUT feeds
MUX_PACKET.

2.6 UFC SUBSYSTEM

Packager — Exhibit UFC-P contains samples of the Packager view for the UFC
subsystem. We printed only a sample of the UFC subsystem because it is very large. The
Packager graphs (UFC-P-1 through UFC-P-8) show the same kind of design, layered with
little coupling, that is enjoyed by the MFD subsystem. The Packager graphs that we show
are essentially call graphs. The Packager can display combinations of data binding and
call edges, but this hardcopy shows only call edges.

DFD — Exhibit UFC-D contains samples of the DFD view for the UFC subsystem.
The top-level DFD (UFC-D-1) shows the same characteristic structure as the other sub-
systems. It includes initialization, termination, suspension, input, output, and compute
routines. We do not give details for the UFC subsystem shown in UFC-D-1 through UFC-
D-21, but note one important point.

The engineer can make use of information in even the most complicated views by
taking advantage of the filtering capabilities of the RET prototype. UFC-D-9, for example,

17

is very complicated and the hardcopy version does not appear to be very useful. Neverthe-
less, the engineer can answer specific questions by hiding some of the nodes or edges. The
engineer may, for example, display only call edges from subprogram UFCBIT.

Another feature that helps the engineer manage complexity is the automatic high-
lighting of adjacent nodes in the Packager and DFD views, which can’t be shown in the
hardcopy. The RET prototype outlines all nodes that are adjacent to (have an edge to) the
node under the cursor. The outlines appear and disappear automatically as the engineer
moves the cursor. The effect is that in a complicated view, the engineer can visually scan
for the nodes that, say, are called by, or share a data binding with a particular node.

2.7 SMS SUBSYSTEM

We did not analyze the SMS subsystem.

18

REFERENCES

D.E. Wilkening, Avionics Software Reengineering Technology (ASRET) Project Fi-
nal Report, Volume I, Project Summary, Account, and Results, TASC Technical Re-
port TR-6661-4, TASC, Inc., Reading, Massachusetts, 5 May 1995.

Corbi, TA., Prdgram Understanding: Challenge for the 1990s, IBM Systems Jour-
nal 28(2), 294-306 (1989).

Wilkening, D.E., Kreutzfeld, R.J., and Loyall, J.P., Avionics Software Reengiener-
ing Technology (ASRET) Software Reengineering Study Report, Technical Report
TR-6661-1, TASC, Reading, Massachusetts, 17 February 1993.

D.E., Wilkening, J.P. Loyall, Software Requirements Specification for the Avionics
Software Reengineering Tool (RET) Prototype System, RET-SRS-01. TASC Techni-
cal Report TR-6661-2. TASC, Reading, Massachusetts, May 1993.

D.E. Wilkening, J.P. Loyall, Software Design Document for the Avionics Software
Reengineering tool (RET) Prototype System, RET-SDD-01. TASC Technical Report
TR-6661-3. TASC, Reading, Massachusetts, August 1993.

19

APPENDIX A

EXHIBIT FCR-P
FCR Subsystem Packager Views

20

3

modea

Packager - library

21

2Axans

QAN3IdSNS IS

WHAL WS

XNW aavas avad

XNW aaIvosTias

22

Packager - dead - code

——

QHOHOH

WIGHODS

AGSSHOS

;

aosHOd

410HOd

ANOHOA

O

MdHO4

N

SLOHOS

aowudd

*

419404

R

448404

NS

NOBUHO4d

M

NYWHOA

d

AXDUOA \E\\[

HOd

\

om.nzoN

¥

JNCUOS

74

Nivod

Packager - main

23

IIvuod 43Qu4Od4
d:41404
£184OA
AHHDOZ
vIBHOA
8VYS8HOA
dasyod
NOoHI4
HNVYHDY
GIAYOA
dQoHd4
SINUOJ
QvsHO4
SAHOd
dALHOd
dVNEOd JUduod

HloawAe 4oL

24

Packager - modes

dEXATXANTILINM

NIANI HO4

TIvHDA

&

HEOUOS
ANVHOA
DAUNOS
SMIMO4
41804
WVYSHOA
WALMOH4
ANNHOS
[elLe T]
AXYHOA
HOVHIA4
WOVMO4
AWOHOA
BSMUHDS

25

Packager - modes 0—~1

o4

TIvuod 430uo4

dditdOd
£L8HO4
ATHHDA
VESUO4
: 8VYSsHId
da8uOd
¢
" nNOoHO4
e awes N
S
P | LIS A NYHIA
QIAYOY
<4aouD;
"
: F
8INHOAS
avsyod
BAHOH
dQAHDS

].B/ Mo DUt DS

T——Lr]

TOawAS™ !

26

Packager - modes

<33T XAWTRLL

NIANZ HOd

5|

HeOdHOId
ANVHOS
OAUHOS
SMIMOJ
A48HOJd
nwvsuod
WALHOd
XNNHO4
OlHO4
XVYHOd
HOVYHO4
WOvHOId
AWOHO4
SMUHHOA

TIVHD:A

27

Packager - modes 0—1

THOHMQ WO

600HA " HOd

LOHQ HOd

S00HA " HOS

TEOHQ HOA

€LoHA™HOA

rL0HA WO

LNd1NO"HOA

130T g v Ee ¥

€00HA HOA

SE0HQ MOA

oav-uod

€EOHMQ ™ HOd

28

9COHQ HII

200HQ 42

Packager - fer_dr

APPENDIX B

EXHIBIT FCR-D
FCR Subsystem DFD Views

29

@ omes

0OX3yLl
0X3aayl
oIy J1NdWOD HD4
LOBANS
DIvHIL DH3AOW
N1d AN3 rsoyan

re

ONIrWO3

OXAVIA

OIIH

SAN.
Dildd
WYL

Z9
+dd
JHdWNI
d4dWNG

| SS3HAAY TWIISAHd LINLUYNS
INAS

HI9NIT LINLHVINS

0L1iSd
d40di
J4NHI

LINI 424

. OSHI

DHYHO4I
DHO4I

TUAT D e é

FSEHAN

co0Ha HO4
CE0HA YDA

»Ha

ATAAT WATQIQ

9E0HA Y4

rZ1SI

10
~JHa
+Sd
S1ISd4d
#AND
~avy
YN

I.abuei]
2 2
MW LNdNI 424
+HAW aiH O13AL
424 N1d
aanNvIs
N3
I9VYSSIN
JIVIS XNW
«AH1 101
+HSD
+HAS
v 10Hd 4O4 rrLIHAW
racyan

30

INdLNO HO4 .4a
oHUDAI
DuN
OSHI
TH41 404 0av 44

STOAWAS U4

prIt.

IndLno ¥od

€E0HA HD4

2604a 4oO4d

€104a Y44

21040 43

LLOHA HOA JHaW

0L0YA Y24

600HA HD4

2004Q HD4

£00Hd HD4

31

JHAS
SLg Mol
ININOJX3
WLOL

~4SD
J10L

N
FNNIZA
rNNivd

JALLYD3IN

r9z4awu
rL1sl

YW 1av424 D4

rZg Imn

PR 1

h 4

LNdNI 824

DASHND
OXSHNMD
OWH13v

FONV1V -
rONvHA 89040424

94044 HO4

0£044 HO4

oadisd
A

HO4 Nid

rodLw

ranwoa
ranozvy
rig IMnn
FSHAW

P

«~JWa

INdNI ¥04

004Wa HOd

NINTd 424

~avd
+~AND
S.1ISd4

FGLIHAN

rvodWn

32

- IDYSSIN
ms_z oﬁUn IIVOS XN

33

A .)
rNNIZA £€04a HD4 £e04a _
. MANIVd | ‘ |

£€04d ¥4

rega Imn
FONVLVY
FONYHa

sWAS

dX3 XNW avay

1E040 HO4

H

+~110L

dX3 XNW avay

1€04@ ¥4

1eada

»HSED

34

0
adivd
ooms4i
ZNISIY
ZUET3IN
(AL 4]
ONIFWD3
OXAVIN

SSIHAAY TYIISAHd 1IHI1UVAS
JNAS
HI9N3T LINLUYINS

AGSHII

Y

OsHl

+»SH

Labuea
DZ344N
OAVSZY
DASTIN
DSHAVI

ZNNAN!
174

owaal
redo4dW

LINI 404

35

OI1XA0N
862

OHO4ll
€2

Hod

OXAV LI Te

410dH02™ 04

DHIAON
e

LOOANS

36

CELERN

ONYRASS v
ELELRN | ol | ETUL VY § DALNIN +dd +Xal 0zvsa |lzaaowr ||dacoan || yadny |} znnav || dxaun || oxacu || dow
T OSdNG 1 41 ~ousam | .
onswor Haciconll Sz 0z3u4w Hf osuavi ff oo [omaon [l owven || dumn |l oxauov || dusvar || edus 205130 |} r2H24N
+dS) +d 00
4NN raydovd [} radoiy || 0o4man f|dzvavy foraavy || «saa [Josnnun || dosaan |1 dunont || dowast | dowow
+«4no+ [lOxsyno :
ave s
ts0d13 [] Wvag Ouwxi §lONvosa «031 douval || duoory || daivun aivyl +13N OuNar +JHINO +01 {1 0ASYND
OavIZY I enyT OTIvET GdTIoT ||
d13ar Jfowova || d1aan dusdor Hoonyas ovi Oyodr daoisn || 03aHs |1 disoar [lowvaan || drinve an1on Wozvxvn
Z1NDO) }] Ouidwvl «13a1 || do1vy1 | Onudr 1 ddumon oO1014¢] Odisan «al +OQHO O13an }| dduioN] doundr || dunova
[T LitErlim ZornT
+dia wia ANy an [frzawan] razvny +IN 2a01an || 290iNT |1 «1on1 |} Oasin || dauw | esiao +as
o) V2o 2 | ot o e 100 _ [TdO45D |
otaivy jzamnmys 3] +13 INYS09 " 6z «yau] rousia oy fdZ¥SD +al OdudwW _Omuag
Oyaagon || dwovi ¢ | dwsamir o1l oawdyw 1| dovaul || Owa1sy || odasug || Otvuny +SH o1s0am [jOWdRaIN +4l
a1 ooq 139 |
ONOYWe +0Y 16 ﬂmamn_mmmzs_ dwal 0 do¥32Y OWIroH T ON411D || Odsvyi |l Ozson |f Ooasxi] Osol
e | B L ‘ ZROS I | [TTaTam TWARIN] 331V5
4 |ynaan || rasi || Orve [|o3cave i 880 17yugray [frmsaan || ' || amavi || ONexa || owoa J[swamoa I G500
+4yl Nl <4y TNz 01131 }] xox0di Odiddl | rozaan ek odaniy oM «6ua Havyoza]| odoual
disdl Odaln
OSISAv LEIECA |
ronvya || rrodw conviy 1]13aw03 |l radny |l rawoia |} ezv +JWAS o3amn 4N «al fANIYd 0 1
(euad) @LEEV e e @ e e e e e oxavin || dusd _mﬁﬂm dadisd

D D D D D D

o4 1

37

. ToRYIS H I [I I
03441 da11vY OdINON _ DALNIN «dY «%ai 0zvsn |]zaaowr _ OAdoan || saany] znnan [oxaun || oxaaw atalt?
L p—" 0% z_wnA TINNH N |
q
oszou oo _/ NP s 183 Oy, o oy Me ol W
1 AV AN SANE Y § a4
4nadw $ aM,) 3 va ogkRtm o av
) J g0
rsol] o) 0 N o no
L3 2J
01 7 NI
_.A 1 I R iy
3 [
2IN99 1] (| s\a]
«4la W b S
O1divy gjaol
dyzpow l§ o L
ONGH al
{
f iV
! A alvo
f 2
o4 :* . of4al
17 rd
OS IR0 o1
Bzf..
3
n14 qISd
S04 2424Y (110404 30404 T 1130494 ad
4od 21404 as 915y NIY omyoad

804

38

Ranos | [odmos _.wﬂmuw._u. od¥ xar | [dzvsa | [55ont] [oaaoan] fuaun I oxzun | [oxaaw | | oow

OsHNYN MWMH_. d13avy _o~<n<m _ONuc.._z dsyavi | [dixaoN ﬁﬂl _Wr._mo,.. E_ _. O3y
E dMoNt dﬁwul diaar | | oudw _onzauz duswoi] [dowovi] [dolas _oocnﬁ dunon | | ssaal | [dosaan
+13N OLvanv | Joisoam | Pudxan H dyadr | | d1aivy | | d13aw | kawmwys ;.&mmo E dunov? E
Owavi | jowovs E oLo14r oSt omsamie| J daivan | | Ornyr _oaz&..z Oovayl E _o&_mam

I —MM..M_.MH___..H. Odudm | [ounar aivdi l.ﬁﬂ_a_uWI 0ASHND I..qcmwl +SH @wwﬂ oyooun | Jynonw
I oaun «1301 oisoal | |daaHy | Puvaan] | douvai| | «om _ozcomo O E +Wyag E
E ~0aHa l dnd1 | [o1aam v 13 .MH.M_HMM. ol _amuumﬂ OasINI mewm__q B
_ __ _.um&_ws _E- E +1ON1 +5109 as 2iNo9l | Jdwmon | [dounut E

E durdr | | dwmer | 85 H mwwﬁ IIII rdZYNY

odl ._o.am_www_m. (+0dW —._o.mmmq dan1y | [odaim h_ufm_mww MAS I N9 damn I
0adisd | |avaoaal | ranivd o o1 2Y ramo13 | [ozcavy] | dao E ﬂmﬂwﬂ._l 103 _.Vﬂ_ﬂu__.x%h..
e @ e _@ _oxafz ousd || core |{owve]] - wouer | [Bouar | [o11a1 _ﬂ..am.mwu..

91S¥Dd

39

OONYad I | | I

Ba11vy Odlmoy _ao_ w_ mz_..__azn _ «dy «%al bzvsn Z2000¢ dAqoan] | 4odny 2NNani | | Oxadn | [Oxaayl (e]
N L 4 . : I 7 7

Omz:x zMMwmm 1ahky Nozy O34 dsyaviy | oy uwz mh:oc uH14l +O44 rey)
RN n_mwAWM A [rini ‘f

raygo ﬂ:ﬁ /ﬁ/&/ 1 v S 7 Y oAl saaql

NAHINI K ,

+13N W " R 1 p 1 HOov4

4aa I o FL] djisyg

Oz NI A W
+l A 3 0413

\

ZAAN 11
410 . HoN
«Adl | et
+«dl +«QUl

qadl

oﬁ ISd 41003

SN

@« shau
¥Y$404 g40d % 04ad

isdady (olod asy NIy Od omy S04 ayy NvY agy

91544

40

o«mﬁﬁox +13N OLI154 0z344l Osyawv 004/M3N o13ar 0410V 23aaounr
daundl ON1aNI rayony
dYN0Y] OwWavi ddNY01 Phetrb=tny 20513an OWdXaN &4031 O1vUNY Odasyg
damdvi dum1Ld sy duadr s roes daivuN dlowr duisaN
INNOY +al
014y OW1roH oSP MYl BIaN o130y olaivy 241saN 20MIYS
4N3nw Owidovr |}
01X 30N du3aow ddo01y das3al +41 v 2UINYW d1s0an dovayl
—
d1aaw Yy ont . W03 ol - mrﬁu HY1N03 OUNYP o5l N
avyoaa 2v mm”___%mw YOINY ONSWOl -13al odl (OSINY DYV
OANNdI arvdi
SOyl Osixvi +IN 11 o o3aavy duIOVP Odddil 50413

I E I CDICDICDICDICD
D @D D G

aomiada '

o«.m___“hov‘ A S13N dL415Y dzayaw dsyavi dOMIAN dLaar DY 1OV 2aaomr
Ly —— = 77
Godn X ONI1DNI rayo c dmak3 o d3kua
dunjpy NS rago
L RN
ooz}s /%\? 1 o N dd15aN
b
1Rgod
OlHY OH R 2awmuvs
]
o1x mwﬁ o/u als) shdm boyayl
1YY
o]

013 9/ +36 : i +$|
\ Pl
avdpag as 014V Le
i \
oom.n_u“_\ f_.mo:u

iy
S¥sH //m” al
j
WYY ad oY) uad naad ovd) W NDak a4
aonyod A2SHOY nayad SNYOd

AOWdDJA

42

o a
o 9

aowany

43

(ORYDI

44

+IN
3.1}

23aowr
O1ddm
donyal

Od1saN
o1o14r
+AYl

«ll

Oalvyn
014y

owitse

OwWiroH
OLaivy
Odadr

LLSYDd

+di
+17

0o
daaiHy
+HlO3
dAaogaN

13awo3
g MKl
HOdNY

45

F 3

- DASLNI
OALLNI
rM4adtl

(an)s

0ad

dd9HI4

«Sl
#8109
PLLES
0SHavI

dad4d4

DHJX3IN
O1vOsH
Osdi
0Z344NW
~1101
+Hd8D
DHIAOW
OAJOEN

»HMN

534aavd
wabued
DIvYZY

r2g i

avyoaqa
ObHHAl
XAl
0v.L3al

£l

46

fodsia

KNWY2d

+Hdl
«Q1
+40al
fdodsd
OdMwvr
rd2vsd

XNWEDA

O4410N
054l
+0Yd

20014l
rSiS|

Odisan

dzsol1

2aisi
fdan
+«11
01415y
rddoql
+1W
1$0d13
OZvR Y
rS0dzY
o43aon
s ERE]
Oz whIn
+3Jl
rad o1y
raaovd
rFEYOIN

T4

14940

21snve

2Wo3an
2NNAani
204N
+«INY
ZOVILIN
+¥i0
+d10a
1IN

reAANYN
FIAWNYNW
2€

47

APPENDIX C

EXHIBIT GPS-P
GPS Subsystem Packager Views

48

o) snec0id edl

dHa3ar <--
ZARLST <=
THULAT <~
TIMIL «=~-
TAHTINE <=~

TNASHT -->
D}"9080018 ¥dB8 - AB"esed01d 9dD

dB™ d™sdB

TIHIT <->
0393103U)~eds - >3 esed01d"ed0d

eow3re3ul~eds - youdunTeds

TONYOE <>
o393 18 uj~vd8 - dB"ewwd01d"edd

noosdo

NINEHETITVY

NOoN“WHd OXd

SLNVISNCI™ANSE"ONY

NIT"OdO"NAY

WANUHETIETHHI NS

NANHHE NID NS ON4

WABNIBLN

9IVNHILXE

49

Packager - library

4ANd1N0~8dD

48840

HW18dD

20N --»
E4OXAL =->
BdDAAL «-»
$452AL ~->

F40%XE ==»
6dDRL -->»
54028 -->

AVNSD =~ HHISIO

BIZHIL ==>
WSO - RINIHOD"E4D

]

AYNaJ4O

wyaL edo

&

BiNdNOD™8dD

IIEII HyY3Iedo

ANIFINB " 8AD

AINITBdOD

wnen -->
WHASID - AYNSED

ANISdD

50

interface

- 8ps_1

Packager

100840788300Ud

xXAw-i3e

2008dD"688320Hd

800840 88300Hd

600940 68320Hd

200840 883004 d

80084098300

200840798300

1n04Y3az

400840883304 d

51

Packager - gps_process_gp

£031002788300Hd

1NdNIT8dD

0080247

ZTI0DIN”E83I0H4

RN

xXnn-avay

\

1

$1024N7N8300Hd

\\

52

Packager - gps_process_fc

VAVATANITNIVLNN

YAVATNTIdTAIVAENN

YiVATENITHOVENN

53

Packager - gps_unpack

APPENDIX D

EXHIBIT GPS-D
GPS Subsystem DFD Views

54

10Lm

inazos
ANDL
sdons
s4oad
sdozy

seoxAD

2uOAAL

sevIAd

]

281V
dmTonvaTodn
R
SSIVOGV IV NSANS LTMINY NS
ONAS
HICHE1 L BUNY RS
[1 Tt 11"
re040
oime
orme)
o1uus
oue
otuvs
Crwus
owue
onus
.

>
N

ora
ro
oY
ravaw
orvan
oaxa
0318
oLvie
ooNoYM
VAL
zomm
AU
00140
24NN —
bt v -
2wvM
v vsava
™vioe soeawa
s v
iy e foseasd
iy 200N
oo W ooV
voA zonam
011
Rim
ceown ean-ans
B xaovat
prpsie avel
“n rovsesn
mot
sment
seeaav dunaot
rert o
Aneaedn roreom
retaom
naerm e
oRasat "
M
inenonsen
risdo il Fomie
ot eteaon asmore zauw
ressot °
wrvoe xnn P T
roeacy
- reeeol
1sa0
riseor
00940 0sR20WS fosson -
anaino-ede
um
N
sevaiou
ToLN
waoA
v40Ar [
20IAYN [Tras0n o
2Avim aonA Tidsor ras i
o annial saozA zomuvy vinat
*041m04 2awwas Tveuvy ausso
" oinon
orvom
oAl
2svel
un soum
o 2om
zosvel 21w
Zaenn vl
TUVEAY 200140
() nvieo
radsol 2on01D
oruie zonvow

55

Data Flow Diagram - dfd

" Mot
-

za1avH
OIS

4ndino sen

resene #ecs40"es100ue

$00840"e9ROONS

waozA
sanxA
sdox
sevz
risdon
T
09840 TISD0US
reeqon z00im
nAuvoEN
N PLITY
teosdo sENs0ve
204901 ToNvOM
B TonoTD
ruvea nvieo
zeanuvy z00140
bidaal feoene
P LN
2avim aval
000407200004 resqon

56

- GPS_OUTPUT

Data Flow Diagram

Data Flow Diagram - PROCESS_GPS001

57

ovmz
mrTaz

Data Flow Diagram - PROCESS_GPS002 58

revqor

2Aval

zadeon
vt
Iuvear
Taruvy
Tvauvy
xin30)
AvIMM

900940 FENDONS

;0140

zoNOTE

nnmoiss

xwCans

r)u BIvoe xre
(Lt [

TONVvOW

uvo

N’ oINnDe

xXon"ane

xOMies

59

Data Flow Diagram - PROCESS_GPS003

NAVLDS
1sTvaz

2 o BV o i,

HaNID
LeN
MUX_scALe

Data Flow Diagram - PROCESS_GPS005

60

TOLiey
TaAve

»Ivos xnm

Data Flow Diagram - PROCESS_GPS006

61

3010047 ¢200W4

62

- GPS_INPUT

Data Flow Diagram

63

- PROCESS_UFCO011

Data Flow Diagram

xasvel
mavs

BovetIN
WIS XN

Data Flow Diagram - PROCESS_UFC012

64

corme
. oA ooNole ouset
SPRUNAAVIVIIRAHG ABNAWY IS oivie wrAzat
oHA® AN
HoNEYIBIINY Y Laadiadid Shvam e
fros0 woavy
reso oavam
zievel
zonasm
o
Ty
resdn

IO
zive0

2owovo a1AYN
Tivr 2Nt 0148t

l_ 100440 _l
1

20NN Avieeo
Tiavin zoaui
xMviow
2eevM0 oeown
UM sinemoa sa0 soereDd
o
Oxdan onem
hatbded Oadan onen
Bionot Oxedw Bime Timon
onxA ormer zerem woaay
oma oiuun
orews
ocvun
orwus
o
oceuvs

65

Data Flow Diagram - GPS_COMPUTE

Sifesery
EEsEEEEi

R

sasidis

cHe T
[TYN T
arsNav

.........
eicaiacyeansdczsd

Data Flow Diagram - GPSNAV
66

wioavy

AND
40714

oA

oxdau

Cadew

Oxdow
v

VAV NI NSVINN

oot
ooA

ooNOTY
oAV

SI0NOOY IVOIRANE LBMNINYING
ONAS
HONYABUNYE
IHINTY
FAvol
TvA)

vd
L2 4

67

- GPS_INIT

Data Flow Diagram

wreirz

nveLox
arers
worets
aress
arces
naress
aresy
Kress

Data Flow Diagram - GPSBIT

68

APPENDIX E

EXHIBIT INS-P
INS Subsystem Packager Views

69

bl l o]

in
“peen

Suresenss o oy

Lol)

franune™ vy

Hon nve o

UNLEN00 ONE OXg

il L L AC Ll o PP

el R BT

STWMURLXD

L]

70

Packager - library

Bujesedasd sy

SOUNNOITSIRLSIU} B

(o1

P)
i)

seInnTew

o peTeu}

Aujesesosd o eu

o1"Iepous su

o) o3 ey

Packager - library

71

LINITSNI
AINdHOD SN
SPUTINOI SIVJIGUT BUT

ONISNI
ODISNI
HOOSNI
LYASNI
XIdSNI
Buyessdoxd-suy

Sujssecoid sup

QOAENT
DHOSNL
LVASNI
LIGSNI
Bujesesoad suy

®8y3f{fIN" WUy

INdNITSNI
_IndINOTSNE
saUYINOY 8dej18uy suy

IAVSNI
OAQYSNI
oF pu sug

ssujInos eoBuNIUl sU)

BLNIHOD SRT
ssugnox SowWjlejuy suy

JSHYO4
VYITINI

WILIND
SOTITTFIN suy

OHESNE
Buywsedoxd-euy

xbnmz~
AYNSNI
Guyssedoxd~oy suy

sepInnT ey

SOUTINOI 8DV IeJUT suy

FENIHOD"SNT

HHISNI
Sujmeedoid-o}-suy

1¥a13g
SeIIF[FIN"MUT

AYNSNI
Buysseooid oy suy

LNANITSNT
INdLN0TSNI
EOUTINOITOOWFASIUT sUT

INANIZENT
LNALNO0TSNT
SBUTINCITEDNIINUT BUF

TZO5NI
TZOSNI
£ZOSNI
0TOSNI
BOTSNI

017253 suy

Bujesedoid~ o) suy

o tepourT sy

o 09 euy

Packager - library

72

— XISSNI LIVOSNI MHOOSNI DOISNI <~ FINIHOD SNI

OJYSNI <- INdINO SNI (o)

ssunoiTeowuNul U}

> i)

o) pe ey}

Bujssesocid esu)

N1IdSNI ANISNI TAVSNI <~ INdINOTSNI

jo)"tepousTeu

ESE

~==JSRE0

3
NOITY LOXNTH W¥3dd¥ VITINI <- HINIHOD“SNI —

d
DHASNI <-

¥HOIAO 1SQ3IQ AHHAHL $043ld <=
LIGSNI <-

1va13a

N

NY <-

AVNS

oan
DHI S NI

sspHnTeY)

ZOSSNI TOGSNI <- LOdINO~SNI

[-1 T 117]

BSujssesoid o} su)

Packager - library

73

BaYIA) ~e>

OHAHRL ~->
OQOLYI ~->
BIsyyd -->
o} puTsuy - £8UTINOXT0OVI X8 UT TBUT
— (o1
sounosTedu e U su) ouB|p/Bojeun)
of peTeu)
[¢]

)
211040 -->
ZHOLD --~>

2I2Yd9 -->

Bussesasd sy, ="
] 2730090 --> oI jepow—eu
0FTpvTauY - 01”053 suy

01184 <-~

2O0QHHD <=>
2DJHLD <->

O} tepouTsu} - of~d03 sug

74

o oa " su|

sepinT ey}

Buissesosd~o)"eu)

Packager - library

D

Packager - ins_processing

75

Packager - ins_utilities

76

Packager - ins_io_processing

Packager - ins_interface_routines

78

maaD0
(anate prigtial
o)

WNSA
tonatoprnginl
L)

Packager - ins_ad_io - (analog/digital - io)

79

(00d wes
tnaug
tavam

(004 umy
b))
Wit (004 wey
g
_ o
208 4
LT (004 way
.....)
1601 « szenmm
detens - eteme
{004 weun ot
Indy) .
stoem OLIRRIT.

80

oo4®
wane)
LI

Packager - ins_fcc_jo

fiav e

W)
Wvem
wiom
e}
YT
(N1ewey tnan
) ndine)
Mg L
tANa wey (Axg =
ey} nane)
NN ANIE
tava wey
i)
oava

_10

- ins_model_i

Packager

81

APPENDIX F

EXHIBIT INS-D
INS Subsystem DFD Views

82

V"
Teaw L]
OXI6VI zeqoy ciree
DAANOD zeooA X240
AaNvEL o8

INOAM BNVL 2EAVIO
W0 INTOVLLGS zo0man |FIAVE

290044
Tumo | zmeoun f Inno | Zwoots

TONION

nease
Ze8ON

2 INYME
2iredne 7 vaie SduvEax
wm{w N N .
24
ZAwmInOHOMM OAMmS
RiVvip DiNANN v
31 O 2avmw
o FROVNDL 3 gy € orown
Ll B
I 1vie
" el
200vAD R
300YTO YHdWY
¥
- u o"em,
2ANDL [}
2iuxo .
aswi
am)
K 4
N ANNK:
Anax
rAYRNG ANOOO
2088
19041 ©
i all]
oo nuntg
oimal an
]
Vi {2
p <)
B 2
T " "
ousNOpAA)
XA
£
2adwasavea
nesava
[Lo
Al ave
wocahm
:P:i--!.-'enl oW
el avunse
L 1]
1nea
ot
on vqval

D @&

0] Hovm

ooy
bas

&>

vosm

Diwe

TN
ANENO 4 X

IO pepm

4OD4% cqyn

98AN _ rmina

omun 918G
e o000

fnobivd JIEERTTY

OAMION ya1pq
o8dAx

LN T 3T
IMOIN oiv1e
A
[
4 reem
(1} oHmed
cooav
OH P
SND
AL00
oea
N
ot 12 7
' IO
[-A
L St
ull
&l
al
oy 4
1
i Lol l]
glil°.> >y “
!
oNie
o1 -,
peni 14 UTLTNIE B
zomaov PO
YéuY
HaswY
otev
NV
00

83

Data Flow Diagram - dfd

rod42a
o044
oaien
remrng
crowm
osiovn
Zoneoy
Tuviuvy
Iunauy
Diowwy
Ri0dav
TUNVNY
THsQVY
avnois
FOMIVY
2901
xer00
2
NI
oane
o nEcduRe
2

DoNOW

avurme

BINNGAV TV OIS AN ARMIN YD
ONAS
HIONBY ARNIUY IS
oexe
wane
dexe
Tiv0

Data Flow Diagram - INS_INIT

84

[21]
ovm
ooa
ore
o
oxe
oadee
orve
oave
oxve

onzv
ouy
(3
o1y

omA
oA
oo
ousd
oane
»

wisosa
AND
vy

"N

x00024
QaAvow Nﬂ“ﬂﬂ 280944
oonoTe orcva ro04x0 000X
Givie AN 90440 2
o rooszo misn
FuOORA
eooAA
o"avA
sosaam HOLMS RO ee

- INS_INPUT

Data Flow Diagram

85

- INS_OUTPUT

Data Flow Diagram

86

©2aANN

e

wony

ongrly

Data Flow Diagram - INS_COMPUTE

87

APPENDIX G

EXHIBIT MFD-P
MFD Subsystem Packager Views

88

pivoqhen piw

mnTpiu

1 BZDJIQQ‘O—

dadissun AN

avionsnis

oldvad Juil—zzulﬂ
;mzzng:ad.l_nnzx ive

n...s.oo..ln

AGN2dENSs i

dwoo~pju Jupppw PP
WHIL a4N no"pus uTpw
P

Packager - library

89

HOLvd

MST103738

JdOTOMS

ovlans

ONHAQ4AN

ONHD

dmsoad

Eeloda (oI |

NNWoad

/!

dninod

ILNdWOD~aan

dL0o0

Eel s FE P

90

p

- mfd_com

Packager

IHOIN dVAQHN

oava:an

44377 dVAQIN

SWSsain

indino~asn

4dnoain

Packager - mfd_out

91

MFD_INPUT

VAPIN

Packager - mfd_in

92

JlgIn

F1EVL ESDIHAVHD 1IN

diNITaawnw

Packager - mfd_ini

93

3ivioy

WNNQdW

+

OIAHOHD

- mfd_util

Packager

94

ANIGAM

4dsHadwW

dNSEAM

LHANOD

a)suis

Xwavad

r

vagadn

D3HHLS

10SVYN3

OIAHOOIA

QHBAINM

aoxnw

|

AHVIOHY

Packager - mfd_keyboard

95

0£0407a4N

2v05A7a4dN

8z0:4Q7 a4

8Z05Q™AAN

ezo1a0"adw

9Z0Sa™ Q4N

9ioHQT a4

920407 G4

Z€0Sa a4

920407 a4W

10071207 Q4N

rioHa aHAnW

LE0SA™ AN

€zoda - adn

Packager - mfd_d*

96

6Z0iNa"adn

$004NA~ A4

6o00dnNaT a4

€004Na T adn

400dwaTadn

zooawa~asn

s004Wa"adn

toodwa-adn

Packager - mfd_dmf*

97

APPENDIX H

EXHIBIT MFD-D
MFD Subsystem DFD Views

98

pall U

ONV1s!
Lo NE-4 |
A1GVLSIIHAVHD

HIMOJA4IW

TZ6dWN
nNaw
074047
vI2a4W
19041
z3aaan
Zisudt
gszdan
voin

ALY0-AW

4NdinNo~g4dn

-
29

OLDHW
O9DHN
DTIOHNW
0ITOUN

w
pi-i
dwaLt
10781

©1078)
1
HWNLSWL
€041

Z-(UJ.O"-E
L1040

OHVYHII
o3ovdr
OanNimr
oNiaXn

(«1-) bl

OXAVEIN

DUBSAAN

OWHO I

e

OANNN
ooda:in

OHVHON
OanNIMN
Zods8al

BLNdNODT Q4N

Zs4yd

ZSWHI
Z4 L1
z4101

Lol

&, d4X rEo.
VA r1v8i
N3s| dsial
O EAM i
ZATYAN BO
AQHOMT reocdw
ZIdM BdsHs)
46040\ ©dUD4dl
O3INLL \T818d|

SINILM avsat
TIANGD1 ONHOIL
VIL8 NNWMSI

191401 DWNANT

Zavaun

oagonn

oosvI Z1001

ZWNNLI 1819A%
HWLDEN ONJdE1L
HANLHOA ONIYO!

[{e 1)
Tl

ZTTIH TELNNW
3AVEd ATVOS

oIAMVYA '

Iqow
aN3adsnNs™ain 161

X7sl

Z1iNOI

DWAN
Zav3y
'

042407 bz
Zidl
2Tl

ulete]

ZMSI

rezsi

rezsi
roziaw

+dVA

«Ha
-80
«adVv
L00ONS
e [P - E P

ANdNIC a4

CLHO4N
rTHod4dn
osHl
buiove
oxAvon
OXAVON

fetHan
frigdan
reesl
ricsi
roszdan
rsdan
rezian
reziaw
rezdan
Za4awn
olIMe)
1 13

redan

oLIAIT
Ze:A)
Z43UN

idstial

10071407 Q:N] «dQ

nswnimsi
AEVYNI

DsAQdW

883HAAV IVOISAHA AINLUVING
ONAS
HIONIT LINLUVYNS

ANDI

. oadAL

ZMom
188Vd
blivaial
241078t

Data Flow Diagram - dfd

99

Z1001
vagon
zavaun

zodsal
oINIVA
DANIMN
OHVHON
oIAad
ONIadNW
oouisd
osvI4l
on
oax
vaNnme
oaovar
owansi
ONV.1SI
OaIANI
owHod|
odsial
oLoal
DUVHOI
©o8vVI
vsAQdw
vz

JIadn

OXAVIN

[o281010]
[o1-121 1,]
OTLOHUN
0szTOUNW

LINITQ4W

31avL"80IHdYHD

B78VLT8DIHdYHD AINI

683HAAV T IVIISAHI LANLYYNE
ONAS
HLONAT LaNINVYNG

Data Flow Diagram - MFD_INIT

100

«dVA
Zadn

rezian

rezidan

rezdan

roziaw

rezdamn

NIdVYA

a

920407a4N

riesi

LEOBQ Q4N TEOSA AN

rzesl

£ozZ81

rezsl

92080 ad

[=2070% 1)

VAT adn

Z04Q™ Q4
o -9

AnNdNITadn

OXAVOW
OXAVOW

2208 a4

£y08Q~QdNe

DA DNE.

_ osul
TULITHOd FEMOIN
rLHOAN
[-IT.3¥T]
OTLOHW
oLouw vioHa~aQun reiyan
+QadY
100aNs
Ha 0Z04Q™ Q4N rezian
HIMOda4n [T s FTV] ratyan

101

Data Flow Diagram - MFD_INPUT

4437 dvAQdW

0odadn

OXAVIWN
it

o8V14l
oaovdr
ATEVLTE8OIHAVHO

4AHOIH dVYAQAN

OWHOAI

«adn

SWEOAN

oHsa4n

rzosn
reo4n
Yo
roo4vn
recan
reoan
£20:40
£1040

«~dnNa
190410

DovHN
DTANNW
OUHVYHII
ONVY.1S8I|

ooHL8T
ONIan
OAaNIMr

H3aModadn

oLoun
ozioun
ogzoHn
13048
LLOAN
1€04W0
40T
180:41¢
4904108
AT0dA

- MFD_OUTPUT

Data Flow Diagram

102

_ 4€0dW — rezan

reodn

rioan

‘d2041d

riodw

2004WA™ Q4N

Lo004Ma~asN

Liodw

TO04WA™ OV

LzTo4N

16T

€004Na a4 ezaiWa " adn

2004WA" a4

reodn

6004ANA™a4N

16044

dv0dn

ZAIIOMIAL

ozZiounw
DSTOHW

£T04N 10040

recidn

V/\ 1noa4dn v

Data Flow Diagram - MFDOUT

103

NNWoad

b

V.

al

04

A KX

OIHOHD

QVTaAV

104

Data Flow Diagram - MFD_COMPUTE

\ (+1%5]

-

JSvans

AWAnod

ONUa3In

OOVINL

Data Flow Diagram - MFD_COMPUTE 1 -- 0

105

oDIOMS

auaAad

F1\w

0a
nan

R
o~
C
[d
-

TV

anN Jjo

(2]

i
HO.

oywn

NN VR

Data Flow Diagram - MFD_COMPUTE 0 —- 1

106

RIZZTY

o\wn
18)

a1xavi

aw

HaLax

ba

.—.zn_a.bou\m:z

\
osul

4N

Z4an

17T}

7
Mz Y

£

FLNdWOD ain

AV

ovlans

Data Flow Diagram - MFD_COMPUTE 1 - 1

107

OXAVIW

2zZTHd)

oaniva
oDHLe
ZOVIVAN

ZiO4)

oax
[>1)]
DYVYHIIL
_Ioz<:oz
OQIANI dMSsSODad
NeitFl: 17
owans
©74a47
OWNNT
onnN
e IO

Zodsa)

OALALI

St

[enEleET,]
OAGAN

OIHOHOD

OIANNN
Zaiwvdl

fLldan
LD

Zmsi

oLl

£zes)

OJdXH}

Zdaa1n

Z3ovdi

R R(EIN-F]

deoan

dn-inod

o3ovder

Data Flow Diagram - PGMFMT

108

oadAl

NI
xvin

TN adw

AOWI

Fiviol

olioial

BOdXHI
ZJ4HQ4dN
110408
EEAE],]
1€04N
4v0dN
4904W
L1204
1604w
16Z4N

fid4an
rzest

riHD4n

OXAVIWN

Data Flow Diagram - CHGREQ

109

dnasn

OVIHOHD

RRIE N E]

oL0T8I

zaiwdl
©Ea4n
O4a4n
Z1SHdi
b g lolel]

2D7T04W

reesi
DIJALI
D19 10]
ODdXHI
A1ZodnW
d16zan
Avoan
21204
1904
z4804W
L€04W
Li04ne
riryoan
fridan
OXAVEIN

OIHOHD

ryivan
rezidan
Zadn
oHiove
rezi1an
rZuo4n
Ziodl
ZOdsat
rozdawvs
Zmst
vodadn
b3agonn
T

Data Flow Diagram - MFDLGC

110

tivoLal

OIdXHI
Z48a94W
L4030
1z04nW
1€04n
1v0a0
190340
ALOIW
4604
16zdW

Nivg
xvin
AOWI

©O3IHODHD

o3adAlLl

TUHAIT Qs

rLdan
reesi

FLYOSN

OXAYIW

Data Flow Diagram - CHGREQ

111

OaAdAll

Y
xvn
AOW)

WAL

OOdXHI

Zz4aadn
Atodn
Jzoanw
A€04N
Avodn
48041
L2044
40040
L6Z3W

(33

OIAYDHO

JLvioy

olioial

AT adw

ridan
rzesi)
fLY04n
OXAVIW

Data Flow Diagram - CHGREQ

112

O3IdALL

NI
xvn
AOWI

otioial

ANATOAN

rL4an
rzes!

TLUDHN

OXAVIWN

OOIIXHI
Zz49a4W
1104
pELEL)
1€04W
Av04N
1004
1204N
160d4W¢
L824

Data Flow Diagram - CHGREQ

113

zZavauw
O4Q4W
Od9AN
OTANNW

TuH"odn

Zi4
zzdl
ZMmsi
oLIAa
zen
zatwvidi

‘lllll'A NANWDad

OIHOHD

zadnw
vagonnw
ZJ30408

riyH4an
rresit

CLHIAN

OXAVIN

OAdALL

oloial

OOdXHI

ZJ4aa4n
AL0dN
ATO04N
L0400
ivodan
19040
lL04n
46040
d6zdin

zi

114

Data Flow Diagram - PDGMNU

O3dALl

NI
Xvw
AOWI

ololial

TNAITQAN

cLLan
rzesi

fLeo4n

OXAVIWN

OOdXHI
Z49a4
210408
4TO4ANW
FOLE S]
AvodinN
19030
12040
FCLE]L]
1azdn

Data Flow Diagram - CHGREQ

115

INLI

OWNN

o
oaxd

OIAQdW

B vasadw

oNIgXV

Zmss

[]

RIS

ploge) |

Data Flow Diagram - STRSKB

116

OaNImr

N

ZNIvAd

a)sulis

oosvi
OT4aAM

FIoou
Zamsi

OANIMN

Data Flow Diagram - STRSKB 1 --0

117

OHVHOI

OHYHON

ZWNNL
|
OWNN
L~
AHANOD
LU
1GLEAN
ONd8.t
ZOoH1isi
ONH1SI
OWNNT
DOVHLIEe
18HA4W

znwval T J

Data Flow Diagram - STRSKB 0-- 1

118

X

IVAL

rsesi

rzesi
roz40w

40

de60d4n

dezin
42040

90
Avodni
1e04n

Q410

Alodn
a"yom

OXAVIW

oaINTIVA

1847108

v,

o3ddie

OONIME

Data Flow Diagram - STRSKB 1 -- 1

119

OWNN

agLaAN
ONdaL)

4dHANOD

OHVYHON

ZWNNL

BHVYHOI

oAadn

vaaadw

Za4an
oax
oM

zmsl

oNiaxw

Data Flow Diagram - MPDBDA

120

OWNNY
oDuist
ZATWWAA
ONIgGXNN
OIAQdW

LIaNIvA
zZnval

AsHadn

847108
dwdxnw
ZOHASI|
ONHLSI
OaNImr
OXAVIW

™A

ava

OHVHOI
(1, 1a1]
ZWNNL
oI
oax
OHVYHON AMANOD
Za=Hanw
8184
ONdall
rezsl
rics)
rzesi
rezidan
FCLEL,]
reidan
rid4an

Data Flow Diagram - MPDRST

121

4HANOD

OMVHON

oax
ol

ZWNNL
OHVYHOI

LA 0-14 3
ONdEL
181aA0
ownN
auaa
atoou
R YW
iy -3 FT- 79V
zzZ141
©aIANI
LIVIVANA
24
AWIXNW
oWNNT

DINTIVA

OXAVIW

1602

OIAUDON

781708
DLo8vI
T
avom
ZXViN
PRLET
A€0dN
19040
Adv0diN eziw
e a{Fip«ETL]
oLroial
OaUBHD OVOIdXHI
CIHOdN
rzesi
FLdan

Data Flow Diagram - KEYBRD

122

O3IdALI

NIw
Xvwn
AOWI

OOdXHI
Z49Q4n
11040
4T04n
d€04n
Av0d4N
A904N
14040
leoAn
A8TAN

DIHOHD

Jdvioy

o110l

MU adn

ridan
rzesi

ridodnw

OXAVIW

Data Flow Diagram - CHGREQ

123

adom
L1048
LTOo4dW
ieodn
Avodn
4904
41204
ZXvn
ZNIN
FGLEL,]
JozTAN

Za4n

OIAHOON

oLosviI

D3INTVA
aaL108
TaL1aAM
ONdaL

ZWNNL}
DHYHM

Data Flow Diagram - KCGREQ

124

ASYN

Zmsi

TOUBT
ASHMms)

TSTaT
roziaw
reidaw

ZINODI

JVIoMS

riest

HOLVd

reZian
rezsi

aweal
ANIdW
HSI
~—dRSYINN
1604w ot
vivay
Ddnil
0oi
SEa Sk
aumnN HANdI
1104
vodadn TToNIY
LE04W
Lrodve AWaxnw
120
ANDOJI
OXAVIW
Y]
dwayu
ZWNNLL
Y
] L3
(2]
3]
o1x
(Y3
oD
RMMAN
oani
DHY L]
NG
rLdan N LS
LITTVIRT
Ms~Lo313s DadaLl dNsaAN Zg3RaN
BaRMr
OLRN,
ohdan
zT
ANDI
03 T|LaM
AL -r 2141 Nu—ma
zadn - oioLAl 1494108
THATaAW _ —
reesi AOWI oI4aAN ONHLSE)
xXvi razst
Z1SHdI 16z

Data Flow Diagram - SWCLGC

125

ONIENN
OIATdN
]
1 s N
BWANT Anaxnw
ovH1S8 '
reiyaw NN
rezdan
Liesl OO
rsZ ZWNNLY
pl:3i:7\ Dl
ofid
OINIVA
ZNVAL
OuFHOI
[8
OaIANI ANIBAN

|

OXTXUETY
ritd4an
[131}

J4sHadW

O3aAdALI

obioiql
DOdXHL
z4904W

U4 aAN

Fido4dn

OANIMr

ONda.Lt

Zoulsl

zZadw

dNSABANM

OI4EAN

—RNYLS!
ZaooNN

o8V
NOhNAAN

Data Flow Diagram - KYBSUP

126

oiolaql

OOdXHI
Z4904N
d104N0
4204
L€04N0
Av04N
49040
204N
10041
16T4N

Niw

AoWI

TUHTa4N

oIdAL

fidan
reesi

CHHOIW

OXAVLIWN

Data Flow Diagram - CHGREQ

127

X

VAL

xwavawu

rozd4anw
16040

FLI4an

ZWNNL
oM
vax

OWNN

4HANOD

DHVHO!

DHVYHOIN

OWNNT

(o121 FK: 4]
ZNTIVAR
ONIaxdw
oIAQdW

ASHAdW

q8170s
ANEIXNON .
ZOYl1s)
ONH4iSI
DANMr
OXAVIN

Za4w
aa1aA
ONdaLl

O3INIVA
ZNIVAL

Data Flow Diagram - MPDRST

128

[5]

TIVAIL

ZWNNL
o
oax

DWNN

DHVYHOI

riesy
rzest
rezian
A1804W
ryiyan
ril{dan

regs)

za4n
ONdEL
TELOAN
ouvHON
RLTREDS
LWaxnw
ANIEAN zouiet
oNu1el
OXAVIN
oWNNT
oou1s1
oanIva DaIANI
znvar ZMIVAN

Data Flow Diagram - KYBINT

129

vIasi
€7asi
zIasi
L7asi

€1I3s1
aixnvi
£eZ40W
ZANDI
0Odaan
ANdOdI
ZMSI
rezs)
2a4n
OI4EAN

MNAUTQ4N

[T}y
rzesi
(8- X%]
OXAVIWN

4904

ms~"Lo313as

»I13asx
£73aASN
zIasy
Laasy

ZAsHd)

- SELECT_SW

Data Flow Diagram

130

oiv1ql

NI
xvin
AOWI

$I3SH
e13SH
TIASH
+13sx
DOdXHI
Zz4aa4NW
Fas.El]
1Z04W
1€04N
Avo:An
1804
1£03W
16040
16Z4AN
143

OIYOHO

©O3adAl

L1400
rzes)
riyo4an
OXAVIW

TUAITaIN

Data Flow Diagram - CHGREQ

131

o3IdAL

3Lviow

v1ast
eaast
za3si
Lasi
OOdXHI
z4904n
Ltodn
lzoAn
LE€E04N
Av04W
1804
2204
1604
1ez4an
vi

NI
Xvwi
AowWI

DIHOHD

TUdTadnw

Flviod

oioial

r4an
rzes)

FLHDAN

OXAVIW

Data Flow Diagram - CHGREQ

132

APPENDIX 1

EXHIBIT RLT-P
RLT Subsystem Packager Views

133

FANINOD™LH

¥IM04TSNOIARES <--
DAL -->
CIMLTY -->
CIOTHR -->

ANOTITT - AINIHOD"LTY

oy

¥AMOATSHOTATYE <o~
HINOJ LNZHUND <--
0TvaL <~
20418H <=«
2IEHAN <nn

0z <--

BAIHd <--

BAL3RL <--
OFvdIL <--
YIMOATLNAYUND <--
M <o

TMOTYH ~->
2ILSHH =->
2TVIEH -->»
IRLIER =~>

UITII2 - 3LNdNOITLTY

SIRFINIULTITL - FLAAHOITLIN

- DanyHg --»
HAMOATLNRHEND o>

®595183UfTITT - Jn0TY{L

WoduL Y

SIISNILANG

WIWHHS NI UHS™IB

_“J(ZKWPXW —

LELITLIT e 1T

—’:ﬂzﬁzﬂlzwurniﬁrﬂv _ _50:I=EBIUXL—

HIWHHIT IV

PANV1GNOD aNS 04

Packager - library

134

LINITAY

wWu3L1Tad

ON3dSNS™ AT

- rit_interface

Packager

135

NIT980:4721

NIT43W™LTY

ANGNITLH

in

£=]

Packager - rlt

136

oaviiyToIy

LIOTDN <o~
OAYLT LT ~ 1Ndino~LTd

1N0™r00IH LY

ANOT €00 1Y

ANOT100 WL

4NdiNo 1Y

-rlt_out

Packager

137

TTXNT
TANETTAN &
14HSH

LA S L}
TANI YTANI S
A4HSIP

vavag
*vad jo
x“sav

VIR
¥ Ivad jo
X

UTUSY
*TANI JO

FAVOI4

Packager - INTRINSICS

138

NV3J008@ o
43834

NY31008 -
NY31008 jo
13s7st

ZE€TSAIE 81TSAIB ZETEA 40
wW3indvn

NVY31004 jo
138

Packager - EXTERNALS

139

APPENDIX J

EXHIBIT RLT-D
RLT Subsystem DFD Views

140

ONIAENS™ATH

200714

€001

| 4N07 Y00 ATH

MG
£10THN

000
10007TH
€00aY
zoooH
(110 1)

B4NdWOD™LTH

1naino~1

OZA
ZNUBanN
Ivdun
patt-tol,]
ZMOTIVYIN

MmN
©atHde
VA13IHL

oYyl

218WNN
zousaw

HIMOJ ANIHHND

HIMOJ 8NOIATYHA

0agu vl

OYIAT100TY

R FINIY]

avd

ANdNITATY

1 dvA

ANTLATY

[aFu 1T]
04
A4IHTNIE
n3IsVaa
ANIea

ravsing
codi

NODINI

HIDONIT LINIHYNEG
ONAS
883HAAV IVOISAHA LINLHYWS

Data Flow Diagram - RLT System

141

H3IMOdTANIHEND

MmN

Y14 9804
4T dva

O2ZA
DaLlaHL
oIvuIL

OaiHd

wasovaa
476N

Mo
Zusun

ZIvaun
ZNAIen

9004

-RLT_INPUT

Data Flow Diagram

142

1007d

An0T100T8™ A

AINOVATXNN

INHTLW
HIMOd SNOIATHL

frMmiy

zoo0TH
€00qId
100074
rooa

oaveIHTLA

fi1o0un oadvHi

HIMODTANIHUND
DVYIATL00TY

Data Flow Diagram - RLT_OUTPUT

143

APPENDIX K

EXHIBIT UFC-P
UFC Subsystem Packager Views

144

pPiwogiey

eBud—on

s} linnT Us|sIBAUOD N

o

®IvpU| PPN

on

ssupInNoITeswIeIU "N

145

Packager - library

41804n

s8WSDJN

8dD24N

o4n

HdvdO

J4N0DA

idisdn

0O104N

0040:4n

Od4N8dO

SNIDHN

4NsNI

124N

AGN3asNi

/

Lianni

FSOVdN)

aaa

146

Packager - ufc

H47108704n

H8Io4N

HOLIA

NIXNW

- oadiva

“asaow

aaiHAao

disdna

a

oL128792d4Nn

ovInvd

4NadHd

Alviod

OdM3N

4NVd

ViV “MOGNIMT130

ROOW HALeVW ILVadn

solavy

HE8IIND

DIAONI

ALI8IND

INOHLISAINTIAOONT

N

s3ovd

147

Packager - ufc_page

1daHH

XWLIND

<&NIAAN

HEWNN

ER-1-{ef-) |

vaedian

ANDIEN

avdyos

aaax4n

SAANTL3SAY

148

Packager - keyboard

ANdNIT24dn

LINIT2A40

DZIDHH =->
OEDUH ~->
DIOUR -->

LINITDEA -~ FLNAROD™04N

ALNIWOD™ 01N

ANdLNo~oHdN

AN3Id8Ne™ 04N

WHIL™O4N

nterface_routines

i

- ufc_

Packager

149

1NdiNOo~8dvATO4N

ANdINO™BWE 04N

4NdINO~8dO 04N

LNdNI"8dD 04N

4ANdLNO~OVD ™" 04N

4NdNITOVYD 04N

LNdLNO"ENI"O4N

ANdNITENITOo4N

150

Packager-io

viva a3qaTouvis aHo1s

Viva“a3aTOINVNAG AHOLS

- ufc_ded_interface

Packager

151

FANLIONOT SNITAHIANOCD

FLVATLHIANOD

AANLLLVYI ENITAUIANOGD

T\

HIADALNITOLTIVAH LUIANOD

ADVHNOOV 84D LHIANOD

AANLUVYIT AHIANOD

!

ONIHLS OL " WNN"AHIANOD

FANLONOT AHIANOD

A

ADVHNDIOIV WILBAS LHIANOD

SHVHI LUIANOD

ANUTLHIANOD

AVAH LYIANOD

HIADILINITIHIANOD

utilities

—conversion

Packager - ufc_c

152

APPENDIX L

EXHIBIT UFC-D
UFC Subsystem DFD Views

153

oMmsann
oisn
oHsUOL
8L0Q9M v\ ya~aaoHoa"gNI ocanvvw
" $00a7d €oodoW dwal
NoanHr pep reon
20004 MOH™MOANIM
Ry (I YEW) ﬂnvmnﬂwz<:0|‘sonz_>>linz ©3adN
YN uamoda—sFCY HVYHO Oads -
«Qda SOd HVHO 03d8 q
OASHND +do
ZLanme n 4sHi4
oHUO zux
SXNva ' teia o Zonum
odsaan S ©Ivoul ooaman zvival
SMOANIM] IOVYd a3 X ana
HanH =
Z{o1n auva 9" MOaNIM
) vau-gay/ SSY4T18H)
- DAMNNd c>>vmm
NI o
st .
reodnn
Thoanw
roL4nn 1nd1NO~0dn
01 DN~ dV oT7] Zvoul
zo1aaxM
Vau—AZN"d]
1NdNI"04N
oLoun
OHAININ vszZOUN
oodint
«0d4n
dn vsouR IOl
ozsoMN ™ BLNANOD™ DN
/ ZAOVY AR e
~adv Zivdst
zAQdsi
NIV
SPd HVYHI NIM tHRYN
ANARlan
CITYE LINITD4N gL
s0d1avd . ZoRm
x5 fami~/] |
daHsINI~LOY
DOdoHl| >§$¥J
sbauaay| NidV
o
H1ONIY ._.Oum.,.ns. aNadsne~od4n
oaaag
£s0qg
aaow datsvn
: G
FIONVHO NI OXAVIW BIAIN
voanmi '

Data Flow Diagram - dfd

154

GYIHTAIN dOI
OV I4ATLINIT8dD
oaa3aal
Adviou aza
s3ovd aia
S8Od HVHO NIM
[ooeanT
zaiodl
sMmdaNnImTaovdjasa

OV H

Liodnin
ThodN
DIDUNW

viva
SUVHO MOANIM™WNN
SMOANIM NN
[
NIMTAHLOY
10313871NdANO
MOH"MOONIM

ANALINO B8dO™ 24N

ANd1INO"B8AVA™ DN

+2d40

ZHANT!

THLINIX
ZIvoul
oIvoul

T00”MOaNIMm
dO1I"0AN"dVA

1NdLINO"8NI"23N

rotinn
0ZIouUnN

reodnn

ANdINO™ BN~ O4N

ootoun

ANdINOTOVD 24N V

rrodnye
rzo4nn
readnn
rrodnn
oLoun
DeOHW

L00QdvY

-UFC_OUTPUT

Data Flow Diagram

155

'
s0HIZ avan
dWaL
r
SUVHO™MOaNIM~“WNN
WANTANI
SHVHOI NN
WNNTvad
WNAN dWaL
xXaan
SHNOH
SILONIW
saNoous
FANLLIV NILBAS
[{3

doI"2dN"dVA

«OdN

<h<n»nunuo_z<z>njmuzlv|.5\4

.—blSOIDE(\rIOt:\I\A

Dodini

QAVAH"AIN"dO}
OV 14 LN 8dD \

ZI0d48N
asy Nsvn
asn™svn

DIV BAS
00V~ 8dD

OLOHEN
ogaqaal
Z"H2O0d1
ZiaNMmI
Zavaax

sMoaNImTBOvdTaza

OOANMI

Fovd uNo

vivaTaaaTouvis auose

SOd " HVHI™NIM
saovvd-aaa
AdviouTaaq

S_OUTPUT

-UFC_VAP

Data Flow Diagram

156

Zaiodl
SMOANIM"aOYd4~aaa
FA0Vd HND
DoanNmt
OLOHEN

VivaTaaa JINVNAGTRUOLS

vOdini
RANLLWY NALBAS QIOONGFE_JE!.EOO

zauaa
@ﬁ?—.}:mzﬂzgzoo

. «2dn

Z10dex ’ﬂa(uzﬂcgzoo

N

Z1aNMI
Oh&nn&zw>zoo

vaaaal

ﬂu:_ﬁ#ﬁgzoo

AJVHNOOVY WILBAS IHIAANOD

\ @uoﬁnuo.ﬁzu?

J

no:E<..|._.:u>zO

nn:tuzo._nez.l»xu@

nn:._.r..jloz.l.rzn@

-a:....ezo._..._k;an

ax(:on.-.cu>on

00VTBAS

00V™8dO

Data Flow Djagram - STORE_DYNAMIC_DED_DATA

157

bousz-ava]

viva

ovaaaal

%;

Z1IAONMI

GTAHIANOD V
1

Data Flow Diagram - CONVERT_DATE

158

ZLanNmi
oaagaal
zauaax

FNLTAHTANOD

vaiva

BHNOH

QOIOFIEDZIEN\:‘OD

SILNNIN

] A||||'A cz_x..h..o...l.‘:zl._.zm@

@oloﬁ::zdk?zoo

S8ONODIS

souaz aval

Data Flow Diagram - CONVERT TIME

159

vaaaal

QI(*OI;ODZ:S _352

FANLONO T AHIANOD

ZLaONMI
zadaax

viva

\u!uﬁxbr-::z:kzln@

ISHVHO~WNN

ONIHASTOL NNN"AHIANOD

NNAN"dWaL

ONIHIS OL " WNN"LHIANOD

souaz aval

Data Flow Diagram - CONVERT_LONGITUDE

160

ANITdWIL
AUAITONOY 24N
reodnn
ryodnn

QAN

AP
ER&AN]

LIEF el
EELTYT]
OHI
daai
voiaul
ANd!
Z1aNml
aat
Zuuwvi
DHADI
WWNN
Zanoo!
X
A
ZHOV
zHou
©OOdMIN
ziev

. tisdal
canmi
YANMI
A
HO0T!
zT8VAr

BOaNMI
ooddni

2946 8N
TINRW
ZEEARP
HIM O BNI
aamedi
oaaoaal
' Dodd)
oonNou
ordsvi
oyoNa)l
AQvidTedn
oauvHl
OHIAN]
oHdOL)
oHANHI
oHHaL|
HNLa) .
OHHMY}
DHSAIN
DUHO)
¢ ouIIN
pagvap

odn

DASAN

CETEN i
oM8{Ng0an

Data Flow Diagram - UFC_COMPUTE

161

ZLdAWP

OdINNN
401 ox h=24 41 " N
©oaNmi oA - OANION DLBONW oaaaar N~«n- 4ol [IYEXT] oNILsH oLeAIN oodint Hvid uNredH zoaum
zAQdSt vIo18W
AN\ N\ [\ =% N / [
. y 7

ZiNd a) 2 ZHAIND J\\T n\.: .5./ cz_u:./ odiay! ze Sh N ZHNooI

AN , e i
zranmi o, n chok Ny_hﬂ M3 (2 I dv “ﬂ.].
N 4\ 7]
N:n¢v7) ¢ 7 N J 21 Avai

2obdt N |

HANGP a N 3 AN
[ah\s (7] PN

\ \
u._.o><# ! " LEnn
odioua ve M_...“wn“

vdiATE

Zudvat
OMSBEBNI) ! Zugu

ANNA | /
vOodo4l il \«o kv

VA
£00d4D

OXAVLIW omeant
80IAVH Yy Ooul
24n004 21a04n an 24nN8NI 04n8dD 3a Vdd QoXd Hiva
odn 21940 adL84n

Data Flow Diagram -UFC

162

VDOIMEN

ZINNI

friodnm

Za19d)
ZMWNNI

Odman

163

Data Flow Diagram - UFSTRT

DOdIMIN ooddni
Zlaidt vavTios

XN dwaL
WOAN"dW3L
rIeH
cLodnn
cLo4dnn

odviva

OHADA

Data Flow Diagram - DATREQ

164

oyADdl

ZLNNI
Za.10d)

ZMWNNI

OdMBN

voOdAn

VOTI34dN

OLOHaN
zensdl
20d187
freodnn

AMEN

2dusl

OMEENI

DABHND

DX8HND ia4u

ZIAUDL ZdNo2t

ZKsud! ZHOVAl
24oHN
OdIONY
odioua zi8vH
OdIATR ZINOI

Data Flow Diagram - UFCLGC

165

NALBSOdA

©1403N HSViA
HHI ¢
oANIGN o4 DLOHENM zRan ZWNN Z14N01 ZUINOI
NOIS A8V
Mmod
N
2NIVA 210vd
adAL ZMOVY
ANd WOTS pwoTvTTE
ZLaNM1 lswnn ouiN3 LINIWX ZONIMI oigha oual
©3a z4axyl
n
nIvA 1104
Haina
avy
/ SALW
1/
ooda ©d18 Frofin W zauaa g zala
roLgn 71
wsdl [y
% ‘
)
HI
¢
N, “ALirIvA / \
p 00} AW
2uvion 290del \Nu._ £) N ou m\n& zdor
/ /
4
. ¢ 4
P 2] ¥
ZHIHOI z| ETI] N../wns. ZMgani
2a4o81) o \
N La:)
N
zmvinNi . | zayat
zabd Z 7 oW pXlev /Aun oz.M_ zahus
fi
N 241dVYn
N,
L7
| Loeay
(-3} 2\\ ¢El VNA// NXOO_ avir
/ / 1L
ovMDI
zaadin vaax4n 418IND 2IND a i

BAOW HILSYW ALVA4N

s30oVvVd

an
aw

\adad

isHaax

Data Flow Diagram - PAGES

166

voiaul

vododi
voOdint

OHSHD)

H8JIND

tdNaL

TdNIL
CdiNaL

DOANMI

Zoual

Z2AONME

0 POl

NLSOdN®

ANEVINA
Asvie

OLOHEN

OLBAIM
OLNIEN
OIALNT

ZD3IN
ZisH4dl

Z70d8eN

EUUAVEY
ZXVIN

ZNIW

ZNINA
Z3dAN
ZUVHON
ZINdO
re

Data Flow Diagram - CNICSR

167

D @&

boiau

Zal-d

4718IND

ZLosaw
Zuuve

ZLANMI

oaazal
OHADCI
DOdMEN Zzda1r0d)
' ZMWNNI
ZIANT
riodnwn
OdMaN
TTOTEX
Zsnedi
ovddni ZOd487
4naoud DoOaNMmi
IvauTios
rrodnn
AHHWYY roidnw
AdA{ o3y v
ATIVOB~XNNW
XNW dwaL
reLdan
rL04nW

Data Flow Diagram - CNISLT

168

DOANME
ood4ani
Z1aNmi

Z80Od!
Zados!

Zi8dd1

ZHOdS8N
omedni

oiNIad

Zeodeal

Zoual
ZALAND!

vaax).in

ZOaN

| DASAAN

ZLo
ZWNN

dNIAEX

Data Flow Diagram - UFKBDA

169

©IAING

Zadady j
ZAda

ZAANMI

Zau|an

zsrjadi
zod1s1

zayodl
zmMWinNL

avduos

©oaaaal

MoIvTIen

VOdMIN [o1°]-1% e 1] 2uuv) ol8v
Ve P I WETelm 5
u
FdpLTO
olau 1040 ﬂ. MMN“M) rrodn NJ wai gL
. rotan
re.
r20dn
%r!r Iy ZUINO) 2ug .—(»\ *.b(ua
/ V
v auomt
Mx ﬁ /M ANIE N ' % I s
o
\ ; //
%) au
NVA: Neau k,e/. P
N
N
J za o N \ z .A AW\ NW.M. Mﬂr
zw
1N
qoV i
- o ou
O
//
HannN NOWVY 1dauH h neoy Angoud
aaaxsn dnaoyd

Data Flow Diagram - UFKBDE

170

NI
X,

dwal

ziaaul

ZLANMI
ZdnNoJ)
ZNYLXA
Zauaa
BYADI
VOdOHl
oolaui
ooddnl

X

| ©DQONI

Data Flow Diagram - INCDEC

171

dNIAIN

ZHVHOM

ZVVITIY
isvwt
ZT10I9

VABAIN

Zoual

TTNTEX
OTALdNI
OLOHAaM

Zadosi
zaval

4PNy

Z80OdS)
Zah

ML

Z80dl
ZHOASN

Data Flow Diagram - KBDRST

172

DOaNMI

oBd4ani
avau s
ZLANMI
AHHWYY
BdAL OIY
TvauTiaa
BIVOo8s XN
XOW dWaL
dnasud WNN"aW3L
reL4n
reodnw
reodnw
Zuuvi
FAOW HILBVW aLVALN dwaL
croanw
foLinw

oanovn
oanvvn

FGON HIALSYW

Data Flow Diagram - UPDATE_MASTER_MODE

DOANM!
vodAni

dNadud

OLT087 24N

AHUYA

ZLANMI

rrodnn
rosdnw

rezan
71 riodnne

Data Flow Diagram - PRCBUF

174

