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1. INTRODUCTION

This document presents results of the Avionics Software Reengineering Technology
(ASRET) project. It provides samples of output that we created using the Reengineering
Tool (RET) prototype that we developed under ASRET, narrates our efforts to produce the
output, and reports on insights that we gained in the process.

A companion document, Volume I, Project Summary, Account, and Results (Ref. 1),
presents the findings of the ASRET Project and describes the RET prototype and the con-
text within which we produced the output.

1.1 BACKGROUND

Context — The Avionics Software Technology Support (ASTS) program is an ongo-
ing activity of the Software Concepts Group, Avionics Logistics Branch at Wright Labora-
tory (WL/AAAF-3), Wright Patterson Air Force Base, Ohio. The objective of the ASTS
program is to perform research and development for enhancing Embedded Computer Sys-
tem (ECS) software development and postdeployment support.

The ASRET project is the second delivery order (DO) issued to TASC under the
ASTS program. The main objective of ASRET was to develop an automated Reengineer-
ing Tool (RET) prototype for avionics support software. The specific goals included investi-
gating existing reengineering and reverse engineering processes, techniques, and
software tools, defining a reengineering process model, and building the RET prototype
software tool.

Rationale — The reengineering of software from one language to another is be-
coming a necessity as Air Force organizations strive to modernize and improve the main-
tainability of their systems while avoiding the excessive costs of new development.
Systems that have been in use for years often incur large maintenance costs (Ref. 2) for
a number of reasons:

e Continual maintenance has made the current implementation and original de-
sign inconsistent, made the code harder to understand and error-prone, and
made the documentation out-of-date.

e - They are written in languages that have fallen out of favor. The limited selec-
tion of support tools for these languages, the corresponding expense of these
tools, and the shrinking pool of qualified programmers to maintain the soft-
ware adds to the expense of maintenance.




o They were developed without modern software engineering practices, result-
ing in code that lacks structure and is difficult to understand.

e Employee turnover has reduced the staff’s understandmg and “intimate”
knowledge of the system.

Wright Laboratory initiated the ASRET project to help reduce maintenance costs for
legacy systems and to assist in the evolution to Ada. To this end, we developed an environ-
ment for reengineering software from one language to another. We concentrated on the
reengineering of avionics simulation software written in FORTRAN to Ada, and designed
the RET so that additional languages could be supported in the future.

1.2 ASRET PROJECT OVERVIEW

1.2.1 Project Goals

The objective of the ASRET project was to develop an automated Reengineering Tool
(RET) prototype for avionics support software. The specific goals included investigating ex-
isting reengineering and reverse engineering processes, techniques, and software tools, de-
fining a reengineering process model, and building a RET prototype that supports:

e Translating avionics simulation software written in FORTRAN to Ada
¢ Improving the software through restructuring techniques

e Changing the design of the software so that it is consistent with modern soft-
ware engineering principles

e Adding documentation that is consistent with the software.

1.2.2 Task Structure
The ASRET project was structured as shown in Table 1.

Table 1 ASRET Task Structure

NUMBER NAME
1 Software Reengineering Study
2 Reengineering Process Model Development
3 Reengineering Tool Development
4 Reengineering Tool Testing and Evaluation

For Task 1, Software Reengineering Study, we conducted an extensive investigation
of software reengineering tools and methods. The goal was to collect, organize, and pres-
ent information on software reengineering tools and methods that might be relevant to
ASRET, and to record the information for use in the subsequent tasks. The results of
Task 1 are documented in the Software Reengineering Study Report (Ref. 3).




During Task 2, Reengineering Process Model Development, we developed a reengi-
neering process model based upon the results of Task 1, and developed the Software Re-
quirements Specification (Ref. 4) for the Reengineering Tool (RET) prototype.

In Task 3, Reengineering Tool Development, we designed (Ref. 5) and implemented
the RET prototype and exercised the RET by transforming the Fire Control Radar (FCR)
subsystem of the F-16 Operational Flight Program (OFP) simulation software provided
to us by Wright Laboratory for this purpose.

We executed the RET prototype and converted most of the other subsystems from
Block 40 of the F-16 OFP simulation software to Ada in Task 4, Reengineering Tool Testing
and Evaluation.

1.3 REPORT ORGANIZATION

The Avionics Software Reengineering Technology (ASRET) Project Final Report
comprises two volumes. This document, Volume II, Reengineering Tool (RET) Diagrams,
provides sample hardcopy that we produced with the RET. Section 1 describes the ASRET
Project and provides background information. Section 2 describes each of the diagrams

 that we created during the Reengineering Tool Testing and Evaluation task. The exhibits

contain the Packager and Dataflow Diagrams.

A companion document, Volume I, Project Summary, Account, and Results (Ref. 1),
presents the findings of the ASRET Project and describes the RET prototype and the con-
text within which we produced the diagrams in Vol. II.




2. - RET VIEWS

This section describes the views provided in the exhibits. We discuss the activities
that we performed under the Reengineering Tool Testing and Evaluation task (Task 4) to
create the views and some insights that we gained during the exercise.

During Task 4, we analyzed six subsystems from Block 40 of the F-16 OFP simula-
tion software provided to us by WL/AAAF-3. Table 2 names the subsystems and lists the
sections and corresponding exhibits containing the graphs. We did not analyze the SMS
subsystem so this document doesn’t provide a corresponding exhibit.

Identifiers for individual graphs in the exhibits take the form SSS-V-n, where SSS
denotes the subsystem, V is P for Packager or D for DFD, and n enumerates the graphs
within each subsystem’s view. For example, FCR-P-3 identifies the third graph in the
Packager view for the FCR subsystem.

Table 2 Block 40 Subsystems

EXHIBIT
SUBSYSTEM SECTION

PACKAGER ~ DFD
FCR 2.1 FCR-P FCR-D
GPS 2.2 GPS-P GPS-D
INS 2.3 INS-P INS-D
MFD 2.4 MFD-P MFD-D
RLT 25 RLT-P RLT-D
UFC 26 UFC-P UFC-D
SMS 27 none none

Volume II does not explain many of the terms defined in Vol. I (Ref. 1). It assumes
that the reader is familiar with the Packager and Dataflow Diagram views described in Vol.
I. For each subsystem, we discuss only the graphs that illustrate our activities and the in-
sights that we gained during Task 4. We do not attempt to describe every graph in detail.

Despite our efforts to focus only on the most important portions of the graphs, the
narrative is sometimes dense. We provide the details because examples are the most effec-
tive way to convey much of the information. Vol. I summarizes the information, but the
examples in Vol. II substantiate our statements.




We designed the RET prototype views for an interactive environment. We did not
intend them to be used in hardcopy form. The interactive views provide information that
may not appear on a sample printout. The views allow the engineer to filter the informa-
tion and control the degree of detail shown. For example, the edge labels in the Packager
and DFD views each provide three different levels of detail, but only one may appear in
a given printout.

The engineer forms a composite understanding of the information in the views by
alternating among various perspectives and controlling what information is shown. The
hardcopy samples do not convey the depth and variety of information available to the en-
gineer. We present them as a means of explaining features of the RET prototype rather
than to document the Block 40 code.

The process by which we created the hardcopy demanded more attention to the
technical details of interacting with the RET prototype than we would have liked. For ex-
ample, we arranged the graphs by dragging nodes with the mouse because the RET proto-
type doesn’t automatically arrange them. We focused on implementing reengineering
methods and techniques rather than on the prototype’s user interface. We assume that a
production version of the RET would address the user interface and other usability issues,
as we recommend in Vol. I.

The impact of this on our efforts to produce the graphs was that most of our atten-
tion was initially absorbed in the process of creating the diagrams as opposed to studying
their content. We assessed the diagrams during a subsequent review. This highlights the
importance of addressing the usability issues of the RET to reduce distractions during the
reengineering process. Our experience also validates the iterative top-down approach rec-
ommended by the ASRET process model (described in Vol. I).




2.1 FCR SUBSYSTEM

Packager — Exhibit FCR-P contains samples of the Packager view for the FCR
subsystem. FCR-P-1 depicts five packages as nodes or rectangles and the data binding
relationships among them as thin undirected edges or lines. The package “dead code” is
so named because we initially found no calls to any of its subprograms, but the edges with
“fer_df” and “modes” show that the package is not isolated. The graph does not show
whether any of the packages are referenced from outside the FCR subsystem.

FCR-P-2 shows the five subprograms in “dead code.” We see that they do not share
any data bindings. FCR-P-3 shows the nineteen subprograms in the package “main.” The
edges show the interconnection strength between the subprograms. Many of the edges
show only one data binding, but due to our definition of data binding, a value of one may
indicate zero bindings and one subprogram call.

This ambiguity is the main reason that we recommend reversing our decision to
add one to the interconnection strength for subprogram calls. In an interactive display, we
could click on any edge to expand the label and determine if a subprogram call is involved,
but we can’t tell from the hardcopy. We have found in the FCR code, however, that most
edges with an interconnection strength of one indicate subprogram calls.

Although the subprograms are highly interrelated, most of the edges have very low
interconnection strengths. The highest value is four, and most of the edges are less than
three. FCR-P-4 through FCR-P-7 show the subprograms in the package “modes.” The first
two show only select edges, but the last two graphs are hopelessly cluttered. They show
only that the subprograms in “modes” are very highly interrelated.

FCR-P-8 shows the fifteen subprograms in the package “fer_dr.” The interconnec-
tion strength values shown on the edges imply that the edges represent subprogram calls
rather than data bindings. While interacting with the first graph, we determined that the
subprogram “fer_output” is called from “main” and that the subprograms named
“fer_drxxx” are called from “modes.” This is not shown in the sample hardcopy.

We address the general difficulties of managing the kind of complexity apparent in
FCR-P-3 through FCR-P-7 at various points below with similar examples drawn from oth-
er subsystems, primarily the UFC (Section 2.6). This challenge is ubiquitous in reengi-
neering large systems and we will discuss several ways that the RET prototype combats
the problem in both the Packager and DFD views.




DFD — Exhibit FCR-D contains samples of the DFD view for the FCR subsystem.
The top level graph (FCR-D-1) of the DFD shows transform nodes as ellipses and buffer
nodes as rectangles. The transform nodes correspond to subprograms. The buffer nodes
correspond to global variables. Most of the subprograms in the FCR subsystem don’t have
arguments, so there are no buffers that correspond to formal parameters. The arrows in
the graph indicate the direction of dataflow between the transform and buffer nodes.

The transform nodes in FCR-D-1 represent subprograms that are not called by any
other subprogram in the FCR subsystem. They are probably called by other subsystems.
We didn’t realize this when we created the Packager view which is why four of the subpro-
grams (FCR_TERM, FCR_SUSPEND, SET SCALED_MUX, and READ_SCALED
_MUZX) appear in the “dead code” package in the Packager view.

We did not go back to fix the package structure because we were only performing an
evaluation of the RET prototype. In an actual reengineering project, the engineer would
take advantage of insights gained by examining the DFD and fix the structure through the
Packager view on the next iteration in accordance with the ASRET process model (Ref. 1).

The rectangle labeled “DR*” is a buffer collection that contains a set of buffer nodes
representing variables that begin with “DR.” In the interactive view, the engineer may
click on the node to show the buffers nested under the collection. Buffer collection nodes
are identified by the presence of asterisks in their labels.

The label of the buffer collection node is determined by the buffer mapping that we
coded for the FCR subsystem. We defined a mapping for the FCR code that takes any buff-
er that begins with “DR” to “DR*.” We observed the convention that an asterisk represents
zero or more characters, but the engineer is free to provide an arbitrary mapping; the do-
main and range of the mapping are sets of strings that the engineer specifies.

The bidirectional arrow between DR* and FCR_OUTPUT shows that the latter reads
and writes variables with names that begin with “DR.” The arrow from the buffer node di-
rectly below FCR_OUTPUT indicates that the latter reads variables IIFCRQ and IFCRRQ,
but doesn’t write them. The arrow to the buffer node on the right of FCR_OUTPUT shows
that FCR_OUTPUT writes the variable named FCR_IFILL, but doesn’t read it.




The large buffer node on the far left contains one buffer named “FPSKTS” and six
collections. The buffer collection node to the immediate right contains 32 buffers. The la-
bel begins with the integer because the number of nested buffers exceeds the predefined
threshold. The node is not large enough to display all the nested buffer names so the label
is clipped after the first buffer node name, “IS17J.”

FCR-D-2 shows that FCR_OUTPUT calls 11 subprograms. Terminal transform
nodes named FCR_DRnnn, where nnn denotes various integers between 003 and 033,
represent nine of the subprograms. The presence of the FCR_DRnnn nodes in the graph
implies the existence of the subprogram calls, by definition of the DFD. The graph clearly
shows that the subprograms read variables named MDR* and write variables named

DR*.

The nodes that represent subprograms FCR_SYMBOLS and FCR_ADO are also
terminal transform nodes. The body transform node labeled FCR_OUTPUT represents
the statements in the body of subprogram FCR_OUTPUT, by definition of the DFD. The
arrow to that node in the graph shows that the statements read variables named DR*.

The DFD does not visually distinguish the three kinds of transform nodes (body,
terminal, and nonterminal) due to limitations of INTERVISTA. We know that FCR_OUT-
PUT is a body transform node because it appears in the graph for FCR_OUTPUT. We
know that the nodes named FCR_DRnnn are nonterminal transform nodes because the
DFD provides graphs for them, but the engineer can only determine that fact by interact-
ing with the view (clicking on the nodes with the mouse to bring up the graphs). Nontermi-
nal transform nodes represent subprograms that call other subprograms.

FCR-D-3 shows that FCR_INPUT calls subprograms named FCR_DFnnn that
read variables named DF* and write variables named MDF*. The structure is similar to
that of FCR_OUTPUT. Apparently, FCR_INPUT transfers data from DF* to MDF* via
the FCR_DFnnn subprograms whereas FCR_OUTPUT transfers data from MDR* to DR*
via the FCR_DRnnn subprograms.

The dataflow between MDR* and DR* through FCR_OUTPUT is shown in FCR-D-1,
but the dataflow between MDF* and DF* through FCR_INPUT isn’t prominent. The buff-
er for MDF* is hidden in the buffer collection node that shows 32 in the label, but we can’t
see it unless we examine the graph for the collection. The buffer for DF* does appear in
one of the buffer collections in the first graph, but it’s inconspicuous.




This is one reason that we would like to allow the engineer to edit the DFD. In this
case, the engineer might highlight the structural similarity between FCR_INPUT and
FCR_OUTPUT by bringing the MDF* buffer to the top graph and moving the DF* buffer
to its own node on that graph.

FCR-D-4 shows the dataflow within FCR_DF033. The graph points out an anomaly
in the DFD. The graph should show an arrow from READ_MUX to DF033. The RET did
not correctly interpret the dataflow across the parameter chain, in this case, because the
parameter is an element of an array. The same problem shows up in the graph for
FCR_DF031 (FCR-D-5). This is an example of a problem that must be corrected before
applying the RET to other applications. FCR-D-6 and FCR-D-7 represent relatively sim-
ple subprograms.

The graph for subprogram FCR (FCR-D-8) typifies the degenerate case of an overly
complicated DFD. We include a version (FCR-D-8) in which the edges are hidden and one
(FCR-D-9) that shows all edges. About all that the engineer can tell from these graphs is
that FCR calls many subprograms and references many variables. The graphs for
FCRMOD (FCR-D-12 through FCR-D-15) and FCRS16 (FCR-D-10 through FCR-D-11)
exhibit the same problem. FCR-D-16 through FCR-D-18 are much simpler.

2.2 GPS SUBSYSTEM

Packager — Exhibit GPS-P contains samples of the Packager view for the GPS
subsystem. GPS-P-1 shows four packages that contain subprograms from the GPS sub-
system; their names are shown in lower-case. The generated packages are on the left. We
know from examining the interactive views that subprograms GPS_PROCESS, GPS_IN-
PUT, and GPS_OUTPUT are the primary subprograms that are called from outside the
GPS subsystem.

GPS-P-2 through GPS-P-4 show the packager views for packages gps_interface,
gps_process_gp, and gps_process_fc, respectively. We learned from the DFD (after we had
created this Packager view) that GPS_INPUT calls subprograms in gps_process_fc, and
GPS_OUTPUT calls subprograms in gps_process_gp. After looking at the DFD, we think
that either GPS_OUTPUT belongs in gps_process_gp, or GPS_INPUT belongs in gps_in-
terface. We would need to examine the source code views to decide which alternative is
better, but we can see that they are treated asymmetrically in this Packager view, and this
suggests to us that we must investigate further.




Our first thought was to place all subprograms that are called from outside of GPS

in package gps_interface. This results in a relatively large number of data bindings be-
tween the packages and a very small number of bindings among the subprograms within
any given package. For example, the edges in GPS-P-2 through GPS-P-4 show few, if any
bindings. GPS-P-5 shows what may be utility subprograms.

We see in GPS-P-1 that gps_interface shares a relatively great number of data
bindings with gps_process_gp. Out of the 37 bindings 29 are due to GPS_INIT and 12
(possibly overlapping) bindings are with GPSINT. Both subprograms are related to ini-
tialization. We are unconcerned by the number of bindings because we would expect ini-
tialization routines to affect many variables. We can’t see the numbers in the hardcopy,
but we can display them on the label of the edge between the two packages in the interac-

tive view.

DFD — Exhibit GPS-D contains samples of the DFD view for the GPS subsystem.
GPS-D-1 shows the variables that are used by the input and output subprograms. It
shows the subprograms (as transform nodes) that are not called from within the GPS sub-
system. It shows, for example, that subprograms PROCESS_GPS00n, where nis 7, 8, and
9, are not called from within GPS. (They may be called from outside the GPS subsystem,
but the DFD provides no information on this.)

GPS-D-2 shows that subprograms PROCESS_GPS00n, wherenis 1,2, 3, 5, and 6,
are called by GPS_OUTPUT. This asymmetry for the subprograms PROCESS_GPS00n
piqued our curiosity, so we examined the Source Code Listings by clicking on the trans-
form nodes. We found that all statements in PROCESS_GPS007 and PROCESS_GPS008

are commented-out.

Comments in each PROCESS_GPS00n state that “this subroutine is called by
GPS_OUTPUT to pack data for Mux messate GP0OOn.” PROCESS_GPS009 doesn’t appear
in the graph for GPS_OUTPUT and when we looked at the Source Code Listing for
GPS_OUTPUT, we found that the call to PROCESS_GPS009 is commented out. The sub-
programs named PROCESS_GPS00n that appear in the GPS_OUTPUT graph (GPS-D-2)
do contain numerous statements, suggesting that they are still in use.

GPS-D-3 through GPS-D-7 show the details of the PROCESS_GPS00n subpro-
grams that are still in use. The graph for PROCESS_GPS001 (GPS-D-3) shows which
variables it outputs through SET_MUX. The graph doesn’t show that it implements an
output function, but we know that it is called from within GPS_OUTPUT. The arrows in
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the graph are bidirectional because all formal parameters in the generated Ada code have
mode “in out.” When the Transformer is enhanced to generate more discriminating formal
parameter modes, the arrows in the DFD that correspond to mode “in” and mode “out”
parameters will be unidirectional. The implication for GPS-D-3 is that the direction of
dataflow would be more accurate.

GPS-D-8 through GPS-D-10 show a structure for GPS_INPUT that is analogous to
that of GPS_OUTPUT. The graphs for GPS_COMPUTE (GPS-D-11) and GPSNAV
(GPS-D-12) show how GPSNAV, GPSTMR, GPSINT, and GPSERR are local to the gps_in-
terface package in the sense that they are within the calling scope of GPS_COMPUTE. We
discussed moving GPS_OUTPUT out of that package above, and it now looks like the

gps_interface package might be more appropriately named the gps_compute package.
GPS-D-13 shows subprogram GPS_INIT.

When we get to the graph for GPSBIT (GPS-D-14), we become suspicious that perhaps
it isn’t really called from outside the GPS subsystem, as might be implied by it’s appearance
on the top-level graph (GPS-D-1). Its name doesn’t fit the pattern for such externally-called
subprograms that we feel is emerging. After looking at the GPS_COMPUTE structure in
GPS-D-11, we wonder why GPSBIT isn’t present, since other similarly-named GPSxxx sub-
programs are declared with GPS_COMPUTE in the gps_interface package.

When we inspect the Source Code Listing for GPSBIT, we find a comment (“ZER-
OUT - GPS OUTPUT BLANKING ROUTINE”) that leads us to think it should be in the
GPS_OUTPUT structure. We inspect the Source Code Listing for GPS_OUTPUT and find
that all calls to GPSBIT are commented-out. That is why it appears on the top-level DFD
graph (GPS-D-1). We deduce that it is dead code.

If we could delete the nodes representing dead code that we found in the top-level
DFD graph (GPS-D-1), the graph would be less complicated. This is one reason that we
recommend additional editing capabilities for the DFD. In any case, we would remove the
~ dead code from the system during the next iteration through the Packager view.

2.3 INS SUBSYSTEM

Packager — Exhibit INS-P contains samples of the Packager view for the INS
subsystem. INS-P-1 through INS-P-5 show the library units generated by the Packager
(upper-case) and the packages that we formed by clustering (lower-case). INS-P-1 shows

11




the number of data bindings on each edge. INS-P-2 shows the calling relations. INS-P-3
shows which subprograms are involved in the calls, but we can’t see which calls which. We
can infer this from the direction of the arrows for all but one, the bidirectional arrow be-
tween ins_utilities and ins_processing. INS-P-4 explicitly shows the individual calls, but
doesn’t show which package the subprograms are declared in. The information on the ar-
rows in INS-P-3 and INS-P-4 are complementary.

The arrow between ins_utilities and ins_processing is interesting because it shows
that calls are made in both directions. We would prefer a layered calling structure for the
packages to reduce the effects of dependencies during maintenance and because a layered
structure is easier to understand. INS-P-6 and INS-P-7 show the subprograms in
ins_processing and ins_utilities, respectively.

We separated the subprograms into the two packages based upon their names (all
subprograms in ins_processing begin with INS), and the fact that only the subprograms in
ins_utilities share data bindings. These are two very weak reasons for clustering. The sub-
system might be better structured if these two packages were combined. We also tried to
minimize the number of data bindings between these two packages, and also the
Ins_io_processing package (INS-P-8), during clustering. To improve the package structure
beyond what we have developed requires examining the Source Code Listings, but we did
not go to that level of detail for this subsystem during the RET prototype evaluation.

INS-P-9 shows the ins_interface_routines package. We placed subprograms that
appear to be called from outside the INS subsystem into this package.

We applied several techniques to form the ins_ad_io, ins_fecc_io, and ins_model_io
packages, INS-P-10 through INS-P-12, respectively. Clustering by common clients and
suppliers revealed that the subprograms in these packages are the only ones called by
INS_INPUT and INS_OUTPUT. This can also be seen in the library-level graphs
(INS-P-1). We differentiated the packages based on the similarity of the names of the sub-
programs and our examination of comments in the Source Code Listings. Based on the
comments, we added the parenthetical information in the labels that helps distinguish
the purpose of each subprogram in the io packages.

DFD — Exhibit INS-D contains samples of the DFD view for the INS subsystem.
The top-level graph (INS-D-1) is very busy due to the number of buffers and problems clip-
ping their labels. With so much information in the graph, we can make only general ob-
servations. The transformations represent subprograms that are not called from within
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the INS subsystem. They correspond with the subprograms that we placed in the ins_in-
terface_routines package (INS-P-9).

INS-D-2 shows details on the INS_INIT subprogram. We are not surprised that an
initialization subprogram writes sixty-seven variables. The INS_INPUT (INS-D-3) and
INS_OUTPUT (INS-D-4) graphs show the structure of the subprograms. The dataflow
would be much improved if the code generator generated the appropriate formal parame-
ter modes. The graphs show the subprograms that the input and output routines call and
the data that is affected.

The graph for INS_INPUT (INS-D-3) shows five connected components. The pack-
ager graphs reveal that INS_INPUT makes calls to subprograms in three packages
(ins_fcc_io, ins_model_io, and ins_ad_io) and the subprograms in any given connected
component are declared in the same package. For example, subprograms INS021,
INS022, INS023, INS010, and INS108 are all declared in ins_fcc_io. The assertion is trivi-
ally true for the other subprograms in the INS_INPUT graph (INS-D-3). We observe that
no data flows between packages under the control of INS_INPUT, because the compo-
nents in the graph are not connected. The input functions of these three packages are not
data coupled.

INS-D-4 shows that the output functions are data coupled. The packager shows
that subprograms INSENV, INSPLN, INSOTW, and INSAVL are declared in ins_mod-
el_io. INSADO is declared in ins_ad_io. INS501 and INS502 are declared in ins_fec_io. If
we were to draw dashed lines to reflect these groupings, INS-D-4 would show the data
coupling of the output functions among the packages.

The dataflow graphs do not plainly show the data coupling between the separate
spans of control (i.e., input and output). For example, the graph for INS_INPUT (INS-D-3)
shows that PLNINS writes variable PSITQ, and the graph for INS_OUTPUT (INS-D-4)
shows that INS501 reads (and writes) it. PSITQ is written by a subprogram in ins_mod-
el_io and read by one in ins_fec_io. INS-P-5 clearly shows this data binding and others
between the two packages.

This is another example of one way in which the Packager and DFD views are com-
plementary. As we studied these graphs, we realized that grouping subprograms in a DFD
graph by package may be another good way to simplify the DFD. The INS_OUTPUT DFD,
for example, would be replaced by one graph with three of what we might call “package
transform” nodes, and the three corresponding subgraphs. This technique merits further
investigation.
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We noticed that INS-P-5 indicates the wrong direction for the PSITQ data binding,
and for others as well. In each case where the Packager view is wrong, the DFD is correct.
We traced the problem to the use of “reduction over union” in the implementation of the
pak-edge-global-exact-provisions and pak-edge-global-exact-requisitions attributes in
the Packager. The attributes should be corrected in a production version of the RET to
take into account the direction of the base edges.

2.4 MFD SUBSYSTEM

Packager — Exhibit MFD-P contains samples of the Packager view for the MFD
subsystem. We organized the Packager graphs for MFD (MFD-P-1 through MFD-P-9) ac-
cording to the call edges or relations. The call edges appear as thick arrows. This illus-
trates that the Packager graphs are effectively call diagrams when they are configured to
show call edges instead of data bindings. We achieved a layered design among the pack-
ages and note that the interconnection strength numbers shown on MFD-P-1 are small
relative to some of the other subsystems.

We will not describe each of the graphs due to the size of the MFD subsystem. We
note that package mfd_keyboard (MFD-P-7) contains a number of subprograms that call
each other, but the greatest number of data bindings that the package shares with anoth-
er is four. We find this high cohesion and small coupling pleasing.

The graphs entitled mfd_d* (MFD-P-8) and mfd_dmf* (MFD-P-9) correspond with
package nodes labeled mfd_dmfand mfd_d, respectively, in the library graph. We changed
the labels while printing the hardcopy; the Packager does not automatically generate
asterisks.

DFD — Exhibit MFD-D contains samples of the DFD view for the MFD subsystem.
We will not give details on the MFD Dataflow Diagrams (MFD-D-1 through MFD-D-34)
due to the size of the MFD subsystem. We note that the number of graphs is great in part
because MFD makes nine calls to subprogram CHGREQ, resulting in nine graphs, and
MFD_COMPUTE and STRSKB are printed on four pages each due to their size.

2.5 RLT SUBSYSTEM

Packager — Exhibit RLT-P contains samples of the Packager view for the RLT
subsystem. RLT-P-1 shows the library units. The Packager generates upper-case node
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names. We entered only lower-case node names to distinguish packages formed while in-
teracting with the Packager from the generated nodes. In most of the graphs, the lower-
case nodes represent packages and the upper-case nodes represent subprograms.

The Packager generates some of the packages in the library graph (RLT-P-1) and
they have upper-case names, so the convention doesn’t hold at the library level. It’s not
hard to distinguish packages from subprograms in the library graph in practice because
the engineer sees the packages appear on the screen as they are generated. In retrospect,
we should have used ellipses for packages. We didn’t do that at first because we wanted
to discriminate another way, such as with dashed rectangles, but found INTERVISTA
didn’t support them. We should have reverted to the ellipse, but never did.

The Packager generated the nodes without edges in RLT-P-1. All but two of them
represent package specifications that contain only data object declarations. We refer to
these as data packages. They are derived from FORTRAN common blocks. The other two,
EXTERNALS and INTRINSICS, contain subprogram declarations and body stubs
derived from FORTRAN external subprograms and intrinsic functions, respectively.

The packages rlt_interface, rlt_in, and rlt_out contain subprograms that are not
referenced from within the RLT subsystem. The edges between these packages and the
subprogram RLT_COMPUTE show the data bindings. The hardcopy doesn’t show it, but
when we direct the Packager to show subprogram call edges, there are none. From this
we deduce that RLT_COMPUTE is called only from outside of the RLT subsystem.

The labels on the edges show the direction of dataflow, but we didn’t design the
Packager view to serve as a dataflow diagram. One advantage of the DFD over the Pack-
ager for inspecting dataflow is that a data object appears only once in a DFD, but may be
referenced more than once in a Packager graph. For example, the variable IRARDQ ap-
pears on the labels of both edges of rlt_out. This is a convenient feature of the Packager
view, but would be disadvantageous in a dataflow diagram.

RLT-P-2 shows the subprograms in package rlt_interface. We know from interact-
ing with this view that there are no call edges, so all three subprograms are called from
another subsystem. RLT-P-3 shows edges with interconnection strength values of one.
This implies that they represent call relations, which we confirmed by displaying the call
edges (not shown). RLT-P-4 is similar, but shows one data binding.
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RLT-P-5 and RLT-P-6 show the subprograms generated to take the place of
FORTRAN intrinsic functions and external subprograms, respectively. The node labels
show the subprogram names, formal parameter types, and return types (for functions), all
automatically generated by the RET prototype. The graph for the EXTERNALS package
shows three subroutines and one function (IS_SET). The Packager generated all four ex-
ternal subprograms because we inadvertantly omitted their FORTRAN source code files

from the analysis.

DFD — Exhibit RLT-D contains samples of the DFD view for the RLT subsystem.
RLT-D-1 shows seven transform nodes. We will focus on the nonterminal transform node
RLT_INPUT first. It represents the transformation of one set of variables (DEGSEM,
F066_FLAG, et al.) into another set (MWZ, PHIDQ, et al.). The graph shows this via ar-
rows directed from the buffer with the first set towards RLT _INPUT, and arrows directed
from RLT_INPUT towards the buffer with the second set. RLT-D-1 shows several trans-
formations, of which RLT_INPUT is one, at the highest level of abstraction provided in the
RLT DFD.

RLT-D-2 shows a more detailed level of abstraction for the same transformation
that we discussed above. RLT-D-1 clumps the variables together as discussed, and sum-
marizes the transformation of one set into the other. RLT-D-2 elaborates on how the indi-
vidual variables in the sets are transformed. It shows that RLT REF_IN transforms
DEGSEM into PHIDQ, and statements in the body of RLT_INPUT transform

F066_FLAG into MWZ.

RLT-D-1 suffers from an anomaly that causes too many arrows to local buffers in
a graph. It shows that RLT_INPUT transforms the variables DBLINT, IF66J, DUMMY4,
and PAD. These variables should rnot appear in the graph because they are local to the
transforms by which they are referenced by and they are not used by another transform.
As local variables that are not used by another transform, they are not relevant to the in-
terprocedural dataflow. They are noise that should be removed from the DFD. Ignoring
this anomaly, the variables transformed by RLT_INPUT in the first graph are the same
ones that appear in the second graph. The second graph just shows more detail for this
particular transformation.

RLT-D-3 suffers from an anomaly that causes too few arrows to local buffers. The
identifier MUX_PACKET declares formal parameters in subprograms RLT_RL00On_OUT,
where n is 1, 3, and 4, and a local variable in RLT OUTPUT. RLT-D-3 shows that
RLT_RL001_OUT transforms the buffer MUX_PACKET. The buffer represents the local
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variable that is passed through a formal parameter that happens to have the same name.
The buffer is thus not local to RLT RL0O01_OUT, so the graph does show
RLT_RLO01_OUT transforming the buffer. This part is correct.

RLT-D-3 should also show an arrow from RLT_OUTPUT to MUX_PACKET. The
MUX_PACKET buffer is local to RLT_OUTPUT, but because it is used by
RLT_RLO001_OUT, the graph should show that RLT_OUTPUT transforms the buffer. In
contrast with the anomaly discussed above, this relationship is relevant to the interproce-
dural dataflow because the buffer is used by another transform. Both anomalies should
be corrected in a production version of the RET.

All of the other buffers in RLT-D-3 are involved in the RLT_OUTPUT transforma-
tion on RLT-D-1. RLT-D-3 just shows more detail on the RLT_OUTPUT transformation
than RLT-D-1. For example, RLT-D-1 shows that RLT OUTPUT transforms
RLO01_FLAG, CURRENT_POWER, IRARDQ, and MRL01J into RL001 and RLD0Op,
where p is between 1 and 4. RLT-D-3 reveals that RLT_RLTADO takes IRARDQ and
MRLO1J into RLD00Op, RLT_RL001_OUT derives RLO001 from a different source, and
RL001_FLAG and CURRENT_POWER are transformed by statements in the body of
RLT_OUTPUT. Due to the missing arrow, we can’t tell that RLT OUTPUT feeds
MUX_PACKET.

2.6 UFC SUBSYSTEM

Packager — Exhibit UFC-P contains samples of the Packager view for the UFC
subsystem. We printed only a sample of the UFC subsystem because it is very large. The
Packager graphs (UFC-P-1 through UFC-P-8) show the same kind of design, layered with
little coupling, that is enjoyed by the MFD subsystem. The Packager graphs that we show
are essentially call graphs. The Packager can display combinations of data binding and
call edges, but this hardcopy shows only call edges.

DFD — Exhibit UFC-D contains samples of the DFD view for the UFC subsystem.
The top-level DFD (UFC-D-1) shows the same characteristic structure as the other sub-
systems. It includes initialization, termination, suspension, input, output, and compute
routines. We do not give details for the UFC subsystem shown in UFC-D-1 through UFC-
D-21, but note one important point.

The engineer can make use of information in even the most complicated views by
taking advantage of the filtering capabilities of the RET prototype. UFC-D-9, for example,
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is very complicated and the hardcopy version does not appear to be very useful. Neverthe-
less, the engineer can answer specific questions by hiding some of the nodes or edges. The
engineer may, for example, display only call edges from subprogram UFCBIT.

Another feature that helps the engineer manage complexity is the automatic high-
lighting of adjacent nodes in the Packager and DFD views, which can’t be shown in the
hardcopy. The RET prototype outlines all nodes that are adjacent to (have an edge to) the
node under the cursor. The outlines appear and disappear automatically as the engineer
moves the cursor. The effect is that in a complicated view, the engineer can visually scan
for the nodes that, say, are called by, or share a data binding with a particular node.

2.7 SMS SUBSYSTEM

We did not analyze the SMS subsystem.
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