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1. Research Objectives

The objectives of this research were to develop theory and computational methods to
formulate and solve robust control system design problems. The initial stages of the
research were devoted to the design objective of minimizing the maximum peak gain
of a system containing structured nonlinear/time-varying uncertainty. Next, the focus
was on continuous-time systems controlled by digital computers, i.e. sampled-data
systems. This work was motivated by the fact that continuous-time compensators for
continuous-time plants are irrational when the design objective is minimizing peak-
gain. Therefore it was necessary to study the sampled-data problem and develop new
methods for its solution.

. Status of Research Effort

The objectives in this research have been achieved in a most satisfactory manner. Two
of the most significant results were 1) the work of Mustafa Khammash on performance
robustness in the presence of structured uncertainty and 2) the work of Bassam
Bamieh on sampled-data control.

Briefly, these results are as follows:

One of the most significant developments in H,, control system design was establish-
ing the equivalence of the robust performance problem and a robust stability problem
with structured perturbations. This is generally attributed to John Doyle and made
possible the “ u-synthesis” approach to control system design. In this approach, the
design objective is to minimize the maximum error energy. When the objective is to
minimize the maximum error magnitude, the problem becomes quite different and
more complicated.

Mustafa Khammash in his Ph.D. thesis established an equivalence between a robust
performance problem and a robust stability problem for discrete-time systems in
the presence of time-varying/nonlinear structured uncertainty. This was a major
breakthrough in the solution of the maximum magnitude problem, which has been
referred to as the ¢; optimal control problem. In his further work, he developed an
iterative technique similar to p-synthesis in order to design optimal controllers. In the
case of discrete-time systems, the procedure is much simpler since the scaling factors
are constant, rather than functions of frequency, and the optimum can be calculated
exactly at each step.

Khammash’s results can be applied to the analysis of continuous-time systems, but
not to the synthesis of optimal continuous-time controllers. The earlier work of
Munther Dahleh, also done here at Rice University, had shown that in general, op-
timal continuous-time problems had irrational solutions and the realization of these
solutions posed many problems. As a result, a different approach to the problem was
proposed, in that a continuous-time plant would be controlled by a digital (discrete-
time) device. The accepted terminology for such systems is “sampled-data-systems,”




and the objective was to minimize the maximum value of the continuous-time system
error for such systems.

The Ph.D. thesis of Bassam Bamieh presented a solution to both an H,, version and
an L, version of this problem. Bamieh developed a procedure called “lifting,” by
which a periodically sampled system could be converted to a discrete-time system
in which the induced system norms were the same (i.e. the system gains). This
meant that the maximum value-of the continuous-time system error is equal to the
maximum value of the discrete-time system error. This equivalence is also true for
any induced norm, in particular for the H,, and L; norms.

Bamieh worked out the details of the transformation which gives an exact solution
to the H,, problem and an approximate solution to the L; problem. Programs that
implement his H, solution are now incorporated into MATLAB u-tools.

Recent work has involved the study of robust solutions to tracking problems. In
particular, the object is to design compensators to minimize the maximum “steady-
state” errors in sampled-data systems with structured uncertainty. This is quite
complicated, in general, and the initial work deals with discrete-time systems with
structured uncertainty. The foundations for solving such problems have been laid
by Mustafa Khammash and analysis of discrete-time systems with structured uncer-
tainty is straightforward. Synthesis is more difficult. Algorithms have been developed
for solving certain problems involving scalar plants with two structured perturba-
tions. At the present time, the general problem seems to be a least as difficult as
the “u—synthesis” problem and a different framework may lead to more reasonable
computations. The search for such a framework will be a continuing goal for future
studies.
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Performance Robustness of Discrete-Time
Systems with Structured Uncertainty

Mustafa Khammash and J. Boyd Pearson, Jr., Fellow, IEEE

Abstract—Given an interconnection of a nominal discrete-time plant
and a stabilizing controller together with structured, norm-bounded,
nonlinear/time-varying perturbations, necessary and sufficient condi-
tions for robust stability, and performance of the system are provided.
This is done by first showing that performance robustness is equivalent
to stability robustness in the sense that both problems can be dealt with
in the framework of a general stability robustness problem. The result-
ing stability robustness problem is next shown to be equivalent to a
simple algebraic one, the solution of which provides the desired neces-
sary and sufficient conditions for performance /stability robustness. These
conditions provide an effective tool for robustness analysis and can be
applied to a large class of problems. In particular, it is shown that some
known results can be obtained immediately as special cases of these
conditions.

1. INTRODUCTION

OBTAINING good mathematical models of physical systems
is important for their effective control. In general, the better
the model, the more one expects from an optimal controller for
this system. Ideally, a mathematical model that describes exactly
the real system should be obtained. Based on that model, a
controller that achieves certain objectives can then be designed.
When implemented on the real system, one expects it to achieve
the design objectives. However, this rarely takes place in prac-
tice for many reasons. First, obtaining an exact model is gener-
ally not possible and one must use approximate models. Second,
better models tend to be more complicated in order to capture
more accurately the dynamics of the system to be controlled, and
so despite the availability of a good model, a simpler less
accurate one might be used in order to simplify the design and
analysis procedures and to make use of those tools for controller
design which are based on the simpler but less accurate approxi-
mation. An example of this is the linearization of a nonlinear
system about an operating point. Third, and equally important,
even if the underlying physical system could be modeled accu-
rately at one point in time, parameter variations that could
appear for any one of many reasons eventually take their toll on
the system and render the model inaccurate. For all these
reasons, a controller that achieves good performance when
controlling the model, might not perform so well when used to
control the actual plant and could even make the system unsta-
ble. In short, robustness to model uncertainties is an important
objective and should be an integral part of any controller design.

For systems with bounded energy signals, the #% norm is
the most suitable norm to use. When dealing with robust perfor-
mance in the context of linear feedback systems with #® norm
performance objectives, the paper by Doyle [1] introduces a

Manuscript received January 23, 1990; revised August 27, 1990. Paper
recommended by Associate Editor, I. R. Peterson. This work was supported
by the National Science Foundation and the Air Force Office of Scientific
Research under Grant ECS-8806977.

The authors are with the Department of Electrical and Computer Engi-
neering, Rice University, Houston, TX 77251-1892.

IEEE Log Number 9142865.

nonconservative measure of performance for linear feedback
systems in the presence of structured model uncertainties [1.!
This approach is based on a matrix function called the structured
singular value, where stability and performance robustness are
dealt with in the same framework. The class of perturbatibns
treated are linear time-invariant norm-bounded perturbations.

When the system at hand does not involve bounded energy
signals but rather bounded magnitude signals as is the case when
bounded persistent disturbances are present, the more suitable
norm is the & norm or /' norm. In [2], [3], Dahleh and
Pearson provided a complete solution to the problem of minimiz-
ing the & norm of a linear time-invariant continuous/discrete-
time system through the choice of a stabilizing controller. The
optimal controllers obtained in the discrete-time case are more
useful than those in the continuous-time case since they are
easier to implement physically. ‘

In this paper, we present a solution to the robustness problem
in the /' setting. The class of perturbations considered consists
of norm bounded perturbations allowed to be time varying or
nonlinear. We provide necessary and sufficient conditions for
stability robustness for structured perturbations where any num-
ber of perturbations can enter between any two points in the
system. In addition, we allow performance objectives to be
achieved in a robust manner subject to robust stability. This is
done by showing that the stability and performance robustness
problem is equivalent to a simple algebraic problem which can
be easily solved to give the desired nonconservative conditions
for stability and performance robustness. We show how the
results in [4] and [S] can be obtained as special cases of this
theory. Finally, we provide some examples demonstrating how a
controller that achieves robust stability and performance can be
designed. ,

The paper is divided into nine sections. Section II introduces
the notation, while Section II provides some preliminary re-
sults. In Section IV, the stability and performance robustness
problem is set up. In Section V, we prove Theorem 1 which
establishes that a performance robustness problem is in fact
equivalent to a stability robustness problem when the perturba-
tions are linear, time-varying, and norm bounded. In Section VI,
we show that the stability robustness problem is equivalent to an
algebraic problem which gives us the means by which to obtain
necessary and sufficient conditions for stability robustness and
consequently performance robustness. In Section VII, the results
are extended to include nonlinear norm-bounded perturbations.
In Section VIII, some applications of the theory are provided,
and finally, Section IX contains some concluding remarks.

II. NotAaTiON

R The space of g-tuples of real numbers. If x =
(xy,7+*, X) €RY, then | x|, = max;| x;].

' See also [12].

0018-9286/91/0400-0398301.00 € 1991 IEEE
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Rt Nonnegative real numbers.

#(p x q) Set of real matrices having p rows and g
columns.

~ Space of all bounded sequences of real numbers,

ie., x={x(k)}s-0€!® if and only if
sup, | x(k)| < oo. If xel® then | x|, =
sup, | x(k)].
7 Space of g-tuples of elements of /. If x =
(X1 0 X €17 then || x|l = max; | x; .
Extended / space. It is equal to the space of all
g-tuples of sequences of real numbers.
T If x=(x, ", x,)€l7,, then .7;x :=x;€
7.
& Space of absolutely summable sequences. If x e
I" then || x|, = Ziol x(k)| < o
Space of p X g matrices with entries in /'. If
x=(x;)€l} g then [x[, = max, o;,
Z;]-l" xu“l ,
P, The truncation operator on sequences.- Hence if
x = {x()};=o is any sequence, then P x =
{x(0), x(1)," -+, x(k),0,--- }.
The set of all x & /7 such that x,(k) =
Nandl=<isgqg.
Sy Right shift by & positions. If x = {x(i)};=, is
any sequence and kk is a nonnegative integer,

q.e

Ovk >

then S,x={0,---,0, x(0), x(1),*--}. On
the other hand, S_,x = {x(k), x(k +
1),---}. Hence S_, S, =Ibut S, S_, # I
The space of all bounded linear causal operators
mapping /7 to I7. If Re ¥£77 then | R| :=
Sup . Lol Rxll,/ | x|l which is the induced
operator norm. Each R in #£? can be com-
pletely characterized by its block lower-triangu-
lar pulse response matrix.

Subspace of #F9 consisting of time-invariant
operators. For each Re £§79 corresponds a
unique 7 in Ipx ¢ Where r;; is the impulse
response of R;;, the component of R mapping
the jth input to the /th output.

If xeR? and 0 #y=(y,,"**, y,)€R? and
if i, is the smallest indexing integer such that
| Vimax | = | ¥;| for i =1,--, g then [x/y] is
defined to be the real p X g matrix formed by
setting its i, th column to be (1/y;.,) X and
all of the other columns to zero. A consequence
of this definition is that [x/y]y = x.

III. PRELIMINARIES

For the sake of completeness and in order to establish nota-
tion, we review in this section some of the concepts pertaining to
feedback systems. Let G: /) ,— I, be any map. G is said to
be causal if P,G = P,GP, for all k= 0. It is said to be
strictly causal if P,.G = P,GP,_, forall k =0.

Consider the feedback interconnection in Fig. 1, where G:

=lg. and H: I7 = [;, are both causal maps. The
system depicted is sa:d to be weII posed if (I — GH)™" exists
as a map from 1 oy 1‘; .» and is causal. It is said to be
1=-stable iff : '

1) it is well-posed,

2) the map (uy, uy) ~ (e, €3, ¥, ¥y) takes I7 X I7 into
17 X 13 X 17 x 17,

U N @ G n
3 .
Y2 [ t u
2
B Y,
Fig. 1. Feedback system.

3) there exists real numbers «, and «,, independent of u,
and u,, such that for all u, and u,

lelle: lezllos 1 ¥illas |72l = eyt [l + @2 ]| ;]| -

A map G: [ ,— I7, is said to be [Z-stable if it is Causal,
takes /7 into 1 , and xs bounded i.e., there exists a > 0 such
that |[Gu||°, < allull, for all uel;. Clearly, if G and H in
Fig. 1 are both /®-stable and if the system is well-posed then a
necessary and sufficient condition for the system in the figure to
be [®-stable is that (/ — GH)™' and (J - HG)™' are both
{™-stable. In fact, as the next proposition shows, it is enough to
check that only one of them is stable; the other will follow suit.

Proposition 1: Let G: 1“—*1"' and H: I7 — [ both be
I®-stable maps Then (I - GH )' is l“-stable if and only if
(I - HG)™ ' is [™-stable.

Proof: (=) Assume (I — GH)™' is [®-stable. It may be
easily verified that (/ — HG)~! = I + H(I - GH)™'G, which
is I”-stable. The other direction of the proof is identical. |

If A =(a; NEM(P X q), then the mduced-operator norm of
A as a map from @R, | - | &) 1o@R7, | - | ) is defined by
sup | Ax|, =
| x|eos1

[Ale = max Zlaul

We use this to give an expression for the norm of an element
Re %879 R can be completely characterized by its pulse
response matrix which has the following form:

Rgo 0
RlO Rli

where R;;€ .4(p X q). This infinite matrix representauon of
R acts on elements of 1‘” by mult1phcatxon, i.e., if u elq , then
Y = Ruel; where y(k) j,oRk,u(J)eRP It can now
be seen that the induced-operator norm of R is equal to
sup,I(R,o T u)[oe

When restricted to ZF£*9, the time-invariant subspace of
ZF79, another representatlon of the elements of ¥£*9 is
more convenient. This alternate representation results from the
fact that correspondmg to each R e ZF9, there is an element
r=(r; J)e pxq Such that r;; is the pulse response of that
component of R mapping the jth input to the ith output. In thlS
case, the mduced-operator norm of R as a map from /7 to [}
equal to the norm of r in ff”“” which we shall also refer to as
the & norm. Hence, ¥£? is isomorphic to /. and each
operator in 259 is umquely determined by its pulse response

in 7}, 7 whose norm will be equal to norm of the operator in

7 S

IV. PROBLEM SETUP

We are mainly interested in /™ signals and drscrete-nme
systems. Aside from that, the only conditions imposed will be
those needed to guarantee the well-posedness of the problem.




Common to all the problems in which stability and performance
of a certain system are to be studied under the effect of perturba-
tions are a nominal plant and a controller stabilizing it. In our
case. both of these are assumed to be linear time-invariant
discrete-time systems. There is no reason why only one nominal
plant or controller can be considered, and so, as many as desired
can be incorporated as long as the resulting nominal system is
stable. As for the perturbations, they are first modeled as strictly
causal linear maps taking /® signals to /™ signals with
bounded-induced norms. Hence, the perturbations are allowed to
be time varying. Nonlinear perturbations are treated in Section
VII. There can be as many perturbations as desired and they can
enter anywhere in the system. So for a specific set of bounds on
the norms of the perturbations, we have a family of systems each
of which is composed of the nominal part and a set of fixed
perturbations with norms less than the corresponding given
bounds. The first objective is to determine when every member
of that class of systems is stable, i.e., when our system is
robustly stable. In many cases, stability is not all that is required
from a system and certain performance objectives are to be met.
A useful and popular objective is keeping small the norm of the
function mapping an external input, say u, to a certain signal in
the loop, call it y. Since there could be more than one such
objective, let us denote the resulting functions by 7. for
i=1,"+-,m, where T . is the function mapping signals at
point u; to signals at point y;. Because we are mainly concerned
with [ signals, the norm we want to be small would be in our
case the induced /* norm. Now our objective is to determine,
given a set of m positive real numbers v,, -, v,,, conditions
under which our system is stable and satisfies || T, || <+, for
all allowable perturbations. In other words, when does our
system achieve robust performance?

We now formally set up the stability and performance robust-
ness problem mentioned previously. The configuration we shall
use in the setup of the robustness problem is shown in Fig. 2. In
the figure, M represents the interconnection of the nominal
plant and the stabilizing controller, and is therefore linear, time
invariant, and stable. Each A; represents the perturbations be-
tween two points in the system, and has norm less than or equal
to one. Of course, there is no loss of generality in assuming that
the chosen bound on the norms of each of the A;’s is one, since
any other set of numbers could be absorbed in M. We will
restrict the A,’s to be strictly causal in order to guarantee the
well-posedness of the system. This is not a serious restriction
and can be removed if it is known that the perturbation- nomi-
nal-system connection is well-posed. Accordingly, we can define
the classes of perturbations to which the A’s belong. Assuming
the perturbations enter at n places, and that each has p; inputs
and g; outputs we have

a;eA(p;, q))
where A( p;, q;):= {Ae LF|
A is strictly causal and ||A]| = 1}
fori=1,--,n.

Note that A; is not dependent in any way on A ; when j # i,

The only restriction is that A; belongs to A(p;. g;) for each i. -

Next, let p=X,;p;, and ¢ =Y ,q;. By Z[(p,, q\);"*";
(Pn» 4,)] we mean the set of all operators mapping /7 to /3 of

IEEE TRANSACTIONS ON AUTOMATIC CONTROL. VOL. 36. NO. 4. APRIL 1991

Uy %

U * t Ym

M

&l

Fig. 2. Stability and performance robustness problem.

the following form:

A, O 0

0 A, :
D= s

0 0 a4,

where A; belongs to A(p;, g;). When the pairs (p;, q;) are
known, they will be dropped from the notation and 2 will be
understood to mean the aforementioned set. We will say the
system in Fig. 2 achieves robust stability if the system is stable
for all De 2[(p,, q,); ** ; (Pn» @,)]. We will say it achieves
robust performance if it achieves robust stability and | 7, || < 1
for all i and for all D in Z{(p,, q,): " ;(Pns Q)]

In the context of this setup, our problem can be stated as
follows.

Problem Statement: Find necessary and sufficient conditions
for the system in Fig. 2 to achieve robust performance.

V. PERFORMANCE ROBUSTNESS VERSUS STABILITY
ROBUSTNESS

In this section, we will establish a useful relationship between
stability and performance robustness, that will be used later in
the solution of our problem. This is achieved in Theorem 1
which is the main result in this section. To aid in the proof of
this theorem, we will need to determine necessary and sufficient
conditions that a linear time-varying operator R € #{” must
satisfy in order for (J — RA)~! to be /®-stable for all Ae
A(p, q). Such conditions are provided by Lemma 1, to be
stated next. However, the conditions given in this lemma are
somewhat nonintuitive in the sense that they do not readily
translate into conditions on R. By utilizing Lemma 2, Lemma 3
restates Lemma 1 in a form that relates to R more closely and
thus takes care of this shortcoming. Finally, we note that the

- sufficiency part in Lemma 3 has been proven in [6]. Neverthe-
less, since the extra effort required to reprove it using the
techniques of this paper is minimal, we prove it again here and
provide a proof for the necessity.
Lemma 1: Let Re #87P. Then (I — RA)™! is not [™-sta-
" ble for some AeA(p, q) if and only if there exists a real
number ¢ > 0 and £e/; , \ /7 such that

| Peéll < I PeoyRENw +c VEZO.
The proof of this lemma is postponed until Section VI.

Lemma 2: Let Re ¥#y7, and £ € Py(l7). Then given € > 0
and @ > |||, there exist an integer N > N and £ € Py(/7)
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such that
PyE =t (£ isatruncated extension of £)
[£lle=a

I PNRE.".» = "S—-(N+1)RS(N+1)" ‘a-—e.

Proof: From the pulse response matrix representation of

R it can be seen that

IS-vanRSnanll = §uIl’ |(Rnsiner = Ryvainei) e
iz

It follows that for some N> N, R = (Rg n4y **
4(q X p(N — N)) satisfies

. €
[R|e 2z "S—(N+1)RS(N+1)" -z

For 13,_we can easily find re RPV-M with | 7] e = @ such
that | Rr|g, = | R|, - a. In fact, we can in addition pick r in

such a way that

N
I_Z;Rﬁ.,-é(i) +Rrlez |Rr|o=|R|s"a.
i=

With r constructed as above, we can use it to define f as

follows:
g(k)=£(k) fork=0,--,N
6+ 17 £ =
£(k)=0 k>N.

From this definition it is clear that PN.&7 = ¢ and that | £ | = @.
Finally

™M=

-
i
=]

H(RE)(N)|w=| T Ry.if(i)|w

2

N
Rg k(i) + 3 Rz £(i)le
i=N+1

z i

Ry () +Rriaz |R|,-a

1
=3

= | S_vanyRSnapll - @ = €.
This implies that

Il P,;,R{ll,, = IIS_<~+:>RS(~+1,II Ta = e

Lemma 3: Let Re Z#)P. Then (I — RA)™! is [®-stable
for all A€ A(p, g) if and only if there exists an integer N such
that ||S_NRSy|l < 1.

Proof: We will prove the lemma by showing that (7 —
RA)™' is not I™-stable for some AeA(p, q) if and only if
|S_,RS,ll =1 for all n=0. Using Lemma 1, the task of
proving this lemma reduces to that of showing

there exists £ €/, \ /7 and ¢ > 0 such that

| Petllew =< | PeciRE|o +
. ki3
[|S_RS,| =1

vk=0

(5.1)

forall n = 0.

Ry R)e
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(=) Assume (5.1) holds. It follows that for any fixed integer

n=0
I Peklle = | Py R(S,S_p§ + Py_y§) e + €
S|Py \RS,S_, ¢l +c+
Using this together with
I PeS_néle = || Prant |l and
1 Prsn-1RSsS_nélle = | PpoyS_nRS,S_,¢ |l + ¢

for some ¢” > 0and vk = 0
we get

I PiS_nélle =< | Peo1S_nRS,S e+ c+e +c"

for some ¢” > Oand Vk = 0.

Define ¢ := ¢ + ¢’ + ¢”. We can now write .
" PkS—nE "en = " Pk-lS—nRSnS—nE "eo +
= "S—nRSn" " Pk—ls—nE "m + E
S |S_aRS, || | PeS_pé |l + &
Hence

" Pks—ns "o(l - " S-—nRSn") =7 Vk=z0

which, since lim,_. ||P,S_,¢||, = o, implies that
IS_,RS,|| = 1. Since n was arbitrary, it follows that
|S_,RS,|l =1forall n=0.

(=) To prove the other direction, we assume | S_,RS,| = 1
for all 7 and then show the existence of £ € /5, \ /7 and ¢ > 0
such that £ satisfies (5.1). This is done by first constructing a
sequence of truncated elements of /5, namely {£,}72,, and then
defining £ in terms of this sequence and verifying it has the
desired properties. The construction of {£;}5, goes as follows:
fix € to be any real number greater than zero. Next, let
£, == 0€P_,(/7), and apply Lemma 2 to ¢, with a =1, to
obtain an integer N; >0 and £, €Py(/7). To this new se-
quence apply Lemma 2 again, this time with @ = 2, to obtain an
integer N, > Ny and £; € Py, (/). Repeating this procedure
indefinitely gives the sequence 12 i}7=1 whose elements satisfy

1) E,-GPM.(I;,”) for some integer N; > N_;>0,

2) Pytbi=¢%,_, iz22,

3 (&l =1,

4) ” PN,-_IREI'" = IIS'(M—1+1)RS(M_1+I)II ci-e2i-—
€.

Next, we show by induction that for i = 1
1 Pekills = | Peo 1 RE |l + €

where ¢ does not depend on i. Hence, let ¢ := 1 + e. For
i =1, (5.2) holds trivially since

| Peille = 1= || Pe_ RE | + c.

Next, assume (5.2) holds for i = m. We now show it must hold
fori=m+ 1. If k < N,, we have

N Pibmirllo = [ Pkl < | Pec RE ]| + €
S|P REp e + C.

for some ¢ > 0 (5.2)

If, however, kK > N,,, we can write
I Pebmiille<m+1=<|Py RE, |l +e+1
S [P REpiille + €

for some ¢’ > 0.
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Fig. 3. Equivalence of stability and performance robustness.

which completes the induction proof.

Finally, we define the desired £ € /7, \ /7 to be the compo-
nentwise limit of such sequence, i.e.,
£(k):= lim £:(k) vk=0

=0
which exists because of property (2). It is easy to see that £ as
defined here is the one we are looking for. Specifically, §
belongs to I7, \ I3 since lim;_. o[ §;]le = o. In addition, £
satisfies

[ Peélle = | PeoREN + € vk=0

which is inherited from the £;’s. This completes the proof.
|
We are now ready to state a theorem establishing a relation
between stability robustness and performance robustness. It states
that performance robustness in one system is equivalent to
stability robustness in another one formed by adding a fictitious
perwurbation. A similar result has been shown to hold in [7]

when the perturbations are linear time invariant and when the

2-norm is used to characterize the perturbation class. The same
proof does not apply here though, due to the assumed time-vary-
ing nature of the perturbations. The usefulness of this theorem
stems from the fact that we can now concentrate on finding
conditions for achieving stability robustness alone. Once we do,
performance robustness comes for free.

Consider the two systems shown in Fig. 3, where M e £#*F
and A;e A(p;, g;).- In System II, u is a vector input of size p
and y is an output vector of size §. In System I, A, € A( D, §).
It follows that p =5 + ¥;p; and ¢ = § + T ,q;. Subdivide

M in the following manner:
M, M
M; My
where Mu € quI
We now state the following theorem establishing the relation
between System I and System II.

Theorem 1: The following four statements are equivalent.
1) System I achieves robust stability.

2) (I—Mﬁ)“‘ is [®-stable for all De Z((p, §); (p»
q,) 5 (P g
3) (I-Mv-vD)— is [®-stable and ||M”+M|2D(l—

M,,D)~'M,,|| < 1, for all D belonging to 7[(p,, G,); *
(Pns Gn))-
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4) System II achieves robust performance.

Proof: 1) & 2) follows from the remarks preceding Propo-
sition 1. 3) @ 4) is immediate since a necessary and sufficient
condition for System II-to be robustly stable is that (I —
MpD)' is /-stable for all D in Z[(p;, 4\); "3 (Pn> @)
Robust performance means that ||M, + M ,D(I -
M,ZD) IM,,|| <1 for all D in Z[(py,q)); " ;(Pn G
which is exactly what the remaining part of 3) states.

To prove the theorem, we therefore have to show that 2) « 3).
Before we do that, we introduce the following notation:
M, (D)= My, + M, D(I - MyD) ™' M.

We start by showing_3) = 2). So let De %l(p, d) (P

q,); "5 (P G0 D can be written as diag (4,, D) where

A EA(p, q) and De -/[(pl’ QI)t s (pn' Qn)] It can be

easily checked that
Ayl Ny Nxz)
I-MD) =
( ) (N2l Ny

where
-1
N” = (I— Myu(D)Ap)

~'M,,D(I - My, D)~

-1~ -1
MZ]AP(I Myu(D)Ap)

sz = (I + NleIZD)(I - Man)_l.
Since || vl D)l < 1, it follows by the small gain theorem that
- (D)A p)’ is [™-stable, which, in turn, implies that

- MD)’ itself is stable.
Before proving 2) = 3), we will first show that given_any

Z{(py» 41)s " 3 (Pn» g,)1 we can find De
9[(P|, ql); ot ;(pln qn)] such that
|5_.M,,(D)S,ll = | M, (D)} vm=0.

To do this, we construct D explicidy. So let D be represented
by its pulse response matrix, i.e.,

Dy O

D=|Dyp Dy 0

Then D will be defined in terms of its pulse response matrix as
follows:

Dy )
Dy 0
Dy Dy
D := Do
0 Dy Dy
Dy Dy Dn

It may be verified that the structure of the previous matrix
ensures that D e ZU(py, G1); = * s ( Pu» G,)]. Furthermore, it is
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not difficult to see that ' where M,; has size g; X p;. We also define two maps E; and
_ E;, which will depend on the p;'s and the g;'s. as follows: -
PS_,.DS, = PD viz0 '
Eplp o= 17, o suchthat Ei(ny, -+, m,) = 9,
where m; = m;_, + iand m_, = 0.

where 7, €/, fork=1,---,
We now show that TS pg.e . ’ n

"S-nMyu(E)Sn” = |M,, (D) vnz=0. i lg.e ™ Ig; e such that E(,,--+, §,) = 4
where 1, €/% fork=1,---,
It will suffice to prove that Tk lap.e n

The next lemma is crucial in the proof of the theorem to
follow. It states necessary and sufficient conditions for a se-
. . ~ quence in /7’ to be mapped to another in ¥ by a linear strictly
Hence, given n = 0 and k = 0, i can be chosen large enough = . ca1 map with norm less than or equal to one.
such that m; > n and i > k. We can now write

IS-sM,u(D)S,|l = | PcM,,(D)|  v¥n, k=z0.

Lemma 4: Let x = {x()}oeln . and y = {y(D}in,€

- 17 ,. There exists Ae A(r, m) such that A x if and only if
18- My (D)S,ll 2 IS M, ( D) Sy e 7= y

2 | P.S_pm;M,(D) Sy,

-m;

IPexlle = | Py vl VK20 (6.1)

Proof: The necessity is immediate, so we proceed to the .

= | PM yu(P ) -miDSm,') I sufficiency part. So assume that (6.1) holds. The proof is trivial

if y = 0: just pick A itself to be zero. So assume y # 0. We

= | PM, (PD)| will now construct a A that has the desired properties. We start
by identifying a subset of the y(i)'s, call it Y@y, y(iy), -+

= |PM, (D) “which, depending on y, may or may not be finite. This subset

may be defined recursively in the following manner: Let i, be

= | P M, (D)| the smallest integer such that y(i,) # 0. Given y(i,), let i,,,

be the smallest integer greater that 7, such that | ¥(i,, )| & =
| ¥(i,)| o Using the x(i)’s and y(i j)'s we are now ready to

where we have used the time invariance of M, ;- This proves our S :
construct A through specifying its pulse response matrix. So

claim. We can now use this fact to finish the proof of the

theorem which we do by contradiction. Suppose that (I — define
MD)~ ! is [*-stable for all De gU D, q); (p;, a1); "5 (Pps -
g,)], but that for some D, e Z[(p,, q\); """ Py q,)] it Aoy Ag A
holds that || M,,(D,)|| = 1. We can then form D, in Z[(p,, ' Ap Ay Ap
q,); 5 (P q,,)] as shown before which satlsﬁes A =
A 4y Ap
IS_aM,,(Do)S,ll 2 | M, (D) =1 vn=z=1.
By Lemma 3, this says that (J — u(ﬁo)A ») 1 is not [™-sta- where . .
ble for some A, in A(D, @) whlch contradicts the fact that . ,
P
(I - MD)~" is I=-stable for all De 2(5, @); (p,, 4,); - A =B D] T LGN )
(Pn» 4,)]. This completes the proof. I A (i) et y(iy)
VI. CONDITIONS FOR STABILITY ROBUSTNESS e AL — [x (i) ]
- *T.n i ’
It has been shown in Section V that we can convert a y(i)
Performance robustness problem into one which involves stabil- x(iy + 1) x(iy +2)
ity robustness alone. We can therefore concentrate only on Bisrip = »Bigsa,ip = ||,
stability robustness. We seek nonconservative conditions for ('2) ‘ y(i2)
achieving stability robustness which are easy to verify. Before .
we begin, we establish some notational conventions. Throughout A X (’3)
this section, the perturbation set will be Z{(p;, @,); ***; (Pps 3.2 y(iy) ’

g,)] for some positive integers p,, -, p, and ¢,,"*", q,. M

belongs to ¥#? where p := ¥,;p; and ¢ = ¥;q;. Hence, x(iy + 1)
M can be partitioned as follows: Biseriz = |———|, "
A B y(i3)
M, - M, and O otherwise. .
M= : . : Notice that each row of any of these matrices has at most one

nonzero element, which, by the choice of the y(i;)’s, will have

My o0 My, its absolute value less than or equal to one.

' .
: P '
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A will have the form

0
Ajsry O
A Aiz.il 0
B 0 DA
0

from which it is easy to see that A is causal and that Ax = y.
Furthermore, it follows from the remarks immediately following
the definition of A that '

fall =sup|(A;; 42 *)le=1.
i

This completes the proof. |

Using this lemma, we now state an aiternative condition for
(I - MD)~! to be [®-stable for all D in Z{(p;, q1); """
(Pns @)

Theorem 2: There exists De Z[(p, q1): " " s (Pa» @)}
such that (I — MD)~! is not [®-stable if and only if there exists
tely .\ I7 and ¢ > 0O such that
| PeEif e = | Pec i Ei(ME) |l = €

fori=1,...,nand vk =2 0.
Proof:

(I - MD) ™" is not /™-stable

for some De QI(pl, q,); ;(17_,., q,,)]

k2
(I = MD) is not invertible as a map from /7 to /7

for some De@[(ppfh); tery (p,.,qn)]
ki3
3yely N\ I7 suchthat (I - MD)yel7
for some De .@[(pp‘h); ;(Pn,Qn)]

£
3tely N\ I7and yel7 , \ I such that
y = Mgelgand | PEfllw < | Peci Byl (6.2)

where we have made use of the open mapping theorem to
conclude the second statement from the first, and Lemma 4 to
get the last statement above. To finish the proof, we will show
that (6.2) is equivalent to the following: '

3tel, .\ I7 and ¢ > 0 such that
IPcEit e — |-Peo EME | = €
vk=0andi=1.---,q. (6.3)

Therefore, assume (6.2) holds. It follows that there exists ¢ > 0
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0
0
ia+1.0y 0
i 0 --- 0 \
0 : A1'3+I.i3
°)
such that

cz (- M)
For such ¢ and ¢, we can now write
¢z || Py Ei(y - ME)||»
2 | PeosEiylle = | P E(ME) |
= | PeEf e — | Pecr Bi(ME) |
vk=z0andi=1,...,q

which is exactly what (6.3) states. Conversely, assume (6.3)
holds. Define

(7;)(k):= (m;ME)(k) + csgn(m;ME)(K)
vkandi=1,-'",q.

It follows from this definition that y — M¥ is in /7. Further-
more, it is immediate from the definition of y that

1 PecrEiyllee = I Py Ei(ME) || + €
which, together with (6.3), gives
1 PeEitllw < | Pecr Byl e

From this last equation, we also get that ye/7, N\ /7. This
proves the theorem. | |
Proof of Lemma 1: The proof of Lemma 1, as may be
readily checked, is identical to that of Theorem 2 with M
replaced by -R and with n = 1. Note that even though M has
been assumed to be time invariant, this was never used in the
proof of Theorem 2. |
Before we can state Theorem 3, we need to establish two
additional lemmas. Together with Theorem 2, these lemmas will
be the main tools used in the proof Theorem 3. ’
Lemma 5: Let £ € Py(I7) = Py(lp) X ==+ X Pp(17)
Then given ¢ >0 and aeR" such that g; = || E; ||, there
exists an integer N > N and § € Pg(/}) such that

VE|= = a;
PyEf=E#f and
. n -
" PA',E,ME "us = max { “ Wm'Mij" £ aj} - €
l=m=sgqg; | j=1

i=1,,n.
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Proof: This lemma follows immediately from [5, Lemma

5.2]. n

Lemma 6: Let ¢ and a;;, where i=1,---,n and j=
1.---, n, be nonnegative real numbers. Then the followmg is
true.

There exist n sequences of nonnegative real numbers,

say n; = {n;(k) }e—o» at least one of which is unbounded,
satisfying
n
(k) = Zlaijnj(k) +e
Jj=
vkandi=1,",n (6:4)
s

the system of inequalities

(6.5)

has a solution in (R*)" \ {0}.

Proof: It is immediate that (6.5) = (6.4); merely let ;(k)

= kX; where (X, -+, X,,) is the solution guaranteed by (6.5).
We prove the other direction by induction on n. For n = 1,
(6.4) gives an unbounded sequence of real numbers # such that

n(k) < an(k) + ¢ vk.

Since lim sup,, n(k) = oo, it follows that @ = 1. This, in turn, is
true if and only if x < ax has a solution in (0, o), or eqmva-
lently if and only if (6.5) holds for n = 1.

For the second induction step, assume the lemma is true
whenever n < n, — 1. Assuming (6.4) holds for real numbers
¢ and g;; where i=1,-,n, and j=1,---,n, we wil
complete the proof by showmg that (6.5) must hold as well. We
start by noting that without loss of generality the unbounded
sequence guaranteed by assuming (6.4) has index less than n,,
i.e., for some i < n,, we have limsup,_n;(k) = o. If this
were not the case, we can always renumber the 7;’s. We may
also assume that a, , < 1, otherwise the proof of this lemma
is complete since X = (0,- -, 1) solves the system of inequali-
ties in (6.5) for n = n,. Based on this last assumption, dividing
both sides of the n,th inequality of (6.4) by 1 — a, _, yields

1 no=1 . c A
k) € —— a + — Vk.
(k) < T P~ ,Zl naii(K) —
Substituting this inequality in the first n, — 1 inequalities of
(6.4), we get

"ozl QinpQnof
(k) = Z (aij+ —e fol (k) + ¢
j=1 1- @nono

vkandi=1,",n,—-1

where ¢ =c+c/(1 - a,,,,) = 0. But by the mductlon hy-
pothesis this implies that the system

no—1

< 2 ainoanoj . ..

X, = Z d,-j"}'T?a——' X i=1, yn,—1
Jj=1 nong

has a_solution" in (R*)"0~' \ {0}. Denote this solution by
X = (X%, . X, _). Now define
ng—1 a.
- n — -
X,, = — X, eR*.
j=1 1 none

Clearly, (¥),"**, X,.)€(®¥)" \ {0}, and it can be easily
checked that it solvcs thc inequalities in (6.5) for n = n,. This
completes the induction proof. n

Next, we will state our main result establishing the equiva-
lence of the stability robustness problem to a simple algebraic
one. Depending on the region in which this algebraic problem
has its solutions, we can conclude whether or not our system
achieves robust stability, and by the results of the previous
section, robust performance. In order not to clutter the exposi-
tion, we first state and prove this theorem in the scalar case.
Hence p, = -+ =p,=¢q, = *** = g, = 1. Consequently,
for any i, E; will be equal to =,.

Theorem 3: (I - MD)™! is not [*-stable for some De
ZI(1, 1); - -+ ; (1, D] if and only if the system

n

szluM,.,-u,.,xj i=1,,n
J=
has a solution X = (%,,**, X,) in R*)" \ {0}.

Proof: Assume (I — MD)~! is not [®-stable for some
De 7[(1,1); *+* ;(1,1)]. By Theorem 2, there exists ¢ > 0
and el \ I such that
I Py Z

"PkEIE"@ UE/E"w =c

vk=0,andi=1,--",n

Applying the triangle inequality and using the causality of M,
and the fact that the projection operator is contractive we get
n
| PLEif |l = ZIHMJILNHP/(E/E"&'*'C i=1,,n.
J=
Finally, applying Lemma 6 gives the desired conclusion.
For the other direction, assume there exists X = (X, *"
e @*)" \ {0} such that

n
X; < Zl | Ml o %;
J=

We will show that this will imply the existence of ¢ > 0 and
§ely .\ I7 such that

' Xn)

i=1,--,n.

| Pec i EME || <c  i=1,+,n

“ PkEiE "an -
which by Theorem 2 implies that (I — MD)~! is not [*-stable
for some De 2[(1,1); --;(1,1)]. We start by defining a
sequence of elements of /[ as follows: let £, = 0e/l;. Fix
€ > 0 to be any real number, and define ¢ := maxi X+ e
Now apply Lemma 5 to §, with a = (X,,"-*, X,) to get

N;>0and §, ePNl(l") Next, apply the same lemma again to

£, with a = 2%, -+,2%,) to get N, > N, and £, € Py, (/7).
Repeating this procedure indefinitely we get the sequence
{£ }m o With the properties

Em€Py, (I7)  where Ny>Np_ > -°
PNm_lzm = Em—l
|Eifmlle = and

. n . . .o
I PN,,,EiMEm"a = Zx I Mij";/”v_‘j — €
Jj=

vk=z0andfori=1,---.n.
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TABLE 1
CONDITIONS FOR STABILITY /PERFORMANCE ROBUSTNESS FOR 11 = 1, 2, AND 3

No. of A’s Necessary and Sufficient Conditions for Stability Robustness

n=1 |M|,<!
I Man]l < 1
"o Il My
Mol | Ml
M, o —_—
EMull+ =T
I Myl 4 < 1
R L .
2T T Myl
n=3
Mol + |lMuI|,IIMnII.,)(“M L+ ||M2,||,||M,“||_,)
1M+ sk Ml - IMsl. AR 17 P
M T M) EAPLEAP
» N (PR i -LEA L
l’"Mn“d

We next show by induction that for any m
| PeEfmlle = | Pacy EsME )l oo + €
vk=0andfori=1,---,n. (6.6)
When m = 0, this is trivial since
I PeEibolla = 0 < | Py EiME, || + €
vk=z0andfori=1,"*,n.

For the second induction step, assume (6.6) holds for m = m,,.

We now show that (6.6) holds for m = m, + 1. We prove this

in two parts: first when k < N, and then when kK > N, .
For k = N,

| PLEi§mysilleo = | PhEifmy o
< | PeoEsME ) |lu + €
= lIPk-lﬁiMEmo+llla+c i=1,+,n.

When k > N,,,o we have

" PkEiEma+l"cn = " PNmoEiEmo“eo + m?XXj

= m,X; + maxXx;
Jj

n
< Y | Ml 4 moX; + maxX;
J=1 Jj
= PNmoEiMsmo“m +e+ m?xfj

< | PecEMEp ol +c  i=1-0,

This completes the induction proof, and thus we have
| PEitmlleo = |l PeEME ||l + €
vk,m=z0andfori=1,"--,n.
Finally, define £ by letting £(k) := lim o §,(k) for all k.
It follows that
N PEE o = | Peo i EME | + €

Furthermore, £ e /5, \ I3 since lim, _ || Pc£llo = . This
completes the proof. . |
With this theorem, our problem stated in Section IV is essen-

i=1,--",n.

‘ tially solved. Applying this theorem to the performance and

stability robustness problem stated earlier, reduces it to a simple
algebraic one in which the object is to determine whether a
certain system of inequalities has a solution in a particular region
in ®". What makes this algebraic problem particularly attractive
is that the set of inequalities that arises relates in a simple and
direct manner to the original problem. Only norms of the
subentries of the M matrix arise and they do so in the same
general order that they do in M. The question that arises,
naturally at this point, is how can one determine whether the
system of inequalities at hand has a solution in the related region
of R™ It turns out, that no search techniques are needed to
accomplish this task and the answer to this question can be
determined by evaluating certain expressions directly. These
expressions also involve norms of the subentries of M and thus
are easy to compute. The derivation of these alternate conditions
for stability and performance robustness is the next topic of
discussion.

The first step in restating the conditions. involving the set of
inequalities is to make the following observation.

Observation: The system of inequalities

n
X; = zlllMijlldxj i=1,+-,n
j=

has a solution in (R*)” \ {0} if and only if either || M,,,|| , = 1
or | M,,|| ,< 1 and the system of inequalities

=l | Minll o || M)
X < M.. + L LA el X
= E M L)

has a solution in (R*)"~' \ {0}.

Notice that this observation allows us to replace the task of
determining whether any solutions to a set of 7 inequalities lie in
a certain region by the simpler one of determining whether the
solutions to a set of n — 1 inequalities lie in a small region
together with a simple test on the norm of M,,,. It is easily seen
how this can be repeated until we completely replace all such
conditions by tests on expressions involving norms of the M;;’s.
a much simpler task. Table I lists some of these for a few values
of n. , i o
Until Theorem 3, all our derivations "were done with an
MIMO system in mind. Theorem 3 broke this trend in order to
avoid the additional notational complexity which would undoubt-
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edly obscure the ideas in the proof. We will now tie this loose
end by stating without proof the analog of Theorem 3 in the
MIMO case. All the tools for the proof have been developed and
the steps are identical to those taken in the proof of Theorem 3.

In order to discuss the multivariable case we will need to
make reference to the rows of M;; which are themselves stable
rational functions. Let us denote the mth row of M;; by
(M), Which is also equal to ,,M;;. Since we will no longer
restnct the p,’s and g;’s to be equal to one, the following set is
not necessarily a singleton:

X = {(ky, " k,)eZ" 1=k, <q}.

From this definition it is clear that the set ¥ has exactly I}, ,g;
elements. To each k € X corresponds the system of inequalities:
x; < ZJ-,“(M,j)klII,x where k = (k,,* -, k,). As the next
Lheorem shows, it is the solutions of these mequahnes that are of
concern when seeking necessary and sufficient conditions for
stability and performance robustness in the MIMO case.

Theorem 4: (I - MD)~! is not [®-stable for some De
7P\, 41); * " s(Pp, @) if and only if for some k =
(ky,--+, k,) € X, the system

Z (M

has a solution ¥ = (X,, -,

)k"d X i=1,---,n

%,) in (®*)" \ {0}.

VII. NONLINEAR PERTURBATIONS

In this section, it will be shown that if the class of perturba-
tions is enlarged to include norm-bounded nonlinear perturba-
tions, then the conditions for robust stability remain the same.
This means that robustness to linear time-varying perturbations
will automatically guarantee robustness to nonlinear perturba-
tions as well. Furthermore, it is shown that when enlarging the
perturbation class to include nonlinear perturbations, stability
robustness remains equivalent to performance robustness, and so
the conditions for stability and performance robustness for time-
varying perturbations are the same as those for nonlinear pertur-
bations. For simplicity, we shall consider the scalar case here.
We start by extending our definition for the perturbation class to
include nonlinear perturbation. So define

o [(P1y @) 5 (Pnr )]

= {diag (4y,-7+,4,) | A; strictly causal and

"Aix"a }
sup ————— < 13,
x#0 [ Xlle

For simplicity we adopt the following notation:

o(n)= J[(M]

n
e e,
i (n):= QNL[(L ;---5(1, 1)]
Theorem 5: (I — MD)~! is [®-stable for all De 2(n) if
and only if it is /®-stable for all D e Z5,(n).
Proof: The sufficiency part is immediate since Z(n) C
I (n). We prove necessity by contradiction. Suppose (I —

MD)~! is not [®-stable for some D e Zy,(n). Then either

(I — MD)~! does not map /% into /S or it does but (/-
MD)~! is not bounded. Notice that the second possibility was
eliminated when D was restricted to be in Z(n) since in this
case if / — MD maps [}, onto [} then (I — MD)~! is bounded
by the open mapping theorem. Repeating the same arguments
used before, the first of these possibilities can be shown equiva-
lent to the system of inequalities

n
= Z_: | Ml o x;

havmg a solution in (R*)" \ {0}. By Theorem 3, this implies
that (I = MD)~! is not l°°-stable for some D in (n) and
hence in Zp;(n).

Now suppose (I — MD)~' maps I? into [T for all De
2y (n) but that for some De Zy,;(n) it is not bounded This
implies the existence of a sequence of elements of /77, { x;}%-0.
with x, # 0, such that

_ I(I-MD) x|l
hm =

ke I xelles

i=1,+",n

Define y, = (I — MD)™'x,. From this definition we have

ZMUAJW

TiVe = TiXy +

Using the triangle inequality and dividing by || x| ., we get
n

(k) = Z I
Jj=1

where (k) = | 7;¥;llw/ || X |- Applying Lemma 6 gives
us that the system of inequalities:

n
= Z} | M|l o x;
J=

has a solution in (R*)"” \ {0}. As before, Theorem 3 implies
that (I — MD) ! is not I®-stable for some D e 2(n). | |

One last issue remains to bé settled. We have shown that
stability robustness is equivalent to performance robustness when
the class of perturbations is %(n). It does not immediately

Mij" .dﬂj(k) +1

i=1,+,n

follow that this should be true if the perturbation class were

I (n). Next, we shall show that indeed stability robustness is
equivalent to performance robustness even when enlarging the
perturbation class to include nonlinear perturbations.

We will assume the class of perturbations is 2, (#n) and that
we have one performance objective consisting of keeping the
norm of the function mapping the external input u to the output
y less than one (Fig. 3, SYSTEM II).

Therefore, we have the following M matrix:

My, M nei
M= . R

Mn+l.l Mn+l.n+l

As before, we define the subentries of M as follows:
M, =M sz = (M12 Ml.n+l)
_le
My =
Mn+l,l
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M, M,

Mn+l,2 Mn+|.n+l

The next theorem establishes the equivalence of stability and
performance robustness when nonlinear perturbations are in-
cluded. -

_Theorem 6: (I - M,,D)™" is [®-stable and | M,, +
M, D(I = My D)™ "My, || < 1 for all De Zy,(n) if and only
if (I — MD)~" is [-stable for all De Zy,(n + 1).

Proof:

(Only if): This direction is an immediate consequence of the
small gain theorem. -

(If): Clearly, if (I - M22D)_l were not /®-stable for some
De Zy;(n) then (I - MD)™! will not be /*-stable_for some
De Zy;(n + 1). So suppose {|M,, + M;D(I - My, D,)~!
M,,|| = 1 for some D, € %y, (n). Now define

L2

L3 - -] -~
L:=| " |=D,(I-MyD,) M,

Ln+l

It follows that

1= |M,, +M12L" s |Myllo+ [ Myl | L,
+ Ml WLl (7.1)

Using the triangle inequality and the submultiplicativity of the
norm it follows from the definition of L that

[ Lzl = | Myl 4+ I M|l 1| L, |
+ +"M2.n+l".duLn+l"

MLpiill = I Mpill gt I My 21l 1 Lo
+ - +"Mn+l.n+l".s/“1'n+l“'

Combining these inequalities with (7.1) it can be seen that
(Lol o+, I L, + 1])) solves the following system of in-
equalities:

n+1

X; = Zl"Mij"dxj i=1,,n+1
J=

which by Theorem 3 implies that (J — MD)~ is not /®-stable
for some D e Zy;(n + 1). This completes the proof. |

VIII. APPLICATIONS

In this section, we present some applications to the theory
developed thus far. Starting with stability robustness, we provide
necessary and sufficient conditions for stability robustness in the
simple case when only one perturbation is considered. Next, we
add a performance objective, namely the sensitivity function,
and demonstrate how its norm can be made small in the presence
of multiplicative plant perturbations, subject of course to robust
stability. We contrast the conditions obtained when the input
sensitivity function is the performance objective of interest, to
those obtained when the oufput sensitivity is considered in-

stead. Both of these cases involve two A’s, one representing the

actual plant perturbations, and the other fictitious, representing
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the performance objective to be achieved. Finally, we provide
an example where three A’s are involved. This example arises
- when one considers a class of plants formed by perturbing a
nominal linear shift-invariant plant through adding both additive
and multiplicative perturbations and demands that the worst case
norm of the sensitivity function is to be minimized through the
choice of a robustly stabilizing controller. We begin with the
stability robustness application.

1) Stability Robustness (Unstructured): This is the simplest
case. The perturbations take the form of one A having g inputs
and p outputs. The question then is when is (/ — MA)~! stable
for all A in A(p, q)? Equivalently, when is the interconnection
of Me 4P and A stable for all A in A(p, g)? From
Theorem 4, a necessary and sufficient condition for robust
stability is that none of the ¢ inequalities

x=|(M)ll,ox i=1,,q

has a solution in (0, ). Clearly, a necessary and sufficient
condition for that to happen is that [(M),|, < 1 for all i, or
equivalently || M|, < 1. This is exactly the problem solved by
Dahleh and Ohta in [4]. '

2) Input Sensitivity in the Presence of Multiplicative Input
Perturbations: Let P, be a given nominal linear shift-invariant
discrete-time plant with g inputs and p outputs. Consider the
following family of plants formed by adding weighted multi-
plicative perturbations to this nominal plant:

I :={P:P=P,(I+WA),seA(q,q)}
where W, e ¥49. Let S(P,) be defined as follows:

S(P,):= {C: C is linear causal shift-invariant
controller stabilizing P,}.

For a fixed Ce S(P,) and vy > 0 we will now obtain necessary
and sufficient conditions for C to stabilize every Pell, and at
the same time satisfy |[(/ + CP)~'W,|| < for all P in II.
Hence, the performance objective in this case is keeping small
the norm of the weighted input sensitivity function (J +
CP)~'W, despite the presence of the multiplicative perturba-
tions.

This problem can be set up in the framework discussed in the
previous sections where a fictitious perturbation replaces the
performance objective, thus transforming this stability and per-
formance robustness problem into a stability robustness problem
alone. This alternate problem has 2{(q, q), (g, g)] as the class
of perturbations, and an M matrix of the following form:

1 -1 -1

;(I + CP,)" W, CP,(I+ CP,)"'W,
M= 1 -1 ' -1

;(I + CP,)" W, CP,(I+ CP,)" W,

From Table I and Theorem 4, necessary and sufficient conditions
for robust stability for this problem, and hence, for robust
performance for the original one are as follows:

e (Tl <1 i=1,-,q,
1
"(To)i".d"-(so)j“d
St ey <
i,j= 1","--,q.
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where S, = (I + CP,)"'W,, and T, := CP,(I +
CP)~',W,. Equivalently, these conditions can be written as the -
following:

° “(Ta)i“,—y<l i=1,*,q,

1
° “(—So) ".:v’< 1
Y .

= 1’...,q’

1
"—(So)j" %
Y

"(To)i“d
: <1
(1 - “l(so)‘“d) (1 - “(To)j||.=/)
¥

i, j = l, s, q
which, in turn, are equivalent to the following conditions:
o [Tlly<1,

max "(So)i“.:’
1sizq 1 = [(T,)ill &

If we define ¥ := {CeS(P,): C stabilizes all Pell}, then it
follows from our stability robustness conditions for one A that
CeV if and only if CeS(P,) and ||T,|l ,< 1. Hence, we
have shown through the two conditions obtained above that for
any Ce V¥ ’

I (AR
sup (7 + CP)" Wall = max 2y

This is exactly the result obtained by the authors in [5] using a
different approach. In fact, it is not difficult to show [5] that for

any y >0
Ce¥ and sup ||(I + CP)™'W,|| <y @ CeS(P,)
Pell

and [(S, YTo) <7
Since it is known [2], [8], [9] how to solve problems like
min S T,
CeS(lPo)"( o 7 o) “.d

it is clear how an iterative scheme can be devised whereby the
value of v can be increased or decreased according to the
outcome of the optimization problem stated previously, until ¥

is as close as desired to Y, where

Yope = inf sup I+ CP)-1W2||.

Ce¥ pen

Since at each iteration step a controller that achieves the
minimum can be computed, we can find a controller that achieves
arbitrarily closely Yop-

3) Output Sensitivity in the Presence of Output Multiplica-
tive Perturbations: For this case let

:={P:P=(I+AW,)P,, 0eA(q,q)}

where P, and W, are as before. Suppose we are now interested
in the norm of the output sensitivity function as a performance
measure. For C € S(P,), the M matrix now has the form

1 - 1 _
—W,(I+P,C)""  =W,(I+PC) !
M= ¥

w,P,C(I+ P,C)™" W, P,C(I+P,C)”"

e (St
Y

Hence, from Table I necessary and sufficient conditions for
robust stability and performance are now: '

* "(To)i"a‘<l i=lz'“vq

1
‘II(Ta)jIIyII;;(So)ilI o,

TN

i'j-_—l’.-o’q

where T, := W,P,C(I + P,C)"' and S, := Wy(I +
P,C)~ . Equivalently, these conditions can be written as fol-
lows:

o LA

I Soll y
1- Ty
With ¥ defined as before, it follows that

S
forany Ce ¥, sup | W2(1+PC)"|| - ISl .
Pell 1= Tl

Even though these conditions are different from those obtained
in the input sensitivity case, for a scalar plant they are actually
the same.

4) Sensitivity Minimization in the Presence of Additive
and Multiplicative Perturbations: So far all the examples con-
sidered involved at most two A’s. We now look at an example
where three A’s enter the analysis (n = 3). Despite the fact that
given a specific Ce S(P,) the conditions obtained for robust
stability /performance are relatively simple to test and hence are
ideal for analysis purposes for large values of n, in general,
designing a controller that achieves robust stability and perfor-
mance is not as simple a problem especially when n > 2. This
becomes apparent when looking at the conditions for n = 3in
Table I. However, as this example demonstrates, in some impor-
tant applications we can exploit the structure of the specific
problem at hand to reduce these apparently complex conditions
into simple ones which lend themselves easily to optimization
procedures, thus facilitating synthesis. To see this, consider the
class of plants formed by adding weighted additive as well as
multiplicative perturbations to a nominal plant P,. Multiplica-
tive perturbations represent, for example, unmodeled high-
frequency dynamics, sensor noise, etc., whereas the additive
perturbations represent the unmodeled time variations in the
plant and nonlinear part remaining after linearizing a nonlinear
plant about an operating point. For simplicity, we shall look at
the scalar case alone. Hence, let

T := {P: P =P,+ 0, W,P, + AW,

where 4., A;€A(1,1)}.

Here, W,, Wy 37 are stable weights. With this class of
plants, we now look at the problem of robust output sensitivity
minimization subject to robust stability. So it is desired to
minimize the worst case value, as P varies over II, of || W(J
+ PC)~!|| subject to robust stability. We start by fixing Ce
S(P,) and then finding necessary and sufficient condition for
I(1/y)W,(I + PC)~ '] < 1 for-all Pell subject to robust
stability. As before, this problem fits very naturally in our
framework and is equivalent to 2 stability robustness problem
with the class of perturbations consisting of
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1. 1); + -+ 5 (1, D], and an M matrix as follows

1
—w,(I+P,C)""

Y
M=
-w,c(1+P,C)"!

Applying Theorem 3, or equivalently looking at Table I for
n = 3, we find the following necessary and sufficient conditions:

I ,
-w,(1+P,C)""
5 ;
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1
—Ww,(1+P,C)""
4 =

-W,P,C(1+P,C)" ~-Ww,P,C(I+P,C)"" -W,P,C(I+ PC)™
-w,c(1+ P,C)”"

-~ WyC(I+ P,C)”"

* [Rlla<1

1Tl N Rl

e |IT,],+ <1 \
on 1- "Ro“.:/
1
l=Soll I RN
° ) +—_—
135kt =R,
1
"_So"d"Ro".a’ "T"J“R "y
N=Soll v+ ——5— ("To"d'*';'.—)
Y 1- "Ro"d 1- "Ro".n/
+ <1
T (“T s ||T,,u,uk.,||d)
T 1= | Rl

where S, := W((I+ P,C)"}, T, := W,P,C(I1+ P,C)"},
and R, := W,C(J + P,C)~'. These three conditions are
equivalent to the following condition:

1
. ";Solld"" Il + IRl < 1.

This condition is the key to controller synthesis. As before, this
can be done by iteration on v, and we can get as close as desired
to the optimal .

Finally, we use the aforementioned three conditions to derive
an explicit expression for the quantity sup p.p || W,(I + PC)™ !
for any Ce¥. This is done by observing that the first two
conditions are exactly those needed for robust stability alone and
can be rewritten as the following:

* T+ IR W< 1.

Simplifying the third condition above and combining it with this
one, we can write
CeVand |[W,(I+PC) | <y foral Pell

CeS(P,)and | T, + [R,[l4< 1

We next provide a numerical example demonstrating the
advantages of incorporating performance robustness considera-
tions in the design procedure.

Example 1: Assume a physical plant is modeled by the
following plant class:

I, := {P=(I+ArW,)P,: AcA(1,1)}

where P, =z(z - 0.1)/(z - 0.5)(z - 2),2 W,=0.1/z +
1.1, and r is a positive real number representing the assumed
radius of perturbation ball. This class is the same as that
considered in the third application example in this section, with
the only difference being that here we show the dependence on r
explicitly instead of absorbing it in the weight W,.

We have shown in this section that C € S(P,) achieves robust
stability if and only if ||r7T,|,< 1, and that for a robustly
stabilizing controller, the worst case norm of weighted sensitiv-
ity function is given by

“ So" k4

sup [|(1+ PC)™'W,| = A
' oll

Pell,

where S, := (I + P,C)"'W, and T, := P,C(I +

- P,C)"'W,. For this example, we choose W, = 0.5/z - 5.0.

I Soll
<.
- (IT0+ 1Rl )

It follows that for any Ce ¥

o 15,0
sup | W (I + PC I = : ’
sup | W( V= T OnL + 1R

This expression can be used for analysis purposes, after the
condition for robust stability has been checked. It is interesting.
to see how robust stability cannot be separated from robust
perfurmance since without robust stability the expression for the
worst case performance makes no sense.

Before attempting any design procedure, we can compute the
maximum perturbation ball radius that can be tolerated without
violating robust stability, regardless of the choice of controller in
S(P,). This number is equal to 1/mincespyll Tpll o = Fimax-
For our specific problem data, r . =2.90909. If r=r_,,
robust stability is lost and no controller in S(P,) can restore it.
In fact, the results in {6] show that even allowing the controller
to be time varying does not help. We therefore restrict ourselves -
o r < ry,. Next, we compare the robustness properties of
three design procedures. The first of these ignores the perturba-

* we adopt the convention that the Z transform "of a signal u is
T roulk)zx,
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radius vs. nominal sensitivity norm

0.8
06~
04-
02+

ISol

1 T é

radius vs. (radius x complementary sensitivity norm)

1—

I 1Tol} 0.5+

T T

1 ' 2

radius vs.  worst case sensitivity norm

worst

case 100
sensitivity

norm

X second design procedure

o

third design procedure

tions and minimizes the norm of the weighted nominal sensitiv-
ity function. The second design procedure does the same but

T i

1 r 2

Fig. 4. Second and third design procedures in Example 1.

with the added constraint that robust stability is to be main-

tained, while the third procedure minimizes the worst case
norm of the weighted sensitivity function subject to robust
stability. We consider each of these separately.

In the first procedure, we solve using the techniques in [2], [8]

the problem

CeS|

For our example, v,0m = 0.7265306. Computing the Q parame-
ter associated with v,,, we can find the corresponding T,
whose & norm turns out to be 7.0979592. Therefore, robust
stability is achieved only for r< 1/{T,| = 0.14088557,
which is much less than the maximum achievable value of r,,.

Furthermore, for this range of r

- S
sup (I + PC)™'W,| = I Soll

. -1
min "(I+ POC) W2 " = Ynom-
(Po)

0.7265306

min |[S,|

CeS(Pyp)
subject to || rT, |, < 1.

The second design procedure attempts to achieve robust stabil-
ity for larger values of r by solving the problem

In its present form, this problem has no solution. We shall solve

the following slightly modified form of it which does have a

- solution:

min

CeS(P,
subjectto | rT Jl , <1 —¢

)" So“.:’

where ¢ > 0. For our example, we shall pick ¢ = 0.001 and
solve this problem for various possible values of 7. Fig. 4 shows
the resulting values of [S,|l, ||77,ll., and suppen [I(J+
PC)~'W,| as functions of r. Of course for an actual design,

the value of r is chosen a priori and the optimization problem is

Pt 1= [rT,ll, 1-7.0979592 r

which approaches o as r approaches 0.14088557. Notice that
the design scheme does not depend on r since it completely

ignores the perturbations.

solved for that particular 7. The numbers appearing in the figure
were obtained by solving the previous optimization problem -
over all polynomial closed-loop objective functions with degree
-. less than or equal to 11 (see [2]; [8] for more details on solving
truncated problems). As may be seen in the figure, even though
this design method acknowledges the existence o6f the perturba-

tions and as a result yields systems which are robustly stabie for




values of r as large as r,,, these designs suffer from extremely
bad performance robustness properties, especially for r > 2. In
fact, for r > 2.18, the worst-case norm of the nominal sensitiv-
ity approaches 1000! Worse still, if one attempts to further
decrease the norm of the nominal sensitivity by making e
smaller but still keeping it larger than zero to guarantee robust
stability, the worst case norm of the sensitivity function gets
much larger despite the smaller value for the nominal sensitivity
norm. It can be made arbitrarily large by making e sufficiently
small.

Fortunately, the third design scheme does not suffer from any
of the problems associated with the first two design schemes. It
is based on solving the following problem:

ISoll

mf sup [[(1+ PC)™'w,| = T
o, s 107+ PC) W, A

Ce S(Po)
IrToll o<1

Fig. 4 shows the resulting values of ||S,| ., ||7T,| » and
suppen, |I( + PC)™'W, || for various assumed values of r. To
allow comparison with the second scheme, a maximum closed-
loop polynomial degree of 11 was used here as well. The figure
indicates that this design scheme not only has much better
performance robustness properties than the first two schemes,
but that it also has superior stability robustness properties as
shown by the values of || 77| . This means that it can tolerate,
without losing stablity, perturbations with radius even larger
than r, the perturbation radius which was used in the design.
These large improvements in both stability and performance
robustness properties are gained at the very small cost of a slight
increase in the norm of the nominal sensitivity function.

IX. CoNcLusiON

We have provided in the previous sections necessary and
sufficient conditions for achieving stability and performance
robustness. These conditions can be applied to a large class of
problems in which multiple perturbations can enter in various
configurations. The conditions involve no more than computing
the & norm of certain transfer functions, a task which can be
done to any degree of accuracy with relative ease. Consequently,
these conditions provide a particularly attractive method for the
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analysis of stability and performance robustness. We have also _

shown that in some important cases obtaining a controller with
optimal robustness properties can be done through a simple
iterative scheme. Synthesis of controllers in the more general
case, is an interesting problem which is currently under re-
search.
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A General Framework for Linear Periodic
Systems with Applications to /'~
Sampled-Data Control

Bassam A. Bamieh, Member, IEEE, and J. Boyd Pearson, Jr., Fellow, IEEE

Abstract—We present a framework for dealing with continu-
ous-time periodic systems. The main tool is a lifting technique
which provides a strong correspondence between continuous-
time periodic systems and certain types of discrete-time time-
invariant systems with infinite dimensional input and output
spaces. Despite the infinite dimensionality of the input and
output spaces, a lifted system has a finite-dimensional state
space if the original system does. This fact permits rather
constructive methods for analyzing these systems. As a demon-
stration of the utility of this framework, we use it to describe
the continuous time (i.e., intersample) behavior of sampled-data
systems, and to obtain a complete solution to the problem of
parametrizing all controliers that constrain the L-induced norm
of a sampled-data system to within a certain bound.

INTRODUCTION

UR motivation for studying continuous-time periodic

systems comes from considering sampled-data control
systems, in which a discrete-time controller is used in feed-
back with a continuous-time plant. The interconnection be-
tween the two parts of the system is typically through sample
and hold devices. In most treatments of sampled-data sys-
tems, the continuous-time plant is in some way discretized,
and one designs a controller for the discretized plant. Gener-
ally, this treatment describes the behavior of the overall
system only at the sampling instants, and the intersample
behavior is lost in the process of discretization.

Recently, there has been an increased interest in problems
involving the intersample behavior of sampled-data systems.
The impetus for this comes from robust control problems for
which it is more natural to consider the sampled-data system
in continuous time. For example, in the disturbance rejection
problem, since the physical system being controlled (the
plant) evolves in continuous time, it is reasonable to consider
the disturbances as continuous-time signals. When measuring
the effect of disturbances on other signals in the system, this
has to be done at all times (i.e., in between samples), and not
only at the sampling instants. Another example is given by
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the robust stability problem (in »# %), in which the uncer-
tainty in the plant is described as a weighted error bound on
the frequency response of a nominal plant. The resulting
perturbation, (on the nominal plant), is a continuous-time
system, therefore, if one is to use, for example, the small
gain theorem to stabilize the whole family of plants, one must
consider norms in the system over continuous time.

In this paper, we will be concerned with the problem of
bounding the L2-induced norm (in continuous time) of sam-
pled-data systems. The setup is shown in Fig. 1, where G is
a continuous-time time-invariant generalized plant, C is dis-
crete-time time-invariant, ¥, is a zero-order hold (with
period 7), and &, is an ideal sampler (with period 7). J#,
and ¥, are assumed to be synchronized, they provide the
interface between the digital and the analog parts of the
system. We call /#,C¥, the sampled-data controller. The
exogenous input w contains disturbances and command sig-
nals, the regulated output z are the variables which should be
made ‘‘small,”’ note that they are both continuous-time sig-
nals, since we want to describe the input-output behavior of
the sampled-data system in continuous time. We also call the
arrangement in Fig. 1 the hybrid system, to emphasize that
we are considering the overall behavior of the system.

The problem we consider is given 4 > 0, to find C such
that the L? induced norm of the mapping from w to z is less
than y. We call this, the standard problem with sampled-
data controllers (or the sampled-data problem for short).
The difference between this problem and the so-called
‘‘standard problem’’ is that in the latter, if G is a continuous-
time time-invariant system, then only continuous-time time-
invariant controllers are considered. In our problem, the
continuous-time controller is constrained to be a sampled-
data controller, i.e., it is of the form #,C.%,, where C is a
discrete-time system.

The standard problem with sampled-data controllers is
significantly different from the usual standard problem, three
major differences are as follows.

i) There is a “*structural constraint’’ on the controller, that
is, it is constrained to be of the form #,C5,.

ii) The controller #,C.%, is not time invariant even if C
is time invariant (in discrete time). Therefore, even if G is
also time invariant, the overall system in Fig. 1 is time
varying, in fact, it is periodic, with period r (7-periodic).

iii) The hybrid nature of the system is problematic, since
not all parts of the system are defined over the same time set.

In this paper, we present a framework for periodic systems

0018-9286/92803.00 © 1992 IEEE
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Fig. 1. A continuous-time G with a sampled-data controller.

in continuous time. We then apply this framework to the
sampled-data problem and show that it provides a satisfactory
answer to the three difficulties mentioned above, ‘and we
obtain a complete solution to the problem. To briefly describe
the solution, let us use the notation % (P, K) to denote the
closed-loop mapping (from exogeneous input to regulated
output) of a generalized plant P in feedback with K. In this
notation the closed-loop mapping in Fig. 1 is given by
Z(G, #,C%,). The solution of the sampled-data problem is
given in terms of an ‘“‘equivalent’” discrete-time time-
invariant generalized plant G such that

IZ(G. %cS )<y« 1F(G.Ol<y (1)

where || (G, #,C%,)| is the L’-induced norm, and
| £(G, O)| is the #* norm. Therefore, once G is found,
the sampled-data problem is equivalent to a discrete-time
X% problem, the solution of the latter is well known [16].
In a sense, G is a ‘“‘discretization”” of G, but it is an
equivalent discretization for. norm problems in that the in-
duced norms satisfy (1).

As already mentioned, the solution just described is ob-
tained using a framework that we develop for periodic sys-
tems in continuous time. The main tool in this framework is
a lifting technique similar to that used for discrete-time
periodic systems in [19]. There are however, considerable
differences between the lifting techniques in discrete time
and continuous time, respectively. In discrete time, an N-
periodic system is lifted to a time-invariant multivariable
system (of larger input-output dimensions). In continuous
time, the appropriate lifting takes vector-valued signals to
signals which take values in a general Banach space as
opposed to a finite-dimensional space, as a result, the time-
invariant lifted systems have infinite-dimensional input and
output spaces, and the theory is more technical, but many of
the desirable features of the lifting remain true. For example,
the lifting preserves algebraic operations on systems and the
norms of signals and systems. Another crucial point is that
our lifted systems will have finite-dimensional state spaces if
the original systems are finite-dimensional. Since the lifted
systems have infinite-dimensional input and output spaces,
we will abuse terminology by calling them (for lack of a
better term) infinite-dimensional, even though this term is
better reserved for systems which have an infinite-dimen-
sional state space.

This paper is organized as follows: in Section I, we
introduce the lifting technique and show that it provides a
strong correspondence between continuous-time periodic sys-
tems and certain types of discrete-time time-invariant

infinite-dimensional systems. In Section II, we study further
the time-invariant infinite-dimensional systems, in particular,
their z-transforms and state-space realizations. Not all the
material covered in these two sections is essential for later
developments, but it is included to provide a more complete
discussion. In Section III, the lifting technique is applied to
the hybrid system of Fig. 1 to convert the sampled-data
problem into an equivalent infinite-dimensional standard
problem where the generalized plant has a finite-dimensional
state space. Up to this point the discussion covers all L#-
induced norm problems, we then specialize to the L*-induced
norm case, and in Section IV, the finite-dimensionality of the
state-space models is exploited to reduce the infinite-dimen-
sional standard problem to a finite-dimensional standard »#*
problem. The main theorem (6) provides the equivalent gen-
eralized plant G, explicit formulas for the state-space de-
scription are .derived in Section V directly in terms of the
state-space description of the original plant G.

We now comment briefly on some of the related recent
work on sampled-data systems. In [3] solutions were obtained
to problems where the induced norm is from a discrete-time
input to a continuous-time output and vice versa. In [20] a
characterization was given for the Z’-induced norm of a
sampled-data system assuming ideally band limited input
signals.

The works which are most related to ours are [14], [17],

[18], [25], [26]. In [14], [17], a solution was announced

(though derivations were not given) to the ' sampled-data
problem that is similar to our solution, that is, the norm of
the sampled-data system is equivalent to the norm of a
discrete-time system. Reference [26] is related to our work in
terms of the technique used, the paper does not address norm
problems, but a tracking problem. In [26] a lifting technique
is developed which is equivalent to the one developed in this
paper but with an important difference, in [26] the lifted
systems are realized with an infinite-dimensional state-space,
while as will be seen in this paper, the finite-dimensionality
of the state space (of lifted systems) is the crucial fact that
solves the ¥ problem.

While this paper was being reviewed, we received [18],
[25]. Reference [18] contains the derivation of the results
announced in [14], [17], the technique used there consists of
forming a Hamiltonian which characterizes the norm of the
sampled-data system, this is different from our lifting tech-
nique, although it is interesting that similar final results are
obtained. The work in [25] is remarkably similar to ours, the
author uses an equivalent of the lifting technique (although in
[25] it is not called as such) and obtains a problem with
infinite-dimensional input and output spaces and finite-di-
mensional state space, also the reduction to a standard #~
problem is done in a similar way to ours. The one exception
to this similarity is that the reduction is not done completely
(the missing step in [25] is Lemma 5 in this paper), thus the
equivalence in [25] is approximate (to any degree of accu-
racy). In contrast, the equivalence in (1) is exact.

In [1], [2] ([24] announces similar results), a somewhat
different approach to the sampled-data problem is taken.
There, the problem is posed where sampled measurements
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are available and the optimum control is to be found for all
time (including in between the samples), and one obtains
time-varying controllers. The interesting contrast is that one
obtains the optimum waveforms of the control signals in
between the samples, while in our setup, the control signal is
constrained to be constant on sampling intervals. Thus the
performance of the controllers in [1], [2], [24], is in general

better than the ones given here, since a wider class of

controllers is allowed. But it is to be noted that the two
problems are distinct, in that the use of a sampled-data
controller obviously puts more constraints on the problem. It
would be interesting to compare the two problems and quan-
tify the loss of performance that results from using a zero-
order hold.

. . |
Finally, we note that the framework for continuous-time

periodic systems presented in this paper was independently
developed by B. A. Francis and A. Tannenbaum.

I. THE LIFTING TECHNIQUE FOR CONTINUOUS-TIME
PerioDIC SYSTEMS

The lifting is first defined for signals, this definition, in
turn, induces a definition of the lifting for systems. It turns
out that to convert the periodicity of a system to a time-
invariance of its lifting, the lifting must be such that continu-
ous-time signals are lifted to discrete-time signals that take
their values in a function space (see Fig. 2). In order to do
this systematically we need to define the appropriate signal
spaces.

Let us begin with the usual signal spaces in continuous-time

L{[0,®), 1 <p=oo, and the extended signal spaces
Lf [0, ), 1 <p < . The signals can be N-vectors of
scalar signals. To avoid cumbersome notation, the dimen-
sions of signals and systems will be omitted from now on,
and we write L” instead of Lf. We adopt the notation that a
statement involving L” or L? without assigning a value for
p, is referring to any p. Also L? (LP) will denote
L?[0, ®)(LZ[0, c)) when no confusion can occur.

To introduce the lifting, we first need to define spaces of
vector valued signals. From now on, by vector valued we
mean Banach space valued. For any Banach space X, let /,
be the space of sequences which take values in X, that is
{fi}: N — X. We use the notation that {f;} is a sequence,
each element of which is f;, so

Iy={{f}, fieX vi}.

Note that this is consistent with the notation 1%, for signals
that are sequences of N-vectors, that is, the sxgnals that take
values in a finite-dimensional Banach space 3%, :

Norms can be added to these spaces by considering the 1%
spaces:

- {'{f,-}e!x; (gouf..u;)w< oo}, lsp<o

= {{f} el supl £l X < os).

Fig. 2. W, LP0, ) =l 0 .-

The norms are given by

) 1/p
1/t g = (§0||ﬁl|;) .
1=p <, [{f}]

It can be shown that with these norms, /£ are indeed Banach
spaces [4, II1.4.4]). We shall be particularly interested in
signals in [ pq ,) and /fspq ,;, these can be visualized as
sequences { f;}, or discrete-time signals which, for each time
i take values which are functions in L”[0, 7]. We are now
ready to define the lifting for each 7, let W,: LP[0, o) -
I, 7, 1 e defined by

F=W.f, fi(t)=f(ri+1), Ost=<7. (2

The definition says that f is a sequence, each element of
which is a function of ¢, 0 < =<7 given by (2). Since
SfeLP[0, ), this means that feL [0, 7] for each i, and
thus W, is well defined. The lifting, W,, can be visualized as
breaking up the signal f defined on the real line into an
infinite number of pieces, each piece is a copy of f restricted
to a line segment of length 7, this is illustrated in Fig. 2.

W, defined on the linear space LP[0, ») is a linear
transformation. It also follows that W, is one-to-one and

= sl fill x-
!

- onto, thus invertible, this can be seen by explicitly construct-

ing the inverse as follows:

f=Wg
f(t) =glt—-ri), forri<st=q(i+1).

This can again be visualized as the reverse of the operation in
Fig. 2, W' takes a sequence of function pieces, each a
function in L”[0, 7] and ‘‘glues” them together in order,
thus forming a function feL?[0, ). W, is then linear
bijection between LZ[0, ) and /, 5y ,;.

If we restrict the domain of W, to the Banach space

- LP[0,®) C LZ[0, »), we can show that W,: LP[0, ) —

I, 7o, -1 @nd is an isometry between these two Banach spaces.

- This is a consequence of the following computation:

f=wrf
~ W ~
1N e = 22 N Fill 210,y

=0

-~

uMg

t)l”dt)l/p)p

/If(11+t)|pdt
0

uMg

l S(D)1 7 di = [ f1| £ro,

I
c'?"*\.
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for | < p < . For the case p = o. we have

ess sup | f(7)]

HE -
i e =

=sr<=
= sup(ess sup | f(7i + i)l)
i O<si<r *
= sup Il £ [®0. 1] = A [Fo 2"
1

In summary. W, is a bijective linear mapping between
L7[0.cc) and /[, s ,;- and a bijective linear isometry be-
tween L7[0. ) and [7rg 4

We now define the lifting for systems. Given any linear
operator G: L?[0. @) = L2[0. o), let its lifting G: 7o, 1
— I, . - be defined by G:= W.GWZ '. By the linearity of
each of the defining operators. G is linear. Moreover, if Gis
also bounded G L?[0. %) = L?[0. ), then G is also
bounded and G: IZsq ;= {£ro, - Since both W, and W~ !
are bounded. The fact that W, and W' are isometries,
allows us to make the stronger conclusion that |G}l = |G|,
that is. the system norm is preserved by the lifting.

Algebraic _operations are also preserved by the lifting,
namely: (G, + G.) = G, + G, becalge\W,(G,}AG:)W,"
= WGW '+ W,G.W,', and (G,G,) = G,G, since
W.G,G.W ' = Ww.G,W;'W,G,W ', and if G~ is well
defined. G~': LP[0, o) = L7[0, o) then (G- ") =G"" be-
cause

GG = WG WIWGW = W IW = 1.

These properties allow us to conclude that feedback stability
is also preserved under lifting. If. by the pair (F, G) being
X stable. we mean that the system with F and G in feedback
is stable for all exogeneous inputs from the signal space X
(i.e.. all transfer functions are bounded operators), we can
conclude: the pair (F, G) is LP[0. ) stable if and only if
the pair (F.G) is Ifsgq ,, Stable.

Now if the system to be lifted is r-periodic, the lifted

system should exhibit some sort of time invariance. Let the

delay operator D, be defined as usual by (D, ) =fu -
7) for fe LP. Given a system G: L = L?, we say that G is
r-periodic if it commutes with D,, thatis D.G = GD,. G
is time invariant if D,G = GD, v1>0. Let S be the
right-shift operator defined on any space of sequences, that
is. Si{xy. x,.c* .} ={0. x4, x,,+-+,} for any sequence
{x,}. in particular S is defined on any /. Another important
property of the lifting (of signals) is that it *intertwines™ the
D, and the S operators, that is

WTDT = SWT'

This intertwining property will convert the commutation with
D, property of periodic systems into a time-invariance prop-
erty. To see this. let G be a 7-periodic system. then

GS = W.GW:'S = W,GD,W;' = W.D,GW,'
= SW.GH;'=SG

that is. G commutes with the shift, which can be taken as a

definition of time invariance, or rather shift invariance in this .

general setting.
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The above G also has a certain type of convolution repre-
sentation. It can be shown in general that given any Banach
space X, and a linear operator F on the sequence space /y
which commutes with the shift, i.e., FS = SF, the operator
F has the following representation:

y=Fu’ yﬂ = (Fu)’l = z Fn-m(um)' F;E'Z(X’X)'
. m=0

That is, F is represented by a sequence {F;} (its *‘impulse
response’’) where each F,e ¥ (X, X), the space of linear
operators on X. This is consistent with the convolution
representation of multivariable systems where y, and u, are
vectors in R and F e ¥ (R", R"), i.e., an N X N matrix.
We shall not prove this general characterization, instead, for
the particular case where F = G, a lifting of a_periodic
system, we will explicitly construct the sequence {G}.

To perform the explicit construction, let us assume that the
time varying systems involved have a kernel representation,
that is, if G: L? = L? is time varying, it is associated with a
kernel g(t, s) such that

y=Gu, y(t)= /O’g(r,s)u(sws 3)

where the kernel function is a distribution (in the variable s)
[5] of the form

g(t,s) = Zoy,.a(r -s—-h)+g(t,5).
=

An assumption that guarantees the existence of the integral
for any ueL? and each ¢, is that the function £(¢, s) be
bounded on bounded subsets of R?, and that the sequence of
nonnegative real numbers {A;} be discrete (i.e., have no
cluster points).

The scaled identity operator v/ is given by the kernel
v8(t — 5), and for the delay operator D, Dt s)=01-5
— 7). Given G, a 7-periodic system, we have by definition
D,G = GD,, it is easy to show that this is true if and only if
the kernel of G has the ‘‘block Toeplitz’’ structure

G(t,s)=G(t+71,5+7). (4)

By repeated applications of (4), we derive the following
identities to be used later:

G(t,s) = G(t + nr,s + nr)

G(t +ir,s+jr) = G(t+ (i = )7, 9)

Since G(1, s) is block Toeplitz, it is completely determined

by a sequence of ‘‘blocks,” define
G,(i,8):= G(I+1i,3) _
for0<i<7,0=§<7,i>0.

This decomposition is illustrated in Fig. 3. Each G,(#, 5) can
be regarded as a function on the square [0, 7] X [0, 7] and as
such, representing an operator on L?[0, 7] as follows, for
2.yeL?[0, 7]

fornz=0,

fori = j.

5= Ga, y(i)=/éi(?,§)ﬁ(§)d§, 0=i<r.
. 0
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Fig. 3. Block Toeplitz structure of a periodic kernel.

This suggests that {G} can be regarded as the 1mpulse
response of the lifting of G, the following computanon
confirms; for y,ue€Lf[0, ) let y = Gu, then lift the
signals

{3} =Wy, {a}=
then the lifted signals are related by
51) = y(ri + 1) = / G(ri + 1, s)u(s) ds
0

7(j+1)

= Z - G(ri+1,s)u(s)ds
Jj=0Yq¢j
i T

G(ri+1,7j+ 5)u(rj+35)ds

I
™

j=0v90
i T

- / G(r(i - j) + 1, §),(3) ds
Jj=0J90

which can be written as
; .
b= Y G y(i) (5)

which is the convolution form of a system operating onthe
LP{0, 7] valued signals { #;} and {#,;}. From (5) it is seen
that {G;} is the operator-valued impulse response of the
lifting of G. From the above computation it is also seen that
the convolution in (5) of the lifted signals and system is
simply a rearrangement of the integral defining the operator.
This rearrangement highlights the shift invariance property of
the lifted system.

II. z-TRANSFORMS AND REALIZATIONS OF LIFTED SYSTEMS

In the previous section we have seen that liftings of
periodic continuous-time systems produced Banach space val-
ued sequences representing signals and impulse responses.
These sequences are discrete-time signals, so it is natural to
try to develop a z-transform for these systems to exploit their
shift-invariance property. This will also allow us to charac-
terize the L? induced norm in the frequency domain as atype
of an #® norm [21, Chap. 5].

We begin abstractly with a sequence {A; } with values in a
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Banach space X, i.e., {h;} el
written H(z), is defined by

- f_':oh,,z" (6)

for the values of the complex number z for which the series
converges in X. Note that H(z) is an X-valued function of
a complex variable defined over some subset of the complex
plane since for each z where (6) converges, H(z)e X by
definition. By analogy with the classical z-transform, we
expect the H(z) to have some analytic type behavior in its
region of convergence. Let @ C € be the domain of defini-
tion of this function, following [15], a notion of an X-valued
analytic function can de defined. One of several equivalent
definitions of analyticity is the following: we say that an
X-valued function H(z) defined on an open set R C € is

. The z-transform of {4},

‘analytic in Q if, for each feX™*, the complex valued

function
(H(z),[)

is analytic in Q@ ({(-,-) denotes the action of a linear func-
tional in X'*, on an element in X). These analytic functions
have many of the properties of the usual complex valued
analytic functions including, for example, Cauchy’s integral
theorem and the maximum modulus principle.

If {h;} €1, 5, ,), then the transform is an L”[0, 7] valued
function. If {G,} is an impulse response sequence of a lifted
system of the type considered in the previous section. so that -
{G}: I no, 1 = lLr0, p» then its transform, G(z)is an oper-
ator valued function, for each 2z € Q, G(z) €
Z(L*[0, 7], L?[0, 7]), the space of bounded operators on
L?[0, r]. To characterize the regions of convergence, we
have the following theorem, which is an application of [15,
Theorem 3.14.1].

Theorem I: Let {h;} €l, and let H(Z) be its z-trans-
form, then

i) If |h;]l x =M < o vi, then H(z) is analytic in the
region {|z| < 1}.

iy If || h;|| x < ka' Vi, for some constants k and a, then
H(z) is analytic in the region {| z| < 1/a}.

This is a direct parallel to the case of the scalar valued
z-transform with the absolute values being replaced by norms.

The same formal properties of the usual z-transform still
hold in this general setting, for example, convolution in
time is multiplication in frequency. To illustrate this, let
{u,},{y.} €lrrp > and {G,} an operator sequence with
G,e Z(L?[0, 7]) Vn, such that

Assume their z-transforms U(z), Y(z), and G(z) are all
convergent in some common region A, = {z;|z]| <r}.
then

-] o n
P EDIED SEL Por A
m=0

n=0 n=0

which, by a change of variables and rearrangements of the




BAMIEH AND PEARSON: A GENERAL FRAMEWORK FOR LINEAR PERIODIC SYSTEMS 423

sum gives

(Eeel (5

for zeA,.

o 0
z=: gnzrw
G(z)U(z)

The rearrangement of the sums above is permitted by the
absolute convergence of all the series in the disk A,. Note
that the **multiplication’’ above is the operator G(z) acting
on U(z). The other standard properties of the z-transform
can be verified similarly.

We now look at the case of signals in L?, we state the
results from [21, Chap. 5] without proof and summarize
them in Theorem 2 below. Let ueILz[(, L an L2[0 7]-
valued sequence whose norm sequence is square summable,
ie., Tpeoll,llize. ;) < . In the frequency domain, let
H(e"’) 0 <6 <2, be an L*[0, ] valued function defined
on the circle T := {e", 0 <6 <2r}. We define the fre-
quency domain space:

Lizo.n = {H T- L*[0,7];

2% i
[ 1HE) 2.0 < ).
0

Note how this definition parallels that of the usual L*(T), but
here the functions are Hilbert space valued and the integral is
an integral of norms. Each H eLizm ») has a Fourier series

representation, i.e.,
: .

«0) = Z: h,,ei”"

where each &, e L*[0, -r] and Z_wllh 320, < . An
important subspace of L3z, . I8 .)i”,_zlo ,) Which consists of
those functions for which h, = 0 for n < 0,

Kl = {Helly ;. H(e®) = Z h,e™ .

n=0
Every function in 3 *f0.7) €an be extended to an analytic
function inside. the unit disk, and the space Je’,_z[o . corre-
sponds exactly to transforms of elements in /32 ;.

To define operators on these spaces, consider a function
G(z) over the unit disk, which takes values in Z(L*[0, 7])
and has a power series representation

G(z) = Y 2"G,
n=0

where the coefficients G, € Z(L*[0, 7]). Let the series be
convergent absolutely inside the disk, and suppose further
that '

1G(2) | mrzo..ysM  V]z| <1
Such a function will be called a bounded analytic function
(on the unit disk). Such a function defines a bounded operator

on Jt”,_zzw. ,; by ‘“‘multiplication,”” that is, for Y, Ue szzIO.fl’
Y = GU is defined by

Y(z) = G()U(z) )

for each z. The definition makes sense since for each z,
G(z) is an operator on L*[0, 7] and U(z) e L*[0, 7). If Y,
U, and G are transforms of time-domain sequences, note that
(7) defines an operation equivalent to convolution in the time
domain.

Given G a bounded analytic function, we define a norm by

Glle = sup "G(Z)quz[o.rl)'

lzl<1

We call the space of all bounded analytic functions #,2 ),
(or simply %) over the unit disk, and again, the subscript
B(L*[0, 7]) denotes the space in which the function takes
values. We call such functions operator valued since they
take their values in a space of operators. J,2, ,;, Over the
right-half plane is similarly defined as the space of all ana-
lytic operator valued functions over the right-half plane whose
norm is uniformly bounded.

We now summarize with the following theorem.

Theorem 2:

i) The z-transform is an isometric isomorphism between
the time domain space /3 %0,y and the frequency-domain
space XLzm .

ii) If G is a bounded analytic function, it defines a bounded
operator on ¥, 22[0.,] by the multiplication of (7), its induced
norm is exactly |G| .

By the equivalence between a 7-periodic system and its
lifting, this theorem provides a *‘frequency demain’’ charac-
terization of the L? induced norm of a r-periodic system.
This characterization is not clear without the lifting. This also
justifies calling the L*-induced norm problem for sampled-
data systems the ' problem, since in the sequel we will
be dealing with an equivalent lifted version of the sampled-
data system.

We now consider state space realizations. A good state-
space model to use for shift-invariant systems operating on
Iy 70, -y Signals is the following:

Xk,,,l = Axk + Bllk
yk= ka+Duk (8)

with u, e L?[0, 7], y,€L”[0, 7], and x, € X some Banach
space (the state space). The system parameters [ A, B, C, D]
are linear operators on the appropriate spaces, i.e.,

B:L?[0,7] - X
A:X—X
C: X-L”[0,1]

D: L*[0,7] = L”?[0, 7].

By simple finite algebraic operations, the system (8) can be
represented by the convolution

k
Vi = I;)Gk-/ul 9)

where the impulse response {G,} is given by
{Gi} = {D,CB,CAB,CA’B,CA*B,---,}. (10)

The z-transform of the impulse response {G;} can be
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computed from the realization using (10) as usual

G(z)= Y 2"G,=D+ Y z"CA""'B
n=0- n=1

-]

=D+Cz(2

zn-lAn-l)B

and the series on the right converges in #(X) for | z| <
1/l Al, so

G(z) =D+ Cz(I-24)"'B

In the important case when the state space is finite-dimen-
sional, that is, X = R”", the situation is somewhat simpli-
fied. The transform in (11) defined for {|z| < 1/] 4|},
can be analytically extended to the entire complex plane
minus the finite set of reciprocals of the eigenvalues of the
finite matrix A, i.e., in the region where (J — z4)™!' is
defined.

The usual rules of manipulation of realizations still hold in
this more general setting, for example, composition, inver-
sion, state transformation, etc. since they are based on formal
manipulations.

III. LiFrinG THE HYBRID SYSTEM

In this section, we will show how the lifting technique can
be used to convert the hybrid system to an equivalent system
(in the sense of having equal induced norms), where the
generalized plant is discrete-time time-invariant (though infi-
nite-dimensional); and the controller is a discrete-time time-
invariant system without any structural constraints.

First, we obtain state space realizations of lifted systems.
An important fact here is that although finite-dimensional
systems are lifted to systems with infinite-dimensional input
and output spaces, the state space of the lifted systems will
be shown to have at most the same dimension as that .of the
state space of the original systems, i.e., it is finite dimen-
sional. Now, if G has a finite-dimensional realization, it
would be of the following form:

B: L?[0,7] » R*
~_|4] B . A:RF-R”
G = : ;
[é ] M ame~ 170, 7]
D: L*[0,7] - L?[0, 7]

(The notation R*, R¥,- -+, stand for x being the dimension
of the signal x _and u the dimension of the signal u, etc.).
The operator B : L7[0, 7] > R*. can be represented by a
matrix of functions B( $5), Be {0, 71, such that for a vector of
functions u € L”[0, 7] we have

Bu = /’E(f)u(f) ds

‘ On the other hand, the operator C:m* - L7[0, 7] (which is

a finite rank operator, that is, it has a ﬁni}e-dimensional
range) is given by another matrix of functions C(¢) f€[0, 7],

such that for a vector xe it~ i
Cx=C(f)x, ielo,7].

The class of operators D: L?[0, 7] = LP[0, 7] that we will
encounter have kernel representations, i.e., matrices of ker-
nel functions D(t §), such that for u, ye L?[0, 7], y = Du
means

T

A

(Du)(i) = /0 b,

Notation: It simplifies the notation greatly to use the same
symbol for an operator and its kernel for example, D(z, s)
(or B(s)) refer to the kernel functions representing the
operator D (or B), and (D*D)(t s) refers to the kernel
function representing the operator D*D. A =e"" is the
matrix representing the operator A: R” = R". For operators
that map a function space to ®”, such as B above, we
generally use s (or §) to denote the variable of the kernel
function, and for operators that map R" to a function space
such as € above, we use the variable t (or t)

We now derive the operators A, B, C, D of a lifting in
terms of the original system. Consider a finite-dimensional
continuous time-invariant system of the form

x(t) = Ax(t) + Bu(r)

y(1) =Cx(t) + Du(t) te(0, ). (12)
To obtain the lifting, we determine how the system relates
the lifted signals {&,} and {y,}. Let us define a new state
which evolves in discrete time by X, := x(k7). Assuming

zero initial conditions, the behavior of the state in between
samples, that is for 0 < ¢ < 7, is given by

$)u(s) ds.

. kr+1 .
x(kr+1) = / eAkT+I=9By(s) ds
0

kr .
= / eA(kr+l-—s)Bu(s) ds

kr+
./
k

T

A(k1+i—s)Bu(s) ds
kr

=e” / eA*7=9By(s) ds
0

+ eA(kf+t (kr+s))Bu(k.r + s) ds

c\.

= edix(k7) + /ie’“"'j)Bﬁ,;(ﬁ) ds. (13)
0
In particulér, the new state X evolves by
X =ez, +/o e* 9B, (5) ds (14)
or, in operator notation

a _ JAT: D A
Xe =€k +Ba,

where B is the LP[0,7] = R* operator defined by the
kernel e4=%'B. As for the output signal, {,} can be
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written as

$(f) = y(kr + ) = Cx(k7 + 1) + Du(kr + i)

. t '
= C[e’“x(kr) + / e"-9Bq,(8) ds
0

= Ce“'x, + / [Ce4i=91;_;B + D&(i - 5)]
0

- 0,(8) d§ (15)
with 0 < 7 < 7, and where 1, is the unit step function
1. = 1 t>0
®=1lo t=0.

Equation (15) in operator notation is
j’k = é)? k + bﬁ k
where C and D are given by the kernels in (15).
In summary, a time-invariant system G given by (12) has a

lifting given by
o-[£14
C| D
eA(r—-.i) B

eA'r
" | ceti | ceri91,;_, B + D(i - 9) |

(16)

Note that the operator D is the restriction of the original
system G to the input subspace L[0, 7], that is D =

IT 2, e | 0. 71°

The important conclusion to be made here is that the state
space of the lifted systems can be chosen to be finite dimen-
sional. This is in contrast to [26], where a similar lifting
technique was developed, but the state space of the lifted
systems is infinite-dimensional. As we will see in the next
section, in the solution of the #*“ sampled-data problem it
is of primary importance (in fact, it is what makes the
solution possible) that the state space of the lifted systems be
finite dimensional.

We now consider a time-invariant system with a sampler
on the measurement output and a hold on the control input as
shown in Fig. 4. The filter F is some strictly proper system,
this is required for the sampling operation to be well defined.
We can absorb F into the description of G and simply
assume that we are given G with a realization

where D,, = D,, = 0 because F is strictly proper. This
guarantees that the measurement outputs are continuous func-
tions of time.

The sampler produces the discrete-time signal y from the
continuous-time signal y by sampling it at times k7, and the
hold produces the piecewise constant continuous-time signal
u from the discrete-time signal-#. It is helpful to' view the
sampler and hold as relating the discrete-time signals

+ D (1) _

Fig. 4. Plant with sample and a hold.

{i1,}, { .} to the LP[0, 7]-valued discrete-time signals {&,}
and { y,}, the liftings of u and y

KR4 LP[0,7]; @ = Ky o (1) = @,
O<f=<r
9 L"[O, r] SR J= 29, e I =5,(0).

Note that %, is not well defined on L”[0, 7], but on the
subspace of continuous functions in L”[0, 7], this distinction
will be irrelevant since in our use of %, assumption are
made (i.e., the presence of the strictly causal filter F above)
to guarantee that %, only operates on continuous signals.
Specifically, %, is only used in expressions like %, T, where
T will always be an operator whose range is made up of
continuous functions.
The lifting G given by

A = [Gll GIZ =
G2l Gzz

relates the signals w, £, &, 3. On the other hand, the system
G (see Fig. 5(b)) given by

C-?= én élz-’ff
yrGZI ZGAZZJ{’;
A | B, B,#
= él bn bu'%% ’

BEH @

relates the signals w, 2, $, #. This formulation shows one of ‘

the advantages of the lifting, in that all signals in the system
are viewed over the same time set (discrete time) without
losing any part of the continuous-time signals w and z. The
signals &, 7 take values in R* and R” but W and % take
values in the much larger space L”[0, 7].

We now explicitly evaluate the operators in (17). B, is

~

a matrix obtained by feeding B, a constant input, i.e.,
R - T T
B,X#, = / e?""9B, ds = (/ e""dr) B, = ¥(7)B,
0 0
(where ¥(2):= [fe?"dr). &.C, is obtained by

/ 5(1)Cye?tdt = C,.
[
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(o ]

(@ .

(b)

Fig. 5. (a) Hybrid system. (b) Lifted system with discrete time controller.

Similarly

Do = / [Cie4t=91,,_,,B, + Dyp8(t - 5)} ds
0

\
4
= C,(/ e”’a'r)B2 + D,,
0

= C\¥(1)B, + D,,.
Note that f),yf’; is given by its kernel, a function of a

single variable ¢, since D,J¥, is an operator from R“ —
L7{0, 7). We also compute

T

#D, = / 8(1)C e "1, _ B, ds =0
0

and similarly, %, D,, = 0 implying that %, D, #, = 0.
In summary, we arrive at the following realization for G

~ = éll G~12 =
GZI 022
e | eA""9B, ¥(7)B,
=\ce*| D, Cc¥(1)B,+D,]| (18)
C, 0 0

Note that the four subsystems in G are shift-invariant opera-
tors with the following input-output spaces:

Gy o717 im0, 1y
5,2: Lyw = e 1)
| 0.213 Lo, sy = Lnr
Gy Ly — lys.

We now comment on the synthesis problem for the hybrid
system using this new setting. Let us adopt the notation
F (P, K) as referring to-a generalized plant P in feedback
with K, and also to the resulting closed-loop mapping be-
tween the exogeneous input and the regulated output. Fig.
5(a) shows the original hybrid system J(G.¥,C%) and
Fig. 5(b) shows the lifted system G with the sampler, hold
and controller 7 (G, C).

Since w = W, w and Z = W, z, then the closed-loop sys-
tems are related by

F(G,C) = W,5(G, #CS,) W]

or in other words, the closed-loop operator # (G, C) is the
lifting of the closed-loop operator of the hybrid system
F(G, #,C%,). By the isometry properties of the lifting W,
we have that

17(G,#C% ) =17(G,0)] (19)

where the norms are the L”-induced norm on #(G, #,C%.).
and the /{5, ,-induced norm on #° (G, C), and note that the
same controller C is on both sides of the equation in (19).

The consequence of (19) is that the design problem for the
continuous-time plant G with a sampled-data controller
J¥,C%,, is equivalent to the design problem for the general-
ized plant G and the controller C. The advantage of this
reformulation is three fold; first, both the generalized plant
and the controller are discrete-time (thus the hybrid nature of
the system is no longer problematic): second, both G and C
are time-invariant (thus *‘removing’’ the periodicity from the
system); third, the controller C has no structural constraints
on it (i.e., that it be a sampled-data controller of the form
X, C%,). The price paid for these advantages is the infinite-
dimensionality of the exogeneous input and regulated output
spaces. However, as will be seen in the next section, the
infinite-dimensionality of the input and output spaces can
essentially be ‘‘removed’’ without affecting the norm.

The equivalence just mentioned is not complete without
addressing the issue of the stability of the hybrid system. By
internal stability, we mean that the state of the system is
exponentially convergent to zero given any initial conditions.
The following theorem provides an equivalence between the
stability of the hybrid system and the stability of a discrete-
time system, it is essentially a restatement of [11, Theorem
4].

Theorem 3: A controller C internally stabilizes the hy-
brid system in Fig. 5(a) if and only if it internally stabilizes
the discrete-time system %, G,,#, (Fig. 6).

Note that since y;én.)ﬁ is a finite-dimensional discrete-
time system, the stability of the hybrid system is well un-
derstood. In particular, one can parametrize all (finite
dimensional) controllers that stabilize the hybrid system as
the (finite-dimensional) controllers that stabilize 5,(;‘::._#,.

Finally, we comment that, as is well known 9;(‘?32%;
may not be stabilizable even if G,, is, i.e., even if (A4, B.)
is stabilizable, there is a discrete set of sampling periods {7}
such that (e*", ¥( 7;) B,) might lose controllability of certain
eigenvalues. But if 7 is chosen outside of the set where
(C,, e*") is not detectable and (e””, ¥(7)B) is not stabiliz-
able, then we guarantee that .7,G.,.#, (and thus the hybrid
system) is stabilizable if (C,, A) is detectable and ( A, B,) is
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Fig. 6. C in feedback with the discretized system ‘7;622-*;-

stabilizable, we call such sampling periods 'nonpatholog‘ica/
and for the remainder of the paper we assume that 7 is
nonpathological.

IV. THE & PrOBLEM FOR HYBRID SYSTEMS

We now apply the lifting technique to solve the HT
problem for the hybrid system of Fig. 1. Specifically, we will
find all controllers C (if they exist) such that the closed-loop
[? induced norm is less than some prespecified level, i.e.,
| 7(G. #,C%)|| <y. This is done by establishing an
equivalence between the hybrid system and a certain finite-
dimensional discrete-time system, in the sense that the L
induced norm of the hybrid system is less than a prespecified
v if and only if the #“ norm of a discrete-time system is
less than . The latter problem is well understood in the
literature, and its solution provides all controllers that con-
strain the closed-loop norm to be less than y. A basic fact
that we use in our constructions is that the # norm is the
induced operator norm on a Hilbert space. This allows us to
apply the geometric structure of the underlying Hilbert space.

Consider Fig. 5. By the isometry properties of the lifting
and the stability discussion in the previous section, the fol-
lowing two statements are equivalent

i) #.CY, internally stabilizes G and || 7(G, H.CIL)|
<7

ii) C internally stabilizes G and | F(G,O)| <.

The induced norms are over L*[0, ) and [}z ), respec-
tively. Therefore, from now on we will be concerned with
the second problem involving G (note that to simplify nota-
tion 4 will be considered 1 from now on, the general case
follows as usual by scaling).

Our approach will be to establish a further equivalence
between ii) and a finite-dimensional discrete-time problem.
This is done in two steps, the first is obtain from G another
system G with

A| B B
G=|C | 0 D, (20)
G| o o

such that | #(G,C)| < 1 if and only if | Z (G, O <1
The second step is to reduce the problem with G to a
finite-dimensional problem. _

We describe the second step first. Given G with a realiza-
tion as above, the operators in the realization have the same
input-output spaces as the corresponding operators in G,

namely

Q
I

A:R*->®Y B;:L*[0,7] > R”
By R*—>R* Cpm*-L0,7] . (21)
C,:R¥~R” D,:R*—L*[0.7]

We are interested in characterizing all controllers C such that
7 (G, C) is internally stable and || (G, C)| < 1. The basic
idea is that since the state space is finite-dimensional, then the
infinite-dimensional operators B,, C,, D, are actually finite
rank operators, and by examining their range and null spaces
closely, the problem can be reduced to a finite dimensional
one.
Let us denote by A'(T) and Z#(T) the null and range
spaces of a given operator T, respectively. Consider first the
operator B,:L*[0, 7] = R”, its initial space can be decom-
posed as L*[0, 7] = A'(B)) @ N (B))* ; where H(B)*
:= [%[0, 1) & A(B,). With respect to this decomposition,
B, has the following ‘‘block matrix™ representation
A (By)
B =[0 B]: e —R-
‘A"(El)‘L

An important point here is that since §, has a finite-
dimensional range, then E, is zero on all but a finite-dimen-
sional subspace of L?[0, 7], that is, #(B))* is finite-di-
mensional. The nonzero part, of B,, namely B, =
I_?, |.4Byss isa linear mapping between finite-dimensional

Hilbert spaces. The decomposition of the operator B, in-
duces a decomposition on the input signal w, by

- wi
w=1{.1,
Wy

w;€l 45, and wyel ,(5,+. Note that W; is an infinite-
dimensional signal while W, is a finite-dimensional signal.

A similar argument works for decomposing the output
space and the signal Z. Define

2(C, D,):= #(C\) + %(Dy,)
and note that 2 (C,, D,,) is finite-dimensional since both C,

and D,, have finite-dimensional ranges. We now decompose
the output space and the C;, D,, operators as follows:

—- 0 @(61,512)

’ 2(C,, Dy,)
_ro 2(C,, Dy,)*
Dlz—[bu] R* = ®

And similarly, the output signal Z can be decomposed into

N k71 .
= [if]; Z2,€l3@,. " 2,€l 3&,.5.

Note that %, and %, are infinite- and finite-dimensional
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signals, respectively. The decompositions make G into a
three-input three-output system given by

A— 0 é, Ez 1"(51) [-"’(Elvﬁlz)"'
G-|0]0 o o /. .

él 0 0 bx: (B #(Cy.Dya)
— -] . -]
C2 0 o 0 lnu I'ﬂy

1!(19,)-L 1:?(5..5.2)

-] - (-]

1’!:“ ! I:t’

(22)

G can now be rewritten in terms of G as

] 1.4(5,;*.;:" ’4(6,.5,2)03*

G 0 -
G[Ooe ®

1.,4(5,) 13('6].5,;)*

It now follm!s that if the controller ¥ = Cy is connected to
both G and G (Fig. 7) then

F(G,C) =

(G.C) 0

We thus conclude that S (G, C) is internally stable and

I 7(G, ©))l < 1 if and only if Z(G, C) is internally stable

and | Z(G, O)}| < 1. The equivalence of the norm bounds

follows trivially from (23), and the qui_valence of intgmal

stability follows from the fact that % (G, C) and (G, C)
have the same ‘‘4”’ matrices.

The new input and output signals Z, and W, take values in
the finite-dimensional Hilbert spaces #(Cy, D,;) and
H( B )* , respectively. Any finite-dimensional Hilbert space
of dimension n is isometrically isomorphic to the Euclidean
space —2" thus with the proper identification of # (Cl, 12)
and 4’(3 )* with Euclidean spaces, the problem with Gis
reduced to a standard finite-dimensional discrete-time #
problem. This is done in the next theorem. _

Theorem 4: Given the infinite-dimensional system G de-
fined by (21) , form the b X b nonsingular diagonal matrix
¥, and the cd X cd nonsingular diagonal matrix Z ca from
the following symmetric factorizations

_ Ck
BB} = T;[E" O]TB; e
0 0 Dy,

F(G,C) 0
. ] (23)

[C D]

2aqa O
=Tgo[ Od O]TCD'

Define the finite-dimensional system

lﬂb 1;!“’
-] - . .8
Iﬂu 1;‘}'

W, V(B T RICDi)E 2
@ MB) RC1.Dr) e et
‘L 3 G 1012 5/ wy iy
@ ' i ¢
(a) (b)
Fig. 7. (a) F(G.C). (b) 7(G,C).
where

, 1/2 , , ]
b= |, 16 Bali= [ T

i) b:= rank { B, B}} = dim {#(B,)*}.

cd := rank E;k [55]
. 512* 1“2

ii) For a dlscrete-tlme time-invariant controller C
a) #(G,C) is internally stable if and only if (G, C)
is;
b 17(G, Oll = |1 7G,0)l.
Remark: G here is simply G defined previously but with
a particular choice of orthonormal basis for N (B )* and
2(C,, D), and the matrices B,C, D 12 Tepresent the
operators B,, ¢, DP in this particular basis.
Proof: To show i) note that for any Hilbert space
operator T

=dim{ 2(C,, D,,)};

dim { Z(T)} = dim {#(T)"};
A(T) = R(TT*) = R(TT*T). (24)

The first identity is standard since for any linear operator
T:H, - H, wehave H, | #/(T) = #(T), and in a Hilbert
space H, /AN (T) = ¥ (T)* . The first equality in the sec-
ond identity follows from Z(T*) = A (T)*, and the sec-
ond equality follows from #(T) = #/(T*)*.

Now

rank { B, BY'} := dim { #(B,B{)} = dim { Z(B,)}

=dim{ (B,) }

For #(C,D,,), note that #(C,, Dy,) = 2(IC,
7~k
rank H e 512]}
['E*' o
=dxm{9?( — |G Dlz])
R
dim {.2 E' )

#((E Da))*) =dm{2([E Ba])}

To show ii) b), recall from the earlier discussion that the

D,,)), and

= dim
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internal stability and norms of F (G, C) and Z(G, C) are
equivalent. G was given by

[ (5)+ 3@, By
] hd @
1}.{" IR.V

with B,:= B | .. (5y+; [C\_Dyy):= Hdnc, o,z)[c Dl“]
From 1), A(B)* and #(C,, D,,) are isometrically iso-
morphic to R® and R, respectively. To find this isomor-
phism, note that

-)V(Ex)LE‘ ‘@( ) @

z?(B*T,,[

o
@(B*TB[ ])

where the last equality follows because Z(TY) = Z(T)
whenever Y is invertible. Furthermore

#(B)* = Ji’(ﬁ;"T;[Z" O]) - @(E;*r;[zob])
afmn{m) 2

So define an operator

- - -1/2
U:R? > #(B,) c I*[0,7] by U:= B;‘T;[Z% ]

U is an isometry (an isometry U is an operator that pre-
serves inner products, i.e., (Ux, Uy) = (x, y) Vx, y, this is
equivalent to U*U = I), and from (25) it is onto 4/ (B,)*,
thus_it is an isometric isomorphism between R? and
A(B)* . Define B,:R? - R* by B, := B, U, this is illus-
trated in the dxagram below

B,
A (B)* R*
v /
l, —%

We can obtain B, explicitly by
, - _ - §-172
B, =BU= B,|,(51)¢B;"T;[ bo ]

— = 2—1/2] *[E—l/Z}
= B, BT} “b = T5]“t .
1 .l B[ 0 B 0

Similarly for the output space, we have

.@(C,,Dnz = [C, 12])
=ﬂ([5 5][§J[ '2])
= @([51 B] 72 [2;61‘ J)

So define the operator V: #°“ = Z(C,, D,,) C L*[0, r] by

[c, D, TCD[ECS ]

As before, V' is an isometry onto J(Cl,D,,) Now
V| #(C,. B,y 1S an isometric isomorphism from # (C,, D}y)
to R, so define

(f, = V¥ a(E,.B,,)éﬁ ‘D'IZ = V¥ .»«'(E,.E,z)blz
which can be evaluated explicitly by
[(_", bnz] = V| .?(5,.5,;)[61 1512]
= V*l A(C,, E,z)n 2(C,, 5,2;[51 512]
V*[a 12] = [21/2 0] Tep.

Thus the new system G can be written as

i|B B, i|Bu B
G=|C| 0 D,|=|Vv*| o v*D,
G| 0 0 G, 0 0
And when connected in feedback with any C
Z(G,C) =v*#(G, C)U;
Z(G,0): LyvBy+~ 1o, by #(G,0): Iyo = Lyea.

The fact that U and V are isometries allows us to conclude
the first equality in

17(6.O)ll = 1£(G,0)l = 1#(G, 0

the second equality follows from the discussion before the
theorem.

Finally, the equivalence of the internal stability of #(G, C)
and #(G, C) is immediate since they both have the same
“A’ matrix (internal stability is determined by the
A, B,, C,, Dy, matrices of the plant and by C, all of which
are the same in both # (G, C) and (G, ). | ]

The preceding theorem offers a solution to the #® prob-
lem for an infinite-dimensional system of the type where the
D, operator is zero. Recall that the hybrid system Problem
is equivalent to that for G, and the D, operator in G i 1s D,
which comes from the lifting of the original G,,. D, can
only be zero if Gy, is zero, and this is rarely the case in most

. problems. However, G can be reduced to a G whose D,

operator is zero, such that || Z(G, C)|| < 1 if and only 1f
| #(G, C)|| < 1. This reduction combined with the previous
theorem, will provide a complete solution to the original
problem.

To accomplish this ‘‘removal’’ of ﬁ”, we use an opera-
tor-valued version of ‘‘loop-shifting’’ (see [22]), and for this
we need Lemma 5 below, which is an operator-valued ver-
sion of the Redheffer lemma [6, Lemma 15] [22, Lemma 2).

To begin with, let T be any operator on L*{0, 7] such that -

IT| <1, it follows that the operators (I — T*T)!/2 and

~(I = TT*)'7? exist and are positive definite. It also follows
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that the operator © on L[0, 7] @ L2[0. 7] defined by

-T (1-17%'"*|
Q:=
: {(1— *7)"” ™ ] 9

is unitary.
Lemma 5: Let :
o- [0 o
0 62
be the unitary operator defined by (26). Let

H= [ﬁ_l_ﬂ]
ci D
be an I,z , System. Then the following are equivalent (see
Fig. 8)
i) H is internally stable and || H [} < 1;

iiy Z(©, H) is internally stable and |#®©, M <1l
Proof: First, note that a realization for Z(©, H) is

given by

A+ BR™'6,C | BR~'6,, }

F(6,H) =
[ 8,5 'C | 8, +0,,DR'6y,
where R = (I — 85, D) and S = (I — Dbp).

i) = ii): For internal stability we need to show that
A=A+ BR™'6,,C has all its eigenvalues in the open
unit disk. Recall that [|85, ] = | 71l < 1, and since | H I <
1, then || D|| < 1, thus (] — 6, D)~ " exists and F(©, H)
is well posed. It is true that A, is the “A” matrix of the
system (I — 05, H)~'. Now since | H| o <1 and 1162211
<1, then ||0,, H(2)|| < 1 for {|z] = 1} (where H(z) is
the z-transform of H). Thus, (I — 85, H(2))™" exists for
{] z| =< 1} and therefore (] - zA,) " Vexists for { | z| = 1}
implying that all the eigenvalues of A, are in the open unit
disk.

For the norm of (O, H), note that © unitary implies
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. 0

H
Fig. 8. .5(0.H).

the only facts about © used in the first part of the proof. It is
straightforward to verify that 7 (€, F(©, H)) = H, there-
fore this direction follows from the first part of the proof with
© replaced by ©’ and H replaced by F(©, H)._ n
We will use this lemma on G to remove the Dy, operator
by the proper choice of ©. First, recall that the objective is
to find C such that | #(G, O]l < 1. Recall the realization

of G

A straightforward manipulation of this realization and that of
a C shows that the **D’" operator in #(G, C) is D,,. Now
by the definition of the #’ ® norm

1#(G.C)llpe = |S\|1t<> lu:f(é,C)(z)u

Z IIF(G,C)(O)“ = "bn"

This inequality implies that | D,, |l < 1is a necessary condi-
tion for | (G, O)| < 1, we assume this from now on.

Given that | D,,|| <1, we form the unitary operator
matrix

(I"ﬁubfl)l/z

-ﬁ”
N A 1/2 -
(I—DTIDH) : DT:

Putting G and © in feedback as shown in Fig. 9. we obtain
the new system G given by

/-1-‘ B, B A+ B,D}P'C, ‘ B(1- étlbu)-l/z B,D},P'D)y + B,
G=|7 B = A oA =1/2 2 n oA 172 =
G 9 0 Dy (r- D, DY) "G 0 (I- D,DY,) "Dy
G| 0 0 G, 0 0
(Fig. 8) _ .
\ where P = (I - D, DY). _
Wrl2 + Jul® = ol + I yI2=tri? - vl Lemma 5 states that | Z(G,O)| <1 if and only if
= 171 - Jull?. 27) 1Z©, F(G,onll = | F(G,O)f < 1. But now G is in
Therefore the form needed by Theorem 4 to reduce the problem to a
finite-dimensional one. We summarize this in the next theo-
NHI < 1= [y} - ful><0=]rl* - [v]? 'c“}'h . PP =
<0=|F(0,H)| <1 (28) o cle;;rem 6: Given the infinite-dimensional system G de-

ii) = i): Define
on T (1-T1*1)'"*
-y e |

©’ is unitary and |63, < 1, note that these correspond to
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—1 6 r— In the next section, the required operator compositions are
i P done analytically. and formulas for the resulting matrices are
i [ F—_] ic given in terms of the matrices of the realization of the
: G i original continuous-time system G. The formulas involve
. only matrix operations such as exponentiation and inversion.
[¢ ’ iii) The factors Z,, Ty, Z .4, Tcp can be obtained by diag-

onalizing the two symmetric matrices using well known
algorithms such as in [13]. '

iv) In the next section, we will also give methods for
checking the condition || D,,|| < 1. This condition has an
interesting connection with an J#® problem for delay sys-

Fig.9. 7(O, 7(G.C)) = 7(G.C).

with | D,,|| < 1. Form the matrices

. 5 H V' B 0 tems.
B(I-D}\Dy) = TB T; . o
0 0 V. THe OPErRATOR D;; AND OTHER EXpLICIT FORMULAS
Pon o lﬂ - s 0 Theorem 6 yields the equivalent finite-dimensional prob-
' |(1-D,D%) [C\D,] = T(_l",_,[ cd ]Tco lem given the original infinite-dimensional system G. G is
* 0 0 . o .
12 given explicitly below (see also Fig. 5 and (18)) from the

: v matrices of the realization of the original continuous time
where Z,, Z_, are diagonal and nonsingular, and T, Tep generalized plant G

A9, ¥(7)B,
C,e"=91,_yB, C¥(1)B,| (29)
0 0
are finite matrices. Define the finite-dimensional system Where we have assumed, for simplicity, that the matrices

D,, = D\, = 0. For the remainder of this section we will
also assume that (A4, B,) is controllable and (C,, A4) is
observable.

To carry out the explicit computations called for by Theo-
rem 6 we need to examine carefully the operators ([ —
D¥D,)~" and (J - D,,D’,“L)' Recall that D, is the
where “truncation” of G, thatis D = I,z ;G| 120, - The
. easiest way to deal with this operator is to consider the
’ [C, D 12] = [Ecb 0] Teo associated system of differential equations over the finite-time

horizon [0, 7]. Note that regardless of whether G,, is stable
A:=A + B, b’,“,('] - D,,D}) Cy; or not, D,, is an L?[0, 7] stable operator. The relation
, L 1. ) - f= D,,u is equivalent to the following system of differential
B,:= B,DY\(I - D,,D},) D, + By; C:=0,. equations:

Then the following are equivalent: x(t) = Ax 1(’ ) + Byu(t)

i) .?(G C) is internally stable and IIJ(G O < 1. f(t) =Cx(t); x(0)=0, O=<z=r. (30)
ii) ‘?(G C) is internally stable and || ‘7(0 Oll1. It is easy to venfy that the adjoint operator is given by the

Remarks: adjoint differential equation, that is, DY, f means
i) Note that even though quantities like (I — D,, D¥)'" - 1 y=Dis
appear in © and G, this operator square root does not need X(1) = —A'xy(1) - C1f(1)

to be evaluated since in the final equivalence to G it does not y(t) = B{x,(1); x,(7) =0, O0<t=r. (31)
appear. Combining (30) and (31), it follows that the operator compo-
i) To apply Theorem 6, one needs to compute the follow-  grion = (1 - DY D, )u is given by
ing operator compositions (which are finite matrices) . _ (1)
R  n =l xz(t) - [—A —Clcl] X5 +[ OB ]u(t)
By(1- DY\D,,) By, x,(1) 0 A x,(1) oo '
fon s g (32)
_. |(I-D,D7,) [CnDu] = T¢p x,(t
D, y(t) =[B; 0][ 2(7) + u(t)
PP syl A x,(t)
A+ BI‘DH(I- D}l,Du) G x (1) .
L oay AP - 2 =0; O<t=<r
B, DY,(I1- D, D},) D+ B, x,(0)
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Note the two-point boundary condition on the states. The
inverse (if it exists), can be found by rewriting the equations

for u in terms of y, yielding .

x,(1) -4 =CC 1l x.(t [ 0 ]

. = - + t 33
[i’x(f)] [313; A x,(t B, y(r) (33)

n=w(ﬂﬁ8 Y1)
x5(7) _ <t<t
000 0

In contrast to (32), this system of equations may not have a
solution. It has a solution when the two-point boundary
values are well posed and this happens exactly when the
operator (I — DY, D,,) is invertible [12). The necessary and
sufficient condition for this is as follows; form the matrix

O R ] B3 | Pl
(34)

then (33) has a solution, or equivalently, (I — D% D,)) is
invertible if and only if T,(7) (or equivalently, T'p(7)) is
invertible ([27], [12]). We remark here that a similar argu-
ment is used in {27] to obtain a condition for a given ¢ to be
a singular value of an operator like D,,, there the invertibil-
ity of (o1 — D”D,,) is in question, and a condition similar
to the one above is given.

The standing assumption here is that || Dy, |l <1, since, as

remarked in the previous section, this is a necessary condi-
tion for the existence of a C such that || (G, C) Il < 1. This
assumption guarantees that the operator (I — D“D“) is
invertible, implying that T, (7) and T,,(7) are also invert-
ible.
_To find the kernel representation of the operator (J —
D¥ D,,)"", we find the solution of the differential equation
(33) as a function of the input. Let T'(#) be as in (34), it is the
state transition matrix for the system (33). From the varia-
tions of constants formula, given any input y(!), the states
are given by

B0 [
Lm]r“’%mm}

o [ru-9] 8] a9

o
-

Using the two boundary conditions x,(7) = 0 and x,(0) = 0
twice in (35) and subtracting the resulting equations we get

rmq% =T'(7) q
x,(7) Ly (r)TR'(r) T
'/OTF.(.T - s)[gl]y(s) ds. (36)

Using the expression for x,(0) and (35) (with 7, = 0), we
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obtain the output u(r) as

) =[B O](r(z)[-F%'(f) 8}
JAGS S)[g, ]y(s) ds

+/0'I‘(t - S)[gl]y(s) ds| +y(1).

Thus the operator (I — D¥ D,,)~" is given by the kernel

(I-D%D,) (1, 5)
o ][0 Se-of]
+1,_,T(t - s)[gl ]} + I5(t - 5). (37)

As for the operator (I — D,,D¥%)~", a similar manipulation
of the differential equation and its adjoint as above yields the
following kernel

(r- b, b)) (’ 5)

=[o 'c,]{r t) Fﬁ;(’) g]l"(‘r-—s)[c(;;]

-1,,_,,[?]} +I8(t - 3).

These kernel representations can be used to compute the
operator compositions required for the application of Theo-
rem 6. The computations are rather lengthy, here are the final
formulas (see the Appendix for the details):

B(1- DhDy) B =Tu(IT'(1) (39)

CXI-D,DY) '€ = -Ti (n)Tu(r)  (39)

-1 a

A+ BIDTI(I DHDTI) C, =Tp(7) - Iy (7)
BT (T)FIZ(T) (40)
élb’lkl(l- ﬁuﬁfl)— ﬁlZ = [‘1’22(7) - ‘I’(T)

‘rzl(”)rﬁ‘(f)q’lz(f)]Bz

(41)

2= —Ti'(7)®,,(7) B, (42)
Tl)_lf)u:B*'[le T) - &,(r)

Th'(7)®(7)] B, (43)

where ¥(t):= [;e“4°ds, and the matrices <I>(r),9(f) are
defined by

O
5%
~

I

AS

o
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and are partitioned conformably with T'(¢). We note that the
integrations required to form ¥, &, Q can be done using the

formula
7

/ole’“ds= [1 O]e.[:)1 O]l[(}]

which is true for any matrix A. Thus ¥(7), $(7) can be
computed each by performing matrix exponentiations, and
using (45) twice in (44), Q(r) is computed by performing one
matrix exponentiation.

With these formulas and Theorem 6, the equivalent
finite-dimensional problem can be obtained from the realiza-
tion of the original plant in the hybrid system.

Finally, note that from Theorem 6, a necessary condition
for the existence of a controller that constrains the closed-loop
norm to be less than 1 is that || D,, || < 1, (this condition also
guarantees the invertibility of T',;(7)), which leads us to the
question of how this condition could be checked. There is
a connection between | D,,|| and the value of a certain
#= problem for delay systems. Recall that D,, =

(45)

M20.G il 20,0 If Gy is stable, it is an application of .

Sarason’s result [23] (see also [7]) to show that
1D, = 1020, 11G i | 0. mll = inf_ G, — e*Q].
Qer
(46)

Thus the norm of D,, is the value of a certain sensitivity
minimization problem for a plant with pure delay. Using
so-called ‘‘skew Toeplitz theory’” the computation of this
norm can be reduced to finding the singular values of a
certain finite matrix. See [8] for all the details. (Software for
this purpose already exists at the University of Minnesota and
Honeywell, SRC.) Consequently, one can explicitly compute
the norm || D, |-

For the case when G, is not necessarily stable a different
method can be used to compute || D, |. Let ¥, and ¥, be
the following operators defined between L0, 1] and R" (R"
with the euclidean norm):

& L0, 7] = R" (Su)(i) = u(%l’);

}); {u(i)} eR”

(strictly speaking, %, is not an operator on L*[0, 7] but on
the subspace of left and right continuous functions, this
distinction is irrelevant here since in our use of it below, <,
operates only on continuous signals), the above operators can
be thought of as **fast’” sample and hold operators.

We now form the matrix %, D,,J,: 8"** — R"** (recall
that w, z are the dimensions of the signals w and z,
respectively). The matrix can be explicitly computed as
follows, denote by (5, D,,.%" );, j» the i, jth block of size
Z X w, then

(%00

B CleA(-r/n)(l:—.i)\I/(T/n)B
10 fori

uel?[0, 7]

tn

=200, 7] (o)1) = |

fori—-j>1
-j=<0’

Now. it can be shown that || %, D, ., II l|D,,|| where
| %, D,,#,] is the induced norm over Euclidean space (i.e.,
the maximum singular value). Thus we can compute || D,, ||
by taking n large and computing the maximum singular
value of the matrix %, D,,.%;.

APPENDIX
OUTLINE OF THE DERIVATION OF THE
FormuLas (38)-(43)

The formulas for the matrices (38)-(43) involve the com-
positions of the appropriate operators. The compositions are
performed by integrating the kernel representations of the
operators against each other, and the given formulas are the
results of the explicit evaluation of these integrations.

(38)-(40): :

We give an outline of the deviation of (38), the derivations
of (39)-(40) are entirely similar and are therefore omitted.

We first determine the operator (I - D% D,)" "B}, since
it is an operator from R” to L*[0, 7], it is given by a kernel
which is function of one variable, specifically

(1~ DD,) " BY)(1)
= [(1=D3By) " (1.5) BE(s) as.
0

From the formulas for the kernels of (/ - ﬁ’,“,ﬁ,,)" 37

and B} (29), we compute

((1" bflbn)-léﬁ)(t)

, -I;'(7) o]
=B/ O]i{T(¢t 1
(5, ]{ (o TTEC) ¢
. [—A: _c,'C,](T_s) 0
. BB 4 e
Ae [BIB;Je ( S)ds
. [-—A' -Cic, w9
B, B; A A(r=9)
+/°e [Ble]e ’ ds}

+Bje =,

The integrals in the equation above can be explicitly evalu-
ated by noting that
Tr
—-A's
[OJ" }

{
dS
—C;C,

A
-[B‘B; A ]‘ 0 4
=e [—B,B{]e As.(47)

-A -CiC
BB, A

After evaluation of the integrals, some terms cancel, and we
obtain

-1 2

((1 ~ DY\ Dy,) Br)(’)

=[B; 0Ole

-a -CiC
BB, A

[

To evaluate the matrix B,(I — D% D,,)"'B¥, we inte-
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grate the kernels of the operators B, and (I — D¥ D,,)"'B¥
“ ", o~ -1 -
B,(1-Dy\D,) Bf

[B0((1-b1b) " B) (1) ar

-A" -GG

/ eA(T—I)[Bl B; O] e{ B, B; A
0

This integral can also be evaluated explicitly using an identity
similar to (47), and we obtain

31(1-15711511)7‘1}T=[0 I]e[;l:; —CICI [ ]P
=I;)(7)T5 (7).

The derivations of (39) and (40) are very similar to the
above, the only nonroutine steps being several uses of the
identity (47).

(41)-(43):

As before we only outline the derivation of (42), the other
two being very similar.

The derivation of (42) is slightly more complicated than
what we have already seen because of the operator D,2
First, recall that the kernel of D12 is given by

Dy(r) = c,(/o'e*“dr)a

A simple change of variables shows that

50l [rloaf [-re]

Now we compute

((1 - bnbrl)_lblz)(t)

= [0 C] [Fu () 0]
0 0
’ [51; A eoree 1 re
_/e 131 [ '()']/ems_")drBzds
0

/ [BB| A ]“ S)[C' ]/ eA(s—r) dl’Bz ds
0

+C/ At=NdrB,
0

integrating with respect to the variable s first

=0 ¢ r(,)[l".‘.;(r) 3}

0

(r=35) ,
/ / [BBI ° A ] [Cc ]eA(S—f)dSB2 d,-

I dt[r'_*;(T)].

-4 -Cic

- /I/re[ 8,B; A }'I-Sl[ C;ClJeA(S-”dSB: d,.
0vYr

0
4
+ c,/ e4=n g, .
0

The two integrals (in s) can be evaluated explicitly using

[—-A‘ -c;c.l
d{ “|sae a4 |°
_ Lt 0f as
ds{e [l}e }
_[-A' —C;c,]s
BB, A ,
=e [C'OC']e’“. (48)

This yields (after cancellations)

[)12)(’)
-[o &){-reo|TlD 0]

./TF(T -r)dr+ /Olr(t -r) a’r}[(}]B,

The matrix CX(J - D“D”) 'D,, is evaluated by integrat-
ing the kemel of C} (that is {e4C]}) against the kernel
above, this involves the use of an identity like (48) and
switching of integrals and yields, after cancellations

C’?‘(I-f?nf?ﬁ) jle:.—'rl-l 7)[1 0]

./orr(r ~r) drmzaz

-T'(7)®,(7) B

The derivations of (41) and (43) are very similar to the
derivation above, the only nonroutine steps being the use of
identities like (48) and the switching of the order of integra-
tion in a manner very similar to that shown above.

((I‘ 151115?‘1)
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Abstract—The following problem is addressed: Given a
continuous-time plant, with continuous-time performance objec-
tives, expressed in terms of the L”-induced norm, design a
digital controller that delivers or optimizes this performance.
This problem differs from the standard discrete-time methods in
that it takes into consideration the inter-sample behavior of the
closed-loop system. The resulting closed-loop system dynamics
consist of both continuous-time and discrete-time dynamics and
thus such systems are known as hybrid systems. It is shown that
given any degree of accuracy, there exists a standard discrete-
time /' problem, which can be determined a priori, whose
solution vields a controller that is almost optimal in terms of the
hybrid L™-induced norm. This is accomplished by first convert-
ing the hybrid system into an equivalent infinite-dimensional
discrete-time system using the lifting technique in continuous
time, then the infinite-dimensional parts of the system which
model the inter-sample dynamics are approximated. We present
a thorough analysis of the approximation procedure, and show
that it is convergent at the rate of (1/n). Explicit bounds that
are independent of the controller are obtained to characterize
the approximation. Finally, it is shown that the geometry of the
induced porm for the sampled-data problem is different than
that of the standard /! norm, and hence there might not exist a
linear isometry that maps the sampled-data problem exactly to a
standard discrete-time problem.

1. INTRODUCTION

S paper is concerned with designing digital con-
trollers for continuous-time systems to optimally
achieve certain performance specifications in the presence
of uncertainty. Contrary to discrete-time designs, such
controllers are designed taking into consideration the
inter-sample behavior of the system. Such hybrid systems
are generally known as sampled-data systems, and
have recently received renewed interest by the control
community.

The difficulty in considering the continuous-time behav-
ior of sampled-data systems, is that it is time varying, even
when the plant and the controller are both continuous-
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time and discrete-time time invariant, respectively. In this
paper, we consider the standard problem with sampled-data
controllers (or the sampled-data problem, for short) shown
in Fig. 1. The continuous-time controller is constrained to
be sampled-data controller, that is, it is of the form
#%%. The generalized plant is continuous-time time
invariant and C is discrete-time time invariant, 7 is a
zero order hold (with period 7), and & is an ideal
sampler (with period 7). 7% and &, are assumed synchro-
nized. Let (G, % CS,) denote the mapping between the
exogenous input and the regulated output (i.e., w and z).
F(G,ZCS) is in general time varying, in fact it is =
periodic where 7 is the period of the sample and hold
devices.

Sampled-data systems have been studied by many
researchers in the past in the context of LQG controllers
(e.g., [21]D. Recently, Chen and Francis [4] studied this
problem in the context of #~ control, and were able to
provide a solution in the case where the regulated output
is in discrete time and the exogenous input is in continu-
ous time. The exact problem was solved in [1], [2], and
independently in [13] and [22]. The L®-induced norm
problem (the one we are concerned with in this paper)
was considered in [10}.

In this paper, we will use the framework developed in
[1], [2], to study the I' sampled-data problem. Precisely,
the controller is designed to minimize the induced norm
of the periodic system over the space of bounded inputs
(ie., L*). This minimization results from posing time
domain specifications and design constraints, which is
quite natural for control system design. To emphasize the
point made earlier, the inputs are continuous-time inputs,
the errors are continuous-time errors (see Fig. 1), however
the system is a hybrid system with a continuous-time plant
and a discrete-time controller. The discrete-time method
for ' designs (e.g., [5], [17], [9D, cannot handle this
problem directly, and is only concerned with the perform-
ance at the sampling instants.

The solution provided in this paper is to solve the
sampled-data problem by solving an (almost) equivalent
discrete-time /' problem. While this was the approach
followed in [10], the main contribution of this paper
is using the lifting framework of [1], [2] to provide a
thorough and more transparent analysis of the approxi-
mations involved in forming the almost equivalent prob-
lem. Furthermore, our analysis shows explicitly how the
approximation procedure amounts to approximating the

0018-9286,/93$03.00 © 1993 IEEE
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w o] .z continuous-time system in a strong correspondence with a

: G shift invariant (i.e., discrete-time time-invariant) system,

u which amounts to rearranging the original systém so that

its periodicity can be viewed as shift invariance. To

HT C "—S‘r

Fig. 1. Hybrid discrete /continuous-time system.

inter-sample dynamics of the hybrid system, and that
the inter-sample dynamics are governed only by the plant
and not the controller dynamics. We use the latter fact
to derive explicit bounds on the approximation [main
inequality (5)] which can be computed a priori and depend
only on the plant. We also show that the rate of conver-
gence of the approximation is (1/7).

As already mentioned, sampled-data systems are peri-
odic, the main theoretical tool we use for dealing with
periodic systems is a lifting technique for continuous-time
systems developed in [1}, [2].! The technique establishes a
strong correspondence between periodic systems and time
invariant infinite-dimensional systems. In the next section,
we briefly describe the lifting and it’s application to the
sampled-data problem. We then set up an equivalent
infinite-dimensional problem whose solution is obtained
using an approximation procedure. Formulas for the
(almost) equivalent discrete-time problem are given in
Section III. In the later sections, the issue of the conver-
gence of the approximation procedure is investigated, this
is done by decomposing the equivalent infinite-dimen-
sional problem and analyzing the decomposition. In the
last section, a geometric interpretation is given for the
reduction of the infinite-dimensional problem, and it is
compared with the #” sampled-data problem from [1].
We also discuss possible reasons behind the fact that in
the /! sampled-data problem (in contrast to the #~ sam-
pled-data problem), the solutions are given by approxima-
tion, rather than exact procedures.

Finally, we note that although the closed loop, sampled-
data system is periodically time varying, and thus one
cannot refer to the /' norm of its impulse response, it is
shown in [3] that the L -induced normm of a periodic
system can be interpreted as a type of an /' norm of the
operator-valued “impulse response” of the lifted system.
This justifies calling this problem the /' sampled-data
problem.

II. THE LIFTING TECHNIQUE N SAMPLED-DATA
SYSTEMS

In this section, we briefly summarize the lifting tech-
nique for continuous-time periodic systems developed
in 1], [2], and apply it to the sampled-data problem.

~ The idea of the lifting technique is to put a periodic

1E‘ssemially the same technique was arrived at independently in [22]
and [23]

accomplish this, we first define the lifting for signals, for
which the appropriate signal spaces need to be established.

For continuous-time signals, we consider the usual

L0, =) space of essentially bounded functions 8], and it’s
extended version L%[0,>). We will also need to consider
discrete-time signals that take values in a function space,
for this, we define I, to be the space of all X-valued
sequences, where X is some Banach space. We define [
as the subspace of [, with bounded norm sequences, i.e.,
where for {f;} € ly, the norm' [{f}lir = sup; llfillx < e
Given any f € L7[0,«), we define its lifting f € [ ;= .}, as
follows: f is an L*{0, r}-valued sequence, we denote it by
{ f }, and for each i
f)=ft+7) O<t<r.
The lifting can be visualized as taking a continuous-time

signal and breaking it up into a sequence of “pieces” each
corresponding to the function over an interval of length 7

"(see Fig. 2). Let us denote this lifting by W.: L3[0,%) -

=g,y W, is a linear isomorphism, furthermore,  if
restricted to L%(0,), then W,: L¥[0,%) — [f=, ,; is an
isometry, i.e., it preserves norms.

Using the lifting of signals, one can define a lifting on
systems. Let G be a linear continuous-time system on
L3[0,%), then its lifting G is the discrete-time system
G = WGW‘ , this is illustrated in the commutative
dlagram below:

lL’[O 7] —-9—-) lL'[O 7]
W [

L0, @) === 1700, «)

Thus, G is a system that operates on Banach space
(L7[0, 7)) valued signals, we will call such systems infinite
dimensional. Note that since W, is an isometry, if G is
stable, i.e., a bounded linear map on L” then G is also
stable, and furthermore, their respective induced norms
are equal, ||Gll = |IGl. The correspondence between
a system and its lifting also preserves algebraic system
properties such as addition, cascade decomposition and
feedback (see [1] for details).

The usefulness of the lifting in the sampled-data prob-
lem is the fact that if G is a 7-periodic system, then G
commutes with the shift on lz.'[o - that is, G is shift
invariant. This basic fact allows us to treat continuous-time
periodic systems as discrete-time time-invariant systems,
albeit infinite-dimensional systems.

State space models can be found for the hfted systems.
To illustrate, let G be a continuous-time time-invariant

system given by a staté space realization G = [%—i]
(1] it was shown that the lifting G has a state space
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realization given by:

6- |42

[ o4 I

QN
@) m)

eA(T—S')B

Cedi I Ce=91;_»B + D8(f - §)

]

[0, 7] - R™
R — R"

R — 170, 7]
170, ] - L7[0, ]

)]

SR

where the operators é, g,ﬁ are given in terms of their
kernel functions, and 1, is the unit step function.

. Notation: It simplifies the notation greatly to use the
same symbol for an operator and its kernel, for example,
D(t, s) [or B(s)] refer to the kernel functions representing
the operator D (or B). For operators that map a function
space to R”, such as B above, we generally use s (or §) to
denote the variable of the kernel function, and for opera-
tors that map R” to a function space such as C above, we
use the variable ¢ (or f). The kernel representation for the
operators B, C, D means that their action is given by

Bu = j:ﬁ(f)u(f)df (o)) = EDx, Felo,7]
(DB = (DG, Hu(d) &,
0

Note that the state space of G is finite dimensional (the
n, in R™ refers to the dimension of the state space of G),
while its input and output spaces are infinite dimensional.
This fact is significant in that, although lifted systems have
infinite-dimensional input and output spaces, they can be
realized with a state space of dimension no larger than
the dimension of the original continuous-time state space
model. :

To apply the lifting to the sampled-data problem, con-
sider again the standard problem of Fig. 1, and denote the
closed-loop operator by (G, %,C%). Since the lifting

is an isometry, we have that |F(G,ZCH) =IW,5

(G,#CZW 1, this is shown in Fig. 3(a). In Fig. 3(b),
we lump the lifting operators W, and W' and the

sample and hold operators and consider a new gener-

alized plant G. G is a discrete-time system with one
infinite-dimensional input and output (corresponding to
w and %) and one finite-dimensional input and out-

i

Fig.3. Equivalent problem.

put (corresponding to @ and y). Thus, FG,C) =
W.S(G,ZCSW, !, which means that the closed-loop
operator #(G,C) is in fact the lifting of the closed-
loop operator $(G,#ZCS). Since the lifting W, is an
isometry, we have then characterized the L"-inducef:l norm
of the hybrid system as the /7=, .rinduced norm of the
time-invariant system $(G, C). The conclusion is that the
problem of minimizing the L% induced norm of the
sampled-data system, is equivalent to that of minimizing
the induced norm of the infinite dimensional but time-in-
variant system (G, C). The previous discussion together
with the characterization of internal stability for hybrid
systems in [12] (conditions for nonpathological sampling)
yields the following theorem.

Theorem 1: Let G and G be as in Fig. 3, then for any
finite dimensional C. :

i) 5(G,#C%) is internally stable if and only if
F(G,C) is. )
i) 150G, ZC)| = IFG, Oll.

This reformulation of the sampled-data problem to the
problem with G has several advantages, first, the con-
troller has no “structural constraints” on it, in contrast to
the previous formulation where the controller is con-
strained to be a sampled-data controller, i.e., of the form
#C5, second, both the controller C and the generalized
plant G are shift invariant, thus, the periodicity of the
original system is “removed,” and third, all parts of
the system are operating over the same time set (discrete
time). The price paid for these advantages is the infinite
dimensionality of the input and output spaces. In this .
paper, we will show how one can reduce the problem to 2
finite-dimensional one by “approximating” the input and
output spaces by finite-dimensional spaces, thus, reducing
the problem to a standard finite-dimensional ! problem.

We now present (from [1]) a state space realization for
the new generalized plant G which will be useful in study-
ing the problem further. Let the original continuous-time
plant G be given by the following realization

It is assumed that the sampler is preceded with a presam-
pling filter which is a strictly causal linear system, this is a
realistic assumption since. an ideal sampler is not a physi-
cal device, a real sampler can be modeled as an integrator_
with a fast time constant followed by an ideal sampler.
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The system shown above represents a generalized plant
with the presampling filter absorbed in it, the fact that
D, = D,, = 0is due to the strict causality of the presam-
pling filter, this also guarantees that the ideal sampler
only operates on continuous signals. It can be shown ([1])
that a realization for the generalized plant G (Fig. 3) is
given by

We also note that because of Theorem 1, suboptimal
solutions to theé above problem will also be suboptimal
(with the same norm) for the hybrid system.

The above infinite-dimensional problem is solved by an
approximation . procedure through solving a.-standard
MIMO /' problem. The idea we use is similar to that in

- - 1‘{ Bl éz eAT I

s |Gu Gu|_ |=T= = _ P
| A = [T1C | Dy Dy |=|Ce
Gu Gu| |- p
G 0 0 2

where ¥(¢) = [{ e ds. The system G has the following
input and output spaces 1

Gyt IL’[O,fy - 11_’[0..-]
Gt lgn = Uz
Gyt lL"[O.,—] = lgs,
Gy ge, = Iga,

The main theme of this paper is to approximate the
infinite-dimensional input and output spaces L7[0, 7] by
finite-dimensional spaces. Bounds on the approximation

‘of the closed-loop system (i.e., with controller) will be

obtained that are characterized only in terms of the
operators Bl,Cl,Dl,,D“, which in tumn are charac-
terized by the original continuous-time plant and
independent of the controller.

The interpretation that can be given to the operators
BI, ¢ 1 D125 D11 is that they characterize the inter-sample
behavior of the overall system. In the lifted formulation
of the sampled-data problem, the state of the system
is the state of the plant G and the state of the con-
troller C, both of which evolve in discrete time. The
controller thus has an effect on the state of the system
only at the sampling instants, and the inter-sample
behavior is governed only by the plant dynamics. This fact
is made intuitive by the observation that in between the
samples, the system is essentially operating in open loop
since there is no feedback (u is constant in between
samples).

The lifting of the sampled-data problem makes clear
that the inter-sample dynamics are characterized by the
operators ﬁl, él, Dy, [511, and thus the issue of approxi-
mating these dynamics essentially amounts to approximat-
ing the operators, which are independent of the controller.
The foregoing ideas are pursued in the next sections.

III. SOLUTION PROCEDURE

Using the lifting we are able to convert the problem of
finding a controller to minimize the L* induced norm of
the hybrid system (Fig. 1) into the following standard
problem with an infinite-dimensional generalized plant G:

Top = inf 191G, ZCS))|

I$G. 0. @

= inf
C stabilizing

eA(r--S)BI ‘\II(,-)BZ
C,e*"91(t = 5)B, + D;;8(t —s5) C¥(t)B, + Dy,
0 0

[10] and [14] where multirate sampling is used to obtain
discrete-time systems that approximate the continuous-
time behavior of hybrid systems. This approximation pro-
cedure was used in [10] to address the /! sampled-data
problem. The approximation procedure we use is essen-
tially equivalent to that in [10], however, since we intro-
duce it directly as an approximation to the lifted problem
(2), the nature of the approximation is more transparent
and we are able to explicitly isolate the parts of the system
that need to be approximated independently of the con-
troller. The consequence is that we are able to obtain
explicit bounds on the degree of approximation in terms
of constants that can be computed a priori, and that are
dependent only on the plant.

We now describe the approximation procedure. Let %,
and %, be the following operators defined between
L’;[O, ] and [;(nXl7(n) is R"*? with the maximum norm

S L0, =50 (50 = u 2i);
ue L’;[O,T]

Z L(n) - LO0,7]  (Zuw)(0) = u([%J)

(u(@®)} € I(n)

(strictly speaking, &, is not an operator on L7 but on the
subspace of left and right continuous functions, this dis-
tinction is irrelevant here since in our setting, assumptions
are made to guarantee that &, operates only on continu-
ous signals), the above operators can be thought of as
“fast” sample and hold operators (see Fig. 5). For sunphc-
ity of notation we w111 suppress the dimension ¢ in the
sequel.

Now to apprommate the infinite-dimensional problem,
we use the approximate closed-loop system ., > (G, C)7,
(see Fig. 4), and for each n we define

Y, = inf

C stabilizing

|56, Oz ©)

This new problem now involves the induced norm over
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[%(ny i-€., it is a standard MIMO /' problem.
Let us denote the weneralned plant associated with

} . &.9(G,CVZ by G,, that is, G, is such that (see Fig. 4)

£5G, 00z, = 5(G,,C).

A realization for G,, is given by,

The new operators, which are now matrices, are computed
to be

Cl
3 CleA-r/n
¢, = .
Cl(eA-r/n)"‘1
[ D12 . ]
C¥(r/n)B, + Dy,
D’IZ - : ’

(n-1)

.

L

. {e
B,

= ‘P(T/n)[Bl e?7/"B,

Ar/n

¥(r/n)B,
G | Dy

Ay
|

(eAf/n)"'l Bl]

where {-}, means the first n X n blocks of the impulse
response matrix of the discrete-time system given by the
realization in {-}.

The solution to the original infinite-dimensional prob-
lem (and thus to the sampled-data problem) is as follaws:
n can be chosen large enough such that if the designed
controller C, is almost optimal for the approximate prob-
lem (3), then it is almost optimal for the original problem
(2). In essence, this approximation scheme “converges,”
i.e., one can obtain almost optimal controllers by choosing
n large enough and solving a MIMO ' problem. Exactly
what convergence means here is described next.

IV. DESIGN BOUNDS

In this section we investigate the nature of the approxi-
mation of (G, C) by Il.?(G,,,C )ll. In order to show that
the synthesis procedure outlined in the previous section
yields controllers with performance arbitrarily close to the
optimal, one needs to obtain explicit bounds on the degree
of approximation of (G, Ol by II5(G,, O)I.

Let us begin with analysis. Note that since (G, Ol is
an infinite- dunensmnal system, its 7=, ,l-mduced norm is
not readily computable. A method of compunm IS(G, Ol
comes from the limit

15(6,0)]| = lim [|%576, 00z = lim [|5{G,,C)l|
4)

for a fixed C. This formula can be proved using arguments
about the approximation of continuous functions by sim-
ple functions in L* ([19]), and also follows 1mmed1atelv
from the main inequality below. Since FG,,C) is a
time-invariant MIMO system and |#(G,,C M s its 1
norm, it can be computed to any desired accuracy, conse-
quently, by (4) the actual norm, |¥(G, C)l can be com-
puted to any desired accuracy. However, (4) is by far not
sufficient to show the convergence of the synthesis proce-
dure, since given only (4), the rate of convergence may
depend on the choice of C.

Our objective is to obtain explicit bounds on |¥(G, Ol
that do not depend on the controller in the following form

Main Inequality: There are constants K, and K which
depend only on G, such that for n > 2n,, and 7/n non-
pathological

|#(G...C)ll = ||, O]
K, K\ .
<+ (1 5 T)Ilf(Gn,C)ll- )

Remarks:

" a) The significance of the bound (5) is that it is exactly
what is needed for synthesis. When one performs an !
design on the approximate discretization G,, the result is
a controller that keeps |F(G,, C)ll small, but the objective
is to keep the L®-induced norm of the hybrid system (or
equivalently l#(G, Cl)) small, and the inequality (5) guar-
antees this. It is thus essential that we bound the hybrid
norm from above by a function of (G, Ol
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b) The above inequality shows that the approximation
converges at a rate of (1/n).

The first inequality in (5) is easy to obtain, first note
that

|#(G.. )l <||IsG, Ol Vv,
sinc_e
1#(G.., C)ll =[55G, O)z |
< IZNF6G, Ozl < [|#1G, O

because 17| < 1 on IP(n) and ||#,|l < 1 on the subspace
of L® for which it is defined.

One way to utilize the main inequality for getting
a priori guarantees on the hybrid norm in terms of the
discrete-time /' problem is guided by the following; for a
fixed n, if one performs a MIMO I' design (as in [9] (17D
on G and obtains a v, + € optimal controller (given by
C,), ie., |L9’(G,,,C I < v, + €, then inequality (5) pro-
vides that if C, is implemented in the hybrid system, then

o <196,6)l1 = 2+ 1+ 2216, €)l

KI . Ko
s—+(1+—)(y,,+e)
n n

K, K,
< — (1 + - )(yop, + €) 6)
n

where the last mequahty follows from v, < 7, Whichis a
consequence of the first inequality in (5).

The above inequality can be simplified by using an
upper bound on 7,,, such a bound can be obtained by
finding any stablhzmg controller C, and computing an
upper “bound on the hybrid norm of F(G,C,) (by using
the main inequality with a large n). Call that upper bound
M. Then by using v,,, < M, inequality (6) can be rewritten
as

- K, +K,(M+ €)
o < 156, €, £ =2

Thus, in order that C, guarantees |5(G,#ZC, M <
Yope + 8 for any &> 0, we choose e and n a priori to

+ €+ Yopi-

 satisfy

K +K,(M+¢€)
<

n

+ €.

Itis worthwhlle noting that thé problem of minimizing
I¥(G,, Ol is immediately a standard I' problem with
time-invariant plant. Also, we note that even though the
approximation problem is essentially equivalent to a mul-
tirate sampled-data problem, it reflects no structural con-
straints on the controller. General multirate sampled
problems do not share this property (see [7].

_ The next section is devoted to the derivation of the
main inequality (5). Several interesting issues come up,

and we get bounds on the approximation by characterizing

the approximation of the infinite-dimensional parts of G,
namely the operators Bl, C1 Dp, D11

V. DECOMPOSITION AND APPROXIMATION OF G

It will be very helpful in the derivation of (5) to intro-
duce a decomposition of the infinite-dimensional system
G by “extracting” the infinite-dimensional parts of the
system. The basic idea is roughly that the behavior of the
hybrid system between samples is essentially governed by
the mﬁmte dimensional parts of G, namely the operators
B, C,, D,,, and D,,. These operators are independent of
the controller, and thus it should be possible to approxi-
mate the behavior in between the samples independently
of the controller by “approximating” the aforementioned
operators. To illustrate this point further, we first
decompose G as

A 4|8 B

- - D 0 = = p
G=Go+ 011 0]7 Ga = Cl 0 D12
Glo o

A | I B
1 2= N TTTRT B[

[©)

This decomposition is illustrated in Fig. 6. The closed-loop
mapping $(G, C) is correspondingly decomposed as

#G,C) =Dy, +5(6,,C)
=Dy + |6 Dy|9(G,..C)B. (®

We will use the notation & =[C, D), and call & the
output operator and Bl the mput operator.

_ With this decomposition, G,, is finite dimensional, and
&, B, are finite rank operators

G:R™* = [7[0,7],  By: L7[0,7] > R™.

As (8) shows, only a finite-dimensional part of the system
fi.e., FIG(G,,,C)] is dependent on the controller, while

- the infinite-dimensional parts are independent of C.

Roughly speaking, the controller (being discrete time)
only effects the hybrid system at the sampling instants,
while in between the samples, the systems evolution
is governed by the operators D,,, &, B,, which are in
turn dependent only on the dynamics of the original
generalized plant G.

The remainder of this section and the appendixes are
devoted to deriving the main inequality, and can be
skipped without loss of continuity. .

We now  consider the issue of “approximating” the
infinite- dimensional plant G by a finite-dimensional plant
G.,. First we note that the two norms to be compared are




°

(3

. .
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Fig. 6. Decomposition of G.

of (G, 0), which has L0, 7] as an input-output space,
and of #F(G, C)Z’;,, which has [”(n) as an input-output
space. Therefore, it is not strictly true that #5(G, C)%,
approximates $(G, C) since comparisons like |$(G,C) —

- #5(G,CM7|l < € do not make sense. We will replace

(G, C)Z, by another system which has the same norm,
but truly approximates F(G, C).

Define the following operator (the normalized integra-
tion operator) 9,: L*[0, ] - I"(n) by

j‘(t+l)-r/n () dt.

ir/n

(T (w)(@) =

The following properties of 9, can be easily checked: 9,
is a linear operator, |7/l = 1, and 9, is a left inverse
to JZ,, i.e. I, = identity. If 7, is regarded as an oper-
ator on L'Y0,7], ie., F: L‘[O 7] = IY(n), then it is
easily shown that %, is the adjoint of (r/n)7,, that is
((z/n)g)* =%, Similarly, if 7, is regarded as an oper-
ator on /(n), i.e.,Z: I'(n) - Lo, 7}, then Z* = (7/n)7,,
which also implies that ZT) =%,

Let us denote by T = (G, C) and by 7, = $(G,, C).
As already mentioned, T and 7; cannot be compared

directly since they do not have the same input and output -

space. The operator 7, will allow us to form a system T,
with norm equal to that of 7,, but with the same input

and output spaces as 7.
Lemma 2: Define the system T, = (Z,.%, )T()?.? ), then

. I = Il
Proof: 1t is true that |#,TZ7,|| = [|#,TZ)|| since
Tzl < Tz g < 15,770,

and
llsv Tz < \ #7777 < 1512
Also, since #,: I"(n) - L0, 7] is an 1sometry, we con-
clude that
IT,I = 75,77 = |75 = 1%T7) = T,

Remark: The above lemma is of general interest since it

_provides a systematic way of addressing the question of

how a discretized system %% % “approximates”-the origi-
nal system H,. by comparing the systems H and H =

(#2)H(#5;). This comparison is typically easier since
H and H are both continuous-time systems with the same
input and output spaces.

Let G, be the generalized plant correspondmg to the
closed-loop operator T, i.e., T, = 5(G,, ). G, is defined
by :
e O )

0 I 0 I

The consequence of Lemma 2 is that one only needs to
show inequality (5) with 5(G,, C) instead of F(G,, C). As
already mentioned, the advantage is that $(G,, C) has the
same input and output spaces as $(G, C), namely L0, 7].
Next, we will show that $(G,, C) actually approximates
$(G, C), and this will yield the main inequality (3).
Approximation of G: The approximation of G will be
done in two parts corresponding to_the decomposition
HG,C) =Dy, +5G,,C) =Dy, + HG,,,C)B,. It will

be useful in this section to use a short hand notation for
(see Fig. 7)

T —ﬁy( o0’ ) oo

T,, = (ZFI)T(Z5,) D,

5(GM,C) ©)

= (Z2)D, ()
(10) -

and corresponding to the decomposition 7 = 1511 + T,
we have

T, = (%) Dy + 1,)#%5) =D, + T,,.

We will first show that Ta,, approximates 7, then we show

that D, approximates D11

Proposition 3: Let n > 2n,, such that 7/n is not a
pathological sampling period, there exists a constant K,
which depends only on G, such that

_ K, _
7, - 7,0l < —HTO,,II.

Remark: It is important that the above bound is in
terms of ||7, .|l which corresponds to part of 5(G,,C).
The reason being that in the main inequality, we must
bound the norm of the hybrid system from above by the
norm of the discretized system $(G,,C). In fact, it is
much easier to produce an inequality as above but with
I7,ll on the right-hand side, but this would not be useful
for bounding the norm of the hybrid system.

Proof: The proof makes use of the decomposition
of T, = &’T o,B;, and of its approximation T, =
zs )ﬁTooBl(Z,ﬁ’ ). The basic idea of the proof (on the
output side) is that (Z.%,) operates on functions in
Z 4y © L7(0, 7], and functions in &4, are continuous and
there are bounds on their rate of change (depending on
the dynamics of the plant), so on £, the operator
(#.%,) approximates the identity, and it also has a left
inverse which approximates the identity as n — «.

We now approximate from the output side. Lemma

‘4 below states that (%,%,) has a left inverse on Z 4,

ie, there exists CAZA S (7y,)—->.9?(,)CL[O 7]
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Fig. 7. Decomposition of the approximate system 51G,,C).
such that (/‘Z,Z,)‘L(;Z;S’,,) = identity on %4, We now
establish

”(Z‘r’sz)To - Ta”
= ”(/?r’z‘spn)éTooél -
<|(1 - &) Nazs sl IEIT]

where the operator I is the identity, or the embedding I
R 5.6y = L"[O ). Also from Lemma 4, we have that

(I = (Z%) a6 < (Kg/n), this implies

CAREERY N

o, - Tl s SZlemsdnl. av

Now, to approximate on the input side, we need to take
preadjoints (see Appendix B):

|Z2)T, - ZFIT, (2T
= (ZS)ET,, B, — (%5)6T,,B(%T)||
= Il(*’/ﬁx)éToo(él - 31(759;))“

= (B, - 7B, (=58,
= |(*B, - (Z)*B))*(%S)ET, ).

From Lemma 4 below, (/,,.7 ) has a left inverse
when restricted to F.j,, ie., (HT)” -L is such that

(#,9,)"H(%.7,) = identity on 3, < LY[0, 7], therefore
z0T, — ()T, 7))
= (=) ™ (Z5)"B,
—-(ZT)B,) (%5)ET,,)||
= (=™ = Dlaczzsy”
(72T, Bz
< ()™ - Dl I ZSITE

K.._ R
< =270 NGV
n

where the last step is again from Lemma 4.

Combining inequalities (11) and (12), we get
IT, - T, = ||T, — (ZS)T,(ZT)|
=T, - ZSIT, + (7T,
-(ZATE7)
<|IT, - @SIT|| + (%507,
- @S =]

K4 K _
< || + 2T

n n
but (12) also implies that [(Z )T, < (1 + (Kz/n)
IT,,ll, therefore

- K; K; Ks| = Ko =
”To - Tan” <|— I+ —]+— “TO"” = ”To"”’
n n n n

where K, = K; + K;K; + K. |

Lemma 4 below captures the idea that (7,5, )& approx-
imates &, because the sampling operator &, samples only
elements in (&), and since there is a bound on the
variation of functions in S2(&), one can get a bound on
how well (#,.%,) approximates elements in Z(&). Similar
arguments are "made about (#.9,)*B,. This lemma is the
key to obtaining approximations that are mdependent of
the controllers, since the behavior of the signals in the
input and output spaces is governed by & and Bl, the
nature of the approximation depends on these two opera-
tors and not C. The rate of convergence of the approxi-
mations is determined by the constants Kz 4 K 4, which are
completely determined by the operators Band &, respec-
tively, which in turn, are completely determined by the
original plant.

Lemma 4: Assume n > 2n_, and 7/n is not a patholog-
ical sampling period, then

a) 3 an operator (%,9)%: Zgoe5y — L0, 7]
such that (Z.9,)" LT 205, = identity,

L0, 7] L0, 7] LYo, r
u AN v exA U
F-By « Ry < Zeh

and a constant K, such that
- K;
(7 - &) Vazsoll < 5

b) 3 an operator (7.%,)"L: By o 4 — L0, 7] such
that (#,5,) (%N a) = identity,

L7[0, 7] Lo, 7} [0, 7]
U A v @y Y
Ré) «  RasédH < FE
and a constant K; such that
K4
Nz - (Z’AZ) [ﬁ’(/.?&‘)” St
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The proofs of this lemma and the next one are quite
technical and involved, and. thus are relegated to the
appendix.

The next lemma takes care of approximating the direct
feed-through operator D;, which is approximated by the
direct feed-through operator D, of ‘G,.

Lemma 5: There is a constant K5 such that

K5

1Dy, - DMl <

Combining Proposition 3 and Lemma 5, we get that T,
approximates T by

- K, _ K5
IT - Tl < =T, + —. (13)

n n
To get a bound with |I7,]l on the right, note that T, =
T,, + D,, which implies by the triangle inequality that

IZ, .t = 1Dl < IT,, and

IT, .l < 1D, + U0 < 1Dy, 1l + IT, 0.

Since [|Dy,l is 2 constant, combining with (13) yields
— K, . K, _ K5
IT - Tl < —IDyll + —IT1 + —.
n n n

Finally, since Tl — IZ,l < IT — T,ll, we get

KDl + K5 K,\ _
iy < ZMPul RS (1 . -n—)urnn
K, K,\ -
= — + (1 + —|IT
n n

and thus we have arrived at the main inequality (5).

V1. GEOMETRICAL INTERPRETATIONS

In the previous section we gave an approximation pro-
cedure to obtain approximately optimal controllers. The
procedure is based on forming an “approximate” finite-
dimensional system to an infinite-dimensional one.
A question may be asked as to whether the infinite-
dimensional problem may be exactly reducible to a
finite-dimensional /! problem. For example, in [1], the
#° sampled-data problem was treated by the lifting

‘technique, and an exact reduction of the resulting

infinite-dimensional problem to a finite-dimensional one
is possible. This motivates the question as to whether a
similar exact reduction is possible in the !' problem.

In this section, we will not give a definite answer to this
question, but it is our purpose to illustrate some of the
underlying geometry in the reduction, and to suggest that
the /' sampled-data problem may not be exactly reducible
to a finite-dimensional /! problem. We will give a geomet-
ric reasoning which shows that the fundamental differ-
ence between the reduction of the #° and the '
sampled-data problems has to do with the difference

' between the geometry of finite-dimensional Hilbert and

Banach spaces.

* -
) H.ﬁ’(‘B,)‘
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Let us go back to the formulation of the problem
involving the infinite-dimensional generalized plant G,
and consider the decomposition of G in feedback with the
controller C (Fig. 6). :

To facilitate the geometric arguments we are about to
make, we assume that the operator D;; = 0. Note that
this assumption is valid only when G,; = 0, and this is an
unrealistic assumption for most interesting control prob-
lems, but the assumption is made for the purpose of
illustration. With the assumption Dy, =0, the decom-
posed system in feedback with C is shown in Fig. 8,
where & = [C, Dy,

We first look at possible decompositions of the output
space L0, 7). From Fig. 8, it is clear that

6,0 = 65(6,,,C)B,

which means that the output signal £ takes values
in @(&) c L0, ] (at each _point_ in time). Since &:
R+ — 1[50, 7], then (&) is a finite-dimensional
subspace of L0, 7], z}nd there exists a projection on it
46y L0, 7] = 2(£) [20]. By the definition of a projec-
tion, we have that for any x € R™™", [&€xl0,- =
11T 5 4,& %l ), therefore

ML, 85(G0r C) Bl = 185 Gon C) Bl = 575, OOl

Note that I 4,85(G,,, C)B, is a system with 2 finite-
dimensional output space, namely #(&), and the norm on
(&) is the norm it inherits as a subspace of L*[0, 7).

A similar reduction is possible with the input space, for
this, we need to look at the preadjoint operators. Since for
any Banach space operator A, [|4ll = [|4*]l, we have that

llﬂg(é)é’ﬁ’(éoo,c)élll = H*Ex *‘?(G-oo7c) *é*nﬂ(i)ll

and as before, we can project on %(*él) c#N0, r] with-
out changing the induced norm

Il*él*g’—(éoo’ C)*é*HQ(d;)H
= ”HQ(‘B.,)*B\I*?(GM’ C)*é*nz(a‘)“
= ”H.ﬁ(é)éf(éao»C)étnfe('él)”

where the last equality follows by taking the adjoints.
Also, note that since g5, L'0,7] >%(B,) then
(#(*B)* = L7[0, 7], where (#(*B))* is the
dual space of Z(*B,), and it is finite-dimensional since
Z(*B,) is.

Combining the reduction on both the input and the
output spaces, we have

||é7(éo?’ C)ﬁxll = ”Hmaﬁéy(éoo’C)Blnz(‘ﬁx)”
= |G, Ol 19
where G is defined by

G = [Hsz(é) O]G‘ 2cdy O .
0 I 0 I




C

Fig.8. Decomposition of G with Dy, = 0.

Equation (14) shows that the original problem is reducible
to the standard problem with the generalized plant G.
Since G has finite-dimensional input and output spaces
(since (&) and (Z(*B,))* are finite dimensional),
we have arrived at an equivalent finite- dimensional prob-
lem. This problem is not necessarily a standard finite-
dimensional /' problem, it is only so if the input and
output spaces (&(&) and (Z(*B))*) are linearly
isometrically isomorphic to an [*(n) space for some n.

Remark: In the #° sampled-data problem, the situation
is much sxmpler In that case, %(&) and (Z(*B))* as
subspaces of L*[0, 7], are immediately linearly isometric
to Euclidean spaces (that is /%(n)), since every finite-
dimensional Hilbert space is linearly isometric to a
Euclidean space of equal dimension.

Thus, the question arises as to what the spaces R(E)
and (#(*B,))* look like, and to whether they are isomet-
ric to l‘“(n)" If the answer is affirmative, we can use this
identification with [“(n) and obtain a generalized plant
which has an [®(n) for each of its input and output spaces,
and the problem then becomes a standard /' problem.
However, the answer is negative. This can be seen by a
simple example, where we plot the unit ball of the space
(&) and show that there is no linear transformation that
can transform it to a unit ball of an [*(n) space.

The example we consider is as follows: first recall that
the operator & is given by the following kernel function

() =[C(1) D)) = [Cle"‘ cl( jo’eAnzs)Bz].

We will consider the subspace %(C,) c52(&) and show
that it cannot be a subspace of any /”(n). Recall that the
norm on the space Z(C,) is the norm inherited as a
subspace of L*[0,7). The unit ball in ﬂ(C) can be
plotted by choosing a basis, and then computing the
L0, 7] norm for combinations of the basis elements. The
particular example we pick is

0 —3]_
1 15y
with 7= 1. For this example %(C,) has dimension two,
and a basis for it is given by

x,(t) = Cle’“[é]; x,(t) = C,e A'[?].

a-| -1 12,

To plot the unit ball in 5?(C1) we represent any x e

- A(C) by x = a;x; + a,x,. The ball in Fig. 9 represents
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Fig.9. The unit ball of #(C,).

ixll = 1, and the axes are «; and a,. The unit ball in
an [*(n) space is an n-cube, and the unit ball of any
2-dimensional subspace of [“(n) is a 2-dimensional “slice”
through an n-cube, and it is clear that the boundary of
this 2-dimensional cube must be made up of straight lines,
i.e., it must be a polygon. Now, for Z(C,) to be hnearly
isometric to a subspace of [*(n), a necessary condition is
that its unit ball [that of &#(C,)] must be linearly trans-
formable to a polygon, which means that it should itself
be a polvaon Since the unit ball of the particular example
in Fig. 9 is not a polygon, we conclude that S2(C,)
land consequently S%(&)] is mnot linearly isometrically
isomorphic to an [“(n) space for any n.

We end this section with a geometric interpretation
of the approximation procedure given previously. If we
apply the approximation procedure to the system in
Fig. 8, the result is the system

£,65(G,,.C) By, (15)

Looking only at the output side (the input side can be
interpreted similarly using adjoints), the norm on the
output side is_essentially measured by sampling the ele-
ments in F(&), that is, the norm of a function f e ()
is computed by taking the /”(n) norm of n samples. As
before, we can plot the unit ball of &(C,) in this new
norm which we will call the “samples norm.” (Actually, we
will plot the coefficients «,, @,, hence the plot is two
dimensional). This norm approximates the actual norm on
Z(C,) for large n. This approximation can be seen in Fig.
10 (for n = 3), where the samples norm unit ball is
superimposed over the actual unit ball of 2(C). 1t is
interesting to see that what is being done, is approxima-
tion of the unit ball of (&) by polygons. Thus the
approximation procedure for solving the sampled-data
problem can be interpreted as an approxunanon of norms
of the input and output spaces. It is interesting to note
here that the unit balls of (&) and ((*B,))*, generally
represent nonlinear constraints, very much as in the con-
tinuous-time L' problem [6], while in discrete-time /!
problems, the constraints are always linear. Therefore, the
fact that the norms in the sampled-data problem repre-
sent nonlinear constraints (roughly speaking), seems to be
a consequence of the continuous-time nature of the prob-

lem (just as in the L' problem). However, by essentially
‘ J
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Fig. 10. The unit balls of (C)) with the actual, and the samples
norms.

i

approximating the nonlinear constraints by linear ones,
we are able to reduce the problem to a standard discrete-
time /! problem.

Finally, we point out that the mathematical reason
behind the difference in the reductions of the #° and I
sampled-data problems, is that in the former, any finite-
dimensional Hilbert space is linearly isometric to 1*(n),
while in the latter, not every finite-dimensional Banach
space is linearly isometric to [*(n). This reflects the fact
that the isometric class of Banach spaces of dimension n
is a much richer class (there is an infinite number of
them, for example [?(n) for 1 < p < =), than the class of

Hilbert spaces of dimension n [of which there is only one,

I2(n)).

VII. CONCLUSIONS

This paper provides a solution for the sampled-data I
problem through approximation. Utilizing lifting tech-
niques, the input/output map is decomposed in such a
way that the infinite-dimensional part of the system is

isolated independently of the controller. This part is then -

approximated in a precise way by a finite-dimensional
system, whose dimension can be determined given any
degree of accuracy. Computable bounds on the norm of
the difference of the actual system and the approximated
system are furnished, and they all depend entirely on the
system’s data. It is shown that the rate of convergence of
this approximation is (1,/n).

It is interesting to note that the same approach and

“approximation arguments in this paper can be followed to

obtain bounds like the main inequality for the L'-induced
norm sampled-data problem. A combination of this with
the Riesz—Thorin convexity theorem would then show
that the main inequality (with different constants) holds
for general LP?-induced norm problems. In particular this
holds for the L3*-induced norm case. In this case, this
approximation procedure was shown to converge in [15]
The results of this paper and the above convexity argu-
ment indicate that stronger convergence at the (1/n) rate
actually holds. However, for the case of the L’-induced

. norm sampled-data problem, an exact equivalence to a

discrete-time problem can be obtained [1]. It is indicated
in this paper by geometric arguments that this exact

correspondence may not be possible in general for
[*-induced norm sampled-data problems.’

The approach followed in this paper is readily applica-
ble to the structured perturbations problem for sampled-
data systems [16]. The minimization problem in this set-up
involves spectral radius functions, and a similar result

. follows from the continuity of the spectral radius function.

The derivation of explicit bounds takes more work and
will be reported elsewhere.

APPENDIX A

In the following proofs it is assumed for simplicity
that the matrices D,, and D, are zero. If D, is not
zero, the statement of Lemma 4 still holds. If D,; is
not zero, the statement of Lemma 5 does not hold, how-
ever the main inequality does hold but has to be derived

differently.

Proof of Lemma 4

a) If f €.z, then f(t) = *By(D)x = Bje* "V, for
some x € R”:. We may assume without loss of generality
that (A, B,) is controllable, since if not, we can decom-
pose the state space into the controllable and uncontrol-
lable subspaces, and write

5 A0
*B(1) = [B, O]e[? A’"](""’)T’

where (A,, B,) is controllable, T is nonsingular, and then
note that s, is the same as the range of {BALT0Y,
and thus work with (A, B,) instead of (4, B,). We also
note that since the eigenvalues of A4, are a subset of the
eigenvalues of A, then if 7/n is nonpathological for 4, it
is nonpathological for 4..

Now, to show that (#.7,) has a left inverse, we need to
show that (#.7,): Z.5, — L0, 7] is injective, but since
Z: I'(n) — LY[0, 7] is injective, it suffices to show that J:
Rej,y = 11(n) is injective, or equivalently, that it has no
null space. Given f€Z.5,), let f=g,f, since f(r) =
Ble#'"~9x for some x € R", then

- N oGl ,
fi= = [CV Btz
T ir/n

n
_Bi‘[T/neA'(f/n—a dfedtn=i=1r/ny
T 0

n _
= -;B’I‘If’(T/n)e" (noi=br/ny,

or in matrix notation

f-o B’I‘I”(T/n)e"‘""'l)"/"
. n S n

: = —T- : X = —T-.@,',x (16)
fct B¥'(v/n)

Note that for n >n,, %, contains the controllability

_matrix of (eA"/”,¥(r/n)B,), and since (4, B,) is control-

lable and 7/n is a nonpathological sampling period, then
(e*"/",W(r/n)B,) is controllable, and thus the matrix &,
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has full rank. Therefore, if f €Z-5y f#0, then f=
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see (18) which means that

*B,x, for some x € R”:, x = (), consequently f # 0 (since L
&, has full rank), implying that S, has no null space and ”([ - Z7) )”gz(z,z-él)’

"+ thus is injective.

To obtain the bounds we need, it is necessary to bound
the norm of x that solves the equation f =%, x by the’
norm of f. Since &, has full rank (as a matrix), there
exists a constant c; such that if f= (n/7)&.x then

(n/ixll; < il ey (Where ||xlly is the 1-norm on R”:)

The constant ¢, can be taken as the norm of the left
inverse to ;. See the appendix for the proof that ¢, is

independent of n.

If we define f =7 f, then we have from the definition
of Z: I'(n) - L0, 7] that I fllcyo, - = (/O flliray.
Combining this with the previous bound yields that for

f=(%5)B,x
”X”1 < C]”]E”Ll[o,r]'

Now, to compute a bound on [[(J - 7)) N as -5yl

let f be an element in Rz 5y -6 f =Z,:.7,,‘*§1x for
some x € R"-. We have already shown the existence of
the left inverse (#.9,)~*, by its definition FT)Lf=
*B, x, therefore

”(1 - (ZHZ)‘L)f”L'[O,r]

= \%I*B,x - *§IXIIL*[0,71

= [lzsBa)® - (Bx)0) a

_ nz-:l /-(i+1)f/n“(;,/ﬁélx)(t) _ (*B‘Ix)(t)” dt

i=1"it/n

n-1
G+ n, G+1r/n, 4

) —( “By(s) ds)x

i=1 ji;/;: “ T '[r/n !

- *ﬁl(t)x][ dt

n—-1

i+ 1r/n ’1( G+Dr/n, 4 )
< - B.(s) ds
,-‘=.Z1 /z"‘r/n ” T /i‘f/n !
—*B,(0)]] dtllxl,
n-1 2 d*él(t)
< — su lxll
P e [
72 n-1 '
< m”xlh 2 sup |[BjA’ed-n)

i=1 0sts7

A
< szl flinlBillL4’ et 4

.. ”_<_ -7-2—-01 811 llA’Iie"’”"%Ilf I a”n

2

]

.1 Ky
Bl AT~ = 25
n n

<

W -

Proof of b): By definition, & := [¢, D,,], and

6 =[Gy D) = [Cle’“ cl( j:e"‘ds)BzJ

=[0 Clle[g 3]‘[2 %J,

where the last equality is a consequence of the formula

0 0
Joedds=[0 I]e[! 4 ;[g - With an argument similar to
that in the proof of part a), we can replace [0 C,] and

[ p g] by C, and A, such that (C,, 4,) is observable, ie.,

[0 Clle[? 3][? §2J=[co ole[’i" AO]T[? %J

= [CoeA"‘ O] []}:IJ = Cpe'R,,
2

I 0

by B;, which is made up of the linearly independent
columns of R;, and define &,(t) = C,e"*'B;, we then

have
scor=affo cads 20 2]

~s((C.etn,)) ().

Now, to show the existence of (Z52)~L on Rz 50 Gy OT
equivalently, that (#.%) is injective, it suffices to show
that % has no null space in %, (since 2: I"(n) -
L0, r] is injective). By the representation above, if fe
Z sy f# 0, then f(z) = Coe“‘v‘fo for some x # 0, x €
R? (where p <n, +n,). Let f=%f, then f, =
C,e”*"/"B;x, or in matrix notation

where [ ;":] = T[° B’J. Furthermore, we can replace R,

fo c
: = . fo = ?’.fo.
f:z—l Co(eA,,r/n)""l

Since (C,, A,) is observable and 7/ is not pathological,
then (C,, e#-*/") is observable implying that the matrix
@, has full column rank (for n > 21,), and since By also
has column rank, then f # 0, which shows that %% has no
null space in %,

To obtain the bounds we need, it is necessary to have a
bound on the norm lx/l. (]|- |l is the maximum compo-
nent norm in R*) of solutions of the equation f = %, B;x.
Since both &, and By have full column rank, they both
have left inverses %, B7L, and

Hxlle < UBFEINE 20 Fllny-
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Since #Z: ["(n) = L*[0, 7] preserves norms, that is, for
f=Zf=(%5)f, we have that || fll =0, -; = Il fll=(n), the
above bound becomes

“x”ce < Cfg”]EHL’[O,r]-

The proof that the bound c, is independent of n, though

- . long, is entirely similar to that for ¢, in part a).

Now let f € &, 4, therefore f € & ;) which means that
f =&, x for some x € R”. Let f = (Z.5)f, by the defi-
nition of (#.%,)7L, we have that (%) Lf=f=6,x.
We now compute,

(7 = &™) fll 1o,y

sup [(#56,5)(0) — (8,5)0|

O<r<w

sup sup  ||[(#:5.8,%)(E + ir/n)

O<ign-1 0<i<t/n

—(&,x)( + iz/n)||

= sup sup  [|(&,x)(ir/n)
O0<isn-1 0<i<7/n
—((?i,x)(f + it/n)||

< sup  sup u['*"/" "(s)dsnnxum

O<i<n-1 0gigs/n “it/n

{+ir, dé
sup sup f‘ ‘ /HH?O

O0<i<n—-1 0gf<e/n “it/n

G+ Dy A5,
sip [ =

A

()]] dslxl

< (s)|] dsllxll
0gisn-1"it/n
< sup  sup ﬂ——(s)”*-llxum

O<ign—1 0gss+

< sup sup [IC,lI4 Ile”"ﬂ"‘llell—llxlla

0<ign-1 O0<s<T
P T -
<lIC,tA,llet °"’HB,H;c2IIf 270, 715

which results in

(7 - @)™ azssl
1 K;
< IC, A, e FIB lcyr= = =2, m
f n n
Proof of Lemma 5

If D 11 comes from the hftmg of a MIMO G, then D11
operates on vector signals, i.e., Dy: L2[0,7] = L2[0, 7).
The induced norm of such an operator is bounded above
by the maximum row sum of the matrix of the L0, 7]}
induced norms of the SISO subsystems. We will prove the
lemma- as if D,, is scalar, the MIMO statement follows
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from the fact that if each entry in the matrix of norms
tends to 0 separately, then the maximum row sum will also
tend to zero.

The L0, 7]-induced norm of an operator & given by a -

_kernel function (1, 5) is

lll = sup

Osi<~t

/Tlﬂ(t,s)lds.
0

The kernel function of ﬁll is given from (1) by
Dylt,) = Ce**™91,_,\B,.

The operator D, = (%.%,)D,,(%,) has a kernel func-
tion which is piecewise constant over squares of width 7/n
in [0,7] X [0, 7], in particular, for t =f + ir/n and s =
§ +jr/n, 1,8 €[0,7/n]

n +1
D,(z,5) = —CxeA”/n(-[(: " -Ardr)l(i-j-l)Bv
JjT/n

where 1., is the unit step function with a discrete parame-
ter. We now compute

”ﬁu - 5 ”
= sup fIDn(t s) = D,(t,5)|ds

Osts~
n-1
(j+Ds/n
sup sup ):/
O0<izsn-1 0st<7/n j=0  j7/n

|By(e,s) = D,(t,5)|ds

(j+ D,
sup sup Z f’ /”
Poj=0"is/n)

_’Cl(eA(i(f/n)+?—s)1(t_s) - %eAi(r/n)

) RECar 1’) & l “
jz/n)

j+1)
< ICHIB,] sup 347/ sup z (e 1e/n

Foj=07i/n)
A(f -
-”e (¢ S)l(t—s) —

"/’(j+ l)f/ne
Hz/n)

“ATdrl_j-y|l ds
< IC, 1B, lle" sup sup
i :
. Z (]+1)T/HH A(f‘i’)
j=07iz/n) 7

_f(j+ Dr/n
z/n)

+ [7eAi-9) ds}
0

e~ dr|| ds
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where the last term represents the case i = j. From (20) in

Appendix B, we can bound

f(j+l)‘./nll€'4(i-:)"‘ f‘f(j+l)7/ne—Ar-drlld.$
H=/n) T {x/n)

T -
< —||eAG=i/m) _ p=aj/m)
n

1 .
+ —[ sup [ deA|
2| jteymygs< (i Deyn
TZ
+ sup lAe= " l| =
Hr/n)sr<(j+1)r/n n-

2
T :
< ;euAu/(r/w“eA: — Il + || Aljetare

-2
i

oz

n

< eltr| Z(ear _ 1) 4 HAHT—;).
n n

Substituting back yields

1B, = DIl < IC, [ 1B, lle*1 sup sup

i 4

j=0

i-1 )
{ z (:(e""""‘ 1 + IIA!IZ?) + 1}
n n -
< IC, 1B, [le?141

T . ,‘_2 ~
-{—-(e”"‘"’ - D+ [ All— + }
n n

7
n

APPENDIX B
Integral Inequalities

Let F(t), F(t), F,(¢t) be differentiable matrix valued
functions. Some useful bounds shown below can be estab-
lished by using the formula

: dF
F(t) = F(a) + [ — () ds,

4

a
and some manipulations involving cancelling common fac-
tors and bounding the norm of an integral by the integral

of the norms. Note that in the following bounds, [ -] is
any matrix norm provided that the same norm is used on
both sides of the same inequality,

[ bl!;;—i—;( [F) ds) - F()||

d

(b —a)’ F
< — <r)u) (18)

< —2'—( sup ||

asrsh

T , 1(.r T,
[T F ) - ?(/0 F(s)ds)([o F(r)dr)”
. aF \~
S2T’( sup ”——”) (19)

1
fab”Fl(:) - m(j;bFz(r) dr)” dt

<Ib - allF(a) - Fy(a)l

1 dF,
+3| s 1520

2 asr<b

dF,
+ sp |20

ast<b

b ~ g’ (20)

Completion of Proof of Lemma 4-a)
Claim: c, is independent of n.

Proof: We will construct ¢, as an upper bound on the
norm of the left inverse to ;. This is done by taking the
pseudo-inverse as a left inverse to %, and finding a
bound on its norm that is independent of n. The pseudo-
inverse to &, is (&, %,)"'%,, and note that the inverse
exists since 4, has full column rank. We first bound
(&, ,)~"|l. From the definition of 4, we have

n-1
'@)‘g); = E eAir/nip(T/n)BlB;\PI(T/n)eA'i‘r/n.
i=0

Denote the controllability Grammian over the finite time

T, by

W, = fo e“'B, Bje”" dt.

LR U 8 b v e e
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We will first show that (n/7X2,F.) " — W.

1w, - 2@,
= [[/(;Te”“BlBiéA'i dr

nn-l ) N
— = % et /m U (r/n) B, Bi¥ (x/m)ed /|
' i=0

- ” Z f(l-rl)‘r/n ’“BIB’Ie"“dt

i=0 “iz/n

n n-1 . .
-= Y, e*"/"¥(z/n)B,B\¥'(r/n)e /|
T i=0

A

n—1
Y “eAif/n(/"/”eAiBlB:IeA'idf) eAiT/n
jo= 0
n v
- :e"’”/"‘I’(T/n)BIBi‘If’(T/n)e" =/l

n—1
; T/ 42 ;4 g
< Z eZl!A!lw/n”f eArBlBleArdt
P 0

- t(fo g As ds)B B'(for/"e"" dr)l]

1

3

Z e-l]Alllf/nz_._
i=0

IA

2
-1 sup |B,ll Il Allet4N (@2))
1

0sis/n

where the last step is a consequence of formula (19).
After bounding e214l7/n < ¢214I7 and summing to yield a
factor of n, (21) becomes

-3

1, - 2@, @l < 2 M UBIFILAI S =21,

where M, is a constant. Now, since (n/ 7)(.93’,, .%’,’,)"-_—;°° Ww,,
it follows that ((n/7)®,&)"1"> W' [18, theorem
10.12]. An explicit bound (for large n) on the norm of
(n/7),2.)"" in terms of the norm of W ! can be
constructed in several ways, one way is by [18 theorem
10.11] .

n n
ll(:ﬁnﬂg) | < W+ w3 v, - (;gn%'z)”
n
+ 2w P WL - (:z,.v@;){lz

<IN+ I PM, + 20w 1PME
=M,,

for n* > 2M W . To take care of the case of n
such that n? < 2M,[[W |, note that is only a finite num-
ber of such n’s, and let M; be the maximum of
i((n/+)B,.)" || over this finite set of n’s (note also that -
(&, .)~ |l exists if n > n, and 7/n is not a pathological
sampling period). Letting M, = max{M,, M}, we obtain

~1|:

I(2a) 1 <0, o0 <

V¥n > n, such that 7/n is not pathological. Finally, to find '

(2,.) ' |I, note that this is the induced norm from

1M(n) to R with the |- ][, norm, i.e., it is the maximum
column sum norm on the matrix, therefore

2207 %, < (=207l
¥ G/ (e*/m ™ B, - B

1 Cr/m) ] ma

A

(.2,

(et e e B

n.oT 4
< —M,—elir/n glAlr| B |
T n

< M, 2Bl =: ¢,

since [[W(r/m)ll = llf5/" e asll < [§/" el ds < f5/"
e/ ds < (7/n)el417/% This yields the desired bound
¢, which is independent of x. !
Existence of Preadjoints

Given an operator H: X* — X*, where X* is the dual
of some Banach space X, its preadjoint *H is such that
*H: X - X and (*H)* = H. Not every operator has a
preadjoint, but the operators that we are dealing with do.
For example, B;: L7[0,7] — R" has a preadjoint *B;:
R™ — LU0, 7]. Let B,(s) denote the matrix valued kernel
function representing the operator BI, it is very easy to
check that the operator from R" to L'[0, 7] given by the
matrix valued kernel function Bi(¢) (here ’ denotes matrix
transpose) is a preadjoint to the operator B;.
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Abstract: Necessary and sufficient conditions for stability and
performance robustness of discrete-time systems are provided
in terms of the spectral radius of a certain nonnegative matrix.
The conditions are easily computable and provide a simple
and efficient method for computation of the robustness condi-
tions for SISO as well MIMO perturbations. The problem of
robust controller synthesis is explored, and an iteration scheme
for controller synthesis is introduced.

Keywords: Robustness; robust stability; robust performance;
structured uncertainty.

1. Introduction

In the last decade, the control of uncertain
systems has gained considerable attention. While
system behavior is governed by precise and fixed
laws and principles, it is almost always impossible
to get an exact mathematical model for the sys-
tem due to the complexity of such systems and
the difficulty of measuring various system param-
eters and accounting for all its dynamics. As a
result, system models which partly capture system
behavior must be used, and the system to be
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= This research is supported by NSF grant ECS-9110764.
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controlled is viewed as being uncertain, beyond
the information provided by its model.

Aside from system uncertainty, one is usually
concerned with signal uncertainty. Uncertain sig-
nals model various disturbances which may affect
the system. Such disturbances are not completely
arbitrary and are usually assumed to belong to a
certain class of signals. One such class of signals
contains those signals which have a bounded L2
norm. These signals are bounded in energy. When
designing controllers with the objective of mini-
mizing the effect of these signals on the energy of
certain system output signals, the H™ techniques
provide a systematic procedure for achieving this
task. In many occasions, however, it is the magni-
tude of the disturbance and output signals that is
of concern. In this case, the class of uncertain
signals considered is that containing signals with
a bounded L® norm. In this case, the design
techniques are provided by the L' theory.

While the H* and L' methodologies provide
analysis and synthesis techniques for nominal lin-
ear time-invariant systems, they do not directly
address system uncertainty. The issue of system
robustness to uncertainty in the H™ setup has
been addressed by various researchers. Of partic-
ular interest is the notion of structured uncer-
tainty. The significance of treating structured un-
certainty is that it reduces the conservatism in the
analysis and design by incorporating information
about the location of the uncertainty in the sys-
tem. This problem has been introduced and first
studied in [13,14,3,15,4]. A robustness measure,
termed k,, which treats structured uncertainty
was introduced in [15] and a similar measure,
termed the Structured Singular Value (SSV) or
., was introduced in [3]. The computation of the
SSV, which is equal to 1/k,, can however be
computationally difficult especially in the pres-
ence of a large number of perturbation blocks. In
particular, exact computation of the SSV is in
general possible only when 3 or fewer perturba-

0167-6911 /93 /$06.00 © 1993 - Elsevier Science Publishers B.V. All rights reserved




‘

180 M. Khammash, J.B. Pearson / Analysis and design for robust performance with structured uncertainty

tion blocks are present. Computable upper and
lower bounds can be used to obtain estimates in
the case of more than 3 blocks.

Robustness in the L! framework in the pres-
ence of norm-bounded perturbations has also
been addressed. In [1] necessary and sufficient
conditions for stability robustness were provided
in the presence of unstructured perturbations, i.e.
for one perturbation block. In [6,7] the problem
of minimizing, in the presence of unstructured
uncertainty, the worst case norm of the sensitivity
function subject to stability was addressed, thus
adding a performance requirement. An exact ex-
pression for the worst case norm of the sensitivity
function was provided, and it was shown how
controllers which minimize this expression can be
designed while achieving robust stability. These
results were generalized in [8,7] where necessary
and sufficient conditions were derived for stabil-

ity robustness in the presence of structured

norm-bounded uncertainty, and therefore an ar-
bitrary number of perturbation blocks can be
treated. These conditions were given in terms of
the region in which a system of inequalities has
its solution. The system of inequalities is com-
pletely determined by the interconnection of the
nominal system at hand and stabilizing controller.
Even though conditions for stability robustness
are important in their own right, they also give
conditions for performance robustness. This has
been demonstrated in [8] where it was shown that
a performance robustness problem can be con-
verted to a stability robustness problem by adding
a fictitious perturbation block to represent the
performance. The conditions for stability robust-
ness which result are exactly those for perfor-
mance robustness for the original problem. In
this paper we establish a connection between the
conditions for stability robustness and the spec-
tral radius of a certain nonnegative matrix. The
use of the spectral radius conditions allows one
not only to obtain numerically efficient ways for
determining when a certain system achieves ro-
bust stability and performance, but it also pro-
vides the means to design robust controllers for
any number of perturbation blocks. This is
achieved by an iterative scheme for controller
synthesis similar to the D — K iteration in the u
theory. The results in this paper have been previ-
ously presented by the authors, without any of
the proofs, in [10,9].

2. Notation and preliminaries

We use R* to denote nonnegative real num-
bers.

Since we will be working with signals with
bounded magnitude, the class of signals of inter-
est will be .z=. It is the space of all bounded
sequences of real numbers, i.e. x = {x(k)};.o €¢°
if and only if sup, | x(k)| <. If x belongs to s
then |

| x lle = sup | x(k)I.
k

We will be dealing with vector signals with each
component belonging to ¢%. The class of such
signals will be denoted by £; where n is the
number of components. Given x = (x,,...,%,) €
[

| x lle = max || x; lle.
]

Given a stable linear shift-invariant system
(LSI), its impulse response will belong to ¢ 1 the
space of absolutely summable sequences. Ifxee!
then

Ixlly= X x(k)| <e.
k=0

The & norm, |- ll., of a z-transform of an 2!
sequence, is the /! norm of that sequence. So
for an LSI system, this will be the ¢! norm of the
impulse response of that system. This is a mea-
sure of the maximum amplitude gain of the sys-
tem or the induced #= norm of that system. For
a system matrix, the &/-norm is the maximum row
sum of individual SISO entry norms. Inthis paper,
whenever the & norm is used, it is assumed that
the quantity whose norm is taken is the transfer
function of a certain LSI system.

We will be dealing with perturbations of
bounded norm. We use A?*4 to denote the set of
admissible perturbations. In the set of all opera-
tors mapping £; to /;, with induced /* norm
less than or equal to one. Hence,

AP*Y = {A: A is strictly causal

1 oo xR
and su s
S Txla
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If p=g=1 we will refer to this set as A. A
related set is

D([(P1> 415+ (Pa» 42)])5

the set of all diagonal operators of the form
A =diag(4,,...,4,) where 4, € A?>% If p,=g;
=1 for all i, we refer to this set as @(n). It
should be noted here that the perturbations are
allowed to be time-varying and nonlinear. The
results of this paper will remain true if the per-
turbations are restricted to be linear and possibly
time-varying, or if the perturbations are restricted
to be time-invariant but allowed to be nonlinear.

For the remainder of this section we collect
some of the results available on nonnegative ma-
trices which will be used later on in this paper. A
matrix A is said to be nonnegative if all its
entries are nonnegative. In this case, we write
A>0. By A>B, we mean A —-B>0. We now
state the following definition.

Definition 1. An n X»n matrix A4 is reducible if
there exists an n X n permutation matrix P such
that
PAPT - All Al2

0 Ayl

where A4;, is an r X r submatrix and A4,, is an’

n —r Xn—r submatrix, with r <n.

A matrix which is not reducible is called irre-
ducible. Irreducible nonnegative matrices have a
variety of interesting properties. Among these is
the following theorem which is a consequences of
Perron-Frobenius theory for nonnegative matri-
ces (See [S])

Theorem 1. Let A =(a,;) be a nonnegative square
matrix. Then

(1) A has a nonnegative real eigenvalue equal
to its spectral radius, p(A).

{2) To p(A) there corresponds an eigenvector
F=0. If A is irreducible then 7 > 0.

3> p(A) is a monotone increasing function of
any of the entries of A. If A is irreducible, the
monotonicity is strict.

(4) Letr;>0 fori=1,...,n. Then

“ 1 n
p(A) = m‘ax_ ): Tia;;
i j=1

(5) mm Z a; <p(A) < max Z a;

i=1 i jel

3. Problem setup |

We start by setting up the robustness problem
for LSI systems. Consider the system in Figure 1.
In the figure, &, is a nominal LSI plant. € is a
LSI controller stabilizing &,. For the analysis
problem, ¥ is assumed given and fixed. M repre-
sents the nominal part of the systems composed
of the nominal LSI plant and the LSI stabilizing
controller. M can be either continuous-time or
discrete-time. We will assume it is discrete-time,

- although the results carry over with obvious mod-

ifications to the continuous-time case. w repre-
sents the unknown disturbances. The only as-
sumption on w is that it is bounded in magnitude,
i.e. w belongs to the space 7%, and we assume
that [|wl.<1. 2z, on the other hand, is the
regulated output of interest. 4,,...,4, are the
system perturbations modelling the uncertainty.
Each perturbation block 4, is causal and has an
induced ¢%-norm less than or equal to 1. There-
fore, each 4, belongs to A”*%, Whereas M is
given and fixed (at least in the analysis problem
where a controller is given), each perturbation

Lt it b} M
w | 3 z
1 Go !
! t
] |
! 1
1 C 1
! 1
Lo o o em e o o <+
Ll |
i 1
+ Al $
! 1
1 : !
] ]
—tAn 4
| 1A
b oo om o= owe - o

Fig. 1. System with structured uncertainty.




, .
| . . .

182 M. Khammash. J.B. Pearson / Analysis and design for robust performance with structured uncertainty

block. 4, is allowed to vary over the set AP*4i
The combined effect of all perturbation blocks
can be equivalently captured by one perturbation
block, A, which has a diagonal structure. 4 now
belongs to the class

9([(171, ql),---,(pn’ qn)])

With this setup in mind, the system is said to
achieve robust stability if it is ¢~-stable for all
admissible perturbations, i.e. for all -

a4 E@([(pl, Q1),---’(pn’ Qrt)])'

It 'is said to achieve robust performance if it
achieves robust stability and at the same time
| 5., Il <1 for all admissible perturbations,
where 5, is the map between the input w and
the output z. Note that when the perturbation 4
is zero, | 7, |l is the induced ¢~ norm of the
nominal system and is equal to the /! norm of
the impulse response of the map 57,,.

Next, we briefly discuss the relationship that

exists between stability robustness and perfor-

mance robustness. When M is time-invariant, it
was shown in [8] that a certain interesting equiva-
lence between stability robustness and perfor-
mance robustness holds. More specifically, a per-
formance robustness problem can be treated as a
stability robustness problem. Consider the two
systems in Figure 2. The first system in the figure,
System I, is that corresponding to the robust
performance problem and has n — 1 perturbation
blocks. By adding a fictitious perturbation block,
Ap, where Ap €A, we get System II. System II,
therefore, corresponds to a stability robustness

problem with n perturbation blocks. The follow-

ing theorem, whose proof can be found in [8],
establishes the relation between the two systems:

AP
w z
M M
A A
System I System II

Fig. 2. Stability robustness vs. performance robustness.

- Theorem 2. System 1 achieves robust performance

if and only if System 11 achieves robust stability.

A similar relationship holds when the pertur-
bations are time-invariant and when we/? as
has been shown in [4]. As a result of this theo-
rem, we can focus our efforts on finding stability
robustness conditions. Conditions for perfor-
mance robustness will automatically follow from
the stability conditions.

\
4. Stability robustness analysis

In this section, we state our main theorem
establishing the necessary and sufficient condi-
tions for robust stability of System II in Figure 2
in terms of the spectral radius of a certain matrix
as well as other conditions. We do this in the
SISO and MIMO cases.

4.1. SISO perturbations

When the perturbations are SISO, the class of
admissible perturbations is 2(n). As a result, M
will have n inputs and n outputs. It can be
expressed as follows:

M, ... M,
M= s
M, ... M,
Since M is LSI and stable, each M,; has a pulse
response which belongs to the space ¢'. The ¢!
norm, or the & norm of M;; can be computed

arbitrarily accurately. We define M to be the
following matrix of norms

| My e My, o
M=\ :
| M,y llsr | M, Il

Defining &% to be the set of all nXn real
diagonal matrices with positive entries on the
diagonal, we can state the following theorem:

Theorem 3. The following are all equivalent:

(1) System 11 in Figure 2, with @(n) as the
perturbation class, achieves robust stabili{y.

(2) The system of inequalities: x < Mx has no
nonzero solution x € R" which satisfies x > 0.
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Gy p(M)< 1.
(4) infre g IRMRIlo < 1.

Proof. That (1) and (2) are equivalent has been
shown in [8]. To show {2) implies (3) suppose
p(M)>1. Since M is a nonnegative matrix, its
spectral radius is itself an eigenvalue and the
associated eige;nvector, say x, satisfies x > 0. The
fact that p(M) is an eigenvalue implies that
p(M)x Mzx. Since x >0 and p(M) > 1 we have
x < Mx. Thus, {2) implies (3).

We now show (3) implies (4). Suppose (3)
holds. If M is reducible, form M by perturbing
M shghtly SO that

() M >M,

) M s irreducible, and

(©) p(M )< 1.

This can always be done by slightly increasing
the zero entries in M and using the continuity of
the spectral radius to ensure the spectral radius
does not increase beyond one. The resulting M,,

being positive, will be irreducible (see [5]). If

7> 0 is the positive eigenvector corresponding to
the spectral radius of M, guaranteed by Theorem
1 then clearly

()= LA(), ¥

From Theorem 1, this implies that

E>
7-| -

n

N . 1 N
p(M.)= ,:';fo max 7,‘,-;1 r(M.);; (1)

Furthermore, M, > M implies that

inf max1 Yr ( ).j

>0 i r,j_l

2 inf max — - E (2)

>0 i I j=1

Combining (1), (2), and the fact that

UMl = max ¥ 1M, I

o=y
we have that

inf “R—IMR ”y< 1.
Ren

This completes the proof that (3) implies (4).

Finally, we show that (4) implies {(1). Suppose

" (4) is true. Then for some R €2,

"R-IMR |l <1.

From the Small Gain Theorem, it follows that
(I-R-MRA)! is ¢=-stable for all A €9(n).
But since R™!4R = 4, it follows that

(I-R-'MRR-'4R)™'

is ¢>-stable for all 4 €2(n). This in turn implies
that R~(J—MA)~'R is {"-stable for all A
2(n), which is equivalent to (I — MA)~! being
¢>-stable for all A €2(n). It can be easily seen
[8] that this last condition is necessary and suffi-
cient for robust stability of System II in Figure 2.
This completes the proof. O

The proof of Theorem 3 above suggests a way
to compute the optimal scaling matrix, R, which
achieves the infimum when M is irreducible. This
is summarized in the following corollary:

Corollary 1. Let M be as defined above. If M is
irreducible, then

inf |R™'MR|lo=|R"'MR ||,

Rex

where R = diag(F,,...,F,), with (Fys..., 7,)T being
the eigenvector corresponding to p(M) which is an
eigenvalue of M.

Proof. Follows directly from the arguments used
in the proof of Theorem 3. .0

Another fortunate consequence of the nonneg-
ativity of M is that both the spectral radius and
its corresponding eigenvector can be computed
very easily using power methods. To see this
consider the following theorem (see [18]):

Theorem 4. Suppose M is primitive (M™ >0 for
some positive integer m). Let x > 0 be any n vec-
tor. Then

) (Mm+1x)i R (Mm+1x)i
min —=———— < p(M) < max —————.
i (M7x); i (M7x);

Furthermore, the upper and lower bounds both
converge to p(M) as m — .
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This theorem can be used to compute the spec-
tral radius for large matrices by computing the
upper bound and the lower bound for the spec-
tral radius which are guaranteed to converge to
the spectral radius. Finally, if M were not primi-
tive, it can be made so by replacing every zero
entry with an £ > 0. Since the spectral radius is a
continuous function of the matrix entries, it fol-
lows that the solution of this modified problem
will approach that of the original one as £ ap-
proaches zero.

4.2. MIMO perturbations

We now discuss the case when each of the
perturbations can have multiple inputs and out-
puts. In this case, the class of admissible pertur-
bations is

D[(p1s a1);---3(Pn» 4,)]

= {4 = diag(4,,...,4,): 4, € AP},
We define
p=(py,...,p,) and gq:=(qy,...,q,)-

M can be partitioned according to the structure
of the perturbations. Hence,

Mll s e Ml"
M= :
M, .. M,

where M;; has p; inputs and g; outputs. In order
to refer to the rows of M;; we denote the mth
row of M;; by (M;;),,.

Before we discuss the next theorem giving
necessary and sufficient conditions for stability
robustness, we need some definitions. First, de-
fine

& = {(ky,...,k,): k; is a positive integer
and 1 <k;<gq;}.

From this definition it is clear that the set .Z has
exactly I17.,q; elements. To each k=
(kys-..,k,) € we define:

(M), (My,),
Mo=| s
(Mnl)k,. (Mnn)k,.

Accordingly, (M;;), will have p; inputs and one
output. Similar to the SISO case, we define

(M), N (M), L

M, = : ;
”(Mnl)k,, ”-V ”(Mnn)k,, ”3’

As has been shown in [8], it is M, for k €.%7 that
determine the robust stability of the system. This
will be expressed in the next theorem.

Finally, given R = diag(r,,...,r,) €%, and a
vector of positive integers /=(l,,...,1,), we de-
fine

Ry:=diag(ry,...,ry,.ccipyeey ).

with r; repeated [; times, i = 1,..., n. Clearly, R,
depends on both R and L.

Before we state the main robustness theorem
for the MIMO case, we need the following lemma:

Lemma 1. Let A, and A, be nXn irreducible
nonnegative matrices such that for some R € %:
(1> All the rows of R™'4,R have equal sum.
(2) The last n—1 rows of R™'4,R and
R™Y4,R are identical.
(3) The sum of the 1st row of R™'4,R is
strictly larger than the sum of the 1st row of
R™UR, i.e.

Y. (RT4;R),;< ¥ (R™4,R),;.
j=1 j=1
Then p(A,) < p(A,).
Proof. It follows from part (5) of Theorem 1 that:

Z (R_]AIR)IJ = p(R—{AlR)
j=1

<p(R"Y,R) Vi.

Let A, be any matrix formed from R™'4,R by
retaining the last n — 1 rows and subtracting posi-
tive quantities from the entries of the first row of
R™'4,R so as to make the sum of the 1st row
equal to the sum of any of the remaining rows.
Applying (5) of Theorem 1 to 4 we get that

p(R™U,R) = p( A).
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But from part {3) of Theorem 1 we have that
p(A) <p(R™'4,R).

Thus

p(R™'4,R) <p(R™'4,R)

and the result follows from the similarity of 4;
and R"4,R. O

Theorem 5. The following are all equivalent:
(1) System 11 in Figure 2, with

9[(p1, @1)i---(Pur 4]

as the perturbation class, achieves robust stability.
{2) Given any k € %, the system

XSka,

has no nonzero solution x € R" satisfying x > 0.
(3) Forall ke, p(M,)< 1.
(4) infre o IR;'MR, Il < 1.

Proof. The equivalence of (1) and (2) was dis-
cussed in [8). The equivalence of (2) and (3) is a
direct consequence of the equivalence of (2) and
{3) in Theorem 3. It remains to show the equiva-
lence of (3) and {(4). In doing that we will make
the assumption that for each k€%, the nXn
matrix Mk is irreducible. If this were not the
case, it can be made irreducible by-adding to each
entry a sufficiently small ¢ > 0. It is not difficult
to show that the equivalence of (3) and (4) for
the modified irreducible matrix implies the equiv-
alence of (3) and (4) for the original reducible
matrix.

To show the equivalence of (3) and (4), first
choose k € % such that

(MI) maxp(MA)

Now, let R = diag(#,,..., 7,) be the matrix formed
from the eigenvector correspondmg to Mk We
therefore have

o(Mz) = Z(E-'M;fe)” Vi. (3)

In fact, equation (3), together with part {(4) of
Theorem 1 and the definition of the &-norm
imply that

p(Ms) = |R-mR, |,
= inf |RVMLR, [, @

It follows from equation (4) and the definition of
the &/-norm that:

p(¥) = | R-:R, |,

<|R;'MR,|, VReZ.

Accordingly, to prove the equivalence of (3) and
(4) it is enough to show that

p(M) =| R; MR, |, | (5)

Assuming p(M;) < IIR MR, ||, we next show
that this results in a contradxcnon, and thus (5)
must hold. Without loss of generality, we may
assume the &-norm in || R lMR s is achxeved
at the first row. Defining k -(1 ky,...rk,), we
therefore have

Ll Z

le )

(6)

From equations (3) and (6) it is clear that

R™M;R and R™'M,.R satisfy the hypothesis of
Lemma 1. It follows from Lemma 1 that p(M—) <
p(M ), which is clearly contradiction. The proof
is now complete. O

p(M;) <n( IMA:

As was the case in the SISO perturbations
case, the optimal scaling matrices R, and R,
achieving the infimum can be computed from a
certain eigenvector. Here, the eigenvector used is
that corresponding to p(M z). This is summarized
in the following corollary:

Corollary 2. Let M be the interconnection system
matrix, partitioned according to the structure of
the perturbations as shown above. Let k be such
that :

p(My) = mlfxp(Mk)-
If Mg is irreducible, then
jnt |R7MR, ||, = | R; MR, [,

where R = diag(F,, ..., F,), with diag(F,, ..., F,) be-

ing the eigenvector corresponding 1o p(Mz).

Proof, Follows from arguments used in the proof

.of Theorem 5 above.
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5. Optimal scalings and robust controller synthe-
sis

In this section we discuss the uses and some of
the limitations of the optimal scalings in the
synthesis of robust controllers. Since M forms the
interconnection of the nominal LSI system and
LSI controller it can be put in the following form:

M=T,-T,0T;

where T,, T,, and T, are stable and depend only
on the nominalplant. Q, is a free parameter to
be chosen from the set of all stable rational
function and determines the controller according
to the Youla parametrization. In the analysis
problem, Q is fixed and, as a result, so is M. For
synthesis, we will need to find an appropriate O
which results in a controller providing satisfactory
robustness properties. The robustness synthesis
problem for SISO perturbations can thus be
stated as follows:

Find

inf p(M
Q:&b!ep( )

= . . -1 _
Q:gf)leklgfg"R (T, - L,OT,)R|,.

The spectral radius is a nonconvex function of
Q and so it is not clear how the optimization
problem in the left hand side of the equation
above can be solved. The optimization problem at
the right hand side of the equation involves a
norm minimizatien, and therefore the following
iteration scheme can be used:

1. Set i:==1, and Ry:=1.
2. Set ‘

Q;=arg inf | R7A(T, - TL,OT) R,y [la-
Q stable
3. Set
R" = argkig‘; ” R-I(Tl - TzQiT3)RlL¥'
4. Selt i:=i+ 1. Go to step 2.

The optimization problem in the second step
of the iteration involves solving a standard ¢'
norm minimization problem. This problem has
been discussed in [2,11,12,16,17] and software

packages for its solution exist and involve only
linear programming. The optimization problem in
the third step involves computing the eigenvector
of a certain matrix as shown in Corollary 1 and
can be solved easily. Furthermore, it is clear that
this iteration converges since the infimum values
obtained in the consecutive application of steps 2
and 3 will be monotonically decreasing and
bounded below by zero. It is also clear that the
iteration procedure can be terminated at step 3
whenever a desirable robustness level is achieved
as indicated by the value of the infimum at that
step. It should be pointed out at this point that
this scheme is similar to the D ~ K iteration in u
theory. One main difference is that the scaling
matrices here are constant (i.e. non-dynamic) as
opposed to the frequency dependent scaling ma-
trices which arise in the u case. As a result, the
optimal scaling matrices here are much easier to
compute. Having mentioned that, it is important
to keep in mind the main difference between the
two approaches: the type of perturbations consid-
ered here are norm-bounded possibly time-vary-
ing, as opposed to the norm-bounded time-in-
variant perturbations considered in u theory.

Before we end this section, we make some
remarks about the convexity properties of the
synthesis problem stated above. While

|R=(T, - T,QT)R],

is not convex in R, when R is replaced by exp(X)
with X = diag(x,,..., x,,), where x; €RR then

llexp(=X)M exp(X) Il

will be convex in X. This is a direct consequence
of the definition of the & norm and the convexity
of exp(-). This fact is not used anywhere since the
optimum eigenvector can be computed directly by
computing the eigenvector corresponding to the
spectral radius. It is easy to show that

|R-YT, - T,OT:)R|,

is convex in Q when R is fixed. Unfortunately, it
is not convex in both R and Q, and one cannot
conclude that a local minimizer for this problem
is a global one. In fact there are no guarantees
that the iteration converges to a local minimum
as it may get stuck at a saddle point. Numerical
experiments show that the iteration scheme can
significantly reduce the spectral radius for many
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problems, resulting in a controller with satisfac-
tory robustness levels. At the same time, there
are examples for which the final iteration limit is
not small enough, and other initial scaling matri-
ces give much better results. In the worst case,
the above iteration scheme can be effectively
used as a starting point to get solutions which can
be further refined using other techniques. This
remains an interesting topic for future research.

6. Conclusion

We have shown that certain robustness condi-
tions obtained by the authors in a previous work
are closely related to the spectral properties of
certain matrices. This sheds a new light on the
robustness analysis problem with structured un-
certainty, provides new and more efficient meth-
ods for the computation of the robustness condi-
tions, and provides new directions for exploring
the robust controller synthesis problem.
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Abstract: In this paper we pose and give a complete solution to an analog of the 22 problem for sampled-data system. We
motivate and develop a natural generalization of the J#2 cost to periodic systems, which is then applied to the continuous-time
closed-loop mapping in a sampled-data control system. It is shown that the cost criterion developed is actually a norm in an #?
space of Hilbert—Schmidt operator valued functions. We give state space solutions to the optimal and suboptimal controllers
synthesis problems in this new norm by establishing an equivalent standard #? problem.

Keywords: #2-optimization; sampled-data systems; periodic systems; lifting technique; infinite dimensional systems.

Introduction

We consider control systems made up of a continuous-time time-invariant generalized plant and a
discrete-time time-invariant controller connected together in feedback by sample and hold devices.
Figure 1 shows this arrangement which is a sampled-data control version of the so-called ‘standard
problem’. We call the mapping from the exogenous input w to the regulated output z, the closed-loop
mapping T, .. One generally desires to synthesize a controller such that some norm of the closed-loop
mapping is minimized or kept small. When T, is time invariant, the more popular norms to minimize
are the L', #™ or the #? norms.

In the sampled-data system of Figure 1, 7, , is not time invariant but is periodically time varying due
to the presense of the sample and hold devices. It is necessary to deal with sampled-data systems as time

Hr p— C 's‘r

Fig. 1. Hybrid discrete /continuous-time system.
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varying, if one is to consider their continuous time (e.g. inter-sample) behavior, to emphasize this fact we
call the system in Figure 1 a hybrid system. In the case of the L' or the #> problems, there is little
ambiguity in generalizing the problem statement to include time-varying systems. The L' and 2~
problems have been originally motivated as those of minimizing the L* and L? induced norms
(respectively) of systems, and it is natural to pose the problem of minimizing these induced norms for
time-varying systems.

The 72 problem, on the other hand, is normally stated for time-invariant systems, and there is no
immediate or widely accepted generalization of this norm to time-varying systems. There are several cost
criteria which can be proposed that are equivalent to the # 2 cost when specialized to time-invariant
systems, but are different when applied to time-varying systems. Recently, [3] considered a problem
where the L? norm of the response to a delta input is minimized, and [2] considered problems similar to
minimizing the L? to L* and the L' to L? induced norms respectively.

In the following section, we will present a different generalization of the 7 2 cost which we will argue
is the natural one. We review the deterministic set up of the # 2 problem and from it motivate a
generalized deterministic time-varying problem, then we derive an expression for the generalized cost for
periodic systems in terms of their lifted equivalents. We then recall the stochastic interpretation of the
#? problem and show that the proposed generalization has a natural stochastic interpretation as well. In
the second section, we solve this new #Z 2 problem for sampled-data systems by establishing an
equivalence between it and a standard discrete-time time-invariant #2 problem .

Sampled-data systems are periodically time- varying in continuous time. The analysis of periodic
systems is greatly simplified by the use of the lifting technique, which provides for a strong equivalence
between continuous-time periodic systems and a certain type of infinite dimensional but time-invariant
systems. Now we recall very briefly some facts about the lifting framework from [1], [2], we refer the
reader to these papers for the full details. A continuous-time -periodic_ L2-stable linear system G can be
put in correspondence with a discrete-time shift-invgriant system G which acts on L0, v}-valued
discrete-time signals, i.e. signals in the space ¢, G is called the lifting of G, and it has infinite-di-
mensional input and output spaces but a finite dimensional state space (of the same dimension as G); for
lack of a better term, we will abuse terminology by calling such systems infinite-dimensional. The system
G is represented by a convolution sum in terms of what might be called its operator valued ‘impulse
response’ sequence {G;}). For each i, G; is an operator on L2[0, 7], and the system G acts on a signal
{ﬁi} Elfzm',] by

i
9=Gﬁ, 9i= Z Gl-jﬁj°
j=0

The gen;ralized #? cost we define will take on a very familiar form when viewed in terms of the lifted
system G.
1. Generalizing the #? cost to time varying systems
1.1. Deterministic setup
Let us begin by stating the #2 problem for scalar time-invariant systems. Let G(t) be the impulse

response of a scalar time-invariant system (strictly proper, we assume this from now on) which we donate
by G. The #? norm of the system is defined by

1G1132:= [:(G(z))2 dr. (1)

1 After this work was completed, we received (5], where the same problem was considered.




B. Bamieh, J.B. Pearson / # 2 problem for sampled-data systems 3

. This norm is usually interpreted deterministically as the norm of the response to a fixed input. If by G[u]

we denote the output of the system given input u, then we have

IGlI3:= IIG[8]IZ,

where the input & denotes the delta generalized function &(¢), and L? is the Hilbert space L?[0, ). Thus
the #2 norm of the system G is the L? norm of its response to a single input. This interpretation of the
#2 norm breaks down in the multivariable case. If G is a multivariable time-invariant system and G(¢) is
its matrix-valued impulse response, the #2 norm is defined by

IGll32:= tr(f:G’(t)G(t) dt). 2)

The norm so defined cannot be given the interpretation of the L? norm of the response to a fixed input.
However, a slightly different interpretation can be given as follows; if by &' we mean the vector signal
which has a delta function in the i-th position and zeros in the other positions, then the definition given
in (2) is equivalent to

n
IGI2:= X IG[&]lI, | 3)
i=1

where n is the number of inputs of G. So the #2 norm is the sum of the squares of the L? norms of the
responses to n different inputs; it will be more useful for us to think of this sum as a square average. The
set of n inputs ‘excite’ every input channel of the system, and then a square average is taken of all the
norms of the different responses. Note that (3) does not exactly represent an average since a factor of
1/n is missing, thus it is actually a multiple of the average, but since we are only interested in motivating
an interpretation of the #? norm, we disregard this difference. If we had used a single input such as
x8(t), where x is some vector in R”, then this input excites the system in only one ‘direction’, namely that
of x. Thus, (3) characterizes the #2 norm as the square average of the norms of the responses to a certain
set of inputs, where the set of inputs are chosen so as to excite all ‘parts’ of the system.

The generalization of the #2 cost which we will give is motivated by the interpretation just given for
the #2 cost of a multivariable system. We start with the case of periodic systems. Consider a scalar but
r-periodic system G described by its kernel (time-varying impulse response) G(t, s), which is a
doubly-periodic function in ¢ and s. The response of G to the single input 8(¢) is given by G(t, 0). Since
G is not time invariant, this response G(¢, 0) could be very different from the response to 8,(1) = 8(t — h),
a delta applied at some other time h. Since the system is 7-periodic we can think of applying many
different inputs 8, to excite the different ‘parts’ of the kernel G(t, s). Since G(t, s) is a r-periodic

.function of s, it is completely determined by its responses to the inputs §,, for 0 <k < 7. So by analogy

with the multivariable time invariant case, our set of inputs for a r-periodic system is {5,; 0 <k < 7}, and
the generalized /#2 cost should be the square ‘average’ of the L? norms of the responses to inputs in this
set. Formally, given a scalar r-periodic system G, its # 2 norm is defined by '

1 .-
IGlI22:= - [o I G[8,]11% dh.

Thus the ‘average’ is taken by integration. Note how this definition reduces to the standard # 2 norm if
the system is time invariant, since || G[8,]ll ;2 is a constant function of A if G is time invariant. In terms
of the kernel function G(¢, s) we have

IGll32= %fofll G(-, h)llf dn = %[0’([:(6(:, h))* dt) dh.

For a multivariable system G, the appropriate definition is then

IGll32= %j:tr(j:G'(t, h)G(t, k) dt) dh. (4)
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1.2. The #? norm for periodic systems

The definition given earlier in (4) takes on a form very similar to that for time-invariant systems when
viewed in terms of the lifting of periodic systems. In fact, we will show that the generalized cost is a norm
in an #?2 space of operator valued functions.

To set this up, we first need to review some facts about Hilbert-Schmidt operators. The theory of
Hilbert-Schmidt operators generalizes notions related to the Frobenius norm for matrices. The space of
n X m matrices is the linear space of all linear operators from the Hilbert space R” to the Hilbert space
R™. We denote it by Z(R", R™); as such, it is a Banach space if given the induced norm. Z(R", R™) can
also be viewed as a Hilbert space if given the Frobenius norm

IAIZ =Y a2 =tr(A4). ' (5)
i
The inner product corresponding to this norm is given by
(A, B) =1tr(A'B).

With this norm, .Z(R", R™) is isometrically isomorphic to R"*™. The Frobenius and induced norms are
related to the singular values {o;} of a matrix A4 by

A4l = max o, | ANE =tr(A'A) = Lot (6)

thus both norms are in some sense measures of the ‘size’ of a matrix in terms of its singular values. In
this notation, the /#2 norm of a time-invariant system given by its matrix valued impulse response {G(z)}
is given by

IG1122:= tr(/:G’(t)G(t) dt) =[0°°tr(c'(t)c(r)) dz=j0°°uG(z)nF2 de,

or if {G,} is the matrix valued impulse response sequence of a discrete-time system, then

IGlI32:= ): tr(G!G,) = 2 I1G;1I¢ = —gStr(G (2)G(z)) dz= —-g;Snc;(z)nF dz, (7)
i=0 i=0
where the last two equations are in terms of the z-transform of G, denoted by G(z).

Now let H,, H, be two Hilbert spaces, the space #(H,, H,) given the induced norm is a Banach
space. The class of Hilbert-Schmidt operators is a subspace of Z(H,, H,) which can itself be endowed
with a Hilbert space structure using a norm which is generally different from the induced norm. Let us
conzsider operators in .Z(L2[0, 7], L%][0, 7]) which can be represented by matrix-valued kernel functions
as

y=Ku, uel?[0,7);yeLi[0,7], () =fTK(t, s)u(s) ds.
0
Such an operator is called Hilbert-Schmidt (HS) if
IIKII§s==ffthr(K'(t, s)K(t, s)) dt ds <o, (8)
0’0
and the HS norm is given by the above equation. It can be shown that with this norm, the set of HS
operators is a Hilbert space. We denote this space by HS(L?[0, 7], L2[0, 7]), or simply HS. In our

particular application, the operators we will consider on L*[0, 7] will be represented by kernel functions

2 Throughout this paper, we use the same symbol to denote an operator and its kernel function representation, e.g. K and K(t, 5)
above.
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K(tz, s) which are bounded on [0, 7] X [0, 7] and thus are immediately HS. The relationship between the
Frobenius and the HS norms is made clear by the following facts [4, Example X1.2.20]. Let K* denote
the adjoint operator to K, if K is a HS operator, then K *K is a compact self adjoint operator, and being
compact, it has a countable number of exgcnvalues Furthermore, its eigenvalue sequence {A(K*K )} is
summable, that is

trace(K*K) = Y A (K*K) <o,
i=]

where the ‘trace’ defined above is called the trace norm. Note that we use ‘tr’ to denote the trace of a
matrix, while ‘trace’ denotes the trace of an operator. Our use for the notion of a trace of an operator is
based on the following relationship between the trace of K*K and the HS norm of K [4, Example
1X.2.20]:

Il K lI3s = trace(K*K) = ¥ A,(K*K). 9
i=0
In the space of HS operators, the inner product is given by
(G,, G,) =trace(G{G,)

A comparison between (6) and (9) shows the parallels between the Frobenius and the HS norms.

We return now to the generalized #2 norm for periodic systems. Let G(t, s) be the kernel function
of an L2-stable periodic system. We make the assumptlon that it is a bounded function on bounded
subsets of R2. Recall that the lifting of G, denoted by G, is a discrete-time time-invariant system acting
on L0, 7}-valued signals. The impulse response of G is the operator valued sequence {G,), where the
kernel representation of each operator is given [1] by

G(i, §)=G(i+ir, §), i, 5€e][0, 7).
Recall (4) defining the #2 cost for a periodic system
1 - @
IGliz2=— tr( G'(t, h)G(t, h dt)dh.
Fi= = [l [ G'(r, G(s, h)

After rearranging the right hand side in terms of the lifted components {Gi}, we get

IIGII,yz=—/ tr():fc(t+n h)YG(i+7i, h) dt)

i=0

—lftr(z:fG(t n)G,(1, h)dt)dh

i=0

- g tr(/ (/’é;(;‘, R)Gi(F, k) th dz‘) = %i IG; s,

IH'O 0 =0
AL oo 1= .
G “;2?‘2 == Z trace(G,-*G,.) = — Z ” Gi ||}_2{S. . (IO)
Ti=0 T i=0

Note how this formula (10) resembles the definition of the #2 norm for time-invariant multivariable
systems (7) with the Frobenius norm replaced by the HS norm.

This new norm allows us to put a Hilbert space structure on a large class of 7-periodic systems (which
includes closed-Joop stable sampled data systems). As before, let G be a strictly causal 7-periodic system
whose kernel function is a bounded function on bounded subsets of R? (the closed-loop operator in a
sampled data system satisfies this condition). If {G,-} is the operator valued ‘impulse response’ of the
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lifting of G, then the previous condition implies that for each i, G; is HS, i.e. G, € HS(L2[0, 7], L}[0, 7).
If we form the space /s with the norm precisely given by (10) we obtain a Hilbert space. One can take
z-transforms of elements in /35 by

é(z) = E ziéi’
i=0
and following [7, Chapter 5], the image of /3 under the z-transform is exactly #2s, which is the #?
space of HS-valued functions that ar analytic in the unit disc with the norm given by

1G(2) Il #2= '2};96" G(z2) lius dz = 51;¢tram(é*(z)é(z)) dz, | (11)

where the integral ¢ is over the unit circle. The z-transform affords an isometric isomorphism between
ks and #%s, thus this identification justifies calling this new norm an # 2 norm. The striking similarity
between the expressions for the #}A norm (10), (11) for periodic systems, and the standard #? norm
for time-invariant systems (7), argues that this is the natural extension of the # 2 norm to periodic
systems.

1.3. Stochastic interpretation

Let {u(t)} be a zero mean stationary white noise stochastic process defined on the time interval
(-, +w). If {u(2)} is the input to a stable linear time-invariant system G, then the output process
y = Gu, is stationary and the variance at any time is equal to the #Z 2 norm of G:

tr( E{y(t)y'(1)}) = IGl 32

Thus the #2 norm is usually given the interpretation as the variance of the error resulting from an input
of white noise.

If the input is a white noise process on the time interval [0, ), it is no longer stationary and the
output is also not stationary, and the variance of the output process depends on time. In this case the # 2
norm is the steady state value of this variance, i.e.,

lim tr(E{y(1)y'(1)}) = IG i3>
The above expression leads to a possible definition of the generalized # 2 cost when G is time varying.

In this case the output process is no longer stationary, and one might think of defining the cost as the
‘asymptotic average’ of the output variance (AOV) by

AOV = Tim — [M(E(y(1) d
= — |t t)y' (¢t t.
Jim = [Ta(E(y(1)y' (1))
We will see that AOV is the generalized #2 norm previously defined for periodic systems.
Let G be a causal time-varying linear system that is given by its kernel function G(t, s). If the input

{u(2)} is a white noise process supported on [0, ®), then the output process y has a correlation function
given [6] by

E{y(1)y(t2)} = Ry(11, 12) = ['G (81, 1)G' (12, 1) dr.

Note that R(t,, t,) is thus equal to the kernel of the operator GG*. From the above equation the

- expression for AQV is

. 1 M ' . 1 m t ,
AOV=A£1_rp”-A—4f0 tr(R,(1, 1)) dt=A}1anﬁj; tr([oc(t,r)a(:, r) dr| de. (12)
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The above expression can be interpreted in terms of the Hilbert—Schmidt norm defined earlier. For a
linear operator A:L20, ®) - L2[0, ), denote by IT,,(A) the ‘truncated’ operator II)(A):=
I 20 4y A | L30.m}. If the operator A is represented by a kernel function A(t, s), it then follows that the
operator IT,,( A) is represented by the ‘truncated’ kernel function, i.e. A, s) for t, s €[0, M]. In light
of this fact and the definition of the HS norm (8), (12) can be rewritten as (after adjusting the limit of
integration, since G is causal)

1
AOV = lim —1111,(G) NAs- (13)

We note that the above expression is valid whenever the limit exists. One can take equation (13) as a
definition of the generalized #2 cost for time-varying systems. It remains to show that this definition
agrees with that used earlier for a 7-periodic systems (see (10)). First note that from the definition of the
lifting [1] (after some manipulation) we have,

n

1 2 1 A )2 -1 .2 14 2
;ll ,.(G)llas = p 1Gollas + " G, llas+ -+ +;||G,.-, s |, (14)
where n is an integer. It is now easy to show that the limit of the above expression (as n — ) is precisely
(1/7)E%, 1 G; ll3s (see Appendix), which agrees with the previously defined norm for periodic systems.
Finally we note that in contrast to periodic systems, where the generalized # 2 norm (or AOV) is
actually a norm on the subspace of r-periodic systems for which it is finite, the AOV is only a seminorm
on the subspace of time-varying systems for which it is finite.

2. Optimizing the %25 norm of sampled-data systems

We will now address the problem of optimizing the #3s norm for sampled-data systems. Since the
#}s norm has a more convenient expression in terms of the lifting of the closed-loop operator, we will
work with the lifted equivalent of the sampled-data system. Figure 2 shows the original hybrid system and
the equivalent lifted system. We will show that the #7g norm of the lifted system is equal to the # 2
norm of a certain standard (i.e. finite-dimensional input and output) system, thus converting the s
operator-valued problem into a standard matrix-valued # 2 problem.

Let the original generalized plant G (Figure 2(a)) be given by the following state space realization:

The assumptions that D,, = D,, =0 are made to guarantee that the sampler operates on continuous
signals. The assumption D;, =0 is necessary for the closed-loop operator to be strictly causal. Figure

<

Q
@

H‘r C S,— C

Fig. 2. Left (a): Hybrid system. Right (b): lifted system with discrete-time controller.
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2(a) represents the so-called standard problem, where G is the generalized plant which contains the
original plant and the systems interconnections. In our setup, the controller in the feedback loop is
constrained to be a sampled-data controller, that is, it is in the form #,C.%,, where C is a time-invariant
discrete-time system, and #,, %, are the synchronized hold and sample operators (with period 7)
respectively.

Let T, = (G, #,C%,) denote the closed-loop mapping. To work with the Z’Hs norm defined in
the prcwous section, one necds to obtain expressions for the lifting T of T,,,. This is accomplished as in
[1] by lifting the generalized plant G and adjoining the sample and hold operators to yield a new
generalized plant G (Figure 2(b)) such that & (G, C)=T,, (see [1] for the details). A discrete-time state
space realization of G is given by

(15)

with
B, 170, 7] »R*, A:R*>R%, & :R*—L0, 7],
D,: L0, 7] - L0, 7], D,:R“—L?*0, ],

where x and u are the dimensions of the state vector and the control input vector respectively, and EZ,
C, are finite matrices, and

A=e4, B, =e? 9B, C,=C,e*, D, =C, e’ 91, B, (16a)
and
2=C¥(t)B,+D,;,, B,=¥(r)B,, C,=0C,, (16b)

where 1(-) is the unit step function and ¥(¢):= f§ e#* ds. Note that the operators are given (where
appropriate) in terms of their representing kernel functions.

The problem now is to minimize the #3s norm of £(G, C). The next theorem establishes an
equivalence between this norm and the standard #? norm of (G, C), where G is a standard
discrete-time generalized plant constructed from the original problem data, and C is the same controller.

Theorem 1. Given the infinite dimensional generalized plant G (15), form the finite dimensional generalized
plant

-——, A A E’ — — CA ~ 3
BB =88r, | '|[C Du|=|. |[& byl (17)
12 Dl
Then we have
S 2 1 A 2' -~ 2 ‘
I$(G, C)llzzs= ;(”Dn"HS"' I #(G, C)ll52). (18)
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Fig. 3. Decomposition of G.

Remark. The gpe@tor_gompositions on the right hand sides of the equations in (17) yield finite matrices;
the matrices B,, C;, D, can then be obtained, for example, by Cholesky factorizations, or symmetric

factorizations.

Proof. The proof is accomplished by first performing a decomposition of G as follows: First define

o[l 2 S IS
[t 2 sledd )

This decomposition is illustrated in Figure 3. Note that with this decomposition, éoo is a finite-dimen-
sional system. We also have from Figure 3, '

F(G,C) =Dy +[¢, D)5 (G, C)Br.

To apply the definition of the #%s norm, let {T;} denote the operator-valued impulse response of
F(G, C), and {(Ty);} the matrix-valued impulse response of F(Ge, C). It is easy to check that the
‘direct transmission’ term (Tgy)y = 0. Then we have '

. D, i=0,
A6 Du](Tw) B izt
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Therefore

- |
N1#(G, C) sz = - YT s = —[HD,, las+ X tracc(T*T)]
i=0

im]

1D, ll3s + Z trace

=]

|

It is a fact that for any two operators 4 and B such that trace(A4B) <« and trace(BA) < », we have

BX(Tw); { e }[cl Dy (To) B,
12

trace( AB) = trace( BA),

since given A # 0, A is an eigenvalue of 4B if and only if it is an eigenvalue of BA. Using this fact,

-

- 1
Il¥(G, C)"}Hs= p ||Du s + Z + Ztrace((Tm) 1* [Cl Du](Too) B Bx
im] i=] 2
1] — — =
== "D11”HS+ Z tr (Too) [Cl DIZ](TOO)iBlBl
i=1]
1 Gz 5
=7 I Du||Hs+ Ztr B; (Tm) [C1 Dlz](Too).Bx
i i=1 12 i

P -
= =[IDy s+ 15(G, C) I32].
The last step is arrived at because G was constructed so that
=[[’c‘l Ba] ols, |B 0],
0 I 0 17

which means that

#(G,C)=[C, D,,|#(Gw,C)B,=[C, Dy|TwB. O

This theorem provides a method of optimizing the #35 norm of a samp]ed data system. From (18) we
immediately conclude that a controller C yields an optimum closed-loop #3s norm, if and only if it (the
same controller) is the optimum .#?2 controller for the finite dimensional generalized plant G. To
compute the #7s norm or to perform suboptimal designs, one needs to compute |} D, llus. Then we
simply have |

15(G, C)l33<y? = I15(G, C)l}32<v*r = 1Dy lifs.

Thus the #? problem for the sampled-data _system of Figure 2(b) is equivalent to a standard #2
problem for the discrete-time generalized plant G. To actually compute a state space realization of G, it
is not necessary to go through the lifting step: the formulae (16) give the matrices A, Cv, B7 directly in
terms of the matrices of a realization of the original continuous-time plant G. To obtain similar formulae
for the remaining matrices B,, C,, D,,, it is necessary to evaluate the operator compositions on the right
hand side of (17). Such compositions involve integration of functions with matrix exponentials, and can
be evaluated using the formulae in [8).
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To conclude, we brieﬂy'summan’ze these formulae. First, the composition 1§ll§,* can be evaluated
using the matrix exponential

F(r) Ta(r) Tu(r) A4 1 0
r(r)=| 0 Iy(1) Tyu(r) |= exp{-rli 0 -A BB }}
0 , 0 Iy(7) 0 0 A’

(the two matrices are partitioned conformably). From [8] it follows that
B,BY = [ e*B,B] e** ds=i(r) (7).
0

I'(r) can also be used to evaluate || D, ll4s. From the kernel representation of D,, (16) and the
definition of the Hilbert-Schmidt norm (8), we write

N T A ,
I Dy, s = tr(Cl(f [ eB,Bj e ds dt)C,’),
0-0
where the integral can be evaluated to be
[ [ e#B,B] e** ds d = i) Dis(7).
070 ’

For the other operator composition, using again the formulae from [8] we can write the kernel
function of the operator [C;, D,,] as )

[0 Buw] =16, oem{[ (1)],}[(1) 32]

(here it was assumed for simplicity that the matrix D,, = 0). The integration involved in the operator
composition is evaluated using

[—A' 0] [Cl’cl 0

-1 0 0 0] - P(7)  Pp(7)
exp 0 [A 1 T [ 0 ¢zz(7)],
0 0

where from the formulae in [8] we conclude that

I

¢ [él D-12]= 0

A *
12

Thus all the matrices in the realization of G can be computed directly from the realization of the original
continuous-time system G by elementary matrix algebra and matrix exponentiation.

I

2

' 1 0
‘1’52(7)‘1’12(7)[0 B ]
2

Appendix

We show here that as n - =, the quantity in (14) converges to (1/7)E7_, |l G, lls (for this section, we
drop the subscript || | gs to simplify notation). To this end, first note that the assumption that the limit
in (13) (and equivalently (14)) exists, implies that the sequence {|| G|} is #? summable (if it is not ¢?
summable, then the right hand side of (14) can be made arbitrarily large). Second, we check

12 1
_ ‘_ 2_ 2
. EO 1G:1I1" = —I11,..(G) I

11 . n-1 A
=—-[—llGll|2+-~+————||G,,_,Ilz+ZIIG,-IIZ. (19)
Ti{n n

i=n
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To conclude, we briefly summarize these formulae. First, the composition B,ﬁl* can be evaluated
using the matrix exponential

Iy(r) Ty(7) . Ti(r) ) -4 I 0
r(-)={ 0 () TIy(r) |=expi{z| 0 -4 B,B|
0 0 I5(7) o o0 A
(the two matrices are partitioned conformably). From [8] it follows that
B,Bf = [  ¢*B,B] e#* ds =Tii(r)n(7)-
0

\
I'() can also be used to evaluate | D,, liis. From the kernel representation of Dy, (16) and the

definition of the Hilbert-Schmidt norm (8), we write
1D, I3s = tr(c,(f’[’ e4B,B] e** ds dt)C,’),
070
where the integral can be evaluated to be
[[[ e4B,B e+ ds dr = I3y(7) (7).
070

For the other operator composition, using again the formulae from [8] we can write the kernel
function of the operator [C, D,,] as

(660 Buto]=1c, {4 1]} 5.

(here it was assumed for simplicity that the matrix D,, =0). The integration involved in the operator
composition is evaluated using

N (=8 [ o] =,[¢u(r) %(f)]
N oo 4! (T 0 ean]

where from the formulae in [8] ‘we conclude that

Cr 1 0 1 0
. DL (7)DP (7 .
[ ikz 0 Bé} 22( ) 12( )l:o }

B,
Thus all the matrices in the realization of G can be computed directly from the realization of the original
continuous-time system G by elementary matrix algebra and matrix exponentiation.

[él ‘D-IZ] =

Appendix

We show here that as n — , the quantity in (14) converges to (1/7)Z7 G, |is (for this section, we
drop the subscript || - | gs to simplify notation). To this end, first note that the assumption that the limit
in (13) (and equivalently (14)) exists, implies that the sequence {lG;ll} is ¢ 2 summable (if it is not £2
summable, then the right hand side of (14) can be made arbitrarily large). Second, we check

T

1= n 1 1{1 . n—-1 . * .
—Z:nc;,-u’—-';;unn,(c)u2 [-’;IIGIIIZ+---+—;1—IIG,,_1II2+EllGillz. (19)

T =0

i=n
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To show that the right hand side converges to zero, note that the £#? summability of {Il G, I} implies first
that for any ¢ > 0, there exists N, such that the tail sum I7_y, [1G; I 2 < ¢, and second, that there exists
N, such that (1/k)E7. 11 G; I 2 <e, for all k > N,. Now choose n = max{N,, N,}, and observe that

1= ., 1 2

i=0

n?-1
Il

o«
A A 2
Gpay 2+ X IIGH

i=n

JEATNT TN
B e | — +...+__ +-..+
rin? ! n2’ " n?

1 1 n " 2 o© . ) 1
<-|= TG+ T I61% <52,

i=] i=n+1

and since & can be arbitrarily small, the right handbside of (19) tends to zero as claimed.
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1. Introduction

Given the success of #*-norm based optimi-
zation methods for analog control systems, there
has recently been interest in applying such tech-
niques to sampled-data systems [3,4,15,18]. The
key point in utilizing such methods would be in
their extension to certain periodic time-varying
systems. An example of such a system is the
sampled-data control system shown in Figure 1
below.

This research was supported in part by grants from the
National Science Foundation (NSF ECS-8914467, DMS-
8811084), the Air Force Office of Scientific Research
(AFOSR-90-0024, AFOSR-91-0036), the Army Research
Office (DAAL03-91-G-0019). and NSERC.

The generalized plant G is a continuous-time,
time-invariant system, K, is discrete-time, time-
invariant, S is the ideal periodic sampler with
period h, and H the synchronized zero-order hold.
Continuous-time signals are represented by con-
tinuous lines, discrete-time signals by dotted lines.
The behavior of the system from the exogenous
input w to the controlled output z is in general
time-varying, in fact, periodic with period A.

To analyze the behavior of continuous-time
periodic systems, we use 2 lifting technique similar
to that used for discrete-time periodic systems in
[16]. Once we develop the lifting technique, we
apply it to describe a complete solution to the
analysis problem of verifying that a given con-
troller constrains the #%induced norm of the
sampled-data system to be less than some pre-
specified level. We will also show that the lifting
technique is applicable in fact to all norm-based
optimization problems, and in particular to sam-
pled-data versions of the quadratic regulator and
optimal filtering problems.

Given the success of J -norm based optimi-
zation methods for analog control systems, there
has recently been interest in applying such tech-
niques to sampled-data systems [3,4,15,18,25].

The purpose of this note is to introduce the
lifting technique itself and sketch how it can be
applied to two optimal control problems. To our
knowledge, such a lifting procedure was intro-
duced into sampled-data systems by Toivonen [25],
who also treats the #® sampled-data problem.
The details of the lifting in [25] are different from
those given here ([25] represents certain finite-rank
operators via SVD, which is avoided in our work).

. The mathematical basis of such lifting techniques

may be found in [21]. Reference [1] gives a de-

“tailed account of the application of the lifting

technique to the > sampled-data problem.
Yamamoto [28] also uses lifting for sampled-data

0167-6911 /91 /803.50 © 1991 - Elsevier Science Publishers B.V. (North-Holland)
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systems, but he lifts the state as well as the input
and output. Consequently, his state space is in-
finite-dimensional, whereas ours is the orginal
finite-dimensional one. Also, Yamamoto treats

asymptotic tracking problems, while optimization

problems are studied here.

While this paper was being reviewed, several
others came into existence. For completeness we
mention them here: a sampled-data 5#, problem
(different from that in [4]) in [2,17); sample-data
&, (e, &, induced norm)in [23,8]; and robust
stability of sampled-data systems in [24].

In the operator norm design framework, this
lifting technique was developed independently by
the first two and the latter two authors. Reference
[1] gives a detailed account of the application of
this technique to the #> sampled-data problem.

2. Lifting continuous-time signals

In this section we introduce a construction
whereby one may ‘lift’ a continuous-time signal to
a discrete-time one. This construction will also be
used to associate a time-invariant discrete-time
system to a continuous-time periodic one. The
utility of this technique in feedback control is that
all norms are preserved, as well as the feedback
interconnection structure.

We will first work in a rather general frame-
work before specializing to the case of interest.
Let Z denote a Banach space equipped with norm
Il ||z For every integer p > 1 we set

Lr(Z)
= {u:[O. o) > fo°°||u(r)ug, dr < oo}.

As is well-known, £”(Z’) is a Banach space with
norm

Ml = (f:llu(l) Iz dl)w.

For p = 2. #%(Z) may be given the structure of a
Hilbert space in the usual way. For p=oc, we
have
L)

= {u:[0. c) > Z: esssup|lu(r) llx< %}
(see, e.g. [22]). Finally, to each of the spaces
Lr(Z) we may associate the extended space
£r(Z) in the standard way. For all the defini-
tions see [6].

The same types of definitions are of course
valid in the discrete-time case for sequences. A
sequence will be written as a column vector, for
example,

Yo
v=|¥

Again for any Banach space %, define

() = {¢: veZ, T IvlE< oo},

im0
1<p<oo,

The norms are given by

) 1/p
||4'||/ﬂ(ar)=(2"4'i||§r) , lsp<wo,

i=0

Y == Sgp i llz-

Equipped with this norm /7(Z') is a Banach space
for all 1 <p < . Once again for p=2, (%)
may be given a Hilbert structure in the usual way
[22], and the associated extended space 17(Z)
may be defined: it is just the linear space of all
sequences in Z.

We are now ready to describe the lifting proce-
dure. For fixed &> 0 let

AP = {ueL"(&) with support in [0, h)}.
Once again X'? is a Banach space in the natural
way with norm induced by || ||, #- Suppose u 1s
an element of £°(Z’). Chop u up into its compo-
nents as follows:
ug(t)=u(r), 0<r<h,
u (1) = u(t+h2. 0<r1<h,
u,(t)=u(t+2h), 0<t<h,

etc.

Each piece. u,. belongs to X'”. Now form the
sequence

Define the lifting operator W, to” be the map
u— . It maps L/(Z)t01(XAT). We sometimes

“write just W when p is irrelevant.
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It is important to note that W is a linear
bijection from £ (Z) to [/(X'F) whose inverse

is given by
u=wlY e
u(t) =v,(t—hi), hi<t<h(i+1).

It is easy to show that the restriction of W to the
Banach space £7(2)C&F(Z) is an isometry,
L) = IP(XP).

To recap, W is a bijective linear mapping from
LP(Z) to I2(X'P), and a bijective linear xsometry
from LP(Z) o IP(X7).

Of course, one may also lift systems. Let
G: LN(Z)—»LHZ) be a linear operator. Then
the lifted system is defined to be G= WGW’
mapping /2(X'?) to 13(X?). By the lmcanty of
each of the defining operators, G is linear. More-
over, if G is also bounded ZL*(Z)—-LUZ),
then G is bounded too. Since W, and W, are
isometries, one sees that |G| = || G||, that is, the
system (operator) norm is preserved by the lifting.
Furthermore, since the lifting procedure is isomet-
ric and preserves all the standard algebraic and
feedback interconnection operations, feedback
stability is also preserved under lifting.

Now if the system to be lifted is A-periodic,
then the lifted system will be time-invariant. To
see this, introduce. the delay operator D,,, defined
by (D, f)t)=f(z—h). Gives a (causal) system
G: LINL)»LAZ), we say that G is h-periodic
if it commutes with D,, that is, D,G = GD,. (G is
time-invariant if it is h-periodic for every h > 0.)
Let U be the unilateral shift operator on se-
quences:

Yo 0
v v
ul =" V,€Z.

¥ ¥ [

It is easy to compute that W,D,W,'=U on
IP(X'?) for any p = 1. Consequently, for
G: LX) - LX) h-periodic,

S = -1 -1
UG = W, D, W, \W,GW,
W, D,GW; !

== u/qGDhu/,)—l

so G is time-invariant, Consequently, G has a
convolution representation.

Finally, we remark that all the standard results
about the discrete Fourier transform go over to
the space /2(%'). We refer the reader to [21] for
the details. This may be summarized by the fol-
lowing result.

Proposition 1. (i) The discrete Fourier transform is
an isometric isomorphism from the time-domain
space 1*(X) to the frequency-domain space 27)
(the space of square integrable Z-valued analytic
functions defined on the unit disk).

(ii) If G is a bounded analytic Z-valued function
on the unit disk, it defines a bounded operator on
X Z) by multiplication, and its induced norm
equals exactly || G || -

By the equivalence between an h-periodic sys-
tem and its lifting, this theorem provides a
‘frequency-domain’ characterization of the & Zin-
duced norm of an hA-periodic system.

3. Lifting: some examples

Now we look at what lifting means for state-
space models. In what follows, G is a continuous-
time finite-dimensional time-invariant linear sys-
tem. Its input, state, and output evolve in finite-di-
mensional Euclidean spaces. Because the dimen-
sions of these spaces will be irrelevant, they will
all be denoted by &. Thus G is considered as a
linear operator on Z2(&). Suppose it has the
realization 4, B, C, D.

3.1. Lifting G |

We begin by lifting G itself. The lifted system,
WGW™), acts on I2(X?) and consequently has a
matrix representation of the form

Gy, 0 0
GZ] GZZ 0
GJ] 632 GU




B. Bamieh et al. / Lifting techriique for linear p'eriodit systems . 81

It is important to note that W is a linear
bijection from Z(Z) to [7(X'?) whose inverse
1s given by

u=W”\p >
u(t) =y, (1—hi), hi<t<h(i+1).

It is easy to show that the restriction of W to the
Banach space &P(X)CLP(Z) is an isometry,
LAEY—=IP(X7).

To recap, W is a bijective linear mapping from
LP(Z) to I2(X°?), and a bijective linear isometry
from ZLP(Z) to IP(X°7F).

Of course, one may also lift systems. Let
G: L/(Z)—>ZLZ) be a linear operator. Then
the lifted system is defined to be G = W,GW,},
mapping /7(X'?) to I3(X'?). By the linearity of
each of the defining operators, G is linear. More-
over, if G is also bounded #?(Z)—-=>L9UZ%),
then G is bounded too. Since W, and W, are
isometries, one sees that |G || = || G|, that is, the
system (operator) norm is preserved by the lifting.
Furthermore, since the lifting procedure is isomet-
ric and preserves all the standard algebraic and
feedback interconnection operations, feedback
stability is also preserved under lifting.

Now if the system to be lifted is h-periodic,
then the lifted system will be time-invariant. To
see this, introduce the delay operator D,, defined
by (D,fX1)=f(t—h). Gives a (causal) system
G: LP(X) - LX), we say that G is h-periodic
if it commutes with D,, that is, D,G = GD,. (G is
time-invariant if it is h-periodic for every h>0.)
Let U be the unilateral shift operator on se-
quences:

Yo 0
) Yo

U = s ez
¥, 12 v

It is easy to compute that W,,D,,W,,"= U on
IP(X'?) for any p = 1. Consequently, for
G: LX) LAZ) h-periodic,

UG = W, D, W WGW,!
= W, D,GW;!
= W,GD,W, "
= WGW,'W,D,W,!
=GU.

so G is time-invariant. Consequently, G has a
convolution representation.

Finally, we remark that all the standard results
about the discrete Fourier transform go over to
the space /*(2'). We refer the reader to [21] for
the details. This may be summarized by the fol-
lowing result. ’

Proposition 1. (i) The discrete Fourier transform is
an isometric isomorphism from the time-domain
space 1*(%') to the frequency-domain space ¥ 2Z)
(the space of square integrable Z-valued analytic
functions defined on the unit disk).

(ii) If G is a bounded analytic %-valued function
on the unit disk, it defines a bounded operator on
H#HX) by multiplication, and its induced norm
equals exactly || G || .-

By the equivalence between an h-periodic sys-
tem and its lifting, this theorem provides a
‘frequency-domain’ characterization of the & Zin-
duced norm of an h-periodic system.

3. Lifting: some examples

Now we look at what lifting means for state-
space models. In what follows, G is a continuous-
time finite-dimensional time-invariant linear sys-
tem. Its input, state, and output evolve in finite-di-
mensional Euclidean spaces. Because the dimen-
sions of these spaces will be irrelevant, they will
all be denoted by &. Thus G is considered as a
linear operator on £2(&). Suppose it has the
realization 4, B, C, D.

3.1. Lifing G
i

We begin by lifting G itself. The lifted system,
WGW™", acts on {>(X'?) and consequently has a
matrix representation of the form

G, 0 0
Gy Gy O
GS! 632 633
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Starting with A, B, C, D as above, define the
operators

Q=1I-DD*, R=1-D*D
mapping ¥ to X%, and define the pencil

M
Sz)\[l _ —BROB* J

0 A*+C*DR™'B*

_[a+BRDC 0
-C*Q"'C 1y

Observe, for example, that BR™'B* maps & to &,
ie., it is a finite matrix. So S is a finite matrix
pencil. Suppose S has no eigenvalues on the unit
circle; then it must have n inside the unit disc. Let
Z_ denote the corresponding spectral subspace. It
can be represented as

X
2 _=Im ,

where X, and X, are both n X n. Assuming X, is
invertible, we can define X := X, X; '. This defines
the Riccati operator Ric: S = X and its domain.
Lemma 2.3 of [14] provides the following.

Lemma 1. | WGW™' || <1 iff the following three
conditions hold:

@ 1Dl <1

(b) S belongs to the domain of Ric;

(c) R— B*XB >0, where X = Ric(S).

To compute || WGW™! || in this way, we would
have to

- compute the matrices BR™'B*, C*Q7'C,
BR™'D*C in the definition of S,

- compute || D ||, and

- check if R—B*XB>0 for a given matrix
X.

These subproblems are similar. We will men-
tion two methods for the second subproblem. First
of all, let IT: £%(&)—X"? denote orthogonal
projection. Observe that D is the compression of
the unlifted system G to X2, i.é, D=IIG| X%
Note that the Laplace transform is an isomor-
phism of X% onto 52 6© e~ "2 Thus comput-
ing || D|| amounts to computing the norm of the
operator ‘multiplication by the transfer matrix for
G’ compressed to 2 © e~ "»#2, In [9] this com-
putation is reduced to a linear two-point boundary
value problem. See also [1]. In [10] a second,

frequency-domain (‘skew Toeplitz’) approach is

given for the computation of || D||.

In summary, the computation of ||[WGW™!||
involves the standard iteractive search of scaling,
and then using Lemma 1 to check if the norm of
the scaled system is less than one.

3.2. Lifting SG

The }deal sampling operator with period 4 is
defined by
v=Su = Y(k)=u(kh).

We shall lift SG, where G is as before except with
D = 0. Operator SG maps L(&) to I2(£); G is
assumed strictly causal so that SG is bounded on
these spaces. The output from SG is already dis-
crete-time, so we need lift only the input. The
lifted system, SGW™, acts from [2(X¥'?) to I2(&).
Its matrix is easily derived to be '

clo
where

cE- &, Ax=e"x,

A
B:a?r-e, §u=fhe"'""8u('r) dr,
(1]
C:¢6-¢, Cx=Cx.

3.3. Lifting GH
Finally, we shall lift GH, where H is the ideal
hold operator with period A, defined by
y(1)=v(k), kh<t<(k+1)h.
This is an’ operator from [2(&) to LX(&). The
input to GH is already discrete-time, so we need
lift only the output. The lifted system, WGH, acts
from 12(&) to 12(X'?) and its matrix is
[,4' B
¢l D

where

A:6-&, Ax=ex,
- . h
B:é&—e, Bv=/ e™ drBv,
0
C:&-x? (Cx)(1)=Ce"x,

D+ f’C e™ d‘rB] v.
0

D: E- A2, (Dv)(r) =
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4. Application to > optimization of sampled-data
systems

In this section we outline an application to
optimizing the & %(&)-induced norm from w to z
in Figure 1. Let T denote the linear system map-
ping w to z. If K, is internally stabilizing (suita-
bly defined) and under mild assumptions on G, T
is a bounded operator on £*(¢&). It is time-vary-
ing. Our approach is to lift T up to WIW™},
which will be a time-invariant operator on /2(X"2).
The optimization of ||T|| is thus reduced to a
discrete-time, time-invariant % optimization
problem, a problem whose solution is formally the

same as the standard discrete-time matrix-valued -

J#>= problem for which there exist solutions
[13,14,19,20]. (An alternative but equivalent ap-
proach is taken in [1] where the operator valued
#* problem is solved through an intermediate
step of reducing it to an equivalent matrix-valued
discrete-time 5> problem.)

The details of our approach are as follows.
Partition G as

G, G
G= [ 1 12]
Gy Op

and let a corresponding minimal realization be

A [8 B]

C‘I i Dll D'l2
olilo by
In Figure 1, bring S and H around and adsorb
them into G to get the setup shown in Figure 2
below. Matrix D,, is taken to be zero so that w is
low-pass filtered (through G,,) before being sam-
pled; the system could not in general be internally

stabilized without this assumption.
The system in the upper block is

Gn GnH !
SG,, SGyuH|
z w
G
y u
S | Ky |- H

Fig. 1. Sampled-data control system.

I— o Kg | :

Fig. 2.

" Now lift w and z in the previous figure to arrive

at the setup in Figure 3 below.
System P is obviously given by

P=[W o] Gy, G,ZHMW" o]

0 1|/SG, SGu,il 0 1

- [we,w' WwG,H

B [ SGyW™'  SGuH J

Realizations of the three liftings WG, W™,
WG,,H, SG,W~' were obtained in Section 3.

Furthermore, SG,,H is just G,, discretized: a
realization is well-known to consist of the four

matrices

h
e*, ['edrB,, G. Dy
0

In this way we get the realization of P,

-~

i | [B B)]

BIRE

where

DH 1312
0 b,

A: €&, Ax=e"x,

. . h

B :xX?*>¢, 31W=f e~ 4B ,w(r) dr,
)

- - h
B:6-¢, Bp=[e"drBy.
0

C:&-x? (Cix)(1)=0C e,
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C:6-6&. Cix=GCyx,
D, i XX

(Dn“")(’) =D,w(t)+ C‘j;’e“—fMBlw(“') dr,
D,: -7,
> ! (i-7)A
(Duv)(t)=Dnv+C,/0e d+B,v,

1322 €8, ﬁnv = D,v.

Figure 3 is a discrete-time setup. Iglesias and
Glover's solution [14] to the discrete-time #*
problem is in the style of the continuous-time
solution of Doyle et al. [7]. We will illustrate how
the solution of [14] can be applied to the setup at
hand by looking at the analysis problem, which is
easier than the synthesis problem. Namely, for a
fixed stabilizing K; we will show how to compute
the #?(&)-induced norm.

In Figure 3 the equations for P are

§p(k+1) ="i.fp(k) +§1Wk + ézv(k)s
Iy = 61£P(k) + bllwk + Dlzv(k)-
Y(k)= éz‘fp(k) + bzzv(k)-

Suppose K, is strictly causal for simplicity, and
its equations are

fx(k+ 1) =AK£K(k) + BK\!’(k)‘
v(k)=Cyéx (k).

Then the matrix of the closed-loop system is
AcL| Ba
CeL I D,

where A is the map from & to & given by

A BC
ACL§= i 2%K 5
LBKCZ AK
h
ehA e?A d‘l’BnC
fre e,
LBKC2 AK

B, is the map from X to & given by

51]
0 £ ]
Ccy is the map from & to X"* given by
CoL= [61 Dlzcx] ,

Bcy =

and D, = D,,. mapping > to X . Internal
stability means that all eigenvalues of A are
inside the unit disk. Computing now proceeds as
in Subsection 3.1.

5. Application to J#? optimization of sampled-data
systems

In this section, we would like to make some
remarks about the lifting technique applied to
other types of norms. Since the lifting is an isome-
try in any given norm, we can apply it to other
%* spaces. First we would like to make some
remarks about thé induced operator norm on /%,

Consider € equipped with the /"-norm,

n 1/r
llvllr=[2|vjl’} , 1<r<oo,

Jj=1

flolle= max |u],
1sjsn

where the v; denote the components of the vector
v €&. With & equipped with the r-norm we will
set LP(&)=%L"(€) and denote the norm by
N i, Also, X7 will denote the subspace of
£?(&) of functions with support in [0, k). By
slight abuse of notation, || ||, will also denote
the norm on X,”.

By the lifting construction, we see that there
exists an isometry W, :ZF°(&)— 1°(X?) for
each 1 < p, r < co. Recall that the induced norm
of a bounded linear operator T from one Banach
space &, to another Banach space %, is

I1Tv i
NT| = SUPW—Z-
. v¢0 3]

We consider the problem, then, of computing
the induced norm of a discrete-time causal con-
volution operator F: [7(X,?)— 19 X;7). When p
=g=r=s=2 we have seen that the induced
norm is in fact the ¥ -norm of the discrete
Fourier transform of the pulse response of F. But
this of course is not the only possibility, and one
can ask for choices of p, g. r, s which will induce
a 2-norm which would correspond to a quadratic
type sampled-data optimization problem. We
should note that in [4] the authors consider an -
optimization: problem with the Hilbert-Schmidt
norm, which is not an operator-induced norm.
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Before stating the result, we will need some

. additional notation. First if F: [7(X?) = 19(X7)

is a (causal) convolution operator, the equality
y = F(u) means that

k
ye= 2 F_i(w), Vk=0,
i=0
where the F, : X,? - X9 are linear operators. In
our case, the F, will come from the lifted closed-
loop operator T, and so will have the form

CoL A& BeL, k21, (2)

in the notation of Section 4. Note that the closed-
loop impulse response F, for k =0 is the operator
D,,. This fact will not affect our discussion below,
since the controller only enters into the closed
loop operator F, for k> 1, and so from the way
in which the norm is computed, the controller that
minimizes the cost (norm) with F; included is the
same as the controller that minimizes the cost
without including F,, hence the answer given be-
low is valid.
Next notice that

B
Bo=|"1,
o 2]

where
- A
B,w-—=‘/;e“’""‘B,w('r) dr.

Thus B, acts as a convolution operator evaluated
at h, and so we may express the action of the
impulse response function (2) as an integral oper-
ator of the form

h
(Fu)(t) =f F(h—7, t)u(r)dr, k=1.
0
Now for 4 a non-negative matrix, we let
A,...(A) denote the maximal eigenvalue, and
d,..(A) the maximal diagonal entry.
The following result may be proven using a

method similar to that in [26].

Proposition 2. For all k 2 1, set
h ’

0t(r) = [(F(h=r, 1) F(h=7,1)dr,
(i

Qk(r) = _/;hF,‘(h —r, 1)E(h—r, 1) d1,

for T€[0, h), and set

r€[0.h)
Ry= sup A, (Q3(7)).
r€[0.h)
Sf= sup dpu(QF (7)),
. 7€[0.h)
SZk = Ssup dmax(Qé(T))-
r€(0,h)

|
Then (i) the induced norm of F: I\(X3) = 12X
equals

(zx)"

(ii) the induced norm of F: P(HE) = 1A
equals

(2w

(iii) the induced norm of F: - (X3
equals

(3=

(iv) the induced norm of F: I*(X3}) = I®(X,Z)
equals

(gs;)m.

Referring again to Figure 1, we can pose the
problem of minimizing the operator norm of the
transfer operator from w to z, where we allow the
signals to be in the various spaces %,°(&). This
problem may be lifted to get the equivalent dis-
crete-time problem in the spaces /7(X¥,?) and then
one may apply the solution in [27]. For the full
state information problem (this corresponds to the
classical LQR problem) one can show that the
classical LQR optimal controller is optimal in the
case when the disturbances are in &' for r=1,2,
and the errors are in %%, For the optimal filtering
problem, one can show that the optimal state
estimator is again given by the classical formula
with disturbances in % and errors in %> for
r =2, oo. The argument goes exactly as in the #*
case by considering the equivalent ‘lifted’ discrete
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time-invariant svstem and applying Proposition 2
and the results of [27]. Note that from our previ-
ous remarks the lifted operator G is finite dimen-
sional.

To make this argument more concrete, we will
consider the sampled-data version of the full state
information (LQR) problem. Referring to Section
4, in this case the generalized plant G has the
form

A | [B, B

BIIRKE
I 0 0
We are interested in minimizing the induced oper-
ator norm of T, the linear input/output operator
from w to z taken over all the controllers X as in
Figure 1. For our problem, we assume that w € %!
(r=1or r=2)and z €%

Now in this case the lifted system will have the
form

i | [5 B)]

[é,] [o D] (3)
I 0

0

Note once again that all norms are preserved in
the lifting procedure. Hence, arguing precisely as
in Section 4 (and making the standard assump-
tions of stabilizability and detectability on (3)),
and using the results of [27], the optimal feedback
gain may be derived from the classical finite di-
mensional algebraic Stein (discrete Riccati equa-
tion) associated to the LQR problem with respect
to the generalized time-invariant, discrete-time
plant given in (3).

Unfortunately, at this point there is no sep-
aration principle available because of the incom-
patibility of the norms in the filtering and regu-
lator problems.
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ABSTRACT

Discrete-time systems in a formal input-output setting are considered. Weak
linearity, weak shift invariance, and weak nonanticipation are defined. The often
overlooked fact that linear systems may not have a kerel representation is pointed
out. Necessary and sufficient conditions for kernel representation on 1, spaces are
given. It is shown that a linear system can have infinitely many kernel representations
and that properties such as nonanticipation, shift invariance, and boundedness need
not be reflected in the structure of a kernel representation. It is argued that a system
is logically distinct from a parametric representation of itself.

NOTATION AND TERMINOLOGY

We denote the set of integers by Z, the set of nonnegative integers by Z,..
The sequence space on Z is denoted by I(Z) and called the bilateral
sequence space; that on Z, is denoted by I(Z + ) and called the unilateral
sequence space. When a statement is true for both I(Z) and I(Z, ), we write
1. We denote the time set associated with [ by T. If I = (Z) [I(Z,)), then
T=2Z[Z,] Forafixed nin T, §, € denotes the (unit-impulse) sequence
which has value 1 at n and 0 everywhere else. For maps, 9 denotes the

——
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domain, & the range. The (right) shift operator on both I(Z,) and I(Z) is
denoted by the same letter S, and is defined below:

§:UZ,) » I(Z,) is given by

0 if n=0,
(Sx)(n)={x(n-1) if n>0.

§:UZ) ~ UZ) is given by
() () =x(n-1) Vnez

Likewise, the symbol S~! denotes the left-shift operator on both I(Z, ) and
I(Z) and is defined by

(§7'x)(n) =z(n+1) VnerT.
The symbol S, denotes the selection functional that selects the nth coordi-

nate of a sequence.
The symbol P, : 1 — [ denotes the projection operator on two spaces:

By = {20 i<n

if i>n.

Finally, if x € I, then x denotes the sequence defined by

wey = | ¥(8) if l<i<u,
# (1) {0 otherwise.

A subset X C [ is said to be closed under the family of projections {P,},
n€T, ifforeachneT xeXx implies P,x € X.

L. INTRODUCTION

An input-output system is a relation between two function spaces. The
classical input-output framework treats a system as a map from one function
space into another. Associated with a map are its topological properties such
as boundedness and nontopological properties such as shift invariance. The
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collection of all input-output pairs associated with the map is called the graph
(also, behavior) of the map. The properties of the map are naturally related to
jts graph. Sometimes the action of a map may admit a concrete representa-
tion such as matrix multiplication in the case of sequence spaces, or a
Volterra integral representation in the case of spaces of functions of a real
variable. Such a representation, if exists, may or may not be unique; it may or
may not reflect in its structure the properties of the associated graph. For
example, a shift-invariant map on a sequence space may have a representa-
tion as an infinite Toeplitz matrix. It is of interest to know when a behavior
admits a representation, if a representation is unique, and if a representation
reflects the properties of interest. )

Maps on sequence spaces are considered here. In this paper, representa-
tion means kernel representation, which will be defined in the next section.
Representation is the main focus of the paper. We give necessary and
sufficient conditions for kernel representation on I, spaces. We also examine
the relationship of kernel representation with properties like shift invariance
and nonanticipation. We also show that a representation need not be unique
and give a sufficient condition for uniqueness. It is implicit (sometimes
explicit) in textbooks on systems theory that a representation always exists and
in its structure reflects the properties of the associated behavior. We point
out that this is not true. Therefore, it is the behavior that is fundamental, not
its representation [6). We also look at conventional definitions of properties
such as shift invariance and point out that they lead to anomalies between
maps on bilateral sequence spaces and unilateral sequence spaces. We
propose new definitions of properties of maps and argue their merit. The new
definitions also make it clear what properties of domains are or are not used
in the analysis. However, the new definitions are not the main aspect of the
paper. A deep analysis of the differences between maps on bilateral and
unilateral sequence spaces is not attempted here.

2. SOME PROPERTIES OF MAPS ‘

The main practical reason for studying linear mathematics is that local
behavior of a nonlinear map is often linear. That is, if the domain of a given
nonlinear map is restricted, the restricted map (the restriction) may become
linear, thereby making analysis easier. Then, if the domain is restricted
further, it is desirable for the resulting restriction still to be linear. Consider-
ing that linearity is an analytically desirable -property of. a map, all the
restrictions of a linear map should inherit this property. Similarly, inheritance
by restrictions is desirable with respect to shift invariance, nonanticipation,
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and boundedness, from a practical point of view. Consider the classical
definition of linearity below:

DEFINITION 2.1. A map G: 9(G) - R(G) is linear if 2(G) is a linear
space and if G(ax + By) = aGx + BGy Va, B € R, Vx, y €92(G).
\

According to the above definition, the identity map on 1, is linear but the
identity map on the unit ball of l, is not. That is, linearity is not necessarily
inherited by restrictions. It seems reasonable to call the identity map linear,
whether or not its input class is a linear space. We now consider another
nontopological property, nonanticipation. There are two definitions in the
classical framework for nonanticipation, with one leading to inheritence, and
one not. The following definition is in, e.g. [5].

DEFINITION 2.2. A map G: 9(C) c1 S>HG)cl is nonanticipatory
if 9(C) is closed under the family of projections {P}, n € T, and if
P,GP,=PG VneT.

If a map is nonanticipatory according to this definition, its restrictions
need not be. The reason is that the domain of a restriction need not be closed

under the family of projections. Now consider another notion for nonanticipa-
tion, which is in, e.g,, [7].!

DEFINITION 2.3. The map G: 9(G) c | =% (G) c 1 is weakly nonan-

ticipatory if forall n € T, P x, = B,xy, x1,%, €F(G) implies that P,Gx,
= P,Gx,.

It is evident that if a map is weakly nonanticipatory, all its restrictions also
are. Every nonanticipatory map is weakly nonanticipatory. That is, the as-
sumption that a map is weakly nonanticipatory is weaker than the assumption
that the map is nonanticipatory. In case the domain of the map is closed
under the family of projections, a map is weakly nonanticipatory if and only if
it is nonanticipatory.

In the fashion of the weak nonanticipation, we define weak linearity
below:

DEFINITION 2.4. A map G: D(C) -» #(G) is weakly linear if x, Yy, ax
+By€2(G), a,BeR implies that G(ax + By) = aGx + BGy.

—

'In[7), “honanﬁcipatoxy" is used instead of “weakly nonanticipatory” in the definition.
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Again, every linear map is weakly linear. If Z(G) is a linear space, then a
map is weakly linear if and only if it is linear. Also, if a map is weakly linear,
so are its restrictions. For example, the identity map is weakly linear whether
or not its domain is a linear space. We now define weak shift invariance, a
nontopological property of a map.

DEFINITION 25. A map G:2(G) ¢l - R(G) cl is weakly shift-
invariant on 2(G) if for each x € Z(G) such that Sx € 2(G), we have
SGx = GSx.

We say that a subset X of ! is shift-invariant if SX C X. The standard
definition of shift invariance follows.

DEFINITION 2.6. A map G: @(G) ¢l = #(G) C l is shift-invariant on
(@) if D(G) is shift-invariant and if GS = SG on 2(G).

Every shift-invariant map is weakly shift-invariant. If the domain of the
map is shift-invariant, then a map is weakly shift-invariant if and only if it is
shift-invariant. It is customary to define shift invariance for a system operat-
ing on unilateral sequence space I(Z,) only when the system is nonanticipa-
tory [5]. Nonanticipation is not mentioned in definition of (weak) shift
invariance above. The reason for the custom and for our omission will be
apparent shortly.

Compared to the standard definitions, the corresponding requirement on
the domain of a map is dropped in the new definitions. This does not mean
that the domains do not play any role in the properties of a system. On the
contrary, the domain is an integral part of a map on which properties of a
system do depend. For instance, a map may not be linear but its restrictions
may be. Domains play an important role in extension problems, and attention
should be paid to what properties continue to hold for the extended map. For
instance, a map can be linear and shift-invariant on its domain, and there may
be an abvious linear extension of the map to a set containing the domain, but
the linear extension may not be shift-invariant. To illustrate this, the following
easy proposition is needed.

ProposITION 2.7. Let G:D(G) - #(G) be (weakly) shift-invariant
and one-to-one on D(G). If HG =1 on D(G), then H is (weakly) shift-
invariant on %(G).

A proposition in terms of conventional definitions about maps on unilat-
eral sequence spaces follows.




898 ' A. P. KISHORE AND . B. PEARSON, JR.

ProrosITION 28. Let G: 9(G) cl(Z,) » NZ,) be linear and shift-
invariant. If ST D (C) cD(G) then G is nonanticipatory.

The proof is omitted, as it is trivial. However, it should be noted that the
hypothesis that S~'9(G) c9(G) is important for the conclusion: Take
H =S5 with 9(H)=1UZ,). Consider its inverse G = §~! on 2(G) =
H(H) ={x€l(Z,): x0) = 0). Clearly, G is linear. That G is shift-invariant

follows from Proposition 2.7. But G = §~! js anticipatory on 9(G). Also,
while G is linear and shift-invariant on its domain, its obvious linear extension
to all of I(Z,) is not shift-invariant. The above proposition is false if (Z, ) is
replaced by I(Z).

It follows that every linear, shift-invariant G : @(G) = 1(Z,) = 1,(2,)
Is nonanticipatory on I,(Z. ). (This appears to be the reason for the custom
mentioned above.)

However, every x € I(Z,) can be trivially embedded in I(Z) as £ below:

f(i)={x(i) if >0,

0 otherwise.

Since the graph of a map on a unilateral sequence space is simply a
collection of pairs of unilateral sequences, it is also a collection of pairs of
bilateral sequences, by the above canonical embedding, This is the canonical
embedding of a system on one-sided sequence spaces into the set of systems
on two-sided sequence spaces [5). Therefore, a given graph on a unilateral
sequence space can be analyzed in two ways: by treating its graph as a
collection of pairs of unilateral sequences or as a collection of pairs of
bilateral sequences. It is remarked in [5] that it is easier to perform certain
calculations with the time set Z and then to draw conclusions for Z,. The
point is that the conclusions should be identical with both kinds of analysis.
This is not the case with conventional definitions of linearity and shift
invariance: Proposition 2.8 is false if G is treated as a map on bilateral
sequences with canonical embedding. [With canonical embedding, 9(G)
being a linear and shift-invariant space does not imply that it is closed under
the family of projections. Example 4 in the next section demonstrates this
oint.]

P Clearly, the conventional definitions lead to an anomaly in drawing
conclusions for maps on unilateral sequence spaces and bilateral sequence
spaces, depending on whether the graph of a map is treated as a collection of

pairs on a unilateral sequence space or as a collection of pairs on a bilateral
sequence space.




DISCRETE-TIME INPUT-OUTOUT SYSTEMS 899

With respect to this anomaly, the new definitions fare better. We now
show that Proposition 2.8 is false with each property replaced by the

corresponding weaker property even when the analysis is done without the -

embedding.

ExampLE 1. Let X ={x €l(Z,):Vie Z,, z(i) # 0}. Let G: X~ X
be given by (GxXn) = x(n + 1) Vn € Z,. The domain of G, X, is not a
linear space and is not shift-invariant. However, G is weakly linear on X and
vacuously weakly shift-invariant on X. Moreover, §-1X c X. However, G is

not weakly nonanticipatory on X.

We now look at the representation aspect of input-output systems.

3. KERNEL REPRESENTATIONS

Suppose the graph of a map on | is given. Let to:=infT. A map
C:9(G) cl -»R(G) cl is said to have a kernel representation if there

exists a g:TXT-»Rsuchthat

(Gu)(n) = L g(n.m)u(m) Vne&T, Vu ez(G).

m=t,

In the above definition, there is no need for Z(G) to have a topology; the
convergence of the infinite sum is on the real line.

Of interest is the connection between kernel representation and other
properties of map such as linearity, boundedness, and nonanticipation. It is
clear that every map that has a kernel representation is weakly linear.
However, not all linear systems have a kernel representation. There is an
example of a continuous-time linear shift-invariant nonanticipatory system,
due to Adam Shefi, in [2, p. 3], that illustrates this point. An example on
sequence spaces will be given later. We now examine if boundedness is
necessary or sufficient for a linear system to be represented by a kernel. At
the level of generality of the above definition for kernel representation,
boundedness is not related to kernel representation, because there may not
be a topology on @(G) and H(G). To examine this relationship we will
assume something stronger: we consider systems that are maps from one
normed space into another. A simple application of the Banach-Steinhaus
theorem, e.g. [4], gives the following: Let G: 2(G) = | be defined by a
kernel, with @(G) a Banach space and #(G) a normed space. If the family
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of projections {P,} is a resolution of the identity on .#(G), then G is
bounded. On 1, {P,} is not a resolution of identity. If #(G) =1, using a
variant of the Banach-Steinhaus theorem, we can still conclude that G is
bounded. While these results are useful, they are not exhaustive because not
every kernel-represented map takes a normed space into another. When it
does, its domain may not be a Banach space. On the other hand, it is simple
to show that if the domain of a bounded linear map has a Schauder basis,
then the map has a kernel representation. However, boundedness of the ma;
is an unnecessarily strong requirement: Consider T:I(Z,) — I{Z,) de-
fined by (TxXn) = nx(n), which clearly unbounded but has a kernel repre-
sentation.

On the other hand, in functional-analysis literature, bounded linear opera-
tors on spaces without a Schauder basis are rarely assumed to be given by a
kernel representation. That boundedness is not sufficient for kernel represen-
tation is pointed out by an example in [1], with I_ as the input and output
space. Here is an example that is simpler and sharper but the same in spirit.
This example shows that even compactness with discrete spectrum (which is a
much stronger condition than boundedness) is not sufficient for kernel
representation.

ExaMpLE 2. Consider the space ¢, the subspace of all converging
sequences in [(Z.), with I, norm. Fix a nonzero element Yo € ¢ such that
lim, yo(n) = 0. Define G: ¢ — ¢ by

Gx = (lim ) - y,.

Then G is linear and compact with discrete spectrum {0}. Its response to an
impulse occurring at any time is identically zero. If it is assumed that G has a

- kernel representation, then the kernel is identically zero, but G is not.

We now consider the relationship between shift invariance, nonanticipa-
tion, and kernel representation. The map in the above example is neither
shift-invariant nor nonanticipatory. We now construct a map that is linear,

shift-invariant, nonanticipatory, and compact, but has no kernel representa-
tion.

EXampLE 3. Consider the following linear shift-invariant space with [,
norm: :

c_= {x €l(Z): lil? x(n) ex:ists}.
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Let e € Z be such that e(n) = 1 for each n € Z. Define G:c.— ¢ by

Gx = lim z(n)-e.

n=—t —x

Clearly, G is linear, shift-invariant, nonanticipatory, and compact.

A common aspect of both the examples is that the infinite past or the
infinite future of the input strongly affects the current output. This motivates
the following definition, which will be useful in obtaining necessary and

sufficient conditions for kemnel representationl

DEFINITION 3.1. A map G: 2(G) <
for each n € T there exist finite integers I(n), u(n) such that xf = yr',

z, y €2(G) implies that 5,Gx = S,Gy.

This means that the current output of a finite-horizon map is completely
determined by finite past and finite future of the input. The effect of infinite
ast and infinite future of the input on the current output is zero. However,
the width of the “time window” for the input can depend on time, and need
not be uniformly bounded. A (weakly) nonanticipatory map on a unilateral
sequence space is an example of a finite-horizon map.
We recall the notion of B-dual of a sequence space. (See, e.g., [3]) Given
a sequence space X, its B-dual is given by
Y y(i)x(i) -

imty

< oo Vx GX}

XB = {yEI:

It is standard and simple to show that B-dual of 1 is the space of finitely
nonzero sequences. From this follows the next proposition.

PROPOSITION 3.2.
(i) Amap G:P(G) =1~>HGC)C 1 has a kernel representation if and

only if it is a weakly linear finite-horizon map.
(i) Amap G:2(G)cl—»RG)C 1 has a kernel representation if it is

a weakly linear finite-horizon map.

Proof. (), “only if": Assume that G has a kernel represenfation. Then
the map is weakly linear. Each row of the kernel must belong to the B-dual of

I and hence can have only finitely many nonzero entries, implying that the

map is of finite horizon.

| is called a finite-horizon map if
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“If”: Fix n. Let I(n) and u(n) be such that 1 =yt 1,y €2(G)
implies S,Gx = S,Gy. Define ] : D(G) — R~ !+1 by

Je=(x(D).x(1 + 1),..., x(u = 1),x(u)).

Let X := JZ(G). For each x € X_let J™'x be the preimage of x under J.
Define a map G,: X — R by G,x = §,G]"'x. Notice that G, is well
defined and is weakly linear. Let X = span X. Consider the linear extension
G,: X~ R of G, defined below:

GX=GCG and G,(a,x, + +ayx) = a,G,x, + - +o,C 1,

for all @),Q,..., o € Rand for all x,,x,,...,x, €X.
Since G, is a linear functional on a finite-dimensional vector space, it
admits the representation

u=-l ’
Cx= Y g.(i)x(i) VzxeX
=0

for some fixed row matrix g,. The map G is then given by the kernel defined
by

N g.(i=1) if l<i<u,
g(n.i) {O otherwise.

(i) follows from part (i). ]

It may be noted from the proof that doing analysis locally in time is a key
to representation theory. This theme will recur throughout the rest of this
section. A weakly linear finite-horizon map has a kernel representation with
each row of the kernel having only finitely many nonzero entries. From this
proposition and Example 3, it is clear that linearity and shift-invariance of a
map on bilateral sequence spaces need not imply that the map is of finite
horizon. However, on unilateral spaces with some assumptions on the do-
mains, one may get some useful results. An example is the following proposi-
tion. In the proposition, the model for the domain is the space S¥I(Z.,) for
some nonnegative k.

ProposiTION 33. Let G: D(G) cUZ,) » UZ,) be given. Suppose
2(G) is linear and closed under the family of projections and that there exists
an integer N € Z, such that S™'(I — Py)2(G) €2(G). Under these condi-
tions, if G is linear and weakly shift-invariant, then G is a finite-horizon map.




DISCRETE-TIME INPUT-OUTOUT SYSTEMS 903

REMARK. This proposition tells us that if the domain of a linear shift-
invariant map on a unilateral sequence space is sufficiently rich, then the map
has a kernel representation. In this proposition, closedness of the domain
under the family of projections is part of the hypothesis, unlike in Proposition
2.8. The validity of Proposition 3.3 is the same with or without the canonical
embedding. The proof is fairly routine. :

From Proposition 3.2 it is clear that the case when 2(G) # 1 is more
interesting. In this case, finite-horizon requirement is too strong, Intuitively
speaking, the smaller the domain, the easier it should be to obtain a kernel
representation. Since finite-horizon maps have a represenation, the next step
is to consider maps that are nearly of finite horizon.

DEFINITION 34. A map G: D(G) ¢l — #(G) c is called a fading-
horizon map if there exists a sequence G;: Z(G) —R(G;) €1 of finite-
horizon maps such that for each n € T

S,Gx = klim S,Gix  Vxe2(G).

Again, for this definition it is not necessary for & (G) to have a topology.
Intuitively, the effect of infinite past and infinite future of the input on the
current output is vanishingly small for a fading-horizon map. The action of a
fading-horizon system at a given time can be approximated by that of a
sequence of finite-horizon maps.

In the next definition G is assumed to be linear for simplicity.

DEFINITION 3.5. A linear map G: 9(G) €1 —»(G) cl is called a
strongly fading-horizong map if 2(G) is a topological space, and if there
exists a sequence Gy : @(G) = H(G;) €1 of finite-horizon maps such that
for each n € T, S,G, converges to S,G in the topological dual of 2(G).

Here, the approximation by finite-horizon maps is done locally in time.
Since G is linear, for each n, S,G,S,G; are linear functionals, and the
convergence is in the space of continuous linear functionals on Z(G).
Clearly, a strongly fading-horizon map is a fading-horizon map. The following
is easy to prove.

PROPOSITION 3.6.

(i) Letp € (1,). Then a linear G 9(G) c l,, — Z(G) C lis a strongly
fading-horizon map if and only if it is a fading-horizon map. :
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(i) Let p € [1,%). Let Y be a normed space. If G: 2(G) c 1, » #(G)
C Y is liner and bounded, then G is a Jading-horizon map.

* Proof. (i): The “only if” direction is obvious,

“If’: Fix p € (1,®). Let g be such that 1/p +1/q = 1. Then I,=1,
the dual of l,. Fix n. We have S Gx = lim, S,G, x for each x. For each i,
S5.Gy isin I and S,G is the weak* limit of S.Gy. Hence, S,G is in I, (by
the Banach-Steinhaus theorem). Therefore, S,Gx = Lg,.(i)x(i) for some g,
in I.. Since g, € l4, it can be approximated in l; norm_by finite-length
sequences g, ;. For each k, define a finite-horizon map G, by the kernel
gx(n,i) =z _,(i). Then G, is the sequence of finite-horizon maps such that

hin " Snc - snék "Iq = 0.

(if): Fix p € [1,%). Let g be such that 1/p +1/q = 1. Fix n. Then, §,G
is a bounded linear functional on I, and hence is given by the representation
S,Gx = X g, ()x(i) for some g in I . Also, g, can be approximated by
finite-length sequences g..x such that :

S,Gx = lilxcn Y gax(i)x(i)  Vx €9(G).

For each k, define a finite-horizon map G, by the kernel

gk(n,i) = g,,,k(i).
Then G, is such that S,Gx = lim, S,G,x Vx € 2(G). [ |

Clearly, a strongly fading-horizon map (or a finite-horizon map) need not
be bounded. The main result of the paper below gives necessary and

sufficient conditions for kernel representation on a variety of sequence
spaces. :

THEOREM 3.7.

(i) Let p € [1,). Let the domain of G:2(G) ¢ I, »%(C) 1 be a
linear space. Then G has a kernel representation if and only if G is a linear
Jeding-horizon map.

(i) Let the domain of G:9(G) l. »Z(G) cl be a linear space.

Then G has a kernel representation if and only if G is a strongly fading-
horizon map.

Proof. For p € [1,0), let g be such that 1/p+1/q=1

@, “if": Fix n. We have S5,Gx = lim; S,G,x for each x. For each k,
S.Gy isin I, and S,G is the weak* limit-of S,G;. Hence, S,G is in I, (by
the Banach-Steinhaus theorem). Therefore, S5.Gx = Lg,(i)x(i) for some g,
in I,. Set g(n,i) = g (i). Then g is a kernel for G.
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“Only if": Let the kernel of G be g. Fix n. Then §,G = g(n, ) is in lq,
since I, is the B-dual of [, (e.g. [3). Hence, g(n,) can be approximated (in
1. norm if g # ®, in weak® topology if ¢ = ®) by finite-length sequences

q

g, - For each k, define a finite-horizon map G, by the kemel gy(n,i) =
g,.4(). Then G, is the sequence of finite-horizon maps such that §,Gx =
lim S,G, x for each z in P(G).

(i), “if”: Fix n. We have S,Gx = lim; §,G;x for each x. For each k,

S,G, is in l,. Moreover, lIS,G = S,Gll converges as k tends to . Hence

S,Gisin ).
“Only if”: For each n, 5,G is in 1, since [, is the B-dual of .. Therefore
S,G can be approximated in norm by finite-length sequences. u

Even when a system has a kemel representation, the representation may
not be unique, as shown by the following example.

EXaMPLE 4. Consider G: [ — [, defined by the following kemnel:

=]
o

|
. b

It is easily seen that G is one-to-one. It has a unique left-inverse H : Z(G)
—9(C) such that HG =1 on @(G). It can easily be checked that the
following kernel represents the left inverse of G:

1 0 0
; 1.0 0
hy=|5 ¢ 1 0 0
i 1 1
8 4 2
The following kernel also represents H:
0 -2 -4 -8 -
0 0 -2 -4 -8
0 0
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In fact, each one of the following infinitely many kernels represents H o
H(G):

a, 2(a,—1) 4(ay - 1) 8(ay — 1)
a 2q, 2(2a, - 1) 4(24, - 1)

a, 2a, 2%, 2(2%, - 1)

where g, can be freely selected. The kernels hy, h, are special cases of the

above form. Clearly, the left inverse of G has infinitely many kernel repre-
sentations.

It is therefore of interest to know when a kernel representation is unique.
Uniqueness of kernel representation is related to how rich the domain is. If
the .domain has enough elements that can distinguish every two infinite

matrices in the output, the kernel representation is unique. The following is
immediate.

PROPOSITION 3.8.  Suppose G: 9(G) c | = Z(G) €1 has a kernel rep-
resentation. Suppose D(G) is such that for each n T, 8, isin D(G). Then
G has a unigque kernel representation.

If the domain of a map on a unilateral sequence space is not a linear
space, then the sufficient condition can be slightly relaxed. It may be noted
that the domain of the map in Example 4 violates the sufficient condition in
the above proposition. Using Proposition 3.6, Theorem 3.7, and the above
proposition, several conclusions can be drawn. Below is an example.

COROLLARY 3.9.

(i) A linear nonanticipatory map G: D(G) = I1(Z,) - H(G) c Kz,)
has a unique kernel representation.

(i) Letp, r € [1,2). A bounded lincar map G: D(C) =1, »R(G) c 1,
has a unique kernel representation.

4. A SYSTEM AND ITS REPRESENTATION ARE NOT
IDENTICAL

When a system can be represented nonuniquely by a kernel, it is of
interest to know if properties of the system are reflected in the structure of
the kernel. Out of the infinitely many representations for H in the above
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example, one is lower-triangular and one is upper-triangular, as shown. Is H,
then, nonanticipatory or purely anticipatory? The point is, nonanticipation is a .
property of a system and is not necessarily a (structural) property of its T C o

representation.
We show that H in Example 4 is weakly nonanticipatory [Z(H) =%(G)

is not closed under P, for any n > 1]. .
Cramm 1. H in Example 4 is weakly nonanticipatory.

Proof. Since H is the inverse of G, we have to show that for all n,
PGz, = P,Gx, = P,x; = P,x,, Or equivalently that P, x, # P,x, = F,Gx,
# P.Gx,. This follows because for all n, g(n,n) # 0 (G has direct
feedthrough). -

We now determine if H is shift-invariant. Observe that the domain of H
in Example 4 is shift-invariant. That H is shift-invariant follows from Proposi-
tion 2.7. However, H has some kernel representations which have Toeplitz
structure (constant along the diagonals), and some which do not. Shift
invariance is clearly a property of a system that may or may not be reflected
in the structure of its representation.

We now point out that boundedness of a map may not be reflected in the
structure of its representation.

ExampLE 3. Consider G:1(Z,) = 1(Z,) defined by the following

kemnel:
_% 0 0
1 -3 0 0
g=| 0o 1 -3 0
0 0 1 -3 0

It is simple to show that the left inverse of G exists and is bounded, since for
each x € I, we have [|Gxll= > 3llxlle. One kernel representation of Gl is

-9 0 0 -
—4 -2 0 0 -
-8 -4 -2 0 0
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However, that G™! is bounded is not apparent from the above representation
(or from a minimal state-space representation of G~!; 4 = 2, B= -],
C=4 D= -9,

Naturally, from an infinite-
clear what the domain of th

exten.sion to an I, space may not carry over properties of the system such as
shift invariance and nonanticipation.

We thank S. Weiland and J- S. McDonald for many enjoyable discussions
on this topic. We also thank an anonymous reviewer for helpful comments.
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Abstract

l Given an interconnection of a nominal discrete-
time plant and a stabilizing controller together
with structured, norm bounded, nonlinear/time-

lvarying perturbations, necessary and sufficient
conditions for robust stability and performance
of the system are provided. This is done by first

'showing that performance robustness is equiv-
alent to stability robustness in the sense that
both problems can be dealt with in the {rame-
work of a general stability robustness problem.
The resulting stability robustness problem is
next shown to be equivalent to a simple alge-
braic one, the solution of which provides the de-

l sired necessary and sufficient conditions for per-
formance/stability robustness. These conditions
provide an effective tool for robustness analysis
and can be applied to a large class of problems.
In particular, it is shown that some known results
can be obtained immediately as special cases of
these conditions.

1 Introduction

For systems with bounded energy signals, the
H*™ norm is the most suitable norm to use.
When dealing with robust performance in the
context of linear feedback systems with H*
norm performance ob jectives, the paper by Doyle
(3] introduces a nonconservative measure of per-
formance for linear feedback systems in the pres-
ence of structured model uncertainties. This
approach is based on a matrix function called
the Structured Singular Value, where stability
' and performance robustness are dealt with in
the same framework. The class of perturbations

l *This research was supported by the N.S.F. under
grant ECS-8806977. This paper is an abbreviated ver-
sion of [1]. See also [2]. .
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treated are linear time-invariant norm bounded
perturbations.

When the system at hand does not involve
bounded energy signals but rather bounded mag-
nitude signals as is the case when bounded per-
sistent disturbances are present, the more suit-
able norm is the A norm or ¢! norm. In [4]/[5]
Dahleh and Pearson provided a complete solu-
tion to the problem of minimizing the A norm of
a linear time-invariant continuous/discrete-time
system through the choice of a stabilizing con-
troller. The optimal controllers obtained in the
discrete time case are more useful than those in
the continuous time case since they are easier to
implement physically.

In this paper, we present a solution to the
robustness problem in the €' setting. The
class of perturbations considered consists of
norm bounded perturbations allowed to be time-
varying or nonlinear. We provide necessary and
sufficient conditions for stability robustness for
structured pérturbations where any number of
perturbations can enter between any two points
in the system. In addition, we allow performance
objectives to be considered and provide neces-
sary and sufficient conditions for these ob jectives
to be achieved in a robust manner subject to
robust stability. This is done by showing that
the stability and performance robustness prob-
lem is equivalent to a simple algebraic problem
which can be easily solved to give the desired

. nonconservative conditions for stability and per-

formance robustness. Ye show how -the results
in [6] and in [7] can be obtained as special cases
of this theory. '

2 Notation
R* Nonnegative real numbers.

(= Space of all bounded sequences of real

vt v lend 62 SR aaaniatod i

a ———————_——L




* pumbers, i.e. z = {z(k)}720 € &7 if and
only if sup |z(k)| < oo. Iz €87 then

k
l[zlleo = sup (kI
Space of g-tuples of elements of £*. If

z = ($1,...,Iq) € zgo then “I“oo =
m’.a-x”zi“oo- ‘

Space of absolutely summable sequences.

If z € £ then |jz{l1 = i |z(k)| < oo
k=0

) . E ik T Ty e ST o &
i . L.
D : .
| b . N - .. N by

' - - . :

» Spaée of p X ¢ matrices with entries in
2. If z = (zi5) € Exq then fl]li =
'}
max Y llzilli-

<i<
1_:_pj=1

x
oy
‘

o7
2
»

LN YN
L s Jror
-

The space of all bounded linear causal
operators mapping £° to (. TR €
| Rzlleo
, lizlloo
the induced operator norm. Each'R in
L5 can be completely characterized by

its block lower-triangular pulse response
matrix.

3
I
-y

which is

z:%’{ﬁl then ||R]| := sup
z#0

Subspace of L5} consisting of time-
invariant operators. For each It € £y
corresponds a unique 7 in £, Where i
is the impulse response of Rij, the com-
ponent of R mapping the the jth input
to the ith output. The induced operator
norm of R as a map from £ to £ is
equal to the norm of rin Lxqr which we

shall also refer to as the A norm.

. Problem Setup

|
|
We are mainly interested in £% signals and
| screte-time systems. Aside from that, the only
onditions imposed will be those needed to guar-
ntee the well-posedness of the problem. Com-
mon to all the problems in which stability and
erformance of a certain system are to be stud-
ed under the effect of perturbations are a nom-
inal plant and a controller stabilizing it. In our
| ase, both of these are assumed to be linear time-
nvariant discrete-time systems. There is no rea-
on why only one nominal plant or controller can
be considered, and so as many as desired can
e incorporated as long as the resulting nominal
ystem is stable. As for the perturbations, they

. are first modeled as strictly causal linear maps
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Figure 1: Stability and Performance Robustness
Problem

{

taking £ signals to £% signals with bounded
induced norms. Hence the perturbations are al-
Jowed to be time-varying. Nonlinear perturba-
tions are treated in section 6. There can be as
many perturbations as desired and they can en-
ter anywhere in the system. So for a specific set
of bounds on the norms of the perturbations, we
have a2 family of systems each of which is com-
posed of the nominal part and a set of fixed per-
turbations with norms less than the correspond-
ing given bounds. The first objective is to de-
termine when every member of that class of sys-
tems is stable, i.e. when our system is robustly
stable. In many cases, stability is not all that
is required from a system, and certain perfor-
mance objectives are to be met. A useful and
popular objective is keeping small the norm of
the function mapping an external input, say u.
to a certain signal in the loop, call it y. Since
there could be more than one such objective,
let us denote the resulting functions by Tyiw; for
i =1,...,m, where Ty, is the function map-
ping signals at point u; to signals at point ;.
Because we are mainly concerned with £ sig-
nals, the norm we want to be small would be in
our case the induced £ norm. Now our ob jec-
tive is to determine, given aset of m positive real
numbers 41,...,7m, conditions under which our
system is stable and satisfies || Tyu. || < =i for all
allowable perturbations. In other words, when
does our system achieve robust performance?

We now formally set up the stability and per-
formance robustness problem mentioned above.
Figure 1 represents a quite general configuration
appropriate for describing problems with uncer-
tainty. In the figure, M represents the inter-
connection of the nominal plant and the stabi-
lizing controller, and is therefore linear, time-
invariant, and stable. Each A represents the
perturbations between two points in the system,
and has norm less than or equal to one.
course there is no loss of generality in assum-
ing that the chosen ‘bound on the norms of each




of the A,’s is one, since any other set of num-
bers could be absorbed in M. We will restrict
the A;'s to be strictly causal in order to guar-
antee the well posedness of the system. This is
not a serious restriction and can be removed if
it is known that the perturbation/nominal sys-
tem connection is well-posed. Accordingly we
can define the classes of perturbations to which
the Als belong. Assuming the perturbations
enter at n places, and that each has p; inputs
and ¢; outputs we have A; € A(pi,q) where
Alpi,g) = {A € LFF% : A s strictly causal
and ||A]| £ 1} i=1,...,n

Note that A; is not dependent in any way on 4;
when j # ¢. The only restriction is that A; be-
longs to A(p;, ¢:) for each i. Next let p =) ;pi,
and ¢ = 3, ¢i. By D[(p1,q1);i* 5 (Pnrgn)]| We
mean the set of all operators mapping £2° to £3°
of the form:

D = diag(A1,...,AR),

where A; belongs to A(p;,g;). When the pairs
(pi,g;) are known, they will be dropped from
the notation and D will be understood to mean
the above set. We will say the system in fig. 1
achieves robust stability if the system is stable

for all D € D[(p1,q1);--+;(Pnyqn)]- We will say

it achieves robust performance if it achieves ro-
bust stability and ||T,.,]| < 1 for all 7 and for all
D in D{(p1,q1);---; (Pns gn)l-

In the context of this setup, our problem can
be stated as follows:

Problem Statement. Find necessary and suf-
ficient conditions for the system in fig. 1 to
achieve robust performance.

4 Performance Robustness vs.
Stability Robustness

In this section, we provide a theorem establishing
a relation between stability robustness and per-
formance robustness. It states that performance
robustness in one system is equivalent to stabil-
ity robustness in another one formed by adding
a fictitious perturbation. A similar result has
been shown to hold in [9] when the perturbations
are linear time-invariant and when the 2-norm
is used to characterize the perturbation class.
The usefulness of this theorem stems from the
fact that we can now concentrate on finding con-
ditions for achieving stability robustness alone.
Once we do, performance robustness comes for
free.

Consider the two systems shown in fig. 2,

where M.€ L}” and A; € A(pi, ¢). In system
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M

A x]
124 =
SYSTEM I SYSTEM II

Figure 2: Equivalence of Stability and Perfor-
mance Robustness

II, u is a vector input of size p and y is an output
vector of size §. In system I, A, € A(3,q). It
follows that p = a4+ Y ;p and ¢ = ¢+ 2_; G-
Subdivide M in the following manner:

M Mu)
M=1"- fa
(IWQ1 Mzz

where M € ng}i .
We now state the following theorem establish-
ing the relation between System I and System

1L

Theorem 1. The following four statements are
equivalent:

1) System I achieves robust stability.

ii) (I - MD)™" is (~-stable for all D €
D[(]-), q-)v (ph ‘11); tey (pnv qn)]-

iii) (I = Mz D)™ s £ stable and
”;\{11 + MlzD([— A/IQQD)—lez] ” < 1, for
all D belonging to D[(p1,41);-- -3 (Pn, gn)}-

iv) System II achieves robust performance.

5 Conditions for Stability Ro-
bustness '

It has been shown in the previous section that
we can convert a performance robustness prob-

lem into one which involves stability robustness

alone. We can therefore concentrate only on sta-
bility robustness. We seek nonconservative con-
ditions for achieving stability robustness which
are easy to verify. Before we begin, we es-
tablish some notational conventions. Through-
out this section, the perturbation set will be

D[(Ph‘h); veei(Pns gn)] for some positive integers

)
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,qn. M Dbelongs to LIXP

Hence M can

veyPn and q1,.--
where p = v p;i and ¢ := 2 G-
. be partitioned as {ollows:
My Min
M=\ : :

AInl A/‘[ﬂﬂ

=% where M;; has size g; X pi. Next, we will state
..~ our main result establishing the equivalence of

 the stability robustness problem to a simple al-
Bl gebraic one. Depending on the region in which -
.. this algebraic problem has its solutions, we can

% . conclude whether or not our system achieves ro-
> bust stability, and by the results of the previous

- section, robust performance. In order not to clut-
ter the exposition, we first state and prove this
theorem in the scalar case. Hence py = -+ =

Cp=q=cc=am =1

. Theorem 2. (I — M D)™ is not £- stable for
“ some D € D[(1,1);---;(1,1)] if and only if the
. system

n
z"SZ“M"le(:J' i=1,...,n
. =

;

" has a solution Z = (Z1,...,%a) in (R*)*\{0}.

" With this theorem, our problem stated in sec-
" tion 3 is essentially solved. Applying this theo-
rem to the performance and stability robustness
problem stated earlier, reduces it to a simple al-
gebraic one in which the object is to determine
whether.a certain system of inequalities has a so-
lution in a particular region in R™. What makes
this algebraic problem particularly attractive is
‘that the set of inequalities that arises relates in
a simple and direct manner to the original prob-
lem. Only norms of the subentries of the M ma-
trix arise, and they do so in the same general or-
der that they do in M. The question that arises
naturally at this point is how can one determine
whether the system of inequalities at hand has
a solution in the related region of IR"? It turns
out, that no search techniques are needed to ac-
complish this task and the answer to this ques-
tion can be determined by evaluating certain ex-
pressions directly. These expressions also involve
norms of the subentries of M and thus are easy to
compute. The derivation of these alternate con-
ditions for stability and performance robustness
is the next topic of discussion.

The first step in restating the conditions in-
volving the set of inequalities is to make the fol-
lowing observation:

. for some k = (ky, .-
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Observation. The system of inequalities:

z; < Z ”Afile(Ij 1=1,...,n

j=1

has a solution in (IR*)™\{0} if 2nd only if either
| Maally 2 1 or [[Maal], <1 and the system of
inequalities: : ‘

J

Hiwin”,(“*wnj”,()
1- ”AI"“”A

i1=1,...,n

5<Y (mm +

i=1

has a solution in (IR*)*~1\{0}.

Notice that this observation allows us to replace
the task of determining whether any solutions to

a set of n inequalities lie in a certain region by the '
simpler one of determining whether the solutions
to a set of n—1 inequalities lie in a smaller region
together with a simple test on the norm of Mun.
It is easily seen how this can be repeated until we
completely replace all such conditions by tests on
expressions involving norms of the M;;’s, a much
simpler task. Table 1 lists some of these for a few
values of n. ,

In order to discuss the muitivariable case we
will need to make reference to the rows of M;;
which are themselves stable rational functions.
Let us denote the mth row of M;; by (Mi;)m.
Since we will no longer restrict the pi’s and g;'s
to be equal to one, the following set is not nec-
essarily a singleton:

K= {(k1,...,kn) €Z": 1< ks S.q!'}'

From this definition it is clear that the set K
has exactly [J, ¢ elements. To each k € K
corresponds the system of inequalities: z: <
Y=t (M3 )llaz5 where k£ = (k1,...,kn). As
the next theorem shows, it is the solutions of
these inequalities that are of concern when seek-
ing necessary and sufficient conditions for sta-
bility and performance robustness in the MIMO
case. :

'Theorem 3. (I — MD)™! is not £- stable for

some D € D{(p1, @1 )i---3 (Prsgn)] if and only if
.,kn) € K, the system

1=1,...,7

z; < ill(l ella®s

i=1

has a solution & = (Z1,---.Za) in (RT)"\{0}.




[ 7 [ Necessary and Sufficient Conditions for Stability Robustness

1| M), <1

”A'InH_A <1

(| Mzl [l M2l
1~ || M2zl

| Mul], + <1

”A’[:;:;IL‘ <1

| Maal| || Mazl|,

To (], <t

| Mz2f|, +

M
| Ml Nl Mzl (“ 12|, +

|| Myal ]| Ms2 | | I Masll Ml )
1-u'3w33|u ‘)(umw *‘l 1

1 — || Masll,

|Mull +—= 3233

1- (”Mzzl[A +

(| Maal|, | M2l
T— [[Maal]s

Table 1: Conditions for Stability/Performance Robustness for n = 1,2,2and 3

6 Nonlinear Perturbations

In this section, it will be shown that if the class
of perturbations is enlarged to include norm-
bounded nonlinear perturbations, then the con-
ditions for robust stability remain the same. This
means that robustness to linear time-varying
perturbations will automatically guarantee ro-
bustness to nonlinear perturbations as well. Fur-
thermore, it is shown that when enlarging the
perturbation class to include nonlinear pertur-
bations, stability robustness remains equivalent
to performance robustness, and so the condi-
tions for stability and performance robustness
for time-varying perturbations are the same as
those for nonlinear perturbations. For simplicity
we shall consider the scalar case here. We start
by extending our definition for the perturbation
icila.ss to include nonlinear perturbation. So de-
ne

DNL[(?I:QI); caey (Pm Qn)] = {diag(Ah vee 1An) :

A; is strictly causal and sup 185zl <13,
=#0 [zl

- For simplicity we adopt the following notation:

n

J—————
D(n) := D[(1,1);...5(1,1)]

e A e
Dyi(n) = Dyr[(1,1);..-5(1,1)]

Theorem 4. (I — MD)™! is £°- stable for all
D € D(n) if and only if it is £°- stable for all
De Dyr(n).

We have shown that stability robustness is
equivalent to performance robustness when the
class of perturbations is D(n). It does not im-
mediately follow that this should be true if the
perturbation class were Dyr(n). Next we show
that indeed stability robustness is equivalent to
performance robustness even when enlarging the

* perturbation class to include nonlinear perturba-

tions. :

We will assume the class of perturbations is
Dnr(n) and that we have one performance ob-
jective consisting of keeping the norm of the func-
tion mapping the external input u to the output
y less than one. (Figure 2, SYSTEM II).

Theorem 5. (I — My2D)™! is £°- stable and

: “Mu + 11-{121)([— ﬂ-"InD)"IA?[n“ < l_for all
- D € Dyr(n) if and only if (I—A-[D)_l is

¢>- stable for all D € Dyr(n +1).

7 Some Applications

7.1 Stability Robustness (Unstruc-

tured Pert.)

This is the simplest case. The perturbations take

" . the form of one A having ¢ inputs and p outputs.

The question then is when is (I — A A)~ stable

F
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as a solution in (0,00). Clearly, a necessary

and sufficient condition for that to happen is that

NM)ill, < 1 for all i, or equivalently [|M]|, < 1.-

This is exactly the problem solved by Dahleh and
thta in [6]-

7.2 Input Sensitivity in the Presence
of Multiplicative Input Perturba-
tions

\

Let P, be a given nominal linear shift-invariant
discrete-time plant with g inputs and p outputs.
Consider the following family of plants formed
by adding weighted multiplicative perturbations
to this nominal plant:

l:={P:P = P(I+WiA),A €A%}

I where W; € [.}"I". Let S(P,) be defined as fol-

lows:

I S(P,) := {C : C is linear causal shift-invariant

:
,

controller stabilizing Po}

For 2 fixed C € S(P,) and 7> 0 we will now ob-
tain necessary and sufficient conditions for C to
stabilize every P € II, and at the same time sat-
isfy |(I + CP)'Wy|| < v forall P in II. Hence
the performance ob jective in this case is keeping
small the norm of the weighted input sensitivity
function (I + CP)~1W, despite the presence of
the multiplicative perturbations.

This problem can be set up in the framework
discussed in the previous sections where a ficti-

l‘ tious perturbation replaces the performance ob-

jective, thus transforming this stability and per-
formance robustness problem into a stability ro-
bustness problem alone. This alternate problem
has D{(g,q), (g, q)] as the class of perturbations,
and an M matrix of the following form:

v (%(I +CP,) W, CP(I+ C'Po)"lwl) |

L(I+CP) ‘W2 CPRo(I+ CP,)~'Wi

|
|
|
e
'cr all Ain A(p,q)? Equivalently, when is the
. _serconnection of M € LT} and & stable for
1A in A(p,q) 7 From Theorem 3, a neces-
Lary and sufficient condition for robust stability
is that none of the g inequalities: '
l oz < (Ml ez i=1,...,4 -
|
1
|

From table 1 and Theorem 3, necessary and suffi-
cient conditions for robust stability for this prob-
lem, and hence for robust performance for the
original one are: .

o I(To)illy <1 | i=1,...,0

418

To)ill J1E(Sa)s1e
= vy R

° “%(5‘7){|h+
i,j=1,..040

where S, := (I+ CP,)"'W,, and T, =
CP,(I + CP)™! Wh. Equivalently, these condi-
tions can be written as:

® “TOHA <1l

N(So)ills

* R ToI@

\
If we define ¥ := {C € S(Po)
C stabilizes all P € I}, then it follows from our
stability robustness conditions for one A that
CeUifandonlyif C € $(P,) and || Toll, < 1.
Hence we have shown through the two conditions
obtained above that for any CeVv

Ll = IS0 Xill
sup 1+ PR = P T

<7.

This is exactly the result obtained by the authors
in [7] using a different approach. In fact, it is not
difficult to show [7) that for any v >0 ‘

C € ¥ and sup (I + CP)"'W2l <7 iff
€
Ce S(Po) and ”( So 7To)”A <7.
Since it is known [4,10,11] how to solve problems

like
Jmin (5 7Tl

it is clear how an iterative scheme can be de-
vised whereby the value of 7 can be increased or
decreased according to the outcome of the opti-
mization problem stated above, until 7 is as close
as desired to vopt, Where

— i -1
Yopt = érgy ;%%H(I-i- CP)~1Wo|.

_ Since at each iteration step 2 controller that
achieves the minimum can be computed, we can
find a controller that achieves arbitrarily closely

“opt-

7.3 Output Sensitivity in the Presence
of Output Multiplicative Pertur-
bations

For this case let

T:={P:P=(+AW1)PA e A(g, )}




where P, and I¥; are as before. Suppose we are
now interested in the norm of the output sensi-
tivity function as a performance measure. For
C € S(P,), the M matrix now has the form

y ( LWy(I+P,C)t LWyl + P,C)
M =
Hence, from table 1 necessary and sufficient con-

ditions for robust stability and performance are
now: - .

. [[(To)-HA<l i=1,...,q
T); LI (S0
o 1o+ G
,7=1,...,q.
where T, := W1 P,C(I+ P,C)"! and §, :=

Wa(I + P,C)~'. Equivalently, these conditions
can be written as follows:

° ”T,,IL4 < 1.
N EA
Ty, <7

With ¥ defined as before, it follows that foror
any C €9,

_1y ISl
sup IW(1 + PCYY| = I———!Tﬂl—,{

Even though these conditions are different from
those obtained in the input sensitivity case, for
a scalar plant they are actually the same.

8 Conclusion

e have provided in the previous sections nec-
essary and sufficient conditions for achieving sta
bility and performance robustness. These ccn-
ditions can be applied to a large class of prob-
lems in which multiple perturbations can enter
in various configurations. The conditions in-
volve no more that computing the A norm of
certain transfer functions, a task which can be
done to any degree of accuracy with relative ease.
Consequently, these conditions provide a partic-
ularly attractive method for the analysis of sta-
bility and performance robustness. We have also
shown that in some important cases obtaining a
controller with optimal robustness properties can

be done through a simple iterative scheme. Syn- -

thesis of controllers in the more general case, is
an interesting problem which is currently under
. research.

)
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Abstract

Necessary and sufficient conditions for stability and
performance robustness of discrete-time systems are
provided in terms of the spectral radius of a certain
nonnegative matrix. The conditions are easily com-
putable and provide a simple method to do synthesis
of robust controllers via an iteration scheme which
utilizes the properties of the spectral radius.

1 Introduction

In [1,2,3], necessary and sufficient conditions were
derived for stability robustness when structured £°
norm-bounded perturbations were assumed. These
conditions were given in terms of the region in which
a system of inequalities has its solution. The system
of inequalities is completely determined by the inter-
connection of the nominal system at hand and stabi-
lizing controller. Even though conditions for stability
robustness are important in their own right, they also
give conditions for performance robustness. This has
been demonstrated in [1,2] where it was shown that a
performance robustness problem can be converted to
a stability robustness problem by adding a fictitious
perturbation block to represent the performance. The
conditions for stability robustness which result are ex-
actly those for performance robustness for the original
problem.

In this paper we establish a connection between
the conditions for stability robustness and the spec-
tral radius of a certain nonnegative matrix. Use of the
spectral radius conditions allows us not only to ob-

*This research was supported by the National Science Foun-
dation under grant ECS-8914467 and by the Air Force Office
of Scientific Research under grant AFOSR-91-0036.
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tain numerically efficient ways for determining when
a certain system achieves robust stability and perfor-
mance, but it also provides us with the means to de-
sign controllers which provide suboptimal robustness
properties.

2 Notation

IRt  Nonnegative real numbers.
£ Space of all bounded sequences of real num-
bers, i.e. z = {z(k)}32, € £ if and only
if sup |z(k)| < o0. If z € £ then |jz{le =
E
sup |z(k)]-
E
a Space of absolutély surnmable sequences. If
. o
z € € then [lzfly = ) Jz(k)| < os.
k=0
I, The A norm of a z-transform of an £' se-

quence, is the £! norm of that sequence. So
for an LTI system, this will be the £! norm
of the pulse response of that system. This is
a measure of the maximum amplitude gain
of the system. For a system matrix, the A-
norm is the maximum row sum of individual
SISO entry norms.

A - The set of all operators mapping £ to itself, .

with induced £ norm less than or equal to
one. Hence, A := {A 1SUPzg uﬁf‘; < 1}.

The set of all diagonal operators of the form
D = diag(Ay,...,An) where A; € AL

D(n)

\

o
y




Ay

Figure 1: Stability Robustness Problem

3 Setup

We start by setting up the stability robustness
problem. Given is an interconnection of linear time-
invariant plant/plants and linear time-invariant con-
troller together with n perturbation blocks, say,
Ay,...,A,. These blocks represent the system un-
certainty which is assumed to take place in n differ-
ent locations in the interconnection. Each perturba-
tion block, A; belongs to the class A and is therefore
norm bounded. The A;’s are independent of each
other reflecting the situation when the uncertainty
has different sources. Next, let M denote that part of
the interconnection which includes the nominal plant
and stabilizing controller. M will have n inputs and
n outputs corresponding to the interconnection with
the pertrubation blocks.

Whereas M is given and fixed (at least in the anal-
ysis problem where a controller is given), each per-
turbation block, A; is allowed to vary over the set A.
The combined effect of all perturbation blocks can be
equivalently captured by one peturbation block , D,
which has a diagonal structure. D now belongs to the
class D(n) . With this setup in mind, the system is
said to achieve robust stability if it is £°-stable for all
D € D(n). The next section is concerned with various
necessary and sufficient conditions for the system in
fig. 1 to achieve robust stability. Some of these condi-
tions will prove useful in the synthesis of controllers
with suboptimal robustness properties.

4 Main Results

In this section, we state without proof our main
theorem establishing the necessary and sufficient con-
ditions for robust stability of the system in fig. 1 in
terms of the spectral radius of a certain matrix as well

as other conditions. We start by defining |M]. Since
M is linear time-invariant and stable with n inputs
and outputs M;;, the map taking the jth input to the
ith output has a pulse response which belongs to the
space £'. The £ norm, or the A norm of M;; can be
computed arbitrarily accurately. We define |M] to be
the following matrix of norms

IMull, ... Ml
M= 1 .s
IMaslly .. 1Ml

Defining R to be the set of all n x n real diagonal
matrices with positive entries on the diagonal, we can

- state the following theorem:

Theorem 1 The following are all equivalent:
1. The system in fig. 1 achieves robust stability.

2. The system of inequalities:

n
a:,-SZ”M,-,-[[‘z_,- i=1...,n

j=1
has no solutions in (IR*)"\{0}.

S A(IM]) < 1, where p(|M|) denotes the spectral
radius of [M|. :

4. infRe‘R ”R"'IMR”A < 1.

That 1 and 2 are equivalent has been shown in [1,2].
The important equivalence for the purposes of this
paper is that of I and 4 since this allows us to do
controller synthesis as will be discussed next.

Since M forms the interconnection of the nominal
linear time invariant system and linear time-invariant
controller it can be put in the following form:

M=1 -TQT;

where T1, T3, and T3 are stable and depend only
on the nominal plant. Q, is a free parameter to
be chosen from the set of all stable rational function
and determines the controller according to the Youla
parametrization. In the analysis problem, Q is fixed
and, as a result, so is M. For synthesis, we will need
to find an appropriate Q which results in a controller
providing satisfactory robustness properties. To do
that, we adopt the following iteration scheme:

1. Seti:=0, and R, := I.

2. Set Qi ;= arg infq stante [|R™Y(Ty — T2QT3)R|,-
3. Set R; :=arg infrex ||R™YT1 - TQ:T3)R||,.
4. Set i := i+ 1. Go to step 2.
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It is clear that this iteration converges, and further-
!ore the infimum values obtained in the consecutive
plication of steps 2 and 3 will be monotonically de-
creasing. It is also clear that the iteration procedure
n be terminated at step 3 whenever a desireable ro-
l\stness level is achieved as indicated by the value of
the infimum at that step. ) :
It remains to discuss the two optimization prob-
lm used in the iteration procedure above. The op-
Inization problem in step 2 is a standard £' opti-
rnization problem. This problem has been disussed
l [6,8,9] and software packages for its solution ex-
t and involve only linear programming. The second-
optimization problem, that appearing in step 3, can
o be solved. Its solution is a direct application of
IZ following lemma: :

Lemmal Let M = Ty — T2QT3 with Ty, T2, T3,
'::! Q stable. Let |M| be as defined above. If |M| is
ducible, then '

jnf [|RMER], = |B-1M R,

: !here R := diag(F1,...,7n), with (F1,.. . 7n)T being

the eigenvector corresponding to p(|M|) which aside
m being the spectral radius of |M| will be an eigen-
lue of |M].

r nonnegative matrices, and the proof will be omit-

d here. From this lemma, all that is needed to solve
the optimization problem in step 3 will be to compute
l: eigenvector corresponding to the eigenvalue with
e maximum modulus. Because we are dealing with
nonnegative square matrices this eigenvalue turns out
be real and hence is itself equal to the spectral ra-
jus. Both the spectral radius and the eigenvalue
Corresponding to it can be computed very easily us-
ing power methods, another.consequence of Perron
robenius theory for nonnegative matrices. Finally,

| M| were not in fact irreducible, it can be made so
by replacing every zero entry with an € > 0. Since the
pectral radius is a continuous function of the matrix
ntries, it follows that the solution of this modified
problem will approach that of the original reducible
‘vne as € approaches zero. Thus, the irreducibility as-

ihis lemma follows from the Perron-Frobenius theory

umption on |M| is not a serious one, and the case
hen | M| is reducible can be handled almost with the
same ease as that when |M] is irreducible.
We next look at a numerical example demonstrat-
ng the iteration scheme above.

l - 5 Example 1

Consider the following plant family formed by

Idding weighted multiplicative perturbation to a

Figure 2: System considered in Example 1 after
adding ficticious perturbation block for performance

nominal linear shift-invariant plant, P,,

o:= {P=(I+W1A1)Po : A€ A},

where P, = 3%-{__0";252\/\__*_2?)1. We will choose W

to be a high-pass FIR filter to reflect the fact that
plant uncertainty is most common at high frequen-
cies. MATLAB produced the following filter:

W, := .0052)1%—.008)° —.0134)% + 105707
—.2405)8 + .3072)5 — .2405)* + .1057)°
—._0134,\2 — .008) + .0052

The uncertain system is subject to low frequency
disturbance at the output. This disturbance is mod-
elled as the output of a low-pass FIR filter, W5. MAT-
LAB was used to obtain the following filter:

W, := —.0033A% — .0162% + .1555)° + .3641)°
+.3641)24 + .1555)3 — .0162) — .0033

Our first objective is to achieve stability in the pres-
ence of uncertainty, i.e. we require the closed-loop
system to be £°-stable for all P € II. Our second
objective, is to make the norm of the system from
the disturbance input to to u less than one. This
has the the effect of making the magnitude gain from
the disturbance input to the control input less than
one. This must of course be done in a worst case
sense since we are dealing with a plant family, rather
than a single plant. This problem is of practical im-
portance when the control input magnitude is not to
exceed certain rated values. We will use the iteration
scheme discussed after transforming the problem to 2

1In this paper, A is equal to z—1, ‘where z is the familiar
z-transform variable
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stability robustness one with structured uncertainty.
‘Fig. 2 shows the resulting stability robustness prob-
lem. It is straight forward to compute M which turns
out to be: :

M= (—POC'(I + P,C)"'W,

A —POC(I + PoC).-IWQ
—C(I + P,C)™'W;

-C(I+ PqC)—1W2

We now perform the iteration procedure. For con-
venience, we define M(Q) = T1 — T2Q7Ts.
e Weset R, =1. igf”M(Q)l[A = 1.538364.

Set Q, := arg 13f||M(Q)||A 2,

* AIM(Q.)) = inf |R~*M(Q,)R||, = 0.70956.
Set Ry :=arg 1;2% |R-1M(Q.)R]|,.

o rnQin IRT* M(Q)Ry ||, = 0.703424.
Set Q, := arg igfl]R;lM(Q)Rllh.

o p(IM(Q))) = jnf ||R™*M(Q1)E]|, = 0.681358.
Set Ry :=arg gg%”R"IM(Ql)RIL‘.

N rrbin”R{lM(Q)Rg“A = 0.681184.
Set Q2 :=arg igf"R;lM(Q)RgllA.

* A(IM(Q2)l) = jinf IR M(Q2)RI|, = 0.677072.
Set R3 1= arg }%relfn |R-1M(Q2)R||,.

. mé'n”R;lM(Q)R;;”‘ = 0.677072.
Set Q3 :=arg igf[]RglM(Q)Rslh.

(o A(M(Qa)) = jof, IR M(Qa)RI, = 0.677072

When starting points other than R, = I were cho-
sen for the iteration the spectral radius to which
the procedure converged did not change considerably
from the one obtained here. Table 1 shows a few of
these values for various starting points.

Needless to say, for the actual design we would use
the Q parameter giving the smallest of these spectral
radii. This would be the one obtained with R, =
diag(10,1) as a starting point. It should be men-
tioned here that even though R has two parameters,
the actual optimization problem infrex ||[R™*MR||,

" is a one dimensional one. Thus, only the ratio of the .

elements on the diagonal of R that affects the value
of this infimum.

2The ¢! optimization problems in this iteration example
were solved by minimizing over all Q giving closed loop transfer
function polynomial of order 20 or less.
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Starting point R, | Spectral radius to which
iter. converged
diag(1,1) 0.677072
diag(1,10) 0.677072
diag(1,100) 0.665026
diag(10;1) 0.647499
diag(100,1) 0.648200

Table 1: Results of iteration for several R,

Figure 3: System for Example 2

6 Example 2

Given the nominal plant:

_ MA=0.1)

T (A=-05)(r=-2)

Suppose this nominal plant is subject to high fre-
quency input and output uncertainy. This could be
due to unmodelled sensor and actuator dynamics.
This uncertainty is modelled by perturbation blocks
A and A, followed by high pass FIR filters W; and
W, where

P,

W, := —0.0037A%—0.007A7 +0.0817A°
—0.22287% + 0.3)% — 0.2228)3
+0.0817A% — 0.007) — 0.0037
and
W, = =0.0127)%+ .0248)% + 0.0638)\7

—0.2761)% + 0.4)5 — 0.27612*
+0.0638)3 + 0.0248)2 — 0.0127)

We are interested in maintaining system stability in
the presence of the input and output perturbations.
It can be easily seen that

s = (~PAPLU+PC)T WiPo(I+PC)T
=\ -WiC(I +P.C)™  ~W2P,C(I+ P.C)™

We now apply the iteration scheme starting with
R,=1.




3 -1 -—
o iof, IR M Ro|, = 1.0021.

Let M; := optimal M.

(]

inf ||[R-1M,R||, = 0.0332.
RER
Let Ry := optimal R.

°

e o
o iof, IR MRyl = 0.0330.

Let M, := optimal M.

*

}%IEI% ”R-leR”A = 0.0126.

By lumping A, and A, together to form one mul-
tivariable A, ie. by ignoring the structure of the
perturbation, and obtaining a controller which is op-
timally robust for this A, one can only conclude that
stability is maintained whenever [|Ai]l € 15 =
0.997. By applying the present analysis results on
structured perturbations to the system with the con-
troller obtained above, one sees that stability will in
fact be maintained as long as ||A;|} < 30.12. Finally,
if we use the controller corresponding to the last itera-
tion step above, stability will be maintained whenever
1A}l € 79.4. This demonstrates clearly the advan-
tages of this robust synthesis scheme.
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Abstract

Given a class of plants formed by perturbing a
nominal discrete-time linear shift-invariant plant
with norm bounded unstructured perturbation,
the problem of finding a smgle compensator that
will stabilize all plants in this class and at the
same time minimize the worst case norm of the
sensitivity function is solved.

1 Introduction

When modeling physical systems as linear plants
for the purpose of designing feedback controllers
that make the closed loop system achieve certain
specifications, one cannot escape the modelling

uncertainties that are inherent in such a process.

Even if the underlying physical system could be
modelled exactly at one time, parameter varia-
tions that could appear for any one of many rea-
sons eventually take their toll on the system and
render the model inaccurate. For this reason, a
controller that achieves good performance when
controlling the model, might not perform so well
when used to control the actual plant and could
even make the system unstable. Therefore, ro-
bustness of the control system to variations in
the plant are of great practical importance. Sta-
bility robustness can be achieved if the controller
can be made to stabilize a whole family of plants.
Performance robustness, on the other hand, can
be achieved if in addition the controller can be
chosen so as to give “good” performance for each
one of the members of the plant class. Stabil-
ity robustness is therefore required for perfor-
mance robustness. In this respect, recent work
by M. Dahleh and Y. Ohta [1] provides neces-
sary and sufficient conditions for BIBO stability
robustness. The plant perturbations considered
in [1] take the form of multiplicative or additive
perturbations with a bounded norm. In addition,
the perturbations are allowed to be time-varying
or nonlinear.

*This research was supported by the NS F. under
grant ECS-8806977
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This paper considers performance robustness
when the performance criterion is £*° disturbance
rejection. Good performance, in this case, trans-
lates into small norms for certain loop functions,
e.g. the sensitivity function. Accordingly, in
the case of sensitivity, robust performance can
be achieved if the norm of the sensitivity func-.
tion can be made small for all perturbed plants,
an objective that can be achieved by minimizing,
with the proper choice of a robustly stabilizing
controller, the worst case norm of this function.

2 Problem Statement

Let P, be a given nominal discrete-time plant.
P, is assumed to be linear, shift-invariant, and
strictly causal with ¢ inputs and p outputs.

Denote by S(P,) the set of all linear shift-
invariant discrete-time controllers with the ap-
propriate dimension that stabilize P,. We now
define a family of plants formed by adding
weighted multiplicative perturbations to the
nominal plant. Let

M:={P: P=P(I+WiA)}
where W1 € LI}% and A : £2 — £ is causal
with J|]A]| == sup ”“ “”°° £ 1. So A is allowed to

be tlme-varymg or nonlinear. We also define
¥ := {C € S(P,): C stabilizes all P € II}.

When performance is measured by the norm of

.the weighted sensitivity function, the problem of

achieving robust performance and stability can
now be stated as follows:

: -1 —
duf, sup | (I + CPY"'W2) || =t Yopt

where W, € LL}7.

It is therefore desired to compute 7,,: and
to find a controller C € ¥ that will make the
quantity sup I+ CP)"1W2|| a.rbltra.nly close

to Yopt-




3 Problem Solution

Theorem 3.1, to be presented next, is essentially
the key to solving the problem posed earlier. To-
gether with Corollary 3.2 and Theorem 3.3, it
forms the main result in this paper. The proof
of Theorem 3.1 is rather involved and will nct be
presented here. See [4] for a complete proof. We
will instead demonstrate how these results can
be utilized to solve the stated problem. In what
follows, if R € £%}? then R; will denote the ith
row of the transfer function matrix of R. .

Theorem 3.1. Let T and S both be in EqT’}q
with T satistying ||T||, < 1. Then

ISl
-1 _ I Lt 117 S
oup I+ TAY7SI = max T

llafi<t

Corollary 3.2. Let C € S(P,) such that
(I + CP)"*CP,Wi||, < 1. Then

sup||(I + CP)™ Wy =
Pell

max (T +CP) W), |,
1<i<e 1= [[(T + CP.)"1CP,Wh); ||,

Proof : Define T := (I + CP,)"'CP,W; and
S = (I+ CP,) 'Wy. (I + CP)"'W, can be
expanded as follows:

(I+CP)y W, =(I+TA)S.

Now applying Theorem 3.1 gives the desired re-
sult. |
The next theorem is a consequence of Corol-
lary 3.2 and the result of Dahleh and Ohta [1]
concerning conditions for stability robustness.

Theorem 3.3. Let C € S(P,), and let v > 0.

Then ‘

C stabilizes every P € II and
sup [[(I + CP)"'Wz| < v
Pell

if and only if
[+ cry w40+ cry R <.

Proof : See [4].

Theorem 3.3 suggests a way to minimize the
quantity supper ||(7 + CP)~1W;|| subject to ro-
bust stability, by which 4,5t can be approached
arbitrarily closely and a controller that achieves
this can be found. Provided robust stability can
be achieved, it is easy to see how iteration on the
parameter v and solving an .A-norm minimiza-
tion problem at each step will achieve the desired
minimization. See [4] for more details on the it-
eration scheme and (3,5,6] for the techniques of
solving the 4-norm minimization problems.

4 Conclusion

In this paper, it has been shown how stability
robustness and performance robustness can be
incorporated together in one design procedure
when the performance is measured by the norm
of the sensitivity function. An expression for
the worst case norm of this function has -been
provided when norm bounded perturbations are
present. Such an expression provides an effec-
tive way of combining both robust stability and
performance in one, easy to compute, measure.
Furthermore, this expression can be minimized
subject to robust stability constraints to pro-
vide a controller with optimal robustness prop-
erties. Finally, it should be mentioned that even
though the perturbations considered here were
multiplicative perturbations, the situation is al-
most identical when additive perturbations are
assumed. ‘
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ROBUSTNESS IN THE PRESENCE OF STRUCTURED
UNCERTAINTY *

M. Khammash! and J.B. Pearson?

ABSTRACT

Recent developments in the robustness of systems with structured
norm-bounded perturbations are presented. The stability and perfor-
mance robustness of linear time-invariant systems with £*°/£* norm-
bounded structured uncertainty is discussed. Moreover, new results on
the robustness of time-varying systems including necessary and sufficient
conditions for stability robustness are discussed. It is shown that for
both time-varying as well as time-invariant systems nonconservative ro-
bustness conditions can be obtained in terms of certain spectral radii of
nonnegative matrices obtained from the nominal system. The robust-
ness conditions are shown to be computable even for a large number of
uncertainty blocks.

Key Words: Robustness, Structured Uncertainty, €' systems

1. INTRODUCTION

Robustness in the face of structured uncertainty is an important objective of
control. As models of physical systems rarely correspond exactly to the true systems
they are supposed to model, it is necessary to account for the resulting uncertainty
both in the design and analysis procedures. Previous work on the robustness prob-
lem using the £ signal norm has been done by Dahleh and Ohta [1] who solve
the stability robustness problem in the case of unstructured perturbations and for
time-invariant systems. For time-varying systems, Shamma and Dahleh [2] provide
necessary conditions for robust stability for systems with unstructured perturba-
tions. This paper discusses the stability and performance robustness of systems in
the presence of structured uncertainty. Each uncertainty block has an induced ¢
norm which is bounded. For such uncertainty, and when the nominal system com-
posed of the nominal plant and controller are linear time-invariant, necessary and
sufficient conditions for robust stability are presented. These conditions are stated
in terms of the spectral radius of a certain nonnegative matrix obtained from the
nominal system and hence can be computed for a very large number of uncertainty
blocks. In addition, the relationship between stability and performance robustness is

*This research is supported by grants from the NSF and AFOSR
tElec. Eng. and Comp. Eng., lowa State Univ., Ames, Iowa
tElec.& Comp. Eng., Rice Univ., Houston, Texas
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Fig. 1. -System with Structured Uncertainty.

highlighted. By showing a certain equivalence between stability and performance ro-
bustness, the problem of achieving robust performance in the presence of structured
uncertainty can be reduced to a robust stability problem of another system. This
allows the treatment of stability and performance robustness in the same framework.

In many situations, the nominal system composed of the nominal plant and the
stabilizing controller may be time-varying. This is the case for example when deal-
ing with adaptive control systems or sampled-data systems. Time-varying nominal
systems can also arise when time-varying weights are used in shaping certain signals
or in modelling uncertainty. When the nominal system is time-varying, necessary
and sufficient conditions for the robustness of time-varying systems are provided.
These conditions are expressible in terms of the spectral radius of a parametrized
family of matrices obtained from the kernel representation of the nominal system.

This paper is organized as follows. In section 2 the robustness problem in the
presence of structured perturbations is set up. In section 3 the robustness of time-
invariant systems is discussed, and necessary and sufficient conditions are provided
for both stability and performance robustness. In section 4 the robustness of time-
varying systems is addressed, and necessary and sufficient conditions are provided
for stability robustness. Finally, section 5 contains some concluding remarks.

2. PROBLEM SETUP

The standard setup for a general robustness problem appears in Fig. 1. In
the figure, G, is a nominal linear plant. Since all the results in this paper hold
for continuous and discrete-time systems with the obvious modifications, G, may
be continuous-time or discrete-time. C is a linear controller stabilizing G,. For the
analysis problem, C is assumed given and fixed. The uncertainty is modelled with
perturbation blocks Ay, ..., A,. Each perturbation A; belongs to the following class

of admissible perturbations:

”AU”O@ < 1}’ . (1)

u flullo —
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Fig. 2. Stability robustness problem \

where the norm used is the £ norm (or ¢ norm for discrete-time systems).
The perturbations may therefore be nonlinear or time-varying. w is an exogenous
bounded disturbance, and z is a regulated output. The n perturbation blocks can
be lumped into one perturbation block with a diagonal structure. Hence we can
view the class of admissible perturbations as the class of all A € D(n) where

D(n) := {diag(A, A AE AL (2)

Similarly, G, and C can be lumped into one system M. M is therefore, linear, causal,
and stable. Any weighting on any of the perturbations can be lumped into M.

The system in the figure is said to robustly stable if it is £>-stable for all ad-
missible perturbations, i.e. for all A € D(n). Itissaid to achieverobust performance
if it achieves robust stability and satisfies:

1Tl <1 Y AE€D(n), ' ®)

where To., is the map from w to 2, and the norm used is the induced operator norm.
In the next two sections, we provide necessary conditions for robustness when
M is time-invariant and when M is time-varying. We begin with the former.

3. ROBUSTNESS OF TIME-INVARIANT SYSTEMS

We start the discussion of the time-invariant case by first addressing conditions
for robust stability alone. Following the treatment of robust stability, we address
the robust performance problem. :

3.1 Stability Robustness

Consider the system in Fig. 2.  From the figure, M has n inputs and n
outputs corresponding to the inputs and outputs of the perturbations. Each M;
has induced norm which we refer to as the A norm. It can be computed arbitrarily
accurately since ||Mijll, = |Dijl + 720 |C:A*B;| in the discrete time case, and
|\ M5, = 1Dsl + Jo° |CieAtB;|dt in the continuous-time case, where A, Bi, Cj, Di;
are the constant matrices in the state-space description of M;;. We can therefore
define the following matrix: .

IMull, - 1Ml
M=| : @)
| Marll, --- | Monll,
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As the next theorem shows, it turns out that M plays a fundamental role in the
robustness of the given system. We now state the main theorem establishing non-
conservative conditions for robustness:

Theorem 1 The system in Fig. 2 achieves robust stability if and only if any one of
the following conditions holds:

1. p(M) < 1, where p(.) denotes the spectral radius.
2. élgz |R-'MRJ|, <1 where R := {diag(ry,...,7n) : 75 > 0}.

The proof of this theorem can be found in [3] for the discrete-time case and in [4]
for the continuous-time. Since this theorem reduces the robustness analysis problem
to that of computing the spectral radius of a nonnegative matrix. The theory for
nonnegative matrices (see e.g. [5]) provides power algorithms for fast computation
of the spectral radius of a nonnegative matrix. As a result, the robustness conditions
can be computed exactly and efficiently which are especially suited for systems with
a large number of uncertainty blocks. The second condition is useful for the synthesis
of robust controllers since it turns out from the theory of nonnegative matrices that
under very mild conditions on M the infimum is in fact achieved by a certain matrix
R which is formed 1 by writing the positive eigenvector corresponding to p(M), itself
an eigenvalue of M, along the diagonal of R and setting all other entries to zero.
In addition, if M does not satisfy the required conditions it can be made to do so
by perturbmg it slightly while keeping its spectral radius as close as desired to the
original one. So a procedure for finding a controller that makes the spectral radius
small can be devised similar to the D-K iteration used in the 4 synthesis (see e.g. [6
1) The differences between this case and the p synthesis is that the scaling matrix R
in this case is constant and not frequency dependent and thus is easier to compute.
Moreover, unlike the 4, condition 2. in the theorem above remains necessary even
for n > 3. These differences are attributed mainly to the difference in norms used
as well as the class of allowed perturbations.

3.2 Robust Performance _

Thus far we have discussed only robust stability. It turns out that in the
time-invariant M case, robust performance can be treated in the same framework as
robust stability thanks to a special equivalence relationship between the two. The
equivalence is the subject of the next main theorem. But first consider the two
systems in Fig. 3. SYSTEM I is the one for which we seek robust performance.
SYSTEM II is formed from SYSTEM I by feeding the output z back to the input w
through a perturbation block Ap. Robust stability of SYSTEM Il is closely related
to robust performance of SYSTEM I. This is what the following equivalence theorem
states:

Theorem 2 With SYSTEM I and SYSTEM II as in Fig. 3, SYSTEM I achieves
robust performance if and only if SYSTEM II achieves robust stability.

As mentioned earlier the robust stability of SYSTEM II is equivalent to stability
for all diag(Ap,A) € D(n+1), and can be tested using the spectral radius test in
Theorem 1. The proof of Theorem 2 can be found in [3]. Even though one direction
of the proof is fairly obvious and follows directly from the Small Gain theorem,
the proof of the other direction requires some results on the stability robustness of
time-varying systems.
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Fig. 3. Stability robustness vs. performance robustness

4. ROBUSTNESS OF TIME-VARYING SYSTEMS

We now discuss the general case when M is time-varying. Of special interest
is the case when M is periodically time-varying. Such M arise when dealing with
sampled-data systems. For time-varying systems various properties of the norm
which hold for time-invariant systems cease to hold. In particular if (M; M:)isa
time-varying system then unlike the time-invariant case, I{ My M;)]| is not equal
to || M|, + || Mz]|,- Many of the subtle differences in the robustness conditions be-
tween time-varying and time-invariant systems are attributed to this fact. Another
property which time-varying systems do not possess is that of commuting with the
shift operator. We define the shift operator for time-varying systems as follows:

St ¢ L+ L such that
_ [u(t—T) whenevert2>T
(Sru)(t) { 0 otherwise )

For the robustness of time-varying systems the operator S_7 M St plays an important
role. Before we can state necessary and sufficient conditions for stability robustness
of time-varying systems we need a representation for the time-varying operator M;;.
Since M;; is a linear, causal, and stable map, it has a certain kernel representation,
say M;;(t,7) for 0 <it,7 < o0, 50 that for any u € L™
o0

(Migu)(t) = [ Mis(t, Tu(r)dr | ®)
where M;;(t,7) = My(t,7) + Lo mE()8(t — ts — 7) (see [7] for more details).
Because M;; is L®-stable it holds that

ess sup /oo |M;(t, )l + 3 Im(8)] < oo
t 0 k=0

We can suppress the dependence of M;; on 7 by writing M;;(t) by which we
mean the function M;;(t,-). This belongs to the algebra A (see [7]). In this case,
| Mi5(D)1, = fo |M(¢, 7)|dT + T2 I5(2)|- 1t can be verified that

1Ml = sup MOl | ™

We are now in a position to state the generalization of Theorem 1 to time-varying
systems.
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Theorem 3 For the system in Fig. 2 and with M a stable and causal time-varying
operator robust stability is achieved if and only if any of the following two conditions

are met:

1. ForsomeT >0
I(S_rMuSr)(E)l - N(S-rMinST)(t),

sup p <1

t; 20

N(S-rMuST)(ta)l -+ (S MrnST) ()4
2. ForsomeT >0, infrer ||[R7YS_-rMSTR|| < 1.

This theorem appears in [4] where the proof can be found. For periodically time-
varying systems various simplifications take place in the statement of Theorem 3.
In particular, for sampled-data systems state-space formulae can be obtained for
the quantities appearing in the theorem statement and the norms can be computed
arbitrarily accurately. Furthermore, the supremum in item 7 of theorem 3 can be
taken over a compact set in the case of sampled-data systems. More details about
these computations appear in [4].

5. CONCLUSIONS

In this paper, computable necessary and sufficient conditions for the robustness
of time-invariant systems in the presence of structured uncertainty were presented.
It was shown that performance robustness can be handled in the same framework
as stability robustness. Finally, necessary and sufficient conditions in terms of the
spectral radius were given for the robustness of time-varying systems. [For tinic-
varying systems it can be shown that the relationship that exists between stability
robustness and performance robustness in the time-invariant case ceases to hold for
time-varying systems. More work needs to be done in this direction.
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ABSTRACT

We consider robust stability and performance
analysis problems for continuous-time single-
input single-output plants in the H setting. For
a multiplicative uncertainty model, we show that
well-known conditions for stability and perfor-
mance are not necessary conditions. We show
there is no equivalence between the stability and
performance problems. We argue that stability
of M-A configuration is not always equivalent
to robust stability. We consider uniform stabil-
ity and uniform performance, and examine their
relationship with each other.

NoTtaTION

C,e {s€C: Res >0} U {c0}

Q(Q) open (closed) right half plane

H., space of bounded holomorphic func-
tions on Q2

RH, rational functions in H., with real
coefficients

A - space of bounded holomorplic func-
tions on § ' '

a {aed: o), <1}

Ac {AeA: <1}

Al

1. INTRODUCTION

We consider the robust stability and perfor-
mance problems for single-input single-output

*This research was supported by the NSF under grant

ECS-8914467 and by the AFOSR under gnnt AFOSR-
91-0036. .

- CH3229-2/92/0000-1991$1.00 © 1992 IEEE

1991.

Figure 1: Feedback configuration "

continuous-time plants with uncertainty in the
Ho, setting. Consider the feedback system in
Figure 1, where 7 is the reference input, y is
the controlled outplit, and d is the disturbance.
In the figure, C is the controller, and P is the
plant, both represented minimally. We say that
the system in Figure 1 is well-posed if for any lo-
cally square-integrable 7, d there is a unique pair
r1, 2 With z;, 2, locally square-integrable. We
say that the system in Figure 1 is internally sta-
ble or that C stabilizes P if it is well-posed and if
the four transfer functions from (r,d) to (z1,z;)
are stable (i.e. in Hy). We say that C achieves
performance with respect to property p for P if
it stabilizes P and if p holds. If it is understood
what p is, we simply say that C achieves perfor-
mance for P. In this paper, ||W Ty ll, < 1is
the performance property where Wy € RH, is
fixed and T7,, is the map from 7 to z;.
Mathematical models rarely describe the plant
exactly. That is, P is not known premsely, but

_can only be placed thhm a given uncertainty set

II. In such a case, we are interested i in desxgmng a
single controller which stabilizes or achieves per-
formance for every P € IL. We ‘have the followmg '
definitions.

Definition 1.1. The controller C' robustly sta-

bilizes I 1f C. stabxhzes every Pell




s

Definition 1.2. The controller C achieves ro-
bust performance for 11 if C achieves performance
for every P € 11.

Then the robiist stability (performance) prob-
lem amounts to determining if a given controller
C achieves robust stability (performance) for a
given uncertainty set. A typical uncertainty set
is{P=P+A:AcH,, lAlle < 1}, where P
is called the nominal plunt and is a distinguished
member of the set, and A is called the perturba-
tion on P. We then have notions of nomina sta-
bility and nominal performance whose ineaning
is obvious. Several uncérta.inty sets parametrized
by stable perturbations on a nominal plant such
as additive and multiplicative perturbations [1]
have been considered in the literature. For tle
single-input single-output systems, the uncer-
tainty is unstructured if a scalar perturbation
parametrizes the uncertainty set. Otherwise it
is called structured. In this note, we consider
both structured and unstructured uncertainty.
The reason for elaborating on the definitions
at length is that we will show in Section 3 that
a standard approach, which we call “Af -A anal-
ysis”, does not always solve the robust stability
problem as stated above. There are necessary
and sufficient conditions for hoth robust stabil-
ity and robust performance [1], if a) the nominal
plant and controller do not have poles and zeros
on the imaginary axis, and b) if the uncertainty is
unstructured. We show that if we relax either a)
or b), the conditions are sufficient but not neces-,
sary. We consider robust stability in Section 2, a

performance in Section 4, and their relationship
in Section 5.

Consider a controller ¢ which robustly stabi-
lizes a class of plants II. Then, given any P ¢ II,
the four transfer functions from (r,d) to (x1,y)
are stable, and hence have finite norms. But it
is plausible that as P varies over II these norms
can grow arbitrarily large. That is, as we show

on the norms of these trassfer functions as P
varies over IT. Tlis is why we have robust perfor-
mance problem, where we ensure that weighted
norm of a transfer function remains bounded un-
der perturbations. We show in Section 6 that

\
' comparison of M-A analysis in Section 3, robust
Iin Section 6, there may not be a uniform hound
Even when we have rohust performance, norins

of some transfer functions can grow arbitrarily
large. It is desirable that we design a controller
C that achieves such a uniform norm bound on

" all transfer functions. With this motivation, we

consider uniform stability (performance) prob-

~ lems and examine their relationship with each
~other and with robust stability (performance)

problems. We compare using M-A analysis to
solve these problems. A discussion on the results
follows in the last section.

2. ROBUST STABILITY

Internal stability for the feedback configura-
tion under consideration is equivalent to the sta-
bility of the three transfer functions

b C 1
=, ———, and ———,
1+PC 14+ PC 1+PC
We consider unstructured uncertainty first. De-
fine

Iy :={P=P1+AW,): A e A lall, <13,

M= {P = P(1+AW:) : A€ A, Al < 1),

where W, € RH, is fixed. We assume the fol-
lowing throughout the paper.

(A1) The nominal plant and the controller are
proper rational functions with real coefficients.

There are no assumptions on the location of poles
or zeros of either the nominal plant or the con-
troller. In particular, we do not assume they do
not have poles on the imaginary axis. Assump-
tion Al is not crucial in the paper. All the re-
sults hold verbatim for distributed plants having
finitely many poles of finite order in the closed
right half plane. Define

__PC 1
T 1+PC’Y T 1xPC

Proposition 2.1. Let C stabilize the nominal
plant P. Then:

(i) C fabustly stabilizes 11§, if and only if
W2Tl, < 1.

(i) |WaT|l,, < 1 implies C robustly stabilizes
.

(1) C robustly stabilizes Mpr does not imply .

”VVgT”w <1

sl e A

-




(iv) C robustly stabilizes llps implies [|WoT|| o, <
1. '
(v) In addition, assume that neither P nor C has

poles on the imaginary azis. Then, C robustly
stabilizes s if and only if ||WoT ||, < 1.

Part (ii) follows from small gain theorem (5]
Parts (i), (iv) and (v) are easy to prove.
We prove (iii) by exhibiting an example with
[[WaT|l, = 1 where there is no destabilizing
Ae€A.

- Example 1. Let P(s) := 1, C(s) := 1, and

Wg(s) = 1.
Proof. For rational perturbations, a destabiliz-

ing A needs to satisfy A(O) = -1 and A'(0) =
—1. Such a A doesn’t belong to A. a

See [3] for the case of general perturbations in
A

In [4], it is shown that a necessary and suffi-
cient robustness condition with a non-strict in-
equality exists for a class of stable-factor pertur-
bations defined with a strict inequality. It is also
shown that if the inequalities are switched, the
condition becomes sufficient but not necessary.
Our construction is similar to the construction
of the counter-example there.

We now consider structured uncertainty. De-
fine

- 14+A W. < -
= {Pr A, - Avde € &0 2 W,
- 1+A2W2 -1
fie 1= (PRt 222, A% Ay # =W

{ T AW, A, Az € A1 F 1 b

where Wy, W, € RH,, are fixed.

Proposition 2.2. Let C stabilize P. Then:

(i) C robustly stabilizes ¢ if and only if
| [W1S| + [WaT| |l £ 1.

(ii) || IW1S|+ [WeT| |l < 1 is sufficient but
not necessary for C to robustly stabilize I1.

(i) - C  robustly  stabilizes I
| IW1S| + [WT| flo < 1.

imnplies

Parts (i), (iii), and sufficiency in (ii) are easy
to prove. The following example completes the
proof of (ii). For details,.see [3].

Example 2.

Let P= &47,C =1, W1 =1, and

— 1
Wa= o1 ‘
Note that both the nominal plant and controller
in the example are rational functions with no

" poles and zeros on the imaginary axis. This
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should be contrasted with Proposition 2.1(v).

3. M-A ANALYSIS

Figure 2: Multiplicative Perturbations

In the literature, there is one approach to solve
the robust stability problem of Section 1, which
has been generalized to deal with structured un-
certainty allowing multiple uncertainties at sev-
eral locations in the plant. This approach is
to rearrange the given configuration, redrawn in
Figure 2 with A in place, to match Figure 3(a).
Here, M is the transfer function from the out-

(3
A 0= A

Y2 uz

M M

(a) (b)
Figure 3: General M-A structure

put of A to the input of A. Then the “stability
of the closed loop system” in this figure is stud-
ied. To define this, two additional fictitious sig-
nals are introduced as in Figure 3(b). The M-A
configuration is called stable if the four trans-
“fer functions from (uy,u2) to (¥1,%2) are stable.
This is shown to be equivalent to the invertibil-
ity of (] = MA) in He for every A in the unit
ball. Then a necessary and sufficient condition
for this, a version of the small gain theorem, is
derived. For example, the following holds for un-
structured uncertainty.




»

1wy

Lemma 3.1. (I — MA)™ € Hy for all A €
RH,, with ||All, €1 if and only if |[M]| < 1

We can interchange < and < in this lemma. Sim-
ilarly, for structured uncertainty which gives rise
to a block-diagonal A and a transfer function
matrix M, we -have the u-test [1] to determine
the stability of the M-A coufiguration. With
the previous examples, it is clear that robust
stability of the configuration in Figure 2 need
not imply the stability of the M-A coufigura-
tion. Notice we have shown this in Example 2
with a plant and controller that are rational and
stable. That is, the M-A analysis may not al-
ways solve the robust stability problem stated
in Section 1. Presumably, the equivalence be-
tween these two notions of stability depends on
the norm, the set of A (e.g. open or closed unit
ball), and other assumnptions on the plant or con-
troller (e.g. no poles of controller or plant on the
imaginary axis), and the perturbation class itself
(e.g. they are equivalent for additive perturba-
tions, but not for multiplicative perturbations).
This equivalence issue is an open problem.

4. ROBUST PERFORMANCE

The performance criterion under consideration
is that the H,, norm of the map fromn r to x;
weighted by W; be strictly less than 1. Then
robust performance for I pr (I15,) may be defined
as

robust stability for IIps (II3,) and

W
" 15 <1, VA€ A (A%

1+ AWST |l

We claim the following.

Proposition 4.1. Let C stabilize the nominal
plant P. Then:

(i) Robust performance
M3 <= (| W1S]+ [WT| [l <1

(#) || [W1S| + [WT1 ||,

formance for ps.

for
< 1 implies robust per-

(iti) Robust performance for Ilpp docs not imply
| 1W1S]+ [WaT| |l < 1
(iv) Robust performance for

+WaT| [l £ 1

Mar

implics
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(v) In addition, assume that neither P nor C has
poles on the imaginary azis. Then, robust perfor-
mance for Iy <= || |[W1S|+ |WLT| ||, <1

As we can have robust stability with
[W2T|l, =1, it may seem that (iii) is imme-
diate. However, it may happen that for any ro-
bustly stable system with ||[W,T|| = 1, there
is no W; such that a performance bound is
achieved. Proof of (i), (ii), (iv) and (v) is simple.
We establish (iii) by an example.

Example 3. Consider the Example 1 with
Wi(s) := %—f{%ﬁ For each w and each A € A, we
have

, [WiS] 0.49w? < 0.98
1+ AT = 1—|T| 1+w?2—v1+w? -
So, C achieves robust performance, but
| [W1S]+ [W2T| | 2 1. o

5. RELATION BETWEEN PERFORMANCE AND
STABILITY

We now examine if robust performance for IIjs
is equivalent to robust stability for IT. The equiv-
alence breaks down rather miserably, but the two
notions are not completely unrelated. We will
compare the case of IIpr with that of II§,.

The main result of this section follows.

Proposition 5.1. Let C stalilize P. Then:

(i) Robust performance for I3, <= C robustly
stabilizes I1°.

(ii) Robust stability for IT does not imply nominal
performance for Mpr.

(ii1) Robust performance for Iy implies robust
stability for I1.

Proof of (i) follows from Proposition 2.3(i) and
Proposition 4.4(i). Again we prove (ii) by an
example. For proof of (iii), see [3].

Example Consider Example 2 again. We have
shown that C robustly stabilizes 1. However,
since ||W15]|., = 1, the closed loop system does

not even have nominal performance. o

G. UNIFORM STABILITY AND UNIFORM PER-
FORMANCE

In Section 1 we discussed a notion of robust
stability and performance. In this section we




consider another notion of stability and perfor-
mance. Consider 2 controllet C which robustly
stabilizes a class of plants II. Then, given any
P € 11, the three transfer functions

1
nd

1+PC’1+PC’a'1+PC

are stable, and hence have finite norms. Butitis

conceivable that as P varies over II tliese norms

can grow arbitrarily large. In other words, there

may not be a uniform bound on the norms of
these transfer functions as P varies over Im. It
is clearly desirable that we design a controller
C that achieves such a uniform norm bhound on
all transfer functions. With respect to Figure 1,
denote the map (r,d) — (z1,72) bY Tzuws which
clearly depends on P. Let the performance prop-
erty of interest be the same as in Section 1. The
following definition is in [2].

Definition 6.1. The controller C' achieves uni-
form stability for ITif

;11;11)I uTzw(P)“w < 00.

We define uniformn performance similarly.

Definition 6.2. The controller achieves uni-
form performance for II if it achieves uniform
stability and robust performance for II.

When the supremun in the definitions is finite,
we call it the uniform bound. It is clear from the
definitions that uniform stability (performance)
is a stronger notion than robust stability (perfor-
mance). We now show by an example that these
are indeed strictly stronger.

Example. Consider Example 3. We have
shown that C achieves robust performance (and
hence robust stability) for Ilas. Consider

14+PC’
For any w € R*, we have

el = e

We also have a sequence of wy for which

7‘}-"-_-:—;- /(1 - 711_*_—;) becowmes arbitrarily large.
u” wﬂ

For each w,, we can select a An € RHo N A

such that |1+ AnT(iwn)l = 1= |T (#wn)|- For this
sequence of A,, we have
‘ S

m = O0. . g .

lim

n

o

However, uniform stability need not always be
stronger than robust stability. For the additive
perturbation class Il4 = {P = P+ AW, :
Al £ 1}, uniform stability (performance) is
equivalent to robust stability (performance}.
The uniform stability (performanée) problem
amounts to determining if a given controller C
achieves uniform stability (performance) for a
given uncertainty set. The following is easy to

prove:

Ml < 1 <= sup “(I+ MA)"“ < .
AEA ; R

Paraphrasing the right hand side of the above
equivalence as ‘uniform M-A stability’, we may
expect that uniform M-A instability does not
imply uniform instability for multiplicative per-
turbations, if the perturbation set is the closed
unit ball 'A. The following proposition shows
that these notions are different even when the

perturbation set is AC.

Proposition 6.3. Let C stabilize the nominal
plant P. Then:

(i) |WaTll, < 1 s sufficient but not necessary
for C to achieve uniform stability for ar (T3)-
(ii) || [W1 S| + |[WoT| || <1 is sufficient but not
necessary for C to achieve uniform performance

for Tar (14)-

Proofs of sufficiency are easy. We now show C
can achieve uniform performance for Il even
when [|[WT || = 1-

Example 4. Let P = 2—’}1, C =1, W =0.99,
W, = 7. Arguing as in Example 1, we can
show that system is robustly stable for IIps. For
each w and each A € A, we have

w.S| 09958z

= i
|1—IW2T|| e v

l Wh$ = 0.99.

—_— <
1+AI’V2T| -

So, C achieves robust performance for . Since
C and W; are stable and invertible in Heo,

all four transfer functions are also uniformly
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bounded. Ap upper bound is 2. §
sion, with the same bounds, is re

W, = 1.
With A ¢ A° we hav

ame conclu-
ached even wit},

a
€ seen in Proposition 5.1
that robust performance for IT$, is equivalent to
robust stability for IT°, We now examine if there

is such an equivalence between uniform perfor-
mance and uniform stability.

Proposition 6.4. Let C stabilize P. Then:
(i) C uniformly stabilizes fje
uniform performance for 1I3,.
(i) Converse of (i) is false.

implies C achieyes

Proofof (i) is easy. The following trivj

al example
Proves (i),

Example 5. Let P=(C = L, W =1/2, Wy =
3/2. Then § = T = 172, It is easily verified
that C achieves uniform performance for II§,.
Choose Ay = Ay = e 1. As € goes to Zero,
Stz 411W1 3 _:22 Ww,T becomes arbitrarily large. O
We have seen an uncertainty set for whicl, uni-
form stability (performance) is strictly stronger
than robust stability (performance), but we do
not have 3 necessary and sufficient condition for
uniform stability. We now consider another up-
certainty set where uniform stability is strictly

stronger thanp robust stability, but for which
there is a hecessary and suffici

ent condition for
uniform stability. Consjder

I :={P=p4 AWz : A € A},

I.Ii = {‘J.P-:-TA:I/V;? 2A1,A2 € AO,A] & —I’V;l}
where W, W2 € RH,, are fixed. Tle following
Proposition is easy to prove.

Proposition 6.5, Let C stabilize P, Then:

(i) C robustly stabilizes T
w2Csl, < 1.

(ii) C uniformly stabilis
”WgC’S”m <1

(%) || W8] + [WLC S| lo £ 1 if and only if C
achieves robust performance for 11
(iv) || WS+ IW'zCSl lw < 1 is sufficient but

not necessary Jor C o achicne uniform perfor-
mance for 11, '

if and only if

es 11 if and only if

(v) C uniformly stabilizes 04 if and only if
W18+ Wy s lo < 1.
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We conclude from parts (iv) and (v) that C

achieves uniform Performance for I does not
imply ¢ uniformly stabilizes 1I5.

7. ConcLusions

. Tight half-plane pole-zero cancellation in the per-
turbed plant, as js shown in the case of uniform
stability, Even whep the perturbation class is
defined by the open unit ball, the condition for
performance) js asymmetrical.
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Minimization of the L*-Induced Norm for Sampled-Data Systems™

Bassam Bamieh!, Munther A. Dahleh?, J. Boyd Pearson’

Abstract

In this paper, a complete solution for the £! sampled-data
problem is furnished for arbitrary plants. The £! sampled-data
problem is described as follows: Given a continuous-time plant,
with continuous-time performance objectives, design 2 digital
controller that delivers this performance. This problem differs
from the standard discrete-time methods in that it takes into
consideration the inter-sampling behavior of the closed loop
system. The resulting closed loop system dynamics consist
of both continuous-time and discrete-time dynamics and thus
such systems are known as hybrid systems. It is shown that
given any degree of accuracy, there exists a standard discrete-
time £! problem, which can be determined apriori, such that
for any controller that achieves a level of performance for the

discrete-time problem, the same controller achieves the same -

performance within the prescribed level of accuracy if imple-
mented as a sampled-data controller. This is accomplished by
first converting the the hybrid system into an equivalent in-
finite dimensional discrcte-time system using the lifting tech-
nique in continuous time, then the infinite dimensional parts
of the system which model the inter-sample dynamics are ap-
proximated. This approximation is done independently of the
controller, and explicit bounds are obtained for the degree of
approximation. It is shown that the convergence of this ap-
proximation is at least as 2.

1 Introduction

This paper is concerned with designing digital controllers for
continuous-time systems to optimaly achieve certain perfor-
mance specifications in the presence of uncertainty. Contrary
to discrete time designs, such controllers are designed taking
into consideration the inter-sample behavior of the system.
Such hybrid systems are generally known as sampled-data sys-
tems, and have recently received renewed interest by the con-
trol community.

The difficulty in considering the continuous time behavior
of sampled-data systems, is that it is time varying, even when
the plant and the controller are both continuous-time and
discrete-time time-invariant respectively. We consider in this
paper the standard problem with sampled-data controllers (or
the sampled-data problem, for short) shown in figure 1. The
continuous time controller is constrained to be sampled-data
controller, that is, it is of the form H.CS,. The generalized
plant is continuous-time time-invariant and C is discrete-time
time-invariant,H, is a zero order hold (with period ), and S-

*The first and last authors’ research is supported by NSF ECS-
8914467 and AFOSR-91-0036. The second author is supported by Wright-
Patterson A.F.B. F33615-90-C-3608, , C.S. Draper Laboratory DL-H-
418511 and by the ARO DAAL03-86-K-0171.
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{Laboratory of Information and Decision Systems, Massachusetts In-
stitute of Technology, Cambridge, MA

$Dept. of Electrical and Computer Engineering, Rice University, Hous-
.ton, TX 77030 s
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Figure 1: Hybrid discrete/continuous time system

is an ideal sampler (with period 7). H, and S, are assumed
synchronized. Let F(G,H,CS,) denote the mapping between
the exogenous input and the regulated output. F(G, H,CS:)
is in general time varying, in fact it is r-periodic where 7 is the
period of the sample and hold devices.

Sampled-data systems have been studied by many re-
searchers in the past in the context of LQG controllers (e.g.
{19]). Recently, Chen and Francis [4] studied this problem in
the context of H® control, and were able to provide a solution
in the case where the regulated output is in discrete time and
the exogenous input is in continuous time. The exact problem
was solved in [2},{3], and independently in [12] and (20]. The
L*-induced norm problem (the one we are concerned with in
this paper) was considered in [9}.

In this paper we will use the framework developed in (21,3},
to study the £! sampled-data problem. Precisely, the controller
is designed to minimize the induced norm of the periodic sys-
tem over the space of bounded inputs (i.e. L%). This min-
imization results from posing time domain specifications and
design constraints, which is quite natural for control system
design. To emphasize the point made earlier, the inputs are
continuous time inputs, the errors are continuous time errors
(see figure 1), however the system is a hybrid system with a
continuous-time plant and a discrete-time controller. The dis-
crete time method for £! designs (e.g. {5},[15]), cannot handle
this problem directly, and is only concerned with the perfor-
mance at the sampling instants. The solution provided in this
paper is to solve the sampled-data problem by solving an (al-
most) equivalent discrete time ¢! problem. While this was the

. approach followed in [9], the main contribution of this paper is

that it provides bounds that can be computed apriori to deter-
mine the equivalent discrete-time problem, given any desired
degree of accuracy and thus provides 2 solution for the syn-
thesis problem. The solution in this paper is presented in the
context of the lifting framework of (2], [3], as an approximation
procedure for certain infinite dimensional problems. This ap-
proach has the advantage of being more transparent than that
in [9].

As already mentioned, sampled-data systems are periodic,
the main theoretical tool we use for dealing with periodic sys-
tems is a lifting technique for continuous time systems devel-

-
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Figure 2: W, : L2(0, 00) — L1500,

W,
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oped in [2], [3]. The technique establishes a strong corre-
spondence between linear periodic systems and time invariant
infinite dimensional systems. In the next section we briefly
describe the Lifting and it’s application to the sampled-data
problem. We then set up an equivalent infinite dimensional
problem whose solution is obtained using an approximation
procedure. Formulas for the (almost) equivalent discrete time
problem are given in section 3. In the later sections the issue
of the convergence of the approximation procedure is investi-
gated, where the main result js a design inequality (5) which
expresses the degree of approximation of the hybrid problem
by a discrete-time problem, in terms of the dynamics of the
plant and independently of the choice of the controller. This
inequality is arrived at by decomposing the equivalent infi-
nite dimensional problem and analyzing the decomposition.
Space limitations preclude including the details of this deriva.
tion which are presented elsewhere [1].

2 The Lifting Technique

In this section we briefly summarize the Lfting technique for
continuous-time periodic systems developed in [2], [3], and ap-
ply it to the sampled-data problem. The idea of the lifting tech-
nique is to put a periodic continuous-timg system in a strong
correspondence with a shift-invarjant (ie. discrete-time time-
invariant) system, which amounts to rearranging the original
system so that jts periodicity can be viewed as shift invari-
ance. To accomplish this, we first define the lifting for signals,
for which the appropriate signal spaces need to be established.

For continuous time signals, we consider the usual L>[0,00)
space of essentially bounded functions (8], and it’s extended
version LP[0,c0). We will also peed to consider discrete time
signals that take values jn a function space, for this, we de-
fine £x to be the space of all X -valued sequences, where X is
some Banach space. We define £ as the subspace of £y with
bounded norm sequences, i.e. where for {f;} € £y, the norm
/i leg == sup; [ fillx < co. Given any f ¢ LZ10.), we de-
fine it’s lifting f € L1y, as follows: fis an L=[0,7}-valued
sequence, we denote it by { f,}, and for each §,

fit) = ft+r)) 0<t<r

The lifting can be visualized as taking a continuous time signal
and breaking it up into a sequence of ‘pieces’ each correspond-
ing to the function over an interval of length T (see figure 2).
Let us denote this lifting by W, : LP0,00) — Lrog . W,
is a linear isomorphism, furthermore, if restricted to L™(0,c0),
then W, : L%[0,60) —sr Lo, IS 21 isometry, i.e. it preserves
norms.

Using the lifting of signals, one can define a lifting on sys-
tems. Let G be a linear continuous time system on L$°[0,00),
then it's lifting G is the discrete time system G := wW.GW-1,
this is illustrated in the commutative diagram below:

!Essentially the same technique was arrived at independently in [20]
and [21]
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lL“‘[o,.-; —\G_. le[o_,]
- Wr-li W,

LPpe) — G | [

Thus G is a system that operates on Banach space (L%[o,r])
valued signals, we will call such systems infinite dimensjonal.
Note that since W, is an isometry, if G is stable, i.e. a bounded
linear map on L* then & is also stable, and furthermore, their
respective induced norms are equal, [|G]] = [IG]l. The cor-
respondence between a system and it’s lifting also preserves
algebraic system properties such as addition, cascade decom-
Position and feedback (see [2] for the details).

The usefulness of the lifting in the sampled-data problem is
the fact that if Gis a T-periodic system, then & s commutes
with the shift on lpw,,, that is, G is shift-invariant. This
basic fact allows us to treat continuous time periodic systems
as discrete-time time-invariant, albeit infinite dimensional sys-
tems. .

State space models can be found for the lifted systems. To
illustrate, let G be a continuous-time time-invariant system

A|B .
1D J In [2] it was
shown that the lifting G has a state space realization given by:
. AlB] [
G = r =
Lc]p]
BZ ¢ L0, — R* .
A: R — R
C: R — L®p,r
D: L= — L®[g,1)

given by a state space realization G=

eAT ' eA(r-i)B " 1
Cett | CeAG=i1i_ 5B + Dé(i - 3) J( )

where the operators &, B, D are given in terms of their kernel
functions, and 1() is the unit step function. _

Notation: It simplifies the notation greatly to use the same
symbol for an operator and jts kernel, for example, b(t, s) (or
B (s)) refer to the kernel functions representing the operator D
(or B). For operators that map a function space to R®, such
as B above, we generally use s (or 3) to denote the variable
of the kernel function, and for operators that map R" to a
function space such as ¢ above, we use the variable ¢ (or i),
The kernel representation for the operators B,C, D means that
their action is given by

Bu= '[-B(é) w3 di Cz = Cli)z, ie[o,r]
(Du)(d) = /o "D, 3) u(s) ds

Note that the state space of ¢ is finjte dimensional (the =
in R refers to the dimension of the state space of G), while
it’s input and output spaces are infinite dimensional. This
fact is significant in that, although lifted systems have infinite
dimensional input and output spaces, they can be realized with
a state space of dimension no larger than the dimension of the
original continuous-time state space model.

To apply the lifting to the sampled-data problem, consider
again the standard problem of figure 1, and denote the closed
loop operator by F(G, H.CS.). Since the lifting is an isome-
try, we have that || F(G, #,CS,)|| = W:7(G, H.CS. )W,
this is shown in figure 3(2). In figure 3(b), we lump the lifting
operators W, and W;! and the sample 2nd hold operators and
consider a new generalized plant G. G is a discrete time system
with one infinite dimensional input and output (corresponding

e
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Figure 3: Equivalent Problem

to w and #) and one finite dimensional input and output (corre-
sponding to & and §). Thus, F(G,C)= W,F(G, H.CS )W, 1,
which means that the closed loop operator F (G,C) is in fact
the lifting of the closed loop operator ' (G,H.CS-). Since
the lifting W, is an isometry, we have then characterized the
1= induced norm of the hybrid system as the £fwy ;) induced

norm of the time invariant system F (G,C). The conclusion is

that the problem of minimizing the L% induced norm of the
sampled-data system, is equivalent to that of minimizing the
induced norm of the infinite dimensional but time-invariant
system F (G,C). The previous discussion together with the
characterization of internal stability for hybrid systems in [11]
(conditions for non-pathological sampling) yields the following
theorem:

Theorem 1 Let G and G be as in figure 3, then for any finite
dimensional C

(i) F(G,H.CS.) is internally stable if and only if F(G,C)
is.

(i) |F(G, H LSl = IFG.OM-

This reformulation of the sampled-data problem to the prob-
lem with G has several advantages, first, the controller has no
tstructural constraints’ on it, in contrast to the previous formu-
lation where the controller is constrained to be a sampled-data
controller, i.e. of the form H,CSs, second, both the controller
C and the generalized plant G are shift-invariant, thus the pe-
riodicity of the original system is ‘removed’, and third, all parts
of the system are operating over the same time set (discrete-
time). The price paid for these advantages is the infinite di-
mensionality of the input and output spaces. In this paper
we will show how one can reduce the probiem to a finite di-
mensional one by ‘approximating’ the input and output spaces
by finite dimensional spaces, thus reducing the problem to a
standard finite dimensional ¢! problem.

We now present (from {2]) a state space realization for the
new generalized plant G which will be useful in studying the
problem further. Let the original continuous time plant G be

given by the following realization

It is assumed that the sampler is preceded with a presampling
filter which is a strictly causal linear system, this is a realistic
assumption since an ideal sampler is not a practical device, a
real sampler can be modeled as an integrator with a fast time
constant followed by and ideal sampler. The system shown
above represents a generalized plant with the presampling filter
absorbed in it, the fact that Dg; = Dy = 0 is due to the strict
causality of the presampling filter, this also guarantees that
the ideal sampler only operates on continuous signals. It can
be shown ([2]) that a realization for the generalized plant G
(figure 3) is given by

A~ éll élz
G = = -
[ Gu Gz
eAT | eAlr=0) By ¥(7)B;
C],C'“ CxCA(‘-')l(l—l)Bl + Dy16(t ~ §) cﬂl’(f)Bz + Dia ’
C; 0 0

where ¥(t) := [ eA*ds. The system G has the following input
and output spaces

Qn 1 Lpewp — {2
C_;'12 : Lpe — LLepn
Gayt Lpeps — LRy
ézz H lR- — lny

3 Solution Procedure

Using the lifting we are able to convert the problem of finding
a controller to minimize the L% induced norm of the hybrid
system (figure 1) into the following standard problem with an
infinite dimensional generalized plant G:

po= gt IFGHCSN = o i 1RGO
@

We also note that because of theorem 1, suboptimal solutions
to the above problem will also be suboptimal (with the same
norm) for the hybrid system. _
The above infinite dimensional problem is solved by an ap-
proximation procedure through solving a standard MIMO £
problem. The idea we use is similar %o those in [9] and [13]
where multirate sampling is used to obtain discrete-time sys-
tems that approximate the continuous time behavior of hy-
brid systems. This approximation procedure was used in {9]
to address the £! sampled-data problem. The approximation
procedure we use is essentially equivalent to that in {9}, how-
ever, since we introduce it directly as an approximation to the
lifted problem (2), the nature of the approximation is more
transparant and we are able to explicitly isolate the parts of

" the system that need to be approximated independently of the

controller. The consequence is that we are able to obtain ex-
plicit bounds on the degree of approximation in terms of con-
“stants that can be computed apriori, and that are dependent
only on the plant. '

We now describe the approximation procedure. Let Ha and
Sn be the following operators defined between L®(0,7] and £7°(r)
(£2(n) is R" with the maximum norm),

Sa: LPpd— £2m) (Saw)(i) = u(-::i); we L®ps

Hn: ) — L= (Hnu)t) = u([t?n_[), {u(t)} € £%mn),
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4 Design Bounds

In this Section we investigate the natyr,
; (G, )by | (G, C)fl. 1n ordert

to obtain explicit bounds on the degree of approximation of
I7(G, 0)j) vy 1F(Ga, C))l. )
P Let us begin with analysis. Note that since [|F(G, Ollis a
periodically time varying system, its L*®-induced norm is not
T " W‘“‘"{ immgdia.tely computable., Ap alternative method of computing
II7(G, C)|| comes from the limit _
=G o) = A2 IS F(G, C)H, || = A [I7(Gn, 0,
Figure 5: The operators S, and %, (4)
) for a fixed C. This formula can be proved using arguments
(strictly speaking, S, is not an operator on L% byt on the about the approximation of continuous functions, by simple
subspace of left ang right continuous functions, this distinctjon functions 1 foo (7).  Since 7(G,,c 'S 2 time-invariant
Is irrelevant here since jp our setting, assumptions are made to MIMO system and [ 7(G, O)l is ts £1 norm, it can be com.
guarantee that S, operates only on continuoys signals), the . Puted to any desired accuracy, consequently, by (4) the actual

2bove operators cap be thought of as ‘fast’ sample and hold zorm, I F(G,C)|l can be computed to any desired accuracy.
OPerators (see figure 3).

v However, equation (4) is by far not sufficient to show the con-
Now to approximate the infinite dimensional problem, we vergence of the synthesis Procedure, since given only (4), the
use the approximate closeq loop system 5, 7(&, C)H, (see fig- Tate of convergence may depend on the choice of . -
ure 4), and for each 7 we define Our objective is to obtain explicit bounds on 17(G, C)ll in
the following form

+ Hn c ltglﬁﬁziny IS.7(G, CHall, @ Main Inequality : There are constants K, and Xy which
This new problem now involves the induced norm over l;?,(n), depend only on G, ‘"‘Ch_ that
ie. it is a standarq MIMO £ problem, : - X K, :
Let_us denote the generzlized Plant associated witp I7zGon < ";l + {1+ T) I7(G., ), (5)
SaF (G, C)H, by &,, such that .
. ' i The significance of the bound (5) is that j is exactly what
SnF(G,C)H, = F (Ga,C), : is needed for synthesis. When one performs aq ¢! design on
P L ... é,,, the result js a controller that keeps |7 (G",,, C)|l small, but
Where G, and a realization for it is given by, the objective is to keep the L*-induced norm of the hybrid
G, = [ Sn 0 ] G-[ Ha o} = system (or equivalently [|7(G, O)l) small, and the inequality
0o 7 o 7 tb.i

. . . L. (5) guarantees this,
A Bi#H, B, Al B B To be more precise, first note that we can immediately obtajn
SnCt | SaDuH, S,Dy | =: Ci|Du Dy |.
C'z 0 0 Cz 0 0 .

17600 < IF@G.OM  vn,

The new Operators, which are now matrices, are computed to be

since
C D - = - .
, N I P WCRON = 15,76, 0yl < 1, 176, oy g
¢ = | Bus " : < IFG,C)l,
Cy (eAr/nyn=t Cry(Xezllyp, D1, because [|H,|| < 1 on £%(n) and ISall <1 on the subspace of
5 /n +/myn=1 L* for which it js defined. The above inequality immediately
B = wr/n) [ B et/mp .. (e47/m)™" By ]’ - implies that 4, < #. The synthesis Procedure is guided by the
b { [ e | W(r/n)B, J} following; for a fixed 7, if one performs a MIMO £ design (as
11 = ] 4
Cy Dy

in [15]) on G, and obtains 2 fin +¢ optimal controller (given by
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Ca)yie. IF(GmO)ll < pim + ¢, then inequality (5). provides
that if C,, is implemented in the hybrid system, then

176, 1ol = 156, Coll s 22+ (14 22 g
< %+(1'+%)(pﬂ+e) '
‘< fgl+c(1+1—i1)+p<1+!-i-°-). (6)

Therefore, if a'controller with a level of performance of iz + é
is required (for any § > 0), we simply choose n and € apriori
such that the right hand side of (6) is bounded by u + 6.

It is worthwhile noting that the problem of minimizing
[|F(Gn, C)|l is immediately a standard £! problem with time-
invariant plant. Hence, there is no need to apply any further
lifting on the problem, which contrasts the approach in [9].
Also, we note that eventhough the approximation problem is
in fact a multirate sampled problem, it reflects no structural
constraints on the controller. General multirate sampled prob-
lem do not share this property (see [7]).

In the derivation of the main inequality 5, several interesting
issues come up, and the bounds on the approximation is ob-
tained by dissecting the infinite dimensional system G closely.
We refere the interested reader to [1] for the full discussion.

5 Conclusions

This paper provides a complete solution for the sampled-data
£' problem through approximation. Utilizing lifting tech-
niques, the input/output map is decomposed in a such a way
that the infinite-dimensional part of the system is isolated inde-
pendently of the controller. This part is then approximated in
a precise way by a finite dimensional system, whose dimension
can be determined given any degree of accuracy. Computable
bounds on the norm of the difference of the actual system and
the approximated system are furnished, and they all depend
entirely on the system’s data.

It is interesting to note that the same approach can be fol-
lowed to solve the problem for the L!-induced norm, then,
by a simple convexity argument, a solution for the general
LP-induced norm can be obtained. However, the case of L? in-
duced norm admits a cleaner solution [2], and an exact discrete-
time problem can be obtained.

The approach followed in this paper is readily applicable
to the structured perturbations problem for sampled-data sys-
tems [14]. The minimization problem in this set-up involves
spectral radius functions, and a similar result follows from the
continuity of the spectral radius function. The derivation of ex-
plicit bounds takes more work and will be reported elsewhere.
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| Behavior is more fundamental than representations*

A. P. Kishore

~ A input-output system is a relation between
two function spaces. The classical input-output
¥ framework treats a system as a map between
} mfunction spaces. The graph of this map, which
Iis the collection of all compatible input-output
pairs, constitutes the behavior of the system [3].
IThe behavior of a system can sometimes admit
a behavioral equation representation such as a
kernel representation or a difference equation
representation. Such a representation, when it
exists, may-not be unique. Given a representa-
tion with a certain structure (for instance, alower
triangular kernel) it is usually easily shown that
the represented behavior has a corresponding
property (non-anticipation). However, if the be-
havior has a property (say, non-anticipation),
representations of the behavior may not have
the corresponding structure (lower triangular-
' ity). Therefore, representations are of secondary
importance to behaviors. It is the behavior that
l is fundamental; not its representation [3].

We will illustrate these points with kernel

*This research was supported by the grant AFOSR-91-0036.

J. B. Pearson

Department of Electrical and Computér Engineering |
Rice University, Houston, TX 77251-1892, U.S.A. )

represcntanons, concentrating on systems oper-
ating on one-sided discrete-time signals in the

sequence space £. We say that G : D(G) €

£ — R(G) C £ has a kernel representation if

there exists a g : Z4 X Z; — R such that for

all nonnegative integers n

(Gu)(n) = z:goz,m)u m), Yu € D(G).

Not all linear systems have a kernel representa-
tion [2]. We first point out that compactness of
the map is peither sufficient [1] nor necessary
for kernel representation.

Even when a system has a kernel representa-
tion, the representation may not be unique. This
is shown by an example of alinear shift-invariant
nonanticipatory system that has infinitely many
kemnel representations. Out of the infinitely
many representations for this system, one is
lower-triangular and one is upper-triangular.
Therefore, non-anticipation is a property of a
system and is not necessarily a (structural) prop-

tThis is only an abstract meant for conference presentation. A complete version can be obtained from the authors as Rice

l University Technical Report #9305. E-mail: kishore@rice.edu

0191-2216/93/$3.00 © 1993 IEEE _ 2383
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erty of its representation. Some kernel repre-
sentations of this system have Toeplitz struc-
ture, and some do not. Shift-invariance is then

a property of a system that may or may not be-

reflected in the structure of its representation.
We then point out that boundedness of a map

may not be reflected in the structure of its ker- *

nel representation (or in a minimal state-space

representation). oL

Since properties such as shift-invariance,
non-anticipation, and boundedness are proper-
ties of a system and are not necessarily structural
properties of a representation of the system (un-
less the representation is unique), a system is a
logically distinct object from its representation.
It is the behavior of the system that needs to be
examined for properties of interest, and not the
structure of a representation of the system.

We argue the above points using traditional
definitions of linéarity, shift-invariance, nonan-
ticipation, and boundedness. We will make a
case for nonstandard definitions of linearity and
shift-invariance. The main practical reason for
studying linear mathematics is that local behay-
ior of a nonlinear map is often linear. That is,
if we restrict the domain of a given non-linear
map, the restricted map (the restriction) may
become linear, thereby making analysis easier.
Then, if we were to restrict the domain further,
we would like the resulting restriction to be still
linear. Considering that linearity is an analyt-
ically desirable property of a map, we would
like all the restrictions of a linear map to inherit
this property. Similarly, inheritance by restric-
tions is desirable with respect to shift-invariance,

2384

non-anticipation, and continuity, from a practi-
cal point of view. _

However, in the classical framework for
input-output systems, linearity and shift-
invariance are not inherited by restrictions,
while continuity is. For example, the linearity
or shift-invariance of the identity map depends
on whether or not its input class is linear or
shift-invariant. However, it is the behavior of a
system in a given configuration that is more im-
portant than the properties of the domain of its
definition. As far as possible, it is the behavior
of a system that we should focus our attention
on; not the properties of its domain. Taking cue
from a definition of non-anticipation in the clas-
sical framework [4], we propose new definitions
for linearity and shift-invariance.
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'‘Abstract

The solution of many I, problems requires Smith
decompositions of Iy matrices. In this note, we de-
scribe a class of problems, including many practical
problems, for which this is not true. We also show
generally how to pose and obtain approximate solu-
tions to l; problems without Smith decomposition.

1 Introduction

The I, problem was formulated in [1] and inves-
tigated in, e.g., [2, 3, 4], in which it is posed as a
linear program (LP) whose constraint matrix is con-
structed, in part, from Smith decompositions of two
I; matrices. This decomposition does not exist for all
[, matrices, and its computation is numerically unsta-
ble in any case. Thus it is of interest to find problems
and/or solution methods which do not require it.

In this note, we describe a class of such problems
which includes many practical problems. We also de-
scribe a class of semi-norm minimization problems
which can be solved without Smith decomposition,
and into which every I; problem can be embedded.
We then use the embedding to obtain, under certain
conditions, an infimizing sequence of sub-optimal so-
lutions by solving finite LPs. In Section 2 we briefly
state the l; problem, the main results are in Section
3, and Section 4 offers some conclusions.

[7'*" denotes m X n matrices with elements in the
commutative domain {; and F IT**™ denotes matrices
with elements in its fraction field. Superscripts are
dropped when there is no loss of clarity. A script let-
ter denotes a causal discrete-time convolution system,

_and a capital (Roman) letter its impulse response ma-

trix. Matrix multiplication is defined via convolution.

2 The [; Problem

Figure 1 shows the setting of the I; problem. G has

*This research was supp;orted by grants NSF ECS-8914467
and AFOSR-91-0036. o : .
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Formulation of {; Optimal Control Problems
without Interpolation *
J. S. McDonald and J. B. Pearson

Rice University
Houston, TX

inputs w (an ny-vector of exogeneous inputs) and u
(an ny-vector of controls) and outputs z (an n;-vector
of errors) and y (an ny-vector of measurements). G

can be partitioned in the obvious way:
G G
G - zw zu
(& ]
For stabilizable G with Gyu = NM-1= M-1N (co-
prime over ly), the I; problem is:

OPT(9): Kégg'v |H - Kll. =: popr(s)

where SU,V ={Kelh:K=UQV, Qelh}, H:=
sz + quMYGyw, U p— quM, 3nd V - Mcyw
are in I;, and the following Bezout identity is satisfied:

¥ -vi[Mm Y] _|[|I0

-N M N x| (o1
Note: H, U, and V depend on G. We will show this
dependence via bars, tildes, etc. (e.g.. G~ H,U,V).

3 Main Results
Theorem 1 IfU,V € l; have left and right inverses,

respectively, in Iy and U = NUMEI, V = My'Ny
(coprime over l;), then 3 l; matrices satisfying

Nzt 10
[5G Jiwe w1 [3 7]

[ % ]rmsm w0 ) (5 9]
and K € Syy if and only ifKEIl and

[
[’@L]K[ﬁa“ﬁéb“ HEE

where * denotes an irrelevant block.

Condition (1) does not refer to Smith decomposition
and hence none is required for LP formulation.

e vier oy

et g e e S & e vt samen
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Figure 1: Standard Problem Setting

In many practical problems, v, and v, of Figure 1

. correspond to actual disturbances and L, norm con-

straints are required on u and § to avoid saturation.
In such problems, w, z, U, and V can be partitioned

[ @ z
w = Vu | z = u
[ Yy ' ¥
[ MG o
U= M |, V=[GuM N M]
N

Thus U and V satisfy the hypotheses of Theorem
1. (This remains true if unimodular I; weights are
introduced on vy, vy, §,u.)

We now define, given G and integers n, < n;,n; <
Ny, a semi-norm minimization problem
OPTS(G,n,,m;):

x5l Pnni(H = Kl =: HoPTs(@meini)
where Pp q; @ [7*%"% +— [7°*" is a linear projection

defined by (Pon;T)mn () := Trmn (k) Ym, n, k.

Theorem 2 If G is siabilizable, then there ezist in-
tegers ny < ny, ny < ny, ond a stabilizable G with
Ge flﬁ""“""*"')"""*""*"" such that U and V
satisfy the hypotheses of Theorem 1 and

1. Given K € Syy, define K := UQV for any
Q € ly such Ehai {{ =UQV. Then K € Sp,p
and ||[Pp,n (H - Kl = |[H — K]l

2. Given K € Sgp, K = 73,,,,,_1? € Syyv and
[lH = Klls = [|Pn,n (H = K)ll1-

Thus every problem OPT(G) can be embedded ina
problem OPTS(G, n;,ny) for a (larger) G such that
U and V satisfy the hypotheses of Theorem 1, and
feasible solutions of OPT(G) correspond to feasible
solutions of OPT S(G, n;, ny) of the same cost.
OPTS(G,n,,n,) is generally infinite dimensional
s0 we next define, given G and integers n, < n;, n; <
ny, and n, an optimization problem

744

OPTS(G,no, niyn): :
Siof Prni(H = K)lli = poprigm)

U,V,»s

Su:v,,, ={K e Su,v :supp(H — K) c {0,...,n}}

. Theorem 3 If G is stabilizable, 3Ky € Syy

such that supp(H — Kn) C {0,...,N}, and the
finitely supported matrices are dense in Syyv, then
OPTS(G,no,ni,n) has optimal solutions Vn > N,

-and HOPTS(G,neni,n) N HKOPTS(C n.n;) G5B~ CO.

Every feasible solution of OPTS(G, n,, n;, ) is fea-
sible for OPTS(g,no,n;), so a sequence of optimal
solutions for increasing n forms an infimizing se-
quence of feasible solutions for OPTS(G, n,, n;). For
each n, OPTS(G, n,, ni, n) is a finite LP [5].

4 Conclusions

Theorem 1 shows that [, problems with invertible
U and V can be formulated as LPs without Smith
decomposition. Such problems arise, e.g., when both
sensor and actuator are noisy and subject to satu-
ration. Theoremn 2 shows that all I; problems can
be embedded in larger semi-norm minimization prob-
lems without need of Smith decomposition. Theorem
3 shows that, under certain conditions, a sequence of
finite LPs can be solved to obtain performance ar-
bitrarily close to optimal. The price of embedding
is increased dimensionality; thus an obvious question
for further research is how to embed in a problem of
least dimension.
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"Abstract

Two performance specifications based on I/, measures of weighted disturbance and error signals
are defined. Both allow the treatment of magnitude, rate, and acceleration bounds on disturbances
and errors. One is an incremental weighted specification which requires error signals to satisfy a
constraint for as long (in time) as the disturbance satisfies a similar constraint. The other is a
weighted specification which considers only disturbances satisfying a constraint for all time, and
requires that errors do as well. »

Notions of stability and system gain are defined corresponding to each specification and the
gains are shown to be different. For the incremenfal specification, gain can be computed by solving
a standard /; synthesis problem, and for the weighted specification a modified version of /; synthesis
can be used.

It is shown how to formulate the synthesis problem corresponding to each specification as a

linear program similar to the one arising in [, synthesis.

Keywords: [; optimal control, weighting functions, performance analysis, performance synthesis

Classification: Mini-Symposium M-4, “Robust Control Design”; 20 minute oral presentation
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Notation and Assumptions

Z and Z. denote the integers and the non-negative integers, respectively. D is the open unit disk
in the complex plane. [, and /; denote the classical sequence spaceé defined on Zs, and [1(Z) is
the counterpart of [; defined on all of Z, i.e., the set of absolutely summable two-sided sequences.
Iy will be regarded as being embedded in [;(Z), i.e., as the subspace of /;(Z) supported on Z,.
Matrices will be referred as belonging to [; or [;(Z) and signals as belonging to [, meaning their
elements belong to those spaces. For notatior;al convenience we define a space A of all z-transforms
of sequences in /1(Z) with norm defined || A4 := || 2|1

Throughout the paper, signals are vector sequences denoted by lower case letters (e.g., ).
Systems are causal MIMO discrete time systems with convolution representations and are denoted
by calligraphic letters (e.g., ). Their impulse response matrices are denoted by corresponding
upper case Roman letters (e.g., H ), and their transfer function matrices by hatted letters (e.g., )
where the z-transform is defined with z as the delay. A product (GH) of impulse response matrices

means convolution (G = H).

1 Introductidn

QOur standard problem setting is depicted in Figure 1. The generalized plant G has two inputs and
two outputs. w is the disturbance input and is present for the purpose of modelling exogeneous
inputs to the system (e.g., disturbances, measurement errors, etc.). u is the control input. z is the
regulated output and consists of error signals -which are to be minimized, and y is.the measured
output. The compensator C determines the control input u given the measured output y. C is to
be chosen to internally stabilize the system and satisfy, if possible, other specifications.

The simplest /o, design problem is disturbance rejection, in which the specification is
Disturbance Rejection Specification:

e wE [y and ||w]|e < 1implies z € [ and ||zl < 1.

IGll1 is the induced norm of § as a map from I, to le. Using the YJBK parametrization of
stabilizing compensators the set of achievable closed loop impulse responses is {H -UQV :Q € l1},
where H, U and V are in /1 and are determined by G. Hence the [ disturbance rejection problem

is equivalent to

OPT: inf {|H - K|, : K € K(U,V)} =:

where K(U,V):={Ke€l;:3Q €| satisfying K = UQV'}. This is the [y synthesm problem which

was posed in (1], initially solved in [2] and generahzed in (3] and other papers.
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FiGure 1: Standard Problem Setting

Introducing weighting systems in cascade with w and z broadens the class of specifications which
a designer can address. Disturbances are thus generated by an input w passed through a weight
Wy, and the regulated outputs afe passed through a weight W, to produce an output z. If W, and
Wy arein [; and have left and right in\}erses, respectively, in {1 then the following specification can

be easily addressed:

Cascade Weighted Specification:

e w=W,w for some @ € [, with ||[¥|c < 1 implies W,z € I, and ||W,z{|eo < 1.

Under the assumptions on W, and W, the cascade weighted disturbance rejection problem is
equivalent to

inf {||W.HW,, — K| : K € K(W.U,VW,)}

and is hence an [; synthesis problem again.

W can be chosen to reflect an appealing class of criteria on the regulated output because of
the definition of || -|jco. For example, if W, = [1 1~z ]T then ||W.z{loo < 1if and only if |2(k)| < 1
and |z(k+ 1) — z(k)| £ 1 for all k. Hence meeting the specification ensures a magnitude bound
on both z and its rate of change. Additional n-th order differences of z for any desired n can be
bounded by adding appropriate components to W,. Such specifications are of practical interest;
bounding first-order differences ensures limitéd slew rates, and bounding second-order differences
ensures limited accelerations.

The interpretation of the disturbance class generated by W, is problematic, however. It is

not known how to choose W,,, for example, to produce a class of magnitude and rate bounded

disturbances. Moreover, the meaning of choosing W,, based on its frequency response is unclear; -

the entire [, design theory is aimed at time domain specifications.
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Motivated by the appealing interpretation of W., we will consider a weighted disturbance re-

jection problem aimed at satisfying a specification of the form

Weighted Specification:

o Wyw € Iy and ||[Wywlleo £ 1 implies W,z € [ and | Wzl < 1.

A related design problem can be posed which is aimed at satisfying

Incremental Weighted Specification:
o [|PaWywlle < 1 implies ||PaWV:z|leo < 1 for all n.

where P, denotes truncation at time n. This is similar to the weighted specification and has a
practical interpretation. It requires that the weighted error satisfy a constraint up until any given
time provided that the weighted disturbance satisfies a constraint up until the same time. Note
that any truncation of a right-supported signal is in /o, and hence any such signal constitutes a
potential dis;curba.nce. We will see that the incremental specification is in general the more difficult
to satisfy. Design to meet similar specifications has been considered previously in [4] and (3].

The remainder of the paper is organized as follows. Section 2 contains some background on the
[, synthesis problem which will be required in later sections. In Section 3, the analysis problem of |
determining if a given system satisfies the above specifications is solved. For each specification, an
appropriate system gain, which is also a norm, is defined and a method given for its computa.tion.'
In Section 4, the synthesis problem of choosing C to minimize the desired norm is formulated, and
for either norm is shown to be very similar to a standard [, synthesis problem. Section 5 contains
some observations and conclusions.

Some statements of results are somewhat simplified, some proofs are omitted, and methods
for the solution of optimization problems which arise are not given. In all cases, detailed results,

proofs, and solution methods can be found in [6].

2 [; Synthesis

We will need some basic facts about the Iy synthesis problem OPT. The crucial feature of OPT
is that, under mild assumptions, it is equivalent to an infinite linear program. In particular, the

following condition or something similar must be assumed [6].

Condition 2.1 U and V have decomposz'tz'ons‘ of the form U = UrZyUr and V. = V1, 2y VR where

e Ty €ly, Ty €l are diagonal and ﬁonsiﬁg’ular,’




o neither (Sy )i nor (Sv);; have any zeros on the unit circle for any i or j,

o Ur, Vi €1y are left invertible in Iy, and Ug, Vg € Iy are right invertible in ;.
If Condition 2.1 is satisfied then Bezout equations

[UU{:}[UL UEFHH [Z][VER v}%]‘.—.“” )

i
can be constructed where all matrices are in /; and the feasible subspace K (U, V) of O PT charac-

terized as follows.
Fact 2.2 K € K if and only if K € [, and satisfies
UEL * 0
1. K V—R V—L =
[ Ut [va® v ] { 0 0 }

where * denotes an irrelevant block.

2. For eachiand j, (UrXKVgR)i; has all zeros of (2y)i(Tv);; in D, including multiplicities.

Using Fact 2.2, OPT can be formulated as an infinite linear program whose variables are
the closed loop impulse response elements; condition 1 imposes an infinite set of linear equality
constraints (convolution constraints), and condition 2 a finite set of linear equality constraints

(interpolation constraints).

-3 Weighted Pérformance Analysis

In Section 3.1 we define a notion of stability and a norm on the stable systems appropriate to the
incremental weighted specification. In Section 3.2 we do the same for the weighted specification
and show, in addition, that the norm is an induced norm between weighted versions of /. In both
cases computation of the norm is similar to /; synthesis.

Throughout this section H is a given system. W, and W; are given weights; W, and W; are

assumed to be in Iy and to have left inverses in ;. Hence the following Bezout equations can be
constructed '

=[] [ mowl=[0] e

where all matrices are in /;. The additional symbols on the left hand sxdes of equatlons (2) denote

arbztrary choices satisfying the equations.
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3.1 Incremental Weighted Performance
Definition 3.1 H isincrementally stable w.r.t. Wy, W, if

sup {”Pn)/Von”co : PaWiz € 1, ||[PaWizllee £ 1, R € Z.} = pi(H;Wo, W) < 0

pi(H; Wo, W;) is the incremental gain of H w.r.t. W,, Wi.

Under Definition 3.1, and for fixed weights, an incrementally stable system satisfies the incre-
mental weighted specification if and only if its incremental gain is less than or equal to one. The
next proposition shows that under our assumptions on the weights a system is incrementally sta-
ble if and only if its impulse response is in ;. Moreover, the incremental gain is a norm on the

incrementally stable systems.

Proposition 3.2 H is incrementally stable w.r.t. W,, W; if and only if H € ;. ”“1W° w =

p;(+; Wo, W,) is a norm on the incrementally stable systems.

Proof: For the first sentenée, if H €1, then WQHW}'L € l; and for all z and n

il

[ PaWoHW E Wiz oo = [PaWoHW, TP Wic|oo
IWoEW (1| PaViz oo

1P IWoHZ |0

A

Hence p;(H; W,, W) < ”T/VOHW}"LHI. Conversely, if H ¢ [; then W'OHW}’L ¢ {1 and hence, given
any ¢ < oo, there exists £ € lo such that HWO’HW;L:T:IIOO > c|lW}W}'L||1HiH°°. If we define

z := WLz then

1

+ sup {||PaWoHzlleo : 1 € Z4} = [WoHalloo = [WoHW P 0 > el Wi ™% 14 co-
Hence there exists n € Z; such that

IPaWoHzlloo > clWiW;E l1llElle0 > clWizlleo 2 cliPaWisleo

so pj(H; Ws, W;) > c.
The second sentence is easily verified. a
The incremental gain of a given system w.r.t. given weights can be computed by solving an
I synthesis problem with a special form, as the next theorem shows. Its proof is omitted in the

interest of brevity.
Theorem 3.3 [|Hlly, w, = inf {[WoEW L — K|l1 : K € K(I, W) }.

It is easy to see that I and W;t satisfy Condition 2.1; the obvious decompositions are: Uy =
Sy=Ugr=1TIand Vy = Ty = I, Vg = W;-. Hence ”HHIWD.W; can be computed using /; synthesis

tethnique's..
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3.2 VVeightea Performance
Definition 3A.4 H is étable w.I.t. W, W; if

| . sup {||WoHz||co : Wiz € lo, || Witlleo < 1} =: p(H; W,, Wi) < o0
p(H; Wo, W;) is the gain of H w.r.t. W,, Wi.

Under Definition 3.4, and for fixed weights, a stable system satisfies the weighted specification
if and only if its gain is less than or equal to one. The next proposition shows that under our
assumptions on weights a system is stable if and only if its impulse response is in {;. Moreover, the

gain is a norm on the stable systems.

Proposition 3.5 H is stable w.r.t. Wo, W, if and only of H € I1. |||}y, = p(; Wo, Wi) is @

norm on the stable systems.
Proof: For the first sentence, if # € [ then W'OHW}‘L €l and for all z
[WoHz||oo = [[WoHW EWiz|loo < [|WoHW, E 1| Wizl co-

Hence p(H; Wo, W,) < ||WoHW,L1};. Conversely, if H ¢ I3 then W,HW,"% ¢ I, and hence, given
any ¢ < oo, there exists £ € [, such that HWO'HW{‘LiHOO > WiV, b1 flE]lco- If we define
z 1= WLz then [WoHz|leo > Wi, L 1] ]lee 2 [[Wiz]leo 50 p(H; Wo, Wi) > c.
The second sentence is easily verified. a
The gain of a given system w.r.t. given weights can be computed by solving a problem similar
to an [y synthesis problem, as the next theorem shows. Its proof is similar to that of Theorem 3.3

and is also omitted in the interest of brevity.

Theorem 3.6 ||Hl}y, w, = inf{l]PVOHVVi'L - K|, : K e Kz(I, Wf-)}, where K z(-,-) is defined
as K(-,-) in Section 1 ezcept that Q and K are allowed to range over 11(Z).

As in the incremental problem of Section 3.1, I and W;* satisfy Condition 2.1. As a result the
feasible subspace K z(I,W;t) of the infimization in Theorem 3.6 has a characterization similar to
that of K(I,W;*), and the computation of [|H[|,y, y, is equivalent to an infinite linear program.
Moreover, approximate solution methods analogous to those for standard /; exist. '

The gain of a system w.r.t. given weights is in génera.l smaller than its incremental gain w.r.t.

the same weights, as the following simple example shows.

. 1
W, =

Example: Let H =W, =1,




and choose W';‘L =[1 0]and W:i'— =[1-3z 1] to satisfy the Bezout equations (2) “H“{VO,W;
and ||H |y, 15, are computed by solving inf[|[1 0]+ 4{1—-3z 1]||4 =: v where g ranges over L

and [1(2), respectively. It is not hard to check that ¥ > 1 when ¢ ranges over /; since
N1 0]+4(1-32 1]y =1I11+4(1=32)4+ldlls 2 (1= lgol) + |70o] = 1
where qg is the first element of g. On the other hand, if we take § = 327! then ¢ € [;(Z) and

ol bt

I 0)+4d(1-32 14 =11+ -32)ll, +lldlla =

Hence v < 2 if ¢ is allowed to range over [;(Z).

Next we will show that the gain of a system w.r.t. given weights is an induced norm between

weighted versions of o

Definition 3.7 If z is any signal, W is any system, and Wz € [, then pw(z) 1= ||Wz|s is the

W-weighted l-norm of .

With no assumptions on W, pw(-) is actually only a semi-norm, as it can have a null space.
Moreover, it need not be defined on all of I, and can be defined for signals not in lo. Under our

assumptions on weights, however, it is defined precisely on l, and is a norm.

Proposition 3.8 If W € [; and has a left inverse in l; then Wz € l if and only if z € lo, and

-l = pw(-) is a norm on l.

Proof: Let WL denote any left inverse of W in {;. For the first bsentence, ifz €l then Wz € [,
since W € I;. Conversely, if Wz € I, then £ = W-LWz € [, since W—L € [;. For the second
sentence, the properties of a semi-norm follow from the linearity of ¥V and the corresponding

properties of || - ||. Moreover, [|z]jyy =0= Wz =0=>z=W-IWwz =0. a

loo under ||-||,y can be called W-weighted lo. It is clear that |||],y, . is the induced norm of

H viewed as a map from WV;-weighted [, to W,-weighted [, since

Ml = sup {[WoHzlleo : Wit € L, [IWiz]leo < 1}
= sup {|Hally, : 2 € loo, llally < 1}-

using the definition of |||y, . for the first equality and Proposition 3.8 for the second.




4 Synthesis

In this section, we show that the problems of minimizing the incremental gain and tl}e' gain, re-
spectively, of the closed loop system in Figure 1 can be formulated as infinite linear programs in 5'
manner similar to the /; synthesis problem. Section 4.1 considers the incremental gain and Secton
4.2 the gain.

It is assumed that the U and V matrices obtained from G via the YIJBK parametrization satisfy

Condition 2.1. W, and W, are assumed to be in /; and to have left inverses in [;. The associated
Bezout equations are

wrk I 0 Wa - Io
[ we owe] = [, we | = (3)
wik 0 I Wi 0 I
and the additional symbols on the left hand sides denote arbitrary choices satisfying the equations.

4.1 Incremental Weighted Synthesis

The YJBK parametrization and Theorem 3.3 can be combined to formulate the incremental

weighted synthesis problem as follows.
OPT;: inf {|W.HEW; - Kll1: K € K} =:

where K| := {I( €l; :3Qc, Qw € Iy satisfying K = W, UQc VWL + QWWUJ;}. The parameter
Qc corresponds to stabilizing compensators and Qw to computing the closed loop incremental gain

corresponding to each. K; is related to the feasible subspace K(-,-) of an Iy synthesis problem.
Lemma 4.1 K € K; if and only if K € l; and KW, € K(W.U,V).

Proof: If K € K; then K € l; and K = W,UQcVW L + QwWz. Hence, using (3), KWy
W.UQcV. Since Q¢ € I, KW, € K(W,U,V). Conversely, if KW, € K(W.U,V) then K € 3
and KW, = W,UQcV for some Q¢ € l;. Using the reverse of (3),

K = KW, W5t + WWE) = W.UQcVW L + KWWk

where Qw = KW¢ € [; since both K and W are. Hence K € K. a
Using Lemma 4.1 we can easily establish a characterization of K ; similar to that of K (-, ) given

in Fact 2.2.

Theorem 4.2 K € K; if and only if K €l and satisfies




B

Upkw-t : £ 0
L vpwsk | E[wavgR WV | =0 o
Wi 00

where * denotes an irrelevant block.

2. For each i and j, (UL‘LI'V_."LI;"PVngR);j has all zeros of(iU)g;(flv)jj in D, including mul-
tiplicities.
N

Proof: U has a decomposition U = UrZyUr as in Condition 2.1. It is easy to see that, since W,

is left invertible in [y, W.U = (W.UL)ZyUg is a decomposition of W.U of the same form. Hence

a Bezout equation

vptwrt I 00
viwrk | [ waur waug we]=]o0 I o
we | 00 I

for W,U can be constructed using (1) and (3). Fact 2.2 can now be applied to characterize
K(W.U,V) and the proof is completed by combining this characterization with Lemma 4.1. O

Theorem 4.2 allows O PT; to be formulated as an infinite linear program. Condition 1 imposes
an infinite set of convolution constraints and condition 2 a finite set of interpolation constraints on
W.HW L — K. Moreover, approximate solution methods analogous to those for the [; synthesis

problem exist.

4.2 Weighted Synthesis

The YJBK parametrization and Theorem 3.6 can be combined to formulate the weighted synthesis

problem as follows.
OPTy : inf{uW,,HW;L ~Klh:Ke Kw} = pw

where K := {K € h(Z):3Qc € h, Qw € h(Z) satisfying K = W.UQcVWE + QwWi}. Qo
corresponds to stabilizing compensators and Qw to computing the closed loop gain corresponding
to each. K w is related to the feasible subspace K (,-) of an [y synthesis problem in the same way
that K is, and an analogous characterization can be obtained. The next two results show this and
are presented without proof; the proofs of Lemma 4.1 and Theorem 4.2, respectively, apply with

obvious modifications.

Lemma 4.3 K € K if and only if K € I1(Z) and KW, € K(W.U, V).
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Theorem 4.4 I € Ky if and only if K’ € {1(Z) and satz:sﬁes

vptwre ] c 0
L) vpwrk | K[ wvER WV =0 o
Wi 0 0

where = denotes an irrelevant block.

2. For each i and j, (UpEWLEW, Vg R)ij has all zeros of (S0)i(Sv);; in D, including mul-

\
tiplicities. ‘

Theorem 4.4 allows O PTy to be formulated as an infinite linear program; condition 1 imposes

an infinite set of convolution constraints and condition 2 a finite set of interpolation constraints

on W.HW ;L — K as in the incremental synthesis problem. However in this case K and hence

W,HW;L — K ranges over [1(Z), requiring appropriate modifications to the approximate solution

methods for O PT;.

5 Conclusions

Weights are often used to increase the range of specifications which a designer can address. The
simplest scheme is cascade weighting, but it is problematic in an [, setting in that the disturbance
class does not have a clear interpretation, while the error class does. It is interesting to note that
this distinction does not arise for /5 signals (it is not hard to show that rational H o, weights with
no zeros on the unit circle can be replaced by their outer factors and hence inverted).

Both the weighted /., performance specifications considered here measure disturbance and error
as errors are measured in the cascade scheme. This has an appealing practical interpretation in
that it allows incorporation of criteria in addition to disturbance and error magnitudes, e.g., rate
and acceleration bounds. Such criteria cannot be addressed using other design methods.

Analysis and synthesis for each specification can be done by methods similar to standard [,
synthesis and, in fact, may be simpler in some respects. In l; synthesis, for example, suboptimal
compensators can be obtained by optimizing over achievable finitely supported closed loop im-
pulse responses of a given length. As the length is increased, the performance of the suboptimal
compensators approaches the optimal. When cascade weights with infinite impulse responseé are
introduced this method fails and the weights must be approximated as finite impulse response,
leading to high order compensators. However, weighted specifications of the type considered here
have their most appealing interpretations when the weights are finite impulse response (i.e., they

measure rates, accelerations, etc.).




1

Because system norms have been defined appropriate to each specification, new problems of

robustness with respect to classes of norm-bounded perturbations can be posed as well. -
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