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1. Research Objectives 
The objectives of this research were to develop theory and computational methods to 
formulate and solve robust control system design problems. The initial stages of the 
research were devoted to the design objective of minimizing the maximum peak gain 
of a system containing structured nonlinear/time-varying uncertainty. Next, the focus 
was on continuous-time systems controlled by digital computers, i.e. sampled-data 
systems. This work was motivated by the fact that continuous-time compensators for 
continuous-time plants are irrational when the design objective is minimizing peak- 
gain. Therefore it was necessary to study the sampled-data problem and develop new 
methods for its solution. 

2. Status of Research Effort 
The objectives in this research have been achieved in a most satisfactory manner. Two 
of the most significant results were 1) the work of Mustafa Khammash on performance 
robustness in the presence of structured uncertainty and 2) the work of Bassam 
Bamieh on sampled-data control. 

Briefly, these results are as follows: 

One of the most significant developments in //«> control system design was establish- 
ing the equivalence of the robust performance problem and a robust stability problem 
with structured perturbations. This is generally attributed to John Doyle and made 
possible the u /i-synthesis" approach to control system design. In this approach, the 
design objective is to minimize the maximum error energy. When the objective is to 
minimize the maximum error magnitude, the problem becomes quite different and 
more complicated. 

Mustafa Khammash in his Ph.D. thesis established an equivalence between a robust 
performance problem and a robust stability problem for discrete-time systems in 
the presence of time-varying/nonlinear structured uncertainty. This was a major 
breakthrough in the solution of the maximum magnitude problem, which has been 
referred to as the i\ optimal control problem. In his further work, he developed an 
iterative technique similar to /x-synthesis in order to design optimal controllers. In the 
case of discrete-time systems, the procedure is much simpler since the scaling factors 
are constant, rather than functions of frequency, and the optimum can be calculated 
exactly at each step. 

Khammash's results can be applied to the analysis of continuous-time systems, but 
not to the synthesis of optimal continuous-time controllers. The earlier work of 
Munther Dahleh, also done here at Rice University, had shown that in general, op- 
timal continuous-time problems had irrational solutions and the realization of these 
solutions posed many problems. As a result, a different approach to the problem was 
proposed, in that a continuous-time plant would be controlled by a digital (discrete- 
time) device. The accepted terminology for such systems is "sampled-data-systems," 



and the objective was to minimize the maximum value of the continuous-time system 
error for such systems. 

The Ph.D. thesis of Bassam Bamieh presented a solution to both an H^ version and 
an L\ version of this problem. Bamieh developed a procedure called "lifting," by 
which a periodically sampled system could be converted to a discrete-time system 
in which the induced system norms were the same (i.e. the system gains). This 
meant that the maximum value of the continuous-time system error is equal to the 
maximum value of the discrete-time system error. This equivalence is also true for 
any induced norm, in particular for the Hoo and L\ norms. 

Bamieh worked out the details of the transformation which gives an exact solution 
to the Hoo problem and an approximate solution to the L\ problem. Programs that 
implement his //«> solution are now incorporated into MATLAB /Mools. 

Recent work has involved the study of robust solutions to tracking problems. In 
particular, the object is to design compensators to minimize the maximum "steady- 
state" errors in sampled-data systems with structured uncertainty. This is quite 
complicated, in general, and the initial work deals with discrete-time systems with 
structured uncertainty. The foundations for solving such problems have been laid 
by Mustafa Khammash and analysis of discrete-time systems with structured uncer- 
tainty is straightforward. Synthesis is more difficult. Algorithms have been developed 
for solving certain problems involving scalar plants with two structured perturba- 
tions. At the present time, the general problem seems to be a least as difficult as 
the "/i—synthesis" problem and a different framework may lead to more reasonable 
computations. The search for such a framework will be a continuing goal for future 
studies. 

3. Journal Publications 

(a) M. Khammash and J.B. Pearson, "Performance robustness of discrete-time sys- 
tems with structured uncertainty," IEEE Trans. Auto-Control, Vol. 36, No. 4, 
pp. 398-412, 1991. 

(b) B. Bamieh and J.B. Pearson, "A general framework for linear periodic systems 
with application to H°° sampled/data control," IEEE Trans. Auto-Control, Vol. 
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Performance Robustness of Discrete-Time 
Systems with Structured Uncertainty 

Mustafa Khammash and J. Boyd Pearson, Jr., Fellow, IEEE 

Abstract—Given an interconnection of a nominal discrete-time plant 
and a stabilizing controller together with structured, norm-bounded, 
nonlinear/time-varying perturbations, necessary and sufficient condi- 
tions for robust stability, and performance of the system are provided. 
This is done by first showing that performance robustness is equivalent 
to stability robustness in the sense that both problems can be dealt with 
in the framework of a general stability robustness problem. The result- 
ing stability robustness problem is next shown to be equivalent to a 
simple algebraic one, the solution of which provides the desired neces- 
sary and sufficient conditions for performance/stability robustness. These 
conditions provide an effective tool for robustness analysis and can be 
applied to a large class of problems. In particular, it is shown that some 
known results can be obtained immediately as special cases of these 
conditions. 

I. INTRODUCTION 

OBTAINING good mathematical models of physical systems 
is important for their effective control. In general, the better 

the model, the more one expects from an optimal controller for 
this system. Ideally, a mathematical model that describes exactly 
the real system should be obtained. Based on that model, a 
controller that achieves certain objectives can then be designed. 
When implemented on the real system, one expects it to achieve 
the design objectives. However, this rarely takes place in prac- 
tice for many reasons. First, obtaining an exact model is gener- 
ally not possible and one must use approximate models. Second, 
better models tend to be more complicated in order to capture 
more accurately the dynamics of the system to be controlled, and 
so despite the availability of a good model, a simpler less 
accurate one might be used in order to simplify the design and 
analysis procedures and to make use of those tools for controller 
design which are based on the simpler but less accurate approxi- 
mation. An example of this is the linearization of a nonlinear 
system about an operating point. Third, and equally important, 
even if the underlying physical system could be modeled accu- 
rately at one point in time, parameter variations that could 
appear for any one of many reasons eventually take their toll on 
the system and render the model inaccurate. For all these 
reasons, a controller that achieves good performance when 
controlling the model, might not perform so well when used to 
control the actual plant and could even make the system unsta- 
ble. In short, robustness to model uncertainties is an important 
objective and should be an integral part of any controller design. 

For systems with bounded energy signals, the Jf" norm is 
the most suitable norm to use. When dealing with robust perfor- 
mance in the context of linear feedback systems with Jf"* norm 
performance objectives, the paper by Doyle [1] introduces a 

Manuscript received January 23, 1990; revised August 27, 1990. Paper 
recommended by Associate Editor, I. R. Peterson. This work was supported 
by the National Science Foundation and the Air Force Office of Scientific 
Research under Grant ECS-8806977. 

The authors are with the Department of Electrical and Computer Engi- 
neering, Rice University, Houston, TX 77251-1892. 

IEEE Log Number 9142865. 

nonconservative measure of performance for linear feedback 
systems in the presence of structured model uncertainties [l].1 

This approach is based on a matrix function called the structured 
singular value, where stability and performance robustness are 
dealt with in the same framework. The class of perturbations 
treated are linear time-invariant norm-bounded perturbations. 

When the system at hand does not involve bounded energy 
signals but rather bounded magnitude signals as is the case when 
bounded persistent disturbances are present, the more suitable 
norm is the s/ norm or /' norm. In [2], [3], Dahleh and 
Pearson provided a complete solution to the-problem of minimiz- 
ing the ssf norm of a linear time-invariant continuous/discrete- 
time system through the choice of a stabilizing controller. The 
optimal controllers obtained in the discrete-time case are more 
useful than those in the continuous-time case since they are 
easier to implement physically. 

In this paper, we present a solution to the robustness problem 
in the /' setting. The class of perturbations considered consists 
of norm bounded perturbations allowed to be time varying or 
nonlinear. We provide necessary and sufficient conditions for 
stability robustness for structured perturbations where any num- 
ber of perturbations can enter between any two points in the 
system. In addition, we allow performance objectives to be 
achieved in a robust manner subject to robust stability. This is 
done by showing that the stability and performance robustness 
problem is equivalent to a simple algebraic problem which can 
be easily solved to give the desired nonconservative conditions 
for stability and performance robustness. We show how the 
results in [4] and [5] can be obtained as special cases of this 
theory. Finally, we provide some examples demonstrating how a 
controller that achieves robust stability and performance can be 
designed. 

The paper is divided into nine sections. Section II introduces 
the notation, while Section HI provides some preliminary re- 
sults. In Section IV, the stability and performance robustness 
problem is set up. In Section V, we prove Theorem 1 which 
establishes that a performance robustness problem is in fact 
equivalent to a stability robustness problem when the perturba- 
tions are linear, time-varying, and norm bounded. In Section VI, 
we show that the stability robustness problem is equivalent to an 
algebraic problem which gives us the means by which to obtain 
necessary and sufficient conditions for stability robustness and 
consequently performance robustness. In Section VII, the results 
are extended to include nonlinear norm-bounded perturbations. 
In Section VIE, some applications of the theory are provided, 
and finally, Section IX contains some concluding remarks. 

D? li 

n. NOTATION 

The space of ^-tuples of real numbers. If x = 
(*„■••, xq)e^q, then | jr|<„, := max,| xl,\. 

1 See also [12]. 

O018-9286/91/O4O0-0398S01.0O £1991 IEEE 
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-'KP X q) 

r 

'q.e 

/' 'pxq 

PN(Q 

•'■TV 

yfX« 

Nonnegative real numbers. 
Set of real matrices having  p rows and  q 
columns. 
Space of all bounded sequences of real numbers, 
i.e.,   x = {x(A:)}"=0 e /"   if  and   only   if 
supt|x(Jt)| < oo.   If  xel°°   then   ||^|L = 
sup*, j x(k) |. 
Space of ^-tuples of elements of /". If x = 
(*„•••, x,)e/J then H^IL = max,|| xj.. 
Extended /" space. It is equal to the space of all 
g-tuples of sequences of real numbers. 
If x = (*„••■, xq) e/"e, then  TT/X := x,e 
/". 'e • 
Space of absolutely summable sequences. If x e 
/' then || x||, = Zr.o l*(*)l <»• 
Space of p x q matrices with entries in /'. If 
x = (Xij)ellpxg,   then   ||x||, := max1S(Sp 

zUUuh- 
The truncation operator on sequences. Hence if 
x = {x(i)}°°m0 is any sequence, then Pkx = 
{x(0),x(l),---,x( A:), (),••■}. 
The set of all xe/£ such that x,(Ar) = 0 VÄ: > 
N and 1 < / < q. 
Right shift by k positions. If x = {x(/)}" 0 is 
any sequence and k is a nonnegative integer, 

then  Skx = {0,•••,(), x(0), x(l), ••• }.  On 
the   other   hand,    S_kx = {x(k), x(k + 
1), • • • }. Hence S_kSk = I but SkS_k * I. 
The space of all bounded linear causal operators 
mapping /£ to /£. If Re Uff then ||Ä|| := 
sup^ ^ 0 J| /2JC Ü o«. / II -X" II oo   which is the induced 
operator norm. Each R in Sffy9 can be com- 
pletely characterized by its block lower-triangu- 
lar pulse response matrix. 
Subspace of yfP9 consisting of time-invariant 
operators. For each R e Sff*9 corresponds a 

,^)eB* and 

unique r in lpxq where ' rtj is the impulse 
response of Ry, the component of R mapping 
the y'th input to the z'th output 
If xeKp and 0*y = (yx,- 
if /„,„ is the smallest indexing integer such that 

I -V/max I a: I 7,1 for / = 1,- ■ •, <? then [x/y] is 
defined to be the real pxq matrix formed by 
setting its /„^th column to be (l/yjmia) x and 
all of the other columns to zero. A consequence 
of this definition is that [x/y]y = x. 

III. PRELIMINARIES 

For the sake of completeness and in order to establish nota- 
tion, we review in this section some of the concepts pertaining to 
feedback systems. Let G: /" , -»/" e be any map. G is said to 
be causal if PkG = PkGPk for all k > 0. It is said to be 
strictly causal if PkG = PkGPk_, for all k > 0. 

Consider the feedback interconnection in Fig. 1, where G: 
l°p.t~*¥q.e a"d H- lq.e~* Ip.e are botn causal maps. The 
system depicted is said to be well-posed if (/ - GH)~' exists 
as a map from /", to /",, and is causal. It is said to be 
l°°-stable iff 

1) it is well-posed, 
2) the map («,, u2) — (e,, e2, .y,, .y2) takes /" x /" into 

/" x /" x /" x /" 

"^ *' G 
»i 

J    . 

<7     / Yi 
H L 

Fig. 1.   Feedback system. 

3) there exists real numbers a, and a2, independent of «, 
and «2i such that for all w, and u2 

I «ill«. Il^ll- II J'lll-. II ^2II- * «, A «ill. + «2II «2II- 

A map G: £.e ~* C« is said t0 ** /"-stable if it is 'causal, 
takes lp° into /", and is bounded, i.e., there exists a > 0 such 
that || Gull« < a Hull, for all ue£. Clearly, if G and H in 
Fig. 1 are both /"-stable and if the system is well-posed then a 
necessary and sufficient condition for the system in the figure to 
be r-stable is that (/- GH)~X and (I - HG)~X are both 
/"-stable. In fact, as the next proposition shows, it is enough to 
check that only one of them is stable; the other will follow suit. 

Proposition 1: Let G: /" - /" and H: /" - /" both be 
/"-stable maps. Then (/ - GH)~X is /"-stable if and only if 
(I - HG)-1 is /"-stable. 

Proof: (=») Assume (/ - GH)'1 is /"-stable. It may be 
easily verified that (/ - HG)~l = I + H(I - GH)-*G, which 
is /"-stable. The other direction of the proof is identical. ■ 

If A = (atj) e Jt(p X q), then the induced-operator norm of 
A as a map from (B9, | • | „) to(Bp, | • | J is defined by 

A |„ :=     sup    \Ax\m = 
1*1 = si 

Q 

max   Yi I A/; I • 

We use this to give an expression for the norm of an element 
R 6 y$$q. R can be completely characterized by its pulse 
response matrix which has the following form: 

IR 00 

l10 Ru 

\ 

where RtjeJt(p X q). This infinite matrix representation of 
R acts on elements of /J by multiplication, i.e., if «€/", then 
y :=Ruerp' where y(k) = Hjm0RkJu(j)e^p. It can now 
be seen that the induced-operator norm of R  is equal to 
SUP; 1(^,0  •••  R»)\oo- 

When restricted to Ifff, the time-invariant subspace of 
^■fy9, another representation of the elements of if//

x' is 
more convenient. This alternate representation results from the 
fact that corresponding to each R e Jf-f*9, there is an element 
r= (rjj)elpxg such that riy- is the pulse response of that 
component of R mapping the yth input to the /th output. In this 
case, the induced-operator norm of R as a map from /" to lp is 
equal to the norm of r in llxg, which we shall also refer to as 
the d norm. Hence, Sffj9 is isomorphic to llpXQ, and each 
operator in iff/9 is uniquely determined by its pulse response 
in /'   q whose norm will be equal to norm of the operator in 
cppYq 

TV 

IV. PROBLEM SETUP 

We are mainly interested in /" signals and discrete-time 
systems. Aside from that, the only conditions imposed will be 
those needed to guarantee the well-posedness of the problem. 
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Common to all the problems in which stability and performance 
of a certain system are to be studied under the effect of perturba- 
tions are a nominal plant and a controller stabilizing it. In our 
case, both of these are assumed to be linear time-invariant 
discrete-time systems. There is no reason why only one nominal 
plant or controller can be considered, and so, as many as desired 
can be incorporated as long as the resulting nominal system is 
stable. As for the perturbations, they are first modeled as strictly 
causal linear maps taking /°° signals to /°° signals with 
bounded-induced norms. Hence, the perturbations are allowed to 
be time varying. Nonlinear perturbations are treated in Section 
VII. There can be as many perturbations as desired and they can 
enter anywhere in the system. So for a specific set of bounds on 
the norms of the perturbations, we have a family of systems each 
of which is composed of the nominal part and a set of fixed 
perturbations with norms less than the corresponding given 
bounds. The first objective is to determine when every member 
of that class of systems is stable, i.e., when our system is 
robustly stable. In many cases, stability is not all that is required 
from a system and certain performance objectives are to be met. 
A useful and popular objective is keeping small the norm of the 
function mapping an external input, say u, to a certain signal in 
the loop, call it y. Since there could be more than one such 
objective, let us denote the resulting functions by Ty.u. for 
/ = I,*--, m, where Ty.u. is the function mapping signals at 
point u, to signals at point yt. Because we are mainly concerned 
with l°° signals, the norm we want to be small would be in our 
case the induced /°° norm. Now our objective is to determine, 
given a set of m positive real numbers 7,,* ■ •, ym, conditions 
under which our system is stable and satisfies || TyjU.\\ < 7,- for 
all allowable perturbations. In other words, when does our 
system achieve robust performance? 

We now formally set up the stability and performance robust- 
ness problem mentioned previously. The configuration we shall 
use in the setup of the robustness problem is shown in Fig. 2. In 
the figure, M represents the interconnection of the nominal 
plant and the stabilizing controller, and is therefore linear, time 
invariant, and stable. Each A, represents the perturbations be- 
tween two points in the system, and has norm less than or equal 
to one. Of course, there is no loss of generality in assuming that 
the chosen bound on the norms of each of the A,'s is one, since 
any other set of numbers could be absorbed in M. We will 
restrict the A,'s to be strictly causal in order to guarantee the 
well-posedness of the system. This is not a serious restriction 
and can be removed if it is known that the perturbation- nomi- 
nal-system connection is well-posed. Accordingly, we can define 
the classes of perturbations to which the A,s belong. Assuming 
the perturbations enter at n places, and that each has pt inputs 
and qt outputs we have 

A, eA(/>,.,<?,.) 

where A (/?,•, qt) := {A e Sfff «| 

A is strictly causal and || A || < 1} 

for/= 1, , n. 

Note that A, is not dependent in any way on lj when j & i. 
The only restriction is that A, belongs to A(pt. qt) for each /. 
Next, let p = Y.jPi, and q = £,.?,.. By 9[(px, ?,);•••; 
(P„. <7„)] we mean the set °f all operators mapping /" to /" of 

"1 

M 

y\ 

«m :' '■    Vm 

-  A   . 

rzn ^1 

Fig. 2.   Stability and performance robustness problem. 

the following form: 

D = 

0 

A2 

U ■ ■ ■ u ü 

where A,- belongs to A(ph q,). When the pairs (/>,, qt) are 
known, they will be dropped from the notation and 9 will be 
understood to mean the aforementioned set. We will say the 
system in Fig. 2 achieves robust stability if the system is stable 
for all De 9[{px, qxY, • • • ; (p„, q„)]- We will say it achieves 
robust performance if it achieves robust stability and || TyjUj || < 1 
for all / and for all D in 9[(p}, q{); • • • ; (p„, q„)]. 

In the context of this setup, our problem can be stated as 
follows. 

Problem Statement: Find necessary and sufficient conditions 
for the system in Fig. 2 to achieve robust performance. 

V. PERFORMANCE ROBUSTNESS VERSUS STABILITY 

ROBUSTNESS 

In this section, we will establish a useful relationship between 
stability and performance robustness, that will be used later in 
the solution of our problem. This is achieved in Theorem 1 
which is the main result in this section. To aid in the proof of 
this theorem, we will need to determine necessary and sufficient 
conditions that a linear time-varying operator R e y$$p must 
satisfy in order for (/- RA)~* to be /"-stable for all A6 
A(p,q). Such conditions are provided by Lemma 1, to be 
stated next. However, the conditions given in this lemma are 
somewhat nonintuitive in the sense that they do not readily 
translate into conditions on R. By utilizing Lemma 2, Lemma 3 
restates Lemma 1 in a form that relates to R more closely and 
thus takes care of this shortcoming. Finally, we note that the 
sufficiency part in Lemma 3 has been proven in [6]. Neverthe- 
less, since the extra effort required to reprove it using the 
techniques of this paper is minimal, we prove it again here and 
provide a proof for the necessity. 

Lemma 1: Let R e 2$$". Then (/ - RA)~i is not /"-sta- 
ble for some AeA(p, q) if and only if there exists a real 
number c> 0 and £ e /"_ e \ /" such that 

ll^ll-ssB^-i^B. + c     v*>o. 

The proof of this lemma is postponed until Section VI. 
•    Lemma 2: Let R e Xfö", and £ € PN(lp). Then given e > 0 
and a > || ^ [| „, there exist an integer N > N and f eP^(/") 
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such that 

P,vl = £        (f is a truncated extension of £) 

llfll--«- 
||/V?£II. > ||S_(N+1)/?S(„+1)|| • a - e. 

Proof: From the pulse response matrix representation of 
Ä it can be seen that 

^-(AM-D-K'StA'+nll  =  SUP \\RN+i.N+l   '"   ^N+i.N+i)\oo- 
;'al 

It follows that for some N > N, R := (Ä^ N+1 '•• • R# ^) e 
J?{qxp(N - N)) satisfies 

1^1»^ ll5-(N+I)ÄS(/V+!)ll • 

For j?,_we can easily find relJlp'"~N) with | r\m = a such 
that | Rr \ m = | £ | „ • a. In fact, we can in addition pick r in 
such a way that 

N 
| £/?*.,£(/)+Ä/-L> | Ar L= lÄL-fl. 

1=0 

With r constructed as above, we can use it to define { as 
follows: 

{(*):=«(*)        for*-(>,•••, AT 

[£(N+l)T--.{(N)T]r:=r 

£(*):= 0 *>/v\ 

From this definition it is clear that PN£ = £ and that | f | „ = a. 
Finally 

l(*0(#)l--lE**/f(/)L 
/=0 

= I £**./*(/)+   £ **,,f(OI- 
;=0 

/v 

; = N+1 

- lE^,,.$(/)+ÄrL> |*L-a 
/=0 

- ll^-(A^+i)^(Ar+i)ll ' a - «• 

This implies that 

||P**Sl„ ä ||S-(vv+I)*S(„+>)ll • fl " «• 

■ 
Lemma 5: Let Regfö". Then (/-ÄA)*1 is /"-stable 

for all A € A(p, q) if and only if there exists an integer N such 
that || S_NRSN || < 1. 

Proof: We will prove the lemma by showing that (/ - 
RA)'1 is not /"-stable for some AeA(^, q) if and only if 
|| S_„RS„ || > 1 for all n > 0. Using Lemma 1, the task of 
proving this lemma reduces to that of showing 

there exists £ e /£ e \ /£ and c> 0 such that 

||P^IL<|l^->*£IL + c     v*>o 

|S_„/?S„||>1        for all« a 0. (5.1) 

(=>) Assume (5.1) holds. It follows that for any fixed integer 
n > 0 

11***11- * ll**-.*(VU* + JV-,011- + c 
s II Pk-iRSnS-nZ IL + c + C       for some c' > 0. 

Using this together with 

U^S.^IL* ll/^H. and 

ll^+n-.^S.JIL^HP^.S.^S^.JIL + c' 
for some c" > 0 and V* s 0 

we get 

||P*S_„£ |L < || Pt.tS^RStS.J |L + e + c + c 

for some c* > 0 and V* > 0. 

Define c := c + c' + c". We can now write 

||/>,S.JIL< I^.S.^S.^IL + C 

<||s_„i?s„||||/',.1s_j|L + f 
^IIS.^SJMI^S.^IL + C. 

Hence 

ll^5_n?|L(l-||S_„ÄSn||)<c       v*>0 

which, since lim^JI PkS_„£ H. = oo, implies that 
|| S_„RS„ || > 1. Since n was arbitrary, it follows that 
j|S_„ÄS„|| a: 1 for all n > 0. 

(«=) To prove the other direction, we assume || S_„RS„ || > 1 
for all n and then show the existence of £ e /" e \ /" and c> 0 
such that £ satisfies (5.1). This is done by first constructing a 
sequence of truncated elements of /", namely {£,}",, and then 
defining £ in terms of this sequence and verifying it has the 
desired properties. The construction of {£,}£,[ goes as follows: 
fix e to be any real number greater than zero. Next, let 
£0 := 0eP_,(/"), and apply Lemma 2 to £0 with a = 1, to 
obtain an integer TV, > 0 and £,e.PN(/p. To this new se- 
quence apply Lemma 2 again, this time with a - 2, to obtain an 
integer N2 > W, and £2e/V(/~). Repeating this procedure 
indefinitely gives the sequence {£,}", whose elements satisfy 

1) £iePN.(lp) for some integer Nt > A^_, > 0, 
.    2) P„,.£, = |,_,    />2, 

3) ll*,IL = /, 
4) ll/V,**,» * l|S_w._1+1)*V._1 + 1)|| • / - e > ; - 

£. 

Next, we show by induction that for / > 1 

ll***/IL S ll**-i**/IL + c       for some c> 0   (5.2) 

where c does not depend on /. Hence, let c := 1 + e. For 
/ = 1, (5.2) holds trivially since 

II/«,IL sis II/»*-,*{, 11.+ c 
Next, assume (5.2) holds for / = m. We now show it must hold 
for /' = m + 1. If * < Nm we have 

II **««+! II- HI ****I-S II *»*-,** Jl. + C 

s||/>*_,*£„,+, IL 
If, however, * > Nm, we can write 

ll^m+ill~sm+ 1 < llP^A^H.'+t-l- 1 

s||/>*.,*£„,+, II, 

+ c. 

+ c 
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Fig. 3.    Equivalence of stability and performance robustness. 

which completes the induction proof. 
Finally, we define the desired £ € /" e \ /" to be the compo- 

nentwise limit of such sequence, i.e., 

£(*):= lim£,(jfc)       Vit s 0 
/-•oo 

which exists because of property (2). It is easy to see that £ as 
defined here is the one we are looking for. Specifically, | 
belongs to /", \ /" since lim^JI^Ho, = oo. In addition, $ 
satisfies 

||P**|L:S ||/»,_,*{|L + c       V*>0 

which is inherited from the £,'s. This completes the proof. 
■ 

We axe now ready to state a theorem establishing a relation 
between stability robustness and performance robustness. It states 
that performance robustness in one system is equivalent to 
stability robustness in another one formed by adding a fictitious 
perturbation. A similar result has been shown to hold in [7] 
when the perturbations are linear time invariant and when the 
2-norm is used to characterize the perturbation class. The same 
proof does not apply here though, due to the assumed time-vary- 
ing nature of the perturbations. The usefulness of this theorem 
stems from the fact that we can now concentrate on finding 
conditions for achieving stability robustness alone. Once we do, 
performance robustness comes for free. 

Consider the two systems shown in Fig. 3, where Me !£$*p 

and A,e A(p,-, qj). In System n, u is a vector input of size p 
and y is an output vector of size q. In System I, ApeA(p,q). 
It follows that p = p + Y.jP,; and q = q + Z ,•?,•• Subdivide 
M in the following manner: 

M = 
Mu 

,Af„ 

where Mue¥ft*. 
We now state the following theorem establishing the relation 

between System I and System II. 
Theorem 1: The following four statements are equivalent. 
1) System I achieves robust stability. 
2) (I-MD)->  is  /"-stable for all  De5[(p, q); (/>„ 

?,);••• ;(P„, qn)l     • 
3) (I-M22D)~l   is   /"-stable  and   \\MU + MnD{I - 

M^Dr'A^j < 1, for all D belonging to 9[(pu ?,); ••• ; 

4) System II achieves robust performance. 
Proof: 1) ** 2) follows from the remarks preceding Propo- 

sition 1. 3) <» 4) is immediate since a necessary and sufficient 
condition for System II to be robustly stable is that (/- 
M21Dyx is /"-stable for all D in 9[{px,qx)\ ■ ••;(p„, q„)l 
Robust performance means that ||Mn + MnD(I - 
A/22Z?)-'M21|| < 1 for all D in <?[(/;„ ?,); • • • ;("/>„, q„)], 
which is exactly what the remaining part of 3) states. 

To prove the theorem, we therefore have to show that 2) *» 3). 
Before we do that, we introduce the following notation: 

Myu{D):= Mu + MnD(l - M^D)''M2i. 

We start by showing^ 3) =» 2). So let De9[(p, q); (px, 
<7i); • • * ; (Pn< <?«)]• D can be written as diag (Ap, D) where 
ApeA(p, q) and De9[{pv <7i);"-; (/>„, q„)]- It can be 
easily checked that 

"-"»"-(£ £) 
where 

Nu := (/ - Myu{D)Ap) 
-i 

-l 

Nn := (/ - Myu(D)Apy
XMl2D(l - M22D)~X 

N2l := {l-M22D)~XM2lAp{l-Myu{D)Ap) 

N22 := {I + N2lMl2D){l - M22D)~l. 

Since || Myu(D)\\ < 1, it follows by the small gain theorem that 
(/- Myu(D)Ap)~l is /"-stable, which, in turn, implies that 
(/ - MD)~* itself is stable. 

Before proving 2) =» 3), we will first show that given_any 
D e 9[(p:, 9, );•••; (P„, <?„)] we can find De 
2[(Pv <7i); • • • ; (A,. <?„)] such that 

||S_„M,u(P)Sn||>||M,u(Z>)||       Vn->0. 

To do this, we construct D explicitly. So let D be represented 
by its pulse response matrix, i.e., 

\D 

D = 
oo      " 

Dl0    Dn 

\ 

\ 

I 

Then D will be defined in terms of its pulse response matrix as 
follows: 

D := 

D Foo 

■'oo 

'10 Dn 

-'oo 

Du 
D '20      ^21 ■'22 

It may be verified that the structure of the previous matrix 
ensures that De 9[(p{, qt); • • • ;(p„, q„)]- Furthermore, it is 
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not difficult to see that 

PtS-m,DSm. = P,D       V» > 0 

where mi = m,_, + / and m_l = 0. 

We now show that 

\\S.nMyu(D)SJ> ||Myu(D)||       Vn>0. 

It will suffice to prove that 

\\S.nMyu(D)S„\\ £ \\PkMyu{D)\\       V«, * * 0. 

Hence, given n > 0 and A: > 0, /' can be chosen large enough 
such that mi > n and i > k. We can now write 

\\S_nMyu(D)SJ > \\S_m.Myu(D)Sm.\\ 

>||P/S_ffl.M^(D)Sm.|| 

= ||P(M^(P,.S_m.DSm.)|| 

= ||P,.M^(P(.D)|| 

= ||/>,A/^(£»)|| 

>||/\M,U(Z))|| 

where we have used the time invariance of Mi}. This proves our 
claim. We can now use this fact to finish the proof of the 
theorem which we do by contradiction. Suppose that (I - 
Mb)~x is /"-stable for all De S[{p, q); (p„ ?,); • • • ; (/>„, 
q„)], but that for some D0e 9[(pu ?,);••• ;Jp„, q„)] it 
holds that \Myu(D0)l > 1. We can then form D0 in 9[(.pv 

9i):''' ; (Pn< 9«)] a5 shown before which satisfies 

l|S_„M,„(Ä>)Sn|| * ||M^(Z?0)|| > 1       V« > 1. 

By Lemma 3, this says that (I - Myu(D0)Ap)~x is not /"-sta- 
ble for some Ap in A(p, q) which contradicts the fact that 
(I - MD)-1 is /"-stable for all De 9[{p, q); (/>„ ?,); • • • ; 
(p„, q„)]. This completes the proof. ■ 

VI. CONDITIONS FOR STABILITY ROBUSTNESS 

It has been shown in Section V that we can convert a 
performance robustness problem into one which involves stabil- 
ity robustness alone. We can therefore concentrate only on 
stability robustness. We seek nonconservative conditions for 
achieving stability robustness which are easy to verify. Before 
we begin, we establish some notational conventions. Throughout 
this section, the perturbation set will be 9[(pu qx); ••• ; (p„, 
q„)] for some positive integers /?,,•••,/>„ and qlt-", q„. M 
belongs to JCff where p := £,•/?, and q := E,?,. Hence, 
M can be partitioned as follows: 

where MtJ has size qt x pt. We also define two maps £, and 
£,, which will depend on the pfs and the qfs, as follows: ■ 

where T^e/*,      for k = 1,- • •, n 

Ei- >"e "> II,e such that £,(3. .•••.?»)-«/ 

where vkelgke      for k = 1,- • •, n. 

The next lemma is crucial in the proof of the theorem to 
follow. It states necessary and sufficient conditions for a se- 
quence in F% to be mapped to another in /J by a linear strictly 
causal map with norm less than or equal to one. 

Lemma 4: Let x = {*(/)}" 0e/~ , and y = {yV)}?.0e 
/",. There exists A e A(r, m) such that Ay = x if and only if 

1***11 \p*-iy\\ v£>0. (6.1) 

Proof: The necessity is immediate, so we proceed to the 
sufficiency part. So assume that (6.1) holds. The proof is trivial 
if y = 0: just pick A itself to be zero. So assume y * 0. We 
will now construct a A that has the desired properties. We start 
by identifying a subset of the y(i)'s, call it _y(/,), y(i2), • • • , 
which, depending on y, may or may not be finite. This subset 
may be defined recursively in the following manner: Let /, be 
the smallest integer such that y(i{) & 0. Given y(i„), let /n+1 

be the smallest integer greater that /„ such that | y(in+i) | „ ^ 
I y('n) I a.- Using the x(i)'s and y(ij)'s we are now ready to 
construct A through specifying its pulse response matrix. So 
define 

:::\ 

■'■•/ 

*(/, + 2) 

A := 

(A«, A0. Aoz 

A io A„ A,2 

A2o A2I A22 

where 

A
M + I,/I  

:= 

4'2 + 1.'2 

A,3+i./3  :- 

x(ix + 1) 

y(h)  \ 
' A<I+2,/i := 

'•A-2.,-, := 
f*('2)" 
[y(h)\ 

9 

x(i2 + 1)' 
' A/2+2,i2   :_ 

••.A/3,,-2 := ' 

x(i3 + 1) 

•K's) 
» 

y(h) 

y('2) 

M = 

lMn 

\Mnl 

M In 

M„ 

and 0 otherwise. 
Notice that each row of any of these matrices has at most one 

nonzero element, which, by the choice of the y(ij)'s, will have 
its absolute value less than or equal to one. 
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A will have the form 

A = 0 A,I+1.„    0 

A/3./2 0 0 

A''3+l.''3 

from which it is easy to see that A is causal and that Ax = y. 
Furthermore, it follows from the remarks immediately following 
the definition of A that 

||A|| = sup|(AM    A,,2    ■••)Lsl. 
i 

This completes the proof. ■ 
Using this lemma, we now state an alternative condition for 

(/- MD)~l to be /"-stable for all D in 9[{pv ?,);••• ; 
(Pn- In)]- 

Theorem 2: There exists D e 9[{px, qx)\ ■ • • ; (p„, q„)] 
such that (/ - MD)~' is not /"-stable if and only if there exists 
£ s/" e \ /" and c> 0 such that 

II^HL-HP^.^MOIL^c 
for / = 1,..., nandvA: > 0. 

Proof: 

(/-AfZ))-1 is not/"-stable 

forsome £>e #[(/»,, ?,); •••;(/>„,?„)] 

(/ - MD) is not invertible as a map from /" to /" 

forsomeZ)6 9[(jpl,?1); •*• :(P».0] 

S.ve/", \ l~ such that (/- MD)yel^ 

forsomRDe®[(pi,ql);---;{pn,q„)] 

t 

3* e /J., \ /; and y e /£ e \ 1~ such that 

y - M£ € /" and || PkE& |L < || P^ltfU    (6.2) 

where we have made use of the open mapping theorem to 
conclude the second statement from the first, and Lemma 4 to 
get the last statement above. To finish the proof, we will show 
that (6.2) is equivalent to the following: 

3£ e /" e \ /" and c> 0 such that 

II^^IL-IIA-^/MflUsc 
VÄr >0and /= l.---,q.    (6.3) 

Therefore, assume (6.2) holds. It follows that there exists c> 0 

such that 

c>||(j--M£)IL- 

For such £ and c, we can now write 

caflJV-i^O'-AfOII- 

Ä||P*_,^IL-||/»*-,i,(3fOll- 

fe'llP^fll.-II/>*-,£,(Af{)II- 
v/t > Oand /= 1,.. .,q 

which is exactly what (6.3) states. Conversely, assume (6.3) 
holds. Define 

(x^)(*):= (*,AfO(*) +csgn(rlMi)(k) 

Vk and / = !,-•• ,q. 

It follows from this definition that y - M£ is in /". Further- 
more, it is immediate from the definition of y that 

II^-.£^L = II<P*-.£,(A/S)IL + C 

which, together with (6.3), gives 

||Pt£,$||0o<||JP,_1£/7|L. 

From this last equation, we also get that .ve/"e \ /". This 
proves the theorem. ■ 

Proof of Lemma 1: The proof of Lemma 1, as may be 
readily checked, is identical to that of Theorem 2 with M 
replaced by R and with n = 1. Note that even though M has 
been assumed to be time invariant, this was never used in the 
proof of Theorem 2. ■ 

Before we can state Theorem 3, we need to establish two 
additional lemmas. Together with Theorem 2, these lemmas will 
be the main tools Used in the proof Theorem 3. 

Lemma 5: Let $ € PN(/p = P„(/~) x • • • x jy£B). 
Then given e > 0_and ae!§2 such that a,- > ||£,£|L. there 
exists an integer N > N and ^eP^(lp) such that 

|£,*IL««, 

and 

||P*£,.M?|L>-    max       £ |KmM,v| 

/= !,-••, n. 

■v<U -e 
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Proof: This lemma follows immediately from [5, Lemma 
5.2]. ■ 

Lemma 6: Let c and atj, where  /= l,*--,n and j = 
l.---,n, be nonnegative real numbers. Then the following is 
true. 

There exist n sequences of nonnegative real numbers, 

say 77, = {ili(k)}k=0, at least one of which is unbounded, 
satisfying 

n 

ViW * E «ijvj(k) + c 
y= i 

vArand /= I,---,« (6-4) 

the system of inequalities 

Xi* T.euxj (6.5) 
y=i 

/ =  1,•■•,/! 

has a solution in {li+)" \ {0}. 

Proof: It is immediate that (6.5) =» (6.4); merely let 17,(A:) 
= kXj where (;?,,• • •, x„) is the solution guaranteed by (6.5). 

We prove the other direction by induction on n. For n = 1, 
(6.4) gives an unbounded sequence of real numbers ti such that 

■q{k) < flTj(Ar) + c       vfc. 

Since lim sup* ri(k) = oo, it follows that a > 1. This, in turn, is 
true if and only if x < ax has a solution in (0, oo), or equiva- 
lent^ if and only if (6.5) holds for n = 1. 

For the second induction step, assume the lemma is true 
whenever n < n0- 1. Assuming (6.4) holds for real numbers 
c and au where /= l,---,n0 and j= \,---,n0 we will 
complete the proof by showing that (6.5) must hold as well. We 
start by noting that without loss of generality the unbounded 
sequence guaranteed by assuming (6.4) has index less than n0, 
i.e., for some ;' < n0, we have limsup^^^/r) = oo. if this 
were not the case, we can always renumber the ri,'s. We may 
also assume that a„ „ < 1, otherwise the proof of this lemma 
is complete since 3c°=°(0,- • •, 1) solves the system of inequali- 
ties in (6.5) for n = n0. Based on this last assumption, dividing 
both sides of the n0th inequality of (6.4) by 1 - a„o„o yields 

,„(*) < —I—'?: aHo/nj{k) + Y^—       VA:. 
1 _ a»0n0   y = l l       ano"o 

Substituting this inequality in the first n0 - 1 inequalities of 
(6.4), we get 

"o-i / a-   a   ■ \ 

y=i 1 - a 
RonO 

Vk and / = l,---, n0 - 1 

where c' = c + c/(l - a„ „ ) ä 0. But by the induction hy- 
pothesis this implies that the system 

"o-i / 
f|S   £  [aij+f^ 

y= 1    \ l  ~ an0n0 , 

has a solution' in (li"1")"0"1 \ {0}.  Denote this solution by 

*,<   7^   \a,,+ . 'n° noJ   ]x,       /=!,•••,*„- 1 

X = (X, .). Now define 

"oJ 
n0-\ 

X"° :=   ,?,  ~\ - a J=\     l        "n0n0 

Clearly, (3c,,• • •, x„o)e(n+)"° \ {0}, and it can be easily 
checked that it solves the inequalities in (6.5) for n = n0. This 
completes the induction proof. ■ 

Next, we will state our main result establishing the equiva- 
lence of the stability robustness problem to a simple algebraic 
one. Depending on the region in which this algebraic problem 
has its solutions, we can conclude whether or not our system 
achieves robust stability, and by the results of the previous 
section, robust performance. In order not to clutter the exposi- 
tion, we first state and prove this theorem in the scalar case. 
Hence /», = • • • = p„ = qx = • • • = q„ = 1. Consequently, 
for any /, £,• will be equal to *■,-. 

Theorem 3: (/ - MD)~} is not /"-stable for some De 
£P[(1,1); • • • ; (1,1)] if and only if the system 

n 

y=i 

has a solution x = (*,,- • \ x„) in (S+)n \ {0}. 
Proof: Assume (I - MD)~l is not /"-stable for some 

De 9[(\, 1); • • • ; (1,1)]. By Theorem 2, there exists c> 0 
and £e/",\ /" suchthat 

||P*£,*||.-||JV-, £MUEJ*U*C 

VA: ä 0, and / = l,---, n. 

Applying the triangle inequality and using the causality of M,y, 
and the fact that the projection operator is contractive we get 

njvErfiL* E IIA^-IUI/^IU + C   /= i,••-,/!. 
y-i 

Finally, applying Lemma 6 gives the desired conclusion. 
For the other direction, assume there exists x = {xx, • • •, x„) 

e(fä+)" \ {0} suchthat 
71 

Xi* E WiAsXj    '= !.•••.«• 
y=i 

We will show that this will imply the existence of c > 0 and 
£e/£e\ C suchthat 

\p*E,s\ \Pk-iE,Mi\\m<c       /=!,•••,« 

■XjBir 

which by Theorem 2 implies that (/ - MD)'1 is not /"-stable 
for some De 9[(1,1); • •• ;(1,1)]. We start by defining a 
sequence of elements of /" as follows: let £0 := 0e/". Fix 
e > 0 to be any real number, and define c := max, *, + e. 
Now apply Lemma 5 to £0 with a = (*,,- ••, x„) to get 
TV, > 0 and £, ePN,(/"). Next, apply the same lemma again to 
£, with a = (2xl,---,2x„) to get N2 > TV, and |2e/V2(/p. 
Repeating  this  procedure  indefinitely  we  get the  sequence 

SmePNm{l~)       where 7Vm>/vm_1 > ••• 

ll^fmll--'»«/. and 

|| P^EMm II - & E II ^/y II v «*y " « 
y=i 

V k > 0 and for i - 1, • • •. n. 
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TABLE I 
CONDITIONS FOR STABILITY/PERFORMANCE ROBUSTNESS FOR n = 1,2, AND 3 

No. of A's   Necessary and Sufficient Conditions for Stability Robustness 

' n=i      |M|L<i 

n = 2 

n = 3 

l|A^llv< 1 

„ „  „        I1M,,||V||M2,||V 
l|M"IL +     1-11 AM,    <l 

l|A*ollv< 1 

Af„   v+ ^—~ < l 
'12 II V \-\\M- 33II.V 

IIA/..IL + 
l*„l,l*M,     K"- +    i-|*„l,   )l»^"-+    1-IIM33II,   )., 

1-IIA/33L 

1-II A/3311  

We next show by induction that for any m 

Vfc £ 0 and for / = 1,• • •, n.    (6.6) 

When m = 0, this is trivial since 

||P*E,U-= 0 < || P^MUL + c 
VA:> 0 and for i = l,-", «. 

For the second induction step, assume (6.6) holds for m = m0. 
We now show that (6.6) holds for m = m0 + 1. We prove this 
in two parts: first when k < Nm   and then when k > N„o. 

For k<Nmo 

ll^£,-WtlL = ll^£,-*moIL 
«MI/V^.M^JL + c 

= ||Pfc_,£,M^mo+1|U + c       i-l,"-,n. 

When k> Nm   we have 

II PkEiim0+1II - * II /»Arm,*/*», II - + ™x*y 

< m03c, + maxxj 
j 

n 

^ Y.\\Mu\\J,m0Xj+ maxxj 

* II'VA-A^J. + « + max*, 

s||J,*-i£/M*mo+I||a. + c      ;=1,••-,*• 

This completes the induction proof, and thus we have 

O^U.sll^-.^J. + c 
VA:, m > 0and for / = l,---, n. 

Finally, define £ by letting £(*:) := limm^O0 $m(Ar) for all k. 
It follows that 

|| PkE,t |L < II P*_,£,M$ II. + c      1 = 1,- • •, «. 

Furthermore, £e/"e \ /" since lim^JP^ |L = °°. This 
completes the proof. • 

With this theorem, our problem stated in Section IV is essen- 

tially solved. Applying this theorem to the performance and 
stability robustness problem stated earlier, reduces it to a simple 
algebraic one in which the object is to determine whether a 
certain system of inequalities has a solution in a particular region 
in IS". What makes this algebraic problem particularly attractive 
is that the set of inequalities that arises relates in a simple and 
direct manner to the original problem. Only norms of the 
subentries of the M matrix arise and they do so in the same 
general order that they do in M. The question that arises, 
naturally at this point, is how can one determine whether the 
system of inequalities at hand has a solution in the related region 
of B"? It turns out, that no search techniques are needed to 
accomplish this task and the answer to this question can be 
determined by evaluating certain expressions directly. These 
expressions also involve norms of the subentries of M and thus 
are easy to compute. The derivation of these alternate conditions 
for stability and performance robustness is the next topic of 
discussion. 

The first step in restating the conditions, involving the set of 
inequalities is to make the following observation. 

Observation: The system of inequalities 

y'=i 
i- !,••-, n 

has a solution in (IS+)" \ {0} if and only if either || A/„„|| ^ 
or || M„„ I j < 1 and the system of inequalities 

> 1 

|M,V|L+ 
IIA^/JLII^IL 
i-IIA^II^ 

/= 1,•••,/!- 1 
has a solution in (K+)"-1 \ {0}. 

Notice that this observation allows us to replace the task of 
determining whether any solutions to a set of n inequalities lie in 
a certain region by the simpler one of determining whether the 
solutions to a set of n - 1 inequalities lie in a small region 
together with a simple test on the norm of M„„. It is easily seen 
how this can be repeated until we completely replace all such 
conditions by tests on expressions involving norms of the M,/s. 
a much simpler task. Table I lists some of these for a few values 
of n. 

Until Theorem 3, all out derivations were done with an 
MIMO system in mind. Theorem 3 broke this trend in order to. 
avoid the additional notational complexity which would undoubt- 
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edly obscure the ideas in the proof. We will now tie this loose 
end by stating without proof the analog of Theorem 3 in the 
MIMO case. All the tools for the proof have been developed and 
the steps are identical to those taken in the proof of Theorem 3. 

In order to discuss the multivariable case we will need to 
make reference to the rows of M/y- which are themselves stable 
rational functions. Let us denote the mih row of M,y- by 
(Af/y)m, which is also equal to irmM,v. Since we will no longer 
restrict the /?,*s and ^,'s to be equal to one, the following set is 
not necessarily a singleton: 

JT:= {{ku---,kn)eZ":l<kisqi}.. 

From this definition it is clear that the set Jf has exactly U"m, q, 
elements. To each k e X corresponds the system of inequalities: 
Xi s Zj.iUMJ^W JXJ where k = (*„••-, *„). As the next 
theorem shows, it is the solutions of these inequalities that are of 
concern when seeking necessary and sufficient conditions for 
stability and performance robustness in the MIMO case. 

Theorem 4: (I - MD)'1 is not /"-stable for some De 
S"[(Pi.<7i);--- ;(/V ?„)] if and only if for some k = 
(*,,-••, k„)e Jf, the system 

x,s £ ll(^y)*,IL*/. /= 1.- 
y=i 

has a solution x = (*,,•••, x„) in (S+)n \ {0}. 

VII. NONLINEAR PERTURBATIONS 

In this section, it will be shown that if the class of perturba- 
tions is enlarged to include norm-bounded nonlinear perturba- 
tions, then the conditions for robust stability remain the same. 
This means that robustness to linear time-varying perturbations 
will automatically guarantee robustness to nonlinear perturba- 
tions as well. Furthermore, it is shown that when enlarging the 
perturbation class to include nonlinear perturbations, stability 
robustness remains equivalent to performance robustness, and so 
the conditions for stability and performance robustness for time- 
varying perturbations are the same as those for nonlinear pertur- 
bations. For simplicity, we shall consider the scalar case here. 
We start by extending our definition for the perturbation class to 
include nonlinear perturbation. So define 

£WL[(/>I><7I); •••;(/>«.?*)] 

:= < diag (A,, • • •, A„) | A,- strictly causal and 

sup • 
x*0 

|A,-*| 

II* 11 = 
< 1 

For simplicity we adopt the following notation: 

n 

9{n):= 9 (l,!);•••;(!,1) 

9SL{n):= 9NL (l,!);•••;(!,l) 

Theorem 5: (I - MD)~l is /"-stable for all De9{ri) if 
and only if it is /"-stable for all De 9NL(n). 

Proof: The sufficiency part is immediate since 9{n) C 
9NL{n). We prove necessity by contradiction. Suppose (I — 
MD)~l is not /"-stable for some De9NL(ri). Then either 

(I- MD)~i does not map /" into /" or it does but (/- 
MD) ~' is not bounded. Notice that the second possibility was 
eliminated when D was restricted to be in 9{ri) since in this 
case if I - MD maps /" onto /" then (I - MD)~X is bounded 
by the open mapping theorem. Repeating the same arguments 
used before, the first of these possibilities can be shown equiva- 
lent to the system of inequalities 

Xi*   £ IIA/ylL*, '=  I," 
y=i 

having a solution in 0+)n \ {0}. By Theorem 3, this implies 
that (I - MD)~l is not /"-stable for some D in 9(ri) and 
hence in 9NL(n). \ 

Now suppose (I - MD)~* maps /" into /" for all De 
9NL(ri) but that for some De 9NL(n) it is not bounded. This 
implies the existence of a sequence of elements of /", {xk}*=0, 
with xk * 0, such that 

lim • 
A:-» 

[l-MD)-lxk\\ 

\\xk\L 
Define yk := {I - MD)~1xk. From this definition we have 

n 
*/^* = *ixk + E MjjAjTjyjc. 

Using the triangle inequality and dividing by |[ xk || „,, we get 

where ij,(Ar) := Ik/j^H»/!!**!!»- Applying Lemma 6 gives 
us that the system of inequalities: 

n 

Xi* Z WMijW^Xj,       i= \,--',n 

has a solution in (K+)n \ {0}. As before, Theorem 3 implies 
that (I - MD) ~' is not /"-stable for some D e 9{ ri). ■ 

One last issue remains to be settled. We have shown that 
stability robustness is equivalent to performance robustness when 
the class of perturbations is 9{n). It does not immediately 
follow that this should be true if the perturbation class were 
9NL(n). Next, we shall show that indeed stability robustness is 
equivalent to performance robustness even when enlarging the 
perturbation class to include nonlinear perturbations. 

We will assume the class of perturbations is 9NL(ri) and that 
we have one performance objective consisting of keeping the 
norm of the function mapping the external input u to the output 
y less than one (Fig. 3, SYSTEM II). 

Therefore, we have the following M matrix: 

/   Mu 

M = 
MUn+x   \ 

As before, we define the subentries of M as follows: 

Mn :=M„        Mn :=(M12 Mun+x) 

M- 21 

M21  := 

iM« + i.i 
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M-n  := 

MT 

,M« + 1.2 

M2.n+]    \ 

Mn+l.n+\] 

The next theorem establishes the equivalence of stability and 
performance robustness when nonlinear perturbations are in- 
cluded. 
^Theorem   6: (I - M22D)~]   is   /"-stable   and   ||M„+ 

Ml2D(I - M22DyxM2x || < 1 for all D e 9NL{n) if and only 
if (/ - MD)-' is /"-stable for all D e 9NL{n + 1). 

Proof: 
(Only if): This direction is an immediate consequence of the 

small gain theorem. 
(If): Clearly, if (/ - M22D)~X were not /"-stable for some 

De 9NL{n) then (/ - MD)~l will not be /"-stable for some 
De 9NL{n + 1). So suppose ||M„ + MnD0(I - M22Doy

x 

M2I|| ä 1 for some D0e 9NL{ri). Now define 

L := 

It follows that 

M 

\£n+i 

= D0(l-M22Doy
lM21. 

1 £ ||M„ +M12L\\ < \\Mu\\j+ ||M12||.y||L2|| 

+ ---+\\Ml,„+l\\.ALn+ll    (7-1) 

Using the triangle inequality and the submultiplicativity of the 
norm it follows from the definition of L that 

B^lls ll^2iIL+ll^aBvl Li I! 
+ + B^2.- + llLI|i, + ll 

ll^+ill^l|Afn+1.1|L+||Mfl+1,2||^||L2|| 

+ ---+l|A/n+1.n+1|L||Ln+1||. 

Combining these inequalities with (7.1) it can be seen that 
(1.11^2'II>''"' II L„ + 1||) solves the following system of in- 
equalities: 

n + l 

x,s  £ WtA*Xj       /=!,•••,« + 1 

which by Theorem 3 implies that (/ - MD)~X is not /"-stable 
for some D e 9NL(n +1). This completes the proof. ■ 

Vin. APPLICATIONS 

In this section, we present some applications to the theory 
developed thus far. Starting with stability robustness, we provide 
necessary and sufficient conditions for stability robustness in the 
simple case when only one perturbation is considered. Next, we 
add a performance objective, namely the sensitivity function, 
and demonstrate how its norm can be made small in the presence 
of multiplicative plant perturbations, subject of course to robust 
stability. We contrast the conditions obtained when the input 
sensitivity function is the performance objective of interest, to 
those obtained when the output sensitivity is considered in- 
stead. Both of these cases involve two A's, one representing the 
actual plant perturbations, and the other fictitious, representing 

the performance objective to be achieved. Finally,, we provide 
an example where three A's are involved. This example arises 

• when one considers a class of plants formed by perturbing a 
nominal linear shift-invariant plant through adding both additive 
and multiplicative perturbations and demands' that the worst case 
norm of the sensitivity function is to be minimized through the 
choice of a robustly stabilizing controller. We begin with the 
stability robustness application. 

1) Stability Robustness (Unstructured): This is the simplest 
case. The perturbations take the form of one A having q inputs 
and p outputs. The question then is when is (/ - MA)~' stable 
for all A in A( p, q)l Equivalently, when is the interconnection 
of Me??,*" and A stable for all A in A(p, qY> From 
Theorem 4, a necessary and sufficient condition for robust 
stability is that none of the q inequalities 

x^\\{M)i\\s,-x      /=1,•••,<? 

has a solution in (0,»). Clearly, a necessary and sufficient 
condition for that to happen is that ||(M),||V< 1 for all i, or 
equivalently ||M||JI,< 1. This is exacdy the problem solved by 
Dahleh and Ohta in [4]. 

2) Input Sensitivity in the Presence of Multiplicative Input 
Perturbations: Let P„ be a given nominal linear shift-invariant 
discrete-time plant with q inputs and p outputs. Consider the 
following family of plants formed by adding weighted multi- 
plicative perturbations to this nominal plant: 

n := {P:P = P0(I+ W,A),A€A(^,9)} 

where Wx e <£$f. Let S(P0) be defined as follows: 

S(P0) := {C: C is linear causal shift-invariant 

controller stabilizing P0}. 

For a fixed CeS(P0) and y > 0 we will now obtain necessary 
and sufficient conditions for C to stabilize every Pell, and at 
the same time satisfy ||(/+ CP)~lW2\\ < 7 for all P in IL 
Hence, the performance objective in this case is keeping small 
the norm of the weighted input sensitivity function (/ + 
CP)~XW2 despite the presence"of the multiplicative perturba- 
tions. 

This problem can be set up in the framework discussed in the 
previous sections where a fictitious perturbation replaces the 
performance objective, thus transforming this stability and per- 
formance robustness problem into a stability robustness problem 
alone. This alternate problem has 9[(q, q), (q, q)] as the class 
of perturbations, and an M matrix of the following form: 

/ 1 

M = 
-U+CP0) 
y 

-{I+CP0) 
y 

-1 w2   CP0(/+CP0)-V, 

-1 w2   CP0(/+C/>0)-V, 
/ 

From Table I and Theorem 4, necessary and sufficient conditions 
for robust stability for this problem, and hence, for robust 
performance for the original one are as follows: 

• II(T;)(IL< 1    /-I.---.«. 

, ll(U-IUI-(s0),-IL 

'ojjtt.a' 

i,j= !,••■, q. 
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where    S0 := (/ + CP0)~
lW2,   and    T0 := CP0(7 + 

CP)~ X
0WX. Equivalently, these conditions can be written as the 

following: 

1 
-S. ..< 1 /= 1," 

[Te)i\ 
-(So)jl 
1 

i-l|-(s0),IL 
y 

(i-ll(7;)7llv) 

><7, 

< l 

which, in turn, are equivalent to the following conditions: 

'oil.»' <1, 

max 
ll(S0),ll. 

Ä i - ||(T;),IL 
<7- 

If we define ¥ := {CeS(P0): C stabilizes all Pell}, then it 
follows from our stability robustness conditions for one A that 
Ce* if and only if CeS(P0) and ||7*0|L< 1. Hence, we 
have shown through the two conditions obtained above that for 
any Ce* 

s-i     „ ll(S0)/lly 
sup ||(/ +CP)    ^|-Tl_|(7.)|U. 

This is exactly the result obtained by the authors in [5] using a 
different approach. In fact, it is not difficult to show [5] that for 
any 7 > 0 

Ce*and sup ||(7 + CP)~ V2|| <y#CeS(P0) 
Pen 

and||(S0   yT0)\\^<y. 

Since it is known [2], [8], [9] how to solve problems like 

min   ||(S0   yT0)\\j 
CeS(P0) 

it is clear how an iterative scheme can be devised whereby the 
value of 7 can be increased or decreased according to the 
outcome of the optimization problem stated previously, until 7 
is as close as desired to 7^, where 

7opt :=  inf sup 0(7+CP)-V2||. 
^       ce* j^n 

Since at each iteration step a controller that achieves the 
minimum can be computed, we can find a controller that achieves 
arbitrarily closely 7opt. 

3) Output Sensitivity in the Presence of Output Multiplica- 
tive Perturbations: For this case let 

n := {P:P= (/+A^)P0,A6A(g,<?)} 

where P0 and Wx are as before. Suppose we are now interested 
in the norm of the output sensitivity function as a performance 
measure. For CeS(P0), the M matrix now has the form 

/   1 

M = 
w2(i + p0cy -w,{i + p0cy' \ 

y 

\WXP0C{I + P0C)~X     W1P0C(7 + P0C)-1/ 

Hence, from Table I necessary and sufficient conditions for 
robust stability and performance are now: 

• II(T;),IL<I   /=!«•••.9 

r0),IUI-(So)/IU 
7 < 1 

'   '^      1 - KW,!, 
i,j=l,---,q 

where   T0 := ^,P0C(7 + P0C)~l   and   S0 := W2{I + 
P0C)~K Equivalently, these conditions can be written as fol- 
lows: 

• b„iL<i 
\\s0\\, 

l-lir. 
<7. 

ollV 

With ¥ defined as before, it follows that 

. II S0||* 
for any Ce *, sup || W2{I + PC)' || = ——. 

Pen l - II 'oW.* 

Even though these conditions are different from those obtained 
in the input sensitivity case, for a scalar plant they are actually 
the same. 

4) Sensitivity Minimization in the Presence of Additive 
and Multiplicative Perturbations: So far all the examples con- 
sidered involved at most two A's. We now look at an example 
where three A's enter the analysis (n = 3). Despite the fact that 
given a specific CeS(P0) the conditions obtained for robust 
stability/performance are relatively simple to test and hence are 
ideal for analysis purposes for large values of n, in general, 
designing a controller that achieves robust stability and perfor- 
mance is not as simple a problem especially when n > 2. This 
becomes apparent when looking at the conditions for n = 3 in 
Table I. However, as this example demonstrates, in some impor- 
tant applications we can exploit the structure of the specific 
problem at hand to reduce these apparently complex conditions 
into simple ones which lend themselves easily to optimization 
procedures, thus facilitating synthesis. To see this, consider the 
class of plants formed by adding weighted additive as well as 
multiplicative perturbations to a nominal plant P0. Multiplica- 
tive perturbations represent, for example, unmodeled high- 
frequency dynamics, sensor noise, etc., whereas the additive 
perturbations represent the unmodeled time variations in the 
plant and nonlinear part remaining after linearizing a nonlinear 
plant about an operating point. For simplicity, we shall look at 
the scalar case alone. Hence, let 

TI :- {P:P = P0 + A2W2P0 + A3W3, 

where A2, A3eA(l,l)}. 

Here, W2, Wie^rTl *& stabIe weights- With this class of 

plants, we now look at the problem of robust output sensitivity 
minimization subject to robust stability. So it is desired to 
minimize the worst case value, as P varies over TI, of || 1^,(7 
+ PC)_1|| subject to robust stability. We start by fixing Ce 
S(P ) and then finding necessary and sufficient condition for 
11(1/7)^,(7 + PC)-11| •< 1 for all Pen subject to robust 
stability. Äs before, this problem fits very naturally in our 
framework and is equivalent to a stability robustness problem 
with    the    class    of    perturbations    consisting    of 
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'j[(\, 1); • • • ; (1,1)], and an M matrix as follows 

/     LW(I + PCy* 
y 

-w2p0c(/ + />0c)-' 

-w3c(i + p0cyl 

M = 

-ivl(r + P0c)-i 

y 

-w2p0c{l + P0C)-1 

-w3c(i + p0cy' 

-^(/ + />0c)-* 
7 

-w2p0c{i + p0cyx 

-w3c(i + p0cy* 

Applying Theorem 3, or equivalently looking at Table I for 
n = 3, we find the following necessary and sufficient conditions: 

ll*0|L<i 

•   KIL + \T0\\ARQ\\* 

l-llÄJL 
< l 

! H-S0||vll*0||.y 

I-SJI.+   y 
■"oily 

1 

1-11* oily 

1 
1-5, 
y 

oily ll^ollvl 

y'°"*+ 1_||Ä OIIV 
irj.„ + \\T0\\AR0\\.« 

i- \\R oily 

+ ■ 

i-   lir„i|v+ 
\\T0\\s\\R0\\* 

i-ll*j|v 

< l 

\-i where   S0 := W,(7 + P0Cy\   T0 := W2P0C{I + P0Cy 
and   R0 := W3C(I + P0C)~K   These   three  conditions   are 
equivalent to the following condition: 

1 
\-S. oil V + l|7"olL+ll^oll.y<l- 

This condition is the key to controller synthesis. As before, this 
can be done by iteration on y, and we can get as close as desired 
to the optimal y. 

Finally, we use the aforementioned three conditions to derive 
an explicit expression for the quantity sup^n|| W,(7 + PC)~l|| 
for any Cet. This is done by observing that the first two 
conditions are exactly those needed for robust stability alone and 
can be rewritten as the following: 

|7olL + l*JL<i. 
Simplifying the third condition above and combining it with this 
one, we can write 

We next provide a numerical example demonstrating the 
advantages of incorporating performance robustness considera- 
tions in the design procedure. 

Example 1: Assume a physical plant is modeled by the 
following plant class: 

nr :={P=(7+A/-W,)/VAeA(l,l)} 

where P0 = z{z - 0.1)/(z - 0.5)(z - 2),2 Wx = 0.1/z + 
1.1, and r is a positive real number representing the assumed 
radius of perturbation ball. This class is the same as that 
considered in the third application example in this section, with 
the only difference being that here we show the dependence on r 
explicitly instead of absorbing it in the weight Wx. 

We have shown in this section that CeS(P0) achieves robust 
stability if and only if ||/T0||^< 1, and that for a robustly 
stabilizing controller, the worst case norm of weighted sensitiv- 
ity function is given by 

Ce¥and || WX(I + PC)~'|| <y 

CeS(P„) and ||r0||^+BÄj^<l 

for all Pell 
sup ||(/ + PC)' 

PeUr 

'w2\\ = 
1 - II rTn 

and 
IISJv 

It follows that for any Ce ¥ 

sup 11^,(7+ PC) _,|| = 
Petl 

l-(l|7olL+||P0|L) 

 ll^olly  

I-(II7OIL+||P0U 

<7- 

This expression can be used for analysis purposes, after the 
condition for robust stability has been checked. It is interesting 
to see how robust stability cannot be separated from robust 
performance since without robust stability the expression for the 
worst case performance makes no sense. 

where S0 := (7 + P0CyyW2 and T0 := P0C(7 + 
P0C)~lW}. For this example, we choose W2 - 0.5/z - 5.0. 
Before attempting any design procedure, we can compute the 
maximum perturbation ball radius that can be tolerated without 
violating robust stability, regardless of the choice of controller in 
S(P0). This number is equal to i/mmCeS(Po)\\T0\\^ := r^. 
For our specific problem data, /■„„„ = 2.90909. If r > r^, 
robust stability is lost and no controller in S(P0) can restore it. 
In fact, the results in [6] show that even allowing the controller 
to be time varying does not help. We therefore restrict ourselves 
to '"<''max. Next, we compare the robustness properties of 
three design procedures. The first of these ignores the perturba- 

* We adopt the convention that the   2 transform of a signal   u is 
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Fig. 4.    Second and third design procedures in Example 1. 

dons and minimizes the norm of the weighted nominal sensitiv- 
ity function. The second design procedure does the same but 
with the added constraint that robust stability is to be main- 
tained, while the third procedure minimizes the worst case 
norm of the weighted sensitivity function subject to robust 
stability. We consider each of these separately. 

In the first procedure, we solve using the techniques in [2], [8] 
the problem 

min   ||(/ +P0C) 
CeS(P0) 

-l 
^2II   :-7„ 

For our example, ynom = 0.7265306. Computing the Q parame- 
ter associated with ynom, we can find the corresponding T0 

whose rf norm turns out to be 7.0979592. Therefore, robust 
stability is achieved only for r< 1/ || T01|^= 0.14088557, 
which is much less than the maximum achievable value of r^^. 
Furthermore, for this range of r 

sup ||(/ +PC)" 
Penr 

•w2\\ = 
1 - WrTn 

0.7265306 

1 - 7.0979592 r 

which approaches so as r approaches 0.14088557. Notice that 
the design scheme does not depend on r since it completely 
ignores the perturbations. 

The second design procedure attempts to achieve robust stabil- 
ity for larger values of r by solving the problem 

min   || S0 
CeS(P0) 

subject to || rTj„< 1. 

In its present form, this problem has no solution. We shall solve 
the following slightly modified form of it which does have a 
solution: 

mm >o\\J 
CeS(P0) 

subject to || rT0\\„S 1 -e 

where e > 0. For our example, we shall pick e = 0.001 and 
solve this problem for various possible values of r. Fig. 4 shows 
the resulting values of \\SJj, ||rro||^ and supp^ ||(7 + 
PC) ~' W21| as functions of r. Of course for an actual design, 
the value of r is chosen a priori and the optimization problem is 
solved for that particular r. The numbers appearing in the figure 
were obtained by solving the previous optimization problem 
over all polynomial closed-loop objective functions with degree 
less than or equal to 11 (see [2]; [8] for more details on solving 
truncated problems). As may be seen in the figure, even though 
this design method acknowledges the existence of the perturba- 
tions and as a result yields systems which are robustly stable for 
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values of r as large as r^, these designs suffer from extremely 
bad performance robustness properties, especially for r > 2. In 
fact, for r > 2.18, the worst-case norm of the nominal sensitiv- 
ity approaches 1000! Worse still, if one attempts to further 
decrease the norm of the nominal sensitivity by making e 
smaller but still keeping it larger than zero to guarantee robust 
stability, the worst case norm of the sensitivity function gets 
much larger despite the smaller value for the nominal sensitivity 
norm. It can be made arbitrarily large by making e sufficiently 
small. 

Fortunately, the third design scheme does not suffer from any 
of the problems associated with the first two design schemes. It 
is based on solving the following problem: 

inf sup | 
Ce* PeTlr 

(I+PC)'lW2\\ =      inf >0llv 

c£(P0)   1 - \\rT0\\, 
ll'7-oll.Xl 

Fig. 4 shows the resulting values of ||S0||^, H/TJI^ and 
supPen ||(7 + PC)~l W21| for various assumed values of r. To 
allow comparison with the second scheme, a maximum closed- 
loop polynomial degree of 11 was used here as well. The figure 
indicates that this design scheme not only has much better 
performance robustness properties than the first two schemes, 
but that it also has superior stability robustness properties as 
shown by the values of || rT01| v. This means that it can tolerate, 
without losing stablity, perturbations with radius even larger 
than r, the perturbation radius which was used in the design. 
These large improvements in both stability and performance 
robustness properties are gained at the very small cost of a slight 
increase in the norm of the nominal sensitivity function. 

IX. CONCLUSION 

We have provided in the previous sections necessary and 
sufficient conditions for achieving stability and performance 
robustness. These conditions can be applied to a large class of 
problems in which multiple perturbations can enter in various 
configurations. The conditions involve no more than computing 
the s£ norm of certain transfer functions, a task which can be 
done to any degree of accuracy with relative ease. Consequently, 
these conditions provide a particularly attractive method for the 
analysis of stability and performance robustness. We have also 
shown that in some important cases obtaining a controller with 
optimal robustness properties can be done through a simple 
iterative scheme. Synthesis of controllers in the more general 
case, is an interesting problem which is currently under re- 
search. 
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A General Framework for Linear Periodic 
Systems with Applications to Jf °° 

Sampled-Data Control 
Bassam A. Bamieh, Member, IEEE, and J. Boyd Pearson, Jr., Fellow, IEEE 

Abstract—"We present a framework for dealing with continu- 
ous-time periodic systems. The main tool is a lifting technique 
which provides a strong correspondence between continuous- 
time periodic systems and certain types of discrete-time time- 
invariant systems with infinite dimensional input and output 
spaces. Despite the infinite dimensionality of the input and 
output spaces, a lifted system has a finite-dimensional state 
space if the original system does. This fact permits rather 
constructive methods for analyzing these systems. As a demon- 
stration of the utility of this framework, we use it to describe 
the continuous time (i.e., intersample) behavior of sampled-data 
systems, and to obtain a complete solution to the problem of 
parametrizing all controllers that constrain the L2-induced norm 
of a sampled-data system to within a certain bound. 

INTRODUCTION 

OUR motivation for studying continuous-time periodic 
systems comes from considering sampled-data control 

systems, in which a discrete-time controller is used in feed- 
back with a continuous-time plant. The interconnection be- 
tween the two parts of the system is typically through sample 
and hold devices. In most treatments of sampled-data sys- 
tems, the continuous-time plant is in some way discretized, 
and one designs a controller for the discretized plant. Gener- 
ally, this treatment describes the behavior of the overall 
system only at the sampling instants, and the intersample 
behavior is lost in the process of discretization. 

Recendy, there has been an increased interest in problems 
involving the intersample behavior of sampled-data systems. 
The impetus for this comes from robust control problems for 
which it is more natural to consider the sampled-data system 
in continuous time. For example, in the disturbance rejection 
problem, since the physical system being controlled (the 
plant) evolves in continuous time, it is reasonable to consider 
the disturbances as continuous-time signals. When measuring 
the effect of disturbances on other signals in the system, this 
has to be done at all times (i.e., in between samples), and not 
only at the sampling instants. Another example is given by 
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the robust stability problem (in Jf °°), in which the uncer- 
tainty in the plant is described as a weighted error bound on 
the frequency response of a nominal plant. The resulting 
perturbation, (on the nominal plant), is a continuous-time 
system, therefore, if one is to use, for example, the small 
gain theorem to stabilize the whole family of plants, one must 
consider norms in the system over continuous time. 

In this paper, we will be concerned with the problem of 
bounding the L2-induced norm (in continuous time) of sam- 
pled-data systems. The setup is shown in Fig. 1, where G is 
a continuous-time time-invariant generalized plant, C is dis- 
crete-time time-invariant, 3fPr is a zero-order hold (with 
period T), and 5fr is an ideal sampler (with period T). 3fr 

and yr are assumed to be synchronized, they provide the 
interface between the digital and the analog parts of the 
system. We call JfTCyT the sampled-data controller. The 
exogenous input w contains disturbances and command sig- 
nals, the regulated output z are the variables which should be 
made "small," note that they are both continuous-time sig- 
nals, since we want to describe the input-output behavior of 
the sampled-data system in continuous time. We also call the 
arrangement in Fig. 1 the hybrid system, to emphasize that 
we are considering the overall behavior of the system. 

The problem we consider is given 7 > 0, to find C such 
that the L2 induced norm of the mapping from w to z is less 
than 7. We call this, the standard problem with sampled- 
data controllers (or the sampled-data problem for short). 
The difference between this problem and the so-called 
"standard problem" is that in the latter, if G is a continuous- 
time time-invariant system, then only continuous-time time- 
invariant controllers are considered. In our problem, the 
continuous-time controller is constrained to be a sampled- 
data controller, i.e., it is of the form Ji^CS^, where C is a 
discrete-time system. 

The standard problem with sampled-data controllers is 
significandy different from the usual standard problem, three 
major differences are as follows. 

i) There is a "structural constraint" on the controller, that 
is, it is constrained to be of the form 3fTCyT. 

ii) The controller JfTCyr is not time invariant even if C 
is time invariant (in discrete time). Therefore, even if G is 
also time invariant, the overall system in Fig. 1 is time 
varying, in fact, it is periodic, with period r (r-periodic). 

iii) The hybrid nature of the system is problematic, since 
not all parts of the system are defined over the same time set. 

In this paper, we present a framework for periodic systems 

0018-9286/92S03.00   © 1992 IEEE 
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Fig. 1.   A continuous-time G with a sampled-data controller. 

in continuous time. We then apply this framework to the 
sampled-data problem and show that it provides a satisfactory 
answer to the three difficulties mentioned above, "and we 
obtain a complete solution to the problem. To briefly describe 
the solution, let us use the notation !F(P, K) to denote the 
closed-loop mapping (from exogeneous input to regulated 
output) of a generalized plant P in feedback with K. In this 
notation the closed-loop mapping in Fig. 1 is given by 
#(C, JfTCyr). The solution of the sampled-data problem is 
given in terms of an "equivalent" discrete-time time- 
invariant generalized plant G such that 

|/(C,/fCyT)l<TH/(Ö,C)|<7       0) 
where || f(G, JfTCyr) || is the I2-induced norm, and 
\\?{G, 0)|| is the 3#"° norm. Therefore, once G is found, 
the sampled-data problem is equivalent to a discrete-time 
Jf°° problem, the solution of the latter is well known [16]. 
In a sense, G is a "discretization" of G, but it is an 
equivalent discretization for norm problems, in that the in- 
duced norms satisfy (1). 

As already mentioned, the solution just described is ob- 
tained using a framework that we develop for periodic sys- 
tems in continuous time. The main tool in this framework is 
a lifting technique similar to that used for discrete-time 
periodic systems in [19]. There are however, considerable 
differences between the lifting techniques in discrete time 
and continuous time, respectively. In discrete time, an TV- 
periodic system is lifted to a time-invariant multivariable 
system (of larger input-output dimensions). In continuous 
time, the appropriate lifting takes vector-valued signals to 
signals which take values in a general Banach space as 
opposed to a finite-dimensional space, as a result, the time- 
invariant lifted systems have infinite-dimensional input and 
output spaces, and the theory is more technical, but many of 
the desirable features of the lifting remain true. For example, 
the lifting preserves algebraic operations on systems and the 
norms of signals and systems. Another crucial point is that 
our lifted systems will have ./m/te-dimensional state spaces if 
the original systems are finite-dimensional. Since the lifted 
systems have infinite-dimensional input and output spaces, 
we will abuse terminology by calling them (for lack of a 
better term) infinite-dimensional, even though this term is 
better reserved for systems which have an infinite-dimen- 
sional state space. 

This paper is organized as follows: in Section I, we 
introduce the lifting technique and show that it provides a 
strong correspondence between continuous-time periodic sys- 
tems   and   certain   types   of  discrete-time   time-invariant 

infinite-dimensional systems. In Section II, we study further 
the time-invariant infinite-dimensional systems, in particular, 
their z-transforms and state-space realizations. Not all the 
material covered in these two sections is essential for later 
developments, but it is included to provide a more complete 
discussion. In Section III, the lifting technique is applied to 
the hybrid system of Fig. 1 to convert the sampled-data 
problem into an equivalent infinite-dimensional standard 
problem where the generalized plant has a finite-dimensional 
state space. Up to this point the discussion covers all Lp- 
induced norm problems, we then specialize to the L2-induced 
norm case, and in Section IV, the finite-dimensionality of the 
state-space models is exploited to reduce the infinite-dimen- 
sional standard problem to a finite-dimensional standard Jf °° 
problem. The main theorem (6) provides the equivalent gen- 
eralized plant G, explicit formulas for the state-space de- 
scription are derived in Section V directly in terms of the 
state-space description of the original plant G. 

We now comment briefly on some of the related recent 
work on sampled-data systems. In [3] solutions were obtained 
to problems where the induced norm is from a discrete-time 
input to a continuous-time output and vice versa. In [20] a 
characterization was given for the L2-induced norm of a 
sampled-data system assuming ideally band limited input 
signals. 

The works which are most related to ours are [14], [17], 
[18], [25], [26]. In [14], [17], a solution was announced 
(though derivations were not given) to the Jf" sampled-data 
problem that is similar to our solution, that is, the norm of 
the sampled-data system is equivalent to the norm of a 
discrete-time system. Reference [26] is related to our work in 
terms of the technique used, the paper does not address norm 
problems, but a tracking problem. In [26] a lifting technique 
is developed which is equivalent to the one developed in this 
paper but with an important difference, in [26] the lifted 
systems are realized with an infinite-dimensional state-space, 
while as will be seen in this paper, the finite-dimensionality 
of the state space (of lifted systems) is the crucial fact that 
solves the Jf °°   problem. 

While this paper was being reviewed, we received [18], 
[25]. Reference [18] contains the derivation of the results 
announced in [14], [17], the technique used there consists of 
forming a Hamiltonian which characterizes the norm of the 
sampled-data system, this is different from our lifting tech- 
nique, although it is interesting that similar final results are 
obtained. The work in [25] is remarkably similar to ours, the 
author uses an equivalent of the lifting technique (although in 
[25] it is not called as such) and obtains a problem with 
infinite-dimensional input and output spaces and finite-di- 
mensional state space, also the reduction to a standard Jf °° 
problem is done in a similar way to ours. The one exception 
to this similarity is that the reduction is not done completely 
(the missing step in [25] is Lemma 5 in this paper), thus the 
equivalence in [25] is approximate (to any degree of accu- 
racy). In contrast, the equivalence in (1) is exact. 

In [J], [2] ([24] announces similar results), a somewhat 
different approach to the sampled-data problem is taken. 
There, the problem is posed where sampled measurements 
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are available and the optimum control is to be found for all 
time (including in between the samples), and one obtains 
time-varying controllers. The interesting contrast is that one 
obtains the optimum waveforms of the control signals in 
between the samples, while in our setup, the control signal is 
constrained to be constant on sampling' intervals. Thus the 
performance of the controllers in [1], [2], [24], is in general 
better than the ones given here, since a wider class of 
controllers is allowed. But it is to be noted that the two 
problems are distinct, in that the use of a sampled-data 
controller obviously puts more constraints on the problem. It 
would be interesting to compare the two problems and quan- 
tify the loss of performance that results from using a zero- 
order hold. 

Finally, we note that the framework for continuous-time 
periodic systems presented in this paper was independently 
developed by B. A. Francis and A. Tannenbaum. 

I. THE LIFTING TECHNIQUE FOR CONTINUOUS-TIME 
PERIODIC SYSTEMS 

The lifting is first defined for signals, this definition, in 
turn, induces a definition of the lifting for systems. It turns 
out that to convert the periodicity of a system to a time- 
invariance of its lifting, the lifting must be such that continu- 
ous-time signals are lifted to discrete-time signals that take 
their values in a function space (see Fig. 2). In order to do 
this systematically we need to define the appropriate signal 
spaces. 

Let us begin with the usual signal spaces in continuous-time 
££[0,»), l<p<oo( and the extended signal spaces 
-^AJ0'00)' 1 ^p < oo. The signals can be N-vectors of 
scalar signals. To avoid cumbersome notation, the dimen- 
sions of signals and systems will be omitted from now on, 
and we write L" instead of Z,£. We adopt the notation that a 
statement involving L" or Lp without assigning a value for 
p, is referring to any p. Also L" (Lp) will denote 
Lp[0, oo)(Lp[0, oo)) when no confusion can occur. 

To introduce the lifting, we first need to define spaces of 
vector valued signals. From now on, by vector valued we 
mean Banach space valued. For any Banach space X, let lx 

be the space of sequences which take values in X, that is 
{/,}: ?J -* X. We use the notation that {/,•} is a sequence, 
each element of which is /,, so 

lx -{{/,}, f.eXvi}. 

Note that this is consistent with the notation /£ for signals 
that are sequences of N-vectors, that is, the signals that take 
values in a finite-dimensional Banach space liN. 

Norms can be added to these spaces by considering the lx 
spaces: 

'£= jU-le/^; (Zll//ll^),/*<ool,       i<jP< 

'"= {{//}6^;sup||//||^<«}.    - 

IE 1)\X V l£ 

Fig. 2.    W/IflO.»)-./^,,. 

The norms are given by 

00 

IK/,} II /* 
(00 \ \/p 

l^^< ». Il{//} 11/5= sup H/J^. 

It can be shown that with these norms, lx are indeed Banach 
spaces [4, m.4.4]. We shall be particularly interested in 
signals in ILP[0IT] and /£P[0,T1, these can be visualized as 
sequences {/,}, or discrete-time signals which, for each time 
i take values which are functions in LP[Q, T]. We are now 
ready to define the lifting for each T, let WT: L

p[0, oo) -+ 
'z."[o. r] be defined by 

/= WJ,   /,.(/) = f{ri + /),       Osrsr.     (2) 

The definition says that / is a sequence, each element of 
which is a function of t, 0 < / < 7 given by (2). Since 
feLp[0, 00), this means that fteLp[0, 7] for each /', and 
thus WT is well defined. The lifting, WT, can be visualized as 
breaking up the signal / defined on the real line into an 
infinite number of pieces, each piece is a copy of / restricted 
to a line segment of length 7, this is illustrated in Fig. 2. 

Wr defined on the linear space Lp[0, 00) is a linear 
transformation. It also follows that WT is one-to-one and 
onto, thus invertible, this can be seen by explicitly construct- 
ing the inverse as follows: 

/= Klg 
/(')-*/('-"'),       for 7/< r < r(/+ 1). 

This can again be visualized as the reverse of the operation in 
Fig. 2, W~l takes a sequence of function pieces, each a 
function in Lp[0, 7] and "glues" them together in order, 
thus forming a function feLP[0,oo). WT is then linear 
bijection between LP[Q, 00) and lLP[o.ry 

If we restrict the domain of WT to the Banach space 
Lp[0, 00) c Lp[0, 00), we can show that WT: L

p[0, 00) - 
If^o, rj> and 's an isometry between these two Banach spaces. 
This is a consequence of the following computation: 

/= Wrf 

UP\P 

11/11/^,,=   ElUIIVr, 
/'=0 

-,?.((/.'"'wl'*) . 
-t f\f(ri+l)\'dt 

=   /OO|/(?)|"^=||/||^0.oo) 
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for i < p < ». For the case p = oe. we have 

': /!! i-i« -» = ess  SU
P  1^01. 

Osr<* 

= sup (ess   sup   \f(ri +"t)\\ 

= sup 11/, II no. ri = 11/II/?-,„.„• 
I 

In summary. W. is a bijective linear mapping between 
L?[Q.oc) and lL,>XQ..v and a bijective linear isometry be- 

tween Lp[0. oo) and /fr|0.,|- 
We now define the lifting for systems. Given any linear 

operator G: I*[0. »)-* I£[0. »), let its lifting Gi/^o.n 
- /inaT|. be defined by G := WTGW;X. By the linearity of 
each of the defining operators. G is linear. Moreover, if G is 
also bounded G:L"[0.») -1"[0.»), then G is also 
bounded and G: /£,I0 r, - /£»[0.ri since both WT and W; 
are bounded. The fact that WT and WT ' are isometries, 
allows us to make the stronger conclusion that || G\\ = \\G\\, 
that is. the system norm is preserved by the lifting. 

Algebraicoperations are also preserved by the lifting, 
namelv: (C7+G\) = G, + G2 because^/G, + GZ)W;X 

= H-'G,»".-' + WTG,W;\ and (G,G:) = GXGZ since 
W'.C,'G,»'J-' = »vG^-'H^G,«;-1, and tf G"1 is well 
defined.'G1': Lp[0, «) - IflO, ») then (5^) = G"1 be- 
cause 

CPG = w7G~xw;xwrGW;x = WTIW;
X
 = /. 

These properties allow us to conclude that feedback stability 
is also preserved under lifting. If. by the pair (F, G) being 
X stable, we mean that the system with F and G in feedback 
is stable for all exogeneous inputs from the signal space X 
(i.e.. all transfer functions are bounded operators), we can 
conclude: the pair (F, G) is Lp[0. oo) stable if and only if 
the pair (F. G) is ![P[0. r, stable. 

Now if the system to be lifted is r-periodic. the lifted 
system should exhibit some sort of time invariance. Let the ' 
delav operator Dr be defined as usual by (D.f)it) = fit - 
T) for feLp

e. Given a system G: Lp - Lp, we say that G is 
T-periodic if it commutes with DT, that is D.G = GDT. G 
is time invariant if DTG = GDT Vr > 0. Let S be the 
right-shift operator defined on any space of sequences, that 
is. S({.vn. AT,.- ••.}) = {0. *„,*„•••,} for any sequence 
{ A:,} . in particular S is defined on any lx. Another important 
property of the lifting (of signals) is that it "intertwines" the 
Dr and the S operators, that is 

WTDr = SWT. 

This intertwining property will convert the commutation with 
Dr property of periodic systems into a time-invariance prop- 
erty. To see this, let G be a r-periodic system, then 

GS= WTGW;iS= WTGDrW;x = WrD7GW;x 

= SH;GH;-' = so 
that is. G commutes with the shift, which can be taken as a 
definition of time invariance, or rather shift invariance in this 
eeneral settinc. 

The above G also has a certain type of convolution repre- 
sentation. It can be shown in general that given any Banach 
space X, and a linear operator F on the sequence space lx 

which commutes with the shift, i.e., FS = SF, the operator 
F has the following representation: 

y = Fu, yn=(Fu)„=  ZF„_m(i/J. F,eJ?(X,X). 
m = 0 

That is, F is represented by a sequence {F,} (its "impulse 
response") where each Ffe^(X, X), the space of linear 
operators on X. This is consistent with the convolution 
representation of multivariable systems where y„ and u„ are 
vectors in TlN and F,e X'(IiN, JlN), i.e., an N x Nmatrix. 
We shall not prove this general characterization, instead, for 
the particular case where F = G, a lifting of a periodic 
system, we will explicitly construct the sequence {G,}. 

To perform the explicit construction, let us assume that the 
time varying systems involved have a kernel representation, 
that is, if G: Lp -* Lp is time varying, it is associated with a 
kernel g(t, s) such that 

y = Gu,   y{t)= f'g(t,s)u{s)ds (3) 

where the kernel function is a distribution (in the variable s) 

[5] of the form 

g(t,s)= t,yMt-s-h,)+i(t,s). 
<=o 

An assumption that guarantees the existence of the integral 
for any ueLp and each t, is that the function git,s) be 
bounded on bounded subsets of Ji\ and that the sequence of 
nonnegative real numbers {A,} be discrete (i.e., have no 
cluster points). 

The scaled identity operator 7/ is given by the kernel 
y8(t - s), and for the delay operator Dr, DTit, s) = 6(t - s 
- 7). Given G, a r-periodic system, we have by definition 
DTG = GDT, it is easy to show that this is true if and only if 
the kernel of G has the "block Toeplitz" structure 

G(t,s) = G{I + T,S + T). (4) 

By repeated applications of (4), we derive the following 
identities to be used later: 

G(t, s) = G(t + m,s + nr)       for n £ 0, 

G(t + ir, s+jr) = G{t + (i-j)r, s)       for/ >y. 

Since G(t, s) is block Toeplitz, it is completely determined 
by a sequence of "blocks," define 

Gi(i,s):=G(t + Ti,s) 

forO < i < T, 0 < s < T, i > 0. 

This decomposition is illustrated in Fig. 3. Each G,(?, s) can 
be regarded as a function on the square [0, T] X [0, T] and as 
such, representing an operator on Lp[0, T] as follows, for 
U.yeLp[0,T] 

>"= G,H,    y{i) = / G,(t, S)u(S) ds,       0 < 
•'o 

t < T. 
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Banach space X, i.e., {A,} elx. The z-transform of {A,}, 
written //(z), is defined by 

Fig. 3.   Block Toeplitz structure of a periodic kernel. 

This suggests that {G,} can be regarded as the impulse 
response of the lifting of G, the following computation 
confirms; for y, u e Lp[0, oo) let y = Gu, then lift the 
signals 

{$<} = WTy,    {Ö,} = Wru 

then the lifted signals are related by 

y,(t) =y(Ti + t) =  f  G(Ti + i,s)u(s)ds 

vl    /•'•O'+D 
= E  / G(Ti + i,s)u{s)ds 

j=0JTj 

i        rT 

= E / G{Ti + i,TJ + s)u(TJ + s) 

= £ [TG{T(i-j) + i,S)Qj(s)d§ 

= E  fTG,_j(i,S)üj(S)dS 

ds 

which can be written as 

9i =   E G,-A*j) 
y-o 

(5) 

which is the convolution form of a system operating on the 
L

P
[0,T] valued signals {>>,} and {«,}. From (5) it is seen 

that {G,} is the operator-valued impulse response of the 
lifting of G. From the above computation it is also seen that 
the convolution in (5) of the lifted signals and system is 
simply a rearrangement of the integral defining the operator. 
This rearrangement highlights the shift invariance property of 
the lifted system. 

II. Z-TRANSFORMS AND REALIZATIONS OF LIFTED SYSTEMS 

In the previous section we have seen that liftings of 
periodic continuous-time systems produced Banach space val- 
ued sequences representing signals and impulse responses. 
These sequences are discrete-time signals, so it is natural to 
try to develop a z-transform for these systems to exploit their 
shift-invariance property. This will also allow us to charac- 
terize the L2 induced norm in the frequency domain as a type 
ofanJf00   norm [21, Chap. 5]. 

We begin abstractly with a sequence {A,} with values in a 

H(z) = E Kz' 
n = 0 

(6) 

for the values of the complex number z for which the series 
converges in X. Note that H{z) is an Jf-valued function of 
a complex variable defined over some subset of the complex 
plane since for each z where (6) converges, H(z)eX by 
definition. By analogy with the classical z-transform, we 
expect the H(z) to have some analytic type behavior in its 
region of convergence. Let fi C C be the domain of defini- 
tion of this function, following [15], a notion of an ^-valued 
analytic function can de defined. One of several equivalent 
definitions of analyticity is the following: we say that an 
A'-valued function H(z) defined on an open set ÜCf is 
analytic in Q if, for each feX*, the complex valued 
function 

(H(z).f) 
is analytic in Q ((•,*) denotes the action of a linear func- 
tional in X*, on an element in X). These analytic functions 
have many of the properties of the usual complex valued 
analytic functions including, for example, Cauchy's integral 
theorem and the maximum modulus principle. 

If {A,} e^pjo r), then the transform is an Lp[0, r] valued 
function. If {G,} is an impulse response sequence of a lifted 
system of the type considered in the previous section, so that 
{G,}: IL"{O,T\ ~* 'i."[o.ri' then 'ts transform, G{z) is an oper- 
ator valued function, for each z e ü, G(z) e 
$8(LP[0, T], L

P
[0, T]), the space of bounded operators on 

Lp[0, T]. TO characterize the regions of convergence, we 
have the following theorem, which is an application of [15, 
Theorem 3.14.1]. 

Theorem 1: Let {A,} elx and let H(z) be its z-trans- 
form, then 

0 If II A/ll x - M < °° v'' *en H^ ls analytic in the 
region {| z| < 1}. 

ii) If || A, || x < ka' V/, for some constants k and a, then 
H(z) is analytic in the region {| z \ < I/o}. 

This is a direct parallel to the case of the scalar valued 
z-transform with the absolute values being replaced by norms. 

The same formal properties of the usual z-transform still 
hold in this general setting, for example, convolution in 
time is multiplication in frequency. To illustrate this, let 
{un}>{yn} elL'io.T)> and iGn} an operator sequence with 
G„ € 3(L"[Q, T])\n, such that 

n 

yn ~    2-*   *~*n — mum- 
m = 0 

Assume their z-transforms U(z), Y(z), and G(z) are all 
convergent in some common region Ar={z;\z\<r}, 
then 

y(z)= Hz"yn= E*n   E G„_mu„ 
n = 0 1 = 0       \ m = 0 

which, by a change of variables and rearrangements of the 
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sum gives 

Y(z) = £  £ z"+kGkuu_k= ( £ Z'G\ (t zJ»j 
n = 0 k = n \/=0 / \y = 0 

= G(z)U{z)       forze.Ar. 

The rearrangement of the sums above is permitted by the 
absolute convergence of all the series in the disk Ar. Note 
that the "multiplication" above is the operator G(z) acting 
on U(z). The other standard properties of the z-transform 
can be verified similarly. 

We now look at the case of signals in L2, we state the 
results from [21, Chap. 5] without proof, and summarize 
them in Theorem 2 below. Let üSI]I[0TV an L2[Q, T]- 

valued sequence whose norm sequence is square summable, 
i.e., Zr-oll"/illi2[o,T] < °°- *n ^ frequency domain, let 
H(eie), 0 < 6 < 2r, be an L2[0, T] valued function defined 
on the circle T := {eie; 0 < B < 2ir}. We define the fre- 
quency domain space: 

li:I0.T)={^:r-Z.2[0,r]; 

/2*||//(e")||i:[0.Tl<tf<oo 
Ja 

Note how this definition parallels that of the usual L2(T), but 
here the functions are Hubert space valued and the integral is 
an integral of norms. Each HeL2

L2[0 T] has a Fourier series 
representation, i.e., 

ind H(e») = £ hne 

where each A„eZ.2[0, T], and £~J| A«lli=io,r] < °°- An 

important subspace of L2
L2l0 rJ is ^1\Q, TJ which consists of 

those functions for which h„ = 0 for n < 0, 

*&.„- \HelblQ,T],H(eie)= £ K*ln° 
( n»=0 

Every function in ^:[0.T] 
can ^ extended to an analytic 

function inside the unit disk, and the space -^[o.r] corre- 
sponds exactly to transforms of elements in /£2[0 T]. 

To define operators on these spaces, consider a function 
G(z) over the unit disk, which takes values in J(L2[0, r]) 
and has a power series representation 

G(z) = f z"Gn 
n = 0 

where the coefficients G„e 3(L2[0, T]). Let the series be 
convergent absolutely inside the disk, and suppose further 
that 

l|G(«)IUia|o.,»£A/      V|z|<l. 

Such a function will be called a bounded analytic function 
(on the unit disk). Such a function defines a bounded operator 
on Jt^-io. r] °y "multiplication," that is, for Y, Ue JfL

22[0 T], 
Y = GÜ is defined by 

Y(z) = G(z)U(z)       ■ (7) 

for each z. The definition makes sense since for each z, 
G(z) is an operator on I2[0, r] and U(z) el2[0, r]. If y, 
£/, and C are transforms of time-domain sequences, note that 
(7) defines an operation equivalent to convolution in the time 
domain. 

Given G a bounded analytic function, we define a norm by 

|CIL = sup ||G(z)| jt(L2[0.T})- 

We call the space of all bounded analytic functions -#^t:l0. T)) 

(or simply Jtf"*) over the unit disk, and again, the subscript 
&(L2[Q, r]) denotes the space in which the function takes 
values. We call such functions operator valued since they 
take their values in a space of operators. JP.%^0 Tl) over the 
right-half plane is similarly defined as the space of all ana- 
lytic operator valued functions over the right-half plane whose 
norm is uniformly bounded. 

We now summarize with the following theorem. 
Theorem 2: 
i) The z-transform is an isometric isomorphism between 

the time domain space l2}^^} and the frequency-domain 
space JT^TV 

ii) If G is a bounded analytic function, it defines a bounded 
operator on Jf22[0 T] by the multiplication of (7), its induced 
norm is exactly || G || „,. 

By the equivalence between a r-periodic system and its 
lifting, this theorem provides a "frequency domain" charac- 
terization of the L2 induced norm of a r-periodic system. 
This characterization is not clear without the lifting. This also 
justifies calling the L2-induced norm problem for sampled- 
data systems the Jf°° problem, since in the sequel we will 
be dealing with an equivalent lifted version of the sampled- 
data system. 

We now consider state space realizations. A good state- 
space model to use for shift-invariant systems operating on 
/LPJ0 T] signals is the following: 

**+i =Axk + B"k 

yk = Cxk + Duk (8) 

with ukeLp[0, T], ykeLp[0, T], and xkeX some Banach 
space (the state space). The system parameters [A, B,C, D] 
are linear operators on the appropriate spaces, i.e., 

B:L"[0,T] -+X 

A.X-+X 
C:X->L

P
[0,T] 

D:L
P

[0,T] ^L
P

[0,T]. 

By simple finite algebraic operations, the system (8) can be 
represented by the convolution 

k 

yk=Z Gk_,u, (9) 
/=o 

where the impulse response {G,} is given by 

{C,} = {D, CB, CAB, CA2B,CA3B,■•-,}.   (10) 

The z-transform of the impulse response {G,}  can be 
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computed from the realization using (10) as usual 

G(z) = £ z"G„ = D + Y. z"CA"-lB 
n = 0 n=\ 

= D + czl f/z'-'/r-'jß 

and the series on the right converges in 38(X) for | z \ < 
1/||,41|, so 

C(z)^D + Cz(I-zA)-iB       UI<JJj|-   (") 

In the important case when the state space is finite-dimen- 
sional, that is, X = $1N, the situation is somewhat; simpli- 
fied. The transform in (11) defined for {| z\ < 1/M||}, 
can be analytically extended to the entire complex plane 
minus the finite set of reciprocals of the eigenvalues of the 
finite matrix A, i.e., in the region where {I-zA)~] is 
defined. 

The usual rules of manipulation of realizations still hold in 
this more general setting, for example, composition, inver- 
sion, state transformation, etc. since they are based on formal 
manipulations. 

III. LIFTING THE HYBRID SYSTEM 

In this section, we will show how the lifting technique can 
be used to convert the hybrid system to an equivalent system 
(in the sense of having equal induced norms), where the 
generalized plant is discrete-time time-invariant (though infi- 
nite-dimensional)* and the controller is a discrete-time time- 
invariant system without any structural constraints. 

First, we obtain state space realizations of lifted systems. 
An important fact here is that although finite-dimensional 
systems are lifted to systems with infinite-dimensional input 
and output spaces, the state space of the lifted systems will 
be shown to have at most the same dimension as that -of the 
state space of the original systems, i.e., it is finite dimen- 
sional. Now, if G has a finite-dimensional realization, it 
would be of the following form: 

G = A B 

C b. 
with 

B:L
P
[0,T]-*H

X 

A:®x^®x 

C:$L
X
-*L

P
[Q,T] 

D:L
P

[0,T]^L
P

[0,T] 

(The notation IS', KV • •, stand for x being the dimension 
of the signal *and u the dimension of the signal u, etc.). 
The operator B: Lp[0, T] -> Jix- can be represented by a 
matrix of functions 5(f), B e [0, r], such that for a vector of 
functions ueLp[0, T] we have 

Bu =  f7B(s)u(s) 
Jo 

ds. 

On the other hand, the operator C: fiix —■ Lp[0, T] (which is 
a finite rank operator, that is, it has a finite-dimensional 
range) is given by another matrix of functions C(?) ?e [0, T], 

such that for a vector xellx 

Cx=C(t)x,       ie[0,r]. 

The class of operators D: Lp[0, T] -+ L"[0, r] that we will 
encounter have kernel representations, i.e., matrices of ker- 
nel functions D(i, s), such that for u,yeLp[0, T], y = DU 
means 

(bu){t)= [TD{t,s)u(s)ds. 

Notation: It simplifies the notation greatly to use the same 
symbol for an operator and its kernel for example, D(t, s) 
(or B(s))^ refer to the kernel functions representing the 
operator D (or B), and (D*D)(t, s) refers to the kernel 
function representing the operator D*D. A = eAr is the 
matrix representing the operator A: li" -* ß". For operators 
that map a function space to Fi", such as B above, we 
generally use s (or s) to denote the variable of the kernel 
function, and for operators that map H" to a function space 
such as C above, we use the variable / (or i). 

We now derive the operators A, B,C,D of a lifting in 
terms of the original system. Consider a finite-dimensional 
continuous time-invariant system of the form 

x(t) = Ax(t) + Bu(t) 

y(t) = Cx(t) + Du(t)       f6(0,co).        (12) 

To obtain the lifting, we determine how the system relates 
the lifted signals {ük} and {yk}. Let us define a new state 
which evolves in discrete time by xk := x{kr). Assuming 
zero initial conditions, the behavior of the state in between 
samples, that is for 0 < i < T, is given by 

rkr+'t 
x{kr + t) = / T+'eAlkT+i-s)Bu(s) ds 

Jo 

= fkTeA(kT+'-s)Bu{s) ds 
Jo 

+ fkT+'eA(kT+}-s)Bu(s) ds 
J kr 

= eA} f TeMkr~s)Bu{s) ds 
Jo 

+   reMkT+i-(kr + s))Bu(kr + |) dS 

Jo 

= eAix{kT)+  reA°-'s)BUk{s)ds.   (13) 
•'o 

In particular, the new state Jc evolves by 

**+1 = eMxk + fe
A^-*Buk{s) ds 

Ja 
(14) 

or, in operator notation 

l*+i = eATx k + B*k 

where  B is the  Lp[0, T] — K* operator defined by the 
kernel  eM'~"B. As for the output signal,  {yk} can be 
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written as 

yk{i) =y(kT + t) = Cx{kr + t) + Du(kr + i) 

+ Dük{i) = C 

= CeA'xt + 

'x{kr) + f'e^'-^BÜ^s) ds 

nCe^'-'X.^B + D&ii-s)} 
J n 

■ük{s)ds (15) 

with 0 < i < T, and where 1(„ is the unit step function 

1 (O -li t>0 
r<0. 

Equation (15) in operator notation is 

h = Cxk + Duk 

where C and D are given by the kernels in (15). 
In summary, a time-invariant system G given by (12) has a 

lifting given by 

G = 
A B 

.C D. 

Ce Al 

,A(r- ■*>£ 

Ce^'-^.^B + D6(t - s) 
(16) 

Note that the operator D is the restriction of the original 
system  G to the input subspace  L2[0, T],  that is  D = 
nz.2[0.r]Gll2[0.r]- 

The important conclusion to be made here is that the state 
space of the lifted systems can be chosen to be finite dimen- 
sional. This is in contrast to [26], where a similar lifting 
technique was developed, but the state space of the lifted 
systems is infinite-dimensional. As we will see in the next 
section, in the solution of the Jf °° sampled-data problem it 
is of primary importance (in fact, it is what "makes the 
solution possible) that the state space of the lifted systems be 
finite dimensional. 

We now consider a time-invariant system with a sampler 
on the measurement output and a hold on the control input as 
shown in Fig. 4. The filter F is some stricdy proper system, 
this is required for the sampling operation to be well defined. 
We can absorb F into the description of G and simply 
assume that we are given G with a realization 

G = 
'2\ 

A Bt B2 

c, Du Dn 

c2 0 0 

where D2] = D22 = 0 because F is strictly proper. This 
guarantees that the measurement outputs are continuous func- 
tions of time. 

The sampler produces the discrete-time signal y from the 
continuous-time signal y by sampling it at times kr, and the 
hold produces the piecewise constant continuous-time signal 
u from the discrete-time signal • 5. It -is helpful to' view the 
sampler  and   hold   as   relating   the   discrete-time   signals 

u; 

a 

'   " 

u y u 
H. F s. ! y 

Fig. 4.    Plant with sample and a hold. 

{"*}' {>"*;} t0 tne £P[0> r]-valued discrete-time signals {w*} 
and {yk}, the liftings of u and y 

Jf/.'ir - L"[0, T] ; Ük = £TÜk • ük(t) = ük 

o < i < T 
yT: L"[0, r] ->%>; yk = yjk » yk = yk(0). 

Note that J/r is not well defined on Lp[0, T], but on the 
subspace of continuous functions in Lp[0,r], this distinction 
will be irrelevant since in our use of Sf7, assumption are 
made (i.e., the presence of the strictly causal filter F above) 
to guarantee that ^ only operates on continuous signals. 
Specifically, ^ is only used in expressions like J^7\ where 
T will always be an operator whose range is made up of 
continuous functions. 

The lifting G given by 

G = 
'21 

A 
G„ * 

= (\ G„ 
LC2 

B, B, 

Du 

D2l 

D, 

'12 

relates the signals w, z, u, y. On the other hand, the system 
G (see Fig. 5(b)) given by 

G = 
yrG21 

y.c, 

GnJfT 

B, B2J?T 

Dn 

KD2i 

DnJfr 

yTb22J?T 

Ü-Ö\t\ (17) 

relates the signals w, z, y, ü. This formulation shows one of 
the advantages of the lifting, in that all signals in the system 
are viewed over the same time set (discrete time) without 
losing any part of the continuous-time signals w and z. The 
signals S, y take values in B" and ]hy but w and z take 
values in the much larger space Lp[0, r]. 

We now explicitly evaluate the operators in (17). B2JfT  is 
a matrix obtained by feeding B2 a constant input, i.e., 

44 = JTeA(r-s)B2 ds = ijTeArdr\ B2 = *(T)B2 

(where ¥(0 := JöeArdr). &rC2 is obtained by 

b{t)C2e
A'dt = C2. f 

J n 
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C 

(a)   . (b) 

Fig. 5.   (a) Hybrid system, (b) Lifted system with discrete time controller. 

Similarly 

DnJfT =  r[Cie
A«-*%_s)B2 + Di26(t - s)\ds 

Jo 

= C,\ / eArdr\B, +D 

= C{*(t)B2 + Di2. 

Note that Dl2J^T is given by its kernel, a function of a 
single variable /, since Dl2JfT is an operator from Si" -* 
Lp[0, T]. We also compute 

KD2X = /"«(') 
J n 

C2e
A<-*%_s)Bids = 0 

and similarly, yrD22 = 0 implying that y'TD22JfT = 0. 
In summary, we arrive at the following realization for G 

G = 
C21     G22 

' Ä 5, Bi 

c, Du Dn 

A 0 0 

,Ar 

Cxe' 

eMr-s)B *(T)B2 

Du Cp(t)B2 + Da 

0 0 

•   (18) 

Note that the four subsystems in G are shift-invariant opera- 
tors with the following input-output spaces: 

^11 : 'L"[0.T) ~* 'i"[0,r] 

G,2 I*-" IL"\O. T\ 

<52I: ^L"10.} 1 ~"> hi' 

G22 /«-- V- 
We now comment on the synthesis problem for the hybrid 

system using this new setting. Let us adopt the notation 
?(P, K) as referring toa generalized plant P in feedback 
with K, and also to the resulting closed-loop mapping be- 
tween the exogeneous input and the regulated output. Fig. 
5(a) shows the original hybrid system J{G. JfTCyT) and 
Fig. 5(b) shows the lifted system G with the sampler, hold 
and controller J(G, C). 

Since w = WTw and i- Wrz, then the closed-loop sys- 
tems are related by 

f(G,c) = wT^(G,\rTcsT)w:1 

or in other words, the closed-loop operator J(G,C) is the 
lifting of the closed-loop operator of the hybrid system 
if(.G, yf'rCy'7). By the isometry properties of the lifting W., 
we have that 

\\jr{G,JttC^)\\ = \\J{G,C)\\ (19) 

where the norms are the /.''-induced norm on J{G, XrC.r/r), 
and the l[p[0 T)-induced norm on J*"(G, C), and note that the 
same controller C is on both sides of the equation in (19). 

The consequence of (19) is that the design problem for the 
continuous-time plant G with a sampled-data controller 
JfTCyT, is equivalent to the design problem for the general- 
ized plant G and the controller C. The advantage of this 
reformulation is three fold; first, both the generalized plant 
and the controller are discrete-time (thus the hybrid nature of 
the system is no longer problematic): second, both G and C 
are time-invariant (thus "removing" the periodicity from the 
system); third, the controller C has no structural constraints 
on it (i.e., that it be a sampled-data controller of the form 
JfTCyT). The price paid for these advantages is the infinite- 
dimensionality of the exogeneous input and regulated output 
spaces. However, as will be seen in the next section, the 
infinite-dimensionality of the input and output spaces can 
essentially be "removed" without affecting the norm. 

The equivalence just mentioned is not complete without 
addressing the issue of the stability of the hybrid system. By 
internal stability, we mean that the state of the system is 
exponentially convergent to zero given any initial conditions. 
The following theorem provides an equivalence between the 
stability of the hybrid system and the stability of a discrete- 
time system, it is essentially a restatement of [11, Theorem 
4]. 

Theorem 3: A controller C internally stabilizes the hy- 
brid system in Fig. 5(a) if and only if it internally stabilizes 
the discrete-time system y'7G22.tf\ (Fig. 6). 

Note that since yTG22JfT is a finite-dimensional discrete- 
time system, the stability of the hybrid system is well un- 
derstood. In particular, one can parametrize all (finite 
dimensional) controllers that stabilize the hybrid system as 
the (finite-dimensional) controllers that stabilize ^rG^XT. 

Finally, we comment that, as is well known S^G^-K 
may not be stabilizable even if G22 is, i.e., even if (A, B~) 
is stabilizable, there is a discrete set of sampling periods {r,} 
such that (eAT'.V(Ti)B2) might lose controllability of certain 
eigenvalues. But if r is chosen outside of the set where 
(C2, eM) is not detectable and (eAr, V(T)B) is not stabiliz- 
able, then we guarantee that 'JrG22-tfr (and thus the hybrid 
system) is stabilizable if (C:, A) is detectable and (A, £,) is 
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6„   f-s.4* 

-   c    ' 
Fig. 6.    C in feedback with the discretized system .y,GZ2-^'T- 

stabilizable, we call such sampling periods nonpathological 
and for the remainder of the paper we assume that T is 
nonpathological. 

IV. THE Jf°° PROBLEM FOR HYBRID SYSTEMS 

We now apply the lifting technique to solve the Jf* 
problem for the hybrid system of Fig. 1. Specifically, we will 
find all controllers C (if they exist) such that the closed-loop 
L2 induced norm is less than some prespecified level, i.e., 
|| J(G.JfrC.r/r)|| < 7. This is done by establishing an 
equivalence between the hybrid system and a certain finite- 
dimensional discrete-time system, in the sense that the L 
induced norm of the hybrid system is less than a prespecified 
7 if and only if the Jf"* norm of a discrete-time system is 
less than 7. The latter problem is well understood in the 
literature, and its solution provides all controllers that con- 
strain the closed-loop norm to be less than 7. A basic fact 
that we use in our constructions is that the Jf°° norm is the 
induced operator norm on a Hubert space. This allows us to 
apply the geometric structure of the underlying Hilbert space. 

Consider Fig. 5. By the isometry properties of the lifting 
and the stability discussion in the previous section, the fol- 
lowing two statements are equivalent _ 

i) J?rCyr   internally stabilizes G and || S(G,JfTCyT) || 

<T; . 
ii) C internally stabilizes G and || P(G, C)|| < 7. 

The induced norms are over Lr[0, ») and /£2to.ri- respec- 
tively. Therefore, from now on we will be concerned with 
the second problem involving G (note that to simplify nota- 
tion 7 will be considered 1 from now on, the general case 
follows as usual by scaling). 

Our approach will be to establish a further equivalence 
between ii) and a finite-dimensional discrete-time problem. 
This is done in two steps, the first is obtain from G another 
system G with 

G = 

A Bx B2 

c, 0 5I2 

c2 0 0 

(20) 

such that || ^"(G, C)|| < 1 if and only if \\?(G,C)J < 1. 
The second step is to reduce the problem with G to a 
finite-dimensional problem. _ 

We describe the second step first. Given G with a realiza- 
tion as above, the operators in the realization have the same 
input-output spaces as the corresponding operators in G, 
namely 

G = 

A *i B2 

c, 0 Dn 

c2 0' 0 

JrB'-B* B,:Z,2[0,r] - B* 

B2:llu^lix C,:B*->I2[0,r] 

Ö:B*-B'    Ä2:B
u-I:[0.r] 

(21) 

We are interested in characterizing all controllers C such that 
J(G, C) is internally stable and || J{G, C)\\ < 1. The basic 
idea is that since the state spacers finite^dimensional, then the 
infinite-dimensional operators 5,,C,, Dl2 are actually finite 
rank operators, and by examining their range and null spaces 
closely, the problem can be reduced to a finite dimensional 
one. 

Let us denote by J'(T) and @(J) the null and range 
spaces of a given operator T, respectively. Consider first the 
operator B,:I2[0, T] -■ K\ its initial space can be decom- 
posed as L2[0, r] = J\BX) © J/(Bi)

± ; where J/{BX)
X 

:= I2[0, 7) e JV(BI). With respect to this decomposition, 
ß, has the following "block matrix" representation 

5,=   0    5, 

J{BX) 

© 

J'(B{)
X 

-BJ 

An important point here is that since Bx has a finite- 
dimensional range, then 2?, is zero on all but a finite-dimen- 
sional subspace of L2[0, T], that is, .£(£,)x is finite-di- 
mensional. The nonzero part, of £,, namely B, := 
Bx\ <(g,i , is a linear mapping between finite-dimensional 
Hilbert spaces. The decomposition of the operator 5, in- 
duces a decomposition on the input signal vv, by 

W:€l *(£,) and 

w = 

Ü/ZLHB^ 

W; 

w. 

Note that vv, is an infinite- 
dimensional signal while wf is a finite-dimensional signal. 

A similar argument works for decomposing the output 
space and the signal z. Define 

0(C„JD12):= *(C,) + *(512) 

and note that 0t{Cx, Di2) is finite-dimensional since both C, 
and Dl2 have finite-dimensional ranges. We now decompose 
the output space and the C,, £>12 operators as follows: 

C,= 

Dn = 

0 

D 12 

W 

:   Bu 

,(C1,D12)
± 

© ; 

HCt,Dl2) 

®{cx,DX2y 

© 

*(c,,Ä2). 

And similarly, the output signal z can be decomposed into 

z = 

Note that   zt and  ir are infinite- and finite-dimensional 
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signals, respectively. The decompositions make G into a 
three-input three-output system given by 

V(B,) 

A 0 5. Bi 

0 0 o- 0 

c, 0 0 Dn 
c2 0 0 0 

G = 

Define the subsystem 

G = 

I I (B.) 

.K8,)1 

lJ(C,.D, )x 

^4 Bx *2 

c. 0 K 
cx2 0 0 

/»" 

'jftCi.On) 

'j(U,.l)a) 

e 

Wvp,,)"- 
A(fl,) 

x 
1|C,.Oi,l 

Ü 
Ö 

_i 

c 

(a) (b) 

Fig. 7.   (a) J(G, C). (b) JRG, C). 

where 

Bx := r* 
yl/2 

0 
,    [C,    A2]:=[2^   0]Tt CD- 

(22) 

G can now be rewritten in terms of G as 

Then 

i) &:= rank{I,ff} = dimJ^S,)-1}. 

C = C    0 
0     0 

ctf:= rank 
5,,* 

[CXDX2] \ = dim{#(Ci,D12)}; 

'.,♦(!,) ^(C,./),,)-1 

It now follows that if the controller u = Cy is connected to 
both G and G (Fig. 7) then 

f(G,C) = ?{G,C) 
0 

(23) 

We thus conclude that $~(G,C) is internally stable and 
|| J{G, C)J| < 1 if and only if 3^{G, C) is internally stable 
and || J"(G, C)|| < 1. The equivalence of the norm bounds 
follows trivially from (23), and the equivalence of internal 
stability follows from the fact that ?{G,C) and ?{G,C) 
have the same "A" matrices. 

The new input and output signals zf and wf take values in 
the _finite-dimensional Hilbert spaces ^(C,, DX2) and 
^V{BX)^ , respectively. Any finite-dimensional Hilbert space 
of dimension n is isometrically isomorphic to the Euclidean 
space B^thus with the proper identification of $(C,, Dx2) 
and J'(BX)

X with Euclidean spaces, the problem with G is 
reduced to a standard finite-dimensional discrete-time 3f°° 
problem. This is done in the next theorem. _ 

Theorem 4: Given the infinite-dimensional system G de- 
fined by (21) , form the b X b nonsingular diagonal matrix 
Y.b and the cd x cd nonsingular diagonal matrix Eed from 
the following symmetric factorizations 

ii) For a discrete-time time-invariant controller C 
a) f(G, C) is internally stable if and only if ?{G, C) 

is; _ 
b) || .F(G,C) || = || W,C) ||. 

Remark: G here is simply G defined previously^but with 
a particular choice of orthonormal basis for J^i?,)-1- and 
8(Cx,Dl2), and tiie matrices BX,CX,DX2 represent the 
operators Bx, Cx, DX2 in this particular basis. 

Proof: To show i) note that for any Hilbert space 
operator T 

dim{^(r)} =dim{^(r)x}; 

3t{T) = @{TT*) = @(TT*T). (24) 

The first identity is standard since for any linear operator 
T: Hx-+H2, we have Hx /JV{T)= g(T), and in a Hilbert 
space Hx /JV(T) = ^(T)^ . The first equality in the sec- 
ond identity follows from ®(T*) = ^{T)1- , and the sec- 
ond equality follows from @(T) = JV(T*)*- . 

Now 

rank{51If}:=dim{^(f1Bf)} »dim {«(I,)} 

= dim{j/(5,)x}. 

For @(CXDX2), note that @{CX,DX2) = #([C, Dx2\), and 

B,B* = T* '\"\ 
lb    0 
0     0 

cf 
[C,    DX2\ 

rank 
DX2* 

[c,   A2] 

= r* CO 0 
:= dim 

'CD- 

5 
D*X2 

[C,    Z>12] 

Define the finite-dimensional system 

G = 

/I *I 52 

c, 0 Dn 

c2 0 0' 

V /acrf 

V 

= dim I 3t I   51 

= dimjJ'([C,    512])
±}=dim{^([C1    512])}. 

To show ii) b), recall from the earlier discussion that the 
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internal stability and norms of if{G, C) and ?{G, C) are 
equivalent. G was given by 

G = 

A Bx B2 

cx 0 Da 

c2 0 0 

/ 
■■'(B,)1- 

I, 
e 

with 5i:=5J>(ä,)x; [<?i_Äu]:=n^(CiiBij)[C, Da]. 
From i), JS(B;)X and ^(C,,Z)12) are isometrically iso- 
morphic to S* and Bcrf, respectively. To find this isomor- 
phism, note that 

^(f,)x= 0(5*) = £(B*I,I*)   ' 

STC 

B*T* 

where the last equality follows because 
whenever Y is invertible. Furthermore 

0 

v-I/2 

r        1 o' 
. 0 oj 

\z" 
0' 

. 0 0. 

'(7Y)= 0(7") 

^(ß,) = 3t \B*n stn 0 

B*T* »1 -«fl (25) 

So define an operator 

C/: Ji* — .#(£,)   CL2[0,r]by U:= BfT^ z;1/2 

0 
C/ is an isometry (an isometry C is an operator that pre- 
serves inner products, i.e., (Ux, Uy) = {x, y) Vx, y, tiiis is 
equivalent to U*U = I), and from (25) it is onto •#(£,)x , 
thus_it is an isometric isomorphism between U* and 
-#(B,)X . Define i,: IS* -+ fö* by i, := £,£/, this is illus- 
trated in the diagram below 

^(5,)x *%* 

IS* 

We can obtain 5, explicitly by 

B, 

B\ — B,U = 5, I v,B,ifi, 7*n 

= B.BJT; 
S-'/2 - r* —  in 

z;1/2 

5-1/2 

Similarly for the output space, we have 

®(cuDn) = ®{[cl Ä2]) 

= *   [C,    Z>12] AS 
[c,   7J12] 

= £   [C, -P,:]^ * C£> 

v-1,1 
^cd 

0 

So define the operator K: hcd - J (C,, £>,,) C Z.2[0, r] by 

K:=[C,    Z>12]7; * 
y-l/2 
^cd 

A B, B2' 

c, 0 A2 
C2 0 0 

A B,C/       B2 

F*C, 

.     ^2 

0       ^*7312 

0          0 

As before, V is an isometry onto 3(CuDl2). Now 
K* | f(£it Si2) is an isometric isomorphism from ${CX, D12) 
to J2cd, so define 

C,:=F*|^|>5i2)Ci;    Dl2:= V*\ «c^Ai 

which can be evaluated explicitly by 

[C,    D12] = V*\,nSitEJCl    Dl2] 

= V  I ^(C1,öI2)
n.^(Cl,5,2)[

ci    7J>12] 

-r*[c,  ä2] = [E;/
2
 o]rCD. 

Thus the new system G can be written as 

G = 

And when connected in feedback with any C 

ß~(G,C) = V*f{G,C)U; 

■F(G,C):/((5i).-/^,Bi2)(    jr(G,C):V-V. 

The fact that £/ and K are isometries allows us to conclude 
the first equality in 

||?{G, C) || = || 3T{G,C) || = || 3T{G,C) || 

the second equality follows from the discussion before the 
theorem. 

Finally^ the equivalence of the internal stability of P(G, C) 
and F{G, C) is immediate since they both have the same 
"A" matrix (internal stability is determined by the 
A, B2,C2, D22 matrices of the plant and by C, all of which 
are the same in both &{G, C) and F(G, C)). ■ 

The preceding theorem offers a solution to the Jf °° prob- 
lem for an infinite-dimensional system of the type where the 
Dn operator is zero. Recall that the hybrid system problem 
is equivalent to that for G, and the Dn operator in G is Du 

which comes from the lifting of the original Gu. Dn can 
only be zero if G,, is zero, and this is rarely the case in most 
problems. However, G can be reduced to a G whose Du 

operator is zero, such that \\^(G, C)|| < 1 if and only if 
|| J^G, C) || < 1. This reduction combined with the previous 
theorem, will provide a complete solution to the original 
problem. 

To accomplish this "removal" of Dn, we use an opera- 
tor-valued version of "loop-shifting" (see [22]), and for this 
we need Lemma 5 below, which is an operator-valued ver- 
sion of the Redheffer lemma [6, Lemma 15] [22, Lemma 2]. 
To begin with, let T be any operator on L2[0, T] such that • 
|| 7"|| < 1, it follows that the operators (7- 7"*7")1/2 and 
(7- 7T*)I/2 exist and are positive definite. It also follows 
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i 

i 

that the operator 9 on JL2[0, r] e L2[0. r] defined by 

0:= 
-T 

(/- r*r)' 

is unitary. 
Lemma 5: Let 

0 = 
'ii 

»21 

(/- TT*) 

T* 

"12 

*22 

1/2 

(26) 

be the unitary operator defined by (26). Let 

A B 
[c D\ 

H = 

be an lLi[0 T| system. Then the following are equivalent (see 
Fig. 8) 

i) H is internally stable and \\H\\ < 1; 
ii) jF(0, H) is internally stable and \\P(Q, H)\\ < I. 

Proof: First, note that a realization for f(Q, H) is 
given by 

^(0,//) = 
A + BR ■le22c 

s~lc 

BR'^e 21 

0,, + ei2DR-le2i 

Fig. 8.   Si&.H). 

the only facts about © used in the firstpart of the proof. It is 
straightforward to verify that ?(&, * (0, H)) = H, there- 
fore this direction follows from the first part of the proof with 
0 replaced by 0' and H replaced by ?(&, H)._ ■ 

We will use this lemma on G to remove the £>,, operator 
by the proper choice of 0. First, recall that the objective is 
to find C such that \\f(G,C)\\ < 1. Recall the realization 

of G 

G = 

A straightforward manipulation of this realization and that of 
a C shows that the "D" operator in ?{G, C) is £>„. Now 
by the definition of the Jf°°  norm 

A s> B2 

c, Du Di2 

Q> 0 0 

where R = (I - B12D) and S = U - DBn). 
i) =» ii): For internal stability we need to show that 

AH := A + 5Ä"'ö,2C has all its eigenvalues in the open 
unit disk. Recall that ||022|| = ||7"|| < 1, and since \\H\\ < 
1, then \\D\\ < 1, thus (/ - e22D)~x exists and •?(©, H) 
is well posed. It is true that AH is the "A" matrix of the 
system (/ - 6V//)"'. Now since ||/f ||jr. < 1 and IIe22II 
< 1, then ||022~//(z)|| < 1 for {I z I < 1} (where H(z) is 
the z-transform of H). Thus, (/- ö22//(z))"' exists for 
{I ZI =£1} and therefore (/ - z/l„) ' exists for {| z | ^ 1} 
implying that all the eigenvalues of AH are in the open unit 
disk. 

For the norm of f(Q, H), note that © unitary implies 

||?(G,C)II ,-=   sup  ||?{G,C)(z)|| 

i||^(G,C)(0)|| = 11^.11- 

This inequality implies that || Du || < 1 is a necessary condi- 
tion for || i"(G, C)|| < 1, we assume this from now on. 

Given that   ||£>n|| < 1, we form the unitary operator 
matrix 

0 = 
-bn {i-bnb*n) 

1/2 

{i-b*ubn) 
1/2 D* 

G = 

'A Bx B2 

c, 0 Dn 

.C2 
0 0 

A +B^D*iP-'C] 

Putting G and ©_in feedback as shown in Fig. 9. we obtain 
the new system G given by 

Hi-b*ubny
xß    B{b^p-'bi2 + B2 

{i-bub*ny
xßcx 0 

0 

{i-bub*ny
ulbx 

0 

(Fig. 8) 
11 _ii 2 , lull2 = ll2 + lbll2-lkll2-MI: 

= IMI2-NI2- 
Therefore 

II#11 < 1 =HMI2 - Ml2 < 0 HI'II2 - Hl2 

<o-|| *"(©.#) II < 1. (28) 

ii) =* i): Define 

T (/-r*r),/2 

where P = (/-i>„D*). 
Lemma 5  states that   ||£(G,C)|| < 1  if and _only if 

/27V    ||^(0, ?{G,C)) II = II ?(G,C) || < 1. But now  G is in 
the form needed by Theorem 4 to reduce the problem to a 
finite-dimensional one. We summarize this in the next theo- 
rem 

©':= 
(/- 7T*) *\J/2 -T* 

Theorem 6: Given the infinite-dimensional system G de- 
fined by 

G = 

©' is unitary and ||022|| < 1, note that these correspond to 

' A 5, B2 

c, bu bi2 

A 0 0 
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c 

Fig. 9.    J> (0, KG. C)) = J> (G. C). 

with || Aill < 1. Form the matrices 

B,(7 -D*uDn) 
-i 

B* = r* - iß 

er 
A2 

where 2Ö, 2cd 

A,A,r [C.A2] = n * CD 
0 

0 
0 

'CD 

are diagonal and nonsingular, and TB,TCD 

In the next section, the required operator compositions are 
done analytically, and formulas for the resulting matrices are 
given in terms of the matrices of the realization of the 
original continuous-time system G. The formulas involve 
only matrix operations such as exponentiation and inversion. 

iii) The factors Ib, TB, Icd, TCD can be obtained by diag- 
onalizing the two symmetric matrices using well known 
algorithms such as in [13]. 

iv) In the next section, we will also give methods for 
checking the condition |ji?,,|| < 1. 
interesting connection with an Jf °° 
terns. 

This condition has an 
problem for delay sys- 

V. THE OPERATOR AI AND OTHER EXPLICIT FORMULAS 

Theorem 6 yields the equivalent finite-dimensional prob- 
lem given the original infinite-dimensional system G. G is 
given explicitly below (see also Fig. 5 and (18)) from the 
matrices of the realization of the original continuous time 
generalized plant G 

G = 

A Bx B2 

c, Ai A2 
C2 0 0 

,AT 

Cxe
M 

C, 

eA{J-s)Bi *(r)B2 

Cy-S%_S)B,     C<*(t)B2 

0 0 

(29) 

are finite matrices. Define the finite-dimensional system 

C = 

A Bt B2 

C\ 0 A2 
c2 0 0 

/«* 

/-. 

I »,cd ■ri 

ln> 

where 

5, := T* 
yl/2 

,    [C,    Da]:=[l£   0}TCD 

Ä:=Ä + B,DU-I-buD*u)~ C,; 

4 := BXD*U{I - A, Ai)~'A2 + B2;    C2 := C2. 

Then the following are equivalent: 
i) &{Ö, C) is internally stable and \\f(G, C)\\ < 1. 
ii) F(G, C) is internally stable and || ?{G, C)||l. 
Remarks: 
i) Note that even though quantities like (I - DuD*t)

1/2 

appear in © and G, this operator square root does not need 
to be evaluated since in the final equivalence to G it does not 
appear. 

ii) To apply Theorem 6, one needs to compute the follow- 
ing operator compositions (which are finite matrices) 

-i 

A: 

B,{l-D*nDuy Bf; 

(/-AiA.r'lc.Az] = Tc * CD 

■ 1 A A + BXD*,{I - Dup^y C,: 

Js1A1(/-AiÄ,)"lA2 + 5;- 

Where we have assumed, for simplicity, that the matrices 
Z?n = D,2 = 0. For the remainder of this section we will 
also assume that (A, 2?,) is controllable and (C,, A) is 
observable. 

To carry out the explicit computations called for by Theo- 
rem 6 we need to examine carefully the operators (/- 
Ai Ai)"' and (J-AiAi)"'- Reca11 *at Ai is toe 
"truncation" of Gu, that is Ai = ^L^O.T^M I L-IO.T)- The 
easiest way to deal with this operator is to consider the 
associated system of differential equations over the finite-time 
horizon [0, T]. Note that regardless of whether Gn is stable 
or not, A, 's an L2[0, T] stable operator. The relation 
f = Dnu is equivalent to the following system of differential 
equations: 

xx{t) = Axx{t) + Bxu{t) 

f{t) = ClXl(t);    x,(0) = 0,       0<r<r.   (30) 

It is easy to verify that the adjoint operator is given by the 
adjoint differential equation, that is, y = A,/ means 

x2{t) = -A'x2(t) - C\f{t) 

y(t) = B[x2(t);    X2(T)=0,       0 < t < r.   (31) 

Combining (30) and (31), it follows that the operator compo- 
sition y = (I - D*xDu)u is given by 

'x2{t) 
= 

-A' 
.   0 

-c\c, 
A     . 

*:(') + 0 

~BK 
u(t) 

(32) 

y{t) = [B\   0] **(') 
*.(') 

+ «(0; 

*,(0) 
= 0;       0 < r< 
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Note the two-point boundary condition on the states. The 
inverse (if it exists), can be found by rewriting the equations 
for u in terms of y, yielding 

**(') 
*,{') 

-A' 
BXB[ 

-c\ct 
A 

u(t) = [B\   0] 

*2(0 . + B, y{t)   (33) 

obtain the output u(t) as 

u(t) = [B[  o](r(/) 

■fTT(r-s) 
J n 

-Tül(r)     0 

0 0 

0 ' 
5, y(s) ds~ 

+ y(&> 

*.(o) 
= 0; 0 < t < T. 

In contrast to (32), this system of equations may not have a 
solution. It has a solution when the two-point boundary 
values are well posed, and this happens exactly when the 
operator (I - D*xDn) is invertible [12]. The necessary and 
sufficient condition for this is as follows; form the matrix 

Thus the operator (/ - £>* -D,,)"' is given by the kernel 

= [o  c,] r(r) 

+i(,-«r(/-s) 

r,V(r)   o 
.    o       0. 

T(r-s) 
. 0 . 

V«. } +I8(t-s). (37) 

r(0 - 
r„(0   r12(0 
r2,(0   ra(r) 

= exp 
-/4' ■qc, 

A 

(34) 

then (33) has a solution, or equivalently, (/ - £>*£>,,) is 
invertible if and only if TU(T) (or equivalently, T22(T)) is 
invertible ([27], [12]). We remark here that a similar argu- 
ment is used in [27] to obtain a condition for a given a to be 
a singular value of an operator like £>,,, there the invertibil- 
ity of {a21 - b*tbu) is in question, and a condition similar 
to the one above is given. 

The standing assumption here is that || £>,, || < 1, since, as 
remarked in the previous section, this is a necessary condi- 
tion for the existence of a C such that || i?(G, C)|[ < 1. This 
assumption guarantees that the operator (I - D*{DU) is 
invertible, implying that TU(T) and T22(T) are also invert- 
ible. 

To find the kernel representation of the operator (7 - 
b*xbu)~\ we find the solution of the differential equation 
(33) as a function of the input. Let T(t) be as in (34), it is the 
state transition matrix for the system (33). From the varia- 
tions of constants formula, given any input y(t), the states 
are given by 

As for the operator (/ - Dub*i)~\ a similar manipulation 
of the differential equation and its adjoint as above yields the 
following kernel 

(/-£,.#.)"■('.*) 

■-[o  c,] r(0 

.1 q 
0 

r,V(r)   o 
0 0 

+ 16{t-s). 

T(r-s) q 
0 

-r(*-0 'x2{t0) 

Mlo). 

+/'r 
(t-s) 

' 0 " 

A 
y(s)ds.    (35) 

Using .the two boundary conditions X2(T) = 0 and x,(0) = 0 
twice in (35) and subtracting the resulting equations we get 

x2(0) -r,V(r)     o 
*.(r)J [r^rjrn'fr)   l\ 

■ /Tr(» 
■'o    • • 

-*) 
' 0 

A y(s)ds.    (36) 

Using the expression for x2(0) and (35) (with t0 = 0), we 

These kernel representations can be used to compute the 
operator compositions required for the application of Theo- 
rem 6. The computations are rather lengthy, here are the final 
formulas (see the Appendix for the details): 

ß,(/-£)riJD11)"
lßr = r21(r)rr1

,(r)        (38) 

Cf(7-A.^r.r'c, = -r,l'(r)rI2(r)      (39) 

A + B{D*n(/ - DnD*n)"'C, = T22(r) - r2l(r) 

•rfI'(r)ri2(r)   (40) 

£,£*(/- bnb*yibn = [*a(r) - *(T) 

(41) 

Cr(/-A.73r,)"l/3,2= -rn'(r)$12(r)52   (42) 

D*2{I - DuD*u)~X*>n = ä2'[ö12(T) - *„(r) 

•rr,'(r)*12(T)]B2    (43) 

where V(t):= föeAs ds, and the matrices $(r),fi(7) are 
defined by 

*(*):=  f'T(s)ds 

ü{t):= J'lfST(r)dr)ds    ' (44) 
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and are partitioned conformably with T(t). We note that the 
integrations required to form ^, $, Q can be done using the 
formula 

f'eAsds = [I   0]e 
J c\ 

It '.']■ (45) 

which is true for any matrix A. Thus ^(T), $(T) can be 
computed each by performing matrix exponentiations, and 
using (45) twice in (44), fl(r) is computed by performing one 
matrix exponentiation. 

With these formulas and Theorem 6, the equivalent 
finite-dimensional problem can be obtained from the realiza- 
tion of the original plant in the hybrid system. 

Finally, note that from Theorem 6, a necessary condition 
for the existence of a controller that constrains the closed-loop 
norm to be less than 1 is that || £>,, || < 1, (this condition also 
guarantees the invertibility of TU(T)), which leads us to the 
question of how this condition could be checked. There is 
a connection between ||£>,,|| and the value of a certain 
Jf* problem for delay systems. Recall that Du = 
nt2,0 r,Gn | t2,0-T). If G,, is stable, it is an application of 
Sarason's result [23] (see also [7]) to show that 

|£|ill = l|nti,o.r|G„|i2|0,r| 
=    inf  || C,| - e~ 

Qe*m 
rQ\l 

(46) 

Thus the norm of Du is the value of a certain sensitivity 
minimization problem for a plant with pure delay. Using 
so-called "skew Toeplitz theory" the computation of this 
norm can be reduced to finding the singular values of a 
certain finite matrix. See [8] for all the details. (Software for 
this purpose already exists at the University of Minnesota and 
Honeywell, SRC.) Consequently, one can explicitly compute 
the norm ]| J&,, ||. 

For the case when G,, is not necessarily stable a different 
method can be used to compute || £>,, ||. Let Jf„ and y„ be 
the following operators defined between L2[0, T] and li" (K" 
with the euclidean norm): 

yn:I
2[0,r]-H"    (•*»(/) = "(^/j;       uel?[0,r] 

Now, it can be shown that || ^„-Dn^H -* IIÄill» where 
II -^n Ar-*nll 's tne Educed norm over Euclidean space (i.e., 
the maximum singular value). Thus we can compute ||£>n|| 
by taking n large and computing the maximum singular 
value of the matrix y'nDuJfn. 

APPENDIX 

OUTLINE OF THE DERIVATION OF THE 

FORMULAS (38)-(43) 

The formulas for the matrices (38)-(43) involve the com- 
positions of the appropriate operators. The compositions are 
performed by integrating the kernel representations of the 
operators against each other, and the given formulas are the 
results of the explicit evaluation of these integrations. 

(38)-(40): 
We give an outline of the deviation of (38), the derivations 

of (39)-(40) are entirely similar and are therefore omitted. 
We first determine the operator (I- D*nbn)~xB*, since 

it is an operator from 52" to Lr[0, r], it is given by a kernel 
which is function of one variable, specifically 

■ ((/-#,£„)"'#)(<) 

=  [T(l-D^Duy\<,s)Bf(s)ds. 

From the formulas for the kernels of (/ - £)*£>,,)"' (37) 
and B* (29), we compute 

jrn:li^L2[0,r]   (Jfnu)(t)=u 
tn 

{«(/)} eS" 

(strictly speaking, y„ is not an operator on L2[0, T] but on 
the subspace of left and right continuous functions, this 
distinction is irrelevant here since in our use of it below, ^ 
operates only on continuous signals), the above operators can 
be thought of as "fast" sample and hold operators. 

We now form the matrix y„DuJfn: Ji"*w - S"XI (recall 
that w, z are the dimensions of the signals w and z, 
respectively). The matrix can be explicitly computed as 
follows, denote by (y„DnJOi,j, the /, jth block of size 
z X w, then 

C,eA(T/n)U-J^(T/n)Bl for / - j > 1 

for/ - j < 0 

= [B\  o] r(0 

■/: 

-r,V(r)   o 
0 0 

A'     -C,'C," 
B,B; 

J: + 1 e 
'o 

-A' 

B,B\ 
-c;c. 

(T-S) 

U-s) 

0 
B,B\ 

0 
BXB[ 

,A-(T-S) ds 

,A'(.T-S) ds) 

+B',e i0A\T-n 

The integrals in the equation above can be explicitly evalu- 
ated by noting that 

Tsie 

-A-   -qc, 
B,B\ A 

= e 

* r     i [/ 
.0. 

e-A-s\ 

r -A- -c\c, 
BXB{         A 

s 0 
[-BXB[\ 

,-A's ■    (47) 

After evaluation of the integrals, some terms cancel, and we 
obtain 

= [B[   0]e 

-A'     -C\Ct 

B,B\ A r,V(r) 
0 

To evaluate the matrix  5,(7 - £>*£),,)   ]Bf, we inte 
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grate the kernels of the operators 5, and (/ - D*x Du)~ '£* 

B,{l-D*nDny B* 

= [ut){{i-b*uDuy
xB*){t)di 

J0 

\-A'   -c\c 

=  /V(r-"[5,fi;   0]J-B,B'      A 

•>n 

-US" 
f gAU-r 

J ft 

A     -C|C, 
A 

'0 J r 

+ C, 

c:c 
eA{s-ndsB,dr\ 

drB, 

dt rr.'(r) 
0 

The two integrals (in s) can be evaluated explicitly using 

This integral can also be evaluated explicitly using an identity 
similar to (47), and we obtain 

Js'e 

BX{I - D*UDU)V B* = [0    I]e[ 

= r21(r)r,V(r). 

-A'     -C\C, 

B,B\ A 
r,V(r) 

-A' -C\C, 
s 

BtB{ A 0 pAs\ 

[j\ J 
f ~A' -c;c,l — S- 

B,B\ A c:c. = e 
.   0 

eAs.    (48) 

The derivations of (39) and (40) are very similar to the 
above, the only nonroutine steps being several uses of the 
identity (47). 

(41)-(43): 
As before we only outline the derivation of (42), the other 

two being very similar. 
The derivation of (42) is slightly more complicated than 

what we have already seen because of the operator Dl2. 
First, recall that the kernel of Di2 is given by 

Dl2(t) = C,y'eArdr)JB2. 

A simple change of variables shows that 

Now we compute 

((/-Ai^r.)"'Ä2)(o 

This yields (after cancellations) 

. ((/-A.är.r'^Ho 
= [o  c;](-r(o[r'',(r) 

• fv{r-r)dr+ J'v{t- r)dr\ B,. 

The matrix C,*(7 -DuD*ny
lDX2 is evaluated by integrat- 

ing the kernel of C* (that is {eA''C\}) against the kernel 
above, this involves the use of an identity like (48) and 
switching of integrals and yields, after cancellations 

cr(/-£»,.A,)",A2= '-rn'(r)[/ 0] 
T 

T(r- r)dr f 
J n 

5, 

= -ril
1(r)$I2(r)S2 

= [0    C,'] 

■fe 
Jo 

-/' J n 

m 
0 0 

-A'     -C\C, 

B,B\ A 

-A'     -C\C, 
B,B\ A 

(r-s) 

o 
U-s)T 

o 

fS
eAiS-r 

j   gA(s-r) 
J ft 

~r) drB2 ds 

drB-, ds) 

+ C, f'eA('-r)drB2 
Jo 

integrating with respect to the variable s first 

= [o  q] r(0 r,V(r)   o 
0 0 

Hi. 
-A     -C,C, 

B,B[    ■    A 
(T-J) 

0  J r 

c;q 
o 

eAis-r)dsB,dr 

The derivations of (41) and (43) are very similar to the 
derivation above, the only nonroutine steps being the use of 
identities like (48) and the switching of the order of integra- 
tion in a manner very similar to that shown above. 
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Abstract—The following problem is addressed: Given a 
continuous-time plant, with continuous-time performance objec- 
tives, expressed in terms of the L™-induced norm, design a 
digital controller that delivers or optimizes this performance. 
This problem differs from the standard discrete-time methods in 
that it takes into consideration the inter-sample behavior of the 
closed-loop system. The resulting closed-loop system dynamics 
consist of both continuous-time and discrete-time dynamics and 
thus such systems are known as hybrid systems. It is shown that 
given any degree of accuracy, there exists a standard discrete- 
time ll problem, which can be determined a priori, whose 
solution yields a controller that is almost optimal in terms of the 
hybrid /"-induced norm. This is accomplished by first convert- 
ing the hybrid system into an equivalent infinite-dimensional 
discrete-time system using the lifting technique in continuous 
time, then the infinite-dimensional parts of the system which 
model the inter-sample dynamics are approximated. We present 
a thorough analysis of the approximation procedure, and show 
that it is convergent at the rate of (1/n). Explicit bounds that 
are independent of the controller are obtained to characterize 
the approximation. Finally, it is shown that the geometry of the 
induced norm for the sampled-data problem is different than 
that of the standard I1 norm, and hence there might not exist a 
linear isometry that maps the sampled-data problem exactly to a 
standard discrete-time problem. 

I. INTRODUCTION 

THIS paper is concerned with designing digital con- 
trollers for continuous-time systems to optimally 

achieve certain performance specifications in the presence 
of uncertainty. Contrary to discrete-time designs, such 
controllers are designed taking into consideration the 
inter-sample behavior of the system. Such hybrid systems 
are generally known as sampled-data systems, and 
have recently received renewed interest by the control 
community. 

The difficulty in considering the continuous-time behav- 
ior of sampled-data systems, is that it is time varying, even 
when the plant and the controller are both continuous- 
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time and discrete-time time invariant, respectively. In this 
paper, we consider the standard problem with sampled-data 
controllers (or the sampled-data problem, for short) shown 
in Fig. 1. The continuous-time controller is constrained to 
be sampled-data controller, that is, it is of the form 
^^«5^. The generalized plant is continuous-time time 
invariant and C is discrete-time time invariant, %L is a 
zero order hold (with period T), and S*. is an ideal 
sampler (with period T). %?, and ^ are assumed synchro- 
nized. Let HG,s?:C2i) denote the mapping between the 
exogenous input and the regulated output (i.e., w and z). 
S^iC^LC^) is in general time varying, in fact it is r- 
periodic where r is the period of the sample and hold 
devices. 

Sampled-data systems have been studied by many 
researchers in the past in the context of LQG controllers 
(e.g., [21]). Recently, Chen and Francis [4] studied this 
problem in the context of ff control, and were able to 
provide a solution in the case where the regulated output 
is in discrete time and the exogenous input is in continu- 
ous time. The exact problem was solved in [1], [2], and 
independently in [13] and [22]. The L'-induced norm 
problem (the one we are concerned with in this paper) 
was considered in [10]. 

In this paper, we will use the framework developed in 
[1], [2], to study the I1 sampled-data problem. Precisely, 
the controller is designed to minimize the induced norm 
of the periodic system over the space of bounded inputs 
(i.e., IT). This minimization results from posing time 
domain specifications and design constraints, which is 
quite natural for control system design. To emphasize the 
point made earlier, the inputs are continuous-time inputs, 
the errors are continuous-time errors (see Fig. 1), however 
the system is a hybrid system with a continuous-time plant 
and a discrete-time controller. The discrete-time method 
for I1 designs (e.g., [5], [17], [9D, cannot handle this 
problem directly, and is only concerned with the perform- 
ance at the sampling instants. 

The solution provided in this paper is to solve the 
sampled-data problem by solving an (almost) equivalent 
discrete-time I1 problem. While this was the approach 
followed in [10], the main contribution of this paper 
is using the lifting framework of [1], [2] to provide a 
thorough and more transparent analysis of the approxi- 
mations involved in forming the almost equivalent prob- 
lem. Furthermore, our analysis shows explicitly how the 
approximation procedure amounts to approximating the 

0018-9286/93503.00   © 1993 IEEE 
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Fig. 1.   Hybrid discrete/continuous-time system. 

inter-sample dynamics of the hybrid system, and that 
the inter-sample dynamics are governed only by the plant 
and not the controller dynamics. We use the latter fact 
to derive explicit bounds on the approximation [main 
inequality (5)] which can be computed a priori and depend 
only on the plant. We also show that the rate of conver- 
gence of the approximation is (l/n). 

As already mentioned, sampled-data systems are peri- 
odic, the main theoretical tool we use for dealing with 
periodic systems is a lifting technique for continuous-time 
systems developed in [1], [2].1 The technique establishes a 
strong correspondence between periodic systems and time 
invariant infinite-dimensional systems. In the next section, 
we briefly describe the lifting and it's application to the 
sampled-data problem. We then set up an equivalent 
infinite-dimensional problem whose solution is obtained 
using an approximation procedure. Formulas for the 
(almost) equivalent discrete-time problem are given in 
Section III. In the later sections, the issue of the conver- 
gence of the approximation procedure is investigated, this 
is done by decomposing the equivalent infinite-dimen- 
sional problem and analyzing the decomposition. In the 
last section, a geometric interpretation is given for the 
reduction of the infinite-dimensional problem, and it is 
compared with the &* sampled-data problem from [1]. 
We also discuss possible reasons behind the fact that in 
the /: sampled-data problem (in contrast to the %?° sam- 
pled-data problem), the solutions are given by approxima- 
tion, rather than exact procedures. 

Finally, we note that although the closed loop, sampled- 
data system is periodically time varying, and thus one 
cannot refer to the I1 norm of its impulse response, it is 
shown in [3] that the L°-induced norm of a periodic 
system can be interpreted as a type of an ll norm of the 
operator-valued "impulse response" of the lifted system. 
This justifies calling this problem the ll sampled-data 
problem. 

n. THE LIFTING TECHNIQUE IN SAMPLED-DATA 
SYSTEMS 

In this section, we briefly summarize the lifting tech- 
nique for continuous-time periodic systems developed 
in [1], [2], and apply it to the sampled-data problem. 
The idea of the lifting technique is to put a periodic 

'Essentially the same technique was arrived at independently in [22] 
and [23]. 

continuous-time system in a strong correspondence with a 
shift invariant (i.e., discrete-time time-invariant) system, 
which amounts to rearranging the original system so that 
its periodicity can be viewed as shift invariance. To 
accomplish this, we first define the lifting for signals, for 
which the appropriate signal spaces need to be established. 

For continuous-time signals, we consider the usual 
L=[0, =0 space of essentially bounded functions [8], and it's 
extended version JU°e[0, «0. We will also need to consider 
discrete-time signals that take values in a function space, 
for this, we define lx to be the space of all Z-valued 
sequences, where X is some Banach space. We define Fx 

as the subspace of lx with bounded norm sequences, i.e., 
where for {£} s lx, the norm1 \\{ft\\rx 

:= sup; Wf^x < «. 
Given any / e L™[0,«0, we define its lißngfe lL^tT], as 
follows: / is an L*[0, T]-valued sequence, we denote it by 
{f;}, and for each i 

f.(t):=f(t+Ti) 0<f<T. 

The lifting can be visualized as taking a continuous-time 
signal and breaking it up into a sequence of "pieces" each 
corresponding to the function over an interval of length T 
(see Fig. 2). Let us denote this lifting by Wr: IfjO,») -* 
'rio TJ- W. is a linear isomorphism, furthermore, if 
restricted'to L"(0,«), then WT: L"[0,«0 -> /I»[0,r] is an 
isometry, i.e., it preserves norms. 

Using the lifting of signals, one can define a lifting on 
systems. Let G be a linear continuous-time system on 
L*[0,<*>), then its lifting G is the discrete-time system 
G ■■= WTGW~\ this is illustrated in the commutative 
diagram below: 

-W L-[0 r] 

• t* • 
L-lO.oO-^L^O,«) 

Thus, G is a system that operates on Banach space 
(L°°[0, r]) valued signals, we will call such systems infinite 
dimensional. Note that since Wr is an isometry,^ if G is 
stable, i.e., a bounded linear map on IT then G is also 
stable, and furthermore, their respective induced norms 
are equal, ||G|| = ||G||. The correspondence between 
a system and its lifting also preserves algebraic system 
properties such as addition, cascade decomposition and 
feedback (see [1] for details). 

The usefulness of the lifting in the sampled-data prob; 
lern is the fact that if G is a, r-periodic system, then G 
commutes with the shift on /^.r]» that & G *s s^t 

invariant. This basic fact allows us to treat continuous-time 
periodic systems as discrete-time time-invariant systems, 
albeit infinite-dimensional systems. 

State space models can be found for the lifted systems. 
To illustrate, let G be a continuous-time time-invariant 

system given by a state space realization G = -^-— .In 

[1] it was shown that the lifting G has a state space 
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Fig. 2.   WT:Lf[0,*)-/tPio.r]- 

realization given by: 

G = 

i            i 
|        i 
i        i 

. o         r. 

\       i 
i      i 
o        '. 0             T: 0             T 

G G 

*-    Sr    -+-, 
•   i 1 I    '                      '     J 

G 

0 1 ■ 2 3 k r'i 

/4 B 

.C D . 

VT 
eA(T-S)ß 

Ce"'" Ce-4('"-f)l(f_i)5 + D8(t - s) 

B:    L"[0,T]-»R"* 

,4:    W* -* W' 
C:    R"--*L'[0,T] 

D:    I"[0,T]-L-[0,T] 

(1) 

where the operators C, B, D are given in terms of their 
kernel functions, and l(l) is the unit step function. 
• Notation: It simplifies the notation greatly to use the 
same symbol for an operator and its kernel, for example, 
D(t, s) [or B(s)] refer to the kernel functions representing 
the operator D (or B). For operators that map a function 
space to W, such as B above, we generally use s (or s) to 
denote the variable of the kernel function, and for opera- 
tors that map U" to a function space such as C above, we 
use the variable t (or t). The kernel representation for the 
operators B, C, D means that their action is given by 

Bu = (TB(s)u(s) ds   (&)(?) = C(?)x,   / e [0, T] 

(DuXt)= f D(i,SMS)dS 

Note that the state space of G is finite dimensional (the 
nx in W* refers to the dimension of the state space of G), 
while its input and output spaces are infinite dimensional. 
This fact is significant in that, although lifted systems have 
infinite-dimensional input and output spaces, they can be 
realized with a state space of dimension no larger than 
the dimension of the original continuous-time state space 
model. 

To apply the lifting to the sampled-data problem, con- 
sider again the standard problem of Fig. 1, and denote the 
closed-loop operator by fiG^CS^). Since the lifting 
is an isometry, we have that lÜKG^C^H = W*? 
(CJZCfjWT^W, this is shown in Fig. 3(a). In Fig. 3(b), 
we lump the lifting operators W. and W~x and the 
sample and hold operators and consider a new gener- 
alized plant G. G is a discrete-time system with one 
infinite-dimensional input and output (corresponding to 
w and  z) and one finite-dimensional input and out- 

Fig. 3.   Equivalent problem. 

put (corresponding to ü and y). Thus, 9{G, C) = 
W-SKG^.CS^W'1, which means that the closed-loop 
operator SKG,C) is in fact the lifting of the closed- 
loop operator HG^CS^). Since the lifting WT is an 
isometry, we have then characterized the Z/Mnduced norm 
of the hybrid system as the /^0.T]-induced norm of the 
time-invariant system 9(6, C). The conclusion is that the 
problem of minimizing the U° induced norm of the 
sampled-data system, is equivalent to that of minimizing 
the induced norm of the infinite dimensional but time-in- 
variant system 9{G, C). The previous discussion together 
with the characterization of internal stability for hybrid 
systems in [12] (conditions for nonpathological sampling) 
yields the following theorem. 

Theorem 1: Let G and G be as in Fig. 3, then for any 
finite dimensional C. 

i) iKG^CPp is internally stable if and only if 
&{G, C) is. 

ii) MG,J?TC5i)\\ = mG,C)\\. 

This reformulation of the sampled-data problem to the 
problem with G has several advantages, first, the con- 
troller has no "structural constraints" on it, in contrast to 
the previous formulation where the controller is con- 
strained to be a sampled-data controller, i.e., of the form 
/ZC&'T, second, both the controller C and the generalized 
piant G are shift invariant, thus, the periodicity of the 
original system is "removed," and third, all parts of 
the system are operating over the same time set (discrete 
time). The price paid for these advantages is the infinite 
dimensionality of the input and output spaces. In this 
paper, we will show how one can reduce the problem to a 
finite-dimensional one by "approximating" the input and 
output spaces by finite-dimensional spaces, thus, reducing 
the problem to a standard finite-dimensional I1 problem. 

We now present (from [lj) a state space realization for 
the new generalized plant G which will be useful in study- 
ing the problem further. Let the original continuous-time 
plant G be given by the following realization 

G = 

C2 

Bl     B2 

Du    Dl2 

0       0 

It is assumed that the sampler is preceded with a presam- 
pling filter which is a strictly causal linear system, this is a 
realistic assumption since an ideal sampler is not a physir 
cal device, a real sampler can be modeled as an integrator, 
with a fast time constant followed by an ideal sampler. 
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The system shown above represents a generalized plant 
with the presampling filter absorbed in it, the fact that 
£>2i = D22 — 0 is due to the strict causality of the presam- 
pling filter, this also guarantees that the ideal sampler 
only operates on continuous signals. It can be shown ([1]) 
that a realization for the generalized plant G (Fig. 3) is 
given by 

We also note that because of Theorem 1, suboptimal 
solutions to the above problem will also be suboptimal 
(with the same norm) for the hybrid system. 

The above infinite-dimensional problem is solved by an 
approximation. procedure through solving a. standard 
MIMO I1 problem. The idea we use is similar to that in 

G = 
G21     G2 

A A B2 

Ci Du Dn 

C2 0 0 C, 

At 

eA^~s)B, ^(r)57 

Qe A(t- 

where "%{t) ■= /„' eAs ds. The system G has the following 
input and output spaces i 

7\\'-       'r°[0, r] L*[0.r] 

Gn 

6 22- 

no.r] 

L'[0. 

R"/ 

I R"y 

The main theme of this paper is to approximate the 
infinite-dimensional input and output spaces L°tO, T] by 
finite-dimensional spaces. Bounds on the approximation 
of the closed-loop system (i.e., with controller) will be 
obtained that are characterized only in terms of the 
operators Bl,CuDl2,Du, which in turn are charac- 
terized by the original continuous-time plant and 
independent of the controller. 

The interpretation that can be given to the operators 
BvCl,Dn,Dn is that they characterize the inter-sample 
behavior of the overall system. In the lifted formulation 
of the sampled-data problem, the state of the system 
is the state of the plant G and the state of the con- 
troller C, both of which evolve in discrete time. The 
controller thus has an effect on the state of the system 
only at the sampling instants, and the inter-sample 
behavior is governed only by the plant dynamics. This fact 
is made intuitive by the observation that in between the 
samples, the system is essentially operating in open loop 
since there is no feedback (u is constant in between 
samples). 

The lifting of the sampled-data problem makes clear 
that the inter-sample dynamics are characterized by the 
operators Bl,C1,Dn,Dn, and thus the issue of approxi- 
mating these dynamics essentially amounts to approximat- 
ing the operators, which are independent of the controller. 
The foregoing ideas are pursued in the next sections. 

rn. SOLUTION PROCEDURE 

Using the lifting we are able to convert the problem of 
finding a controller to minimize the If induced norm of 
the hybrid system (Fig. 1) into the following standard 
problem with an infinite-dimensional generalized plant G: 

%pt inf      ||5tG,^CS*)|| 
C stabilizing . . 

inf      ||^GiC)||. 
C stabilizing 

(2) 

s)l(t-s)Bl +Du8(t 
0 

s)    C^(t)B2 + Dl 

0 

[10] and [14] where multirate sampling is used to obtain 
discrete-time systems that approximate the continuous- 
time behavior of hybrid systems. This approximation pro- 
cedure was used in [10] to address the ll sampled-data 
problem. The approximation procedure we use is essen- 
tially equivalent to that in [10], however, since we intro- 
duce it directly as an approximation to the lifted problem 
(2), the nature of the approximation is more transparent 
and we are able to explicitly isolate the parts of the system 
that need to be approximated independently of the con- 
troller. The consequence is that we are able to obtain 
explicit bounds on the degree of approximation in terms 
of constants that can be computed a priori, and that are 
dependent only on the plant. 

We now describe the approximation procedure. Let %?n 

and «5^,   be the following operators defined between 
L'[0,T] 

s>- 

&„■. 

and l*(nXl^(n) is U"Xq with the maximum norm 

L-10, T] - l"qM    (^H)(I) = H(W); 

u SL-[0,T] 

%(n)-*L~[0,7]     Unu)(t)=ul 
tn 

T )' 

{«(/)} e rqM 

(strictly speaking, «5^ is not an operator on L" but on the 
subspace of left and right continuous functions, this dis- 
tinction is irrelevant here since in our setting, assumptions 
are made to guarantee that 5?n operates only on continu- 
ous signals), the above operators can be thought of as 
"fast" sample and hold operators (see Fig. 5). For simplic- 
ity of notation we will suppress the dimension q in the 
sequel. 

Now to approximate the infinite-dimensional problem, 
we use the approximate closed-loop system S"n9{.G, Ci^ 
(see Fig. 4), and for each n we define 

%==      inf      ||^G,C)^||. 
C stabilizing 

(3) 

This new problem now involves the induced norm over 
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C 

Fig. 4.   The system G„. 

0      Tin 1        2 

«« 

■f- 
1        2              n 0      T/n              T 

Fig. 5.   The operators 5J and S?n. 

/p(n), i.e., it is a standard MIMO Z1 problem. 
Let us denote the generalized plant associated with 

S"n9{G,C)K by G„, that is, G„ is such that (see Fig. 4) 

S^nS^G,C)K-^[Gn,C). 

A realization for G„ is given by, 

c2 

B$?n B-, 

0 0 

A 

A B, Bz 

Cx Dn 
Dn 

C2 0 0 

The new operators, which are now matrices, are computed 
to be 

Q = 

Cx{eM/n) 
«-I 

Da- 

D 12 

Cj? 

C1¥(T//I)J32+2>12 

r(n-l) 
BT+D 12 

Al  = 
'eAr/n ¥(T/IOB, 

.    ^ Dn 

B^Vir/n) B,    eAT^Bx    -    {eAT")n~     B1 

where {•}„ means the first n X n blocks of the impulse 
response matrix of the discrete-time system given by the 
realization in {•}• 

The solution to the original infinite-dimensional prob- 
lem (and thus to the sampled-data problem) is as follows: 
n can be chosen large enough such that if the designed 
controller C„ is almost optimal for the approximate prob- 
lem (3), then it is almost optimal for the original problem 
(2). In essence, this approximation scheme "converges," 
i.e., one can obtain almost optimal controllers by choosing 
n large enough and solving a MIMO /' problem. Exactly 
what convergence means here is described next. 

IV. DESIGN BOUNDS 

In this section we investigate the nature of the approxi- 
mation of IMG, OH by \\9{Gn, C)||. In order to show that 
the synthesis procedure outlined in the previous section 
yields controllers with performance arbitrarily close to the 
optimal, one needs to obtain explicit bounds on the degree 
of approximation of MG, OH by WGn, OIL 

Let us begin with analysis. Note that since \\SKG, OH is 
an infinite-dimensional system, its /£-[0 T]-induced norm is 
not readily computable. A method of computing IliKG, Oil 
comes from the limit 

||iKG,0||= Hm ||^G,C)3;||» lim \\?{Gn,C)\\ 
n —*o= n —*co 

(4) 

for a fixed C. This formula can be proved using arguments 
about the approximation of continuous functions by sim- 
ple functions in L" ([19]), and also follows immediately 
from the main inequality below. Since 9{Gn,C) is a 
time-invariant MIMO system and H^G^OII is its I1 

norm, it can be computed to any desired accuracy, conse- 
quently, by (4) the actual norm, \W{G, OH can be com- 
puted to any desired accuracy. However, (4) is by far not 
sufficient to show the convergence of the synthesis proce- 
dure, since given only (4), the rate of convergence may 
depend on the choice of C. 

Our objective is to obtain explicit bounds on \WiG, OH 
that do not depend on the controller in the following form 

Main Inequality: There are constants K0 and Kx which 
depend only on G, such that for n > 2nx, and r/n non- 
pathological 

W6,C)||£||*G,C)|| 

*£ + (l + £)W<U)||.    (5) 
Remarks: 
a) The significance of the bound (5) is that it is exactly 

what is needed for synthesis. When one performs an I1 

design on the approximate discretization G„, the result is 
a controller that keeps ||^G„,OII small, but the objective 
is to keep the L"-induced norm of the hybrid system (or 
equivalent^ \\9{G, OH) small, and the inequality (5) guar- 
antees this. It is thus essential that we bound the hybrid 
norm from above by a function of ||y(G„,0||. 
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b) The above inequality shows that the approximation 
converges at a rate of (1/n). 

The first inequality in (5) is easy to obtain, first note 
that 

\\^[Gn,C)\\<\\^G,C)\\       Vn, 

since 

\\5\Gn,C)\\ = \\K^G,C)K\\ 

^ra||i^G,c)||ii^;ii^||y(G,c)|| 

because ||^|| < 1 on F{n) and ||J^|| < 1 on the subspace 
of V for which it is defined. 

One way to utilize the main inequality for getting 
a priori guarantees on the hybrid norm in terms of the 
discrete-time I1 problem is guided by the following; for a 
fixed n, if one performs a MIMO I1 design (as in [9], [17]) 
on Gn and obtains a yn + e optimal controller (given by 
C„), i.e., ||^tGn,Cn)|| < yn + e, then inequality (5) pro- 
vides that if Cn is implemented in the hybrid system, then 

the approximation of the infinite-dimensional parts of G, 
namely the operators B:, Cv Dn, Dn. 

V. DECOMPOSITION AND APPROXIMATION OF G 

It will be very helpful in the derivation of (5) to intro- 
duce a decomposition of the infinite-dimensional system 
G by "extracting" the infinite-dimensional parts of the 
system. The basic idea is roughly that the behavior of the 
hybrid system between samples is essentially governed by 
the infinite-dimensional parts of G, namely the operators 
Bx, Cu Dn, and Dn. These operators are independent of 
the controller, and thus it should be possible to approxi- 
mate the behavior in between the samples independently 
of the controller by "approximating" the aforementioned 
operators. To illustrate this point further, we first 
decompose G as 

G = G„ + Dn    0 
0      0 

A *i B2 

Q 0 Du 

Ci 0 0 
K       I       K \ 

Topt ^ ll-^t(5,Gn)|| < — +   1 + —  Hi^G^C)!!        and we note that G0 can be further decomposed as 

Ki       I        Ko , 

*i 
+   1 + 

Kn 

G0 = 

(Top. + *) (6) 

[Q    Da] 
0 

A I B2 

0 I 0 .0 

/ 0 0 / 

C, 0 0 
0 

where the last inequality follows from yn < yopl, which is a 
consequence of the first inequality in (5). 

The above inequality can be simplified by using an 
upper bound on %p[, such a bound can be obtained by 
finding any stabilizing controller C0 and_ computing an 
upper bound on the hybrid norm of &(G,C0) (by using 
the main inequality with a large n). Call that upper bound 
M. Then by using yopt < M, inequality (6) can be rewritten 
as 

%pt < ||^G,CB)|| < + e + yopt. 

Thus, in order that Cn guarantees \\&(G,Jg'TCnS'-)\\ < 
yopt + 8 for any 5 > 0, we choose e and n a priori to 
satisfy 

K, + K0(M + e) 
5 < 1- e. 

n 

It is worthwhile noting that the problem of minimizing 
\\&{Gn,C)\\ is immediately a standard I1 problem with 
time-invariant plant. Also, we note that even though the 
approximation problem is essentially equivalent to a mul- 
tirate sampled-data problem, it reflects no structural con- 
straints on the controller. General multirate sampled 
problems do not share this property (see [7]). 

The next section is devoted to the derivation of the • 
main inequality (5). Several interesting issues come up, 
and we get bounds on the approximation by characterizing 

(7) 

This decomposition is illustrated in Fig. 6. The closed-loop 
mapping &{G, C) is correspondingly decomposed as 

iKG,C)=i511+^(G0,C) 

-Dll + [C1    DU]S?{G00,C)BV      (8) 

We will use the notation S ~ [C\ Dl2], and call S the 
output operator and Bx the input operator. 

With this decomposition, Gao is finite dimensional, and 
<$, Bx are finite rank operators 

d?: L"[0,r],       £,:L-[0,T] 

As (8) shows, only a finite-dimensional part of the system 
[i.e., 9{G(G0O, C)\ is dependent on the controller, while 
the infinite-dimensional parts are independent of C. 
Roughly speaking, the controller (being discrete time) 
only effects the hybrid system at the sampling instants, 
while in between the samples, the systems evolution 
is governed by the operators Dn,&,Bv which are in 
turn dependent only on the dynamics of the original 
generalized plant G. 

The remainder of this section and the appendixes are 
devoted to deriving the main inequality, and can be 
skipped without loss of continuity. 

We now,consider the issue of "approximating" the 
infinite-dimensional plant G by a finite-dimensional plant 
G„. First we note that the two norms to be compared are 
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Fig. 6.   Decomposition of G. 

of 9{G, C), which has L"[Q, T] as an input-output space, 
and of yn&{G, 0%^, which has F(n) as an input-output 
space. Therefore, it is not strictly true that S*„J?(G, CWn 

approximates SKG, C) since comparisons like \\JKG, C) - 
Sa

n9{ö,C)%'n\\ < e do not make sense. We will replace 
S^JKG, 0%fn by another system which has the same norm, 
but truly approximates &{G, C). 

Define the following operator (the normalized integra- 
tion operator) 9~n: L°°[0, T] -*F{n) by 

The following properties of !?n can be easily checked: 9~n 

is a linear operator, \Wn\\ = 1, and Tn is a left inverse 
to <££, i.e. TJ?n = identity. If 5^ is regarded as an oper- 
ator on L}[0,T], i.e., &~n:. L}[0,r] -> iKn), then it is 
easily shown that ^ is the adjoint of (j/n)3~n, that is 
(ir/n)^)* =^. Similarly, if srn is regarded as an oper- 
ator on /!(n), i.e.,^: l\n) -* I}[0, r], then^f = (T/JI)^, 

which also implies that C^5p* =^^. 
Let us denote by T ~ Mö, C), and by f„ — ^(Gn, C). 

As already mentioned, T and Tn cannot be compared 
directly since they do not have the same input and output 
space. The operator 9~n will allow us to form a system Tn 

with norm equal to that of Tn, but with the same input 
and output spaces as T. _ 

Lemma 2: Define the system T„ ■= (J^S^TO^^), then 

ll?J - lirjl. 
Proof: It is true that ll-^E^II = II^T^II since 

and 
WS'j^W <: \9>nTZ&?nl < \\s>j%rjj. 

Also, since %"n: F(ri) -* L°°[0,T] is an isometry, we con- 
clude that 

llfji == Ifc^zaM - ll^r^^n - ws^Trj - \\fj. 

Remark The above lemma is of general interest since it 
provides a systematic way of addressing the question of 
how a discretized system S'.E^f."approximates" the origi- 
nal system H,. by comparing the systems H and H ■= 

(Zf.^HißZ'JC). This comparison is typically easier since 
H and H are both continuous-time systems with the same 
input and output spaces. 

Let G„ be the generalized_plant corresponding to the 
closed-loop operator Tn, i.e., Tn =SKG„,C). G„ is defined 
by 

<1 = 'K&* 0' 
G 'tt 0' 

[  ü i\ [   0 l\ 

The consequence of Lemma 2 is that one only needs to 
show inequality (5) with 9{G„, C) instead oi&{G„, C). As 
already mentioned, the advantage is that SKG„, C) has the 
same input and output spaces_as 9{G, C), namely 1T[0, T]. 

Next, we will show that 9{Gn, C) actually approximates 
9{G, C), and this will yield the main inequality (5). 

Approximation of G: The approximation of G will be 
done in two parts corresponding to the decomposition 
9{G, C) = Du + 9{G0, C) = Du+ MÖ0o, C)BV It will 
be useful in this section to use a short hand notation for 
(see Fig. 7) 

T0 - <hiG00,C)Bi T00 ~?{G00,C) (9) 

Ton - i^n^n)T0{^X)       Dn == carns%)Du(^rH) 
(10). 

and corresponding to the decomposition T = Dn + Ton, 
we have 

Tn = ^)(D,i + T0)(*X> =Dn + fon. 

We will first show that Ton approximates T0, then we show 
that Dn approximates Du. 

Proposition 3: Let n > 2nx, such that r/n is not a 
pathological sampling period, there exists a constant K0 

which depends only on G, such that 

Hi; - Tj\ < —\\fj\. 
n 

Remark It is important that the above bound is in 
terms of ||fon|| which corresponds to part of 9{G„, C). 
The reason being that in the main inequality, we must 
bound the norm of the hybrid system^ from above by the 
norm of the discretized system 9iGn,C). In fact, it is 
much easier to produce an inequality as above but with 
\\TJ\ on the right-hand side, but this would not be useful 
for bounding the norm of the hybrid system. 

Proof: The jproof makes use of the decomposition 
of Tg = <fTpoB1, and of its approximation Tan - 
O^S^&T^B^^,). The basic idea of the proof (on the 
output side) is that C^^) operates on functions in 
31^1 c La[0, T], and functions in $1^ are continuous and 
there are bounds on their rate of change (depending on 
the dynamics of the plant), so on 9i^ the operator 
C^J5^) approximates the identity, and it also has a left 
inverse which approximates the identity as n -* «. 

We now approximate from the output side. Lemma 
'4 below states that C^^) has a left inverse on Si^Y 

i.e.,  there  exists  (^nS^n)~
L:  ä(V</)-

>
^CL10,T] 
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llA -j'i>„-- \l   T\,     •        
• '     n-n&n]* wt-rwn        , 

H„S„~ W-nJn — Ö '— 
GQO 

— Bx — —O-j— 

—   c  - 
-*on 

Combining inequalities (11) and (12), we get 

\K ~ TJ\ = \\T0 - i&nS>H)T0&X)\\ 

= \\T0 - &aS>n)T0 + &nS>n)T0 

<\\T0-(^n^n)T0\\ + \\(^^n)T0 

-Orns>„)T0QWK)\\ 

K, 

Fig. 7.   Decomposition of the approximate system $i.G„, C). 

such that Q^)-LU^) = identity on ,%>. We now 
establish 

\\Un^„)T0 - T0\\ 

= \\Wn5>n)ST00Bx - {{K^r^K^&ToA 

< ||(/ - ^nr
L)Wns>A %KK)T0\\ 

where the operator I is the identity, or the embedding I: 

<-^||(^)7;|| -lirol n     ""       n 

but (12) also implies that  ||(«)rj < (1 + (Kä/n)) 
\\TJ\, therefore 

\\T - T  II < "xo        ■'on1' — 

KA i + Zi 
n 

K6 
\\TJ\ < ^\\TJ\, 

i?, (;r„.^„<?) L=[0, T]. Also from Lemma 4, we have that 
IK/-"C^)~L W.*,<?>ll ^ (Kj/n), this implies 

ptt)T0 - T0\\ * ^Wtt)T0\\. (ID 

Now, to approximate on the input side, we need to take 
preadjoints (see Appendix B): 

||C^)ro-c^)ro0*£O|| 

-11(^^)^(4-ijC^;))|| 

= iK'i, - (^)*^*((^>r00)||. 
From Lemma 4 below, C^j) has a left inverse 
when restricted to a(.gx), i.e., U^)"L is such that 
C^^)_LC^;) = identity on a^ cüfar], therefore 

- ii((^rL(«)*A 
-(^)*51)*((^;^)^r0O)|| 

= ||((^^)-L-/)^.B-i)* 

•((^>r„A(«))ll 
* \\(<rjo-L - OlwwJ IK«) W^H 

< — llfjl (12) 

where the last step is again from Lemma 4. 

where K0 == Kj + KjKä + Kä. ■ 
Lemma 4 below captures the idea that U£<5*)<? approx- 

imates @, because^ the sampling operator S"n samples only 
elements in &{.S\ and since there is a bound on the 
variation of functions in M(S), one can get a bound on 
how well (^„S",,) approximates elements in &{.£). Similar 
arguments are made about {j?„9~n)*Bv This lemma is the 
key to obtaining approximations that are independent of 
the controllers, since the behavior of the ^signals m the 
input and output spaces is governed by & and Bv the 
nature of the approximation depends on these two opera- 
tors and not C. The rate of convergence of the approxi- 
mations is determined by the constants Kg, Kj, which are 
completely determined by the operators B and if, respec- 
tively, which in turn, are completely determined by the 
original plant. 

Lemma 4: Assume n > 2nx, and r/n is not a patholog- 
ical sampling period, then 

a) 3   an  operator C^,^)"i:  Ä^-i,) "* ^[0, T] 

such that (Äj^)'L(^;)l«ci1) = identity, 

Ll[0,r] Lx[0,r] LHO.T] 

<XF.) 

V*i) 

and a constant K$, such that 

KB 

b) 3 an operator C^)_i: -3^ JW -» La[0, r] such 
that OZW-tiZSOWs«*) = identity, 

L-[0,T] L"[0,T] L"[0,T] 

U ,„»w. U /-»* u 

and a constant Kj such that 

i?. (.<?) 

KA \li-^^nr
L%^KA\<-n 
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The proofs of this lemma and the next one are quite 
technical and involved, and. thus are relegated to the 
appendix. 

The next lemma takes care of approximating the direct 
feed-through operator Dn, which is_approximated by the 
direct feed-through operator D„ of Gn. 

Lemma 5: There is a constant Kß such that 

\\Dn-Dn\\<—. 

Combining Proposition 3 and Lemma 5, we get that Tn 

approximates T by 

Kn _ Kr \\T-Tn\\<—\\TJ\ + -^. (13) 

To get a bound with ||TJ on the right, note that T„ = 
Tg„ + D„, which implies by the triangle inequality that 
HfJI - IIÄ.H < llfjl, and 

\\TJ\ < ILDJ + ||?J < llAiH + WTJ- 

Since \\Dn\\ is a constant, combining with (13) yields 

117-fj<— llAill + — Wfn\\ + ^. n n n 

Finally, since ||r|| - ||fj < \\T - 7-1|, we get 

CTia4d±£i + (i + £)ir.. 
-4 + (1 + ^)»fji 

and thus we have arrived at the main inequality (5). 

VI. GEOMETRICAL INTERPRETATIONS 

In the previous section we gave an approximation pro- 
cedure to obtain approximately optimal controllers. The 
procedure is based on forming an "approximate" finite- 
dimensional system to an infinite-dimensional one. 
A question may be asked as to whether the infinite- 
dimensional problem may be exactly reducible to a 
finite-dimensional ll problem. For example, in [1], the 
%?° sampled-data problem was treated by the lifting 
technique, and an exact reduction of the resulting 
infinite-dimensional problem to a finite-dimensional one 
is possible. This motivates .the question as to whether a 
similar exact reduction is possible in the ll problem. 

In this section, we will not give a definite answer to this 
question, but it is our purpose to illustrate some of the 
underlying geometry in the reduction, and to suggest that 
the ll sampled-data problem may not be exactly reducible 
to a finite-dimensional I1 problem. We will give a geomet- 
ric reasoning which shows that the fundamental differ- 
ence between the reduction of the &° and the Z1 

sampled-data problems has to do with the difference 
' between the geometry of finite-dimensional Hilbert and 

Banach spaces. 

Let us go back to the formulation of the problem 
involving the infinite-dimensional generalized plant G, 
and consider the decomposition of G in feedback with the 
controller C (Fig. 6). 

To facilitate the geometric arguments we are about to 
make, we assume that the operator Du = 0. Note that 
this assumption is valid only when Gu =0, and this is an 
unrealistic assumption for most interesting control prob- 
lems, but the assumption is made^for the purpose of 
illustration. With the assumption Dn =0, the decom- 
posed system in feedback with C is shown in Fig. 8, 
where (f •■= [Cl Dl2]. 

We first look at possible decompositions of the output 
space L=[0, r]. From Fig. 8, it is clear that 

which means that the output signal £ takes values 
in J(^)CI10,T] (at each jioint. in time). Since <f: 
U5"x+«a _» L=

[0,T], then M(&) is a finite-dimensional 
subspace of LlO, r], and there exists a projection on it 
rWv L^°> r1 -*&(<?') [20]. By the definition of a projec- 

ll^cll tion, we^ have that for any x e R"''-», ll^^llrto.r] 
WUJU^XWSH^), therefore 

\\n^Möoo,C)Bx\\ = ||^G00,C)iy = ||iKG,C)||. 

Note that Tl^^SKG^, C)BX is a system with a finite- 
dimensional output space, namely M{.@\ and the norm on 
M(3) is the norm it inherits as a subspace of L=[0, r]. 

A similar reduction is possible with the input space, for 
this, we need to look at the preadjoint operators. Since for 
any Banach space operator A, Mil = |U*||, we have that 

l|n^)^(G00Ic)i1|| = 11*5, *9{G00,C) v'iw-,11 

and as before, we can project on SH*BX) C^'^T] with- 
out changing the induced norm 

= ||n^)<^(G00,c)i1n^ii)|| 

where the last equality follows by taking the adjoints. 
Also, note that since 11^-,: L^T]-*^*^) then 
Il%rSo: (^(*i1))*r>r[0,T], where (&(%))* is the 
dual space of &(*BX), and it is finite-dimensional since 
•SK'ii) is. 

Combining the reduction on both the input and the 
output spaces, we have 

||^G00,c)iy = lln^/^G.., c^ns^j 
«||^G,C)||, (14) 

where G is defined by 

n 
0 

TT*    • 
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Fig. 8.   Decomposition of C with Du =0. 

Equation (14) shows that the original problem is reducible 
to the_standard problem with the generalized plant G. 
Since G has finite-dimensional input and output spaces 
(since &{(?) and (&(.*BX))* are finite dimensional), 
we have arrived at an equivalent finite-dimensional prob- 
lem. This problem is not necessarily a standard finite- 
dimensional /' problem, it is only so if the input and 
output spaces (3?{S) and (&(*BX))*) are linearly 
isometrically isomorphic to an F{ri) space for some n. 

Remark In the %?° sampled-data problem, the situation 
is much simpler. In that case, &{<?) and (&(*BX))* as 
subspaces of L2[0, T], are immediately linearly isometric 
to Euclidean spaces (that is l2(n)), since every finite- 
dimensional Hubert space is linearly isometric to a 
Euclidean space of equal dimension. 

Thus, the question arises as to what the spaces M(&) 
and (£?(*BX))* look like, and to whether they are isomet- 
ric to /"(«)? If the answer is affirmative, we can use this 
identification with F(n) and obtain a generalized plant 
which has an F(n) for each of its input and output spaces, 
and the problem then becomes a standard /' problem. 
However, the answer is negative. This can be seen by a 
simple example, where we plot the unit ball of the space 
3i{@) and show that there is no linear transformation that 
can transform it to a unit ball of an F(ji) space. 

The example we consider is as follows: first recall that 
the operator & is given by the following kernel function 

<f(r)-[Cj(f)    D12(t)}=   Cxe
A'   CJJV'&Jä 

We will consider the subspace M(.CX) c£Z{S) and show 
that it cannot be a subspace of any F{n). Recall that the 
norm on the space 32(,CX) is the norm inherited as a 
subspace of L"[0, T]. The unit ball in £KCX) can be 
plotted by choosing a basis, and then computing the 
Lx[0, T] norm for combinations of the basis elements. The 
particular example we pick is 

A = 0 -3 
1 1 

C = [l    1/2], 

with T = 1. For this example SZ{CX) has dimension two, 
and a basis for it is given by 

xx(t) ■= Cxe At x2(t) ■= Cxe At 

To plot the unit ball in &(CX), we represent any x s 
£?(CX) by x = axxx + a2x2. The ball in Fig. 9 represents 

Fig. 9.   The unit ball of Ä(C,). 

11*11 = 1, and the axes are ax and a2. The unit ball in 
an F(n) space is an /z-cube, and the unit ball of any 
2-dimensional subspace of F(n) is a 2-dimensional "slice" 
through an /z-cube, and it is clear that the boundary of 
this 2-dimensional cube must be made up^ of straight lines, 
i.e., it must be a polygon. Now, for M(CX) to be linearly 
isometric to a subspace of F{n), a necessary condition is 
that its unit ball [that of Sl(Cx)] must be linearly trans- 
formable to a polygon, which means that it should itself 
be a polygon. Since the unit ball of the particular example 
in Fig. 9 is not a polygon, we conclude that M(Cj) 
[and consequently 3i(S)\ is not linearly isometrically 
isomorphic to an F(n) space for any n.. 

We end this section with a geometric interpretation 
of the approximation procedure given previously. If we 
apply the approximation procedure to the system in 
Fig. 8, the result is the system 

S>nO?{G00,C)B1X'n. (15) 

Looking only at the output side (the input side can be 
interpreted similarly using adjoints), the norm on the 
output side is essentially measured by sampling the ele- 
ments in £?(<f), that is, the norm of a function f <£&((?) 
is computed by taking the /"(«) norm of n samples. As 
before, we can plot the unit ball of £2(.CX) in this new 
norm which we will call the "samples norm." (Actually, we 
will plot the coefficients ax, a2, hence the plot is two 
dimensional). This norm approximates the actual norm on 
£1{CX) for large n. This approximation can be seen in Fig. 
10 (for n = 3), where the samples norm unit ball is 
superimposed over the actual unit ball of &(CX). It is 
interesting to see that what is being done, is approxima- 
tion of the unit ball of Sl(<f) by polygons. Thus the 
approximation procedure for solving the sampled-data 
problem can be interpreted as an approximation of norms 
of the input and output spaces. It is interesting to note 
here that the unit balls of £&&) and (32(*BX))*, generally 
represent nonlinear constraints, very much as in the con- 
tinuous-time L1 problem [6], while in discrete-time I1 

problems, the constraints are always linear. Therefore, the 
fact that the norms in the sampled-data problem repre- 
sent nonlinear constraints (roughly speaking), seems to be 
a consequence of the continuous-time nature of the prob- 
lem (just as in the L1 problem). However, by essentially 
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Ffe. 10.   The unit balls of &(CX) with the actual, and the samples 
norms. 

approximating the nonlinear constraints by linear ones, 
we are able to reduce the problem to a standard discrete- 
time I1 problem. 

Finally, we point out that the mathematical reason 
behind the difference in the reductions of the ^" and f1 

sampled-data problems, is that in the former, any finite- 
dimensional Hubert space is linearly isometric to l2in), 
while in the latter, not every finite-dimensional Banach 
space is linearly isometric to Fin). This reflects the fact 
that the isometric class of Banach spaces of dimension n 
is a much richer class (there is an infinite number of 
them, for example lp(n) for 1 < p < =), than the class of 
Hubert spaces of dimension n [of which there is only one, 
iHn)]. 

VII. CONCLUSIONS 

This paper provides a solution for the sampled-data ll 

problem through approximation. Utilizing lifting tech- 
niques, the input/output map is decomposed in such a 
way that the infinite-dimensional part of the system is 
isolated independently of the controller. This part is then 
approximated in a precise way by a finite-dimensional 
system, whose dimension can be determined given any 
degree of accuracy. Computable bounds on the norm of 
the difference of the actual system and the approximated 
system are furnished, and they all depend entirely on the 
system's data. It is shown that the rate of convergence of 
this approximation is il/n). 

It is interesting to note that the same approach and 
approximation arguments in this paper can be followed to 
obtain bounds like the main inequality for the ^-induced 
norm sampled-data problem. A combination of this with 
the Riesz-Thorin convexity theorem would then show 
that the main inequality (with different constants) holds 
for general ZAinduced norm problems. In particular this 
holds for the L2-induced norm case. In this case, this 
approximation procedure was shown to converge in [15]. 
The results of this paper and the above convexity argu- 
ment indicate that stronger convergence at the il/n) rate 
actually holds. However, for the case of the L2-induced 

• norm sampled-data problem, an exact equivalence to a 
discrete-time problem can be obtained [1]. It is' indicated 
in this paper by geometric arguments that this exact 

correspondence  may  not be   possible   in  general   for 
IT-induced norm sampled-data problems.' 

The approach followed in this paper is readily applica- 
ble to the structured perturbations problem for sampled- 
data systems [16]. The minimization problem in this set-up 
involves spectral radius functions, and a similar result 
follows from the continuity of the spectral radius function. 
The derivation of explicit bounds takes more work and 
will be reported elsewhere. 

APPENDIX A 

In the following proofs it is assumed for simplicity 
that the matrices Dn and Dn are zero. If D12 is not 
zero, the statement of Lemma 4 still holds. If Dn is 
not zero, the statement of Lemma 5 does not hold, how- 
ever the main inequality does hold but has to be derived 
differently. 

Proof of Lemma 4 

a) If fe&rg0, then fit) = *B:it)x = B'1e
/l'lT-,)x, for 

some x e R"x. We may assume without loss of generality 
that (A, Bj) is controllable, since if not, we can decom- 
pose the state space into the controllable and uncontrol- 
lable subspaces, and write 

*Bx{t) = [B'c   0]e 
A\0 
?   A' (T-() T, 

where (Ac, Bc) is controllable, T is nonsingular, and then 
note that ^.^ is the same as the range of {B'A'(T~!)}, 
and thus work'with (AC,BC) instead of iA,B^). We also 
note that since the eigenvalues of Ac are a subset of the 
eigenvalues of A, then if r/n is nonpathological for A, it 
is nonpathological for Ac. 

Now, to show that G^p has a left inverse, we need to 
show that C^;): &{%) "* AT] is injective, but since 
S?n\ l

xin) -» LHO, T] is injective, it suffices to show that 9^: 
&('i) -* 'Kn) is injective, or equivalently, that it has no 
null'space. Given /e^rii), let f — &~nf, since fit) = 
B[eA'(T~l)x for some x e Rn% then 

n r(i+i*/»B,ieAXr-oxdt 

T hr/n 

=  1B>  r/n
eA-(r/n-t)d!eA-in~i-l)r/nx 

T      •'0 

= -B'1^'ir/n)eA'^-i-1)T/nx, 
T 

or in matrix notation 

/o 

fn-l 

B'{*'iT/n)eA'in-iy,/n 

BW'ir/n) 

x =■■ -3fnx.  (16) 
T 

Note that for n S; nx, £Sn contains the controllability 
matrix of ieAr/n,^ir/n)B^), and since iA, Bx) is control- 
lable and r/n is a nonpathological sampling period, then 
ieAT/n,^iT/n)B{) is controllable, and thus the matrix @'n 
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'f^s^™^' ^ i^^' /#°'-then /=    ^e (18) which means that Sjx, for some * e W; x * 0, consequently / * 0 (since 
^ has full rank), implying that Tn has no null space and 

■ thus is injective. 
To obtain the bounds we need, it is necessary to bound 

the norm of x that solves the equation f = &'x by the' 
norm of /. Since &n has full rank (as a matrix), there 
exists a constant, c, such that if f=(n/T)^x then 

WT)\\X\\I < Cjll/H,!^) (where \\x\h is the 1-norm on R"*). 
The constant cx can be taken as the norm of the left 
mverse to <3{. See the appendix for the proof that c, is 
independent of n. 

If we define / :=Z>J, then we have from the definition 

r« 1? ■l (/Iu-~* Ll[°' f]   that   H/'k'fl'.r] = ('/")ll/ll/'(«).    WDere the last equality is a consequence of the formula 
Combining this with the previous bound yields that for    f,  AS J     rn n F°   °Lm 
/ = Ca^)*i,x y /o *AS^ = [0 7J4/  A\'\'\. With an argument similar to 

f of part a), w« 

Proof of b): By definition, <? == [C, £I2], and 

^(0 = [C1(0   £„(')] »[<V   cJjfV'&U 

1   I     0 

Ml  ^C1!l/llz.'[0,r]. 

Now, to compute a bound on ||(/ - C^-^^.^lj,    [0   Cl]e[°i  A]' 

let / be an element in iS^.^, i.e., f = %^Bxx for 
some x e R"*. We have already shown the existence of 
the left inverse C^^)"z-, by its definition (X^)~Lf = 
*5jx, therefore ^"     7 

that in the proof of part "a), we can replace [0 C:] and 

[/ A}^ 
Co and -4c. such that (C0, ^0) is observable, i.e., 

0 B2 

1 0 
= [C0   0]e ■[ • -i]'i° J52 

0 

- fr" »iff: = Co^-'Ä,, 

f'-cwL 
i'[0,r] 

-l^r^-^lli'lO.rJ 

= fji^^B.xp) - (*BlX)(t)\\ dt 

"(/+1>r/"ll(^^A*)(o " (*5»(OJ|A 

where |£j == 7J°  *2j. Furthermore, we can replace Rt 

by 5/; which is made up of the linearly independent 
columns of Rlt and define S0{i) == C0e

A''Bf, we then 
have 

•'o 

n-X 

-1/ 
i-l "■/" 

X(S) = W([0   Cjef?   °A}' 0 B2 

1 0 

=n^ri>/i-[ri^Hs)ds\x 
1 = 1 •'«V/n T ^i-r/n ' 

-^,(0*||aV 

n-1 

£=>1    "/n 

O'+Dr/n.," -fr IT/ 

Now, to show the existence of C^)"1 on 1,.^, or 
equivalent^, that C**^) is injective, it suffices to" show 
that &>n has no null space in m(^ (since %fn: r(n) -> 
Z-°[0, r] is injective). By the representation above, if / e 

■*<*). /* 0, then f(t) = C0e
A*'Bfx for some * * 0, * e 

R> (where /> <; nx + „„). Let /=^/, then ft = 
C0e

A',T/aBfx, or in matrix notation 

-^(OIIäIWI, 

n-1  T2 

/o 

Ä-1 r(^.'/«) n-l 
Bfx - g^*. 

^  Z —   sup 
i-l  "     Oir^r 

l-^-IINii 

n-X 

^ T~2 lUlli Z    sup   \\B[A'eA'<T-')\\ 
i-l   OS/ST 

2^2 ^^ciii/iwi5;iiM'ikM'i 

^^-Cjll^lllU'lleM^Ill/n (17) 

Since (C0, Ag) is observable and r/n is not pathological, 
then (C0, e

A'T/") is observable implying that the matrix 
f„ has full column rank (for n > 2/1,.), and since Bf also 
has column rank, then /* 0, which shows that ^ has no 
null space in 3i(lfy 

To obtain the bounds we need, it is necessary to have a 
bound on the norm \\x\l (II • ||« is the maximum compo- 
nent norm in R') of solutions of the equation /= WnBfx. 
Since both % and B{ have full column rank, they"both 
have left inverses ^L, BjL, and 

IWI-< \\BjL\\\\^\\\\f\\nn). 
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Since %Tn\ r(n) -* L'[Q, T] preserves norms, that is, for 
/:=^/= (K^Jf, we have that \\f\\L1o,r] = \\f\\rM, the 
above bound becomes 

11*11- < c,||/||r [0,r]- 

from the fact that if each entry in the matrix of norms 
tends to 0 separately, then the maximum row sum will also 
tend to zero. 

The L~[0, r]-induced norm of an operator sf given by a 
kernel function M>, s) is 

The proof that the bound c, is independent of n, though 
long, is entirely similar to that for c, in part a). 

Now let / e Si^, therefore / e 32(£) which means that 
f = S0x for some x e Up. Let / == iknS"^f, by the defi- 
nition of 0?n2>XL, we have that U^)~L/ = / = <?0x- 
We now compute, 

=  sup \\(%rns>J0x){t) - (S0x){t)\\ 

=     sup sup    \\{ß?n5*J0x){i + ir/n) 
0<i<.n-\   0<t£T/n 

-(<f0x)a+ir/n)\\ 

=     sup sup    \\(<?0x)(iT/n) 
Ozizn-l  0<;t<7/n 

-(S0x)(i + iT/n)\\ 

< sup sup    \\riT/n^(s)ds\\\\x\ 

< sup        sup    j^ir/n\\^{s)\\ds\\x\\ 

=   sup    / \sf(t,s)\ds. 
n ... _ _ In a<.t<- Jo 

The kernel function of Du is given from (1) by 

Dn(t,s) = Cie*'-%_s)Bv 

The operator Dn == C^^)i5n(^^) has a kernel func- 
tion which is piecewise constant over squares of width r/n 
in [0, r] X [0, T], in particular, for t = t + ir/n and s = 
s + jr/n, i, s e [0, r/n] 

n 
—i 

T 

where 1(.) is the unit step function with a discrete parame- 
ter. We now compute 

HAi-A.ll 

=   sup    f'\3n(t,s) -Dn(t,s)\ds 
0nt<.-J0 

n-\ 

=      sup sup      £  f 

■\Dn(t,s)-D„(t,s)\ds 

(;+ Dr/n 

<     sup     fa+1^\\^l(s)\\äs\\x\\ 
n<i<n--\ Jir/n OS 

n-1 
r(j + l)r/n 

sup sup   l_,  I 

C I (7^(«'(',/«)+'-*)l _  —pAHj/n) 
n 
—( 
T 

< sup      sup ll-j^ODU-IWL 

< sup       sup   \\CJ\\A0\\e*A'i'\\Bf\\-M 
jir/n) I 

ds 

■(; + l)T/n 

T 

/I 
< HCJI U0\\e^nBf\\-c2\\f\\L1!l,T], 

which results in 

ll('-c^J~L)Ur^>|| 

5UICJIM>«^liUk2T-=== — 

i 110,1111^11 sup «»^«T/-> sup  £ f 

i     *„- i IIC, 115,11«»^ sup sup 

n n 

Proof of Lemma 5 

If Dn comes from the lifting of a MIMO Cn, then Dn 

operates on vector signals, i.e., Du: L°[0, r] -* £°JQ, r]. 
The induced norm of such an operator is bounded above 
by the maximum row sum of the matrix of the L°°[0, T]- 
induced norms of the SISO subsystems. We will prove the 
lemma as if Dn is scalar, the MIMO statement follows 

U+lW»u 0A(.i-fi_ 1 •(E/(/+I: 

■\U*iyT/ne-*'dr\\ds 
Jj(r/n) 

+ f/H\\e«i-»\\ds\, 
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where the last term represents the case / =;'. From (20) in 
Appendix B, we can bound 

Jj(r/n) 

<  _||g^('-y(r/n)) _ e-Aj(-/n)\\ 
n 

1 
+ sup \[AeAit-s) 

J(.T/n)ss<,{j+\yr/n 

+ sup \\Ae~Ar\ 
j{r/n)<r^(j+\)r/n 

<  _eM«ÄT/»)||e^« _ 7|| + H^ll^llrl. 

<eM«r   _(eM!l?_1)+M|| 

Substituting back yields 

»4, -ÖJUIICjllll^ll^^sup sup 
i      i 

\j=o\n n2J      «, 

^IICJIH^IIe2»^ 

of the norms. Note that in the following bounds, || • || is 
any matrix norm provided that the same norm is used on 
both sides of the same inequality, 

(b -a)21 dF      \ 

*—LxJ'aH (l8) 

\\jh(t)F'U)dt - ^F(s)ds^fo
TF'(r)dr)\\ 

<2r\  sup  ll— 

jpiw-^jfaH11* 
<\b-a\\F1(,a)-F2(a)\ 

dF, 
+ 21 SU

P ll^r(f)ll 

As       \ 
+  sup   ||-^)|| 

a<.t<,b      at j 

■\b-a\ 

(19) 

(20) 

^2 
t 7 

-(eM|T-l) + IU||— + - 
n n       n 

Kr 

APPENDIX B 

Integral Inequalities 

Let F(t),FxU\F2(.t) be differentiable matrix valued 
functions. Some useful bounds shown below can be estab- 
lished by using the formula 

Completion of Proof of Lemma 4-a) 
Claim: cx is independent of n. 

Proof: We will construct cl as an upper bound on the 
norm of the left inverse to SS'n. This is done by taking the 
pseudo-inverse as a left inverse to @'n, and finding a 
bound on its norm that is independent of n. The pseudo- 
inverse to SS'n is (&/n&'n)-

l&n, and note that the inverse 
exists since &'n has full column rank. We first bound 
\l&n&'n)-

lW- From the definition of &n, we have 

®n@'n =  L eAiT/n^r/n)BxB'^\r/n)eA'ir/n. 
i-O 

ft dF 
H/)=F(a)+ / — (s)ds, 

K dt 
Denote the controllability Grammian over the finite time 
T, by 

and some manipulations involving cancelling common fac- 
tors and bounding the norm of an integral by the integral 
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We will first show that (n/rX^^f1^ WT for  rr > 2M1||»TMl.  To take  care  of the  case  of n 
such that rr < 2A/1||»TI|l, note that is only a finite num- 

\\W — —(& &)\\ ^er   °^  suc^   n's'   a      *et   J^   ^e   ^e   maxnTlum  °f 1 T     "   " IKC/I/T)^,^)"
1
!! over this finite set of n's (note also that 

\\(&n&nY
l|| exists if n > nx and r/n is not a pathological 

= || f eA'B1B'1e
A't dt sampling period). Letting AT, := max{M2, M3}, we obtain 

'o 

n-i /» \-i 
-- E ^'v/"¥(T/n).B1S'1¥'(T/")«'r,'r/1l llf-^^)    || < M4 =» ||(^!^)"1|| < -M4 

n-1 

T 

y-,   rU+\)T/n^Alg ß>eA-t jt V/z > «^ such that r/n is not pathological. Finally, to find 
,=0 hr/n 1   l }\{&n&'n)~

l&n\\, note that this is the induced norm from 
ll{n) to W' with the || • Hi norm, i.e., it is the maximum 
column sum norm on the matrix, therefore -- E eAiT/ny{7/n)B,B\V'{-/n)eA'ir'n\ 

7 i=0 

<  E \\eAir/"((r/neAiB1ff1e
A'!dt)eA'i^n 

rc 
--e'4'v/n^(r/n)51B'1*'(T//z)e'4''v/',|| 

T 

71-1 

X@n&nr
x®n\\<\l®nKTl\\ 

■\\^{r/n)[{eA^n)n-lBl-Bl\\\ 

<||(^,^)"1||||^(T//z)||max 

< E e2*A*iT",\\r/neA%Wle
A,'dt 

,n-l. i-o '° -{IKe^")     ||,-,lk"r/"ll}l|5,|i 

--  rVi^F, r/ne^dr || n     T „,,   tM r\k j   l   Vo r < -M-e^-^e^nB, 
T      n 

i = 0 

.2 
•f    sup    llBHIUIIe^'1 (21)    since   IWT/^I^II/O^^^II^/O

7
"^"^^/^ 

W^U ' e'M"T/'' ^ * (T/B)e»"«T/". This yields the desired bound 
Cj which is independent of n. D 

where the last step is a consequence of formula (19). 
After bounding eTiA^/n < e2|Mi|T and summing to yield a    Existence of Preadjoints 
factor of n, (21) becomes Given an operator H: X* -»X*, where X* is the dual 

of some Banach space X, its preadjoint *H is such that 

UWr - -(^^)|| < 2 efl^ll^lPlWII2!! == Ml,       **: * ."* * ^ (W = H- ?0t eVeiy ^r10'-1^ ' 11   T      T     "   " " l rr ln2        preadjomt, but the operators that we are dealing with do. 
n_„ For example, B{. L"[0, T] -» R"* has a preadjoint *B{ 

where Mx is a constant. Now, since (n/rX^,^) -+ »;, R"* -> L![0, T]. Let B^s) denote the matrix valued kernel 
it follows that ((/Z/T)^,.^)"

1
"^"»^   [18, theorem function representing the operator Bv it is very easy to 

10.12]. An explicit bound (for large n) on the norm of check that the operator from Un* to L5[0, r] given by the 
((n/r)^,^)-1 in terms of the norm of W~l can be matrix valued kernel function B[(t) (here ' denotes matrix 
constructed in several ways, one way is by [18, theorem transpose) is a preadjoint to the operator Bv 

10.11] 
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Abstract: Necessary and sufficient conditions for stability and 
performance robustness of discrete-time systems are provided 
in terms of the spectral radius of a certain nonnegative matrix. 
The conditions are easily computable and provide a simple 
and efficient method for computation of the robustness condi- 
tions for SISO as well MIMO perturbations. The problem of 
robust controller synthesis is explored, and an iteration scheme 
for controller synthesis is introduced. 

Keywords: Robustness; robust stability; robust performance; 
structured uncertainty. 

1. Introduction 

In the last decade, the control of uncertain 
systems has gained considerable attention. While 
system behavior is governed by precise and fixed 
laws and principles, it is almost always impossible 
to get an exact mathematical model for the sys- 
tem due to the complexity of such systems and 
the difficulty of measuring various system param- 
eters and accounting for all its dynamics. As a 
result, system models which partly capture system 
behavior must be used, and the system to be 
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sity, Ames, IA 50011, USA 

* This research is supported by NSF grant ECS-9110764. 
** This research is supported by grants NSF ECS-8914467 
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controlled is viewed as being uncertain, beyond 
the information provided by its model. 

Aside from system uncertainty, one is usually 
concerned with signal uncertainty. Uncertain sig- 
nals model various disturbances which may affect 
the system. Such disturbances are not completely 
arbitrary and are usually assumed to belong to a 
certain class of signals. One such class of signals 
contains those signals which have a bounded L2 

norm. These signals are bounded in energy. When 
designing controllers with the objective of mini- 
mizing the effect of these signals on the energy of 
certain system output signals, the H° techniques 
provide a systematic procedure for achieving this 
task. In many occasions, however, it is the magni- 
tude of the disturbance and output signals that is 
of concern. In this case, the class of uncertain 
signals considered is that containing signals with 
a bounded IT norm. In this case, the design 
techniques are provided by the L1 theory. 

While the H" and L1 methodologies provide 
analysis and synthesis techniques for nominal lin- 
ear time-invariant systems, they do not directly 
address system.uncertainty. The issue of system 
robustness to uncertainty in the ET setup has 
been addressed by various researchers. Of partic- 
ular interest is the notion of structured uncer- 
tainty. The significance of treating structured un- 
certainty is that it reduces the conservatism in the 
analysis and design by incorporating information 
about the location of the uncertainty in the sys- 
tem. This problem has been introduced and first 
studied in [13,14,3,15,4]. A robustness measure, 
termed km, which treats structured uncertainty 
was introduced in [15] and a similar measure, 
termed the Structured Singular Value (SSV) or 
\L, was introduced in [3]. The computation of the 
SSV, which is equal to l/km, can however be 
computationally difficult especially in the pres- 
ence of a large number of perturbation blocks. In 
particular, exact computation of the SSV is in 
general possible only when 3 or fewer perturba- 

0167-6911/93/S06.00 © 1993 - Elsevier Science Publishers B.V. All rights reserved 
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tion blocks are present. Computable upper and 
lower bounds can be used to obtain estimates in 
the case of more than 3 blocks. 

Robustness in the L1 framework in the pres- 
ence of norm-bounded perturbations has also 
been addressed. In [1] necessary and sufficient 
conditions for stability robustness were provided 
in the presence of unstructured perturbations, i.e. 
for one perturbation block. In [6,7] the problem 
of minimizing, in the presence of unstructured 
uncertainty, the worst case norm of the sensitivity 
function subject to stability was addressed, thus 
adding a performance requirement. An exact ex- 
pression for the worst case norm of the sensitivity 
function was provided, and it was shown how 
controllers which minimize this expression can be 
designed while achieving robust stability. These 
results were generalized in [8,7] where necessary 
and sufficient conditions were derived for stabil- 
ity robustness  in  the  presence  of structured 
norm-bounded uncertainty, and therefore an ar- 
bitrary number of perturbation blocks can be 
treated. These conditions were given in terms of 
the region in which a system of inequalities has 
its solution. The system of inequalities is com- 
pletely determined by the interconnection of the 
nominal system at hand and stabilizing controller. 
Even though conditions for stability robustness 
are important in their own right, they also give 
conditions for performance robustness. This has 
been demonstrated in [8] where it was shown that 
a performance robustness problem can be con- 
verted to a stability robustness problem by adding 
a fictitious perturbation block to represent the 
performance. The conditions for stability robust- 
ness which result are exactly those for perfor- 
mance robustness for the original problem. In 
this paper we establish a connection between the 
conditions for stability robustness and the spec- 
tral radius of a certain nonnegative matrix. The 
use of the spectral radius conditions allows one 
not only to obtain numerically efficient ways for 
determining when a certain system achieves ro- 
bust stability and performance, but it also pro- 
vides the means to design robust controllers for 
any  number  of  perturbation  blocks.  This   is 
achieved by an iterative scheme for controller 
synthesis similar to the D - K iteration in the p 
theory. The results in this paper have been previ- 
ously presented by the authors, without any of 
the proofs, in [10,9]. 

2. Notation and preliminaries 

We use R+ to denote nonnegative real num- 
bers. 

Since we will be working with signals with 
bounded magnitude, the class of signals of inter- 
est will be ./". It is the space of all bounded 
sequences of real numbers, i.e. x = {x(k)}'„0 e/°° 
if and only if sup* | x(k)\ < «. If x belongs to /" 
then I 

IUL-sup|*(*)|. 

We will be dealing with vector signals with each 
component belonging to /". The class of such 
signals will be denoted by /" where n is the 
number of components. Given x = (x1,...,xn)e 

|| x IL = max || xt ||„. 
i 

Given a stable linear shift-invariant system 
(LSI), its impulse response will belong to tl, the 
space of absolutely summable sequences. If x e /l 

then 
oo 

II*Hi« L I*(*)!<-• 
it-0 

The sf norm, II • ||^, of a z-transform of an (x 

sequence, is the (x norm of that sequence. So 
for an LSI system, this will be the Il norm of the 
impulse response of that system. This is a mea- 
sure of the maximum amplitude gain of the sys- 
tem or the induced l" norm of that system. For 
a system matrix, the .af-norm is the maximum row 
sum of individual SISO entry norms. Inthis paper, 
whenever the sf norm is used, it is assumed that 
the quantity whose norm is taken is the transfer 
function of a certain LSI system. 

We will be dealing with perturbations of 
bounded norm. We use ApXq to denote the set of 
admissible perturbations. In the set of all opera- 
tors mapping /" to l~, with induced /" norm 
less than or equal to one. Hence, 

J'x« := {A: A is strictly causal 

II 4xlU 
and sup —r.—IT— ^ 1 

x*o   11*11- 
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If p = q - 1 we will refer to this set as A. A 
related set is 

^([(/>i><?i).•••-(/>„> <?„)])> 

the set of all diagonal operators of the form 
A = diag(4j,..., AJ where At eJ"'x«'. If /?,. = qt 

= 1 for all /, we refer to this set as Sin). It 
should be noted here that the perturbations are 
allowed to be time-varying and nonlinear. The 
results of this paper will remain true if the per- 
turbations are restricted to be linear and possibly 
time-varying, or if the perturbations are restricted 
to be time-invariant but allowed to be nonlinear. 

For the remainder of this section we collect 
some of the results available on nonnegative ma- 
trices which will be used later on in this paper. A 
matrix A is said to be nonnegative if all its 
entries are nonnegative. In this case, we write 
A 2: 0. By A 5: B, we mean A-B^O. We now 
state the following definition. 

Definition 1. An n x n matrix A is reducible if 
there exists annXn permutation matrix P such 
that 

PAPT = An 

0 
Al2 

A22 

where An is an rXr submatrix and A22 is an 
n-rXn — r submatrix, with r<n. 

A matrix which is not reducible is called irre- 
ducible. Irreducible nonnegative matrices have a 
variety of interesting properties. Among these is 
the following theorem which is a consequences of 
Perron-Frobenius theory for nonnegative matri- 
ces (See [5]) 

Theorem 1. Let A = (a/;) be a nonnegative square 
matrix. Then 

{I) A has a nonnegative real eigenvalue equal 
to its spectral radius, p(A). 

<2> To p(A) there corresponds an eigenvector 
r>0. If A is irreducible then r > 0. 

(3) p(A) is a monotone increasing function of 
any of the entries of A. If A is irreducible, the 
monotonicity is strict. 

<4> Let r,>0 for i=l,...,n. Then 

'   l  A p{A) <max- 2>ya,v. 
''    ri j-\ 

n n 
<5>    min £ aij<p(A) z max £ au. 

J-l '    ;-l 

3. Problem setup 
i 

We start by setting up the robustness problem 
for LSI systems. Consider the system in Figure 1. 
In the figure, &Q is a nominal LSI plant. W is a 
LSI controller stabilizing &0. For the analysis 
problem, f is assumed given and fixed. M repre- 
sents the nominal part of the systems composed 
of the nominal LSI plant and the LSI stabilizing 
controller. M can be either continuous-time or 
discrete-time. We will assume it is discrete-time, 
although the results carry over with obvious mod- 
ifications to the continuous-time case, w repre- 
sents the unknown disturbances. The only as- 
sumption on w is that it is bounded in magnitude, 
i.e. w belongs to the space C", and we assume 
that || »v L <, 1. z, on the other hand, is the 
regulated output of interest. Av...,An are the 
system perturbations modelling the uncertainty. 
Each perturbation block 4, is causal and has an 
induced /"-norm less than or equal to 1. There- 
fore, each Ai belongs to A*'**'. Whereas M is 
given and fixed (at least in the analysis problem 
where a controller is given), each perturbation 

M 
w 

A, 

An 
A 

Fig. 1. System with structured uncertainty. 
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block. Aj is allowed to vary over the set Ap'x"'. 
The combined effect of all perturbation blocks 
can be equivalently captured by one perturbation 
block, A, which has a diagonal structure. A now 
belongs to the class 

^([(Pi. 9i).•••.(/>„. «„)])■ 

With this setup in mind, the system is said to 
achieve robust stability if it is /"-stable for all 
admissible perturbations, i.e. for all ■ 

A €#([(/>„ «,),...,(P„, <?„)])• 

It is said to achieve robust performance if it 
achieves robust stability and at the same time 
|| &~sw || < 1 for all admissible perturbations, 

where 9~zw is the map between the input w and 
the output 2. Note that when the perturbation A 
is zero, || Fzw II is the induced /" norm of the 
nominal system and is equal to the lx norm of 
the impulse response of the map &~zw. 

Next, we briefly discuss the relationship that 
exists between stability robustness and perfor- 
mance robustness. When M is time-invariant, it 
was shown in [8] that a certain interesting equiva- 
lence between stability robustness and perfor- 
mance robustness holds. More specifically, a per- 
formance robustness problem can be treated as a 
stability robustness problem. Consider the two 
systems in Figure 2. The first system in the figure, 
System I, is that corresponding to the robust 
performance problem and has n - 1 perturbation 
blocks. By adding a fictitious perturbation block, 
AP, where APe.A, we get System II. System II, 
therefore, corresponds to a stability robustness 
problem with n perturbation blocks. The follow- 
ing theorem, whose proof can be found in [8], 
establishes the relation between the two systems: 

w 
M M 

A 

System I System II 
Fig. 2. Stability robustness vs. performance robustness. 

Theorem 2. System I achieves robust performance 
if and only if System II achieves robust stability. 

A similar relationship holds when the pertur- 
bations are time-invariant and when we.(2 as 
has been shown in [4]. As a result of this theo- 
rem, we can focus our efforts on finding stability 
robustness conditions. Conditions for perfor- 
mance robustness will automatically follow from 
the stability conditions. 

4. Stability robustness analysis 

In this section, we state our main theorem 
establishing the necessary and sufficient condi- 
tions for robust stability of System II in Figure 2 
in terms of the spectral radius of a certain matrix 
as well as other conditions. We do this in the 
SISO and MIMO cases. 

4.1. SISO perturbations 

When the perturbations are SISO, the class of 
admissible perturbations is 3>(n). As a result, M 
will have n inputs and n outputs. It can be 
expressed as follows: 

M = 

Mu 

Mnl 

M In 

M„ 

Since M is LSI and stable, each M|; has a pulse 
response which belongs to the space /[. The /' 
norm, or the sf norm of Mtj can be computed 
arbitrarily accurately. We define M to be the 
following matrix of norms 

M== 

HAfuIL 

WMnl 

I Mln IL 

IIM„JL 

Defining 31 to be the set of all nXn real 
diagonal matrices with positive entries on the 
diagonal, we can state the following theorem: 

Theorem 3. The following are all equivalent: 
<1> System II in Figure 2, with &(n) as the 

perturbation class, achieves robust stability. 
<2> The system of inequalities: x<Mx has no 

nonzero solution x e W which satisfies x^O. 
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<3>  p(M) < 1. 
<4> mfRe^\\R-lMRV<l. 

Proof. That <1> and <2> are equivalent has been 
shown in [8]. To show <2> implies <3> suppose 
p(M) ^ 1. Since M is a nonnegative matrix, its 
spectral radius is itself an eigenvalue and the 
associated eigenvector, say x, satisfies x ^ 0. The 
fart that p(M) is an eigenvalue implies that 
p(M)x = Mx. Since x ^ 0 and p(M) £ 1 we have 
x <>Mx. Thus, <2> implies <3>. 

We now show <3> implies <4>. Suppose <3> 
holds. If M is reducible, form Mc by perturbing 
M slightly so that 

(a) Me*M, 
(b) Me is irreducible, and 
(c) p(Me) < 1. 
This can always be done by slightly increasing 

the zero entries in M, and using the continuity of 
the spectral radius to ensure the spectral radius 
does not increase beyond one. The resulting Me, 
being positive, will be irreducible (see [5]). If 
r > 0 is the positive eigenvector corresponding to 
the spectral radius of Mt guaranteed by Theorem 
1 then clearly 

p{K) = T E niK), Vi. 

From Theorem 1, this implies that 

p{Mc) = mf max ^ £ r,.(M£),r (1) 

Furthermore, MC>M implies that 

1   " 
inf max- £ r,(MA, 

1   " 
> inf max — E rMu- (2) 

n>o   i   rljml 

Combining (1), (2), and the fact that 

II MIL-max £ ||M,yIL 

we have that 

inf ||i?-1M/?IL<l. 
Res? 

This completes the proof that <3> implies (4>. 

Finally, we show that <4> implies <1>. Suppose 
<4> is true. Then for some Re.<%, 

||/?-IAfRlL<l. 

From the Small Gain Theorem, it follows that 
U-R~lMRA)-x is /"-stable for all Ae9{n). 
But since R~XAR = A, it follows that 

(I-R-lMRR~lAR) 
-l 

is /"-stable for all A e^(/i). This in turn implies 
that /?"'(/-MA)~lR is {"-stable for all Ae 
2f(n), which is equivalent to (I-MA)'1 being 
/"-stable for all A eSt/i). It can be easily seen 
[8] that this last condition is necessary and suffi- 
cient for robust stability of System II in Figure 2. 
This completes the proof.   D 

The proof of Theorem 3 above suggests a way 
to compute the optimal scaling matrix, R, which 
achieves the infimum when M is irreducible. This 
is summarized in the following corollary: 

A A 

Corollary 1. Let M be as defined above. If M is 
irreducible, then 

inf IIä-^äIL-IIä-'MäIL, 
«es? 

where R ~diag(rv...,rn), with (rv^..,r„)T being 
the eigenvector corresponding to p(M) which is an 
eigenvalue of M. 

Proof. Follows directly from the arguments used 
in the proof of Theorem 3.   .D 

Another fortunate consequence of the nonneg- 
ativity of M is that both the spectral radius and 
its corresponding eigenvector can be computed 
very easily using power methods. To see this 
consider the following theorem (see [18]): 

Theorem 4. Suppose M is primitive (Mm > 0 for 
some positive integer m). Let x > 0 be any n vec- 
tor. Then 

(Mm + 1x)i . (Mm+1x), 
min i <p(M) < max T . 

.      (Mmx)i i      (Mmx)i 

Furthermore, the upper and lower bounds both 
converge to p(M) as m -*«. 
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This theorem can be used to compute the spec- 
tral radius for large matrices by computing the 
upper bound and the lower bound for the spec- 
tral radius which are guaranteed to converge to 
the spectral radius. Finally, if M were not primi- 
tive, it can be made so by replacing every zero 
entry with an e > 0. Since the spectral radius is a 
continuous function of the matrix entries, it fol- 
lows that the solution of this modified problem 
will approach that of the original one as e ap- 
proaches zero. 

4.2. MIMO perturbations 

We now discuss the case when each of the 
perturbations can have multiple inputs and out- 
puts. In this case, the class of admissible pertur- 
bations is 

&[(Pu <?!);•••;(/>,.. 9j] 

== {A = diag(41)...,4I): A^A"«'}. 

We define 

p-=(p,,...,p„)    and    q-=(qu...,qn). 

M can be partitioned according to the structure 
of the perturbations. Hence, 

Accordingly, (Mij)kj will have pj inputs and one 
output. Similar to the SISO case, we define 

M = 

Mr 

M. nl 

Mln 

M„ 

where Mtj has Pj inputs and qi outputs. In order 
to refer to the rows of MLj we denote the mth 
row of Mtj by (Ml7)m. 

Before we discuss the next theorem giving 
necessary and sufficient conditions for stability 
robustness, we need some definitions. First, de- 
fine 

3T:= {(ku...,kn): kt is a positive integer 

and 1 ^ ki, ^ qt). 

From this definition it is clear that the set X has 
exactly   njL,*?,    elements.   To   each    k = 
(&!,...,£„)e.T we define: 

Mk-= 

{Mnl)kn 

(Mln)ki 

(M„„K 

Mk-= 

KMn)kih 

W{Mnl)kX 

ll(Mln)AlIU 

IK^.«)*.IL 

As has been shown in [8], it is Mk for k eJT that 
determine the robust stability of the system. This 
will be expressed in the next theorem. 

Finally, given R = dia^rl,...,rn)e^, and a 
vector of positive integers /-=(/j,...,/B), we de- 
fine 

R,-=dizg(rl,...,rl,...,rn,...,rn). 

with r( repeated /, times, / = 1,..., n. Clearly, R, 
depends on both R and /. 

Before we state the main robustness theorem 
for the MIMO case, we need the following lemma: 

Lemma 1. Let Ax and A2 be nXn irreducible 
nonnegative matrices such that for some R e.&: 

<1> All the rows of R~lAxR have equal sum. 
<2> The last n-\ rows of R~lAxR and 

R~lA2R are identical. 
(3> The sum of the 1st row of R~lA2R is 

strictly larger than the sum of the 1st row of 
R~lAxR, i.e. 

ZiR-^R^K^iR-'A^j. 
j-i y-i 

Then p(A1)<p(A2). 

Proof. It follows from part <5> of Theorem 1 that: 
oo 

E(Ä-l41i?),7 = p(i?-l41i?) 
y-i 

<p(R-1A2R)   Vi. 

Let Ä2 be any matrix formed from R~XA2R by 
retaining the last n - 1 rows and subtracting posi- 
tive quantities from the entries of the first row of 
R~lA2R so as to make the sum of the 1st row 
equal to the sum of any of the remaining rows. 
Applying <5> of Theorem 1 to Ä we get that 

p(R-1A1R)=p(A). 
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But from part <3> of Theorem 1 we have that 

p(A) <P{R-lA2R). 

Thus 

P(R-lA1R)<p(R-1A2R) 

and the result follows from the similarity of At 

and R~lA,R.    D 

Theorem 5. The following are all equivalent: 
<1> System II in Figure 2, with 

9[(Pi,Qi)l — '>(P*>Q*)) 
as the perturbation class, achieves robust stability. 

<2> Given any keJT, the system 

x<.Mkx, 

has no nonzero solution xeR" satisfyingx>0. 
<3> Forallk<=jr,p(Mk)<l. 
<4> MRe^\\R;1MRp\\J/<l. 

Proof. The equivalence of <1> and <2> was dis- 
cussed in [8]. The equivalence of <2> and <3> is a 
direct consequence of the equivalence of <2> and 
<3> in Theorem 3. It remains to show the equiva- 
lence of <3> and <4>. In doing that we will make 
the assumption that for each ke.5T, the nXn 
matrix Mk is irreducible. If this were not the 
case, it can be made irreducible by adding to each 
entry a sufficiently small e > 0. It is not difficult 
to show that the equivalence of <3> and <4> for 
the modified irreducible matrix implies the equiv- 
alence of <3> and <4> for the original reducible 
matrix. 

To show the equivalence of <3> and <4>, first 
choose iel such that 

p{Mk)= maxp(Mjt). 

Now, let R = diagCrj,..., r„) be the matrix formed 
from the eigenvector corresponding to Mk. We 
therefore have 

p(Mi)-Z(R-%R)u V/. (3) 

In fact, equation (3), together with part <4> of 
Theorem 1 and the definition of the ja^-norm 
imply that 

(4) 

p(Mk) = \\R->MkRp\l 

=  inf \R-'MkRp\^. 

It follows from equation (4) and the definition of 
the j/-norm that: 

<\\R-lMRp\l   Vi?e^. 

Accordingly, to prove the equivalence of <3> and 
<4> it is enough to show that 

p(Mk)=\\R;lMRp\l. (5) 

Assuming p(Mj)< WR-WRpW*, we next show 
that this results in a contradiction, and thus (5) 
must hold. Without loss_of generality, we may 
assume the s/-nonn in IIR~lMRp\\sf is achieved 
at the first row. Defining k' ■= (1, k2,..., kn\ we 
therefore have 

p{Mk) <\\(R-lMk,Rp)1\l- £ (R-*Mk.R) 
i-i 

(6) 

Ä&5P' 

From equations (3) and (6) it is clear that 
R~lM-kR and R~lMk,R satisfy the hypothesis of 
Lemma 1. It follows from Lemma 1 that p(Mk)< 
p(.Mk>), which is clearly contradiction. The proof 
is now complete.    D 

As was the case in the SISO perturbations 
case, the optimal scaling matrices Rp and Rq 

achieving the infimum can be computed from a 
certain eigenvector. Here^the eigenvector used is 
that corresponding to p(Mk). This is summarized 
in the following corollary: 

Corollary 2. Let M be the interconnection system 
matrix, partitioned according to the structure of 
the perturbations as shown above. Let k be such 
that 

p(M-k) = maxp(Mk). 
i 

If Mk is irreducible, then 

M\\R-'MRp\l-\R-'MRpl, 

where R = diag(r,,..., r„), with diagCr^ v., f„) be- 
ing the eigenvector corresponding to p(Mk). 

Proof. Follows from arguments used in the proof 
of Theorem 5 above. 
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5. Optimal scalings and robust controller synthe- 
sis 

In this section we discuss the uses and some of 
the limitations of the optimal scalings in the 
synthesis of robust controllers. Since M forms the 
interconnection of the nominal LSI system and 
LSI controller it can be put in the following form: 

M = TX-T2QT3 

where Tv T2, and 7"3 are stable and'depend only 
on the nominal i plant. Q, is a free parameter to 
be chosen from the set of all stable rational 
function and determines the controller according 
to the Youla parametrization. In the analysis 
problem, ß is fixed and, as a result, so is M. For 
synthesis, we will need to find an appropriate ß 
which results in a controller providing satisfactory 
robustness properties. The robustness synthesis 
problem for SISO perturbations can thus be 
stated as follows: 

Find 

inf  p(M) 
Q stable 

=  inf   inf l*-1^,-r2er3)j? L. 
Qstable Re.31 

The spectral radius is a nonconvex function of 
ß and so it is not clear how the optimization 
problem in the left hand side of the equation 
above can be solved. The optimization problem at 
the right hand side of the equation involves a 
norm minimization, and therefore the following 
iteration scheme can be used: 

1. Set i — 1, and R0 ■= I. 
2. Set 

ß,.:=arg   inf   \\R-.\iT, - r2ßr3)Ä/_1L. 
Q stable 

3. Set 

/?,== arg inf WR-^-T&TJRl,. 
r 

4. Set i ™ i + 1. Go to step 2. 

The optimization problem in the second step 
of the iteration involves solving a standard lx 

norm minimization problem. This problem has 
been discussed in [2,11,12,16,17] and software 

packages for its solution exist and involve only 
linear programming. The optimization problem in 
the third step involves computing the eigenvector 
of a certain matrix as shown in Corollary 1 and 
can be solved easily. Furthermore, it is clear that 
this iteration converges since the infimum values 
obtained in the consecutive application of steps 2 
and 3 will be monotonically decreasing and 
bounded below by zero. It is also clear that the 
iteration procedure can be terminated at step 3 
whenever a desirable robustness level is achieved 
as indicated by the value of the infimum at that 
step. It should be pointed out at this point that 
this scheme is similar to the D - K iteration in p 
theory. One main difference is that the scaling 
matrices here are constant (i.e. non-dynamic) as 
opposed to the frequency dependent scaling ma- 
trices which arise in the p case. As a result, the 
optimal scaling matrices here are much easier to 
compute. Having mentioned that, it is important 
to keep in mind the main difference between the 
two approaches: the type of perturbations consid- 
ered here are norm-bounded possibly time-vary- 
ing, as opposed to the norm-bounded time-in- 
variant perturbations considered in fi theory. 

Before we end this section, we make some 
remarks about the convexity properties of the 
synthesis problem stated above. While 

||/?-1(r1-r2ßr3)/?t 
is not convex in R, when R is replaced by exp(Af) 
with X = diagUi,..., x„), where xt e R then 

||exp(-Z)Mexp(X)||Jy 

will be convex in X. This is a direct consequence 
of the definition of the sf norm and the convexity 
of exp(-). This fact is not used anywhere since the 
optimum eigenvector can be computed directly by 
computing the eigenvector corresponding to the 
spectral radius. It is easy to show that 

is convex in ß when R is fixed. Unfortunately, it 
is not convex in both R and Q, and one cannot 
conclude that a local minimizer for this problem 
is a global one. In fact there are no guarantees 
that the iteration converges to a local minimum 
as it may get stuck at a saddle point. Numerical 
experiments show that the iteration scheme can 
significantly reduce the spectral radius for many 
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problems, resulting in a controller with satisfac- 
tory robustness levels. At the same time, there 
are examples for which the final iteration limit is 
not small enough, and other initial scaling matri- 
ces give much better results. In the worst case, 
the above iteration scheme can be effectively 
used as a starting point to get solutions which can 
be further refined using other techniques. This 
remains an interesting topic for future research. 

6. Conclusion 

We have shown that certain robustness condi- 
tions obtained by the authors in a previous work 
are closely related to the spectral properties of 
certain matrices. This sheds a new light on the 
robustness analysis problem with structured un- 
certainty, provides new and more efficient meth- 
ods for the computation of the robustness condi- 
tions, and provides new directions for exploring 
the robust controller synthesis problem. 
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Abstract: In this paper we pose and give a complete solution to an analog of the ST2 problem for sampled-data system. We 
motivate and develop a natural generalization of the X"2 cost to periodic systems, which is then applied to the continuous-time 
closed-loop mapping in a sampled-data control system. It is shown that the cost criterion developed is actually a norm in an JP2 

space of Hilbert-Schmidt operator valued functions. We give state space solutions to the optimal and suboptimal controllers 
synthesis problems in this new norm by establishing an equivalent standard Jf2 problem. 

Keywords: ^-optimization; sampled-data systems; periodic systems; lifting technique; infinite dimensional systems. 

Introduction 

We consider control systems made up of a continuous-time time-invariant generalized plant and a 
discrete-time time-invariant controller connected together in feedback by sample and hold devices. 
Figure 1 shows this arrangement which is a sampled-data control version of the so-called 'standard 
problem'. We call the mapping from the exogenous input w to the regulated output z, the closed-loop 
mapping Twz. One generally desires to synthesize a controller such that some norm of the closed-loop 
mapping is minimized or kept small. When Twz is time invariant, the more popular norms to minimize 
are the Ü, ST™ or the ^2 norms. 

In the sampled-data system of Figure 1, Twz is not time invariant but is periodically time varying due 
to the presense of the sample and hold devices. It is necessary to deal with sampled-data systems as time 

VJ Z 

u 
G 

y 

H' 
C ST 

Fig. 1. Hybrid discrete/continuous-time system. 
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varying, if one is to consider their continuous time (e.g. inter-sample) behavior, to emphasize this fact we 
call the system in Figure 1 a hybrid system. In the case of the L1 or the MT problems, there is little 
ambiguity in generalizing the problem statement to include time-varying systems. The Ü and SIT 
problems have been originally motivated as those of minimizing the Lx and L2 induced norms 
(respectively) of systems, and it is natural to pose the problem of minimizing these induced norms for 
time-varying systems. 

The %"2 problem, on the other hand, is normally stated for time-invariant systems, and there is no 
immediate or widely accepted generalization of this norm to time-varying systems. There are several cost 
criteria which can be proposed that are equivalent to the %~2 cost when specialized to time-invariant 
systems, but are different when applied to time-varying systems. Recently, [3] considered a problem 
where the L2 norm of the response to a delta input is minimized, and [2] considered problems similar to 
minimizing the L2 to L°° and the Ü to L2 induced norms respectively. 

In the following section, we will present a different generalization of the S?2 cost which we will argue 
is the natural one. We review the deterministic set up of the SIT2 problem and from it motivate a 
generalized deterministic time-varying problem, then we derive an expression for the generalized cost for 
periodic systems in terms of their lifted equivalents. We then recall the stochastic interpretation of the 
ß?2 problem and show that the proposed generalization has a natural stochastic interpretation as well. In 
the second section, we solve this new ^2 problem for sampled-data systems by establishing an 
equivalence between it and a standard discrete-time time-invariant /f2 problem '. 

Sampled-data systems are periodically time varying in continuous time. The analysis of periodic 
systems is greatly simplified by the use of the lifting technique, which provides for a strong equivalence 
between continuous-time periodic systems and a certain type of infinite dimensional but time-invariant 
systems. Now we recall very briefly some facts about the lifting framework from [1], [2], we refer the 
reader to these papers for the full details. A continuous-time T-periodicL2-stable linear system G can be 
put in correspondence with a discrete-time shift-invariant system G which acts on L2[0, r]-valued 
discrete-time signals, i.e. signals in the space /L

2:[0,T]. G is called the lifting of G, and it has infinite-di- 
mensional input and output spaces but a finite dimensional state space (of the same dimension as G); for 
lack of a better term, we will abuse terminology by calling such systems infinite-dimensional. The system 
G is represented by a convolution sum in terms of what might be called its operator valued 'impulse 
response' sequence {G,}. For each i, G, is an operator on L2[0, T], and the system G acts on a signal 
{«,.}e/t

22[0T] by 

i 

y = Gu,       y,= LG,._,«y. 
y-o 

The generalized J?2 cost we define will take on a very familiar form when viewed in terms of the lifted 
system G. 

1. Generalizing the ST* cost to time varying systems 

1.1. Deterministic setup 

Let us begin by stating the %T2 problem for scalar time-invariant systems. Let GO) be the impulse 
response of a scalar time-invariant system (strictly proper, we assume this from now on) which we donate 
by G. The %T2 norm of the system is defined by 

HG||j^=r(G(0)2df. (1) 
•'o 

1 After this work was completed, we received [5], where the same problem was considered. 
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This norm is usually interpreted deterministically as the norm of the response to a fixed input. If by G[u] 
we denote the output of the system given input u, then we have 

IIG||j*-||G[5]||£, 
where the input 5 denotes the-delta generalized function 5(f), and L2 is the Hilbert space L2[0,°°). Thus 
the SIT2 norm of the system G is the L2 norm of its response to a single input. This interpretation of the 
«r2 norm breaks down in the multivariable case. If G is a multivariable time-invariant system and GU) is 
its matrix-valued impulse response, the &2 norm is defined by 

IIGIli—tr|/V(OC(Odr). (2) 

The norm so defined cannot be given the interpretation of the L2 norm of the response to a fixed input. 
However, a slightly different interpretation can be given as follows; if by 5' we mean the vector signal 
which has a delta function in the /-th position and zeros in the other positions, then the definition given 
in (2) is equivalent to 

HGlli-2- t\\G[S']\\b, (3) 
«-I 

where n is the number of inputs of G. So the %?2 norm is the sum of the squares of the L2 norms of the 
responses to n different inputs; it will be more useful for us to think of this sum as a square average. The 
set of n inputs 'excite' every input channel of the system, and then a square average is taken of all the 
norms of the different responses. Note that (3) does not exactly represent an average since a factor of 
\/n is missing, thus it is actually a multiple of the average, but since we are only interested in motivating 
an interpretation of the JT2 norm, we disregard this difference. If we had used a single input such as 
xSU), where x is some vector in W, then this input excites the system in only one 'direction', namely that 
of x. Thus, (3) characterizes the SP2 norm as the square average of the norms of the responses to a certain 
set of inputs, where the set of inputs are chosen so as to excite all 'parts' of the system. 

The generalization of the %T2 cost which we will give is motivated by the interpretation just given for 
the %T2 cost of a multivariable system. We start with the case of periodic systems. Consider a scalar but 
T-periodic system G described by its kernel (time-varying impulse response) GU, s), which is a 
doubly-periodic function in t and s. The response of G to the single input 5(f) is given by Git, 0). Since 
G is not time invariant, this response GU, 0) could be very different from the response to 5ft(f) ~ 5(f - h), 
a delta applied at some other time h. Since the system is r-periodic we can think of applying many 
different inputs 5A to excite the different 'parts' of the kernel GU, s). Since GU, s) is a r-periodic 
function of s, it is completely determined by its responses to the inputs 5A, for 0 < h < r. SO by analogy 
with the multivariable time invariant case, our set of inputs for a r-periodic system is {5A; 0 < h < r}, and 
the generalized ST2 cost .should be the square 'average' of the L2 norms of the responses to inputs in this 
set. Formally, given a scalar r-periodic system G, its &2 norm is defined by 

\G\fa:=-fT\\G[8h]\\bdh. 
r •'n 

Thus the 'average' is taken by integration. Note how this definition reduces to the standard £'2 norm if 
the system is time invariant, since || G[5j|| L

2 is a constant function of h if G is time invariant. In terms 
of the kernel function G(f, s) we have 

IIG||^=-/"T||G(-,A)IL22dA = -/Tfr(G(f,/I))
2df)dA. 

r ■'o T ^o Wo / 
For a multivariable system G, the appropriate definition is then 

IIG Hi-» == -/Ttr(/V(f, h)G(t, h) df) dA. (4) 
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1.2. The %f2 norm for periodic systems 

The definition given earlier in (4) takes on a form very similar to that for time-invariant systems when 
viewed in terms of the lifting of periodic systems. In fact, we will show that the generalized cost is a norm 
in an J?2 space of operator valued functions. 

To set this up, we first need to review some facts about Hilbert-Schmidt operators. The theory of 
Hilbert-Schmidt operators generalizes notions related to the Frobenius norm for matrices. The space of 
nXm matrices is the linear space of all linear operators from the Hubert space R" to the Hubert space 
Rm. We denote it by 5?(R", Rm); as such, it is a Banach space if given the induced norm. £?(W, Um) can 
also be viewed as a Hubert space if given the Frobenius norm 

MllF-E«?y«tr(.4H). (5) 
ij 

The inner product corresponding to this norm is given by 

(A,B)-=tr(A'B). 

With this norm, .S^R", Rm) is isometrically isomorphic to RnXm. The Frobenius and induced norms are 
related to the singular values {or,} of a matrix A by 

IU || = max a;,        \\A ||| = tr(A'A) = E<r,2, (6) 
'' i 

thus both norms are in some sense measures of the 'size' of a matrix in terms of its singular values. In 
this notation, the &2 norm of a time-invariant system given by its matrix valued impulse response (G(/)} 
is given by 

IIG||i2:=trf/0°G'(r)G(f)dr)=/°0tr(G'(OG(0)^ = /o°
6|IG(OllFd'. 

or if {G,} is the matrix valued impulse response sequence of a discrete-time system, then 

IIGHJ*« Etr(G/G,)= EHG,llF
2=^-6tr(G'(z)G(2))d2 = —rf||G(2)||Fd2, (7) 

,_o ,-o 2^T 2*r 

where the last two equations are in terms of the z-transform of G, denoted by G(z). 
Now let //„ H2 be two Hubert spaces, the space &(Hlt H2) given the induced norm is a Banach 

space. The class of Hilbert-Schmidt operators is a subspace of 5?(HX, H2) which can itself be endowed 
with a Hubert space structure using a norm which is generally different from the induced norm. Let us 
consider operators in ^f(L2„[0, r], L2

m[0, T]) which can be represented by matrix-valued kernel functions 
as 2 

y = Ku,   «eL2
n[0,T];yeL2

m[0,T],       y{t) - fK{t, s)u(s) ds. 

Such an operator is called Hilbert-Schmidt (HS) if 

\\K\\ZS:= [T ftT(K'(t, s)K(t, s)) dt ds <«>, (8) 
Jo Jo 

and the HS norm is given by the above equation. It can be shown that with this norm, the set of HS 
operators is a Hubert space. We denote this space by HS(L2[0, T], L2JQ, T]), or simply HS. In our 
particular application, the operators we will consider on L2[0, T] will be represented by kernel functions 

2 Throughout this paper, we use the same symbol to denote an operator and its kernel function representation, e.g. K and K(t, s) 
above. 
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Kit, s) which are bounded on [0, T] X [0, T] and thus are immediately HS. The relationship between the 
Frobenius and the HS norms is made clear by the following facts [4, Example XI.2.20]. Let K * denote 
the adjoint operator to K, if AT is a HS operator, then K *K is a compact self adjoint operator, and being 
compact, it has a countable number of eigenvalues. Furthermore, its eigenvalue sequence {X.£K*K)} is 
summable, that is 

00 

trzce(K*K) - £ A,(X*^) <», 
i-i 

where the 'trace' defined above is called the trace norm. Note that we use 'tr' to denote the trace of a 
matrix, while 'trace' denotes the trace of an operator. Our use for the notion of a trace of an operator is 
based on the following relationship between the trace of K*K and the HS norm of K [4, Example 
IX.2.20]: 

00 

Iltflräs-traceCK-KJ-EA,^**). (9) 
;-0 

In the space of HS operators, the inner product is given by 

<G1,G2> = trace(G,*G2) 

A comparison between (6) and (9) shows the parallels between the Frobenius and the HS norms. 
We return now to the generalized &2 norm for periodic systems. Let Git, s) be the kernel function 

of an L2-stable periodic system. We make the assumption that it is a bounded function on bounded 
subsets of R2. Recall that the lifting of G, denoted by G, is a discrete-time time-invariant system acting 
on L2[0, 7]-valued signals. The impulse response of G is the operator valued sequence {G,}, where the 
kernel representation of each operator is given [1] by 

G,(f,f) = G(f + /T, f),    t,se[0,r}. 

Recall (4) defining the J?"2 cost for a periodic system 

IIG|£: = -/o
Ttr(/V(r, h)G(t, h) dr) Ah. 

After rearranging the right hand side in terms of the lifted components {G,}, we get 

IIGUJ^-ftrf £ fTG'(t + ri,h)G(t + Ti,h) dt) d/z 

= - f tr( E f&iO, h)d,(t, h) df) dh 

= \ E tr|/Tf/oG/(f, A)G,(?, h) d/i) df) = - E ||d,.||&, 

IIG Wjri = - E trace(G*G,.) = - £ IIÖ, IIHS- (10) 

Note how this formula (10) resembles the definition of the ^'2 norm for time-invariant multivariable 
systems (7) with the Frobenius norm replaced by the HS norm. 

This new norm allows us to put a Hubert space structure on a large class of r-periodic systems (which 
includes closed-loop stable sampled data systems). As before, let G be a strictly causal r-periodic system 
whose kernel function is a bounded function on bounded subsets of R2 (the closed-loop operator in a 
sampled data system satisfies this condition). If {G,} is the operator valued 'impulse response' of the 
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lifting of G, then the previous condition implies that for each i, G, is HS, i.e. G, e HS(L2[0, T], L2JQ, T]). 
If we form the space /£s with the norm precisely given by (10) we obtain a Hilbert space. One can take 
2-transforms of elements in /„s ^y 

G(2):=E^,> 
i-O 

and following [7, Chapter 5], the image of /£s under the z-transform is exactly <r£s, which is the «T2 

space of HS-valued functions that ar analytic in the unit disc with the norm given by 

IIG(z)||^s==^-(£l|G(z)llHsdz = ^trace(G*(2)G(z))d2, (11) 

where the integral j> is over the unit circle. The 2-transform affords an isometric isomorphism between 
f£s and JP&s, thus this identification justifies calling this new norm an JT2 norm. The striking similarity 
between the expressions for the J*£s norm (10), (11) for periodic systems, and the standard Sf2 norm 
for time-invariant systems (7), argues that this is the natural extension of the &2 norm to periodic 
systems. 

1.3. Stochastic interpretation 

Let {u(t)) be a zero mean stationary white noise stochastic process defined on the time interval 
(-oo, +oo). If {u(t)} is the input to a stable linear time-invariant system G, then the output process 
y = Gu, is stationary and the variance at any time is equal to the %f2 norm of G: 

tr(£{y(0y'(')}) = IIGlLk 
Thus the SIT2 norm is usually given the interpretation as the variance of the error resulting from an input 
of white noise. 

If the input is a white noise process on the time interval [0, »), it is no longer stationary and the 
output is also not stationary, and the variance of the output process depends on time. In this case the &2 

norm is the steady state value of this variance, i.e., 

lim ti(E{y(t)y'(t))) = \\G\\^. 
f-»oo 

The above expression leads to a possible definition of the generalized %T2 cost when G is time varying. 
In this case the output process is no longer stationary, and one might think of defining the cost as the 
'asymptotic average' of the output variance (AOV) by 

AOV:= lim — [Mtr(E{y(t)y'(t)}) dt. 
M — <x M •'0 

We will see that AOV is the generalized %T2 norm previously defined for periodic systems. 
Let G be a causal time-varying linear system that is given by its kernel function G(t, s). If the input 

{u(t)} is a white noise process supported on [0, oo), then the output process y has a correlation function 
given [6] by 

£{y('i)v('2)} «*,(*!, h)=£G(t1, r)G'(t2, r) dr. 

Note that i?y(r„ t2) is thus equal to the kernel of the operator GG*. From the above equation the 
expression for AOV is 

AOV= lim ±;[\(RJt,t))dt=  lim -J- fMtx[f'G(t, r)G'(t, r) dr) dt. (12) 
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The above expression can be interpreted in terms of the Hilbert-Schmidt norm defined earlier. For a 
linear operator A: L2[0, «.) -»L2[0, °°), denote by IIM(A) the 'truncated' operator IIM(A)~ 
ni?\o.M)A I L*io.My K the operator A is represented by a kernel function A(t, s), it then follows that the 
operator I7M(A) is represented by the 'truncated' kernel function, i.e. A(t, s) for t, s e [0, M]. In light 
of this fact and the definition of the HS norm (8), (12) can be rewritten as (after adjusting the limit of 
integration, since G is causal) 

AOV= lim —1| JZ^G) Has. (13) 

We note that the above expression is valid whenever the limit exists. One can take equation (13) as a 
definition of the generalized J^2 cost for time-varying systems. It remains to show that this definition 
agrees with that used earlier for a r-periodic systems (see (10)). First note that from the definition of the 
lifting [1] (after some manipulation) we have, 

— ||i7nT(G)||Hs = - 
717 T 

IG0II 
n-\ 

HS ■110,11 HS' + -IIG„ I HS (14) 

where n is an integer. It is now easy to show that the limit of the above expression (as n -»°°) is precisely 
(1/T)E°°_0 IIG, HHS (see Appendix), which agrees with the previously defined norm for periodic systems. 

Finally we note that in contrast to periodic systems, where the generalized %?2 norm (or AOV) is 
actually a norm on the subspace of r-periodic systems for which it is finite, the AOV is only a seminorm 
on the subspace of time-varying systems for which it is finite. 

2. Optimizing the ^HS norm of sampled-data systems 

We will now address the problem of optimizing the ^"HS norm for sampled-data systems. Since the 
;rHS norm has a more convenient expression in terms of the lifting of the closed-loop operator, we will 
work with the lifted equivalent of the sampled-data system. Figure 2 shows the original hybrid system and 
the equivalent lifted system. We will show that the ^s norm of tne lifted svstem is ecJual t0 tne ^ 
norm of a certain standard (i.e. finite-dimensional input and output) system, thus converting the ^HS 

operator-valued problem into a standard matrix-valued -2"2 problem. 
Let the original generalized plant G (Figure 2(a)) be given by the following state space realization: 

G = 

The assumptions that D2l = D22 = 0 are made to guarantee that the sampler operates on continuous 
signals. The assumption Du = 0 is necessary for the closed-loop operator to be strictly causal. Figure 

A Bx B2 

c, 0 Du 

.C2 0 0 

w Z 

u 
G 

y 

Hr C Sr 

^     z 
W i 

G 

.     2 

i 
i 

U   l 
Hr 

u y Sr 
i 

V l 
i 

G 

C 

Fig. 2. Left (a): Hybrid system. Right (b): lifted system with discrete-time controller. 
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2(a) represents the so-called standard problem, where G is the generalized plant which contains the 
original plant and the systems interconnections. In our setup, the controller in the feedback loop is 
constrained to be a sampled-data controller, that is, it is in the form J?TCyT, where C is a time-invariant 
discrete-time system, and JfT, S"T are the synchronized hold and sample operators (with period T) 

respectively. 
Let Twz«« &~(G, JrTCS*T) denote the closed-loop mapping. To work with the ^s norm defined in 

the previous section, one needs to obtain expressions for the lifting Twz of Twz. This is accomplished as in 
[1] by lifting the generalized plant G and adjoining the sample and hold operators to yield a new 
generalized plant G (Figure 2(b)) such that F(G, C) = fw2 (see [1] for the details). A discrete-time state 
space realization of G is given by 

G = 

A 
A 

B2 

c, A» Da 

A 0 0 

(15) 

with 

C,:Rx-L2[0, T], S,:L2[0, T] -► R*,       A:R'-*R*, 

Dn:L2[0, T]-»L
2
[0,T],       D12:W -L2[0, T], 

where x and u are the dimensions of the state vector and the control input vector respectively, and B2, 
C2 are finite matrices, and 

A=eA\   i.-e^-'fc,,   Cj-Cje"',   Dn = C, c«'-'%_s)Blt (16a) 

and 

^12-^(0*2 + ^12.    Bi = nr)B2,   C2 = C2, (16b) 

where 1() is the unit step function and lKO:=/0' eAs ds. Note that the operators are given (where 
appropriate) in terms of their representing kernel functions. 

The problem now is to minimize the JF^s norrn of ^(G, &- T1l£ next theorem establishes an 
equivalence between this norm and the standard J?2 norm of &~(G, C), where G is a standard 
discrete-time generalized plant constructed from the original problem data, and C is the same controller. 

Theorem 1. Given the infinite dimensional generalized plant G (15), form the finite dimensional generalized 
plant 

G = 

A Br B2 

c, , o Dn 

A 0 0 

where Bx, Cx and Dl2 are finite matrices such that 

B\B\ = BXB*, 

Then we have 

- 
D'„ 

Dn\- 
C* 

'12 

D 12 (17) 

II F(G, C) |£& = -(|| DU Il4s + II F{G, C) \\h). (18) 
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Du 

Ö- [C\ D 12 B1 

G0 
G 

Fig. 3. Decomposition of C. 

Remark. The operator compositions on the right hand sides of the equations in (17) yield finite matrices; 
the matrices B„ C„ Dl2 can then be obtained, for example, by Cholesky factorizations, or symmetric 
factorizations. 

Proof. The proof is accomplished by first performing a decomposition of G as follows: First define 

Ä    ß,     B2 

G = 

A 

A Bx B\ 

Cy 0 Da 

A 0 0 

+ Dn 0 ==G0 + Du 0 

I o oj L 0 o] 

We further decompose G0 into 

G0 = 
0 

0 

/J 

/4 /       f*2 

[Jl 
[c2 

[S] [51 
0         0 

J§,       0 

[o    /. 

[Ci   ä,2]   o 
0 

'oo 
Bx    0 
0     /J 

This decomposition is illustrated in Figure 3. Note that with this decomposition, Gw is a finite-dimen- 
sional system. We also have from Figure 3, 

^(G,C)=D11 + [C,    D12]*-(Goo.C)i,. 

To apply the definition of the <*& norm, let {7;} denote the operator-valued impulse response of 
y(G, C), and {(Too),} the matrix-valued impulse response of ^(GQO, C). It is easy to check that the 
'direct transmission' term (100)0 = 0. Then we have 

7> 
\Dn, i-O, 

'   \[c,  Jo^r«,)^,   i>\. 
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Inc,C)\\Jr^=- E IIr,II& = - 
i-O 

IIö„IIHS+ Etrace(r,*r,) 
i-i 

IAIIIHS+ E trace£*(Tm)', 
i-i 

Cf 

'12 

C,    ö12 (7'0o),fii 

It is a fact that for any two operators A and 5 such that trace(zlß) < » and trace(&4) < », we have 

trace( AB) = trace( A4), 

since given A * 0, A is an eigenvalue of AB if and only if it is an eigenvalue of BA. Using this fact, 

\^(G,C)\\hs=~ |AIHHS+ E + E trace (r«,)', 
i-i     i-i 

C* 

n* 

IIöUIIHS+ Etr (r«,)', 
1-1 12 

II ß„ Has + EtrWr«,)', 
1-1 

c; 
z>; 

CI ä«]^«,),*,*; 

i 

12 

= -[ II A. HHS+ II F(G,C) 11^]. 

The last step is arrived at because G was constructed so that 

[c,   5I2]    o' 
0 /. 

G = 'oo 
ß,    0 

which means that 

This theorem provides a method of optimizing the ^^s norm of a sampled-data system. From (18) we 
immediately conclude that a controller C yields an optimum closed-loop -#"HS norm, if and only if jt (the 
same controller) is the optimum %?2 controller for the finite dimensional generalized plant G. To 
compute the ^„s norm or to perform suboptimal designs, one needs to compute || Dn || HS- Then we 
simply have ' 

\F(G,c)\\ks<y2 \F(G,C)\\>-<y2r - \\Du\\?is. 

Thus the «#"2 problem for the sampled-data_system of Figure 2(b) is equivalent to a standard^"2 

problem for the discrete-time generalized plant G. To actually compute a state space^ realization of G, it 
is not necessary to go through the lifting step: the formulae (16) give the matrices A, C2, B2 directly in 
terms of the matrices of a realizatioii of the original continuous-time plant G. To obtain similar formulae 
for the remaining matrices Bu C,, D12, it is necessary to evaluate the operator compositions on the right 
hand side of (17). Such compositions involve integration of functions with matrix exponentials, and can 
be evaluated using the formulae in [8]. 
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-A       I 0 
0       -A    BXB[ 
0        0        A'  \ 

To conclude, we briefly summarize these formulae. First, the composition BXBX* can be evaluated 
using the matrix exponential 

"r„(T)   rl2(r)   r13(T)l       i 

T(r)=       0        T22(T)    ^(T)   ==exp T 

oo      r33(T)J       \ 
(the two matrices are partitioned conformably). From [8] it follows that 

BXB* = f eA*BxB[ eA'> ds -r^Tjr^r). 
•'o 

T(T) can also be used to evaluate  ||DU|IHS. From the kernel representation of Dxx (16) and the 
definition of the Hilbert-Schmidt norm (8), we write 

ii DU iiäs = tr(ci(/070* 
&AsBiB'i &A'S ds dt)C']' 

where the integral can be evaluated to be 

f f e*>BxB\ eA's ds dt = ^{7)^(7). 

For the other operator composition, using again the formulae from [8] we can write the kernel 
function of the operator [C,    Dn] as 

[<?i(0    Dl2(t)]=[Cl   0]exp{[^    J]r} 
/     0 
0    B2 

(here it was assumed for simplicity that the matrix D12 = 0). The integration involved in the operator 
composition is evaluated using 

exp< 

-A'    0 
-/     0 

0 

C[Cl    0 
0       0 
A    I 
0    0 

T> == 
*H(T)     *l2(r) 

0 $22(T) 

where from the formulae in [8] we conclude that 

C* 

D?2 
[C.    Da] = 

I     0 
*22(T)*12(T) 

/     0 

0    B'2 0    B2 

Thus all the matrices in the realization of G can be computed directly from the realization of the original 
continuous-time system G by elementary matrix algebra and matrix exponentiation. 

Appendix 

We show here that as n -»», the quantity in (14) converges to (1/T)E7_0 IIG,- HHS (for this section, we 
drop the subscript || • || Hs to simplify notation). To this end, first note that the assumption that the limit 
in (13) (and equivalently (14)) exists, implies that the sequence {||G,I|} is t1 summable (if it is not I2 

summable, then the right hand side of (14) can be made arbitrarily large). Second, we check 

-LIIGJ
2
- — \\nnr{G)\ 

(-0 TIT 

1        . 
-lie? 
n 

n-l 
+ •••+ IIG„-,H2+ LWG,\ (19) 
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To conclude, we briefly summarize these formulae. First, the composition B,B* can be evaluated 
using the matrix exponential 

"r„(T)   r12(r). r13(r)"|       , 

T(T)=       0        T22(r)    r^T)   -explr 
o        o     r33(r)J       I 

(the two matrices are partitioned conformably). From [8] it follows that 

JM* - f tAtBiB[ eA's ds =T3'3(T)r23(T). 
•'o , 

AT) can also be used to evaluate  ||DUHHS. From the kernel representation of Du (16) and the 
definition of the Hilbert-Schmidt norm (8), we write 

II Dn I& - tr(C.(/07J e"*«*i &A'S ds d')C>')' 
where the integral can be evaluated to be 

ff eAsBxB[ eA'° ds dt = r;3(r)ri3(r). 
JQ J0 

For the other operator^ composition, using again the formulae from [8] we can write the kernel 
function of the operator [C,    D12] as 

[C,(0    Öu(0]-IQ   0]exp{[^    J]r} 
/     0 
0    5, 

(here it was assumed for simplicity that the matrix Da = 0). The integration involved in the operator 
composition is evaluated using 

exp 
[--1 1} 

0 

C[CX    0 
0       0 
A    I 
0    0 

T>  =: *,,(T)     *,2(T) 

0 *22(T) 

where from the formulae in [8] we conclude that 

C? 

DT2 

[C,   Da\- 
I     0 

0    52 

*22(r)*«(T) 
/     0 

0    B, 

Thus all the matrices in the realization of G can be computed directly from the realization of the original 
continuous-time system G by elementary matrix algebra and matrix exponentiation. 

Appendix 

We show here that as n -»», the quantity in (14) converges to (1/T)E7_0 II6, IIHS (for this section, we 
drop the subscript || • || Hs to simplify notation). To this end, first noAte that the assumption that the limit 
in (13) (and equivalently (14)) exists, implies that the sequence {11G, II) is /    summable (if it is not ( 
summable, then the right hand side of (14) can be made arbitrarily large). Second, we check 

-EHG(ll2--linnT(G) 
i-O 

m 

1 . 
-IIG 
n 

n-\ 
+ •■•+ iic^ji'+Eiid,! 

i—n 

(19) 



12 B. Bamieh, J.B. Pearson / J?2 problem for sampled-data systems 

To show that the right hand side converges to zero, note that the ( * summability of {II G, II} implies first 
that for any e > 0, there exists Nt such that the tail sum E*_Ni IIG, II2 < e, and second, that there exists 
N2 such that (l/fc)E7_0 IIG, II2 < e, for all k > N2. Now choose n = max{N„ /V2}, and observe that 

-EllG(l|2-4-|l^=r(G)H: 
T   •     n Tl   7 

4llG, 

1 " 

«2-l 
IIG„:_IH2+ E iiG,ir 

-EllG,ll2+   E  IIG;II2 

j-i i-n + l 

1 
<-2e, 

T 

and since e can be arbitrarily small, the right hand side of (19) tends to zero as claimed. 
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Abstract: A lifting technique is developed for periodic linear 
systems and applied to the JT00 and JT: sampled-data 
control problems. 

Keywords: Sampled-data system; lifted system; Jf °° optimal 
control; Riccati equation; operator norm. 

1. Introduction 

Given the success of ^"-norm based optimi- 
zation methods for analog control systems, there 
has recently been interest in applying such tech- 
niques to sampled-data systems [3,4,15,18]. The 
key point in utilizing such methods would be in 
their extension to certain periodic time-varying 
systems. An example of such a system is the 
sampled-data control system shown in Figure 1 
below. 

* This research was supported in part by grants from the 
National Science Foundation (NSF ECS-8914467, DMS- 
8811084), the Air Force Office of Scientific Research 
(AFOSR-90-0024, AFOSR-91-0036), the Army Research 
Office (DAAL03-91-G-0019). and NSERC 

The generalized plant G is a continuous-time, 
time-invariant system, Kt is discrete-time, time- 
invariant, S is the ideal periodic sampler with 
period h, and H the synchronized zero-order hold. 
Continuous-time signals are represented by con- 
tinuous lines, discrete-time signals by dotted lines. 
The behavior of the system from the exogenous 
input w to the controlled output z is in general 
time-varying, in fact, periodic with period h. 

To analyze the behavior of continuous-time 
periodic systems, we use a lifting technique similar 
to that used for discrete-time periodic systems in 
[16]. Once we develop the lifting technique, we 
apply it to describe a complete solution to the 
analysis problem of verifying that a given con- 
troller constrains the if2-induced norm of the 
sampled-data system to be less than some pre- 
specified level. We will also show that the lifting 
technique is applicable in fact to all norm-based 
optimization problems, and in particular to sam- 
pled-data versions of the quadratic regulator and 
optimal filtering problems. 

Given the success of ^"-norm based optimi- 
zation methods for analog control systems, there 
has recently been interest in applying such tech- 
niques to sampled-data systems [3,4,15,18,25]. 

The purpose of this note is to introduce the 
lifting technique itself and sketch how it can be 
applied to two optimal control problems. To our 
knowledge, such a lifting procedure was intro- 
duced into sampled-data systems by Toivonen [25], 
who also treats the ^°° sampled-data problem. 
The details of the lifting in [25] are different from 
those given here ([25] represents certain finite-rank 
operators via SVD, which is avoided in our work). 

. The mathematical basis of such lifting techniques 
may be found in [21]. Reference [1] gives a de- 
tailed account of the application of the lifting 
technique to the 3fx sampled-data problem. 
Yamamoto [28] also uses lifting for sampled-data 

0167-6911/91/S03.50 © 1991 - Elsevier Science Publishers B.V. (North-Holland) 
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systems, but he lifts the state as well as the input 
and output. Consequently, his state space is in- 
finite-dimensional, whereas ours is the original 
finite-dimensional one. Also, Yamamoto treats 
asymptotic tracking problems, while optimization 
problems are studied here. 

While this paper was being reviewed, several 
others came into existence. For completeness we 
mention them here: a sampled-data 3V2 problem 
(different from that in [4]) in [2,17]; sample-data 
<ex (i.e., Sex induced norm) in [23,8]; and robust 
stability of sampled-data systems in [24]. 

In the operator norm design framework, this 
lifting technique was developed independently by 
the first two and the latter two authors. Reference 
[1] gives a detailed account of the application of 
this technique to the Jf°°   sampled-data problem. 

2. Lifting continuous-time signals 

In this section we introduce a construction 
whereby one may 'lift' a continuous-time signal to 
a discrete-time one. This construction will also be 
used to associate a time-invariant discrete-time 
system to a continuous-time periodic one. The 
utility of this technique in feedback control is that 
all norms are preserved, as well as the feedback 
interconnection structure. 

We will first work in a rather general frame- 
work before specializing to the case of interest. 
Let 3C denote a Banach space equipped with norm 
||   ||3-. For every integer />>lwe set 

== |«: [0. oo) -3-: jHl«(0 115- d/< ooj. 

As is well-known, Sep(2C) is a Banach space with 
norm 

l"ll/,..r:=(/o°
e|l"(OH5-df 

For p = 2. Sf2(3T) may be given the structure of a 
Hubert space in the usual way. For p = cc, we 
have 

— («:[0. »)-»£": esssup||u(f)||ir<oo} 

(see, e.g.. [22]). Finally, to each of the spaces 
S£,p(SC) we may associate the extended space 
<fp(3C) in the standard way. For all the defini- 
tions see [6]. 

The same types of definitions are of course 
valid in the discrete-time case for sequences. A 
sequence will be written as a column vector, for 

example, 

Again for any Banach space X, define 

i'(ar)-Li +,e*. £|iiMi£<ooJ, 

1 <p< 00, 

/«(*)-{*: sup||*,||,<oo}. 

The norms are given by 

\i-0 

|| 4, II,»,,, = sup II ^ II, 

1/7» 

,    l<p<x>, 

Equipped with this norm lp(2C) is a Banach space 
for all 1</?<OO. Once again for p = 2, l2(&) 
may be given a Hubert structure in the usual way 
[22], and the associated extended space lp{&) 
may be defined: it is just the linear space of all 
sequences in 3C. 

We are now ready to describe the lifting proce- 
dure. For fixed h > 0 let 

Xp-= (ueifff) with support in [0, A)}. 

Once again Xp is a Banach space in the natural 
way with norm induced by || \\PmSr. Suppose u is 
an element of £fe

p(X). Chop u up into its compo- 
nents as follows: 

«o(0-«(0.   0<r</i, 

«,(/) = «(r + Ä|,   0</<A, 

u2(t) = u(t + 2h),   0<t<h, 

etc. 
Each piece.  «,. belongs to Xp. Now form the 
sequence 

*. 

Define the  lifting operator  Wp   to' be the map 
u - yp. It maps &£(9C) to lp{Xp). We sometimes 

' write just W when p is irrelevant. 
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It is important to note that If is a linear 
bijection from &/($:) to /^(Jf) whose inverse 
is given by 

«(0-+/('-*'). hi<t<h(i + \). 

It is easy to show that the restriction of W to the 
Banach space &>{£)c2ef(X) is an isometry, 
<ep(X) -» lp( JT"). 

To recap, W is a bijective linear mapping from 
<£P(9C) to lp(Xp\ and a bijective linear isometry 
from iff 2") to lp(JTp). 

Of course, one may also lift systems. Let 
G:Sep(3C) -+&?(3C) be a linear operator. Then 
the lifted system is defined to be G = WqGW~\ 
mapping lp(JTp) to /e

9(Jf«). By the linearity of 
each of the defining operators, G is linear. More- 
over, if G is also bounded Sep(3C) -J2"7(ST), 
then G is bounded too. Since W^ and Wq are 
isometries, one sees that ||(7|| = ||G||, that is, the 
system (operator) norm is preserved by the lifting. 
Furthermore, since the lifting procedure is isomet- 
ric and preserves all the standard algebraic and 
feedback interconnection operations, feedback 
stability is also preserved under lifting. 

Now if the system to be lifted is /i-periodic, 
then the lifted system will be time-invariant. To 
see this, introduce, the delay operator Dh, defined 
by (Dhf){t)=f{t-h). Gives a (causal) system 
G: &P(2C) -*&?(2C), we say that G is h-periodic 
if it commutes with Dh, that is, DhG = GDh. (G is 
time-invariant if it is A-periodic for every h > 0.) 
Let U be the unilateral shift operator on se- 
quences: 

U 

V "o" 
*1 

*2 
= 

^0 
*,.«=*. 

It is easy to compute that WpDhWp ' = U on 
lp(Jfp) for any p > 1. Consequently, for 
G: <e?{3C) -^Sec

q(3C) A-periodic, 

UG- wqDhw-'wqGw;' 

= WqDhGW;' 

= WfiDhW^ 

= wqGW;'wpDhw;\ 

= GU, 

so G is time-invariant. Consequently, G has a 
convolution representation. 

Finally, we remark that all the standard results 
about the discrete Fourier transform go over to 
the space l2(&). We refer the reader to [21] for 
the details. This may be summarized by the fol- 
lowing result. 

Proposition 1. (i) The discrete Fourier transform is 
an isometric isomorphism from the time-domain 
space l2(&) to the frequency-domain space J(f2(£) 
(the space of square integrable X-valued analytic 
functions defined on the unit disk). 

(ii) // G is a bounded analytic X-valued function 
on the unit disk, it defines a bounded operator on 
Jif2(£) by multiplication, and its induced norm 
equals exactly \\ G \\x. 

By the equivalence between an A-periodic sys- 
tem and its lifting, this theorem provides a 
'frequency-domain' characterization of the .^-in- 
duced norm of an A-periodic system. 

3. Lifting: some examples 

Now we look at what lifting means for state- 
space models. In what follows, G is a continuous- 
time finite-dimensional time-invariant linear sys- 
tem. Its input, state, and output evolve in finite-di- 
mensional Euclidean spaces. Because the dimen- 
sions of these spaces will be irrelevant, they will 
all be denoted by S. Thus G is considered as a 
linear operator on £f2(S). Suppose it has the 
realization A, B, C, D. 

3.1. Lifting G ( 

We begin by lifting G itself. The lifted system, 
WGW~\ acts on l2(Jf2) and consequently has a 
matrix representation of the form 

G„ 0 

'22 

G31        G32 

0 
■ 0 

G 33 
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It is important to note that W is a linear 
bijection from .S?/(2") to lp(JTp) whose inverse 
is given by 

.«(/)-*,('-*/). hi<t<h(i + l). 

It is easy to show that the restriction of W to the 
Banach space Sep(3C) c<ep(SC) is an isometry, 

To recap, W is a bijective linear mapping from 
j?/(5*) to lp(JTp), and a bijective linear isometry 
from jr'(a') to /'(JT"). 

Of course, one may also lift systems. Let 
G:Sep(£)-*&?<,£) be a linear operator. Then 
the lifted system is defined to be G= WqGW~\ 
mapping lp(Xp) to /|(Jf«). By the linearity of 
each of the defining operators, G is linear. More- 
over, if G is also bounded £fp(3r) -+£">(£), 
then G is bounded too. Since W^ and Wq are 
isometries, one sees that || G || = || G ||, that is, the 
system (operator) norm is preserved by the lifting. 
Furthermore, since the lifting procedure is isomet- 
ric and preserves all the standard algebraic and 
feedback interconnection operations, feedback 
stability is also preserved under lifting. 

Now if the system to be lifted is /i-periodic, 
then the lifted system will be time-invariant. To 
see this, introduce the delay operator Dh, defined 
°y (A./X')-f(i~h). Gives a (causal) system 
G:&P(SC) -*&«(%), we say that G is h-periodic 
if it commutes with Dh, that is, DhG= GDh. (G is 
time-invariant if it is A-periodic for every h > 0.) 
Let U be the unilateral shift operator on se- 
quences: 

^,6 5-. 

It is easy to compute that WpDhW~^ = U on 
lp(JTp) for any p > 1. Consequently, for 
G: <£p(%) -*<e?(SE) A-periodic, 

UG = wqDhw-'wqGw;' 

= "W71 

= wqGw;'wpDhw;' 

= GU, 

*0 0 

*1 

4*2 
= 

$0 

: 

so G is time-invariant. Consequently, G has a 
convolution representation. 

Finally, we remark that all the standard results 
about the discrete Fourier transform go over to 
the space l\3T). We refer the reader to [21] for 
the details. This may be summarized by the fol- 
lowing result. 

Proposition 1. (i) The discrete Fourier transform is 
an isometric isomorphism from the time-domain 
space l2(St) to the frequency-domain space Jf2(&) 
(the space of square integrable ^-valued analytic 
functions defined on the unit disk). 

(ii) // G is a bounded analytic ^-valued function 
on the unit disk, it defines a bounded operator on 
Jf2(£') by multiplication, and its induced norm 
equals exactly || G \\x. 

By the equivalence between an A-periodic sys- 
tem and its lifting, this theorem provides a 
'frequency-domain' characterization of the .£? ^in- 
duced norm of an /i-periodic system. 

3. Lifting: some examples 

Now we look at what lifting means for state- 
space models. In what follows, G is a continuous- 
time finite-dimensional time-invariant linear sys- 
tem. Its input, state, and output evolve in finite-di- 
mensional Euclidean spaces. Because the dimen- 
sions of these spaces will be irrelevant, they will 
all be denoted by S. Thus G is considered as a 
linear operator on -S?e

2(<?). Suppose it has the 
realization A, B, C, D. 

3.1. Lifting G 
i 

We begin by lifting G itself. The lifted system, 
WGW'^, acts oa /2(Jf2) and consequently has a 
matrix representation of the form 

Gu      0 
G21       G22 

0 
0 

G 33 
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Starting with Ä, B, C, D as above, define the 
operators 

Q = I-DD*,    R**1-D*D 

mapping X2  to X2, and define the pencil 

"/       -i/r'i* 
0    Ä* + C*DR-}B* 

S = X 

A+BR-}D"C    0 
-C*Q-*C       /_ 

Observe, for example, that BR~yB* maps <? to £, 
i.e., it is a finite matrix. So 5 is a finite matrix 
pencil. Suppose 5 has no eigenvalues on the unit 
circle; then it must have n inside the unit disc. Let 
3C_ denote the corresponding spectral subspace. It 
can be represented as 

r*i" 
.2. 

where A', and X2 are both n X n. Assuming Xx is 
invertible, we can define X-= X2Xx~

l. This defines 
the Riccati operator Ric: S -» X and its domain. 
Lemma 2.3 of [14] provides the following. 

Lemma 1. || WGW~* || < 1 iff the following three 
conditions hold: 

(a) ||£||<1; 
(b) S belongs to the domain of Ric; 
(c) R - B*XB > 0, where X= Ric(S). 

To compute || WGW~* || in this way, we would 
have to 

- compute the matrices BR~]B*, C*Q~lC, 
BR~'ib*C in the definition of S, 

- compute || D ||, and 
- check if R- B*XB>0 for a given matrix 

X. 
These subproblems are similar. We will men- 

tion two methods for the second subproblem. First 
of all, let 17: Se2{£)-*X2 denote orthogonal 
projection. Observe that D is the compression of 
the unlifted system G to X2, i.e., D = IIG\X2. 
Note that the Laplace transform is an isomor- 
phism of X2 onto X2 e e~hsX2. Thus comput- 
ing || D || amounts to computing the norm of the 
operator ' multiplication by the transfer matrix for 
(/' compressed to X2 & e~HsX2. In [9] this com- 
putation is reduced to a linear two-point boundary 
value problem. See also [1]. In [10] a second, 
frequency-domain ('skew Toeplitz') approach is 
given for the computation of || D \\. 

In summary, the computation of WWGW'"1 \\ 
involves the standard iteractive search of scaling, 
and then using Lemma 1 to check if the norm of 
the scaled system is less than one. 

3.2. Lifting SG 

The ideal sampling operator with period h is 
defined by 

} = Su  =»  t(k)~u(kh). 

We shall lift SG, where G is as before except with 
D = 0. Operator SG maps -S?e

2(<?) to l2(£); G is 
assumed strictly causal so that SG is bounded on 
these spaces. The output from SG is already dis- 
crete-time, so we need lift only the input. The 
lifted system, SGW~\ acts from /*( X2) to l2(£). 
Its matrix is easily derived to be 

Ä B 

.c 0. 

where 

Ä-.S-+ 

B:X2 

£:£-+ 

Äx = ehAx, 

./,    Bu= fc(,-r)ABu(T)dT, 

Cx = Cx. 

3.3. Lifting GH 

Finally, we shall lift GH, where H is the ideal 
hold operator with period h, defined by 

v = H\p  «» 

v(/) = «Hfc), kh£t<(k + l)h. 

This is an' operator from /2(<f) to &?{£). The 
input to GH is already discrete-time, so we need 
lift only the output. The lifted system, WGH, acts 
from l2(£) to l2(X2) and its matrix is 

Ä B 

.c b. 
where 

B':<?-»<?, 

C:£-*X2, 

b:£-+X2, 

Äx = ehAx, 

Bv drBv, 

(Cx)(t) = C c'Ax 

(Dv)(t) = D+ f'CeTAdTB V. 



84 B. Bamieh et al. / Lifting technique for linear periodic systems 

4. Application to J(fx optimization of sampled-data 
systems 

In this section we outline an application to 
optimizing the if 2(<?)-induced norm from w to z 
in Figure 1. Let T denote the linear system map- 
ping w to z. If Ka is internally stabilizing (suita- 
bly defined) and under mild assumptions on G, T 
is a bounded operator on 3P2(£). It is time-vary- 
ing. Our approach is to lift T up to WTW~\ 
which will be a time-invariant operator on l2(JT2). 
The optimization of ||r|| is thus reduced to a 
discrete-time, time-invariant Jff°° optimization 
problem, a problem whose solution is formally the 
same as the standard discrete-time matrix-valued 
Jf*- problem for which there exist solutions 
[13,14,19,20]. (An alternative but equivalent ap- 
proach is taken in [1] where the operator valued 
Jfx problem is solved through an intermediate 
step of reducing it to an equivalent matrix-valued 
discrete-time Jf °°   problem.) 

The details of our approach are as follows. 
Partition G as 

C = 
G„ '12 

'22 

and let a corresponding minimal realization be 

A [*i     B2] 

ß] 
Du     Dn 

.   0         D32. 

In Figure 1, bring S and H around and adsorb 
them into G to get the setup shown in Figure 2 
below. Matrix Z)21 is taken to be zero so that w is 
low-pass filtered (through C21) before being sam- 
pled; the system could not in general be internally 
stabilized without this assumption. 

The system in the upper block is 

Gu 

SG2] 

Gl2H 

SG22H 

w 

i> • v 

Ki 

Fig. 2. 

Now lift w and z in the previous figure to arrive 
at the setup in Figure 3 below. 

System P is obviously given by 

P = 
W    0 

0     /j 

SG2}W-1 

SG, 

GnH 

SG 22 

W~x    0 

0       / 

WGUH 

SG22H 

Realizations of the three liftings WGUW~\ 
WGUH, SG2XW~X were obtained in Section 3. 
Furthermore, SG22H is just G22 discretized: a 
realization is well-known to consist of the four 
matrices 

chA,    (herAdTB2,    C2,    D22. 

In this way we get the realization of P, 

Ä [*i     B2\ 

A 
An     Dn 

.   0         V 
where 

Ä\S- Äx = chAx, 

L:X2^£,    5,w= fhcl"-r)AB^(r)dT, 

B2: <?-» S,    B2v = f eTA <1TB2V, 

C,:<f-jr2,   (C,x)(/)-C1e"V 

Zl-B-E 
Fig. 1. Sampled-data control system. 

z V) 

P 

yi> \ V 

Kd 

Fig. 3. 



B. Bamiehetal. / Lifting technique for linear periodic systems 85 

C,:<f-<f.    C2x = C2x, 

bu-.x2^x2. 

(D11v,)(0 = JD.^(0 + C1/V'-T"4B1w(OdT, 

D,2:£-*X2, 

(Duv){t) = Dnv + C,/'e('-™ drB2u, 

D22: £-* £,    D22v = D22v. 

Figure 3 is a discrete-time setup. Iglesias and 
Glover's solution [14] to the discrete-time Xx 

problem is in the style of the continuous-time 
solution of Doyle et al. [7]. We will illustrate how 
the solution of [14] can be applied to the setup at 
hand by looking at the analysis problem, which is 
easier than the synthesis problem. Namely, for a 
fixed stabilizing Kd we will show how to compute 
the JS?2(<?)-induced norm. 

In Figure 3 the equations for P are 

tP(k + l)-ASF(k) + B,wk + B2u(k), 

zk-Ct*,(k) + Duwk + Dl3v{k), 

4,{k)-c2zP{k) + b22ü{k). 

Suppose Kd is strictly causal for simplicity, and 
its equations are 

SK(k + \)-AKiK{k) + BKMk), 

o{k)-CKtK(k)- 
Then the matrix of the closed-loop system is 

ACL 5CL 

CCL DCL 

where ACL is the map from £ to £ given by 

>*CL*« 
B2CK 

BKC2 

BKC2 

/V" drB2CK 
«, 

BCL is the map from X2   to £ given by 

5CL_ 

0 

CCL is the map from £ to X2  given by 

CCL=[C,    DUCK], 

and I>CL 
=
 ÄI- mapping X2 to X2. Internal 

stability means that all eigenvalues of ACL are 
inside the unit disk. Computing now proceeds as 
in Subsection 3.1. 

5. Application to X1 optimization of sampled-data 
systems 

In this section, we would like to make some 
remarks about the lifting technique applied to 
other types of norms. Since the lifting is an isome- 
try in any given norm, we can apply it to other 
JSf spaces. First we would like to make some 
remarks about the induced operator norm on lp. 

Consider £ equipped with the /r-norm. 

v    = I 
1A 

1 <r< oo. 

IMI*= max Kl< 

where the Vj denote the components of the vector 
ve£. With £ equipped with the r-norm we will 
set &r

p(£)~£"'(£) and denote the norm by 
|| || r. Also, X/ will denote the subspace of 
£fp(£) of functions with support in [0, h). By 
slight abuse of notation, || H^, will also denote 
the norm on Xr

p-. 
By the lifting construction, we see that there 

exists an isometry Wpr: &/(£) -+ l"(Xr
p) for 

each 1 <p, r < oo. Recall that the induced norm 
of a bounded linear operator T from one Banach 
space 9CX   to another Banach space 3C2 is 

[ r || — sup ■ 
II To || 3 

II »II* 

We consider the problem, then, of computing 
the induced norm of a discrete-time causal con- 
volution operator F: 1"{XP) -+ l"(Xs"). When p 
= q = r = s = 2 we have seen that the induced 
norm is in fact the J^^-norm of the discrete 
Fourier transform of the pulse response of F. But 
this of course is not the only possibility, and one 
can ask for choices of p, q, r, s which will induce 
a 2-norm which would correspond to a quadratic 
type sampled-data optimization problem. We 
should note that in [4] the authors consider an 
optimization; problem with the Hilbert-Schmidt 
norm, which is not an operator-induced norm. 
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Before stating the result, we will need some 
additional notation. First if F: /'(Jf/) - I'W) 
is a (causal) convolution operator, the equality 
y = F(u) means that 

i-O 

where the Fk : X," -+XS" are linear operators. In 
our case, the Fk will come from the lifted closed- 
loop operator 7^., and so will have the form 

QTL^CL "CL' A: 2:1, (2) 

in the notation of Section 4. Note that the closed- 
loop impulse response Fk for k = 0 is the operator 
Du. This fact will not affect our discussion below, 
since the controller only enters into the closed 
loop operator Fk for k £ 1, and so from the way 
in which the norm is computed, the controller that 
minimizes the cost (norm) with F0 included is the 
same as the controller that minimizes the cost 
without including F0, hence the answer given be- 
low is valid. 

Next notice that 

£CL~ 

where 

B, 

£,>v = fe(*-™fi,>v(T) dr. 
Jo 

Thus B% acts as a convolution operator evaluated 
at A, and so we may express the action of the 
impulse response function (2) as an integral oper- 
ator of the form 

(JV<)(0- fhFk(h-r,t)u(r)dr,    kzl. 

Now for A a non-negative matrix, we let 
Xmax(/4) denote the maximal eigenvalue, and 
dmax(A) the maximal diagonal entry. 

The following result may be proven using a 
method similar to that in [26]. 

Proposition 2. For all k^l, set 

f 
'o 

ß,*(r)«/F4(A-r,0'/i(A-T,/)dr, 
•'o 

Qk
2(r):=fhFk(h-r, t)Fk(h-r, t)  At, 

for T6[0, A), and set 

**==   sup   Xm„(ef(T)), 
T6[0,A) 

/?*-   sup  Xmax(ß*(r)), 
T6[0.A) 

Sf==   sup   dmjQl!(r)), 
Te[0.A) 

#-   sup   dmjQ
k

2(r)). 
Te[0.A) 

I 

Then (i) the induced norm of F: /'(Jf?) - /2(JT2
2) 

equals 

t \1/2 

(?*)  ■ 
(ii) the induced norm of F: l2( JT2

2) - /"(JT2=°) 
equals 

1/2 

(iii) the induced norm of F: l\^) - iH^i) 
equals 

t \1/2 

(LS!)    ; 

(iv) rAe /Wucei norm o/ F: /2( Jf2
2) -» /"( Jf£°) 

(?*) 
1/2 

Referring again to Figure 1, we can pose the 
problem of minimizing the operator norm of the 
transfer operator from w to z, where we allow the 
signals to be in the various spaces &r

p(&). This 
problem may be lifted to get the equivalent dis- 
crete-time problem in the spaces lp{Sfr

p) and then 
one may apply the solution in [27]. For the full 
state information problem (this corresponds to the 
classical LQR problem) one can show that the 
classical LQR optimal controller is optimal in the 
case when the disturbances are in £?} for r = 1, 2, 
and the errors are in i?2

2. For the optimal filtering 
problem, one can show that the optimal state 
estimator is again given by the classical formula 
with disturbances in i?2

2 and errors in 2?™ for 
r = 2, oo. The argument goes exactly as in the J^"* 
case by considering the equivalent 'lifted' discrete 



B. Bamieh el at. / Lifting technique for linear periodic systems 87 

time-invariant system and applying Proposition 2 
and the results of [27]. Note that from our previ- 
ous remarks the lifted operator G is finite dimen- 
sional. 

To make this argument more concrete, we will 
consider the sampled-data version of the full state 
information (LQR) problem. Referring to Section 
4, in this case the generalized plant G has the 
form 

A [*i     B2] 

Du     Dn 

. 0        0 . 

Ä [*i     B2] 

. / . 
Du     Du 

. 0        0 . 

We are interested in minimizing the induced oper- 
ator norm of 7", the linear input/output operator 
from w to z taken over all the controllers K as in 
Figure 1. For our problem, we assume that w ei?/ 
(r = 1 or r = 2) and z e JS?2

2. 
Now in this case the lifted system will have the 

form 

(3) 

Note once again that all norms are preserved in 
the lifting procedure. Hence, arguing precisely as 
in Section 4 (and making the standard assump- 
tions of stabilizability and detectability on (3)), 
and using the results of [27], the optimal feedback 
gain may be derived from the classical finite di- 
mensional algebraic Stein (discrete Riccati equa- 
tion) associated to the LQR problem with respect 
to the generalized time-invariant, discrete-time 
plant given in (3). 

Unfortunately, at this point there is no sep- 
aration principle available because of the incom- 
patibility of the norms in the filtering and regu- 
lator problems. 
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ABSTRACT 

Discrete-time systems in a formal input-output setting are considered. Weak 
linearity, weak shift invariance, and weak nonanticipation are defined. The often 
overlooked fact that linear systems may not have a kernel representation is pointed 
out. Necessary and sufficient conditions for kernel representation on I spaces are 
given. It is shown that a linear system can have infinitely many kernel representations 
and that properties such as nonanticipation, shift invariance, and boundedness need 
not be reflected in the structure of a kernel representation. It is argued that a system 
is logically distinct from a parametric representation of itself. 

j NOTATION AND TERMINOLOGY 

i 
! 
i 
I We denote the set of integers by Z, the set of nonnegative integers by Z+. 

The sequence space on Z is denoted by /(Z) and called the bilateral 
sequence space; that on Z+ is denoted by liZ + ) and called the unilateral 
sequence space. When a statement is true for both l(Z) and l(Z+\ we write 
/. We denote the time set associated with I by T. If I = l(Z) [/(Z+)], then 
T = Z [Z+]. For a fixed n in T, Sn e I denotes the (unit-impulse) sequence 
which has value 1 at n and 0 everywhere else. For maps, 31 denotes the 
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domain a the range. The (right) shift operator on both /(Z+) and l(Z) is 
denoted by the same letter S, and is defined below: 

S : l(Z+) -* /(Z+) is given by 

(S*)(") = (°,        1X     *   n = °' M  '      \x(n - 1)    if   „>0. 

S: Z(Z) -»Z(Z) is given by 

(&c)(n) =x(n-l)       VneZ. 

Likewise, the symbol S~l denotes the left-shift operator on both 1(ZJ and 
/(Z) and is defined by 

(S-1x)(n) =x(n + 1)       Vner. 

The symbol Sn denotes the selection functional that selects the nth coordi- 
nate of a sequence. 

The symbol Pn:l~*l denotes the projection operator on two spaces: 

(w(o-(*(0 * i<n> 
10 if   i>n. 

Finally, if x e /, then xf denotes the sequence defined by 

xu^ = fx(i)    if   /<i<u, 
\ 0 otherwise. 

A^SUrSf X C l fa Said t0 be cIosed under tte family of projections {?} 
n e T, if for each n e T, x e X implies Pnx e X. 

I.   INTRODUCTION 

An input-output system is a relation between two function spaces The 
classical input-output framework treats a system as a map from one function 
space into another. Associated with a map are its topological properties such 
as boundedness and nontopological properties such as shift invariance. The 
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collection of all input-output pairs associated with the map is called the graph 
(also, behavior) of the map. The properties of the map are naturally related to 
its graph. Sometimes the action of a map may admit a concrete representa- 
tion such as matrix multiplication in the case of sequence spaces, or a 
Volterra integral representation in the case of spaces of functions of a real 
variable. Such a representation, if exists, may or may not be unique; it may or 
may not reflect in its structure the properties of the associated graph. For 
example, a shift-invariant map on a sequence space may have a representa- 
tion as an infinite Toeplitz matrix. It is of interest to know when a behavior 
admits a representation, if a representation is unique, and if a representation 
reflects the properties of interest. 

Maps on sequence spaces are considered here. In this paper, representa- 
tion means kernel representation, which will be defined in the next section. 
Representation is the main focus of the paper. We give necessary and 
sufficient conditions for kernel representation on lp spaces. We also examine 
the relationship of kernel representation with properties like shift invariance 
and nonanticipation. We also show that a representation need not be unique 
and give a sufficient condition for uniqueness. It is implicit (sometimes 
explicit) in textbooks on systems theory that a representation always exists and 
in its structure reflects the properties of the associated behavior. We point 
out that this is not true. Therefore, it is the behavior that is fundamental, not 
its representation [6]. We also look at conventional definitions of properties 
such as shift invariance and point out that they lead to anomalies between 
maps on bilateral sequence spaces and unilateral sequence spaces. We 
propose new definitions of properties of maps and argue their merit. The new 
definitions also make it clear what properties of domains are or are not used 
in the analysis. However, the new definitions are not the main aspect of the 
paper. A deep analysis of the differences between maps on bilateral and 
unilateral sequence spaces is not attempted here. 

2.   SOME PROPERTIES OF MAPS 

The main practical reason for studying linear mathematics is that local 
behavior of a nonlinear map is often linear. That is, if the domain of a given 
nonlinear map is restricted, the restricted map (the restriction) may become 
linear, thereby making analysis easier. Then, if the domain is restricted 
further, it is desirable for the resulting restriction still to be linear. Consider- 
ing that linearity is an analytically desirable property of. a map, all the 
restrictions of a linear map should inherit this property. Similarly, inheritance 
by restrictions is desirable with respect to shift invariance, nonanticipation, 
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^z^:^h:hi
pTactical point of ^- c°nsider *• « 

space and if G(ax + ßy) = aGx + ^ Va> ^ e ^ Vx y g^(G)_ 

According to the above definition, the identity map on /, is linear but the 

nheriLT °VheHUnit rbaI1 °f '« " ** ^ * ^ is not *«JL£ mhented by restrictions. It seems reasonable to call the identity map linear 
whether or not its input class is a linear space. We now consider Mother 
nontopological property, nonanticipation. There are two definitions in the 

Tn°of ThTn?     °r rrtidpati0n> ^th °ne leadir* t0 inheriten-- -d one not. The following definition is in, e.g., [5]. 

if StoU™! 22A \m\G-^G^l^(G)al is nonanticipatory 
PCP -Pr^i r^ tHe family °f Pr°J'ections {U » e T, andTf 

neednaZ*™ ^^^Pf^^^ding to this definition, its restrictions 

und.rZ7' f6 7™ 1S ^ ^ d0main °f a restriction need n<* be closed 
under die family of projections. Now consider another notion for nonanticipa- 
tion, which is in, e.g., [7].1 •"".uiucipa 

« J^Tf 2n' The map G: 2{G) S l "^(G) Z I is weakly nonan- Ucrpatory ,f for all „ e T, PnXl = Pnx2, ^ e^(G) impIies ^        " 

It is evident that if a map is weakly nonanticipatory, all its restrictions also 
are. Every nonanticipatory map is weakly nonanticipatory. That is the as- 
sumption that a map is weakly nonanticipatory is weaker than the assumption 

unde tLT ? n
f°nantiCipat0iy- In case *e domain of the map is closed 

TtL^:X!ypTO}echons'a map is weaMy nonantic*a^* «* «* * 
below- ^ faShi°n °f AC Weak nonanticiPation' w* define weak linearity 

+ i^SSS? 2'4 0 
A map G: ^(G) -*^(G> «• «*% fi"«r if x, y 

+ ßy e <*(G), or, /3 e R impIieS that G(ax + ßy) = aGx + ßGy. 

'In [71 "nonanticipatory" is used instead of "weakly nonanticipatory" in the definition. 
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Again, every linear map is weakly linear. If 3(G) is a linear space, then a 
map is weakly linear if and only if it is linear. Also, if a map is weakly linear, 
so are its restrictions. For example, the identity map is weakly linear whether 
or not its domain is a linear space. We now define weak shift invariance, a 
nontopological property of a map. 

DEFINITION 2.5. A map G: &(G) c I -* &(G) c I is weakly shift- 
invariant on 3i(G) if for each x &3i(G) such that Sx e^(G), we have 
SGx = GSx. 

We say that a subset X of I is shift-invariant if SX c X. The standard 
definition of shift invariance follows. 

DEFINITION 2.6. A map G : 9i(G) c I -*3?(G) c I is shift-invariant on 
2>(G) if 3(G) is shift-invariant and if GS = SG on 3(G). 

Every shift-invariant map is weakly shift-invariant. If the domain of the 
map is shift-invariant, then a map is weakly shift-invariant if and only if it is 
shift-invariant. It is customary to define shift invariance for a system operat- 
ing on unilateral sequence space l(Z+) only when the system is nonanticipa- 
tory [5]. Nonanticipation is not mentioned in definition of (weak) shift 
invariance above. The reason for the custom and for our omission will be 
apparent shortly. 

Compared to the standard definitions, the corresponding requirement on 
the domain of a map is dropped in the new definitions. This does not mean 
that the domains do not play any role in the properties of a system. On the 
contrary, the domain is an integral part of a map on which properties of a 
system do depend. For instance, a map may not be linear but its restrictions 
may be. Domains play an important role in extension problems, and attention 
should be paid to what properties continue to hold for the extended map. For 
instance, a map can be linear and shift-invariant on its domain, and there may 
be an abvious linear extension of the map to a set containing the domain, but 
the linear extension may not be shift-invariant. To illustrate this, the following 
easy proposition is needed. 

PROPOSITION 2.7. Let G -. 3(G) -»31(G) be (weakly) shift-invariant 
and one-to-one on D(G). If HG = I on 3(G), then H is (weakly) shift- 
invariant on 31(G). 

A proposition in terms of conventional definitions about maps on unilat- 
eral sequence spaces follows. 
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PROPOSITION 2.8.    Let G:3(G) c/(Z+) -» l(Z+) be linear and shift- 
invariant. If S~l3(G) C3(G) then G is nonanticipatory. 

• The proof is omitted, as it is trivial. However, it should be noted that the 
hypothesis that S-^(G) C^(G) is important for the conclusion: Take 
H = S with 3(H) - l(Z+). Consider its inverse G = S"1 on ^(G) = 

T„H) °{x S /(Z+): *(0) - °>- ClearlX. G is linear. That G is shift-invariant 
follows from Proposition 2.7. But G - S"1 is anticipatory on 3(G) Also 
while G is linear and shift-invariant on its domain, its obvious linear extension 
to all of /(Z+) is not shift-invariant. The above proposition is false if Z(ZJ is 
replaced by /(Z). 

It follows that every linear, shift-invariant G: 3(G) = lz(Z ) -»I (Z ) 
is nonanticipatory on /2(Z+). (This appears to be the reason for the custom 
mentioned above.) 

However, every x e 1(Z+) can be trivially embedded in l(Z) as £ below: 

*(0-{l(0   if I>0' 
, 0 otherwise. 

Since the graph of a map on a unilateral sequence space is simply a 
collection of pairs of unilateral sequences, it is also a collection of pairs of 
bilateral sequences, by the above canonical embedding. This is the canonical 
embedding of a system on one-sided sequence spaces into the set of systems 
on two-sided sequence spaces [51 Therefore, a given graph on a unilateral 
sequence space can be analyzed in two ways: by treating its graph as a 
collection of pairs of unilateral sequences or as a collection of pairs of 
buateral sequences. It is remarked in [5] that it is easier to perform certain 
calculations with the time set Z and then to draw conclusions for Z+. The 
point is that the conclusions should be identical with both kinds of analysis. 
This is not the case with conventional definitions of linearity and shift 
mvariance: Proposition 2.8 is false if G is treated as a map on bilateral 
sequences with canonical embedding. [With canonical embedding   3(G) 
being a linear and shift-invariant space does not imply that it is closed under 
the family of projections. Example 4 in the next section demonstrates this 
point] 

Clearly, the conventional definitions' lead to an anomaly in drawing 
conclusions for maps on unilateral sequence spaces and bilateral sequence 
spaces, depending on whether the graph of a map is treated as a collection of 
pairs on a unilateral sequence space or as a collection of pairs on a büateral 
sequence space. 
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With respect to this anomaly, the new definitions fare better. We now 
show that Proposition 2.8 is false with each property replaced by the 
corresponding weaker property even when the analysis is done without the 

embedding. 

EXAMPLE 1. L*X-{xeZ(Z+):V*6Z+. x(0*0} .LetG:X~X 
be given by (GxXn) = x(n + 1) Vn e Z+. The domain of G, X, is not a 
linear space and is not shift-invariant. However, G is weakly linear on X and 
vacuously weakly shift-invariant on X. Moreover, S'lX C X. However, G is 
not weakly nonanticipatory on X. 

We now look at the representation aspect of input-output systems. 

3.   KERNEL REPRESENTATIONS 

Suppose the graph of a map on I is given. Let t0 ~ inf T. A map 
G: MG) C I -*i?(G) C I is said to have a kernel representation if there 

exists a g : T X T -* U such that 

(G«)(n)-   E g(n,m)u(m)       Vn e T,   Vu ei?(G). 
m-t0 

In the above definition, there is no need for 9{G) to have a topology; the 
convergence of the infinite sum is on the real line. 

Of interest is the connection between kernel representation and other 
properties of map such as linearity, boundedness, and nonanticipation. It is 
clear that every map that has a kernel representation is weakly linear. 
However, not all linear systems have a kernel representation. There is an 
example of a continuous-time linear shift-invariant nonanticipatory system, 
due to Adam Shefi, in [2, p. 3], that illustrates this point An example on 
sequence spaces will be given later. We now examine if boundedness is 
necessary or sufficient for a linear system to be represented by a kernel. At 
the level of generality of the above definition for kernel representation, 
boundedness is not related to kernel representation, because there may not 
be a topology on MG) and MG). To examine this relationship we ,wiU 
assume something stronger: we consider systems that are maps from one 
normed space into another. A simple application of the Banach-Steinhaus 
theorem, e.g. [4], gives the following: Let G:®(G) - I be defined by a 
kernel with 3{G) a Banach space and &G) a normed space. If the iamuy 
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of projections {?„} is a resolution of the identity on MG), then G is 
bounded. On lm, {Pj is not a resolution of identity. If 3&.G) = Zx, using a 
variant of the Banach-Steinhaus theorem, we can still conclude that G is 
bounded. While these results are useful, they are not exhaustive because not 
every kemel-represented map takes a normed space into another. When it 
does, its domain may not be a Banach space. On the other hand, it is simple 
to show that if the domain of a bounded linear map has a Schauder basis, 
then the map has a kernel representation. However, boundedness of the map 
is an unnecessarily strong requirement: Consider T:lw(Z+) -» ?X(Z+) de- 
fined by (TxXn) = nx(n\ which clearly unbounded but has a kernel repre- 
sentation. 

On the other hand, in functional-analysis literature, bounded linear opera- 
tors on spaces without a Schauder basis are rarely assumed to be given by a 
kernel representation. That boundedness is not sufficient for kernel represen- 
tation is pointed out by an example in [1], with 7X as the input and output 
space. Here is an example that is simpler and sharper but the same in spirit. 
This example shows that even compactness with discrete spectrum (which is a 
much stronger condition than boundedness) is not sufficient for kernel 
representation. 

EXAMPLE 2. Consider the space c, the subspace of all converging 
sequences in L(Z+), with Z= norm. Fix a nonzero element y0 e c such that 
umn J/o(n) = 0. Define G : c -> c by 

Gx = (lim x)-y0. 

Then G is linear and compact with discrete spectrum {0}. Its response to an 
impulse occurring at any time is identically zero. If it is assumed that G has a 
kernel representation, then the kernel is identically zero, but G is not. 

We now consider the relationship between shift invariance, nonanticipa- 
tion, and kernel representation. The map in the above example is neither 
shift-invariant nor nonanticipatory. We now construct a map that is linear, 
shift-invariant, nonanticipatory, and compact, but has no kernel representa- 
tion. 

norm 
EXAMPLE 3.   Consider the following linear shift-invariant space with lx 

c_= (x e JM(Z) :   lim   x(n) exists). 
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Let e e Z be such that e(n) = 1 for each n e Z. Define G: c_- c_ by 

Gi ■=    lim   x(n)-c. 

Clearly, G is linear, shift-invariant, nonanticipatory, and compact. 

A common aspect of both the examples is that the infinite past or die 
infinite fTre of L input strongly affects the current output. This motivates 
theMowing definition, which will be useful in obtaining necessary and 
sufficient conditions for kernel representation. 

DEFINITION 3.1. A map G: 0(G) C I ^^/^ZTl^ 
for each n € T there exist finite integers l(n),u(n) such that *, - y,, 

i, y 6.0(0 imphes that SnGx = SnGy. 

This means that the current output of a finite-horizon map is «oq^tady 
determined by finite past and finite future of the input. The effect of infimte 
pSTndänite fu Je of the input on the current output is zero. ~ 
L width of the "time window" for the input can depend on tame, and need 
not ^uniformly bounded. A (weakly) nonanticipatory map on a umlateral 
sequence space is an example of a finite-horizon map. 

We recall the notion of /3-dual of a sequence space. (See, e.g., [3].) Given 

a sequence space X, its /3-dual is given by 

X".- EsK'WO < » Vx 

It is standard and simple to show that /3-dual of I is the space of finitely 
nonzero sequences. From this follows the next proposition. 

PROPOSITION 3.2. 

(0 AmapG: 0(G) = l ~&(G) £ I has a kernel representation if and 

onlu ifit is a weakly linear finite-horizon map. 
(a) AmapG: 0(G) Q I ~&(G) £ I has a kernel representation if it is 

a weakly linear finite-horizon map. 

Proof. (0, "only if: Assume that G has a kernel f P^6^00"/1;6" 
the map is weakly linear. Each row of the kernel must belong to the /3-dua^of 
I and hence can have only finitely many nonzero entnes, implying that the 

map is of finite horizon. 
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"If: Fix  n. Let l(n) and u(n) be such that  xf = yf,  x, y S^tG) 
implies SnGx = SnGy. Define /: MG) -» R""/+1 by 

Jx = (x(7),x(/ + l),...,i(u - l),x(u)). 

Let X ==/^(G)._For each x e X let /_1x be the preimage of i under /. 
Define a map G„: X ~ R by £x » SnGJ~lx. Notice that G„ is well 
defined and is weakly linear. Let X = span X. Consider the linear extension 
G„ : X ~ R of Gn defined below: 

G„|X==G   and    G^or^ + ••• +a4i4) == a1Gnxl + - +aAG, 
'n*k 

for all «i,^,..., ak e U and for all XJ.XJ, i,€l 
Since Gn is a linear functional on a finite-dimensional vector space, it 

admits the representation 

_ u~l 

<«o 

for some fixed row matrix £„. The map G is then given by the kernel defined 
by 

g(n,0==/gn0--0    if   l<t<u, 
\ 0 otherwise. 

(ii) follows from part (i). g 

It may be noted from the proof that doing analysis locally in time is a key 
to representation theory. This theme will recur throughout the rest of this 
section. A weakly linear finite-horizon map has a kernel representation with 
each row of the kernel having only finitely many nonzero entries. From this 
proposition and Example 3, it is clear that linearity and shift-invariance of a 
map on bilateral sequence spaces need not imply that the map is of finite 
horizon. However, on unilateral spaces with some assumptions on the do- 
mains, one may get some useful results. An example is the following proposi- 
tion. In the proposition, the model for the domain is the space Skl(Z+) for 
some nonnegative k. 

PROPOSITION 3.3. Let G : S(G) c Z(Z+) ~ l(Z+) be given. Suppose 
2)(G) is linear and closed under the family of projections and that there exists 
an integer N G Z+ such that S'Kl - PN)®(G) <ZS{Q\ Under these condi- 
tions, ifGis linear and weakly shift-invariant, then G is a finite-horizon map. 
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REMARK. This proposition tells us that if the domain of a linear shift- 
invariant map on a unilateral sequence space is sufficiently rich, then the map 
has a kernel representation. In this proposition, closedness of the domain 
under the family of projections is part of the hypothesis, unlike in Proposition 
2.8. The validity of Proposition 3.3 is the same with or without the canonical 
embedding. The proof is fairly routine. 

From Proposition 3.2 it is clear that the case when 3(G) * I is more 
interesting. In this case, finite-horizon requirement is too strong. Intuitively 
speaking, the smaller the domain, the easier it should be to obtain a kernel 
representation. Since finite-horizon maps have a represenation, the next step 
is to consider maps that are nearly of finite horizon. 

DEFINITION 3.4. A map C: 3(G) c I *&(G) c I is called a fading- 
horizon map if there exists a sequence Gk : 2(G) ~&(Gk) C I of finite- 
horizon maps such that for each n e T 

S„Gx= lim SnGkx       Vx&3(G). 
J;-.oc 

Again, for this definition it is not necessary for 3(G) to have a topology. 
Intuitively, the effect of infinite past and infinite future of the input on the 
current output is vanishingly small for a fading-horizon map. The action of a 
fading-horizon system at a given time can be approximated by that of a 
sequence of finite-horizon maps. 

In the next definition G is assumed to be linear for simplicity. 

DEFINITION 3.5. A linear map G: 3(G) c I -► J#(G) c I is called a 
strongly fading-horizong map if 3(G) is a topological space, and if there 
exists a sequence Gk : 3(G) ~3l(Gk) c I of finite-horizon maps such that 
for each n e T, S„Gk converges to S„G in the topological dual of 3(G). 

Here, the approximation by finite-horizon maps is done locally in time. 
Since G is linear, for each n, SnG, SnGk are linear functionals, and the 
convergence is in the space of continuous linear functionals on 3(G). 
Clearly, a strongly fading-horizon map is a fading-horizon map. The following 
is easy to prove. 

PROPOSITION 3.6. 

(i) Letpe (I,*). Then a linear G : 3(G) c lp -> &G) Qlisa strongly 
fading-horizon map if and only if it is a fading-horizon map. 
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GO Letpe [l.oo). Let Y be a normed space. IfG: &(G) c I   ~>MG) 
QYis liner and bounded, then G is a fading-horizon map. P 

Proof,   (i): The "only if direction is obvious. 

A  T'i *?; P~ (1,00)" H* q be SUch *"* VP + l/9 = 1- Then L - /' 
Ae dual of Z . F* „We have SnG* = um, S„G, x for each x. For e'ach £ 

L R1S '"A     u   "   i*        TGak* Ümit °f S"G*- Hence> S»G is in /'„ (by 
the Banach-Stemhaus theorem). Therefore, SnGx = Ign(Ox(/) for some / 
in /,. Since gn e lq, it can be approximated in I   norm by finite-lenrth 
sequences g  .. For;each ft, define a finite-horizon map G, by the kernel 
gkyn,t) - gnku). Then Gk is the sequence of finite-horizon maps such that 

üf II S„G-SnG, |, = 0. 

•     u): F? f,6 tl'^)- Let * be SUch ^ X/P + V9 = 1. Fix n. Then S G 
u a bounded hnear functional on /„ and hence is given by the representation 

ft >   1~ „I" S°me g" in lr Ms°> S- Can be approximated by nnite-length sequences g„ k such that 

S„Gx = ton £gnJt(0*(0       Vx e^(G). 

For each ft, define a finite-horizon map Gk by the kernel gk(n,i) == g  .(,) 
Then G,1S such that S„Gx = limlS„GixVx6^(G). §     . 

Clearly a strongly fading-horizon map (or a finite-horizon map) need not 
be bounded The main result of the paper below gives necessary and 
sufficient conditions for kernel representation on a variety of sequence 

THEOREM 3.7. 

(0 Letpe [I,»). Let the domain of G: S{G) c I *&{G) Ql be a 
linear space. Then G has a kernel representation if and only if G is a linear 
jaaing-nortzon map. 

iv) Let the domain of G: 3>{G) C I, ~<%(G) a I be a linear space. 

IcZZL7pa repreSentatim {fand «*/ «T C is a strongly faZing- 

Proof.   For p e [l,oo), let q be such that 1/p + I/o = 1 

~   ®\ "lf I**?-W* hare S»G* = k°* 5„Gtx for each x. For each ft, 

Ä" mA   u 5-G is ^ Teak*limitof S»G*-Hence' S-G « ^ /; (by 
the Banach-Steinhaus theorem). Therefore, S„GX = Eg„(i)x(b for som'e g„ 
in /,. Set g(n,i) = g„G). Then g is a kernel for G. 
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"Only if': Let the kernel of G be g. Fix n. Then SnG = gin,- ) is in /,, 
since I is the /5-dual of lp (e.g., [3]). Hence, gin,-) can be approximated (in 
I norm if q * °°, in weak* topology if q = ») by finite-length sequences 
g'n t. For each k, define a finite-horizon map Gk by the kernel gk(n,i) ■= 
a At). Then Gk is the sequence of finite-horizon maps such that SnGx = 

lim SnGkx for each x in ^(G). 
(ü) "if: Fix n. We have SnGx = lim* SnGkx for each x. For each fc, 

S„Gt is in lv Moreover, ||S.G - S.Gji converges as fc tends to *. Hence 

" "Only if: For each n, S„G is in Zj, since /x is the j3-dual of /B. Therefore 
SnG can be approximated in norm by finite-length sequences. ■ 

Even when a system has a kernel representation, the representation may 
not be unique, as shown by the following example. 

EXAMPLE 4.   Consider G:lw-*L defined by the following kernel: 

g = 

l 
' 2 

0 

0 

0 
1 
1 

" 2 

0     - 

0 
0 

1 
1 
2 

0 

0 

1 

0 

0 

It is easily seen that G is one-to-one. It has a unique left-inverse H : &(G) 
-+3{.G) such that HG = I on 2i{G\ It can easily be checked that the 
following kernel represents the left inverse of G: 

K = 

o 
l 
i 
2 
1 
4 

0 
0 

1 
1 
2 

0 

0 

1 

0 

0 

The following kernel also represents H: 

h2 = 

0 -2 -4 -8 ... 

0 0 -2 -4 -8 
0 0 0 -2 -4 
0 0 0 0 -2 
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MG*' 6aCh °ne °f ** foU0Wing faflnih*r ^y kemeh rePresents » °> 

f*o    2(«0-l) 4(«0-l) 8(fl„-l)     ... 
1 2fli 2(2fll-l) 4(2fll-l)       - 

2c„ 2V 2(2"«. - 1) 

ST/' can be freely selected. The kernels h,, h2 are special cases of the 

stTtioT'    y'     ft inverse of G has infinitely manykemel «*»- 

Unin, Ü ^iT °f I"*™* t0 kn0W When a kemel representation is unique. 
Uniqueness of kernel representation is related to how rich the domain is. If 
the domain has enough elements that can distinguish every two infinite 

iWdTat"       °UtPUt' *" kemel rePresentation is^e. The followfngt 

PROPOSITION 3.8. Supple G: ^(G) Ql ~&(G) cl has a kernel rev- 
resentation. Suppose <2(G) is such that for each n e T, \ is in £™ T7en 
Or has a unique kernel representation. 

If the domain of a map on a unilateral sequence space is not a linear 

^1   T       "?■udent C°nditi0n Can be Slightly relaxed- ft ™X be noted 
that the domain of the map in Example 4 violates the sufficient condition in 
the above proposition. Using Proposition 3.6, Theorem 3.7, and the above 
proposition, several conclusions can be drawn. Below is an example. 

COROLLARY 3.9. 

(0 A linear nonanticipatory map G: &{G) = l2(Z+) ~.#(G) C l(Z ) 
nas a unique kernel representation. + 

(M) Let p, r <= [1»). A bounded linear map G: B(G) = 7   -»^?(G) c / 
nas a unique kernel representation. p r 

4.   A SYSTEM AND ITS REPRESENTATION ARE NOT 
IDENTICAL 

When a system can be represented nonuniquely by a kernel   it is of 

AeTlel ^7  f 5*^ f ^ ^ "" *****l ™ *• st™ture of the kemel. Out of the infinitely many representations for H in the above 
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example, one is lower-triangular and one is upper-triangular, as shown. Is H, 
then, nonanticipatory or purely anticipatory? The point is, nonanticipation is a 
property of a system and is not necessarily a (structural) property of its 

representation. a(n\ 
We show that H in Example 4 is weakly nonanticipatory \3>{H) =MKG) 

is not closed under P„ for any n > lj. 

CLAIM 1.    H in Example 4 is weakly nonanticipptory. 

Proof. Since H is the inverse of G, we have to show that for all n, 
PnGz1 - Pfix^ =» PnXj = P„x2, or equivalently that P^ * P„x2 =» P,^ 
=jfc PnGx2. This follows because for all n, g(n,n) # 0 (G has direct 
feedthrough). 

We now determine if H is shift-invariant. Observe that the domain of H 
in Example 4 is shift-invariant. That H is shift-invariant follows from Proposi- 
tion 2.7. However, H has some kernel representations which have Toeplitz 
structure (constant along the diagonals), and some which do not. Shift 
invariance is clearly a property of a system that may or may not be reflected 
in the structure of its representation. 

We now point out that boundedness of a map may not be reflected in the 
structure of its representation. 

EXAMPLE 3. 
kernel: 

Consider G: lw(Z+) -»ZJZ+) defined by the following 

g = 

1 
2 0 0 ... 

1 1 
I 0 0 ... 

0 1 1 
2 0 0 

0 0 1 1 
2 0 

It is simple to show that the left inverse of G exists and is bounded, since for 
each iel,we have ||Gx|U > £llxlL One kernel representation of G Ms 

1-2 
-4 
-8 

0        0 
-2        0 
-4     -2 

0 
0 
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shift invariant .tfSLS^ ^ *"*"*• * *" ^ ^ - 

From the examples, we conclude that properties such as «toft ,•„     • 
nonanticipation, and boundedness are prLrf^fTt^ T"™^ 
necessarily structural properties of a reJe^ZofJT? ^ ,"" T 
representation is unioue) TW ic „ re?r        a , n ™t«e system (unless the 

its"representation ItTrLh hX Sfof ^ *"?* ^ fr°m 

examined for properties of fa^aSS^f ^ T*"",** needs to be 

of the system" fhe beha^ofa Item • ZTf / ^TT^ 
representation of the system [6]. ^ * fundamental **» a 
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Abstract 

Given an interconnection of a nominal discrete- 
time plant and a stabilizing controller together 
with structured, norm bounded, nonlinear/time- 
varying perturbations, necessary and sufficient 
conditions for robust stability and performance 
of the system are provided. This is done by first 
showing that performance robustness is equiv- 
alent to stability robustness in the sense that 
both problems can be dealt with in the frame- 
work of a general stability robustness problem. 
The resulting stability robustness problem is 
next shown to be equivalent to a simple alge- 
braic one, the solution of which provides the de- 
sired necessary and sufficient conditions for per- 
formance/stability robustness. These conditions 
provide an effective tool for robustness analysis 
and can be applied to a large class of problems. 
In particular, it is shown that some known results 
can be obtained immediately as special cases of 
these conditions. 

1    Introduction 
For systems with bounded energy signals, the 
H00 norm is the most suitable norm to use. 
When dealing with robust performance in the 
context of linear feedback systems with ft00 

norm performance objectives, the paper by Doyle 
[3] introduces a nonconservative measure of per- 
formance for linear feedback systems in the pres- 
ence of structured model uncertainties. This 
approach is based on a matrix function called 
the Structured Singular Value, where stability 
and performance robustness are dealt with in 
the same framework. The class of perturbations 

*This research was supported by the N.S.F. under 
grant ECS-8806977. This paper is an abbreviated ver- 
sion of [1]. See also [2]. 

CH2917-3/90/0000-0414$1.00 © 1990 IEEE 
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treated are linear time-invariant norm bounded 
perturbations. 

When the system at hand does not involve 
bounded energy signals but rather bounded mag- 
nitude signals as is the case when bounded per- 
sistent disturbances are present, the more suit- 
able norm is the A norm or tl norm. In [4]/[5] 
Dahleh and Pearson provided a complete solu- 
tion to the problem of minimizing the A norm of 
a linear time-invariant continuous/discrete-time 
system through the choice of a stabilizing con- 
troller. The optimal controllers obtained in the 
discrete time case are more useful than those in 
the continuous time case since they are easier to 
implement physically. 

In this paper, we present a solution to the 
robustness problem in the I1 setting. _ The 
class of perturbations considered consists of 
norm bounded perturbations allowed to be time- 
varying or nonlinear. We provide necessary and 
sufficient conditions for stability robustness for 
structured perturbations where any number of 
perturbations can enter between any two points 
in the system. In addition, we allow performance 
objectives to be considered and provide neces- 
sary and sufficient conditions for these objectives 
to be achieved in a robust manner subject to 
robust stability. This is done by showing that 
the stability and performance robustness prob- 
lem is equivalent to a simple algebraic problem 
which can be easily solved to give the desired 
nonconservative conditions for stability and per- 
formance robustness. We show how the results 
in [6] and in [7] can be obtained as special cases 
of this theory. 

2    Notation 
IR+     Nonnegative real numbers. 

£°°      Space of. all bounded sequences of real 
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numbers, i.e. x = {*(*)}£<, € l"> if and 
only ifsup|x(fc)l < «J.  If I 6 £=° then 

||x||eo = sup|a:(fc)l. 

Space of g-tuples of elements of F 
x = (an,...,*,) e if then ||x|| 

max||2,-i|co. 

If 

Space of absolutely summable sequences. 

If x € ^ then j|z||i = £ |*(*)l < °°- 
fc=0 

x, 

'■V.:* 

Space of p X ? matrices with entries in 

*l.   If x = (xij) 6 £JX,, then ||i||i := 
0 

max ]T| 
i<«<p;tt 

L«;l 

-t- 

/•P*9 

The space of all bounded linear causal 
operators mapping If to If.   If Ä 6 

£P^ then ,,*,,:= s»jgfc which is 

the induced operator norm. Each R in 
£P*J can be completely characterized by 
its block lower-triangular pulse response 
matrix. 

Subspace of Cp
Ty

q consisting of time- 
invariant operators. For eacti it fc ^77 
corresponds a unique r in t\Xq where r;j 
is the impulse response of £,;, the com- 
ponent of R mapping the the j'th input 
to the zth output. The induced operator 
norm of R as a map from If to if is 
equal to the norm of r in t\%q, which we 
shall also refer to as the A norm. 

B    Problem Setup 
We are mainlv interested in £°°  signals  and 
<iscrete-time svstems. Aside from that, the only 

onditions imposed will be those needed to guar- 
ntee the well-posedness of the problem.  Com- 

mon to all the problems in which stability and 
I>erformance of a certain system are to be stud- 
ed under the effect of perturbations are a nom- 

inal plant and a controller stabilizing it. In our 
-case, both of these are assumed to be linear time- 
■nvariant discrete-time systems. There is no rea- 
son whv only one nominal plant or controller can 

be considered, and so as many as desired can 
te incorporated as long as the resulting nominal 

ystem is stable. As for the perturbations, they 
•  are first modeled as strictly causal linear maps 

I 

Figure 1: Stability and Performance Robustness 

Problem 

i 

taking l°° signals to l°° signals with bounded 
induced norms. Hence the perturbations are al- 
lowed to be time-varying.  Nonlinear perturba- 
tions are treated in section 6. There can be as 
many perturbations as desired and they can en- 
ter anvwhere in the system. So for a specific set 
of bounds on the norms of the perturbations, we 
have a family of systems each of which is com- 
posed of the nominal part and a set of fixed per- 
turbations with norms less than the correspond- 
ing given bounds.  The first objective is to de- 
termine when every member of that class of sys- 
tems is stable, i.e. when our system is robustly 
stable.   In many cases, stability is not all that 
is required from a system, and certain perfor- 
mance objectives are to be met.   A useful and 
popular objective is keeping small the norm ot 
the function mapping an external input, say u, 
to a certain signal in the loop, call it y.  Since 
there could be more than one such objective, 
let us denote the resulting functions by TyiUi for 
i = 1 ...,m, where Ty(Ui is the function map- 
ping signals at point m to signals at.porat y,-. 
Because we are mainly concerned with t    sig- 
nals, the norm we want to be small would be in 
our case the induced l°° norm..Now our objec- 
tive is to determine, given a set of m positive real 
numbers 71 7«, conditions under which our 
svstem is stable and satisfies \\TViUi\\ < Ji »rau 

allowable perturbations. In other words, when 
does our svstem achieve robust performance. 

We now formally set up the stability and per- 
formance robustness problem mentioned above. 
Figure 1 represents a quite general configuration 
appropriate for describing problems with uncer- 
tainty. In the figure, M represents the inter- 
connection of the nominal plant and the stabi- 
lizing controller, and is therefore linear, time- 
invariant, and stable. Each A; «presents the 
perturbations between two points in the system, 
and has norm less than or equal to one. Ut 
course there is no loss of generality in assum- 
ing that the chosen bound on the norms of each 
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of the A,-'s is one, since any other set of num- 
bers could be absorbed in M. We will restrict 
the A,'s to be strictly causal in order to guar- 
antee the well posedness of the system. This is 
not a serious restriction and can be removed if 
it is known that the perturbation/nominal sys- 
tem connection is well-posed. Accordingly we 
can define the classes of perturbations to which 
the A(-s belong. Assuming the perturbations 
enter at n places, and that each has pi inputs 
and qi outputs we have A,- 6 A(#,?,-) where 

MPUQi) ■=  {A £ ££'£": A is strictly causal 

and ||A|| < 1} t = l,...,n. 
Note that A,- is not dependent in any way on Aj 
when j r *• The only restriction is that A,- be- 
longs to A(pi,q{) for each i. Next let p = £,-#> 
and q = £,•$,-. By 2?[(j>i,?i); •••;(/>„,?»)] we 
mean the set of all operators mapping l™ to Pj? 
of the form: 

D = diag(Ai,...,An), 

where A,- belongs to A(pi,qi). When the pairs 
(pi,qi) are known, they will be dropped from 
the notation and V will be understood to mean 
the above set. We will say the system in fig. 1 
achieves robust stability if the system is stable 
for all D e ^[(pi,?i);...;(Pn,?«)|. We_will say 
it achieves robust performance if it achieves ro- 
bust stability and IJr^u.H < 1 for all :' and for all 
D in V[(pi,?i);...;(pn,?n)]. 

In the context of this setup, our problem can 
be stated as follows: 

Problem Statement. Find necessary and suf- 
ficient conditions for the system in fig. 1 to 
achieve robust performance. 

4    Performance Robustness vs. 
Stability Robustness 

In this section, we provide a theorem establishing 
a relation between stability robustness and per- 
formance robustness. It states that performance 
robustness in one system is equivalent to stabil- 
ity robustness in another one formed by adding 
a fictitious perturbation. A similar result has 
been shown to hold in [9] when the perturbations 
are linear time-invariant and when the 2-norm 
is used to characterize the perturbation class. 
The usefulness of this theorem stems from the 
fact that we can now concentrate on finding con- 
ditions for achieving stability robustness alone. 
Once we do, performance robustness comes for 
free. 

Consider the two systems shown in fig.    2, 
where Me Cffi and A,- € A(pi,qi). In system 

■AP 

M 

1 
n 

M 
1 y 

: '. 
i—» 

A, -— 

Ar 

SYSTEM I SYSTEM II 

Figure 2: Equivalence of Stability and Perfor- 
mance Robustness 

II, u is a vector input of size p and y is an output 
vector of size q. In system I, Av € A(p,q). It 
follows that p = p\+ 52iPi and q = q+ ^,-5,-. 
Subdivide M in the following manner: 

\ M21    M22 J 

where M\\ 6 £'riP- 
We now state the following theorem establish- 

ing the relation between Svstem I and Svstem 
II. 

Theorem 1. The following four statements are 
equivalent: 

i) System I achieves robust stability, 

ii) (I - Mi))'1   is  t?°- stable for  all   D    € 
P[(M);(pi»?i);---;(Pn,?n)]. 

1«; (J - MnD) -1 IS £°°- stable and 
\\Mn + M12D(I - M22D)-lM2l\\ < 1, for 
all D belonging to V[(pi,?i);...; (pn,qn)}- 

iv) System II achieves robust performance. 

5    Conditions for Stability Ro- 
bustness 

It has been shown in the previous section that 
we can convert a performance robustness prob- 
lem into one which involves stability robustness 
alone. We can therefore concentrate only on sta- 
bility robustness. We seek nonconservative con- 
ditions for achieving stability robustness which 
are easy to verify. Before we begin, we es- 
tablish some notational conventions. Through- 
out this section, the perturbation set will be 

P[(PI ,?!);•••' 0»»' ?•»)]for some p°si,;ive inteSers 

,.i. 
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* PH and ft,-...?n.    M bel°?Ss t0 ■^ 
where. p:= ZiPi and « := ^ HenC6 M ™ 

Observation. The system of inequalities: 

be partitioned as follows: 

1 Mn 

M 
M, nl 

Mln' 

Mn 

where Mij aas size q{ X p;.  Next, we will state 
our main result establishing the equivalence of 
the stability robustness problem to a simple al- 
gebraic one. Depending on the region m which 
this algebraic problem has its solutions, we can 

■   conclude whether or not our system achieves ro- 
[   bust stability, and by the results of the previous 
1   section, robust performance. In order not to clut- 

ter the exposition, we first state and prove this 
theorem in the scalar case.   Hence pi - • • • - 
Pn = ?i = ••• = Sn = 1- 

Theorem 2. {I-MD)^ is not £~- stable for 
someD 6 P[(l,l); •••;(!, 1)] if and only ,f the 
system 

has a solution x = (xu... ,i„) in (ffi+)n\{0}- 

I 
I 
I 
I 
I 
I 
I 
I 

:  With this theorem, our problem stated in sec- 
tion 3 is essentially solved. Applying this theo- 
rem to the performance and stability robustness 
problem stated earlier, reduces it to a simple al- 
gebraic one in which the object is to determine 
whether, a certain system of inequalities has a so- 
lution in a particular region in K.\ What makes 
this algebraic problem particularly attractive is 
that the set of inequalities that arises relates in 
a simple and direct manner to the original prob- 
lem. Onlv norms of the subentries of the M ma- 
trix arise', and they do so in the same general or- 
der that they do in M. The question that arises 
naturallv at this point is how can one determine 
whether' the system of inequalities at hand has 
a solution in the related region of Htn? It turns 
out, that no search techniques are needed to ac- 
complish this task and the answer to this ques- 
tion can be determined by evaluating certain ex- 
pressions directly. These expressions also involve 
norms of the subentries of M and thus are easy to 
compute. The derivation of these alternate con- 
ditions for stability and performance robustness 
is the next topic of discussion. 

The first step in restating the conditions in- 
volving the set of inequalities is to make the fol- 
lowing observation: 

x,-<EP^Vi : = 1... 

i=i 

has a solution in (2&+)n\{0) if and only if either 

IJAfnnlU. ^  1  °r H^IL  <   l  afld  tke $yStem °{ 

inequalities: 

n-l 
XJ x,-< g (P^ilU + " ! _ p^   / 

i = l,...,n 

has a solution in (JR+)n-1\{0). 

Notice that this observation allows us to replace 
the task of determining whether any solutions to 
a set of n inequalities lie in a certain region by the 
simpler one of determining whether the solutions 
to a set of n-1 inequalities lie in a smaller region 
together with a simple test on the norm of Mnn. 
It is easily seen how this can be repeated until we 
completely replace all such conditions by tests on 
expressions involving norms of the jlfy's, a much 
simpler task. Table 1 lists some of these for a few 
values of n. 

In order to discuss the muitivanable case we 
will need to make reference to the rows of Mij 
which are themselves stable rational functions. 
Let us denote the mth row of Mij by {Mp)m. 
Since we will no longer restrict the p;'s and qi s 
to be equal to one, the Mowing set is not nec- 
essarily a singleton: 

K :={(ku...,kn)£Zn: l<ki<qi}, 

From this definition it is clear that the set L 
has exactly JJiU ft elements. To each k € K 
corresponds the system of inequalities:   n   < 

ELilKMykVi where k = (^•••'V- As
f the next theorem shows, it is the solutions ot 

these inequalities that are of concern when seek- 
ing necessary and sufficient conditions for sta- 
bility and performance robustness m the MiMU 
case. 

Theorem 3. (I - MD)~l is not £»- stable for 
some D G 2>((pi,?i);•••;(?-9»)] lf «d oni^ ,f 

for some k = (ku ■ ■ •, *») 6 ^ the s^stem 

x,-<ElK^i)^IU^      » = 1.-»» 

has a solution x = (2i an) in (K+)n\{0}- 
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n Necessary and Sufficient Conditions for Stability Robustness 

\\M\V < l 

\\M22\\A < 1 

IIM33IU < 1 

Wl,l* +  1-IWL  + 

f„u II , 11^3lUlM32nA / ll^y^iU 

i-(!|M22|L + ^rp/33|1 

Table 1: Conditions for Stability/Performance Robustness for n = 1,2, and 3 

6    Nonlinear Perturbations 

In this section, it will be shown that if the class 
of perturbations is enlarged to include norm- 
bounded nonlinear perturbations, then the con- 
ditions for robust stability remain the same. This 
means that robustness to linear time-varying 
perturbations will automatically guarantee ro- 
bustness to nonlinear perturbations as well. Fur- 
thermore, it is shown that when enlarging the 
perturbation class to include nonlinear pertur- 
bations, stability robustness remains' equivalent 
to performance robustness, and so the condi- 
tions for stability and performance robustness 
for time-varying perturbations are the same as 
those for nonlinear perturbations. For simplicity 
we shall consider the scalar case here. We start 
by extending our definition for the perturbation 
class to include nonlinear perturbation. So de- 
fine 

VNL[(P\,ft); • • • 5 (p»,?»)] ■= {diag(A!,..., A„): 

Theorem 4. (I -MD)~l is t°°- stable for all 
D e V{n) if and only if it is I03- stable for all 
D € VsL(n). 

We have shown that stability robustness is 
equivalent to performance robustness when the 
dass of perturbations is V[n). It does not im- 
mediately follow that this should be true if the 
perturbation class were VNL{K)- Next we show 
that indeed stability robustness is equivalent to 
performance robustness even when enlarging the 
perturbation class to include nonlinear perturba- 
tions. 

We will assume the class of perturbations is 
T>XL(TI) and that we have one performance ob- 
jective consisting of keeping the norm of the func- 
tion mapping the external input u to the output 
y less than one. (Figure 2, SYSTEM II). 

Theorem 5. (I- M72D)-X is Z00- stable and 
\\Mii + Mi2D(I-M22D)-lMn\\   <   1 for all 

A,- is strictly causal and sup   .. ' 
*?40     IFIIOO 

D   6   VNL(n) if and only if (I - MD)~l 

C*. stable for all D 6 VNL(n + 1). 

is 

< 1 

For simplicity we adopt the following notation: 

P(n):=P[(l,l);...;(l,l)] 

VNL(n) := VNL[(l,l);...;(l,l)} 

7    Some Applications 

7.1    Stability    Robustness    (Unstruc- 
tured Pert.) 

This is the simplest case. The perturbations take 
the form of one A having q inputs and p outputs. 
The question then is when is (7 - MA)'1 stable 
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I jcr all A in A(p,«) ? Equivalently, when is the 
^connection of M <= ££> and A stable for 
l'i A in A(ZM) ? From Theorem 3, aneces- 
■trv and sufficient condition for robust stability 

Ü that none of the g inequalities: 

I < WWiWj { = 1,. 

Ja. a solution in (0,oo). Clearly a necessary 
fid sufficient condition for that to happen s that 
■HfJlf\-ll. < 1 for all:, or equivalently 11-ÄflU < 1; 
K&actly the problem solved by Dahleh and 
jOhta in [6]. , 

7 2 Input Sensitivity in the Presence 
of Multiplicative Input Perturba- 

tions 
Let P, be a given nominal linear shift-invariant 
SsCrete-time%t with, ^"f nlSL^Ä 
Consider the following family of plants formed 
^ adding weighted multiplicative perturbations 
to this nominal plant: 

n := {P :P = Po(I + ^iA),A € A(?,q)} 

where Wx 6 Cff. Let S{P0) be defined as fol- 
lows: 

Sfpg} ._ {c : C is linear causal shift-invariant 
controller stabilizing P0} 

For a fixed C € 5(P„) and 7 > 0 JJ «U now ob 
tain necessary and sufficient conditions for C to 
stabilize every P € II, and at the same time sat 
isfv II(I 4- OPT1 Will < 7 for aU p m n- He^ 
ffiläbSc. ob i'ctivl in this case is keeping 
smaü the norm of the weighted input senatmty 
function (I + CP)-lW2 despite the presence of 
the multiplicative perturbations.        , k 

This problem can be set up in the framework 
discussed in the previous sections wheres a. ficti- 

■ tious perturbation replaces the Performance ob- 
jective, thus transforming this stability and ]per- 
formance robustness problem into a stability TO- 
bulness problem alone. This alternate problem 
has !%,«),(«,«)] " the dass of perturbations, 
and an M matrix of the following form: 

(Hl + CP0)-
lW2   CPo(i + CP0)-

lwA 
M = [i{1+CPO-H^ CPO(/+CP,)-

1
^!; 

From table 1 and Theorem 3, pessary and suffi- 
cient conditions for robust stability for this prob- 
lem, and hence for robust performance for the 
original one are: 

ll(T.).'IU < 1 i = l,, 

i,j = l,...,q. 

where S0 :* (I + CP.)-^ and T0 ;= 
CPJI + CP)~loWi. Equivalently, these condi- 
tions can be written as: 

• IIT.IU < I- 

11 W»1U  .. , - 
-SSl-H(T.)4 

If1 we define * := {<? , 6 S(P.) ■ 
C stabilizes all P G H}, then it Mows from our 
stability robustness conditions for one A that 
C € * if and only if C 6 5(P0) and HT0|U < 1- 
Hence we have shown through the two conditions 
obtained above that for any C 6 W 

sup ||(I + CP)-1 W3|| = max -f _ j|(T j.,^- 

This is exactly the result obtained by the authors 
in [71 using a different approach. In fact, it is not 
difficult to show [7] that for any 7 > 0 

C6*and sup||(I + CP)-lWä||<7       iff 
pen 

CGS(P0) and ||(50   7To)IU<7- 

Since it is known [4,10,11] how to solve problems 
like 

min   ||(5,   lT0)\\A 
C<zS(Po) 

it is clear how an iterative scheme can be de- 
vised whereby the value of 7 can be increasedI or 
decreased according to the outcome of the opti- 
mization problem stated above, until 7 is as close 
as desired to fovu where 

Since at each iteration step a controller that 
achieves the minimum can be computed, we.can 
find a controller that achieves arbitrarily closely 

7opf 

7 3 Output Sensitivity in the Presence 
of Output Multiplicative Pertur- 

bations 

For this case let 

' n := {P : P = (J + AVV1)P0, A € A(g, q)} 
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where P0 and W\ are as before. Suppose we are 
now interested in the norm of the output sensi- 
tivity function as a performance measure. For 
C € S(P0), the M matrix now has the form 

\-i 
\r=( ^2(/ + PoC)~l      ^UI + PoC) 

1
 •      V WXP0C{I + PoC)-1   WrfoCil + P0C)~l 

Hence, from table 1 necessary and sufficient con- 
ditions for robust stability and performance are 
now: 

• ll(r.)4 < i    i = !.•■■ ■«• 

II 7 

i,j = 1,. 
i-ll(r«)il 

where T0 := WXP0C{I + P0C)~X and S0 := 
W2(I + P0C)~l. Equivalently, these conditions 
can be written as follows: 

lir.iu < i. 

i - lir.iL <7- 

With \P defined as before, it follows that foror 
any C € $, 

Even though these conditions are different from 
those obtained in the input sensitivity case, for 
a scalar plant they are actually the same. 

8     Conclusion 

We have provided in the previous sections nec- 
essary and sufficient conditions for achieving sta 
bility and performance robustness. These con- 
ditions can be applied to a large class of prob- 
lems in which multiple perturbations can enter 
in various configurations. The conditions in- 
volve no more that computing the A norm of 
certain transfer functions, a task which can be 
done to any degree of accuracy with relative ease. 
Consequently, these conditions provide a partic- 
ularly attractive method for the analysis of sta- 
bility and performance robustness. We have also 
shown that in some important cases obtaining a 
controller with optimal robustness properties can 
be done through a simple iterative scheme. Syn- 
thesis of controllers in the more general case, is 
an interesting problem which is currently under 
research.   . 
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Abstract 

Necessary and sufficient conditions for stability and 
performance robustness of discrete-time systems are 
provided in terms of the spectral radius of a certain 
nonnegative matrix. The conditions are easily com- 
putable and provide a simple method to do synthesis 
of robust controllers via an iteration scheme which 
utilizes the properties of the spectral radius. 

1    Introduction 

In [1,2,3], necessary and sufficient conditions were 
derived for stability robustness when structured £° 
norm-bounded perturbations were assumed. These 
conditions were given in terms of the region in which 
a system of inequalities has its solution. The system 
of inequalities is "completely determined by the inter- 
connection of the nominal system at hand and stabi- 
lizing controller. Even though conditions for stability 
robustness are important in their own right, they also 
give conditions for performance robustness. This has 
been demonstrated in [1,2] where it was shown that a 
performance robustness problem can be converted to 
a stability robustness problem by adding a fictitious 
perturbation block to represent the performance. The 
conditions for stability robustness which result are ex- 
actly those for performance robustness for the original 
problem. 

In this paper we establish a connection between 
the conditions for stability robustness and the spec- 
tral radius of a certain nonnegative matrix. Use of the 
spectral radius conditions allows us not only to ob- 

tain numerically efficient ways for determining when 
a certain system achieves robust stability and perfor- 
mance, but it also provides us with the means to de- 
sign controllers which provide suboptimal robustness 
properties. 

2    Notation 

IR+      Nonnegative real numbers. 

£°° Space of all bounded sequences of real num- 
bers, i.e. x = {x(k)}f=0 £ £°° if and only 
if sup|x(/fc)| < co.  If x G e°° then ||r||co = 

k 
sup \x(k)\. 

k 

£l Space of absolutely summable sequences.  If 
oo 

xee1 then iHi = Y, \x(k)\ < <*■ 
k=0 

\\-\\. The A norm of a z-transform of an £l se- 
quence, is the £l norm of that sequence. So 
for an LTI system, this will be the tl norm 
of the pulse response of that system. This is 
a measure of the maximum amplitude gain 
of the system. For a system matrix, the A- 
norm is the maximum row sum of individual 
SISO entry norms. 

A The set of all operators mapping £°* to itself, 
with induced £°° norm less than or equal to 

one. Hence, A := JA : supx-£0' <1 

"This research was supported by the National Science Foun- 
dation under grant ECS-8914467 and by the Air Force Office 
of Scientific Research under grant AFOSR-91-0036. 

V(n) The set of all diagonal operators of the form 
D = diag(Ai,..., A„) where A* € A. 
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Figure 1: Stability Robustness Problem 

3    Setup 

We start by setting up the stability robustness 
problem. Given is an interconnection of linear time- 
invariant plant/plants and linear time-invariant con- 
troller together with n perturbation blocks, say, 
Ai,...,An. These blocks represent the system un- 
certainty which is assumed to take place in n differ- 
ent locations in the interconnection. Each perturba- 
tion block, A,- belongs to the class A and is therefore 
norm bounded. The A,-'s are independent of each 
other reflecting the situation when the uncertainty 
has different sources. Next, let M denote that part of 
the interconnection which includes the nominal plant 
and stabilizing controller. M will have n inputs and 
n outputs corresponding to the interconnection with 
the pertrubation blocks. 

Whereas M is given and fixed (at least in the anal- 
ysis problem where a controller is given), each per- 
turbation block, A,- is allowed to vary over the set A. 
The combined effect of all perturbation blocks can be 
equivalently captured by one peturbation block , D, 
which has a diagonal structure. D now belongs to the 
class V(n) . With this setup in mind, the system is 
said to achieve robust stability if it is £°° -stable for all 
D 6 V{n). The next section is concerned with various 
necessary and sufficient conditions for the system in 
fig. 1 to achieve robust stability. Some of these condi- 
tions will prove useful in the synthesis of controllers 
with suboptimal robustness properties. 

4    Main Results 

In this section, we state without proof our main 
theorem establishing the necessary and sufficient con- 
ditions for robust stability of the system in fig. 1 in 
terms of the spectral radius of a certain matrix as well 

as other conditions. We start by defining |M|. Since 
M is linear time-invariant and stable with n inputs 
and outputs My, the map taking the ;'th input to the 
:'th output has a pulse response which belongs to the 
space t1. The I1 norm, or the A norm of My can be 
computed arbitrarily accurately. We define \M\ to be 
the following matrix of norms 

|M|:= 
Willi' •••    ll^inlUA 

Jl^nllL \\Mnn\l) 

Defining 72. to be the set of all n x n real diagonal 
matrices with positive entries on the diagonal, we can 
state the following theorem: 
Theorem 1  The following are all equivalent: 

1. The system in fig. 1 achieves robust siabiliiy. 

2. The system of inequalities: 

*<<£p*;IL*i *'=!,. 

Aas no solutions in (iR+)n\{0}. 

S. p{\M\) < 1, where p(\M\) denotes the spectral 
radius of \M\. 

I   infÄ€TC||^-1MÄ|[4<l. 

That 1 and 2 are equivalent has been shown in [1,2]. 
The important equivalence for the purposes of this 
paper is that of 1 and 4 since this allows us to do 
controller synthesis as will be discussed next. 

Since M forms the interconnection of the nominal 
linear time invariant system and linear time-invariant 
controller it can be put in the following form: 

M = T1- T2QT3 

where Ti, T2, and Tz are stable and depend only 
on the nominal plant. Q, is a free parameter to 
be chosen from the set of all stable rational function 
and determines the controller according to the Youla 
parametrization. In the analysis problem, Q is fixed 
and, as a result, so is M. For synthesis, we will need 
to find an appropriate Q which results in a controller 
providing satisfactory robustness properties. To do 
that, we adopt the following iteration scheme: 

1. Set i:=0, andJ20 := I. 

2. Set Qi := arg infQ JteMe HÄ"1^ - T2QT3)R\\A. 

3. Set Ri := arg infÄ67Z H-fiT1^ - T2QiT3)R\\A. 

4. Set i := £ + 1. Go to step 2. 
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Itis clear that this iteration converges, and further- 

Bore the infimum values obtained in the consecutive 
Implication of steps 2 and 3 will be monotonically de- 
creasing. It is also clear that the iteration procedure 

Bn be terminated at step 3 whenever a desireable ro- 
istness level is achieved as indicated by the value of 

the infimum at that step. 
— It remains to discuss the two optimization prob- 
■ns used in the iteration procedure above. The op- 
TOnization problem in step 2 is a standard ll opti- 
mization problem. This problem has been disussed 
I [6,8,9] and software packages for its solution ex- 
and involve only linear programming. The second 

optimization problem, that appearing in step 3, can 
rtso be solved. Its solution is a direct application of 
lie following lemma: 

Lemma 1 Let M = Ti - T2QT3 with Tu T2, T3, 
jLd Q stable. Let \M\ be as defined above. If \M\ is 
^reducible, then 

I 
inf WR^MRH = WR^MRll, 

here R := diag(fu.■ ■,rn), with (rlf ...,r„)    being 
the eigenvector corresponding to p(\M\) which aside 
t>m being the spectral radius of\M\ will be an eigen- 

lue of\M\. 

Jhis lemma follows from the Perron-Frobenius theory 
ir nonnegative matrices, and the proof will be omit- 
id here. From this lemma, all that is needed to solve 

the optimization problem in step 3 will be to compute 
In eigenvector corresponding to the eigenvalue with 

le maximum modulus. Because we are dealing with 
nonnegative square matrices this eigenvalue turns out 
(3 be real and hence is itself equal to the spectral ra- 

ius.   Both the spectral radius and the eigenvalue 
corresponding to it can be computed very easily us- 
ing power methods, another, consequence of Perron 

Brobenius theory for nonnegative matrices.   Finally, 
m \M\ were not in fact irreducible, it can be made so 

by replacing every zero entry with an e > 0. Since the 
Ipectral radius is a continuous function of the matrix 

ntries, it follows that the solution of this modified 
problem will approach that of the original reducible 

jme as e approaches zero. Thus, the irreducibility as- 
sumption on \M\ is not a serious one, and the case 
■when \M\ is reducible can be handled almost with the 

same ease as that when \M\ is irreducible. 
I  We next look at a numerical example demonstrat- 

ng the iteration scheme above. 

I 
I 

5    Example 1 

Consider the following plant family formed by 
dding weighted multiplicative perturbation  to a 

Qr 

W2 

r-Ai-H/l 

—-O -<>—i 

Figure 2: System considered in Example 1 after 
adding ficticious perturbation block for performance 

nominal linear shift-invariant plant, Pot 

U:={P = (I + WlA1)P<>  : A € A} , 

where p°=z((?-o)$r+:2)K We wm chcose Wi 

to be a high-pass FIR filter to reflect the fact that 
plant uncertainty is most common at high frequen- 
cies. MATLAB produced the following filter: 

Wi    :=    .0052A10-.008A9-.0134A8 + .1057A7 

-.2405A6 + .3072A5 - .2405A4 + .1057A3 

-.0134A2 - .008A + .0052 

The uncertain system is subject to low frequency 
disturbance at the output. This disturbance is mod- 
elled as the output of a low-pass FIR filter, W2- MAT- 
LAB was used to obtain the following filter: 

W2 := -.0033A9 - .0162A8 + .1555A6 + .3641A5 

+.3641A4 + .1555A3 - .0162A - .0033 

Our first objective is to achieve stability in the pres- 
ence of uncertainty, i.e. we require the closed-loop 
system to be £°°-stable for all P € H. Our second 
objective, is to make the norm of the system from 
the disturbance input to to u less than one. This 
has the the effect of making the magnitude gain from 
the disturbance input to the control input less than 
one! This must of course be done in a worst case 
sense since we are dealing with a plant family, rather 
than a single plant. This problem is of practical im- 
portance when the control input magnitude is not to 
exceed certain rated values. We will use the iteration 
scheme discussed after transforming the problem to a 

lln this paper, X is equal to r"1, where z is the familiar 
2-transform variable 
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stability robustness one with structured uncertainty. 

»Fig. 2 shows the resulting stability robustness prob- 
lem. It is straight forward to compute M which turns 
out to be: 

M 
_  ( -P0C(I + P0C)~1W1    -P0C(I+P0C)~1W2 

- \  -0(1 + P0C)-lWi        -C(I + P0Ö)-lWt 

We now perform the iteration procedure. For con- 
venience, we define M(Q) = T\ — T2QT3. 

• We set £. = I. inf HA/CQ)^ = 1.538364. 

Set Q0 := arg M\\M(Q)\\A
2. 

• p(\M(Q0)\) = inf \\RrlM(Q.)R\\. = 0.70956. 

Set Rx := arg   inf \\Rr1M(Q0)R\\A. 

• min ||ÄJ-1A/(Q)Ä1||>1 = 0.703424. 

Set <5i := arg mf \\RJ1M(Q)R1\]Ä. 

Starting point Ra Spectral radius to which 
iter. converged 

diag(l,l) 0.677072 
diag(l, 10) 0.677072 
diag( 1,100) 0.665026 
diag(10, 1) 0.647499 

diag(10Q,l) 0.648200 

Table 1: Results of iteration for several R*, 

Q=r 

rA2-^2 "2 ~J 

—o-T/T 
i*Ai*W] 

^ 

• P(\M(QX)\) = inf Hä-^CQOäII^ = 0.681358. 

Set Ä2 := ar5   inf H-R^MCOi).^. 

• min||Ä^1M(<3)Ä2|Lt = 0.681184. 

Set Q2:=arp inf HÄJ^CQjÄalL,. 

. p(|M(Q2)|) = inf ||Ä-1M(Q2)i?[[(l = 0.677072. 

Set i23 := ar^   inf ||Ä-1M(Q2)Ä|L. 
R£7Z. 

• rmnWR-;1 M(Q)R3\\A = 0.677072. 

Set Q3:= arg inf ||ÄJlM(Q)R3\\A. 

..p(\M(Q3)\) = inf IIÄ-^M(g3)Ä|U = 0.677072. 

When starting points other than R„ = I were cho- 
sen for the iteration the spectral radius to which 
the procedure converged did not change considerably 
from the one obtained here. Table 1 shows a few of 
these values for various starting points. 

Needless to say, for the actual design we would use 
the Q parameter giving the smallest of these spectral 
radii. This would be the one obtained with R0 = 
diag(10,1) as a starting point. It should be men- 
tioned here that even though R has two parameters, 
the actual optimization problem inf/t67j |]Ä~xAfÄl^ 
is a one dimensional one. Thus, only the ratio of the 
elements on the diagonal of R that affects the value 
of this infimum. 

Figure 3: System for Example 2 

6    Example 2 

Given the nominal plant: 

Po = 
A(A-0.1) 

2The tl optimization problems in this iteration example 
were solved by minimizing over all Q giving closed loop transfer 
function polynomial of order 20 or less. 

(A - 0.5)(A - 2) 

Suppose this nominal plant is subject to high fre- 
quency input and output uncertainy. This could be 
due to unmodelled sensor and actuator dynamics. 
This uncertainty is modelled by perturbation blocks 
Ai and A2 followed by high pass FIR filters W\ and 
W2 where 

Wx    :=   -0.0037A8-0.007A7 + 0.0817AS 

-0.2228A5 + 0.3A4 - 0.2228A3 

+0.0817A2 - 0.007A - 0.0037 

and 

W2    :=   -0.0127A9 + .0248A8 + 0.0638A7 

-0.2761A6 + 0.4A5 - 0.2761A4 

+0.0638A3 + 0.0248A2 - 0.0127A 

We are interested in maintaining system stability in 
the presence of the input and output perturbations. 
It can be easily seen that 

.,_ (-W^PoCV+ PoC)-1      W3P0(I + PoC)-1 

M ~ y  -WiC(I + PoC)-1      -W2P0C(I + PoC)-1 

We now apply the iteration scheme starting with 
R„ = I. 
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inf    \\R;1MR0\\,= 
Q itable" ^   w 

Let M\ := optimal M. 

1.0021. 

»    inf I|Ä-1ATiÄ|Ll = 0.0332. 

Let Ri := optimal R. 

• inf    llÄ^AfÄilL, = 0.0330. 
Q »table "     l 'M 

Let Mi := optimal M. 

• inf HÄ^MjÄlk = 0.0126. 

By lumping Ai and A2 together to form one mul- 
tivariable A, i.e. by ignoring the structure of the 
perturbation, and obtaining a controller which is op- 
timally robust for this A, one can only conclude that 
stability is maintained whenever ||A,-|| < 1-0021 

= 

0.997. By applying the present analysis results on 
structured perturbations to the system with the con- 
troller obtained above, one sees that stability will in 
fact be maintained as long as ||Aj|| < 30.12. Finally, 
if we use the controller corresponding to the last itera- 
tion step above, stability will be maintained whenever 
||A,|| < 79.4. This demonstrates clearly the advan- 
tages of this robust synthesis scheme. 
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Abstract 

Given a class of plants formed by perturbing a 
nominal discrete-time linear shift-invariant plant 
with, norm bounded unstructured perturbation, 
the problem of finding a single compensator that 
will stabilize all plants in this class and at the 
same time minimize the worst case norm of the 
sensitivity function is solved. 

1    Introduction 

When modeling physical systems as linear plants 
for the purpose of designing feedback controllers 
that make the closed loop system achieve certain 
specifications, one cannot escape the modelling 
uncertainties that are inherent in such a process. 
Even if the underlying physical system could be 
modelled exactly at one time, parameter varia- 
tions that could appear for any one of many rea- 
sons eventually take their toll on the system and 
render the model inaccurate. For this reason, a 
controller that achieves good performance when 
controlling the model, might not perform so well 
when used to control the actual plant and could 
even make the system unstable. Therefore, ro- 
bustness of the control system to variations in 
the plant are of great practical importance. Sta- 
bility robustness can be achieved if the controller 
can be made to stabilize a whole family of plants. 
Performance robustness, on the other hand, can 
be achieved if in addition the controller can be 
chosen so as to give "good" performance for each 
one of the members of the plant class. Stabil- 
ity robustness is therefore required for perfor- 
mance robustness. In this respect, recent work 
by M. Dahleh and Y. Ohta [1] provides neces- 
sary and sufficient conditions for BIB0 stability 
robustness. The plant perturbations considered 
in [1] take the form of multiplicative or additive 
perturbations with a bounded norm. In addition, 
the perturbations are allowed to be time-varying 
or nonlinear. 

'This research  was supported by the N.S.F.  under 
grant ECS-8806977 

This paper considers performance robustness 
when the performance criterion is C° disturbance 
rejection. Good performance, in this case, trans- 
lates into small norms for certain loop functions, 
e.g. the sensitivity function. Accordingly, in 
the case of sensitivity, robust performance can 
be achieved if the norm of the sensitivity func-. 
tion can be made small for all perturbed plants, 
an objective that can be achieved by minimizing, 
with the proper choice of a robustly stabilizing 
controller, the worst case norm of this function. 

2    Problem Statement 

Let P0 be a given nominal discrete-time plant. 
P0 is assumed to be linear, shift-invariant, and 
strictly causal with q inputs and p outputs. 

Denote by S(P0) the set of all linear shift- 
invariant discrete-time controllers with the ap- 
propriate dimension that stabilize. P0. We now 
define a family of plants formed by adding 
weighted multiplicative perturbations to the 
nominal plant. Let 

H:={P: P = P0(J + W^A)} 

where Wi G £9
T
x

I
q and A : £? -* If is causal 

with || A|| := sup Nf'N00 < 1. So A is allowed to 
x#0    IFlloo 

be time-varying or nonlinear. We also define 

$ := {C € S{P0): C stabilizes all P 6 II}. 

When performance is measured by the norm of 
. the weighted sensitivity function, the problem of 
achieving robust performance and stability can 
now be stated as follows: 

ini: sup || ((J+CP)-1^) || =:7opt 
es* pen 

where W2eCq
T
x

I
q. 

It is therefore desired to compute fopt and 
to find a controller C € $ that will make the 
quantity sup ||(/ +CP)-1W2|| arbitrarily close 

Pen 
to ~jopt. 
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3    Problem Solution 

Theorem 3.1, to be presented next, is essentially 
the key to solving the problem posed earlier. To- 
gether with Corollary 3.2 and Theorem 3.3, it 
forms the main result in this paper. The proof 
of Theorem 3.1 is rather involved and will net be 
presented here. See [4] for a complete proof. We 
will instead demonstrate how these results can 
be utilized to solve the stated problem. In what 
follows, if R 6 Cffi then £,• will denote the t'th 
row of the transfer function matrix of R. 

Theorem 3.1. Let T and S both be in Cft9 

with T satisfying \\T\h < 1. Then 
-TI 

sup   \\(I+TA)-1S\\ = max 
\\Sih 

Ac»usa] 
UAIKi !<••<? i -imii/ 

Corollary 3.2. Let C G S{P0) such that 
|j(/+ CPo^CPoW^ < 1. Tien 

sup ||(/ + CP)-*W2\\ = 
Pen 

max 
iiai+cT,)-1^),.^ 

!<•■<* 1 - || ((I+CP^CPoW^ \\A 

Proof : Define T := (7 + CP0)-
lCP0Wl and 

S := {I+CP0)-
1W2.   {I+CP)~lW2 can be 

expanded as follows: 

(I + CP)-lW2 = (7 + TA)"1 S. 

Now applying Theorem 3.1 gives the desired re- 
sult. ■ 

The next theorem is a consequence of Corol- 
lary 3.2 and the result of Dahleh and Ohta [1] 
concerning conditions for stability robustness. 

Theorem 3.3. Let C 6 S(P0), and let 7 > 0. 
Then 

C stabilizes every P G II    and 
sup ||(7+ CP)-lW2\\< 7 
Pen 

if and only if 

I [(I+CP0)-
lW3    7(7 + CP0)-

lCP0Wl)\A<1. 

Proof: See [4]. 
Theorem 3.3 suggests a way to minimize the 

quantity supp6n ||(7 + CP)~1W2\\ subject to ro- 
bust stability, by which jopt can be approached 
arbitrarily closely and a controller that achieves 
this can be found. Provided robust stability can 
be achieved, it is easy to see how iteration on the 
parameter 7 and solving an ,4-norm minimiza- 
tion problem at each step will achieve the desired 
minimization. See [4] for more details on the it- 
eration scheme and [3,5,6] for the techniques of 
solving the .4-norm minimization problems. 

4    Conclusion 

In this paper, it has been shown how stability 
robustness and performance robustness can be 
incorporated together in one design procedure 
when the performance is measured by the norm 
of the sensitivity function. An expression for 
the worst case norm of this function has been 
provided when norm bounded perturbations are 
present. Such an expression provides an effec- 
tive way of combining both robust stability and 
performance in one, easy to compute, measure. 
Furthermore, this expression can be minimized 
subject to robust stability constraints to pro- 
vide a controller with optimal robustness prop- 
erties. Finally, it should be mentioned that even 
though the perturbations considered here were 
multiplicative perturbations, the situation is al- 
most identical when additive perturbations are 
assumed. 
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ABSTRACT 
Recent developments in the robustness of systems with structured 

norm-bounded perturbations are presented. The stability and perfor- 
mance robustness of linear time-invariant systems with ^°°/£°° norm- 
bounded structured uncertainty is discussed. Moreover, new results on 
the robustness of time-varying systems including necessary and sufficient 
conditions for stability robustness are discussed. It is shown that for 
both time-varying as well as time-invariant systems nonconservative ro- 
bustness conditions can be obtained in terms of certain spectral radii of 
nonnegative matrices obtained from the nominal system. The robust- 
ness conditions are shown to be computable even for a large number of 
uncertainty blocks. 

Key Words:    Robustness, Structured Uncertainty, £l systems 

1. INTRODUCTION 
Robustness in the face of structured uncertainty is an important objective of 

control. As models of physical systems rarely correspond exactly to the true systems 
they are supposed to model, it is necessary to account for the resulting uncertainty 
both in the design and analysis procedures. Previous work on the robustness prob- 
lem using the £°° signal norm has been done by Dahleh and Ohta [1] who solve 
the stability robustness problem in the case of unstructured perturbations and for 
time-invariant systems. For time-varying systems, Shamma and Dahleh [2] provide 
necessary conditions for robust stability for systems with unstructured perturba- 
tions. This paper discusses the stability and performance robustness of systems in 
the presence of structured uncertainty. Each uncertainty block has an induced £°° 
norm which is bounded. For such uncertainty, and when the nominal system com- 
posed of the nominal plant and controller are linear time-invariant, necessary and 
sufficient conditions for robust stability are presented. These conditions are stated 
in terms of the spectral radius of a certain nonnegative matrix obtained from the 
nominal system and hence can be computed for a very large number of uncertainty 
blocks. In addition, the relationship between stability and performance robustness is 

"This research is supported by grants from the NSF and AFOSR 
'Elec. Eng. and Comp. Eng., Iowa State Univ., Ames, Iowa 
'Elect Comp. Eng., Rice Univ., Houston, Texas 
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Fig. 1. System with Structured Uncertainty. 

highlighted. By showing a certain equivalence between stability and performance ro- 
bustness, the problem of achieving robust performance in the presence of structured 
uncertainty can be reduced to a robust stability problem of another system. This 
allows the treatment of stability and performance robustness in the same framework. 

In many situations, the nominal system composed of the nominal plant and the 
stabilizing controller may be time-varying. This is the case for example when deal- 
ing with adaptive control systems or sampled-data systems. Time-varying nominal 
systems can also arise when time-varying weights are used in shaping certain signals 
or in modelling uncertainty. When the nominal system is time-varying, necessary 
and sufficient conditions for the robustness of time-varying systems are provided. 
These conditions are expressible in terms of the spectral radius of a parametrized 
family of matrices obtained from the kernel representation of the nominal system. 

This paper is organized as follows. In section 2 the robustness problem in the 
presence of structured perturbations is set up. In section 3 the robustness of time- 
invariant systems is discussed, and necessary and sufficient conditions are provided 
for both stability and performance robustness. In section 4 the robustness of time- 
varying systems is addressed, and necessary and sufficient conditions are provided 
for stability robustness. Finally, section 5 contains some concluding remarks. 

2. PROBLEM SETUP 
The standard setup for a general robustness problem appears in Fig. 1. In 

the figure, Q0 is a nominal linear plant. Since all the results in this paper hold 
for continuous and discrete-time systems with the obvious modifications, Q0 may 
be continuous-time or discrete-time. C is a linear controller stabilizing Q0. For the 
analysis problem, C is assumed given and fixed. The uncertainty is modelled with 
perturbation blocks Ai,..., A„. Each perturbation A,- belongs to the following class 

of admissible perturbations: 

{A  :  A is causal, and IIAII   : = sup 
u#0 

||AU|| 
<1}, (1) 
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A  €V{n) 

Fig. 2. Stability robustness problem I 

where the norm used is the £~ norm (or C» norm for discrete-time systems) 
The perturbations may therefore be nonlinear or time-varying. » is an exogenous 
bounded disturbance, and z is a regulated output. The n perturbation blocks can 
belumped into one perturbation block with a diagonal structure   Hence we can 
view the class of admissible perturbations as the class of all A 6 V(n) where 

V(n) := {diag{Ai, • ■ •, A„)  :  A; € A}. (2) 

Similarly, Qa and C can be lumped into one system M. M is therefore, linear, causal, 
anT tab e  Any weighting on any of the perturbations can be lumped into M 

The system in the figure is said to robustly stable if it is £-stable for all ad- 
missible perturbations, i.e. for all A € V(n). It is said to achieve robust performance 

if it achieves robust stability and satisfies: 

(3) 
\\TZW\\ < 1        V A e V(n), 

where T„ is the map from » to ,, and the norm used is the »^ ^^^ 
In the next two sections, we provide necessary conditions for robustness «hen 

M is time-invariant and when M is time-varying. We begin with the former. 

3   ROBUSTNESS OF TIME-INVARIANT SYSTEMS 
We start the discussion of the time-invariant case by first addressing conditions 

for robust stability alone. Following the treatment of robust stability, we address 

the robust performance problem. 

3.1 Stability Robustness . 
Consider the system in Fig. 2. From the figure, M has „ inputs; ancIn 

outputs corresponding to the inputs and outputs of the perturbations. Each AJ, 
has induced norm which we refer to as the A norm. It can be computed arbitrarily 
accurately since \\M,\\A = \D,\ + E&olGA'B,! in the discrete time case, and 
H w .1 _ in..I + f°° \CieMBj\dt in the continuous-time case, where A,Bi,Oj,Vv 
Xe 7onfti m°atrices in the state-space description of M,3. We can therefore 

define the following matrix: 

M = 

IIWnIL,    •■•    l|A/i»lU 

JMnl\\A    ...    ||M„»|t, 

(4) 

339 



As the next theorem shows, it turns out that M plays a fundamental role in the 
robustness of the given system. We now state the main theorem establishing non- 
conservative conditions for robustness: 

Theorem 1 The system in Fig. 2 achieves robust stability if and only if any one of 
the following conditions holds: 

1. p{M) < 1, where />(.) denotes the spectral radius. 

2. bf    ll-R^Mß^ < 1   where 11 := {diag{ru ... ,r„) : r,- > 0}. 

The proof of this theorem can be fourid in [3] for the discrete-time case and in [4] 
for the continuous-time. Since this theorem reduces the robustness analysis problem 
to that of computing the spectral radius of a nonnegative matrix. The theory for 
nonnegative matrices (see e.g. [5]) provides power algorithms for fast computation 
of the spectral radius of a nonnegative matrix. As a result, the robustness conditions 
can be computed exactly and efficiently which are especially suited for systems with 
a large number of uncertainty blocks. The second condition is useful for the synthesis 
of robust controllers since it turns out from the theory of nonnegative matrices that 
under very mild conditions on M the infimum is in fact achieved by a certain matrix 
R which is formed by writing the positive eigenvector corresponding to p(M), itself 
an eigenvalue of_Af, along the diagonal of R and setting all other entries to zero. 
In addition, if M does not satisfy the required conditions it can be made to do so 
by perturbing it slightly while keeping its spectral radius as close as desired to the 
original one. So a procedure for finding a controller that makes the spectral radius 
small can be devised similar to the D-K iteration used in the \i synthesis (see e.g. [6 
]). The differences between this case and the /x synthesis is that the scaling matrix R 
in this case is constant and not frequency dependent and thus is easier to compute. 
Moreover, unlike the fj,, condition 2. in the theorem above remains necessary even 
for n > 3. These differences are attributed mainly to the difference in norms used 
as well as the class of allowed perturbations. 

3.2 Robust Performance 
Thus far we have discussed only robust stability. It turns out that in the 

time-invariant M case, robust performance can be treated in the same framework as 
robust stability thanks to a special equivalence relationship between the two. The 
equivalence is the subject of the next main theorem. But first consider the two 
systems in Fig. 3. SYSTEM I is the one for which we seek robust performance. 
SYSTEM II is formed from SYSTEM I by feeding the output z back to the input w 
through a perturbation block &P. Robust stability of SYSTEM II is closely related 
to robust performance of SYSTEM I. This is what the following equivalence theorem 
states: 

Theorem 2 With SYSTEM I and SYSTEM II as in Fig. 3, SYSTEM I achieves 
robust performance if and only if SYSTEM II achieves robust stability. 

As mentioned earlier the robust stability of SYSTEM II is equivalent to stability 
for all diag(Ap,A) 6 V(n + 1), and can be tested using the spectral radius test in 
Theorem 1. The proof of Theorem 2 can be found in [3]. Even though one direction 
of the proof is fairly obvious and follows directly from the Small Gain theorem, 
the proof of the other direction requires some results on the stability robustness of 
time-varying systems. 
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Fig. 3. Stability robustness vs. performance robustness 

4. ROBUSTNESS OF TIME-VARYING SYSTEMS 
We now discuss the general case when M is time-varying. Of special interest 

is the case when M is periodically time-varying. Such M arise when dealing with 
sampled-data systems. For time-varying systems various properties of the norm 
which hold for time-invariant systems cease to hold. In particular if (Mi M2 ) is a 
time-varying system then unlike the time-invariant case, || (Mi M2 ) || is not equal 
to ||Mi|| + ||M2|L. Many of the subtle differences in the robustness conditions be- 
tween time-varying and time-invariant systems are attributed to this fact. Another 
property which time-varying systems do not possess is that of commuting with the 
shift operator. We define the shift operator for time-varying systems as follows: 

5T :    £°°K Cf    such that 

<*-xo - {f~T) :,hh™";raT (5) 

For the robustness of time-varying systems the operator S-TMST plays an important 
role. Before we can state necessary and sufficient conditions for stability robustness 
of time-varying systems we need a representation for the time-varying operator My. 
Since Mij is a linear, causal, and stable map, it has a certain kernel representation, 
say Mij(t,r) for 0 < t,r < oo, so that for any u € £°° 

(6) (M,7u)(i) = j[0OM,v(i,r)U(r)dr 

where Mij(t,r) = M,v(t,r) + ESo"»*•(*)*(* ~ ** ~ r) (see t7] for more details)- 
Because Mij is £°°-stable it holds that 

oo 

iSup /    \Mii(t,T)\dr + £ |m*(i)| < oo. 

We can suppress the dependence of My on r by writing M,-,(i) by which we 
mean the function Mti(i,-)- This belongs to the algebra A (see [7]). In this case, 

H^yWIU = /o \Mij(t,T)\dr + Er=o |my(*)l- Tt can be verified that 

IIM^supHMyWIU- (7) 

We are now in a position to state the generalization of Theorem 1 to time-varying 

systems. 
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Theorem 3 For the system in Fig. 2 and with M a stable and causal time-varying 
operator robust stability is achieved if and only if any of the following two conditions 

are met: 

1. For some T > 0 

||(5_TMH5T)(<I)||^    ...    \\(S_TMlnST)(t1% 

SUp/3 
(,>0 

\ 

<1. 

.||(S_TMB1ST)(*„)IL,   •••    \\(S-TMnnST)(tn)\\A}J 

2. Forborne T > 0,        \niR&i \\R-
1
S-TMSTR\\ < 1. 

This theorem appears in [4] where the proof can be found. For periodically time- 
varying systems various simplifications take place in the statement of Theorem 3. 
In particular, for sampled-data systems state-space formulae can be obtained for 
the quantities appearing in the theorem statement and the norms can be computed 
arbitrarily accurately. Furthermore, the supremum in item 1 of theorem 3 can be 
taken over a compact set in the case of sampled-data systems. More details about 
these computations appear in [4]. 

5. CONCLUSIONS 
In this paper, computable necessary and sufficient conditions for the robustness 

of time-invariant systems in the presence of structured uncertainty were presented. 
It was shown that performance robustness can be handled in the same framework 
as stability robustness. Finally, necessary and sufficient conditions in terms of the 
spectral radius were given for the robustness of time-varying system?- For tir.io- 
varying systems it can be shown that the relationship that exists between stability 
robustness and performance robustness in the time-invariant case ceases to hold for 
time-varying systems. More work needs to be done in this direction. 
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Uniform Stability and Performance in iJ< CO 
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ABSTRACT 

We consider robust stability and performance 
analysis problems for continuous-time single- 
input single-output plants in the Ho setting. For 
a multiplicative uncertainty model, we show that 
well-known conditions for stability and perfor- 
mance are not necessary conditions. We show 
there is no equivalence between the stability and 
performance problems. We argue that stability 
of JV/-A configuration is not always equivalent 
to robust stability. We consider uniform stabil- 
ity and uniform performance, and examine their 
relationship with each other. 

NOTATION 

C+e {s € C : Re s > 0} U {00} 

Q (fi)        open (closed) right half plane 

Hoo space of bounded holornorphic func- 
tions on fi 

RHoo       rational functions in #00 with real 
coefficients 

.4 space of bounded holornorphic func- 
tions on Q, 

T 1 

A {A €.4 : ||A|L<1} 

A0 {A € Ä : HAIL  < 1} 

1. INTRODUCTION 

We consider the robust stability and perfor- 
mance problems for single-input single-output 

'This research was supported by the NSF under grant 
ECS-8914467 and by the AFOSR under graut AFOSR- 
»1-0036. 

o xx O x2 

Figure 1: Feedback configuration 

continuous-time plants with uncertainty in the 
/Zoo setting. Consider the feedback system in 
Figure 1, where r is the reference input, y is 
the controlled output, and d is the disturbance. 
In the figure, C is the controller, and P is the 
plant, both represented minimally. We say that 
the system in Figure 1 is well-posed if for any lo- 
cally square-integrable r, d there is a unique pair 
£1,3:2 with x1,i2 locally square-integrable. We 
say that the system in Figure 1 is internally sta- 
ble or that C stabilizes P if it is well-posed and if 
the four transfer functions from (r, d) to (xi,x2) 
are stable (i.e. in Hoo). We say that C achieves 
performance with respect to property p for P if 
it stabilizes P and if p holds. If it is understood 
what p is, we simply say that C achieves perfor- 
mance for P. In this paper, HWiT^IL < 1 is 
the performance property where W\ 6 -R-Soo is 
fixed and TXir is the map from r to x\. 

Mathematical models rarely describe the plant 
exactly. That is, P is not known precisely, but 
can only be placed within a given uncertainty set 
II. In such a case, we are interested in designing a 
single controller which stabilizes or achieves per- 
formance for every P G II. We have the following 
definitions. 

Definition 1.1. The controller C robustly sta- 
bilizes II if C- stabilizes every P € II. 

CH3229-2/92/0000-1991 $1.00 © 1992 IEEE 1991 



Definition 1.2. The controller C achieves ro- 
bust performance for II if C achieves performance 
for every P e II. 

Then the robust stability (performance) prob- 
lem amounts to determining if a given controller 
C achieves robust stability (performance) for a 
given uncertainty set. A typical uncertainty set 
is {P' = P + A : A 6 #oo, HAIL < 1}, where P 
is called the nominal plant and is a distinguished 
member of the set, and A is called the perturba- 
tion on P. We then have notions of nominal sta- 
bility and nominal performance whose meaning 
is obvious. Several uncertainty sets parametrized 
by stable perturbations on a nominal plant such 
as additive and multiplicative perturbations [1] 
have been considered in the literature.  For the 
single-input single-output systems,  the uncer- 
tainty is  unstructured if a scalar perturbation 
parametrizes the uncertainty set.   Otherwise it 
is caUed structured.   In this note, we consider 
both structured and unstructured uncertainty. 

The reason for elaborating on the definitions 
at length is that we will show in Section 3 that 
a standard approach, which we call "M-A anal- 
ysis", does not always solve the robust stability 
problem as stated above.   There are necessary 
and sufficient conditions for both robust stabil- 
ity and robust performance [1], if a) the nominal 
plant and controller do not have poles and zeros 
on the imaginary axis, and b) if the uncertainty is 
unstructured. We show that if we relax either a) 
or b), the conditions are sufficient but not neces, 
sary. We consider robust stability in Section 2 a 
comparison of M-A analysis in Section 3, robust 
performance in Section 4, and their relationship 
in Section 5. 

Consider a controller C which robustly stabi- 
lizes a class of plants II. Then, given any Pen, 
the four transfer functions from (r,d) to (xux2) 
are stable, and hence have finite norms. But it 
is plausible that as P varies over II these norms 
can grow arbitrarily large. That is, as we show 
m Section 6, there may not be a uniform bound 
on the norms of these transfer functions as P 
varies over II. This is why we have robust perfor- 
mance problem, where we ensure that weighted 
norm of a transfer function remains bounded un- 

Ider perturbations.   We show in Section f, that 
fjven when we have robust performance, norms 

I 

of some transfer functions can grow arbitrarily 
large. It is desirable that we design a controller 
C that achieves such a uniform norm bound on 
all transfer functions. With this motivation, we 
consider uniform stability (performance) prob- 
lems and examine their relationship with each 

. other and with robust stability (performance) 
problems.   We compare using M-A analysis to 
solve these problems. A discussion on the results 
follows in the last section. 

2. ROBUST STABILITY 

_ Internal stability for the feedback configura- 
tion under consideration is equivalent to the sta- 
bility of the three transfer functions 

, and 
1 + PC' 1 + PC 1 + PC' 

We consider unstructured uncertainty first. De- 
fine 

JlM := {P = P(1 + AW2) : A e Ä HA^ < 1}, 

KM ■= {P = P(l + A^2) : A6Ä, UAII^ < 1}, 

where W2 6 RH^ is fixed.  We assume the fol- 
lowing throughout the paper. 

(Al)   The nominal plant and the controller are 
proper rational functions with real coefficients. 

There are no assumptions on the location of poles 
or zeros of either the nominal plant or the con- 
troller. In particular, we do not assume they do 
not have poles on the imaginary axis. Assump- 
tion Al is not crucial in the paper. All the re- 
sults hold verbatim for distributed plants having 
finitely many poles of finite order in the closed 
right half plane. Define 

1 + PC 1+PC 

Proposition 2.1. Let C stabilize the nominal 
plant P. Then: 

(i)  C   robustly  stabilizes U°M   if and  only  if 
liwiriu < 1. 
(ii) HW^ril^,  < 1 implies C robustly stabilizes 

(Hi) C  robustly stabilizes UM  does not imply 
ll^riL <.i. py 

* 

"i 
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(iv) C robustly stabilizes TLM implies HW^H^ < 

1. 
(v) In addition, assume that neither P nor C has 
poles on the imaginary axis.   Then, C robustly 
stabilizes UM if and only if ^WiTW^ < 1. 

Part (ii) follows from small gain theorem [5]. 
Parts (i), (iv) and (v) are easy to prove. 
We prove (iii) by exhibiting an example with 

U^rii«, = 1 wiiere t^ere is no destal)ilizius- 
A € A.°° 

Example 1. Let P{s) := 1, C(s) := 1, and 
W2(s) := 1. 
Proof. For rational perturbations, a destabiliz- 

ing A needs to satisfy A(0) = -1 and A'(0) = 
-1. Such a A doesn't belong to A. O 

See [3] for the case of general perturbations in 

A. 

In [4], it is shown that a necessary and suffi- 
cient robustness condition with a non-strict in- 
equality exists for a class of stable-factor pertur- 
bations defined with a strict inequality. It is also 
shown that if the inequalities are switched, the 
condition becomes sufficient but not necessary. 
Our construction is similar to the construction 
of the counter-example there. 

We now consider structured uncertainty. De- 
fine 

:= {p] + ^ : Al5 A2 € A, Ax * -Wf1}, U:={P 
1 + AiWx 

ft» := {P] + *2Z2 ■ Ai,A2 € A«,Ax $ -W^h 
1 + AxWx 

where Wx, W2 6 R.H& are fixed. 

Proposition 2.2. Let C stabilize P. Then: 

(i)   C   robustly   stabilizes  R°   if and   only   if 
|||WxS| + |War||L<l. 

(ii)    || |Wi$| + \W2T\ H^ < 1 is sufficient but 
not necessary for C to robustly stabilize II. 

(iii)      C      robustly      stabilizes      ft      implies 
IIIWkSI + IWVTI LSI- 

Parts (i), (iii), and sufficiency in (ii) are easy 
to prove. The following example completes the 

■proof of (ii). For details,.see [3]. 

Example 2.   Let P = ^, C = 1, Wx = 1, and 

Note that both the nominal plant and controller 
in the example are rational functions with no 
poles and zeros on the imaginary axis. This 
should be contrasted with Proposition 2.1(v). 

3. M-A ANALYSIS 

P 

Figure 2: Multiplicative Perturbations 

In the literature, there is one approach to solve 
the robust stability problem of Section 1, which 
has been generalized to deal with structured un- 
certainty allowing multiple uncertainties at sev- 
eral locations in the plant. This approach is 
to rearrange the given configuration, redrawn in 
Figure 2 with A in place, to match Figure 3(a). 
Here, M is the transfer function from the out- 

M 

-o— 

M 
V2 o- 

(a) (b) 

Figure 3: General M-A structure 

put of A to the input of A. Then the "stability 
of the closed loop system" in this figure is stud- 
ied. To define this, two additional fictitious sig- 
nals are introduced as in Figure 3(b). The M-A 
configuration is called stable if the four trans- 
fer functions from («i,«a) to (yi.Jfe) are stable. 
This is shown to be eqtiivalent to the invertibil- 
ity of (I - A/A) in H^ for every A in the unit 
ball. Then a necessary and sufficient condition 
for this, a version of the small gain theorem, is 
derived. For example, the following holds for un- 
structured uncertainty. 
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Lemma 3.1. (I 
RH^ with UAH« 

- MA)"1 € Hoc for all A € 
< 1 if and only if ||Af H^ < 1. 

We can interchange < and < in this lemma. Sim- 
ilarly, for structured uncertainty which gives rise 
to a block-diagonal A and a transfer function 
matrix M, we have the //-test [1] to determine 
the stability of the M-A configuration. With 
the previous examples, it is clear that robust 
stability of the configuration in Figure 2 need 
not imply the stability of the M-A configura- 
tion. Notice we have shown this in Example 2 
with a plant and controller that are rational and 
stable. That is, the M-A analysis may not al- 
ways solve the robust stability problem stated 
in Section 1. Presumably, the equivalence be- 
tween these two notions of stability depends on 
the norm, the set. of A (e.g. open or closed unit 
ball), and other assumptions on the plant or con- 
troller (e.g. no poles of controller or plant on the 
imaginary axis), and the perturbation class itself 
(e.g. they are equivalent for additive perturba- 
tions, but not for multiplicative perturbations). 
This equivalence issue is an open problem. 

4. ROBUST PERFORMANCE 

The performance criterion under consideration 
is that the H^ norm of the map from r to x-i 
weighted by W\ be strictly less than 1. Then 
robust performance for UM (11^) may be defined 
as 

robust stability for UM (K'M)  
an(^ 

< 1,   VA€ A(A°). 
1 + AW2T 

We claim the following. 

Proposition 4.1. Let C stabilize the nominal 
plant P. Then: 

(i) Robust performance for 

n°M*=> II l^i.s'1+ |^2r| |L < i. 
(ii) || \WiS\ + \W2T\ IL < 1 implies robust per- 
formance for UM ■ 
(iii) Robust performance for UM docs not imply 
|||w15| + |w2r||L<i. 
(iv)    Robust    performance   for    UM    implies 
ll.l^i5l+.|^2r||L<i. 

(v) In addition, assume that neither P norC has 
poles on the imaginary axis. Then, robust perfor- 
mance for UM <^   || |Wi5| + \W2T\ ^ < 1. 

As we can have robust stability with 
HW^TIL = 1, it may seem that (iii) is imme- 
diate. However, it may happen that for any ro- 
bustly stable system with HWVTIL = 1, there 
is no Wi such that a performance bound is 
achieved. Proof of (i), (ii), (iv) and (v) is simple. 
We establish (iii) by an example. 

Example 3. Consider the Example 1 with 
Wi(s) := ^f- For each u and each A € A, we 
have 

WXS       .   |WiS| 0.49a;2 

1 +AT 

So,    C 

~   1-\T\      l+ui-VT+u? 

achieves    robust    performance, 
II |^5|+ |war||L>i. 

< 0.98. 

but 
D 

5. RELATION  BETWEEN  PERFORMANCE AND 

STABILITY 

We now examine if robust performance for UM 

is equivalent to robust stability for II. The equiv- 
alence breaks down rather miserably, but the two 
notions are not completely unrelated. We will 
compare the case of UM with that of U°M. 
The main result of this section follows. 

Proposition 5.1. Let C stabilize P. Then: 

(i) Robust performance for UM <=> C robustly 
stabilizes U°. 

(ii) Robust stability for U does not imply nominal 
performance for UM- 

(iii) Robust performance for UM implies robust 
stability for U. 

Proof of (i) follows from Proposition 2.3(i) and 
Proposition 4.4(i). Again we prove (ii) by an 
example. For proof of (iii), see [3]. 

Example Consider Example 2 again. We have 
shown that C robustly stabilizes 0. However, 
since HWiSIL = 1, the closed loop system does 
not even have nominal performance. 0 

6. UNIFORM  STABILITY AND UNIFORM PER- 

FORMANCE 

In Section 1 we discussed a notion of robust 
stability .and performance.    In this section we 
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consider another notion of stability and perfor- 
mance. Consider a controller C which robustly 
•stabilizes a class of plants II. Then, given any 
P ell, the three transfer functions 

C , and 
I + PC' I + PC      1 + PC   ■ 

are stable, and hence have finite norms. But it is 
conceivable that as P varies over H these norms 
can grow arbitrarily large. In other words, there 
may not be a uniform bound on the norms of 
these transfer functions as P varies over II. It 
is clearly desirable that we design a controller 
C that achieves such a uniform norm bound on 
all transfer functions. With respect to Figure 1, 
denote the map (r,d) ~ (Xl,x2) by T2W, which 
clearly depends on P. Let the performance prop- 
erty of interest be the same as in Section 1. The 
following definition is in [2]. 

Definition 6.1. The controller C achieves «m- 

form stability for  II if 

SUp    \\TZW(P) 
pen 

< oo. 

We define uniform performance similarly. 

Definition 6.2. The controller achieves uni- 
form performance for U if it achieves uniform 
stability and robust performance for II. 

When the supremum in the definitions is finite, 
we call it the unifor-m bound. It is clear from the 
definitions that uniform stability (performance) 
is a stronger notion than robust stability (perfor- 
mance). We now show by an example that these 
are indeed strictly stronger. 

Example. Consider Example 3. We have 
shown that C achieves robust, performance (and 
hence robust stability) for IIw- Consider ^jg. 

For any u € I*+, we have 

11 + PC 1 + &W2T |1 + A(tu)r(»w)| ' 

We   also   have   a   sequence   of w„   for   which 
wn     ift _     ,i    -) becomes arbitrarily large. 

For each w„, we can select a An .€ Ä-Hoo "> ^ 

such that |1 + A„T(io;n)| = 1 - \W»»)\- R» this 
sequence of A„, we have 

5 
lim 

n 1 + A„W2T 
= oo. 

However, uniform stability need not always be 
stronger than robust stability._ For the additive 
perturbation class HA := {P = P + AWa : 
l|A|L < 1}, «niform stability (performance) is 
equivalent to robust stability (performance). 

The uniform stability (performance) problem 
amounts to determining if a given controller C 
achieves uniform stability (performance) for a 
given uncertainty set. The foUowing is easy to 

prove: 

Halloo < 1 sup 11(1+MA)"1 

AGA " 

< oo. 
oo 

Paraphrasing the right hand side of the above 
equivalence as 'uniform M-A stability', we may 
expect that uniform M-A instability does not 
imply uniform instability for multiplicative per- 
turbations, if the perturbation set is the closed 
unit ball'A. The foUowing proposition shows 
that these notions are different even when the 

perturbation set is A0. 

Proposition 6.3. Let C stabilize the nominal 

plant P. Then: 

(i) n^riloo < 1 is sufficient but not necessary 
for C to achieve uniform stability for TLM (U°M). 

(ii) || |WiS| + \W3T\ IU < 1 is sufficient but not 
necessary for C to achieve uniform performance 

for TlM WM)- 

Proofs of sufficiency are easy. We now show C 
can achieve uniform performance for TLM even 

when HWaTIL = 1. 

Example 4. Let P = ^, C = 1, Wi = 0-99, 
jy2 - _-L_. Arguing as in Example 1, we can 
show that system is robustly stable for UM- For 
each u and each A € A, we have 

W,S 
J* 

W^\      = °-"7S? = 0.99 
"  |1-F2T|| 1        1+w2 1 + AW2T 

So, C achieves robust performance for UM- Since 
C 'and Wi are stable and invertible in #oo, 
aU four transfer functions  are also uniformly 
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• * bo«nd^.   An upper bound is 2.   Same conrl 

robust stabihty forT w! n   " " T™1«" t0 

■       * «* an ecp-^L- ^el ^ " ^ 
n-nce and uniform stability m Perfor" 

^sit^6A. Let C stabilize P. Then: 

(iJC uniformly stabilizes f[° implies C ,„l • 
vmform performance for U^. ^ 
(") Converse of (i) is false_ 

P^ii? " ^ The m^ «vW example 

Example 5.    Let P - r - i T*, 

3/2.   Then 5 - rC"i«"r ■■^ =,:/2'W'2 = 
thai r» ,-i,- '       n ls easi]y verified 

S ±k£iW^_* . L   As( goes to zero, 
i+AjW^+AjWjr becomes arbitrarily large    a 

th,~ir, k"St SUMi'*  '»" fe which 

tl°,-=IP + A2W2 
xT7Aw:Al,A2eA°>Ai£-wr1} 

where WUW~ p pir „     , 

Proposi,i„n 6.5. ie( c ,ta4ffiw p   ^ 

V   O    robustly  stabilizes  IT»    ,Y        ; 
tiWiC$Uoo < 1. °   y  '7 

("V C  uniformly stabilises 17"   if       i 
W^^IL < 1. " °' y :/ 

manceforul ° ^^ PClf°r- 

(v)  C  uniformly stabilises  FT«-'    ,v        ; 

We conclude from parts (iv) ancI fv) .   .   _ 
achieves uniform performance* for IP  i C 

'»Ply C uniformly stabilizes fi° DOt 

7. CONCLUSIONS 

With the perturbation class defined hv ti, 
open unit ball A0  we h3VO a ,       y the 

ory for robust stably ^"7 *** tHe- 

dosed unit ball A. The M - A I ,       *   ** 

stability.   Even w),0„ tI. °f unif°nn 

'"' f0r thar «"Meats and discussions. 
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Minimization of the I°°-Induced Norm for Sampled-Data Systems* 

Bassam Barmen*, Munther A. Dahleh*, J. Boyd Pearsoa5 

Abstract 

In tliis paper, a complete solution for the I1 sampled-data 
problem is furnished for arbitrary plants. The I1 sampled-data 
problem is described as follows: Given a continuous-time plant, 
with continuous-time performance objectives, design a digital 
controller that delivers this performance. This problem differs 
from the standard discrete-time methods in that it takes into 
consideration the inter-sampling behavior of the closed loop 
system. The resulting closed loop system dynamics consist 
of both continuous-time and discrete-time dynamics and thus 
such systems are known as hybrid systems. It is shown that 
given any degree of accuracy, there exists a standard discrete- 
time t1 problem, which can be determined apriori, such that 
for any controller that achieves a level of performance for the 
discrete-time problem, the same controller achieves the same ■ 
performance within the prescribed level of accuracy if imple- 
mented as a sampled-data controller. This is accomplished by 
first converting the the hybrid system into an equivalent in- 
finite dimensional discrete-time system using the lifting tech- 
nique in continuous time, then the infinite dimensional parts 
of the system which model the inter-sample dynamics are ap- 
proximated. This approximation is done independently of the 
controller, and explicit bounds are obtained for the degree of 
approximation. It is shown that the convergence of this ap- 
proximation is at least as -. 

1    Introduction 

This paper is concerned with designing digital controllers for 
continuous-time systems to optimaly achieve certain perfor- 
mance specifications in the presence of uncertainty. Contrary 
to discrete time designs, such controllers are designed taking 
into consideration the inter-sample behavior of the system. 
Such hybrid systems are generally known as sampled-data sys- 
tems, and have recently received renewed interest by the con- 
trol community. 

The difficulty in considering the continuous time behavior 
of sampled-data systems, is that it is time varying, even when 
the plant and the controller are both continuous-time and 
discrete-time time-invariant respectively. We consider in this 
paper the standard problem with sampled-data controllers (or 
the sampled-data problem, for short) shown in figure 1. The 
continuous time controller is constrained to be sampled-data 
controller, that is, it is of the form HTCSr. The generalized 
plant is continuous-time time-invariant and C is discrete-time 
time-invariant,?*,, is a zero order hold (with period r), and ST 

"The first and last authors' research is supported by NSF ECS- 
89H4S7 and AFOSR-91-0036. The second author is supported by Wright- 
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stitute of Technology, Cambridge, MA 

!Dept. of Electrical and Computer Engineering, Rice University, Hous- 
. ton, TX 77030 
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Figure 1: Hybrid discrete/continuous time system 

is an ideal sampler (with period r). HT and Sr are assumed 
synchronized. Let T{G,HTCST) denote the mapping between 
the exogenous input and the regulated output. F{G, HTCST) 
is in general time varying, in fact it is r-periodic where r is the 
period of the sample and hold devices. 

Sampled-data systems have been studied by many re- 
searchers in the past in the context of LQG controllers (e.g. 
[19]). Recently, Chen and Francis [4] studied this problem in 
the context of H°° control, and were able to provide a solution 
in the case where the regulated output is in discrete time and 
the exogenous input is in continuous time. The exact problem 
was solved in [2],[3], and independently in [12] and [20]. The 
L°° -induced norm problem (the one we are concerned with in 
this paper) was considered in [9]. 

In this paper we will use the framework developed in [2],[3], 
to study the I1 sampled-data problem. Precisely, the controller 
is designed to minimize the induced norm of the periodic sys- 
tem over the space of bounded inputs (i.e. L"). This min- 
imization results from posing time domain specifications and 
design constraints, which is quite natural for control system 
design. To emphasize the point made earlier, the inputs are 
continuous time inputs, the errors are continuous time errors 
(see figure 1), however the system is a hybrid system with a 
continuous-time plant and a discrete-time controller. The dis- 
crete time method for tl designs (e.g. [5],[15]), cannot handle 
this problem directly, and is only concerned with the perfor- 
mance at the sampling instants. The solution provided in this 
paper is to solve the sampled-data problem by solving an (al- 
most) equivalent discrete time ll problem. While this was the 

. approach followed in [9], the main contribution of this paper is 
that it provides bounds that can be computed apriori to deter- 
mine the equivalent discrete-time problem, given any desired 
degree of accuracy and thus provides a solution for the syn- 
thesis problem. The solution in this paper is presented in the 
context of the lifting framework of [2], [3], as an approximation 
procedure for certain infinite dimensional problems. This ap- 
proach has the advantage of being more transparent than that 
in [9]. 

As already mentioned, sampled-data systems are periodic, 
the main theoretical tool we use for dealing with periodic sys- 
tems is a lifting technique for continuous time systems devel- 
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W; 

Figure 2: WT : Z?[0, oo) — t 
X»[0,T] 

oped in [2] [3]'. The technique establishes a strong corre- 
spondence between linear periodic systems and time invariant 
infinite dimensional systems.   In the next section we briefly 

problem.   We then set up an equivalent infinite dimensional 
problem whose solution is obtained using an approximation 
procedure. Formulas for the (almost) equivalent discrete time 
problem are given in section 3. In the later sections the issue 
of the convergence of the approximation procedure is investi- 
gated, where the main result is a design inequality (5) which 
expresses the degree of approximation of the hybrid problem 
by a discrete-time problem, in terms of the dynamics of the 
plant and mdependently of the choice of the controUer. This 
inequality * arrived at by decomposing the equivalent infi- 
nite dimensional problem and analyzing the decomposition 
bpace bmitations preclude including the details of this deriva- 
tion which are presented elsewhere [1]. 

The Lifting Technique 

In this section we briefly summarize the lifting technique for 
continuous-time periodic systems developed in [2], [3], and ap- 
ply it to the sampled-data problem. The idea of the lifting tech- 
nique is to put a periodic continuous-time system in a strong 
correspondence with a shift-invariant (i.e. discrete-time time- 
invariant) system, which amounts to rearranging the original 
system so that its periodicity can be viewed as shift «vari- 
ance. To accomplish this, we first define the lifting for signals, 
for which the appropriate signal spaces need to be established 

*or continuous time signals, we consider the usual L~[Qaa\ 
space of essentially bounded functions [S], and it's extended 
version iff".«).  We will also need to consider discrete time 
signals that take values in a function space, for this, we de- 
fine lx to be the space of all X-valued sequences, where X is 
some Banach space. We define t$ as the subspace of tx with 
bounded norm sequences, i.e. where for {fi} € tx, the norm 
UUiilUz •- sup,- \\f{\\x < oo. Given any / e Zf[o,=o)  we de- 
fine it's lifting f € 4„[0 rJi M fol]ows: f is M j«^.^^ 

sequence, we denote it by {/•}, and for each i, 

Mt) := /(t + r:) 0 < t < r. 

The lifting can be visualized as taking a continuous time signal 
and breaking it up into a sequence of'pieces' each correspond- 
ing to the function over an interval of length r (see fi-ure 2) 
Let us denote this lifting by WT : I~[0,„) -^ t° yf 
is a linear isomorphism, furthermore, if restricted to Z«[o,~L 
then WT : L°a[o,oo) —- ^g» js ail isometry, i.e. it preserves 
norms. 

Using the lifting of signals, one can define a lifting on sys- 
tems; Let G be a linear continuous time system on Lf [<>,„), 
tften it s hfimg G is the discrete time system G := W GW~l 

this is illustrated in the commutative diagram below: 

and pT'iilIy 'he 51me teChniq"e W" "rived at »dependently in [20] 

Xf[0,oo) ■ Lf to.») 

Thus G is a system that operates on Banach space (I~[0T!) 

J£thlf ' w WBI ^ Sndl SySt6mS Mnite <^°^ Note that since WT is an sometry, if G is stable, i.e. a bounded 
linear map on I« then Gis also stable, and furthermore the* 
respective induced norms are equal, \\G\\ = \\G\\. The cor- 
respondence between a system and it's lifting i0 presets 
algebraic system properties such as addition, cascade decoT 
position and feedback (see [2] for the details) 

the^tT/^0'the HftinS " the ^M-*** Problem is 
^ h th ^ G 1 " r"Peri0diC SyS-tem' thM Ö » «™<* with the shift on lLm^, that is, G is shift-invariant.   ThS 
basic fact aUows us to treat continuous time periodic systems 
^discrete-time time-invariant, albeit infinite dimensional sy" 

illuSate PUt rTk Can ^ f°Und f0r the Hfted *«««. To illustrate, let G be a contmuous-time time-invariant system 

given by a state space realization G = \A\B]. In [2] it was 

shown that the lifting G has a state space realization given by: 

=d CD 
G   =    |-ALg_| - f   <AT   I e^'-flH 

B:   i°°[o,T] R? 
Ä:   Bf — H? 

D:   L°°[o.r] -^ x«[0r] 

where the operators C, 3, D are given in terms of their kernel 
functions, and 1(.) is the unit step function. 
Notation: It simplifies the notation greatly to use the same 
symbol for an operator and its kernel, for example, D(t,s) (or 
B(s)) refer to the kernel functions representing the operator D 
(or B)   For operators that map a function space to R» such 
as B above, we generally use s (or 5) to denote the variable 
of the kernel function, and for operators that map R« to a 
function space such as C above, we use the variable t (or i). 
The kernel representation for the operators ByC,D means that 
tlieir action is given by 

B u = £ B(s) „(i) di      Cz = C(i)x ,    t 6 [0, r] 

(£*)(*) = £ D{t,s) u{s) ds 

_ Note that the state space of G is finite dimensional (the r 
in M refers to the dimension of the state space of G), while 
it s input and output spaces are infinite dimensional. This 
fact is significant in that, although lifted systems have infinite 
dimensional input and output spaces, they can be realized with 
a state space of dimension no larger than the dimension of the 
original contmuous-time state space model. 

To apply the lifting to the sampled-data problem, consider " 
again the standard problem of figure 1, and denote the closed 
loop operator by F{G,HTCST). Since the lifting is an isome- 
try, we have that \\F{G,HTCSr)\\ = \\Wr?{G,7UCST)Wr% 
this is shown in figure 3(a). In figure 3(b), we lump the lifting 
operators WT and W,-» and the sample and hold operators and 
consider a new generalized plant G. G is a discrete time svstem 
with one infinite dimensional input and output (corresponding 
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given by the Mowing realization 

=g- 

Ü 1 w-> _ Wr 
G 

Ü 
Mr 

u » 5T ■ 

G 

6" 

Figure 3: Equivalent Problem 

to w and z) and one finite dimensional input and output (corre- 

sponding to «and y). Thus,■ F&C) = WTHG,HrCSr)Wrl, 
which means that the closed loop operator ?{G,C) is in fact 
the lifting of the closed loop operator F(,G,HTCST). Since 
the lifting WT is an isometry, we have then characterized the 
I« induced norm of the hybrid system as the *£..,„,,, induced 

norm of the time invariant system -F(G,C). The conclusion is 
that the problem of minimizing the I°° induced norm of the 
sampled-data system, is equivalent to that of minimizing the 
induced norm of the infinite dimensional but time-invariant 
system F{G,C). The previous discussion together with the 
characterization of internal stability for hybrid systems in [11] 
(conditions for non-pathological sampling) yields the following 

theorem: 

Theorem 1 Let G and G be as in figure 3, then for any finite 

dimensional C 

(i) ?{G,K,CSr) is internally stable if and only if F{G,C) 

(ii) \\7{G,HTCSr)\\   =   ||^(G,C)||. 

This reformulation of the sampled-data problem to the prob- 
lem with G has several advantages, first, the controller has no 
'structural constraints' on it, in contrast to the previous formu- 
lation where the controller is constrained to be a sampled-data 
controller, i.e. of the form HTCST, second, both the controller 
C and the generalized plant G are shift-invariant, thus the pe- 
riodicity of the original system is 'removed', and third, all parts 
of the system are operating over the same time set (discrete- 
time). The price paid for these advantages is the infinite di- 
mensionality of the input and output spaces. In this paper 
we will show how one can reduce the problem to a finite di- 
mensional one by 'approximating' the input and output spaces 
by finite dimensional spaces, thus reducing the problem to a 

standard finite dimensional il problem. 
We now present (from [2]) a state space realization for the 

new generalized plant G which will be useful in studying the 
problem further. Let the original continuous time plant G be 

' A Si     Bi 
Cx 
c3 

Du   D12 

0       0 
G = 

It is assumed that the sampler-is preceded with a presamphng 
filter which is a strictly causal linear system, this is a realistic 
assumption since an ideal sampler is not a practical device, a 
real sampler can be modeled as an integrator with a fast time 
constant Mowed by and ideal sampler. The system shown 
above represents a generalized plant with the presamphng filter 
absorbed in it, the fact that Dn = Dn = 0 is due to the strict 
causality of the presampling filter, this also guarantees that 
the ideal sampler only operates on continuous signals. It can 
be shown ([2]) that a realization for the generalized plant G 

(figure 3) is given by 

~Xi Cxt 
c3 

Cie^'->W-')Bi + Dui{t - s)   Ci»(0B, + Du 
0 ° 

where *(:) := ß eA'ds- The system G has the foUowinS inPut 

and output spaces 

Ga: 
G\2 
Gj\ 
GTI 

lR„   ► tLoc[0tr] 

't~[0,r)  ¥ ^H» 
lR.  > lR, 

3    Solution Procedure 

Using the lifting we are able to convert the problem of finding 
a controller to minimize the L°° induced norm of the hybrid 
system (figure 1) into the Mowing standard problem with an 

infinite dimensional generalized plant G: 

We also note that because of theorem 1, suboptimal solution* 
to the above problem will also be suboptimal (with the same 

norm) for the hybrid system. 
The above infinite dimensional problem is solved by an ap- 

proximation procedure through solving a standard MIMO / 
problem. The idea we use is similar to those in [9] and [13] 
where multirate sampling is used to obtain discrete-time sys- 
tems that approximate the continuous time behavior of hy- 
brid systems. This approximation procedure was used m [9] 
to address the ix sampled-data problem. The approximation 
procedure we use is essentially equivalent to that in [9], how- 
ever, since we introduce it directly as an approximation to the 
lifted problem (2), the nature of the approximation is more 
transparant and we are able to explicitly isolate the parts of 

' the svstem that need to be approximated independently of the 
controller. The consequence is that we are able to obtain ex- 
plicit bounds on the degree of approximation in terms of con- 
stants that can be computed apriori, and that are dependent 

only on the plant. T ,w   ,_J 
We now describe the approximation procedure. Let W» and 

S„ be the following operators defined between I~[O.T] and I (») 
(£°°(TI) is Rn with the maximum norm), 

Hn: *-(») — i-P.r]  («.«)(«) = "(I7J): MO) s <-<•>. 

ft 
I: 

SS 

1 
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Figure 4: The system Gn 

where {.}„ means the first „ ^ ..   i 
sponse matrix of the^ ^ ^T"* *" im^ ra- 
tion in {.}. «"awte-tune system given by the realiza- 

Ä« "tX1 °42£ p^te ;°me« i««« 
be chosen large enough su* thaSS " " ^^ » « 
is almost optima] for the ™„r   ■ deSlgned »«roller Cn 

almost optimal for th oeriXPalToSe ^ (3)' the* * * 
approximation scheme wtsM l^ ^ * **»»> ttJs 

optimal controllers by choosing '/ °" Can °btain **"«* 
MIMO * probIem. Ltwhat t§e *""* aad S°IvinS a 

described next. *        ' convergence means here is 

^J_Jlf    I 4    Design Bounds 
1      2    /  In this section -a,* ;„. *..__. 

Lull 
Figure 5: The operators Sn and Hn 

(strictly speaking S ie „„.• 
subspace of left and ^? ™L" "T^ °n X°° but « the 
" irrelevant here sincS o^ttW S**^' "* *■«■«•« 
guarantee that Sn operates on v"*• "T?*"»« « made to 
above operators can bftho °S T TiüU°US si^h the 
operators (see figure 5}    ^"^ °f M  fast' s*mple and hold 

^^S^^^,^^^prob1-' - 
« 4), -d for eachnZ^Z ^    * ^ ^ <~ ** 

■ ^  '- C .df.LjS^(G,Q7inl 
■ (3) 

This new problem now involves th» !nj     J 

-• it is a standard MIMO^lem "** *" *<» 

-here ffn and a realization for it is given by, 

/"    :=    [t   J^Co"   ,°]   - 

T, ' °    J     ic2\ 0     0 J 
^ °r

Pem0rS^ « - --■ are computed to be 

1. 4a = C:    = 

c, 

\n-l 

■<**(*==")*, +A, 5    =    •(r/«)[s1    e-/nSi    ...    (^r-,       , 

U-2TT-:sir-]/„. 

In this section we investiert» tj,„     . 
of mo, C)\\ by || ™(^S5 L   D;tUTe °f the aPPr°^ation 
sis procedure outL d m 2!±°       t0 SW **tbe ^the- 
with performance arbi^Se ToT^ ** CMtrolle« 
to obtain explicit boundTon ttV °PtÜna1' one ne*<*s 
»'«?, C)/J by r(^S, e8ree °f aP^^ation of 

Let us begin with analysis. Note th**   ■      ,,~,- 
periodicaUy time varying system   ts Z~ -T "f((7'C>» is a 

immediately computable ATX™ , dUCed nonn is «* 
II^^QI, comesWhelJt^'^^»mputing 

^-42m^^---^meS 
Ärn^d^^ 

.   Puted to any desired' acc~    "    '     nr' * ^ be C01»- 

the follow^trm      ^ "Thdt b°Mds « H*tt<7)|| in 

Main Inequalitv •   TA»~ 
rf^n^ on/y on Gf ;J22 an c°™t°nts K. and Kx which 

n    +  (^-J B^ff.,011,     (5) 

The significance of the bound (5) is that .♦ ■ , 
is needed for synthesi,    wi. ^ " IS ^actly what 

ffn, the result fa ^iolTtt TC V*^m* M ^ d^ « 
the objective is to^t ^f J?» J^-CJB smaU, but 
system (or e^vaJently j|jrf A •™dnced

n 
B0™ of the ^brid 

(5) guarantees this ll^G>CW s*aU, and the inequaJity 

To be more precise, first note that we can immediately obtain 

since 

m£n,C)\\   <   \\?(G,C)\\ Vn, 
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(6) 

C), i.e. \\F(Gn,C)\\ < ft,+ €, then inequality (5). provides 
that if C„ is implemented in the hybrid system, then 

\\?{G, HrC„ST)\\ = mo, C„)|| < £ + (l + Zf) \\F(Gn, C)\\ 

Therefore, if a'controller with a. level of performance of ß + S 
is required (for any 6 > 0), we simply choose n and i apriori 
such that the right hand side of (6) is bounded by p + 6, 

It is worthwhile noting that the problem of minimizing 
||^(<j„, C)|| is immediately a standard ll problem with time- 
invariant plant. Hence, there is no need to apply any further 
lifting on the problem, which contrasts the approach in [9]. 
Also, we note that eventhough the approximation problem is 
in fact a multirate sampled problem, it reflects no structural 
constraints on the controller. General multirate sampled prob- 
lem do not share this property (see [7]). 

In the derivation of the main inequality 5, several interesting 
issues come up, and the bounds on the approximation is ob- 
tained by dissecting the infinite dimensional system G closely. 
We refere the interested reader to [1] for the full discussion. 

5    Conclusions 

This paper provides a complete solution for the sampled-data 
ll problem through approximation. Utilizing lifting tech- 
niques, the input/output map is decomposed in a such a way 
that the infinite-dimensional part of the system is isolated inde- 
pendently of the controller. This part is then approximated in 
a precise way by a finite dimensional system, whose dimension 
can be determined given any degree of accuracy. Computable 
bounds on the norm of the difference of the actual system and 
the approximated system are furnished, and they all depend 
entirely on the system's data. 

It is interesting to note that the same approach can be fol- 
lowed to solve the problem for the I'-induced norm, then, 
by a simple convexity argument, a solution for the general 
£p--induced norm can be obtained. However, the case of L2 in- 
duced norm admits a cleaner solution [2], and an exact discrete- 
time problem can be obtained. 

The approach followed in this paper is readily applicable 
to the structured perturbations problem for sampled-data sys- 
tems [14]. The minimization problem in this set-up involves 
spectral radius functions, and a similar result follows from the 
continuity of the spectral radius function. The derivation of ex- 
plicit bounds takes more work and will be reported elsewhere. 
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I 
t- - 

|v
( A input-output system is a relation between 

two'function spaces. The classical input-output 
framework treats a system as a map between 

I function spaces. The graph of this map, which 
is the collection of all compatible input-output 
pairs, constitutes the behavior of the system [3]. 

I The behavior of a system can sometimes admit 
a behavioral equation representation such as a 
kernel representation or a difference equation 
■representation. Such a representation, when it 

exists, may not be unique. Given a representa- 
tion with a certain structure (for instance, a lower 

■ triangular kernel) it is usually easily shown that 
the represented behavior has a corresponding 

_ property (non-anticipation). However, if the be- 
■ havior has a property (say, non-anticipation), 

representations of the behavior may not have 
I the corresponding structure (lower triangular- 

ity). Therefore, representations are of secondary 
importance to behaviors. It is the behavior that 

■ is fundamental; not its representation [3]. 

We will illustrate these points with kernel 

I 
I 
I 
I 

representations, concentrating on systems oper- 
ating on one-sided discrete-time signals in the 
sequence space L We say that G : V(G) C 
I _► fc(G) C t has a kernel representation if 
there exists a g : Z+ x Z+ -»• R such that for 
all nonnegative integers n 

{Gu){n) = £ g(n,m)u{m), Vu € V(G). 
m=0 

Not all linear systems have a kernel representa- 
tion [2]. We first point out that compactness of 
the map is neither sufficient [1] nor necessary 
for kernel representation. 

Even when a system has a kernel representa- 
tion, the representation may not be unique. This 
is shown by an example of a linear shift-invariant 
nonanticipatory system that has infinitely many 
kernel representations. Out of the infinitely 
many representations for this system, one is 
lower-triangular and one is upper-triangular. 
Therefore, non-anticipation is a property of a 
system and is not necessarily a (structural) prop- 

*This research was supported by the grant AF0SR-91-0036. 
tTbis is only an abstract meant for conference presentation. A complete version can be obtained from the authors as Rice 

University Technical Report #9305. E-mail: kishore@rice.edu 

0191-2216/93/33.00 © 1993 IEEE 2383 



erty of its representation.  Some kernel repre- 
sentations of this system have Toeplitz struc- 
ture, and some do not. Shift-invariance is then 
a property of a system that may or may not be- 
reflected in the structure of its representation. 

We then point out that boundedness of a map 
may not be reflected in the structure of its ker- 
nel representation (or in a minimal state-space 
representation). ; .■•■,-. 

Since properties such as shift-invariance, 
non-anticipation, and boundedness are proper- 
ties of a system and are not necessarily structural 
properties of a representation of the system (un- 
less the representation is unique), a system is a 
logically distinct object from its representation. 
It is the behavior of the system that needs to be 
examined for properties of interest, and not the 
structure of a representation of the system. 

We argue the above points using traditional 
definitions of linearity, shift-invariance, nonan- 
ricipation, and boundedness.   We will make a 
case for nonstandard definitions of linearity and 
shift-invariance. The main practical reason for 
studying linear mathematics is that local behav- 
ior of a nonlinear map is often linear. That is, 
if we restrict the domain of a given non-linear 
map, the restricted map (the restriction) may 
become linear, thereby making analysis easier. 
Then, if we were to restrict the domain further, 
we would like the resulting restriction to be still 
linear. Considering that linearity is an analyt- 
ically desirable property of a map, we would 
like all the restrictions of a linear map to inherit 
this property. Similarly, inheritance by restric- 
tions is desirable with respect to shift-invariance, 

non-anticipation, and continuity, from a practi- 
cal point of view. 

However, in the classical framework for 
input-output   systems,   linearity  and   shift- 
invariance are not inherited by restrictions, 
while continuity is. For example, the linearity 
or shift-invariance of the identity map depends 
on whether or not its input class is linear or 
shift-invariant. However, it is the behavior of a 
system in a given configuration that is more im- 
portant than the properties of the domain of its 
definition. As far as possible, it is the behavior 
of a system that we should focus our attention 
on; not the properties of its domain. Taking cue 
from a definition of non-anticipation in the clas- 
sical framework [4], we propose new definitions 
for linearity and shift-invariance. 
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Abstract 
The solution of many h problems requires Smith 

decompositions of h matrices. In this note, we de- 
scribe a class of problems, including many practical 
problems, for which this is not true. We also show 
generally how to pose and obtain approximate solu- 
tions to k problems without Smith decomposition. 

1 Introduction 

The h problem was formulated in [1] and inves- 
tigated in, e.g., [2, 3, 4], in which it is posed as a 
linear program (LP) whose constraint matrix is con- 
structed, in part, from Smith decompositions of two 
lx matrices. This decomposition does not exist for all 
/i matrices, and its computation is numerically unsta- 
ble in any case. Thus it is of interest to find problems 
and/or solution methods which do not require it. 

In this note, we describe a class of such problems 
which includes many practical problems. We also de- 
scribe a class of semi-norm minimization problems 
which can be solved without Smith decomposition, 
and into which every h problem can be embedded. 
We then use the embedding to obtain, under certain 
conditions, an infimizing sequence of sub-optimal so- 
lutions by solving finite LPs. In Section 2 we briefly 
state the h problem, the main results are in Section 
3, and Section 4 offers some conclusions. 

n"xn denotes m x n matrices with elements in the 
commutative domain /x and ?l?*n denotes matrices 
with elements in its fraction field. Superscripts are 
dropped when there is no loss of clarity. A script let- 
ter denotes a causal discrete-time convolution system, 
and a capital (Roman) letter its impulse response ma- 

' trix. Matrix multiplication is defined via convolution. 

2 The l\ Problem 
Figure 1 shows the setting of the h problem. Q has 

•This research was supported by grants NSF ECS-8914467 

inputs 10 (an n^-vector of exogeneous inputs) and u 
(an n0-vector of controls) and outputs z (an ^-vector 
of errors) and y (an «„-vector of measurements). G 
can be partitioned in the obvious way: 

I     Gyw        Gyu    J 

and AFOSrV91-0036. 

For stabilizable Q with Gyu = NM~l = M~'N (co- 
prime over h), the h problem is: 

OPT(G) : inf    \\H - K\\i =: Horrv) 

where Soy := {K € h : K = UQV, Q £ h},H:= 
Glw+GluMYGyw, U := GtuM and V := MGy; 

are in k, and the following Bezout identity is satisfied: 

Note: H, U, and V depend on Q. We will show this 
dependence via bars, tildes, etc. (e.g., Q~H,U, V). 

3    Main Results 

Theorem 1 IfU, V € h have left and right inverses, 
respectively, in h and U = NuM^, V = My Nv 
(coprime overh), then 3 h matrices satisfying 

and K € Suy if and only ifK£h ««<* 

[%]*av *#i-[; S] 
where * denotes an irrelevant block. 

Condition (1) does not refer to Smith decomposition 
and hence none is required for LP formulation. 

(1) 

i 

!l 

i 

'3 r 

it t 

I 
I 
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Figure 1: Standard Problem Setting 

In many practical problems, vv and vy of Figure 1 
correspond to actual disturbances and to norm con- 
straints are required on u and y to avoid saturation. 
In such problems, w, z, U, and V can be partitioned 

U = 

w z 
Vu 1 z — u 

. vv . . y 

r MGZU i 
M ,   V =  [G 
N 

ytff M   N   M 

Thus U and V satisfy the hypotheses of Theorem 
1. (This remains true if unimodular /i weights are 
introduced on vu,vy,y,u.) 

We now define, given Q and integers n„ < n,, n,- < 
nw, a semi-norm minimization problem 

OPTS(g,n0,m): 
inf    \\Vn.ni(H - K)\\i  =: (*oPTS(g,n.,ni) 

where V„.ni : Z?»*"- t-+ /^•xn* is a linear projection 
defined by (Vn.niT)mn(k) := rm„(i) Vm,n,J:. 

Theorem 2 If Q is stabilizable, then there exist in- 
tegers nu < n«, nv < nv and a stabilizable Q with 
G S ^"•+n"+"»)x(n-+nv+".) sacÄ iAa< Ü and V 
satisfy the hypotheses of Theorem 1 and 

1. Given K 6 Suy, define K := ÜQV for any 
Q € h such that K = UQV. Then K € S0 v 

*ndW>ntnm(B-R)\\i = pr-Älli. 
2. Given K e S0o, K := Vn,n„K € Suy and 

\\H-K\\1 = \\Pn,nJH-H)h- 

Thus every problem OPT{Q) can be embedded in a 
problem OPTSiCn^n^) for a (larger) Q such that 
0 and V satisfy the hypotheses of Theorem 1, and 
feasible solutions of OPT(Q) correspond to feasible 
solutions of OPTS{Q, nltnw) of the same cost. 

OPTS{Q,nz,nw) is generally infinite dimensional 
so we next define, given Q and integers n„ < nt, n,- < 
nu, and n, an optimization problem 

OPTS{Q,n0,ni,n): 

5c/,v,„ := {# G Suy : supp(F - tf) C {0,..., n}} 

Theorem 2 If Q is stabilizable, 3Kft € <?u,v 
sacA iAai svpp(H - KN) C {0,...,7V}, oni iAe 
finitely supported matrices are dense in Suy, then 
OPTS(G,n0,ni,n) has optimal solutions Vn > N, 
and llOPTS{fi,n.,ni,n) \ l*OPTS(S,n.,ni) M » -» 00. 

Every feasible solution o£OPTS(Q, n0, n,-, n) is fea- 
sible for OPTS(Q,n0,ni), so a sequence of optimal 
solutions for increasing n forms an infimizing. .se- 
quence of feasible solutions for OPTS{Q, n0, n,). For 
each n, OPTS{Q, n„ n,-, n) is a finite LP [5]. 

4    Conclusions 

Theorem 1 shows that l\ problems with invertible 
U and V can be formulated as LPs without Smith 
decomposition. Such problems arise, e.g., when both 
sensor and actuator are noisy and subject to satu- 
ration. Theorem 2 shows that all l\ problems can 
be embedded in larger semi-norm minimization prob- 
lems without need of Smith decomposition. Theorem 
3 shows that, under certain conditions, a sequence of 
finite LPs can be solved to obtain performance ar- 
bitrarily close to optimal. The price of embedding 
is increased dimensionality; thus an obvious question 
for further research is how to embed in a problem of 
least dimension. 
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Abstract 

Two performance specifications based on l^ measures of weighted disturbance and error signals 

are defined. Both allow the treatment of magnitude, rate, and acceleration bounds on disturbances 

and errors. One is an incremental weighted specification which requires error signals to satisfy a 

constraint for as long (in time) as the disturbance satisfies a similar constraint. The other is a 

weighted specification which considers only disturbances satisfying a constraint for all time, and 

requires that errors do as well. 

Notions of stability and system gain are defined corresponding to each specification and the 

gains are shown to be different. For the incremental specification, gain can be computed by solving 

a standard l^ synthesis problem, and for the weighted specification a modified version oili synthesis 

can be used. 

It is shown how to formulate the synthesis problem corresponding to each specification as a 

linear program similar to the one arising in l\ synthesis. 

Keywords: li optimal control, weighting functions, performance analysis, performance synthesis 
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'This research was supported by the NSF under grant ECS-891446T and "by the AFOSR under grant AFOSR-M-0036. 



Notation and Assumptions 

Z and Z+ denote the integers and the non-negative integers, respectively. D is the open unit disk 

in the complex plane, l^ and l\ denote the classical sequence spaces defined on Z+, and h(Z) is 

the counterpart of l\ defined on all of Z, i.e., the set of absolutely summable two-sided sequences. 

l\ will be regarded as being embedded in ^i(Z), i.e., as the subspace of l\(Z) supported on Z+. 

Matrices will be referred as belonging to li or ?i(Z) and signals as belonging to l^, meaning their 

elements belong to those spaces. For notational convenience we define a space A of all z-transforms 

of sequences in h(Z) with norm defined H-fflU := ||#||i- 

Throughout the paper, signals are vector sequences denoted by lower case letters (e.g., x). 

Systems are causal MIMO discrete time systems with convolution representations and are denoted 

by calligraphic letters (e.g., H). Their impulse response matrices are denoted by corresponding 

upper case Roman letters (e.g., H), and their transfer function matrices by hatted letters (e.g., H) 

where the z-transform is defined with z as the delay. A product (Gff) of impulse response matrices 

means convolution (G * H). 

1     Introduction 

Our standard problem setting is depicted in Figure 1. The generalized plant Q has two inputs and 

two outputs, w is the disturbance input and is present for the purpose of modelling exogeneous 

inputs to the system (e.g., disturbances, measurement errors, etc.). u is the control input, z is the 

regulated output and consists of error signals-which are to be minimized, and y is.the measured 

output. The compensator C determines the control input u given the measured output y. C is to 

be chosen to internally stabilize the system and satisfy, if possible, other specifications. 

The simplest l^ design problem is disturbance rejection, in which the specification is 

Disturbance Rejection Specification: 

• w e loo and IMIoo < 1 implies z € loo and ||z||co < 1. 

\\G\\i is the induced norm of Q as a map from loo to l^- Using the YJBK parametrization of 

stabilizing compensators the set of achievable closed loop impulse responses is {H — UQV : Q 6 ^i}, 

where H, U and V are in h and are determined by Q. Hence the l^o disturbance rejection problem 

is equivalent to 

OPT : inf {||JT - K\x : K G K(U,V)} =: fi 

where K(U, V) := {K £k:3Q eh satisfying K = UQV). This is the h synthesis problem which 

was posed in [l], initially solved in [21 and generalized in [3] and other papers. 
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FIGURE 1: Standard Problem Setting 

Introducing weighting systems in cascade with w and z broadens the class of specifications which 

a designer can address. Disturbances are thus generated by an input w passed through a weight 

yvw and the regulated outputs are passed through a weight Wz to produce an output z. If Wz and 

Ww are in lx and have left and right inverses, respectively, in l\ then the following specification can 

be easily addressed: 

Cascade Weighted Specification: 

• w = yVww for some w € l<x> with |H|co < 1 implies \Vzz £ l^ and ||W2z||oo < 1. 

Under the assumptions on W2 and Ww the cascade weighted disturbance rejection problem is 

equivalent to 

ml{\\WzHWw-K\\1:KzK{WzU,VWw)} 

and is hence an l\ synthesis problem again. 

Wz can be chosen to reflect an appealing class of criteria on the regulated output because of 

the definition of || -'H«,. For example, if Wz = [ 1 1 - z ]T then ||W,*||oo < 1 if and only if \z(k)\ < 1 

and \z(k + 1) — z(k)\ < 1 for all k. Hence meeting the specification ensures a magnitude bound 

on both z and its rate of change. Additional n-th order differences of z for any desired n can be 

bounded by adding appropriate components to Wz. Such specifications are of practical interest; 

bounding first-order differences ensures limited slew rates, and bounding second-order differences 

ensures limited accelerations. 

The interpretation of the disturbance class generated by yvw is problematic, however. It is 

not known how to choose W^, for example, to produce a class of magnitude and rate bounded 

disturbances. Moreover, the meaning of choosing VV^ based on its frequency response is unclear; 

the entire /<„ design theory is aimed at time domain specifications. 



Motivated by the appealing interpretation of >V-, we will consider a weighted disturbance re- 

jection problem aimed 'at satisfying a specification of the form 

Weighted Specification: 

• yVww e Ira and HW^H«, < 1 implies VV2z e loo and HW^H«» < 1. 

A related design problem can be posed which is aimed at satisfying 

Incremental Weighted Specification: 

• ||7>nWwHloo < 1 implies H^W^H«, < 1 for all n. 

where Vn denotes truncation at time n. This is similar to the weighted specification and has a 

practical interpretation. It requires that the weighted error satisfy a constraint up until any given 

time provided that the weighted disturbance satisfies a constraint up until the same time. Note 

that any truncation of a right-supported signal is in /,*, and hence any such signal constitutes a 

potential disturbance. We will see that the incremental specification is in general the more difficult 

to satisfy. Design to meet similar specifications has been considered previously in [4] and [5]. 

The remainder of the paper is organized as follows. Section 2 contains some background on the 

li synthesis problem which will be required in later sections. In Section 3, the analysis problem of 

determining if a given system satisfies the above specifications is solved. For each specification, an 

appropriate system gain, which is also a norm, is defined and a method given for its computation. 

In Section 4, the synthesis problem of choosing C to minimize the desired norm is formulated, and 

for either norm is shown to be very similar to a standard l\ synthesis problem. Section 5 contains 

some observations and conclusions. 

Some statements of results are somewhat simplified, some proofs are omitted, and methods 

for the solution of optimization problems which arise are not given. In all cases, detailed results, 

proofs, and solution methods can be found in [6]. 

2     li Synthesis 

We will need some basic facts about the l\ synthesis problem OPT. The crucial feature of OPT 

is that, under mild assumptions, it is equivalent to an infinite linear program. In particular, the 

following condition or something similar must be assumed [6]. 

Condition 2.1 U and V have decompositions of the form U = ULUUUR 
and V. — VL"EVVR where 

• Sf/ € li, Sy 6 ^i are diagonal and nonsingular, 



neither (S(/)ü nor (Hv)jj have any zeros on the unit circle for any i or j, 

UL,VL 6 ^i are left invertible in /1; and UR,VR 6 h ^re right invertible in li. 

If Condition 2.1 is satisfied then Bezout equations 

n j 

.. ' I   0 ' \Vp ' 
UL   Uf. = 

[ 0   I \ [VR\ 
vt 

-R 
R V± R 

I   0 

0   I 
(1) 

can be constructed where all matrices are in l\ and the feasible subspace K(U, V) of OPT charac- 

terized as follows. 

Fact 2.2 K 6 K if and only if K € l\ and satisfies 

1. uE
L 

VnR   Vk 
*    0 

0   0 

where * denotes an irrelevant block. 

2.  For each i and j, (Ü^   KVR   )ij has all zeros of (Hu)n{Lv)jj zn D, including multiplicities. 

Using Fact 2.2, OPT can be formulated as an infinite linear program whose variables are 

the closed loop impulse response elements; condition 1 imposes an infinite set of linear equality 

constraints (convolution constraints), and condition 2 a finite set of linear equality constraints 

(interpolation constraints). 

3     Weighted Performance Analysis 

In Section 3.1 we define a notion of stability and a norm on the stable systems appropriate to the 

incremental weighted specification. In Section 3.2 we do the same for the weighted specification 

and show, in addition, that the norm is an induced norm between weighted versions of l^. In both 

cases computation of the norm is similar to l\ synthesis. 

Throughout this section K is a given system. W0 and W; are given weights; WQ and W\ are 

assumed to be in l\ and to have left inverses in l\. Hence the following Bezout equations can be 

constructed 

- "JO" " WrL " 
w„ w? zz 

_ 0   / W+ 
[\Vi   Wf} = 

I   0 

0   I 
(2) 

where all matrices are in li. The additional symbols on the left hand sides of equations (2) denote 

ariiiran/-choices satisfying the equations. 



3.1     Incremental Weighted Performance 

Definition 3.1 H is incrementally stable w.r.t. W0, W; if 

sup {||7>„W07te|Ico : T>nW\x € 'co, H^nWi^lU <l,ng Z+} =: />;(?*; Wo,W0 < co 

PiC'W; W0, >Vj) is the incremental gain of H w.r.t. >V0, W;. 

Under Definition 3.1, and for fixed weights, an incrementally stable system satisfies the incre- 

mental weighted specification if and only if its incremental gain is less than or equal to one. The 

next proposition shows that under our assumptions on the weights a system is incrementally sta- 

ble if and only if its impulse response is in l\. Moreover, the incremental gain is a norm on the 

incrementally stable systems. 

Proposition 3.2 H is incrementally stable w.r.t. W0,  W\ if and only if H € lt.   j|-||vv0iw^  := 

Pj(-;>V0, W;) is a norm on the incrementally stable systems. 

Proof: For the first sentence, if H € h then W0EW-~L € h and for all x and n 

||PnWoWz||oo    =    H^WoWWf ^WjarHoo = ||P»W0W>Vf ^„WiX^ 

<    WWoHWr^WVnWixWn. 

Hence Pi(H; W0, Wj) < WWoEW-%. Conversely, if E £ h then W0EWrL £ h and hence, given 

any c < co, there exists £ 6 /«, such that ||>V0HWf Lx\\O0 > c||WiWpL||i||£||oo.   If we define 

x := W~Lx then -L- 

• sup {\\VnWoHxU : n G Z+} = ||W0Ws||oo = ||W0ftWf hxU > c||WiWf1liPI|oo. 

Hence there exists n € Z+ such that 

HPnWoHslloo > CWW:L\WU > cllWisHoo > C^W^U 

so Pi(H; W0, Wi) > c. 

The second sentence is easily verified. O 

The incremental gain of a given system w.r.t. given weights can be computed by solving an 

li synthesis problem with a special form, as the next theorem shows. Its proof is omitted in the 

interest of brevity. 

Theorem 3.3 \\E\\^W. = inf {\\W0EWrL - K\\x : K 6 K(I, W±)}. 

It is easy to see that I and W-f- satisfy Condition 2.1; the obvious decompositions are: UL = 

T,u = UR = I and Vi = Sv = I, VR = Wf. Hence H^llV».^ can be computed using li synthesis 

techniques. 



3.2     Weighted Performance 

Definition 3.4 H is stable w.r.t. W0, W, if 

sup {|| WoWxIloo : >V;x G /«,, ||>Vix||oo < 1} =: p(W; >V0, Wj) < co 

p(W;>V0,Wi) is iAe gain of H w.r.t. >V0, >V;. 

Under Definition 3.4, and for fixed weights, a stable system satisfies the weighted specification 

if and only if its gain is less than or equal to one. The next proposition shows that under our 

assumptions on weights a system is stable if and only if its impulse response is in lx. Moreover, the 

gain is a norm on the stable systems. 

Proposition 3.5 H is stable w.r.t. >V0, W\ if and only if E g lx. \\-\\w w. := p(-;WOJ Wj) is a 

norm on the stable systems. 

Proof: For the first sentence, if E g h then W0EWrL g h and for all x 

||w„wx|u = l|w0wy^-£>Vix||oo < IIWoJTP^yWixiioo. 

Hence p(7i; >V0, Wi) < WoEW--1^. Conversely, if E g" \x then W0EW~L $ h and hence, given 

any c < co, there exists x g /«, such that ||W0W>VfLx\\oa > cp7i
1P7-I'||1||f||co. If we define 

x := WrLx then ||W0Ws||oo > cU^Ff^y* |U > ||Wiz||oo so p(W; W0, Wj) > c. 

The second sentence is easily verified. D 

The gain of a given system w.r.t. given weights can be computed by solving a problem similar 

to an l\ synthesis problem, as the next theorem shows. Its proof is similar to that of Theorem 3.3 

and is also omitted in the interest of brevity. 

Theorem 3.6 ||W||WotyVL = inf [\\WQEWrL - K\\x : K g KZ{I,W±)}, where Kz(;-) is defined 

as K(-, •) in Section 1 except that Q and K are allowed to range over /i(Z). 

As in the incremental problem of Section 3.1, / and W+ satisfy Condition 2.1. As a result the 

feasible subspace Kz(I, W{~) of the infimization in Theorem 3.6 has a characterization similar to 

that of K(I, WjX), and the computation of ||W||w0 yy. is equivalent to an infinite linear program. 

Moreover, approximate solution methods analogous to those for standard I x exist. 

The gain of a system w.r.t. given weights is in general smaller than its incremental gain w.r.t. 

the same weights, as the following simple example shows. 

Example: Let E = W0 = 1, 

-        f       1 
■1 + 3* 



and choose W-~L = [10] and W{- = [ 1 - Zz 1 ] to satisfy the Bezout equations (2). j|.ff|| j^^, 

and |]-S"j|;i^ y/. are computed by solving inf ||[ 1 0 ] -f- q{ 1 - 3z 1 ]\\A =: 7 where q ranges over ^ 

and ^i(Z), respectively. It is not hard to check that 7 > 1 when q ranges over l\ since 

||[ 1 0 ] + q[ 1 - 3.- 1 ]|U = 111 + 9(1 - 3^)IU + llslU > (1 ~ \io\) +\q0\ = i 

where qo is the first element of q. On the other hand, if we take q = \z~l then q € 'i(Z) and 

||[ 1  0 ] + q[ 1 - Zz  1 ]|U = 111 + ?(i - 3*)|U + ||?IU = f- 

Hence 7 < | if q is allowed to range over li(Z). 

Next we will show that the gain of a system w.r.t. given weights is an induced norm between 

weighted versions of /„,. 

Definition 3.7 If x is any signal, W is any system, and Wx £ loo then pyv(x) :— ||Wx||oo is the 

>V-weighted /co-norm of x. 

With no assumptions on >V, pw(0 is actually only a semi-norm, as it can have a null space. 

Moreover, it need not be defined on all of l^ and can be defined for signals not in l^. Under our 

assumptions on weights, however, it is defined precisely on l^ and is a norm. 

Proposition 3.8 IfW € ^1 and has a left inverse in l\ then Wx € loo if o-nd only if x S loo, and 

IHIw := Pw(') z5 a norm on loo. 

Proof: Let W~L denote any left inverse of W in l\. For the first sentence, if x 6 l^ then Wz € loo 

since W 6 h- Conversely, if Wz 6 /»» then x = W_£,Wx € l^ since W~L g lx. For the second 

sentence, the properties of a semi-norm follow from the linearity of W and the corresponding 

properties of || • H«,. Moreover, \\x\\w = 0 ^> Wi = 0 ^ 1 = W~LyVx = 0. a 

loo under \\-\\w can be called W'-weighted /<». It is clear that ||W||W0IWJ is the induced norm of 

H viewed as a map from Wj-weighted loo to W0-weighted /„ since 

IIWIIW..WI    =   SUP {llWoWxIU : W;z 6 /«,, ||Wis||oo < 1} 

=   suplllWillw-.ise/oo, IMUv,-<l}- 

using the definition of H^llw^yy- ^or t^e ^rst equality and Proposition 3.8 for the second. 



4     Synthesis 

In this section, we show that the problems of minimizing the incremental gain and the gain, re- 

spectively, of the closed loop system in Figure 1 can be formulated as infinite linear programs in a 

manner similar to the l\ synthesis problem. Section 4.1 considers the incremental gain and Secton 

4.2 the gain. 

It is assumed that the U and V matrices obtained from Q via the YJBK parametrization satisfy 

Condition 2.1. Wz and Ww are assumed to be in l\ and to have left inverses in l\. The associated 

Bezout equations are 

wrL 
I   0 

" w. w? = 
wj- 0   I 

w~ 
w,„ w?„ 

I   0 

0   I 
(3) 

and the additional symbols on the left hand sides denote arbitrary choices satisfying the equations. 

4.1     Incremental Weighted Synthesis 

The YJBK parametrization and Theorem 3.3 can be combined to formulate the incremental 

weighted synthesis problem as follows. 

OPTi : inf {\\WZHW-L- Kh : K € Kt} =: /z. 

where KL := {A" 6 h ■ 3Qc,Qw € k satisfying K = WzUQcVW~L + QwWj;}. The parameter 

Qc corresponds to stabilizing compensators and Qw to computing the closed loop incremental gain 

corresponding to each. Kx is related to the feasible subspace K(-, •) of an li synthesis problem. 

Lemma 4.1 K £ Kx if and only if K € h and KWW € K{WZU,V). 

Proof: If K € K[ then K 6 /x and K = WzUQcVW~L + Q\yW£. Hence, using (3), KWW = 

WZUQCV. Since Qc € h, KWW 6 K(WZU,V). Conversely, if KWm G K(WZU,V) then K € h 

and KWW = WzIIQcV for some Qc € l\. Using the reverse of (3), 

K = K(WWW~L + WZW£) = WZUQCVW~L + KW^W^ 

where Qw := KW$, € h since both K and W= are. Hence K <= K^. O 

Using Lemma 4.1 we can easily establish a characterization of K{ similar to that of K(-, •) given 

in Fact 2.2. 

Theorem 4.2 K € -K"f if and only if K € l\ and satisfies 



1. 

7£LWrL 

UHVrL 

W.J 

WwVäR   WWV£ 

" *    0 ~ 

= 0    0 

_ 0   0 _ 

where * denotes an irrelevant block. 

2. For each i and j, (U^LWrLKWwV^R)ij has all zeros of (tu)ii(^v)jj ™ D, including mul- 

tiplicities. 

Proof: U has a decomposition U = UL^UUR as in Condition 2.1. It is easy to see that, since Wz 

is left invertible in h, WJJ - (WZUL)^UUR is a decomposition of WZU of the same form. Hence 

a Bezout equation 

uzLw-L 

U£W7L wzuL wzu
c

L wz 
I 0 0 " 

0 / 0 

0 0 / _ 

for WZJJ can be constructed using (1) and (3). Fact 2.2 can now be applied to characterize 

K(W-U, V) and the proof is completed by combining this characterization with Lemma 4.1. O 

Theorem 4.2 allows OPT[ to be formulated as an infinite linear program. Condition 1 imposes 

an infinite set of convolution constraints and condition 2 a finite set of interpolation constraints on 

WZHW~L — K. Moreover, approximate solution methods analogous to those for the l\ synthesis 

problem exist. 

4.2    Weighted Synthesis 

The YJBK parametrization and Theorem 3.6 can be combined to formulate the weighted synthesis 

problem as follows. 

OPT, w inf {\\WZHW-L - K\\! : K € Kw] =: fi„ 

where Kw := {ä' € h(Z) : 3Qc € k, Qw € h{Z) satisfying K = WZUQCVW~L + QWW^}. Qc 

corresponds to stabilizing compensators and Qw to computing the closed loop gain corresponding 

to each. Kw is related to the feasible subspace K(-, •) of an lx synthesis problem in the same way 

that Kx is, and an analogous characterization can be obtained. The next two results show this and 

are presented without proof; the proofs of Lemma 4.1 and Theorem 4.2, respectively, apply with 

obvious modifications. 

Lemma 4.3 K 6 Kw if and only if K € /X(Z) and KWW <= K(WZU, V}.- 
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Theorem 4.4 K G Kw if and only if K 6 h(Z) and satisfies 

1. 

U£LW-L *   0 

U£W-L K WWV£R   WWV£ = o o- 
W± . ° ° 

where * denot es an irrelevant block. 

2. For each i and j, (Ü£LWrLKWwVR
R)ij has all zeros of (tu)u(tv)jj in D, including mul- 

tipucities. 

Theorem 4.4 allows OPTw to be formulated as an infinite linear program; condition 1 imposes 

an infinite set of convolution constraints and condition 2 a finite set of interpolation constraints 

on WZHW~L - K as in the incremental synthesis problem. However in this case K and hence 

WZHW~L — K ranges over ^i(Z), requiring appropriate modifications to the approximate solution 

methods for OPT[. 

5     Conclusions 

Weights are often used to increase the range of specifications which a designer can address. The 

simplest scheme is cascade weighting, but it is problematic in an l^ setting in that the disturbance 

class does not have a clear interpretation, while the error class does. It is interesting to note that 

this distinction does not arise for li signals (it is not hard to show that rational i?M weights with 

no zeros on the unit circle can be replaced by their outer factors and hence inverted). 

Both the weighted /<» performance specifications considered here measure disturbance and error 

as errors are measured in the cascade scheme. This has an appealing practical interpretation in 

that it allows incorporation of criteria in addition to disturbance and error magnitudes, e.g., rate 

and acceleration bounds. Such criteria cannot be addressed using other design methods. 

Analysis and synthesis for each specification can be done by methods similar to standard l\ 

synthesis and, in fact, may be simpler in some respects. In ?i synthesis, for example, suboptimal 

compensators can be obtained by optimizing over achievable finitely supported closed loop im- 

pulse responses of a given length. As the length is increased, the performance of the suboptimal 

compensators approaches the optimal. When cascade weights with infinite impulse responses are 

introduced this method fails and the weights must be approximated as finite impulse response, 

leading to high order compensators. However, weighted specifications of the type considered here 

have their most appealing interpretations when the weights are finite impulse response (i.e., they 

measure rates, accelerations, etc.). • 
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Because system norms have been denned appropriate to each specification, new problems of 

robustness with respect to classes of norm-bounded perturbations can be posed as well. " 
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