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FOREWORD

The research described in this report was performed during fiscal year 1995 as part of
an effort to improve radar classification and identification capabilities for noncooperative
airborne targets. This problem continues to be a primary goal of radar research programs
and considerable effort has been expended within the last few decades in attempts to solve
it. The accuracy of these methods depends on available radar resolution and so, indirectly,

depends on bandwidth.

A novel technique for radar-based noncooperative target recognition has been created
and verified using synthesized data. The current work has concentrated on establishing
performance criteria against the effects of system thermal noise errors.
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INTRODUCTION

Previously, a novel technique for extending the information available from range profiles of
airborne radar targets has been developed and applied to the problem of automatic target recognition
(References 1 and 2). Since so much of the target shape information is tied up in the cross-range part
of the radar “image”, the principal difficulty with down-range profile techniques has been the limited
target information available for classification purposes. Usual (e.g., Inverse Synthetic Aperture
Radar, or ISAR) schemes are often unable to obtain this cross-range information because accurate
association of aperture (induced by target motion) with data (collected over time) is very difficult
(see Reference 1). The alternate method that has been proposed uses data collected over an unknown
aperture and does not require range-induced-phase adjustments across the set of measurements. In
addition, the technique is not affected by aspect-induced scintillation. This statistical approach
makes use of the fact that the spatial derivatives of the scattered field phase are independent of
range-induced phase shifts and depend upon the cross-range extent of the target.

The present discussion reports on efforts we have made to examine the sensitivity of this “en-
hanced range profile” technique to thermal noise in radar tracking systems. We begin by reviewing
the algorithm itself and by developing the relevant ideas. Then we analyze the noise process, estimate
its effects, and show some example results.

BACKGROUND AND MOTIVATION

Angle-Of-Arrival (AOA) measurements have been used for target tracking purposes for many
years. So-called “phase monopulse” systems estimate the phase-gradient of the scattered field by
differencing the outputs of closely spaced antennas. The direction of this gradient will lie normal to
surfaces of constant phase (phase fronts). When the target is a point scatterer, the phase fronts will
be spherical and centered on the target, and their normal directions will indicate target bearing. Of
course, targets are not individual point scatterers and the phase-gradient will not always point to
the target. The difference between actual target bearing and that estimated by the phase-gradient
is known as target “glint error” and depends upon overall target structure.

A short radar pulse incident on a target can be used to isolate separate down-range target
elements (see Figure 1). This is the idea behind “range profiles” which are maps of scatterer re-
flectivity as a function of range. By combining short pulses with high-resolution tracking, target
subcomponent bearing directions can sometimes be determined as a function of range as well (Ref-
erence 3). This can occur, for example, if there is only one target scattering element per down-range
“slice.” Unfortunately, targets are usually sufficiently complex that each slice will generally contain
more than one point scatterer and interference effects (scintillation) will preclude accurate single-
measurement bearing estimates. Statistical estimates based on multiple measurements are required
instead.

When a set of AOA measurements are collected from a maneuvering target over a short time
interval, the effective (synthetic) aperture may be assumed to be small. If the target’s aspect cannot
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FIGURE 1. The Radar Pulse. A narrow radar pulse incident upon a target

will illuminate only a range “slice” at any particular instant.

be accurately determined over the set of AOA measurements, then the glint error can be considered
to be a function of random aspect angles. Let ¢ denote the phase of the scattered field E so that
E = |E|exp (i¢). Then the cross-range component of the phase gradient along a direction 6 (see
Figure 2) is given by

g(0) = (icosf + 3sinf) - Vo. (1)

This will be the ideal measurement made by two closely spaced antennas lying along the ¢ direction.

elevation coord axis

reference
direction

azimuth coord axis

(8..8.)

monopulse direction
estimate

FIGURE 2. The Radar Coordinates. Here, go=g(6=0) and g.z=g(f=7/2)
denote the components of the measured target bearing in the azimuth and

elevation directions, respectively.
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Let p(z,y) denote the local scattering reflectivity of the target at position (z,y) defined with
respect to the origin (Zaye, Yave) (see Figure 3). When the target is complex (the number of scattering
centers is large), the central limit theorem implies that E is normally distributed and, at high radar
frequencies, has zero mean. The statistics of g follow from a straightforward, although somewhat
lengthy, calculation (Reference 2). The probability density of g is given by

2

fq (9;9)=§—(K—2_€W, (2)

where

k% (6) = / lo(z',y)]? (2 cos 6 + o/ sin 6)° da'dy’. (3)
R2

Equation 3 is the “second electrical moment” of the slice of target in the é direction. Target
shape information, in the form of scattering center moments weighted by local scatterer strength,
can be deduced from a set of measured values of g by determining the parameter x? that best fits
the statistics of the data to the probability density of Equation 2. Moreover, it is easy to see that
k () = \/r? (8) defines an ellipse whose shape and orientation depend upon the cross-range extent
of the target. When combined with time-domain data acquired from a narrow pulse, Equation 3 will
yield a family of down-range ellipses which will “enhance” ordinary down-range profiles by providing
additional (although limited) cross-range target structure information.

reference

/ direction
0 \

(xavaave)

FIGURE 3. The Effective Target Slice.

The data used to estimate the “electrical moments of inertia” of an airborne target are the
ordinary AOA measurements used by radar tracking systems. Since an airborne target will alter
its orientation over time as it maneuvers (or even if it is flying “straight and level”), the AOA will
fluctuate with time as well. (In the straight-flight case, the target orientation will typically vary
randomly over several degrees in only a few seconds, resulting in significant variation in the AOA
estimates.) The statistics of this variation are determined by the target orientation and the cross-
range target structure in a known way. By fitting the statistics of the AOA measurements (collected
over time) to this model, the relevant cross-range information can be determined for each slice.

The information obtainable is the overall target orientation and moment “ellipse” estimates for
each range slice. (The moment ellipse has semi-axes defined by the electrical moments of inertia.) In
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FIGURE 4. Ellipse Parameter Definition. These five parameters encode the

cross-range target information available for each down-range slice.

particular, each range slice is mapped to an ellipse which is defined by the five parameters described
by Figure 4. The collection of all range slice ellipses associated with a target at a particular aspect
defines the total available target structure and orientation information.

MONOPULSE THERMAL NOISE ERROR

One of the potential problems with this idea is the dynamic range and signal-to-noise (S/N)
power ratio available to AOA measurement systems. In general, when thermal noise is absent, a
wideband radar that broadcasts a pulse—sufficiently narrow to illuminate only a single scattering
center on the target at an instant (as in Figure 1}—will measure AOA data whose dynamic range
is limited to the target’s cross-range extent divided by the target’s range. When there are two (or
more) scatterers simultaneously illuminated by the radar pulse, however, scintillation effects will
increase the dynamic range of the AOA measurements—typically, by a factor of 4 or more. All else
being equal, the net effect is that the range at which the target’s cross-range structure will affect
the AOA measurements will be increased by the same factor.

Thermal noise effects manifest themselves by introducing a random Gaussian component to the
AOA measurements (Reference 4). For a target on the antenna axis, and assuming a large S/N
ratio, the noise voltage for a single pulse can be expressed in terms of the reference voltage as

En=—2 (4)

VSN

If the detector has unit-gain error, then the rms noise voltage is just Ey(rms) = En/ v/2. This noise
voltage will enter the system as an apparent (additive) signal voltage and so is related to the rms
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angle error o by the usual monopulse voltage-to-angle conversion factor ©/kn:

7 b /2SN (

Here, © is the antenna beamwidth and k., is the monopulse error slope {Reference 5). Note that
if the measurements from n pulses are averaged together, then the rms error of Equation 5 will be
reduced by a factor of 1//n.

This simple analysis allows for some “back-of-the-envelope” style observations about the use of
AOQOA measurements in target cross-range estimation. To begin with, a “simple” target (i.e., with one
non-scintillating scatterer per range bin) with cross-range dimension d cannot generate rms AOA
data greater than d/2. In the presence of noise, the data will not be discerned in the measurements
unless they are (approximately) greater than the rms noise error. If R denotes the radar-to-target
range, then this implies that the data will have little value if

d
> . 6
v> 5 (6)
Using Equations 5 and 6 we can estimate the range for which AOA measurements can be applied to
cross-range estimation of simple target characteristics as

R < FndV/IS/N )

20

A 10m target, for example, being observed by an X-band monopulse tracking system with © = 15°,
km = 1.5, and S/N = 10° would not display discernible cross-range information until R < 12km.

Another easy consequence of Equation 5 is the dependence of radiation frequency upon rms
angle error. For fixed radar antenna size, the associated beamwidth varies in proportion with
the wavelength—the proportionality factor depending on the antenna shape and feed configuration
(Reference 6). This is related to the concept of “imaging resolution.” For the present discussion,
and to the current approximations, this has the effect of scaling the results by the appropriate
wavelength-related amount: the range limit in the above example (based on Equation 7) will be
increased to over 100 km if the radar frequency is changed from 10 to 94 GHz.

There are some problems with this notion of beamwidth reduction. In particular, narrow beams
will be less likely to detect a target in the first place and will also allow rapidly maneuvering targets
to more easily slip into an antenna sidelobe. In contrast to simple targets, however, it is a feature
of scintillating targets with cross-range dimension d that the AOA data are often greater than d/2.
This has the consequence of further diminishing the effects of thermal noise and extending the range
limit of Equation 7.

DATA ERROR STATISTICS

To understand how scintillation can significantly increase the dynamic range of AOA measure-
ments (over those from non-scintillating targets), consider the following analysis (Reference 7).

Fix a coordinate system to the target and examine a monostatic scattering situation in which
the transmitter and receiver are co-located. The weak scatterer approximation far-field response

5




NAWCWPNS TP 8283

E (k) due to a harmonic excitation of a target can be written as a linear superposition of waves with
strength |p (r)| radiating from location r:

E(k) = /D p () exp (ik - ) dr. 8)

Here, D is the support of the local scatterer density function p (r) (scaled by range), k is the wave
vector with |k| = 27 f/c = 27 /], ¢ is the speed of wave propagation, f the wave frequency and X the
wavelength. (We have suppressed the exp (—i27 ft) time dependence.) This far-field approximation
can be expected to be quite accurate up to the late end-game, at which point additional missile
guidance corrections are usually treated as having only limited effectiveness. Moreover, since missile
antennas are almost always mounted on moving gimbals so that the target can be “held” to lie
within the near-linear region of the antenna pattern, it is relatively easy to correct the response
(Equation 8) for variations in the receive aperture. (Consequently, this aperture variation presents
only a minor complication and will not be considered in the following.)

Consider values of k restricted to lie within a plane containing both the target and the radar.
If ¢ denotes target aspect in this plane (see Figure 5), then Equation 8 can be written

-E(f,C)==j;p(w,y)exp(K2Wf/C)(mshlc——yCOSCD dz dy, 9)

where now p (z, y) represents the source function integrated along the direction orthogonal to the z—y
plane. Denote £ = (2rf/c)sin( and ¢ = —(27f/c) cos{. In the usual small-angle approximation,
= 27f(/c and ¥ ~ —27f/c, and we can write Equation 9 as the iterated integral

b
B/ (€)= [ s () explige) da 10)

where p; (z) = [ p(z,y)exp (—i2rfy/c) dy and each integral has limits appropriate to the target
support. (In particular, g (a), gf (b) # 0.)

Equation 10 can be used to continue Ey (£) into the complex w-plane so that

b
Ef (w) :/a ps (z) exp (iwz) de. (11)

If the support interval (a,b) is finite, then E} (w) is an entire function of exponential type and can
be represented by the Weilerstrass canonical product. On the real-w axis we can write (Reference 8)

I(-%). (12)

n=1

E; (&) = Ef (0) exp (2 a;b£>

This product represents the scattered field as a function of the real variable & = 27 f(/¢ in factors
of the complex zeros of the field continued into the complex plane.

The quadrature phase ¢ (£) of the scattered field is defined by Ef (§) = |Ef (§)] exp (i¢y (€)).
The derivative of this phase can be found from Equation 12 as

_ ¢ 36;(€) _a+b (0 - 1
g:—é}—r—f———-ac —T+§éz(a+b)+1m(72_———_277]%/0——111”)' (13)

6
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incident and
reflected wave

FIGURE 5. Target Scattering Coordinates. The target and the radar both
lie in the plane of the paper.

This is the glint error in units of the linear cross-range coordinate at the target and can be expected
to be valid over a small range of aspect angles for which the locations of the zeros can be taken as
fixed.

Equation 13 is proportional to the pointing angle away from the origin of the coordinate system
fixed within the target and displays all the behavior associated with glint (for example, it displays
the strong correlation between glint spikes and amplitude fades (Reference 9)). When (a +b) is a
slowly varying function of aspect, the second term will be vanishingly small. The first term does
not vary with small changes in aspect and 1 (a -+ b) is known as the cross-range tracking “centroid”
of the target. As we have discussed, larger aspect variations will often be accompanied by changes
in the value of (a 4+ b) and so the centroid will vary in position. (This is known as “bright-spot
wander”.) If the change in centroid position is rapid enough, then the second term in Equation 13
can take on large transient values and we may observe associated spike-like behavior. Note that
since this spike-like behavior is associated with a rapid change in (a + b), it will generally separate
the domain of 8¢ (¢) /9¢ into subdomains over which Equation 13 is valid to within the small angle
approximation: in each subdomain, a, b, and {w,} can be assumed to be approximately fixed.

Within each of these subdomains there is also a regular spike-like behavior determined by the
third term of Equation 13. The {w,} are defined as the points on the complex w-plane at which
E; (w) vanishes. If we write wp, = Re (wn) + % Im (wy), then

m > 1 _ = Im (wy,)
I (;erC/c—wn) ngl(27rfC/c—Re(wn))2+1m(wn)2 1)

and we can see that a zero w, can make a significant contribution to the sum in Equation 13 only
if it is located near the real axis.
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Let wy = |w1] exp (i71),w2 = |wz| exp (i72), ..., be the zeros arranged in order of increasing
modulus. When gy is defined as in Equation 10 with a # b, the asymptotic form of the zeros is
given by (Reference 10)

T 1 5t (a)
o= ot gy (B ) e 1s)

where €, — 0 as n — co. (If @ = b then the third term of Equation 13 vanishes.) Ey (w) is known
as a “sine-type” function and has zeros that lie (approximately) on a regular lattice determined by
the support of p;. If we write gy (z) = |p; ()| exp (ins (z)), then Equation 15 becomes

—_
Q
~

ps
pr (b

n7r+%(77f (0) =5 (a)) . 1
b—ua +22(b—a)ln

+ €n. (16)

Wy =

~—

Equations 13 and 16 allow us to make a qualitative description of glint. Denote the cross-range
target size (b — a) by d and the ratio |jf (a) /pf (b)] by r. When 27f(/c = Re(w,),n=1, ..., o0,
the third term of Equation 13 adds an additional angular glint error of approximately

2d
Gspike ~ m (17 )

(This approximation assumes the spike is large.) In practice, of course, there will be a finite number
of such glint spikes within each subdomain of “fixed” a and b. However, the density of these zeros
increases with increasing frequency. Note that the size of the error spike is determined by the
behavior of f; near the end point of the interval (a,b), and that when r ~ 1, these spikes can
become quite large—so large, in fact, that g,,s becomes infinite as r — 1 (Reference 7).

Of course, Equation 17 represents the maximum extent of the angle excursions. To better
understand the statistical behavior of the noisy measurements, we must combine the results of
sections 1 and 2.

TARGET PARAMETER ESTIMATE ERROR

The statistical density function associated with a set of measurements, z; where z = g+ n is
known to be the sum of two terms (AOA data g and noise n), can, in principle, be determined from
the known statistics of ¢ and n:

fe=gm= [ " 5@ — 9)dg, (18)

where f, fg, and f, are the probability density functions of the measured data, the noise-free AOA,
and the measurement noise component, respectively.

For f, given by Equation 2 the integral in Equation 18 is unwieldy for all but the simplest forms
of f,,. Moreover, the determination of this integral (in closed-form) is inappropriate for our purposes,
since we are concerned with the effects of the errors associated with “small” data sets and not the
asymptotic behavior usually studied in the standard texts. Consequently, we will adopt the simple
expedient of computer modeling: a random “noise” term will be added to synthetically generated
AOA “data” and processed by a maximum likelihood algorithm to estimate x2. The estimate will
be compared to the “noise-free” value and the process repeated to establish an “error statistic”.

8
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Assuming the model of Equation 2 is accurate, then the maximum likelihood estimator for 2
will be the one that maximizes the function

N K2/

19)

2 )3/2 (
i=1 K + Z /

over a set of data {z;}i=1, ~. When n; = 0 (¢ = 0), then z; = g; and the maximum likelihood

estimate will be asymptotically convergent to the correct model parameter 2 (i.e., when N — 00).

Of course, the point of this discussion is that, in practical situations, o # 0 and N < 0.

Differentiating In A (x2) with respect to x? and setting the result to zero yields

ol =

N 2
Y i =0 (20)

Equation 20 is the sum of functions of the form

1 2/2
3 KZZ—I-Z (21)

and so it will possess only two real solutions which are located symmetrically about the origin. The
magnitude of either zero is our desired estimate and can be obtained numerically from Equation 20.

Define a simple target model as in Figure 6. The target is composed of M point scatterers lying
along a line segment of length d rotated by an angle ¢ (¢ ~ 0) with respect to the radar axis. The
amplitude A; = A for each point scatterer while the phase shift ¢; is chosen to be uniformly random
within {—=, 7}. The position of each point scatterer is also uniform in {—d/2,d/2}.

For our simulation we set the model using a random number generator and determine the
far-field AOA that would be measured by an ideal radar system for a selected value of {:

¢ 0¢(0) _ ru+sv
Tonf 8  r2+s?’

(22)

where r = Zjlecospj, 5 = ZJM:1 sinp;, u = ijila:j cosp;j, v = Zj”zl z;sinp;, and p; = ¢; +
z;2m f(/c. Random noise is generated and added to form a data point z = g + n associated with
each (.

The data set to be processed (by solving Equation 20) is formed by creating N such simulated
AOA values z; = z(¢;) for N corresponding values of { (chosen as uniformly and randomly distributed
within {—1°,1°}). By repeating this process over many data sets, we can get a feel for how the
estimation process behaves for particular values of the parameters ¢ and N. Finally, by further
varying ¢ and N, we can estimate the performance of the algorithm under limited and noisy data
constraints.

Denote the fractional difference between the value of k estimated from the data (using Equation
20) and its true value by A. For the model of Figure 6 we have

1 M
Ktrye = Z xaue » (23 )

M S
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FIGURE 6. Simple M -Point Target Scattering Model.
where 24y, denotes the average value of {z;}. Then
A= Kest — Ktrue (24 )

Kirue

Equation 22 expresses the “AOA” error in units of length measured at the location of the target.
For ease of interpretation, the noise error’s standard deviation o will be expressed as a fraction
of d/2—the conversion to more common {angular) units being straightforward (divide by range).
Figure 7 is the error A associated with an M = 10 scatterer target and plotted as a function of the
varying parameters o and N. Each value A(o, N) was obtained by averaging the results of 2000

model simulations.

The results displayed in Figure 7 clearly show the deleterious effects of additive noise. The
noise-free results (representative of the data used in our previous reconstructions (References 1 and
2)) are represented by the ¢ = 0 curve and indicate that the relative error is less than about 10%, if
the data set consists of more than about 20 points. This trend is maintained over the study and even
when o = .21(d/2), the relative error is less than about 15% for data sets consisting of more than
30 points. For larger values of ¢ or smaller data sets, the results get progressively worse. We have
found that our ellipse estimation algorithm yields “inconclusive” results when A > .25, although
this 1s difficult to quantify.

Figure 8 is a similar plot of the effects of measurement error, but for a target composed of twice
as many (M = 20) scatterers as in Figure 7. Note that the pattern of effects of noise and data
number are nearly identical to those displayed in Figure 7.

10




NAWCWPNS TP 8283
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FIGURE 7. Estimation Error Dependence Upon Magnitude of Noise and
Number of AOA Measurements. The target was as in Figure 6 with M=10,
d=10m, f=35GHz. The parameter o is expressed in units of d/2.

CONCLUSION

The foregoing analysis has reviewed a statistical technique for extracting target cross-range
information from radar AoA (tracking) data. When this information is collected by a radar system
that is also wideband, then the ordinary range-profiles used for target classification/identification
can be “enhance” to yield significantly more relevant information than would otherwise be available

to the observer (Reference 2).

The data collection technique is subject to random noise contamination which has the effect of
altering the statistics presumed in the development of the enhanced range-profile algorithm. It is
natural to ask if the statistics are sufficiently altered so that the algorithm will fail to perform in
an acceptable fashion. Moreover, since the algorithm was originally developed using suppositions
appropriate to asymptotically large data sets and asymptotically dense collections of target sub-
scatterers, it is also natural to ask if the algorithm fails when these model assumptions are relaxed.

We have performed a “brute-force” analysis of the effects of including random measurement
error and reducing the size of the collected data set. Basically, we simply sampled 2000 pseudo-
random generated elements of an “ensemble” associated with a simple (linear) target for a given
number of data points and a given amount of additive noise, and applied our algorithm to each
element. By comparing the estimated results with the actual moments associated with the target,
we were able to obtain an approximate “reliability” figure for the algorithm under varying conditions

11
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eweq
ewsq

FIGURE 8. Estimation Error Dependence Upon Magnitude of Noise and
Number of AOA Measurements. The target was as in Figure 6 with M =20,
d=10m, f=35GHz. The parameter o is expressed in units of d/2.

(see Figures 7 and 8).

As a result, we believe the algorithm displays gradual (noncatastrophic) failure as the noise
level is increased or the number of measured data values is reduced. Moreover, our results indicate
that the algorithm can be expected to yield useful results when the number of data points is larger
than ~ 30 and the additive (angular) noise is less than o ~ .25(d/2) (measured in units of length at
the location of the target). Consequently, this analysis allows us to refine the analysis leading up to
Equation 7 and we can say that AOA measurements can be applied to cross-range estimation when

ndy/25/N
R< .25 k——2@2i. (25)

This reduces the discrimination range of our previous example (text following Equation 7) from
R < 12km to R < 3km. This is a problematic range and is an effective argument for higher radar

frequencies and associated narrower beamwidths.

12
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