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Abstract 
The purpose of this paper is to both summarize the progress made so far in the 
problem of determining measures of central tendency of fuzzy sets and to propose 
a new approach based on the author's recent work on characterizing 
homomorphic-like operators among fuzzy sets and related random sets [0]. 

1. Introduction 

Measures of central tendency as used in this abstract refer to the domain values of 
a given fuzzy set, not to the range values, such as considered by Schneider [1]. 
Two motivating reasons for determining measures of central tendency of fuzzy 
sets arise from the need to rank or compare fuzzy sets [2] and to be able to 
"defuzzify", i.e., make crisp, output fuzzy sets in fuzzy control [3],[4]. In 
addition, other problems often arise which require the presence of a single figure- 
of-merit value which "best" represents a fuzzy set model output. An example of 
this is to be found in the author's work on the PACT (Possibilistic Approach to 
Correlation and Tracking) algorithm, the basic outputs of which (before further 
processing) are fuzzy subsets of the unit interval representing the "correlation" 
or degree of association among any given pair of target track histories which can 
potentially represent the same target. (See, [5], pp. 104-112 and [6].) 

2. MOM and COA Approaches 

In the works cited above, many of the proposed measures of central tendency are 
developed in an ad hoc manner. Among these, one basic approach is the MOM 
(mean-of-maxima of the fuzzy set membership function) and another is the COA 
(center-of-area) approach, also originally proposed by Yager [7]. These, are 
developed as formal analogies to the standard measures of central tendency in 
probability theory, such as the mean, median, or mode. This is because there is a 
well-established fuzzy "folklore" tradition of re-normalizing fuzzy sets via their 
sums of their membership functions (in the discrete case) to become probability 



functions, or renormalizing via the areas under their curves above the zero axis 
(in the continuous case), to become probability density functions. However, a 
main drawback in this approach is the obvious one: If f:D -» [0,1] is any given 
fuzzy set membership function and 0< t < 1 is any real number, both f and the 
product of t with f ~ t-f ~ will have the same MOM and COA measures. Yet, 
as we let t approach 0, intuitively, the product form tf should have a zero or 
other extremal measure, not the same as the nontrivial one for f. 

Both the MOM and COA approaches have been generalized by Yager and 
Filev's BADD (basic defuzzification distribution) approach [4], whereby 
renormalization is applied to powers of the fuzzy set membership function in 
question. (See also the earlier discussions on the use of these approaches in Tong 
[8] and Dubois & Prade [9], p. 302.) However, fuzzy sets are not the same, in 
general, as probability functions or probability density functions, although they 
are intimately related to probability through the distinct concept of random sets. 

3.      Use of One-Point Coverage Relations 
Between Fuzzy Sets and Random Sets 

A growing number of researchers in fuzzy set theory (see, e.g., Dubois & Prade 
[10] and Zwick [11) have begun to recognize the fundamental relations between 
fuzzy (sub)sets of a set D, f:D'-> [0,1], and corresponding (highly nonunique in 
general) random (sub)sets of D Sp Cl -> P(D), relative to some fixed probability 
space (£2,A,P),which are one-point coverage-equivalent tof, i.e., 

.   P(x in Sf) = f(x) , all x in D . (1) 

Obviously, any random set generates a uniquely corresponding one-point 
coverage-equivalent fuzzy subset via eq.(l). Conversely, for any given f, eq.(l) is 
always satisfied by, in general, many Sf. In particular, recalling that the level 
sets, or alpha-cuts, of f are of the nested (crisp) set form 

f^fcl]  = {xinD: t < f(x) < 1}      ,0<t<l, (2) 

define the uniformly random level set 

Sf)U = f1[U,l] :n->P(D)   , (3) 

where U:ß —> [0,1] is a uniformly distributed random variable. Then, the 
uniformly random level set is clearly one-point coverage-equivalent to f. (This 
concept began with early work of Höhle, Goodman, Orlov and others; see, e.g. 
[12] and [13], Chapter 5 for history and background of this area.) 

We illustrate further the above idea concerning the identification of a fuzzy set 
through all one-point coverage-equivalent random subsets of the function's 
domain ~ or equivalently, as a weak specification of a random set via its local 



behavior (the one-point coverage function): Another quite distinct example of a 
random set Sf one-point coverage-equivalent to given fuzzy set f, which has a 
finite domain D is furnished by first constructing an independent zero-one 
stochastic process Yf = (Yf)X: x in D}, where 

P(Yf,x = 1) = f(x)' and    P(Yf>x = 0) = l-f(x), all x in D. (3') 

It is readily seen that Yf corresponds to a random subset Sf of D, so that 
denoting the ordinary set membership or indicator functional as <|>, (i.e., <j>(Sf) = 
Yf, so that: 

x is covered by Sf     iff x in Sf       iff <)>(Sf)(x) = 1 iff Yf x = 1 
and (3") 

x is not covered by Sf iff x not in Sf iff <t>(Sf)(x) = 0 iff Yf)X = 0 . 

In turn, (3") shows that for each x in D, independently, 

P(x is covered by Sf) = P(x in Sf) = P(0(Sf)(x) = 1) = P(Yf,x = 1) = f(x),   (3m) 

showing, in turn, the matching of the one-point coverage function of this Sf 
with f itself. Because of the joint independence assumption, Sf is a very broken- 
up random set, unlike the nested form of S^TJ above. However, both Sf;Tj and 
Sf are one-point coverage-equivalent to f. In fact, there are many other such 
random subsets of D which can be constructed to match f via their one-point 
coverage functions by choosing, in effect, appropriate joint behavior of the Yf)X, 
replacing the independence assumption (See Section 4 of this paper for related 
concepts and Goodman [0] for a full solution to this problem.) 

Despite the appealing random set connection with fuzzy sets outlined above, 
applications of this relationship to fuzzy set issues have been relatively sparse, 
including the issue of determining measures of central tendency for fuzzy sets. 
Among those who have considered the use of one-point coverage -equivalent 
random sets, mention must be made of the work of Goodman [5], Dubois & 
Prade [14], Chanas & Nowakowski [15], Kaufmann & Gupta [16], Gonzalez 
[17], and Heilpern [18] (which will all be briefly discussed later). However, these 
individuals either restricted their attention only to the uniformly random level set 
(as in [5], where the expected centroid of S^TJ was sought) or to fuzzy numbers, 
or equivalently, fuzzy intervals - i.e., fuzzy sets which essentially have all of 
their level sets being closed bounded intervals - as in the case of [14]-[18], where 
emphasis was given to the "mean" of a fuzzy set interpreted through the mean of 
corresponding one-point coverage equivalent random sets. 

Specifically, Kaufmann & Gupta [16], and independently, Chanas & 
Nowakowski developed the same idea, as, in effect, particular evaluations of the 
result of Dubois & Prade [14], the latter based on the use of the uniformly 
random level set representation of a fuzzy set, Dempster's upper and lower 
probabilities [19], and Artstein & Vitale's definition of the expectation of a 
random set [20]: 



Let (ßAP) be a fixed probability space and S:ß-> P(D) any random subset 
of D. Call any (measurable) g:Q -4Da selection of S iff (up to P-probability 
1) 

g(co) in S(co), all co in D., (4) 

and consider the induced probability measure Pog-*: B -> [0,1], by g with 

respect to P, where B c P(D) and, assuming DcR , the corresponding 

probability distribution function Fp^iR. -> [0,1] , where denoting the infinite 
closed left ray at x as (-°°,x], for any x in ft-, 

Fp,g(x) =(def) P(g"1(-oo,x]) (5) 

with corresponding expectation 

+oo 

E(P°g-l) = J x dFp)g(x) =   J g(co)dP(co). (6) 
x=-oo co in D 

Define ÖS as the class of all induced probability measures by g with respect to 
P, for all possible selections g of S with the notation that for any A in B, 

QS(A) =(def) {P(g-!(A)): g a selection of S }. (7) 

Further, define (Artstein and Vitale) E(S), the expectation of S as the class of all 
expectations of such induced probability measures. It should be remarked that at 
least for the case of D c R, D finite, this definition is readily seen to coincide 
with the functional image extension definition: 

E(S) = (def) XA-P(S=A) =(def) { X xA-P(s=A): xAinAcD) (8) 
AcD Ac D 

Recall the belief and plausibility functions   corresponding to S (see, e.g. 
Shafer [21])   bels,plauss:B -» [0,1], where 

bels(A) =(def) P(0*ScA) < P(SnA*0) =(def) plauss(A), (9) 

for any A in B. Also, note that the upper and lower probability distribution 
functions of S, respectively, are F s . F*s : & -> [0,1] which are legitimate 
probability distribution functions, where, for all x in R. (real line), 



F*s(x) =(def) plausS((-°°,x]), F*S(x) =(def) belS((-~,x]). (10) 

In turn, define the lower and upper expectations of S, respectively, as 
(integration by parts forces the reversal of upper and lower forms) 

+00 +00 

E*(S) =(def) j x dF*S(x) ,       E*(S) =(def)    J x dF*S(x). (11) 
'   X=-»= X=-=» 

Then, Dempster's main results, in light of the above definitions, again using 
functional image notation as in eq.(8), now also applied to the inequalities, 
become 

bels(A) < Qs(A) <" plauss(A) , all A in B , (12) 
E*(S)  < E(S)   <   E*(S) . (13) 

In turn, Dubois & Prade, recognizing this, in effect, and restricting themselves 
to only the uniform random level set S = S^TJ. for given fuzzy interval f of D, 
noting the interesting relations, for all x in [0,1] 

F*Sfu(x) = sup(f-1[0,x]), F*sfu(x) = inf((l-f)-l(x,l]), (14) 

defined and obtained that 

E(f) =(def) E(Sf,Tj) = [E*(Sf,Tj), E*(Sf)U) ] . (15) 

Dubois & Prade also showed among other properties that the definition obeyed 
linearity with respect to addition of fuzzy intervals. 

On the other hand, Chanas and Nowakowski (and equivalently, Kaufmann & 
Gupta) obtained the single value, via a two stage randomization, where Ui and 
U2 are statistically independent random variables each uniformly distributed over 
[0,1] 

GE(f) =(def) E((l-Ui)inf(f-1[U2,l]) + UisuptHfU^l])) 
1 

=   |(inf(f-1[t,l])+sup(f-1[t,l]))dt 
t=0 

= (l^tE^Sf.u) +E*(Sf,u)), (16) 

the last equation being pointed out by Heilpern [18]. 



Most importantly, Heilpern also showed ([18], Theorem 1) that the bounds 
E*(Sf u) and E*(Sfiu) remain the same when S^u is replaced by any other 

random subset S of D which is closed interval-valued and one-point coverage- 
equivalent to f. (In Hailpern's work, D need not be finite.) As Dubois & Prade, 
he also demonstrates full linearity of E(f) with respect to fuzzy interval addition 
and scalar multiplication, as well. 

Gonzalez, motivated by the ranking of fuzzy sets, extended Dubois & Prade's 
as well as Hailperin's approach - called in the literature the FM (fuzzy mean) 
approach. (See also the previously-mentioned paper by Zhao and Govind [3] 
for comments on the FM method along with the COA and MOM ones.) 
Specifically, given some choice of additive measure M over [0,1] and t in [0,1], 
modifying his notation, 

1 
AV(f; t,M) =(def) J (Hnf(f ^s.l] + (l-t)-sup(f-1[s,l]))dM(s),       (17a) 

s=0 

E(f;M) =(def){AV(f;t,M):0<t<l}=[AV(f;l,M), AV(f;0,M)] (17b) 

Gonzalez showed for M=identity (i.e., lebesgue) measure, the Dubois & Prade 
FM definition was obtained. He also showed connections with a number of 
other approaches and obtained various properties for this class of measures of 
central tendency. Mention should also be made of the recent work of Filev and 
Yager [22] toward defuzzification via the introduction of the concept generalized 
level set defuzzification (LSD) for discrete fuzzy sets, whereby a parameter a is 
prechosen and a resulting weighted average of the average value of each level set 
of f is obtained, where the weight of each level set is proportional to the number 
of elements in that level set multiplied by some suitable power of a. Filev and 
Yager show this approach encompasses both the MON and COA approaches 
modified to level set considerations. 

4.   New Approach to Problem Using One- 
Point Coverage Relation Between Fuzzy 
Sets and Random Sets 

With all of the above background established, it is clear that the problem of 
obtaining measures of central tendency of a given fuzzy set in terms of one-point 
coverage representations is a rather difficult one, except when restricted to fuzzy 
intervals. Theoretically, one could simply define for a given fuzzy subset f of 
finite set D - not necessarily a fuzzy interval - one natural measure as mentioned 
earlier (Goodman[5]) 



Ei(f)=(def)  I centroid(A)-P(S=A), (18) 
ACD 

or as Dubois & Prade and Hailpem did for fuzzy intervals, 

E2(f) =(def) E(Sf) , (19) 
or the larger interval, in general 

E3(f) =(def) [E*(Sf), E*(Sf)] . (20) 

Finally, one could also consider mode-like or maximum likelihood-like 
estimations corresponding to the MOM approach, but based on random set 
representations such as 

E4(f) =(def) A for which max {P(Sf = A): AcD} holds. (21) 

But, which one-point coverage equivalent random set Sf to pick ? It is not 
clear that there is only one such natural choice - as e.g., shown by Heilpern 
(mentioned earlier). 

A different tack to the above problem is taken here: We consider a natural class 
of one-point coverage-equivalent random sets to f (still not necessarily a fuzzy 
interval), compute if feasible the above measures of central tendency, and then 
analyze the resulting values. The class in question arises from the following 
problem: 

Find all copula, cocopula pairs (g ,h) such that arbitrary finite combinations 
of conjunctions and disjunctions of fuzzy sets correspond homomorphically to 
the probability of such combinations of the one-point coverage relations of at 
least some random sets, each of which is one-point coverage equivalent to its 
corresponding fuzzy set: 

P( comb(&,or)(xij in Sfj-;i in I, j in J)) = comb(g,h )(fij(xij); i in I, j in J), (22) 

for all finite index sets I,J, all fuzzy sets fij;Dy —> [0,1], all xjy in Djj. (Sf-)i 

in I, j in J is some joint collection of one-point coverage-equivalent random 
subsets of the Djj to the fij, all i in I, j in J. In [0] it is shown (see, especially 
Theorem 4.1 and Corollary 4.1), assuming the Dy are all finite and making 
additional mild assumptions, that the solution class {g,h ) to eq.(22) is precisely 
the disjunction of the following relations: 

Case (i):   (g,h ) = (min,max), 
Case (ii):   (g,h) = (prod.probsum), 

Case (iii): (g,h ) in {ordsum(prod.probsum): all ordsums}. 
(23) 



Here, min(imum), max(imum),and prod(uct) are self-explanatory and probsum 
is the deMorgan transform of prod, while ordsum means "ordinal sum". A 
typical ordsum in (iii) is described as, for any x in [0,l]n- n>l, and any choice of 
finite or countably infinite index set N of disjoint closed subintervals [ak.bkl of 

[0,1], 
g (x) =  Uak.bkTCprodCLCak.bk)®)) , 

h (x) =  LCak.bkCkprobsumCLCak.bkXx))) , (24) 

if there is a (unique) interval [ak.bkl such that  x_in [ak,bk]n , for some k in N; 

g (x) =   min(x),   h (x) =   max(x), (25) 

if x_not in any [ak,bk], all k in N , where multivariable affine transform 

L(ak,bk)(x) = ((xi-ai)/(bi-ai),...,(xn-an)/(bn-an)) (26) 

with single variable inverse 
L(ak,bk)'1(y) = ak + (bk-ak)7- all y in [0,1]. (27) 

Note also that Case (ii) can be considered as a limiting form of Case 
(iii) with N = {1} and [ai,bi] = [0,1]. (See, e.g. Dall'Aglio et al. [23] for further 
properties of, and background for, copulas, cocopulas, t-norms, t-conorms, 
ordinal sums, etc.) In turn, Cases (i)-(iii) can be translated into the necessary 
joint structure that the corresponding one-point coverage-equivalent random sets 
Sf-. must take, as zero-one stochastic processes determined up to joint 

distributions with respect to the different xjj in Djj (again, see [0]). By also 
assuming the random sets in question are completely controlled by the copulas 
in Cases (i)-(iii), we obtain finally (via [0], Appendix, eq.(iii)) the explicit 
marginal probability distribution of any such possible random set Sf as: 

P(Sf = A) = h ((l-f(x))x in A ,g «l-fW)x in D-A)) -* ((l-fW)x in A). (28) 

for all AcD. In turn, eq.(28) becomes for each pair (g,h) in the above cases: 

Case(i):       P(Sf=A) = P(Sf,Tj = A), for all AcD. 
Hence, 

P( Sf = f ^ai.l] ) = cci - ai+i , i=l,..,r, (29) 
where 

range(f) =(def) {ai: i=l,..,r}; 1> ai >..>ar > 0 = ar+i . (30) 

Case(ii): Treat this -apropos to the above comment - as a special case of 
Case (iii) 

Case(iii), eq.(25) holding: Treat this as in Case (i). 



Case(iii), eq.(24) holding for some [ak.bk], k in N. Hence, 

ak < l-f(x) < bk , all x in D , 
i.e., 

l-bk < f(D)   <  1- ak • (31) 

Simplifying eq.(28) yields for any AcD, 

P(Sf = A) = c(f;ak,bk)- q(A;f;bk,ak), 
where 

q(A;f;bk,ak) =(def) prod( (bk-(l-f(x))) / (l-f(x)-ak); x in A)), (32) 
and the constant (independent of A) 

c(f;ak,bk) =(def) (bk-ak)-prod( (l-f(x)-ak) / (bk-ak); x in D). (33) 

If we consider, e.g. the maximum criterion E4(f) as in eq.(21), it is clear that 
reasonable closed-form expressions can be obtained for all of the above cases: 

Case(i): Obtain that (or those) A = f"l[cci,l] corresponding to that (or 
those) i for which max (oq - cq+i ; i=l,..,r } occurs. 

Case (Hi), eq.(24) holding: 
Subcase(I): q(A;f;bk,ak) > 1 , for some x in D, which is equivalent 

to, 

1- ((ak+bk)/2) < f(x), for some x in D (34) 

Then, in light of (31),choose 

A = {x in D: q(A;f;bk,ak) > 1} = f ![1- ((ak+bk)/2), l-ak]. (35) 

Subcase(II): q(A;f;bk,ak) <1 , for all x in D, which is equivalent to, 

1-((ak+bk)/2) > f(x), for all x in D, (36) 

which by (31) becomes 
l-bk $ f(D) < 1- ((ak+bk)/2) . (37) 

In turn, this implies (since each q({x};f;bk,ak) is a monotone increasing function 
off(x)) 

that we should choose 



A = {x}, for that x corresponding to max(f(x); x in D). (38) 

Further analysis can be carried out in the above vein and future work will 
detail this. In summary, the most promising results, from a feasible 
computational viewpoint, appear to be derived via E4(f), as opposed to the other 
criteria. Finally, some progress has been made toward relating a number of ad 
hoc approaches to measures of central tendency, such as the COA type, and this 
approach. 

5.    Conclusions 

This paper, first, has attempted to present a broad view of previous efforts in 
treating measures of central tendency of fuzzy sets. Noting that the natural 
identification of any given fuzzy set with the full class of all one-point 
coverage-equivalent random subsets of the fuzzy set membership function's 
domain, a good deal of this research has been devoted to obtaining measures of 
central tendency (such as expectation) of certain types of these random sets. In 
particular, the nested random set which is one-point coverage-equivalent to a 
fuzzy set has been investigated rather thoroughly, such as by Dubois & Prade. 
But, in general, the class of all other one-point coverage equivalent random sets 
(to a given fuzzy set) is quite large and results, therefore, in random sets which 
can have a wide variation of measures of central tendency, and thus may not 
produce a satisfactory "tight" set of representative values for central tendency. 
By restricting fuzzy sets to be fuzzy numbers or fuzzy intervals, stronger results 
can be obtained for the entire class of one-point coverage-equivalent random sets 
- such as that obtained by Heilpern. On the other hand, the approach taken in 
the last part of this paper does not restrict the form of fuzzy sets considered ~ 
except to assume the domain of the given fuzzy set to be finite - but rather, 
considers a natural subclass of the entire class of one-point coverage-equivalent 
random sets. To this end, it appears that one can derive relatively simple forms 
for the probability functions of this class. In turn, these probability functions 
appear to have relatively simple forms, and thus have the potential for yielding 
relatively feasible forms for their corresponding measures of central tendency. 
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