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Chapter 1 

INTRODUCTION 

1.1 Motivation 

A problem of considerable and increasing importance within the 

field of composite materials is the fracture of laminated composite 

structures. The anisotropy of the material greatly complicates even the 

simplist of problems. An example of a complicated problem is the edge 

replica of Fig. (1.1); it demonstrates the crack types present on the 

free edge of a [+302/-30z] tensile coupon. From Fig. (1.1) it is 

apparent that a crack can start out in a transverse mode and turn into a 

delamination within Its growing length. Complexities such as this 

require in-depth fracture mechanics models which not only predict at 

what load a crack will extend but also the direction of crack exten- 

sion. This study was undertaken 1n an attempt to develop a model with 

the capability of describing the characteristics of crack growth 1n 

composites. 

1.2 Literature Review 

Smith [1] has discussed limitations of some of the currant analyti- 

cal models for predicting crack growth characteristics in composite 

materials. Likewise, most of the previous finite element models either 

involve complex computational procedures or suffer from serious limita- 

tions. Some models distinguish between fiber and matrix [2, 3.1, others 

use hybrid or singular finite elements [4, 5], and still others assume a 

a. ^.t .£.3v!s£rfx.-Ära*"jt^3x-Kv^rjr  ,. -.. M.2*'-m:-M+.3 
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direction of crack growth [6]. Finite element analyses which require a 

distinction between the fiber and matrix materials are impractical for 

most real life situations since the number of degrees of freedom 

required in such an analysis could easily exceed the capacity of most 

computers currently available. While the use of singular or hybrid 

finite elements may give a good representation of the stresses, strains 

and displacements near a crack tip, they generally require more computa- 

tion time and they are  not well suited to explaining large scale crack 

growth characteristics. Experimental results [7, 8] have shown that the 

direction of crack extension can change significantly during crack 

growth in a laminated composite material. These results limit analyses 

which assume a direction of crack growth to specialized cases or to 

small increments of crack growth. 

There are many different finite element models that do not require 

specialized elements. Two such models are the failed element approach 

of Adams [3], and the modified crack closure approach of Rybicki and 

Kannien [9]. The failed element approach assumes that when an element 

in an area of high stress exhausts its strain energy capacity, it 

fails. From this, it is assumed that a "crack" has formed and has the 

dimensions of the failed element. This approach has two implications, 

the most Important of which is that a finite amount of material is 

removed from the system, which in an actual material is not the case. 

The other is that the crack is not likely to close up on itself in 

subsequent loading because of its exaggerated width. The modified crack 

closure technique is based on the crack closure integral and can be used 



within the framework  of a linear elastic analysis with a relatively 

coarse mesh.    In the modified crack closure technique, the crack closure 

integral  is evaluated directly  from the nodal   forces and displacements 

required to close a virtual  crack of extension, Aa.    The modified crack 

closure technique also has the advantage of obtaining mode-I, mode-II, 

and mode-Ill results in a single analysis. 

Few fracture theories predict the direction of crack extension [2], 

as well  as the external   load level which causes crack extension.    Hashin 

[in] suggested that a  failure criterion could be constructed which would 

include the plane on which failure would occur.    Some of the many frac- 

ture/failure criteria which have been used to predict  fracture/failure 

of composite materials include the Sih strain energy density criterion 

[Z], the Tsai-Wu failure criterion  [11], the Whitney-Nuismer point 

stress criterion  [12], and the Hashin failure criterion  [10].    Of the 

criteria listed,  only the strain energy density criterion [2] and the 

point stress criterion  [12] are readily capable of predicting the direc- 

tion of crack extension.    However, without modification, their use is 

limited to special  cases. > ; 

1.3 Purpose of the Present Study 
\ 

The purpose of this study was to develop a finite element model 

capable of predicting crack growth characteristics in composite materi- 

als. It was desired to develop a model which not only could determine 

what applied lead level would cause crack extension but one which could 

also determine the direction of crack extension. 

" \ sy 



1.4 Basic Assumptions 

Unless otherwise stated, the model developed was based on the 

following assumptions: 

(i) Linear elastic, homogeneous isotropic or 

homogenous orthotropic fibrous composites 

(ii) 5;mall displacement theory 

(iii) a crack extends from one end only - one crack at 

a time 

(iv) no variation of geometry in one of the coordinate 

directions (i.e., plane stress, plane strain and 

generalized plane strain problems). 

1.5 Description of the Finite Element Model 

The finite element model developed uses a two dimensional mesh of 

four node, linear, isoparametric elements. The model has the capabili- 

ties of obtaining either plane strain, plane stress or generalized plane 

strain solutions. (Refer to Appendix A for a description of the finite 

element method as it applies to this study.) The material models avail- 

able include isotropic, orthotropic and laminated orthotropic, (off- 

axis), materials.  (See Appendix B for an explanation of the constitu- 

tive relations for the respective material models.) 

The approach taken to the solution of the crack problem was to 

separate the analysis into two main parts. In the first part of the 

solution the direction of crack growth was determined and in the second 

part the load level which would cause crack extension was determined. 



The crack growth direction was determined through the use of sev- 

eral  fracture/failure theories.    The theories considered include a 

modified version of the Griffith criterion [13], the Sih strain energy 

density criterion [2], the Tsai-Wu failure criterion [11], and modified 

versions of the Whitney and Nuismer point stress theory [12], and Hashin 

failure criteria [10].    The failure criteria are described in Chapter 2 

and the results are compared with theory and experiment in Chapter 3. 

The determination of the load level which would cause crack exten- 

sion was made through the use of the modified crack closure method 

[9].    The modified crack closure method, as it applied to this study, is 

presented in Chapter 2. 

The ™in reasons behind the choice of this solution approach was 

that it could he used with a „„ear elastic analysis, that it could be 

-ed with a relatively coarse mesh and that it reouired a „„,„ 0f 

computer time. 

!-6    Problems Considered 

The problems considered in this study were: 

(i)    A mode-I crack in an infinite isotropic plate with remote 

loading of 5, Fig.   (1.2a), was considered as a test of 

the crack closure technique. 

(»)    Mixed mode cracks in infinite plates of isotropic materials, 

Fig.  (1.2b), „ere analyzed as a test of the crack growth 

direction, -8^ for various angles of crack inclination, ß. 
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[iii) Off-axis, unidirectional, orthotropic tensile specimens, 

Fig. (1.3a), were analyzed for the direction of crack 

extension in fibrous composites and the results were compared 

with available experimental results, 

(iv) Transverse cracks were introduced on the free edge of a 

laminated composite tension specimen, Fig. (1.3b), and the 

predicted crack paths were compared against available 

experimental results. 

/ 
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Chapter 2 

THEORETICAL BACKGROUND 

2.1 Criterion for Crack Extension 

2.1.1 Energy Release Rate Concept 

In the Griffith theory of classical fracture mechanics [13], it is 

assumed that strain energy is released when a crack surface is created 

in a stressed body. The rate of energy release when a crack extends 

stably in a body is known as the critical energy release rate, Gc. The 

critical energy release rate, Gc> can be determined experimentally by a 

procedure which allows for stable, slow crack extension, (see Ref. [17] 

for isotropic materials and [6] for composites). 

For structures, such as a composite laminate, an existing crack may 

or may not grow under a given state of stress. To determine whether or 

not an existing crack will extend, it is necessary to calculate the 

available energy release rate, G(a), associated with a crack of length 

a. If the available energy release rate, G(aH is equal to the critical 

energy release rate, Gc the crack will grow in a stable fashion. If the 

available energy release rate, G(a), is greater than the critical energy 

release rate, Gc, the crack grows unstably and if the available energy 

release rate, G(a), is less than the critical energy release rate, Gc, 

the crack does not extend. Similarly, the external load which first 

causes the available energy release rate, G(a), to reach the critical 

energy release rate vaiue, Gc, is the critical load and loads greater 

10 
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than the critical load level result in unstable growth while loads less 

than the critical load level do not extend the crack. 

Mathematically, the energy release rate, G(a), for a given crack of 

initial length, a, is defined as the difference in the total strain 

energy of the structure, AU, before and after a small crack extension, 

&a, is introduced, that is, 

., .   lim  AU to -i\ 
G<a) = Aa+0 Äi" (2a) 

2.1.2 Modified Crack Closure Approach 

Irwin [14] contended that if a crack extends by a small 

amount, Aa, the energy released in the process is equal to the work 

required to close the crack back to its original length. This statement 

in equation form is 

G<*> = 1Ä) 2AT {      °*&" da (2'2) 

where o is the surface traction vector and Au the displacement vector 

required to close the crack back to its original length. 

The modified crack closure technique of Rybicki and Kannien [9] 

enables the direct evaluation of the crack closure integral (2.2) and 

thus the energy release rate through the use of a finite element 

model. The finite element model starts with the presence of an initial 

crack of length, a, Fig. (2.1a), with tip at node K. The finite element 

solution determines the displacement components, uk, (where uk =>("(-' 
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vk, wk) of the crack tip node K. An incremental crack extension Aa is 

introduced by replacing the crack tip node K with two separate nodes V 

and K" as shown in Fig. (2.1b). With this new crack geometry taken 

into account, the finite element solution for the nodal displacements 

GV and uk" are found for nodes K' and K", respectively, under the 

same load. The crack extension is then closed by applying equal and 

opposite forces at nodes V  and K" such that their common displacements 

match the displacements found earlier for node K, Fig. (2.1c). These 

nodal forces can be described by 

K  => (Fxk» Fyk* Fzk> 
(2.3) 

The energy re lease rate is then given by [9], 

G(a) = CFxk(uk'-ulc")+Fyk(vlc-vk"Kzk(«k
,-Wk,,)]/2Aa 

(2.4) 

By resolving the forces and displacements into a «crack coordinate 

system," Fig. (2.2), the respective fracture mdde contributions to the 

total energy release rate can be determined. That is, 

\ 

Gi(a) - (CF2kcos»-FjkS1.»]Ccos»(-k'-»k")-^"*(\
,-'k"»B/

2"  (2"5a) 

\ 

G„(a) - [[F^os^^ln^Ccos»!,^-.,")«^»!-,'--,"»)/^  (*•»> 



14 

ORIGINAL PAGE S 
OF POOR QUALITY, 

Figure 2.2    Crack  Coordinate System 



15 

where Gj, GJJ and GJJJ are the mode-I, mode-II and moae-III contribu- 

tions to the total energy release rate, G, respectively, i.e., 

G(a) = Gr(a) + Gn(a) + Gm(a) (2.5d) 

2.1.3 Finite Element Considerations in Computing the Energy 

Release Rate 

As previously mentioned, the energy release rate requires the 

evaluation of the nodal forces and displacements necessary to close a 

crack of extended length, a + &a, back to its original length, a. The 

needed displacements are directly obtained from finite element solutions 

of the initial and extended crack states, Fig. (2.1a) and (2.1b), 

respectively. However, the calculation of the required forces are not 

as obvious. Rybicki and Kanninen [9] computed the forces by placing a 

very stiff "spring" between nodes K' and K'', then computed the force 

components in the "spring." This procedure can lead to unnecessary 

approximation errors. An alternative approach will now be presented. 

Consider three separate states. State No. 1 represents the loaded 

initial state, Fig. (2.1a), where node K displaces (uk,vk,wk). The 

finite element equations (Appendix A) for State No. 1 can be written as, 

D^]^} - {Fj} (2.6a) 

where [Kj] is the global stiffness matrix, {Sj} is the global displace- 

ment vector and {F.} is the global force vector for State No. 1. Simi- 
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larly, State No. 2, Fig. (2.1b), represents the loaded extended state 

which can be expressed by, 

CK2]{62} - {F2} (2.6b) 

and State No. 3, Fig. (2.1c), represents the loaded separated state with 

applied forces to hold nodes K' snd K" together - which may be written 

as, 

CK33{«3} - {F3} (2.6c) 

Since the forces required to hold nodes K' and I'" together are con- 

tained within the {F } vector it is necessary to compute {F^} . Since 

the separated state with applied forces, State 3, Fig. (2.1c), is con- 

strained to displace identical to that of the unseparated state. State 

1, Fig. (2.1a), the displacement vector {Sj} is the same as {6^}  with 

the exception of the additional degrees of freedom (i.e., u, v and w 

displacements) for the new node created by separating the crack tip node 
■    i 

into two nodes. Now, if {«j'} is defined as being the {Sj} vector with 

the additional degrees of freedom it follows that 

163) - {«!'} (2.6d) 

I 

where the additional degrees of freedom are specified as being the same 

as for the initial crack tip node of State 1 since State 3 requires that 



17 

the displacements of the separated nodes match those of the unseparated 

state, State 1. Note that the new node created by separating the crack 

tip node was numbered as being the crack tip node number plus one and 

all node numbers greater than the crack tip node were re-numbered as 

being one plus the node numbers that they had in State 1. This re- 

numbering procedure guarantees that the half bandwidth will not inc-ease 

by any more than 2 for plane stress or plane strain and by any more than 

3 for generalized plane strain. 

The undeformed mesh of the separated state, State 2, Fig. (2.1b) is 

Identical to that of State 3, Fig. (2.1C), and s1nce the st1ffnes$ 

matrices do not change for different loading conditions, it follows that 

W " *2* (2.6e) 

Substituting Eqns. (2.6d) and (2.6e) into (2.6c), the solution 

f°r {F3} is found to be 

w = fy (2.7) 

Hence, for a growing crack problem, the forces necessary to close the 

current crack extension are found by simply multiplying the current 

stiffness matrix by the, modified, previous displacement vector - with- 

out the addition of extra steps or the introduction of unnecessary 

approximation errors. Nofp that it ,-.- „„* 
note that it is not necessary to store the entire 

[k?] stiffness matrix. Sirce fk^l ic a h^,^  * • L*2J 1S a landed matrix, the only contri- 
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buttons to the force necessary to close the crack will come from the 

elements containing the crack tip node K. Hence, the elemental contri- 

butions to the force at node K can simply be summed up to give the total 

force at node K. 

?'2    Criteria for Predicting the Direction of Crack Extension 

?.2A    Modified Griffith Criterion 

The Griffith or energy release rate criterion states that a crack 

will extend when the available energy release rate, G(a), reaches or 

exceeds the critical energy release rate, Gc [13]. In a crack problem 

where the crack extension direction is unknown the criterion should be 

modified to state that crack extension will occur in the direction in 

which the available energy release rate, G(a), first reaches the criti- 

cal energy release rate, G . 

If the critical energy release rate is assumed independent of 

direction then the direction of crack extension can be taken as the 

direction of maximum available energy release rate since this would be 

the direction which would first reach or exceed the critical energy 

release rate. \ 

Two serious limitations of the modified Griffith criterion, as 

defined above, are that the critical energy release rate may have a 

dependence on the mode of fracture in isotropic problems and it also 

depends on which direction, relative to the material principal coordi- 

nates, the crack extends in fibrous materials. As an example of the 

latter of the two limitations, consider two different mode-I cracks 

-,v 
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extending in an anisotropic material.    The first crack, Fig.  (2.3a), 

represents a mode-I crack growing parallel to the fibers and the second 

crack, Fig.  (2.3b), represents a mode-I crack growing perpendicular to 

the fibers.    Based on surface energy considerations [13], an approximate 

relation for the mode-I critical energy release rate, GJQ,  for an iso- 

tropic material  is given by 

2 
ira_ a 

'IC (2.8) 

where a   is the critical applied stress required to cause crack exten- 

sion and E is Young's modulus.    Substituting the ultimate strength of a 

composite material,  (T300/5208 graphite-epoxy), in the transverse direc- 

tion, Yj, and the modulus in the transverse direction, Eo,  from Appendix 

C, into Eqn.  (2.8), gives an approximate value for GJQ for extension 

parallel to the fibers, Fig.  (2.3a), that is, 

*(YT)2a 
Gic = ——   =   81*2a (2.9a) 

Similarly, for the crack growing perpendicular to the fibers, Fig. 

(2.3b), 

GIC = 
*(XT)

2a 
7883a (2.9b) 

Hence, the critical energy release rate for the crack growing perpen- 

dicular to the fibers is roughly two orders of magnitude greater than 
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that of the crack growing parallel to the fibers. 

Another disadvantage of the modified Griffith criterion is that it 

requires an additional finite element solution for each possible direc- 

tion that the crack car. extend. Referring to Fig. (2.4), for the crack 

defined by oab there are seven possible directions of crack extension, 

from o to c, from o to d, from o to e, from o to f, from o to g, from o 

to h and from o to i. In order to use the modified Griffith criterion, 

seven independent finite element solutions would be required to compute 

the seven possible energy release rates. This is obviously time consum- 

ing and thus a costly procedure. 

2.2.2 Sih Strain Energy Density Criterion 

The strain energy density criterion [2, 15] is based on the local 

value of strain energy density in the vicinity of a crack tip, which is 

direction sensitive. Crack extension is postulated to occur in the 

direction of minimum strain energy density when the strain energy 

density factor, S, (to be defined), attains a critical value, Sc. 

For a planar crack in an isotropic material under plane strain, 

Fig. (2.5), the strain energy density in the vicinity of the crack 

tip, ^,    is given as, [15] \ 
dV 

\ 

§ - ^allkI+2a12kIkII+a22kII+a33kIIl)     \ 

+ non-singular terms (2.10) 
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Figure  2.5  Crack Tip Coordinate System  Of The 
Strain Energy  Density  Theory 
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where kj, kjj and kjjj are the mode-I, mode-II and mode-Ill stress 

intensity factors, respectively, 

all =T^(
3-4v-cos,t,)(l+cos<i>)] (2.11a) 

a12 = TIG * 2sin.j>[cos*-(l-2v)] (2.11b) 

a22 =-igGC4(1-u)(1-c°s*)+(l+cos<}»)(3cos<t>-l)3 (2.11c) 

a33=^ (2.11d) 

and G is the shear modulus of elasticity and v is Possion's ratio. 

Eqn.  (2.10) demonstrates that the strain energy density function 

possesses a  (1/r) singularity at the crack tip.    Hence the expression 

2 2 2 S = (a11kI+2a12kIkII+a22kII+a33kIII)A (2.12) 

represents the intensity of the strain energy density field in the 

vicinity of the crack tip.    The fundamental hypotheses on crack growth 

in the Sih theory are as follows: 
\ 

(1) Crack initiation takes place in a direction determined by the 
\ 

stationary value of the strain-energy density factor, i.e., 

|f - 0,    at * = +0 (2.13) 
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(2) Crack extension occurs when the strain-energy density factor 

reaches a critical value, i.e., 

Sc = S(kr kn, kIH), for * = <(.o (2.14) 

Exact evaluation of the stresses and strains in the vicinity of the 

crack tip with the current finite element model is not guaranteed since 

there exists a geometric singularity at the crack tip which cannot be 

accurately modeled with the linear-elastic analysis formulated herein. 

Hence, it is not possible to use the Sih theory to determine when the 

crack will extend. However, the Sih theory can be used to determine the 

direction of crack propagation in isotropic materials. 

From continuum mechanics [16] it is possible to write an alterna- 

tive form of the strain energy density at a point in a stressed body, 

i.e., 

dU     1. 

dV = iKxSx+Vyy^zz'zz+VV+Vxz^xy V {2'15) 

Neglecting the non-singular terms in Eqn. (2.10) and substituting 1n the 

expression for the strain energy density factor of Eqn. (2.12) gives, 

§ = ? (2.16) 
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Combining Eqns. (2.15) and (2.16), an alternative equation for the 

strain energy density factor, S, is found to be: 

S = 7(axxexx+ayy£yy+ °zzeZz
+TyzYyz+TxzYxZ

+Txy*xy)    <2-17) 

There is one serious limitation to the use of the strain energy 

density theory in the current study. This limitation is that the theory 

does not account for the anisotropic strength characteristics of the 

material. Since such properties must be accounted for in fibrous com- 

posites, the Sih strain energy density theory is limited to isotropic 

material applications. It should be noted that the strain energy 

density theory has been used in the past to predict crack growth charac- 

teristics in composite materials [2]. However, the success of such 

studies resulted from assuming that the crack was situated entirely 

within the isotropic matrix between fibers. 

The procedure for implementing the strain energy density criterion 

in the finite element model is briefly described as follows: First, the 

possible directions of crack extension in the model are identified by 

the element sides containing the crack tip node, (node-0 in Fig. 

(2.4)). Second, the stresses and strains are calculated in the adjoin- 

ing elements at the element corners, (points c thru i in Fig. (2.4)). 

Third, Eqn. (?.17) is used to calculate the strain energy density fac- 

tor, S, at the respective points. Last, the crack is assumed to grow in 

the direction in which S is a minimum. 

i 

I * 

l...,,;-i 
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2.2.3    Tsai-Wu Failure Criterion 

Tsai  and Wu [11] postulated that a failure surface in stress space 

exists in the form: 

F.s.+F..s.s. =1        i, j = 1.....6 (2.18) 
11     ij  i  J 

where F, and Fi 1 are strength tensors of second and fourth order, 

respectively, and s. represent a contracted form of the stress tensor 

components in material principal coordinates. For an orthotropic lamina 

under plane stress conditions, Eqn. (2.18) becomes: 

(r+ r)sn+ (Y; + T^z-^Mr^^j-^u T       c T       c i c ic 0|2 

+2F    s    s      = 1 (2-19^ 
* 12 1122 

where XT and YT represent the tensile strength of the material in the 

fiber and transverse directions, respectively, Xc and Yc represent the 

compressive strengths, S12 represents the «hear strength in the 1-2 

plane and F12 is an interaction term which must be determined from a 

biaxial strength test. 

As a failure theory, the Tsai-Wu criterion has several advanta- 

ges. These advantages include, (1) invariance under rotation of coordi- 

nates, (2) transformation via known tensor transformation laws; and (3) 

symmetry properties akin to those of the stiffnessesjand compliances. 

However, for use in th^s study, it has two serious limitations. The 

 u 
* 
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first is that it fails to account for differences in creating new frac- 

ture surfaces at various angles to the material principal coordinates 

and second is that it makes no distinction between tensile and compres- 

sive failure which could cause the Tsai-Wu criterion to choose a com- 

pressive direction of crack propagation. 

The Tsai-Wu criterion was incorporated into the finite element 

model by assuming that the crack would extend in the direction where the 

value of the Tsai-Wu polynomial reached a maximum. Referring to Fig. 

(2.4), the stresses, o. ., are calculated at some fixed distance, rQ, 

away from the crack tip at the various locations dictated by the element 

sides incorporating the crack tip node, (points c thru i in Fig. 

(2.4)). Next, the values cf the Tsai-Wu polynomial were computed at 

these points through the use of Eqn. (2.19), (for the case of orthotro- 

pic plane stress). Last, the crack was assumed to extend in the direc- 

tion for which the Tsai-Wu polynomial reached a maximum. 

The choice of rQ is arbitrary within certain limitations. These 

limitations are that rQ should be greater than zero and less than the 

longest possible path that the crack extension could take and not extend 

through more than one element. Referring to Fig. (2.4), if the possible 

path of crack extension were as shown from node o to c, o to d, o to e, 

o to f, o to g, o to h or o to i, then TQ would be limited to that of 

the segment from o to g since that is the direction of longest possible 

single element crack extension. Note that it would be impractical to 

use a distance greater than og since this would require using stresses 

from an element outside those adjacent to the crack tip. 



29 

2.2.4 Modified Point Stress and Hashin Criteria 

The criteria for predicting the crack growth direction considered 

up to this point, in their present form, are all unsatisfactory for 

anisotropic materials. As pointed out in Sections 2.2.1-3, they all 

fail to account for differences in the work required to create a new 

area of crack surface at different directions in an anisotropic mate- 

rial. Since it is imperative that this distinction be accounted for in 

this study, two new criteria are proposed. The first criterion consid- 

ered is a modification of the point stress criterion of Whitney and 

Nuismer [12], and tne second is a modification of the Hashin criterion 

[10]. 

2.2.4.1 Modified Point Stress Criterion 

The point stress criterion of Whitney and Nuismer [12] assumes that 

failure of a notched laminate occurs when the local stress at a certain 

distance, r , from the notch tip reaches the strength of tue  unnotched 

laminate. 

The modified point stress criterion of this study assumes that a 

crack will grow in the direction of the maximum ratio of normal stress 

to strength at a certain distance, r , from the tip of an existing 

crack. Note that this is equivalent to assuming that a crack will grow 

perpendicular to the plcine of maximum tensile stress in an isotropic 

material. Referring to Fig. (2.6), the normal stress, CJ (r,?), is 
99 

calculated at some fixed distance, r , away from the crack tip. The 

stress, o    (r  ,9), is then divided by the tensile strength of the mate- 
99 0 

.M 
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Figure  2.6    Modified  Point  Stress  Parameters 
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rial, Tia(<i>), (to be defined), normal to the direction of crack exten- 
99 

sion. This ratio, R(r ,q.). is then used to predict the direction of 

crack extension by assuming that the crack will extend in the direction 

for which R(r ,9) reaches a maximum. Ouantitatively, the ratio is 

defined as: 

o    (r ,9) 
R(r t).JLi  (2.20) 

The value of r   used in this criterion is subject to the same 

limitations as the value of r    in the Tsai-Wu criteria, Section 2.2.3. 
0 

That is, r should be greater than zero and less than or equal to the 

longest path of possible crack extension while not extending through 

more than one finite element. 

2.2.4.2 Strength, T , Along a Given Plane in Anisotropie Materials 
99 

The strength, T (9), normal to a given direction, is taken as the 
99 

normal stress required to fail an infinitesimal element of anisotropic 

material along a qiven plane. In the finite element solution the finite 

element sides dictate the directions of possible crack extension. 

T,. was taken in this form to account for differences in the energy 
99 

required to create new crack surfaces at arbitrary angles with the 

material principal coordinate system. Such a definition is necessary in 

the proposed model to permit selection of the proper direction of crack 

growth. Further, as shown by Herakovich [7], for example, failure of 

individual lamina in a laminate can occur along planes which are neither 

L 
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parallel to nor perpendicular to the fibers. It appears to be most 

difficult H not Impossible to experimentally verify a relation 

for I (0 by testing unidirectional laminates since only one direction 

of crack extension would be present for a given laminate. However, 

three obvious conditions must be met by such an expression. The condi- 

tions are: 

\.      ror an Isotropie material, the strength. T^(*). should be constant 

and equal to the ultimate strength of the material. o^ Independent 

of *. ■ 

?.      For a crack extending parallel to the fibers 1n a unidirectional 

composite. T (♦) should be equal to the transverse tensile 

strength of the material, YT. 

3.  For a crack extending perpendicular to the fibers. T^(0 should be 

equal to the tensile strength of the material In the fiber direc- 

tion, Ky. 

For a unidirectional laminate under plane stress, as shown In F1g. 

(?.7). a simple relationship for T^(*) can h> postulated. Removing an 

infinitesimal element at (V*). F1g. (?.RaK and defining the angle B 

as the difference between the fiber angle. 0,  and the assumed crack 

extension angle. t>. that 1s s 

0 - * \ (?.?D 

It Is then possible to Isolate yet another infinitesimal element. F1g. 

(2.flh). which gives the orientation of the crack extension relative to 

7—'— ' N 

</- 
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Figure  2.8  Infinitesimal  Stress  Elements At  (r„ ,#) 
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the material principal directions. Then, assuming that the strength, 

T..(<t>), is balanced by only the transverse and longitudinal strength of 

the material Yy and Xy, respectively, the relation for T (9) is 

obtained by summing forces in the 9 direction as, 

T^«>) = XTsin
23 + YTcos

2ß     (plane stress) (2.22) 

Testing Eqn. (2.22) against the three conditions, 

Isotropie material:  XT = YT = o T   T   u 

Td>6  =   °USln2ß  + V°sZf5   =  % (2"23a) 

Fracture parallel to fibers:      ß = 0° 

T      = XTsin2(0°) + Yjcos2(0°)  = Yy (2.23b) 

Fracture perpendicular to fibers:    3 = 90° 

TiX = XTsin2(90°) + YTcos2(90°)  = Xy (2.23c) 

The three conditions specified herein are satisfied.    Hence,  in princi- 

ple, the expression is acceptable.    A plot of'.Tx.  vs. 9 for plane stress 
99 

is shown in Fig,   (2.9)  for various values of 6  for T300/5208 graphite- 

epoxy,  (properties from Appendix C).    The maximums^in Fig.  (2.9) repre- 

sent the combinations of angles for which a crack grows perpendicular to 

fibers and the minimums represent crack growth parallel to fibers. 

/ 

/       / 
/ 
/ 
/ 

■J"i.1". .-^iJS3* 
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For a transverse crack extending through a laminate,  Fig.   (2.10), a 

similar relationship can be derived.    Removing the lamina at the crack 

tip and rotating it about the z' axis into material principal coordi- 

nates, Fig.  (2.11a), gives the geometry necessary to compute the 

strengths    Txx(8), Tyy(8) and T^(6) in the x', y\ and z'  directions, 

respectively..    Removing art infinitesimal  element,  oab,   from Fig. 

(2,11a), applying the normaT strengths *T, YT and T    ' in the 1', 2' and 

x*  directions, respectively, Fig.  (2.11b), and summing forces in the x'- 

direction gives the relation for T    (8) as, 

Txx(e) = YTsin28' + xjcosV (2.24a) 

Similarly,  removing element, ocd,   from Fig.   (2.11a), applying 

strengths XT, YT, and T    , Fig.  (2.11c), then summing forces in the y'- 

direction yields 

Tyy(6) = X^sin28 + Y.j.cos2e (2.24b) 

Since the z' and 3' axis in the lamina coordinate system are the same as 

in the laminate coordinate system, 

\zi
6)  = Z^ (2.24c) 

The strength, T^(*\, normal to a free edge crack extension, Fig. 

(2.12a), is found by removing an infinitesimal element, Fig. (2.12b), 

;; V. Vii - Mi£^l ^-JiJi:-oj.iXiSi&"ii3r-& 
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Figure 2.10    Free  Edge  Crack  In 
A Laminated  Composite 
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b.    o 

Figure 2.11    Local To Global  Strength  Transformations 
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applying the respective strengths and summing forces in the * direction 

which gives 

V*) = Tyysin2* + T„cos24 (2.25) 

Substituting Eqns. (2.24a), (2.24b) and (2.24c) into Eqn. (2.25) yields 

that 

i       i  ? '  '  2 '   2    ' " 2 
T (♦) = (XTs1n e +YTcos e )sin $ + ZTcos * 

(2.26) 

Testing Eqn. (2.26) against the three conditions, 

Isotropie material:      xj = YT = ZT = °u 

T*    =  (ausin2e+aucos26)sin2<(. + aucos <j> = ^ (2.27a) 

Fracture parallel to fibers:      9    = 0°,    6 « 90° 

T'    =  (Xlsin2(0°)+Y;cos2(00))sin2(90°) + zjcoS2(90°) = vj    (2.27b) 

Fracture perpendicular to fibers:      3    =90°,    6 = 90° 

T'    = (x'sin2(90°)+Y'cos2(90o))sin2(90°) + zjcos2(90°) = Xy 
§6        *   T ' 

\ 
(2.27c) 

Again, the three conditions are satisfied so, in principle, the relation 

is acceptable.    A plot of T^ vs. * for free edge)crack extension is 

U 
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i 

shown in Fig.   (2.13)  for various values of fiber orientation,    6  , for 

T300/5208 graphite-epoxy,   (properties from Appendix C).    As in the plane 

stress case, the values of 9>  (for 8    = 90°), for which T^ is a maximum 

represents crack extension perpendicular to fibers while a minimum 
f 

T,. represents crack extension parallel to fibers. The constant 

TAi for 8=0° represents matrix mode failure independent of 9. Last, 
99 

the curve for e' = 45° has minimums at T.. = YT, which represents matrix 
99   I 

i 

mode failure and the maximums never reach XT since some combination of 

fibers and matrix, thru the width, is always involved for the free edge 

cracks considered, Fig. (2.10). 

2.2.4.3 Modified Hashin Criterion 

The Hashin failure criterion [10] assumes that failure of a trans- 

versely Isotropie material will occur in a tensile fiber 

mode, a     > 0, when: 

(!ii) + J^o^-wJ) = 1 (2.28) 
XT    S12 

where X_ is the tensile failure stress in the fiber direction and S12 is 

the axial failure shear stress. The Hashin criterion also assumes 

failure to occur in a tensile matrix mode, o^  + °33 * °* when: 

-4-^22+ö33)2 + 7r(a2Va22ff33> + jr^WlJ ' l        <2'29> 
YT 23 12 

.. L^:.rf3 
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where Y_ and S„~ are the transverse tensile and shear strength of the 

material, respectively. For the case of plane stress in the 1-2 plane, 

the criterion for fiber mode tensile failure becomes: 

XT      12 
(2.30) 

and for matrix mode tensile failure: 

a      2       a      2 
(r1)   Ms11)   =1 

TT 12 
(2.31) 

where S12 is the shear strength of the material in the 1-2 plane. 

The Hashin criterion does account for distinct differences in fiber and 

matrix mode failure. However, it does not account for an arbitrary 

combination of matrix and fiber mode failure. (In the actual failure of 

composite laminates this feature is necessary since as Herakovich [7], 

for example, has shown failure can occur on a plane which is neither 

parallel to nor perpendicular to the fibers.) : 

Hashin [10] proposed that a similar criterion for the failure of 

composite materials could be developed to include the plane on which 

failure occurred, <t> , Fig. (2.14). Such a criterion would predict 
o ■ ^ 

failure when some function g(o.., 4>) satisfied the condition: 

9(0^, ♦) = 1 (2,32) 

L 
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Figure  2.14    Composite  Laminate With Modified 
Hashin Parameters 
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and that failure would occur on a plane defined by, $ , for which (2.32) 

was first satisfied under monotonically increasing load. 

The modified Hashin criterion of this study assumes that a given 

crack in a composite material will extend in the direction, <j> , in which 

the left side of Eqn. (2.32) reaches a maximum when evaluated at some 

fixed distance, rQ,  from the crack tip.  (Note:  r is subject to the 

same limitations as in Sections 2.2.3 and 2.2.4.1). 

The development of the modified Hashin criterion as used in this 

study is based on developing an expression for Eqn. (2.32). As in the 

case of the point stress criterion, it appears impossible to test such 

an expression experimentally. However, two obvious conditions should be 

met by such a criterion, they are: 

1) For a crack extending parallel to the fibers, the criteria should 

give back the Hashin criterion for tensile matrix mode failure, 

Eqn.   (2.31). 
'i 

2) For a crack extending perpendicular to' the fibers, the criteria 

should give back the Hashin criterion for tensile fiber mode fail- \ 

ure,  Eqn.   (2.30). -\ i 

Proceeding along the same line as Hashin [10],  if the failure criterion \      \ 

is taken as, ' 

o      2        o      2 \ 

<t>4> r$ vy 

where T^ and T^ are the normal and shear strengths and o  and o  are 

the normal and shear stresses, respectively, on the plane of crack I 
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extension, Fig.  (2.14), then the direction of crack extension is given 

by the value of <t> for which the left side of Eqn.   (2.33) reaches a 

maximum, provided that c + is greater than zero.    (A   aiA      less than 

zero would represent crack closure.)    For the case of plane stress of a 

unidirectional  composite laminate, Fig.   (2.7), the normal  strength. 

T    (9), was  derived in Section  2.2.4.2 and is given by F.qn.   (2.22).     If 
(jjij) 

the shear strength, T (9), is simply taken as being S12, that is 

T \  = S,0   (plane stress) (2.34) 

Then the failure criterion is complete. Testing the criteria of Eqn. 

(2.33) against the two conditions specified herein, 

(i) Fracture perpendicular to fibers:  9 = 90 + 6, equilibrium of an 

element, Fig. (2.15a) gives 

i *r-~ 

\     L 

2       2 
0iX = o    sin <J> + a    cos 9 - 2T    sm<j>cos4> 

<t>9      yy zz yi. 
(2.35a) 

2 2 
o_. = cos4>sin<|>(a    -o    )  + T     (cos 9-sin <t>) 
r* zz   yy'   yz' 

(2.35b) 

substituting 9 = 90 + 6, 

0  = 0 sin2(90+6)+o cos2(90+6)-2r sin(9049)cos(90+6) 
99  yy     '   zz yz 

2      2 
= 0 cos 6-HJ sin 6+2T sinBcose 

yy    zz     yz 
(2.35c) 

I  i- 

l-~ 

-_ I V 
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and, 

3r<> = cos(90+9)s^(90+ö)(o2ia^)+Tyz[cos2(90+9)-sin2(90+6)] 

= -sin6cos9(azz-ayy) + Tyz[sin26-cos29] (2.35d) 

but, from Fig. (2.15b); 

2      2 
all = °yycos e+azz

sin 0+2T sinecose 

2„   2„ o12 = -{-sin6cose(azz-ayy) + T [sin 6-cos 6]} 

(2.35e) 

(2.35f) 

comparing Eqns. (?.35e) and (2.35f) with (2.35c) and (2.35d), respec- 

tively, 

and 
''W  ~ °11 

a  = -o 
r$    12 

(2.35g) 

(2.35h) 

Also, for fracture perpendicular to the fibers, Eqn. (2.22) reduces to 

that of Eqn. (2.23c). Substituting Eqns. (2.23c), (2.34), (2.35g) and 

(2.35h) into Eqn. (2.33) yields, 

°11 2  °1? ? 
(2.35i) 

which is precisely t'e Hashin criterion for tensile fiber mode failure, 

Eqn.   (2.30). 
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(ii) Fracture parallel to fibers: 9 = 6 Substituting, 9 = 0. into 

Eqns. (2.35a) and (2.35b) gives that: 

and 

o.. = a   sin 6+CJCOS 6-2T    sinecose (2.36a) 
99     yy zz yz 

op4) = cos6sine(ozz cyy) + Ty2(cos26-sin26) (2.36b) 

but from Fig.  (2.15c): 

and 

2 2 
ö22 = avvsin 8 + 0zzcos 8 - 2T

vz
sin9cos8 (2.36c) 

2 2 
o1? = cos6sin6(o    -a    ) + x    (cos 6-sin 6) (2.36d) 

i.e. LL      jj j £. 

Comparing Eqns.  (2.36c) and (2.36d) with (2.36a) and (2.36b), respec- 

tively. 

and 

°W = all <2.36e) 

% - °12 <2'36f> 

Also, for fracture parallel to the fibers, Eqn.  (2.22) reduces to that 

of Eqn.  (2.23b).    Substituting Eqns.  (2.23b),  (2.34),  (2.36e) and 

(2.36f) into Eqn.   (2.33) yields, 

o      2       a      2 
<Y    >    + (c11)    = 1 (2.36g) 

TT *12 

\ 
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which is precisely the Hashin criterion for tensile matrix mode failure,        | 

Eqn. (2.31). Since the relation developed gives back the Hashin cri- 

teria for tensile fiber mode and tensile matrix mode failure it is in j 
I 

principle acceptable. i 

! 
i 
J 

2.2.4.4    Finite Element Considerations in Implementing the Modified ! 
I 

Point Stress and Hashin Criteria 1 
i 

The steps in the implementation of the modified point stress and j 
> 
i 

Hashin criteria are similar to those in implementing the Sih and Tsai-Wu i 

criteria.    Briefly: I 

(i) Determine the elements containing the crack tip node.    This gives j 

the possible directions of crack extension. \ 

(ii) Find the minimum element side length.    This gives r . I 
o i 

(iii) Compute the stresses along the element sides, which define the 

possible directions of crack extension, at r . 
o 

(iv) Use Eqn. (2.20) for the point stress criterion or Eqn. (2.33) for 

the Hashin criterion and assume crack extension in the direction 

which makes (2.20), for point stress, or (2.33), for the Hashin 

criterion, a maximum. 



Chapter 3 

RESULTS 

3.1 Isotropie Cases 

3.1.1 Mode-I Crack in an Infinite Plate 

The classical problem of a mode-I crack in an infinite plate, Fig. 

(1.2a), was run as a test of the energy release rate formulation. 

Results for two different finite element meshes, one being much finer 

than the other, were generated for comparison. The computed energy 

release rates were converted to stress intensity factors for ease of 

comparison with theory. 

The boundary condition for the fine mesh, a 306 element x 338 node 

mesh, Fig. (D.l) considered a full crack model assumed specified dis- 

placement loading. Referring to Fig. (3.1a), the boundary conditions 

were: 

at y = 0: v(y = 0,z) = »6 

at y = L: v(y = L,z) = 6 

at z = 0,2B: traction free 

(3.1a) 

(3.1b) 

(3.1c) 

The input parameters; a, 6, L, B, A and ft were taken as, 

\ 

a = 0.5", Aa = 0.2a, L = 40a, B = 10a 

A = L/2, 6 = .002a, 3 = 90° 

52 

(3.2) 
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Figure 3.1    Finite Element Crack Models 
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The problem was treated as a case of plane strain, constitutive equation 

given by Eqn. (B.18), with material properties listed in Appendix C. 

The crack was assumed to be a virtual crack, i.e., having a width equal 

to zero. 

The coarse mesh, a 68 element x 82 node mesh, Fig. (D.2), assumed 

symmetry about the midplane and also used specified displacement load- 

ing. Referring to Fig. (3.1b), the boundary conditions were: 

at y = 0 

at y = L 

at z = 0 

at z = B 

v(y = 0,z) = -6 

v(y = L,z) = 6 

Traction free 

w(y, z = B) = 0 

(3.3a) 

(3.3b) 

(3.3d) 

(3.3d) 

The input parameters were taken the same as for the fine mesh, Eqn. 

(3.2). 

The theoretical stress intensity factor, Kj, for a mode-I crack In 

an infinite plate, Fig. (3.1), is given by [17] as, 

K. = ö(ira) 
1/2 (3.4) 

and the relation between the mode-I  stress intensity factor, Kj, and the 

mode-I energy release rate, Gj, for plane strain is given by [17] as, 

"« - &,/2 
(3.5) 

4' 
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where E is Young's modulus and v is Possion's ratio. Since the theore- 

tical stress intensity factor, Eqn. (3.4), is computed using the remote 

stress, ö, the applied displacement, 6, must be converted to an equiva- 

lent stress. From Eqn. (B.18) this relation is given by 

Ee 
5 = 6 

where 

yy 

yy 

l-v 

26 

(3.6) 

(3.7) 

i \ 

The finite element results for the two meshes considered are pre- 

sented in Table (3.1). The stresses, a, were computed using Eqns. (3.6) 

and (3.7). The comparisons of the predicted stress intensity factors 

with the theoretical stress intensity factors is shown in Table (3.2). 

The results indicated pure mode-I crack extension, i.e., -6 = 0° in 
o 

Fig. (3.1a), as expected. Note that theoretical values for two differ- 

ent initial crack lengths, a, are shown. The first crack length repre- 

sents the actual, initial, crack length and the second represents the 

actual, initial, crack length plus the crack extension. The two crack 

lengths were considered to demonstrate the error incurred in using a 

finite crack extension. That is, the theoretical energy release rate, 

Eqn. (2.1), is based on an infinitesimal crack extension, i.e., limit 

Aa + 0, whereas the finite element model introduces a finite crack 

extension, Aa. The results of Table (3.2) indicated that the fine mesh 

i 
gave better results than the coarse mesh and that using the crack length 
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plus the extension in the theoretical stress intensity factor compared 

better with the finite element results. 

3.1.2 Mixed Mode Fracture of an Infinite Isotropie Plate 

The problem of a mixed mode crack in an infinite isotropic plate, 

Fig. (1.2b), was run as a test of the crack growth direction. Results 

were compared with the results predicted by the Sih strain energy 

density theory [2]. The mesh used consisted of 306 elements and 338 

nodes, Fig. (E.l). 

The boundary conditions used were identical to those of the fine 

mesh for the mode-I crack in an infinite plate, i.e., Eqns. (3.1a), 

(3.1b) and (3.1c). Referring to Fig. (3.1a), the input parameters; 

a, 6, L, B, and A were taken as, 

a =-ftfe~» L = 40a* B = 10a 

6 = 0.001", A = L/2 , (3.8) 

while the crack inclination angle, ß, was varied from 30 to 90 degrees. 

While simple relations for the mode-I stress intensity factor, KT, 

and the mode-II stress intensity factor, KJJ, exist for the mixed mode 

problem of Fig. (1.2b), reference [17] points out ihat there is no known 

relation between the energy release rates and stress intensity factors 
i 

for such a problem.    Hence,  discussion of the results for the mixed-mode 

crack problem of Fig.  (1.2b) will  be limited to the crack extension 

direction. 
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The theoretical crack extension direction, 9  was computed from 

the Sih strain energy density theory [18], by solving for 8Q from Eqn. 

(3.9), below: 

2(l-v)sin{6o-23) - {2sin[2(9ü-3)]} - sin2eQ = 0 (3.9) 

Finite element results were generated for various crack inclination 

angles, B, through the use of the modified Griffith criterion, Section 

2.2.1, the Sih strain energy density theory, Section 2.2.2, and the 

modified point stress and Hashin criterion, Section 2.2.4. A plot of 

the theoretical and finite element crack extension direction, 6 , as a 

function of the crack inclination angle, e, is shown in Fig. (3.2). 

The results for the modified Griffith criterion were generated by 

evaluating the value of the crack closure integral, through the use of 

Eqn. (2.4), for all possible paths of crack extension present, e.g., see 

Fig. (2.4), and assuming that crack extension would occur .in the direc- 

tion of a maximum energy release rate. The results consistently predic- 

ted crack extension in a direction in which the mode-I energy release 

rate, Gj(a), made up 99% or more of the total energy release rate. 

The results for the Sih strain energy density criterion were evalu- 

ated using Eqns. (2.13) and (2.17). The strain energy density factor 

was considered as the sum of two components [18], one due to a change in 

volume, S , and one due to a change in shape, Sd, 

S = S + S . (3.10) 
v   d 
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The results always predicted crack extension in a direction in 

which S > > S.. This conforms with the concept [18] that fracture 
v    d 

occurs along a plane where S > S .. 

The modified point stress cases were evaluated using Eqns. (2.20) 

and (2.22) with 

|V 

XT = YT = o 
T        T        u 

(3.11) 

The crack was assumed to extend in the direction for which, R(4>), Eqn. 

(2.20) was a maximum. 

The results for the modified Hashin criterion were generated 

through the use of Eqn.   (2.33), with 

= T A = ° r<(>       u 
(3.12) 

!       ! 

Crack extension was assumed to occur in the direction which maximized 

the left hand side of Eqn. (2.33). 

All of the tested theories gave identical results, as indicated in 

Fig. (3.2). The small differences between the theoretical and finite 

element predicted values was attributed to there being only a finite 

number of crack extension paths available in the finite element model 

compared to an infinite number in the analytical Sih theory. However, 

the finite element model always predicted crack extension along the 

closest available crack extension path to that of the theoretical crack 

extension direction. 

i   -i 

~X:- ./;- \ . 

"C 

rV" 

\ 
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3.2 Off-Axis, unidirectional Composite Tension Specimens. 

A tension test of a unidirectional coupon with a small crack pre- 

sent, Fig. (1.3a), was simulated as a test of the crack extension direc- 

tion. The mesh used consisted of 306 elements and 338 node points, Fig. 

(D.l). Referring to Fig. (3.1a) and (2.7), the boundary conditions were 

chosen to simulate the grips of a tension test machine and are given by: 

at y = 0: v(y = 0,z) = -6, w(y = 0,z) = 0 

at y = 2L: v(y = L,z) = 6, w(y = L,z) = 0 

at z = 0.2B: traction free 

(3.13a) 

(3.13b) 

(3.13c) i^..:: 

The dimensions were chosen to be similar to a typical tensile coupon, 

(Reference [19] suggests L > 30B be used.), and were taken as, 

B = 0.25" 

L/2B = 15 

The applied displaccent load was chosen to be, 

(3.14a) 

(3.14b) IE: 

6  ; 0.001"   = 3^5"{1n) (3.14c) 
i   1 

5- 

The initial  half-crack length was chosen as, 

0.005 in 
a = TTnß 

(3.14d) 

rr.v- 

/ 
^L- -\ 

iji—— 
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and the other parameters, the fiber direction, 6, the crack inclination 

angle, 3, and the crack position, A, were varied to simulate various 

conditions.    The problem was treated as being a case of orthotropic 

plane stress with the constitutive relation being that of Eqn.  (B.13). 

The material  system chosen was T300/5208 graphite-epoxy, properties 

listed in Appendix C.    The crack was assumed to be a virtual crack, 

i.e., having zero initial width. 

3.2.1    Comparison of the Crack-Fxtension Direction Theories for a 30° 

Lamina 

The theories for predicting the crack extension direction, i.e., 

the modified Griffith theory, Section  (2.2.1), the Sih strain energy 

density theory, Section (2.2.2), the Tsai-Wu theory, Section (2.2.3), 

the modified point stress theory, Section  (2.2.4), and the modified 

Hashin theory, Section  (2.2.4), were compared against the expected crack 

extension path for a 30°, off-axis, unidirectional tensile specimen with 

a crack orientated along the z axis, i.e., ß = 90° in Fig.  (3.1a). 

The predicted crack extension path for the modified Griffith theory 

is shown in Fig.   (3.3a), the Sih strain energy density criterion in Fig. 

(3.3b), the Tsai-Wu theory in Fig.  (3.3c), the modified point stress 

theory in Fig.  (3.3d) and the modified Hashin theory in Fig.  (3.3e). 

The experimentally observed direction is shown in Fig.  (3.3f).    Experi- 

mental  results for graphite-epoxy [6, 7 and 8], Boron-aluminum [20], and 

graphite polyimide [21], unidirectional composites all  indicated that 

failure of unnotched specimens and fracture of notched specimens 

\ 1 •    -\ 

. \ ''S  \---- 



F,r.(V.%'; 

64 
0F poORQ1-5^"^ 

3 

I 
« 
05 

co 
c 
© 

> 
O) 

(D 
C 
m 
c 
CO 

CO 

\ 

o 
•o 
© 

"Ö 
o 
5 

CM 
C? 
CN Ä 

00 o 
o 

r» CO « 
CO < \* 

t- 

© o 
** LL 
c 
© 05 

F c 
o 

t_ •M» 

© © 
a c 
X © 

UJ X 

•»" UJ 

o 
© 

c 
Ü 

£ 
C4 
© 

© 

X c 
© © 

"O E *>» 
© © 

«•— 
© 

C 

■o a b 
o X © 
2 UJ _i 

• •o ^J* 
© c © 

< c 
o 

"O ♦* 
© u 
o © 

© 
iJJt 

© "O TJ 
© © 

c 
** a. 3 
CO 
*< CO c •— CO o 
0. © 

XJ 3 
© cn 
-j •w 

M» LL 
•a 
o 

N 
\ 

/ 
/ 

X 
-,' V 

~cjr.- u'—V-.=>- 

\" 

i.„,j„ii - 

X - - V-. 



65 

occurred along planes parallel to the fibers. Fig. (3.3a) thru (3.3e) 

indicate that the modified point stress and the modified Hashin theories 

were the only theories that predicted the correct crack extension path. 

The reason that the modified Griffith, the strain energy density 

and the Tsai-Wu theories predicted incorrect crack extension paths was 

because none of these theories account for the differences in the energy 

required to create crack extension surfaces at arbitrary angles to the 

fibers. 

Since the modified point stress and Hashin criteria were the only 

criteria to yield accurate results, further case studies were limited to 

these two criteria. 

3.3.2 Variation of the Modified Point Stress and Hashin Functions for a 

30° Lamina. 

The modified point stress function, R(r ,$), was given by Eqn. 

(2.20) as 

R<V*)=^ (3.15) 

where %«(, was taken as the normal stress and T   defined by Eqn. 

(2.22), the strength normal to a plane of possible crack extension. The 

modified Hashin function can be defined as H(r ,$), where from Eqn. 

(2.33), 

H(r0,*) - £*±) + (W (3.16) 
T4>*    Tr$ 

y 
x ■■ 

>S\... 
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where a     was the shear stress and T  the shear strength, Eqn. (2.34), 
r<J> * 

on the plane of possible crack extension. 

Finite element predictions of R(ro,0 and H(ro»*) were computed as 

a function of «t» for three different values of rQ  for the 30° lamina of 

Section 3.2.1. (The finite element mesh, the boundary conditions and 

the crack geometry were identical to those of the problem considered in 

Section 3.2.1). The values for the R(ro»*) function were normalized to 

their maximum values and plotted in Fig. (3.4) for three different 

normalized values of r . The rQ  values were normalized with respect to 

rmax where rmax was the limiting value of r for the finite element 
o '      o ° 

mesh used, (e.g., see Section 2.2.4.4). The values for the H(rQ,*) 

function of the modified Hashin theory were also normalized to their 

maximum value and were plotted in Fig. (3.5) for the same three norma- 

lized r values, 
o 

The results of Fig. (3.4) and (3.5) achieve maximum values at 4> = 

210° for all of the various rQ/r™X values. Since the criteria both 

assume crack extension in the direction where R(ro><t>) or H(rQ,<fr) reach a 

maximum, both criteria choose the expected value of 4» = 210°, (e.g., see 

Section 3.2.1). Figure (3.4) and (3.5) also indicate that the trends 

remain unchanged though the values differ slightly for the three rQ/r0 

values. This indicates that the prediction of the crack extension 

direction is fairly insensitive to the value chosen for rQ. Note that 

in the case of the modified point stress theory, Fig. (3.4), the maximum 

value of R/Rmax increased with increasing distance from the crack tip. 

This trend was just the opposite of what was expected since the stresses 

max 
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are actually singular at the crack tip, i.e., at rQ = 0. The reason for 

this discrepency is that as r^r™* approaches unity, the stresses are 

computed nearer the element corners which introduces numerical errors in 

the stress computation. This stands as a good example of why such 

criteria are  limited to the prediction of crack extension direction and 

not the load which would cause crack extension. The values for the 

normalized modified point stress ratio, Fig. (3.4) and the normalized 

modified Kashin ratio, Fig. (3.5), for 0° < * < = 180° were not shown 

because of numerical difficulties in the computation of the stresses in 

this regime. However, the modified point stress results seemed to 

indicate a slight increase in R(rQ,*) for 0° < * < 30° and some negative 

values between + = 30° and 4* = 180°. Similarly for the modified Hashin 

ratio, Fig. (3.5), the values for0° < * < 180° seemed to indicate slight 

increases in H^,*) around * = 30° and <j> = 120° with some negative 

values for o^  between * = 30° and ♦ = 180°. Comparison of the modified 

point stress ratio, R(ro,*), Eqn. (3.15), and the modified Hashin 

ratio, H(r ,♦), Eqn. (3.16), reveal that   '• 

"(V*) = CR(r0,*)]
2 + (J*)2 (3.17) 

Hence, the differences in Fig.  (3.4) and (3.5) represent the effects of 

squaring the point stress ratio, R(ro,*), plus the War effect of 

including the square of the shear ratio, o    n 
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3.2.3   Crack Extension in Unidirectional Laminates 

The modified point stress and the modified Hashin criteria were 

used to predict the crack extension direction and the modified crack 

closure technique was used to predict the energy release rate for 

several  different unidirectional  laminates.    The reason the study of 

crack extension in unidirectional  laminates was limited to the modified 

point stress and Hashin criteria was because they were the only criteria 

which accounted for differences in the eneray required to create new 

fracture surfaces at arbitrary angles to the material principal  systera- 

as demonstrated for a 30° lamina in section 3.2.1.    The mesh, boundary 

conditions and material system were identical to those explained at the 

beginning of section 3.2.    A virtual crack,  i.e., one having zero Ini- 

tial width, was assumed.    The orientation of the crack was assumed to 

be ß = 90° and A = L/2, Fig.  (3.1a). 

The results are shown in Table (3.3) where 8 is the material prin- 

ciple coordinate system orientation, ^ the orientation of the plane of 

crack extension, G is the total energy release rate, Eqn.   (2.4), and the 

% mode-I and % mode-II values represent the mode-I and mode-II contri- 

butions to the total energy release rate, G.    The expected crack exten- 

sion directions were based on experimental  results for graphite-epoxy 

[6, 7], Boron-aluminum [20], and graphite polyimide [21] composites. 

The results of these experiments all  indicated that failure of unnotched 

specimens and fracture of notched specimens occurred along planes par- 

allel to the fibers and that $Q was always greater than 180° except in 

the case of 6 = 0°, where extension could occur in either a    <J>    =0° 
o 



ORIGüMAL PAGE IS 
OF POOR QUALITY 

71 

(A 
C 
o 

u f 

1—4 

1 Ol CO CO r^ CM o 
ID 

T3 en o en CM CO o 
O CT> en CO CM 
E 

3« 

t—« 

CU o o «d- ro CO o 

O 
B 

•~; «d- 
o r^~ ro o 

o CT> CO I-- CTi o 
l"~ 

*s 

CO in CM m LO o CM 
ri (N ro LO CO LO LO LO 

c CO r— o o o o , •r- o o o o o o 
C 

•r- o o o o o o 
* ^ 
ts 

"O              to 
<u  C        CU o 

u- x:   os- 
co 

o o LO o o 
•r-  CO -e- en 1— co «3- CO CTI 
X}  <o       o •* 
o a:      -o o 
E            —- 

LO 
CO 

-a ai     »~- 
CD   S-         CO 
•r-  +J           01 o 
4- co      ai 00 
•r-             OS- ,__ o o LO o o 
-o +->•©• en 1— co «d- CO CTl 
o c       <u •* 
E -r-      "a o 

o     -— 
Q. 

co     <0    r—i 
CD      +->      r— 
CO       C      CM o 
j_    cu      « 
en   E   o 

CO o o LO o o 
0)      •!—      CM ro ■* CO en 

T3      S- * 
—    cu    r>» o 

o.   -» 
O   X     CO 

-e-   tu   i—i 

CO 
a> 
CD 

CD      4- o o O LO o o 
cn f— n «* CO en 
cu 
-a 

}/ 



72 

or *o=- 180° direction. The results of Table (3.3) indicate that both 

the modified point stress and Hashin criteria choose the correct path of 

crack extension in all of the cases considered. The fact that both 

criteria also choose dual values of $ = 0°, 180° for the 0=0° speci- 

mens was also promising since this is what would be expected. While no 

direct comparison of the computed energy release rates could be made, 

the computed values were similar to and in the same range as experimen- 

tal values obtained by Wang and Crossman [6] for double side notched 

graphite-epoxy specimens. The % mode-I and the % mode-II values were 

also compared with the results of Wang and Crossman [6] and were found 

to exhibit the same trends and range of results. 

3.2.4 Effects of Crack Orientation on the Fracture Characteristics of 

Unidirectional Laminates 

The finite element model was used to predict the fracture charac- 

teristics of a 30°, unidirectional laminate. The cases considered were: 
l 
I 
j 

1. Influence of crack position, referring to Fig. (3.1a), a crack near 

the grip of the tensile machine was simulated by specifying 

that £ = 0.1 with ß = 90°. 
L \ 

2. Influence of specimen aspect ratio, referring tp  Fig. (3.1a), a 

short specimen was modeled having length L/2B = 2 with ß = 90°. 

3. Influence of crack orientation, referring to Fig!. (3.1a), specimens 

with ß = 30°, ß = 50°, and ß = 90° were considered. 

/' 

./■...  -'■ \/l ^-V 
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All of the cases assumed that a virtual crack existed and used the same 

mesh, boundary conditions, loading, material and geometry, unless stated 

otherwise above, as described at the beginning of section 3.2. 

The results of case 1, Table (3.4), indicated that the crack direc- 

tion for the crack near the grip, A/l. = 0.1, extended in the same direc- 

tion, <J> , as did the center cracked specimen, A/L = 0.5, while the 
o 

energy release rates, G, and the % mode-I and % mode-II contributions to 

the total energy release rate differed by 10-20%. 

The case 2 results, Table (3.5), indicated that the crack extension 

direction, $  , was insensitive to the specimen aspect ratio and that the 

resulting energy release rates differed by about 20%. However, the type 

of fracture that occurred was the opposite for the two cases. That is, 

the long specimen, L/2B = 15, fractured in a mainly mode-I fashion while 

the short specimen, L/2B = 2, fractured in a mainly mode-II fashion. 

This trend is not surprising since Nemeth, et al. [19] have shown that a 

completely different stress state exists in short specimens, i.e., L/2B 

= 5, as compared to long specimens, i.e., L/2B = 15. 

The results of case 3, Table (3.6) predicted the same crack exten- 

sion directions, <t> ,  and similar energy release rates and fracture modes 

for the three crack inclination angles, ß, considered. These results 

are consistent with the experimental results of [6], [7], [20], and [21] 

which indicate tha. fracture of unidirectional laminates always occurs 

on planes parallel to the fibers. 
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3.3 Free Edge Crack Growth in Laminated Composite Tensile Specimens 

Cracks located at the free edge of laminated tension specimens, 

Fig. (2.10), were considered. The crack extension paths and the result- 

ing energy release rate vs. crack length curves were considered. 

The solution procedure consisted of obtaining a generalized plane 

strain solution of the front face, i.e., the y-z plane, under an applied 

load of exx then, using the results of the front face solution as 

applied loads, obtain a fracture mechanics solution to the free edge, 

i.e., the y'-z' plane, via subsequent generalized plane strain solu- 

tions. (The generalized plane strain formulation is described in Appen- 

dix A.) 

The generalized plane strain solution of the front face was 

obtained using a 132 element by 150 node finite element mesh, Fig. 

(0.3). Referring to Fig. (2.10) and Eqn. (A.4), the boundary conditions 

and geometry used were: 

\ 

X_: 

x y 

B = 0.25",    H = 0.02",    e      = 0.001 
xx 

at y = 0, U(y = 0,z) = V(y = 0,z)  = 0 

at y = B, traction free t 

at z = 0, W(y,z = 0)  = 0 

at z = H, traction free 

where quarter symmetry was assumed. 
A 

(3.18a) 

(3.18b) 

(3.18c) 

(3.18d) 

(3.18e) 

Since the generalized plane strain solution assumes stresses and 

strains to be independent of the out of plane coordinate, the study of 

P\ 

~:J>- 

\*f- 

V \  ,. :V—~^<:*~ "HZ- .- / 
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the free edge crack growth problem can be modeled exactly only when 

there is no variation of these quantities in both the x and x* direc- 

tions.    Since the x-direction is the out of plane direction, Fig. 

(3.6a),  for the front face problem and the x'-direction is the out of 

plane direction, Fig.  (3.6b),  for the free edge problem, the study is 

limited to cases which exhibit x and x' independence.    The only lami- 

nates which exhibit this quality are unidirectional  laminates because of 

the absence of edge effects.    However, if the thru the thickness varia- 

bles of the free edge problem, Fig.  (3.6b), are assumed constant and 

equal to the values at the free edge of the front face problem, I.e., at 

y = B in Fig.  (3.6a), then the corresponding free edge boundary condi- 

tions become Fig.  (2.10),  (3.6a),  (3.6b), 

\ 

at y' = 0, W'(y' = 0,z') = W(y = B,z) (3.19a) 

V'(y' = 0,z') = -[U(y = B,z) + exx-(x = C)]    (3.19b) 

at y' - b, W'(y' = 2C,z') = W(y = B.z) 

V(y* = 2C,z') = -[U(y = B,z) + c^-{x  = -C)] 

where 2C is the free edge modeled length. 

at z' = 0, W'fy'.z' = 0) = 0 

at z' = H,    traction free 

(3.19c) 

(3.19d) 

(3.19e) 

(3.19f) 

W •-■"k - r ...——-3-—*^ *rjnzT_ s,"" \ ±r~-\-   I 
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with: 

and: 

U'(y'.z') » 0 (3.l9g) 

exx = exi(z') ' 4V(y = B»z) (3.19h) 

V = ^ - 90° '(3.191) 

Several laminate configurations were considered as candidates for the 

analysis of free edge crack growth. Tests were preformed to find which 

laminate configurations could best be modeled as generalized plane 

strain problems on both the front face and the free edge. The tests 

consisted of first obtaining the front face solution then applying the 

corresponding boundary conditions, Eqns. (3,19a-i), to an uncracked free 

edge model. The results of the tests were analyzed to determine which 

laminates gave the best correspondence between the stresses and strains 

at the free edge as well as approximated independence of the displace- 

ments in the x and x' directions, Fig. (2.1C), for the front face and 

free edge problems. The results indicated that both angle-ply and 

cross-ply laminate configurations gave a reasonable correspondence of 

free edge stresses and strains. However, only the cross-ply config- 

urations approximated independence of both x and x', Fig. (2.10), under 

the applied load. Hence, the analysis of free edge crack growth in this 

study was limited to cross-ply laminates. 
i 
i 

Experimental results [6, 22] indicate that laminates which contain 

90° plys along with other plys where 6 f  90° can exhibit transverse 
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crack growth in the 90° plys and delatninations between the 90° and e ^ 

90° plys.    As an example of the quasi-three dimensional capabilities of 

the finite element model  the nature of crack growth in a  [902/0<,3s, 

T300/5208, graphite-epoxy tensile specimen was considered.    Referring to 

Fig.  (3.7), both transverse crack growth and delamination crack growth j 
j 

were considered and the results of the two analysis were compared. The j 

method of analysis consisted of testing two cases. Case 1 was to trace j 

the crack growth of an initial transverse crack and case 2 was to trace j 

the crack growth of an initial delamination. Both cases used the boun- 

dary conditions of Eqns. (3.19a-c). The transverse crack case used the 

crack geometry of Fig. (3.1b) and the delamination case used the crack 

geometry of Fig. (3.8). Both cases were modeled as the free edge of an 

8-ply tensile specimen with 

B = 0.25in, H = O.Olin, C = 2H, a = 0.77H      (3.20) 

and an applied normal strain of, Fig. (2.10), 

exx - 0.001 (3.21) 

The modified point stress criterion, Section 2.2.4.1, was used to pre- 

dict the direction of crack extension and the modified crack closure 

method was used to compute the energy release rates. 

The resulting crack growth sequence for the initial transverse 

crack, case 1, is presented in Fig. (3.9). The case 1 results indicated 

-•^^.Liiijuil 
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that the transverse crack extended through the 90° plys down to the 0° 

plys when it turned into a delamination. Note that this does not neces- 

sarily indicate that a transverse crack will turn into a delamination 

but just that, if the transverse crack was the only crack present and if 

it was to continue to extend that it would extend as a delamination 

before extending through the 6=0° plys. The plot of the corresponding 

energy release rate vs. crack length is shown in Fig. (3.10). Point A 

represents the initial crack length and point B represents the point at. 

which the transverse crack turned into a delamination. The critical 

energy release rate for such a crack, is given by Wang and Crossman [6] 

for a mode-I transverse crack in graphite-epoxy as 

•ic ■ ••»!¥r in 
(3.22) 

Since the available energy release rate curve, fig. (3.10), was less 

than 0.6 in,I  for the entire crack extension sequence, the crack would 
in 

not have extended at the applied load level of e  = 0.001. However, if 

the load were increased the G vs. a curve would have translatea up, 

retaining the exact same shape,[6], C-D in Fig. (3.10) for example, and 

would have predicted crack growth until the crack length was such that 

the available energy release fell below the critical energy release 

rate. Regardless of applied load, however, the shape of the G vs. a 

curve, Fig. (3.10), indicates that G is decreasing with increasing a. 

Hence, there exists a certain range of e  values for which the trans- 
xx 

verse crack would grow then arrest when G falls below Gc. This trend is 

!\ 
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supported by many experimental results of [6, 22], for example, which \ 

show that transverse cracks will grow through the 90° plys, arrest and { 
.      i 

form other transverse cracks at regular spacings. \ 

The results for the initial delamination crack, case 2, indicated f 

that the initial delamination would immediately turn into a transverse ; 

mode. In comparing the point stress ratios of the initial delamination 

crack with the initial transverse crack at the point it turned into a ; 

delamination, it was f;und that the point stress retio was roughly two ; 

times larger for the delamination turning into a transverse crack than 

for the transverse crack turning into a delamination. This indicates 

that if both a delamination and a transverse crack were present in a 

given specimen, the delamination would turn and grow into a transverse ^ 

crack before the initial transverse crack would extend,, Th^s trend is 

supported by the experimental results of Harris and Orringer [22], which 

indicate that transverse cracks can branch off from delaminations. 



Chapter 4 

CONCLUSIONS 

The present investigation has been concerned with predicting the 

direction of crack extension as well as the load to cause extension in 

composite materials. The results of the present study indicate that 

failure criteria can be used to predict the direction of crack extension 

and that an energy release rate approach, implemented through the use of 

a modified crack closure integral, can be used to determine when a crack 

extends and if crack arrest will occur. The finite element models 

presented herein were formulated for two-dimensional and quasi three- 

dimensional analysis. However, the procedures and methods developed can 

be applied to full three-dimensional analyses as well. 

It was found that criteria for predicting the direction of crack 

extension should account for differences in the energy required to 

create crack surfaces at arbitrary angles to the material principal 

system. The Griffith criterion, the Tsai-Wu failure criterion and the 

Sih strain energy density theory all were unsatisfactory in this regard; 

but the modified point stress and Hashin criteria provided good predic- 

tions for crack growth direction. It was also found that since the 

procedure developed herein assumes that crack extension will occur along 

the element sides adjacent to the crack tip node, an incorrect direction 

of extension can be chosen if no element sides coincide with the actual 

direction of extension. However, the model always chooses the closest 

direction available to the actual direction of extension. This problem 
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can easily be overcome by first finding an approximate direction of 

extension using a coarse mesh then refining tho mesh in the area of the 

direction chosen by the coarse mesh. 

The present investigation has also shown that future research is 

warranted in the following areas: 

1. The extension of the current work into a full three-dimensional | 
I 

model. A full three-dimensional model should be formulated to ! 
I 

account for the three-dimensional crack growth characteristics of i 
> 

many laminates. | 

2. Experimental work in the area of critical e- vgy release rates. f 
! 

Experimental work should be performed to determine the effect on the        j 
i 

critical energy release rate of cracks extending at arbitrary angles        I 
' 

to the material principal system so that the load to cause failure | 
i 

can be accurately defined. j 
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APPENDIX A 

Linear Elastic Finite Element Relationships 

The finite element used is shown in Fig. (A.l). The element is a 

four node, general quadralateral, isoparametric element. The element 

uses linear interpolation as described by Segerlind [23], The details 

of the finite element concept are also given in reference [23]. The 

technique involves mapping a distorted shape in the Cartesian (y,z) 

Coordinate System into a square in the Local (£,n) Coordinate System 

where £ and n range from -1 to +1. The relationship between the global 

Cartesian and the local coordinates is 

Y = N1Y1 + N2Y2 + N3Y3 + N4Y4 = N^   i = 1,4 

Z = NjZx + N2Z2 + N3Z3 + N4Z4 = N^   i = 1,4 (A.l) 

where the N.(5, n) are the interpolation functions for the four node 

points and Yi?Z; are the Cartesian coordinates of the nodes. The inter- 

polation functions are given by       i 

Nj -{(l-O(l-n).   N2 ={(l+0(l-nj 

N3 ={(lH)(l+n),   N4 =£(l-OU+n) ' (A.2) 

A 

For an isoparametric element, the same interpolation functions are used 
i 

for the assumed displacements as for the geometry. Hence, for plane 
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Figure A.1    Global And  Local Coordinate System 
4 Node , Isoparametric Element' 
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stress or plane strain, whe-e there exists two unknown degrees of free- 

dom per node, the interpolation becomes 

v(y,z) = KlVi        i  = 1,4 

w(y,z) = NiWi        i  = 1,4 (A.3) 

For generalized plane strain, where there are three degrees of freedom 

per node, the interpolation is jiven by 

"(x.y.z)  - U(y,z)  + exx.x - N,u,  + yx        i  - 1,4 

v(x,y,z) = V(y,z) - NlVl i = M 

w(x,y,z) = W(y,z) = N^. 1  , M 

(A.4) 

where u, v and w are the x, y and z displacements, respectively, u-, v 

and W1 are the unknown values at the 1th node and are functions of y and 

z only, and e^ is the total strain in the x direction, which is assumed 

to be constant and either known or unknown. 

The strain-displacement relationships are derived based on the 

small strain - small displacement theory. For the three dimensional 

(generalized plane strain) case, these relationships may be written as 



96 

-if 

\ 

ORSG^AL PASS IS 
OF POOR QUALITY 

xx 

yy 

zz 

yz 

xz 

xy 

3 n 
ax 

n 3 

ay 
0 0 

0 
3 
3Z 

3 n 
3z 
3 3 
3y 3x 

0 

0 

3 
37 
3_ 
ay 
3_ 
3x 

0 

L_ 

(A.5) 

And for plane strain or plane stress these relationships become 

*~3 
e 
yy 3y U 

3 f **% 
e 

ZZ >•     — U 

3 
3z 
3 • 

V 

w w 3z ay 

Substituting (A.4) into (A.5),  for generalized plane strain, 

r        ^ 
e 

XX 

e 
yy 

e 
ZZ - 

Y = 
yz 
\z 

Y xy 
v         J 

o 

"3X 
0 0 

0 3 

^y 
0 

3 
0 0 37 

3 a o 
3z ay 

3 a 
■ST 

0 Tx" 
3 3 o 
3y 3X 

f • 

ClN1|IN2|IN3!lN4l{q} 

'"'■■\ 

where 

I is the 3 x 3 identity matrix 

{q} is the 12 x 1. vector of nodal  displacements 

given by 

xx 

0 

0 

0 

0 

0 

(A.6) 

(A.7) 

|/ 
*s 
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(A.8) 

Substituting (A.3) into (A.6), for plane stress or plane strain, 

where 

yy 

zz 

yz 

3T     o 
3y 

o 
3 

■57 

3_ 
3Z 
3 

3y 

ClN1|IN2|IN3|IN4]{q} (A.9) 

J 
T is the 2 x 2 identity matrix 

{q} 1s the 8 x 1 vector of nodal  displacements given by 
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{q}    - 

vl 

wl 

v2 

w2 

v3 

w3 

v4 

Lw4 

(A.10) 

The [B] matrix (strain-displacement relationships) for generalized plane 

strain can be defined as 

{*} = [B]{q; 

(6x1)  (6xl2)(12xl) 

XX 

0 

0 

0 

0 

L°J 

(A.ll) 

where by comparing (A.ll) and (A.7), for generalized plane strain, 



[B] = 

3 
"37 0 0 

0 3 

*7 0 

0 0 3 

0 3 
"57 

3 

3 
"57 0 3 

?X 
3 3 0 
3y 3x 
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[IN1|IN2|IN3!IN4] (A.12) 

For plane strain or plane stress, the [B] matrix can be writtei. as 

W = [B]{q}. 

(3x1)   (3x8)(8x1) 

(A.13) 

Comparing (A.13) and (A.9), for plane stress or plane strain, 

[B] = 

•3_ 
3y 

0 

J3_ 
3z 

0 

3 
37 
d 
W. 

[IN1|IN2|IN3|IN4] (A.14) 

Recall from (A.2) that the ^ are functions of the local coordinates 

C and n. In order to determine the elements of the [B] matrix a rela- 

tionship between the derivatives in the global (y,z) and the local 

(S, n) coordinate systems is needed. This relationship is given by the 

Jacobian matrix [J] of the transformation where; 
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3N. '3N/ 

^y 

• = [J]-1    ■ 

35 

3N. 

71. 
3N. 

•51       -3T 

[j] = 

3y 
_3n 

3z 
an 

OF POOR QUALITY 

(i  = 1,  2,  3, 4) (A.ISaj 

(A.15b) 

Substituting  (A.l) into  (A.15) 

CJ] = 

3Nj 8N2 
35 

3N3 

35 

8N
4" 

35 *2 

zl 

z2 

3N1 3N2 3N3 3N/1 
■3n~ "31T 3n~ 3n *3 

y4 

z3 

z4 

(A.16) 

The stress-strain relationships are derived in Appendix B. For 

general purposes they can be written as 

{a)  =  [D]{c} (A.17) 

For generalized plane strain, {a} and {t} are 6x1 vectors, and are 

given in Appendix B by Eqns.  (B.9) and (B.10), respectively. 

For generalized plane strain, the [D] matrix takes on the values of 

the [C] matrix as given by Eqn.  (B.8).    For plane stress or plane 
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strain {a} and {t} are the 3 x 1 vectors given by Eqns. (B.14) and 

(B.15), respectively. For orthotropic plane stress the [D'J matrix takes 

on the value of the 3 x 3 [Q] matrix of Eqn. (B.13), while for Isotropie 

plane strain the [D] matrix becomes the 3 x 3 [C] matrix of Eqn. (B.18). 

The total potential energy, *, of a given finite element is the sum 

of the strain energy, U, and the work of external loads, W. The strain 

energy, U, of the element is 

U « ± / |a}{e}Td V (A.18) 

and the work of external  loads, W,  is 

■lq){F] (A.19) 

where {Fj 1s applied mechanical load, (traction), vector. 

Hence, the total potential energy of the element is given by 

n = U + W (A.20) 

Substitution into (A.20) in terms of the matricies and vectors described 

herein and minimizing with respect to the unknowns yields the finite 
\ 

element equations 

KI{q} - {F} (A.21) 
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where [K] is the elemental stiffness matrix given by 

[K] = / [B]T[D][B]dV     (A.22) 
V 

when mapped into the 5,n coordinate system 

dV = |J|dMn (A-23) 

where |J| is the determinate of the Jacobian matrix. The limits of 

integration are -1 to +1 in both 5 and n. Hence, Eqn. (A.22) becomes 

DC] = / / r_B]T[D][B]|J|d5dn = J J G(S,n)d5dn       (A.24) 
-1 -1 -1 -1 

In order to evaluate the stiffness matrix, [K], a numerical integration 

is necessary. Using a 2 x 2 Gauss rule Eqn. (A.24) can be evaluated as 

2  2 
[K] = Z Z   H.H G(a ,b ) (A.25) 

i=l j=l 1 J    J 

where G(C,n) = [B]T[D][B]|J| (A-26> 

(a-,b-) are the coordinates of the four Gauss points given by 

ai = ^/3' V^ 
(A.27) 

I 

/ 
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and (H^H-) are the corresponding weight functions given by 

Hi = 1,1 

Hj = 1,1 
(A.28) 

The elemental matricies are then assembled into a global system of 

equations, the prescribed boundary conditions are imposed and the system 

of equations is solved for the unknown displacements. (This procedure 

is explained in most finite element books [23].) 

The strains can be found at any C,n location within an element 

through the use of Eqn. (A.7) for generalized plane strain and through 

Eqn. (A.9) for plane stress or plane strain. The strains can be conver- 

ted to stresses by using the stress strain relation of Eqn. (A.17) where 

[D] takes on the values of the appropriate constitutive relation (Appen- 

dix B). 
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APPENDIX B 

V 

CONSTITUTIVE RELATIONS 

The constitutive relation for an orthotropic material in the prin- . 

\ 

cipal material directions, Fig- (8.1), is given by Jones [24] as 

••'! Wj = CClleJj (B.l) 

i 
i 
i 

where 

Cll C12 C13 0   0   0 

■ i C22 C23 0.0   0 

[C] - c33 

(symmetric) 

0   0   0 

C44 0   0 

c66_ 

(B.2) 
X 

*all 

°22 

°33 

1 
j 

1 

I 
| ■ 

i 

w,- • T23 

T13 

• 

\ (B.3) ] 

•m 

.\ 
1 1 j 

} 

t           * 

i 
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f'!i - 

'11 

'22 

'33 

'23 

13 

12 
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(B.4) 

r i-Wv    r W»    c      _ V13+V12V23 
C" = 1HE

37 '    12 = E11E33&      •    13 ' E11E22& 

1-v    v 
r      _        13 31   c      _ 
C22 " E,,E„A ' 43      E--E„& 

V      +V      V 
23    21  13 

1-V      V 1    12 21 

"11 33 
♦ C33 = I—C~S 

11-22" II 22 
(B.5) 

C44 = G23'    C55 = G13'    C66 = G12 

A . 
1-V12V21-V23V32-V31V13-2V21V32V13 

E11E22E33 

and 

I2. 
:11 

'7\ 
11 

11 Jl 
:33 

(B.6) 

23 

22 

'32 

'33 
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For a e rotation about the 3, (z), axis, Fig. (8.1), the consti- 

tutive relation becomes 

{*}  - CC]{e} (B.7) 

where 

[C] = 

cn c12 c13 o  o c16 

c22 C23 o  o C26 

'33 0   0  C 

(Symmetric)   C44 C45 

36 

0 

c55 0 

'66 

(B.8) 

{*} 

o 
XX 

yy 
o 

zz 

T 
yz 

XZ 

T 
xy 

■B                                    . 

(B.9) 

r e 

{«}- 

xx 

yy 

zz 

■yz 

"xz 

(B.10) 
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If m = cos 0 and n = sin 8 then the components of the [C] matrix are 

given by 

-422 4 
C,*  = m C|| + 2m n  (Cip+2Cgg) + n C22 

C12 = m2n2(Cn+C22-4C66) + (m4+n4)C12 

2 2 
C13 = rn C13 + n C23 

C16 = mn[m2(CirC12-2C66) + n2(C12-C22+2Cg6)] 

C22 = "4cil + 2m2n2(C12
+2C66) + m4C22 

2 2 
C23 = n C13 + m C23 

C26 = mn[n2(CirC12-2C66)+m2(C12-C22+2C66)] (B.ll) 

C      = C L33      L33 

C36 = mn(C13"C23) 

C44 = m C44 + n C55 

C45 = mn^C55-C44) 

C55 = n C44 + m C55 

C66 = m2n2(Cu-2C12+C22) + Cg6(m -n  ) 

For an orthotropic material  under a state of plane stress with 

a Ö rotation about the 3,   (x) axis, Fig.  (B.2), Jones [24] gives the 

constitutive relation as 

{o}  =  [Q]{e} (B.12) 
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Figure    B.2    Material And  Global Coordinate    System 
For    A    Two-Dimensional Lamina 
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[Q] = 

öu     0 

012     Q 

12 

22 

*16 

^26 
(B.13) 

As     c 
26 V 

a 
yy 

a 
zz 

T 
yZ. 

,                                                                  (B.H) 
- 

{e} = 

yy 
£ 

ZZ 

V 

(B.15) 
1» 

and the Q.. terms of Eqn. (B.l 3) are given in terms of the C^ terms of 

Eqn.   (B.U) by 

4: 

:J3 

5 

,                                          (B.16) 

j 

For an isotropic mat« »rial 
*•            i ■                '          ■ 

under plane strain, Frederick and Chang 

[16] lists the constitute /e relation as 

\ •   , 

{0} = [C]{e} 
\                                     (B.17) 

1 

i 
1 

-' 

1 
t 

1 
1 

\      ■                        : 

1 
j                                                                                     X. 

j 
i 
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where 

[C] = 
,  E(l-v) 
{i+v)(i:zvT 0 

l-2v 
7(T-vT 

(B.18) 

M 

0   1 yy 

■   zz 
(B.19) 

W 
yy 

zz 

yz 

(B.20) 

a      =    v(o    +0    ) 
zz yy   zz' 

(B.21) 



APPENDIX C 

MATERIAL PROPERTIES 

The material properties for graphite-epoxy T300/5208 are given by Nagar- 

kar and Herakovich [25] as 

Elastic Moduli 

En = 19.2 x 106 psij E22 = 1.56 x 10
6 psi, E33 = 1.56 x 10^ psi 

Shear Moduli 

G23 = 0.487 x 10
6 psi, G13 = 0.820 x 10

6 psi, G12 = 0.820 x 10
6 psi 

Possion's Ratios 

v23 = 0.490,  v13 = 0.238,  v  = 0.238 

Strength Parameters 

XT = 219.5 x 103 psi, YT =  6.35 x 103 psi, ZT =  6.35 x 103 psi 

Xc = -246.0 x 10
3 psi, YC = -23.85 x 103 psi, Zc = -23.85 x 103 psi 

S23 =  9.8 x 103 psi, S13 = 12.6 x 103 psi, S12 = 12.6 x 103 psi 

The material properties for the isotropic problems considered were 

chosen to be 

E = 30 x 106 psi,   v = 0.20, a    = 50 x 103 psi 

where a^  is the ultimate strength of the material. 
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!' APPENDIX E 

■I1* ON THE RELATIONSHIP BETWEEN FREE-EDGE STRESSES AND 

THE DIRECTION OF CRACK EXTENSION IN ANGLE-PLY LAMINATES 

It was originally thought that the free-edge stress state could be 

used to predetermine the direction of crack extension. 

Herakovich [7, 8], for example, has demonstrated that the crack 

types present on the free-edge of tension specimens seem to exhibit 

distinct crack growth patterns direction of extension for different 

angle-ply laminates. To account for this effect it was thought that the 

orientation of the principal stress plane on the free edge would follow 

along the same path as the crack plane when traced through the laminate 

thickness. To test this premise, the orientation of the crack 

plane, <J> , through the laminate thickness was compared with the through 

the thickness variation of the principal stress plane. A generalized 

plane strain solution of the front face, Fig. (3.6a), was obtained using 

the same geometry, loading and boundary conditions as given in Section 

3.3. Only the stresses in the plane of the free edge were considered, 

i.e., a       a     and T   in Fig. (2.1,0). It was assumed that the thermal 

curing stresses were balanced by the hygroscopic stresses in the lami- 

nate so that only mechanical loading be considered. The material con- 

sidered and experimental crack plane orientation was that of Herakovich 

[7] (the material was the same T300/5208 graphite-epoxy of this report— 

with properties listed in Appendix C). The orientation of the principal 

117 
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plane,  4> , was calculated through 

♦    - 270- - Itan"1!^-.] 
XX    zz 

(E.l) 

The results for four laminate configurations are presented in Fig. 

(E.la-d).    The multi-valued angles, <J>  , at'z/H = 0.5 represent the 

effect of a crack turning into a delamination at tha', point.    Fig. 

(E.la-d) indicate that only in the [902/02]s case did the theory agree 

with the experiment.    Hence,  it was concluded that the direction of 

crack extension could not be predicted through the crack free stress 

state but that an actual crack must be introduced. 
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APPENDIX F 

COMPOSITE LAMINATE FRACTURE MECHANICS (CLFM2D) 

INPUT DATA SEQUENCE 

:ards 1 & 2: title cards (20A4) Ca 

Column Contents 

1-80 ITITLE (I,J) Title 

Card 3:    Control card    (HIS) 

Column Contents 

!_5       NPROB Problem type (1 = generalized plane 

strain, 2 * skewed plane stress, 

3 = orthotropic plane stress, 4 = iso- 

tropic plane strain) 

6-10     NEM Number of elements in mesh 

11-15     NODS Number of nodes in mesh 

16-20     NANG Number of different angles - must be 

> 1 

21-25     NSDF Number of specified degrees of freedom 

26-30     NSBF Number of specified forces  (tractions) 

31-35     NEXX. Number of different Exx - must be > 1. 

120 
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36-40  NFX 

41-45  NPLOT 

46-50  NT1 

51-55  NT2 

56-60  NCHECK 

Fracture mechanics key 

NFX = 0, no fracture analysis 

NFX f  0, fracture mechanics problem 

Plot key 

NPLOT = 0, no plot 

NPLOT = 1, undeformed plot only 

NPLOT = 2, deformed plot only 

NPLOT = 3, both deformed and 

undeformed plots 

Dump file for displacements 

NT1 = 0, no dump 

NT1 f  0, dumps displacements to 

unit NT1 

Dump file for strains, stresses and 

strain energies 

NT2 = 0, no dump 

NT2 f  0, dumps to unit NT2 

Data check option (NCHECK f  0 - data 

check only) 

\ 

Card 4: Scale factors (2D10.5) 

Column Contents 

SCAY 1-10 

11-20      SCAZ 

Y-scale factor 

Z-scale factor 
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Card 5:    Printer control  card (515) 

Column Contents 

1-5       KEY (1) Key for printing element data 

6-10     KEY (2) Key for printing nodal  data 

11-15     KEY (3) Key for printing specified displacement 

data 

16-20     KEY (4) Key for printing specified force data 

21-25     KEY (5) Key for printing nodal  displacements 

26-30     KEY (6) Key for printing strains, stresses and 

strain energies 

Note:    If KEY (I) f 0, print 

Card 6: Plotter scale factors (4D10.5)  - skip if NPLOT = 0 

Column Contents 

1-10 PVSCL        . Plot Y-scale factor 

11-20 PZSCL Plot Z-scale factor ! ! 

21-30     VMAX Maximum Y-displacement ] 
i 

31-40  WHAX Maximum Z-displacement I 

Card 7: Material property card 1 (6D10.5) 

Column Contents 

1-10 PROP (1) En 

11-20 PROP (2) E22 

21-30 PROP (3) E33 

31-40 PROP (4) G23 
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41-50  PROP (5) 

51-60  PROP (6) 

]i3 

'12 

Card 8: Material property card 2 (6D10.5) 

Column Contents 

1-10 PROP (7) v23 

11-20 PROP (8) v13 

21-30 PROP (9) 
°12 

31-40 PROP (10) 
°11 

41-50 PROP (11) 
°22 

51-60 PROP (11) a_« 

Card 9: Angles (8D10.5) 

Column 

1-10 ANG (1) 

11-20 ANG (2) 

Contents 

Angle No. 1 (in degrees) 

Angle No. 2 (in degrees) 

ANG (NANG) Angle No. "NANG" (in degrees) 
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Card 10 : Element data 

Column 

1-5 

6-lü NOD (1,1) 

11-15 NOD (1,2) 

16-20 NOD (1,3) 

21-25 NOD (1,4) 

26-30 IANG(I) 

31-35 IEPS (1,1) 

36-40 IEPS (1,2) 

41-45 IEPS (1,3) 

46-50 IEPS (1,4) 

51-55 ISTRS (1,1) 

56-60 ISTRS (1,2) 

61-65 ISTRS (1,3) 

66-70 ISTRS (1,4) 

71-75 ISTRS (1,5) 

(5x, 1415) repeat "NEM" times 

Contents 

Blank (can put in element numbers) 

Node No. 1 of element I1 

Node No. 2 of element I1 

Node No. 3 of element I1 

Node No. 4 of element I1 

Angle number of element 1^ 

3 

3 

e  number at local node 1 

exx number at local node 2 
o 

. e  number at local node 3J 

3 
exx number at local node 4 

Stress output location 1 

Stress output location 24 

Stress output location 34 

Stress output location 44 

Stress output location 54 

1. Refer to Fig. (F.l) for node numbering sequence. 

2. Refer to Fig. (F.2) for angle orientation. 

3. e  numbers correspond to those of Card 16. 
xx 

4. Stress output locations shown in Fig. (F.l). 
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-J^-   y 

Figur® F.1    Local  Node  Numbers And   stress- 
Strain Output    Locations 
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OF POOR QUALITY 

Figure F.2    Coordinate  System And  Orientation 
Of Material  Principal  System 
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Card 11: Nodal data (5x,2D10.5) - repeat "NODS" times. 

Column Contents 

1-5 

6-15  Y(I) 

16-25  Z(I) 

Blank (can put in node numbers) 

Y coordinate of node I 

Z coordinate of node I 

Card 12: Specified displacement data (115,010.5) - repeat "NSDF" times 

and skip if NSDF = 0. 

Column Contents 

1-5   ND 

6-10  IDR 

11-20  UBDF(I) 

Node number 

Direction (1 = x, 2 = y, 3 = z) 

Specified displacement value 

Card 13: Specified force data (215, 010.5) - repeat "NSBF" times 

and skip if NSBF =0. 
i 

Column Contents ! 

1-5   ND 

6-10  IDR 

11-20  UVSF(I) 

Node number ' 

Direction (1 = x, 2 = y, and 3 = z) 

Specified force value 
\ 

Card 15: Temperature data (1010.5) 

Column Contents 

1-10  TEMP Temperature change 
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Card 16; Normal (x-direction) strain data (8D10.5) 

Column Contents 

1-10  EPSX(l) 

11-20  EPSX(2) 

e  value No. 1 

e  value No. 2 

EPSX(NEXX) 

*if NFX = 0, end of data 

e  value No. "NEXX" 

Card 17: Fracture control card (615,2010.5) 

Column 

1-5 NODE 

6-10 N0DE1 

11-15 N0DE2 

16-20 NSE 

21-25 NSN 

26-30 NCRT 

31-40  ANOT 

41-50  TMAX 

Contents 

Initial crack tip node number* 

Secondary node No.  1* 

Secondary node No.  21 

Number of stop elements (must be > 1) 

Number of skip nodes (must be > 1) 

Fracture criteria 

NCRT = 1    Griffith 

NCRT = 2    Sih-strain energy density 

NCRT = 3    3-0 point stress 

NCRT = 4    2-0 point stress 

Initial crack   iangth 

Maximum run time  (CPU-seconds) 

1. Refer to Fig.  (F.3)  for crack nodes description. 
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NODE1 NODE2 

' v Figur«*  F.3    Nodas  Defining  Crack  Tip 

N* 
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Card 18: Stop element data1 (1615) 

Column Contents 

1-5   NSTOP (1) 

6-10  NSTOP (2) 

Stop element No. x 

Stop element No. 2 

NSTOP (NSE) Stop element No. "NSE" 

Card 19: Skip node data2 (1615) 

Column Contents 

1-5   NSKIP (1) 

6-10  NSKIP (2) 

Skip No. 1 

Skip node No. 2 

NSkIP (NSN) Skip node No. "NSN" 

1. Stop elements terminate the solution when they are reached 

used to prevent tear through. 

2. Skip nodes are used to eliminate the designated nodes as 

crack growth possibilities - used to prevent tear through 

and the crack from growing back on itself. 
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Card 20:    Strength properties  (3010.5) 

Column Contents 

1-10 STRENG (1) xT 
11-20 STRENG (2) YT 

21-30 STRENG (3) *T 


