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Chapter 1
INTRODUCTION
- 1.1 Motivation

A problem of considerable and increasing jmportance within the
field of composite materials is the fracture of laminated composite
structures. The anisotropy of the material greatly complicates even the
simplist of problems. An example of a complicated problem is the edge
replica of Fig. (1.1); it demonstrates the crack types present on the.
free edge of a [+302/-302]S‘tensi1e coupon. From Fig. (1.1) it is
apparent that a crack can start out in a transverse mode and turn into a
delamination within its growing length. Complexities such as this
reguire in-depth fracture mechanics models which not only predict at
what load a crack will extend but also the direction of crack exten-
sion. This study was undertaken in an attempt to develop a model with
the capability of describing the characteristics of crack growth in

composites.

1.2 Literature Review

Smith {1] has discussed limitations of some of the currént analyti-
cal models for predicting crack growth characteristics in composite
materials. Likewise, most of the previous finite element models either
involve complex computational procedures or suffer from serious limita-
tions. Some models distinguish between fiber and matrix [2, 3], others

* use hybrid or singular finite elements [4, 5], and still others assume a
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direction of crack growth [6]. Finite element analyses which require a
distinction between the fiber and matrix materials are impractical for
most real life situations since the number of degrees of freedom
required in such an analysis could easily exceed the capacity of most
computers currently available. While the use of singular or hybrid
finite elements may give a good representation of the stresses, strains
and displacements near a crack tip, they genéra]ly require more computa-
tion time and they are not well suited to exp]éining large scale crack
growth characteristics. Experimental results [7, 8] have shown that the
direction of crack extension can change significantly during crack
growth in a laminated composite material. These results limit analyses
which assume a direction of crack growth to specialized cases or to -
smalil increments of crack growth.

There are many different finite element models that do not require
‘specialized e]éments. Two such models are the failed element approach
of Adams [3], and the modified crack closure approach of Rybicki and
Kannien [9]. The failed element approach assumes that when an element
in an area of high stress exhausts its strain energy capacity, it
fails. Fr&h this, it is assumed that a “"crack" has formed and has the
dimensions of the failed element. This approach has two implications,
the most important of which is that a finite amount of material is
removed from the system, which in an actual material is not the case.
The other is that the crack is not likely to close up on itself in
subsequent loading because of its exaggerated width., The modified crack

~closure technique is based on the crack closure integrel and can be used



within the framework of a linear elastic ana]ysis with a relatively
coarse mesh. In the modified crack closure technique, the crack closure
integral is evaluated directly from the nodal forces and displacements
required to close a virtual crack of extension, Aa. The modifiéd crack
closure technique also has fhe advantage of obtaining mode-1, mnde-11,
and mode-III results in a single analysis.

Few fracture theories predict the direction of crack extension [2],
as well asvthé external load level which causes cragk extension., Hashin
[10] suggeéted that a failure criterion could be constructed which would
inc]ude the plane on which failure would occur. Some of the many frac-
ture/failure criteria which have been used to predict fracture/failure
of composite materials inc]udé the sih strain energy density criterion
[2], the Tsai-Wu failure criterion [11], the Whitney-Nuismer point

stress criterion [12], and the Hashin failure criterion [10]. Of the

‘criteria listed, only the stra1n energy densxty cr1ter1on [2] and the

point stress criterion [127 are readily capah1e of pred1ct1ng the direc-

tion of crack extension. However, without mod1f1cation, their use is
-

\

limited to special cases. {

1.3 Purpose of the Present Study

. \
The purpose of this study was to develop a ficite element model

capable of predicting crack growth characteristics in composite mater1¢

~als. It was desired to develop a model which not only could determine

what applied lcad level would cause crack extension but one which could

also determine the d1rect1on of crack extension.




1.4 Basic Assumptions

~ Unless otherwise stated, the model developed was based on the
following assumptions:
{i) Linear elastic, homogeneous isotropic or
homogenous orthotropic fibrous composites
(ii) small displacement theory
(iii) a crack extends from one end only - one'crack at
a time
(iv) no variation of gebmetny in one of the coordinate
directions (i.e.; plane stress, plane strain and

generalized plane strain problems).

1.5 Descriptioﬁtof the Finite Element Model

The finite element model developed uses a two dimensional mesﬁ of
four node, linear, isoparametric elements. The model has the capabili-
ties of obiaining eithér plane strain, plane stress or generalized plane
strain solutions. (Refer to Appendix A for a description of the finite
element methodtés it applies to this study.) Therhateria1 models avail-
able include isctropic, orthotropic and laminated orthotropic, (off-
axis), materials. (See Appendix B for an explanation of the constitu-
tive relations for‘fhe resbective material models.)

The approach taken to the solution of the crack problem was to
separate the aralysis into two main parts. In the first part of the
sclution the direction of crack growth was determined and in the second

part the load level which would cause crack extension was determined.

SERE

TP




The crack growth direction was determined through the yse of sev-
eral fracture/failure theories. The theories considered include a
modified version of the Griffith criterion [13], the Sih strain energy
density criterion [2], the Tsai-Wu failure criterion [11], and modified
versions of the Whitney and Nuismer point stress theory [12], and Héshin .
failure criteria [10]. The failure criteria are described in Chapter 2
and the results are compared with theory and experiment in Chapter 3.

The determination of the Toad level which woulc Cause crack exten-
sion was made through the use of the modified crack closure method
[91. The modified crack closure method, as it applied to this study, is
presented in Chapter 2, |

The main reasons behind the choice of this solution appreach was
that it could be used with a linear elastic analysis, that it could be
used with a relatively coarse mesh and that it required a minimum of

computer time,

1.6 Problems Considered

The problems considered in this study were:
(i) A mode-1 crack in an infinite isotropic plate with remote
Toading of o, Fig. (1.2a), was considered as a test of
the crack closure technique. o f
(ii) Mixed mode cracks in infinite plates of isotropic materials, . |
Fig. (1.2b), were analyzed as a test of the crack growth

direction, -90, for various angles of crack inciination, B.
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(iii)

) ‘ (iv)

Off-axfs, unidirectional, orthotropic tensile specimens,

Fig. (1.3a), were analyzed for the direction of crack
extension in fibrous composites and the resuits were compared
with available experimental results.

Transverse cracks were intryduced on the free edge of a
laminated composite tension specimen, Fig. (1.3b), and the
predicted crack paths were compared againét available

experimental results.

P
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Chapter 2
THEORETICAL BACKGROUND A

2.1 Criterion for Crack Extension

2.1.1 Energy Release Rate Concept

In the Griffith theory of classical fracture mechanics [13], it is
assumed that strain energy is released when a crack surface is created
in a stressed body. The rate of energy release when a frack extends
stably in a body is known as the critical energy release rate, G.. The
critical energy release rate, GC;“can be determined experimentally by a
procedure which allows for stable, slow crack extension, (see Ref. [17]
for isotropic materials andi[6] for compositgs).

For structures, such as a composite laminate, an existing crack may
or may not grow under a given state of stress. To determine whether or
not an existing crack will extend, it is necessary io calculaﬁe the
available enérgy release rate, G{a), associated with a‘crack of lehgth
a. If the available energy release rate, G(a)i is equal to the critical
eneryy release rate, G the crack will grow in{a stable fashion. If the
available enerqy release rate, G(a), is greateglthan the critical energy
release rate, G., the crack grows un;tah]y and i( the available energy
release rate, G{a), is less than the critical energ¥ release rate, Gg,

the crack does not extend. Similarly, the external load which first

‘causes the availadble enerqy release rate, G(a), to rkach the critical

_energy release rate vaiue, G, is the critical load and loads greater

10

e,




n

than the critical load level result in unstable growth while loads less
than the critfcal load level do not extend the crack.

Mathematicalily, the energy release rate, G(a), for a given crack of
initial length, a, is defined as the difference in thé total strain
energy of the structure, AU, before and after a small crack extension,

bda, is introduced, that is,

Tim AU

2.1.2 Modified Crack Closure Approach

Irwiﬁ [147 contended that if a crack extends by a small
aﬁount, Aa, the energy released in the process is equal to the work
required to close thé crack back to its original length. This statement

in equation ferm is

lim 1t ., .
G{a) = 2a+0 Jha £ gebu da (2.2)

where g is the ‘surface traction vector and AU the displacement vector
required to claée the crack back to its original length.

The modified crack closure technique of Rybicki and Kannien [9]
enables the direct evaluation of the crack closure integral (2.2) and
thus the energy release rate through the use of a finite element
model. The finite element model starts with the presence of an initial
crack of length, a, Fig. (2.1a), with tip at node K. The finite element

solution determines the displacement components, ;k,,(where ;k =>(uk,
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Vks wk) of the crack tip node K. An incremental crack extension 22 is
introduced by replacing the crack tip node K with two separate nodes K'
and K'* as shown in Fig. (2.1b). With this new crack geometry taken
into account, the finite element solution for the nodal displacements
Jk' and ak" are found for nodes XK' and K'', respectively, under the
same load. The crack extension js then closed by applying equal and
opposite forces at nodes K' and K'' such that theif common displacements

match the displacements found earlier for node K, Fig. (2.1c). These

nodal forces can be described by
P oy (Fu F | | (2.3)
Kk =2 (ka’ yk? sz) ' *
The energy release rate is then given by [9],
G(a) = [ka(uk'fuk")+Fyk(vk-vk")+sz(wk'-wk")]/2da (2.4)

By resolving the forces and displacements into @ “crack coordiﬁate
system," Fig. (2.2), the respective fracture m&de contributions to the
total energy release rate can be determ{ned. fhat is,
Gl(a) = {[szcos¢-Fyksin¢][cos¢(wk'-wk")-sin¢(ka-vk")]}/2Aa (2.5a)
R
GI[(a) = {[Fykco§¢+szsin¢][cos¢(vk‘-vk")+51n¢(wk';vk")}}/ZAa '(2.55)
\

6 (@) = {ka(uk‘-uk")}/ZAa : (2.5¢)
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where GI' GII and Gppp are the mode-1, mode-1I and mode-III contribu-

tions to the total energy release rate, G, respectively, i.e.,
6(a) = Gp(a) + Gyy(a) + Gypy(a) (2.5d)

2.1.3 Finite Element Considerations in Computing the Energy
Release Rate

As previously mentioned, the energy release rate requires the
evaluation of the nodal forces and displacements necessary to close a
crack of extended length, a + Aa, back to its original length, a. The
needed displacements are directly obtained from finite element solutions
of the initial and extended crack states, Fig. (2.1a) and (2.1b),
respectively. However, the calculation of the required forces are not
as obvious. Rybicki and Kanninen [9] computed the forces by placing a
very stiff "spring” between nodes K' and K'', then computed the force
components in the "spring." This procedure can lead to unnecessary
approximation errors. An alternative aﬁproach #will now be presented.
Consider three separate states. State No. 1 represents the loaded
initial state, Fig. (2.ia), where node K displaces (uk,vk,Qk). The °

finite element equations (Appendix A) for State No. 1 can be written as,
8§} = 2 .
[, e, = {F)} (2.62)

where [Kq] is the glohal stiffness matrix, {51} is the global displace-

ment. vector and {Fl} is the global force vector for State No. 1. Simi-
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larly, State No. 2, Fig. (2.1b), represents the loaded extended state

which can be expressed by,

[k,115,) = 1) (2.60)

and State No. 3, Fig. (2.1c), represents the loaded separated state with
applied forces to hold nodes K' and K'' together - which may be written

as,
(x50 = {Fy) - (2s)

~ Since the forces required to hold nodes K' and '' together are con-
tained within the {F3} vector it is necessary to compute {F3} . Since
the separated state with applied forces, State 3, Fig. (2.lc), is con-
strained to displace identical to that of the unseparated state, State
1, Fig. (2.1a), the displacement vector {61} is the same’as {8,} with
the exception of the additional degrees of freedom (i.e., u, v and w
displacemenits) for the new node created by separat1ng the crack tip node
into two nodes. Now, if {61'} is defined as be1ng the {s 1} vector with

the additional degrees of freedom it follows that

{s,) - {s,'1 (2.6d)

i
|
|

where the additional degrees of freedom are specified as being the same

as for the initial crack tip node of State 1 since State 3 requires that
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the displacements of the separated nodes mgtch those of the unseparated
state, State 1. Note that the new node created by separating the crack
tip node was numbered as being the crack tip node number plus one and
all node numbers greater than the crack tip node were re- numbered as
being one plus the node numbers that they had in State 1 This re-
numbering procedure guarantees that the half bhandwidth will not increase
by any more than 2 for plane stress or plane strain and by any more than
3 for generalized plane strain.

The undeformed mesh of the separated state, State 2, Fig. (2.1b) is
identical to that of State 3, Fig. (2.1&), and since the stiffness

matrices do not change for different loading conditions, it follows that

[k3] = [k,] (2.6e)

Substituting Eqns. (2.6d) and (2.6e) into (2.6c), the solution

for {F3} is found to be
[kzl{él'} = {F3} , (2.7)

Hence, for a growing crack problem, the forceé necessary to close the
current crack extension‘are found by simply multiplying the current
stiffness matrix by the, modified, previous displacement vector - with-
out the addition of extra step§ or the introduction of unnecessary
approximation errors. Note that it is not necessary to store the entire

[k,] stiffness matrix. Sirce [k,] is a banded matrix, the only contri-
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butions to the force necessary to close the crack will come from the
elements containing the crack tip ncde K. Hence, the elemental contri-
butions to the force at node K can simply be summed up to give the total

force at node K.

2.2 Criteria for Predicting the Direction of Crack Extension

2.2.1 Modified Griffith Criterion

The Griffith or energy release rate criterion states that a crack
will extend when the availab{e energy release rate,’G(a), reaches or
exceeds the critical energy release rate, GC [13]. In a crack problem
where the crack extension direction is unknown the criterion should be
m modified to state that crack extension will occur in the_direétion in
which the available enerqy release rate, G(é), first reachés the crifi-
cal energy release rate, Gc. |

If the,critical energy release rate ig assumed independent of
directioﬁ then the direction of crack exteﬁsion can be taken as thé
direction of maximum available energy re]e;se rate since this would be
the direction which would first reaéh or e£;eed the critical energy
release rate, ‘ |

Two serious Timitations of the modified Griffith criterion, as
defined ahove, are that the critical enerqy ré]éhse rate may have a
dependence on the mode of fracture in isotropic broblems and it also
depends on which direction, relative to the mater%a] principal coordi-

nates, the crack extends in fibrous materials. As an example of the

latter of the two limitations, consider two different mode-1 cracks

e .
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extending in an anisotropic material, The first crack, Fi&. (2.3a),
represents a mode-I crack growing parallel to the fibers and the second
crack, Fig. (2.3b), represents a mode-I crack growing perpendicular to
the fibers. Based on surface energy considerations [13], an approximate
relation for the mode-I critical energy release rate, Gyc, for an iso-
tropic material is given by

o, a
Gy = — _ (2.8)

IC

where o, is the critical applied stress required to cause crack exten-
sion and E is Young's modulus. Substituting the ultimate strengfh of a
composite material, (T300/5208 graphite-epoxy), in the transverse direc-
tion, YT,Kgnd the modulus in the transverse direction, Ez, from Appendix
C. into Eqn. (2.8), gives an approximate value for Gyc for extension
parallel to the fibers, Fig. (2.3a), that is,

n(YT)Za
£ e = 8l.2a (2.9a)

Grc
)
Similarly, for the crack growing perpendicular to the fibers, Fig.
(2.3b),
ﬂ(XT)za

= ———— = 7883 . (2.9b)

e
I1C
&

Hence, the critical energy release rate for the crack growing}perpen-

dicular to the fibers is roughly two orders of magnitude greater than
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that of the crack growing parallel to the fibers.

Another disadvantage of the modi fied Griffith criterion is that it
. requires an additional finite element solution for each possible direc-
tion that the crack can extend. Referring to Fig. (2.4), for the crack
defined by oab there are seven possible directions of crack extension,
from o to ¢, from o to d, from o to e, from o to f, from o to g, from o
to h and from o to i. In order to use the modified Griffith criterion,
seven independent finite element solutions would be required to compute
the seven posﬁible energy release rates. This is obviously time consum-

ing and thus a costly procedufe.

2.2.2 Sih Strain Energy Density Criterion _
“ The strain energy density criterion [2, 15] is based on the Tocal
value of strain energy density in the vicinity of a crack tip, which is
direction sensitive. Crack extension is postulated to occur in the
direction of minimum strain energy density when fhe strain energy
density factor, S, (to be defined), attains-é critiéa] va]ﬁe, Sce

For a planar crack in an isotropic matgrial under plane strain,

Fig. (2.5), the straiﬁ energy density in thé»vicinity of the crack
du

4

tip, w is given as, [15] \
. w1, .2 2 2
& = wrlayk ek kpragk sk )
- + non-singular terms i (2.10)

vemm et e
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where ky, ki and kyyp are the mode-I, mode-11 and mode-III stress

intensity factors, respectively,

all = T%G[(3-4V-COS¢)(1+F05¢)] (2.11a)
Ay, = 1(15(; « 2sing[cose-(1-2v)] , (2.11b)
3y = ——{1355 4(1-v)(1-cos¢)+(1+cosé ){3cos-1)] '  (2.11¢)
-1 . A . _ (2.114)

333 46 .

and G is the shear modulus of elasticity and v is Possion's ratio.
Eqn. (2.10) demonstrates that the strain energy density function

possesses a (1/r) singularity at the crack tip. Hence the expression

- 2 2 2 ' S
|

t

represents the intensity of the strainxenergyfdensity field in the
vicinity of the crack tip. The fundamental hjpotheses on crack growth

in the Sih theory are as follows:
. \
(1) Crack initiation takes place in a direction determined by the
\

stationary value of the strain-energy density factdr, i.e.,

3s

3¢=0’ at ¢ = ¢

o (2.13)

L mnansniie




25

(2) Crack extension occurs when the strain-energy density factor

reaches a critical value, i.e.,
SC = S(kl’ kII’ kIII)’ for ¢ = ¢0 (2.;4)

Exact evaluation of the stresses and strains in the vicinity of the
crack tip with the current finite element model is not guaranteed since
there exists a geometric singularity at the crack tip which cannot be
accurately modeled with the linear-elastic analysis formulated herein.
Hence, it is not possible to use the Sih theory to determine when the
crack will extend. However, the Sih theory can be used to determine the
direction of crack propagation in isotropic materials.

From continuum mechanics t16] it is possible to write an alterna-

tive form of the strain energy density at a point in a stressed body,

i.e.,

oy, +tov)  (2.15)

s 1
EV" 2(°xxexx+°yyeyywzzgzz”yzvyz+ xz"xz" xy ' xy

Negiecting the non-singular terms in Eqn. (2.10) and substituting in the

expression for the strain energy density factor of Eqn. (2.12) gives,

@3 (2.16)
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Combining Eqns. (2.15) and (2.16), an alternative equation for the

strain energy density factor, S, is found to be:

r
S ”'?(oxxcxx+°yy€yy* °zzezz+Tyzsz+tszxz+Tnyxy) (2.17)

There is one serious 1fmitation to the use of the strain enefgy
density theory in the current study. This limitation is that the theory
does not account for the anisétrépic strength characteristics of the
material. Since such properties must be accounted for in fibrous com-
posites, the Sih strain energy density theory is limited to isotropic
material app]icéfions. It should be noted that the strain energy
density theory has been used in the past to predict crack growth charac-
teristics in composite materials [2]. However, the success of such
studies resulted from assuming that the crack was situated entirely
within the isotropic matrix between fibers. .

The procedure for implementing the strain enerqgy density criterion
in the finite element model is briefly described as foI]ows: First, the.
possible directions of crack extension in the model are identified by
the element sides containing the crack tip node, (node-0 in Fig.

(2.4)). Second, the stresses and strains are calculated'in the adjoin-
ing elements at the element corners, (points ¢ thru i in Fig. (2.4)).
Third, Eqn. (2.17) %s used to calculate the strain energy density fac-
tor, S, at the respective points. Last, the crack is assumed to grow in

the direction in which S is a minimum.

®
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2.2.3 Tsai-Wu Failure Criterion
Tsai and Wu [11] postulated that a failure surface in stress space

exists in the Torm:

F. S1+F1JSISJ = 1 i, = 1,000,6 (2.18) | T
where F; and Fij are strength tensors of second and fourth order, l
respectively, and s represent a contracted form of the stress tensor
components in material principal coordinates. For an orthotropic lamina

under plane stress conditions, Eqn. (2.18) becomes:

&+ surt ("v v )522’(x x )511'(Y Y )5+ 2 5
T 2 . X
+2Flzs11 99 =1 , : D (2.19) i
where Xy and YT represent the tensile strength of tﬁe material in the
fiber and transverse directions, respectively, X. and Y represent the
compressive strengths, Sy, represents the Qhear strength in the 1-2
plane and Fy, is an interaction term which mus€ be determined from a
biaxial strength test. \
As a failure theory, the Tsai-Wu criterion‘has several advanta-

: \
ges. These advantages include, (1) invariance under rotation of coordi-

CoA
nates, (2) transformation via known tensor transformation laws; and (3)
symmetry properties akin to those of the stiffnesses}and compiiances.

However, for use in th's study, it has two serious 1im1tations. The
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first is that it fails to account for differences in creating new frac-
ture surfaces at various angles to the material principal coordinates
and second is that it makes no distinction between tensile and compres-
sive failure which could cause the Tsai-Wu criterion to choose a com-
pressive direction of crack propagation,

The Tsai-Wu criterion was incorporéted into the finite element i
model by assuming that the crack would extend in the direction where the
value of the Tsai-Wu polynomial reached a maximum, Referring to Fig.

(2.4), the stresses, oij’ are calculated at some fixed distance, Fo»

away from the crack tip at the various locations dictated by the element

sides ‘incorporating the crack tip node, (points ¢ thru i in Fig.

(2.4)). Next, the values cf the Tsai-Wu polynomial were computed at | .
these points through the use of Eqn. (2.19), (for the case of orthotro-
pic plane stress). Last, the crack was assumed to extend in the direc-
tionAfoE which the Tsai-Wu polynomial reached a maximum,

The choice of ry is arbitrary within certain limitations. These
Timitations are that r should be greater than zero and less than the
Yongest possible béth that the crack extension could take and not extend
through mofe than one element. Referring to Fig. (2.4), if the possible

path of crack extension were as shown from node o to c, o to d, o to e,

otof, otog,otohor o»to i? then To would be limited to that of
| the segment from o to g siﬁce thaf is the direction of longest possible
single element crack extension. Note tﬁat it would be impractical to
use a distance greater than og since this would require using stresses

from an element outside those adjacent to the crack tip.

U U S AR VUSSR SIS ST U VRS Lm.mg.’-‘-éi




29

2.2,4 Modified Point Stress and Hashin Criteria

The criteria for predicting the crack growth direction considered
up to this point, in their present form, are all unsatisfactory for
anisotropic materials. As pointed out in Sections 2.2.1-3, they all
fail to account for differences in the work required to create a new
area of crack surface at different directions in an anisotropic mate-
rial. Since it is imperative that this distinction be accounted for in
this study, two new criteria are proposed. The first criterion consid-
ered is a modification of the point stress criterion of Whitney and
Nuismer [12], and tie sécond is a modification of the Hashin criterion

(101,

2.2.4.1 Modified Point Stress Criterion

The point stress criterion of Uhitney and Nuismer [127] assumes that
failure of a notched laminate occurs when the local stress at a certain
distance, ro, from the notch tip reaches the strength of éue unnotched
laminate,

The modified point stress criterion of this study assumes that a
crack will grow in the direction of the maximum ratio of‘norma1 stress
to strength at a certain distance, ro, from the iip of an existing
crack. Note that this is equivalent to assuming that a crack will grow
perpendicular to the plaene of maximum tersile stress in an isotropic
material. Rgferring to Fig. (2.5), the normal stfess, o¢¢(r,¢), is
calculated at some fixed distance, ro» away from the crack tip. The

stress, o¢¢(ro,¢), is then divided by the tensile strength of the mate-

RS RREN

N 4‘1»2 :
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rial, T . (¢), {to be defined); normal to the direction of crack exten-

- o¢
sion. This ratio, R(ro,q), is then used to predict the direction of
crack extension by assumingy that the crack will extend in the direction

v for which R(ro,¢) reaches a maximum, OQuantitatively, the ratio is

defined as:

R(rg»¢) = i (2.20)
Too(®)

The value of rO used in this criterion is subject to the same
limitations as the value of s in the Tsai-Wu criteria, Section 2.2.3.
That is, o should he greater than zero and less than or equal to the
longest path of possible crack extension while not extending through
more than one finite element.

2.2.4.2 Strength, T ., Along a Given Plane in Anisotropic Haterials

o4
The strength, T¢¢(¢), normal to a given direction, is taken as the
normal stress required to fail an infinitesimal element of anisotropic
material along a given plane. In the finite element solution the finite
element s{des dictate the directions of possible cqack extension,

: T¢§ was taken in this form to account for differences in the energy
required to create new crack surfaces at arbitrary angles with the
material principal coordinate system. Such a definition is necessary in
the proposed model to permit se]ection of the proper direction of crack
growth, Further, as shown by Herakovich [7], for example, failure of

individual lamina in a laminate can occur along planes which are neither

e
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parallel to nor perpendicular to the fibers. 1t appears to be most

difficult if not tmpossible to experimentally verify a relation

for T¢¢(¢) by testing unidirectional laminates since only one direction

of crack extension would be present for a given laminate. However,

three obvious conditions must be met by such an expression. The condi-
tions are:

1. For an isotropic material, the strength, T¢¢(@). should be constant
and equal to the ultimate strength of the material, ou. independent
of ¢.

7. For a crack extending parallol to the fibers in a un1d1rectional
cohposite. (¢) should be equa\ to the transverse tensi\e
strength of the material, Yy.

3. Ffor a crack extending perpendicular to the fiherﬁ. T°¢(¢) should be
equal to the tensile strength of the material in the fiber direc-
tion, Xy.
for a unidirectional laminate under plane stress, as shown in Fig.

(?.7), a simple relationship for T (¢) can be postuIated Removing an

infinitesimal element at (r ) Fiq. (2. Ra), and def1n1ng the angle 8

as the differance between the fiber anqle. L ‘and the assumed crack

'

extension angle, 0, that is \

R0 - ¢ o\ (?.21)
:\\

It is then possible to isolate yet another 1nf1n1t}s1mal element, Fig.

(2.8b), which qives the orientation of the crack extension relative to
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the material principal directions. Then, assuming that the strength,
T¢¢(¢), is balanced by only the transverse and longitudinal strength of
the material Yr and Xy, respectively, the relation for T¢¢(¢) is

obtained by summing forces in the ¢ direction as,
' . 2 2 |
Tya(8) = Xpsin™8 + Yycos®s (plane stress) (2.22)

Testing Eqn. (2.22) against the three conditions,

Isotropic ma;er1a1: :T ?“YT = cu‘

T§¢ = ousin B +ocosB =0 (2.23a)
Fracture parallel to fibers: B8 = 0°
T " XpsinZ(0°) + Yeos2(0°) = vp  (2.23b)
Fracture perpendicular to fibers: B8 = 90°

T¢¢ = XTsin2(90°) + YTcosz(9O°) =Xr o (2.23c)

i
3
. i
The three conditions specified herein are satisfied. Hence, in princi-

ple, the expression is acceptable. A plot of T, vs. ¢ for plane stress

$¢
is shown in Fig. (2.9) for various values of 6 for T300/5208 graphite-

epoxy, (properties from Appendix C). The maximums, in Fig. (2.9) repre-
sent the combinations of angles for which a crack grows perpendicular to

\
fibers and the minimums represant crack growth parallel to fibers.
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For a transverée crack extending through a laminate, Fig. (2.10), a
similar relationship cen be derived. Removing the lamina at the crack
tip and rotating it about the z' axis into material princinal coordi-
nates, Fiq, (2.11a), gives the geometry necessary to compute the
strengths T;x(e), T;y(e) and T;Z(e} in the x', y', and z' directions,
respectively.. Removing an infinitesimal element, oab, from Fig.
(2.11a), appiying the norma® strengths x;, Y; and T;x’ in the 1, 2' and
x' directions, respectively, Fig. (2.11b), and summing forces in the x'-

[}
direction gives the relation for Txx(e) 3s,
T' (8) = Ylsinze' + X'cosze' (2.24a)
XX T T )

Similarly, remsving element, ocd, from Fig. (2.11a), applying
strengths Xy» Yy» and Tyy' Fig. (2.11c), then summing forces in the y'-

direction yields
) ] . 2 ] 2
Tyy(e) = X;sin® + Yrcos“e | (2.24b)

Since the z' and 3' axis in the lamina coordinate system are the same as

in the laminate coordinate system,

Tzz(e) =1 ’ | (2.24c¢)

]
The strength, T, (¢), normal to a free edge crack extension, Fig.
$¢

(2.12a), is found by removing an infinitesimal element, Fig. (2.12b),

-

e o v, k2o
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applying the respective strengths and summing forces in the ¢ direction

which gives

' \

' v 2 2
Top(0) = Tyysine + T,,c057¢ (2.25)

Substituting Eqns. (2.24a), (2.24b) and (2.24¢) into Eqn. (2.25) yields

that

T¢¢(¢) = (XTsinze +YTcosze )sin2¢ + ZTcosz¢ (2.26)

Testing Eqn. (2.26) against the three conditions,

t ‘ ] . ]
Is?trop1c material: XT = YT = ZT =0,
T 26+aucosze)sin2¢ + cuc052¢'= o, o (2.27a)

o6 = (cusin

Fracture paraliel to fibers: 8. = 0°, ¢ = 90°
l-_ '-20 ' 2100 .9 ° ] 2 °=|'
TM = (Xysin (0 )+YTcos (0°))sin¢(90 % + 74c08 (90°) = ¥; (2.27b)

4

t
H

Fracture perpenditu1ar to fibers: ali=.90°, ¢ = 90°
' ' ' ‘ ' '
= 2(q0° 2¢a0°YYeinl(00° 2(q0°) =
T¢¢ = (Xysin (90 )+YTcos (90°))sin (90}) + 15€0s (90°) = X

2.27¢

. (2.27¢)
N

Again, the three conditions are satisfied so, in principle, the relation
, \

vs. ¢ for free edgeicratk extension is

i

is acceptable. A plot of T,,

ettt 2 b Fen s i
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]
shown in Fig. (2.13) for various values of fiber orientation, 6 , for

T300/5208 graphite-epoxy, (properties from Appendix C). As in the plane
stress case, the values of ¢, (for 6‘ = 90°), for which T;¢ is a maximum
represents crack extension perpendicular to fibers while a minimum

T;¢ represents crack extension parallel to fibers, Thé constant

T;¢ for 6 = 0° represents matrix mode failure independent of ¢, Last,
the curve for ' = 45° has minimums at T;¢ = Y;, which represents matrix
mode failure and the maximums never reach X; since some cqmbination of
fibers and matrix, thru the width, is always involved.for'the free edge

cracks considered, Fig. (2.10).

2.2.4.3 Modified Hashin Criterion
The Hashin failure criterion [10] assumes that failure of a trans-
versély jsotropic material will occur in a tensile fiber

mode, ©

1 > 0, when:‘

2
)+ ——l—(olzzwlg) =1 (2.28)

[+
11
(—
- X 12
where'XT is the tensile failure stress in the fiber direction and s, is
the axial failure shear stress. The Hashin criterion also assumes

failure to occur in a tensile matrix mode, 022 + 033 > 0, when:

1 2 1,2 1,2 .2
‘”Yz"("zz*"sa) '3 (953-952933) * 2 (o7p%075) =1 (2.29)

T 23 12

&
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where YT and 523 are the transverse tensile and shear strength of the
material, respectively. For the case of plane stress in the 1-2 plane,

the criterion for fiber mode tensile failure becomes:

o 2 G,n 2 '
()(1—1') + (gi‘i‘) = 1 (2.30)
and for matrix mode tensile failure:
C,n 2 o,, 2
22 12
) + () =1 (2.31)
T 12 ’

where Sy, is the shear strength of the material in the 1-2 plane.

The Hashin criterion does account for distinct differences in fibér and
matrix mode failure., However, it does not account for an arbitrary
combination of matrix and fiber mode’failure. (In the actual failure of
composite laminates this feature is necessary since as Herakovich [71,
for example, has shown failure can océur on a plane which is neither
parallel to nor perpendicular to the fipers.);

Hashin [10] proposed that a simi]a} crite;ion for the faiiure of
composite materials could be developed to incIJde the plane on which
failure occurred, Qo’ Fig. (2.14). Such a criteéion would predict
failure when some function g(oij, ¢) satisfied the kondition:

1

g(oij’ $) =1 ' (2.32)
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and that failure would occur on a plane defined by, ¢0, for which (2.32)
was first satisfied under monotonically increasing load.

The modified Hashin criterion of this study assumes that é given
crack in a composite mater{al will extend in the direction, ¢0, in which
the left side of Egn. (2.32) reaches a maximum when evaluated at some
fixed distance, o® from the crack tip. (Note: ro is subject to the
same limitations as in Sections 2.2.3 and 2.2.4.1).

The‘development of the modified Hashin criterion as used in this
study is based on developing‘én expression for Egn. (2;32). As in the
case of the point stress criterion, it appears impossible to test such

‘an expression experimentally. However, two obvious conditions should be
met by such a criterion, they are:
1) For a crack extending parallel to the fibers, the criteria should

give back the Hashin criterion for tensile ﬁatrix mode failure, -

Eqn. (2.31). ‘ . |
2) For abcrack extending perpendicular tozthe fibers, the critéria

should give back the Hashin criterion for tensile fiber mode fail- :

| P
ure, Eqn. (2.30). \ "

Proceeding along the same line as Hashin [10]! if the failure criterion

\ \ o

is taken as, . .j;\
o 2 o2 :

)+ 7 -1, EE (2.33)
o¢ ré :

where T¢¢ and T'_¢ 2re the normal and shear strengths and °¢¢ and °r¢ are

the normal and shear stresses, respectively, on the plane of crack
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extension, Fig. (2.14), then the direction of crack extension is given
by the value of ¢ for which the left side of Eqn. (2.33) reaches a
maximum, provided that °¢¢ is greater than zero. (A 0¢¢ less than
~zero would represent crack closure.) For the case of plane stress of a
unidirectional composite laminate, Fig. (2.7), the normal strength;
T¢¢(¢), was derived in Section 2.2.4.2 and is given by ﬁqn. (2.22)., If

the shear strength, Tr¢(¢), is simply taken as being $y,, that is

Tr¢ = 512 (plane stress) (2.34)
Then the failure criterion is complete. Testing the criteria of Eqn.
(2.33) against the two conditions specified herein,
(i) Fracture perpendicular to fibers: ¢ = 90 + 6, equilibrium of an

element, Fig. (2.15a) gives

. 2 2 .
O4p = oyys1n ¢ +0,,C05¢ - Ztyzs1n¢cos¢ | (2.35a)
6_, = cos¢sing{o__-o ) + 1 (cosz¢-sin2¢) (2.35b)
r¢ zzyy yz °

substituting ¢ = 90 + 6,

. 2
06 = oyys1n (90+e)+azz

Q
|

cos?(90+e)-Zryzsin(90+ejcos(90+e)

2 . 2 .
9,408 9+oZZSjn e+21yzs1n6cose | (2.35¢)

¢
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and,

.. 2 . 2
O = cos(90+6)sm(90+e)(ozioyy)ﬂyz[cos (9040 )}-sin“(90+0)]

Q
{

. . 2 2 c
~-sindcost (o z'oyy) + ryz[s1n 8-cos 6] o (2.35d)

but, from Fig. (2.15b);

%1 oyyc0526+ozzsin29+2ryzsinecose ‘ (2.35e)

%, = -{-sinecose(azz-oyy) + ryz[s?nze-coszej} A (2.35f)

comparing Eqns. (2.35e) and (2.35f) with (2.35c) and (2.35d), respec-

‘tively,

(2.359)

and
= -0 ' ' (2.35h)

Also, for fracture perpendicular to the fibers, Eqn. (2.22) reduces to
that of Eqn. (2.23c). Substituting Egqns. (2.23c), (2.34), (2.35g) and

(2.35h) into Eqn. (2.33) yields,

c 2 o] 2 Y :
11 12 : .
(7_") + (§"_' =1 : (2.351)
T 12

which is precisely te Hashin criterion for tensile fiber mode failure,

Eqn. (2.30).
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(i1) Fracture parallel to fibers: ¢ = 6 Substituting, ¢ =6, into

Eqns. (2.35a) and (2.35b) gives that:

B .2 2 . ’
04y = TyySin“e4o, cos 6-21yzs1n9cose (2.36a)
and
o ., = cosBsinBlo, 2 ) +T (cosZG sinze) -~ (2.36b)
ré zz *yy) * Tyz - _ .

but from Fig. (2.15c):

1

. 2 2
g . sin 6 + ozzcos 6 - 21

Sy vy ,Sindcose , (2.36¢)

y
and

el 2, .2 ,
95 cosBs1n6(oZZ-ayy) + Tyz(cos 8-sin 6) (2.36d)

Comparing Eqns. {2.36c) and (2.36d) with (2.36a) and (2.36b), respec-

tively,

%o = °11 . (2.36e)

and

°r¢ =049 (2.36f)

Also, for fracture parallel to the fibers, Eqn. (2.22) reduces to that
of Eqn. (2.23b). Substituting Eqns. (2.23b), (2.34), (2.36e) and

(2.36f) into Eqn. (2.33) yields,

(C22)*

G, 2
. + (glg) =1 - (2.369)

T 12
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which is precisely the Hashin criterion for tensile matrix mode failure,
Eqn. (2.31). Since the relation developed gives back the Hashin cri-
teria for tensile fiber mode and tensile matrix mode failure it is in

principle acceptable.

2.2.4.4 Finite Element Considerations in Implementing the Modified
Point Stress and Kashin Criteria
The steps in the implementation of the modified point stress and
Hashin criteria are similar to those in implementing the Sih and Tsai-Wu
criteria. Briefly: ,
(i) Determine the elemenfs containing the crack tip node. This gives
the possible directions of crack extension,
(ii) Find the minimum element side 1ength. This gives ro.
(iii) Compute the stresses along the element sides, which define the
possible directions of crack extension, at ro.
(iv) Use Eqn. (2.20) for the point stress criterion or Eqn. (2.33) for
the Hashin criterion and assume crack extension in the direction
which makes (2.20), for point stress, or (2.33), for the Hashin

criterion, a maximum,




Chapter 3
RESULTS

3.1 Isotropic Cases

3.1.1 Mode-I Crack in an Infinite Plate
The classical problem of a mode-I Erack in an infinite plate, Fig. i
(1.2a), was run as a test of the energy release rate formulation. ' ‘
Results for two different finite element meshes, one being much finer
than the other, were generated for comparison. The computed energy
release rates were converted to étress intensity factors for ease of
conparison with theory. V | |
The boundaty condition for the fine mesh, a 306 element x 338 node
mesh, Fig. (D.1) considered a full crack model assumed specifiéd dis-

placement loading. Referring to Fig. (3.1a), the boundary conditions

were: » ' : E
at y = Of vy = 0,2) = -6 .; . | (3.1a)
{
aty =L: v(y=1L,2z) =6 : (3.1b)
at z = 0,28: traction free \ i " (3.1c)
.“\

The input parameters; a, 6, L, B, A and B were taken as,
\

0.5'', 4a = 0.2a, L = 40a, B = 10a

o
L]

>
i

= L/2, § = .002a, 8 = 90° ' \ (3.2) ,
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The problem was treated as a case of plane strain,.constitutive equation
given by Eqn. (B.18), with material properties listed in Appendix C.
The crack was assumed to be a virtual crack, i.e., having a width ezual
to zero.

The coarse mesh, a 68 element x 82 node mesh, Fig. (D.2), assumed
“symmetry about the midplane and also uéed specified displacement load-

ing. Referring to Fig. (3.1b), the boundary conditions were:

at y = 0: v(y = 0,z) = =6 (3.3a)
aty =L: v(y=1,2) =6 (3.3b)
at z = 0: Traction free (3.3d)
at z=8: w(ly,z=8)=0 ' (3.3d)

The input parameters were taken the same as for the fine mésh, £qn.
(3.2).

The theoretical stress intensity factor, K1, for a mode-1 crack in
an infinite plate, Fig. (3.1), is given by [17] as,

2

Ky = 5(ra)/ (3.4)

and the relatior between the mode-! stress intensity factor, K1, and the

mode-1 energy release rate, Gy, for plane strain is given by [17] as,

KI = (——7 (3.5)

\Y

6,E 172
1-
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where E is Young's modulus and v is Possion's ratio. Since the theore-
tical stress intensity factor, Eqn. (3.4), is computed using the remote
stress, o, the applied displacement, §, must be converted to an equiva-

lent stress. From Eqn. (B.18) this relation is given by

Ee
g = 6yy = ;—-‘5% (3.6)
where
26 .
eyy = t— ) (3.7)

The finite element results for the tWo meshes considered are pre-
sented in Table (3.1). The stressés, G, were computed using Eqns. (3.6)
and (3.7). The comparisons of the predicted stress intensity factors
with the theoretical stress intensity factors is shown in Table (3.2).

The results indicated pure mode-I crack extension, i.e., -eo = 0° in

Fig. (3.1a), as expected. Note that theoretical values tor two differ-

ent initial crack lengths, a, are shown. The first crack length repre-
§ents the actual, initial, crack Tength and the second represents the

]

actual, initial, crack length plus the crack exﬁension. The two crack
Tengths were considered to demonstrate the errof incurred in using a
finite crack extension. That is, the theoreticg] energy release rate,
Egn. (2.1), is based on an infinitesimal crack extsnsion, i.e., limit
Aa + 0, whereas the finite element model introduces ﬂ finite crack

extension, 4Aa. The results of Table (3.2) indicated that the fine mesh

gave better results than the coarse mesh and that usiﬁg the crack length
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plus the extension in the theoretical stress intensity factor compared

better with the finite element results.

3.1.2 Mixed Mode Fracture of an Infinite Isotropic Plate

The problem of a mixed mdde crack in an infinite isotropic plate,
Fig. (1.2b), was“run as a test of the crack growth direction. Results
were compared with the results predicted by the Sih strain energy
density theory [2]. The mesh used consisted of 306 elements and 338
nodes, Fig. tE.l).

The. boundary conditions uséd were identical to those of the fine
mesh for the mode-I crack in an infinite plate, i.e., Eqns. (3.la),
(3.1b) and (3.1c). Referring to Fig. (3.1a), the input parameters:

a, 8§, L, B, and A were taken as,

0.50'' | _ .
a——'s-ﬁ—e“, L = 40a, B = 10a
§=0.001"", A=L/? ' ', ' (3.8)

while the crack inclination angle, B8, was varfgd from 30 to 90 degrees.
While simpie relations for the mode-1 stréss intensity factor, Kis

and the mode-II stress intensity factor, Kyps exist for the mixed mode

problem of Fig. {1.2b), reference [17] points out that there is no known

relation between the energy release rates and stress intensity factors

. ) i
for such a problem. Hence, discussion of the results for the mixed-mode

- crack problem of Fig. (1.2b) will be limited to the crack extension

direction.

B o e A e A At A bt e om0 T A
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The theoretical crack extension direction, 60, was computed from
the Sih strain energy density theory [18], by solving for eo from Eqgn.

(3.9), below:
2(1-v)sin(6_-28) - {esin[2(s -8)]} - sin20 = 0 (3.9)

Finite element results were generated for various crack inclination
angles, , through the use of the modified Griffith criterion, Section
2.2.1, the Sih strain energy density theory, Section Z;Z.é, and the
modified point stress and Hashin criterion, Section 2.2.4. A plot of
the theoretical and finite element crack extension direction, & , as a
function of the crack inclination angle, B, is shown in Fig. (3.2).

The resu{fs for the modified Griffith criterion were generated by
evaluating the value of the crack closure integral, through the use of
Eqn. (2.4), for all possible paths of crack extension present, e.g., see
Fig. (2.4), and assu&ing that crack extension would occur in the direc-
tion of a maximum energy release rate. The results consistently predic-
ted crack ex{;nsion in a direction in which the ﬁode-l energy release
rate, Gy(a), made up 99% or more of the total energy release rate.

The results for the Sih straiu energy density criterion were evalu-
ated using Eqns. (2.13) and (2.17). The strain energy density factor
was considered as the sum of two components [18], one due to a change in

volume, Sv’ and one due to a change in shape, Sd,»

S=5 +5, (3.10)
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The results always predicted crack extension in a direction in

which S>> S This conforms with the concept [18] that fracture

d.
occurs along a plane where Sv > Sd‘

The modified point stress cases were evaluated using Eqns. (2.20)

and (2.22) with
X, =Y, =0 ' . (3.11)

The crack was assumed to extend in the direction for which, R(¢), Eqn.
(2.20) was a maximum.
The results for the modified Hashin criterion were cenerated

through the use of Eqn. (2.33), with

T'M’ = Trd) = o, (3.12)

Crack extension was assumed to occur in the direction which maximized
the left hand.side of Eqn. (2.33).

A1l of the tested theories gave identical results, as indicated 1n
Fig. (3.25;A The small differences between the theoretical and finite
element predicted values was attributed to there being only a finite
number of crack extension paths available in the finite element model
compared to an infinite number in the analytical Sih theory. However,
the finite element model always predicted crack extension along the
closest available crack extension path to that of the theoretical crack

ertension direction.

L A2 TR ST B

lif '/;f-
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3.2 Off-Axis, Unidirectional Composite Tension Specimens. [
A tension test of a unidirectional coupon with a small crack pre- j;‘m‘
sent, Fig. (1.3a), was simulated as a test of the crack extension direc- j
tion. The mesh used consisted of 306 elements and 338 node points, Fig. ' é”
(0.1). Referring to Fig. (3.1a) and (2.7), the boundary conditions were i
chosen to simulate the grips of a tension test machine and are given by: % ]
at y = 0: v(y = 0,z) = -5, w(y = 0,z) = 0 (3.133)
at y = 2L: v(y = L,z) = 8, w(y = L,z2) =0 (3.13b) '. ;
at z = 0,2B: traction free (3.13¢) : ?gifi
The dimensions were chosen to be similar to a typical tensile coupon, T
i
(Reference [19] suggests L 2 308 be used.), and were taken as,
- “
8 = 0.25'" (3.14a) I
’ ‘J;l -
L/28 = 15 (3.14b) L R
N
i
CN
The applied displacement load was chosen to be, % o
!
(X} L, f e ’ i a
§ - 0.001"" = ‘3’7-5—0—(1n) (3.14c) \
The initial half-crack length was chosen as, ) . . [ —
0.005 in ‘
a = ——S'r—ng— R (3.14(!) v
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and the other parameters, the fiber diraction, 6, the crack inclinaticn
angle, B, and the crack position, A, were varied to simulate various
conditions. The problem was treated as being a case of orthotropic
plane stress with the constitutive relation being that of Eqn. (B.13).
The material system chosen was T300/5208 graphite-eooxy, preperties
listed in Appéndix C. The crack Qas assumed to be a virtual crack,

i.e., having zero initial width,

3.2.1 Comparison of the Crack-Extension Direction Theories for a 30°
Lamina
The theories for predicting tﬁé crack extension direction, i.e.,
the modified Griffith theory, Section (2f2.1), the Sih strain energy
.density theory, Section (2.2.2), the Tsai-Wu theory, Section (2.2.3),
the modified point stress theory, Section (2.2.4), and the modified

Hashin theory, Section (2.2.4), were compared against the expected crack

extension path for a 30°, off-axis, unidirectional tensile specimen with
a crack orientated along the z axis, i.e., 8 = 90° in Fig; (3.1a).

The predictéd crack extension path for the #cdified Griffith theory
is shown in Fig. (3.3a), the Sih strain energy dehsity criterion in Fig.
(3.3b), the Tsai-Hu theory in Fig. (3.3c), the mogified point stress
theory in Fig. (3.3d) and the modified Hashin theory in Fig. (3.3e).

The experimentally observed direction is shown in ngﬂ (3.3f). Experi-
\

mental results for graphite-epoxy [6, 7 and 8], Boron-aluminum [20], and

graphite polyimide [21], unidirectional comnosites all ﬁndicated that

failure of unnotched specmens and fracture of notched specimens

~
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occurred along planes parallel to the fibers. Fig. (3.3a) thru (3.3e)
indicate that the modified point stress and the modified Hashin theories
were the only theories that predjcted the correct crack extension path.
The reason that the modified Griffith, the strain energy density
and the Tsai-Wu theories predicted incorrect crack extension paths was

because none of these theories account for the differences in the energy

required to create crack extension surfaces at arbitrary angles to the
fibers. o g

Since the modified point stress and Hashin criteria were the only |
criteria to yield accurate results, further case studies were limited to

these two criteria.

3.3.2 Variation of the Modified Point Stress and Hashin Functions for a

30° Lamina.

The modified point stress function, R(ro,¢), was given by Eqn. f

(2.20) as ' SRS

g
- 90
R(rg»®) = 55 (3.15)

where o¢¢ was taken as the normal stress and T¢¢, defined by Eqn. §

(2.22), the <irength normal to a plane of possible crack exteﬁsion. The

modified Hashin function can be defined as H(ro,¢), where from Eqn.

(2.33), \
o, 2 o 2 : -
Hirg.e) = () + (T (3.16) Lo
#  Trg ' | i
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where or¢ was the shear stress and Tr¢ tha shear strength, Eqn. (2.34),

on the plane of possible crack extension.

Finite element predictions of R(ro,¢) and H(r0,¢) were computed as

a function of ¢ for three different values of o for the 30° lamina of

Section 3.2.1. (The finite element mesh, the boundary conditions and

the crack geometry were identical to those of the problem considered in -

Section 3.2.1). The values for the R(ro,¢) function were normalized to
their maximum valués and plotted in Fig. (3.4) for three different
normalized values of o The "o values were normalized withArespect to
rzax’ where rZax was the limiting value of ro for the finite element
mesh used, (e.g., see Section 2.2.4.4). The values for the H(r°,¢)
fﬁnction of the modified Hashin theory were also normalized to their
maximum value and were plotted in Fig. (3.3) for thé same three ndbma-
lized LN values. ” | |

The results of Fig. (3.4) and (3.5) achieve maximum values at ¢ =
210° for all of the various ro/r';ax values. Since;the criteria both
assume crack extension in the direction where R(r°;¢) or H(r°,¢) reach a
maximum, both criteria choose the expected Qa]ue of'¢ = 210°, (e.g., see
Section 3.2.1). Figure (3.4) and (3.5) also indicéte that the trends
remain unchanged though the values differ slightly fbr the three ro/r"gax
values. This indicates that the prediction of the crack extension
direction is fairly jnsensitive to the value chosen for‘{o. Note that
in the case of the modified point stress theory, Fig. (314), the maximum
value of R/Rmax increased with increasing distance from the crack tip.

This trend was just the opposite of what was expected since the stresses
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are actually singular at the crack tip, i.e., at ro = 0. The reason for
this discrepency is that as ro/rgax'approaches unity, the stresses are
computed nearer the element corners which introduces numerical errors in
the stress computation. This stands as a good example of why such
criteria are limited to the prediction of crack extension direction and
not the load which would cause crack extension. The values for the
normalized modified point stress ratio, Fig.‘(3.4) and the normalized
modified Hashin ratio, Fig. (3.5), for 0° < ¢ < =.180° were not shown
because of numerical difficulties in the computation of the stresses in
this regime. However, the modified point stress resu]fé seemed to
indicate a slight increase in R(ro,¢) for 0° < ¢ < 30° and some negative
values between ¢ = 30° and ¢ = 180°, Similarly for the modified Mashin
ratio, Fig. (3.5), the values for0° < ¢ < 180° seemed td indicaté slight
increases in H(ro,¢) around ¢ = 30° and ¢ = 12b° with some negqtive
values for o¢¢ betwgen ¢ = 30° and ¢ = 180°. pomparison of the modified
point stre;; ratio, R(ro,¢), Eqn. (3.15), ‘and the modified Hashin

ratio, H(r0,¢), Eqn. (3.16), reveal that ‘

'
|
i
i

’ t'z o"‘#’ 2 )
H(ry»8) = [R(rg»¢)1° + (+5) (3.17)
Hence, the differences in Fig. (3.4) and (3.5) répresent the effects of

squaring the point stress ratio,'R(ro,¢), plus the Ehear effect of

OW/TM. '\‘

including the square of the shear ratio,

emasioriess

[P—
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3.2.3 Crack‘Extension in Unidirectional Laminates

The modified point stress and the modified Hashin criteria were
used to predict the crack extension direction and the modi fied crack
closure technique was used to predict the energy release rate for
several different unidirectional laminates. The reason the study of
crack extension in unidirectional laminates was limited to the modified
point stress apd Hashin criteria was because they Qere the only triteria
which accounted for differences in the enerqy required to éreate new
fracture surféces at arbitfany angles to the material principal system--
as demonstrated for a 30° lamina in section 3.2.1. The mesh, boundary
conditions and material system were identical to those explained at the
beginning of section 3.2. A virtual crack, i.e., one having zero ini-
tial width, was assumed. The orientation of the crack was assumed to
be 8 = 90° and A = L/2, Fig. (3.1a).

AThe results are shown in Table (3.3) where 6 is the material prin-
ciple coordinate system orientation, ¢o the orientation of the plane of
crack extension, G is the total energy release rate, Eqn. (2.4), and the
% mode-1 and % hﬁde-l! values represent the mode-I and mode-II contri-
butions to the total energy release rate, G. The expected crack exten-
sion directions were based on experimental results for graphite-epoxy
[6, 7], Boron-aluminum [20], and graphite polyimide [21] composites,

The results of these experiments all indicated that failure of unnotched
specimens and fracture of notched specimens occurred along planes par-
allel to the fibers and that ¢o was always greater than 180° except in

the casé of 8 = 0°, where extension could occur in either a ¢0 = Q°
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or ¢o= 180° direction. The results of Table (3.3) indicate that both
the modified point stress and Hashin criteria choose the correct path of
crack extension in all of the cases considered. The fact that both
criteria also choose dual valqes of ¢o = 0°, 180° for the © = 0°vspeci-
mens was also promising sincevthis is what would be expected. While no
direct comparisdn of the computed energy release rates could be made,
the computed values were similar to and in the same range as experimen-
tal values obtained by Wang and Crossman [6] for double side notched
graphite-epoky specimens. The % mode-I and the % mode-II values were
also compared with the resu]ts'df Wang and Crossman [6] and were found

to exhibit the same trends and range of results.

3.2.4 Effects of Crack Orientation on the Fracture Characteristics of
Unidirectional Laminates
The finite element model was used to predict the fracture charac-
teristics of a 30°, unidirectional laminate. The cases considered were:
' |
1. Influence of crack position, referring to Fig. (3.1a), a crack near
the grip of the tensile machine was simu]aied by specifying
A _ . _ ono
that = = 0.1 with 8 = 90°, \ \
2. Influence of specimen aspect ratio, referring to Fig. (3.1a), a
A
short specimen was modeled having length L/2B = 2 with 8 = 90°,

|
3. Influence of crack orientation, referring to Fig. (3.1a), specimens

with B = 30°, B = SQ°, and B = 90° were considered,

Ny
-
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A1l of the ca§es assumed that a virtual crack existed and used the same
mesh, boundary conditions, loading, material and geometry, unless stated
otherwisé above, as described at the beginning of section 3.2.

The results of case 1, Table (3.4), indicated that the crack dfrec-
tion for the crack near the grip, A/l. = 0.1, extended in the same direc-
tion, ¢0, as did the center cracked specimen, A/L =.0.5, while the
energy release rates, G, and the % mode-l and .% mbde-II coﬁtributions to
the total energy release rate differed by 10-20%.

The case 2 results, Table (3.5), indicated that the crack extension
direction, ¢, Was insensitive to the specimen aspect ratio and that the
resulting energy release rates differed by about 20%. However, the type
of fracturg_that occurred was the oppnsite for the two cases. That is,
the long specimen, L/2B = 15,'fractured in a mainly mode-I fashion while
the short specimen, L/2B = 2, fractured in a mainly mode-II faéhion.

" This trend is not'surprising since Nemeth, et al. [19] have shown that a
completely diTferent stress state exists in short specimens, i.e., L/2B
=5, as compared to long specimens, i.e., L/2B = 15,

The rasults §f case 3, Table (3.6) predicted the same crack exten-
sion directions, ¢o’ and similar energy release rafes and fracture modes

for the three crack inclination angles, 8, considered. These results

are consistent with the experimental results of [6], [7], [20], and [21]

which indicate tha. fracture of unidirectional laminates always occurs

on planes parallel to the fiberS.
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3.3 Free Edge Crack Growth in Laminated Compcsite Tensile Specimens

Cracks located at the free edge of laminated tension specimens,
Fig. (2.10), were considered. The crack extension paths and the result-
ing energy release rate vs. crack length curves were considered.

The solution procedure consisted of obtafning a generalized pjane
strain solution of the front face, i.e., the y-z plane, under an applied
load of € x then;vusing the re§u1ts of the front face solution as
applied loads,_obtain a fracture mechanics solution to the free edge,
i.e., the y'-z' plane, via subsequent generalized plare strain solu-
tions. (The‘genera]ized plane strain formulation is described in Appen-
dix A.) |

Thé generalized plane strain solution of the front face was
obtained using a 132 element by 150 node finite element mesh, Fig.

(D.3). Referring to Fig. (2.103) and Eqn. (A.4), the boundary conditions

and geometry usad were:

B =0.25'", H=0.02", e, = 0001 . .  (3.18)
at y = 0,. Uly = 0,z) = V(y = 0,z) =0 ; ’ (3.18b)
at y = B, traction free : % : - (3.18c)
at z =0, Wy,z=0)=0 2 (3.18d)
at z = H, traction free : (3.18e)

where quarter symmetry was assumed.

Since the generalized plane strain solution asstes stresses and

strains to be independant of the out of'p1ane coordinate, the study of

N o
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the free edgé crack growth problem can be modeled exactly only when
there is no variation of these quantities in both the x and x' direc-
tions. Since the x-direction is the out of plane direction, Fig. o

(3.6a), for the front face problem and the x'-direction is the out of

plane direction, Fig. (3.6b), for the free edge probiem, the study is N
limited to cases which exhibit x and x' independence. The only lami- } -
nates which exhibit this quality are unidirectional laminates because of ;
the absence of edge effects. However, if the thru the thickness varia- | h
bles of the free edge problem, Fig. (3.6b), are assumed constant and fii:
LN
equal to the values at the free edge of the front face problem, i.e., at
'y = B in Fig. (3.6a), then the corresponding free edge boundary condi- § f:\
tions becomé Fig. (2.10), (3.6a), (3.6b), *
at y' =0, W'(y' =0,2') = ¥(y = B,z) (3.19a) : a
Vi(y' = 0,2') = -[U(y = B,z) + ¢ =(x =C}] (3.19b) s
at y' = b, W'(y' = 2C,z') = W(y = B,2) (3.19¢) ;1
Vi(y' = 2¢,2') = -[U(y = B,2) + € (x = -C)] (3.19d)
where 2C is the free edge modeled length. e
N
at z' =0, W' (y',z' =0) =0 (3.19%) R
at z' = H, traction free (3.19f) i £*~i‘
Rt
B
B
S e hd
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with:
U(y',z') = 0 (3.199)
Exk = Exk(z') = V(Y = B,2) | (3.19h)
and: ’
]
0 =0, - 90° (3.194)

Several laminate contigurations were considered as candidates for the
analysis of ffee edge crack growth. Tests were preformed to find which
Tamincte configurations could best be modeled as generalized plane
strain préb]ems on both the fror: face and the free edge. The tests

consisted of first obtaining the froit face solution then applying the

corresponding boundary conditions, Egns. (3.19-i), to an uncracked free

edge model. The results of the tests were analyzed to determine which
laminates gave the best correspondence between the stresses and strains-
at the free edge as well as approximated in&epepdence of the displace- ,
ments in the x and x' direcfions, Fig.‘(Z.IC),'for the front face and
free edge problems. The results indicated that{both angle-ply and
cross-ply laminate configurations gave a\reason%b1e cvrrespondeﬁce of
free edge stresses and strains. However, only the cross-ply config-
urations approximated independence of both x and ;',bFig. (2.10), under
the applied load. Hence, the anaiysis of free edge érack growth in this

study was limited to cross-ply laminates. }
' i

Experimental results [6, 22] indicate that laminates which contain

90° plys along with other plys where 9 # 90° can exhibit transverse

SRR
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craék érowth in the 90° plys and delaminations between the 90° and 0 #
90° plys; As an example of the quasi-three dimensional capabilities of
the finite element model the nature of crack growth in a [902/0235,
T300/5208,’graphite-epoxy tensile specimen was considered. Referring to
Fig. (3.7), both transverse crack growth and delamination crack growth A
were considered and the results of the two analysis were compared. The
method of analysis consisted of testing two cases. Case 1 was to trace
the crack growth of an initial transverse crack énd case 2 was to trace
the crack growth of an initial delamination. Both cases-used the boun-
dary conditions of Eqps.\(3.19a-c). The transverse crack case used the
crack geoméiry of Fig. (3.1b) and the delamination case used the crack
geometry of Fig. (3.8). Both cases were modeled as the free edge of an

8-ply tensile specimen with

B = 0.25in, H = 0.0lin, C =2H, a = 0.77H (3.20)
and an applied normal strain of, Fig. (2.10),
e = 0,001 (3.21)
XX 7

The modified point stress criterion, Section 2.2.4.1, was used to pre-
dict the direction of crack extension and the modified crack closure
method was used to compute the energy release rates.

The resu1tingAcrack growth séquence for the initial transverse

crack, case 1, is presented in Fig. (3.9). The case 1 results indicated

o e 2o e
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that the transverse crack extended through the 90° plys down to the 0°
plys when it turned into a delamination. Note that this does not neces-
sarily indicate that a transverse crack will turn into a delamination
but just that, if the transverse crack was *the only crack present and if
it was to continue to extend that it would extend as a delamination
before extending through the 8 = 0° plys. The plot of the correéponding
energy release rate vs. crack length is shown in Fig. (3.10). Point A
represents the initial crack length and point B represents the point-at.
which the transverse crack turned into a delamination. The critical
energy release rate for such a crack, is given by ¥Wang and Crossman [6]

for a mode-1 transverse crack in graphite-epoxy as

6y = 0.910-108 (3.22)
-in

Since the available energy release rate curve, fig. (3.10), was less

in.1bs

than 0.6 for the entire crack extension sequence, the crack would

not have elgended at the applied load level of €x = 0.001. However, if
the load were increased the G vs. a curve would have transletea up,
retaining the exact same shape,[6], C-D in Fig. (3.10) for example, and
would have predicted crack growth until the crack length was such that
the available energy release fell below the critical energy ré]ease
rate. Regardless of applied load, however, the shape of the G vs. a
curve, Fig, (3.10), indicates that G is decreasing with increasing a.

Hence, there exists a certain range of Exx values for which the trans-

verse crack would grow then arrest when G falls below G.. This trend is
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supported by many experimental results of [6, 227, for example, which
show that transverse cracks will grow through the 90° plys, arrest and
form other transverse cracks at regular spacings.

The results for the initial delamination crack, case 2, indicated
that the initial delamination would immediately turn into a transverse
mode. In comparing the point stress ratios of the initial delamination
crack with the initial transverse crack at the point it turned into a
delamination, it was found that the point stregs retio was roughly two
times larger for the de]émination turning into a transverse crack than
for the transverse cr?ck turning into a delamination. This indicates
that if both a delamination and a transverse crack were present in a
given‘specimen, the delamination would turn and grow into a transverse
crack before the initial transverse crack would extend. This trend is

supported by the experimental results of Harris and Orringer [22], which

_indicate that transverse cracks can branch off from delaminations.
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Chapter 4
CONCLUSIONS

The present investigation has been concerned with predicting the
direction of crack extension as well as the load to cause extension in
composite materials. The results of the present study indicate that
failure criteria can be used to predict the direction of crack extension
and that an energy release rate approach, implemented through the use of
a modified crack closure integral, can be used tovdetermine when a crack
extends and if crack arrest will occur. The finite element models
presehted herein were formulated for two-dimensional and quasi three-
dimensional analysis. However, the procedures and methods developed can
be applied tokfull three-dimensional analyses as well.

It was‘found that criteria for predicting the direction of crack
‘extension should account for differences in the energy required to
create crack surfaces at arbitrary angles to the material principal
system. The Griffith criterion, the Tsai-Wu failure criterion and the
Sih straiﬁ'énergy density theory all were unsatisfactory in this regard;
buf the modified point stress and Hashin criteria provided good predic-
tidns for crack growth direction. It was also found that since the
procedure deveYoped.herein assumes that crack extension will 6ccur along
the element sides édjacent to the crack tip node, an incorrect direction
of extension can be chosen if no element sides coincide with the actual
direction of extension. However, the mode! always chooses the closest

direction available to the actual direction of extension. This problem

i 88 C:-—'Zd
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can easily be overcome by first finding an arproximate direction of

extension using a coarse mesh then refinirg th: mesh in the area of the

direction chosen by the coarse mesh.
The present investigation has also shown that future research is
warranted in the following areas: »

1. The extension of the current work into a full three-dimensiénal
model. A full three-dimensional model should be formulated to |
account for the three-dimensional crack growth characteristics .of
many laminates,

2. Experimental work fn)the area of critical e-~.gy release rates.

~ Experimental work should be performed to determiﬁe the effect on the
critical energy release rate of cracks extending at arbitrary angles
to the.materiq1 principal system so that the load to cause failure

can be accurately defined.
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APPENDIX A

Linear Elastic Finite Element Relationships

The finite element used is shown in Fig. (A.i). The element is a
four node, general quadralateral, isoparametric element. The element
uses linear interpolation as described by Segerlind [23]. The details
of the finite element concept are also gfven in reference [23]. The
technique involves mapping a distorted shape in the Cartesian (y,z)
Coordin&te System into a square in the local (&,n) Coordinate System
where £ and n range from -1 to fl. The relationship between the global

Cartesian and the local coordinates is

aade
]

]

=NY)H NpYp H NgY3 H NgYg = NiYy T =14 -~
1;4 (A1)

-<
1

N
I

= lel + szz + N3Z3 + N4Z4 = NiZy

1
=
~

-
i
n

where the Ni(E, n) are the interpolation functions for the four node
points and Y;,Z; are the Cartesian coordinates of the nodes. The inter-

polation functions are given by f
X

3(146) (1)

206y () (A.2)
o

N =418 (10), N,

Ny = F(14E) (1), Ny

For an isoparametric element, the same interpclation functions are used
» L |

1
for the assumed displacements as for the geometry. Hence, for plane
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stress or plane strain, whe-e there exists two unknown degrees of free-

dom per node, the interpolation becomes

v(y,z) = Njv

w(y,z)

i

N‘w.; is= 1,4 (A.3)

For generalized plane strain, where there are three degrees‘of freedom

per node, the interpolation is Jiven by

| u(x,y,z) = U(y,z) + Exx"X = Nju; + €y X i=1,4
V(xs.YsZ) = V(y,z) = Nivi i=14 (A°4)
w(x,y,z) = W(y,z) = Njw; i=1,4

where u, v and w are the X, y and z displacements, respectively, Uiy vy
and w; are the unknown values at the ith node and are functions of y and
z only, and exx is the total strain in the x directioﬁ, which is assumed
to be constant and either known or unknown,

The strain-displacement relationships are derived based on the
small strain - small displacement theory. For thé three dimensional

(generaiized plane strain) case, these relationships may be written as




96 ORIGIAL PAGE 3

OF POOR QUALITY

—3 —
ex;w X 0 0
€ 0 3 0
yy y
o
. EZZ 0 0 -3—'2- u
< o ~ 3 a [ !
sz = 0 -57 -a—y- v (A.J)
'} 3
Txz oz 0 X W
Y a8
LX) R

And for plane strain or plane stress these relationships become

]
€ - 0
yy %y . ,
Tyz oz 3y _ L \ '

Substituting (A.4) into (A.5), for generalized plane strain,

-~ [ N
EXX Bx 0 0 . EXX
9 )
€ 0 0 ,l 0

yy R |
€, ; 0 0 37 : ;\ ] 0 {

1 3 9 :

Y = T [xN1|1N2|1N3|1N4]{q} +10 (A.7)
yz 3 0 2 ' 0

Yxz 3z X \

Y 201 o K 0

L XY Ly — \ L .

where
I is the 3 x 3 identity matrix - \

{q} is the 12 x 1 vector of nodal displacements

given by




Substituting (A.3) into (A.6), for plane stress or plane strain,

Yy

zZz

yz

. where

T is the
{q} is the

g
M

W
L4

o
3y

0
d
9z

7Y o
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LN, 110, 18, |10, 3(3)

2 x 2 identity matrix

8 x 1 vector of nodal displacements given by

(A.8)

(A.9)

P e et i e
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on
Wy
» v
W2
{a} - v3 - (A.10)
W3

vq

[Wg

The B] matrix (strain-displacement relationships) for generalized plane

strain can be defined as

L 2
XX
- 0
0
{e} = BMq;  + 0 (A.11)
(6x1) (6x12)(12x1) 0
0
. J

where by comparing (A.11) and (A.7), for generalized plane strain,

i \
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™5 1
% 0 0
o &
dy
]
0 0 Y13
] ]
[B] = 0] 37 ry [INI!INZIIN3IIN4] - (A.IZ)
9 0 ¥
3z X
132 9 .
3y a0

For plane strain or plane sthess, the [B] matrix can be writtei. as

{e} = (8Y{a}. - : (A.13)
(3x1) (3x8)(8x1) '

Comparing (A.13) and (A.9), for plane stress or plane strain,

3
E ,
d
(81 = 0 37|  [INp[INp|IN3|INg] | (A.14)
) .
%z %y

|
f
i
'

i)
| i

Recall from {A.2) that the N; are f:unctions-of the local cbordinates

€ and n., In order to determine the e]emenfs of the [B] matrix a rela-
tionship between the derivatives in the glob\‘a] (y,z) and the local

(&, n) coordinate systems is needed. This‘réle;\‘ﬁonship is given by the

Jacobian matrix [J] of the transformation where .




s b
oN.
;
Jy
1. [ =b1!
aN,
k]
L2
and
3y
3E
(91 =
3y
on

Substituting (A.1) into (A.15)

p

g 3

p1= |
. N1 3N2
. dn

oN

3
13

n

)

Lo g el
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(i=1,2,3,4 (A.15a)
(A.15b)
-y y Y4
oN, 1A
oE Yo %2
(A.16)
an,
ol Y3 %3
S|V oz

The stress-strain relationships are derived in Appendix B. For

general purposes they can be written as

{o} = [01{e}

(A.17)

For generalized plane strain, {co} and {¢} are 6 x 1 vectors, and are

given in Appendix B by Eqns. (B.9) and (B.10), respectively.

for generalized plane strain, the [D] matrix takes on the values of

the [C] matrix as given by Eqn. (B.8). For plane stress or plane
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strain {0} and {e} are the 3 x 1 vectors given by Eqns. (8.14) and
(B.15), respectively. For orthotropic plane stress the [D] matrix takes
on the value of the 3 «x 3 [G] matrix of Eqn. (B.13), while for isotropic
plane strain the [D] matrix becomes the 3 x 3 [C] matrix of Eqn. (B.18).
>The total potentialvenergy, n, of a given finite element is the sum
of the stréin energy, U,.and the work of externa! loads, W. The strain

energy, U, of the element is

U= % [ lole}av | (A.18)
Vo

and the work of external loads, W, is

T

W= -fallF) (A.19)

where {F} is applied mechanical load, (tracfion), vector,

Hence, the total potential energy of‘the element is given by
’ T

m=U+W t L (A.20)
% i -
Substitution into (A.20) in terms of the matricies and vectors described

\ ‘\
herein and minimizing with respect to the unknowns yields the finite
\\: .
element equations

[{]
———m
-
——

r<la} (A.21)

B S VY X b e T
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where [K] is the elemental stiffness matrix given by

x1- | (81'[oI(BIe  (A.22)
when mapped into the &,n coordinate system
dv = |J|dEdn o ' (A.23)

where |J] is the determinate of the Jacobian matrix. The limits of

integration are -1 to +1 in both & and n. Hence, Eqn. (A.22) becomes

11 11 |
[K] = { { [B1'[DI[BI|J|dEdn = { { 6(E,n)dEdn (A.24)

In order to evaluate the stiffness matrix, [K], a numerical integration

is necessary. Using a 2 x 2 Gauss rule Eqn. (A.24) can be evaluated as

2
[kKl= 2

2
£ H.H.G{a,,b. .
i=1 j=1 '3 2405 (A-25)

" where 6(£,n) = [81 [DI[BI}J] “ (A.26)
(ai’bj) are the coordinates of the four Gauss points given by
1 /1
3 3
. (L ]} )
J U343

i

aj

(A.27)

[~
§




103

and (Hi,Hj) are the corresponding weight functions given by

Hi 1,1
Hj 1,1 (A.28)

H

The elemental matricies are then assembled into a global system of
equations, the prescribed boundary conditions are imposed and the system
of equations is solved for the unknown displacements. (This procedure
is explained in most finite element books [23].)

| The strains can be found at any §&,n location within an element
through the use of Eqn. (A.7) for generalized plane strain and through
Eqn. (A.9) for plane stress of plane strain. The strains can be conver-
ted to stresses by using the stress sfrain relation of Eqn. (A.17) where
[D] takes on the values of the appropriate con;titutive relation (Appen-

dix B).
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APPENDIX B
CONSTITUTIVE RELATIONS
The const‘tutive relation for an orthotropic material in the prfn—

cipal materiil directions, Fig. (B.1), is given by Jones [24] as

{o}, = [cI{e} _ 4 (8.1)
1 1
where
. b
11 G2 &3 0 0 o0
Cop €3 0 0 0
[cl = 33 0 0 o (B.2) -
C44 4] 0]
(symmetric) Cgg O
}
(o, ] 3 !
011 i :
, ( !
%2 L
033 i i
{a}l = ] Tos \ \ (B.3)
13 \
lej '

104
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‘22
€33
4 -
fely = r2s - (B.4)
"13
.
[ 12,
POV SRS T 110 PSS M P
117 E > Y12 TE A 13 7 E Epb
S e WP % M) ut S 121221 (5.5)
3 ] [
22 = E[E, 00 * 23 T E 33 T E A
C4a = G232 Cs5 = 613, Cgg = 612
PR V20 M <\ VI YAS NS W AR
E11F2233
and
2.2
E11 E22
\Y \Y
13 31 |
= = = (8.6)
E1l £33
23 . 32
F22 E33
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For a 6 rotation about the 3, (z), axis, Fig. (B.1), the consti-

tutive relation becomes

{o} = [N} (8.7)

where

- | ., 0 0 ¢C (8.8)

p—t—
Q
S——
]
—n

- (B.9)

~

{e} = Y o ‘ (B.10)

Lnya
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If m = cos 6 and n = sin 8 then the components of the [C] matrix are

given by

611 = m4C11 + 2m2n2(C12+2C66) + n4C22

612 = m2n2(011+C22-4C66) + (ma+n4)C12

613 = m2C13 + n2C23

€1 = M7 (C;yC1p-2pg) + 02 (C1p-Cppt2Cyp)]
C,, = 0ty + WOn7(C) 4 24) + 1Ty,

L]

. 2 2
Co3 =N Cyg + mCys

~ 2 2 ,
Cpp = MNIN°(C =, ,2Ceg)4n” (C 5-Cop+2C,6)] (B.11)
Cy3 = C33
Cyg = mn(Cy3-Co3)
€,, = mzc +‘n2C

a4 a4 55

Cag = mn(Cg5-Chy).

2 2

Cgg = N Cqq + M Cq

. 2 2 2 2.2

Cee = m n (C11-2C15+Cop) + Cgglm -n7)

For an orthotropic material under a state of plane stress with
a 8 rotation about the 3, (x) axis, Fig. (B.2), Jones [24] gives the

constitutive relation as

{o} = [O{e] J (8.12)
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Figure B.2 Material And Giobal Coordinate System
For A Two-Dimensional Lamina




- 10
where
PR PRLT:
) = UPEEUP I

{o} _ {%2z

1]
R4

Eqn. (B.11) by

' i i37i3 >

B = T - o
33 :

{ -

\
[16] listz the constitutive relation as

{o} = [C{e}

ORIGINAL PGl E.:a
OF POOR QUALITY

(B.13)

AtB.M)

(B.15)

and the Qij terms of Eqn. (B.13) are given in terms of the'Ci. terms of

J

(B.16)

i ’ .
For an isotropic material under plane strain, Frederick and Chang

(8.17)
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where

(B.19)

——
Q
Nyt
i

A
Q
L 4

{e} = | 4 €.t (8.20)

| Y2

and

o = vio +o_) (8.21)
zz byy zz




APPENDIX C
MATERIAL PROPERTIES
The material properties for graphite-epoxy T300/5208 are given by Nagar-

kar and Herakovich [25] as

Elastic Moduli

Eyp = 19.2 x 100 pgi, Fpp = 1.56 x 106 psi, Egq = 1.56 x 106 psi

~ Shear Hoduli
Gp3 = 0.487 x 108 psi, G5 = 0.820 x 106 psi, G, = 0.820 x 105 psi

Possion's Ratios

Vo = 0.490, Vi3 = 0,238, Vip = 0.238

. Strength Parameters

i

Xr = 219.5 x 103 psi, ¥y = 6.35 x 103 psi, Z; = 6.35 x 103 psi

-23.85 x 103 psi, Z; = -23.85 x 103 psi

Xe = -246.0 x 10% psi, Y

Se3 = 9.8 x 10% psi, Sy3= 12.6 x 103 psi, S;, = 12.6 x 103 psi

- The material properties for the isotropic problems considered were

chosen to be
E=30x 106 psi, v =0.20, o =50x 10° psi

where %y is the ultimate strength of the material.

112
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APPENDIX E
ON THE RELATIONSHIP BETWEEN FREE-EDGE STRESSES AND
THE DIRECTION OF CRACK EXTENSION IN ANGLE-PLY LAMINATES

It was originally thought that the free-edge stress state could be
used to predetermine the direction of crack extension.

Herakovich [7, 8], for example, has demonstrated that the crack'
types present on the free-edge of tension specimens seem to exhibit
distinct crack growth patterns direction of extension for different
angle-ply laminates. To account for this effect it was thought that the
orientétfsn of‘the prindipé] stress plane on the free edge would follow
along the same path as the crack plane when traced through the laminate
thickress. To test this premise, the orientation of the_crack
plane, ¢p’ through the laminate thickness was compared with the through
the thickness variation of the principal stress plane. A generalized
plane strain solution of the front face, Fig. (3.6a), was obtained using
the same geometry, . loading and boundary_conditions as given in Section
3.3. Cnly the stresses in the plane of the free edge were considéred,
i.e., O x’ %2z and L in Fig. (2.10). It was assumed that the thermal
curing stresses were balanced by the hygroscopic stresses in the lami-
nate so that only mechanical loading be considered. The material con-
sidered and experimental crack plane orientation was that of Herakovich
[7] (the material was the same T300/5208 graphite-epoxy of this report--

with properties listed in Appendix C). The orientation of the principal

117
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plane, ¢p’ was calculated through

1, -1 Z'xz -
¢p = 27C° - -Ztan [a,"—:b——] ‘ (E.l)
XX 2z
The results for four laminate configurations are presented in Fig,
(E.1a-d). The multi-valued angles, ¢p’ at z/H = 0.5 represent the
effect of a crack turning into a delamination at that. point, Fig.
(E.1a-d) indicate that only in the [90,/05]s case did the theory agree
with the experiment. Hence, it was concluded that the direction of

crack ‘extension could not be preditted through the crack free stress

state but that an actual crack must be introduced.

e ———— e ¢ =
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APPENDIX F

COMPOSITE LAMINATE FRACTURE MECHANICS (CLFM2D)

INPUT DATA SEQUENCE

Cards 1 & 2: title cards (20A4)

Column

1-80 ITITLE (I,d)

Column

1-5

6-10
11-15
16-29

- 21-25
26-30
31-35

Contents
Title
Card 3: Control card (1115)
» Contents
NPROB - problem type (1 = generalized plane
strain, 2 = skewed plane stress,
3 = orthotropic plane stress, 4 = iso-
‘tropic plane strain)
NEM Number of elements in mesh
NODS Number of nodes in mesh
NANG Number of different angles - must be
> 1 ‘
NSDF Number of specified degrees of freedom
NSBF Number of specified;forces (tractions)
NEXX. Number of different E , - must be > 1.
120
y




36-40

41-45

46-50

51-55

56-60

Colum
1-10
11.20

121

NFX Fracture mechanics key
NFX = 0, no fracture analysis
NFX # 0, fracture mechanics problem
NPLOT Plot key
NPLOT = 0, no plot
NPLOT = 1, undeformed plot only
NPLOT = 2, deformed plot only h
NPLOT = 3, both deformed and
undeformed plots
NT1 ~ Dump file for displacements
NT1 = 0, no dump
NTl # 0, dumps dispjacements to
unit NTI
NT2 | Dump file for strains, stresses and
strain energies |
MT2 = 0, no dump
NT2 # O, d@mps to unit NT2
NCHECK NData check oétion (NCHECK } 0 - data
» cheék onlyj

\

Scale factors (2010.5) | NN
Contents ﬁ'\
SCAY Y-scale factor k
SCAZ . - Z-scale factor 1
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Card 5: Printer control card (5I5)

Column
1-5 KEY (1)
6-10 KEY (2)
11-15 KEY (3)
16-20 KEY (4)
21-25 KEY (5)
26-30 KEY (6)
Note:

Contents

Key for

Key for

Key for
data
Key for
Key for

Key for

strain energies

If KEY (1) # 0, print

printing
printing

printing

printing:
printing

printing

element data
nodal data

specified displacement

specified force data
nodal displacements

strains, stresses and

Card 6: Plotter scale factors (4D10.5) - skip if NPLOT = O

Column
1-10
11-20
21-30
31-40

Lard 7:
Lolumn
1-10
11-20
21-30

- 31-40

PVSCL

PZSCL
VMAX
WMAX

Contents

Plot Y-scale factor

Plot Z-scale factor

Maximum Y-displacement

Maximum Z-displacement

Material property card 1 (6D10.5)

PROP (1)

PROP (2)

PROP (3)
PROP (4)

Contents_




41-50
51-60

Card 8:
Colum
1-10
11-20
21-30
31-40
41-50
51-60.

Column
1-10
11-20

PROP (5)
PROP (6)

123

Material property card 2 (6010.5)

PROP (7)
PROP (8)
PROP (9)
PROP (10)
PROP (11)
PROP (11)

Angles (8D10.5)

ANG (1)
ANG (2)

ANG (NANG)

. Q.

Contents
vas
V13
°12
%!
*22
33

Contents

Angle No. 1 (in degrees)
Angle No. 2 (in degrees)

Angle No. “NANG" (in degrees)
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Element data (5x, 1415) repeat "NEM" times

Contents

Blank (can put in element numbers)
Node No. 1 of element 1!
Node No. 2 of element 1l
Node No. 3 of element Il
Node No. 4 of element 1!

Angle number of element 12

e, number at local node 13

XX

€yx number at local nodelz3
ex* number at local node 33
€y Number at local node 43
Stress outﬁut'locétion 14
Stress output location 24
Stress outpuﬁ‘locatiqn 3t
Stress outpu; location 44
Stress outpu% location 5%

1
[
! \

i

Refer to Fig. (F.1) for node numbering sequence.

Refer to Fig. (F.2) for angle orientation.

€ x numbers correspond to those of Card 16.

Card 10:
Column
1-5
6-10 WOD (I,1)
11-15  NOD (I,2)
16-20  NOD (I,3)
21-25  NOD (I,4)
26-30  IANG(1)
31-35  IEPS (I,1)
36-40  IEPS (I,2)
21-45  1EPS (1,3)
46-50  IEPS (1,4)
51-55  ISTRS (I,1)
56-60  ISTRS (I,2)
61-65  ISTRS (1,3)
66-70  ISTRS (I,4)
71-75  ISTRS (I,5)
1.
2.
3.
4,

Stress output locations shown in Fig. (F.l).
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~ Card 15: Temperature data (1010.5)

. RIGINAL PACE IS
127 8,: POOR QUALITY

Card 11: Nodal data (5x,2010,5) - rebeat “NODS" times.

Column Contents
1-5 Blank (can put in node numbers)
6-15  Y(I) Y coordinate of node I

16-25 (1) 7 coordinate of node I

Card 12: Specified displacement data (115,010.5) - repeat "NSDF" times

and skip if NSOF = 0.

Column B Contents

1-5 ND _ Node number

6-10 IDR ‘ | Dirécfion (1}= X, 2=y, 3 =12)
11-20  UBDF{I) Specified displacement value

Card 13: Specified force data (215, N10.5) - fepeat "NSBF" times

and skip if NSBF = O,

T
Column ' ' Contents !
1-5  ND : Node .number ,
6-10 IDR Direction (f3= X, 2 =y, and 3 = z)

11-20  UVSF(I) Specified force value
\ \

Column : : Contents

1-10  TEMP Temperature change




128

Card 16: Normal (x-direction) strain data (8010.5)

Column - : Contents
1-10  EPSX{1) € x value No. 1
11-20  EPSX(2) € x value No. 2
EPSX(NEXX) - Exx value No. "NEXX"

*if NFX = 0, end of data

- Card 17: Fracture control card (615,2010.5)

Column Contents
1-5  NODE Initial crack tip node numberl
6-10  NODE1 Secondary node No. 11
11-15 NODE2 ~ Secondary node No. 2!
16-20  NSE ‘ Number of stop elements (must be > 1)
21-25 - NSN Number of skip nodes (must be > 1)
- 26-30 NCRT ‘ Fractuye criteria
NCRT =1 Griffith
NCRT = 2 Sih-strain energy density
NCRT = 3 3-D point sfréés
NCRT = 4 2-D point stress
31-40  ANOT - Iritial crack iength

41-50  TMAX Maximum run time (CPU-seconds)

1. Refer to Fig. (F.3) for crack nodes description.
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Card 18: Stop element datal (1615)

Column : Contents

~1-5  NSTOP (1) Stop element No. .

6-10  NSTOP (2) Stop element No, 2
NSTOP (NSE) . Stop element No. "NSE"

Card 19: Skip node data? (1615)

Column Contents
1-5  NSKIP (1) Skip No. 1
6-10  NSKIP (2) Skip node No. 2
NSKIP (NSN) Skip node No. "NSN"

1. Stop elements terminate the solution when they are reached -
used to prevent tear through.

2. Skip nodes are u;ed to eliminate the designated nodes as
crack growtﬁ possibilities - used to prevent tear through

and the crack from growing back on itself.
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Column

1-10  STRENG (1)
11-20  STRENG (2)
21-30 STRENG (3)

131

Card 20: Strength properties (3D10.5)

Contents

- - -

PP




