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ABSTRACT

B A shear deformable finite element is developed based on generalized
(i.e., account for shear deformations) first-approximation shell theories.
Numericél reéu]ts are presented for bending of layered, anisotropic,
composite shélls. ‘Various shell theories (e.g., Sander's, Love's,
Donnell's, etc.) are included as special cases of the present element,
and can be obtained by giving numerical values to appropriate tracers.
The present finite-eTement solutions are compared with the exact solu-
tions for certain shell problems, and other solutions available in the
1iterature. The agreement is found to be very good. Numerical results
showing the effect of orientation of layers, boundary conditions, and

material orthotropy on deflections are presented.

INTRODUCTION

Composite materials and reinforced plastics are increasingly used
in automobiles, space vehicles, and pressure vessels. With the increased
use of fiber-reinforced composites as structural elements, studies
involving the thermomechanical bebavior of composite-materié] shells are
receiving considerable attention.

The first analysis that incorporated the bending-stretching coupling
(due to unsymmetric lamination in composites) is due to Ambartsumyan
[1,2]. In his analyses Ambartsumyan assumed that the individual ortho-
tropic layers were oriented such that the princiﬁal axes of material
symmetry coincided with the principal coordinates of the shell reference

surface. Thus, Ambartsumyan's work dealt with what is now known as
e

laminated orthotropic shells rather than laminated anisotropic shells;




in laminated anisotropic shells the individual layers are, in gene-al,
anisotropic and the principal axes of material symmetry of the indi-
vidual layers do not coincide with the principal coordinates of the
shell.

In 1962 Dong, Pister and Tay]or (3] formulated a theory of thin
shells laminated of anisotropic material. The theory isian extension of
the theory developed by Stavsky [4] for laminated anisotropic plates to
Donneil's shallow shell theory. Cheng and Ho [5] presented an analysis

~of laminated anisotropic cylindrical shells using F]Ggge's shell theory.
A first approximation theory for the unsymmetric deformation of non-
homogeneous, anisotropic, elastic cylindrical shells was derived by
Widera and Chung [6] by means of the asymptotic integration of the
elasticity equations. For a homogeneous, isotropic material, the
theory reduces to the Donnell equations. An exposition of various shell
theories can be found in the article by Bert [7].

A1l of the theories discussed above are based on Kirchoff-Love's
hypotheses in which the transverse shear deformation is neglected.
Recent studies in layered anisotropic plates show (see the survey paper
by the author [8]) that transverse shear deformation effects are more
pronounced in composite plates and shells tnan in isotropic plates and
shells. The effect of transverse shear deformation and transverse
isotropy, as well as thermal expansion through the shell thickness were
considered Ey Zukas and Vinson [9] and Dong and Tso [10]. The theory in
[10] is only applicable to layered, crthotropic, cylindrical shells
(i.e., the orthotropic axes of each layer coincide with the coordinate

axes of the shell). Whitney and Sun [11] developed a shear deformable
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theory for laminated cy]indfiéa] shéiis that includesAbofh transverse
shear deformation and transverse normai strain as well as expaﬁsiona]
strains. Recently, Widera and Logan [12,13] presented refined theories
for nonhomogeneous anisotropic cylindrical. shells. |

As far as the finite-element analysisiof shells is concerned,
layered composite shells have not received nearly AS‘much attehtion as
ordinary shells. The works of Dong [14] on statically-loaded ortho-
tropic shell of revolution, Dong and Selna [15] on free vibratfon of the
same, Wilson and Parsons []Gj on static axisymmetric loading of arbi-
trarily thick orthotropic shells of revolution, and Schmit and Monforton

[17] on laminated anisotropic cylindrical shells are the only ones that

considered the finite element method before 1970's (note that the latter

reference is the only one that considered laminated anisotropic shells).
In 1970's there was an incrcased interest in the finite-element analysis
of bending and vikration of laminated anisotropic shells. Apparently

the first finite-element application in laminated anisotropic shells of

arbitrary gecmetry is due to Thompson [18], who presented free (i.e., natural)

vibration of general laminated anisotropic thin shells. vOther finite-
element analyses Qf layered anisotropic composite shells iﬁciude the
works of Panda and-Nataréjan [19], Shivékumar and Krishna Murty [20],'
Rao [21], and Siede and Chang [28]. '

The present paper is concerned with the development and apb]ication
of a shear deformable shell element for the behding analysis of layered

anisotropic shells. The shear-deformasle theories used herein are

generalizations of various classical shell theories, which are believed ‘

to be adequate for the prediction of overall response of layered

composite shells. In the present investigation, several first-order
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shell theories'(Sanders, Love's, Loo's, Morley's and Donnell's) are

considered and transverse shear strains are accounted for. For certain
boundary conditions, lamination scheme and loading, exact form of the
spatial variation of solutions are are obtained and are compared with

the finite-element solutions.

GOVERNING EQUATIONS

Consider a shell constructed of a finite number of homogeneous,
uniform thickness léyers of an orthotropic material. Let
tﬁe x-y surface coincide with the lines of the principal curvature of
the midsurface of the shell, with z-axis normal (positive outward) to
the midsurface of the shell (see Fig. 1). It is assumed that all of the
layers ir the shell remain elastic during the deformation, the Gener-
alized Hooke's law is valid, and that no slip occurs between any two
layers.

The displacement field in the shell is assumed to be of the form

u(x,y,2) = u (x,y) + z y (x,y)

v(x,y,2) = v (x,y) + z vy (%) (M

wWix,y,2) = wiix,y) +z v, (x,y)

where u, v and w are.the total displacements along x, y and z-direc-
tions, respectively; o> Yo and w, are the displacements of a point in
the coordinate surface along x, ¥ and z coordinates; wx, wy and wz are
the bending rotations. The displacement field in-eqn. (1) can be
replaced by one containing the higher order terms in z (see, for example,
Whitney and Sun [11]). However, the improvement one obtains in the

prediction of the transverse shear deformation is at the expense of

~computational time (several additional dependent unknowns are introduced

in the higher-order theories).
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Figure 1. Differential element of a doubly curved shell.
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Strain-displacement relationships for shells are very complex and a

detailed derivation cannot be attempted in a paper of this fype. References

to Various shell theories are made in Table 1. The strain- ,
displacement relations for large- rotétion:(sma]] strains)'theory of |

shells can be simplified to the form

ey = ey +2e5 5 (i = 1,2,4,5,6), ' ' (2)
where ,
ou w oW u
o__0_,70_1 0, _032
9w Rtz )
A e TR,
oV ] aw v
0 1 0 0,2
€y = Tt ==+ 5 (—= + =),
2 3y R2 2 Y3y R2
Oeo, Mo, My, Yo Mo 0,
6 ay X 3x R] 3y R,"?
ow v
0. 9 _ 0
€ =¥y Y3y - G R,
- oW u
= 9 _c. 0
€5 = ¥y * 3x G R1 :
3"’x. ¥, 1 4, 0
K]~-5_X—+§T+'TI(W+R)’
¥ av
z , 1 0 0
Ky = + =+ 0= ( )s
2 23y R2 R2 3y R
ay Y v su
= X 1. _143/. 0_ %0
X6 = 3y * 3x C, (R - R1)(ax 3y )s
K4=K5=0. ; o . ’ - (3)

The underlined terms correspond to large rotatjons. The constants C]
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and C2 are shell-theory tracers to be defined shortly (i.e., different
values of C.i trace different shell theories in the literature), and R-l
and-R2 are the principal radii of curvature of the shell. The trans-
verse normal strain €33 is given by
. 1,2, 2 ” :

€33 = ¥, t7 (U * wy)' ' . (4)
In the present study we make the assumption that €33 = 0, or'equiva-
lently,

. 1,2 2
vy s s plu e ).
However, note that, the transverse shear strains are accounted for in
the present theory. We also assume that ui/R] and ui/R2 (for u; =
2 - s .

uo,vo), "o/Ri and wzlki are smali compared to the other quantities in ¥
(i = 1,2,6) and are neglected in the subsequent equations.

In the absence of body forces and moments, the equiiibrium equa-

tions ‘associated with a 1ayéred anisotropic shell can be simplified to

“the form (consistent with the assumptions made above),

Ng,x * Na,y * Qa(Ca/Ry) + L(Cy-C3)/Ry - Co/R Mg, = 0,

Q]'x * QZ,.Y - N]/R] - NZ/RZ * N(W’N'HM]) = P,
) (5)

—— _N...._,___._.;zé

5 A s et e . i oo e e 1L

A




where Ci are the shell-theory tracers given in Table 1 and Ni and Mi (i
= 1,2,6) are the stress and moment resultants defined in the customary
way for a first-approximation shell theory (z/Ri << 1) as

h/2
(R M) = f—h/z (1,2)0; dz (6)

where h is the total laminate thickness, and o; are the stress com-

ponents. The shear stress resultants Qi are defined analogously:

h/2 ,
(01 :Qz) = f h/2 \05,04)d2. (7)

The nonlinear operator N(-) is defined by

M, 3w M. 3w
=2 o _ .6y 0
N(Ni'w) Y3 [(Nl - Rl)ax * (N6 Rz)ay ]
M, ow M. ow ‘
) 2,\°"0 6y 0
+ 3y [(Nz - "R'z-)'.;y— + (N5 - W]-)'a—x—] (8)

Table 1 List of shell-theory tracers

Theo~y C] C2 C3 C4
Sanders [24] 1.0 0.5 1.0 1.5
Love's 1st Approximation [25] 1.0 0.0 1.0 1.0
Loo's Approximation [26] 0.0 0.0 1.0 1.0
Morley [27] 0.0 0.0 1.0 0.0
Dornell [28] 0.0 0.0 0.0 0.0

The thermoelastic constitutive equations for a layered anisotropic
shell can be derived using the constitutive equations of individual
lavers (in much the same way as for plates; see, Reddy [8]). The

equations are given oy




(9)

i and Dij are given by

where the stiffness coefficients Aij, B

(A;ss B,y Dss) fh/z' Q:(1,2,20)dz, (i, = 1,2,6) (10)
N N A . 32y 2 2, 1, = 1Ly y
LN A A AR K b2 M :
h/2
o2 L
A]j =K f-h/Z Q’IJ dz , (1:\] = 4’5)t

and the thermoelastic stress resultants and stress couples are defined
by
(N] M) = jfgjz (1,2)0; 505 dz. ()
Here o5 denotes the thermal expansion coefficients and‘Qij denote the
plane-stress-reduced stiffnesses for individual layers. Since Qij are
differeht for different layers, expressions in eqns. (9) and (10) should
be integrated in parts, for example,
z
Aig = 3 zg] Izl+] Q§§)dz . (12)
L
where m is the total number of layers in the shell, and K is the shear
correction coefficient.
Equations (2), (5), and (9) completely describe the equilibrium
equations of a layered anisotropic shell. These equations canhot be

solved in an exact form except for the small-displacement theory, simple-
i .
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supported boundary conditions, and sinusoidal distribution of the trans-
verse load and thermal loads (See Hsu, Reddy and Bert [23]). In order
to solve practically important problems that involve comp1ex loadings
and geometry. one must consider approximate methods of analysis. In the
rext section, a finite-element formulation is presented for the equations

described in this section.

FINITE-ELEMENT FORMULATION

In the interest of brevity, we omit the algebraic details and
describe briefly the finite-element model developed herein. The derivation
proceeds along the same lines as described for layered anisotropic
plates in [29]. Consider a finite element analog of the midsurface R of
the shell., In a typfcal (fini;e) element R® of the mesh, the generalized
displacements u_,v_,w_, wx_and y, are interpolated by expressions of the

0’0’0 y
form,

., V. =LV

n
b ? Uoi®y )

-te M T3

0itis ete. (13)

Y
where Uoi is the value of u, at node i 6f the element RS, 95 is the
‘finite-element interpolation function associated with node i, and n is
the total number of nodes in the element. Here we have employed the
same interpolation functions for each of the dependent variables.
Substituting the expressions (13) 'nto the governing equations (5),
multiplying each equation by 955 and setting the integral of thg result
over R® to zero (Galerkin integrals), we obtain (after carrying integration

by parts of certain terms to relax the continuity on ¢i) the following

form of element equations:




| [K](a} = {F}. | n - (14)

Here KiJ denotes the st1ffness matrix (5n by Sn). {a} = { Uoi*YoiWoi®

) xi*Vy 1} , and {F} is the vector of genera11zed forces.

In the present study the four-node, eight-node and n1ne-node '
rectangular isoparametric elements were_employed. Ana]ogous to the
shear deformable theory of layered composite plates, the bresent theoryv
can be viewed as a sheér defdrméble theory derived from the C]gssica]
shell theory by treating the s]opp-defleCtidn relations (e4 and &g = 0)
as constraints. and including the constraints into the variational
formulation of the shell equations by the penalty function method (see
Reddy [29]). The e]ements derived using such theory are very st1ff for
thin shells, but yield good results for moderately thick shells. To
overcome the difficulty, the so-called reduced integratioh technique
must be emp]oyed in the‘evaluation of the stiffness coefficients asso-
ciated with the shear energy terms (i.e., penaltyvtenns); More speci-
fically, the 1x1 Gauss fdle hust be used_fof shear energy terms and the
standard 2x2 Gauss rule must be used for the bending ferms khen the

four-node linear isoparametric element is used.

NUMERICAL RESULTS |

A1l of the numerical results presented-herein were obtained on an
IBM 370/158 computer using the dodb]e precision arithmatics. Hhenever
biaxial symmetry existed in the problem, only one quadrant of the shell
was modeled. Numerical results are presented using the.]inéar and |
nonlinear theory. In the nbn]inear aha]ysis, a direct iteration'method
was used. The iteration begins with zero solution vector (so that at

the end of the first iteration the linear solution is obtained) and
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computes the linear element matrices. The solution at the end of the

 ffrst iteration is used to recompute the element stiffness matrices (for

the same load step) for the next iteration. This procedure is continued
until the difference between two consecutive solution vectors, for a
given load, differ by one percent. A shear correction factor of K2 =
5/6 is usgd in all of the cases, and only one quadrant of the shell is
modeled (whenever the biaxial symmetry existed).

To assess the numerical accuracy of thé present model with respect

to the element type (i.e., linear and quadratic elements), mesh (L2 = 2

_by 2 mesh of the linear elements, Q2 = 2 by 2 mesh of the eight-node
quadratic elements, and 9 = nine-node elements), and integration (F =

full integration, R = reduced intearation on all terms), several numerical
experiments were carried using the Sanders shell-theory, and the results
are listed in Table 2. The following nondimensiona]izatfdns are used:

W h? oh?
a2

e

W= (15)

X 102 R E} =

B4

Po? ¢

Table 2 tontains the nondimensicnalized linear deflection and stresses

for a four-layer (0°/90°/ 90°/0“), equal thickness, spherical shell (R]
=R, =R, a/h = 10)vof material 1 (65 = 63, vyp = vq3):
material 1: E]/E2 = 25, G]Z/EZ = 0.5,
st/Ez = 0-2, V]z = 0.25- (]6)

The shell is subjected to sinusoidal distribution of normal loading,

P= P, sin %5 sin %l , ' (17)

 where a and b are the dimensions shown in Fig. 1. The following boundary

conditions were imposed:

SIRaETER S
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Table 2. Effect of reduced integration on the maximum
deflection and stresses of a four-layer (0°/90°/90°
/0°)spherical shell subjected to sinusoidal loading
(material 1, a/b = 1.0, a/h = 10.0).
R ['5 _ 2
W=w . . = g,
Pa L 1=
0 P a
0
| R/h Analysis W 9y o9 YW Tyz Ty
CFS. 0.3229 0.1678 0.1032 0.04055 0.005660 0.01824
4-R 0.3229 0.1678 0.1032 0.04055 0.005660 0.0182%
4-F 0.3228. 0.1678 0.71031 0.04053 0.005655 0.01823
Q2-R 0.3226 0.1643 0.101T 0.03%64 0.005542 0.01785
2-F 0.3223 5.1632 0.7T000 0.03%44 0.0 .0
10 FEM Q2-R9 | 0.3235 0.1642 0.10T0 0.0394 0.005539 0.0178%
L QZ-Fa170.3247 0.1632 0.7000 0.03947 0.005467 0.01772
-R 0.3291 0.1633 0.10T9 0.03847  0.005582 0.071787
L4-F 0.2939 0.1445 0.089717 0.03457 0.005417 0.01617
L2-R 0.3479 0.1467 0.09538 0.03286 0.003219 0.07638
L2-F 0.2337 0.14550.1T65 0.02184  0.004658 0.017153
CFS 0.5254 0.3426 0.2331 0.04295  0.009930 0.03201
Q4-R 0.5254 0.3426  0.2330 0.04294 0.009928 0.03207
Q4-F 0.5253 . 0.3425 0.2329 0.04294 0.009328 0.03200
2-R 0.5246 0.3350 0.2280 0.04797  0.009718 0.031317
20 FEM Q2-R9 1 0.5260 0.3350 0.2279 0.04197 0.009713 0.03T3T
L4-R 0.5281 0.3268 0.2244 0.04058 0.009637 0.03087
| _L4-F 0.4963 - 0.3047 0.2084 0.03798 0.009778 0.0293%
L2-R 0.5351 0.3359 0.2617 0.03330 0.008584 0.02695
L2-F 0.4276 0.2597 0.71994  0.02615 0.008948 0.02245
CFS 0.6362 0.45417 0.3216 0.03474  0.01227 0.03955
Q4-R 0.6361 0.4540 0.32°5 0.03473 0.01227 0.03955
4 - F 0.6360 6.4539 0.3214  0.03473 0.01227 0.0395%
2-R 0.6351 0.4438 0.3144  0.3394 0.01200 0.03868
50 FEM Q2-F 0.6340 0.4427 0.3128 0.3389 0.07T202  0.03865
Q2-R9 1 0.6367 0.4438 0.3144  0.03394 0.01200 0.03867
Q2-F9 1 0.6357 0.4427 0.3128  0.03391 0.01202 0.03865
L4-R 0.6346 0.4290 0.3063 0.032/1  0.07718T 0.03783
L4-F 0.6137 0.4718 0.2928 0.03744 —0.01231 0.03699
CFS 0.6559 0.4797 0.3437 0.02979 0.01269 0.04090
Qd-R 0.6558 0.4796 0.3437 0.02978 0.01268 0.04089
4-F 0.6557 0.4796 0.3436 0.03978  0.01268 0.04089
Q2-R 0.6547 0.4688 0.3360 0.02911 0.01241 0.03999
QZ2-F 0.6536 0.4678 0.3334  0.02907 0.01243  0.03997
100 FEM Q2-RS | 0.6564 0.4688 0.3360 0.02911 0.01240 0.03998
Q2-F9 | 0.6554 0.4678 0.3344 0.02909  0.07243  0.03997
L4-R 0.6534 0.4524 0.3266 0.02808  0.01219 0.03906
L4-F 0.6352 0.4365 0.3339 0.02710 0.01277 0.03839
L2-R 0.0452 0.3836  Q.2892 0.02294 - 0.01057 0.03317
L2-F 0.5813 0.3349 0.2484 0.02000 0.07235 0.03111
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Table 2. (Cont.)
R/h- Analysis W 9y qy .Txy vaz Ty
CFS 0.6627 0.4995 0.3583 0.02397 0.01283v 0.04136
Q4-R 0.6627 ~ 0.4954  0.3589  0.02396 0.01283  0.04136
4-F 0.6626 0.4953 0.3583 "0.023% 0.071283 0.04136
2-R 0.6615 0.4842 0.3509 " 0.02342 0.01255 _ 0.03044
2-F 0.6605 0.4831  0.3492  0.02339 0.01258 . 0.04043
@ FEM Q2-R9 | 0.6633 0.4841 0.3508 0.02342  0.01254 0.04044
Plate 2-F9 1 0.6623 0.4832 0.3492  0.02340 0.071257  0.04043
L4-R 0.6599 0.4668 0.3406 0.02268 0.01233 0.03949
L4-F 0.6427 0.4512 0.3280° 0.02187 0.01097 0.03888
L2-R 0.6508 0.3/799 0.2833  0.01892" 0.0T067 0.03349
L2-F 0.5901 0.3339 0.2454 " 0.01629 0.01225 G.0316T

>
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0,a

N2 = M2 0aty=0,b
=v_ =0 at x=0,a
U

o o
0= Y=0aty=0,b

For this special case of boundary conditions, loading and cross-ply

[
o
¥
L d
>
H

Ny = M, =
natural:g L !

n’
u

$S-1: .(18)

W
essential: ! W

construction, one can obtain the exact form of the solution; see Hsu,
Reddy and Bert [23].l |
From Table 2 one can conclude that the reduced integration improves

the deflections as well as stresses for thin shells, when coarse meshes
and lower order (i.e., linear) elements are used. For quadratic elements
the reduced integration has only little effect even for a/h = 100.
Numerical convergence of the element is appafent from an inspection of
the deflections and stresses in Table 2. The agreement betwéen the
present finite element results and the exact solutior is gratifyingly
close. It should be pointed out that both the exact solution and the
finite-element solutions aEe obtained for the same shell theories. The
subsequent results were obtained using the reduced integration technique.

. Next, the effect of thickness and type of shell theory on linear
deflections and stresses of a four-layer (0°/90°/90°/0°, material 1)
cylindrical shell (R, = R, R, = 10°°) subjected to sinusoidal distribution
of normal fprce and simply supported (SS-1) béundary conditions is
investigated (see Table 3). From the results (obtained using 2x2Q) of
Table 3 it is clear that for shallow shells (R/h = 100) the difference
between various theories is negligibly small forvthe radius-to-thickness
ratio considered. For radius-to-thickness ratio of 10, the difference

between the deflections obtained by various shell theories is noticeable.

In the examples to follow, the Sanders shell theory was used.
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Table 4 shows the effect of number of layers, orientation of '
layers, and radiUé-to-thickness-rat?o on the nondimensiona]iied def1ection' <
of a simply supported (SS-1), ang]eupiy (9/-6/;/?;..) sphéfica] shell
(R1 = R, = R) under sinusoidal 1oading._‘Thé shé]]'iS‘constructed of
material 2 (G,, = G]S, V157913 | '
material 2: E]/E2 = 40, G]Z/EZ = 0.6,

623/E2_= 0.5,.v]2 = 0.25.

(19)
The finite-element solution differ noticeab]y from the exact-so]ution‘
(Fig. 2) for small number~of layers (the difference décreases with
increasing'number of layers) and large values of the angle; 8. This
error is due to the fact thatithe exact solution given in [23]»
satisfies different éymmetrj conditions than those imposed in the
finite element method. This difference is directly proportibnal to
stiffness coeffi@ient 816’ whose magnitude is inversely propbrtional
to the number of layers and directly prbportional to 6(0 jhe < 45°),
Figure 3 sﬁows theAeffect of aspect ratio- (b/a) and radius-to-
thickuess.ratio (R/h) on the nondimensional deflectfons (W; ='wh/a]Toa2)
for simply supoorted (SS-1) spherical sheTI (R1 = R2 = R, material 1)

under simusoidal-thermall1oading.

T #~To sinv-’ali sin'%x. ' o » '(?0)
It is clear from tﬁe figure that thickness shear deformation has a
pronounced effect on the hondimenéiona]izéd deflection, W;;’the effect
decreases with increasing number of layers (the_two¥1ayer solution
forms the upper bound while the Single-]ayer so]ution.formé the Tower

bound).
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Tabie 4. Nondimensional deflection as a function of number of layers,
angles, and radius-to-thickness ratio for freely supported
ang]e-ply (8/-6/...) spherical shell (a/b =1, a’/h =10,
material 2). . _
0
- 6= 5° 8 = 30° o = 45°
R/h  Source '
n=2 N=4 N=16 n=2 n=4 n=16 n=2 n=4 n=16
5 - CFS  0.1182 0.1182 0.1182 0.03165 0.03165 0.03165 0.01183 0.01183 0.01183
- FEM. 0.1424 0.1255 0.1194 0.03509 0.03147 0.03140 0.009382 0.01079 0.01138
10 CFS  0.2673 0.2673 0.2673 0.09552 0.09552 0.09552 0.04170 0.04170 0.04170
FEM 0.3436 0.2924 0.2720 0.1306 0.1002 0.09566 0.05215 0.04061 0.04079
20 CFS  0.3820 0.3820 0.3820 0.1908 0.1908 0.1908 0.1127 0.1127 0.1127
FEM  0.4715 0.4112 0.3873 0.3089 0.2070 0.1920 0.1783 0.1175 0.1118
30 CFS  9.4146 0.4146 0.4146 0.2339 0.2339 0.2339 0.1646 -0.1646 0.1646
FEM  0.4898 0.4400 0.4189 0.4038 0.2562 0.2354 0.2825 0.1753 0.1640
49 CFS  0.4273 0.4273 0.2540 0.2540 0.2540 0.2540 0.1962 0.1962 0.1962
FEM  0.4953 0.4496 0.4308 0.4505 0.2791 0.2556 -0.3507 0.2110 0.1960
59 - CFS 0.4334 0.4334 0.4334 0.2645 0.2645 0.2645 0.2153 0.2153 0.2153
FEM  0.4989 0.4535 0.4365 0.4752 0.2910 0.2661 0.3940 0.2329 0.2154
60 CFS  0.4369 0.4369 0.4369 0.2706 0.2706 0.2706 0.2274 0.2274 0.2274
FeM  0.5003 0.4553 0.4395 0.4895 0.2979 0.2722  0.4223 0.2468 0.2276
50 CFS  0.4403 0.4403 0.4403 0.2769 0.2763 0.2769 0.2408 0.2408 0.2408
FEM_ 0.5008 0.4567 - 0.4424 0.5039 0.3049 0.2786 0.4550 0.2626 0.2413
100 CFS  0.4419 0.4419 0.4419 0.2799 0.2799 0.2799 0.2476 0.2476 0.2476
FEM 0.5016 0.4570 0.4437 0.5106 0.3082 0.2815 0.4722 0.2707 0.2483
- CFS  0.4448 0.4448 0.4448 0.2355 0.2855 0.2855 0.2505 0.2605 0.2605
(plate) FEM 0.5019 0.4546 0.4454 0.5199 0.3137 0.2870 0.5119 0.2879 0.2620
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'Figure 2.

bR

Effect of lamination scheme and radius~to-thickness ratio
on the nondimensionalized deflection of a sperical shell
under sinusoidal transverse loading (SS-1, a/h = 10,
material 2) :
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{a) Deflection versus radius-to-thickness ratio. é
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(E) Deflection versus aspect ratio. :
Figure 3. ' Effect of thickness and aspéct ratio on the deflection
of cross-ply doubly-curved shells under thermal loading.
(matena] 1, Ry = R2 R)
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The natural vibration of layered composite shells was also investi-

Tables 5 and 6 contain the

“values of the nondimensionalized fundamental frequencies of doubly curved

(spherical) shells of cross-ply and angle-ply construction, respectively,
Note that as the number of layers 1is increased, thevfrequencies do not
change appreciably (for the same total thickness o” the shell), The
nondimensionalized frequenc1es of the cross- -ply shells are about half of

those of the ang]e-ply shells.

)

Table 5. Effect of radius- to-thickness ratio on the dimensionless
fundamental frequency, 1 = 4R p/E , of cross ply spherical:
shells (R] R2 =R, material 2, a/b =“1, a/h

R/ h. Source 0°/90° 0°/90°/0° 0°/90°/90°/0°
5 CFS 1.053 1.0739 1.0757
FEM 1.06 38 1.0746 1.0718
10 CFS 1.4452 1.6085 1.6145
FEM 1.4442 1.6128 1.6167
20 CFS 2.1434 2.675 2.688
' FEM 2.1518 2.6818 2.6812
30 CFs 2.934 3.8184 3.8379
_FEM 2.9352 3.8175 3.8073
40 CFS 3.7636 4,9944 5.0204
FEM 3.7538 4,9824 5.0220
50 CFS  4.615] 6.186 6.218
- FEM 4.6035 6.0045 6.2695
60 CFS 5.1786 7.3854 7.4238
FEM 5.4592 7.3926 7.5222
80 CFS 7.2247 9.7960 9.9480
FEM 7.1954 9.828) 9.8472
100 CrFS 8.3461 12.225 12.274
FEM 8.93001 12.163 12.238

+freely—supported boundary conditions are used.
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Table 6. Effect of radius-to-thickness ratio on the nondimen-
cional fundamental fregquencies of angle-ply spherical
she]ls*(R]=R2=R, material 2, a/b =1, a/h = 10).

R/h  Source 45°/-45°  45°/-45°/45°/-45° 45°/.-45°/

n=8
5 CFS 2,2215
FEM 2.2229 2.2232 2.2236
10 CFS . , 4.4429
_ FEM 3.6286 4.4456 4.4461
20  CFS . 6.0540
FEM 4,5238 : 5.7234 5.9716
30 CFS - 7.6344
FEM 5.5908 7.2330 7.536
30 CFS 9,4032
. FEM 6.8100 8.9036 9.2304
50 CFS 11.275
FEM  8.100 10,6895 11.1315
60 CFS 13.266
' FEM 9.4794 12.516 13.0434
80 CFS 17.1688
FEM 12.2708 16.2752 16.9608
100 CFS o z1.202
FEM 15.129 ©20.095 2C.943

* Freely-suppcrted boundary conditions are used.

LI S AN WY G A6 AN S 1

AL O % AL




23

SUMMARY AND CONCLUSIONS
A finite element based on a shear deformation theqf}’of layered,
anisotrop1c, composité shells is presented. The element contains as
special cases generalized first-approximation shell theories of love,
Sanders, Donné]]. Morley, and Loo. The generalization is to include
the transverse shear strains. Numerical results are presented for ‘
crosS-pfy as well as angle-ply shells under various mechanical and
thermal loadings. It is concluded that the effect of shear deforma-
'.tion on the deflection and stresses is significant, and that reduced
integration improves the d2flections and stresses for thin shells when
 coarse meshes and lower orcer elements are employed. Use of higher-
order tﬁeories and extension of the present element. to the nqnlinear
(geometrically) analysis of shells is far from complete. A]fhough the
nén]inear terms in the sense of von Karman are included 5nvthe formulation
péesented herein, no numerical results are included. These will appear

elsewhere when the investigation is completed.
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