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ABSTRACT 

A shear deformable finite element is developed based on generalized 

(i.e., account for shear deformations) first-approximation shell theories. 

Numerical results are presented for bending of layered, anisotropic, 

composite shells. Various shell theories (e.g., Sander's, Love's, 

Donnell's, etc.) are included as special cases of the present element, 

and can be obtained by giving numerical values to appropriate tracers. 

The present finite-element solutions are compared with the exact solu- 

tions for certain shell problems, and other solutions available in the 

literature. The agreement is found to be very good. Numerical results 

showing the effect of orientation of layers, boundary conditions, and 

material orthotropy on deflections are presented. 

INTRODUCTION 

Composite materials and reinforced plastics are increasingly used 

in automobiles, space vehicles, and pressure vessels. With the increased 

use of fiber-reinforced composites as structural elements, studies 

involving the thermomechanical behavior of composite-material shells are 

receiving considerable attention. 

The first analysis that incorporated the bending-stretching coupling 

(due to unsymmetric lamination in composites) is due to Ambartsumyan 

[1,2]. In his analyses Ambartsumyan assumed that the individual ortho- 

tropic layers were oriented such that the principal axes of material 

symmetry coincided with the principal coordinates of the shell reference 

surface. Thus, Ambartsumyan's *ork dealt with what is now known as 

laminated orthotropic shells rather than laminated anisotropic shells; 
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in laminated anisotropic shells the individual layers are, in gene-al, 

anisotropic and the principal axes of material symmetry of the indi- 

vidual layers do not coincide with the principal coordinates of the 

shell. 

In 1962 Dong, Pister and Taylor [3] formulated a theory of thin 

shells laminated of anisotropic material. The theory is an extension of 

the theory developed by Stavsky [4] for laminated anisotropic plates to 

Donnell's shallow shell theory. Cheng and Ho [5] presented an analysis 

of laminated anisotropic cylindrical shells using Flugge's shell theory. 

A first approximation theory for the unsymmetric deformation of non- 

homogeneous, anisotropic, elastic cylindrical shells was derived by 

Widera and Chung [6] by means of the asymptotic integration of the 

elasticity equations. For a homogeneous, isotropic material, the 

theory reduces to the Donnell equations. An exposition of various shell 

theories can be found in the article by Bert [7]. 

All of the theories discussed above are based on Kirchoff-Love's 

hypotheses in which the transverse shear deformation is neglected. 

Recent studies in layered anisotropic plates show (see the survey paper 

by the author [8]) that transverse shear deformation effects are more 

pronounced in composite plates and shells than in isotropic plates and 

shells. The effect of transverse shear deformation and transverse 

isotropy, as well as thermal expansion through the shell thickness were 

considered by Zukas and Vinson [9] and Dong and Tso [10]. The theory in 

[10] is only applicable to layered, crthotropic, cylindrical shells 

(i.e., the orthotropic axes of each layer coincide with the coordinate 

axes of the shell). Whitney and Sun [11] developed a shear deformable 
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theory for laminated cylindrical shells that includes both transverse 

shear deformation and transverse normai strain as well as expansional 

strains. Recently, Widera and Logan [12,13] presented refined theories 

for nonhomogeneous anisotropic cylindrical shells. 

As far as the finite-element analysis of shells is concerned, 

layered composite shells have not received nearly as much attention as 

ordinary shells. The works of Dong [14] on statically-loaded ortho- 

tropic shell of revolution, Dong and Selna [15] on free vibration of the 

same, Wilson and Parsons [16] on static axisymmetric loading of arbi- 

trarily thick orthotropic shells of revolution, and Schmit and Monforton 

[17] on laminated anisotropic cylindrical shells are the only ones that 

considered the finite element method before 1970's (note that the latter 

reference is the only one that considered laminated anisotropic shells). 

In 1970's there was an incrc-ased interest in the finite-element analysis 

of bending and vibration of laminated anisotropic shells. Apparently 

the first finite-element application in laminated anisotropic shells of 

arbitrary geometry is due to Thompson [18], who presented free (i.e., natural) 

vibration of general laminated anisotropic thin shells. Other finite- 

element analyses of layered anisotropic composite shells include the 

works of Panda and Natarajan [19], Shivakumar and Krishna Murty [20], 

Rao [21], and Siede and Chang [28]. 

The present paper is concerned with the development and application 

of a shear deformable shell element for the bending analysis of layered 

anisotropic shells. The shear-defonr,aole theories used herein are 

generalizations of various classical shell theories, which are believed 

to be adequate for the prediction of overall response of layered 

composite shells. In the present investigation, several first-order 
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shell theories (Sanders, Love's, Loo's, Morley's and Donnell's) are 

considered and transverse shear strains are accounted for. For certain 

boundary conditions, lamination scheme and loading, exact form of the 

spatial variation of solutions are are obtained and are compared with 

the finite-element solutions. 

GOVERNING EQUATIONS 

Consider a shell constructed of a finite number of homogeneous, 

uniform thickness layers of an orthotropic material.  Let 

the x-y surface coincide with the lines of the principal curvature of 

the midsurface of the shell, with z-axis normal (positive outward) to 

the midsurface of the shell (see Fig. 1). It is assumed that all of the 

layers in the shell remain elastic during the deformation, the Gener- 

alized Hooke's law is valid, and that no slip occurs between any two 

layers. 

The displacement field in the shell is assumed to be of the form 

u(x.y.z) = uQ(x,y) + z vx(x,y) 

v(x,y,z) = vQ(x,y) + z * (x,y) 

w(x,y,z) = wQ(x,y) + z *z(x,y) 

(1) 

where u, v and w are the total displacements along x, y and z-direc- 

tions, respectively; uQ, vQ and wQ  are the displacements of a point in 

the coordinate surface along x, y and z coordinates; 0 , * and ^ are 
x  y    z 

the bending rotations. The displacement field in eqn. (1) can be 

replaced by one containing the higher order terms in z (see, for example, 

Whitney and Sun [11]). However, the improvement one obtains in the 

prediction of the transverse shear deformation is at the expense of 

computational time (several additional dependent unknowns are introduced 

in the higher-order theories). 
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Figure   1.  Differential element of a doubly curved shell, 
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Strain-displacement relationships for shells are very complex and a 

detailed derivation cannot be attempted in a paper of this type. References 

to various shell theories are made in Table 1. The strain- 

displacement relations for large- rotation (small strains) theory of 

shells can be simplified to the form 

e1 * e. + z«,  , (i = 1,2,4,5,6), 

where 

el   3X 

W-   ,  3W„  U„ , + _0 . I / 0 .  0\2 
+ R7 1 {3x~+ R7}

 • 

(2) 
!  I 

a*, 
1 " aT Kl = 

3U«   W~ 0 .  Oi 
+ R7 37 (äx~ + I 

ay  R- + R0 
lay + R,'' 

I      t 

The underlined terms correspond to large rotations. The constants C, 

i ;.„^J 
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and C2 are shell-theory tracers to be defined shortly (i.e., different 

values of C. trace different shell theories in the literature), and R, 

and R2 are the principal radii of curvature of the shell. The trans- 

verse normal strain e,- is given by 

(4) 
e33 = *z+l(*x + *y>' 

In the present study we make the assumption that e33 : 0, or equiva- 

lent^, 

However, note that, the transverse shear strains are accounted for in 

the present theory. We also assume that ui/R] and u./R2 (for u. = 

uo'vo^' VRi and VRi are sma11 compared to the other quantities in e. 

(i = 1,2,6) and are neglected in the subsequent equations. 

In the absence of body forces and moments, the equilibrium equa- 

tions associated with a layered anisotropic shell can be simplified to 

the form (consistent with the assumptions made above), 

Nl,x * N6,y + VW + C«VC3)/Rr C2/R2]M6jy = 0, 

N6,x + N2,y + Q2
(C2/R2) + .[(C^J/Rg- Cg/R,]^^ = 0, 

Ql,x + Q2,y " Nl/Rl " N2/R2 * w(w»Ni.Mi) = P, 

Ml,x + M6,y-Ql=0 . 

M6,x + M2,y " Q2 " °- 

(5) 

u 
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where C. are the shell-theory tracers given in Table 1 and N. and M. (i ! 

= 1,2,6) are the stress and moment resultants defined in the customary | 
I 

way for a first-approximation shell theory (z/R. « 1) as j 

(N...M-) - /   (l.zjo, dz (6) i    } 1 1   -h/2     1 I % 

where h is the total laminate thickness, and a. are the stress com- 

ponents. The shear stress resultants Q. are defined analogously: 

h/2 
(QrQ2) ■ /   Co5,a4)dz. (7) 

-h/2 

The nonlinear operator N{-)  is defined by 

»      n,  aw.      iv 3wrt 

a       M, 3w„       Mc 3W„ 
^^-/l^MN,-^] (8) 

Table 1 List of shell-theory tracers 

Theo-y Oj  C^  Cj  C^ 

Sanders [24] 1.0 0.5 1.0 1.5 
Love's 1st Approximation [25] 1.0 0.0 1.0 1.0 
Loo's Approximation [25] 0.0 0.0 1.0 1.0 
Moriey [27] 0.0 0.0 1.0 0.0 
Douiell [28] 0.0 0.0 0.0 0.0 

The thermoelastic constitutive equations for a layered anisotropic 

shell can be derived using the constitutive equations of individual 

layers (in much the same way as for plates; see, Reddy [8]). The 

equations are given by 

I 
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where the stiffness coefficients A.., B.. and D.. are given by 
J     I J IJ 

h/2       ? 

(AiJ'BiJ'DiJ) = /h/9
QiJ(1'Z,2)dZ' <^ = 1'2'6>> 

(10) 
-h/2 

h/2 

U     _h/2 iJ 

and the thermoelastic stress resultants and stress couples are defined 

by 

T T  ,h'2 
(N{,M{) = /   (l,z)Q..a. dz. (11) 

Here a. denotes the thermal expansion coefficients and Q.. denote the 
J ' j 

plane-stress-reduced stiffnesses for individual layers. Since Q... are 

different for different layers, expressions in eqns. (9) and (10) should 

be integrated in parts, for example, 

A,, - K2 z / 
2 ? r t+1 Q(*>dz (12) 

where m is the total number of layers in the shell, and K is the shear 

correction coefficient. 

Equations (2), (5), and (9) completely describe the equilibrium 

equations of a layered anisotropic shell. These equations cannot be 

solved in an exact form except for the small-displacement theory, simple- 
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supported boundary conditions, and sinusoidal distribution of the trans- 

verse load and thermal loads (see Hsu, Reddy and Bert [23]). In order 

to solve practically important problems that involve complex loadings 

arid geometry, one must consider approximate methods of analysis. In the 

next section, a finite-element formulation is presented for the equations 

described in this section. 

FINITE-ELEMENT FORMULATION 

In the interest of brevity, we omit the algebraic details and 

describe briefly the finite-element model developed herein. The derivation 

proceeds along the same lines as described for layered anisotropic 

plates in [29]. Consider a finite element analog of the midsurface R of 

the shell. In a typical (finite) element Re of the mesh, the generalized 

displacements uQ,v0,w0, ^ and # are interpolated by expressions of the 

form, 

n n 
uo = z.  Vi*i » vo = ? ViV etc- (13) 

l -     -  i 

where uQi is the value of uQ at node i of the element Re, <j>. is the 

finite-element interpolation function associated with node i, and n is 

the total number of nodes in the element. Here we have employed the 

same interpolation functions for each of the dependent variables. 

Substituting the expressions (13) "nto the governing equations (5), 

multiplying each equation by «(>., and setting the integral of the result 

over R to zero (Galerkin integrals), we obtain (after carrying integration 

by parts of certain terms to relax the continuity on $.) the following 

form of element equations: 
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[K]{A) = {F}. (14) 

Here K,, denotes the stiffness matrix (5n by 5n), U} "» ^u0i'
voi'woi' 

^xi'^vi' • an(* ^  is the vector °f generalized forces. 

In the present study the four-node, eight-node and nine-node 

rectangular isoparametric elements were employed. Analogous to the 

shear deformable theory of layered composite plates, the present theory 

can be viewed as a shear deformable theory derived from the classical 

shell theory by treating the slope-deflection relations (e. and eg"*5 0) 

as constraints, and including the constraints into the variational 

formulation of the shell equations by the penalty function method (see 

Reddy [29]). The elements derived using such theory are very stiff for 

thin shells, but yield good results for moderately thick shells. To 

overcome the difficulty, the so-called reduced integration technique 

must be employed in the evaluation of the stiffness coefficients asso- 

ciated with the shear energy terms (i.e., penalty terms). More speci- 

fically, the 1x1 Gauss rule must be used for shear energy terms and the 

standard 2x2 Gauss rule must be used for the bending terms when the 

four-node linear isoparametric element is used. 

NUMERICAL RESULTS 

All of the numerical results presented herein were obtained on an 

IBM 370/158 computer using the double precision arithmatics. Whenever 

biaxial symmetry existed in the problem, only one quadrant of the shell 

was modeled. Numerical results are presented using the linear and 

nonlinear theory. In the nonlinear analysis, a direct iteration method 

was used. The iteration begins with zero solution vector (so that at 

the end of the first iteration the linear solution is obtained) and 



12 

computes the linear element matrices. The solution at the end of the 

first iteration is used to recompute the element stiffness matrices (for 

the same load step) for the next iteration. This procedure is continued 

until the difference between two consecutive solution vectors, for a 

given load, differ by one percent. A shear correction factor of K = 

5/6 is used in all of the cases, and only one quadrant of the shell is 

modeled (whenever the biaxial symmetry existed). 

To assess the numerical accuracy of the present model with respect 

to the element type (i.e., linear and quadratic elements), mesh (L2 = 2 

by 2 mesh of the linear elements, Q2 = 2 by 2 mesh of the eight-node 

quadratic elements, and 9 = nine-node elements), and integration (F = 

full integration, R = reduced integration on all terms), several numerical 

experiments were carried using the Sanders shell-theory, and the results 

are listed in Table 2. The following nondimensionalizations are used: 

_ wE,h    , 
w = —V x icr 

Poa 

_ _ a.h' 
'i 2 

Pca 
(15) 

Table 2 contains the nondimensionalized linear deflection and stresses 

for a four-layer (0°/90°/ 9070"). equal thickness, spherical shell (R] 

= R2 = R, a/h =■ 10) of material 1 (G12 = G13, v12 = v,3): 

material 1: E^/Eg = 25, G12/E2 = 0.5, 

G23/E2 = 0.2, v12 = 0.25. (16) 

The shell is subjected to sinusoidal distribution of normal loading, 

P= P0 sin p. sin ^ , (17) 

where a and b are the dimensions shown in Fig. 1. The following boundary 

conditions were imposed: 
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Table 2 Effect of reduced Integration on the maximum 
deflection and stresses of a four-layer (0°/90°/90° 
/0°)spherical shell subjected to sinusoidal loading 
(material 1, a/b = 1.0, a/h = 10.0). 

w = w 
102E2h3 

h2 

V 
R/h Analysis W ax °y Txy V Txz 

CFS 0.3229 0.1678 0.1032 0.04055 0.005660 0.01824 

FEM 

all 0.3229 0.1678 0.1032 0.04055 Ö.ÖÖ566Ö" 0.01824 
Q4-F 0.3228- 0.1678 0.1031 Ö.04Ö53 Ö.Ö05655' 0.01623 
Q2-R 0.3226 0.1643 o.loll 0.03964 Ö.ÖÖ5542 0.01785 
Q2-F 0.3223 1.1632 0.1000 0.03944 0.005466 0.01771 

10 Q2-R9 0.3235 0.1642 O.lOlO 0.03964 '"'0.00553$ 0.01765 
Q2-F9 0.3241 "  0.1632 0,1000 0.Ö3947 0.005467 0.01772 
L4-R 0.32dl 0.1633 0.1014 0.03847 Ö.ÖÖ5582 0.01787 
L4-F 0.2939 Ö.1445 Ö.Ö8971 0.03451 Ö.Ö05417 

0.003219 
0.01617 

L2-R 0.3479 0.1461 0.09538 0.03286 0.01638 
L2-F Ö.2337 0.1459 0.1165 0.02184 0.004658 

0.009930 
0.01153 

CFS 0.5254 0.3426 0.2331 Ö.04295 0.03201 

FEM 

8r5 0.5254 0.3426 0.2330 0.04294 0.009928 0.03201 
Q4-F 0.5253 0.3425 0.2329 0.Ü4294 Ö.0Ö9928 0.03200 
Q2-R Ö.5246 0.3350 Ö.228Ö Ö.Ö4197 Ö.Ö09716 0.03131 

20 Q2-R9 0.5260 0.3350 0.2279 0.04197 0.009713 0.03131 
L4-R 0.5281 0.3268 0.2244 Ö.Ö4Ö58 Ö.0Ö9637 0.03087 
L4-F 0.4363 Ö.3Ö47 0.2084 0.03798 Ö.009778 0.02934 
L2-R 0.5351 0.3359 0.2617 0.03330 0.008584 0.02695 
L2-F 0.4276 0.2597 0.1994 0.02615 0.008948 0.02245 

CFS 0.6362 0.4541 0.3216 0.03474 0.Ö1227 0.03955 

FEM 

04-R 0.6361 0.4540 0.32,5 0.Ö3473 0.01227 0.03955 
Q4-F 0.6360 0.4539 0.3214 0.03473 0.Ö1227 0.03955 
Q2-R 0.6351 0.4438 0.3144 0.3394 0.01200 0.03868 

50 Q2-F 0.6340 0.4427 6.3126 Ö.33Ö9 Ö.01202 
0.01200 

0.03865 
Q2-R9 0.6367 0.4438 6.3144 0.Ö3394 0.03867 
Q2-F9 0.6357 0.4427 0.3128 Ö.03391 0.01202 

Ö.01161 
0.03865 

L4-R 0.6346 0.4290 0.3063 Ö.03271 0.03783 
L4-F 0.6137 0.4118 0.2928 0.03144 0.01231 0.03699 

CFS 0.6559 0.4797 0.3437 0.Ö2979 0.0126$ 
Ö.Ö126S 

0.04090 

FEM 

04-R Ö.6566 0.4796 0.3437 0.02978 0.04089 
Q4-F 0.6557 0.4796 0.3436 0.03978 Ö.01266 0.04089 
Q2-R 0.6547 0.4688 0.3360 0.02911 0.01241 0.03999 
Q2-F 0.6536 0.4678 0.3344 Ö.029Ö7 Ö.Ö1243 Ö.Ö3997 

100 Q2-R9 0.6564 0.4688 0.3360 Ö.02911 0.01240 0.03998 
Q2-F9 0.6554 0.4678 0.3344 0.02909 Ö.Ö1243 0.03997 
L4-R 0.6534 0.4524 0.3266 0.02809 Ö.Ö1219 0.03906 
L4.-F 0.6352" 0.4365 0.3339 0.0271Ö 0.01277 0.03839 
L2-R Ö.6452 0.3836 Q.2892 Ö.Ö2294 Ö.Ö1Ö57 0.03317 
L2-F 0.5813 0.3349 0.2464 Ö.Ö2ÖÖ0 0.01235 0.03111 ' 

u 
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R/h 

Plate 

Analysis 

CFS 

IF 

FEH 
Q2^T 

0.6627       0.4995 
"052T 

73526" 
0.6615 
0.6605 

L4-IT 
I?: 

T?T" 

^S2T 
0.6599 

~MTT 

"4"934~ 
3589 
158T 

r?84T 
~4W 

0.4841 
0.4832" 

U 

0.3509 
0.3492 
0.3508 

34~9T 0 
4668    0.3406 

0.4512 -.   ..-    0.3280 
0.6508       0.379$    0.2833 

xy 

0.02397 
0.02396 

n 

0.3583     0.02396" 

0.01283 
Ö.012Ö3 

0.02342 
0.02339 
0.02342 
0.02340 
0.02268 

0.01283 
0.01255 
0.01258 

"ö: 012 54 

0.5901      0.3339   Ö.245T 

0.02187 
0.01892" 
0.01629 

Ö.Ö1257 
~OT2~3T 
"0.01097 
"0701067 
"0.01225" 

xz 

0.04136 
0.04136 
0.04136 
0.04044 
0.04043 
0.04044 

7Ü4154T 
0.03949 
0.03885 
0.03349 
6.03161 
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SS-1: 

natural 

essential: 

N1 = M1 = 0 at x = 0,a 

N2 = M2 = 0 at y = 0,b 

j = vQ = 0 at x = 0,a 

, = uQ = 0 at y « 0,b 

(18) 

For this special case of boundary conditions, loading and cross-ply 

construction, one can obtain the exact form of the solution; see Hsu, 

Reddy and Bert [23]. 

From Table 2 one can conclude that the reduced integration improves 

the deflections as well as stresses for thin shells, when coarse meshes 

and lower order (i.e., linear) elements are used. For quadratic elements 

the reduced integration has only little effect even for a/h = 100. 

Numerical convergence of the element is apparent from an inspection of 

the deflections and stresses in Table 2. The agreement between the 

present finite element results and the exact solution is gratifyingly 

close. It should be pointed out that both the exact solution and the 

finite-element solutions are obtained for the same shell theories. The 

subsequent results were obtained using the reduced integration technique. 

Next, the effect of thickness, and type of shell theory on linear 

deflections and stresses of a four-layer (0°/90o/90o/0°, material 1) 

cylindrical shell (R] = R, R£ = 10
30) subjected to sinusoidal distribution 

of normal force and simply supported (SS-1) boundary conditions is 

investigated (see Table 3). From the results (obtained using 2x2Q) of 

Table 3 it is clear that for shallow shells (R/h = 100) the difference 

between various theories is negligibly small for the radius-to-thickness 

ratio considered. For radius-to-thickness ratio of 10, the difference 

between the deflections obtained by various shell theories is noticeable. 

In the examples to follow, the Sanders shell theory was used. 

A 
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Table 4 shows the effect of number of layers, orientation of 

layers, and radius-to-thickness rati'o on the nondimensionalized deflection 

of a simply supported (SS-l), angle-ply (e/-e/+/-...) spherical shell 

(Rj = R2 = R) under sinusoidal loading. The shell is constructed of 

material 2 (G12 = 
Gi3» v12=v13^ 

material 2: E^Eg = 40, G12/E2 = 0.6, . 

G23/E2 = 0.5, v12 = 0.25. 

The finite-element solution differ noticeably from the exact solution 

(Fig. 2) for small number of layers (the difference decreases with 

increasing number of layers) and large values of the angle, 8. This 

error is due to the fact that the exact solution given in [23] 

satisfies different symmetry conditions than those imposed in the 

finite element method. This difference is directly proportional to 

stiffness coefficient B,g, whose magnitude is inversely proportional 

to the number of layers and directly proportional to e(0 <_ e <_ 45°). 

Figure 3 shows the effect of aspect ratio (b/a) and radius-to- 

thickness ratio (R/h) on the nondimensional deflections (w*t = wh/a,T a
2) 

for simply supoorted (SS-l) spherical shell (R, = R2 = R, material 1) 

under simusoidal-thermal loading. 

T . T0 sin f sin f. (20) 

It is clear from the figure that thickness shear deformation has a 

pronounced effect on the nondimensionalized deflection, w.; the effect 

decreases with increasing number of layers (the two-layer solution 

forms the upper bound while the single-layer solution forms the lower 

bound). 



™ 

Table 4.    Nondimensional deflection as a function of number of layers, 
angles, and radius-to-thickness ratio for freely supported 
angle-plv (e/-e/...) spherical shell (a/b =1, a/h = 10, 
material 2). 

18 

lC2E2h3 

"   P a1* 
0 

R/h Sou re e . 
8 = 5° 6 = 30° 9 = 45' > 

n=2 N=4 

0.1182 

N=16 n=2 n=4 n=16 n»2 n=4 n=16 

5 CFS 0.1182 0.1182 0.03165 0.03165 0.03165 0.01183 0.01183 0.01183 
FEM 0.1424 0.1255 0.1194 0.03509 0.03147 0.03140 0.009382 0.01079 0.01138 

10 CFS 0.2673 0.2673 0.2673 0.09552 0.09552 0.09552 0.04170 0.04170 0.04170 
FEM 0.3436 0.2924 0.2720 0.1306 0.1002 0.09566 0.05215 0.04061 0.04079 

20 CFS 0.3820 0.3820 0.3820 0.1908 0.1908 0.1908 0.1127 0.1127 0.1127 
FEM 0.4715 0.4112 0.3873 0.3089 0.2070 0.1920 0.1783 0.1175 0.1118 

30 CFS 0.4146 0.4146 0.4146 0.2339 0.2339 0.2339 0.1646 0.1646 0.1646 
FEM 0.4898 0.4400 0.4189 0.4038 0.2562 0.2354 0.2825 0.1753 0.1640 

40 CFS 0.4273 0.4273 0.2540 0.2540 0.2540 0.2540 0.1962 0.1962 0.1962 
FEM 0.4953 0.4496 0.4308 0.4505 0.2791 0.2556 0.3507 0.2110 0.1960 

50 CFS 0.4334 0.4334 0.4334 0.2645 0.2645 0.2645 0.2153 0.2153 0.2153 
FEM 0.4989 0.4535 0.4365 0.4752 0.2910 0.2661 0.3940 0.2329 0.2154 

60 CFS 0.4369 0.4369 0.4369 0.2706 0.2706 0.2706 0.2274 0.2274 0.2274 
FEM 0.5003 0.4553 0.4395 0.4895 0.2979 0.2722 0.4223 0.2468 0.2276 

80 CFS 0.4403 0.4403 0.4403 0.2769 0.2769 0.2769 0.2408 0.2408 0.2408 
FEM 0.5008 0.4567 0.4424 0.5039 0.3049 0.2786 0.45F0 0.2626 0.2413 

100 CFS 0.4419 0.4419 0.4419 0.2799 0.2799 0.2799 0.2476 0.2476 0.2476 
FEM 0.5016 0.4570 0.4437 0.5106 0.3082 0.2815 0.4722 0.2707 0.2483 

m CFS 0.4448 0.4448 0.4448 0.2355 0.2855 0.2855 0.2505 0.2605 0.2605 
(plate) FEM 0.5019 0.4546 0.4454 0.5199 0.3137 0.2870 0.5119 0.2879 0.2620 

IJ 
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Figure   2.    Effect of lamination scheme and radius-to-thickness ratio 
on the nondimenslonallzed deflection of a sperical shell 
material1^)0 transverse fading (SS-1, a/h = 10f 
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(a) Deflection versus radius-to-thickness ratio. 
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(b) Deflection versus aspect ratio. 

Figure 3. Effect of thickness and aspect ratio on the deflection 
of cross-ply doubly-curved shells under thermal loading, 
(material 1, R, = R« = R) 
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The natural vibration of layered composite shells was also investi- 
j 

gated using the element presented herein.   Tables 5 and 6 contain the 
1 

values of the nondimensionalized fundamental frequencies of doubly curved 

* (spherical) shell s of cross-ply and angle-ply construction, respectively. 

Note that as the number of layers   is increased, the frequencies do not 
change appreciabl y (for the same total thickness of ehe shell).    The 

nondimensionalized frequencies of the cross-ply shells are about half of 

those of the angl e-ply shells. 

Table 5.    Effect of radius-to-thickness ratio 
fundamental frequency, x = WR   p/E, 
shellsT(R1=R2=R, material 2, a/b »zl 

on the dimensionless 
, of cross-ply spherical 
, a/h = 10). 

R/ h Source       0°/90° 0°/90°/0° 0o/90o/90o/0° 

5 CFS           1.0536 
FEM           1.0538 

1.0739 
1.0746 

1.0757 
1.0718 

10 CFS            1.4452 
FEM            1.4442 

1.6085 
1.6128 

1.6146 
1.6167 f 

20 CFS            2.1484 
FEM            2.1518 

2.675 
2.6818 

2.688 
2.6812 

30 CFS            2.934 
FEM            2.9352 

3.8184 
3.8175 

3.8379 
3.8073 

' j 

40 CFS           3.7636 
FEM           3.7538 

4.9944 
4.9824 

5.0204 
5.0220 

50 CFS            4.(il51 
FEM            4.f5035 

6.186 
6.0045 

6.218 
6.2695 

... .     '• 
60 CFS            5.1786 

FEM           5.4592 
7.3854 
7.3926 

7.4238 
7.5222 

!■      t 

:    i 

i   l 

»                      } 

i 

80 CFS            7.2247 
FEM            7.1954 

9.7960 
9.8280 

9.9480 
9.8472 

■                   V 

1 
1 
1 
i 
i J 

i | 

100 CFS            8.3461 
FEM            8.9001 

12.225 
12.163 

12.274 
12.238 

freely-s upported boundary conditions are used. 

U*.-.. „•«*, -"**-~-*-^^ 

li 

\>sijb**-£..-•^..■ii.'aii.VriUi.-j.i>-»J ■'■' 
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Table 6.    Effect of radius-to-thickness ratio on the nondimen- 
sional fundamental frequencies of angle-ply spherical 
shells+(R1=R2=R, material 2, a/b = 1, a/h = 10). 

R/h       Source        45°/-45°      45o/-45°/450/-45°        45°/-45°/ 
n=8 

5 CFS 
FEM 2.2229 

2.2215 
2.2232 2.2236 

10 CFS 
FEM 3.6286 

4.4429 
4.4456 4.4461 

20 CFS 
FEM 4.5238 

6.0540 
5.7?34 5.9716 

30 CFS 
FEM 5.5908 

7.6344 
7.2330 7.536 

40 CFS 
FEM 6.8100 

9.4032 
8.9036 9.2804 

50 CFS 
FEM 8.100 

11.275 
10,6895 11.1315 

60 CFS 
FEM 9.4794 

13.266 
12.516 13.0434 

80 CFS 
FEM 12.2704 

17.1688 
16.2752 16.9608 

100 CFS 
FEM 15.129 

21.202 
20.095 2G.943 

+ Freely-supported boundary conditions are used. 
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SUMMARY AND CONCLUSIONS 

A finite element based on a shear deformation theory of layered, 

an1sotrop1c, composite shells 1s presented. The element contains as 

special cases generalized first-approximation shell theories of love, 

Sanders, Donnell, Morley, and Loo. The generalization is to Include 

the transverse shear strains. Numerical results are presented for 

cross-ply as well as angle-ply shells under various mechanical and 

thermal loadings. It 1s concluded that the effect of shear deforma- 

tion on the deflection and stresses is significant, and that reduced 

integration improves the deflections and stresses for thin shells when 

coarse meshes and lower order elements are employed. Use of higher- 

order theories and extension of the present element to the nonlinear 

(geometrically) analysis of shells is far from complete. Although the 

nonlinear terms in the sense of von Karman are included in the formulation 

presented herein, no numerical results are included. These will appear 

elsewhere when the investigation is completed. 
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I wish I could tell you how much time and money the NTIS 
Abstract Newsletters could save you. 

But, I can't.  Because I don't know how much time and 
money you unknowingly spend on costly research that actually 
duplicates the work of others.  Yet this research information 
is readily available to you when you know how to access it. 

That's what NTIS Abstract Newsletters are all about. 

NTIS Abstract Newsletters Summarize 
70,000 New Reports Annually 

You see, NTIS information specialists index, analyze, 
and categorize 70,000 new research documents a year.  Each 
report is judged for its potential value for thousands of 
current subscribers.  Then it is summarized in a brief 
abstract and published in one or more Newsletters.  You receive 
only those abstracts of interest to your professional field. 

NTIS exists to help you find—and provide you with— 
research results and information.  You'll know what you need 
to know—when you need to know it—with NTIS Abstract Newsletters. 



The Newsletters are a speedy, comprehensive, economical 
way for you to keep current on the latest research and to cut 
your risk of duplicating work already available in a report 
from NTIS. 

Your Newsletters will suggest possible directions and 
starting points for your own research.  Knowing research 
applications of others will help you get more out of every 
research dollar you invest. 

Worldwide Sources 

The NTIS collection also contains selected information 
on scientific and technical developments around the world. 

NTIS is now actively expanding its sources of foreign 
technology to add to more than 300,000 foreign reports 
already on hand—including translated materials from the 
U.S.S.R., other Eastern European countries, Japan, and major 
Western countries. 

Low Subscription Rate 

By now, you may well be apprehensive over the 
cost of this remarkable Newsletter service.  If 
so, you will be pleasantly surprised to learn 
you can subscribe to the Energy Abstract Newsletter, 
for example, for about $1.83 a week! 

NTIS is a unique self-supporting Government agency offering 
economical information products and services on a cost- 
recovery basis. 

You Get Reports on Research Not 
Published By Any Other Source 

NTIS Abstract Newsletters let you know about all 
Government-sponsored research in your field.  Each week 
you'll learn about research not reported or available from 
any other source. 

And when you spot a report you need, NTIS can provide it 
for you in a matter of days, usually for about $14 in paper 
copy or only $4.50 in microfiche.  Your Newsletters contain 
a handy report order form for your convenience. 

Annual Subject Index Included 

Your subscription includes an Annual Subject Index to 
give permanent reference value to your Newsletter. 
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Of course, your subscription is tax deductible as a 
business expense in most instances. 

More than that, when you consider the wasted time and 
costly mistakes the Newsletters can help you avoid, you 
will begin to appreciate what a practical investment NTIS 
Abstract Newsletters really are.  For example: 

•MANUFACTURING TECHNOLOGY:  one of the newest 

Newsletters that meets industry's most 
pressing need right now...brings news of the 
latest research on robotics and CAD/CAM. $125* 

• FOREIGN TECHNOLOGY:   abstracts of latest 
technological and scientific research in all 
fields from Japan, United Kingdom, France, 
U.S.S.R., and countries all over the world. 
SPECIAL CHARTER RATE: $75* 

• ENVIRONMENTAL POLLUTION  &  CONTROL:   one of 
the most sought after Newsletters covering 
air, noise, solid wastes, water, pesticides, 
radiation, health and safety and environ- 
mental impact statements. $95* 

• ENERGY:  brings you a wealth of information 
on energy use; supply and demand; power and 
heat generation; energy policies, regulations 
and studies; engines and fuels, and much more.     $95* 

- COMPUTERS,   CONTROL,   AND  INFORMATION  THEORY: 
important information, and lots of it, con- 
cerning this, one of the fastest growing and 
most competitive industries worldwide. $95* 

• MATERIAL SCIENCES:  applicable to nearly 
every industry with abstracts touching on a 
huge variety of processes and products. $80* 

- MEDICINE & BIOLOGY:  covers an enormous range 
of information from anatomy to zoology.  Every 
facet of medicine and biology is touched upon.     $75* 

And any one of the abstracts in these Newsletters may be 
the added element of success for your ongoing research, contract 
proposals, cost reduction efforts, and profits. 

NTIS regularly publishes information not available elsewhere, 
and frequently brings you news of research before it appears in 
professional journals and magazines.  You simply should not risk 
acting without benefit of complete, current information on what's 
happening in Government-sponsored research in your field. 

*0ne-year subscription rate (Over, please) 



You need NTIS Abstract Newsletters and here's how to 

order them. 

Complete the order form at the bottom of this letter and 
mail it back today to the address below.  You may use any of 
the options listed in order to pay for your subscription. 

You are guaranteed satisfaction.  If your Newsletters 
do not satisfy you for any reason, you may cancel and receive 
a credit or refund for the balance of your subscriptions. 

I invite you to subscribe today. 

Sincerely, 

fityll-j?*»» 
Joseph F. Caponio 
Acting Director 

5285 Port Royal Road 
Springfield, VA 22161 or Call (703) 487-4630 
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