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Preface 

The Problem 

Twinkle, twinkle little star, How I wonder what you are, 
Up above the world so high, Like a diamond in the sky...   [38] 

The Observation 

If the Theory of making Telescopes could at length be fully brought into Practice, 
yet there would be certain Bounds beyond which Telescopes could not perform. 
For the Air through which we look upon the Stars, is in perpetual Tremor; as 
may be seen by the tremulous Motion of Shadows cast from high Towers, and 
by the twinkling of the fix'd Stars. But these Stars do not twinkle when viewed 
through Telescopes which have large apertures. For the Rays of Light which pass 
through divers parts of the aperture, tremble each of them apart, and by means 
of their various and sometimes contrary Tremors, fall at one and the same time 
upon different points in the bottom of the Eye, and their trembling Motions are 
too quick to be perceived severally. And all these illuminated Points constitute 
one broad lucid Point, composed of those many trembling Points confusedly and 
insensibly mixed with one another by very short and swift Tremors, and thereby 
cause the Star to appear broader than it is, and without any trembling of the 
whole. Long Telescopes may cause Objects to appear brighter and larger than 
short ones can do, but they cannot be so formed as to take away that confusion 
of the Rays which arises from the Tremors of the Atmosphere. The only Remedy 
is a most serene and quiet Air, such as may perhaps be found on the tops of the 
highest Mountains above the grosser Clouds [26]. 

A Solution 

Sir Isaac Newton's keen observation provides an insightful introduction to the 
fundamental limitations of astronomical imaging imposed by atmospheric turbu- 
lence. In recent times, automated systems have been employed to sharpen the 
image of a celestial object before it is recorded [23] and computer software has 
been developed to mitigate the blurring effects of atmospheric turbulence [21]. 
The technique developed in this thesis seeks to characterize the cumulative effects 
of the atmosphere between the celestial body and adaptive optical telescope [36]. 
Specifically, this technique estimates wave front slopes over each subaperture of 
a Hartmann-type wave front sensor. 
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Abstract 

Current methods for estimating the wave front slope at the pupil of a telescope equiped 

with a Hartmann-type wave front sensor (H-WFS) are based on a simple centroid calculation 

of the intensity distributions (spots) recorded in each subaperture of the H-WFS. The centroid 

method does not include any knowledge concerning correlation properties of the slopes over 

the subapertures or the amount of light collected by the telescope and diverted to the H-WFS 

for wave front reconstruction purposes. This thesis devises a maximum likelihood (ML) 

estimation of the spot centroids by incorporating statistical knowledge of the spot shifts. The 

light level in each subaperture and the relative spot size is also employed by the shift estimator. 

The shift estimator is found to be unbiased and is upper bounded by the mean squared error 

performance exhibited by the classical centroid technique. 
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Maximum Likelihood Estimation of Wave Front Slopes using a 

Hartmann-type Sensor 

/. Background 

1.1   Introduction 

Many years have passed since Isaac Newton recorded his observations of the "Tremors of 

the Atmosphere" [26]. These "Tremors" are responsible for the scintillation effects commonly 

called twinkling. We now know that the diurnal heating and cooling of the Earth's surface is 

the root cause of atmospheric turbulence [32]. This turbulence reduces the effective resolution 

of a telescope and consequently blurs imagery of celestial objects [8]. 

Although atmospheric turbulence is unavoidable, the distortion effects (scintillation 

and blur) can be reduced by proper site selection [32]. Placing an observatory on top of 

a mountain, where the air is "serene and quiet," can lessen the deleterious effects of the 

atmosphere. For example, the Air Force Maui Optical Station (AMOS) is located atop the 

10,000-ft Mount Haleakala on the island of Maui, Hawaii [2]. Unfortunately, this "Remedy" 

proposed by Newton, falls short of achieving the theoretical resolution of large diameter 

telescopes. Although larger diameter telescopes allow one to view dimmer objects, they 

do not significantly improve the resolution. In recent years, adaptive optical (AO) imaging 

systems have been successfully employed to compensate for the distortions induced by the 

atmosphere [46]. 

AO imaging systems compensate for atmospheric effects before the image is formed 

by "realigning" the light rays. Without adaptive optics, the theoretical resolution achieved 

by modern telescopes is on par with those of the amateur astronomer-only a couple of 

arc seconds [32]. In 1953, Horace Babcock suggested that the atmospheric blurring of 

astronomical imagery could be reduced by mechanical means-an AO imaging system [17]. In 
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1956, Robert Leighton, a self-proclaimed amateur astronomer, recorded the clearest images of 

Jupiter, Saturn, and Mars published at that time [23]. Leighton attached a "simple" first-order 

AO system to the 60-inch reflecting telescope at the Mount Wilson Observatory. 

AO imaging systems technology is an important area of current research aimed at 

improving image quality [1]. The performance of an AO imaging system is fundamentally 

limited by many factors. The most significant factors are the finite amount of light diverted 

to the wave front sensor (WFS) and the finite spatial sampling of the incident wave front 

by the WFS [36]. Cost also limits the performance of AO imaging systems. As the cost of 

these sophisticated systems increases, many organizations and amateur astronomers may turn 

to hybrid approaches. A hybrid approach may be used to supplement deficiencies in an AO 

imaging system by combining mechanical pre-compensation from an AO system and image 

post-processing [27, 34]. 

Image post-processing techniques range from the simple inverse filter [13, 18] to so- 

phisticated blind deconvolution methods [19, 22, 41]. A relatively recent hybrid technique 

known as deconvolution from wave front sensing (DWFS) was proposed by Fried [9] in 1987 

and extended by Primot et al. [31] in 1990. DWFS explicitly uses WFS data from an imaging 

system to improve image resolution. 

The Air Force mission of imaging exo-atmospheric objects provides the central mo- 

tivation for developing techniques to overcome the deletrious effects of the atmosphere on 

ground-based imaging [6]. 

The purpose of the following sections is to illustrate the importance of estimating the 

wave front slope using a Hartmann-type WFS (H-WFS) for wavefront reconstruction purposes. 

The first pertinent background topic discussed conceptualizes the nature of atmospheric tur- 

bulence. A brief review of the canonical AO imaging system and H-WFS is followed by 

a discussion of two image restoration techniques. The problem statement and the proposed 

solution conclude this chapter. 



1.2   Atmospheric turbulence 

It is well known that atmospheric turbulence degrades astronomical imaging. The 

cause, effects, and a measure of atmospheric turbulence are important to understanding the 

significance of the astronomical imaging problem. The stochastic mechanism causing the 

turbulence indicates that a statistical solution is needed. A study of the effects tell us that 

neutralizing the degradation induced by the atmosphere is possible. The measure allows us to 

analytically characterize the overall turbulence effects with a single parameter. 

The fundamental mechanism responsible for the atmospheric turbulence phenomenon 

is the diurnal heating and cooling of the Earth's surface. Uneven temperature distributions 

create large scale inhomogeneities (eddies) in the refractive indices of the air [32]. Eddies 

are homogeneous pockets or regions of air [15]. Kolmogorov asserted that large-scale eddies 

transmit energy without loss to progressively smaller eddies causing optical turbulence [29]. 

Hence, the random fluctuations of the refractive indices of air indicate that a stochastic 

description of the turbulence is needed. As a planar wave front propagates through the 

atmosphere, the turbulence modulates both the phase and amplitude [8]. 

The most significant effect of atmospheric turbulence is that it imparts a random tilt 

onto the wave front [7]. Additionally, the wave front phase perturbations are generally greater 

than the amplitude distortions. The amplitude distortions appear as scintillation or twinkling. 

The overall tilt imparted onto the wave front is evident by apparent object motion in the image 

plane of the telescope. This motion produces the decrease in resolution evident in astronomical 

imaging. One method of modeling the phase effects on a finer scale is to consider how light 

rays interact with the atmosphere. When an optical wave front passes through the varying 

sized eddies, the individual light rays experience varying amounts of retardation. In other 

words, the planar wave front is dimpled and tilted. 

Fried derived a coherence length measure, r0, which gauges the overall strength of 

turbulence-induced perturbations [8]. When the telescope's aperture is greater than r0, the 

achievable resolution is equal to that of a telescope of size r0 in the absence of atmospheric 

turbulence [8]. For an aperture of dimension r0, the nearly diffraction limited image appears 



to dance around on the detector as the atmosphere evolves [23]. Additionally, TQ roughly 

corresponds to the spatial dimensions of a subaperture within which a phase error can be 

measured and subsequently corrected by a single tilt mirror [29]. The next section discusses 

the components and operation of adaptive optical imaging systems employed to remove the 

tilt and dimples from the wave front. 

1.3   Adaptive optics 

The light emitted or reflected by a celestial object reaching the Earth's atmosphere 

is essentially a plane wave. As the optical wave front passes through the atmosphere, the 

planar nature of the wave front is perturbed. The basic premise of adaptive optics is to 

mechanically deform a reflective surface in the optical train of the telescope to compensate for 

the atmospheric effects. In other words, the AO system attempts to remove the tilt and dimples 

in the plane wave front. Specifically, AO imaging systems mitigate the induced phase errors 

by sensing the perturbations with a WFS and then adding the conjugate phase to the perturbed 

wave front with a deformable mirror (DM) [17]. The canonical AO system is illustrated in 

Fig. (1). The controller maps the phase errors sensed by the WFS to actuator commands which 

modify the DM's figure [25]. The controller employs a wave front reconstruction algorithm 

to derive the proper commands sent to the actuators [34]. 

In spite of the amazing achievements of current AO imaging systems [46], these systems 

are fundamentally limited by many factors. Roggemann and Welsh state that "the problem 

of obtaining enough light for accurate wave front sensing has been the most significant factor 

limiting the application of AO technology to ground based imaging" [36]. The finite amount 

of light gathered by the AO system to drive the WFS is strongly linked to performance limiting 

shot noise and anisoplanatism [36]. Shot noise or photon noise is due to the random rate of 

arrival of photons [15, 49]. The technique proposed in this thesis attempts to overcome this 

limitation by utilizing all of the light collected by the WFS to estimate the wave front slopes 

over each subaperture. Anisoplanatism results when the angular separation of the object and 

guide star is greater than the isoplanatic angle, which is on the order of a few arc seconds for 
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Figure 1. Simplified adaptive optics imaging system with the primary ray paths shown 

visible light wavelengths [10]. Other notable limitations include the finite sampling of the 

wave front by the WFS [48], the limited number of degrees-of-freedom on the DM [33], and 

delays between sensing and correcting the phase aberrations [20]. The next section discusses 

a post-processing application which utilizes wave front slope estimation. 

1.4   Deconvolutionfrom wave front sensing 

The previous section on AO imaging described how astronomical imagery is improved 

before it is recorded. This section concerns wave front slope estimation in an image post- 

processing application. Deconvolution from wave front sensing (DWFS) is an image post- 

processing technique which uses the phase distortion information data collected by the WFS 

to estimate the point spread function (PSF) [31, 35, 51]. The image is then restored by de- 

convolving the PSF estimate from the detected image. The deconvolution process effectively 

increases the resolution in the image. The PSF is a measure of the blurring induced by the 

optical system, which is dominated by the atmospheric turbulence.   Hence, DWFS image 



restoration performance is directly linked to the quality of the wave front slope estimation. 

The technique of applying the DWFS method to images recorded with the aid of an AO 

system is called compensated DWFS (CDWFS) [47]. In this thesis, a Hartmann-type sensor 

is employed to gather light from the perturbed wave front. 

1.5 Wave front sensing and reconstruction 

A Hartmann-type WFS (H-WFS) consists of an array of lenslets with an array of 

detectors in the back focal plane of each lenslet. Each lenslet forms a subaperture. Each 

subaperture lenslet forms an intensity distribution or spot in the detector. The offset of the 

spot from the optical axis is termed the shift. The shift is directly proportional to the average 

wave front tilt or slope within that subaperture [49]. The data recorded by the H-WFS is a 

composite set of images. This composite image recorded in the back focal plane of the H-WFS 

is called the WFS image. 

Wave front reconstruction involves converting the spot location in each subaperture of 

the H-WFS to estimate the phase of the wave front. The finite number of photons detected by 

the H-WFS limits the accuracy of a centroiding procedure. Hence employing the underlying 

statistical properties of the wave front slope correlations from subaperture to subaperture and 

the known light levels should increase wave front reconstruction performance. 

In summary, wave front reconstruction from measured wave front gradients (slopes) 

is vital to real-time imaging systems and image post-processing techniques used to restore 

atmospherically blurred imagery. 

1.6 The problem 

Develop an algorithm to maximize the use of the data recorded by the H-WFS to 

optimally estimate the wave front slope over each subaperture of the H-WFS. 



1.7   Proposed solution 

1.7.1 Introduction. The effects of atmospheric turbulence can be modeled by an 

equivalent representation of the wave front at the telescope pupil [15], see Fig. (2). The 

phase aberrations at the pupil are evident in the subimages as spot shifts. Therefore, the 

data in the short-exposure image collected by the H-WFS is directly related to the aberrated 

phase of the wave front at the telescope's pupil and can be used to estimate the wave front 

slope. The composite image recorded in the back focal plane of the H-WFS includes all of 

the subapertures and is called the WFS image. In the following subsections, a conventional 

method and a maximum likelihood (ML) technique for calculating the spot shifts in the WFS 

image are discussed and a few comments on the utility of this ML approach are presented. 

1.7.2 Conventional method. A conventional method of estimating the wave front 

slope in the pupil of the imaging system from the WFS data is based on the location of the 

spot centroid in each subaperture image. The offset of the spot centroid from the expected 

center position, defined by the optical axis of the lenslet, is due to the random wave front tilt 

over the corresponding subaperture [24]. A linear phase over the subaperture causes a simple 

shift in the location of the intensity distribution in the image plane [14]. As atmospheric 

turbulence is never constant, the lenslet overlays a continuous sequence of images at random 

offset locations in the image plane. For short-exposure images, the wave front slope over each 

subaperture is correlated with the neighboring subapertures. This correlation of the wave front 

tilts is used in an ML estimation approach to estimate the wave front slopes from descrete 

WFS image data. 

1.7.3 Maximum likelihood approach. In order to compute an optimal estimate for 

the wave front slope, a model of the WFS subaperture slopes in the focal plane of the recording 

device for each subaperture must be developed. The image created in a specific subaperture is 

called a subimage. Next, the apriori knowledge of the wave front slope statistics or correlation 

properties is factored into the ML technique employed to determine the most likely value for 

the wave front slope. The following paragraphs briefly sketch the details of this approach. 
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Figure 2. Wave front distortion, wave front sensing, and imaging processes 



Using the linear systems framework, the incoherent imaging model equates the image 

intensity to the convolution of the object intensity and the point spread function (PSF) [14]. 

When a point source is imaged through the turbulent atmosphere, the blurred image is a 

measure of how the light from the source is spread. The point-source image is the PSF. The 

detected image is recorded as an array of pixels, thus the detected images are essentially 

sampled versions of the actual intensity distribution imaged in the back focal plane. Since 

the detection of light is a random process, it is necessary to employ a stochastic model of the 

detected image taking into account shot noise. Poisson statistics are well suited to describing 

shot noise effects [28]. The image can be described by Poisson statistics if we assume that 

the Poisson parameter or rate function is known [30]. The rate function corresponds to the 

expected intensity of the image. Additionally, the optical detection in one pixel is independent 

from the detection in another. With these assumptions, the probability density function (PDF) 

for each subimage is simply a product of PDFs associated with the array of pixels. 

The joint PDF of the composite WFS image is derived after developing the detected 

image model. In the absence of atmospheric turbulence, the PSF and the rate function are 

known. In reality, the rate function is a random process and optical detection is doubly 

stochastic [15, 44]. Hence the WFS image model is doubly stochastic. Since phase effects 

are dominant, the amplitude effects are ignored [7]. The joint PDF corresponding to the 

WFS image is the product of the conditional PDF calculated for each subimage and a PDF 

describing the effects of the wave front phase over each subaperture. Modeling the phase 

perturbation over each subaperture as a tilt in the wave front results in a shift of the spot in 

each subimage. The phase tilt is modeled as a zero mean Gaussian random variable [15]. The 

shift in the spot location is linearly related to the tilt and thus it is also a zero mean Gaussian 

random variable. Since the phase perturbations across the pupil are known to be spatially 

and temporally correlated, so are the shifts in each subimage. Because only a single frame of 

short-exposure imagery is used in the estimation process, the temporal correlation effects are 

ignored [50]. With knowledge of the H-WFS subaperture geometry, we can deterministically 

model the rate function and let the randomness be expressed as the shift in the spot centroid 



of the subimage. Finally, with the joint PDF determined, the ML approach is used to calculate 

the wave front slope estimate over each subaperture. 

1.7.4 Utility of the maximum likelihood approach. In comparison to conventional 

techniques which only use the information gathered by the H-WFS, the ML technique derived 

in this thesis incorporates a priori knowledge to improve spot centroid estimation accuracy. In 

conventional techniques the shift parameter measurement in one subaperture is independent of 

the calculation in all of the other subapertures. In the presence of excessive shot noise brought 

on by low light conditions, the true location of the spot may be inaccurately predicted by 

conventional techniques. When imaging dim objects, the amount of light reaching the optical 

detectors of the H-WFS may be on par with the background noise. In the ML model-based 

approach, the joint PDF describing the WFS image employs every pixel in the WFS image 

to optimally estimate the shift parameter in each subimage using ML estimation. Since the 

wave front slopes over the subapertures are correlated, the shift parameters are not calculated 

independent of each other, thus a certain amount of robustness is introduced into the shift 

parameter calculation. 

1.8   Thesis overview 

Chapter II covers the theory related to the modeling of the data recorded by the H- 

WFS. Chapter III covers the slope parameter estimation using the ML technique. Chapter IV 

presents the properties of the estimators derived in Chapter III. Chapter V gives a summary 

on the thesis methodology, conclusions, and recommendations. 
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II. Theory and model derivation 

2.1   Introduction 

The purpose of this research was to estimate the slope of the distorted wave front 

with measurements from a Hartmann-type wave front sensor (H-WFS). The wave front slope 

estimate can then be used to reconstruct the phase distortion modeled at the telescope pupil for 

image restoration. As the wave front passes through the atmosphere, both its amplitude and 

phase are perturbed. The most significant distortion is born by the phase [7], implying that 

scintillation is negligible within a subaperture. Scintillation from subaperture to subaperture 

is accounted for in the derivation. The slope of the wave front in each subaperture is directly 

proportional to a shift in the centroid of the detected irradiance distribution [14]. Hence, 

estimating the centroid shift in each subimage is equivalent to estimating the slope of the wave 

front over each subaperture. 

The fundamentally random nature of optical detection is modeled with Poisson statistics. 

By allowing the Poisson parameter to be random, the Poisson process can incorporate the 

stochastic effects induced by the atmosphere [15]. The Poisson parameter is referred to 

herein as the rate function since it essentially models the rate at which photons arrive at the 

image detector pixels. The rate function and the expected image are shown to be equivalent 

quantities. For a point-source object, the rate function is also equivalent to the point spread 

function (PSF). 

The following sections review the principles of maximum likelihood estimation theory 

for random parameters and proceed to develop the mathematical model describing the inco- 

herent image formation process, including the assumptions made to keep the mathematics 

tractable. By treating the H-WFS as a collection of imaging systems, the single image model 

is expanded into the WFS image model. The ultimate goal of this chapter is to derive the joint 

probability density function, /D,xs (d, *s), where d represents the data recorded by the WFS 

and xs represents the subaperture tilt induced spot shifts. 

11 



2.2   Maximum likelihood estimation theory 

The most likely value for a random vector parameter T of a random vector process Z 

can be found by employing the maximum likelihood (ML) technique. When the probability 

density function (PDF) of the random vector parameter T is known, the ML approach is called 

maximum a priori (MAP) estimation. This review follows the development in Scharf [39]. 

Consider a random vector Z G TZN, parameterized by a random vector T € HN with 

joint PDF /Z,T(
Z

> t). The joint PDF can be written as a product of a conditional PDF and a 

marginal PDF, 

/z,T(z,t) = /Z|T(z|t)/T(t), (1) 

where the conditional PDF can be used to estimate the parameter T when the marginal PDF 

/T(t) is unknown. For some observed value z of the random variable Z, a particular value 

for the parameter t is more probable than some other value. In other words, the PDF is at a 

maximum value for a particular realization when the ML estimate of the parameter is chosen. 

This can be stated mathematically as: 

t = arg 
max 
t     /z,T(z,t) (2) 

where t is known as the maximum likelihood estimate of the random variable T. In this sense, 

the function 

f(t,z) = /z,T(z,t) (3) 

evaluated at the observed value z is termed the likelihood function and L(t, z) defined as 

L(t,z) = ln{/z>T(z,t)} (4) 

is called the log-likelihood function. The log-likelihood function is particularly useful for 

maximizing exponential distributions. The maximum value of a function is determined by 

differentiating it with respect to the independent variable of interest, setting the result equal 

12 



to zero, and then finding the roots of the homogeneous equation.  The score function is a 

short-hand notation for the gradient of the log-likelihood function 

s(t,z) = —L(t,z). (5) 

Thus the maximum value of the function is determined by solving 

a(t,z) = 0, (6) 

where the ML estimate is denoted t. The ML invariance property and several other properties 

used to characterize the performance of an estimator are discussed in the following subsections. 

2.2.1 Invariance property. Using the ML estimate t, the ML estimate of a function 

of the random parameter vector T can be computed. If the random vector G = /(T), then 

by the invariance property of the ML technique, the ML estimate g is /(t). 

2.2.2 Estimator properties. Two important properties used to gauge the quality or 

performance of an estimator are the mean and covariance of estimate t [39]. The estimator 

mean is used to determine if an estimator is biased. The mean and covariance are defined as 

mean(t) = E{i} (7) 

and 

covariance(t) = E {[t - E{i)][i - E(i)]T} , (8) 

where the superscript T represents the transpose operator, t is said to be an unbiased estimator 

of the random parameter T if E{i} - E{T} = 0. The second property, the covariance of 

13 



the estimator, shows up in the definition for the error covariance matrix: 

Cerr   =   £{[t-T][t-Tf} 

=   E{[t- E(i)][t - E(t)]T} + [E(t) - T][E(t) - if, (9) 

where the first term represents the covariance of t and the second term is the squared bias. 

The mean squared error (MSE) of the estimator t is a sum of the diagonal elements of the 

error covariance matrix. The MSE(t) is defined as the trace of the error covariance matrix, 

N 

I MSE(t) = tr (Cerr) = £ E {[tn - Tn,}
2} , (10) 

where tr(-) denotes the trace operator. 

Now that we have discussed the ML estimation technique and a few properties of 

estimators, we can proceed to the derivation of the joint PDF describing the WFS image. The 

process begins by deriving the joint PDF corresponding to a single image. 

2.3   Single Image 

The formation of a single image is a fundamental building block of this thesis. The 

WFS image is viewed as a collection of single images related by the statistics governing 

the wave front slopes over the subapertures of the H-WFS. This derivation incorporates the 

doubly stochastic nature of the optical detection. The following subsections discuss the image 

formation, the optical detection, the random rate function, and the PDF describing a single 

image. 

2.3.I Image formation. The propagation of incoherent light through the turbulent 

atmosphere to the back focal plane of a lens is modeled by [18] 

i(x;cj>)= [       o(x')s(x-x';(f))dxl,  xeX, (11) 
JS'ex1 
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where i(x; </>) is the resultant image irradiance; 0(2?) is the object of interest; s{x — x'\4>) 

is the space-invariant PSF; x € X is the two-dimensional (2-D) image plane; x' € X' is 

the 2-D object plane; and <f> represents the turbulence induced phase errors. If the angular 

extent of the object is sufficiently small, on the order of a few arc seconds [32], then the 

isoplanatic assumption is valid and the PSF can be written as a function of the difference 

of the coordinates. Hence, incoherent imaging can be modeled as a convolutional process 

as in Eq. (11). The image is detected using a discrete photon counting device, such as a 

charged-cooled device (CCD) camera [42]. Since the CCD camera has pixels, the recorded 

image is actually a sampled version of the continuous image intensity distribution focused 

onto the image plane Eq. (11). The spatial sampling is implicitly modeled by restricting the 

2-D position vector, x, to the discrete image (sample) space S, by writing Eq. (11) as 

i[x; (f>]= f       o(x*)s(x - x1; (f>) dx1,  x€S, (12) 
Js'eX1 

where the image irradiance is denoted by the symbol i[x; <fr] and the square brackets indicate 

the implicit sampling of the continuous process [40]. The terms image irradiance, image 

intensity distribution, and expected image are synonymously used to refer to the image defined 

inEq.(12). 

The linear systems approach provides a convenient framework for modeling incoherent 

imaging. The following development relates the shape of the aperture to the unaberrated PSF. 

This approach closely follows that of Roggemann and Welsh [36]. In general, the expected 

image is a function of the object and the PSF. But when the object is a point source, the 

expected image is equivalent to the PSF as shown by replacing o(x) in Eq. (12) with 6{x), 

yielding [11] 

i[x;4>]   =    /      6(x')s(x-x';<ß)dx',  xeS (13) 
Jx'eX' 

=   s[$;<j>]t  xeS. (14) 
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Thus the expected image is determined by the atmospheric turbulence and aperture geometry. 

The following development illustrates how the atmospheric turbulence and aperture geometry 

influence the resultant image of a point-source object. 

For a single aperture, the unaberrated PSF is given by the modulus squared of the 

coherent impulse response, hopt(x). Expressed mathematically as 

Sopt{x) = |/iopt(x)|2, (15) 

where 5opt(x) is the unaberrated PSF. Whereas the PSF maps the object intensity to the image 

plane, the coherent impulse response maps the complex field of the object to the complex field 

of the image. The coherent impulse response is equal to the inverse Fourier transform of the 

coherent transfer function (CTF) and can be expressed as 

h(x) = T-l\H{u)\ = f    H(u) exp{j27r(« • x)} du, (16) 

where T~x is the inverse Fourier transform operator; H(u) is the CTF; u is a 2-D spatial 

frequency variable; and u e U represents the 2-D Fourier domain. The shape of the aperture 

is described by the support of the pupil function, Wp(x), and is related to the CTF by 

H(u) = WpiÜXavgft), (17) 

where Xavg is the average wavelength and // is the focal length of the lens. To include the 

random phase fluctuations of the atmosphere, define the generalized pupil function [14] 

W{x; (j>) = exp{-j0(ä:)} Wp(x). (18) 

For this work, the phase 4>{x) is modeled as 

<f>(x)tta-x (19) 
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where • is the vector dot product. Since the phase slope is most likely not a planar surface, a 

represents the least-mean-squares slope of the wave front. Thus (f>(x) = a • x is a tilted plane 

within the subaperture. This approximation improves as the ratio r0/L gets bigger, where 

r0 is the Fried coherence diameter characterizing the seeing and L is the maximum extent of 

the subaperture. Rewriting Eq. (18) using the approximation in Eq. (19) yields the following 

generalized pupil function: 

W(x; a) = exp{-j(a • x)} Wp(x). (20) 

Substituting the generalized pupil function of Eq. (20) into Eq. (17) yields 

H(u) = exp{-j(ä-uXavgfi)}Wp(uXavgfi). (21) 

Evaluating Eq. (16) with the CTF of Eq. (21) yields the desired PSF relation [11] 

s(x;a)   =    T   [exp{-j(ä-u\avgfi)}Wp(uXavgfi)} 

(22) 

where h[x ^— a I is the coherent impulse response shifted by   av9   a. 
\ 2TT     J 2-7T 

2.3.2 Single recorded image. The image recorded by a CCD camera is subj ect to nu- 

merous sources of error. The CCD sensor is subject to photo-conversion noise, readout noise, 

and various background noises [42,43]. For astronomical imaging, the photo-conversion and 

readout noises are the dominant sources of error. Photo-conversion noise characterizes the 

random arrival of photons and is modeled by the Poisson random process d[x\ [49]. Readout 

noise is also a stochastic process and is often modeled with the Gaussian distribution n[x] 
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[30]. The recorded image, r[x], is modeled by 

r[x] = d[x\+n[x\, (23) 

where d[x\ is the detected image and n[x] is a zero mean Gaussian random process [4]. In this 

research, the detector is assumed to be photon noise limited. In other words, the randomness 

of the optical detection was assumed to be the dominant source of uncertainty. Hence, the 

recorded and detected images are the "same." 

2.3.3 Single image optical detection model. The randomness inherent in optical 

detection is accurately modeled by the Poisson random process when the semi-classical model 

of photo-electric detection is employed. This model is valid because the three defining 

assumptions of the Poisson point process are satisfied [15]. In short, the probability of 

observing one photo-event at a time is proportional to the observation time, detection area 

and intensity; the probability of more than one photo-event per observation time interval is 

negligible; and the number of photo-events occurring in non-overlapping time intervals are 

statistically independent. Thus, the discrete image is sufficiently modeled as a collection of 

independent Poisson random variables [15]. Image detection can be cast as the probability of 

detecting d[x] photo-events at location x. This detection probability is given by the following 

conditional Poisson PDF [30]: 

j-           /,r-*i,,r.n     X[x-xs]d^exp{-X[x-xs}}    _     „ 
/D[*]|A[x](rf[s] | X[x}) = -I ^ ^| [- ^,  X 6 S, (24) 

where D[x] is a random variable characterizing the number of photo events at location x G <S; 

d[x] is a realization of D[x\; A[x] is a random variable characterizing the rate function at 

location x; X[x — x*s] is a specific realization of A[x\; 

xs = ~^a (25) 

18 



is the random shift defined in Eq. (22); and /(•) is used to denote the PDF of both continuous 

and discrete distributions. The rate function represents the average photon count for a particular 

pixel and can be expressed as 

X[x - xs] = ED[s]lA[^{D[x]}, (26) 

where E{-} is the expectation operator. The rate function is also equivalent to the expected 

image irradiance given by Eq. (22). Thus, for a point source, the rate function is equivalent to 

the PSF, A[-] = s[-]. The joint PDF of the photo events for all of the pixels in the image is a 

product of conditional Poisson PDFs given in Eq. (24), 

f ■ Mm- TT x^-^s]d[s]exp{-X[x-xs}} /D|A(d|A) - II ^ , (27) 

where D = {D\x\ : x € S} and A = {A[of] : x e S} are vectors of random variables, and 

d = {d[x\ : x e 5} and A = {X[x - xs] : x e S,xs € X} are vector representations of 

specific realizations. The marginal PDF characterizing the randomness of the rate function is 

discussed in the following subsection. 

2.3.4 The random rate function. In general, the rate function depends on both the 

imaged object and the shape of the aperture. For a point-source object or a system with a small 

aperture, the imaged object appears as an unresolved spot. The entire spot is assumed to be 

contained entirely within the image detector area. The relationship between the spot location 

and compactness is shown in Fig. (3). The intensity distribution of the spot is controlled by 

the shape of the aperture and the relative position is related to the wave front slope. The spot 

is offset from the optical-axis (center pixel) by the shift parameter xs, which is a realization 
—» 

of the random shift parameter Xs- Hence the shift incorporates the randomness of the rate 

function and the conditional PDF of Eq. (27) is re-denoted by /D|xs(d|£5). The conditional 
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X, 

Figure 3. Single image of a compact spot overlayed on the detector pixel array 

PDF is repeated for the sake of clarity: 

Wdi**)=n 
ses 

\[x-xs}d[S]exp{-\[x-xs]} 
d\x. S?U 

(28) 

where Xs represents the random bivariate shift variable and xs is a specific realization. 

\     f 
The wave front tilt is manifested as a shift x*s =   "l9   <*> of the spot location in the 

2TT 

subimage. The PDF of the random shift, xs, is modeled as a product of two independent and 

identically distributed (IID) zero mean Gaussian random variables [8, 15]. The zero mean 

bivariate normal has the following PDF: 

/*>*) = ^exPj-^J (29) 

9 -+ 
where a is the variance of the random shift Xs and since xs = 

xs 

ys 
,\xs\2 = 4 + 2/1- 

2.3.5   Single image probability density function.       By combining the results of the 

previous subsections, the joint PDF describing a single detected image yields 

fn,xs(
d^s) = fuixsi^s) fxs(xs), (30) 

where f^Xs {d\xs) is found using Eq. (28) and /J?s (xs) is given in Eq. (29). In the following 

section, the PDF describing the data recorded by all of the subapertures of the WFS is 

developed. 
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j th subimage i th pixel 

Hi i 

■ 

/ 
r-'- 

J 

/ th subimage 

V th pixel 

Figure 4. Pixel and subimage labeling system for the wave front sensor image. Note how 
the pixels labeled by X{ and äv are in the same relative positions in all of the 
subimages. 

2.4    Wave front sensor image 

The H-WFS can be modeled as a set of correlated diffraction limited imaging systems. 

The expression for the PDF describing the image in a single aperture is extended to the case of 

multiple subapertures where the geometry and arrangement of the subapertures is completely 

arbitrary. The WFS image is defined as a set of J subaperture images or subimages, with / 

pixels in each subimage as shown in Fig. (4). Note that there are / = 25 pixels in each of the 

J = 4 subimages in this example. 

The pixels in each of the subimages are modeled by a collection of / independent 

Poisson random variables as in Eq. (24). Let the photon count in a particular pixel be denoted 

by dj[xi\, where i refers to the pixel location in the jth subimage and Xi G S. The position 

vector Xi locates the z'th pixel in any subimage as shown in Fig. (4). The shift parameters x*s- 

and xs., are displayed in Fig. (5). 

The joint PDF describing the WFS image is a generalization of Eq. (30). The PDF is 

a product of the I x J conditionally Poisson PDFs [30] and the joint PDF of the subaperture 
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j th subimage 

-» 
bj 

f th subimage 

Figure 5.    Wave front sensor image with compact spots overlayed on the detector pixel arrays. 
This figure is intended to show the randomness of the shift parameters. 

shifts, X5 = (XSl,...,XSj), 

/D,xs(d,x5) = /D|xs(d|x5)/xs(xs), (31) 

where 

/D|Xs(d|x5) - 11 11 -7T=Tj . 
j=l i=l u3 r^J • 

(32) 

The joint PDF of the random shift vector, Xs = (XSl,... ,Xsj), is derived by 

extending the bivariate Gaussian of Eq. (29) from one parameter to multiple parameters. The 

joint PDF of Xs is the zero mean multivariate normal density 

/xs(x5) = (27r)-J|R|-1/2exp {-ixjR-1^} , (33) 
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where |R| is the determinant of the block correlation matrix R [28]. The correlation matrix 

is a block matrix with the following form: 

R = 

Ri,i  • • •  RI,J 

RJ,I  • • •  RJ„J 

(34) 

where each block is given by 

' r                -I T   \ 

Rjj' = E< 
XSj xs? 

w . ysi . [ y*,' \ * 

(35) 

and XSJ and yg. are the coordinates of the spot centroid in the jth subimage [5]. In Eq. (33), 

X£ is actually a 2 J-length column vector written as 

X5 

xg, 

XSj 

XSi 

ys! 

xSj 

ysj 

(36) 

which is compatible with the size of the 2 J x 2 J correlation matrix of Eq. (34). The cross 

correlation between the x and y coordinate centroid shifts are zero when j = j' since the shifts 

are assumed to be independent zero mean Gaussian random variables for a single subaperture 

[28], i.e. 

a)    0 

0 
3   . 

(37) 

where cr? is the variance of the jth random shift in the both coordinate directions: Xg and Yg.. 

In general, however, the cross correlations Ryj» in Eq. (35) are nonzero. Since R e 1l2Jx2J 

and R^, = Rj/j, R_1 is also real and symmetric [45]. Additionally, R is positive definite, 
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which means that zTRz > 0, Vz, thus R_1 is also positive definite [28]. Note that the specific 

correlation properties of the spot shift or equivalently the wave front slope was not essential 

to this derivation. 

2.5   Conclusions 

The linear systems framework was used in modeling the incoherent imaging process. 

Optical detection was modeled by a conditionally Poisson process, where the shift parameter 

vector is a random process. Equation (31) will be used to find the most likely value for the 

random vector X# for an observed WFS image, d, in the next chapter using ML estimation 

to optimally determine the wave front slope in the pupil of the telescope. 
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Z/7. Maximum likelihood parameter estimation 

3.1 Introduction 

The purpose of the previous chapter was to introduce the estimation theory and model 

the image captured by the wave front sensor (WFS) with a probability density function (PDF). 

The PDF describing the WFS image serves the role of the likelihood function in maximum 

likelihood (ML) estimation. The logarithm is a nondecreasing function of the argument. 

Taking the logarithm of exponential functions greatly simplifies the maximization procedure. 

Thus the log-likelihood function will be maximized with respect to the shift parameters. The 

bulk of the derivation is divided into two parts. In the first part, the score function is derived 

for an arbitrary rate function and manipulated into a form where the shift parameters for the 

J subimages are grouped into the shift parameter vector x$. In the second part, the score 

function is evaluated for a scaled Gaussian rate function. The Gaussian function adequately 

models the main lobe of the intensity distribution, which is equivalent to the rate function as 

stated earlier, provided the volume of the main lobe is approximately equal [52]. 

3.2 Log-likelihood junction 

The likelihood function is a scalar defined by Eq. (31) and the log-likelihood function 

is formed by taking the natural logarithm of both sides of Eq. (31): 

L(X5,d)   =   EE^]MA[*-^l}-A[fi-f5,-]-ln{di[li]!} 

+ ln{(27r)-
J}+ln{|R|-1/2}_Ix|R-iX5. (38) 

3.3   Deriving the score junction 

The ML estimate of the shift parameter vector is the root of the score function. The 

score function is calculated by taking the gradient of the log-likelihood function with respect 
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to the shift parameters 
S(xs,d) = —L(y:s,d). (39) 

Substituting Eq. (38) into Eq. (39) and evaluating the derivative yields 

8   J. j   i 

d 
dxs --{>-^Y (40) 

Next, we rewrite the set of terms in the double summation in Eq. (40). The first step 

involves swapping the order of the summations, so that the inner sum is now over the ith pixel 

in all J subapertures versus summing the / pixels in each subaperture. Next, the sum over j 

is expanded and the terms are collected into vectors in Eq. (41). The double sum of Eq. (40) 

is thus written as 

j   J 

Y, J2 dA*i] ln{A[xi - xSj]} - X[xi - xSj] 

/   J 

=   £ £ dJ&] ln{A[^ - xSj]} - X[xt - xSj] 

i 

=   Y, M^i] WAfö - xSl]} - X[xi - xSl] + • ■ ■ 

where 

i=i 

+ dj[xi] ln{\[xi - xSj]} - X[xi - xSj] 
i 

E =   Eln{A[^lT-xf]}d[^]-A[xaT-x; 

1 = 

1 

,     Xi± — 

Xi 

1 —* 

(41) 

(42) 
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X[xil — Xs] and In {A[x{l — Xs]} are short-hand notations for 

X[xil -xs] = 

and 

ln{\[xil-xs}} = 

\[Xi - xSl] 

\{Xi - xSj] 

\n{X[xi-xSl]} 

ln{X[xi-xSj}} 

(43) 

(44) 

respectively; d[xi] is a column vector representing the data in the ith pixel location of each 

subimage, 

dAxA 

d[xi 

dj[xi) 

(45) 

and Xs is the shift parameter vector. Also, note that the following notation applies: 

and 

XilT - x|] = [\[Xil - xs]] 

In {A [xilT - xT
s ]} = [in {Aftl - x5]}f. 

(46) 

(47) 

Substituting the result of Eq. (41) into Eq. (40) yields the following simplification for the score 

function: 

8 s(*s,d)   =   £-|i:in{A[^lT-x5]}d[*]-A[^lr-^]l} 

(48) 
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where the score function is seen to be dependent on the shift parameter vector x#. To estimate 

the shift parameters, set the score function equal the zero vector, as in Eq. (5), and then apply 

the gradient operator to the individual terms in the summation yielding 

g^MM*1*-^]}^-^ 
d_ 

dxs 

-> -\T T 
X% -L X c 

_d_    fl 
<9x.< 

{-xfR-^} = 0. 
(49) 

The gradient of the natural logarithm of A[-] can be simplified in the following manner 

[16]: 

\n{X[xil - xs]} = 

— \n{\[xi-xSl}} 

8 
dx Sj 

\n{X[xi - xSl]} 

8 
dx 

\n{X[xi-xSj]} 
Si 

^|-ln{Aft-*5j]} 

(50) 

Evaluating the partial derivatives of Eq. (50) yields 

_d_ 
dxf 

\n{X[xil -xs]} 

1        8X[xj - xSl] 
X[xi - xSl]       dxSl 

_d_ 

dxi 
A^l-x^A^1, 

1        dX[xj - xSj] 
X[xi - xSj]      dxSj 

(51) 

where A^,1 is a diagonal matrix 

ABX = 

X[xi - xSl] 

X[xi -xSj] 

(52) 
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and ——X[xil — x^] is the gradient of a vector (which is also a diagonal matrix) 

d 
\[Xil-XS]     = 

a 
dxSl 

a 
dxSj 

d 
dxSl 

X[xi - xSl] 

X[xi - xSl] 

X[xi - xSl] 

0 

9   xr-      - ^X[Xi - xSj 

9   \\-     - -^zr-X[Xi - xSj 
dxSj 

0 

8 
dx Sj 

■X[xi- xSj] 

(53) 

The third term of Eq. (49) depends on the shift vector x5 and the correlation matrix 

R. This third term can be reduced using basic linear algebra. The term x^R^x^ is in pure 

quadratic form [45]. Given that x5 e ft^R"1 e -R2Jx2J, and [R_1]T = R-1, the gradient 

of x^R^xs with respect to the vector x5 is [16] 

_d_ 
9x.c 

xfR_1x5 = 2R_1x5. (54) 

Combining the results of Eqs. (51) and (54), Eq. (49) can be expressed as 

£ ^-A[^1T - xj] (A^dfc] - 1) - R^x, = 0. (55) 

The score function expression in Eq. (55) represents the gradient of the log-likelihood 

function of the WFS image set equal to zero. Solving Eq. (55) for x5 yields the ML estimate 

of the shift parameters. Additional progress cannot be made without assuming a specific form 

for the rate function. In the following section, a form for the rate function is assumed and the 

derivation is continued. 
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3.4   Solving for the shift parameter vector x.§ 

In solving for the shift parameter vector, the generality of the subaperture shape is set 

aside to make the mathematics tractable. In the following derivation, the intensity profile of 

the spot in each subimage is assumed to be a Gaussian function. The main goal in modeling the 

intensity distribution is to accurately estimate the main lobe corresponding to the centroid of 

the spot. A Gaussian intensity profile scaled by the average number of photo-events detected 

in the subimage is 

Alii-is>1=2^fxp{—üf)< (5S) 

where |z|2 = xTx = x2 + y2 and the average photon count in the jth subimage is 

Kj^E^djlxA, (57) 

adequately models the intensity distribution in the subaperture. The rate function in Eq. (56) 

is patterned after Winick's spot intensity distribution [52]. The rate function is modeled by a 

Gaussian distribution scaled by the average photon count Kj and the pixel area I2, the mean 

is represented by the shift parameter xsjt and the spot size is controlled by the variance a2. 

The variance a2 is dependent on the average imaging wave length Xavg, the focal length of 

the lenslets // [52], and the dimension of the subaperture L. This Gaussian function simplifies 

the analytical solution for the shift parameters. 

Although scintillation effects on the wave front are overshadowed by the phase pertur- 

bations [7], the rate function in Eq. (56) is scaled by the photon count in each subimage, Kj, to 

allow for scintillation effects from subaperture to subaperture. However, scintillation across 

each subaperture is assumed to be negligible. In other words, the wave front distortion across 

each subaperture will be modeled as a random tilting of the plane-wave front. 

The analytical solution of Eq. (55) for the rate function defined in Eq. (56) depends on 

the following assumptions: the spot intensity distribution must be sufficiently compact so that 

light passing through lenslet j does not bleed over into the detector elements of a neighboring 
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subaperture j' and large enough so that more than one pixel reports a photo event, hence the 

following approximation: 

£ (£• ~ $Si) exp \ * „ /'"    ) « 0 
j=i 2a2 (58) 

for all j. Figure (5) displays compact spots overlayed onto the detector pixel array. The 

derivative of the Gaussian rate function defined in Eq. (56) with respect to the jth shift yields 

a diagonal matrix with the jth element given as 

d 
dx 

=-A[£ - $s,\ = 
Kjl2(xi - xs) 

Si 2™$ 
exp 

r \xj-xSj\ 
(59) 

Substituting the results of Eq. (59) into Eq. (53) enables the summand of Eq. (55) to be 

expressed as 

d 

dxs 
AfclT-xf] (A^d^]-!) 

Kxl2(xi-xSl) 
27ra* 

exp 
I H       J 

VL 

2™p Jl^-XsJ2 

jrjZ2(^-xSj)     j   |^-xSj|
2 

2*0* 
exp 

2^ 

2^        jlxi-x Sj|
2 

  exp < J 

lOZ2 2oS 
dj[xi] _ 

- 

i_
i 
  
 .
..

  
  

i_
i 

(60) 
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Simplifying Eq. (60) gives 

_d_ 
dx.< 

A fil
T-x|j(AB1d[^]-l) 

Zi-XSl,   r _ , #l*2(#i  - £Sl ) 
-dl  X 

27TC74. 
exp 

Kj/2^-^) ^i-^j  ,   r-,1       Kjl"{Xi - XSj) \     \Xi 
—dAxi} ^ exp I  -*s,r 

2TT<7* H 

(61) 

A sum of vectors is equivalently stated as 

r N     i 
E*M 

JV n=l 

EZn = ; 
m=l JV 

"52zn,M 
L   71 = 1                  J 

where zn G 7£ M (62) 

The equivalence expressed in Eq. (62) shows how the summation operation in the score 

function of Eq. (55) can be moved inside the column vector to sum the elements. The score 

function relation in Eq. (55) can be expressed in the following matrix notation: 

v^ Xi - xSl    r„.     J^ Kxl
2[xi -xSl)        ( 

E ——M*i} - E —^i— exP {■ 
i=l        av 

Xi — Xsi 

i=l 2ira$ 
\Xj - xSl\ 

E^-^^,]-E 
Kjl2(xi - xSj)        \    \xi - xs 

2      -vr-ij     z_^ OTTO-
4 exp 

2*J 

,-i R_1x5 = 0. 

(63) 

Using the approximation stated in Eq. (58), the second summation in each element of 

Eq. (63) equates to zero. By replacing the summation notation with the inner product of two 
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vectors, Eq. (63) can be written as 

df(x-£Sll) 

dj(x - xSjl) 

-R-LXS = 0, (64) 

where 

di = 

dj[xi] 

dj[xi] 

(65) 

represents the detected photo-events (data) for the jth subimage, 

x = 

rci 

X! 

(66) 

is the pixel position vector, and 1 is a column vector of ones. The data is grouped in two 

manners: d;- denotes the data vector for all / pixels in the jth subimage and d[xi] denotes the 

data vector for the ith pixel in all J subimages. 

Simplifying Eq. (64) by separating the data and positioning components from the shift 

parameters and multiplying through by ai yields 

d?> 

djx 

dfl 

djl 

xs-a2
pR-1xs = 0. (67) 

The djl terms on the diagonal is another way of expressing the total number of photons 

detected in each subimage. Grouping the matrices multiplied by xs yields 

33 



dfx / "dfl 0 

+ ^R~1 

djx V 0 djl 
) 

or in matrix form 

x5 = 0 (68) 

Cx.c = m. (69) 

The C (which acts as a Correction factor) and m (which resembles a moment calculation) are 

defined as 
rdfi 0 

C = 

0 djl 

,2-D-l + ^R-1 = K + <^It (70) 

with the photon count matrix defined as 

K = 

Kt 0 

0 Kj 

(71) 

and 

m = 

dfr 

d^x 

(72) 

Finally, the ML estimate x$ of the shift parameter vector is obtained by solving Eq. (69) for 

x5. If the correction factor matrix, C is nonsingular, then the solution is 

xs = C_1m. (73) 
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If C is singular, then calculate x^ using the least mean squares technique [45]: 

XS=(CTC)  Vm. (74) 

where (CTCJ    CT is known as a pseudo inverse. 

Additionally, by the invariance property of the ML estimate of the shift parameter vector 

xs, we can compute the ML estimate of the wave front slope over each subaperture. The 

slope vector a, is defined as 

ai 

a = 

a>j 

(75) 

The approximate slope for a single aperture, a,-, is proportional to the shift, xs , or offset of 

the spot in the subimage by a, = 
2TT   _ 

"avgjl 
XSJ, where Xavg is the average imaging wave length 

and // is the lens focal length. Thus, the ML wave front slope estimate across the telescope 

pupil is 

a = 
2TT   „ 

x5- 
^■avg Jl 

(76) 

3.5   Conclusions 

In this chapter, the ML technique was employed to estimate the wave front slope using 

the PDF constructed in Chapter II to optimally determine the wave front slope in the pupil of 

the telescope. 
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IV. Analysis & discussion 

4.1    Introduction 

Preceding chapters modeled the data recorded by the Hartmann-type wave front sensor 

(H-WFS) with a probability density function (PDF) and then estimated the shift parameter 

vector using maximum likelihood (ML) estimation. This chapter explores a few limiting cases 

for the shift estimator and derives expressions for the first moment and the mean squared error 

(MSE) of the estimator. The ML shift estimator is shown to be unbiased. The expression for 

MSE of the estimator is shown to depend on the light level, the correlation properties of the 

wave front slope statistics, and the classical centroid shift calculation. 

With slight loss of generality, the light level in each subaperture is replaced by the 

average photon count Kj, defined as 

Kj = E{Kj}, (77) 

where Kj = djl. Subsequently, K is redefine as the average photon count matrix: 

K = 

Ky 

0 Kj 

(78) 

Note that K is now deterministic. The shift parameter estimate given in Eq. (73) is repeated 

here for convenience: 

x5 = C_1m, (79) 

where 

C = K + a2
r>R~1 

(80) 
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is assumed to be nonsingular.  Using the invariance property of the ML estimate, the ML 

estimated slope, ä, is 

(81) 
2TT   ä a = - rX5, 

A-avgJl 

where Xavg is the average imaging wavelength and /; is the focal length of the lenslets. Since 

the slope and shifts are related by a constant, the properties of the slope estimator will be 

explored using the shift parameter estimate, x$. In the next section, the shift vector estimate 

is shown to be a function of the classical centroid calculation. 

4.2    The classical centroid method 

The classical centroid method of calculating the spot centroid is adequate for high 

light. Several researchers have documented the performance of the technique by modeling the 

optical detection process with the Poisson point process [3, 24, 37]. However, for techniques 

used in wave front reconstruction, a more accurate technique may be necessary for low light 

level imaging. Scintillation effects from subaperture to subaperture are accounted for in the 

model since Kj is not necessarily equal to Ky. 

Consider writing Eq. (79) as 

X5 = C-^KK-1!!! = CT1!!!, (82) 

where m is equivalent to the classical centroid calculation for the shift vector [24, 37]. The 

classical centroid offset calculation is 

m = 

r dfx 1 
dfi 

rhi 

djx rhj 

■ Kj  . 

--K--1 K-Xm, (83) 
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Thus, the ML estimate X5 is a function of the classical centroid shift. From Eq. (82), the 

inverse of the modified correction factor matrix is defined as 

C1 = C^K, (84) 

which implies 

C = (C-^)-1 = K^C. (85) 

Substituting Eq. (70) into Eq. (85) yields the final form of the modified correction factor 

matrix: 

C = I + at K-'R 2V-1D-1 (86) 

Harnessing the power of the Sherman-Morrison-Woodbury formula [12], the inverse of C_1 

becomes 

^      1 cr1 = I"1 - r\a2
v K-1) [I + R-1!-V? K-1)]    R^I1, 

=   I-ojK-^I + ojR-'K-1)'1^1, 
-1 

=   I I+^RK (87) 

Substituting Eq. (87) into Eq. (82) achieves the following relation for the ML shift estimate: 

x<? = 

-i' 

I -   I + -TRK m. (88) 

Hence, the ML estimator for the shift vector xs is equal to the difference of the classical 

centroid shift calculation m and a correction term based on the relative spot size variance ai, 

the light level K and spot shift correlation properties R. Figure (6) illustrates how the classical 

centroid shift for the jth subimage, rhj, represented by the thick dashed line, is modified by 
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the classical centroid shifts in the other J — 1 subimages. The fe,y coefficients are elements of 

B=     I+^rRK (89) 

which is the second term in Eq. (88). 

In the following subsections, Eq. (88) is simplified for high or low light levels and when 

the wave front slopes are uncorrelated. 

4.2.1 Bright objects. When imaging bright objects, Eq. (88) reduces to the classical 

centroiding calculation, implying that the correlation between the slopes over each subaperture 

are not important. For high light levels, K is a diagonal matrix of large numbers. Thus 

I + 4RK 
-l 

0 

which reduces Eq. (88) to 

xs = I -   I + —RK (90) 

When imaging infinitely bright objects, x5 = m which implies that Eq. (90) is exact. Next, 

the behavior of the estimator is explored for dim objects. 

4.2.2 Dim objects. When imaging dim objects, K is a diagonal matrix of small 

numbers and thus Eq. (88) reduces to xs = 0. This "no shift" estimate indicates that the 

photon starved WFS image cannot produce a reliable measurement. To demonstrate this 

result, let K be a diagonal matrix of small numbers so that 

-l 

I + -RK 
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ML 
correction 
factors 

Classical 
centroid 
shift 

bj2m2 

ML shift 

jth subaperture 

Figure 6. Vector representation of the jth ML shift estimate given in Eq. (88). The tip- 
to-tail vector addition illustrates how the classical centroid calculation, mj, is 
modified by incorporating the centroid shift correlation statistics and light levels 
to achieve the most likely value for the centroid, xsr The vectors —bjjifhj for 
j' = {1,..., J} represent the additional knowledge provided by the ML theoretic 
approach. The thin dashed vectors represent the other J — A unnamed terms 
modifying the classical centroid shift. 
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a 

Figure 7. Plot of the factor in Eq. (92) 

and thus Eq. (88) becomes 

xs I+-RK m « (I - I) m = 0. (91) 

The following case considers the special situation for uncorrelated wave front slopes. 

4.2.3 Uncorrelated wave front slopes. When the wave front slopes are uncorrelated, 

R becomes a diagonal matrix. Thus all of the matrices in Eq. (88) are diagonal. Hence the 

jth diagonal block element is given by 

** =    1 1 + Krf/ol 
rrii (92) 

where a? is the x ox y coordinate shift variance for the j'th subimage, Kj is the average 

photon count for the j'th subimage, and the factor 1 is plotted in Fig. (7), with 
1 + OL 

a = KjOjIo*. Note that for high and low light levels, Eq. (92) agrees with the results of the 

previous subsections. 
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In the following section, the bias of the shift vector estimate is calculated. 

4.3   Is the maximum likelihood shift vector estimate unbiased? 

To demonstrate whether or not the ML shift vector estimate, x^, is an unbiased estimator, 

the first moment of x^ is calculated and is compared to the expected value of the shift vector, 

xs. If E{ks} = E{xs}, then xs is an unbiased estimator of xs. The first moment of the 

shift vector estimator is 

E{xs} = C-lE{m} = C^K-^lm}, (93) 

where E{m} can be expressed as 

E{m} = E < 

~Y^Xidj{xi 

i=l 

L j=l 

(94) 

In Eq. (94) the expected value of dj[xi\ can be written as the following nested conditional 

expectation relation: 

E{dj[xi}} = E^[ED[St]lJlsj{dj[xi]}}, (95) 

where the inner expectation can be evaluated using Eq. (26).  Hence the inner expectation 

equates the expected value of the data and the rate function yielding 

ED[3i]\Jls.{dj[Si]} = X& ~ *s3]- (96) 
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Simplifying Eq. (95) with Eq. (96) yields 

E{dj[xi]} = E^{\[xi-xS]}} (97) 

and by definition, 

Exs. {Aft - *s,]} = L    y m ~ 2Si] fxs.(Zs3)dx*s 3 Jxs£X 1 
(98) 

The rate function was defined in Eq. (56) as a scaled Gaussian function 

,r^      _  ,      Kjl2        f    \xi-xs. 

*)■ 
(99) 

Equivalent forms for the magnitude squared of a 2-D vector x are \x\2 = x2 + y2 = xTx. 

The PDF is 
.   ,. .     1      r i£*,i2i 

(100) 
,     ...   ,        1 f    \xs3\

2\ 

where <r| is the variance of the jth random shift. Substituting Eqs.(99) and (100) into Eq. (98) 

yields 

ExSj{m-^]} 

xs-ex 2ira2 
\Xi-xSjY 

H 

Jxs- 

Kjl2 

xSjex AV
2
O

2
<J

2
J 
exp<- 

J 2™: 
2        OZT=> 

W' dä?,< 

\Xi\~     2x?xSj      \xs\
2  _  |zs?

|2 

2<r2 2<r2 + 
^ 

+ 
2a] 

dxSr  (101) 

In order to evaluate Eq. (101), the "complete the square" operation is performed on the 

exponent. For notational convenience, let ix}■ = — + T-^, thus the exponent of Eq. (101) 
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becomes 

3$     2xfxSj   |  |x5jf  (  \xSj\
2 

H H K 20} 

= ^(«V-^^+sb1*1 

=   H xSj 

1    ^ 
Xi 

2a2jij 
+ 

2afc     4o}vS 
m2 

(102) 

where the square was completed in Eq. (102). Combining Eqs. (101) and (102) yields 

%Si{Afc-a5i]} 

Kf 
4^Upa]eXp\2al{1     2^. 

I - |2 \Xi 
lxSj ex 

exp < -iXj 
1     _ 

X 4 2<W 
dz.<?. 

=*7/*i 

Ä,-!2 

47T/X. Jf^f^t1"^)1^}' (103) 

where the constants and exp < —- [ 1 — —-— I \xA2\ have been factored out of the integral 
[2a2 V       20-2^-/        J 

I and then the integral of exp < —jXj 1     -. 
2^>i 

!1. 
> integrates to — because the integrand 

J H 
resembles the product of two Gaussian PDFs [28]. Finally, combining Eqs. (94), (97), and 

(103) yields the following expression: 

E{m} = 

Kxl
2 

Airfiia2 

Kjl2 

sfS^fiH1"^)1*1 

, Xi exp (3(- 2a>j 
I ~*  I2 

(104) 

Each of the J identical elements equates to zero because Y^ Xi exp < —- [ 1 — ) \xA2\ 

approximates the expected value of a zero mean bivariate Gaussian random variable. This 
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approximation was previously stated in Eq. (58) for a centered Gaussian random variable. 

Hence, E{m} = 0 implies E{xs} = C_1K_10 and thus 

E{xs} = E{xs} = 0. (105) 

Therefore, xs is an unbiased estimator since E{xs} and E{xs} are equal. Another important 

metric used to quantify the performance of an estimator is the MSE. The MSE for the ML 

shift vector estimator, x^, is calculated in the next section. 

4.4   Mean squared error of the maximum likelihood shift vector estimate 

The performance of the estimator is quantified by the MSE metric. The derivation starts 

with the definition of the MSE. 

4.4.1   Start with the definition.     By substituting the error covariance matrix of Eq. (9) 

into the MSE given in Eq. (10) for the ML shift vector, the MSE is written as 

MSE(x5)   =   ti(E{[xs-E(±s)][yLS-E(±s)}T}) 

=   tr(£{[x5][x5]T}), (106) 

since x.s is an unbiased estimator. Substituting the expression for the ML estimator from 

Eq. (82) into Eq. (106) yields 

MSE(x5)   =   tr(JB{[C-1m][C-1m]T}) 

=   trp-^fmm^C-1) 
=   tr^MC"1), (107) 

where M = E |mmT| is called the moment covariance matrix. 
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The MSE relation in Eq. (107) can be written as a sum of terms to show how knowledge 

of the light level and shift correlation properties influence the MSE of the ML shift estimator. 

Using Eq. (87) to simplify Eq. (107) yields 

MSE(x5)   =   tr I-   I+-RK M 
-i' 

I-   I+-^RK 

-i> 

=   tr(M)-2tr   M   I + —RK 

+ tr     I + ^RK      M   I + —RK (108) 

Thus, the MSE of the shift vector estimate is equal to the sum of the classical centroid MSE 

calculation, tr (M), and two other terms which incorporate the light level, K, the spot size, a2
v, 

and the shift correlation statistics, R. By incorporating the knowledge of K, o2
v, and R, the 

MSE of the estimator, MSE(xs), is reduced. Additionally the MSE of the classical centroid 

calculation forms an upper bound on the MSE of the ML shift estimate. 

Note that for very high levels, the MSE goes to zero! In other words, when there 

is an abundance of photo-events, the estimator is "exact" in the mean-squared sense. In 

the following subsections, the moment covariance matrix M is determined and the result is 

combined with Eq. (108) to compute the MSE of the shift parameter estimator, xs. 

4.4.2 Calculating the moment covariance matrix. The calculation of the moment 

covariance in Eq. (108) has been divided into several steps to facilitate the flow of the 

derivation. 

Step 1.       Calculation of the moment covariance matrix elements, M, is 

simplified by using m = K_1m and then moving the expectation operator into the matrix, 
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thus 

M   =   £{(K-1m)(K-1m)T} 

=   K-1E{mmT}K-1 

^{mimf}   •••   E{mxmj) 

K-1 

E{rnjmT)   •••   E{fhjmj} 

K-1, (109) 

where E lrhjrhj,\ is a2 x 2 matrix. 

Step 2.      Now, evaluate E jm^m.^} for all j and j' given 

rhj = ^Xidjlxi}. (110) 

Computing the elements of M in Eq. (109) involves evaluating E [rhjmj,\, which can be 

expressed as 

E{rhjihj,}   =   E I IJ2x{dj[x{]) f J2 Svdr[$v] j 

U=ii'=i J 

=   Z X) XixjE{dj[xi]dj,[xi>]}. 
i=ii'=i 

(111) 

Further evaluation of Eq. (111) is performed in two separate calculations, Case I for 

j = / and Case II for j ^ f. Case I is related to the diagonal elements of the moment 

covariance matrix and Case II is related to the off-diagonal elements of the moment covariance 

matrix. 
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Case I.      When j = /, Eq. (Ill) becomes 

£{»*;<} = £E*2j£K-[^ (112) 

Using Eq. (95), E{dj[xi]} can be written as Egs I ED[Si]^s {dj[xi\} >, and the expectation 

over the random shift vector can be factored out of Eq. (112) and written as 

i   i 

EfamJ)   =   ^s.iEE^J^(D[^],fl[x,])|xs.{diN^[^'']} 
3  U=l ;'=i 3 

+ Y,ZSlED{Si]]jlsj {{dim2}]. (113) 

Consider the following facts: E^^^^^d^d^]} and JE^.^ {(d,-[£])2} are 

expectations on Poisson random variables, and the variance is equivalent to the first moment 

of a Poisson random variable [28]. Employing these facts, Eq. (113) can be simplified as 

i    I 

1   U=li'=l 3 3 

+ ilZiX?Em]lJts{dj[xi]}\. (114) 
i=i 3 ) 

Substituting the rate function of Eq. (96) into Eq. (114) and moving the expectation over the 

shift vector back into the summations yields 

E{rhjihj}   =   EE^J^xs {^Xi - xs^Xix, - xS]}\ 
i=li'=l 3 

I 

+ E^f'Exs.{X[xi-xSj}}. (115) 
i=l 3 

Next, the expected value of the rate functions in the above equation are evaluated. The 

first moment of the rate function in the single sum was computed in an earlier derivation of 
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the first moment of the shift estimator. Substituting /J,J = —- + —^ into Eq. (103) yields 

EX8j {m - xSj)} = ä^~3j exp {-^-jL-^p} (116) 

The expected value of \[xi — xSj] X[xi> - xs3] in the double sum of Eq. (115) is derived 

next. Both rate functions are a function of XSJ, so the definition of the expected value of a 

function of a single random variable is used to write [28]: 

ExSj {Atfi _ *s3]>\xi< - xSj]} = Js       X[xi - xs^\\xi, - xSj] fg   (xSi)dxSj. (117) 

Evaluating Eq. (117) with Eqs. (99) and (100) yields 

Exs. {x& ~ #sJAfä» - xSj]} 

K2l* 
1^1        cxpf    [l^l2 + l^l 

87r3a^4.^eXP\    [       2oJ 

2(xj + Xi>)TxSj      \xSj\
2     \£Sj\ 

H at -Hi dxs.. (118) 

1 1 
For notational convenience, let Vj = — + —^, and then complete the square on the exponent 

in Eq. (118) in the following manner: 

|ft|a + |ifr|a      2(xi + xi,)
TxS]      \xSj\

2      \SSj\
2 

"T" o       "t" 

H 
=    VA 

VA 

H 2a) 

^2 - 4^+*°T*5'+4^ o*ia+i^'i2) 
**~äfe 

(Xi + Xi>) -r-)   \x*i + xi,\
2 + -±-(\xt

i\
2 + \xi,\

2) 

(119) 
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Substituting Eq. (119) into Eq. (118) yields 

Exs. {*■&- äsjlKäi' - xSj}} 

X-i      ~t~   *Cj' 

<*lvi 

I- *s,.e* 
exp < —Uj Xsi ~ T~2~ 2a%v3 

(Xi +Xi<) dxSi 

tf2'4 

87r"2 

=ir/i/j- 

I -* 12   1   1 -»   |2 

°lvi 
I   ~*     J_     ~*      |2 
I "?2 "T~ *Ci' [ 

)■ 

(120) 

where the constants and exp (ah l2 + l^l2- 
2   ._ 

\ -Vi 

°lvi 
\Si + xvy have been factored 

out of the integral and then the integral of exp ^    «^ 

7T 

XSj 

Hvi 
(Xi + Xi>) integrates to 

v-, 
since the integrand resembles a product of two Gaussian PDFs [28]. Finally, substituting 

v.,; = —~ + 7—0 into Eq. (120) yields 
oi     2aj 

Exs. {Mßi- 2s,]>\£v ~ xs3]} 

' Kfl* (_J_ 

te*o*(o* + 2a]) 6XP \    2a2 
zt |2   ,   \zt   |2 I -» |2   ,    I -» 

I    i[      1    \X' 
no\Xi   '   X' ol + 2of ])■ (121) 

Equation (121) represents the covariance of two pixels in a single subimage for the doubly 

stochastic Poisson random variable. Substituting Eqs. (116) and (121) into Eq. (115) yields 

E {rhjfhj} 
1    1 

=    E E ^^(i + 2   2)eXP,      2(J2 

I 

+ E $&? "»*"» 
i=l 27T(a2 + a]) 

exp 

{    2a 
4cr2 

°2 + 2«? 
•^i "T S'i' 

«**i (122) 
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Now that the covariance elements for j — j' have been evaluated, the off-diagonal 

elements, j ^ j' which represent the covariance of the pixels for different subimages is 

undertaken. 

Case II. The expected value of dj[£j]dj'[äv] is the covariance 

of two pixels in different subimages. Equation (114) is actually a shorthand notation for the 

following conditional expectation: 

E{djlxild^Xi,}} = Elsjtsi \E(D[s.]MS.imxs.^s.l) K-[£]<*i'&']}} • (123) 
■> 3      V •* 3 J 

Since dj[xi] and c^/fä^] are conditionally independent Poisson random variables, Eq. (123) 

can be written as 

E{dj[2i]dj'[*i']}   =   Exs.,xs., \
E

DW\XS. {dA*i}}EDix)\xs, {dA*i>}}} 
<* 3       x 3 j J 

=   Exs.,xs, {Afö - xS]]>\xi< - xSjl]} , (124) 
J 3 

where the first moment of the data is equal to the rate function as shown in Eq. (96). The 

cross-correlation of the two functions of different random variables in Eq. (124) is given by 

[28] 

EXSi,Xs., {A& " XSjWi' - xSjl}} 

=   Is  exL   &x
X^i~$s^i'~Ss^xSpXs.l

<<Sspxsi,)dxsjdxsil    (125) 

where the joint PDF fxSjxs (xs^xSj,) is determined with the aid of Eqs. (33), (34), and 

(35) for J = 2 subapertures. Thus, the joint PDF for the two correlated shift vectors 

fxs^xs^,^) = (27r)-
2|R|-1/2eXp|-ix|R-1x5}, (126) 

51 



where 

xs = 
xsj 

XSj, 

(127) 

and |R| is the determinant of the correlation matrix R for two subapertures. The correlation 

matrix is a block matrix with the following form: 

R = 33       ^33' 

Hj'j   R-i'i' 
(128) 

where R^-» was defined in Eq. (35). Substituting Eqs.(99) and (126) into Eq. (125) yields 

Exs.,xs, {A^ ~ Ss3]>\xi' - Bs.,\} 

=    11        K, 
Jxc.PX ÄS ,&X lxS-&X Jäs.,ex     '    3   \2lT<J% 

Kj^^i-\^m^i-^-^ 
H K 

x (27r)-2|R|-1/2eXp j-ixfR"1^} dxsMSr       (129) 

Completing the square of the exponents of Eq. (129) is considerably detailed, thus many 

of the intermediate steps have been omitted from the following derivation. Let P = R_1 and 

then expand the exponential terms in Eq. (129) as 

\Xj-SSi\
2        |£'-£g.,|2        1_T-    ! 

H 
_1 
~2 

K 
- -x^R-1^ 

xTxt     2xfxSj  : xJ3XSj   | ffifr     2xJxSjl   | «%.,&., 
aP al al °l °l al 

^■pii $Sj + 2sPi? xSj, + Xs.Pj'j xSj + x^Yj.j, xSjl (130) 

52 



Note that ÜTAv = u\ai^vi + uiciipvz + ^202,1^1 + ^2^2,2^2- The form of the "square" 

we're completing resembles the following scalar: 

■-{xs-nfQ-^is-n) 

=   ~2 [(^ ~ "i)TQ«(f^ - rijf + {xSjl - rLj'fQj'jiätsj - rtj)T 

+(% - fLj)TQjj,{xSl - ftr)T + {xs., - Hj.)TQj.j.{2sj, - fyfl, (131) 

where Q = Q * is a correlation matrix and n acts like a mean vector. When Eqs. (130) and 

(131) are compared, the following relation results: 

\xj-xSj\
2      \By-xs.,\2      1_T^_!_ 

2oJ ~~2^ 2XsK   Xs 

1 _T_ {xs - n)T Q1 {xs - n) - nTQ-1n + ^xTx (132) 

where 

Q1 = A"1 + of\ 

n = a;2Qx=(l + a2
pR-iy1i, 

(133) 

(134) 

and 

x = 
X{ 

Xi< 

(135) 
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Now the covariance of the pixels is found by substituting the results of Eq. (132) into 

Eq. (129) to get 

Exs.,xs., {xfa ~ xs3Wi' - %]} 
3 3 

=   ^'(^)W2|Rr1/2exp 

x /        /        exp {- - (x 5 - ii)T Q1 (x5 - n)) dxs dxs 

■* 3 

1 -T_\ 
x x > exp 

K {in^Q-n} 

=(2TT)2|Q|1/2 

1/2 

■ WS) M-^H^M- (136) 

Equation (136) can be further simplified by substituting the relation for n found in Eq. (134) 

and combining the exponentials. Hence, Eq. (136) becomes 

Exs.,xs., {X& ~ ^]A[^ - xs.,]} 
")'   j 

exp {~2^*T*} exP {^4iTQTQ_1QÄ}. 

KjKj.l4' fll + alR-1] 
1/2 

47T2ff* I^R-1! 
exp 

H 
X I-^ + ajR-1)"1" x   , (137) 

where the equalities |Q l\ = |Q| and QT = Q were used. 

ofM 

Step 3.      Now compile the results of Step 2 to compute the block elements 

Mir = Y^,
E

 H™/}' <138) 
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defined in Eq. (109). Substituting Eq. (122) into Eq. (138) yields 

[ML'   =   SS **£(p}i 2a]) 6XP {"2^ [|fi|2 + ^ ~ ^fffcf '* + *' 
+ E0   r   2TW   eXp|~0^   2^    2xl^|2}- (139) ^ 27r(a2 + aj)Kj        {    2(aJ + cr?)'      J 

The result of Case II is used to calculate the off-diagonal elements of M. Substituting 

Eq. (137) into Eq. (138) yields 

'    'ft^T /lI + crjR-1^172        f      1        r       ,        2filN-il_l 

(140) 

4.4.3 Summary of mean squared error calculation. By definition, the MSE of the 

ML shift estimate is equal to the trace of the shift estimate covariance matrix. The ML shift 

estimate was expressed in terms of the classical centroid shift, shift correlation statistics, light 

levels, and the spot size variance in order to show the relative dependence on these factors. 

The elements of the moment covariance matrix were then evaluated. To determine the MSE 

of the ML shift estimate, substitute the results for the moment covariance matrix calculation 

found in Eqs. (139) and (140) into Eq. (108). 

4.5   Conclusions 

In this chapter, the ML shift estimator, Xs = C_1m, was expressed as a function of 

the classical centroid calculation, m, and a priori knowledge of the shift correlation matrix, 

R, the photon count matrix, K, and the spot size variance, a^. Several special cases were 

explored, for instance, at high light levels, the ML shift estimate reduced to the classical 

centroid calculation. The estimator was found to be unbiased. The MSE of the estimator was 

then shown to be upper bounded by the MSE of the classical centroid method, which is simply 

the trace of the moment covariance matrix. Lastly, the elements of the moment covariance 

matrix were evaluated. 
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V. Conclusion 

5.1 Introduction 

Atmospheric turbulence is the primary agent responsible for distorting astronomical 

imagery and the finite light levels reaching the ground-based imaging system serves to limit 

the performance of a wave front sensing technique. The blurring of the imagery can be 

lessened by an adaptive optical (AO) imaging system or image post-processing techniques 

such as deconvolution from wave front sensing (DWFS). The purpose of this thesis is to derive 

a maximum likelihood (ML) estimate of the wave front slope. 

5.2 Summary of methodology 

The methodology employed in this thesis centers around constructing a probability 

density function (PDF) describing the data collected by a Hartmann-type wave front sensor 

(WFS). The task begins with the formation of a single image. The single image is then 

extended into a composite image representing the WFS image. The joint PDF describing 

WFS is employed by the ML estimation technique to solve for the most likely wave front 

slopes over each subaperture given the WFS image. The optical detection process is modeled 

by a conditionally Poisson process, where the Poisson parameter or rate function is itself a 

random process. The form of the rate function is deterministic, and the stochastic portion of 

the rate function is represented by the location of the spot in each subimage of the Hartmann- 

type WFS (H-WFS). Since the slope of the wave front over each subaperture of the H-WFS 

is linearly related to the spot centroid shift from optical axis of the lenslet, finding the most 

likely spot shifts is equivalent to estimating the wave front slopes. 

5.3 Maximum likelihood shift estimator performance 

The ML shift estimator incorporates knowledge of the shift correlation properties, the 

light level and the spot variance size. This ML estimation-theoretic derivation also contains 

the classical centroid calculation method as a byproduct. For high and low light levels, the 
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ML shift estimate reduces to the classical centroid calculation and "no shift" respectively. The 

estimator was determined to be unbiased. Finally, the MSE of the estimator was shown to be 

upper bounded by the MSE of the classical centroid method. 

5.4   Recommendations 

The estimator derived in this thesis has been briefly analyzed. The estimator was 

shown to be unbiased and the mean squared error was calculated. To further characterize 

this estimator, simulated WFS images for various H-WFS configurations, wave front slope 

or spot shift statistics, and light levels must be systematically analyzed. Additionally, the 

performance of wave front reconstruction techniques using this ML spot position estimator 

should be explored and then compared and contrasted to minimum variance and least-squares 

reconstruction techniques such as those analyzed by Roggemann [34]. 
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