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ABSTRACT 

The radar cross section (RCS) of various geometries with 

surface resistivity is synthesized using a physical optics 

approximation. Using the RCS, a set of equations are 

developed for reconstructing the resistivity across the 

surface. The reconstructed resistivity is then compared with 

the original resistivity and the RCS recalculated using the 

synthesized resistivity to validate the accuracy of the 

synthesis procedure. 
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I. INTRODUCTION 

During the middle 1950's, the idea of making platforms 

unobservable or less observable to radar was initiated by Bill 

Bahret of Wright Air Development Center. [Ref. 1] The initial 

motivation for low-observability came from the need to 

increase screening provided by a jammer. [Ref. 1] 

Subsequently, a great deal of research in the area of radar 

cross section (RCS) began. 

There are four common methods for reducing the RCS of a 

given platform.  They are [Ref. 2]: 

1. shaping, 

2. surface material selection, 

3. active cancellation, and 

4. passive cancellation. 

Shaping to reduce RCS requires reducing the surface area that 

is perpendicular to the radar source. Surface material 

selection requires the addition of lossy materials to the 

surface of the target. Active cancellation is a method of 

reproducing the signal 180° out of phase from the radar. 

Passive cancellation is the addition of a secondary scatterer 

to cancel the reflected field from the primary target. 

In this thesis, a synthesis method that can be used for 

surface material selection is addressed. That is, given the 

monostatic RCS of a platform, a set of equations are presented 

which can be used to choose the required material. Selecting 

a surface material that reduces the RCS of a platform requires 

the use of a radar absorbing material (RAM).  Other types of 
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materials used in the reduction of RCS include resistive and 

conductive films, described in terms of ohms per square (Q/D) 

or mhos per square (U/O), respectively. 

Metal surfaces such as those used for aircraft and ships 

closely approximate a perfect electric conductor (PEC). The 

addition of RAM to a surface causes it to have an inductive or 

capacitive surface impedance rather than that of a PEC. 

Impedance surfaces can absorb radar frequency (RF) energy 

thereby causing a reduction in the scattered energy. 

An impedance surface supports both equivalent magnetic 

and electric currents. However, there are two special cases 

of impedance surfaces that only support either equivalent 

magnetic or electric currents: a resistive surface does not 

support equivalent magnetic currents, and a conductive sheet 

does not support electric currents. The resistive surface is 

the focus of this thesis, because its use greatly simplifies 

the equations used in the synthesis procedure. 

A synthesis procedure can be developed based on the 

desired RCS for a particular target. The surface is separated 

into triangular subsections, or patches. The surface 

impedance across each subsection is assumed to be constant but 

can vary from patch to patch. A matrix equation is derived 

consisting of a vector of the known scattered field, a target 

surface scattering matrix, and a surface impedance vector. By 

solving the matrix equation, the impedance vector is obtained 

and the material properties of the surface can be 

determined. 

In Chapter II, the theoretical background required to 

evaluate the RCS of a surface is presented. Surface 

impedances, reflection and transmission coefficients and the 



physical optics approximation are examined. 

In Chapter III, the synthesis procedure is developed. 

The procedure is applied to doubly curved surfaces such as 

spheres or portions of spheres. 

In Chapter IV, the results of the synthesis procedure are 

compared to the exact solution. Finally, in Chapter V, an 

analysis of the results is given as well as recommendations 

for future work in this area. 





H. THEORETICAL BACKGROUND 

In    this    chapter,     the    basic    equations    of    electromagnetic 
scattering are presented. 

A.       RCS FROM THE SCATTERED FIELD 

The RCS of a target can be determined once  its  scattered 

field is  known   [Ref.   3] 

Um   4*r2|E,|2 (2.1) 
o=       ( ) • 

r^       IEJ2 

The scattered field arises from the currents induced by the 

plane wave on the target surface.  The scattered electric 

field far from the target is given in terms of the electric 

(7) and equivalent magnetic (M) currents by [Ref. 4] 

ke _jkr Ee=-H (VW . (2.2) 

E =j^-^(Le-T!N ) , (2.3) 
4nr 

where: 

Ne=//(JIcos6cos(|)+Jycos0sin({>-JzsinÖ)ejkr/cMfds' , (2.4) 

N+=//.(_JxsincJ>+JyC0S({,)eJkr,C0S*ds/ ' {2'5) 



Le=//(Mxcos0cosc{)+Mycos0sin4)-M2sm6)6jkr/oo'n|rds/ 
(2.6) 

L4>=// (-Mxsin({)+Mycos(t>)e jtr/co8*ds' (2.7) 

In equations (2.2) through (2.7) k is the wave number (2n/A, 

X being the wavelength). The geometry is shown in Figure 1 

below. The angles 6 and ({) are the standard spherical angles. 

For the remainder of this thesis, only resistive sheets are 

considered and therefore, \^=My=Mz=0. 

Figure 1. Coordinate system. 



B.   SURFACE IMPEDANCES 

Traditionally, most aircraft and ships were made of 

materials which are considered to be perfect conductors. 

Conducting targets generally have a high RCS relative to those 

of other materials. In RCS reduction (RCSR), the selection of 

materials for a target can reduce the scattered field. One 

method is to coat a perfectly conducting target with RAM. 

This yields a heavy target and is not an effective way to 

reduce RCS. Another approach is to use composite materials 

with some loss introduced. The latter approach is more 

efficient, since composites are frequently used in the 

manufacture of aircraft and ships. Composites can be 

characterized by their complex index of refraction, n,, which 

is related to the permittivity and permeability of the 

material 

''"^ ,2.8, 

where es is the permittivity of the material and (is is the 

permeability of the material. The permittivity and 

permeability are usually complex numbers and it is the 

imaginary parts which contribute to losses. [Ref. 2] Thin 

layers of lossy material can be applied to a dielectric to 

cause the surface to be resistive and, no magnetic currents 

will flow on the surface. 

If the target consists of composite materials then there 

is some penetration of the field into the target. The 

integrals in equations (2.4) and (2.5) become volume integrals 

because the currents exist below the surface.  This is very 



inconvenient computationally, and the problem can be avoided 

using the surface impedance approximation, also known as the 

Leontovich boundary condition 

i) =■?!£. . (2.9) 

E,^ and H^ are the total tangential fields on the outer 

surface of the target and t|s is its surface impedance in ohms 

(r|s=0 if the surface is a PEC) . [Ref. 3] Thus the original 

target surface can be replaced by a surface with impedance T]s 

and the same scattered fields result. Note that r\s depends on 

the location on the surface and the incidence direction. 

Using equation (2.9), a set of vector equations can be 

derived 

E-fi (A • E)=T!BJ£ , (2.10) 

_  M, (2.11) 
H-fi (ft • H) - . 

For a resistive surface, this simplifies to 

a x (a x E)=-R,J8 , (2.12) 

fi x (fi x H)=0 , (2.13) 

where R,. is the resistivity of the material. 



C.        REFLECTION AND TRANSMISSION COEFFICIENTS 

The reflection coefficients quantify the amount of 
reflection and transmission of an electromagnetic wave that 
occurs at an interface between two different impedances. For 
a PEC, the incident wave is totally reflected, yielding a 

reflection     coefficient     of     -1. The     reflection      (D, 

absorption (A) ,   and transmission   (T)   coefficients must obey the 

conservation of  energy as  shown below   [Ref.   2]: 

|r|2+|A|2+|T|2=l . (2.14) 

For a lossless material, A=0. 

The transmission and reflection coefficients are easily 

derived with the assumption that the surface is locally flat. 

Two principle polarizations must be considered: 1) transverse 

magnetic to the z axis (TM) and 2) transverse electric to the 

z axis (TE) . An arbitrary polarized wave can be handled as a 

combination of the two principal polarizations. 

1. TM Polarization 

For TM polarization, the incident wave is 

B1-8E.
le-*(* <2'15> 

where kj is the incident wave vector. For a TM polarized 

incident wave, the reflection coefficient for a resistive film 

is [Ref. 5] 



r  ~^ocos9i (2.16) 

where 6; is the angle of incidence with respect to the z axis. 

If no absorption occurs, as is the case with an infinitely 

thin sheet, the transmission coefficient is 

T = 
2R, (2.17) 

2R +ri COS0. 
8   ■ O      1 

The scattered field then becomes 

E^eivvr*-7 (2.18) 

where k is the wave vector in the direction of observation. 

2.        TE Polarization 

For TE polarization, the incident wave is 

E.=(J)E;e"jii'7. (2-19) 

For a TE polarized incident wave, the reflection coefficient 

is [Ref. 5] 

r -n0 (2.20) 
TE-2RtcoS6i+r1o ' 

With no absorption, the transmission coefficient is given by 

10 



T    = 
2R.COS8J (2.21) 

2Rgcosöj+ri( 

and the scattered field becomes 

I.-Sr^e-**. (2-22) 

D.   PHYSICAL OPTICS APPROXIMATION 

The field incident on an illuminated object causes 

currents to flow on its surface. To solve exactly for the 

scattered electric field, these currents must be known. It is 

a lengthy and complicated process to solve for the currents. 

However, the incident field and the boundary conditions are 

known. Therefore an approximation can be made using the known 

incident field. The standard physical optics approximation is 

given by [Ref. 3]: 

J=2 fi x H: . (2.23) 

Equation (2.23) holds for the portion of the object which 

is illuminated. Physical optics approximation assumes the 

current along the surface drops to zero on areas of the object 

which are shaded from the illuminated field. In actuality, 

currents do not drop abruptly to zero. The currents slowly 

decay towards zero, but for electrically large bodies the 

error is negligible. 

11 



The physical optics approximation does not account for 

waves traveling along the surface of the object. Therefore, 

there is a decrease in RCS as the incident angle moves towards 

surface grazing and the sidelobes of the RCS pattern are lower 

than the actual values. The specular lobe level of the RCS 

pattern for flat or gently curved surfaces is generally within 

a few percent of the actual value. 

12 



m. FORMULATION AND SOLUTION 

The analysis of scattering from an arbitrary finite 

doubly curved surface requires the use of triangular 

subsections. The physical optics approximation and boundary 

conditions are used to obtain the synthesis equations. The 

synthesis equations are then verified by comparing with 

calculated fields. The geometries considered for this 

calculation are a flat disk and a spherical cap. The 

geometries are shown in Figures 2 and 3. 

The incident wave is assumed to be a planar wave with 

arbitrary polarization. Both TM and TE components exist. The 

incident field is given by 

VCeE^E^c-^, (3-1} 

where 

-jk.'r^kfxsinÖ.cos^+ysinejSinc^j+zcosej) . (3.2) 

Two cases are considered for the formulation and 

solution: bistatic and monostatic. Bistatic is the most 

general case. The transmit and receive antenna for the radar 

are not located at the same position. Monostatic is the case 

in which the transmit and receive antenna are co-located. 

13 



Figure 2. Flat disk in the x-y plane. 
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Figure 3. Spherical cap with its base in the x-y plane. 
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For each case, a flat disk is considered first. The disk 

is a flat surface with a curved perimeter that requires the 

use of triangular subsections to model. Next, the more 

complex shape of a doubly curved surface is solved. The 

solution for a doubly curved surface is more complex because 

a transformation of coordinates is required for each 

triangular subsection. This transformation gives the surface 

normal in the transformed z axis direction. Also, for the 

doubly curved surface, the incident wave polarization in the 

individual triangle coordinate systems is usually not pure TM 

or TE, even if the polarization is purely TM or TE in the 

global coordinate system. 

A.   BISTATIC CASE 

1.   Flat Disk 

For a flat disk in the x-y plane, the normal is always in 

the z axis direction. Therefore, the boundary condition from 

equation (2.9) can be written as: 

1 x (ft x I)=-R£J, 
(3-3) 

where the electric field in the above equation is given by 

Er(§TTME0+$TTEE+)e 
-JV' (3.4) 

The triple products in equation (3.3) becomes 

16 



ix(ix E)=[(-fccos8isk(f>i+£coseicos<l>i)TTMEe
,+ 

i     ~jk|»r (3.5) 
(-£cos0isin<f>i->>cos<t>jCos6i)TTEE(j)]e 

By substituting T^ and T^ from equations (2.25) and (2.29) 

into (3.5) and dividing by -R,,, equation (3.3) can be solved 

for the current along the surface 

_     2(-icos8.cos<b:+$cos0jSin<l>.)    = 
j =r_ '       ' '      ' E + 

* 2R,+tiocosej 9 (3.6) 
2(-isin({)icos6i-^cos6jSin<J)i)    .    _£.7 

2Rgcosej+Ti0 * 

The two principal polarizations are considered separately. 

a.        TM Polarization 

For TM polarization, the (j> component of the incident 

field is zero.  Therefore, Js in equation (3.6) simplifies to: 

_    2(-£cos8icos({>i+$cos8isin(J>i)    { .z.-j (3.7) 
J = EBe    '   . 
i 2Rg+tiocos8j 

'8V 

For use in equation (2.4), equation (3.7) is separated into x 

and y components 

-2cos8.cos<{>.    ,■  _,-{.* (3.8) 
Jx= -E^e J '   , 

2Rg+tiocos8j 

_ 2cos8isin({)i     j  _j£..r 

y~ IR^^OBd,   &C ' (3.9) 

17 



Equation   (2.4)   simplifies  to: 

rr  2cos6.cos<!>.cos6cos(J>    : 
N =      [ - - Ea'+ 

9 JJ'        2R,+Tiocost8i (3.10) 

2cos9.sin(i>.cos6sin<J>    =    ../„-,•£.?    ,    , 
 l—^ -EaV   cos*e J ' dx'dy' . 

2Rg+nocos0j 

Portions of equation (3.10) are not dependant on surface 

location and can be removed from the integral. Equation 

(3.10) then reduces to 

Ne=2Ee
Icos0jCos6cos(<|>i+({>) 

-jk^jkr'co** / (3.11) 
xfp J'eJ"   d*V 
JJ«2Rt+n0cos6i 

The portion of equation (3.11) inside of the integral can be 

denoted as I for simplicity 

dx'dy'. (3.12) 
i-H— JJ

«2R8+TI cos8. o    1 

The resistivity of the material is restricted to be 

constant on each triangle, but can be a can be a function of 

location on the surface of the object. Therefore, it must 

remain within the integral. Thus the resistivity function can 

be defined as a series of pulses with unknown coefficients 

18 



N (3.13) 

R.(xo»yo)=£rofc(xc>yc) 
0-1 

where c is the triangle number and N is the total number of 

triangles on the surface of the object. The coefficients rc 

are the unknown expansion coefficients and fc are the step 

functions 

f£= 
L xc>y0

eSe 
(3.14) 

0, otherwise 

where Sc is the area of triangle c.  Substituting equation 

(3.13) into (3.12) gives 

I-M —? i dx'dy' . 
J J *     N 

2IXfc+rl0
cosei (3.15) 

o-l 

Breaking the integral into a sum of integrals over the 

individual triangles gives 

N -jkj-r   jkr'oosir N 

!■£//.! faV-£l.. (3.16) 
c-iJJ*« 2re+ti0co«6i c-i 
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The c    term of the  sum is 

[[ e^'V^'^dxV 
I-

JJs«  . (3.17) 
2rc+ti0cos8j 

The denominator of equation (3.17) can be defined as 

1 (3.18) 
V 2r +r\  cos8. 

C   ■ 0     1 

The integrals over the individual triangles can be reduced to 

closed form as described by Moreira and Prata. [Ref. 6] In 

general, 

p  e^C.    eJX   C0 
(3-19) 

I =2Sae
jD'[ - - —] - c  °   D„(D -Dn) Do(D -Do) D D pv q r       <r   q v       q P 

In equation (3.19), the C and D coefficients are given by the 

following equations: 

C=A (3.20) 

D=kB, (3.21) 

Dp=k(BCl-Bc,3> (3'22) 

Dq=
k(Bc,2-Bc,3) (3-23) 

20 



where A^ is the amplitude value of the integrand of (3.17) at 

the ith vertex of triangle c, and kBci is its phase. The 

quantities are defined in Figure 4. The primed coordinates 

are the local Cartesian coordinates with z" normal to the 

patch. 

Figure 4. Integration cell geometry. 

Equation   (3.19)   has singularities which can be removed by 

using Taylor  series  expansions  for  four  special  cases. 

21 



Case 1, |D_|<Lt and |Dq|>Lt: 

^s&^-^'c^-^ ■ 

Case  2,    |D.|<Lt  and   |DJ<Lt: 

,ti^^ 
l
e-"oc    L-J ^       +m + m     ° ' (3.25) n-o m-o    (n+m + 1)! 

Case 3, |Dp|>Lt and |Dq|<Lt: 

I =2S e^'E ^[-^(n+l.-D,)] 
n-0 n!  n+1 

Case  4,    |D„|>Lt,    |D„ULt,   and     |D-Dq|<Lt 

ic=2Sc^-E Ü( P , q [-C0G(n,Dq)+—f] . 
°jDqIl.o   n! q  (n+1) 

(3.26) 

(3.27; 

In the above equations, n and m are the series terms, Lt is 

a small number that determines the region of applicability of 

the series approximation, and G is a function of the form: 

G(n,w)=f1snejwsds 
J 0 

(3.28) 

22 



For the calculations in this thesis, values of Lt=.005 and 

m=n=2 were sufficient. 

Substitution of equations (3.16) and (3.19) into (3.10) 

yields 

N (3.29) 
Ne=2E9

,cos8icos0cos(4)i-4>)S »Jo • 
c-l 

From equation (2.2), the expression for the co-polarized 

scattered field is 

, -jk«e-jkr i ^ 
Ee9 EgCose.cosecosC^-^^a^ . (3 3Q) 

zTtr o-i 

Finally, using I in place of the sum, the co-polarized RCS is 

0"lJ2 
°ee=  -IcosejCosecosC^j-ij))!!

2 . /o 21) 

To calculate the cross-polarized scattered field, 

equation (2.5) is used and the same procedure employed to 

obtain the co-polarized RCS is followed. Equation (2.5) 

reduces to 

N+=2Ee
icos6isin((t)-(J>i)I . (3.32) 

Equation (2.3) for the scattered field becomes 

, -jki)0e-
Jkr , 

E..= EQcos6.sin.r<J)-<t).)I *    2TIT (3.33) 

23 



and the  cross-polarized RCS  is 

o icosejsin^-^ll   . (3   34) 

b. TE Polarization 

For TE polarization, the 6 component of the incident 

field is zero.  Therefore, Js in equation (3.6) simplifies to 

- _ 2(-asin(j>icos6r?cose.sin<t>i)E ^ .^ (3.35) 

2R,cos6i+Tio * 

For use in equation (2.4), (3.35) is separated into x and y 

components. 

-2(8111^0086^  i .jj7 
j = E.e 

2Rcos6;+ii 
(3.36) 

T _ -2(coseisin4>i)p ,  ■fry (3.37) 
J ■HA6 

y    2Rfcosei+ti0    * 

Equation   (2.4)   simplifies  to 

. jkr'co.*e-*,-7 (3.38) 
Nft=-2(cosecos8.sin(<{)-<{)i)/ / dx'dy' 

9 * ,JJ«2R,coSe.+T1o 
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The equation for I corresponding to equation (3.14) becomes 

i.r/^'^W. <3-39) 
JJ
'2R,cosei+Ti0 

Equation (3.19) for Ic remains the same. However, the 

denominator is not the same and therefore, a new variable bc 

is defined: 

b =- 0 
1  (3.40) 

2R,cosej+Ti0 

The equation for the cross-polarized scattered field becomes 

,    -jkii0e-jfcr   , 
E6(Ji= E^cosejCosesinC*-^)! (3.41) 

and the cross-polarized RCS is 

.„.fr^...-..^.^,. cosöjCOSÖsinC^-cfcj)!! . (3.42) 

The scattered field for the co-polarized direction is 

derived in a similar manner yielding 

*♦> ^-^ E^osejcostt-^I (3.43) 
2itr 

25 



and 

°<M>= IcosOjCosOf)-^)!!' 
|2 

c.        Arbitrary Polarization 

The most general incident polarization is a 

combination of TM and TE components. The total scattered 

field in the 0 direction is 

p'_K» «• (3.45) 

or, 

-ikn e "j1cr 
E9'= 5 EglcosejfcosecosC^-^+sinCcJ)-^)] .        (3.46) 

27cr 

And the total scattered field in the 4> direction is 

E^E'+E' (3.47; 
4>  <f®  4*T 

or, 

E^- J n°C E^IcosejcosesinC^-^+cosf*-^)] .        (3.48) 
2nr 
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Equations   (3.47)   and   (3.48)   can now be put into  a matrix  form. 

where 

a "^86     \$ 

4>6      4*4* ♦. 
(3.49) 

^■ee" 
-Jkr1oe -jkr 

2nr 
-EgCosOjCosöcosO^-fy) , (3.50) 

-jk-n e '**"    j 
Aaj.= E^cosejCosesinC^-^j) , Le<)> 2nr 

(3.51) 

-jkij0e-jkr   j 
AXQ= EgCosöjSin^-tl);) , \J>8 2nr 

(3.52) 

A**= 2^ E^cosOjCOS«)-*,) , 
(3.53) 

N 

VEMO 
c-l 

(3.54) 
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and 

N 

VEV. 
c-1 

(3.55) 

The resistivity of each triangle is embedded in ac and bc via 

equations (3.54) and (3.55). 

2.        Doubly Curved Surfaces 

For a doubly curved surface, the surface normal vector of 

each triangular subsection can be different. The equations 

(3.19) through (3.27) still hold if the local triangle 

coordinates are used. Therefore a transformation of the 

coordinates must be performed for each triangular facet on the 

surface from the global system (x,y,z) to the local system 

(x",y",z") as shown in Figure 5. The z" axis is in the same 

direction as the facet normal n,.. After the transformation of 

coordinates, the scattering calculations are made for each 

triangle, the fields summed over all triangles, and then a 

transformation is made back to the original (global) 

coordinates. 

The incident field is first converted to global Cartesian 

coordinates [Ref. 4] 

cos<f>sin6   cos6cos(|>   -sinc{> 

sin6sin<t>    cos6sin<{>    cos<J> 

cos6 -sin0 0 

E; 

E; 

Ej 

(3.56] 
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A 

/       Area Sc   ./^v 

X 

y 

Figure 5.   Transformation of coordinates from a global (x,y,z) to a local (x",y",z") 
system for triangle c. 

Next, a rotation about the z axis is performed to give a new 

coordinate system (x^z1) . Then a rotation about the y1 axis is 

done to give the local- coordinate system of triangle c (x",y",z") 

coscc      since     0 c c 

-since    cosa    0 c c 

0       1 

cosßc   0   -sinßc 

0       1       0 

sinßc   0   cosß0 

(3.57) 
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The angle occ is the angle of rotation about the z axis, and the 

angle ßc is the angle of rotation about the y' axis, where 

a tan-1(^l) (3.58) 

and 

ß=coS-'(fte^) • (3'59) 

The incident field is also transformed to the local 

coordinate system using the same matrices as in equation 

(3.57). After all transformations are complete, equations 

(3.45) through (3.55) are applied. Once the scattered field 

for each triangle is calculated, it is transformed back to the 

global coordinate system and the fields from all triangles are 

summed vectorially. Equations (3.31), (3.34), (3.42), and 

(3.45) are then used to calculate the total RCS of the 

surface. 

B.   MONOSTATIC CASE 

For a monostatic radar, $=<&  and er9 and tne scattered 

fields reduce to 

E^"jktl°e"*fE9We <3-60> 
2nr 
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and 

,  -jkn.e-*   .      n 
(3-61) 

EA = E.IcosO 
27ir 

In equations (3.60) and (3.61), I is still given by equations 

(3.15) and (3.38). Recall that ac and bc are dependant on 6{ 

and location on the surface. In order to synthesize an 

equation for resistivity, ac and bc cannot be dependant on 0;. 

This implies that the surface composition must change for each 

incidence angle (ie., an adaptive target). One approximation 

that eliminates the dependance on 6; is to consider cosö—1. 

In this case, 

1 (3.62) 
ac=be=^  

and equations (3.60) and (3.61) reduce to 

._    JM06"j1Cr     j (3>63) 

2itr 

-jkr 
,_   jkT)oe J  p jT (3.64) 

2nr 

C.   SYNTHESIS EQUATIONS 

In applying the synthesis procedure, only the monostatic 

case is considered.  The scattered field at various angles is 
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known from equations (3.63) and (3.64). For synthesis, the 

scattered fields in these equations are known. The values for 

I and subsequently ac (=bc) are to be determined. Faros has 

shown that in providing E9
S and E^ uniform sampling of the 

field in direction cosine space (DCS) leads to less numerical 

errors than sampling in 6 and (J). [Ref. 5] Therefore, it is 

more convenient to work in DCS. Figure 6 shows the domain of 

DCS.  The visible region is the area within the unit circle. 

v=sin6sin4> 

1 

-1 v_ u=smÖcos(J) 

-1 

Figure 6. Direction cosine space. 
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To generate field values for the left sides of equations 

(3.63) and (3.64), DCS is divided into squares of area du by 

dv. There are Nu divisions along -the u axis and Nv divisions 

along the v axis. The center of each square is the sample 

point for calculating the scattered field. This gives a total 

of Nu by Nv samples of the scattered field. However, only the 

points within the visible region are valid for use in the 

synthesis equations. The number of points inside the visible 

region is defined to be N. The angles 6 and (j> for use in 

calculating the scattered field are found from 

6 = sin'1(u2+v2) (3.65) 

, v (3.66) 
4>=tan-1(-) . 

The unknowns in the synthesis problem are the expansion 

coefficients, a,.. There is one value of ac for each triangular 

subsection. Let a be a vector of N elements representing N 

unknowns. In order for the equation to be solved uniquely, N 

unknowns require N equations and, therefore, the number of 

samples of the scattered field must also be N. A matrix 

equation follows from equations (3.15), (3.60), and (3.61): 
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E' C2 

E' 

xn x12 ... x1N 

x21 x22 X 2N 

XN1    XN2    -    XNN    aN 

(3.67) 

or 

E=Xa (3.68) 

where 

E« -E i(en,4>11)=E '(un,vn) , (3.69; 

"Jti«e"Jk'^^i ,Vk X   =[ - (8Efl+<bE.)I II 
7irr » ■ 2nr 

(3.70) 

and c,n=l, 2, . . . ,N. 

The  X matrix  is   square  and  can be  inverted  and used  to 

solve  for the a matrix 

'N 

xn xl2 ... xlN 

Y        Y Y A2l 22    "•     A2N 

Y        Y Y 

E; 

Ef C
2 

EN 

:3.7i) 

Then using equation (3.62), each element in the a matrix is 
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used to solve for the resistivity over each triangle, 

L 1 
r= [ nj 
"• 2

la  ° " {3.12) 

Equation (3.72) represents the synthesis equation for 

calculating the resistivity of an object given the required 

RCS. 
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IV. COMPUTER IMPLEMENTATION AND DATA ANALYSIS 

This chapter discusses the computer coding of the 

equations derived from Chapters II and III. The first 

sections cover the calculation of the RCS, while the second 

half addresses the synthesis calculation. 

A.   RCS FROM THE SCATTERED FTELD 

Using equation (2.1), the RCS can be calculated from a 

scattered field. The incident field is assumed TM polarized 

and the monostatic RCS is calculated for the scattered field 

obtained using equations (3.60) and (3.61). A listing of the 

program POTEST is included in the appendix. It should be 

noted that POTEST calls several subroutines which are also 

included in the appendix. 

A 1Ä x IX flat PEC plate was used as the initial test 

case. The patch model of the plate is shown in Figure 7. In 

Figure 8, the approximate (PO) results are compared to the 

method of moments (exact) results. The specular lobe was 

within a few dB, but the sidelobes are slightly larger in the 

exact results. This is due to the fact that the approximation 

used in equation (3.3) neglects any traveling waves. 

The second test was to place some resistivity on the 

surface of the plate. First, a constant resistivity of 377 

ohms was used. A comparison of the PO and MOM results is seen 

in Figure 9. Note that with a resistance on the surface, the 

sidelobe differences decrease. 
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Figure 7. Flat plate in the x-y plane. 
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Figure 8. RCS of a PEC flat plat (TM polarized incident wave, monostatic). 
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Figure 9.  RCS of a flat plate with surface resistivity of 377 Q/D (TM polarized incident 

wave, monostatic). 
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The final test was to increase the resistivity linearly 

from 0 to 377 Q/D from the center of the plate to the edges. 

This was done using the equation 

R=377(xc
2
+yc

2) (4.1) 
0 

where \ andyc are the midpoints of triangle c. Equation (4.1) 

is for a flat surface laying in the x-y plane, centered at the 

origin.  The results are shown in Figure 10. 

The next step was to look at a flat disk and a spherical 

cap with and without resistivity to establish the accuracy of 

PO relative to MOM. The models used for a flat disk and a 

spherical cap are shown in Figures 2 and 3, respectively. The 

results for a flat disk are shown in Figures 11 through 13. 

Figure 11 is the RCS of a conducting disk, Figure 12 for a 

disk with constant resistivity of 377 Q/D, and Figure 13 is 

for a disk with resistivity given by equation (4.1) . Figures 

14 through 16 are the results for a spherical cap. Figure 14 

shows the RCS for a PEC cap, Figure 15 for constant 

resistivity of 377 Q/D across the cap, and Figure 16 for 

linear resistivity using 

R0=377—— 
(4*2) 

mil 

where tc is the arclength from the pole to the center of 

triangle c and, t^ is the total arclength from the pole to the 

base of the cap. 
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Figure 10. RCS of a flat plate with surface resistivity given by equation (4.1)(TM polarized 

incident wave, monostatic). 
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Figure 11. RCS of a PEC flat disk (TM polarized incident wave, monostatic). 
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Figure 12. RCS of a flat disk with 377 Q/D surface resistivity(TM polarized incident wave, 

monostatic). 
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Figure 13. RCS of a flat disk with surface resistivity given by equation (4.1) (TM polarized 

incident wave, monostatic). 
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Figure 14. RCS of a PEC spherical cap (TM polarized incident wave, monostatic). 
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Figure 15. RCS for a spherical cap with 377 Q/D surface resistivity (TM polarized incident 

wave, monostatic). 
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Figure 16.  RCS of a spherical cap with surface resistivity given by equation (4.2) (TM 

polarized incident wave, monostatic). 
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B.   RCS SYNTHESIS 

The synthesis computer code is similar to the program 

POTEST with changes to utilize DCS samples rather than (J> and 

6. The increments du and dv were calculated so that N would 

equal the number of triangles on the surface of the object. 

A short program, NBOX, was used to insure this. After the 

number of boxes and triangles were matched, the program P0TC02 

was used to calculate the field scattered from the object at 

the required u and v points. The scattered field was then 

used in SYNTH to calculate the resistance on each triangle 

based on the given field. Listings of all of these programs 

are included in the appendix. 

First, a flat conducting plate was again used as a test 

case. For this calculation, N=80, du=dv=0.2. The synthesized 

resistivity was expected to be 0 Q/D across all triangles, and 

this was indeed the result. Next, the plate was given a 

constant resistivity of 377 Q/D. The synthesized resistivity 

exactly matched the expected original values. Finally, the 

plate was given a linear resistivity across the triangles. 

The synthesized resistivity was within less than one percent 

of the expected result. A comparison plot of the original 

resistivity and the synthesized is shown in Figure 17 on the 

following page. Note that adjacent triangles have different 

midpoints and therefore the resistivity curve oscillates. 
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Figure 17. Original resistivity compared with synthesized resistivity (flat plate, surface 

resistivity given by equation (4.1)). 
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The flat disk was next used to calculate the synthesized 

resistivity. For this calculation, N=156, du=dv=0.1429. With 

a constant resistivity of 0 Q/D and 377 Q/D, the synthesized 

resistivity was within one percent of the original value. 

This is shown in Figures 18 and 19 respectively. With a 

linear resistivity given by equation (4.1), the synthesized 

resistivity was exactly the same as the original resistivity, 

as shown in Figure 20. 

Finally, resistivity synthesis was conducted for a 

spherical cap. For this calculation, N=156, du=dv=0.1429. 

The synthesized resistivities for cases 0 Q/D and 377 Q/D 

were within one percent of the original resistivities. This 

is shown in Figures 21 and 22. The results for a linear 

resistivity given by equation (4.2) were exactly the same as 

the original values.  This is shown in Figure 23. 

In order to verify the synthesized resistivity would 

yield the correct RCS, a comparison was made between the 

original RCS and the synthesized RCS. For all three 

geometries, 0 Q/D, 377 Q/D, and linear resistivity, the 

synthesized resistivities were used in the MOM code to compute 

the RCS patterns. The results are shown in Figures 24 through 

32. The curves labeled Orig are the PO RCS values used to 

initiate the synthesis. Those labeled Synth were obtained 

using the synthesized resistivity in the MOM code, PATCH. 

These figures are essentially duplicates of Figures 8 through 

16 because the synthesized resistivity was almost identical to 

the starting values. 
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Figure 18.   Original resistivity compared with-synthesized resistivity (flat disk, 0 Q/D 

resistivity). 
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Figure 19.   Original resistivity compared with synthesized resistivity (flat disk, 377 Q/D 

resistivity). 
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Figure 20.   Original resistivity compared with synthesized resistivity (flat disk, surface 

resistivity given by equation (4.1)). 
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Figure 21. Original resistivity compared with synthesized resistivity (spherical cap, 0 Q/D 

resistivity). 
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Figure 22. Original resistivity compared with synthesized resistivity (spherical cap, 377 Q/D 

resistivity). 
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resistivity given by equation (4.2)). 
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Figure 24. Original RCS compared with synthesized RCS (flat plate, 0 Q/D resistivity). 
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Figure 25. Original RCS compared with synthesized RCS (flat plate, 377 Q/D resistivity). 
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Figure 26. Original RCS compared with synthesized RCS (flat plate, surface resistivity given 

by equation (4.1)). 
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Figure 27. Original RCS compared with synthesized RCS (flat disk, 0 Q/D resistivity). 
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Figure 28. Original RCS compared with synthesized RCS (flat disk, 377 fi/D resistivity). 
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Figure 29. Original RCS compared with synthesized RCS (flat disk, surface resistivity given 

by equation (4.1)). 

63 



JQ 

C 

W 
Ü 
cr 

-15- 

-20- 

-25 

-30 0 20        40        60        80        100      120       140      160       180 
Theta in Degrees 

Figure 30. Original RCS compared with synthesized RCS (spherical cap, 0 Q/D resistivity). 
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Figure 31.    Original RCS compared with synthesized RCS (spherical cap, 377 Q/D 

resistivity). 
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Figure 32. Original RCS compared with synthesized RCS (spherical cap, surface resistivity 

given by equation (4.2)). 
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V. CONCLUSIONS 

A procedure for synthesizing the RCS of a target of known 

shape has been presented. The equations were derived for both 

flat and doubly curved surfaces and demonstrated for 

monostatic, and purely resistive surfaces. The equations were 

derived using the physical optics approximation and, 

therefore, traveling waves were neglected. Furthermore, 

multiple reflections were neglected. 

The RCS of each type of surface was first calculated 

using PO and then compared to MOM. Next, the RCS of each 

surface was calculated in DCS so the scattered field could be 

sampled and used in the synthesis equations. The synthesis 

equations were then used to find the resistivity across the 

surface. Finally, the resistivity obtained from the synthesis 

procedure was used to recalculate the RCS and, therefore, 

demonstrated that the synthesis procedure was accurate. The 

synthesized resistivities were in excellent agreement with the 

original values in spite of all of the approximations. This 

is because the chosen resistivity distributions yielded low 

RCS sidelobes and did not support traveling waves. Similarly, 

the resistive surface transmits more of the incident field 

than it reflects. Therefore, multiple reflections are not 

important and can usually be neglected in the synthesis of low 

RCS patterns. 

A more rigorous solution could be obtained by using the 

MOM as the basis of the synthesis equations. [Ref. 3] This 

would require solving exactly for the current along the 

surface as well as for the resistivity. Future work in this 

area should include a synthesis procedure based on MOM. 

67 



68 



APPENDIX. COMPUTER CODES 

This appendix contains all of the computer codes used for 

calculations in this thesis. The code POTEST.M calculates 

the RCS of a surface with specified resistivity. The code 

P0TC02.M calculates the RCS of a surface in DCS. The code 

BUILD.M generates the geometry of the surface. The code 

FACT.M is a subroutine used to calculate the factorial of a 

number and is used with POTEST.M and P0TC02.M. The code GF.M 

is a subroutine used to calculate equation (3.28) and is used 

with POTEST.M and P0TC02.M. The code RES.M is a subroutine 

used in the calculation of linear resistivity across a surface 

using equations (4.1) and (4.2) and is used with POTEST.M and 

P0TC02.M. The code SYNTH.M reconstructs the resistivity using 

the scattered field from P0TC02.M. The code NBOX.M calculates 

the number of partitions of DCS that are within the visible 

region for a given du(=dv) . This was used to verify that the 

number of known scattered field points would be equal to the 

number of triangular subsections on the surface. The code 

POS.M compares the original RCS with the synthesized RCS. 
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% POTEST.M 

% PO scattering from triangles 

clear all 

% illumination flag: =0 external face only 

iflag=l; 

Lt=.001; 

Nt=2 ; 

wave=l; 

bk=2*pi/wave; 

rad=pi/180; 

% Incindent wave polarization 

Et=l+j*0; %TM-z 

Ep=0+j*0; %TE-z 

phi=0; 

phr=phi*rad; 

cp=cos(phr);sp=sin(phr); 

% Wave ampltidue at all vertices 

Co=l.; 

build 

ntria=nfaces; 

nvert=nverts; 

x=xpts; 

y=ypts; 

z=zpts; 

title('triangular model of the scattering surface') 

xlabel('x') 

ylabeK'y') 

zlabel('z') 

for i=l:nvert 

text(x(i)-max(x)/20,y(i)-max(x)/20,z(i),num2str(i)) 
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end 

hold off 

disp('hit return to continue calculation') 

pause 

% Define position vectors to vertices 

for i=l:nvert; 

r(i,:) = [x(i) y(i) z(i)]; 

end 

%Use res.m program to calculate resistivity 

res 

% Get resistivity, edge vectors and normals from edge cross 

products 

for i=l:ntria 

rs(i)=0; 

% Resistivity function for a flat surface 

%rs(i)=rss*sqrt(xm(i)A2+ym(i)A2)/377;  " 

% Resistivity function for a doubly curved surface 

%rs (i)=rss*arc(i). 1211; 

A=r(vind(i,2),:)-r(vind(i,1) , 

B=r(vind(i,3),:)-r(vind(i,1), 

C=r(vind(i,3),:)-r(vind(i,2), 

N(i, : )=cross (A, B) ; 

% check for proper direction of normal vector 

if N(i,3)<0 

N(i, :)=-N(i, :); 

end 

% Edge lengths for triangle "i" 

d(i, l)=norm(A); 
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d(i,2)=norm(B) ; 

d(i, 3) =norm(C) ; 

ss=.5*sum(d(i, :) ) ; 

Area(i)=sqrt(ss*(ss-d(l,l))*(ss-d(i,2))*(ss-d(i,3) ) ) ; 

Nn=norm(N(i,:)); 

N(i, :)=N(i, :)/Nn; 

%transform triangles into local coordinates 

xl=[l   0   0]; 

yl=[0  1   0]; 

zl=[0  0  1]; 

end % end of triangle loop 

% Pattern Loop 

start=0; 

stop=180; 

del=l; 

it=floor((stop-start)/del)+l; 

for i=l:it 

theta(i)=start+(i-l)*del; . 
thr=theta(i)*rad; 
st=sin(thr);   ct=cos(thr); 
u=st*cp;     v=st*sp;     w=ct; 
up=ct*cp; vp=ct*sp; wp=-st; 

% Spherical coordinate system unit vectors 

R(i, : ) = [u v w] ; 

% Change Efield into global rectangular coordinates 

strtra(1, 

strtra{2, 

strtra(3, 

)=[st*cp ct*cp -sp]; 

)=[st*sp ct*sp cp]; 

) = [ct -st. 0] ; 
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sei=[0 Et Ep]; 

ei=strtra*sei' ; 

% correct orientation for normal after 90deg 

if theta(i)==91 

N=-N; 

end 

% Begin loop over triangles 

sumt=0; 

sump=0; 

for m=l:ntria 

t(m,:)=cross(zl,N(m, :) ) ; 

beta(m)=acos(N(m, 3) ); 

alpha(m)=atan2(t(m,2),t(m,1)+le-6)-pi/2; 

% Test to see if front face is illuminated 

ndotk=N(m, :)*R(i, :) '; 

if ndotk >= 0 & iflag==0 I iflag~=0 

%translation into local coordinates 

%first rotate about z axis 

tral(1,:)=[cos(alpha(m)) sin(alpha(m)) 0]; 

tral(2,:)=[-sin(alpha(m)) cos(alpha(m)) 0]; 

tral (3, :) = [0 0 1] ; 

% Rotation about yp axis 

tra2(l,:)=[cos(beta(m)) 0 -sin(beta(m))]; 

tra2(2, :) = [0 10]; 

tra2(3,:) = [ sin (beta (m) ) 0 cos (beta (m) )] ; 

Dl=tral*R(i,:)'; 

D2=tra2*Dl; 

upp=D2(1); 

vpp=D2(2); 

wpp=D2(3); 
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% Find spherical angles in local coordinates 

stpp=sqrt (upp/N2+vppA2) *sign (wpp) ; 

ctpp=sqrt(l-stppA2); 

thpp=acos(ctpp); 

phipp=atan2(vpp,upp+le-10); 

% Phase at the vertices of triangle m; monostatic RCS needs 

"2" 

Dp=2*bk*((x(vind(m,1))-x(vind(m, 3) ))*u+... 

(y(vind(m,1))-y(vind(m,3)))*v+... 

(z(vind(m,1))-z(vind(m,3))) *w); 

Dq=2*bk*((x(vind(m,2))-x(vind(m, 3)))*u+... 

(y(vind(m, 2) )-y (vinddn, 3) ) )*v+. . . 

(z (vind (111,2) )-z (vind (m, 3) ) ) *w) ; 

Do=2*bk*(x(vind(m,3))*u+y(vind(m,3))*v+z(vind(m,3))*w); 

%incident field in local rectangular coordinates 

eip=tral*ei; 

eipp=tra2*eip; 

% translation of E-field into local spherical coordinates 

strtra2=[stpp*cos(phipp)    ctpp*cos(phipp)    -sin(phipp); 

stpp*sin(phipp) ctpp*sin(phipp) cos(phipp); ctpp -stpp 0]; 

epp=strtra2A(-1)*eipp; 

%Reflection coefficients 

gamp=0; 

if (2*rs(m)+ctpp)~=0 

gamp=l/(2*rs(m)+ctpp); 

end 
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gamn=l/(2*rs(m)*cos(thpp)+l); 

%Surface Currents 

Jxpp(i,m) = (epp(2)*gamp-epp(3)*gamn)*ctppA2; 

Jypp(i,m) =(epp(2)*gamp+epp(3)*gamn)*ctpp; 

% Area integral for general case 

DD=Dq-Dp; 

expDo=exp(j * Do); 

expDp=exp(j * Dp); 

expDq=exp(j*Dq) ; 

% Special Case 1 

if abs(Dp) < Lt & abs(Dq)>= Lt 

sic=0.; 

for n=0:Nt 

sic=sic+(j*Dp)An/fact(n)*(-Co/(n+l)+expDq*(Co*gf (n,-Dq) ) ) ; 

end 

Ic(i,m)=sic*2*Area(m)*expDo/j/Dq; 

% Special Case 2 

elseif abs(Dp) < Lt & abs(Dq) < Lt 

sic=0.; 

for n=0:Nt 

for nn=0:Nt 

sic=sic+(j*Dp)An*(j*Dq)Ann/fact(nn+n+2) *Co; 

end 

end 

Ic(i,m)=sic*2*Area(m)*expDo; 

% Special Case 3 

elseif abs(Dp) >= Lt & abs(Dq) < Lt 
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sic=0.; 

for n=0:Nt 

sic=sic+(j*Dq)An/fact(n)*Co*gf(n+1,-Dp)/(n+1); 

end 

Ic(i,m)=sic*2*Area(m)*expDo*expDp; 

% Special Case 4 

elseif abs(Dp) >= Lt & abs(Dq) >= Lt & abs(DD) < Lt 

sic=0.; 

for n=0:Nt 

sic = sic+(j*DD)An/fact(n)*(-Co*gf (n/Dq)+expDq*Co/(n+l) ) ; 

end 

Ic(i,m)=sic*2*Area (m) *expDo/j/Dq; 

else 

Ic (i,m) =2*Area(m)*expDo*(expDp*Co/Dp/DD-expDq*Co/Dq/DD-Co/Dp 

/Dq) ; 

end % end of special cases 

test 

%Scattered field in local rectangular coordinates 

Esxpp=Jxpp(i,m)*Ic(i,m); 

Esypp=Jypp(i,m)*Ic(i,m); 

Eszpp=0; 

%retranslation to global rectangular coordinates 

Espp(m,:)=[Esxpp Esypp Eszpp]; 

Esl=tra2/S (-1) *Espp (m, :) ' ; 

Es=tralA(-l)*Esl; 

%retranslation to global spherical coordinates 

%seipp(m,:)=strtraA(-1)*Es; 

seipp(m,1)=0; 
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seipp(m,2)=ct*cp*Es(l)+ct*sp*Es(2)-st*Es(3); 

seipp(m,3)=-sp*Es(l)+cp*Es (2); 

%sum over all triangles to get scattered field 

sumt=sumt+seipp(m,2); 

sump=sump+seipp(m,3); 

end %end of illumination test 

end lend of triangle loop 

Eth=sumt; 

Sth(i)=10*loglO(4*pi*abs(Eth)"2+l.e-10); 

Eph=sump; 

Sph(i)=10*logl0(4*pi*abs(Eph)"2+l.e-10); 

end 

Sth(:)=max(Sth(:) ,-50) ; 

Sph(:)=max(Sph(:) ,-50) ; 

%plot res 

figure(2) 

plot(theta,Sth,theta,Sph,'—'),grid 

title('solid: co-polarization   dashed: cross-polarization') 

xlabel('monostatic angle, theta (deg)*) 

ylabel (' sigma/wavl"1^ (dB) ') 
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% P0TC02.M 

% PO scattering from triangles 

clear all 

format long 

% illumination flag: =0 external face only 

iflag=0; 

Lt=.001; 

Nt=2 ; 

wave=l; 

bk=2*pi/wave; 

rad=pi/180; 

% Incindent wave polarization 

Et=l+j*0; %TM-z 

Ep=0+j*0; %TE-z 

% Wave ampltidue at all vertices 

Co=l.; 

build 

ntria=nfaces; 

nvert=nverts; 

x=xpts; 

y=ypts; 

z=zpts; 

title('triangular model of the scattering surface') 

xlabel('x') 

ylabel('y') 

zlabel('z') 

for i=l:nvert 

text (x(i)-max (x)/20,y(i)-max (x) /20,z (i) ,num2str (i) ) 

end 

hold off 
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dispChit return to continue calculation1) 

pause 
% Define position vectors to vertices 

for i=linvert; 

r(i/:) = [x(i) y(i) z(i)]; 

end 
%Use res.m program to calculate resistivity 

%res 
% Get resistivity, edge vectors and normals from edge cross 

products 

for i=l:ntria 

rs(i)=0; 

%resistivity for a plate 

%rs(i)=rss*sqrt((xm(i)-.5)A2+(ym(i)-.5)A2)/377; 

% resistivity for a disk 

%rs(i)=rss*sqrt(xm(i)A2+ym(i)A2)/377; 

% resistivity for a cap 

%rs(i)=rss*arc(i)/377; 

ac(i)=l/(2*rs(i)+l) 
)-r(vind(i,l) , :) 

)-r(vind(i,l) , :) 

)-r(vind(i,2) , :) 

N(i,:)=cross(A,B); 

% check for proper direction of normal vector 

if N(i,3)<0 

N(i, :)=-N(i, :) ; 

end 

% Edge lengths for triangle "i" 

d(i, l)=norm(A) ; 

d(i,2)=norm(B) ; 

A=r(vind(i,2), 

B=r(vind(i,3), 

C=r(vind(i,3), 
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d(i,3)=norm(C) ; 

ss=.5*sum(d(i,:)) ; 
Area(i)=sqrt(ss*(ss-d(i,l))*(ss-d(i,2))*(ss-d(i,3))); 

Nn=norm(N(i, :)); 

N(i, :)=N(i, :)/Nn; 

%transform triangles into local coordinates 

xl=[l 0 0]; 

yl=[0 1 0]; 

zl=[0 0 Uz- 

end 

% Pattern Loop 

it=0; 

load du.m; 

k=0; 

for ul=-l:du:l-du 

for vl=-l:du:l-du; 
it=it+l; 

Eth(it)=0; 

Eph(it)=0; 
%test to see if center of box is within visible region 

test=((ul+du/2)"2+(vl+du/2)A2); 

if test<=l 

k=k+l; 
phi=atan2((vl+du/2),(ul+du/2)); 

cp=cos(phi); sp=sin(phi); 

theta=asin(sqrt(test)); 

st=sin(theta); ct=cos(theta); 

% Center of box is used so u and v are redefined using center 

of % box 

u=st*cp; v=st*sp; w=ct; 
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up=ct*cp; vp=ct*sp; wp=-st; 

% Spherical coordinate system unit vectors 

R(it, : ) = [u v w] ; 
% Change Efield into global rectangular coordinates 

strtrad, :) = [st*cp ct*cp -sp] ; 

strtra(2,:)=[st*sp ct*sp cp]; 

strtraO,:)=[ct -st 0]; 

sei=[0 Et Ep]; 

ei=strtra*sei'; 

% Begin loop over triangles 

for m=l:ntria 

t(m,:)=cross(zl,N(m,:)); 

beta(m)=acos(N(m,3)); 

alpha(m)=atan2(t(m,2), t(m,1)+le-6) -pi/2; 

lc(k,m)=0; 

% Test to see if front face is illuminated 

ndotk=N(m,:)*R(it,:)'; 

if ndotk >= 0 & iflag==0 | iflag~=0 

%translation into local coordinates 

%first rotate about z axis 

trald/:) = [cos (alpha (m) ) sin (alpha (m) ) 0] ; 

tral(2,:)=[-sin(alpha(m)) cos(alpha(m)) 0]; 

tral(3, :) = [0 0 1]; 

%  Rotation about  yp axis 
tra2(1,:) = [cos(beta(m))   0 -sin(beta(m) )] ; 

tra2(2, :) = [0   1  0] ; 
tra2(3,:) = [   sin (beta (m) )   0  cos (beta (m) )] ; 

Dl=tral*R(it, :) '; 

D2=tra2*Dl; 

upp=D2(1); 
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vpp=D2(2); 

wpp=D2.(3) ; 
% Find spherical angles in local coordinates 

stpp=sqrt(uppA2+vppA2)*sign(wpp); 

ctpp=sqrt(l-stppA2); 

thpp=acos(ctpp); 

phipp=atan2(vpp,upp+le-10) ; 
% Phase at the three vertices of triangle m; monostatic RCS 

needs % "2" 
Dp=2*bk*((x(vind(m, 1))-x(vind(m, 3)))*u+... 

(y(vind(m,1))-y(vind(m,3)))*v+... 

(z(vind(m,1))-z(vind(m,3))) *w); 

Dq=2*bk*((x(vind(m,2))-x(vind(m,3)))*u+... 

(y(vind(m,2))-y(vind(m,3)))*v+... 

(z(vind(m,2))-z(vind(m,3)))*w); 
Do=2*bk*(x(vind(m,3))*u+y(vind(m/3) ) *v+z (vind(m, 3) ) *w) ; 

%incident field in local rectangular coordinates 

eip=tral*ei; 

eipp=tra2*eip; 
% translation of E-field into local spherical coordinates 

strtra2=[stpp*cos(phipp)    ctpp*cos(phipp)    -sin(phipp); 

stpp*sin(phipp) ctpp*sin(phipp) cos(phipp); ctpp -stpp 0]; 

epp=strtra2/v (-1) *eipp; 

% Area integral for general case 

DD=Dq-Dp; 
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expDo=exp(j*Do); 

expDp=exp(j*Dp); 

expDq=exp (j*Dq) ; 

% Special Case 1 

if abs(Dp) < Lt & abs(Dq)>= Lt 

sic=0.; 

for n=0:Nt 

sic=sic+(j*Dp)An/fact(n)*(-Co/(n+1)+expDq*(Co*gf (n,-Dq) )); 

end 
Ic(k,m)=sic*2*Area(m)*expDo/j/Dq; 

% Special Case 2 

elseif abs(Dp) < Lt & abs(Dq) < Lt 

sic=0.; 

for n=0:Nt 
for nn=0:Nt 

sic=sic+(j*Dp)An*(j*Dq)Ann/fact(nn+n+2)*Co; 

end 

end 

Ic(k,m)=sic*2*Area(m)*expDo; 

% Special Case 3 

elseif abs(Dp) >= Lt & abs(Dq) < Lt 

sic=0.; 

for n=0:Nt 

sic=sic+(j*Dq)"n/fact(n)*Co*gf (n+.l,-Dp) / (n+1) ; 

end 
Ic(k,m)=sic*2*Area(m)*expDo*expDp; 

% Special Case 4 
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elseif  abs(Dp)   >= Lt  &  abs(Dq)   >= Lt   &  abs(DD)   <  Lt 

sic=0.; 

for n=0:Nt 

sic = 

sic+(j*DD)An/fact(n)* (-Co*gf (n, Dq) +expDq*Co/ (n+1) ) ; 

end 

Ic(k,m)=sic*2*Area (m) *expDo/j/Dq; 

else 
Ic(k,m)=2*Area(m)*expDo*(expDp*Co/Dp/DD-expDq*Co/Dq/DD-Co/Dp 

/Dq) ; 

end 

% end of special cases test 

end %end of illumination test 

end %end of triangle loop 

%sum over all triangles to get scattered field 

Eth(it)=Ic(k,:)*ac'*Et; 

Eph(it)=Ic(k,:)*ac**Ep; 

% correction for rounding errors 

%Eth2(it)=round(Eth(it)*le4); 

%Eth(it)=Eth2(it)*le-4; 

end % end of test for visible region 

Sth(it)=10*loglO(4*pi*abs(Eth(it)/(Et+le-10))A2+l.e-10); 

Sph(it)=10*loglO(4*pi*abs(Eph(it)/(Ep+l.e-10))A2+l.e-10); 

end % end of v loop 

end % end of u loop 

Sth(:)=max(Sth(:) ,-50) ; 

Sph(:)=max(Sph(:),-50); 

Sth=Sth'; 

Sph=Sph'; 

%plot res 
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u=-l:du:1-du; 

v=-l:du:l-du; 

T=ones(1,2/du); 

nrow=2/du; 

ncol=2/du; 

for k=l:ncol; 

kl=nrow*(k-l)+l; 

k2=kl+nrow-l; 

X2(:,k) = (u(k)+du/2)*T'; 

Y2(:,k) = (du/2.+v) '; 

Z2(:,k)=Sth(kl:k2) ; 

end 

figure(2) 

orient tall 

surf(X2,Y2/Z2) 

view(-25,55) 

colormap(hot) 

xlabeK'u*) 

ylabel('v') 

zlabeK'RCS in Db') 

Eth=Eth'; 

Eph=Eph'; 

rs=rs'; 

Ethr=real(Eth); 

Ethi=imag(Eth); 

Ephr=real(Eph); 

Ephi=imag(Eph); 

Ici=imag(Ic); 

save Ethr.m Ethr -ascii -double 

save Ethi.m Ethi -ascii -double 
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save Ephr.m Ephr -ascii 

save Ephi.m Ephi -ascii 

save rs.m rs -ascii 

save Icr.m Ic -ascii 

save Ici.m Ici -ascii 
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% BUILD.M 

% Program to read transposed "buildn5" data and plot it in 

MATLAB 

% node (x,y,z) coordinates 

% legend: 

load xpts.m 

load ypts.m 

load zpts.m 

nverts=length(xpts); 

% node connection list 

load endl.m 

load end2.m 

nedges=length(endl); 

% face connection list 

load nodel.m 

load node2.m 

load node3.m 

nfaces=length(node3); 

% load vind array which gives the three nodes for each 

triangle 

for i=l:nfaces 

pts=[nodel(i) node2(i) node3(i)]; 

vind(i,:)=pts; 

end 

figured) 

% This section plots a mesh 

if icur==0 

for i=l:nfaces 

X=[xpts(vind(i,1))  xpts(vind(i,2))  xpts(vind(i,3)) 

xpts(vind(i,1))]; 
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Y=[ypts(vind(i/1))  ypts(vind(i,2))  ypts(vind(i,3)) 

ypts(vind(i,1))]; 

Z=[zpts(vind(i,1))  zpts(vind(i,2))  zpts(vind(i,3)) 

zpts(vind(i, 1)) ]; 

plot3(X,Y,Z, 'm') 

if i == 1 

axis equal 

view(60,45) 

hold on 

end 

end 

end 

hold off 
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% FACT.M 

% Subroutine for calculating the factorial of a number 

function f=fact(m) 

f=l; 

if m>=l 

for n=l:m 

f=f*n; 

end 

end 
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%   GF.M 

function gf=gf(n,w) 

gf=(exp(j*w)-l)/(j*w) ; 

if n>=0 

for m=l:n 

gf=(exp(j*w)-n*gf) / (j*w) ; 

end 

end 
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% RES.M 

% Program to Calculate Resistivity on Each Triangle using a 

% Linear Taper 

for n=l:nfaces 

xm(n) = (r(max(vind(n,:)),1)+r(min(vind(n, :)) , 1))/2, 

ym(n) = (r(max(vind(n,:)),2)+r(min(vind(n,:)) ,2))/2, 

zm(n) = (r(max(vind(n,:)),3)+r(min(vind(n, :)) , 3))12, 

% vector to midpoint of each triangle 

mn(n, : ) = [xm(n) ym(n) zm(n)]; 

% angle from z axis to midpoint vector 

if zm(n)~=0 

omega(n)=pi/2-acos(zm(n)/(sqrt(xm(n)A2+ym(n)A2)+le-8) ) ; 

%arclength from z axis to midpoint of each triangle 

arc(n)=xm(n)~2+ym(n)^2; 

end 

%arclength from z axis to midpoint if plate is not flat 

arc(n)=omega(n)/(2*pi); 

end % end of triangle loop 

rss=377/max(abs(arc)); 

end 
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% SYNTH.M 

% Resistivity Synthesis-Monostatic 

clear all 

format long 

% illumination flag: =0 external face only 

iflag=0; 

Lt=.001; 

Nt=2 ; 

wave=l; 

bk=2*pi/wave; 

rad=pi/180; 

% Incindent wave polarization 

Et=l+j*0; %TM-z 

Ep=0+j*0; %TE-z 

% Load results from potcos program 

load Ethr.m; 

load Ethi.m; 

Ethii=Ethi*i; 

Eth=Ethr+Ethii; 

load Ephr.m; 

load Ephi.m; 

Ephii=Ephi*i; 

Eph=Ephr+Ephii; 

load rs.m; 

% Wave ampltidue at all vertices 

Co=l.; 

build 

ntria=nfaces; 

nvert^nverts; 

x=xpts; 
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y=ypts; 

z=zpts; 

title('triangular model of the scattering surface') 

xlabel('x') 

ylabel('y') 

zlabel('z') 

for i=l:nvert 

text(x(i)-max(x)/20,y(i)-max(x)/20,z(i),num2str(i)) 

end 

hold off 

disp('hit return to continue calculation') 

pause 

% label 

% Define position vectors to vertices 

for i=l:nvert; 

r(i,:) = [x(i) y(i) z(i)]; 

end 

% Get edge vectors and normals from edge cross products 

for i=l:ntria 

A=r(vind(i,2) , 

B=r(vind(i,3) , 

C=r(vind(i,3) , 

); 

); 

); 

)-r(vind(i,1), 

)-r(vind(i, 1), 

)-r(vind(i,2), 

N(i,:)=cross(A,B); 

% check for proper direction of normal vector 

if N(i,3)<0 

N(i, :)=-N(i, :); 

end 

% Edge lengths for triangle "i" 

d(i, l)=norm(A); 

d(i,2)=norm(B); 
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d(i, 3)=norm(C) ; 

ss=.5*sum(d(i,:)); 

Area(i)=sqrt(ss* (ss-d(i,l) )* (ss-d(i,2) )* (ss-d(i,3) ) ) ; 

Nn=norm(N(i,:)); 

N(i, :)=N(i/ :)/Nn; 

%transform triangles into local coordinates 

xl=[l 0 0]; 

yl=[0 1 0]; 

zl=[0 0 1]; 

end 

% Pattern Loop 

it=0; 

k=0; 

load du.m; 

for ul=-l:du:1-du 

for vl=-l:du:1-du; 

it=it+l; 

%test to see if center of box is within visible region 

test-((ul+du/2)"2+(vl+du/2)A2); 

if test<=l 

k=k+l; 

phi=atan2((vl+du/2),(ul+du/2)); 

cp=cos(phi); sp=sin(phi); 

theta=asin(sqrt(test)); 

st=sin(theta); ct=cos(theta); 

% Center of box is used so u and v are redefined using center 

of % box 

u(k)=st*cp;  v(k)=st*sp;  w=ct; 

up=ct*cp; vp=ct*sp; wp=-st; 

% Spherical coordinate system unit vectors 
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R(it, :) = [u(k) v(k) w] ; 

% Change Efield into global rectangular coordinates 

strtrad, : ) = [st*cp ct*cp -sp] ; 

strtra(2,:)=[st*sp ct*sp cp]; 

strtra(3,:)=[ct -st 0]; 

sei=[0 Et Ep]; 

ei=strtra*sei'; 

% Begin loop over triangles 

sumt=0; 

sump=0; 

for m=l:ntria 

t (m, :)=cross(zl,N(m, :) ) ; 

beta(m)=acos(N(m,3)); 

alpha(m)=atan2(t(m,2),t(m, 1)+le-6)-pi/2; 

% Test to see if front face is illuminated 

ndotk=N(m,:)*R(it,:)'; 

if ndotk >= 0 & iflag==0 | iflag~=0 

%translation into local coordinates 

%first rotate about z axis 

trald, 

tral (2, 

tral(3, 

)=[cos(alpha(m)) sin(alpha(m)) 0]; 

)=[-sin(alpha(m)) cos(alpha(m)) 0]; 

) = [0 0 1]; 

% Rotation about yp axis 

tra2 (1, : ) = [cos (beta (m) ) 0. -sin (beta (m) )] ; 

tra2(2, :) = [0 1 0] ; 

tra2(3,:)=[ sin(beta(m)) 0 cos(beta(m))]; 

Dl=tral*R(it,:)'; 

D2=tra2*Dl; 

upp=D2(1); 

vpp=D2(2); 
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wpp=D2(3); 

% Find spherical angles in local coordinates 

stpp=sqrt(uppA2+vppA2)*sign(wpp); 

ctpp=sqrt(l-stppA2) ; 

thpp=acos(ctpp); 

phipp=atan2(vpp,upp+le-10); 

% Phase at the three vertices of triangle m; monostatic RCS 

needs % "2" 

Dp=2*bk*((x(vind(m, 1))-x(vind(m,3)))*u(k)+... 

(y(vind(m,1))-y(vind(m,3)))*v(k)+... 

(z(vind(m,l))-z(vind(m,3)))*w); 

Dq=2*bk*((x(vind(m,2))-x(vind(m, 3)))*u(k) + ... 

(y(vind(m,2))-y(vind(m, 3)))*v(k) + ... 

(z(vind(m,2))-z(vind(m, 3)))*w); 

Do=2*bk* (x(vind(m,3) ) *u (k)+y (vind (m, 3) ) *v(k)+z (vind (m, 3) ) *w) ; 

%incident field in local rectangular coordinates 

eip=tral*ei; 

eipp=tra2*eip; 

% translation of E-field into local spherical coordinates 

strtra2=[stpp*cos(phipp)    ctpp*cos(phipp)    -sin(phipp); 

stpp*sin(phipp) ctpp*sin(phipp) cos(phipp); ctpp -stpp 0]; 

epp=strtra2A(-1)*eipp; 

% Area integral for general case 

DD=Dq-Dp; 
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expDo=exp(j*Do); 

expDp=exp(j*Dp); 

expDq=exp(j*Dq); 

% Special Case 1 

if abs(Dp) < Lt & abs(Dq)>= Lt 

sic=0.; 

for n=0:Nt 

sic=sic+(j*Dp)An/fact(n)*(-Co/(n+l)+expDq*(Co*gf (n,-Dq))) ; 

end 

Ic(k,m)=sic*2*Area(m)*expDo/j/Dq; 

% Special Case 2 

elseif abs(Dp) < Lt & abs(Dq) < Lt 

sic=0.; 

for n=0:Nt 

for nn=0:Nt 

sic=sic+(j*Dp)^n*(j*Dq)^nn/fact(nn+n+2)*Co; 

end 

end 

Ic(k,m)=sic*2*Area(m)*expDo; 

% Special Case 3 

elseif abs(Dp) >= Lt & abs(Dq) < Lt 

sic=0.; 

for n=0:Nt 

sic=sic+(j*Dq)An/fact(n)*Co*gf(n+1,-Dp)/(n+1); 

end 

Ic(k,m)=sic*2*Area(m)*expDo*expDp; 

% Special Case 4 
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elseif  abs(Dp)   >= Lt  &  abs(Dq)   >= Lt  &  abs(DD)   <  Lt 

sic=0.; 

for n=0:Nt 
sic = sic+(j*DD)An/fact(n)*(-Co*gf(n,Dq)+expDq*Co/(n+1)); 

end 

Ic (k,m)=sic*2*Area (m) *expDo/j/Dq; 

else 

Ic(k,m)=2*Area(m)*expDo*(expDp*Co/Dp/DD-expDq*Co/Dq/DD-Co/Dp 

/Dq) ; 

end 

% end of special cases test 

end %end of illumination test 

end  %end of triangle loop 

Eth2 (k)=Eth(it) ; 

end % end of test for visible region 

end % end of v loop 

end % end of u loop 

ac=pinv(Ic)*Eth2' ; 

for k=l:ntria 

if imag(ac(k))<=.0001 

ac(k)=real(ac(k)); 

end 

sr(k)=(l/ac(k)-l)*.5; 

% correct round-off 

s(k)=round(sr(k)*le4) ; 

sr(k)=s(k)*le-4; 

end 

k=l:ntria; 

figure(2) 

plot(k,rs,k,sr,'-'); 
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title('Comparison of Original and Synthesized Resistivity') 

xlabel('Triangle Number') 

ylabel('Normalized Resistivity') 
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% POTESS.M 

% PO scattering from triangles 

clear all 

% illumination flag: =0 external face only 

iflag=l; 

Lt=.001; 

Nt=2 ; 

wave=l; 

bk=2*pi/wave; 

rad=pi/180; 

% Incindent wave polarization 

Et=l+j*0; %TM-z 

Ep=0+j*0; %TE-z 

phi=0; 

phr=phi*rad; 

cp=cos(phr);sp=sin(phr); 

% Wave ampltidue at all vertices 

Co=l.; 

build 

ntria=nfaces; 

nvert=nverts ; 

x=xpts; 

y=ypts; 

z=zpts; 

title('triangular model of the scattering surface') 

xlabel('x') 

ylabeK'y') 

zlabel('z') 

for i=l:nvert 

text(x(i)-max(x)/20,y(i)-max(x)/20,z(i),num2str (i) ) 
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end 

hold off 

disp('hit return to continue calculation') 

pause 

% Define position vectors to vertices 

for i=l:nvert; 

r(i,:) = [x(i) y(i) z(i)]; 

end 

%Use synthesized resistivity 

%load srO.m % 0 resistivity 

%load srl.m % 377 ohm/sq resistivity 

load srl.m % linear resistivity 

rs=srl; 

% edge vectors and normals from edge cross products 

for i=l:ntria 

A=r(vind(i/2), 

B=r(vind(i,3), 

C=r(vind(i,3), 

)-r(vind(i,l), 

)-r(vind(i,l), 

)-r(vind(i,2) , 

N(i, : )=cross (A, B) ; 

% check for proper direction of normal vector 

if N(i,3)<0 

N(i,:)=-N(i,:); 

end 

% Edge lengths for triangle "i" 

d(i, l)=norm(A) ; 
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d(i,2)=norm(B); 

d(i, 3)=norm(C) ; 

ss=.5*sum(d(i,:)); 

Area(i)=sqrt (ss* (ss-d(i,l) )'* (ss-d(i,2) )* (ss-d(i,3) ) ) ; 

Nn=norm(N(i,:)); 

N(i, :)=N(i, :)/Nn; 

%transform triangles into local coordinates 

xl=[l 0 0]; 

yl=[0 10]; 

zl=[0 0 1]; 

end 

% Pattern Loop 

start=0; 

stop=180; 

del=l; 

it=floor((stop-start)/del)+1; 

for i=l:it 

theta(i)=start+(i-1)*del; 

thr=theta(i)*rad; 

st=sin(thr); ct=cos(thr); 

u=st*cp;  v=st*sp;  w=ct; 

up=ct*cp; vp=ct*sp; wp=-st; 

% Spherical coordinate system unit vectors 

R(i, : ) = [u v w] ; 

% Change Efield into global rectangular coordinates 

strtra(1, 

strtra(2, 

strtra(3, 

)=[st*cp ct*cp -sp]; 

)=[st*sp ct*sp cp]; 

)=[ct -st 0]; 

sei=[0 Et Ep]/ 
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ei=strtra*sei'; 

% correct orientation for normal after 90deg 

if theta(i)==91 

N=-N; 

end 

% Begin loop over triangles 

sumt=0; 

sump=0; 

for m=l:ntria 

t(m,:)=cross(zl,N(m,:)); 

beta(m)=acos (N(m, 3) ) ; 

alpha(m)=atan2(t (m, 2),t(m,1)+le-6)-pi/2; 

% Test to see if front face is illuminated 

ndotk=N(m,:)*R(i,:)'; 

if ndotk >= 0 & iflag==0 | iflag~=0 

%translation into local coordinates 

%first rotate about z axis 

tral(1/:)=[cos(alpha(m)) sin(alpha(m)) 0]; 

tral(2,:)=[-sin(alpha(m)) cos(alpha(m)) 0]; 

tral(3, :) = [0 0 1]; 

% Rotation about yp axis 

tra2(1,:)=[cos(beta(m)) 0 -sin(beta(m))]; 

tra2(2, :) = [0 1 0] ; 

tra2(3,:) = [ sin (beta (m) ) 0 cos (beta (m) )] ; 

Dl=tral*R(i,:)'; 

D2=tra2*Dl; 

upp=D2(1) 

vpp=D2(2) 

wpp=D2(3) 

% Find spherical angles in local coordinates 
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stpp=sqrt(uppA2+vppA2)*sign(wpp); 

ctpp=sqrt (l-stppA2) ; 

thpp=acos(ctpp); 

phipp=atan2(vpp,upp+le-10); 

% Phase at the three vertices of triangle m; monostatic RCS 

needs % "2" 

Dp=2*bk*((x(vind(m,1))-x(vind(m,3)))*u+... 

(y(vind(m,1))-y(vind(m,3)))*v+... 

(z(vind(m,l))-z(vind(m,3)))*w); 

Dq=2*bk*((x(vind(m, 2) )-x(vind(m,3)))*u+... 

(y(vind(m,2))-y(vind(m,3)))*v+... 

(z(vind(m,2))-z(vind(m,3)))*w); 

Do=2*bk*(x(vind(m,3))*u+y(vind(m,3))*v+z(vind (m, 3))*w) ; 

%incident field in local rectangular coordinates 

eip=tral*ei; 

eipp=tra2*eip; 

% translation of E-field into local spherical coordinates 

strtra2=[stpp*cos(phipp)    ctpp*cos(phipp)    -sin(phipp); 

stpp*sin(phipp) ctpp*sin(phipp) cos(phipp); ctpp -stpp 0]; 

epp=strtra2/v (-1) *eipp; 

%Reflection coefficients 

gamp=0; 

if (2*rs(m)+ctpp)~=0 

gamp=l/(2*rs(m)+ctpp); 

end 

gamn=l/(2*rs(m)*cos(thpp)+1); 
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%Surface Currents 

Jxpp(i,m) = (epp(2)* gamp-epp(3)* gamn)* ctppA2; 

Jypp(i,m)=(epp(2)*gamp+epp(3)*gamn)*ctpp; 

% Area integral for general case 

DD=Dq-Dp; 

expDo=exp(j*Do); 

expDp=exp(j * Dp); 

expDq=exp(j*Dq); 

% Special Case 1 

if abs(Dp) < Lt & abs(Dq)>= Lt 

%disp('case 1') 

icase(i,m)-1; 

sic=0.; 

for n=0:Nt 

sic=sic+(j*Dp)An/fact(n)*(-Co/(n+l)+expDq*(Co*gf(n, -Dq) ) ) ; 

end 

Ic(i,m)=sic*2*Area(m)*expDo/j/Dq; 

% Special Case 2 

elseif abs(Dp) < Lt & abs(Dq) < Lt 

%disp('case 2') 

icase(i,m)=2; 

sic=0.; 

for n=0:Nt 

for nn=0:Nt 

sic=sic+ (j*Dp) An* (j*Dq) ^nn/fact (nn+n+2) *Co; 

end 

end 

Ic(i,m)=sic*2*Area(m)*expDo; 

105 



% Special Case 3 

elseif abs(Dp) >= Lt & abs(Dq) < Lt 

%disp('case 3') 

icase(i,m)=3; 

sic=0.; 

for n=0:Nt 

sic=sic+(j*Dq)An/fact(n)*Co*gf(n+l,-Dp)/(n+l); 

end 

Ic(i,m)=sic*2*Area(m)*expDo*expDp; 

% Special Case 4 

elseif abs(Dp) >= Lt & abs(Dq) >= Lt & abs(DD) < Lt 

%disp('case 4*) 

icase(i,m)=4; 

sic=0.; 

for n=0:Nt 

sie = sic+(j*DD) An/fact(n)* (-Co*gf(n,Dq)+expDq*Co/(n+l) ) ; 

end 

Ic(i,m)=sic*2*Area(m)*expDo/j/Dq; 

eise 

icase(i,m)=0; 

Ic(i/m)=2*Area(m)*expDo*(expDp*Co/Dp/DD-expDq*Co/Dq/DD-Co/Dp 

/Dq) ; 

end 

% end of special cases test 

%Scattered field in local rectangular coordinates 

Esxpp=Jxpp(i,m)*Ic(i,m); 

Esypp=Jypp(i,m) *Ic(i/m) ; 

Eszpp=0; 

%retranslation to global rectangular coordinates 
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Espp(m,:)=[Esxpp Esypp Eszpp]; 

Esl=tra2A(-1)*Espp(m,:)'; 

Es=tral"(-l)*Esl; 

%retranslation to global spherical coordinates 

%seipp(m,:)=strtraA(-1)*Es; 

seipp(m,1)=0; 

seipp(m,2)=ct*cp*Es(1)+ct*sp*Es(2)-st*Es(3) ; 

seipp(m,3)=-sp*Es(l)+cp*Es(2); 

%sum over all triangles to get scattered field 

sumt=sumt+seipp(m,2); 

sump=sump+seipp (m, 3) ; 

end %end of illumination test 

end %end of triangle loop 

Eth=sumt; 

Sth(i)=10*logl0(4*pi*abs(Eth)A2+l.e-10); 

Eph=sump; 

Sph(i)=10*loglO(4*pi*abs(Eph)A2+l.e-10) ; 

end 

Sth(:)=max(Sth(:) ,-50) ; 

Sph(:)=max(Sph(:) ,-50) ; 

%load rcsO.m 

%load rcsl.m 

load rcsl.m 

%plot res 

figure(2) 

plot(theta,rcsl,theta,Sth,'—'),grid 

title(* solid:original   dashed:synthesized') 

xlabel('monostatic angle, theta (deg)') 

ylabel('sigma/wavlA2 (dB)') 
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