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1. INTRODUCTION

In recent years, a great deal of study has been devoted to the
understanding of the interaction of the Interplanetary Magnetic Field
(IMF) and the Earth's ionosphere. In trying to understand the
electrodynamic system set up by the coupling of particles, fields and
electric currents, several empirical and mathematical models have been
developed to map out the convection patterns setup in the high latitude
regions [Sojka et al 1986; Heppner and Maynard 1987; Hairston and Heelis,
1990]. In order to specify the convection pattern precisely these models
require, as a minimum, inputs for the orientation of the IMF (sign of Bz
and By components), and the position of the dayside cusp region and
nighttime Harang discontinuity region. The essential advantage of these
models lies in their ability to specify the real time convection pattern. In
order to do this, real time data gathering of the required IMF and high
latitude ionospheric responses is needed.

A network of ground-based observation stations (i.e. as is possible from
the deployment of digital ionosondes), are capable of measuring and
tracking rapid changes in the orientation of the IMF Bz and By components
[Reinisch et al., 1987; Cannon et al. 1991] and the ionospheric behavior to
these changes. Digital ionosondes are low maintenance, continuously
operating instruments that simultaneously measure the electron densities
and plasma velocities; the data can provide real time inputs for the
specification of the convection models.

This report discusses the use of Digisonde drift velocities to determine the
orientation of the IMF Bz and By components. Section 2 discusses the
theory of the interaction of the IMF with the Earth's magnetic field, and
the relations between the Bz and By orientations with convection patterns
and velocity signatures observed by the Digisonde 256 system. Section 3
incorporates the statistical data base gathered by the Digisonde located at
Qaanaaq and introduces criteria that help characterize the Bz and By
orientations. Section 4 discusses the results of the analysis technique used
to determine the Bz and By orientations and attempts to give an indication
as to the reliability of these determinations.




2. INTERACTION OF THE IMF AND THE EARTH'S MAGNETIC FIELD
The interaction of the Earth's magnetic field with the IMF is observed in
the magnetospheric-ionospheric system as the development of electro-
dynamic processes and the transfer of energy (via merging of field lines).
An understanding of the dynamics involved is essential in order to better
understand the effects that the Bz and By orientations have on high-
latitude convection patterns. To a first order approximation, excluding the
effect of the solar wind, the Earth's magnetic field can be considered to be
a dipole in which the magnetic field lines loop from the south pole to the
north pole. Including the solar wind this tends to confine the Earth's
magnetic field to a comet-shaped volume as shown in Figure 1.

Since the charge in the solar wind experiences a force due to the Earth's
magnetic field given as F=qVxB, these charges will be deflected around the
earth. This has the effect of establishing secondary magnetic fields which
cancel the earth's field on the sunward side and increase the value of the
magnetic field on the nightside. The result, as observed in Figure 1, is to
compress the magnetosphere to about 10Re (where Re = Earth radii) on the
dayside, and elongate the magnetosphere to distances as much as 1000Re
on the nightside. In addition, the Earth slows down these charges from
speeds as much as 400 km/s creating a bow shock (Figure 1).

Due to the "frozen-in" condition, the solar wind carries along with its
plasma its own magnetic field. This magnetic field commonly referred to as
the interplanetary magnetic field can interact with the Earth's magnetic
field in two ways. On the dayside, dependent on the orientation of the Bz
component, the solar wind magnetic field can "merge" with the Earth's
magnetic field allowing the plasma to enter the Earth's magnetospheric
environment, spiral along the magnetic field lines to the poles and be
deposited at ionospheric heights. On the nightside, the solar wind may
reconnect with the Earth's magnetic field similarly transferring energy.
Magnetic field lines extending beyond the magnetosphere are called
"open", while field lines extending to the boundary layer of inner
magnetosphere are called closed. It is the establishment of electric fields
along the opened and closed field lines that drive the convection pattern at

high-latitudes.
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Figure 2 shows how the IMF may merge with the Earth's magnetic field
dependent on the orientation of Bz. Considering a Geocentric Solar Ecliptic
coordinate system, for Bz southward (Bz<0, Figure 2b), merging occurs at
high latitudes [Crooker 1986]. For Bz northward (Bz>0, Figure 2a) merging
moves poleward of the dayside cusp [Russell, 1972]. Where the field lines
merge is crucial in determining the convection pattern observed at high

latitudes.

Consider the case for Bz southward first. The solar wind travels with
velocity Vgg-. In the case of the opened field lines, if Bgy, is the magnetic

field of the solar wind, then an electric field exists which in a reference
frame fixed at the Earth is:

E,, = -V, XBg, (1)

In the direction parallel to the Earth's magnetic field B, charged particles
move freely. Hence, the Earth's magnetic field lines usually act like a
perfect electrical conductor, transmitting perpendicular electric fields and
voltages across vast distances with no change in the potential in the
direction parallel to B. Thus, the electric potential established due to the
IMF will apply across the magnetosphere and thus map down to
ionospheric heights in the polar cap. This electric field will thus drive
plasma in the F-region in the anti-sunward direction with a velocity given

as:
E; X B,

321

(2)

V;

Because the magnetic flux density is higher in the ionosphere than in the
solar wind, and since the equipotential surfaces converge, the electric field
in the ionosphere is larger than in the solar wind. The plasma in the polar
ionosphere will therefore move in an anti-sunward direction (Figure 3)
due to the mapping of the induced electric field produced from the
merging of the solar wind magnetic field to the Earth's magnetic field.

Consider the electric field generation in the closed field line region of the
magnetosphere. Due to the interaction of the solar wind, the Earth's
magnetic field lines are distorted. The resulting magnetic geometry has a
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on the dayside, taken from Basinska 1992. a) When Bz>0 the
merging occurs at the poleward boundary [Russell 1992]. b)
When Bz<0 merging occurs when the field lines are anti-
parallel, at high latitudes on the dayside [Crooker 1986].




Closed Field Lines

Y Geocentric Solar Ecliptic co-ordinates

ax B = Earth's magnetic field.
Bgy = Solar wind magnetic field
E; = Electric field mapped to altitudes in the ionosphere.
Ey = Electric field induced in earth's closed field lines.
Egw = Electric field induced from mergeing of Bg,, and B.
Vsw = Velocity of Solar wind plasma.
Vi = Velocity of plasma in earth's closed field lines.
v = Velocity of plasma in the earth's ionosphere

Figure 3. Idealized two cell convection pattern set up when IMF Bz <O.
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tension that exerts a force on the plasma. This together with the pressure
gradient and the potential difference applied across the magnetosphere by
the flowing solar wind, produce motion of the magnetospheric plasma on
the closed field lines toward the sun. This motion induces a dawn to dusk
electric field in the tail. Since this electric field is attributed to the flowing
properties of the solar wind rather than its electro-magnetic properties, its
dawn-to-dusk orientation will not be effected by the orientation of the Bz
component.

In Figure 3, the electric field established in the magnetosphere due to the
V, motion of the plasma towards the sun is mapped to ionospheric
heights. In the closed field environment, this electric field drives the
plasma in the ionosphere sunwards establishing the outline of a two-cell
motion. A great deal of literature exists discussing the two-cell motion
described, so we will not devote any in-depth discussion of its
characteristics at this stage but continue to the case when the IMF Bz
component is pointed northward (Bz>0).

In the case of the IMF Bz component being positive, a complete
understanding of convection pattern and dynamics involved is still being
developed. However, to a first approximation, we may use the discussions
above to outline what convection pattern is possible. In the case of the
open field lines, a Bz northward IMF component will induce a dusk-to-
dawn electric field. When the IMF field lines merge with the Earth's
magnetic field however, the induced electric field points from the dawn-
to-dusk (Figure 4), as previously, and the plasma flows in an anti-sunward
direction. Yet, as shown in Figure 2, the field lines merge poleward of the
dayside cusp. This results in the field lines in the dayside polar region
being closed.

For the case of the closed field lines as previously discussed, the
magnetospheric electric field remains unchanged pointing from the dawn-
to-dusk. Mapping of this electric field to lower latitudes drives the plasma
sunward. Similarly, this field is also mapped to the dayside polar region
and the addition of this sunward flow causes two smaller cells to develop.
The two larger, lower latitude cells which would normally be observed for
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Figure 4. Idealized four cell convection pattern set up when IMF Bz >0.




Bz<0 and the two new smaller cells rotate in opposite directions. This "four"
cell system has been observed experimentally; however, its characteristics
are not as yet fully understood.

While the Bz component controls the location of the merging field lines and
so determines the coarse structure of the convection pattern (two cell or
four cell), the By component controls which field lines must contribute to
the polar convection pattern. Hence, variations in By are outlined by the
distortion of the two or four cell system. Figure 5 displays the orientation
of modeled two cell convection patterns calculated by Heppner and
Maynard [1987] for different By conditions. Also included are the
Digisonde velocity measurements made at Qaanaaq, Greenland. This figure
indicates that when By<0 the dawn cell expands and the velocities in the
polar region have directions slightly east of anti-sunward. When By>0 the
dusk cell dominates and velocities are directed west of anti-sunward
direction. Both these features are clearly observable from the drift
measurements made at Qaanaaq. Figure 6 displays the orientation of a
four-cell system for different By values. (Taken from Kelley, 1989, p234).
When By is small, the two smaller cells are symmetrical about the noon-
midnight meridian. For By<0 the dusk cell tends to expand into the dawn
side and when By>0 the reverse situation occurs.

3. DIGISONDE STATISTICAL DATA BASE

In order to determine Bz and By orientations it was necessary to interpret
the velocities measured at a polar latitude station with known IMF
orientations. An example of the Digisonde velocity data was already given
in Figure 5. From data obtained from Qaanaaq over a three year period
(1989-1991) estimates of the behavior of the motion of plasma due to
different IMF conditions was possible. An example of how systematic the
velocity pattern can be for certain IMF orientations is given in Figure 7
(Crowley et al., 1992). Figure 7 displays the polar plot for the average
velocity behavior for Bz>0 (top left plot). The velocity behavior measured
on day 253 1990 is given on the right top plot along with the IMF Bx, By,
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6 High-Latitude Electrodynamics

NORTHWARD
IMF
12 12
60° 60°
. 70° 70°
80
18] 06 18 06
By<O By >0
12
——~ 60°
70°
18 1 06
BY =0

The main feature of the dayside convection geometry when the IMF has a northward
component is the existence of four convection cells. However, the dependence of the convection
pattern on B, leads to the dominance of one of the high-latitude cells and a three-celled pattern arises.
[Afier Heelis er al. (1986). Reproduced with permission of the American Geophysical Union.]

Figure 6. Displays the orientation of a four cell system for different By
values, taken from Kelly [1989] page 284.
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Figure 7. Top left displays averaged horizontal drift velocity component
behavior for Bz>0. Top right displays the horizontal drift
velocity component measured on 10 Sept. 1990, Bottom graph
displays the IMF results for 10 Sept. 1990.
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and Bz components measured for this day (bottom plot). Clearly, on day
253 1990 Bz>0 and By<O for most of the day.

The velocities measured on this day show a similar pattern that is
expected from the statistically averaged data. Hence, the top left plot is a
good representation of velocity (convection) to expect when Bz>0 and By<0.
Indeed one can characterize further comparisons such as these quickly and
indicate what the Bz and By orientations are by just observing the drift
velocities. Considering a simple two-cell convection pattern it is possible to
outline the velocity behavior that should be observed at a number of
latitudes. Figure 8 shows a simple two-cell pattern and the direction of the
measured drift velocity that should be expected at four high-latitude
stations.

The velocity plots are given as drift angle plotted as a function of time. For
Bz<0 at Qaanaaq the velocity component should be consistently anti-
sunward. This is reflected in the linear graph for Qaanaaq as a gradual
progression of the velocity direction from north through south to north in a
24-hour period. The signatures for the velocity directions expected at
other stations reflect the stations location with respect to the convection
cells.

Figure 9 shows drift data measured at Qaanaaq on days 99 to 101 1991.
The horizontal velocity magnitude, vertical velocity and the azimuthal
direction of the horizontal velocity are given in this plot. On day 99 the
plasma flow is strictly anti-sunward. On day 100 after 12UT sunward
motion is observed. We assume that at this time the Bz component
reversed from southward to northward. Also, what is apparent is the lower
horizontal velocity magnitudes when Bz>0. These two distinct and simple
characteristics of the behavior of the convection during changes in the IMF
clearly indicate that the drift velocities may be used in the determination
of the orientation of the IMF components.

Comparing known IMF orientations and velocity measurements made over

one year, criteria were developed that relate variations in velocity to the
signs of Bz and By. Figure 10 displays a year of Qaanaaq drift data plotted

13
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for different Bz conditions. What is clear from this figure is the existence of
a sunward drift observed during 08 to 18CGLT for Bz>0 which is
nonexistent for Bz<0. From the discussions in Section 1 this is not
surprising. The sunward flow of plasma around 12CGLT for Bz>0 correlates
well with the development of the four cell system. In this Figure alone, a
criteria exists that if sunward motion is observed between 08 and 18CGLT,

Bz is definitely positive.

The extent and intensity of the spread observed in the scatter plots shown
in Figure 10, indicates that distribution limits could be imposed on this
data in order to test if a velocity component belongs to Bz<0O or Bz>0
condition. Figure 11 shows a set of horizontal drift velocity distributions
produced for 3 hour periods. The movement of the mean of these
distributions from -180 to 180 degrees outlines the anti-sunward motion
observed in Figure 10. Each distribution has a finite width represented by
a standard deviation of 20 degrees. Testing a horizontal velocity azimuth
against any one of these distributions would indicate if the velocity
measured is anti-sunward or sunward. Developing such tests would, in
turn, allow us to interpret the orientation of the IMF components. For
example, 12CGLT at Qaanaaq a horizontal velocity azimuth of 160 degrees
was measured. From the statistical distribution given for 1030 to
1330CGLT the anti-sunward motion has a mean at 10 degree and a
standard deviation of 20 degrees. The measured velocity must clearly be
classified as sunward, not anti-sunward and with reference to Figure 10
one can immediately conclude that the Bz component is positive.

In developing a statistical testing package, a list of criteria for different
IMF Bz and By orientations was established which is summarized in Table
1. One important feature is that the larger velocities are always associated
with Bz<0, and that for Bz>0 no substantial separation in the velocities is

noticeable.

4, RESULTS FOR THE DETERMINATION OF BZ AND BY COMPONENTS

Using the criteria above and allocating confidence weights for the one, two
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Figure 11 Probability histograms for the direction of drift motion at
Qaanaaq. 1989 data was used with velocities calculated from
sources which had less than 10 degree phase error. All data
independent of IMF. Azimuth angle is measured from north.
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Table 1. Drift Criteria for Different IMF Bz and By Orientations
Horizontal .
Deviation (degree) Magnitude Time Int.
IMF Drift-Anti-sunward m/s (CGLT)
Mean S.D. Mean SD.
Bz < O 0 20 >=600 100 ALL
By < O <0 60 <=200 100 01 to 12
By < 0 <0 60 >=600 100 13 to 24
By > 0 >0 60 >=600 100 01 to 12
By > 0 >0 60 <=200 100 13 to 24
Bz > 0 180 20 <300 100
By < 0 <0 60 <=200 100 18 to 06
By < O >-180 60 <=200 100 07 to 17
By > 0 >0 60 <=200 100 18 to 06
By > 0 <180 60 <=200 100 07 to 17

and three standard deviation it is possible to determine the sign of the IMF
Bz and By components from the Digisonde velocity measurements.
Dependent on which increment the velocity value was located would
indicate how confident the determined Bz and By orientation was. Figure
12 displays a comparison of determined Bz and By orientations and actual
measured IMF values recorded for 1 January 1989. The continuous line

displays the satellite measured IMF value while the dashed line gives the
sign of the IMF value determined from the Digisonde velocities. The overall
comparison is good; the percentages of times Bz and By were determined
correctly were 95.4 and 81.6 respectively. In this some
inconsistencies in the determination of the sign of the IMF By component

example,

can be seen.

Testing this method with one year worth of drift data recorded at Qaanaagq,
it is possible to determine the correct IMF Bz and By orientations 60-70%
of the time. Figure 13 shows the percentage distributions for the
determination of Bz and By from the 1989 drift data collected at Qaanaaq.

Keeping in mind that all CGL times are tested, and only a single velocity
measurement is used at any one time to determine the Bz and By

components, this result is surprisingly good.
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Figure 12.

Determination of IMF Bz Sign from Digisonde Drift
Continuous Line = Averaged IMF Bz (IMPS8) Data
Dashed Line = Determined IMF Bz Sign -
Percentage correctly determined = 95.4
Day/Year : 1 January 1989
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Determination of IMF By Sign from Digisonde Drift
Continuous Line = Averaged IMF By (IMP8) Data

Dashed Line = Determined IMF By Sign
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Day/Year : 1 January 1989
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Comparison of the determined sign of the IMF Bz and By
components using Digisonde velocity data, and IMF data
recorded from the IMP-8 Satellite (Courtesy of R. Lepping
GSFEC).
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Proportidn of the percentage of correctly determined IMF Bz
and By signs for 1989 data analyzed.
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The method which bases its results on a single station and only one
velocity measurement, still requires additional work in order to improve
on the determination of IMF Bz and By components. The areas that still

need to be addressed are:

1. Introduce a time history into the analysis to indicate if an individual
determined IMF orientation is consistent with previous measurements,
or if the IMF Bz and By signs have changed.

2. Due to overlapping of similar velocities for certain time periods these
methods should only be tested when the stations are in those CGLT
sectors where the convection patterns are clearly defined for different
Bz and By orientations. As an example, at Qaanaaq Bz may be
unambiguously determined during the time interval from 09 to 15
CGLT when Bz<0 produces anti-sunward flow and while Bz>0 produces
sunward flow. However, from 09 to 15 CGLT anti-sunward convection
is observed for both Bz>0 and Bz<0. Hence, for Qaanaaq it would be
best to rely only on the determined values when the station is located
in the 09 to 15 CGLT sector (see item 4 below).

3. Improve the velocity calculation in the presence of velocity shears in
the field-of-view of the sounder.

4. Use other high latitude stations to cover all time periods and several
latitudes to establish a more robust prediction capability for the Bz
and By directions.
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