
Technical Report
CMU/SEI-95-TR-020
ESC-TR-95-020

Carnegie-Mellon University

Software Engineering Institute

State of the Practice Report:

Problems in the Practice of Performance Engineering

Mark H. Klein

February 1996

irr"!
"Ajpsovcd tar pot«" vsAmsM

DTIC 7Y mSPEOIED I

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment, or administration
of its programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of the
Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion, creed,
ancestry, belief, age, veteran status, sexual orientation or in violation of federal, state, or local laws or executive orders. However, in the judgment of the
Carnegie Mellon Human Relations Commission, the Department of Defense policy of, "Don't ask, don't tell, don't pursue," excludes openly gay, lesbian and
bisexual students from receiving ROTC scholarships or serving in the military. Nevertheless, all ROTC classes at Carnegie Mellon University are available to
all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA
15213, telephone (412) 268-6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone
(412)268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

Technical Report
CMU/SEI-95-TR-020

ESC-TR-95-020

February 1996

State of the Practice Report:
Problems in the Practice of Performance Engineering

Mark H. Klein

Dynamic Systems Program

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

•^•'J C^ALIxJ hx;;,i.:2GI:l'iD I

This report was prepared for the

SEI Joint Program Office
HQ ESC/ENS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD
position. It is published in the interest of scientific and technical information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Thomas R. Miller, Lt. Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1996 by Carnegie Mellon University

This work was created in the performance of Federal government Contract Number Fl 9628-95-
C-0003 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a Federally Funded Research and Development Center. The Government of the
United States has a royalty-free government purpose license to use, duplicate, or disclose the
work, in whole or part and in any manner, and to have or permit others to do so, for government
purposes.

This material may be reproduced by or for the U.S. Government pursuant to the copyright
license under the clause at 52.227-7013.

This document is available through Research Access, Inc., 800 Vinial Street, Pittsburgh, PA
15212: Phone: 1-800-685-6510. FAX: (412) 321-2994. RAI also maintains a Mosaic home page.
The URL is http://www.rai.com.

Copies of this document are available through the National Technical Information Service
(NTIS). For information on ordering, please contact NTIS directly: National Technical
Information Service, U.S. Department of Commerce, Springfield, VA 22161. Phone: (703) 487-
4600.

This document is also available through the Defense Technical Information Center (DTIC).
DTIC provides access to and transfer of scientific and technical information for DoD personnel,
DoD contractors and potential contractors, and other U.S. Government agency personnel and
their contractors. To obtain a copy, please contact DTIC directly: Defense Technical
Information Center, Attn: DTIC-OCP, 8725 John J. Kingman Road, Suite 0944, Ft. Belvoir, VA
22060-6218. Phone: (703) 767-8019/8021/8022/8023. Fax: 703-767-8032/DSN-427.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the
trademark holder.

Table of Contents

1 Introduction 1
1.1 Performance 1
1.2 Background 1
1.3 Purpose 2

2 Observations of Performance Engineering Practice 3
2.1 Technical Development Process 3

Institutionalization of Performance Engineering 3
Standard of Practice 4
Management and Economic Factors 5

2.2 Component Marketplace 6
COTS Performance Evaluation and Criteria 6
Repository for COTS Usage/Performance Information 6
Usage/Performance Specifications 8
Predicting COTS Performance in Context 8

2.3 Performance Models and Measures 9
Simple Conceptual Models 9
Heterogeneity and Complexity 1 o
Architecture-Level Performance Analysis 11
Performance Measurement 11

3 Conclusions 13

Bibliography 15

CMU/SEI-95-TR-020

CMU/SEI-95-TR-020

Acknowledgments

This report is the product of input received from many performance engineering practitioners
and researchers. In particular, this report has benefited from input from Mario Barbacci, Paul
Clements, John Goodenough, Larry Howard, Suzie Garcia, David Kelly, Pete Malpass, Ian
Pyle, Raj Rajkumar, Tracy Sienknecht, Carol Sledge, and Murray Woodside.

CMU/SEI-95-TR-020

iv CMU/SEI-95-TR-020

State of the Practice Report:
Problems in the Practice of Performance Engineering

Abstract: All systems have performance requirements, sometimes dominant
and explicit, and other times subordinate and implicit. Despite the
pervasiveness and importance of performance requirements, performance
problems persist. To help us understand why, we sponsored a workshop in
performance engineering and conducted some structured interviews with
software contractors. This report summarizes our observations.

1 Introduction

1.1 Performance
"Performance" has many connotations. The definition of performance given in the IEEE Stan-
dard Glossary of Software Engineering Terminology [IEEE-610.12] is "the degree to which a
system or component accomplishes its designated functions within given constraints, such as
speed, accuracy, or memory usage." This is a common connotation, but performance in this
report refers to the timeliness aspects of how software systems behave.

"Performance refers to responsiveness: either the time required to respond to specific events
or the number of events processed in a given interval of time" [Smith 93]. Performance is that
attribute of a computer system that characterizes the timeliness of the service delivered by the
system; therefore, performance engineering deals with predicting and controlling the timeli-
ness properties of a software engineering artifact.

1.2 Background
All systems have performance requirements. Sometimes performance is fundamental to the
correctness of the system; other times performance requirements are implicit and qualitative.
Despite the apparent importance of engineering performance into systems and despite the ex-
istence of some analytical underpinnings, performance problems are still very common in soft-
ware-intensive systems. Therefore it is natural to ask:

• What aspects of today's practice contribute to performance problems?

• What are the barriers to achieving a state of practice in which potential
performance problems are detected early during the engineering process
and avoided?

CMU/SEI-95-TR-020

To investigate these questions we sponsored a workshop in performance engineering. The
Second Annual Disciplined Engineering Workshop: Effective Practice in Performance Engi-
neering was held on June 28-29,1995 at the Software Engineering Institute of Carnegie Mel-
lon University in Pittsburgh, Pennsylvania. The intent of the workshop was to provide a forum
for interaction and dialogue in performance engineering. We also conducted structured inter-
views with a small set of software contractors (primarily defense contractors).

1.3 Purpose
The purpose of this report is to call attention to the importance of performance engineering as
a neglected discipline, as demonstrated by the information we gathered from the workshop
and the interviews. We believe that considerable benefits can be reaped by giving more atten-
tion to performance engineering.

Constructive feedback to this report is invited and welcomed. We would like to hear from you
if you agree or disagree with the findings. If you agree with the findings and would like to supply
more evidence, let us know. Also, we are very interested in ideas for how to mature or transi-
tion performance engineering technology. If you disagree with the findings, we would like to
know how we can make the report more accurate. The author can be contacted via email at
mk@sei.cmu.edu.

CMU/SEI-95-TR-020

2 Observations of Performance Engineering Practice

We were able to place the observations discussed below roughly into the following three cat-
egories:

• technical development process

• component marketplace

• performance models and measures

Technical development process is concerned with observations about the development and
institutionalization of standards of practice. Mature engineering disciplines tend to have mech-
anisms for codifying practice such as standards of practice which are widely disseminated,
regularly reviewed, and updated. Consider structural engineering as an example. The Ameri-
can Association of State Highway and Transportation Officials has written a major design
specification for highway bridges that provides standard values for the allowable stresses and
loadings for a bridge in this country [Spector 86, p. 272].

Component marketplace is concerned with observations about using, evaluating, standardiz-
ing, and combining commercial-off-the-shelf products in the development of systems.

Performance models and measures is concerned with observations about the use of perfor-
mance models and measures to predict performance, and how trends toward heterogeneous,
distributed systems compromise the efficacy of existing methods.

Observations within each of these categories are described in the following sections.

2.1 Technical Development Process
This section is concerned with observations related to the codification of performance engi-
neering into routine software engineering practice. Each observation is described in the follow-
ing paragraphs and summarized in the italicized text.

Institutionalization of Performance Engineering

The degree to which software performance engineering is institutionalized into
the software development process varies considerably between organizations.

There seems to be large disparities between organizations in the degree to which performance
engineering is integrated into the software development process. In some organizations that
were interviewed by the SEI, performance engineering was recognized as an engineering spe-
cialty whose point of view was represented when major architectural decisions were made.1

All aspects of system performance were within the purview of the performance team, and the

Recorded in an unpublished collection of interview data.

CMU/SEI-95-TR-020

team had veto power over design decisions. Organizations at the other end of the spectrum
treated performance merely as an afterthought, the thought occurring only after performance
problems were manifest. Oftentimes the separation of the performance analyst and perfor-
mance methodologies from mainstream activities also inhibited effective integration of perfor-
mance into the development process.

To respond to a rising pressure of performance problems in medium and large software
projects, performance analysis needs to be more uniformly integrated into software develop-
ment activities.

Standard of Practice

No generally accepted standard of practice exists for performance engineering.
However, there are plenty of good sources to draw upon to create one.

All systems have performance requirements; sometimes performance is fundamental to the
correctness of the system, as for real-time systems; other times performance requirements are
implicit and qualitative. Despite the importance of performance to all systems, there is no ref-
erence model or standard of practice against which organizations can compare their own per-
formance engineering practice.

Adoption of performance engineering and its integration into software engineering practice
could be facilitated by formalizing and publishing its role. The idea is not to create "the one and
only" performance methodology, but to provide concrete guidance with pointers to the best ac-
cepted technical practices.

Exemplary performance engineering practice today can be characterized as an iterative pro-
cess of setting performance goals, developing performance budget allocations, and carrying
out performance analysis as discussed by [Smith 90] and [Haskell 95]. Such practice is char-
acterized by the following:

• Performance requirements are quantified as part of system requirements.

• Resource budgets are estimated from experience that is captured in
performance databases, from specifications of existing subcomponents,
and/or from building prototypes. Budget estimates are then subjected to
performance analysis and possibly modified.

• Performance models are developed in concert with system design. As
development proceeds, the models are refined and performance
measurements and model predictions are mutually corroborating.

• Performance models live beyond the development stage and provide insight
into system testing and modification.

Evidence of this type of practice exists. The software engineering community could benefit
from the codification and promulgation of today's exemplary practice, perhaps by the creation
of a standard of practice.

CMU/SEI-95-TR-020

Management and Economic Factors

The level of institutionalization of performance engineering within an organiza-
tion is often linked to the level of management support, which in turn relies on
economic justification, which is often lacking.

There are significant economic factors inhibiting the adoption of software performance engi-
neering. When performance engineering is effective, it appears invisible. Management per-
ceives early performance work as an extra cost. Managers need to understand performance
engineering investments in terms of risk management and cost avoidance, rather than as en-
gineering overhead. Work is needed to facilitate economic justification for performance engi-
neering. Investment profiles are needed to create expectations about the levels and nature of
investment (what the money is used for).

Performance engineering should be viewed as a natural part of the engineering process and
managed accordingly. For example:

• Performance data need to be treated as a precious resource and monitored
and managed accordingly.

• Performance engineering concepts and practices need to be spread to the
lowest levels of the development organization. Individual developers as well
as teams need to be cognizant of and concerned with performance
engineering.

• Management needs to promote the interaction of developers and customers
concerning performance engineering issues: cost, meaning of data, and
tradeoffs.

The performance engineering task should be scaled based on an appraisal of cost and risk. If
the performance engineering task is minimized or eliminated, it should be a conscious decision
based on a cost-benefit analysis using past experience as a guide.

There appears to be a certain degree of organizational infrastructure that is needed to carry
out performance engineering as described above. This suggests the possibility of developing
links between the Capability Maturity ModelSM (CMMSM)2 for Software and performance en-
gineering practices, both as a way of raising awareness of performance engineering and as a
way of articulating the relationship between organizational and technical engineering practic-
es.

The lack of perceived value for the performance engineering investment appears to ripple out
to other components of the performance engineering community. User demand for vendor-
supplied performance information is minimized, and in turn there is little impetus to develop
standards for practice or standards for component specifications.

Capability Maturity Model and CMM are service marks of Carnegie Mellon University.

CMU7SEI-95-TR-020

2.2 Component Marketplace
This section is concerned with observations related to using, evaluating, standardizing and
combining commercial-off-the-shelf (COTS) products in the development of systems.

COTS Performance Evaluation and Criteria

No standard of practice exists for how to evaluate the performance of a software
component. As the reliance on COTS increases, the risk of discovering perfor-
mance problems after it is too late may increase for systems for which perfor-
mance predictability is critical.

The perceived public benefit for using COTS, combined with increasing COTS availability,
makes the problem of COTS evaluation important and pervasive. Currently there is no stan-
dard of practice for how to go about evaluating the performance of different classes of COTS
products. While benchmarking is common practice, there is no standard for deciding on the
most appropriate benchmark or the suitability of existing benchmarks for evaluation.

This lack of guidance makes the build/buy decision more difficult and risky. Choosing a COTS
product that has terrible performance can be costly for the purchaser.

A public guide (or standard of practice) for how to evaluate COTS would be helpful to system
developers, COTS vendors, and system acquisition agents. Such a guide would set a common
framework that would align the expectations of each of the aforementioned parties. For system
developers, a guide would provide a checklist of potential risks against which to check the
COTS. This would help to ensure that developers do not overlook important performance is-
sues when evaluating a COTS component. A guide could also simplify vendors' evaluation
processes. If vendors all evaluate performance using a standard method, they don't have to
support customer-specific processes. A standard evaluation practice would also help to en-
sure that when COTS are written into RFPs they are evaluated against a common standard.

Repository for COTS Usage/Performance Information

There is no objective clearinghouse for performance information for COTS. As a
result, the software engineering community does not benefit from its own perfor-
mance-related experiences in using COTS.

It appears that the performance community does not derive benefits from its own experiences
in the use of COTS. While COTS users have information about their experiences which could
benefit other users, potential users, and vendors, there is no forum or repository for sharing
this information.

Moreover, vendors are not seeing marketplace demand for performance information. In part,
this might be because what the vendors supply is not useful or is not trusted. Vendors also
appear to be worried that COTS purchasers might be turned off by data that are too compli-
cated, and vendors are worried about the legal ramifications of putting out data whose use is
not yet totally understood. Moreover, providing any data is time consuming. As a result, per-

(3 CMU/SEI-95-TR-020

formance issues take a back seat to other issues, and oftentimes COTS components are not
upwardly compatible from a performance point of view. New versions of COTS products typi-
cally have more functionality and less performance (since more resources are used). Vendors
see their market opportunity mainly in terms of functionality, not performance.

Published performance data would make this implicit performance vs. functionality tradeoff
much more visible to the COTS consumer community. On one hand, there appears to be a
clear disincentive for vendors to provide performance information for new releases. On the
other hand, this is exactly the information that users need. Improved dissemination of informa-
tion about actual use of COTS will benefit the community and increase awareness of perfor-
mance issues. Examples of useful information include

• typical work-load scenarios

• known performance problems

• hints for performance improvements or solutions to known performance
problems

• performance data

One can easily imagine a catalogue of COTS products with such performance information that
would be valuable to system developers and have a powerful market influence. Such a cata-
logue could contain both vendor-supplied information as well as experience-based information
collected from the COTS user community. This type of information could be prepared and
maintained by a third party. A third-party could

• foster objectivity

• stimulate vendors to agree on reasonable comparison criteria, that is,
performance metrics that are both needed by the community and reasonable
for vendors to provide

• perhaps eliminate a worry on the part of the vendor that providing such
information implies a legal promise

A public guide might involve the development and use of standard COTS usage scenarios for
various types of COTS components. Reaching agreement on a typical set of scenarios would
greatly facilitate benchmarking, comparison, and optimization of vendor products. While it is
typically very hard to identify critical performance cases, scenarios provide a focal point for
user-vendor communication, ultimately leading toward improved scenarios and potentially
shedding light on how to characterize performance criteria for various classes of components.

This type of service could help to highlight vendors who publish useful metrics. If leading ven-
dors start to publish such data then others might follow, leading to a higher level of confidence
in vendor-published data. This, in turn, could lead to developers using and demanding this
type of information. Vendors would probably welcome information about how their products
are used and misused if such information is required to remain competitive in a performance-
aware component marketplace.

CMU/SEI-95-TR-020

Usage/Performance Specifications

There appears to be a need for components to have a "performance interface"
for expressing the performance properties of a component and that allows for
predictable tuning of the component.

Work needs to be done to develop standard mechanisms for specifying and controlling the
performance of components. These mechanisms should

• accommodate varying usage patterns

• accommodate different platforms

• offer guidance for tuning

To accommodate the need for flexibility, vendors oftentimes provide configuration parameters,
which can affect performance. Vendor-specified default values are sometimes good enough
as a starting point. However, default values are based on the vendor's best guess about an-
ticipated workloads and usage patterns. Naturally, default settings are not appropriate for all
individual cases, and vendors should not be expected to know what is best for each user of
their products.

However, the user community needs guidance for how to tune components as a function of
usage pattern and platform, and vendors need mechanisms for stating how performance var-
ies as a function of the tuning parameters. Typically when performance needs to be improved,
there is not enough "interface" information to determine how tuning affects performance. Thus,
it is very difficult for the tuner of a COTS component to make sensible choices. One option is
to tune the component to perform optimally in isolation. However, local optimizations might not
be optimal in the context of the rest of the system. Oftentimes the tuner must rely on his/her
own experience with the COTS product, which makes tuning a skilled job that is very depen-
dent on specific individuals. Also, guidelines are needed for how to evaluate the results of
changes: what to measure and how to interpret measurements for potential improvements.

While there are issues in the development of standards for performance interface specifica-
tions (as stated above), the field of software/computer performance analysis is not new and
there is a rich body of experience to draw upon from the real-time systems and the perfor-
mance modeling communities, among others. See, for example, [Complement 92], [Klein 93],
[Lazowska 84], and [Smith 90].

Predicting COTS Performance in Context

COTS users find it difficult to predict and control the interactions between COTS
products to achieve overall system performance goals.

COTS products are usually sold to operate within a general-purpose environment, such as an
operating system or client-server architecture. Although COTS products may work satisfacto-
rily individually, they often do not work well together.

CMU7SEI-95-TR-020

Embedding COTS components in a larger system can have unpredictable (undesirable) per-
formance caused by undocumented interaction ("covert channels") between one or more
COTS components and the rest of the system. Contention for resources is an example. Re-
sources are used by the COTS product itself and by the environment in which it is embedded;
these are not easy to measure separately. Consequently, the same COTS product may per-
form differently in different environments, and the execution problems of the environment may
appear as problems of the COTS product.

Moreover, open distributed systems promote the use of components from multiple vendors
with late binding of application-level components. This provides the developer and the user
with functional flexibility. However, without systematic and standard mechanisms for describ-
ing how multiple components interact, the nonfunctional aspects of the system, such as per-
formance, can render the system unusable.

System performance models that allow one to predict how multiple components interact are
needed. Without such models, adjusting parameters to improve one COTS product might de-
grade others. Also, since limits of usage for different products might be different, it is hard to
extrapolate from current use to future use, particularly when behavior is nonlinear and is a
function of several effects. System performance models would allow one to factor in the COTS
performance data to derive overall system performance.

2.3 Performance Models and Measures
This section is concerned with observations about the use of performance models and mea-
sures to predict performance, and how trends toward heterogeneous, distributed systems
compromise the efficacy of existing methods.

Simple Conceptual Models

Simple conceptual models of performance are needed to make performance engi-
neering more accessible to and usable by the software engineering community.

Modeling can play an essential role in integrating knowledge of the system and in supporting
the exploration of critical issues and alternatives. On the other hand, models that are too com-
plex or too idealized to be useful can be barriers to adoption of performance engineering.

The performance engineering discipline is often perceived as arcane and obscure. For exam-
ple, formal performance models based on subsystem states, such as Markov Chains or Petri
Nets, can result in very complex models which might not give the desired and needed insight
into suitable software structures. Moreover, understanding the software implications derivable
from theoretical models often requires a deep understanding of the theoretical techniques and
their limitations, requiring specialists in modeling.

Modeling becomes increasingly important for complex systems. Without models there is no
chance that the complex systems can be understood. Models can be used to

CMU/SEI-95-TR-020

• integrate knowledge of the various parts of a system

• identify gaps in knowledge

• manage complexity by highlighting the most relevant details and hiding less
important details

• inform architectural decisions by helping to identify trouble spots early in the
life cycle and enable affordable investigation of alternatives

Performance models (and any models for that matter) offer insight into how to reason about
the performance ramifications of architectural decisions. They should serve as a useful ab-
straction of the real system by providing performance predictions for systems early in devel-
opment and by predicting the consequences of change in a manner that is easier than
changing the system itself. Models should be maintained with the design throughout the life
cycle, and used to explain and justify the design from a performance point of view.

Adoption of performance engineering and its integration into software engineering will be fa-
cilitated by the generation of a simplified conceptual model for performance. This model
should foster communication between the performance specialist and others, and make per-
formance engineering more accessible to the nonspecialist. Different aspects of performance
models are discussed, for example, in [Woodside 95a], [Smith 90], and [Chatterjee953].

Heterogeneity and Complexity

Heterogeneity and complexity are compromising the ability to understand and
model system performance.

Heterogeneity is a common feature of today's large, complex distributed systems. Heteroge-
neity has many aspects including hardware, operating systems, languages, and protocols.
Moreover, each of these aspects has its own trajectory of evolution. Heterogeneity drives the
cost of modeling up by requiring the connection of multiple, different models and model ele-
ments together. Heterogeneity also increases the cost of measurement since different types
and kinds of instrumentation are required, and the correlation of measurement data is re-
quired.

Another cause of complexity that challenges current modeling capabilities is the large number
and types of interactions between inadequately defined components. Physically parallel parts
of the system running on separate nodes can interact, making a global system with a large
state space for analysis. Temporal dependencies can add further complexity. Such systems
can exhibit many different kinds of behavior with intricate conditions for triggering each type of
behavior.

Chatterjee, S. and Strosnider, J., "Distributed Pipeline Scheduling: A Framework for Distributed, Heteroge-
neous Real-Time System Design", to appear in The Computer Journal.

10 CMU/SEI-95-TR-020

Some parts of the system can be outside of the visibility of the system designer. For example,
client/server architectures and object-orientation can hide details that are important for perfor-
mance modeling. Thus, abstraction from one point of view can introduce complexity from an-
other point of view. Also, the behavior of other systems with which a system interacts
(including humans and other computer systems) might not be totally known and thus compro-
mise the ability to predict performance.

Some of the aforementioned aspects of complexity and heterogeneity defeat well-established
modeling techniques such as queueing-based techniques. For instance, mechanisms involv-
ing the simultaneous use of logical and physical resources, and behavior patterns involving
interactions between separate processes (either concurrent in the same node, or distributed
on a network) require complicated extensions to standard models [Smith 90, Section 8.2],
[Agrawal 83]. Viable techniques will rely on approximations that are either still being developed
or are not mature enough for most software practitioners to use. Examples of such approxi-
mations can be found in the research literature in database system modeling [Thomasian 89];
in layered system models for distributed systems [Woodside 95a], [Rolia 95]; and in models of
parallel processing [Kapelnikov 89].

Existing modeling techniques are not used to their fullest potential. Many commercial tools
tend to be complex, difficult to learn, and very detail oriented. In addition, they are costly to use
and are not widely accepted. (See [Smith 90],[Smith 95] for a list of commercially available per-
formance modeling tools.) Training for software engineers in modeling and modeling theory is
generally lacking.

Architecture-Level Performance Analysis

Architecture reviews require more emphasis on performance. Performance engi-
neering issues need to become a standard part of architecture reviews.

Performance engineering issues should become a normal part of an architecture-level review.
Current architecture reviews do not put sufficient emphasis on predicting performance of the
system, resulting in surprises when the system is built. Since architectural flaws which hurt
performance can be very hard to remove, architecture review is an appropriate time for the
results of up-front performance engineering work to be presented and reviewed. Performance
guidance is needed early in the development process since every decision potentially reduces
the degrees of freedom in how to achieve effective performance. Architecture review is an op-
portunity to recognize and (re)use patterns with known performance properties and to com-
pare the proposed architecture with patterns used on similar and/or dissimilar systems.

CMU/SEI-95-TR-020 11

Performance Measurement

Measuring heterogeneous, complex systems is difficult and costly. Measurement
needs to be more closely linked to underlying models, and tools are needed to
support this.

Measurement is fundamental to all engineering disciplines: it is necessary to understand the
parameters of importance and their relationships, and to have tools and techniques for obtain-
ing measurements. Measurements must be linked back to models to facilitate data interpreta-
tion and to guide measurement. Measurements are more useful in the context of a model;
otherwise, it is easy to sink in a sea of measurement data.

In heterogeneous environments, there can be problems correlating data acquired with mea-
surement tools that are specific to different portions of the system. For example, when the net-
work instruments are separate from the computer measurement instruments, there often is no
common time base for identifying events. When a message is sent, it can be seen in the com-
puter and on the network, but there is no way to tell if it is the same message.

Another measurement problem is that most measurement tools do not record the software
context of the execution; this is an old problem with hardware instrumentation of computers.
Apparently it is still difficult to relate measurement data to a source-code context. One cause
of this is that advances in technology are making it difficult or impossible to place measure-
ment probes. For example, on-chip cache makes current address lines and instructions invis-
ible.

Granularity of time measurement is a problem originating from different clock speeds in differ-
ent computers. Even for different platforms that use the same hardware there can be differ-
ences of precision of several orders of magnitude.

COTS products also present special difficulties as mentioned in the previous section discuss-
ing COTS. Measurement interfaces for COTS components will be helpful and necessary.

12 CMU/SEI-95-TR-020

3 Conclusions

This report documents observations about areas that need to be improved in performance en-
gineering.

Currently, there appears to be a large spectrum of performance engineering practice. A codi-
fication of best practice in a "standard of practice" in a yet-to-be-determined form could be
quite beneficial to the software engineering community. The standard should include guidance
for how to consider performance during software architecture development and review. Link-
ing the standard of practice to the Capability Maturity Model for Software [Paulk 93] could be
one mechanism for promulgating it and encouraging its usage. Other mechanisms include
professional societies and standards organizations.

The trend toward heterogeneous distributed systems built in part from COTS components ex-
acerbates the performance engineering problem and to some degree impedes performance
engineering. Several observations from [Allen 77] seem applicable:

It is becoming generally accepted that technology builds upon itself and
advances quite independently of any link with the scientific frontier, and often
without any necessity for an understanding of the basic science which
underlies it.

Occasionally, technology is forced to forfeit some of its independence This
happens when its advance is impeded by a lack of understanding of the
scientific basis of the phenomena with which it is dealing.

Continued work is needed in applying performance modeling techniques to understand per-
formance in heterogeneous, distributed settings. Continued work is also needed to understand
how to better characterize the performance of COTS components and how to use such char-
acterizations in concert with performance models to predict system performance.

Finally, it should be noted that the observations in this report are from a limited sample; nev-
ertheless, a broad spectrum of the software engineering community is represented. This leads
us to believe that our observations are representative of the problems in practice of perfor-
mance engineering. However, continued feedback will be welcomed.

CMU/SEI-95-TR-020 13

14 ~~ CMU/SEI-95-TR-020

Bibliography

Agrawal 83 Agrawal, S.C. & Buzen, J.P. "The Aggregate Server Method for An-
alyzing Serialization Delays in Computer Systems." ACM Trans, on
Computer Systems 1, 2 (May 1983): 116-143.

Allen 77 Allen, T.J., Managing the Flow of Technology: Technology Transfer
and the Dissemination of Technological Information Within the R&D
Organization. Cambridge, MA: MIT Press, 1977.

Complement 92 Ayache, S.; Conquet, E. & Puigjaner, R., 'Taxonomy of Perfor-
mance Requirements," Proceedings of the Complement Consor-
tium, Ref TFP7-1.0. January 1992.

Haskell 95 Haskell, Lou. "A Performance Engineering Approach." Second An-
nual Disciplined Engineering Workshop: Effective Practice in Per-
formance Engineering. Pittsburgh, PA, June 28-19,1995.

BEEE-610.12 Institute of Electrical and Electronic Engineers. "IEEE Standard
Glossary of Software Engineering Terminology." IEEE Standards
Collection. New York, NY: Institute of Electrical and Electronics En-
gineers, 1993.

Kapelnikov 89 Kapelnikov, A.; Muntz, R. R. & Ercegovac, M. D., "A Modelling
Methodology for the Analysis of Concurrent Systems and Computa-
tions," J. Parallel Distributed Comput. 6, (1989): 568-597.

Klein 93 Klein, M.H.; Ralya, T.; Pollack, B.; Obenza, R. & Harbour, Michael
Gonzalez. A Practitioners'Handbook for Real-Time Analysis: Guide
to Rate Monotonie Analysis for Real-Time Systems. Boston, MA:
Kluwer Academic Publishers, 1993.

Lazowska 84 Lazowska, E. D; Zahorjan, J.; Graham, G. S.; & Sevik, K. C. Quan-
titative System Performance: Computer System Analysis Using
Queuing Network Models. Englewood Cliffs, NJ: Prentice-Hall, Inc.
1984

CMU/SEI-95-TR-020 15

Paulk 93 Paulk, M.; Curtis, B.; Chrissis, M. & Weber, C, Capability Maturity
Model for Software Version 1.1, (CMU/SEI-93-TR-24, ADA
963403.). Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University, 1993.

Rolia 95 Rolia, J.A. & Sevcik, K.C. "The Method of Layers." IEEE Trans, on
Software Engineering 21, 8 (August 1995): 689-700.

Smith 90 Smith, C. U. Performance Engineering of Software Systems, The
SEI Series in Software Engineering. Reading, MA: Addison-Wesley
Publishing Comp., 1990.

Smith 93 Smith, C. U. & Williams, L. G. "Software Performance Engineering:
A Case Study Including Performance Comparison with Design Al-
ternatives," IEEE Transactions on Software Engineering 19,7 (July
1993): 720-741.

Smith 95 Smith, C. U. & Williams, L. G., "A Performance Model Interchange
Format," Performance Engineering Services, Feb. 1995.

Spector 86 Spector, A. & Gifford, D. "A Computer Science Perspective of
Bridge Design." Communications of the ACM 29, 4 (April 1986):
267-283.

Stankovic88 Stankovic, J. A. "Misconceptions About Real-Time Computing: A
serious problem for next-generation systems." IEEE Computer 21,
10 (October 1988): 10-19.

Thomasian 89 Thomasian, A. & In Kyung Ryu. "A Recursive Solution Method to
Analyze the Performance of Static Locking Systems." IEEE Trans,
on Software Eng. 15,10 (October 1989): 1147-1156.

Woodside 95a Woodside, C.W.; Neilson, J. E.; Petriu, D. C; & Majumdar, S. "The
Stochastic Rendezvous Network Model for Performance of Syn-
chronous Client-Server-like Distributed Software." IEEE Transac-
tions on Computer 44,1 (January 1995): 20-34.

16 CMU/SEI-95-TR-020

Woodside 95b Woodside, CM. "A Three-View Model for Performance Engineering
of Concurrent Software." IEEE Transactions on Software Engineer-
ing 21, 9 (September 1995): 754-767.

CMU/SEI-95-TR-020 17

18 CMU/SEI-95-TR-020

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION

Unclassified
lb. RESTRICTIVE MARKINGS

None

2a. SECURITY CLASSIFICATION AUTHORITY
N/A

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release
Distribution Unlimited 2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-95-TR-020
5. MONITORING ORGANIZATION REPORT NUMBER(S)

ESC-TR-95-020

6a. NAME OF PERFORMING ORGANIZATION

Software Engineering Institute
6b. OFFICE SYMBOL
(if applicable)

SEI

7a. NAME OF MONITORING ORGANIZATION

SEI Joint Program Office

6c. ADDRESS (city, state, and zip code)

Carnegie Mellon University
Pittsburgh PA 15213

7b. ADDRESS (city, state, and zip code)

HQ ESC/ENS
5 Eglin Street
HanscomAFB, MA 01731-2116

8a. NAME OFFUNDING/SPONSORING
ORGANIZATION

SEI Joint Program Office

8b. OFFICE SYMBOL
(if applicable)

ESC/ENS

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F19628-95-C-0003

8c. ADDRESS (city, state, and zip code))

Carnegie Mellon University-
Pittsburgh PA 15213

10. SOURCE OF FUNDING NOS.

PROGRAM
ELEMENT NO

63756E

PROJECT
NO.

N/A

TASK
NO
N/A

WORK UNIT
NO.

N/A
11. TITLE (Include Security Classification)

State of the Practice Report: Problems in the Practice of Performance Engineering
12. PERSONAL AUTHOR(S)
Mark Klein

13a. TYPE OF REPORT

Final
13b. TIME COVERED

FROM TO

14. DATE OF REPORT (year, month, day)

February 1996
15. PAGE COUNT

26
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (continue on reverse of necessary and identify by block number)

. performance engineering, performance measures, performance models,
technical development

FIELD GROUP SUB. GR.

19. ABS 1 KAUl (continue on reverse it necessary and identify by block number)

All systems have performance requirements, sometimes dominant and explicit, and other times sub-
ordinate and implicit. Despite the pervasiveness of performance requirements, performance prob-
lems persist. To help us understand why, we sponsored a workshop in performance engineering and
conducted some structured interviews with software contractors. This report summarizes our obser-
vations.

(please turn over)

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED | SAMEASRPTQ DTIC USERS |

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified, Unlimited Distribution

22a. NAME OF RESPONSIBLE INDIVIDUAL

Thomas R. Miller, Lt Col, USAF
22b. TELEPHONE NUMBER (include area code)

(412)268-7631
22c. OFFICE SYMBOL

ESC/ENS (SEI)

DD FORM 1473, 83 APR EDITION of 1 JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

