
AD

TECHNICAL REPORT ARCCB-TR-95041

LINEAR TIME ALGORITHM FOR POSITIVE KERNEL
SMOOTHING WITH APPLICATION TO

NONPARAMETRIC PROBABILITY
DENSITY ESTIMATION

ROYCE W. SOANES

OCTOBER 1995

US ARMY ARMAMENT RESEARCH,
DEVELOPMENT AND ENGINEERING CENTER

CLOSE COMBAT ARMAMENTS CENTER
BENET LABORATORIES

WATERVLIET, N.Y. 12189-4050

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

19960320 034 Jmc v&Lsiz msPEnmD i

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE

COPY FURNISHED TO DTIC

CONTAINED A SIGNIFICANT

NUMBER OF PAGES WHICH DO

NOT REPRODUCE LEGIBLY.

DISCLAIMER

The findings in this report are not to be construed as an official

Department of the Amy position unless so designated by other authorized

documents.

The use of trade name(s) and/or oanufaeturer(s) does not constitute

an official indorsement or approval.

DESTRUCTION NOTICE

For classified documents, follow the procedures in DoD 5200.22-M,

Industrial Security Manual, Section 11-19 or DoD 5200.1-R, Information

Security Program Regulation, Chapter IX.

For unclassified, limited documents, destroy by any method that will

prevent disclosure of contents or reconstruction of the document.

For unclassified, unlimited documents, destroy when the report is

no longer needed. Do not return it to the originator.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204. Arlington, VA 22202-4302, and to the Off ice of Management and Budget, Paperwork Reduction Project (0704-0188), Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) REPORT DATE
October 1995

3. REPORT TYPE AND DATES COVERED
Final

4.
Lftfe^'fttöl ALGORITHMS FOR POSITIVE KERNEL
SMOOTHING WITH APPLICATION TO NONPARAMETRIC
PROBABILITY DENSITY ESTIMATION

6. AUTHOR(S)

Royce W. Soanes

5. FUNDING NUMBERS

AMCMS: 6226.24.H180.0
PRON: 956M387

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
U.S. Army ARDEC
Ben6t Laboratories, AMSTA-AR-CCB
Watervliet, NY 12189-4050

PERFORMING ORGANIZATION
REPORT NUMBER

ARCCB-TR-95041

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army ARDEC
Close Combat Armaments Center
Picatinny Arsenal, NJ 07801-5000

10. SPONSORING/MONITORiNC
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
We present computational methods for positive kernel smoothing of piecewise linear data over uniform meshes. These methods
or algorithms complete their work in an amount of time proportional to the amount of data present. The kernel used here is
a B-spline which can be of arbitrarily high smoothness. The smoothed result or approximation may therefore also be as smooth
as desired. The algorithms automatically evaluate the smooth approximation over any arbitrary mesh, including the original
one if desired. Part of the reason why this smoothing may be done so efficiently stems from the fact that the kernel is never
actually obtained or used explicitly. These methods lead naturally to consideration of smoothing the discrete cumulative
distribution function corresponding to an ordered set of values of a random variable—a situation in which the original mesh is
naturally always nonuniform. In this nonparametric estimation of a density, the use of a positive kernel is important, because
the resulting integral smoothing operator is a monotone operator. In addition, derivatives of the smooth approximation may
be obtained trivially.

uKirr?e'f,(5rnr^SM)Jhg, Nonparametric, Window
15. NUMBER OF PAGES

%l

16. PRICE CODE

J
17. SECURITY CLASSIFICATION

OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NS'N 7540-0--283-5500 Standard Form 298 (Rev 2-89)

Prescribed b>, ANSi Sic Z39-' S
296-102

TABLE OF CONTENTS

INTRODUCTION 1

SMOOTHING BY REPEATED AVERAGING 1

COMPUTING THE INTEGRALS 4

NONPARAMETRIC DENSITY ESTIMATION 6

PRESERVING THE VARIANCE 8

OPTIMAL WINDOW PARAMETER 11

REFERENCE 19

APPENDIX 20

INTRODUCTION

The problem we are concerned with in this report is developing a reliable and fast
algorithm for continuous smoothing of piecewise linear (or piecewise constant) data defined over
uniform or nonuniform meshes. The theory behind what we will do is covered in Reference 1.
Here, we are concerned with actual computation. Often, large amounts of empirical data are
obtained over uniform meshes and the smoothing is carried out over these same meshes. This
case is the simplest one to consider, because we need not do any interpolation; but even in this
simplest of cases, we must guard against algorithmic inefficiency when dealing with large amounts
of data consisting of perhaps tens of thousands of points. The linear time property of an
algorithm is therefore quite important in such cases and enables us to compute in seconds what
might take hours otherwise. The situation becomes somewhat more complicated when the data
is nonuniformly spaced and/or when we wish to evaluate the smoothed function over some other
mesh. We use continuous positive kernel smoothing here, because of its shape (monotonicity)
preserving properties and the ease with which we may interpolate functional and derivative
values.

SMOOTHING BY REPEATED AVERAGING

In this section, we derive the smoothing formulas which will subsequently be applied.
These formulas are discussed in Reference 1, but we include their derivation here for the sake of
convenience. Consider the following smoothing operator S:

S operating on function /at point x is simply the average value of/over an interval of length 2h
with x as the center of the interval. The parameter h is called the window parameter. This
integral operator can also be written in kernel form as:

m=[yt)K(t-x)dt

M) = Yh if "l<Ä

0 if\t\zh

Applying S a second time gives us

Changing the order of integration in this double integral gives us

(2A) X-2A x~h

+-L-rur%)dtdu

i r* [X f[u)(u+2h-x)du
Jx-2h (2Ä)

1 fx*2hJ +_J_f*™fiu)(x+2h-u)du
(2h)2j*

Writing this integral in kernel form, we have

S2M=["°MK(u-x)du
J —to

'£**£ if-2h<u<0

*(«)=

(2Ä)2

&2& if0zu<2h
(2Ä)2

0 if \u\z2h

Note that the discontinuous kernel corresponding to S and the continuous kernel corresponding
to S2 are both nonnegative or essentially positive everywhere. Although we will not prove it here,
successive applications of S result in a sequence of increasingly smoother and wider B-spline
kernels of unit area. The width of the kernel corresponding to Skis2kh. We now leave the
subject of kernel form and proceed with the forms we actually use for computation.

Define the following set of integrals recursively:

Ij+1(x)=rijW

where a is an arbitrary value in the domain of definition of/. Of course, the derivative of any
member of this sequence is simply the preceding member of the sequence. This will make taking
derivatives a trivial operation.

As before, applying S to / once, we have

=^-(/1(X+A)-/1(A:-A))
2/1

Applying 5 a second time and noting that S is a linear operator, we have

s^4w+*)-ffiH))
2ft

1 ifTw*-!'^ (2h)2

1

(2Ä)

Applying 5 a third time, we have

2(I2(x+2h)-2I2(x)+I2(x-2h))

S*f(x)=-i—(S/2(JC+2A) -2SI2(x) +SI2(x-2h))
(2h)2

l / r*+*

(2A)3

1

\J£i$+2kydt-2l*i$&fäi$-2hyd\

(I3(x+3h)-I3(x+h)-2(I3(x+h)-I3(x-h))+I3(x-h)-I3(x-3h))
(2A)

1
3(/3(x+3A)-3/3(x+A)+3/3(x-Ä)-/3(x-3/i))

(2A):

We can then derive the formula for the fourth smooth or, noting the appearance of the binomial
coefficients with alternating signs, we can simply write down the result of applying 5 a fourth
time:

54/(JC)=^-(/4(X+4A)-4/4(X+2A)+6/4(X)-4/4(X-2A)+/4(X-4A))
(2A)4

Also note that if we seek the derivative of this fourfold smoothed function, we simply reduce the
indices of the Fs by unity and get

—S4fix)= —(L(x+4h) -4L(x+2h) +6Hx) -4L(x-2h) +Ux-4h))
dx (2Ä)4

These ideas are elaborated upon in Reference 1.

COMPUTING THE INTEGRALS

We start with a continuous piecewise linear interpolation of the data.

For Ix, we have

h(x)= [XAt)dt=[x'ftt)ch+fxtf)dt
J*o J*o Jxt

-W+Qt-xfr,*±Q'-*f^

=/1(*j)+-Ax,(y.+yj+1)

For I2, we have

For I3, we have

i2(x)=fxi1m=[x'ilw
+fxi1w

Jx0 J*0 J*i

I^x^I^x^I^Ax^y^xf^Ay^xf

=/2(x<)+/i(a:j)Aa:i+Axl
2f|y|.+|yi+1j

I3(x)= [xI2W=[X'I2(t)dt+[XI2(t)dt
Jx0 Jx0 Jxi

=I3(x)+I2(xl)Axi+-Il(xl)Ax?+Ax? 1 +J_

This is as far in the sequence of Fs as we will go in this report. The previous set of formulas
gives us two things. The first thing is the recursion relationships we must use to compute the
nodal values of the first three integrals. The second thing is the formulas for interpolating the
integrals at arbitrary points. The nodal integral values are essentially computed only once and
the amount of work involved is obviously proportional to the amount of data present. The
interpolations may obviously be done in constant time, once the intervals of the various
arguments have been located. Since, in the evaluation of the smoothed function, we march
through the data only once as we locate the intervals of points in the desired mesh, this
component of the algorithm will also be done in linear time. The amount of work done to
evaluate the smooth approximation will therefore be kjn+k2m arithmetic operations, where n is
the amount of data and m is the number of points at which we wish to evaluate the smoothed
function. It is also important to note that the amount of work involved in this computational
scheme is completely independent of the size of the window parameter h.

This scheme does have a weakness, however. If the nodal values of the integrals are
computed for an entire very large set of data, roundoff error in the integral computation and in the
necessary interpolations (involving subtractions) will completely destroy the computation, especially
for relatively small window sizes. The results will be so contaminated with error they will
meaningless. For a small to intermediate amount of data, however, the results will be very good.
It is therefore wise to periodically compute the nodal values of the integrals in smaller clumps as we
march through the data. Remember that the lower limit of integration for the integrals is
analytically arbitrary. A good rule of thumb is to compute the integrals over some multiple of the
total window width. This modification naturally forces us to do a bit of extra computation. Each
clump of integral values must overlap the previous clump by at least the total window width.

Therefore, with a window multiplier of ten, we will do only about ten percent more
computational work. Sufficient accuracy can still be attained with window multipliers as large as one
hundred. In any case, the modified algorithm can handle any amount of data in linear time with
sufficient accuracy. An involved error analysis could perhaps be done for this algorithm, but it is
more practical to evaluate its accuracy by applying the algorithm to an artificial set of data obtained
from a straight line, since the smoothing operators leave such data undisturbed analytically but not
numerically. All we need do is to compare the original data with that produced by the algorithm
with its inherent roundoff error. Since the smoothing formulas require data on either side of x and
the domain of the data is finite, the smoothing operator cannot be used near the ends of the data.
For this case, we merely use the simple derivative estimating properties of the smoothing formulas
to expand the smoothed function in a Taylor series at a point sufficiently far from the ends and
compute the smoothed function near the ends via these Taylor series. Finally, if the data has been
taken over a uniform mesh (equally spaced values of the independent variable) and the smoothed
function is desired over this same mesh, only the nodal values of the integrals are necessary and no
interpolations need be done.

NONPARAMETRIC DENSITY ESTIMATION

The simplest and most common example of nonparametric density estimation is the
frequency histogram. Our goal in this section is to improve upon the discontinuous histogram by
replacing it with a density estimate that is smooth to the extent of being twice continuously
differentiable. Attainment of this goal will give us a density that is not only more aesthetically
pleasing to the eye, but one with which we can make more accurate probability statements and
calculate more accurate percentiles. This is of course done via positive kernel smoothing. Assuming
that a sequence of values of a random variable x has been sorted in ascending order, we can define
the discrete cumulative distribution function as

w-
f 0 ifx<x0

— ifxt<x<xi+l
n

1 1/*>*„„!

Note that this function is defined on the entire real line, so that we need not use Taylor series to
smooth near the ends of a finite domain. Also, it does not matter how the distribution function
is defined at the data points or whether any of the x values are repeated values. Our first
estimate of the density will be the derivative of the fourth smooth of Fn. Hence, we need three
successive integrals of Fn. Since the values of* are always nonuniformly spaced, interpolations
are mandatory.

For Iv we have

\(x)=fxFß)dt=r'Fnm+[
x^dt

1 JXQ J*O JXI n

= I1(x,)+^(x-xi)
n

/i(W=W+
(i+l)Ax,

For /„ we have '2'

/+!■
2(*)=[Xi1(t)dt= (%m+\shty+—<!-*)*

J*o J*o Jxi n

in

^♦i^W+WAV In

For I3, we have

I3(x)=fxIß)dt=(%W+[XI2(x)+W(t-x)+^(t-x)2dt
J*o Jxo Jxi *n

= I3(x)+I2(x)(x-x,)+h(xfrx-xf+^(x-x)3

2 on

1 2 (i+l)Axt

Density/is given by

fix) = — [/3(JC+4A) -4/3(*+2A) +673(x) -4/3(x-2A) +I3(x-4h)l
(2Ä)4

Note that although we have derived the interpolation formulas for It and I2 in passing, only the
interpolation formula for I3 is necessary since we have no need of Taylor series expansions. Also,
the formula for I3(x) can be used to extrapolate beyond the last point.

PRESERVING THE VARIANCE

The sample mean computed from the data will coincide with the mean computed from
the density estimate. The sample variance computed from the data will not coincide with the
variance computed from the density estimate. The density variance will always exceed the
sample variance by an ever larger amount as the window parameter is increased. The object of
this section is to derive a simple transformation which will keep the density variance the same as
the sample variance for all values of the window parameter h. We now return to the use of
kernel form momentarily. The continuous cumulative distribution function estimate is given by

F(.x)=SAFn(x)= fynW(t-x)dt

Integrating by parts, we have

F(x)= F (~) rw-x)dt-1" ('K(u-x)dudFn(t)
J —00 J —00 J —00

= 1--T [XiK(u-x)du
»«=0''-'"

Differentiating the cumulative distribution function gives us the kernel form of the density:

, »-1 . n-l

F'(x)=fix)= l£ /*'*'(«-*)<&=-£ K(xrx)

This is the common form for a nonparametric density estimator based on kernel K. However, it is
exactly the wrong form to use for computation. If it were used to evaluate a density at each of n
points, an amount of work proportional to the square of the amount of data would be necessary.
That is, instead of a linear time algorithm, we would have a quadratic time algorithm. We can,
however, use this formula to determine the relationship between the variance computed from the
density, the sample variance, and the window parameter h. Consider the expected value (via/) of
an arbitrary function/?.

£&>(*)]= rp{xW)dx=rP{x)±-YK{x-x)dx

»-1
=-£ rp(x+x)K(x)dx

Withp(x)=x, we have

E[x]= v.f =-J2 r(x+x,)K(x)dx=^xr^
ni=nJ-a ni=0

n-l

E
i=0

since xK(x) is an odd function.

We therefore see that the sample mean and the density computed mean are the same.
Computing the variance (again via f), we have

,B-1

V[x]= oj=E[(x-\i/]=^£[jx+x.-\i/K(x)dx

£ [jx2+^^r^+(xr^f)2)K(.x)dx

,n-l

=/V*(x)<fc+iX>ru/

=S4x2(0)+d2

But 5V is given by

54x2=-i-(/4^+4A)-4/4(x+2A)+6/4(x)-4/4(x-2Ä)+/4(x-4Ä))
(2Ä)4

I4(x)=
23-32-5

Hence

?4„2/m= * SV(0)=-=-(2/4(4A)-874<2A))
(2A)4

1 (213-h6 29*6

(2Ä)4 U3-32-5 23-32-5,

ÄV-2>)=^
32-5

We therefore finally have the relation between the density-computed variance, the sample
variance, and the window parameter:

2 .2 4ft:

Now let g be the density of a new random variable (*').

g(x)= af(\xf+a(x-\i})

This transformation represents a simultaneous compression (about the mean) of/ in the x
direction and a stretching of/ in the y direction. Our objective now is to compute the
transformation parameter a in terms of the sample variance and the window parameter such that
the variance of the new random variable computed via g will be the sample variance.

Considering again the expected value (via g) of an arbitrary function/? of the new random
variable, we have

E\p(x)] = f°j*x)g(x)dx

=f~p(x)aj{\Lf+a(x-\L})dx

=fy(x+\L)afi\Lf+ax)dx

=iy{i+»fY»f+x')dx

Letting/?(x)=l, we see that g is indeed a legitimate density. Lettingp(x)=x, we see that the
means for/andg are the same. Computing the variance of*', we have

10

j*x)-(*-|»/

er

Therefore,

o =
N d2 N 3d2

Now, since

or equivalently

g(x)= af(\xf+a(x-\ip)

8 ■h,
a h =«/(*)

we compute / over some x mesh and transform the density data according to

, , jc-ji . /-a/, *-—^+u
a

in order to obtain the g density data that preserves both the sample mean and the sample variance.

OPTIMAL WINDOW PARAMETER

In this section we develop some machinery for selecting the optimal window parameter h for
a nonparametric density estimator. As before, we call the density estimator g and we will call the
actual density y. The mean square error (MSE) for a given value of x is given by

MSE(x) = E[(g(x)-Y(x))2] = E[(g(x)-E[g(x)]+E\g(x)]-Y(.x))2]
=E[(g(x)-E\g(x)])2

+2(g(x)-Elg(x)])(E\g(x)]-Y(x))
+(£fe(*)]-K*))2]

=E[(g(x)-E[g(x)])2ME[g(xy]-Y(x))2

=V[g(x)]+B(x)2

V\g(x)] is the variance of g and B(x) is the bias. The integral of the mean square error (IMSE) is
given by

11

IMSE =f+~V[g(x)]+B(x)2dx

Our goal is to approximately minimize IMSE with respect to the window parameter h. We seek a
formula that is asymptotically valid for large n and small h. Recalling that

g(x)= aftii+a(x-fi))

and

,»-i
fix)=^K(xrx)

«i=0

where K is the kernel resulting from four applications of the smoothing operator S, we have

u-l

Cx)=-£(xr/i-«(x-/i))

But

and

x.-/i-tf(x-/0= xrx+x-n-a(x-fi)= xrx+(l-a)(x-ß)

a-
N

i+i*!.i+2»! (Ä-o)
3CJ2 3a2

We therefore have

where

xi-n-a(x-ß)-xi-x-h2ß(x)

ß(x)- 2(*-j*)

3a2

Hence

n-l

g(x)=^^rx-A^)
• i=0

12

Since the x's are identically distributed independent random variables, the expected value and
variance of g (via y) are given by

J^*)]=££lTOcr*-A2/*)]
"i=0

= aE[K(xrx-h2ßy]

V[g(x)>—£nK{xrx-h2ß)-\
n 1=0

= ^-\\K{xrx-h2ßn
n

We now begin to obtain simple asymptotic expressions for the expectation and variance of these
kernel expressions. Now K is a kernel which becomes a Dirac delta as h approaches zero, so we
take note of the fact that

hK(hu)=Ku), K(u)=-h-
h \h

where k is a standard kernel independent of h. In our case, the support of* is (-4,4). First, we
have

E[K(xrx-h2ß)]=f+~K(u-x-h2ß)Y(u)du

= (*°°K(u)r(u+x+h2ß)du =(+~K(hu)Y(x+hu+h2ß)hdu
J -WO J -M

=| *~k(u) y(x+hu +h 2ß)du

Expanding part of the integrand in a Taylor series, we have

Y(x+hu+h2ß)= Y(x)+YXx)(fru+h2ß)

+-//W(Ä«+Ä2iß)2+-///W(A"+Ä2i8)3+0(Ä4)
2 6

= Y(xW(x)(hu+h2ß)

+iY
//mh2u2+2h3uß+h*ß2)

2

+±Y///(x)(h3u*+3h*u2ß+3hsuß2+h6ß3)+CKh*)
6

Since k is an even function, the terms involving odd powers of w make no contribution to the
integral. The contributing terms of the series are therefore

13

Hence,

But

Therefore

Yc(x+hu+h2ß)= y(*)+Ä2M*)+-A2«2y//(x)+0(A4)

m(xrx-h2ß)]=f^mUx)+h2ß/(x)+hhyxx)+o(h4)\iu

= Yixy h2ßYXx)+-h2Y//(x)(*"u2kiu)du+CKh*)
2 •* ~m

E[K(xrx-h2ß)] = y(x)+^3(x-A«)r/W+|*V/(x)+ CXA4)
3<r -5

= y(*)+^((x-/«)r/«+ *V'(*))+0(A«)
3a2

The bias is therefore given approximately by

B(x)~ a Y(x)+—, (x-/x)r/(x)+ JAx))

2A2a,

-y(*)

3cr

- ^(y(*)+(*-A0/(*)+ "Vt*))
3<r

2A2

In order to obtain the variance of g, we must first compute

14

E\K{xrx-h2ßf]=f"K(u-x-h2ß)2r(u)du =f+y(u)2y(u+x+h2ß)du

= [+~K(hu)2Y(x+hu+h2ß)hdu = ±[*~k(ujlY(x+ku+h2ß)du

h J -- h

Now, since

F[JK(.xr*-A20)]= E[K(xrx-h2ß)2]- E[K(xrx-h2 ß)]2

we have the desired variance of g

JlSHto-yttf+l V\g(xy\=-^(^--Y(x)2
+Oih)

nh n

The integral of the mean square error is therefore

IMSE ~s.-ir'r{xfdx^rbixfdx
nh nJ -» O^J-» 9a*

Letting

J=(+'b(xfdx

and setting the derivative with respect to h of the integral of the mean square error equal to
zero, we have

c +16/t3J_0

nh2 9a4

Solving for h, we have

/ A1

9ca*
opt \l6nJ)

We therefore see that as the sample size becomes large, the optimal window parameter becomes
small, albeit very slowly. We now simplify the integral /. First, we assume that

lim xy(x)=0= lim xy'Cc)

15

Now,

b(x)2 = (y(*)+<*-0)r1»+^yW
=Y(x?+(x-f*)2Y/(x)2+<<*//(x?

+2(x-^)K*)r/W
+2O

2
Y(X)Y

//
(X)

Integrating by parts, we have

Jl=[*y-^)Y(x)Ax)dx=[^(x-ii)Y(x)dYix)

= -f^Y(x){Y(x)Hx-/i)Ax))dx = -j^fixfdx-J,

and

and

from which we get

j2=fy(x)Y
//(x)dx =I2YWY\X> -fyxxfdx

J3=l^
x-^Y\x)Y/Xx)dx-^\x-li)Y

/{x)dY/{x)

= -f*y(xiY/(xMx-fi)Y
//(x))dx = -f*y(xfdx-J3

j=[y(x)Hx-»)V(x)2+oYXx)2<h+2(-±fy(x)2dx

**> (-[y(x?dx)+2o* (-1/_;yvfdx j

=fyx-fi)
2-3azy(x)2

+o4Y//(x)2dx

+2

We can get a clearer idea of the dependence of / on a by invoking the standardized version of y.
Let T be the standardized version with zero mean and unity variance. First, we have

M5?)- rix)

16

M?)- Ax)

r"<?)

Hence,

=1 f +"(x2-3)r'(x)2+r"(x)2dx

where the integral factor is completely independent of a. We therefore have

" \16nJa)

We will now find an expression for optimal h for a particular T. A candidate for this particular
case must naturally be twice differentiable. The function k naturally comes to mind as a good
unimodal candidate, having zero mean. It does not, however, have unity variance and must
therefore be properly scaled. Consider

IXx)=ak(ax)

f *°°x2I\x)dx=l = f *"x2akiax)dx=\ f *~x2k(x)dx=-
J-to J -co /»2J -oo ' 3a2

Hence,

a2-A-
3

Also,

r'(x)=a2k'(qx), r"(x)= a*k"(ax)

Computing the Ja integral, we have

17

Ja =f +\x2-3)aAk'{ax)2+a6k''(ax)2dx

kXxf+aWixfdx

9fi
j*\9x2-16)k'(tf+\6k%x?dx

Therefore, optimal h for this particular standardized density is given by

' Zlyßj'Hxfdx
h

opl = °
s

32/i [m&x2-36)k,(tf+16k"(tfdx
\ Jo)

From Reference 1, we have

Hx>

(±*t«t*t if o.x.2
96

(A-xf if 2<LX<.4
96

0 if x>4

*(-JC) if x<0

from which the first and second derivatives of k can be obtained. Then, we can compute the
approximation

opt (?)
This asymptotic approximation can be used as a nominal estimate of optimal h for a unimodal
density. For multimodal data, or in order to pick out more of the variations present in the data,
one can naturally use smaller values of h, but we at least have a value to start with.

Since this report is mainly computation oriented, we include some relevant C routines in
the Appendix. The first part of the Appendix is devoted to the C preprocessor commands that
describe the syntax used in the routines. The second, third, and fourth parts of the Appendix are
devoted to uniform mesh smoothing, nonparametric density estimation, and nonuniform mesh
smoothing, respectively.

18

REFERENCE

Royce Soanes, "Function Smoothing by Repeated Averaging," U.S. Army ARDEC
Technical Report ARCCB-TR-88012, Ben6t Laboratories, Watervliet, NY, March 1988.

19

APPENDIX

20

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define

#define

#define

If if(
Then) {
Elsif } else if(
Else } else {
fi};
iF(
theN) ?
elsE :
Fi;
And&&
Or 11
Do for(;;) {
oD}
Unif(
nU) break;
As if(!(
sA)) break;
NL printf("\n");
REAL(r) printf(#r "=%le ",r);
INT(i) printf(#i "=%ld ",i);
REALS(n.r) { long _i_=0; \

printf("\n"); \
Do As _i_ < n sA \

printf(#r "[%ld]=%le ",_i_,r[_U); _L+ +; oD \
printf("\nH); };

INTS(n,i) { long J_=0; \
printf("\n"); \
Do As J_ < n sA \

printf(#i "[%ld]=%ld "J_,i[JJ); J_++; oD \
printf(V); };

AVER(bool,fhame) if(!(bool)) \
{ printf("\n" #bool" is false in " #fname); \

exit(O); };
DENY(bool,fname) if(bool) \

{ printf('\n" #bool" in " #fname); \
exit(O); };

#include "syntax.h"

#define DIM 500

double I1[DIM],I2[DIM],I3[DIM];

void pkints(m,M,y)
long m,M;

21

double *y;
{long i,iml;
i=m+l; II [m]=0.0; I2[m]=0.0; I3[m]=0.0;
Do Un i > M nU

iml=i-l;
Il[i]=Il[iml]+(y[iml]+y[i])/2.0;
I2[i]=I2[iml]+(Il[iml]+(y[iml]/3.0+y[i]/6.0));
I3[i]=I3[iml]+(I2[iml]+(Il[iml]/2.0+(y[iml]/8.0+y[i]/24.0)));
i++; oD }

void pksmooth(n,y,w,wm,s)
long n,w,wm;
double *y,*s;

{ void pkints(long,long,double*);
double H,f0,fl,f2,x;
longnint,m,M,i,imw,ipw,ira3w,ip3w,j,ilast;
DENY(n > DIM,pksmooth)
DENY(6*w+l > n,pksmooth)
DENY(wm < 2,pksmooth)
nint=(6*w+l)*wm;
m=0; M=m+nint; If M >= n Then M=n-1; fl
pkints(m,M,y);
H=2.0*(double)w; H=H*H*H;
i=3*w;
imw=i-w; ipw=i+w;
im3w=i-3*w; ip3w=i+3*w;
fD=(I3[ip3w]-I3[im3w]-3.0*(I3[ipw]-I3[imw]))/H;
fl=(I2[ip3w]-I2[im3w]-3.0*(I2[ipw]-I2[imw]))/H;
f2=(Il[ip3w]-Il[im3w]-3.0*(Il[ipw]-Il[imw]))/H;
j=0;
Do Un j > i nU

x=(double)0-i);
s[j]=fD+x*(fl+x*ß/2.0);
j++;oD

i=j; ilast=n-l-3*w;
Do imw=i-w; ipw=i+w;

im3w=i-3*w; ip3w=i+3*w;
If ip3w > M

Then m=im3w; M=m+nint;
IfM >= n Then M=n-1; fl
pkints(m,M,y); fl

fi)=(I3[ip3w]-I3[im3w]-3.0*(I3[ipw]-I3[imw]))/H;
s[i]=fi);
i++; Un i > Hast nU oD

fl=(I2[ip3w]-I2[im3w]-3.0*(I2[ipw]-I2[imw]))/H;
G=(Il[ip3w]-Il[im3w]-3.0*(Il[ipw]-Il[imw]))/H;
j=i; i=ilast;

22

Do As j < n sA
x=(double)(j-i);
s[j]=f0+x*(fl+x*f2/2.0);
j++;oD}

#include "syntax.h"
#include "math.h"

#define DIM 500

double I1[DIM],I2[DIM],I3[DIM];

void cdfints(n,x,m,M)
long n,m,M;
double *x;

{ long i,iml;
double dx,rn,ri;
DENY(n > DIM,cdfints)
If m < 0Thenm=0; fl
IfM >= n Then M=n-1; fl
DENY(m >= M,cdfints)
i=m+l; ll[m]=0.0; I2[m]=0.0; I3[m]=0.0; rn=(double)n;
Do Un i > M nU

iml=i-l; dx=x[i]-x[iml];
ri=(double)i;
Il[i]=Il[iml]+dx*ri/rn;
I2[i]=I2[iml]+dx*(Il[iml]+dx*ri/(2.0*rn));
I3[i]=I3[iml]+dx*(I2[iml]+dx*(Il[iml]/2.0+dx*ri/(6.0*rn)));
i++;oD }

double I3c(n,x,a,ila)
long n,ila;
double *x,a;

{ double dx,rn,rila;
If a < x[0] Then return (0.0); fl
DENY(a < x[ila],I3c)
dx=a-x[ila]; rn=(double)n; rila=(double)ila;
return (I3[ila]+dx*(I2[ila]+dx*(Il[ila]/2.0+dx*(rila+1.0)/(6.0*rn))));}

void npden(n,x,h,wm,nd,xd,yd)
long n,wm,nd;
double *x,h,*xd,*yd;

{ void cdfints(long,double*,long,long);

23

double I3c(long, double * ,double,long);
void musig(long,double*,double*,double*);
double xm,xl,xr,xll,xrr,xrrr,H,El ,E2,mu,sig,alpha;
longid,im,il,ir,ill,irr,irrr,nml,i;
DENY(n > DIM,npden)
id=0; im=0; il=0; ir=0; ill=0; irr=0; nml=n-l;
H=2.0*(double)h; H=H*H*H*H;
id=0; irrr=0;
Do As id < nd sA

xm=xd[id];
xl=xd[id]-2.0*h; xr=xd[id]+2.0*h;
xll=xd[id]-4.0*h;xrr=xd[id]+4.0*h;
Do Un im == nml nU Un x[im+l] > xm nU im++; oD
Do Un il == nml nU Un x[il+l] > xl nU il++; oD
Do Un ir == nml nU Un x[ir+l] > xr nU ir++; oD
Do Un ill == nml nU Un x[ill+l] > xll nU ill++; oD
Do Un irr == nml nU Un x[irr+l] > xrr nU irr++; oD
If xrr > x[irrr] And irrr < nml

Then xrrr=xll+8.0*wm*h;
Do Un irrr == nml nU Un x[irrr] > xrrr nU irrr++; oD
cdfints(n,x,ill,irrr); fl

El =I3c(n,x,xrr,irr)+6.0*I3c(n,x,xm,im)+I3c(n,x,xll,ill);
E2=I3c(n,x,xr,ir)+I3c(n,x,xl,il);
yd[id]=(El-4.0*E2)/H;
If yd[id] < 0.0 Then yd[id]=0.0; fl
id++; oD

musig(n,x,&mu,&sig);
alpha=h/sig; alpha=sqrt(1.0+4.0*alpha*alpha/3.0);
i=0;
Do As i < nd sA

xd[i]=mu+(xd[i]-mu)/alpha;
yd[i]=alpha*yd[i];
i++; oD }

void musig(n,x,mu,sig)
long n;
double *x,*mu,*sig;

{ long i;
double s,d;
i=0; s=0.0; Do As i < n sA s+=x[i]; i++; oD
*mu=s/(double)n;
i=0; s=0.0; Do As i < n sA d=x[i]-(*mu); s+=d*d; i++; oD
*sig=sqrt(s/(double)n); }

void sift(heap,root,last)
double *heap;

24

long root,last;
{ long l,r;

double t;
Do l=2*root+l;

If 1 > last Then return; fl
r=l+l;
If r > last

Then If heap[root] < heap[l]
Then t=heap[root]; heap[root]=heap[l]; heap[l]=t; fl

return; fl
If heap[root] > = heap[l] And heap[root] > = heap[r]

Then return; fl
If heapfl] > heap[r]

Then t=heap[l]; heapfl]=heap[root]; heap[root]=t; root=l;
Else t=heap[r]; heap[r]=heap[root]; heap[root]=t; root=r; fl oD }

void makeheap(array,last)
double *array;
long last;

{ long il,i2,i;
void sift(double*,long,long);
il=0;
Do il=2*il+l; Un il > last nU oD
il=(il-l)/2;
Doi2=il-l;il=i2/2;

If last/2 < i2 Then i2=last/2; fl
i=il;
Do Un i > i2 nU

sift(array,i,last); i++; oD
Unil ==0nUoD }

void heapsort(n,x)
long n;
double *x;

{ long last,i;
double t;
void makeheap(double*,long),sift(double*,long,long);
last=n-l; makeheap(x,last);
Do Un last == OnU

t=x[0]; x[0]=x[last]; x[last]=t; last--;
sift(x,0,last); oD

i=l;
Do As i < n sA

DENY(x[i-l] > x[i],heapsort) i++; oD }

25

#include "syntax.h"

#define DIM 500

double I1[DIM],I2[DIM],I3[DIM];

void pkints(n,x,y,m,M)
long n,m,M;
double *x,*y;

{ long i,iml;
double dx;
DENY(n > DIM,pkints)
If m < 0Thenm=0;fI
If M >= n Then M=n-1; fl
DENY(m >= M,pkints)
i=m+l; ll[m]=0.0; I2[m]=0.0; I3[m]=0.0;
Do Un i > M nU

iml=i-l; dx=x[i]-x[iml];
Il[i]=Il[iml]+dx*(y[iml]+y[i])/2.0;
I2[i]=I2[iml]+dx*(Il[iml]+dx*(y[iml]/3.0+y[i]/6.0));
I3[i]=I3[iml]+dx*(I2[iml]+dx*(Il[iml]/2.0+dx*
(y[iml]/8.0+y[i]/24.0)));
i++;oD }

double Ilc(n,x,y,a,ila)
long n,ila;
double *x,*y,a;

{ double dx,r,E;
Ifila < 0 Then ila=0; fl
If ila > n-2 Then ila=n-2; fl
dx=a-x[ila]; r=dx/(x[ila+l]-x[ila]);
E=((2.0-r)*y[ila]+r*y[ila+l])/2.0;
return (Il[ila]+dx*E); }

double I2c(n,x,y,a,ila)
long n,ila;
double *x,*y,a;

{ double dx,r,E;
Ifila < 0 Then ila=0; fl
Ifila > n-2 Then ila=n-2; fl
dx=a-x[ila]; r=dx/(x[ila+l]-x[ila]);
E=((3.0-r)*y[ila]+r*y[ila+l])/6.0;
return (I2[ila]+dx*(Il[ila]+dx*E)); }

26

double I3c(n,x,y,a,ila)
long n,ila;
double *x,*y,a;

{ double dx,r,E;
Ifila < 0 Then ila=0; fl
If ila > n-2 Then ila=n-2; fl
dx=a-x[ila]; r=dx/(x[ila+l]-x[ila]);
E=((4.0-r)*y[ila]+r*y[ila+l])/24.0;
return (I3[iIa]+dx*(I2[ila]+dx*(Il[ila]/2.0+dx*E)));}

void nupks(n,x,y,w,wm,ns,xs,ys)
long n,wm,ns;
double *x,*y,w,*xs,*ys;

{ void pkints(long,double*,double*,long,long);
double Ilc(long,double*,double*,double,long);
double I2c(long,double*,double*,double,long);
double I3c(long,double*,double *,double,long);
double xl,xr,xll,xrr,xrrr,H,El>E2,Ä),fl,f2pK;
long is,il,ir,ül»iiT,irrr,j;
DENY(n > DIM,nupks)
is=0; il=0; ir=l; ill=0; irr=l;
Do Un xs[is]-3.0*w >= x[0] nU is++; oD
xl=xs[is]-w; xr=xs[is]+w; xll=xs[is]-3.0*w; xrr=xs[is]+3.0*w;
DENY(xrr > x[n-l],nupks)
Do Un x[il+l] > xl nU il++; oD
Do Un x[ir] >= xr nU ir++; oD
Do Un x[ill+l] > xll nU ill++; oD
Do Un x[irr] >= xrr nU irr++; oD
irrr=irr; xrrr=xll+6.0 *wm*w;
If xrrr > x[n-l] Then xrrr=x[n-l]; fl
Do Un x[irrr] >= xrrr nU irrr++; oD
pkints(n,x,y,ill,irrr);
H=2.0*(double)w; H=H*H*H;
El=I3c(n,x,y,xrr,irr-l)-I3c(n,x,y,xll,ill);
E2=I3c(n,x,y,xr,ir-l)-I3c(n,x,y,xl,il);
fO=(El-3.0*E2)/H;
El = I2c(n^,y,xrr,irr-1)-I2c(n,x,y,xll,ill);
E2=I2c(n,x,y,xr,ir-1)-I2c(n,x,y,xl,il);
fl=(El-3.0*E2)/H;
El=Ilc(npc,y^:rr,irr-l)-Ilc(n^,y,xll,ill);
E2=Ilc(n,x,y,xr,ir-l)-Ilc(n,x,y,xl,il);
f2=(El-3.0*E2)/H;
j=0;
Do As j < is sA

xx=xs[j]-xs[is];
ys[j]=fO+xx*(fl+xx*f2/2.0);
j++;oD

27

Do xl=xs[is]-w; xr=xs[is]+w; xll=xs[is]-3.0*w; xrr=xs[is]+3.0*w;
DENY(xrr > x[n-l],nupks)
Do Un x[il+l] > xl nU il++; oD
Do Un x[ir] >= xr nU ir++; oD
Do Un x[ill+l] > xll nU ill++; oD
Do Un x[irr] >= xrr nU irr++; oD
If xrr > x[irrr]

Then xrrr=xll+6.0 *wm *w;
If xrrr > x[n-l] Then xrrr=x[n-l]; fl
Do Un x[irrr] >= xrrr nU irrr++; oD
pkints(n,x,y,ill,irrr); fl

El = I3c(n,x,y,xrr,irr-1)-I3c(n,x,y,xll,ill);
E2=I3c(n,x,y,xr,ir-1)-I3c(n,x,y,xl,il);
ft)=(El-3.0*E2)/H;
ys[is]=R);
Un xs[is+l]+3.0*w > x[n-l] nU is.+ +; oD

El=I2c(n,x,y,xrr,irr-l)-I2c(n,x,y,xll,ill);
E2=I2c(n,x,y,xr,ir-l)-I2c(n,x,y,xl,il);
fl=(El-3.0*E2)/H;
El=Ilc(n,x,y,xrr,irr-l)-Ilc(n,x,y,xll,ill);
E2=Ilc(n,x,y,xr,ir-l)-Ilc(n,x,y,xl,il);
f2=(El-3.0*E2)/H;
j=is+l;
Do As j < ns sA

xx=xs[j]-xs[is];
ys[j]=f0+xx*(fl+xx*f2/2.0);
j++;oD}

28

TECHNICAL REPORT INTERNAL DISTRIBUTION LIST

NO. OF
COPIES

CHIEF, DEVELOPMENT ENGINEERING DIVISION
ATTN: AMSTA-AR-CCB-DA 1

-DB 1
-DC 1
-DD 1
-DE 1

CHIEF, ENGINEERING DIVISION
ATTN: AMSTA-AR-CCB-E 1

-EA 1
-EB 1
-EC

CHIEF, TECHNOLOGY DIVISION
ATTN: AMSTA-AR-CCB-T 2

-TA 1
-TB 1
-TC 1

TECHNICAL LIBRARY
ATTN: AMSTA-AR-CCB-O 5

TECHNICAL PUBLICATIONS & EDITING SECTION
ATTN: AMSTA-AR-CCB-O 3

OPERATIONS DIRECTORATE
ATTN: SMCWV-ODP-P 1

DIRECTOR, PROCUREMENT & CONTRACTING DIRECTORATE
ATTN: SMCWV-PP 1

DIRECTOR, PRODUCT ASSURANCE & TEST DIRECTORATE
ATTN: SMCWV-QA 1

NOTE: PLEASE NOTIFY DIRECTOR, BENET LABORATORIES, ATTN: AMSTA-AR-CCB-O OF ADDRESS CHANGES.

TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST

ASST SEC OF THE ARMY
RESEARCH AND DEVELOPMENT
ATTN: DEPT FOR SCI AND TECH
THE PENTAGON
WASHINGTON, D.C. 20310-0103

ADMINISTRATOR
DEFENSE TECHNICAL INFO CENTER 2
ATTN: DTIC-OCP (ACQUISITION GROUP)
BLDG. 5, CAMERON STATION
ALEXANDRIA, VA 22304-6145

COMMANDER
U.S. ARMY ARDEC
ATTN: SMCAR-AEE 1

SMCAR-AES, BLDG. 321 1
SMCAR-AET-O, BLDG. 35 IN 1
SMCAR-FSA 1
SMCAR-FSM-E 1
SMCAR-FSS-D, BLDG. 94 1
SMCAR-IMI-I, (STINFO) BLDG. 59 2

PICATINNY ARSENAL, NJ 07806-5000

DIRECTOR
U.S. ARMY RESEARCH LABORATORY
ATTN: AMSRL-DD-T, BLDG. 305 1
ABERDEEN PROVING GROUND, MD

21005-5066

DIRECTOR
U.S. ARMY RESEARCH LABORATORY
ATTN: AMSRL-WT-PD (DR. B. BURNS) 1
ABERDEEN PROVING GROUND, MD

21005-5066

DIRECTOR
U.S. MATERIEL SYSTEMS ANALYSIS ACTV
ATTN: AMXSY-MP 1
ABERDEEN PROVING GROUND, MD

21005-5071

NO. OF NO. OF
COPIES

COMMANDER
ROCK ISLAND ARSENAL

COPIES

1 ATTN: SMCRI-ENM
ROCK ISLAND, IL 61299-5000

1

MIAC/CINDAS
PURDUE UNIVERSITY
P.O. BOX 2634 1
WEST LAFAYETTE, IN 47906

COMMANDER
U.S. ARMY TANK-AUTMV R&D COMMAND
ATTN: AMSTA-DDL (TECH LIBRARY) 1
WARREN, MI 48397-5000

COMMANDER
U.S. MILITARY ACADEMY
ATTN: DEPARTMENT OF MECHANICS 1
WEST POINT, NY 10966-1792

U.S. ARMY MISSILE COMMAND
REDSTONE SCIENTIFIC INFO CENTER 2
ATTN: DOCUMENTS SECTION, BLDG. 4484
REDSTONE ARSENAL, AL 35898-5241

COMMANDER
U.S. ARMY FOREIGN SCI & TECH CENTER
ATTN: DRXST-SD 1
220 7TH STREET, N.E.
CHARLOTTESVILLE, VA 22901

COMMANDER
U.S. ARMY LABCOM
MATERIALS TECHNOLOGY LABORATORY
ATTN: SLCMT-IML (TECH LIBRARY) 2
WATERTOWN, MA 02172-0001

COMMANDER
U.S. ARMY LABCOM, ISA
ATTN: SLCIS-IM-TL 1
2800 POWER MDX ROAD
ADELPHI, MD 20783-1145

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH, DEVELOPMENT, AND ENGINEERING CENTER,
BENET LABORATORIES, CCAC, U.S. ARMY TANK-AUTOMOTIVE AND ARMAMENTS COMMAND,
AMSTA-AR-CCB-O, WATERVLIET, NY 12189-4050 OF ADDRESS CHANGES.

TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST (CONTD)

NO. OF NO. OF
COPIES COPIES

COMMANDER WRIGHT LABORATORY
U.S. ARMY RESEARCH OFFICE ARMAMENT DIRECTORATE
ATTN: CHIEF, IPO 1 ATTN: WL/MNM 1
P.O. BOX 12211 EGLIN AFB, FL 32542-6810
RESEARCH TRIANGLE PARK, NC 27709-2211

WRIGHT LABORATORY
DIRECTOR ARMAMENT DIRECTORATE
U.S. NAVAL RESEARCH LABORATORY ATTN: WL/MNMF 1
ATTN: MATERIALS SCI & TECH DIV 1 EGLIN AFB, FL 32542-6810

CODE 26-27 (DOC LIBRARY) 1
WASHINGTON, D.C. 20375

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH, DEVELOPMENT, AND ENGINEERING CENTER,
BENET LABORATORIES, CCAC, U.S. ARMY TANK-AUTOMOTIVE AND ARMAMENTS COMMAND,
AMSTA-AR-CCB-O, WATERVLIET, NY 12189-4050 OF ADDRESS CHANGES.

^««*«f«t>*»««

1 »IS O
«— <

R Vi
© a

^t^**"

m
iti p

LU
Ü
o z
IX
LU
LU
Z

•s
LU
Q

il
£s8
i- LU

Lu£g

SI'S

2
2

2
<t
S cc o
< in

8?
tu °°
IS

E
K <
LU
X
I-
u.
O

UI
S

< a.
ui
a

■peisneipra nun pesn sq |||M W PO J° u°«ra

z
H-"
UJ
 I
>
cc
LU

^ CO CO

P 0 -i
m

<
o

g|gi£ 5

cc <
<

_ I—
LL. C3

<
o
z
X o
LU

O < h-

