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INTRODUCTION 

The problem we are concerned with in this report is developing a reliable and fast 
algorithm for continuous smoothing of piecewise linear (or piecewise constant) data defined over 
uniform or nonuniform meshes. The theory behind what we will do is covered in Reference 1. 
Here, we are concerned with actual computation. Often, large amounts of empirical data are 
obtained over uniform meshes and the smoothing is carried out over these same meshes. This 
case is the simplest one to consider, because we need not do any interpolation; but even in this 
simplest of cases, we must guard against algorithmic inefficiency when dealing with large amounts 
of data consisting of perhaps tens of thousands of points. The linear time property of an 
algorithm is therefore quite important in such cases and enables us to compute in seconds what 
might take hours otherwise. The situation becomes somewhat more complicated when the data 
is nonuniformly spaced and/or when we wish to evaluate the smoothed function over some other 
mesh. We use continuous positive kernel smoothing here, because of its shape (monotonicity) 
preserving properties and the ease with which we may interpolate functional and derivative 
values. 

SMOOTHING BY REPEATED AVERAGING 

In this section, we derive the smoothing formulas which will subsequently be applied. 
These formulas are discussed in Reference 1, but we include their derivation here for the sake of 
convenience. Consider the following smoothing operator S: 

S operating on function /at point x is simply the average value of/over an interval of length 2h 
with x as the center of the interval. The parameter h is called the window parameter. This 
integral operator can also be written in kernel form as: 

m=[yt)K(t-x)dt 

M) = Yh if "l<Ä 

0   if\t\zh 

Applying S a second time gives us 



Changing the order of integration in this double integral gives us 

(2A)   X-2A x~h 

+-L-rur%)dtdu 

i r* [X f[u)(u+2h-x)du 
Jx-2h (2Ä) 

1      fx*2hJ +_J_f*™fiu)(x+2h-u)du 
(2h)2j* 

Writing this integral in kernel form, we have 

S2M=["°MK(u-x)du 
J —to 

'£**£   if-2h<u<0 

*(«)= 

(2Ä)2 

&2&   if0zu<2h 
(2Ä)2 

0   if \u\z2h 

Note that the discontinuous kernel corresponding to S and the continuous kernel corresponding 
to S2 are both nonnegative or essentially positive everywhere. Although we will not prove it here, 
successive applications of S result in a sequence of increasingly smoother and wider B-spline 
kernels of unit area. The width of the kernel corresponding to Skis2kh. We now leave the 
subject of kernel form and proceed with the forms we actually use for computation. 

Define the following set of integrals recursively: 

Ij+1(x)=rijW 

where a is an arbitrary value in the domain of definition of/. Of course, the derivative of any 
member of this sequence is simply the preceding member of the sequence. This will make taking 
derivatives a trivial operation. 



As before, applying S to / once, we have 

=^-(/1(X+A)-/1(A:-A)) 
2/1 

Applying 5 a second time and noting that S is a linear operator, we have 

s^4w+*)-ffiH)) 
2ft 

1 ifTw*-!'^ (2h)2 

1 

(2Ä) 

Applying 5 a third time, we have 

2(I2(x+2h)-2I2(x)+I2(x-2h)) 

S*f(x)=-i—(S/2(JC+2A) -2SI2(x) +SI2(x-2h)) 
(2h)2 

l  / r*+* 

(2A)3 

1 

\J£i$+2kydt-2l*i$&fäi$-2hyd\ 

(I3(x+3h)-I3(x+h)-2(I3(x+h)-I3(x-h))+I3(x-h)-I3(x-3h)) 
(2A) 

1 
3(/3(x+3A)-3/3(x+A)+3/3(x-Ä)-/3(x-3/i)) 

(2A): 

We can then derive the formula for the fourth smooth or, noting the appearance of the binomial 
coefficients with alternating signs, we can simply write down the result of applying 5 a fourth 
time: 

54/(JC)=^-(/4(X+4A)-4/4(X+2A)+6/4(X)-4/4(X-2A)+/4(X-4A)) 
(2A)4 



Also note that if we seek the derivative of this fourfold smoothed function, we simply reduce the 
indices of the Fs by unity and get 

—S4fix)= —(L(x+4h) -4L(x+2h) +6Hx) -4L(x-2h) +Ux-4h)) 
dx (2Ä)4 

These ideas are elaborated upon in Reference 1. 

COMPUTING THE INTEGRALS 

We start with a continuous piecewise linear interpolation of the data. 

For Ix, we have 

h(x)= [XAt)dt=[x'ftt)ch+fxtf)dt 
J*o J*o Jxt 

-W+Qt-xfr,*±Q'-*f^ 

=/1(*j)+-Ax,(y.+yj+1) 



For I2, we have 

For I3, we have 

i2(x)=fxi1m=[x'ilw
+fxi1w 

Jx0 J*0 J*i 

I^x^I^x^I^Ax^y^xf^Ay^xf 

=/2(x<)+/i(a:j)Aa:i+Axl
2f|y|.+|yi+1j 

I3(x)= [xI2W=[X'I2(t)dt+[XI2(t)dt 
Jx0 Jx0 Jxi 

=I3(x)+I2(xl)Axi+-Il(xl)Ax?+Ax? 1   +J_ 

This is as far in the sequence of Fs as we will go in this report. The previous set of formulas 
gives us two things. The first thing is the recursion relationships we must use to compute the 
nodal values of the first three integrals. The second thing is the formulas for interpolating the 
integrals at arbitrary points. The nodal integral values are essentially computed only once and 
the amount of work involved is obviously proportional to the amount of data present. The 
interpolations may obviously be done in constant time, once the intervals of the various 
arguments have been located. Since, in the evaluation of the smoothed function, we march 
through the data only once as we locate the intervals of points in the desired mesh, this 
component of the algorithm will also be done in linear time. The amount of work done to 
evaluate the smooth approximation will therefore be kjn+k2m arithmetic operations, where n is 
the amount of data and m is the number of points at which we wish to evaluate the smoothed 
function. It is also important to note that the amount of work involved in this computational 
scheme is completely independent of the size of the window parameter h. 



This scheme does have a weakness, however. If the nodal values of the integrals are 
computed for an entire very large set of data, roundoff error in the integral computation and in the 
necessary interpolations (involving subtractions) will completely destroy the computation, especially 
for relatively small window sizes. The results will be so contaminated with error they will 
meaningless. For a small to intermediate amount of data, however, the results will be very good. 
It is therefore wise to periodically compute the nodal values of the integrals in smaller clumps as we 
march through the data. Remember that the lower limit of integration for the integrals is 
analytically arbitrary. A good rule of thumb is to compute the integrals over some multiple of the 
total window width. This modification naturally forces us to do a bit of extra computation. Each 
clump of integral values must overlap the previous clump by at least the total window width. 

Therefore, with a window multiplier of ten, we will do only about ten percent more 
computational work. Sufficient accuracy can still be attained with window multipliers as large as one 
hundred. In any case, the modified algorithm can handle any amount of data in linear time with 
sufficient accuracy. An involved error analysis could perhaps be done for this algorithm, but it is 
more practical to evaluate its accuracy by applying the algorithm to an artificial set of data obtained 
from a straight line, since the smoothing operators leave such data undisturbed analytically but not 
numerically. All we need do is to compare the original data with that produced by the algorithm 
with its inherent roundoff error. Since the smoothing formulas require data on either side of x and 
the domain of the data is finite, the smoothing operator cannot be used near the ends of the data. 
For this case, we merely use the simple derivative estimating properties of the smoothing formulas 
to expand the smoothed function in a Taylor series at a point sufficiently far from the ends and 
compute the smoothed function near the ends via these Taylor series. Finally, if the data has been 
taken over a uniform mesh (equally spaced values of the independent variable) and the smoothed 
function is desired over this same mesh, only the nodal values of the integrals are necessary and no 
interpolations need be done. 

NONPARAMETRIC DENSITY ESTIMATION 

The simplest and most common example of nonparametric density estimation is the 
frequency histogram. Our goal in this section is to improve upon the discontinuous histogram by 
replacing it with a density estimate that is smooth to the extent of being twice continuously 
differentiable. Attainment of this goal will give us a density that is not only more aesthetically 
pleasing to the eye, but one with which we can make more accurate probability statements and 
calculate more accurate percentiles. This is of course done via positive kernel smoothing. Assuming 
that a sequence of values of a random variable x has been sorted in ascending order, we can define 
the discrete cumulative distribution function as 



w- 
f     0   ifx<x0 

—   ifxt<x<xi+l 
n 

1     1/*>*„„! 

Note that this function is defined on the entire real line, so that we need not use Taylor series to 
smooth near the ends of a finite domain. Also, it does not matter how the distribution function 
is defined at the data points or whether any of the x values are repeated values. Our first 
estimate of the density will be the derivative of the fourth smooth of Fn. Hence, we need three 
successive integrals of Fn. Since the values of* are always nonuniformly spaced, interpolations 
are mandatory. 

For Iv we have 

\(x)=fxFß)dt=r'Fnm+[
x^dt 

1       JXQ J*O JXI  n 

= I1(x,)+^(x-xi) 
n 

/i(W=W+ 
(i+l)Ax, 

For /„ we have '2' 

/+!■ 
2(*)=[Xi1(t)dt= (%m+\shty+—<!-*)* 

J*o J*o Jxi n 

in 

^♦i^W+WAV In 



For I3, we have 

I3(x)=fxIß)dt=(%W+[XI2(x)+W(t-x)+^(t-x)2dt 
J*o Jxo Jxi *n 

= I3(x)+I2(x)(x-x,)+h(xfrx-xf+^(x-x)3 

2 on 

1 2  (i+l)Axt 

Density/is given by 

fix) = — [/3(JC+4A) -4/3(*+2A) +673(x) -4/3(x-2A) +I3(x-4h)l 
(2Ä)4 

Note that although we have derived the interpolation formulas for It and I2 in passing, only the 
interpolation formula for I3 is necessary since we have no need of Taylor series expansions. Also, 
the formula for I3(x) can be used to extrapolate beyond the last point. 

PRESERVING THE VARIANCE 

The sample mean computed from the data will coincide with the mean computed from 
the density estimate. The sample variance computed from the data will not coincide with the 
variance computed from the density estimate. The density variance will always exceed the 
sample variance by an ever larger amount as the window parameter is increased. The object of 
this section is to derive a simple transformation which will keep the density variance the same as 
the sample variance for all values of the window parameter h. We now return to the use of 
kernel form momentarily. The continuous cumulative distribution function estimate is given by 

F(.x)=SAFn(x)= fynW(t-x)dt 

Integrating by parts, we have 

F(x)= F (~) rw-x)dt-1" ('K(u-x)dudFn(t) 
J —00 J —00 J   —00 

= 1--T [XiK(u-x)du 
»«=0''-'" 

Differentiating the cumulative distribution function gives us the kernel form of the density: 

, »-1 . n-l 

F'(x)=fix)= l£ /*'*'(«-*)<&=-£ K(xrx) 



This is the common form for a nonparametric density estimator based on kernel K. However, it is 
exactly the wrong form to use for computation. If it were used to evaluate a density at each of n 
points, an amount of work proportional to the square of the amount of data would be necessary. 
That is, instead of a linear time algorithm, we would have a quadratic time algorithm. We can, 
however, use this formula to determine the relationship between the variance computed from the 
density, the sample variance, and the window parameter h. Consider the expected value (via/) of 
an arbitrary function/?. 

£&>(*)]= rp{xW)dx=rP{x)±-YK{x-x)dx 

»-1 
=-£ rp(x+x)K(x)dx 

Withp(x)=x, we have 

E[x]= v.f =-J2 r(x+x,)K(x)dx=^xr^ 
ni=nJ-a ni=0 

n-l 

E 
i=0 

since xK(x) is an odd function. 

We therefore see that the sample mean and the density computed mean are the same. 
Computing the variance (again via f), we have 

,B-1 

V[x]= oj=E[(x-\i/]=^£[jx+x.-\i/K(x)dx 

£ [jx2+^^r^+(xr^f)2)K(.x)dx 

,n-l 

=/V*(x)<fc+iX>ru/ 

=S4x2(0)+d2 

But 5V is given by 

54x2=-i-(/4^+4A)-4/4(x+2A)+6/4(x)-4/4(x-2Ä)+/4(x-4Ä)) 
(2Ä)4 

I4(x)= 
23-32-5 



Hence 

?4„2/m=     * SV(0)=-=-(2/4(4A)-874<2A)) 
(2A)4 

1 (213-h6    29*6 

(2Ä)4 U3-32-5   23-32-5, 

ÄV-2>)=^ 
32-5 

We therefore finally have the relation between the density-computed variance, the sample 
variance, and the window parameter: 

2   .2 4ft: 

Now let g be the density of a new random variable (*'). 

g(x)= af(\xf+a(x-\i}) 

This transformation represents a simultaneous compression (about the mean) of/ in the x 
direction and a stretching of/ in the y direction. Our objective now is to compute the 
transformation parameter a in terms of the sample variance and the window parameter such that 
the variance of the new random variable computed via g will be the sample variance. 

Considering again the expected value (via g) of an arbitrary function/? of the new random 
variable, we have 

E\p(x)] = f°j*x)g(x)dx 

=f~p(x)aj{\Lf+a(x-\L})dx 

=fy(x+\L)afi\Lf+ax)dx 

=iy{i+»fY»f+x')dx 

Letting/?(x)=l, we see that g is indeed a legitimate density. Lettingp(x)=x, we see that the 
means for/andg are the same. Computing the variance of*', we have 

10 



j*x)-(*-|»/ 

er 

Therefore, 

o = 
N d2 N     3d2 

Now, since 

or equivalently 

g(x)= af(\xf+a(x-\ip) 

8 ■h, 
a h =«/(*) 

we compute / over some x mesh and transform the density data according to 

,    ,      jc-ji   . /-a/, *-—^+u 
a 

in order to obtain the g density data that preserves both the sample mean and the sample variance. 

OPTIMAL WINDOW PARAMETER 

In this section we develop some machinery for selecting the optimal window parameter h for 
a nonparametric density estimator. As before, we call the density estimator g and we will call the 
actual density y. The mean square error (MSE) for a given value of x is given by 

MSE(x) = E[(g(x)-Y(x))2] = E[(g(x)-E[g(x)]+E\g(x)]-Y(.x))2] 
=E[(g(x)-E\g(x)])2 

+2(g(x)-Elg(x)])(E\g(x)]-Y(x)) 
+(£fe(*)]-K*))2] 

=E[(g(x)-E[g(x)])2ME[g(xy]-Y(x))2 

=V[g(x)]+B(x)2 

V\g(x)] is the variance of g and B(x) is the bias. The integral of the mean square error (IMSE) is 
given by 

11 



IMSE =f+~V[g(x)]+B(x)2dx 

Our goal is to approximately minimize IMSE with respect to the window parameter h. We seek a 
formula that is asymptotically valid for large n and small h. Recalling that 

g(x)= aftii+a(x-fi)) 

and 

,»-i 
fix)=^K(xrx) 

«i=0 

where K is the kernel resulting from four applications of the smoothing operator S, we have 

u-l 

*Cx)=-£*(xr/i-«(x-/i)) 

But 

and 

x.-/i-tf(x-/0= xrx+x-n-a(x-fi)= xrx+(l-a)(x-ß) 

a- 
N 

i+i*!.i+2»!  (Ä-o) 
3CJ2        3a2 

We therefore have 

where 

xi-n-a(x-ß)-xi-x-h2ß(x) 

ß(x)- 2(*-j*) 

3a2 

Hence 

n-l 

g(x)=^^rx-A^) 
• i=0 

12 



Since the x's are identically distributed independent random variables, the expected value and 
variance of g (via y) are given by 

J^*)]=££lTOcr*-A2/*)] 
"i=0 

= aE[K(xrx-h2ßy] 

V[g(x)>—£nK{xrx-h2ß)-\ 
n 1=0 

= ^-\\K{xrx-h2ßn 
n 

We now begin to obtain simple asymptotic expressions for the expectation and variance of these 
kernel expressions. Now K is a kernel which becomes a Dirac delta as h approaches zero, so we 
take note of the fact that 

hK(hu)=Ku),   K(u)=-h- 
h \h 

where k is a standard kernel independent of h. In our case, the support of* is (-4,4). First, we 
have 

E[K(xrx-h2ß)]=f+~K(u-x-h2ß)Y(u)du 

= (*°°K(u)r(u+x+h2ß)du =(+~K(hu)Y(x+hu+h2ß)hdu 
J -WO J -M 

=| *~k(u) y(x+hu +h 2ß)du 

Expanding part of the integrand in a Taylor series, we have 

Y(x+hu+h2ß)= Y(x)+YXx)(fru+h2ß) 

+-//W(Ä«+Ä2iß)2+-///W(A"+Ä2i8)3+0(Ä4) 
2 6 

= Y(xW(x)(hu+h2ß) 

+iY
//mh2u2+2h3uß+h*ß2) 

2 

+±Y///(x)(h3u*+3h*u2ß+3hsuß2+h6ß3)+CKh*) 
6 

Since k is an even function, the terms involving odd powers of w make no contribution to the 
integral. The contributing terms of the series are therefore 

13 



Hence, 

But 

Therefore 

Yc(x+hu+h2ß)= y(*)+Ä2M*)+-A2«2y//(x)+0(A4) 

m(xrx-h2ß)]=f^mUx)+h2ß/(x)+hhyxx)+o(h4)\iu 

= Yixy h2ßYXx)+-h2Y//(x)(*"u2kiu)du+CKh*) 
2 •* ~m 

E[K(xrx-h2ß)] = y(x)+^3(x-A«)r/W+|*V/(x)+ CXA4) 
3<r -5 

= y(*)+^((x-/«)r/«+ *V'(*))+0(A«) 
3a2 

The bias is therefore given approximately by 

B(x)~ a Y(x)+—, (x-/x)r/(x)+ JAx)) 

2A2a, 

-y(*) 

3cr 

- ^(y(*)+(*-A0/(*)+ "Vt*)) 
3<r 

2A2 

In order to obtain the variance of g, we must first compute 

14 



E\K{xrx-h2ßf]=f"K(u-x-h2ß)2r(u)du =f+y(u)2y(u+x+h2ß)du 

= [+~K(hu)2Y(x+hu+h2ß)hdu = ±[*~k(ujlY(x+ku+h2ß)du 

h   J -- h 

Now, since 

F[JK(.xr*-A20)]= E[K(xrx-h2ß)2]- E[K(xrx-h2 ß)]2 

we have the desired variance of g 

JlSHto-yttf+l V\g(xy\=-^(^--Y(x)2
+Oih) 

nh       n 

The integral of the mean square error is therefore 

IMSE ~s.-ir'r{xfdx^rbixfdx 
nh    nJ -» O^J-» 9a* 

Letting 

J=(+'b(xfdx 

and setting the derivative with respect to h of the integral of the mean square error equal to 
zero, we have 

c +16/t3J_0 

nh2    9a4 

Solving for h, we have 

/     A1 

9ca* 
opt \l6nJ) 

We therefore see that as the sample size becomes large, the optimal window parameter becomes 
small, albeit very slowly. We now simplify the integral /. First, we assume that 

lim xy(x)=0= lim xy'Cc) 

15 



Now, 

b(x)2 = (y(*)+<*-0)r1»+^yW 
=Y(x?+(x-f*)2Y/(x)2+<<*//(x? 

+2(x-^)K*)r/W 
+2O

2
Y(X)Y

//
(X) 

Integrating by parts, we have 

Jl=[*y-^)Y(x)Ax)dx=[^(x-ii)Y(x)dYix) 

= -f^Y(x){Y(x)Hx-/i)Ax))dx = -j^fixfdx-J, 

and 

and 

from which we get 

j2=fy(x)Y
//(x)dx =I2YWY\X> -fyxxfdx 

J3=l^
x-^Y\x)Y/Xx)dx-^\x-li)Y

/{x)dY/{x) 

= -f*y(xiY/(xMx-fi)Y
//(x))dx = -f*y(xfdx-J3 

j=[y(x)Hx-»)V(x)2+oYXx)2<h+2(-±fy(x)2dx 

**> (-[y(x?dx)+2o* (-1/_;yvfdx j 

=fyx-fi)
2-3azy(x)2

+o4Y//(x)2dx 

+2 

We can get a clearer idea of the dependence of / on a by invoking the standardized version of y. 
Let T be the standardized version with zero mean and unity variance. First, we have 

M5?)- rix) 

16 



M?)- Ax) 

r"<?) 

Hence, 

=1 f +"(x2-3)r'(x)2+r"(x)2dx 

where the integral factor is completely independent of a. We therefore have 

"     \16nJa) 

We will now find an expression for optimal h for a particular T. A candidate for this particular 
case must naturally be twice differentiable. The function k naturally comes to mind as a good 
unimodal candidate, having zero mean. It does not, however, have unity variance and must 
therefore be properly scaled. Consider 

IXx)=ak(ax) 

f *°°x2I\x)dx=l = f *"x2akiax)dx=\ f *~x2k(x)dx=- 
J-to J -co /»2J -oo ' 3a2 

Hence, 

a2-A- 
3 

Also, 

r'(x)=a2k'(qx),   r"(x)= a*k"(ax) 

Computing the Ja integral, we have 
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Ja =f +\x2-3)aAk'{ax)2+a6k''(ax)2dx 

kXxf+aWixfdx 

9fi 
j*\9x2-16)k'(tf+\6k%x?dx 

Therefore, optimal h for this particular standardized density is given by 

' Zlyßj'Hxfdx 
h

opl = ° 
s 

32/i [m&x2-36)k,(tf+16k"(tfdx 
\     Jo ) 

From Reference 1, we have 

Hx> 

(±*t«t*t   if o.x.2 
96 

(A-xf if 2<LX<.4 
96 

0   if x>4 

*(-JC)   if x<0 

from which the first and second derivatives of k can be obtained. Then, we can compute the 
approximation 

opt (?) 
This asymptotic approximation can be used as a nominal estimate of optimal h for a unimodal 
density. For multimodal data, or in order to pick out more of the variations present in the data, 
one can naturally use smaller values of h, but we at least have a value to start with. 

Since this report is mainly computation oriented, we include some relevant C routines in 
the Appendix. The first part of the Appendix is devoted to the C preprocessor commands that 
describe the syntax used in the routines. The second, third, and fourth parts of the Appendix are 
devoted to uniform mesh smoothing, nonparametric density estimation, and nonuniform mesh 
smoothing, respectively. 
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#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 

#define 

#define 

#define 

If if( 
Then) { 
Elsif } else if( 
Else } else { 
fi}; 
iF( 
theN) ? 
elsE : 
Fi; 
And&& 
Or 11 
Do for(;;) { 
oD} 
Unif( 
nU ) break; 
As if(!( 
sA)) break; 
NL printf("\n"); 
REAL(r) printf(#r "=%le ",r); 
INT(i) printf(#i "=%ld ",i); 
REALS(n.r) { long _i_=0; \ 

printf("\n"); \ 
Do As _i_ < n sA \ 

printf(#r "[%ld]=%le ",_i_,r[_U); _L+ +; oD \ 
printf("\nH); }; 

INTS(n,i) { long J_=0; \ 
printf("\n"); \ 
Do As J_ < n sA \ 

printf(#i "[%ld]=%ld "J_,i[JJ); J_++; oD \ 
printf(V); }; 

AVER(bool,fhame) if(!(bool)) \ 
{ printf("\n" #bool" is false in " #fname); \ 

exit(O); }; 
DENY(bool,fname) if(bool) \ 

{ printf('\n" #bool" in " #fname); \ 
exit(O); }; 

#include "syntax.h" 

#define DIM 500 

double I1[DIM],I2[DIM],I3[DIM]; 

void pkints(m,M,y) 
long m,M; 
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double *y; 
{long i,iml; 
i=m+l; II [m]=0.0; I2[m]=0.0; I3[m]=0.0; 
Do Un i > M nU 

iml=i-l; 
Il[i]=Il[iml]+(y[iml]+y[i])/2.0; 
I2[i]=I2[iml]+(Il[iml]+(y[iml]/3.0+y[i]/6.0)); 
I3[i]=I3[iml]+(I2[iml]+(Il[iml]/2.0+(y[iml]/8.0+y[i]/24.0))); 
i++; oD } 

void pksmooth(n,y,w,wm,s) 
long n,w,wm; 
double *y,*s; 

{ void pkints(long,long,double*); 
double H,f0,fl,f2,x; 
longnint,m,M,i,imw,ipw,ira3w,ip3w,j,ilast; 
DENY(n > DIM,pksmooth) 
DENY(6*w+l > n,pksmooth) 
DENY(wm < 2,pksmooth) 
nint=(6*w+l)*wm; 
m=0; M=m+nint; If M >= n Then M=n-1; fl 
pkints(m,M,y); 
H=2.0*(double)w; H=H*H*H; 
i=3*w; 
imw=i-w; ipw=i+w; 
im3w=i-3*w; ip3w=i+3*w; 
fD=(I3[ip3w]-I3[im3w]-3.0*(I3[ipw]-I3[imw]))/H; 
fl=(I2[ip3w]-I2[im3w]-3.0*(I2[ipw]-I2[imw]))/H; 
f2=(Il[ip3w]-Il[im3w]-3.0*(Il[ipw]-Il[imw]))/H; 
j=0; 
Do Un j > i nU 

x=(double)0-i); 
s[j]=fD+x*(fl+x*ß/2.0); 
j++;oD 

i=j; ilast=n-l-3*w; 
Do imw=i-w; ipw=i+w; 

im3w=i-3*w; ip3w=i+3*w; 
If ip3w > M 

Then m=im3w; M=m+nint; 
IfM >= n Then M=n-1; fl 
pkints(m,M,y); fl 

fi)=(I3[ip3w]-I3[im3w]-3.0*(I3[ipw]-I3[imw]))/H; 
s[i]=fi); 
i++; Un i > Hast nU oD 

fl=(I2[ip3w]-I2[im3w]-3.0*(I2[ipw]-I2[imw]))/H; 
G=(Il[ip3w]-Il[im3w]-3.0*(Il[ipw]-Il[imw]))/H; 
j=i; i=ilast; 
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Do As j < n sA 
x=(double)(j-i); 
s[j]=f0+x*(fl+x*f2/2.0); 
j++;oD} 

#include "syntax.h" 
#include "math.h" 

#define DIM 500 

double I1[DIM],I2[DIM],I3[DIM]; 

void cdfints(n,x,m,M) 
long n,m,M; 
double *x; 

{ long i,iml; 
double dx,rn,ri; 
DENY(n > DIM,cdfints) 
If m < 0Thenm=0; fl 
IfM >= n Then M=n-1; fl 
DENY(m >= M,cdfints) 
i=m+l; ll[m]=0.0; I2[m]=0.0; I3[m]=0.0; rn=(double)n; 
Do Un i > M nU 

iml=i-l; dx=x[i]-x[iml]; 
ri=(double)i; 
Il[i]=Il[iml]+dx*ri/rn; 
I2[i]=I2[iml]+dx*(Il[iml]+dx*ri/(2.0*rn)); 
I3[i]=I3[iml]+dx*(I2[iml]+dx*(Il[iml]/2.0+dx*ri/(6.0*rn))); 
i++;oD } 

double I3c(n,x,a,ila) 
long n,ila; 
double *x,a; 

{ double dx,rn,rila; 
If a < x[0] Then return (0.0); fl 
DENY(a < x[ila],I3c) 
dx=a-x[ila]; rn=(double)n; rila=(double)ila; 
return (I3[ila]+dx*(I2[ila]+dx*(Il[ila]/2.0+dx*(rila+1.0)/(6.0*rn))));} 

void npden(n,x,h,wm,nd,xd,yd) 
long n,wm,nd; 
double *x,h,*xd,*yd; 

{ void cdfints(long,double*,long,long); 
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double I3c(long, double * ,double,long); 
void musig(long,double*,double*,double*); 
double xm,xl,xr,xll,xrr,xrrr,H,El ,E2,mu,sig,alpha; 
longid,im,il,ir,ill,irr,irrr,nml,i; 
DENY(n > DIM,npden) 
id=0; im=0; il=0; ir=0; ill=0; irr=0; nml=n-l; 
H=2.0*(double)h; H=H*H*H*H; 
id=0; irrr=0; 
Do As id < nd sA 

xm=xd[id]; 
xl=xd[id]-2.0*h; xr=xd[id]+2.0*h; 
xll=xd[id]-4.0*h;xrr=xd[id]+4.0*h; 
Do Un im == nml nU Un x[im+l] > xm nU im++; oD 
Do Un il == nml nU Un x[il+l] > xl nU il++; oD 
Do Un ir == nml nU Un x[ir+l] > xr nU ir++; oD 
Do Un ill == nml nU Un x[ill+l] > xll nU ill++; oD 
Do Un irr == nml nU Un x[irr+l] > xrr nU irr++; oD 
If xrr > x[irrr] And irrr < nml 

Then xrrr=xll+8.0*wm*h; 
Do Un irrr == nml nU Un x[irrr] > xrrr nU irrr++; oD 
cdfints(n,x,ill,irrr); fl 

El =I3c(n,x,xrr,irr)+6.0*I3c(n,x,xm,im)+I3c(n,x,xll,ill); 
E2=I3c(n,x,xr,ir)+I3c(n,x,xl,il); 
yd[id]=(El-4.0*E2)/H; 
If yd[id] < 0.0 Then yd[id]=0.0; fl 
id++; oD 

musig(n,x,&mu,&sig); 
alpha=h/sig; alpha=sqrt(1.0+4.0*alpha*alpha/3.0); 
i=0; 
Do As i < nd sA 

xd[i]=mu+(xd[i]-mu)/alpha; 
yd[i]=alpha*yd[i]; 
i++; oD } 

void musig(n,x,mu,sig) 
long n; 
double *x,*mu,*sig; 

{ long i; 
double s,d; 
i=0; s=0.0; Do As i < n sA s+=x[i]; i++; oD 
*mu=s/(double)n; 
i=0; s=0.0; Do As i < n sA d=x[i]-(*mu); s+=d*d; i++; oD 
*sig=sqrt(s/(double)n); } 

void sift(heap,root,last) 
double *heap; 
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long root,last; 
{ long l,r; 

double t; 
Do l=2*root+l; 

If 1 > last Then return; fl 
r=l+l; 
If r > last 

Then If heap[root] < heap[l] 
Then t=heap[root]; heap[root]=heap[l]; heap[l]=t; fl 

return; fl 
If heap[root] > = heap[l] And heap[root] > = heap[r] 

Then return; fl 
If heapfl] > heap[r] 

Then t=heap[l]; heapfl]=heap[root]; heap[root]=t; root=l; 
Else t=heap[r]; heap[r]=heap[root]; heap[root]=t; root=r; fl    oD } 

void makeheap(array,last) 
double *array; 
long last; 

{ long il,i2,i; 
void sift(double*,long,long); 
il=0; 
Do il=2*il+l; Un il > last nU oD 
il=(il-l)/2; 
Doi2=il-l;il=i2/2; 

If last/2 < i2 Then i2=last/2; fl 
i=il; 
Do Un i > i2 nU 

sift(array,i,last); i++; oD 
Unil ==0nUoD } 

void heapsort(n,x) 
long n; 
double *x; 

{ long last,i; 
double t; 
void makeheap(double*,long),sift(double*,long,long); 
last=n-l; makeheap(x,last); 
Do Un last == OnU 

t=x[0]; x[0]=x[last]; x[last]=t; last--; 
sift(x,0,last); oD 

i=l; 
Do As i < n sA 

DENY(x[i-l] > x[i],heapsort) i++; oD } 
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#include "syntax.h" 

#define DIM 500 

double I1[DIM],I2[DIM],I3[DIM]; 

void pkints(n,x,y,m,M) 
long n,m,M; 
double *x,*y; 

{ long i,iml; 
double dx; 
DENY(n > DIM,pkints) 
If m < 0Thenm=0;fI 
If M >= n Then M=n-1; fl 
DENY(m >= M,pkints) 
i=m+l; ll[m]=0.0; I2[m]=0.0; I3[m]=0.0; 
Do Un i > M nU 

iml=i-l; dx=x[i]-x[iml]; 
Il[i]=Il[iml]+dx*(y[iml]+y[i])/2.0; 
I2[i]=I2[iml]+dx*(Il[iml]+dx*(y[iml]/3.0+y[i]/6.0)); 
I3[i]=I3[iml]+dx*(I2[iml]+dx*(Il[iml]/2.0+dx* 
(y[iml]/8.0+y[i]/24.0))); 
i++;oD } 

double Ilc(n,x,y,a,ila) 
long n,ila; 
double *x,*y,a; 

{ double dx,r,E; 
Ifila < 0 Then ila=0; fl 
If ila > n-2 Then ila=n-2; fl 
dx=a-x[ila]; r=dx/(x[ila+l]-x[ila]); 
E=((2.0-r)*y[ila]+r*y[ila+l])/2.0; 
return (Il[ila]+dx*E); } 

double I2c(n,x,y,a,ila) 
long n,ila; 
double *x,*y,a; 

{ double dx,r,E; 
Ifila < 0 Then ila=0; fl 
Ifila > n-2 Then ila=n-2; fl 
dx=a-x[ila]; r=dx/(x[ila+l]-x[ila]); 
E=((3.0-r)*y[ila]+r*y[ila+l])/6.0; 
return (I2[ila]+dx*(Il[ila]+dx*E)); } 
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double I3c(n,x,y,a,ila) 
long n,ila; 
double *x,*y,a; 

{ double dx,r,E; 
Ifila < 0 Then ila=0; fl 
If ila > n-2 Then ila=n-2; fl 
dx=a-x[ila]; r=dx/(x[ila+l]-x[ila]); 
E=((4.0-r)*y[ila]+r*y[ila+l])/24.0; 
return (I3[iIa]+dx*(I2[ila]+dx*(Il[ila]/2.0+dx*E)));} 

void nupks(n,x,y,w,wm,ns,xs,ys) 
long n,wm,ns; 
double *x,*y,w,*xs,*ys; 

{ void pkints(long,double*,double*,long,long); 
double Ilc(long,double*,double*,double,long); 
double I2c(long,double*,double*,double,long); 
double I3c(long,double*,double *,double,long); 
double xl,xr,xll,xrr,xrrr,H,El>E2,Ä),fl,f2pK; 
long is,il,ir,ül»iiT,irrr,j; 
DENY(n > DIM,nupks) 
is=0; il=0; ir=l; ill=0; irr=l; 
Do Un xs[is]-3.0*w >= x[0] nU is++; oD 
xl=xs[is]-w; xr=xs[is]+w; xll=xs[is]-3.0*w; xrr=xs[is]+3.0*w; 
DENY(xrr > x[n-l],nupks) 
Do Un x[il+l] > xl nU il++; oD 
Do Un x[ir] >= xr nU ir++; oD 
Do Un x[ill+l] > xll nU ill++; oD 
Do Un x[irr] >= xrr nU irr++; oD 
irrr=irr; xrrr=xll+6.0 *wm*w; 
If xrrr > x[n-l] Then xrrr=x[n-l]; fl 
Do Un x[irrr] >= xrrr nU irrr++; oD 
pkints(n,x,y,ill,irrr); 
H=2.0*(double)w; H=H*H*H; 
El=I3c(n,x,y,xrr,irr-l)-I3c(n,x,y,xll,ill); 
E2=I3c(n,x,y,xr,ir-l)-I3c(n,x,y,xl,il); 
fO=(El-3.0*E2)/H; 
El = I2c(n^,y,xrr,irr-1 )-I2c(n,x,y,xll,ill); 
E2=I2c(n,x,y,xr,ir-1 )-I2c(n,x,y,xl,il); 
fl=(El-3.0*E2)/H; 
El=Ilc(npc,y^:rr,irr-l)-Ilc(n^,y,xll,ill); 
E2=Ilc(n,x,y,xr,ir-l)-Ilc(n,x,y,xl,il); 
f2=(El-3.0*E2)/H; 
j=0; 
Do As j < is sA 

xx=xs[j]-xs[is]; 
ys[j]=fO+xx*(fl+xx*f2/2.0); 
j++;oD 
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Do xl=xs[is]-w; xr=xs[is]+w; xll=xs[is]-3.0*w; xrr=xs[is]+3.0*w; 
DENY(xrr > x[n-l],nupks) 
Do Un x[il+l] > xl nU il++; oD 
Do Un x[ir] >= xr nU ir++; oD 
Do Un x[ill+l] > xll nU ill++; oD 
Do Un x[irr] >= xrr nU irr++; oD 
If xrr > x[irrr] 

Then xrrr=xll+6.0 *wm *w; 
If xrrr > x[n-l] Then xrrr=x[n-l]; fl 
Do Un x[irrr] >= xrrr nU irrr++; oD 
pkints(n,x,y,ill,irrr); fl 

El = I3c(n,x,y,xrr,irr-1 )-I3c(n,x,y,xll,ill); 
E2=I3c(n,x,y,xr,ir-1 )-I3c(n,x,y,xl,il); 
ft)=(El-3.0*E2)/H; 
ys[is]=R); 
Un xs[is+l]+3.0*w > x[n-l] nU is.+ +; oD 

El=I2c(n,x,y,xrr,irr-l)-I2c(n,x,y,xll,ill); 
E2=I2c(n,x,y,xr,ir-l)-I2c(n,x,y,xl,il); 
fl=(El-3.0*E2)/H; 
El=Ilc(n,x,y,xrr,irr-l)-Ilc(n,x,y,xll,ill); 
E2=Ilc(n,x,y,xr,ir-l)-Ilc(n,x,y,xl,il); 
f2=(El-3.0*E2)/H; 
j=is+l; 
Do As j < ns sA 

xx=xs[j]-xs[is]; 
ys[j]=f0+xx*(fl+xx*f2/2.0); 
j++;oD} 
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