
RL-TR-95-117
Final Technical Report
July 1995

CRONUS ENHANCEMENTS

BBN Systems & Technologies

James Berets, Christopher Barber, J. Hunter Barr, John Bowe,
Natasha Chemiack, Jonathan Cole, Michael Dean,
Chantal Eide, Richard Floyd, Robert Goguen,
Steven Jeffreys, Penelope Karr, Richard Mackey,
Paul Neves, Richard Salz , Kenneth Schroder, Susan Pawlowski Sours,
Stephen Vinter, Edward Walker, Bernard Cosell, Robert Coulter, John Day,
Anne-Marie Lambert, Robert Lebow, Joel Levin, Masoud Marvasti, Martha
Steenstrup, Thomas Tignor, and David Waitzman

APPROVED FOR PUBL/C RELEASE; DISTR/BUT/ON UNLIMITED.

Rome Laboratory
Air Force Materiel Command

Griff iss Air Force Base, New York

DTIC QUALITY INSPECTED 1

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

RL-TR-95-117 has been reviewed and is approved for publication.

h.
APPROVED: / i (uffrh*! < ^Ut;t<"i

THOMAS F. LAWRENCE
Project Engineer

FOR THE COMMANDER:

JOHN A. GRANIERO
Chief Scientist
Command, Control & Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,
please notify RL (C3AB) Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

P'-t^regcnristxsam-<fa&moattaaonatiiij\\Mxjim*mt\mtMjU}mmw3tf hgj p«r rwpon«, r&xjngttrttr»for w»mg naruction«, i—ü ■ g amig Uiiu iuumj,
galgiiyarxJimiuii^ilT dm n—'fcj, wöoavfMrrgwxirwfmi)WTg\rmujtniuicf timinman Stnd ccrrrTurt» ragvolng trt» txxabn Mm« or «ny otrw *soea of trts
eotaotion of WornMlui rnuatig»U^«IM»far rtdudno,trt» bLro*\ to Wxrrigton H««jgu»ur» Serve«* Oractonnfor rtorrmion Opsmior» arofiepors 1215 Jeffarson
0«M» HjgtT«»y, SiJte 1204, ArlTgton, VA 22202-4302, id to ttr Offlc» of Managern« t and Buagat, Paparwcrk RaductJon Projact (07r>miBg), Wrttgm DC 20S0a

1. AGENCY USE ONLY (Leave Blank) Z REPORT DATE

July 1995
a REPORT TYPE AND DATES COVERED

Final Dec 88 - Jun 94
4. TITLE AND SUBTITLE

CRONUS ENHANCEMENTS

& AUTHOR(S)
James Berets, Christopher Barber, J. Hunter Barr,
John Bowe, Natasha Cherniack, (see reverse)

5. FUNDING NUMBERS

C - F30602-89-C-0029
PE - 63728F
PR - 2530
TA - 01
WU - 50

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES)
BBN Systems & Technologies
10 Moulton Street
Cambridge MA 02138

a PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSES)
Rome Laboratory (C3AB)
525 Brooks Rd
Griffiss AFB NY 13441-4505

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

RL-TR-95-117

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Thomas F. Lawrence/C3AB/(315). 330-2925

12a. DISTRIBUnON/AVAILABIUTY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

1 a ABSTRACT(Manrrun 200 word»)

Over the course of this project, four major releases (1.4, 1.5, 2.0, and 3.0)
Cronus distributed computing environment were produced. These considerable
expanded and improved the functionality of the system, increased the system's
robustness and usability, improved the system's performance and security, and
improved the software engineering process by which the system was developed,
addition, two releases (5.3 and 5.4) of the Advanced Network Management (ANM)
were developed under this effort. This report is organized into 7 sections.
Section 1 is the introduction. Section 2 gives overviews of Cronus and ANM.
Section 3 gives a chronological description of the progress made during this project
organized by software releases of the systems. Section 4 summarizes the Cronus
software development procedures. Section 5 summarizes technical briefings given
during the project. Section 6 describes a number of applications in which Cronus
was used. Section 7 discusses technology transfer and publication activities.

of the

In
system

14. SUBJECT TERMS

Distributed computing environment, Distributed operating system,
Distributed system,Object oriented system, (see reverse)

15. NUMBER OF PAGES
114

18. PRICE CODE

17. SECURrTY CLASSIFICATION
OF REPORT
UNCLASSIFIED

1 a SECURrTY CLASSIFICATION
OF THIS PAGE
UNCLASSIFIED

19. SECURrTY CLASSIFICATION
OF ABSTRACT
UNCLASSIFIED

20. UMITATION OF ABST",'.; r

UL
NSN 754CKJ1 2804500 Standara Farm ?»

Prescrbaa by ANS :
298-102

(Cont'd)

Jonathan Cole, Michael Dean, Chantal Eide, Richard Floyd, Robert Goguen

n
eVe" J!"rT' Prel°Pe Karr' Rlchard Mackey> Paul Neves, Richard Salz,

Kenneth Schroder, Susan Pawlowski Sours, Stephen Vinter, Edward Walker
Bernard Cosell, Robert Coulter, John Day, Anne-Marie Lambert, Robert Lei
Joel Levin, Masoud Marvasti, Martha Steenstrup, Thomas Tignor, and
David Waitzman 5 '

14. (Cont'd)

Network management, Distributed processing

BBN Report No. 8018 Cronus Enhancements Final Technical Report

Acknowledgments 2
Sponsorship 2
Contributors 2

1. Introduction 3

2. An Overview of Cronus and ANM 5
2.1 An Overview of Cronus 5

2.1.1 Object Model 6
2.1.2 Interprocess Communication 8
2.1.3 Persistent Object Storage 9
2.1.4 Database Systems 9
2.1.5 Naming 9
2.1.6 Protection 9
2.1.7 Resource Management 9
2.1.8 Reliability and Fault Tolerance 10
2.1.9 Programming Support 10
2.1.10 Platforms 12

2.2 An Overview of ANM 14
2.2.1 Network Management Components 15
2.2.2 Router/Merger 16
2.2.3 Proxy Agents 16

3. Project Technical Progress (Chronological) 17
3.1 Cronus Release 1.4 - September 1, 1989 18

3.1.1 New Features 18
3.1.1.1 Futures 18
3.1.1.2 Direct Connections 19

3.1.2 New Environments 20
3.1.2.1 Sun 386i / SunOS 4.0 20
3.1.2.2 Sun 3 / Mach 2.0 20
3.1.2.3 Sun 4 / SunOS 4.0 21

3.1.3 Notable Enhancements 21
3.1.3.1 Kernel 21
3.1.3.2 Commands 22
3.1.3.3 Manager Development Tools 23
3.1.3.4 Libraries 23
3.1.3.5 System Managers 24
3.1.3.6 Installation and Operation 24
3.1.3.7 Documentation and Support 25

3.2 Cronus Release 1.5-May 1,1990 26
3.2.1 New Features 26

3.2.1.1 Query Processing 26
3.2.1.2 Database Support 27
3.2.1.3 Mach 29
3.2.1.4 Mandelbrot Demonstration 30

3.2.2 New Environments 31
3.2.2.1 AT&T 6386 31
3.2.2.2 BBN Butterfly GP1000 31
3.2.2.3 DEC RISC 31
3.2.2.4 Encore Multimax 32

3.2.3 Notable Enhancements 32
3.2.3.1 Manager Development Tools 32
3.2.3.2 Library 33

l -

BB N Report No. 8018 Cronus Enhancements Final Technical Report

3.2.3.3 Kernel 33
3.2.3.4 System Managers 33
3.2.3.5 Commands 34

3.2.4 Installation and Operation 35
3.2.5 Documentation and Support 35

3.3 Cronus Release 2.0-March 31, 1991 ..".....7.. 36
3.3.1 New Features 37

3.3.1.1 Cronus Kernel and IPC System 37
3.3.1.2 Authentication System 39
3.3.1.3 Directory Manager 40
3.3.1.4 Test Manager 41
3.3.1.5 Common Lisp Implementation 41
3.3.1.6 Installer 42

3.3.2 New Environments 42
3.3.2.1 AlliantFX/80 .'.".'.".'.'.'.'.'42

3.3.3 Notable Enhancements 43
3.3.3.1 Manager Development Tools 43
3.3.3.2 Library 44
3.3.3.3 System Managers 44
3.3.3.4 Commands 45

3.3.4 Installation and Operation 46
3.3.5 Documentation and Support 46

3.4 Cronus Release 3.0-December 1, 1992"..47
3.4.1 New Features 4g

3.4.1.1 Cronus Multicluster Enhancements: Kernel and IPC System 48
3.4.1.1.1 Sharing Services via Exports and Imports 48
3.4.1.1.2 Sharing Services via Service Domains 49
3.4.1.1.3 Configuration Manager Changes 49
3.4.1.1.4 Object Location 50
3.4.1.1.5 Invocation Request Delivery Options 52

3.4.1.2 Authentication System 53
3.4.1.3 Directory Manager 54
3.4.1.4 Delegation 54
3.4.1.5 Commands 56

3.4.2 New Environments 57
3.4.2.1 BBNTC2000 57
3.4.2.2 NeXT 57
3.4.2.3 Sun/Lucid Common Lisp on Sun 4/SunOS 57

3.4.3 Notable Enhancements and Bug Fixes 58
3.4.3.1 Manager Development Tools 58
3.4.3.2 Library 59
3.4.3.3 Cronus Kernel and IPC System 60
3.4.3.4 System Managers 60
3.4.3.5 Commands 61

3.4.4 Installation and Operation 62
3.4.5 Documentation and Support 62

3.4.5.1 Documentation 62
3.4.5.2 Support 63

3.5 ANM Release 5.3 - September 30, 1993 64
3.5.1 New Features 64

3.5.1.1 Congestion Indicator 64
3.5.1.2 DerivedMIB (DMIB) i..64
3.5.1.3 Auxiliary Views 64
3.5.1.4 Cronus Configuration 64

-11

BBN Report No. 8018 Cronus Enhancements Final Technical Report

3.5.1.5 Policy Gateway 65
3.5.1.6 IP Traffic Tagging 65
3.5.1.7 FDDI Support 65

3.5.2 Enhancements 65
3.5.3 Changed Features 65

3.6 ANM Release 5.4.1 -January 7,1994 66
3.6.1 New Features 66

3.6.1.1 LPR Support 66
3.6.1.2 Host Agent and Quality of Service 66
3.6.1.3 Policy Gateway 66
3.6.1.4 SNMP Configuration Checking Tool 66

3.6.2 Enhancements 67
3.6.3 Changed Features 68

4 Software Development Procedures 69
4.1 Evaluating and Reevaluating Several Approachs 69
4.2 Internal Software Design Notes 70
4.3 Walkthroughs 71
4.4 Baselevels 71
4.5 Testing 71

4.6 Bug Tracking 72

5. Project Technical Briefings 73
5.1 Major Project Reviews 73
5.2 Rome Laboratory Technology Exchange Meetings 74
5.3 Other Technical Briefings 75

6. Uses of Cronus 79
6.1 APS (1994 - present) 79
6.2 JWID 94: Network Management Integration (1994 - present) 81
6.3 Common Prototyping Environment (1993-present) 82
6.4 ARGUS (1993 - present) 82
6.5 DART(1991-present) 84
6.6 AAITT (1989 - present) • 85
6.7 BBN Office Automation Applications (1988 - present) 85

6.7.1 Phone (1988 - present) 85
6.7.2 Calendar (1988 - present) 86

6.8 JDL (1988 - present) 86
6.9 Reporting and Tracking System (1987 - present) 87
6.10 CASES (1988 - present) 87
6.11 THETA (1985 - present) 88
6.12 TVE (1987 - 1989) 89
6.13 INDEXER (1986 - 1989) 91

7. Technology Transfer / Advancement of State-of-the-Art 92
7.1 Installations 92
7.2 Training 92

7.3 Dissemination of Technical Information 95
7.4 Citations in the Literature 97

-in-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

Acknowledgments

Sponsorship

The Cronus and ANM development described here was sponsored by the U.S. Air Force
Rome Laboratory, Griffiss AFB, New York, under contract number F30602-89-C-0029.

Contributors

The work described here was performed by, and portions of this report were written by the
following individuals.

Cronus

James Berets
Christopher Barber
J. Hunter Ban-
John Bowe
Natasha Cherniack
Jonathan Cole
Michael Dean
Chantal Eide
Richard Floyd
Robert Goguen
Steven Jeffreys
Penelope Kan-
Richard Mackey
Paul Neves
Richard Salz
Kenneth Schroder
Susan Pawlowski Sours
Stephen Vinter
Edward Walker

ANM

Bernard Cosell
Robert Coulter
John Day
Anne-Marie Lambert
Robert Lebow
Joel Levin
Masoud Marvasti
Martha Steenstrup
Thomas Tignor
David Waitzman

-1/2-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

1. Introduction

This document is the Final Technical Report for the Cronus Enhancements Project The
work for this project was performed over the approximately five year period from
December 1988 through June 1994. This project was funded by the U.S. Air Force Rome
Laboratory1 (RL) under contract F30602-89-C-0029.

Over the course of this project, four major releases (1.4, 1.5, 2.0, 3.0) of the Cronus
distributed computing environment were produced. These considerably expanded and
improved the functionality of the system, increased the system's robustness and usability,
improved the system's performance and security, and improved the software engineering
process by which the system was developed. In addition, two releases (5.3 and 5.4) of the
Advanced Network Management System (ANM) system were developed under this effort.
These are summarized as follows.

• BBN completed and delivered release 1.4 of Cronus to the Rome Laboratory on August
31,1989. The delivery included all software and manuals needed to use, program, and
operate the software. A three day project review meeting was held at BBN on
September 13-15 at which 12 presentations and 4 demonstrations were provided for RL
staff.

• BBN completed and delivered release 1.5 of Cronus on May 5,1990. This delivery
culminated the second project phase. A three day project review meeting was held at
BBN on May 23-25 to review the contents of this release; 8 presentations and 3
demonstrations were given to RL staff.

• BBN shipped release 2.0 of Cronus to the Rome Laboratory on May 16,1991.
Release 2.0 was developed over a period of approximately 11 months and completed
the third project phase. A two day review was held at BBN on April 30 and May 1 to
review the contents of the release. 15 presentations and 2 demonstrations were given to
RL staff. Representatives were also present from three other government agencies, in
keeping with our goal of trying to facilitate the use of Cronus by the Government.

• BBN delivered release 3.0 of Cronus to the Rome Laboratory on February 16,1993.
Release 3.0 was developed over a period of approximately 12 months, from January to
December 1992. The delivery of 3.0 completed the fourth project phase. A one day
review was held at Rome Laboratory on February 9 to review the contents of release
3.0. In keeping with our goal of trying to facilitate the use of Cronus by the
Government, an additional review was held (under another effort) at the NCCOSC
RDT&E Division (NRaD) in San Diego, CA in early April.

• BBN delivered ANM 5.4, with features necessary for managing global systems based
on Cronus, to the Rome Laboratory on December 30,1993. Release 5.4 was
developed over a period of approximately 18 months, from August 1992 to December
1993. The delivery of ANM 5.4 completed the fifth project phase. ANM development
under this effort included an interim release, ANM Release 5.3, to demonstrate early
versions of some of the features being developed in ANM 5.4. A one day review was
held at BBN on August 11,1993 to review the contents of ANM 5.4. The Contract

1 At contract award the Rome Laboratory was known as the Rome Air Development Center (RADC). For
uniformity, we refer to the organization by its current name in this document

-3-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

Program Manager was in attendance, as were additional interested parties from RL and
the U.S. Army Communications and Electronics Command (CECOM).

Information about Cronus and ANM above and beyond that provided here may be found in
their complete documentation sets respectively. The current Cronus documentation set
consists of the following:

Introduction to Cronus - BBN Report Number 6986, January 1993

Cronus Release Notice - Release 3.0, December 1, 1992

Cronus User's Reference Manual - Release 3.0, December 1,1992

Cronus Programmer's Reference Manual - Release 3.0, December 1, 1992

Cronus Programmer's Reference Manual (Lisp) - Release 3.0, December 1,1992

Cronus Operator's Reference Manual - Release 3.0, December 1,1992

Cronus Tutorial Documents - Release 3.0, December 1,1992

Cronus Installation Manual - Release 3.0, December 1,1992

Cronus Database Installation Manual - Release 3.0, December 1,1992

ANM documentation includes:

ANM Users Guide

ANM Installation Guide

ANM Software Release Notice

This report is organized as 7 sections. Section 2 gives overviews of Cronus and ANM.
Section 3 gives a chronological description of the progress made during this project,
organized by software releases of the systems. Section 4 summarizes the Cronus software
development procedures. Section 5 summarizes technical briefings given during the
project; Section 6 describes a number of applications in which Cronus was used. Section 7
discusses technology transfer and publication activities.

-4-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

2. An Overview of Cronus and ANM

2.1 An Overview of Cronus

Cronus is a distributed computing environment., a complete, easy to use toolkit and
environment for building and running distributed applications in a heterogeneous
environment. Cronus accomplishes the following:

Facilitates the integration of new and existing application components running on a
wide variety of machines and operating systems, and written in a variety of
programming languages.

Provides a powerful, object-oriented framework for decomposing complex distributed
applications executing in both wide-area and local-area network environments-

Decreases distributed application development time.

Incorporates a mature, high-level inter-process and inter-machine communications
toolkit (including naming and location services).

Includes automatic support for creating and maintaining multiple copies of data on
many machines.

Supports applications executing across one or more administrative domains.

Simplifies the implementation of applications that use a network of workstations to
obtain supercomputer performance, through coarse-grain parallel processing.

Cronus includes:

• A complete object-oriented distributing computing toolkit for developers:

• specification-driven code generation for clients and servers in a variety of
programming languages, including C and Common Lisp,

• more sophisticated and easier to use than Sun RFC and OSF DCE,

• with powerful testing and debugging tools,

• incorporating complete IPC facilities with support for both synchronous and
asynchronous invocation;

Complete support for integrating applications across heterogeneous machines and
operating systems;

Flexible replication facilities to support survivable applications;

Facilities for authentication and access control;

Integration of off-the-shelf relational databases (Informix, Oracle, and Sybase); and a

Complete hierarchical naming system.

5-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

Cronus has been designed as a base for the development of large-scale distributed
heterogeneous applications. Although internally the system is object-oriented, this aspect
of Cronus is largely hidden from application developers. Most of the details of
implementing distributed applications are provided by a combination of code automatically
generated from an interface specification (including an RPC interface for clients), library
routines, and system components. Cronus has been used in a variety of applications, for
example the interconnection of Common Lisp-based expert systems with off-the-shelf
database systems and FORTRAN simulations. A typical Cronus application is shown in
Figure 1.

User Interface

4MB
Expert System Database Simulation

Figure 1: Global, Highly Heterogeneous Application

A complete overview of Cronus may be found in the Introduction to Cronus. The
following sections summarize the key elements of the Cronus architecture.

2.1.1 Object Model

Cronus provides a set of services and communication layers on top of native operating
systems. Cronus is based on the object model: each system resource is an object and is
accessed through operations defined by the object's type. The object model provides an
extensible architecture, in that application developers can cast application-specific resources
in terms of new object types. Type definitions are organized in a type hierarchy, allowing
new types to be defined as subtypes of existing types.

Cronus supports heterogeneity by serving as a bypassable layer of abstraction between
application programs and native operating systems. Through this approach, application
programs gain access to a coherent, uniform (object-oriented) system interface, regardless
of computer system base; however, they also retain conventional access to native operating
system resources and services.

-6

BBN Report No. 8018 Cronus Enhancements Final Technical Report

The following are the basic abstractions of the Cronus object moel:

• Object: An object is a resource, such as a file, a directory, a user, a mailbox, an
inventory, or a sensor. Objects are generally passive entities that are stored on disk.
Objects have also been defined to implement user sessions and in-memory data
structures, as well as to encapsulate resources implemented outside Cronus, such as
native operating systems, processes, hosts, and relational databases.

• Type: A type defines how objects are implemented and used. Applications are
implemented by defining new types. A type consists of a set of operation interfaces,
code for the operations, and data structures that define the representation of objects. All
defined types are organized into a hierarchy, allowing operations implemented by a
parent type to be inherited (reused) by a child type. Type inheritance promotes
uniformity among types.

• Operation Invocation: Objects are accessed by clients through operation
invocations. This is the only means of accessing an object, ensuring information
hiding and data abstraction.

• Process: Processes are the active entities in Cronus. An object manager, composed
of one or more processes, is the entity responsible for manipulating all of the objects of
one or more types on a host using the operations defined by the types. The Cronus
process abstraction corresponds to the process abstraction found in conventional
operating systems, and is implemented using the native operating system process.

Machine A

Cronusp
Kernel i

Native
Operating

System

J-

I

/: Machine B
Object

Manager
(server)

^ Cronus
| Kernel

*

*

y///////////////j

r ?

% Native
| Operating

System

WAS//////////////////////////////////.

Figure 2: Cronus Architecture

-7

BBN Report No. 8018 Cronus Enhancements Final Technical Report

Cronus consists of the following components:

• Services: A service comprises one or more manager processes (i.e., servers) that
defines and manages the objects of one or more types. Services implement both system
functions and application functions. Current system services include an authentication
service, a symbolic naming (directory) service, a network configuration service, a
resource monitoring service, and a type definition service. An application is typically
composed of several services responsible for several different types of resources.

• Clients: Clients are processes that use services. While a service may act as a client to
any other service, many clients are not services. Rather, they are processes that interact
direcüy with users, such as user commands, utilities, and application-specific graphical
user interfaces.

• Cronus Kernel: The primary purpose of the Cronus kernel is to transmit operation
invocations from clients to services in a host-independent network transparent fashion.
The kernel also implements the basic abstractions of process, host, and operation
invocation. The kernel is implemented as a native operating system process that
executes in user space, and is run on each host of a Cronus cluster.

2.1.2 Interprocess Communication

Cronus interprocess communication (IPQ is designed to support operation invocations
from clients to services, where the invocations can be synchronous or asynchronous, and
can have one or many targets. It is implemented as a series of layers.

Cronus relies on standard communication protocols implemented by the native operating
systems at and below the transport layers. Currently, Cronus relies on the Transmission
Control Protocol (TCP) and User Datagram Protocol (UDP), which in turn rely on the
Internet Protocol (IP).

The lowest layer defined by Cronus is the IPC layer. In a typical scenario, a client process
invokes an operation on an object The invoke is implemented as a message addressed to
the object. Objects are referenced by name, not by location. The message is routed by the
Cronus kernel to the process serving as the object's manager. The object manager retrieves
the message from its message queue to perform the requested operation. The operation is
actually performed by a lightweight process (a thread or task, in Cronus terminology)
created by the object manager to execute the code for the invoked operation. Operations are
executed concurrently through the use of a nonpreemptible tasking package. Upon
completion of the operation, the manager returns a reply to the client. The reply is delivered
by the kernel back to the client, who receives the reply. Primitives are also provided to
receive messages in parts, and transmission of large messages is automatically optimized
through direct client/manager connections.

Above the IPC layer is a layer designated as the message encodement layer. This layer is
responsible for encoding and decoding messages using canonical (i.e., system-
independent) data representations, allowing transmission of messages between machines
with different data representations. Cronus defines canonical data representations for many
common data types and structures, and allows developers to define new canonical types
from existing ones.

At the highest layer is the RPC layer. This layer presents a remote procedure call (RPC)
programming interface to the developer, allowing synchronous and asynchronous
operation invocation through high-level function calls. The latter is provided by a

-8-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

mechanism known as Futures. Source code is generated automatically to provide RPC
interfaces for invoking operations.

2.1.3 Persistent Object Storage

Cronus managers store the state of objects on disk in object databases. This insures that
Cronus objects can survive machine crashes, since they are disk-based rather than memory-
based. A set of access routines is provided to simplify the storage of variable-length,
structured objects.

2.1.4 Database Systems

Cronus provides access to off-the-shelf Informix, Oracle, and Sybase relational database
systems. This database service allows clients from any host to access the database
systems, either with predefined or ad hoc queries. Cronus also provides a forms interface
for interactive use.

2.1.5 Naming

Cronus has a two-level naming system: high-level symbolic user names and low-level
object identifiers. At the user level is a hierarchical symbolic name space, similar to a
UNIX directory name space. It differs from the UNIX directory, however, in that
symbolic names may be used to reference any type of object (including files, databases,
users, and types). An object may be given one or more symbolic names. Symbolic names
are maintained by the Directory Service, a distributed service maintaining replicated
directories. Users and client programs use the Directory Service to map the symbolic
names of objects into their internal system names called Unique Identifiers (UIDs). When
an object is created, it is assigned a UID that contains the object's type and the host on
which it was created. UIDs are implemented in a flat name space, and an object's UID is
permanently assigned and guaranteed to be unique over all objects over all time. Generally,
symbolic names are used to reference objects in application user interfaces, and UIDs are
used internally by system software.

2.1.6 Protection

Cronus achieves protection by using access control lists. Each object has an access control
list associated with it The access control list for an object specifies the users or groups of
users that may access the object and the access rights they possess. Access rights can be
defined separately for each type, allowing access controls to be tailored to the application.
A distributed Authentication Service authenticates users by subjecting them to a password-
based authentication procedure upon login. When a user performs some action that causes
an operation invocation, the run-time system compares the authenticated identity of the user
with the access control list on the target object to determine if the requested operation can
proceed. If not, a permission error is generated.

2.1.7 Resource Management

In Cronus, object-level resource management is applied according to the principal of policy
/ mechanism separation. Cronus provides a set of mechanisms enabling the cooperative
enforcement of type-specific policies. The mechanisms includes the following:

• many object managers (implementing a service) can execute on different hosts for each
type of object;

-9

BBN Report No. 8018 Cronus Enhancements Final Technical Report

• object managers can query the status of their peers, object managers may redirect
requests to peers, and

• clients can indicate preferred hosts where operation invocations are routed

These mechanisms have been used in several services to implement specific management
policies, such as a dynamic load balancing policy.

2.1.8 Reliability and Fault Tolerance

Cronus supports the migration and replication of objects. Cronus facilities for replication
provide the developer with a number of tools that can be used to customize the actual
replication mechanisms used for a specific object type.

These facilities are as follows:

• Version Vectors: Every replicated object has a version vector containing a list of host
location and version number pairs. This list can be used to determine the locations of
all the copies of the object and to detect whether a particular copy is out of date with
respect to another. In addition, it can be used to detect whether two copies have been
updated in an inconsistent manner.

• Voting Options: Options are provided to specify the number of votes necessary for
read and update operations. Since these are independent variables, many different
options are available to guarantee availability or consistency, depending on the needs of
the particular application.

• Automatic Replication: Automatic replication of objects can be specified as part of the
type definition. The number of different hosts that the object should be created on is
also specified within the type definition. The actual locations are determined at creation
time, allowing for load balancing across multiple managers.

• Incremental or Whole Object Updates: Sometimes it is either convenient or necessary
to update remote copies of an object by performing an operation locally and then
sending a copy of the new object to the remote sites. However, for large objects such
as files, it not efficient to update copies by replacement. In Cronus, developers have
the option of specifying whether updating copies of objects should be performed by
replacement or by operation.

Cronus also dynamically locates objects when invoking operations, allowing clients always
to find an object that has migrated, and always to access a copy of a replicated object
provided one is available.

2.1.9 Programming Support

The fundamental assumption underlying Cronus programming support is that large-scale
applications will be developed in accordance with the object model, just as the Cronus
system itself is. Under this assumption, the key to application development is definition of
new object types to represent application-specific resources and development of new
services to embody the newly defined object types. Cronus programming support focuses
on automating the process of developing new services.

Cronus relieves the application developer's coding burden through the use of a
nonprocedural program development specification language. A developer provides a

-10-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

nonprocedural specifications of a new object type, and code is supplied or automatically
generated for skeletal object managers, including client remote procedure call stubs,
multitasking for concurrent operation processing, data conversion between canonical and
system-specific data representations, message parsing and validation, access control
checks, operation dispatching, and stable storage management. The application developer
completes the object manager by providing routines that implement the operations defined
in the new object type.

Cronus programming support also includes:

• Extensive subroutine libraries, including interprocess communication routines, data
conversion routines, and RPC interfaces to Cronus objects

• A set of user commands (e.g., list objects in a directory and create an object)

• A set of operator commands (e.g., start a service)

• Operations which are inherited by all objects; they ensure common implementations
(e.g., monitoring and control, debugging, and replication and migration support) or
common interraces (access control) among different services

• A sophisticated debugging tool to be used in conjunction with a local debugger to assist
in manager debugging

• Source code management software

• A bug tracking facility

A monitoring service.

11-

BBN Report No .8018 Cronus Enhancements Final Technical Report

2.1.10 Platforms

Cronus has been ported to a wide variety of platforms,
platforms for which Cronus has been compiled, either

The following table summarizes the
experimentally or for distribution.

Vendor Product CPU Type Operating
System

First Cronus
Version

Alliant FX/80

Motorola
68020 with
proprietary

64-bit CMOS
coprocessor

Concentrix 2.0

Apollo DN10000 Apollo
PRISM

Domain/OS 2.0

AT&T 3B2 proprietary UNIX
System V

1.4

AT&T 6386 Intel 80386
UNIX

System V/386 1.4

BBN Butterfly
GP1000

Motorola
68020

Mach 1.5

BBN C/70 proprietary C/70 UNIX 1.0

BBN TC2000 Motorola
88000

nX 2.0

Concurrent Series 8000 MIPS RTU 2.0

Convex C-2 and C-3 proprietary ConvexOS 2.0

Cray Y/MP-EL proprietary UNICOS 2.0

DEC various MIPS Ultrix 1.5

DEC various VAX 4.2 BSD 1.0

DEC various VAX Ultrix 1.0

DEC various VAX VMS 1.1

Encore Multimax National
32x32

Mach 1.5

Encore Multimax National
32x32

- 12-

UMAX 4.2 1.5

BBN Report No. 8018 Cronus Enhancements Final Technical Report

Vendor Product CPU Type Operating
System

First Cronus
Version

Encore Multimax National
32x32

UMAX
System V

2.0

HP 9000 Series 300 Motorola
680x0

HP-UX 2.0

HP 9000 Series 700 HP PA-RISC HP-UX 3.0

IBM RS/6000 POWER AIX 3.0

Many PC Intel 80286 Xenix 1.3

Many PC Intel 80386 MS-DOS 1.5

Masscomp 5400/5500 Motorola
680x0

RTU 1.2

NeXT NeXTstation Motorola
68040

Mach /
NeXTStep

2.0

Sequent Symmetry Intel 80486 DYNIX 3.0

Silicon
Graphics

4D60 MIPS R2000 IRIX 1.5

Stardent Titan MIPS UNIX
System V

1.5

Sun 2/xxx and 3/xxx Motorola
680x0

SunOS 1.0

Sun Sun 3 Motorola
680x0

Mach 1.4

Sun 386i Intel 80386 SunOS 1.4

Sun various Sun SPARC SunOS 1.4

Sun various Sun SPARC Solaris 3.0

Symbolics 36xx proprietary Genera 1.3

Symbolics Ivory Ivory Genera 1.5

TI MicroExplorer proprietary unnamed 2.0

-13-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

Cronus is highly portable, as the table evidences. Two implementations exist. The
primary implementation is written in C; another implementation is written in Common Lisp.
Machine-dependent code is confined to a few modules, and porting is relatively
inexpensive. In addition to supporting full application development in C and Common
Lisp, application components have commonly incorporated FORTRAN code; a C++
support environment is under development, and experimental Ada support was built for
Cronus 1.5.

2.2 An Overview of ANM

The Advanced Network Management system (ANM) is an integrated network management
system that includes facilities for both real-time operations and statistical and performance
analysis. ANM is a distributed, hierarchical system. This affords ANM a great deal of
scalability and reliability. Overloaded components can be enhanced with additional copies
running in parallel, sharing the load. Any component can be replaced by one running on a
different platform by simply redirecting the streams interconnecting the modules. ANM
components interconnect using a protocol running on top of TCP/IP, and so its modules
can be relocated anywhere within the network and are not tied to a specific local area
network or subnetwork.

ANM is currently used by a variety of military network applications, including the U.S. Air
Force Rome Laboratory test networks, networks at U.S. Army CECOM, and ARPA's
Defense Simulation Internet ANM is also in use for NEARnet, the New England regional
backbone of the Internet. ANM runs on the Sun Microsystems SPARC platform.

ANM supports object-oriented network management using an object model based on the
International Standards Organization (ISO) object model. ANM provides interfaces to a
wide variety of devices, including DoD devices which use the Simple Network
Management Protocol (SNMP). These interfaces map the devices' particular monitoring
capabilities into a suitably structured Management Information Base (MTB) using the ISO
Structure of Management Information. A management application connected to ANM is
written entirely in terms of ANM's unified MTB, and so is independent of the specifics of
the access protocols and monitoring vocabulary of any specific device. Further, since the
ANM MIB includes network management information for all of the devices under
management, ANM applications can easily be written to combine information from, and
manage, a broad spectrum of network devices or distributed user applications.

As shown in Figure 3, the ANM architecture consists of three components: management
applications, proxy agent processes, and "kernel"2 processes that support the distribution
of management information requests and responses. ANM employs a distributed,
scalable, extensible architecture in order to support the needs of its client base. All
connections between architectural components are via network-based inter-process
communications (TCP/IP connections), permitting a very flexible configuration of network
management components. The top-level management protocol is an alternate encoding of
CMIP (Common Management Information Protocol) known as Fraunhofer CMIP, or
fCMIP. ANM uses fCMTP to communicate between the major architectural components of
the system. Distribution is supported by the use of fCMIP to communicate between all
components of the architecture (except for the graphical user interface). The components
are described in the following sections.

2These kernel processes are distinct from, and should not be confused with, the Cronus kernel or an
operating system kernel.

14

BBN Report No. 8018 Cronus Enhancements Final Technical Report

Users Users - Processes

Display Manager

I

Jsers - Proc«

Auxiliary views:
° IDPR gateway
0 LPR display
0 FOTLAN display
0 Cronus monitoring

Policy Module
Collection

fCMIP

Router / Merger
Historian data

collector

/ \ "p x^fr

Informix
backend

Copy Store
backend

SNMP
Proxy Agent

Cronus
Proxy Agent

WPS Proxy
Agent

F^F^J
Derived MIB
Machinery

'Database

'Database

SNMP
devices

Cronus
applications

WPS
devices

Figure 3: ANM Architecture

2.2.1 Network Management Components

Graphical user interface: The real-time ANM graphical user interface (GUI) consists of two
separate modules. The Display Manager (DM) supports a color map of the network,
including hierarchical views, subset views, and user configurable command menus. Its
companion software module, the Policy Module Collection (PMC), actually generates the
network management requests and translates the responses into directives to the display
module. These two modules communicate using a private ASCII protocol.

Other graphical applications: Live tabular displays can run independent of the DM and
PMC, generating their own network management requests. They can be started
independently or launched by the Display Manager in response to a user command. These
have been implemented using Tcl/Tk for rapid prototyping of user interfaces.

Data collection and reporting: The Historian application provides an interface for long term
data collection and reporting. The Historian module supports data collections of medium to
long term duration (hours or days) and the generation of summary reports from this
network data. Back-end programs can store the data into the Informix relational database
system or into flat text files.

-15-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

2.2.2 Router/Merger

This software module acts as a hub for network management routing decisions. All
network management traffic in ANM (between management applications and proxy agents)
is routed via a Router/Merger or via a hierarchy of RMs. This allows transparent
installation of major system components.

2.2.3 Proxy Agents

These software modules translate fCMIP messages into the native protocols supported by
the devices being managed. By making these translations available in software modules
independent of the devices themselves, ANM is able to quickly provide a unified device
interface (based on a unified MIB) to devices that do not support the OSI network
management suite. Proxy agents (PAs) implemented are the SNMP PA for all devices
managed by the Simple Network Management Protocol (SNMP), the Cronus PA for hosts
running Cronus, and the WPS PA for the Defense Simulation Internet Wide-band Packet
Switches.

-16

BBN Report No. 8018 Cronus Enhancements Final Technical Report

3. Project Technical Progress (Chronological)

Over the period of this effort, we developed 4 major Cronus releases as follows:

• Cronus Release 1.4 dated September 1,1989

• Cronus Release 1.5 dated May 1,1990

• Cronus Release 2.0 dated March 31,1991

• Cronus Release 3.0 dated December 1,1992

and 2 ANM releases:

• ANM Release 5.3 dated September 30,1993

• ANM Release 5.4.1 dated January 7,1994.

In this section, we chronologically summarize these software releases.

17-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

3.1 Cronus Release 1.4 - September 1, 1989

In Release 1.4, we incorporated a number of new mechanisms that facilitated the
construction of higher performance Cronus applications, increased the number of
supported platforms, and continued our commitment to make Cronus more robust. Some
notable new facilities were a mechanism facilitating parallel operation invocation by client
programs, and support for direct client-manager connections that bypass the Cronus kernel
after setup. We also added the Sun 386i and Sun 4 to our suite of supported host types,
and added support for the Mach operating system on the Sun 3 family. A large collection
of enhancements and bug-fixes were also incorporated into Cronus Release 1.4, the more
significant of which are described below.

3.1.1 New Features

Cronus Release 1.4 incorporated two new mechanisms supporting higher-performance
applications. These mechanisms, Futures and Direct Connections, are described here.

3.1.1.1 Futures

The conventional interface used by Cronus client programs to access remote resources in
previous releases was a collection of PSL (Process Support Library) routines, one per
operation, that allowed the programs to invoke operations. These remote procedure call
(RPC)-style routines, automatically generated by the Cronus manager development tools,
combined within each PSL procedure call the code that invokes an operation with the code
to get the reply and decode the returned data. The interface was synchronous: it forced the
client program to block while waiting for the reply, and made client-initiated concurrency
difficult to implement

In Release 1.4, we introduced Futures, a mechanism that can be used to introduce
concurrency and coarse-grained parallelism into Cronus programs. Futures allow
programs to perform useful work (including additional operation invocations) while
waiting for replies from operations in progress. Futures also improve performance in those
cases where multiple operations are being performed and communication latency is large
compared with operation processing time (for example, when communication is over a
satellite communication channel). Using Futures, clients call a non-blocking RPC-style
interface to invoke the operation and receive a handle (Future) for that invocation. The
Future can later be claimed by the client, which is provided with any results that may have
been returned. (The client may block or continue with other work if the results are not yet
available.) By providing independent calls for performing the invocation and the claim,
programs can invoke a number of operations concurrently, maintain a list of the Futures
outstanding, and later claim the results as desired.

The generation of Future interface routines was integrated into the Cronus manager
development tools. In much the same way that previous releases provided a generated PSL
client interface from the type specification, the Release 1.4 manager development tools
provided code generation for Futures. Each defined operation had a corresponding
generated FInvoke routine with the operation's input parameters (for example,
FInvokeobjRemove) and an FClaim routine with its output parameters (for example,
FClaimobjRemove). In addition to the separate FInvoke and FClaim routines, an Invoke
routine for each operation (for example, InvokeobjRemove) combines the functionality of
both the FInvoke and FClaim, in a manner similar to the PSL routines.

18

BBN Report No. 8018 Cronus Enhancements Final Technical Report

One of the limitations of previous Cronus releases was the lack of flexibility available
through the PSL routine interface: invoking an inherited generic operation through the PSL
interface was not possible, nor was invoking a non-generic operation directed to a
designated host This necessitated modification of the generated routines to accomplish the
desired effect In Release 1.4, the generated FInvoke and Invoke interfaces both contain a
new INVOKECONTROL structure passed as an input parameter to allow the client to
control the behavior of an invocation as desired (for example, to direct an operation to a
designated host, or to specify that the client does not wish to receive a reply).

Since the primary function of Futures was to allow coarse-grained parallel processing, in
Release 1.4 we provided a comprehensive set of utility functions for managing and
manipulating Futures. We implemented an abstraction known as FutureSets, which
allowed programs to manipulate collections of Futures and automatically claim Future-
based invocations in the order that their results become available, removing the burden of
managing sets of Futures from the application developer.

In order to control the number of outstanding requests at any one time, we also introduced
in Release 1.4 the concept of a Funnel. Funnels are used to control the flow of pending
invocations by limiting the transmission of invocations from clients using Futures. The
size of the neck of the Funnel is specified by the client when the Funnel is created (it can be
altered later) and determines the number of outstanding requests permissible. When a
Funnel is full, additional operation invocations that are requested using Futures are queued
in the client, and will be automatically sent when a reply to an outstanding operation is
received.

Futures and Funnels introduced a powerful mechanism in Cronus for asynchronous
operation invocation by clients, which allow Cronus applications to better exploit coarse
parallel processing in a distributed heterogeneous environment.

3.1.1.2 Direct Connections

Experiments and analysis of Cronus releases prior to 1.4 revealed that communication
performance could be significantly improved in situations in which a particular client-
manager pair was exchanging large quantities of data or communicating regularly. In these
situations, the local interprocess communication overhead, context switching, and
processing time associated with passing all messages through the Cronus kernels on the
client's and manager's hosts limited performance when host failures and object migration
occur infrequently.

Pre-1.4 releases of Cronus supported large message transfers using a separate
communication channel between a client and a manager for large data transfers. However,
this mechanism only bound the client to the manager for the duration of the particular
operation invocation, limiting its usefulness. In situations where a client-manager pair was
communicating regularly, it was possible to increase overall throughput by transferring data
for a collection of operations through a dedicated channel. In Cronus Release 1.4 we
introduced a direct connection mechanism, similar to large messages, that allowed the
kernel to be bypassed for successive communications between a client-manager pair. This
resulted in communication performance approaching that of the underlying transport system
(TCP/IP) for the communicating process pair.

In Release 1.4, direct connections were explicitly declared. Programs specified the object
manager with which they wish to communicate by host and Cronus object type, and the
Cronus kernel negotiated connection establishment. Operations invoked on objects (for
example, through the FInvoke calls) belonging to the manager for which a connection has

-19-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

been established were subsequently automatically sent through the direct connection instead
of through the Cronus kernel. This behavior continues until the connection is closed, when
operation invocations will again be routed through the Cronus kernel.

The high-level interface provided by direct connections simplifies the task of building
higher-performance Cronus applications when large volumes of data or repetitive
invocations are present.

3.1.2 New Environments

For Release 1.4, we ported Cronus to several new platforms. This increased the potential
Cronus user community and allowed a wider range of systems to support Cronus
applications. This section summarizes the features of the additional platforms that were
supported.

3.1.2.1 Sun 3861/ SunOS 4.0

The Sun 386i was a deskside workstation family that combined in a single platform the
capabilities of the SunOS environment with the ability to simultaneously develop and run
MS-DOS-based applications and access PC/AT-bus peripherals.

• CPU Intel 80386 microprocessor with 80387 floating-point
coprocessor

• Estimated MIPS 3 to 5

• Operating System SunOS / MS-DOS under SunOS control

Cronus on the Sun 386i leveraged off of two previous supported platforms: the SunOS
software environment, and the hardware architecture of the IBM PC/AT 80286-based
machines. Cronus on the Sun 386i was a complete implementation, supporting the Cronus
kernel, system managers, and the complete set of user commands.

3.1.22 Sun 3 I Mach 2.0

The Sun 3, based on the widely accepted Motorola 68000 family of microprocessors,
includes a variety of systems offering a range of price-performance options from low-cost
desktop workstations to high-performance servers. The Mach multiprocessor operating
system, developed at Carnegie-Mellon University, includes sophisticated facilities for
multiprocessing, local interprocess communication, and task synchronization, as well as a
user and programming environment similar to Berkeley UNIX 4.3BSD.

• CPU Motorola 68020 or 68030 microprocessor (with 68881,
68882, or Sun floating point units optional)

• Estimated MIPS 1.5 to 7

• Operating System Mach

The implementation of Cronus for the Sun 3 and the Mach operating system in Cronus
Release 1.4 was essentially the same as Cronus for the Sun 3 and SunOS. Since the Sun 3
is not a multiprocessor, the initial implementation supported in Cronus Release 1.4 did not
attempt to use any of Mach's multiprocessing capabilities. The arctic and examine
programs were not ported, since Mach 2.0 on the Sun 3 did not support the Sun View

-20-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

toolkit The Bug Report Manager, which contains experimental Cronus software described
later, was not ported either.

3.1.2.3 Sun 4 I SunOS 4.0

The Sun 4 is a supercomputing workstation family, designed to offer high performance in a
wide variety of compute-intensive and graphics applications. It is based on Sun
Microsystems's RISC (Reduced-Instruction Set Computer) implementation known as
SPARC (Scalable Processor Architecture).

. CPU Fujitsu SPARC MB86900 or Cypress SPARC CY7C601
(MB86910 and Weitek 1164/1165 or TI8847 floating-point
units optional)

• Estimated MIPS 7 to 16

• Operating System SunOS

The implementation of Cronus for the Sun 4 was similar to that for the Sun 3. Most
notable on the Sun 4 was Cronus's use of the SunOS 4.0 lightweight process (LWP)
package to implement the Cronus tasking package. Both offer similar functionality, and we
chose to maintain Cronus portability across constituent operating systems by maintaining
the same upper layer tasking package interface and using the LWP package as a lower level
implementation tool. This isolated the Cronus tasking package from the vagaries of the
compiler's register assignments and other RISC architecture influences.

3.1.3 Notable Enhancements

3.1.3.1 Kernel

For Release 1.4, we performed a major internal restructuring of the Cronus kernel to
improve its modularity, simplify the addition of new code to the kernel in this and future
releases, and make the kernel more portable to new environments.

A number of operations on the object types managed by the Cronus kernel were added or
improved. The Cronus kernel object types CronusHost and Process were extended to
support the ReadACL and ManagerStatus operations. In addition, the ReportStatus
operation on type CronusHost was enhanced to return two additional parameters: a
string containing the hostname, and a string containing the current revision level of the
Cronus kernel and a brief description of the system hardware. The latter is particularly
useful at sites that run a mix of different Cronus releases on different systems
simultaneously. To provide increased security in the Cronus kernel, the Create operation
on object type Process was enhanced to require that the invoker be a member of the
Cronus access control group CronusOperators. Finally, the type definition and
documentation for the Cronus kernel were updated to reflect the access control restrictions
on operations on the kernel object types.

Circa Cronus 1.4, many large sites started segmenting network traffic using a technique
known as subnetting, wherein a single-class IP network is broken into a number of distinct
physical networks. For example, without subnetting the Class B IP network 128.11.0.0
would be thought of as a network consisting of 216 hosts. Having that many hosts on a
single network is unmanageable, so the network might be broken into (for example) 28

networks, numbered 128.11.0.0 to 128.11.255.0, of 28 hosts each. These networks are

-21

BBN Report No. 8018 Cronus Enhancements Final Technical Report

known as subnets, and are generally connected using gateways. Previous releases of
Cronus treated networks solely by the network class (A, B, C) implicit in the network
number, ignoring the possible existence of subnets. Cronus Release 1.4 enhanced the
Cronus kernel and the Broadcast Repeater to allow the use of subnets, and to allow the
Broadcast Repeater to bridge subnet boundaries for object location.

Finally, we made modifications to the Cronus kernel in Cronus Release 1.4 so that
interhost interprocess communication links are managed more effectively in large
configurations with many hosts. In conjunction with changes made to the Cronus Host
Poller, this improved the overall scalability of the Cronus monitoring system.

3.1.3.2 Commands

In Cronus 1.4, we added to and extended the Cronus command set. The new and changed
commands are summarized as follows.

A new interactive command, defineservice, was added to register a new manager with
the Cronus Configuration Manager.

The new command displayhost retrieves the information pertaining to a particular Cronus
host from the Configuration Manager.

The displayservice command was rewritten to provide a more comprehensible output
format.

The examine command was extended to support examining objects (examine obj) and
access control lists (examine acl).

The gendoc command was altered to write its output to the standard output instead of a file
(file output is still possible with the new /output qualifier), and to allow the generated
manual pages to be labeled with an arbitrary manual section name using the /tag qualifier.

The genmgr command was altered to generate the C code for the manager development
tools rather than the Type Definition Manager, with the result that the COS Directory
Manager need not run on the host on which genmgr is being run. A new qualifier to
genmgr, /clientonly, allowed the generation of only the files necessary to build a client
program for a particular object type. Another new qualifier, /operationhierarchy,
allowed the generation of a summary showing the operation inheritance for the object
manager.

The new gethostlist command obtains a list of hosts and their IP addresses for the local
Cronus site from the Cronus Configuration Manager, suitable for use as the Cronus
hostfile.

The new gettypelist command obtains a list of Cronus object type numbers and their
names for the local Cronus site from the Type Definition Manager, suitable for use as the
Cronus typefile.

The showkernel command as of Cronus 1.4 was modified to support a /status qualifier
that returns information about the requested host's Cronus kernel version and hardware
type, uptime, logging level, and a process and IPC link summary. As a result, the uptime,
logging level, and process summary information were removed from showkernel
/connections.

22

BBN Report No. 8018 Cronus Enhancements Final Technical Report

The tropic command was enhanced to support internal variables set to user-provided
values through the setvar tropic command.

3.1.3.3 Manager Development Tools

For Cronus Release 1.4, we made a number of enhancements to our application
development tools. These included evolving the version voting replication facilities
provided initially in Release 1.3 to improve their functionality, and improving the
scalability of Cronus object databases.

In Cronus Release 1.3, the version voting replication mechanism had difficulty handling
simultaneous changes to an object, even when a sufficient quorum was collected. This
resulted in difficulty in changing newly created objects, discarded or overwritten updates,
and inconsistent version vectors. For Release 1.4, the problem was fixed by adding a
deadlock-free distributed locking protocol to the replication mechanism, which properly
serializes the changes during the vote collection and commit phases. Also for Release 1.4,
we improved the update daemon used in the replication software so that it is more efficient,
uses broadcast less, and does not interfere with other simultaneous updates. Third, we
eliminated all of the important race conditions in the version voting replication software,
which should provide for much more predictable operational behavior. Finally, we
instrumented the code to allow the replication software to be monitored with the Cronus
Monitoring and Control System.

In order to support the storage of more data in Cronus object databases, two changes were
made to the Cronus manager development tools. The object database routines for Cronus
managers were altered to maintain their index of available objects using a hash table that is
sized at manager startup time. Previous releases used a fixed number of buckets in the
hash table, causing very inefficient behavior when the number of objects in the database
was large. Second, an artificial limitation on Cronus object size to a maximum of 2™
bytes was lifted, with the result that objects can be as large as 2^2 bytes on most machines.

3.1.3.4 Libraries

In Release 1.4, we made a number of additions and changes to the Cronus libraries to
improve their functionality. The new library routines are summarized below.

The routine GetRootDirectory returns the value of the environment variable
CRONUS.ROOT.

The routines INTERVALtoDOUBLE and DOUBLEtoINTERVAL convert Cronus
INTERVAL (time difference) structures to and from C double precision floating-point
numbers, allowing values to be easily scaled over a large dynamic range.

The routine IsGroupEnabled determines whether a particular group is contained in the
current access group set.

The routine IsLoggedln determines for the caller whether the invoking process has an
access group set other than NotLoggedln.

The routine STRINGtoOBJECT performs a parameterized conversion to change its
input string into a Cronus UID.

23-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

The routines OpenConnection, IsConneclionOpen, and CloseConnection support
the direct connections facility discussed earlier.

The ListObjects routine returns a list of the objects managed by a particular object
manager.

We also made improvements to the status checking facilities for in-progress operations that
we introduced in Cronus Release 1.3. In the initial release of this software, the status
check messages for long duration operation invocations sent using low-effort message
delivery were sent reliably. In order to be more consistent, in Cronus Release 1.4 status
checks for operation invocations sent reliably are also sent reliably, and status checks for
operations sent low-effort are also sent low-effort The new scheme for status checking
low-effort invocations retains the advantages of status checking, and is much more
efficient.

3.1.35 System Managers

In Release 1.4, we modularized the functionality in the Type Definition Manager. Previous
versions of the manager supported both data storage and code generation functions, and
were non-reentrant due to limitations in the underlying tools used to build the language
parser. In order to easily support the handling of multiple target languages (C, Common
Lisp, Ada, etc.) as well as multiple simultaneous users, we moved the code generation
facilities contained in the manager into a set of code-generating client programs, one per
target language (for example, the genmgr command). The Type Definition Manager
continued to act as a repository for stored type definitions.

In many cases it is desirable for an operation to be associative, manipulating a collection of
objects that meet some criteria. Previous releases of Cronus required that operations
needing this functionality be hand-crafted. The developer of a manager used library
routines to step through the object database by UID, with hand-written code evaluating
each object against the particular criteria of interest Alternatively, the instance variables for
the generic object were used as an index for the objects that the manager maintained, with
the generic object acting as a lookup table. Both of these approaches were inefficient
required customization for each manager in which they are used, and were hard to
maintain.

In Release 1.4, we added experimental associative access query processing facilities
to the Cronus Bug Report Manager. Included was the ability to create indices from and
perform searches on the various fields in an object. The indexing functionality significantly
improved the ability to rapidly search the manager's database, and greatly increased its
usefulness for large collections of bug reprts. The experimental facilities in the Bug
Report Manager were designed to be easily incorporated into other managers in the next
Cronus release. The additional operations supporting associative access build indices
(Addlndex), destroy indices (Droplndex), display the schema (ShowSchema), and
allow SQL (Structured Query Language)-like searches to be performed (Query). In
addition to the changes to the Bug Report Manager made to support associative access, the
Cronus bug and examine bug commands were modified as part of this experiment to use
the Query operation for searching the object database (instead of the hand-coded Retrieve
operation previously provided).

3.13.6 Installation and Operation

For Cronus 1.4, the Cronus UNTX installation scripts were entirely rewritten from csh to
the Bourne shell sh for increased portability to new systems.

24

BBN Report No. 8018 Cronus Enhancements Final Technical Report

The installation scripts for 1.4 correctly recognized a wider selection of host types
automatically during installation. In particular, the installation procedures discriminated
between various Suns: the Sun 2, 3,4, and 386i. Previously all Suns were identified as
being Sun 2's.

As of 1.4, it was also possible to install Cronus binaries, libraries, and data files in
alternate locations. Previous Cronus releases for UNIX systems required that the top of
the Cronus hierarchy be called lusrlcronus. Cronus Release 1.4 allows the location to be
selected using the environment variable CRONUS_ROOT.

3.13.7 Documentation and Support

Release 1.4 expanded the documentation set delivered in earlier releases. We added an
Introduction to Futures to the tutorial documentation, and included a number of additional
examples in the Cronus manual set. Documentation was provided for the new commands
and library routines introduced, and known mistakes in the documentation were corrected.
Portions of the Installation Manual we rewritten.

For supported sites, a Cronus Hotline was introduced to support fast-turnaround responses
to use, programming, and operations questions. The hotline, at (617) 873-2111, was an
adjunct to the existing electronic mail-based help and bug reporting provided via the
addresses cronus-help@bbn.com and cronus-bugs@bbn.com respectively.

-25

BBN Report No. 8018 Cronus Enhancements Final Technical Report

3.2 Cronus Release 1.5 - May 1, 1990

In Cronus Release 1.5, we added a number of mechanisms that support more sophisticated
data access capabilities for Cronus applications, significantly increased the number of
supported platforms, and continued our commitment to make Cronus more robust and
easier to use.

Two major new capabilities added in Cronus Release 1.5 supported associative access to
data used by Cronus applications. First, the addition of query processing supplemented the
toolkit that is used in the development of Cronus object managers. This capability allowed
clients to invoke operations which identify collections of objects by attribute instead of by
their Cronus unique identifier. Queries are posed using a subset of the standard Structured
Query Language (SQL), that is used by many relational database systems. The second
added capability supports associative access to data via the integration of three off-the-shelf
relational database products: Informix, Oracle, and Sybase. Starting in Cronus 1.5, client
programs can access any of these databases through a set of newly developed object
managers.

In Cronus Release 1.5, we added the AT&T 6386, BBN Butterfly GP1000, DEC RISC
family (for example, the DECstation 3100), and Encore Multimax to our suite of supported
host types. We also made substantial improvements to the performance and reliability of
the Cronus implementation for the Mach operating system.

3.2.1 New Features

3.2.1.1 Query Processing

In many cases it is desirable to have an object manager implement an associative operation
that manipulates a collection of objects meeting some criteria, for example "Give me a list
of all of the blue objects". Previous releases of Cronus required that this functionality be
implemented by application developers on a case-by-case basis: the application used library
routines to step sequentially through the object database, and application-specific code that
found objects with the particular criteria of interest was executed. Alternatively, the generic
object for a type was used as an index for the instances of that type that the manager
maintained This approach required hand-crafted code to maintain the index. More
generally, neither of these approaches made it particularly attractive to change or extend the
indices used, and neither provided software reusability.

In order to provide a general-purpose associative access mechanism, in Release 1.5 we
enhanced the Cronus object database facility to include associative access features.
Working from existing standards, we provided SQL-like query capabilities whereby client
programs can formulate ad-hoc queries and send them to the appropriate object manager for
processing. This allowed much more flexible queries than when associative access code is
custom-crafted.

The query processing facility added in Release 1.5 was provided through a new object type
called CronusQuery. This is a subtype of another new Cronus type SQLDefs, which in
turn is a subtype of type Object. All application types that are subtypes of type
CronusQuery inherit the ability to support associative access. The CronusQuery type
implements the ShowSchema, Addlndex, Droplndex, and Query operations that
support query processing. (The SQLDefs type will be discussed more in the next section.)

26

BBN Report No. 8018 Cronus Enhancements Final Technical Report

For an application type that is a subtype of CronusQuery, the application developer defines
a schema describing the external view of the data maintained by the manager (akin to the
instance variables, but a public view rather than an internal one private to the object
manager). At run-time, queries may be posed to the object manager, subject to the
constraints of the schema. This is done through the Query operation, which takes an
SQL-like select statement, and returns to the invoker any data matching the query (subject
to access control restrictions). Query operations may be executed at a single object
manager, or at a collection of object managers of the same type (the former is the default).
In the latter case, the manager initially receiving the operation acts as the coordinator for the
query operation, distributing the query to other managers for the type and assembling the
results for return to the client. (In Release 1.5, the distributed Query operation was only
available for non-replicated types.)

The query results returned are represented using Cronus' canonical datatypes. Since each
manager has its own schema, and each Query operation may return a different set of
datatypes, the data returned (rows of typed values, or tuples in database terminology)
must be dynamically datatyped. As a result, to complement the query processing facility,
we also introduced in Release 1.5 a self-describing tuple facility allowing clients to
interpret and manipulate these self-encoding data structures.

Several other operations support additional query processing features. The schema defined
for an object type may be examined using the ShowSchema operation. Queries are
normally handled in the manager by stepping through the object database to determine
which objects match the request. In order to improve performance, the user can build
indices using the Addlndex operation, which will decrease the amount of time
necessary to scan the collection of objects. The index is automatically managed as objects
are modified, and as objects are added to or removed from the manager's object database.
A Droplndex operation is provided for removing indices.

32.12 Database Support

An underlying goal of the Cronus toolkit philosophy is to support a variety of facilities that
satisfy distributed application needs, including data storage and retrieval. For example, one
mechanism provided for the storage and retrieval of Cronus objects is the object database.
In Cronus Release 1.5, we expanded the number of data storage and retrieval options by
providing direct support for accessing relational database management systems through
Cronus. We set the following objectives for the DBMS integration:

• provide host-independent access by Cronus clients to several commercially available
state-of-the-art relational database products;

• provide Cronus client programs with the full functionality of the database system,
including multistatement transaction and schema manipulation operations;

• define a structure that, to the extent possible, provides a standard interface to the
different database products, and facilitates the support of future database systems.

To fulfill these goals, in Cronus Release 1.5 we provided a set of new Cronus managers
that encapsulated the various commercial relational databases. We added nine new Cronus
object types to support this capability.

Most significant were the SQLDefs, DBDefs, and DBSession object types, which
define and implement the set of operations that are available across all of the supported
relational databases. For each database supported, we also defined an object type that is a

-27-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

subtype of DBDefs and an object type that is a subtype of DBSession. These subtypes
implement a small number of database-specific customizations that accommodate
differences between the various database products. In Cronus 1.5, we supported the
Informix, Oracle, and Sybase database management systems.

When a client wishes to interact with a database through Cronus, the database of interest is
found or created, then opened, using one or more of the operations defined by DBDefs, for
example:

ListDatabases List the names of all known databases.

LookupDatabase Find the database with a particular name.

CreateDatabase Create a new database.

OpenDatabase Open a database.

When the database is opened, the database manager hands off the responsibility for all
subsequent actions on behalf of the particular client to a Session object For example, if a
client opened an Informix database, for further activities the Informix manager would refer
the client to an InformixSession located on the same machine. For Session objects, each
instance (session) is under the control of an independent constituent operating system
process (as shown below). This is in keeping with the model that most DBMS systems
apply, and facilitates handling activities such as transactions: each independent user of the
database is a separate process. (This is different from the existing Cronus model where all
object instances at a single machine are managed by a single object manager.) The front-
end processes representing Sessions pass client requests on to the database system.

Having established a session, the client may choose to perform work as part of a
transaction, in which case it would use an operation defined by type DBSession:

BeginWork Begin a transaction.

Next, the client might execute a query or some other SQL statement using an operation
defined by type SQLDefs:

ExecuteSQL Execute an arbitrary SQL statement

This operation provides the majority of the remote database access functionality, such as
row insertion, select, row update, and so on. (These operations are also available to
Cronus object type CronusQuery, which supports the query processing capabilities
discussed in the previous section.)

After one or more ExecuteSQL operations, if the client was using transactions it may
specify what to do with the transaction results:

Rollback Work Abort the transaction.

CommitWork Commit the transaction.

These operations are defined by type DBSession. Eventually, the client will be finished
and execute another DBSession operation:

Close Terminate the session.

-28-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

Thus, the collection of operations defined by the SQLDefs, DBDefs, and DBSession object
types allow for remote database access using Cronus. Specifically, a series of actions to
manipulate an Informix database (without using transactions) might be:

LookupDatabase A generic operation on type Informix which returns the
object UE) of the database desired.

OpenDatabase A non-generic operation on the Informix database of interest
which opens the database and returns the UID of an assigned
InformixSession.

ExecuteSQL A non-generic operation on the InformixSession which
executes an SQL statement

Close A non-generic operation on the specified InformixSession
which closes the database and terminates the session.

The database software is delivered partly as source code and partly as object code, due to
the licensing restrictions of the database interface libraries provided by the DBMS vendors.

3.2.1.3 Mach

The Mach multiprocessor operating system was first supported by Cronus in Release 1.4,
shipped in September 1989. Between Cronus 1.4 and 1.5, we made several changes
which offer substantial benefits over the initial implementation, specifically:

• faster, more robust communication between processes and the local Cronus kernel;

• support for multiprocessing in Cronus object managers; and

• use of Mach-provided mechanisms for communication and tasking.

The Cronus 1.4 implementation of intra-host communication for Mach was built using the
User Datagram Protocol (UDP). This mechanism is used on all of our UNIX-derivative
constituent operating systems to provide communication between the Cronus kernel and
other Cronus processes (both clients and managers) on the same machine. UDP provides
Cronus with a flexible, uniform communication interface on many host types and operating
systems, which lowers the costs of porting and maintaining Cronus. However, the
performance of UDP sometimes compares unfavorably with other local interprocess
communication (IPC) mechanisms supported by the constituent operating system. Such is
the case with Mach, which provides an IPC mechanism called ports. To take advantage of
this performance difference, Cronus 1.5 featured a completely new implementation of intra-
host communication for Mach that used the port mechanism. Performance studies
showed that Mach ports are substantially faster than UDP for intra-host communication.

Using ports instead of UDP for Cronus intra-host communication on Mach increased
communication robustness in addition to speed. With UDP, messages can be lost between
the Cronus kernel and local processes under high message traffic. Since the UDP-based
Cronus intra-host communication implementation provides no flow control, processes may
lose messages if their buffers are full due to high traffic conditions. The implementation
based on Mach ports is much more resistant to message loss, because it provides flow-
control between communicating processes.

-29

BBN Report No. 8018 Cronus Enhancements Final Technical Report

Most operating systems incur a high process creation cost That is, creating and beginning
execution of a new process is a high-overhead, high-latency activity. In order to allow
Cronus object managers to process multiple operation invocations effectively and efficiently
without putting too great a load on the constituent operating system, and to minimize this
latency, it is highly desirable to allow object managers to maintain multiple, independent
threads of control (also known as tasks) within a single constituent operating system
process.

Few operating systems provide primitives to support coroutines or lightweight tasks within
a process. The Cronus tasking package was developed to address this problem. On most
platforms, we implement the tasking primitives defined by the package using an
implementation we have designed to be portable to a variety of machine architectures and
operating systems.

However, Mach itself supports a package for lightweight threads of control known as
C/Threads. Thus, in Cronus 1.5 on Mach, we reimplemented the Cronus tasking
package using C/Threads, and each Cronus task within an object manager is actually a
C/Thread. This structure preserves the semantics of the Cronus tasking interface and
portability of Cronus object managers, while taking advantage of the provided
implementation. A similar approach is used with the SunOS LWP package.

Since Mach is designed as a multiprocessor operating system we also augmented the
Cronus tasking interface to facilitate limited multiprocessing in Cronus object managers.
Application developers have access to the parallel processing capabilities of multiprocessors
through these new primitives, called TaskObtainOwnProcessor and
TaskAbandonOwnProeessor. These primitives allow CPU-intensive computations to
be performed in parallel with additional operation invocations that the manager might
receive concurrently.

32.1.4 Mandelbrot Demonstration

For Cronus Release 1.5, we added a new demonstration application for which we ship a
Sun View-based graphical client program and a portable manager. The client displays
fractals from the well-known Mandelbrot set (see The Science of Fractal Images, Heinz-
Otto Peigen and Deitmar Saupe, Springer Verlag, New York, NY, 312pp., 1988), which
are computed by one or more Fractal Managers. The calculations of the Mandelbrot set
have the property that they can be parceled out among a number of computationally-bound
managers operating concurrently. One of the key points illustrated by the demonstration
software is that Cronus is capable of improving application performance by providing the
infrastructure to support coarse-grained parallel processing among a collection of loosely
coupled processors.

The Mandelbrot client and Fractal Manager code serve as an additional example in the use
of the Futures facility that was first released in Cronus 1.4. The C language source code
for both the graphical client and the Fractal Manager are provided with Cronus Release 1.5.
(Common Lisp source code for the Fractal Manager was distributed with the Symbolics
release.) The client program makes extensive use of Futures both to parcel out the
computations to a collection of Fractal Managers executing concurrently, and also to drive
the graphical display concurrently with these computations.

The graphical user interface provides two display windows. One displays the Mandelbrot
set as it is computed. The other shows various statistics about the computation itself.
Users can control the displays, the part of the Mandelbrot set being explored, the statistics
monitored, and many other aspects of the demonstration through the user interface.

-30-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

3.2.2 New Environments

For Release 1.5, we ported Cronus to several new platforms. This increased the potential
Cronus user community and allowed a wider range of systems to support Cronus
applications. This section summarizes the features of the additional platforms supported.

3.22.1 AT&T 6386

The AT&T 6386 workgroup system is designed to function as a powerful single-user
machine or a network server, primarily in office automation applications. It combines
UNIX functionality with the ability to run multiple MS-DOS applications simultaneously
under UNIX. The AT&T 6386 supports the X Window System and accommodates most
existing PC/AT peripheral expansion products.

. CPU Intel 80386 microprocessor (80387 floating-point
coprocessor optional)

• Estimated MIPS 2 to 2.5

• Operating System UNIX System V/386

The Cronus implementation on the AT&T 6386 made use of the Wollongong WIN/TCP for
386 STREAMS networking software implementation.

3.2.22 BBN Butterfly GP1000

The BBN Butterfly GP1000 is a modular, expandable, general-purpose multiprocessor
incorporating 2 to 256 microprocessors interconnected by a high-bandwidth multistage
switch. Each processor has up to 4 megabytes of local memory (to which other processors
have access) for a total of up to 1024 megabytes systemwide. With a scalable performance
range, the Butterfly GP1000 can address a variety of computationally intensive problems,
such as those in the simulation, modeling, and data analysis areas.

. CPU Motorola 68020 microprocessor with 68881 floating-point
coprocessor

• Estimated MIPS 5 to 600

• Operating System nX

3.2.23 DEC RISC

The DEC RISC family was a recently introduced collection of high-performance, reduced
instruction set computer (RISC) architecture systems ranging from the DECstation 2100 to
the DECsystem 5840. With its processing performance, this DEC product family is suited
to applications in artificial intelligence, computer-aided design and engineering, simulation
and modeling, and data analysis.

. CPU MIPS Computer Systems R2000 (or R3000) processor with
R2010 (or R3010) floating-point unit

• Estimated MIPS 10 to 65

31

BBN Report No. 8018 Cronus Enhancements Final Technical Report

• Operating System Ultrix

3.22.4 Encore Multimax

The Encore Multimax is a modular, expandable, general-purpose multiprocessor
incorporating 2 to 20 microprocessors interconnected by a high-bandwidth system bus to
peripherals and up to 128 megabytes of memory.

• CPU National Semiconductor 32x32 microprocessor with 32081
floating-point coprocessor

• Estimated MIPS 1.5 to 15 (32032)

• Operating System UMAX 4.2 or Mach

3.2.3 Notable Enhancements

32.3.1 Manager Development Tools

For Cronus Release 1.5, we made a number of enhancements to our application
development tools.

The definetype command no longer relied on the COS Directory Manager to transfer the
Cronus type definition to be processed to the Type Definition Manager. When this change
was coupled with a similar change to the genmgr command for Cronus 1.4, Cronus
managers can be built on systems which do not run the COS Directory Manager.

The manager development tools code generator for the C language, genmgr, had a number
of improvements:

• As of 1.5, it generated typesafe functions that encapsulate the functionality previously
provided by GetVarData and PutVarData. These functions, which take the form
Get<type>Var, GetGen<type>Var, Put<type>Var, and PutGen<type>Var,
made the manipulation of instance variables in Cronus object managers written in C
easier. For example, the routine GetPrinVar would be used in the Authentication
Manager to get the instance variables associated with a principal object.

• In order to allow application developers and system administrators to identify various
versions of Cronus object managers more easily, starting with Cronus 1.5 the message
"Generated by Cronus Release @ date" (for example, "Generated by Cronus Release
1.5 @ Fri Mar 30 11:08:47 1990") was inserted both as a comment and into a variable
called GeneratedUnder in the generated file dispatch.c.

• Improvements were made so that redundant entries are no longer generated in
dispatch.c files. The smaller size of this file resulted in a corresponding code size
shrinkage for Cronus object managers.

The operation processing routines for type Object, which are inherited by all Cronus object
managers, were substantially rewritten. Although this revision had no external effect, it
made these routines more consistent with the rest of Cronus, and improved the long-term
maintainability of the code. The following were the most significant changes:

• The operation processing routines no longer used the MSL directly; rather, they use the
tools-generated output structure for reply handling.

-32-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

• References to outdated library routines were replaced by references to corresponding
newer routines, and references to undocumented library routines were eliminated.
Error codes were changed to use the new error code naming convention introduced in
Cronus Release 1.4.

• A number of unused variables were eliminated.

The inherited ManagerStatus operation had two optional return parameters added to it for
monitoring resource usage: SecondsCPUUsed and KBytesMemoryUsed.

Finally, some languages and tools (for example, parallelizing compilers) require that the
main program of an application be compiled using a special tool or with a particular set of
options. In previous releases, this sometimes caused a problem for Cronus managers,
where the main program came from a library (i.e., mgr.a on UNIX). In Release 1.5, we
isolated the main routine for Cronus managers into a single module which calls the routine
cronus_mgr_main. This allowed the driver program for Cronus managers to be
redefined if necessary, but permitted complete compatibility with earlier releases if no
special processing was required.

3.2.32 Library

The routine Cachelnit and the remainder of the cache management package were
improved to make better use of dynamic memory. In Release 1.4, memory was wasted by
applying more stringent data structure alignment than was necessary.

The Nack routine was improved to automatically include a printable error string as part of
the error reply that may be returned from a manager to a client program. This improved the
performance of failed operation invocations (when the message is displayed) by eliminating
the need for the GetErrorDefinition operation in most cases.

3.2.3.3 Kernel

In a previous release, we added a command-line qualifier to the Cronus kernel that
implemented a software loopback for object location. This was done because not all
networking software implementations heard themselves when they transmit the IP
broadcasts that are used for Cronus object location requests. In Release 1.5, we automated
this software loopback feature, obviating the need for the qualifier (except as an override).
When the kernel boots, as of Cronus 1.5 it tests to see if the host hears its own broadcasts,
and automatically enables broadcast loopback if necessary.

The ReportStatus operation on type CronusHost was enhanced so that it returns details
about the operating system version that the machine is running, in addition to the host type.
(This is displayed by the Cronus command showkernel /status.)

3.2.3.4 System Managers

The Bug Report Manager distributed in earlier releases only ran on the Sun 3 running
SunOS. In Cronus Release 1.5, we enhanced the Bug Report Manager so that it will run
on all supported UNIX platforms and VMS.

In Cronus Release 1.5, the Configuration Manager was upgraded to use the associative
access query processing capabilities described earlier. Both the HostData and ServiceData
object types implement the operations described earlier by virtue of being redefined as

-33-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

subtype of type CronusQuery. Schemas were also defined for both of these object types.
A Query operation directed to the Configuration Manager to identify all of the machines on
a particular network would look like:

select Name from HOSTDATA where HostAddress matches "128.89**"

Similarly the Host Poller Manager also used the associative access capability as of
Cronus 1.5. For example, this Query operation identifies the names of the machines that
the Host Poller thinks are down, and the last time that they replied to a status check from
the Host Poller:

select host, lastreply from POLLER where state = "DOWN HOST"

Or this query might be used to identify those machines that have a large amount of
variability in the time that they take to answer polls, and also have a relatively large average
delay in responding:

select host from POLLER where maxdelay > mindelay * 10 and avgdelay > .2

3.2.3.5 Commands

In Cronus 1.5, we added to and extended the existing Cronus command set. The
improvements simplified Cronus configuration management (monitorhosts,
showstatus), allowed use of the associative access features added (showschema,
tropic), and generally provided improved functionality. In this section, we discuss the
various command enhancements that we made.

The dumpdb command had an additional /output qualifier added, allowing its output to
be dumped into a file.

Using a terminal-independent interface, the monitorhosts command displayed the status
of various machines as determined by the Host Poller Manager.

The remove command was updated to use the qualifier package that we added in an earlier
release, and was merged into the top-level cronus command.

The new showschema command displays the columns defined by a particular type that
implements the associative access capabilities: column name, whether the column is
indexed, what the datatype of the column is, and whether it is an array.

The showstatus command was significanüy improved. In addition to displaying the
service-specific information that it displayed in previous releases, showstatus now also
displays the service's configuration (what machines it runs on) and service-independent
status information (e.g., how many operations the manager has performed and how much
CPU time it has used).

The tropic command had a number of new features added:

• Self-describing tuple support was added.

• A new variable, called ReplyingHost, indicates which host responded to the last
operation invoked. This is useful in directing future invocations to that host, if desired.

-34-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

• The newtype command was enhanced to print out the name of the host which returned
the type definition requested.

• Three new built-in commands were added:

• showhistory displays the contents of tropic's ten-command history buffer.

• write allows the value of a stored variable to be put into a specified file.

• pipe allows the value of a stored variable to be input to another command.

• The new prompt option can be used to change the prompt string.

• The new showerrordata option enables the display of detailed error messages, for
those managers that return data as part of their error indication in addition to the
standard error codes.

3.2.4 Installation and Operation

The installation scripts were improved to support multiple configurations.

The installation scripts were rewritten to use the logical names that are defined for VMS
more consistently.

The installation of the Primal File Manager was made an option to the PRISTINE
installation in Release 1.5., as it was not a required service.

3.2.5 Documentation and Support

Release 1.5 expanded the documentation set delivered in earlier releases.

We added a Query Processing tutorial that described building Cronus object managers
that use the new associative access facilities. Additional pages in the Cronus Programmer's
Reference Manual complemented the tutorial.

We added a tutorial describing the Mandelbrot Demonstration.

A new Database Installation Manual was added that describes the installation of the
database managers.

New commands and features added to existing commands were documented in the Cronus
User's Reference Manual.

35-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

3.3 Cronus Release 2.0 - March 31, 1991

This section describes the features and functions of Cronus Release 2.0, and the benefits of
2.0 over 1.5.

Cronus Release 2.0 contained the following major changes:

The Cronus kernel and IPC system were substantially rewritten, with performance
improvement the primary goal.

The authentication system was revamped to increase its effectiveness. The redesigned
system made use of MITs Kerberos network authentication system.

The Directory Manager was rewritten using the Manager Development Tools.

The Common Lisp implementation of Cronus was updated with respect to emerging
Common Lisp standards.

New installation mechanisms simplified the installation of Cronus and its applications.

In Cronus Release 2.0, we discontinued support for the Primal File Manager. We believed
that complementary technologies exist which provide similar functionality in a networked
environment (e.g., NFS).

In Cronus Release 2.0, we supported basically the same set of supported host types as in
Cronus 1.5, with these changes:

• We added support for the Alliant FX/80 multiprocessor running the Concentrix
operating system.

• We discontinued support for the AT&T 6386 running System V/386. This particular
Cronus implementation was not in sufficient demand to warrant its support

• We added support for the Sun 3 running SunOS 4.x, and discontinued support for
SunOS 3.x. SunOS 4.0 was initially available in mid-1988; SunOS 4.0.3 was first
available in mid-1989; and SunOS 4.1 was available in mid-1990. As of the release of
Cronus 2.0, we believed that our customers are no longer using SunOS 3.x.

• Since the performance of SunOS 4.0 was generally acknowledged to be poor on Sun 2
platforms, we continued to support all SunOS releases newer than SunOS 3.4 on that
platform.

• We added support for the Symbolics platform running Genera 8.0.1 and subsequent
releases, and discontinued support for Genera 7.x. Genera 8.0 was available starting
in May 1990; Genera 8.0.1 was available starting in September 1990. As of Cronus
2.0, all Cronus users were no longer using Genera 7.x.

• We discontinued support for the Xenix operating system. As of Cronus 2.0, this
particular Cronus implementation was not in sufficient demand to warrant its support.

-36-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

3.3.1 New Features

3.3.1.1 Cronus Kernel and IPC System

Compatibility between Cronus releases at the level of the Cronus IPC system was provided
from 1986 to Cronus 2.0's release in early 1991. While significant new features were
added prior to 2.0 (futures, status checking, direct connections, etc.), our desire to leave
existing protocols and mechanisms alone restricted our ability to make these mechanisms
work efficiently. Measurements made during 1990 showed that significant performance
benefits could result from redesigning and reimplementing parts of the kernel and IPC
system. As a result, in Cronus Release 2.0, we performed the following kernel and IPC
enhancements.

• Most Cronus operation invocations transit very well-known code paths, defined by
generated code and by libraries called by generated code. However, the Cronus 1.5
implementation of the Cronus IPC system was excessively layered, containing many
functions which could be combined without loss of generality. As a result of this
excessive layering, most operation invocations traversed extra software and suffered
from degraded performance. In addition, the old Cronus IPC system predated the
Manager Development Tools (and code generation) and contained many low-level
communication primitives that were rarely used by applications directly, such as
Invoke and Receive. For Cronus Release 2.0, we restructured the Cronus kernel
and IPC system to:

• Eliminate several layers in the runtime IPC library. In addition to improving
performance, this made the system easier to understand and port.

• Implement and make use of expandable buffers. This greatly reduced the cost of
layering, by eliminating unnecessary data copying when a new layer's header is
added. When a communication buffer is initially allocated, it is oversized. Then, it
is packed from the back rather than the front Each layer adding a header prepends
it to the front of the buffer, rather than reallocating a slightly larger buffer and
copying an existing one.

• In the past, Cronus intrahost IPC provided communication between the Cronus kernel
and other Cronus processes (both clients and managers) on the same machine. The
implementation of intrahost IPC on UNIX systems used the User Datagram Protocol
(UDP). UDP was used because it was widely available - this lowered the cost of
porting and maintaining Cronus. However, since UDP provided no flow control or
acknowledgments, messages sometimes were lost between the Cronus kernel and local
processes, usually when a machine was heavily loaded. In Cronus Release 2.0, we
defined and implemented a fragmentation protocol. The new protocol transfers data in
acknowledged fragments between the kernel and local processes. This significantly
increased the amount of data that can be exchanged by the kernel and Cronus processes
(many UDP implementations set a limit of 8192 bytes), and also eliminated data loss
for these large transfers.

• Status checking was first introduced in Cronus Release 1.3, as a means for detecting
failed operations, and for differentiating between failed and long-lived operations.
Status checking was provided by the addition of a Request Manager to the Cronus
kernel, and by required client activity to check operations in progress. In Cronus
Release 2.0, responsibility for operation invocation status checking was transitioned to
the Cronus kernel. Cooperating kernels on a client's and a target manager's machine
maintain information about operations in progress. When a failed operation is detected,

-37-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

client programs are automatically notified. The 2.0 approach allowed a higher degree
of accuracy in the detection of lost or dropped operation invocations, and required no
client participation.

• Prior to 2.0, Cronus object managers could choose to forward selected operation
invocations that they received, for example to implement load balancing. In Cronus
Release 2.0, the IPC and kernel mechanisms supporting forwarded operations were
redesigned and reimplemented. Because of the changes made to status checking in 2.0,
the information kept by the kernel about the status of operations in progress was
valuable in implementing forwarding. In particular, Cronus Release 2.0 allowed the
forwarding of larger amounts of data than Cronus Release 1.5, and correctly status
checks these forwarded operations.

• Cronus Release 2.0 contained significant improvements to the direct connection
mechanism first released in Cronus 1.4. Direct connections allow the Cronus kernel to
be bypassed for successive communications between a client-manager pair. This can
result in communication performance approaching that of the underlying transport
system (currently TCP/IP). In Cronus Release 1.4, direct connections were built using
a previously existing Cronus mechanism known as large messages. This large
message facility had a number of severe limitations, and was dropped in Cronus
Release 2.0. In 2.0, direct connections were redesigned and reimplemented
independendy of large messages, so that connections could be established and accepted
by either a manager or a client, and so that direct connections were very easily usable
by application programmers.

• Prior to 2.0, Cronus limited the amount of data that could be transferred in a single
message between two Cronus kernels to 1400 bytes. Larger messages were sent using
the large message facility, which transferred the data over an independent TCP/IP
connection. Under circumstances where the amount of data transferred was just
slighdy over the 1400 byte limit, the cost involved in establishing this new connection
vastly outweighed the performance benefit of sending the data over a separate
connection. In Cronus Release 2.0, the Cronus kernel was enhanced to exchange
arbitrarily sized messages directly. This allowed flexibility in the decision of when to
use direct connections, and when to send data via the Cronus kernel.

• Complementing this enhancement, under Cronus Release 2.0 the Cronus kernel itself
was enhanced to send and receive larger messages. In particular, in previous releases,
the Cronus kernel was unable to fully implement operations that required data transfer
to or from the kernel in excess of 1400 bytes. For example, a kernel could only return
the first 50 entries in its object location cache in response to a DumpObjectCache
operation (which is invoked by the showkernel /cache command), even though the
cache itself was much larger. Since the Cronus Release 2.0 kernel is able to send and
receive arbitrarily large messages, previous restrictions on operations invoked on object
types managed by the kernel were eliminated. This change improved the function of
operations on type Cronus_Host and Primal_Process.

For Cronus Release 2.0, the Cronus kernel and IPC system was transitioned to its
officially assigned TCP and UDP port numbers. The previous Cronus IPC system made
use of ports clustered around port 2000 (for default installations). This occasionally
resulted in collisions with other services using the same port numbers (for example, Sun's
NeWS product also uses port 2000). Cronus Release 2.0 and later releases require only
the use of TCP and UDP port 148 for default installations.

-38-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

The aggregation of all Cronus communication from a set of ports to a single port required
the multiplexing of a variety of protocols for various types of Cronus messages. We
implemented five for Cronus 2.0:

PROTOCOL_LOCAL_OP

PROTOCOL_FRAG_OP

messages contain operation requests or replies in
transit between a client or manager and its local
Cronus kernel.

messages contain operation requests or replies in
transit between a client or manager and its local
Cronus kernel. PROTOCOL_FRAG_OP is used
when a request or reply is too large to transfer using
intrahost communication mechanisms via
PROTOCOL_LOCAL_OP.

PROTOCOL_REMOTE_OP messages contain operation requests or replies in
transit between Cronus kernels.

PROTOCOL_PM messages pass control information between a
program and the local Cronus kernel's Process
Manager. PROTOCOL_PM messages perform
functions such as registering programs as Cronus
processes, deregistering these programs when they
exit, and telling the Process Manager that a given
process manages a particular type.

PROTOCOL_OS messages pass control information between Cronus
kernels. PROTOCOL_OS messages perform
functions such as interhost communication link
management and status checking.

The changes made to the kernel andlPC system for Cronus 2.0 resulted in a performance
improvement on a typical machine of 25% for operations sent via the Cronus kernel, and
100% for operations sent via direct connections.

3.3.12 Authentication System

All activities in Cronus are capable of being access-controlled. When a Cronus user
executes the Cronus login command, his identity is verified by the Cronus Authentication
Manager using a principal (user) name and password combination. Subsequently, when
the user executes Cronus (or application) commands, object managers automatically check
his identity (by asking the Cronus kernel) and verify that he has permission to perform the
requested operation (by checking the target object's access control list).

For Cronus Release 2.0, we redesigned and reimplemented the Cronus Authentication
Manager to use concepts developed for the Kerberos network authentication system.
Kerberos is a system developed by MITs Project Athena to provide a robust identification
system for a medium-scale distributed computing environment, where neither hosts nor
users can be trusted. Kerberos in turn is based on a design by Needham and Schroeder
(Using Encryption for Authentication in Large Networks of Computers, Communications
of the ACM, December 1978), with timestamps added to prevent playback. The major
design goals for Kerberos were:

• No cleartext passwords should be sent over the network.

-39

BBN Report No. 8018 Cronus Enhancements Final Technical Report

• No cleartext client passwords should be stored on network servers.

• Client and server keys should only be minimally exposed.

• Compromises should only affect the current session.

• Authentication lifetimes should be limited.

• System should function transparently during normal use.

Minimal modification should be required of existing network applications.

One of the biggest weaknesses present in the Cronus Release 1.5 authentication system
was the Cronus login command, which passed passwords over the network in the clear.
This problem was solved by our incorporation, in Cronus Release 2.0, of some of
Kerberos's mechanisms into the Cronus Authentication Manager. Other features which
have come out of the adoption of some of Kerberos's methods are as follows:

• Processes are unable to masquerade as the Cronus kernel, or as object managers. All
clients, managers, and the kernel have clear identities.

• Clients and.managers are able to communicate via end-to-end encrypted operations.
(This will be implemented in a future release.)

3.3.13 Directory Manager

The Cronus 2.0 Directory Manager dated from before the Manager Development Tools. As
a result, was not implemented using the tools. Although was extremely reliable, the
Directory Manager had the following limitations.

• It was not built using the same structure and organization as other Cronus object
managers. This made it harder to understand, maintain and improve.

• It was implemented with many of its own private implementations of routines normally
found in the Cronus libraries. In particular, the Directory Manager had its own
implementation of intrahost IPC and part of the Cronus Message Structure Library
(MSL).

• The Directory Manager used two special primitive canonical datatypes (EDIR and
ELIST) that required special consideration, and were a nuisance in maintaining
interoperability with the COS Directory Manager.

• The Directory Manager did not implement many standard operations such as
SetLoggingLevel, ManagerStatus, and DescribeType, and had to implement its own
version of others, such as AddToACL.

• The Directory Manager implemented a non-standard replication scheme.

For Cronus 2.0, we reimplemented the Cronus Directory Manager using the Manager
Development Tools. In addition to resolving the above limitations, we did the following.

• We added the ability to delegate portions of the directory namespace to other Cronus
object managers. For security reasons it is desirable to maintain the mapping between

-40-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

Cronus principal names and their corresponding UID's in the Authentication Manager.
However, it is also desirable that this namespace be accessible through a standardized
naming convention. We designed and implemented the new Directory Manager to
allow a lookup of, for example, :prin:jdoe by using the Directory Manager to resolve
the first part of the name (:prin) and then having the Directory Manager handoff the
remainder of the lookup (jdoe) to the Authentication Manager. It is our intent that
applications implementing the appropriate operations should be able to assume control
for portions of the namespace as Well. This facility is also used to delegate portions of
the namespace to the COS Directory Manager.

• We refined the Directory Manager's interface specification to alleviate the need for
hand-crafted client interface routines, in favor of the more standard Invokexxx routines.
The semantics of the previous suite of operations defined and implemented by the
Directory Manager were not clear. This complicated the use of a generated client
interface, and required the use of hand-crafted client interface routines.

33.1.4 Test Manager

Beginning in Cronus Release 2.0, we started distributing a new Test Manager. This
manager integrates various functional tests that have been used internally at BBN for
verifying some of Cronus's capabilities, as well as a number of other tests. We included
the Test Manager's source code in Cronus Release 2.0. In addition to providing an
enhanced testing capability for hard-to-diagnose failures encountered at user sites, the Test
Manager gives application developers additional examples in performing a variety of
functions in a Cronus manager. The release 2.0 Test Manager contains tests for:

verifying correct data transfers of various sizes between clients and managers;

detecting message loss;

validating the representation of floating point data in Cronus canonical form across
heterogeneous hosts

testing Cronus functions for signaling errors to client programs;

checking the correct operation of nested operations;

validating implementation of forwarding;

exercising Cronus status checking capabilities for long duration operations;

gathering basic performance data; and

testing access control.

33.15 Common Lisp Implementation

For Cronus Release 2.0, we updated the Common Lisp implementation of Cronus to
accommodate the new Cronus IPC, authentication, and Directory Manager changes. In
addition, the Lisp implementation was enhanced to support two relatively stable elements of
the draft ANSI Common Lisp language: the Common Lisp Object System (CLOS), and
the Pitman condition system. Both of these mechanisms were then available in the major
Common Lisp implementations from Symbolics, Texas Instruments, Lucid (Sun), and
Franz.

41-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

Our usage was based on the descriptions presented in Guy L. Steele's Common Lisp: The
Language, Second Edition (Digital Press, 1990). CLOS replaced Flavors as the
mechanism for operation invocation and manager implementation. Some minor changes to
existing operation implementations (defopr forms) was required, including use of with-
slots and use of slot-value rather than symbol-value-in-instance.

In keeping with the shift from the Flavors to CLOS paradigms, the crones-send message
passing form of operation invocation was obsoleted by a set of generated generic functions
with names of the form co:<operation-name> which take both required and optional
input fields as keyword arguments (to satisfy CLOS requirements for lambda list
congruence). For example, the form

(cronus-send {acdb} :authenticate-as "joe" "p")

became

(co:authenticate-as {acdb} :user-name "joe" :password "p")

Existing applications that use cronus-send were converted.

3.3.1.6 Installer

For Cronus 2.0, we overhauled the installation procedures used for Cronus. We have
implemented and distributed an installer program, which supports the initialization of
Cronus on a machine, and the installation of both system and application object managers.
The installer interprets a documented installation language; installation scripts have been
provided for the system object managers. Cronus application developers can implement
scripts to install applications. Template scripts are provided.

A benefit of the installer is the ability to use the same installation scripts on a variety of
platforms, significanüy simplifying maintenance of the installation procedures. The
installation procedures for Cronus 1.5 and previous releases were implemented using the
command interpreters provided by the native operating systems on which Cronus was run.
This meant that installation functionality had to be duplicated, and parallel installation
procedures had to be maintained, for each of the command interpreters.

3.3.2 New Environments

For Release 2.0, we ported Cronus to one new platform.

3.3.2.1 AlliantFX/80

The Alliant FX-series of multiprocessors are bus-topology machines constructed using two
types of processor elements called Interactive Processors (IPs) and Advanced
Computational Elements (ACE's). IP's are responsible for running the operating system,
interacting with users, and providing access to I/O and other devices; ACE's are used for
non-interactive CPU-intensive processing. IP's support a base instruction set and
registers; ACE's support the base instruction set and registers, plus additional floating
point, vector, and concurrency instructions and additional registers. The FX/80 is a
VMEbus-based system, supporting up to 12 68020-based IP's, 8 ACE's, and 256
megabytes of physical memory. The Alliant operating system, Concentrix, is a
multiprocessor-enhanced implementation of 4.3BSD UNIX.

-42

BBN Report No. 8018 Cronus Enhancements Final Technical Report

• CPU Motorola 68020 microprocessor with proprietary 64-bit
CMOS coprocessor

• Estimated MIPS 20 to 130

• Operating System Concentrix

3.3.3 Notable Enhancements

3.3.3.1 Manager Development Tools

In Cronus Release 2.0, genmgr was altered to represent enumerated canonical datatypes
as C enums rather than as C typedefs and #defines. In other words the type definition
fragment:

cantype FLAVOR
representation is Flavor:
{VANILLA, CHOCOLATE, COFFEE};

in Cronus 2.0 generated C code that looks like:

typedef enum _Flavor {
VANILLA = 0,
CHOCOLATE = 1,
COFFEE = 2

} Flavor

instead of:

typedef unsigned int Flavor
♦define VANILLA ((Flavor)0)
♦define CHOCOLATE ((Flavor)1)
♦define COFFEE ((Flavor)2)

which was generated in Cronus 1.5. This change was done because virtually all C
compilers now support the C enum datatype. Since C enum datatypes can't have duplicate
enumerated values, this enhancement provided stricter type-checking for Cronus
applications written in C.

In Cronus Release 2.0, <mgr>enum.c files were no longer generated by genmgr.
Instead, their contents are included in <mgr>cts.c files.

In Cronus Release 2.0, we made the Makefile.skl and descrip.skl files generated by
the genmgr command use the value of the environment variable CRONUS_ROOT
(CRONUS$ROOT for VMS) as the value of the Make (MMS) variable ROOTDIR.

The tasking package, which supports handling multiple threads of control within an object
manager, was enhanced to provide more debugging support. A number of routines were
added to the library to print out the status of tasks in progress, and more detailed error
messages are printed when error conditions are encountered

43-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

3.3.32 Library

Two routines, CronusTypeUsedOften, and CronusTypeNotUsedOften were
implemented to advise Cronus that operation invocations may or may not be made
frequently by a client or manager on a specified object type. These routines are used by the
Cronus IPC system in determining when it is useful to establish direct connections.

A new set of functions were provided to allow iteration over the objects in a manager's
object database. These routines replaced the existing DBNext routine with a more flexible
interface allowing iteration in either internal hash table or physical order. The latter
provided a significant performance improvement when a manager handles a large number
of objects.

A new routine, MgrSelect, was provided in the UNIX manager library. MgrSelect
mimics the behavior the UNIX select system call, blocking the calling task in the manager
on activity for one or more specified file descriptors. This enhanced the ability of Cronus
object managers to communicate with other UNIX processes.

A new function was added to the manager library, SelectLocalObjects, that can be used
within an object manager to execute a query on objects in the manager's local object
database.

In previous Cronus releases, the Cronus library lacked a way to conveniendy grow space
allocated with Talloc (in the way that the C run-time library routine realloc allows space
allocated with malloc to be resized). In Cronus Release 2.0, we added a routine Trealloc
that performs this function.

A new set of routines in Cronus Release 2.0 was provided for obtaining information about
incoming operation invocations in object managers (for example, the unique identifier of
the source process). Previously this capability was provided by references through
complex data structures. The new mechanism provides a more easily understandable
interface with a higher level of data abstraction.

In Cronus Release 2.0, we provided a package of routines for manipulating an obj. ;'s
version vectors. This simplified the construction of administrative programs for
replication.

3.3.3.3 System Managers

We implemented a TaskStatus operation on type Object The TaskStatus operation
replaced the ShowTasks operation on type Object, which was specified but never
implemented. TaskStatus allows client programs to obtain information about the run-time
state of various execution threads in a Cronus object manager.

The MCS Manager ran on VMS as of Cronus Release 2.0. The MCS Manager was
updated to garbage collect old event data. In Cronus Release 1.5 and previous releases, the
MCS Manager grew until it could no longer allocate memory, then crashed.

The Oracle Database Manager was internally reworked for Cronus 2.0 to use Oracle's
Pro*C interface rather than the somewhat older Oracle Call Interface (OCI). This improved
performance when querying a database through the Oracle Database Manager and allowed
strong typing of numeric datatypes specifying size and scale information.

-44

BBN Report No. 8018 Cronus Enhancements Final Technical Report

3.33.4 Commands

In Cronus Release 2.0, we added two new administrative commands, addservice and
removeservice, to simplify the installation and deinstallation of Cronus managers. The
addservice command tells the Cronus Configuration Manager that a particular manager is
supposed to run on a particular machine. The removeservice command tells the
Configuration Manager that a specified manager is no longer to run on a particular machine.

The arctic and examine commands were upgraded to work with the X Window System
on Sun platforms under Cronus 2.0. That is, both arctic and examine were made usable
under either X or Sun View. In reimplementing these commands using X, our hope was
that as X stabilizes on other platforms, we will be able to support these programs on
additional machine types.

The arctic command was improved to use the Cronus futures mechanism. The Cronus
1.5 implementation of arctic used some low-level IPC facilities to keep the user interface
alive and await messages from the Cronus MCS Manager simultaneously. Migrating to
futures (which were developed after the initial implementation of arctic) increased the
portability of the client and manager.

The createprin command was improved to better handle the specification of user's full
name, directory, etc. by the elimination of the need to use the editkeys subcommand.

We integrated a number of commands that existed as standalone programs (copyfile, list,
repeater, unroll) into the top-level cronus command. This saved on disk space in the
installed system.

Beginning with 2.0, the definetype command issued a trning if a type definition with
the same number is used to overload an existing type with a different name (but goes ahead
and does it anyway).

The dumpobject command was integrated into the fixobject command and became
fixobject /dump.

The displaygroup command was enhanced in 2.0 to get a list of all valid Cronus
principals through displaygroup world.

The fixobject command's user interface was improved to make it somewhat easier to
understand. In addition, fixobject was enhanced to easily allow the complete dereplication
of all objects at a particular host (This significantly eased reconfiguration.)

The fixdir command was obsoleted by the migration of the Cronus Directory Manager to
use the manager development tools, The functions previously performed by fixdir were
subsumed by fixobject.

A new command obtainlists was added. The obtainlists command updates a machine's
local copies of configuration information kept in the Cronus hostfile and typefile. This
information is obtained from the Configuration and Type Definition Managers respectively.

A new qualifier /all was added to the repeater /status command. This allows system
operators to locate and display the status of any Broadcast Repeaters in operation.

A new showtypes command was implemented. This command shows the use of various
Cronus object types within the operating environment: which types have been defined in

-45-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

the Type Definition Manager, which types have been installed (are known by the Cronus
Configuration Manager), and which types are currently available.

In Cronus Release 2.0, we added to the tropic command a showtiming option.
Enabling showtiming allows application developers to meter and display the execution time
of Cronus operations.

A new Cronus command in 2.0, verify allowed the automatic checking of the consistency
of the available commands with the command dispatch file.

3.3.4 Installation and Operation

The Cronus kernel was modified in Cronus Release 2.0 to update the Cronus hostfilc and
typefile automatically from the Configuration and Type Definition Managers respectively
when Cronus boots on a machine. This simplified the maintenance of these files.

3.3.5 Documentation and Support

Release 2.0 expanded the documentation set delivered in earlier releases.

• We added documentation and a tutorial on the new Cronus installer program.

• We added a tutorial on the tropic command.

• We documented new commands, features that were added to existing commands, and
new programming interfaces in the Cronus User's Reference Manual, Operator's'
Reference Manual, and Programmer's Reference Manual.

46-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

3.4 Cronus Release 3.0 - December 1, 1992

Cronus Release 3.0 contained the following major changes:

• We significantly improved Cronus's capabilities for building large scale applications in
interorganizational internetworked settings.

• We extended the Cronus kernel and IPC system to support the autonomous but
cooperative operation of Cronus clusters.

• We concomitantly enhanced the configuration, authentication, and directory
services.

• We improved Cronus's resource location mechanisms in wide-area network
environments.

• We added support for delegation, a facility supporting the redirection of requests from a
manager to one or more local subprocesses. This feature is particularly useful for
significantly improving object manager performance on multiprocessor systems.

The set of supported hosts changed from Cronus Release 2.0 to Release 3.0 as follows:

• We added support for the BBN TC2000 multiprocessor running the nX operating
system.

• We added support for the NeXT workstation running the Mach operating system.

• We added support for the development of Common Lisp applications (clients and
managers) on the Sun 4 using Lucid Common Lisp.

• We discontinued support for Masscomp 680x0-based systems running RTU (i.e., the
Masscomp 5400 and 5500). We believed these platforms to be obsolete.

• We discontinued support for the Sun 2 platform. We believed this platform to be
obsolete.

• We discontinued support for the Sun 3 running the Mach operating system. This
particular Cronus implementation was not in sufficient demand to warrant its continued
support. (Our users of this platform had migrated to the NeXT.)

• We discontinued support for building Common Lisp applications on the Symbolics
workstation. (Users of this platform had migrated from the Symbolics in favor of the
better price/performance offered by running Lisp on Sun workstations.)

Additionally:

• We discontinued support for the COS Directory Manager. (Although it was still
shipped - for backward compatibility - it was no longer documented.)

It was our intent that the installation and use of Cronus 3.0 not disrupt existing Cronus
users and applications. This was accomplished primarily by making the underlying
changes transparent through library routines, the Cronus Manager Development Tools, and
other layering techniques. From an application developer's perspective, most of the

47

BBN Report No. 8018 Cronus Enhancements Final Technical Report

changes were made at low levels of abstraction in the Cronus implementation. Thus, most
applications ran on Cronus 3.0 after merely recompilation and relinking

3.4.1 New Features

3.4.1.1 Cronus Multicluster Enhancements: Kernel and IPC System

Before Cronus 3.0, independent organizations wishing to share resources with each other
faced several difficulties. First, the organizations had to "link up" their separate Cronus
installations into a single, inter-organizational environment Unfortunately it was not
possible to do this in a limited way: if an organization shared one of its services, it would
allow access to all of its services. Second, Cronus only supported the notion of a single
configuration service for a distributed environment The configuration service plays an
important role in Cronus; it serves as the depository and source of information concerning
services, hosts, and what hosts run which services. If organizations linked up, they would
have to give up their existing separate configuration services, and instead use a single
shared configuration service. But by doing so, each organization would give up control
over its own assignment of services to hosts, that is give up some autonomy over its own
configuration. (A service is the function provided by one or more cooperating object
managers that manage the same object types. The configuration service is provided by the
set of cooperating Configuration Managers.)

Two organizations linking up would also encounter analogous problems with other
services, for example the authentication service. To share authentication information with
another organization, an organization had to give up autonomous control over its principals
and groups. Similar problems occurred with the directory service.

With Cronus Release 3.0, we introduced the concept of clusters as a mechanism to
support the inter-organizational sharing of resources. Simply put, a cluster is a set of hosts
grouped together into a single administrative unit. Each cluster is autonomous, responsible
for its own administration and control.

Physical network layout does not have to play a part in determining host cluster
membership. Two hosts on the same physical local area network can belong to different
clusters. Two hosts widely dispersed and connected by a long-haul network can belong to
the same cluster. However, no host is permitted to be a member of more than one cluster.

Clusters support organizations wishing to cooperate and share distributed services. But
each cluster can still retain autonomy and control over its own part of the distributed
environment. With clusters, Cronus supports the notion of several independent and
separate services for configuration, authentication, and naming within a single Cronus
environment. Each organization can have its own set of these services, and therefore
maintain complete autonomy over its own assignment of services to hosts.

Clusters are intended to allow administrative units to maintain control over their part of a
Cronus environment, yet share services across cluster boundaries if so desired.

3.4.1.1.1 Sharing Services via Exports and Imports

A cluster is not an isolated unit: clusters can cooperate and share services with one another.
If a cluster supports a service, it can permit other clusters to access that service. If a cluster
does not permit access to a service, then operation requests from foreign clusters on objects
managed by the service will be rejected. If the cluster does permit access, the request is

48

BBN Report No. 8018 Cronus Enhancements Final Technical Report

accepted as long as the requester has the necessary access rights as specified on the object's
access control list.

Each cluster must explicitly enumerate which foreign clusters have access to its services. A
service to which access by a foreign cluster is permitted is called an exported service, or
simply an export. This service is said to be exported to the foreign cluster. A cluster must
explicitly declare that it wishes to access a service exported by a foreign cluster. An
exported service to which a cluster desires access is called an imported service, or simply
an import. This service is said to be imported from the foreign cluster.

If a client in cluster B wishes to access a service S in cluster A, then A must export the
service to B and B must import the service from A. If the service is imported but not
exported, the service will reject any access attempt from B. If the service is exported but
not imported, hosts in cluster B will not be able to locate any of the objects.

3.4.1.12 Sharing Services via Service Domains

A cluster can permit objects managed by its services to be replicated in foreign clusters.
This is a stronger notion than merely permitting access to a service from foreign clusters.
Permitting objects to be replicated across cluster boundaries implies that the service itself
spans cluster boundaries, and thus several clusters must cooperate with regards to the
administration of the service. In this case, the cluster must explicitly declare the foreign
clusters where objects of one of its services may be replicated. The foreign clusters are
called the domain of the service.

For a replicated service to run successfully across cluster boundaries, all clusters involved
in the replicated service must agree on the service's domain. If cluster A lists B as part of
the domain of service S, then B must list A as part of the domain of S. Similarly, if A lists
B, and B lists C, then A must also list C. If a foreign cluster is a member of a service's
domain, the service is implicitly considered to be exported and imported to the cluster.

3.4.1.13 Configuration Manager Changes

In addition to providing configuration control within a cluster, for Cronus 3.0 the Cronus
Configuration Manager was extended to maintain information about a cluster's imports,
exports, and service domains.

Since we defined a cluster as an independently managed entity, each cluster must run its
own configuration service, and may not have any foreign clusters in the service domain of
the configuration service. This restriction ensures that every cluster maintains autonomous
control over its service configuration. (The right to modify and create objects managed by
the configuration service should be a closely guarded right, restricted to a few trusted and
authorized individuals, and never granted to individuals whose "home" is a foreign
cluster.)

The Cronus 3.0 Configuration Manager manages three types of objects: Host_Data objects,
Service_Data objects, and Cluster_Data objects - Cluster_Data is new.

A cluster's configuration service has a Host_Data object for each host that is a member of
the cluster. As in earlier releases, the Host_Data object for a given host contains the host's
name, address, and a list of Service_Data object identifiers identifying the services installed
on the host.

49-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

A Service_Data object records information about a service. As in earlier releases, it
contains the service's name, the set of the types the service manages, and the set of
Host_Data objects identifying the hosts where the service is installed. Starting with Cronus
3.0, it also contains identifiers for three sets of Cluster_Data objects. The first identifies
the clusters the service is imported from, the second identifies the clusters the service is
exported to, and the third identifies the clusters in the service's domain.

A Cluster_Data object stores information about a foreign cluster. It contains the cluster's
symbolic name and its unique cluster identifier. It also contains identifiers for three sets of
Service_Data objects. The first identifies the services imported from the cluster, the second
identifies the services exported to the cluster, and the third identifies the services whose
domain includes the cluster. The Cluster_Data object also contains a list of the IP
addresses of one or more of the hosts belonging to the remote cluster. (This list provides a
list of "contacts" in the remote cluster. As will be discussed, the multicluster location
algorithm finds an object in a remote cluster by delegating the task to some host in the
remote cluster. The host is chosen from the host list maintained in the Cluster_Data
object.)

3.4.1.1.4 Object Location

Cronus supports location-independent invocation; the location of an object does not have to
be supplied when invoking an operation on it The system takes complete responsibility
for finding a copy of the object and directing the invocation request to it The part of the
system that locates objects is called the Locator, and is part of the Cronus kernel.

The old (Cronus 2.0 and earlier) Locator was very simple, and as a result suffered from
some limitations. To find an object, it would broadcast a Locate invocation on the object
The broadcast would be heard by every host on the network. If a host had a copy of the
target object, it responded. If a host did not have the object, it did not respond. The
Locator would wait for an affirmative response. If one was not received within about five
seconds, the Locator reported a LOCATE_FAILED error.

The old Locator also relied on Broadcast Repeaters in Cronus installations encompassing
more than one network. Routers do not forward broadcasts; so broadcasts on one network
are not normally heard on another. The Broadcast Repeater and Rebroadcaster (both parts
of the Cronus kernel) cooperated to re-broadcast Cronus object location requests to a set of
configured hosts on specified networks.

The old Locator suffered from several problems and limitations:

1. It was not robust. The old Locator relied on a single broadcast to find an object. In
some environments it is not uncommon for the network to drop broadcast messages.

2. It did not scale well, since it made every host process every locate (except when using
cached object locations).

3. It complicated the maintenance and administration of a Cronus environment, by
requiring the use of Broadcast Repeaters between networks.

4. The arbitrary five second wait for Locate replies was not appropriate for widely
dispersed or heavily loaded systems.

We established the following major requirements for the new multicluster Locator design.

50

BBN Report No. 8018 Cronus Enhancements Final Technical Report

1. The Locator must be robust: it must not fail to locate an available object If an
irrelevant host (not one where the requester or object resides) crashes, the location
attempt should not fail.

2. The Locator must be efficient: it must avoid communicating with hosts that do not
manage the selected object type.

3. The Locator should find objects in a timely fashion.

The Locator was completely redesigned and reimplemented for Cronus 3.0 and satisfies
these requirements. (The old Locator failed to satisfy the first two.)

The new Locator worked as follows, using the unique identifier (UID) of the target object.
The Locator first extracts the type of the object from the UID. It then identifies the service
that manages the type as follows. The Locator first checks a cache it maintains of service
information. If this is unsuccessful, the Locator contacts the local cluster's configuration
service. The configuration service keeps track of which services manage what types. The
configuration service sends back information about the proper service, which the Locator
then stores in its cache.

The information about a service that the configuration service returns to the Locator (and
that is cached) includes the following: (1) a list of the hosts in the local cluster that run the
service, (2) a list of the clusters the service is imported from, (3) a list of the clusters in the
service's domain, and (4) a list of hosts in each cluster mentioned in items (2) or (3). This
information comes from data stored in the configuration service's relevant Service_Data,
Host_Data, and ClusterJData objects.

The Locator then makes use of the list of hosts in the (local) cluster that run the service.
The locator sends each one of these hosts a Locate request. (The Locate messages are
transmitted using UDP, an unreliable protocol. The Locator times out and retransmits them
to guard against message loss.)

The Locator then makes use of the rest of the information about the service to search for the
object in remote clusters. A host in every cluster the service is imported from is sent a
ProxyLocate request Likewise, a host in every cluster in the service's domain is also
sent a ProxyLocate request. The ProxyLocate operation is invoked on the generic
Cronus_Host object; the UID of the object being located is included as an argument The
Cronus Kernel manages the generic Cronus_Host object; every Cronus Kernel manages
such an object. (Every host runs the Cronus Kernel.) A Cronus Kernel that receives a
ProxyLocate request looks for the specified object in its own cluster, and then sends back a
reply indicating the object was found and its location, or a negative reply. The
ProxyLocate request is sent using a reliable protocol (TCP).

For example, sa a service is imported from cluster RL. The service information includes a
list of some of the hosts in cluster RL, which includes the host "x.rl." The Locator
chooses "x.rl" from the list and directs a ProxyLocate request to it (The Locator's choice
of a host from the list is arbitrary.) The Cronus Kernel on x.rl then has its Locator look for
the object in just its own cluster. x.rl's Locator follows the same steps discussed above to
accomplish location. Its Locator sends out Locate requests to each host in its cluster
running the relevant service and collects the responses. If all are negative, it sends a
negative reply back to cluster BBN's Locator. If one is successful, a positive reply to the
ProxyLocate is transmitted immediately. If the attempt to send the ProxyLocate to x.rl fails

-51-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

because it is down, cluster BBN's Locator selects another host from its list of hosts in
cluster RL, and tries again.

BBN's Locator waits for responses to its Locate and ProxyLocate requests. The Locator
stops with a successful outcome when the first positive reply is received. If all the replies
are negative, the Locator becomes suspicious that its cached service information is out of
date. If the service was installed on an additional host since the information was cached, or
if the service was imported from an additional cluster, and if the object resides on the added
host or in the added cluster, the Locator will obviously fail to find it The Locator checks if
its cached service information is out of date by calling upon its local cluster's configuration
service. The configuration service maintains an ascending modification count for each
service. The Locator stores the modification count for each service in its cache. Checking
if the cached information is out of date is a simple matter of comparing the actual versus the
cached modification count for the relevant service. If the cache is out of date, it is updated,
and the Locator tries to locate the object anew. If the cache proves to be up to date, the
Locator reports back a LOCATE_FAILED error. A host processing a ProxyLocate also
similarly checks if its cache is out of date if it fails to find the requested object

3.4.1.15 Invocation Request Delivery Options

Cronus supports location independent invocation. A client does not have to supply any
location information when invoking an operation on an object. The system itself finds the
object and routes the invocation request to it The Cronus manager development tools
generate RPC stubs that send operation requests to managers. The INVOKECONTROL
argument in these stubs allows control over the instances eligible to receive a particular
invocation. For Cronus 3.0, we expanded the use of the INVOKECONTROL structure.
When an INVOKECONTROL structure is provided, three fields specify the instances
eligible to receive the invocation: HostUse, Host, and Cluster. The interpretations of the
Host and Cluster fields depends upon the value of the HostUse field. The semantics of the
choices for the HostUse field are given below.

HOST_ANY Any object instance can receive the invocation;
the values of the Host and Cluster fields are
ignored. This is the default behavior.

HOST_HINT Like HOSTANY, but Host specifies a host
where the sender believes the object is.

HOST_DIRECT Only the host specified by the Host field is
eligible to receive the invocation.

HOST_ANY_IN_CLUSTER Any object instance residing in the cluster
indicated by the Cluster field can receive the
invocation; object instances in other clusters are
ineligible.

HOST_HINT_IN_CLUSTER Like HOST_ANY_IN_CLUSTER, but Host
specifies a host where the sender believes the
object is.

HOST_ANY_IN_DOMAIN Any object instance residing in the service
domain of the object's type is eligible to receive
the invocation. Any object instance not residing

52-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

in the local cluster's service domain for the type
is ineligible to receive the invocation.

HOST_HINT_IN_DOMAIN Like HOST_ANY_IN_DOMAIN, except Host
specifies a host where the sender believes the
object is.

In addition to directing an invocation to a single object instance, one might want to
broadcast a message to several instances of an object. The following HostUse field values
specify that an invocation request is to be distributed to several object instances and gives
control over the set of instances eligible to receive the request:

HOST_ALL A copy of the invocation is sent to all instances of
the object.

HOST_ALL_IN_CLUSTER A copy of the invocation request is sent to all
instances of the object in the cluster specified by
the value of the Cluster field.

HOST_ALL_IN_DOMAIN A copy of the invocation request is sent to all
instances residing in the local cluster's service
domain for the object type.

Reliable delivery is not provided when a request is broadcast to several instances. The
request might be received by some eligible instances, but not by others.

3.4.12 Authentication System

Cronus 3.0's multicluster enhancements were designed to provide authentication (the
assurance that when two parties interact with one another, each is certain of the other's
identity) and privacy (the protection of data against unauthorized release) above and beyond
that provided in earlier releases. There are three types of security for requests and their
associated replies in Cronus 3.0, listed in order of increasing safety. The Security field of
the INVOKECONTROL structure is used to specify a request's security. The field may
contain any of the following values:

SEC_NONE Self-explanatory. (This is the default for
messages sent unreliably.)

SEC_AUTHENTICATED Messages contain an authenticator. (This is the
default for messages sent reliably.)

SEC_PRIVATE Messages contain an authenticator and the data
portion will be encrypted.

SEC_DEFAULT The default for the type of message being sent

Note: Although it was included in Release 3.0, this feature was considered experimental.
Because we believe additional work is required to provide the desired functionality, we
neither established nor documented an installation procedure that enabled this feature. It is
presently unavailable in the Lisp implementation.

-53

BBN Report No. 8018 Cronus Enhancements Final Technical Report

3.4.13 Directory Manager

The directory service supports a hierarchical symbolic name space for Cronus objects. The
leaves of the name space are entries containing arbitrary object UEDs. Pathnames are
formed by separating the component names with ":" characters. For example, the path
name :cronus:config:hosts:pats might resolve to the identifier of a particular HostJData
object, presumably the one that contains information about the host named pats.

In Cronus 3.0, to ensure that a cluster has autonomous control over its own directory name
space, the service domain of the directory service is limited to a single cluster. The same
directory cannot be stored in two different clusters. However, one can mount a remote
cluster's directory name space. This makes the remote clusters entire name space appear
to be hung off an arbitrary path name in the local cluster's name space. Mountpoints were
initially introduced in Cronus 2.0, but have been refined in Cronus 3.0.

Mountpoints simplify accessing remote cluster directory name spaces. Without
mountpoints, users would have to explicitly specify the cluster whose directory service
should resolve a given path name. When mountpoints are used, path names can always be
submitted to the local cluster's directory service. Mountpoints also permit symbolic links
from the local cluster's name space into the remote cluster's name space to be readily
supported.

Briefly, mountpoints were implemented as follows. Mountpoint entries in the directory
name space contain the UID of the root directory in the remote cluster, and an indication
that it is a mountpoint, rather than a normal directory. When the directory service
encounters a mountpoint when resolving a pathname, it invokes an operation on the foreign
root directory to resolve the rest of the pathname.

3.4.1.4 Delegation

Included in Cronus 3.0 was a new delegation facility. Using delegation, a Cronus
manager process may spawn multiple instances of itself. Incoming operations are then
automatically distributed among the child processes for execution. Cm machines with more
than one CPU, the child processes can execute operations simultaneously, achieving
greater operation processing throughput. (We assume that the native operating system
transparently schedules multiple active processes onto idle processors when possible.)

The delegation package was implemented via a new Cronus type DeIegation_Object.
Managers using this facility must implement their types as subtypes of Delegation_ObjecL
Little additional code is needed: some code is needed to initialize the delegation package
when the manager starts up, and linking with one additional library (delegation.a) is
required. Delegation_Object implements these operations of note:

Shutdown Stop child processes

generic StartMoreChildren Spawn more processes in addition to those
automatically created at manager start-up.

generic DelegationStatus Return status information on the object manager
and all of its child processes.

Some operations should not be delegated to child processes. Examples of these operations
include ManagerStatus and Locate. The delegation package uses the DelegatableOperation
routine to determine if an operation can be delegated to a child process. Except for some

-54

BBN Report No. 8018 Cronus Enhancements Final Technical Report

inherited Cronus operations, the default version of this routine allows all operations to be
delegated. If a manager wishes to require that some operations by implemented by the
parent process, it can provide its own version of this routine.

The number of child processes a manager spawns can depend on a variety of factors. In
addition to static information such as the number of processors or amount of memory in a
machine, it might also depend on characteristics such as the current load average on the
machine or the time of day. The DCM, or Delegation Configuration Manager,
provides a convenient, flexible way to maintain this information. Configurations are
specified by formulas (each stored as an object) written in a simple algebraic language. For
example, the formula:

default $0 = 0930; /* assume working day */
default $cpus = 1;
if ($0 < 0830) then return $cpus ; end if;
if ($0 > 1730) then return $cpus ; end if;
return 1;

specifies that the number of subprocesses spawned should be 1 during the work day, and
the number of CPUs on the machine during non-work hours.

In large environments, it might be inconvenient to create a formula for every host that might
ever run a manager. In order to address this problem, the DCM provides three levels of
matching to determine which formula should be evaluated:

host The formula is for a specific host

hosttype The formula is for a specific host type, from the BINARYTYPE
cantype in config.typedef.

default If no other match is found.

When finding a formula to evaluate (through either the generic Evaluate or generic Lookup
operations), the DCM tries to first find a "host" match. If none is found, it looks for a
"hosttype" match. If that fails, it evaluates the "default" formula. The DCM implements
these operations:

generic Create Create a new formula.

Modify Modify an existing formula.

Display Return the information stored in a formula.

generic Evaluate Find the appropriate formula and evaluate it

Evaluate Evaluate the specified formula.

generic Lookup Return the UID of the formula that would be
evaluated for this host.

List Summarize the formulas stored.

CheckSyntax Verify the syntax of a formula provided as a
character string.

-55

BBN Report No. 8018 Cronus Enhancements Final Technical Report

At present, the delegation facility is only available on UNIX systems. Also, since it is
intended primarily for compute-bound activities, it does not support general access to the
Cronus object database.

3.4.1.5 Commands

A number of new commands were added in Cronus 3.0

clustedit

createmount

createservicemount

dcmedit

displaycluster

examine cluster

setpassword

setpeerprin

Create a new cluster, display and modify cluster
configuration. This command is similar to examine cluster
(below), except that it is forms-based rather than being a
graphical user interface.

Mount the root directory of a remote cluster into the directory
namespace of the local cluster. For a remote directory to be
mounted successfully, the mounting cluster must import the
directory service from the remote cluster, and the remote
cluster must export it to the mounting cluster.

Delegates a portion of the local directory namespace to
another service. For example, delegate all lookups in the
directory :prin to the Authentication Manager.

Create, examine, and modify DCM formulas.

Display summary information about a cluster.

Browse or alter the services exported and imported by
various known Cronus clusters. Since multicluster
operation also introduces the possibility of configuration
inconsistencies between clusters, the examine cluster
command also helps identify these inconsistencies. For
example, if cluster A lists B as part of the domain of service
S, but B does not list A, an inconsistency exists.
(Inconsistencies in service domains can cause replicated
services to malfunction.) Alternatively, a cluster could
import a service from a foreign cluster that does not export
it (If the service is imported, the administrator probably
believes the service is accessible, and might like to be
warned if this is not the case.)

This command allows a privileged user to change the
password for a selected Cronus principal. It was
implemented in response to user comments that it was not
possible to use an account if its password was forgotten.

Register the principal of a remote peer with the local cluster.
(Used for authentication of services in the same service
domain but in different clusters.)

Many other Cronus commands were upgraded to function properly in a multicluster
environment, primarily to make sure requests were processed in the proper cluster. In
addition, a /cluster qualifier was also added to several commands. The qualifier permits

56-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

the user to force the command to display information about any desired cluster (the local
cluster is the default). For example, the command displayservice /cluster=bbn lists all
the services defined by cluster bbn's configuration service.

3.4.2 New Environments

For Release 3.0, we ported Cronus to two new platforms and one new programming
environment.

3.4.2.1 BBNTC2000

The BBN TC2000 series of multiprocessors are highly scalable, high-performance parallel
processing computers. The TC2000 architecture consists of function cards, each of" which
includes a Motorola 88000 microprocessor, memory, and optional I/O capabilities. The
function cards are interconnected by BBN's multistage Butterfly switch technology. The
TC2000 supports from 8 to 504 processors, and up to 16,128 megabytes of memory. The
TC2000 supports two concurrent multiprocessor operating systems, nX and pSOS+m. nX
is a UNIX 4.3BSD-compliant operating system developed by BBN and based on the Mach
kernel from CMU. pSOS+m is an advanced real-time executive, tuned for time-critical
applications.

• CPU Motorola 88000 microprocessor

• Estimated MIPS 152 to 9,576

• Operating System nX

3.4.2.2 NeXT

The NeXTstation is a high-performance workstation built by NeXT Computer Inc. The
NeXT includes substantial hardware support for multimedia: an entry-level system
includes a speaker, microphone, and integral audio digital signal coprocessor; other models
include additional graphics and video coprocessors. The NeXTs system software includes
the NeXTStep object-oriented application development environment, and the Mach
operating system (customized for the NeXT).

• CPU Motorola 68040 microprocessor with Motorola 56001 digital
signal processor (Intel i860 graphics coprocessor and JPEG
image compression coprocessor included on some models)

• Estimated MIPS 18 to 25

• Operating System Mach / NeXTStep

3.4.23 Sun I Lucid Common Lisp on Sun 4 I SunOS

Sun / Lucid Common Lisp is an integrated programming environment built around a
complete implementation of the Common Lisp standard. Sun / Lucid Common Lisp
includes the Common Lisp Object System (CLOS), the standard for object-oriented
programming in Common Lisp.

-57-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

(Previous distributions of the Lucid Common Lisp implementation for the Sun were made
to selected customers. With this release, we added full support for that implementation,
including support for the construction of Cronus object managers.)

3.4.3 Notable Enhancements and Bug Fixes

3.4.3.1 Manager Development Tools

With Cronus 3.0, we added support for unsigned and signed 64 bit integers as primitive
datatypes. The names for the canonical datatypes are U64I and S64I respectively. Since
64 bit integers are not supported by most C compilers (nor by most hardware architectures)
we defined the internal representation as follows.

#ifdef HAVE_LONGLONG_DATATYPE
typedef unsigned long long ui64;
typedef long long i64;

#else
typedef struct _ui64 { unsigned long high, low; } ui64;
typedef struct _si64 { long high, low; } i64;

#endif

(long long is the emerging standard for the C language's large integer.) This allows the use
of 64 bit datatypes on machines that lack native support.

To prevent incompatible versions of clients from inadvertently invoking operations on
newer (or older) object managers, in Cronus 3.0 each invocation is accompanied by a
checksum which is verified by the manager on receipt of an operation. Invocations on
incompatible managers are automatically rejected at run-time. This feature may be disabled
by compiling the generated code with the symbolic NO_XSUM defined.

Starting with Cronus 3.0, the format of object database names conforms with the scheme
used by most operating systems: filename.extension; for object databases, extension is
"odb" and filename is the type of object the database contains. Thus, the two object
databases managed by the Authentication Manager are now prin.odb and group.odb,
instead of objectdb.20 and objectdb.21 as in Cronus 2.0. Existing object databases will be
automatically renamed when a Cronus 3.0 object manager accesses a Cronus 2.0 database.

The manager start-up routines were enhanced to log the amount of free space in the object
database, so that a system administrator can determine when it is time to compact the object
database. The effect of this and the preceding change is that the startup for the
Authentication Manager (for example) now looks appears as follows.

*** prin.odb ***
52 entries, 0 free regions
0 bytes out of 26624 free (%0.00)
*** group.odb ***
5 entries, 1 free regions
512 bytes out of 3584 free (%14.29)
free region sizes: smallest 512, largest 512, average 512

The implementation of the inherited ListObjects operation was changed slightly, in
response to user comments. In previous releases of Cronus, ListObjects returned the UIDs
for all of the Cronus objects of the specified type known by the target object manager. This
frequendy caused confusion because the operation returned the UIDs of those objects that
were logically deleted (i.e., marked for deletion but not yet fully removed). Starting with

-58

BBN Report No. 8018 Cronus Enhancements Final Technical Report

3.0, ListObjects returns only the UIDs of those objects that are currently available. The
functionality previously available through ListObjects is now available through a new
ListAHObjects operation.

Starting with Cronus 3.0, we added code to the genmgr command to generate ANSI C
function prototypes in the appropriate manager include files.

3.4.32 Library

Starting with Cronus 3.0, all Cronus library routines conform to ANSI C conventions.
Function prototypes for all library routines are included in the Cronus include directory.

A variety of new routines were added to the Cronus library supporting the manipulation of
cluster identifiers: GetMyCLUSTERID, IsMyCLUSTERID,
IsSameCLUSTERID, ISAnyCLUSTERID, SetAnyCLUSTERID,
CLUSTERIDtoSTRING, CLUSTERIDtoSTRNUM, STRINGtoCLUSTERID,
STRNUMtoCLUSTERID, and FutureGetReplyingCluster. Also, PSST was
enhanced to parse the %{CLUSTERID} format string.

The library routines supporting directory management were changed somewhat.
DirParse, DirParseDirectory, DirCreateMountpoint, and DirReadMount were
eliminated. The routines DirGetRoot, DirCreateRemoteDirMountpoint,
DirCreateServiceMountpoint, DirEntryTypeToString, DirEntryName,
DirEntryVersion, DirEntryObject were added.

In Cronus 3.0, we added functionality to support the automatic execution of application-
specific code when an object is changed by a manager. The routines
DBSPYEstablishMonitor and DBSPYCancelMonitor respectively allow for
defining and cancelling handling functions that will be called within an object manager
whenever objects are created, updated, or deleted. One example of use of this function is
to maintain the in-core object index used by the Cronus query processing code. The new
functions were implemented as part of the Cronus object database package.

The Lisp implementation of Cronus 3.0 supports future sets, per a number of customer
requests. The functions added to the Lisp implementation were ready-p, claim, make-
future-set, add-future, remove-future, extract-ready-future, and future-set-
count; they behave similarly to their C language counterparts. The addition of the claim
function also makes it easier to insure that the correct code is executed when a reply is
available. The Cronus 2.0-sryle call:

(let ((future (co:operation-name uid inputs :invoke-only t)))
(multiple-value-bind (outputs)
(co:operation-name uid :receive-only future)))

should be changed in Cronus 3.0 to:

(let ((future (co:operation-name uid inputs :invoke-only t)))
(multiple-value-bind (outputs)
(claim future)))

Old style calls will continue to work.

For Cronus 3.0, we included some additional routines for debugging tasking-related
problems. The routine TaskPrint prints out a list of the tasks active in the manager and

59-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

their state. TaskStack switches to the environment of the requested task. TaskDump
lets one see the task descriptor for the indicated task. The routine TaskBreak is a dummy
routine in which to stop for debugging tasking-related problems.

3.4.33 Cronus Kernel and IPC System

When a UNIX process (such as the Cronus kernel) is inundated with UDP messages from
another local processes, it may drop some. In Cronus 2.0 and previous releases, our
UNIX implementation made use of UDP for communication between the Cronus kernel
and local processes. For the most part this worked, but occasionally messages were lost.
(This behavior was observed in previous releases only rarely, the most common case being
when an application used futures to invoke many operations simultaneously.) For Cronus
3.0, UNIX domain streams were adopted for local communication on operating systems
that support them. This should completely fix the problem (locally reliable communication
mechanisms are already used on VAX/VMS and Mach).

In previous releases, when Cronus was installed on a large system it was often difficult to
determine where a given instance of Cronus or a particular manager was running. For
Cronus 3.0, we added a new operation GetEnvironment, implemented by type Object
(and hence inherited by all managers) and by the Cronus kernel. The operation returns the
value of CRONUS_ROOT, the working directory of the kernel or manager, the process id,
and the user name that the process is running under.

In earlier releases, the Cronus kernel could not open more than a relatively small number of
IPC connections to other machines (as few as 15) at a time. This restriction was caused by
a limit (set by the operating system) on the total number of open file descriptors (i.e.,
connections, log file, etc.) a process could have open at a time. For 3.0, the Cronus kernel
juggles an unlimited number of "virtual" connections on top of a limited number of
actual IPC connections. In addition, on UNIX systems the Cronus kernel now attempts to
increase the number of file descriptors available to it. Some platforms will allow this limit
to be raised as high as 256 file descriptors (SunOS); others are still higher.

3.4.3.4 System Managers

In previous releases of Cronus, the Cronus libraries were coded so as to allow principal
and group names to be respectively accessed via the simulated directories :prin and .group.
With this release, we used the mount point mechanism introduced in Cronus 2.0 to redirect
lookups in these directories to the Authentication Manager. Thus :prin and :group can be
manipulated the same as any other Cronus directory.

In previous releases, the directories :cronus:config:hosts and .cronusxonfig .services were
used to contain symbolic names for HostData and ServiceData objects respectively.
However, these names were created by the installation procedures, separately from the
creation of the objects themselves. This occasionally resulted in inconsistencies between
the items named in the directory and the objects managed by the Configuration Manager
(particularly when an installation failed for some reason). With Cronus 3.0, we used the
mount point facility to redirect lookups to these directories to the Configuration Manager.
Inconsistencies are no longer possible.

The Pro*C-based Oracle Database Manager (introduced in Cronus 2.0) used an
incrementally allocated array to hold tuple pointers. For queries involving large numbers of
tuples, this algorithm could consume prodigious amounts of memory, since space was not
reallocated along the way. In Cronus 3.0, the Database Manager was modified to use a

60

BBN Report No. 8018 Cronus Enhancements Final Technical Report

linked list structure, as the Cronus 1.5 manager did. This decreased the amount of space
consumed by a query from 0(n2) to O(n) for n tuples.

3.43.5 Commands

The bug retrieve command had three new qualifiers added: /columns, /delimiter, and
/header. These allow selected information to be extracted from the Bug Manager for use
by other programs. The /columns qualifier identifies which fields are to be selected; they
will be separated by /delimiter (if specified; tab is the default) and preceded optionally by
a header (if /header is specified).

The createprin, modifyprin, and installer commands were modified to prompt for a
new or changed password twice, and to verify that it is entered the same bom times. This
insures that the user knows what the password is before it is created or changed, and
decreases the likelihood that a typographical error creating or changing a password will
result in a user not being able to log in.

The crsql command had a number of enhancements:

• The command was extended so that it can now be used with Oracle databases.
(Informix continues to be supported.)

• Temporary files are created by crsql in an appropriate place rather than in the current
working directory. This eliminated problems with creating and using forms when the
user doesn't have permission to write into the current working directory.

The gendoc command had a new qualifier added, /invoke, which causes the command to
generate nroff source files for documenting the client-side interface (Invokexxx,
FInvokexxx, FClaimxxx) to a manager. This can be used to generate manual pages like the
XXPSL pages in section 3 of the Cronus Programmer's Reference Manual.

In Cronus 3.0, we enhanced genmgr with a new /clientonly qualifier. Running the
command with this qualifier will generate client code only for the selected manager.

The Cronus installer had a number of new extensions added to it:

• A new command line option /xdebug permits the interactive debugging of installer
scripts.

• The built-in variables clusterid and hostid identify the local cluster and host
respectively.

• The new commands badcommand, create cluster, create servicemount,
stopservice and update locatemap were added.

• New options for setting variables were added.

The Cronus showkernel command was enhanced to add a new process owner
(/powner) qualifier. The new version of the command behaves very similarly to
showkernel /processes, but displays the owner of the process instead of its process
UID.

The Cronus showkernel /cachestat command was enhanced to display statistics on
cache performance, and on performance locating objects on the network It also maintains

61-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

more accurate statistics. The information displayed by earlier versions of the command
(cache hits / cache misses) was misleading, because cache misses included lookups of
objects that were unavailable (and might not have even existed). The new implementation
of statistics gathering in the kernel, and the numbers displayed by the command, are now
more representative.

3.4.4 Installation and Operation

When objects in a Cronus object database frequently are added, removed, or change size
through modification, the database may become fragmented and disk space can be wasted.
For Cronus 3.0, we added a new compactdb command that will compact an object
database by eliminating the free space in the file. This results in substantial savings in disk
space.

Occasionally, developers may wish to make changes to the internal representation used for
storing the instance variables of objects in an object database. Unless the developer wishes
to repopulate existing databases from scratch, these databases will need to be converted
from their old format to their new format. For Cronus 3.0, we created a new Cronus
command, genconv, to assist in this process. The command works by taking as input a
configuration file, and old and new versions of the relevant type definition. It then
generates code for a conversion program, which can be customized by the developer. The
program automatically handles a number of trivial cases without intervention.

Starting in Cronus 3.0, each object database contained an internal version string specifiable
by the application. These can be used by application or system developers to insure
manager executable / database version compatibility.

3.4.5 Documentation and Support

3.4.5.1 Documentation

Beginning with Cronus 3.0, we distributed the Cronus reference manuals as part of the
release in on-line form.

Release 3.0 expanded the documentation set delivered in earlier releases.

• We documented many new commands supporting Cronus multicluster operation.

• We included documentation and a tutorial on the new Cronus Delegation
Configuration Manager.

• We included documentation on the crsql command.

• We updated the Introduction to Cronus.

• We documented additional new commands, features that were added to existing
commands, and new programming interfaces in the Cronus User's Reference Manual,
Operator's Reference Manual, and Programmer's Reference Manual.

• We updated the Mandelbrot tutorial.

The example Mandelbrot client program was redesigned and reimplemented using the
XView package. (The previous version used SunView.) It can therefore be built on any
platform where the XView libraries are available. We also fixed a number of bugs in the

-62-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

Mandelbrot client, and added a new feature allowing the user to specify that a particular
host have an arbitrary number of invocations outstanding at any given time.

3.45.2 Support

Shortly after the release of Cronus 2.0, we set up a mechanism to ease the distribution of
bug fixes to Cronus users. Patches and bug fixes by FTP can be obtained over the Internet
from the machine cronus.bbn.com (or pineapple.bbn.com). Users may log in with
user name "anonymous," and should send their electronic mail address as the password to
this account (this enables us to track its usage).

In the FTP home directory, the file cronus-overview contains a short summary
description of Cronus (including references) and the file CronusFAQ answers some
frequenüy asked questions about Cronus. Bug fixes and updates are stored in
subdirectories named cronusxx (where xx is the release number) under which are
subdirectories for each machine type. The directory cronusxx/ALL contains items that
aren't specific to a particular platform.

63-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

3.5 ANM Release 5.3 - September 30, 1993

This section describes those features which were new in ANM release 5.3. Most notably
ANM 5.3 added an Auxiliary View feature, a Derived MIB facility and a Cronus
Congestion Indicator display. Additional enhancements included several precoded
views and some changes made to facilitate features to be delivered in ANM 5.4.

3.5.1 New Features

3.5.1.1 Congestion Indicator.

The Congestion Indicator program is an X-window based application which collects
and displays various types of Quality of Service (QOS) data for a group of source and
destination host pairs. Data is collected continuously at time intervals determined by the
user. Once collected, data is represented as a box, which is sized based on the Quality of
Service information collected, and then displayed on a grid where the source hosts are
listed on the horizontal axis and the destination hosts are listed on the vertical axis. The
supplied display supports only Cronus traffic.

The congestion indicator program accesses a collection of script files (suffixed with .tcl) at
run time. The file "initcongindtcl" contains initial values for polling interval, minimum
threshold and maximum threshold. The program will look for this file first in the user's
home directory and, then, in the current working directory. If the file does not exist, the
program will use its own initial values for these parameters.

35.12 Derived MIB (DM1B)

The machinery to generate information derived from MTB variables was implemented in
ANM 5.3. The DMTB functionality is used by the congestion indicator to gather the
information necessary to report Cronus congestion.

35.1.3 Auxiliary Views

The ANM user was given the ability to develop useful tabular views through a new
Auxiliary View facility provided in AMM 5.3. Using an interpretive language, Tel,
which eliminates the need for compilation, new views are easily added to the users library.
Auxiliary Views includes a library of functions that permit the user to interface with the
ANM acquisition machinery and through that interface obtain data directly from the
network.

Operational displays that have been developed using the Auxiliary Views libraries were
included in this release. They are used as examples of how to write displays using the
Auxiliary Views capability; they can also be used with minor modifications to create the
users own views.

35.1.4 Cronus Configuration

Two programs that can build Cronus configuration files were included with this release of
ANM.

build _cronus_config.sh builds a Cronus Proxy Agent configuration file configuring
all the hosts in the Cronus cluster.

64

BBN Report No. 8018 Cronus Enhancements Final Technical Report

build cronus nmdb.sh builds a Display Manager nmdb configuration file
configuring all the hosts in the cronus cluster.

3.5.15 Policy Gateway

Policy Gateway support was added in this release, in a limited fashion. The Interdomain
Policy Routing (IDPR) MIB extensions were added to ANM. IDPR MIB objects are
writable using the CMU SNMP tools included in this release, but Auxiliary Views that
write (send SNMP.SET commands) were still under development. Aujciliary Views to
permit viewing IDPR data were incorporated. The views provided used GET functionality
only.

3.5.1.6 IP Traffic Tagging

IP traffic tagging was supported in ANM starting with ANM 5.3. ANM programs will tag
all TCP and UDP traffic sent direcdy by the program. Note that traffic sent indirectly, like
Cronus traffic from the Cronus PA, or NFS traffic (perhaps from accessing NFS-mounted
files) is not tagged. This feature required a TCP kernel patch which is available from SRI.
IP traffic tagging is an optional feature, and may not be applicable to all installattions.

3.5.1.7 FDDI Support

The FDDI MIB extensions were added to ANM, and an FDDI view was provided with this
release. The view obtains those FDDI MIB variables that Cisco, version 9.1, routers
implement.

3.5.2 Enhancements

As of ANM 5.3, alert message types are output indicating device and interface state
changes (such as a device going down). These messages appear in the DisplayManagefs
alert window. The DisplayManager now writes the alertlog in its startup directory. Also,
the alertlog can be rolled, which means that the alertlog is closed, renamed, and a new
alertlog created.

ANM can now set the number of ticks per xmit to an SNMP device that is down. The
basic PDU timing period can also be set.

SNMP Traps can now be displayed in the alert window, as received by the Carnegie-
Mellon University SNMP trap receiver program (snmptrapd). This is enabled through the
new "alertcom" nm.init function.

SNMP physical interfaces are now supported by the Display Manager.

An unzoom feature has been added to the Display Manager.

The Display Manager now supports drag and drop editing between views.

3.5.3 Changed Features

New alerts have been added to the DM to inform operator when the Proxy Agent or the
Router/Merger stops responding.

The Historian now has the ability to timestamp in either GMT or Local Time.

65-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

3.6 ANM Release 5.4.1 - January 7, 1994

This section describes those features which are new or changed from ANM 5 3 to ANM
Release 5.4.1.

3.6.1 New Features

3.6.1.1 LPR Support

Support for a network of Low Cost Packet Radios (LPR) was added in this release.

The DisplayManager and the Policy Module Collection were modified to display the point
of presence of the LPR Network. The LPR network is represented by a single icon for the
network, positioned on the displayed map where the PC Network Interface Unit (NRJ) is
located Detailed information on the LPRs in the network is available through supporting
Auxiliary Views.

The PC (NIU) was modified to support the ANM interface through use of the SNMP
protocol.

3.6.1.2 Host Agent and Quality of Service

The Quality of Service proof of concept, begun in the last release, was extended to include
live data from the monitored network and hosts. To enable the collection of the additional
data, a Host Agent was developed to reside at hosts in the network and communicate
with ANM.

The enhanced QoS process works in the following manner. The user enters a request
usmg a set of metric Indicators. ANM receives the request and formats it into the SNMP
requests needed to acquire the information. The requests are sent to the host named in the
request. The Host Agent collects the information, either by calls to the host operating
system or by spawning processes to obtain the information by direct measurement. The
collected information is returned to ANM and then to the QoS process which formats the
information for display and presents it to the user in two formats, the original matrix format
and a raw data format in an Auxiliary view. For this release, the data collected from the
network consists of the last round trip delay between selected hosts, and three CPU load
averages.

3.6.1.3 Policy Gateway

Policy Gateway support was enhanced with this release to support setting policies. Phase
1 Acquisition Machinery was added to the SNMP PA.

Auxiliary Views to permit viewing IDPR data were incorporated The views provided in
this release use GET and SET functionality.

The IP Traffic Type may now be set on a per-SNMP device basis.

3.6.1.4 SNMP Configuration Checking Tool

There is a prototype textual auxview that compares the configured paths on selected SNMP
devices with the live addresses and reports problems. This is very useful to find obsolete
configurations where a router has been reconfigured to have some different IP addresses.

-66

BBN Report No. 8018 Cronus Enhancements Final Technical Report

The auxview's name is "TAV_compare_paths_allsys.tcl". It takes one optional argument,
a simple regular expression naming the SNMP devices to check. It will, by default, check
all SNMP devices available from the SNMPPA's to which it is attached. The results of the
check will be displayed as text. We recommend you save the output in a file.

3.6.2 Enhancements

Selected Display Manager icons have a white crosshatched stipple over the icon. Selected
lines have a white dashed line over the line. You can still see the underlying icon or line
status color.

The SNMPPA, DM and the PMC were enhanced to support FDDI devices. Two Auxiliary
Views are provided to look at the supported variables, the MAC and SMT tables. This
feature has only been tested with Cisco routers running version 9.1 of the Cisco routing
software.

The script "anm_start_av" was enhanced to remove lock files from the tmp directory when
the auxiliary view exits. If the auxview exits abnormally then the lock files may not be
removed.

The PMC will signal the Display Manager if it is working. If the DisplayManager does not
receive any data from the PMC after a configurable interval then it will ring the bell and
issue a message in its message line at the lower left hand corner of its display.

The DisplayManager supports both fixed-size subnetting and variable-size subnetting.
Fixed-size subnetting means that a network is divided into a set of subnetworks of equal
size, driven by a single subnetwork mask. Variable-size subnetting means that a network
is divided into subnets of different sizes starting at any subaddress.

The ANM User's Guide was heavily revised

Several new Policies were added to ANM.

• Policy snmp-sys-aIlif(SNMP System All Interfaces) is used to poll for the status of an
SNMP system and the status of all of its network interfaces. The system's icon is
colored yellow if the device is only reachable using a secondary path, if the device has
not responded to a few recent polls, or if any of the interfaces is down or in a testing
state operationally or administratively. An alert is issued in the DisplayManager's
alertlog with a description of the problem.

• Policy lightstream-sys (Lightstream System) is used to poll for the status of an
Lightstream system, its chassis, and the status of all of its cards. The system's icon is
colored yellow if the device is only reachable using a secondary path, if the device has
not responded to a few recent polls, if the chassis status bits are set, or if any of the
cards has a problem. An alert will be issued in the DisplayManager's alertlog with a
description of the problem.

• Policy Ipr-net (Low Cost Packet Radio Network) is used to poll for the status of an
LPR network as seen from the PC attached to it. The icon is colored based upon the
lprstatusMonitorState variable in the lprstatus table. An alert is issued in the
DisplayManager's alertlog with a description of the problem.

-67-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

• Policy fddi-sys (Fiber-Distributed-Data-Interface System) is used to poll for the status
of an SNMP system that also implements the FDDI MLB. The icon is colored yellow if
there is a problem with the general system or a problem on the FDDI ring. Problems
on the FDDI ring are currently just determined by examining the fddiSMTCFState
variable in the fddiSMTTable. An alert will be issued in the DisplayManager"s alertlog
with a description of the problem.

• Poücy/(ü'-/p-j/(Fiber-Distributed-Data-Interface IP addressable Interface) is used to
poll for the status of an FDDI interface on an SNMP device. The line is colored yellow
if there is a problem in the MIB-2 interface operational status and adminstrative status
variables or in the fddi MAC table RMT state variable. An alert is issued in the
Display Manager's alertlog with a description of the problem.

A menu item, "Generate Historian Config File", was added to the Auxiliary Views to make
the generation of the Historian Configuration File easier for the ANM user.

The SNMPPA now supports source routed paths. This allows you to configure the route
that the SNMPPA will take to an SNMP device. This is useful in situations where routing
in the network has failed.

3.6.3 Changed Features

The format of the alerts printed by the DM was changed

A new alert was added to the DM to inform the operator when the Router/Merger stops
responding.

The Historian now has the ability to timestamp in either GMT or Local Time.

The infstorer (Informix Storer) now has a feature to allow stuffing data from flat text
(ASCII) files into a Informix database and then exiting. This feature allows data to be
collected and initially stored via the copy_storer into a large file and then easily stuffed into
an SQL database.

In a Historian configuration file, there is now the ability to turn off writing attribute names
in Historian output files. This feature was requested by some ANM User's because the flat
text files so produced will be smaller and use less disk space.

68-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

4 Software Development Procedures

This section summarizes some of the software development procedures used under the
Cronus-related portion of the activities described here.

Quality control and configuration management procedures are integral parts of the Cronus
software development process. Our approach was incrementally developed over several
years, and was additionally refined during the production of each of the releases described
earlier.

Quality control is achieved through a set of procedures that ensure the orderly development,
integration, and testing of software. Early in the development cycle, developers must
evaluate one or more approaches for solving a problem. Later in the cycle, they must be
willing to reevaluate these approaches based on lessons learned. As the code is developed,
it is important to keep in mind the potential needs of future releases and users as well. The
results of these thought processes should be made available to future developers, either
through formal design documents, or through informal design notes.

As code is developed, it should be under some kind of source code control system, and
subject to additional controls when approaching release time. Critical code should be
evaluated by more than just its developer. Prior to delivery, each Cronus release is subject
to a wide variety of tests to verify its integrity: Finally, mechanisms need to be in place to
track and fix bugs after the system has been delivered.

4.1 Evaluating and Reevaluating Several Approachs

Our redesign of the Cronus interprocess communication (IPC) system is a good example of
how to evaluate different implementation approaches before proceeding. In evaluating
various approaches for release 2.0, we spent considerable time making an effort to
understand the limitations of the existing Cronus 1.5 IPC system. The IPC redesign
required careful consideration and evaluation of various needs, including the satisfaction of
performance improvement goals, the realization of desired functionality and usability, and
effective integration with underlying operating systems. For example, the status checking
mechanism for long duration operations could have been implemented in either the client
run-time library or in the Cronus kernel. We decided in release 2.0 to implement it
as part of the Cronus kernel - this significantly decreased the IPC code in client programs,
at die expense of a slight increase in the amount of code in the Cronus kernel.

Many examples of reevaluation took place during the development of Cronus 3.0. First,
we took advantage of the fact that an interim release between Cronus 2.0 and 3.0
incorporated prototype versions of some components. Based on experience gained with
these prototypes, we made improvements for the versions included in 3.0. For example,
our initial implementation of mount points was redesigned after we discovered some
limitations of the approach in the multicluster version. Second, we improved some
mechanisms to take advantage of additional mechanisms provided by the native operating
systems on which Cronus runs. In particular, we migrated our intrahost IPC mechanisms
for UNIX platforms from UDP to UNIX domain sockets, to improve performance and
reliability in this and future releases. Third, we reacted to the changing state-of-the-art and
user requirements by migrating the Cronus software from outmoded platforms to newer
ones. We migrated the Cronus Lisp implementation off of the special-purpose Symbolics
machine onto lower-cost / higher-performance commodity hardware. And we migrated the
Cronus Mach implementation off of the Sun 3 onto the NeXT workstation. (The former

-69-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

activity leveraged off of previous work done in Cronus 2.0 to adapt the Cronus Common
Lisp implementation to emerging standards, such as the Common Lisp Object Systems
(CLOS).)

In summary, we view continuous improvement through evaluation and «evaluation as
being critical for the development of successful systems.

4.2 Internal Software Design Notes

In addition to formal deliverables, during the project a wide variety of technical notes were
produced. The more important of these are available as part of the BBN DOS Note series,
which dates back to our early involvement in the development of distributed operating
systems. The notes produced during this effort were as follows.

"Cronus Integration Issues," DOS Note 120, Paul C. Neves and James C. Berets, March
1989.

"Supporting Large Object Databases in Cronus," DOS Note 121, Rick Floyd, March 1989.

"Networking Software on VAX/VMS Systems," DOS Note 122, Steve Jeffreys, April
1989.

"MCS Events and Instrumentation," DOS Note 123, Steve Vinter, September 1989.

"Cronus 1.4 for the AT&T 3B2 and 6386 - Release Notes," DOS Note 124, Edward F.
Walker, December 1989.

"Cronus on Mach 2.0 - Special Release 1.4.MACH.1," DOS Note 125, Edward F.
Walker, January 1990.

"Cronus Simulation Experiment," DOS Note 126, Ken Schroder, January 1990.

"Future Directions for Replication in Cronus," DOS Note 127, Richard Floyd and Stephen
Vinter, April 1990.

"Integrating Kerberos into Cronus," DOS Note 128, Rich Salz, June 1990.

"Coda, the Code Distribution Aide," DOS Note 129, Rich Salz, August 1990.

"Cronus Installation Language," DOS Note 130, Rich Salz, August 1990.

"Porting Cronus to the Sun SPARC," DOS Note 131, Paul Neves, June 1989.

"Porting Cronus to the Interactive 386/ix," DOS Note 132, Richard Salz and Herb Lison,
June 1990.

"Integrating Cronus and Banyan VINES," DOS Note 133, Ward Walker and Steve Vinter,
August 1990.

"Supporting Cronus C++ Applications," DOS Note 134, Rich Salz, December 1990.

"The Delegation Facility," DOS Note 135, Rich Salz, October 1991.

-70

BBN Report No. 8018 Cronus Enhancements Final Technical Report

"Issues in Porting Cronus Applications to ANSI C Platforms," Christopher Barber, June
1992.

"Cronus Ada Tutorial," Mike Dean.

"Cronus 2.0 JPC Design Notes," Robert Goguen.

"Cronus C++ Integration," Mike Dean et. al., work in progress.

4.3 Walkthroughs

Starting with release 2.0, we used code walkthroughs as an additional software engineering
methodology to apply to the development of Cronus software. Walkthroughs are generally
acknowledged to be one of the most effective means of improving software quality. In
addition to being a very low cost means of finding bugs, walkthroughs provide a forum for
software developers to exchange information about the detailed operation of particular
software components. Our walkthroughs were very successful: a variety of suggestions
for significant code improvements were made, and the project staff was very enthusiastic
about applying this approach to other Cronus components in the near future. During the
course of this effort we conducted three code walkthroughs of the Cronus IPC system, and
one walkthrough each of the Cronus 3.0 database conversion tools, status checking code,
and tropic program. These resulted in significant quality improvement of the Cronus
software.

4.4 Baselevels

Configuration management and base-line generation are our primary means for
coordinating multiple developers. All Cronus software is under configuration management
control to prevent simultaneous access to changing code by multiple developers and to track
these changes. Following release 1.5, we overhauled our configuration management
system to add some missing functionality. Our new system added better control over the
integration of new software, provides better audit trail maintenance on source code files,
and increases the ability of developers to add new components.

Using our configuration management system, we develop baselines, or incremental
versions of the system, during the release cycle, to ensure orderly integration of changes.
For Cronus release 2.0, we developed three separate baseline snapshots of the system, one
prior to the IPC changes, one prior to the Kerberos changes, and one as a pre-release
version of 2.0 that was subject to extensive testing. Between Cronus 2.0 and Cronus 3.0,
we developed eight separate baseline snapshots of the system for internal use.

Our quality control also included significant double-checking of corrections to bugs
discovered during final system testing. For the last several weeks prior to final system
delivery, all source code changes were reviewed by at least one developer in addition to the
developer making the change.

4.5 Testing

Once a snapshot has been extracted from the source code control system and built, we
perform numerous test installations of various types (new installations, additions and
updates to existing installations) on various types of machines prior to the release of the
software.

-71

BBN Report No. 8018 Cronus Enhancements Final Technical Report

• We use a collection of different test suites to validate system behavior.

• We bring up applications on top of Cronus that exercise various critical system
features.

• We extensively review documentation to insure consistency with the delivered
software.

For Cronus release 2.0, we integrated several existing Cronus tests, and added a variety of
new tests into a new Test Manager. In addition to using the Test Manager for testing
Cronus at BBN, we have included its source code in Cronus release 2.0. This provides an
enhanced testing capability for hard-to-diagnose failures found at user sites, as well
as giving end users some examples of how to perform a variety of functions in a
Cronus object manager.

4.6 Bug Tracking

Beginning in 1987, we tracked the number of Cronus bug reports opened and closed over
time. The graph summarizes these results through July 1993.

Cronus Bugs

1400 j

1200-■

1000 ■■

800 --

600 - ■

400--

200--

0
Jan-
87

 Cumulative Reported
 Cumulative Fixed

 Outstanding

/

_>

iiiiHTirriiMMiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiMii:i:i-i-:-;-.'-M-i-!-!-HH-i-i
Jul-
87

Jan- Jul-
88 88

Jan- Jul-
89 89

Jan-
90

Jut-
90

Jan-
91

Jul-
91

Jan-
92

Jul-
92

Jan-
93

Jul-
93

-72

BBN Report No. 8018 Cronus Enhancements Final Technical Report

5. Project Technical Briefings

This section summarizes Cronus technical briefings given during the period of
performance.

5.1 Major Project Reviews

Cronus Release 1.4
September 13-14,1989

Overview
Asynchronous Communication: Futures
Update: Cronus Support for Multiprocessors
Release Generation and General Enhancements
Security Enhancement Plans
Testing Cronus
Cronus Applications and Support Activities
Cronus Performance Analysis
Update: Cronus Support for Ada
Query Procesing in Cronus
Monitoring and Control

Cronus Release 1.5
May 23-25,1990

Overview
Associative Access for Cronus Managers
Remote Access to Relational Database Management Systems
Update: Cronus Support for Ada
Cronus Applications and Support Activities
Multiple Inheritance and Cronus
Cronus Performance Measurement and Analysis
Cronus IPC Resign
Access Control and Authentication in Cronus,
JDLDemo
New Replication Ideas
Cronus, Mach, and Multiprocesors

Cronus Release 2.0
April 30-May 1,1991

Overview
Access Control and Authentication
Cronus Directory Manager
Monitoring and Control System
Update: Common Lisp Implementaiton
Cronus IPC: A Comparison between Cronus 1.5 and 2.0
Cronus IPC Rewrite
Cronus Source Control and Release Generation
Cronus Installation Language
Cronus 2.0 Miscellaneous Enhancements
Cronus Support and Application Activities
Cronus Data Analysis Applications
Cronus Application: DART
Update: Ada Implementation of Cronus
Cronus Port to HP9000 Series 300

-73

BBN Report No. 8018 Cronus Enhancements Final Technical Report

Cronus on MS/DOS

Cronus Release 3.0
February 9,1993

Major Project Milestones
Cronus Overview
Cronus Multicluster Enhancements
Directory Manager Enhancements
Delegation Facility
Object Database Converter
New Ports
Notable Enhancements
Support
Recent Applications
Summary

5.2 Rome Laboratory Technology Exchange Meetings

During the Cronus Enhancements project, we participated in six Rome Laboratory
Computer Systems Branch Technology Exchange Meetings. These meetings enabled us to
inform other contractors of our progress, learn about other contractor's activities, and help
form mutually beneficial technical relationships. A summary of the topics we covered
follows.

The Evolution of Cronus
January 10,1989
Stephen T. Winter

Goals
Distributed System Problems
What is Cronus?
The Past, Present, and Future

Cronus Parallelism and Heterogeneity
November 8, 1989
Stephen T. Vinter

Increasing Parallelism in Cronus Applications
Experience with Parallel Processors
Work with Ada
Current status
Future Directions

Cronus Distributed Computing Environment
November 28,1990
James C. Berets

Cronus Overview
Cronus Release 1.5 Summary
Cronus Use and Applications
Cronus 2.0 and Multicluster Plans

74-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

Cronus Evolution
November 19,1991
James C. Berets

Cronus Overview
Cronus 2.0 Summary
Cronus Multicluster Architecture

Cronus Enhancements
January 14,1993
James C. Berets

Cronus Overview
Cronus 3.0 Preview: New Features
Recent Ports: Convex, NeXT, and Lucid Common Lisp
Current Activities

An Update on Cronus
October 15,1993
James C. Berets

Cronus in Brief
Recent Technology Development
Cronus Release 3.0 Summary
Cronus / ANM Integration
Cronus / Mach Integration
Use of Cronus in DoD Applications
Increased System Availability

5.3 Other Technical Briefings

Briefing for RL COES
Advanced Al Technology Testbed - Integration Issues
January 16,1989
Stephen T. Vinter

Distributed Computing in the COES Testbed
March 1,1989
Stephen T. Vinter

Cronus Enhancements Kickoff Meeting
March 2,1989
Various Presenters

Air Force Geophysics Lab Briefing
May 31,1989
Richard E. Schantz, Stephen T. Vinter

Presentation to NASA's Life Science Division
May 1989
Richard E. Schantz

Presentation at Princeton Plasma Physics Laboratory
Cronus Overview
May 31,1989
James C. Berets

-75

BBN Report No. 8018 Cronus Enhancements Final Technical Report

Special Software Engineering Research Center Meeting
Ada and the Cronus Distributed Computing Environment
November 1, 1989
S. Vinter and M. Dean

Open Software Foundation Member Meeting
Cronus: Modular Support for Building Distributed Applications
November 6, 1989
James C. Berets

NGCR OSSWG Review, Mobile, AL
Cronus: Modular Support for Building Distributed Applications
January 26,1990
James C. Berets

Naval Ocean Systems Center
Cronus Status Briefing
March 27,1990
James C. Berets

Boeing Computer Services
Cronus: Modular Support for Building Distributed Applications
June 4,1990
James C. Berets

GE ATL
Cronus: Modular Support for Building Distributed Applications
July 12,1990
Stephen T. Vinter

Compaq Computer
Porting Cronus to the Interactive 386/ix System
Integrating Cronus and Banyan VINES
Integrating PCs with UNIX Systems using Cronus
August 15, 1990
Stephen T. Vinter

NUWES
The Cronus Distributed Computing Environment
August 28, 1990
James C. Berets

Computer Sciences Corporation
The Cronus Distributed Computing Environment
September 12,1990
James C. Berets

GTE Laboratories
The Cronus Distributed Computing Environment
October 31,1990
James C. Berets

76

BBN Report No. 8018 Cronus Enhancements Final Technical Report

COLSA
The Cronus Distributed Computing Environment
February 27,1991
James C. Berets

CECOM
The Cronus Distributed Computing Environment
March 6,1991
James C. Berets

Siemens-Nixdorf
The Cronus Distributed Computing Environment
June 13,1991
James C. Berets

SDIO NTB
The Cronus Distributed Computing Environment
September 6,1991
James C. Berets

IRS Financial Management Service
The Cronus Distributed Computing Environment
September 26,1991
James C. Berets

Rome Laboratory
Cronus Overview
January 14,1992
James C. Berets

NOSC DC2 Project Review
An Update on Cronus
January 28,1992
James C. Berets

SDIO NTB
Integrated Heterogeneous Computing Environments: Cronus
March 19,1992
James C. Berets

NATO Workshop
Cronus Applications
May 14,1992
James C. Berets

NRaD
Cronus 3.0 Review
March 30,1993
James C. Berets

77-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

Digital Equipment Corporation
Cronus Overview
September 14,1993
James C. Berets

Object Managment Group Technical Committee Meeting
Object-Oriented Distributed Computing with Cronus
February 3,1994
James C. Berets

Theater Battle Management Evolvable Systems Techology Day
Building Evolvable DoD Software Systems Using Object-Oriented Approaches
August 3, 1994
James C. Berets

-78-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

6. Uses of Cronus

Cronus has been used to construct a variety of applications. Some of them are described
here.

6.1 APS (1994 - present)

The Contingency Theater Automated Planning System (CTAPS) integrates various Air
Operation Center (AOC) applications including Rapid Application of Air Power (RAAP),
Advanced Planning System (APS), and the Force Level Execution (FLEX) in order to
generate a single Air Tasking Order (ATO). The ATO generation process consists of crisis
assessment, course of action development, campaign planning, and battle planning and
force coordination.

The purpose of the Joint War Interoperability Demonstration (JWID) 1994 exercises was to
show the ability to support single threaded, integrated planning of the air portion of joint
force efforts. Each CTAPS application involved in the exercise demonstrated planners
addressing their areas of emphasis in collaboration with other planners located both locally
over LANs and remotely over WANs.

The creation of an ATO relies on separate applications to contribute pertinent information.
Each applications feeds required data to the next level of planing tools. For example, the
RAAP application produces target nomination lists and weaponeering options for APS;
APS will use this data to generate an Air Battle Plan (ABP). Once the ABP has been
created, the FLEX application may be required to replan (parts of) the mission due to
unexpected events. Because there is no underlying infrastructure which manage the
separate applications, monitoring and maintaining the system can be a very difficult task.

As complex systems (such as CTAPS) evolve, even the simplest tasks can become
increasingly difficult. Advances in hardware capabilities encourages the use of specialized
resources and as a result the main obstacle now lies in unking these resources together.
Issues such as data representation and data transfer across hardware platforms, resource
location, and maintainability should not be a concern to the application developers.
Abstractions powerful enough to hide the complexity of the system are needed so that the
application developers can concentrate on what the application does, not how it will
accomplish it. Using a distributed working environment, such as Cronus, will provide
these abstractions.

The work done in integrating Cronus with the CTAPS applications will demonstrate the
interoperability possible between the multiple applications as well as simplifying the overall
system. The currently fielded version of APS does not support a demonstration of the sort
planned for JWID. The APS application is an integrated, force level air battle planning
system which is used to develop ABPs. In order to overcome certain limitations of APS,
portions of the system were rewritten to use the Cronus distributed computing
environment. In addition, Cronus was used to help integrate RAAP and APS as well as the
FLEX and Marquee applications. Three areas in APS were improved for the JWID 1994
exercises: the data transfer mechanism used between RAAP and APS, the database access
mechanism used between APS and Oracle, and the IPC mechanism which APS used.

RAAP, APS, and FLEX support different phases of the ATO production process. The
first step of this process is performed by RAAP; it's outputs are the weaponeering options
and target nomination lists. This information is created using data stored in RAAPs

-79-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

Sybase database. Once created, these lists are written to the local disk as pipe delimited
ASCII files, and then loaded into the CIDB Oracle database. APS then queries this
database to retrieve the target/weaponeering information and loads it into the APS Oracle
database using Oracle's SQLNET. Once this information has been loaded, APS users can
begin work to generate an air battle plan. The main disadvantage to this data transfer
approach was the expense in writing and reading these files to/from disk.

Once all of the target and weaponeering information has been loaded into the APS Oracle
database, APS users can begin work to generate an ABP. Each APS user is represented by
an APS instance which is comprised of four modules (processes): the User Interface (UI),
the Assessment Tools module (AST), the Map module (MAP), and the Query Transaction
Process (QTP). Each APS instance communicates with an Air Battle Planning (ABP)
component to generate an air battle plan (ABP). The UI is the means of communication
between the user and the system. The AST process is responsible for evaluating the impact
and feasibility of elements for a potential plan. The MAP process provides a graphical
view of the last known locations, restricted airspace, and distances from a particular base to
target within a certain region. The QTP process is the APS interface to the Oracle database
which holds both static and dynamic data. The ABP process is a set of algorithms (written
in Ada) which perform knowledge base management, constraint checking/management and
auto planning.

Accessing the APS Oracle database is accomplished by the QTP module which uses
Oracle's Pro-C programmer's interface. Once the data has been retrieved, it is sent back to
the requester in a pipe delimited string using APS EPC library. This requires the QTP to
parse the returned data, create the pipe delimited string, send the string to the requester
using APS IPC, and then the requester parsing the received string and re-formatting it.
While this was a functional approach, it was not a desirable one. Since both RAAP and
APS accessed off-the-shelf databases, the Cronus Database managers were used to supply
a uniform database interface.

The other area which needed improvement was the IPC mechanism used by APS. Since
one of the objectives for the 1994 JWTD exercises was to demonstrate distributed
collaborative planning capabilities, Rome Laboratory wanted to demonstrate multiple APS
users working together to create a single Air Battle Plan over a wide area. While the
currently fielded version of APS could achieve this over a local area network, it was not
possible to do so over a wide area network. The major problem was the way the APS IPC
registration mechanism was designed. The original implementation depended on
broadcasts to work properly; a mechanism which is not supported over WANs. The
overall design of APS's IPC layer was also lacking in the following areas: it suffered from
a single point of failure (the ipm_mang process), each module performed a lot of polling
(checking for new messages and/or address bindings), and the way the IPC library was
implemented would make it difficult to integrate APS with other applications (RAAP for
example). The EPC work was divided up into four phases, where each phase incrementally
improved upon the preceding phase and addressed one of the previously mentioned
problems. Phase 1 addressed the problem with the registration process, phase 2 addressed
the single point of failure problem, phase 3 addressed the excessive polling problem, and
phase 4 addressed the interoperabilty issues.

Cronus was also used to help integrate the FLEX and Marquee applications. The FLEX
system monitors air battle plan execution, detecting deviations, determining the impact of
those deviations on the plan, and suggests courses of action to repair the plan. The
Marquee provides a graphical timeline representation of the missions planned in the Air
Tasking Order (ATO). Previously, the functionality of these two programs were bundled
together as one (FLEX/Marquee), so when Rome Laboratory decided to unbundle them, it

-80-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

became necessary for the two programs to have access to global status reporting data.
FLEX and Marquee needed a reliable mechanism which would push out new status
information to both applications.

For JWID '94 Cronus was successfully integrated into APS to help the IPC mechanism
used between APS modules and other CTAPS applications. These achievements allowed
for the successful demonstration of APS at the JWTD "94 exercises over a WAN
environment as well as simplifying the data transmission between APS and RAAP. Our
improvements to the APS IPC library increased performance dramatically while at the same
time simplified many of the IPC algorithms, including those for process registration and
addressing. Previously required processes (ipm_mang and imph) were functionally
replaced (with the Crimph Manager) which resulted in a stabler, more reliable environment.
The use of Cronus to transfer data from one relational database to another (RAAP to CIDB
to APS) as well as from APS to Oracle, encourages the idea of distributed computing.
Many of the limitations dictated by the database vendors become null issues when using
Cronus to access them. Restrictions such as applications having to run on the same
machine as the database, or programming support for the C language only, no longer exist
when using Cronus.

6.2 JWID 94: Network Management Integration (1994 - present)

At JWID 94, two network management systems, ANM (the Advanced Management
System) and IMS (the Integrated Management System), ran at different sites. Each system
maintained a network map marking the up/down status of hosts. Cronus was used to pass
status information between the two systems, keeping the two displays synchronized.

ANM was installed on a SPARC machine running SunOS4 at ACOM, Norfolk, Virginia
and IMS on one of two SPARC machines running Solaris 2.3 machines at Ft. Gordon,
Georgia. Cronus was installed at both sites on three hosts. A Cronus application MIST,
(Managed Incremental State Tracking) maintained a representation of known host state
information in a MIST object The MIST application kept the ANM and IMS system
synchronized without polling. Also, it used less than 2kb/s over a two hop satellite
network and automatically recovered from link failures.

Two ctients, mistify and vigil were used to transfer the state from ANM and pass it to IMS.
On the ACOM host, ANM wrote host status information to the mistify client as it detected
changes in a host's up/down state. Mistify sent the status changes to a mist object which
tracked the state of ANM.

At Ft. Gordon, the vigil client continuously received host status from the mist manager.
The mist manager kept track of which host status updates had been received by the client
and blocked if the client had received all updates. Multi-tasking in the mist manager
allowed it to handle multiple vigil sessions. As it received a host state update, the vigü
client wrote it to the IMS system. IMS then used this information to update its network
map display.

An application management tool was developed to facilitate debugging as well as to provide
a view of the overall configuration's status. This tool displayed an iconic representation of
the MIST programs involved and the flow of data between them. The up/down status of
the programs, hosts, and network was indicated by changes in icon color. Additionally,
Cronus kernels and managers had menus containing Cronus commands to start and stop
and display helpful information.

81-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

6.3 Common Prototyping Environment (1993 - present)

The Common Prototyping Environment (CPE) is one of a number of activities of the
ARPA-Rome Lab Planning Initiative (ARPI). The purpose of the CPE is to support
technology integration experiments within the planning community, and to allow
comparison and evaluation of planning tools by establishing standard communication
mechanisms between tools. In addition, the CPE seeks to promote on-line access to data
and scenarios for the transportation planning domain, to support the transition of research
prototypes to operational systems, and to further the state-of-the-art of distributed
concurrent, cooperative planning in a heterogeneous environment.

CPE components interconnected using Cronus include those contributed by: the University
of Massachusetts, Carnegie Mellon University, GE CRD, ISX Corporation, BBN Systems
and Technologies, and SRI International.

6.4 ARGUS (1993 - present)

ARGUS is a versatile software system for the storage, retrieval, and analysis of radar,
infrared, acoustic and other types of target signature data. Such signature data are often
referred to as MASINT, or Measurement And Signatures INTelligence data. The
collection, analysis, and management of signature data on military vehicles, ships and
aircraft is vital to the development and evaluation of advanced sensor and weapons systems
that are increasingly depended upon to not only detect and track potential targets, but
distinguish between friendly and hostile systems.

ARGUS is designed to assist a wide range of users within the DOD, involved in the
acquisition, analysis and management of large quantities of target signature data. At one
end of the user spectrum are analysts who need to locate, retrieve and operate on specific
sets of signature data to conduct quantitative or qualitative analyses. At the other end of the
spectrum are managers who don't necessarily need to access the data directly but do need to
be aware of what data are available to effectively coordinate signature acquisition efforts,
analysis tasks, and production schedules.

In support of this diverse user base, ARGUS is designed to handle a wide range of
signature and other related data, such as target geometries or models, and provide extensive
on-line documentation of these data. In addition to the core database, ARGUS also
provides access to a variety of software tools for the display, analysis and management of
signature data.

ARGUS is intended to operate on standard computer workstations running the UNIX
operating system and X windows. The initial implementation of the ARGUS prototype is
on SUN SPARC workstations. ARGUS is a combination of custom and standard, off-the-
shelf software and is written in ANSI standard SQL, C, and Common Lisp programming
languages. Cronus is being used in a system integration role for ARGUS: communicating
ARGUS components, both LAN and WAN based, cooperate via Cronus operation
invocations.

ARGUS was originally aimed at supporting the U.S. Army Foreign Science and
Technology Center (FSTC) in the day-to-day management and analysis of their rapidly
expanding volume of MASINT data. However, the architecture upon which ARGUS is
based is quite versatile, and the system can be readily adapted to support the data storage,
retrieval and analysis needs of a variety of other intelligence, Test & Evaluation (T&E), and
system development applications.

82

BBN Report No. 8018 Cronus Enhancements Final Technical Report

Recently, ARGUS, in combination with rapidly developing DOD secure network
technology is evolving to become the basis for the implementation of a distributed National
Target Signature Data System (NTSDS). As such, ARGUS wUl not only be a resource
that can help individual organizations within the DOD signature community improve the
local management of their own data, but will also provide a common vehicle through which
the community can interchange data, coordinate activities, and reduce fragmentation.

DATABASE INTERFACE

ANALY«8 BNVlRONMEKl

Figure 4: ARGUS Data Flow

83-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

Generation
Event

Data Types

PARAMETERS

ARGUS
Database

• Data Descriptor»
• Target/Sensor Info
» Event Information
• Test Conditions
• Commentary
»Requirements
• VV&A Trail info
• Etc.

DATA FILES

Signatures
♦ Images
»Time Series
»Spectra
»Etc.

Other
»Models
• Documents
»Etc

Figure 5: ARGUS Architecture

6.5 DART (1991 - present)

The Dynamic Analysis and Replanning Tool (DART) is another application where Cronus
has been used to connect dissimilar components. DART started as an effort to inject
knowledge-based planning and scheduling technology into the upperreaches of the U.S.
Transportation Command, which controls all large military cargo aircraft and ships. Using
DART, transportation analysts assess whether sufficient air- and sea-lift capacity exists to
move units and equipment to their destination according to schedules determined by
warfighting commanders. Much of the analysis done by DART is based on Time-Phased
Force Deployment Data (TPFDD) stored in the Worldwide Military Command and Control
System (WWMCCS).

When examining a scenario, DART retrieves appropriate information from WWMCCS and
then applies intelligent transportation planning tools to analyze and refine the data.
(Capabilities also exist for returning a refined TPFDD to WWMCCS.) The bulk of the
DART analysis software is written in Common Lisp. Most of the data is stored in an
Oracle relational database.

Oracle provides programming tools for executing database queries from the C, FORTRAN,
COBOL, and Ada programming languages, but does not provide an interface from
Common Lisp. Most Common Lisp implementations under UNK support some sort of
"foreign function call" mechanism that allow calls to the C runtime, but this is cumbersome
and error-prone, particularly when dealing in a preemptive multi-tasking environment
where garbage collection could occur at any time. The turnkey Cronus Database Interface
Managers provide a uniform high-level interface to several different relational DBMSs.
They interact particularly well with the dynamic typing of objects in Common Lisp,

-84-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

allowing a single function call to return converted data in a directly usable form that
Common Lisp programmers would naturally expect During a typical run of an analysis
model, DART uses Cronus to retrieve several megabytes of data from several hundred
thousand Oracle records.

The original DART system was developed during an intense 10-week effort during
Operation Desert Storm, and was used operationally in its latter stages to model and track
the flow of personnel and equipment to the Persian Gulf region. The high-level
expressiveness of Common Lisp and the availability of building blocks such as Cronus
made this rapid development possible.

Cronus is playing a bigger role in follow-on efforts, including the interconnection of
standalone DART systems and on-line access to external data sources.

6.6 AAITT (1989 - present)

Martin Marietta Laboratories, in conjunction with other contractors, has developed an
Advanced AI Technology Testbed (AAITT) for the U.S. Air Force Rome Laboratory. Key
in the AAITT architecture is a plug-and-play approach to developing decision aids: within
AAITT, individual components from within the Tactical Command Control,
Communications, and Intelligence domains can be integrated flexibly. AAi'lTs design
includes three elements: a Distributed Processing Substrate (DPS), a Modeling, Control
and Monitoring Workstation (MCM), and the core simulation and database modules.
Because of Cronus's extensive support for heterogeneity (languages, operating systems,
machines), and its easy-to-use development tools, Cronus was selected as the Distributed
Processing Substrate of choice.

AAITT application components have included:

• The Air Force Mission Planning System (AMPS), developed by the MITRE
Corporation for planning and replanning air tasking orders

• LACE, a land-air combat simulator for tactical engagements in the European theater

• TAC-DB, a tactical database of NATO capabilities, developed by Knowledge
Systems Corporation (KSC).

6.7 BBN Office Automation Applications (1988 - present)

6.7.1 Phone (1988 - present)3

Corporate telephone directories, by their nature, suffer from problems with accuracy and
completeness: new employees join a company, existing employees move from one office
or department to another, corporate reorganizations take place, and so on. As a result,
printed directories are already out-ot-date when they are distributed. For example, BBN's
telephone directory is published in hard-copy form twice a year, and information contained
in it must be "frozen" approximately one month prior to distribution.

In order to provide a more accurate and complete version of the BBN telephone directory, a
Cronus-based on-line version of the directory was developed for UNIX and VMS systems.

3Some text provided by an internal memorandum from J. Stephen Groff of BBN.

-85-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

The Cronus-based system is a client / server system. A copy of the BBN telephone
directory database is loaded into an Informix database and resides on a Sun workstation. A
Cronus-based telephone directory Phonebook Manager running on this machine allows
clients to access this database. Clients with the appropriate BBN Telephone Directory
applications software and Cronus kernel software can access the server. Client software
was developed for VAX ULTRIX, VAX VMS with Wollongong TCP/IP, Sun 3 and 4
Symbolics running Genera, Masscomp running RTU, and the Butterfly GP1000 running
Mach. There are approximately 100 BBN machines running Cronus software which
currently access the BBN Telephone Directory on-line, some of which are located in remote
offices (e.g. Bellevue WA., Canoga Park CA., San Diego CA., etc.).

Two user interfaces exist to access the BBN Telephone Directory server. One is a
(terminal independent) menu-driven interface. The second interface is a simple command
line interface which allows searches by last name. Both of these interfaces could be
accessed through a guest account for people who do have accounts on machines where
Cronus is installed.

6.7.2 Calendar (1988 - present)

Since 1988, BBNers in several departments have used an on-line shared calendar to let
each other know about upcoming travel and vacation plans, visitors to BBN, and special
events like meetings and demonstrations. In addition to acting as a reminder system and
assisting in meeting planning, the Calendar System makes it easy to determine whether or
not someone is at BBN on a particular day.

The Calendar System uses Cronus to provide remote access to a shared Informix relational
database of schedule information. In essence, Cronus encapsulates the Informix database
and makes it available over the network to BBNers running Cronus on their machine.
Thus the database can be remotely accessed without the bother of using TELNET to
connect to the actual machine on which it resides, and with the appearance that it is actually
available locally.

The Cronus Calendar System supports a variety of user interactions. First, a forms-
oriented user interface that runs on UNIX (Ultrix, SunOS, etc.) and VAX/VMS systems
can be used to enter, modify, display, or browse stored information. Queries to the
database may optionally be passed through filters, so that you can focus on a particular
groups of people in which you are interested. In addition to the interactive forms interface,
one can subscribe to daily calendar distribution by electronic mail. This will cause the
Calendar System each morning to send the subscriber electronic mail containing
information for that day. Finally, the system can produce hardcopy calendars for printing
and distribution, including a three-week-at-a-glance calendar in BBN Slate format.

The Calendar System's user interface can be learned in about ten to fifteen minutes through
experimentation.

6.8 JDL (1988 - present)

The lead command and control laboratories of the U.S. Air Force, Navy, and Army have,
sincd 1988, been evolving a tri-service demonstration of distributed system technology.
The development of this demonstration is designed to illustrate the benefits of inter-service
cooperation in a command and control context and to serve as a testbed for wide-area,
multi-organization distributed applications.

86-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

The desire to build applications that span organizational boundaries exposes some unique
problems in application development There is a need to maintain interoperability even
when different organizations are responsible for building and maintaining different parts of
an integrated application. The system architecture must support evolution, to allow the
integration of new or improved components over time. Also, the contributing
organizations may wish to remain autonomous, even though they are collaborating in the
development and execution of a distributed application. For example, an organization
might want to be responsible for configuration management and for access control over the
resources it owns. Finally, the operational environment should support application
components executing across a high-latency, (possibly) low-bandwidth wide-area network.
This poses a set of problems not faced in low-latency, high-bandwidth local area network
environments. Object-oriented techniques facilitate the desired interoperability and
evolution. As extensions to Cronus, BBN has incorporated new system mechanisms to
support clustering of resources. (A cluster is essentially a group of host computers
managed by a single administrative entity.) The most recent Cronus release included this
capability.

6.9 Reporting and Tracking System (1987 - present)

The Cronus (Bug) Reporting and Tracking System is a set of tools to help groups of users
and maintainers generate, track and close (bug) reports. It can also be used to track hotline
calls, enhancement requests, etc. Reports are conveniently accessible in a distributed
environment: they are stored in the (Bug) Report Manager and are accessed transparently
over the network by one of two user interfaces. Underlying Cronus facilities provide
query processing support in the Bug Report Manager to provide SQL-like retrieval
capabilities.

Two user interfaces are provided. The first is an X Window-based graphical user
interface. The second is an interactive forms-based / command line interface (for non-X
users and quick use).

6.10 CASES (1988 - present)

The Capabilities Assessment, Evaluation, and Simulation System (CASES) is a campaign-
level decision support tool used by military planners to graphically create, edit, and analyze
operations plans in both deliberate and crisis planning. CASES provides a distributed
computing environment operating over both wide-area and local-area networks to make the
advantages of high performance computing capabilities available to planner/analysts.

CASES is a planning aid component of the Navy's Operations Support System (OSS)
command center upgrade program. CASES supports the analysis of maritime operations
including strike warfare, antisubmarine warfare (ASW), and battle force defense. An
ongoing major upgrade will significantly expand the warfare analysis capabilities of
CASES including anti-surface warfare, strikes against critical mobile targets, shallow water
ASW, theater missile defense, mine warfare, land warfare, surveillance, command and
control, and logistics.

CASES is a potent tool supporting the two-tiered command concept Using the Theater
Analysis and Replanning Graphical Execution Toolkit (TARGET) system, CINC level
planners can develop skeletal courses of action (COAs) which can then be passed to
CASES for more detailed planning and evaluation of alternative COAs.

87-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

Using CASES, military planners can create, store and recall operations plans from existing
libraries throughout wide-area networks. Plans can be developed collaboratively with
planners from diverse commands editing a plan simultaneously. With the support of
workstation video tele-conferencing, interactive collaborative planning becomes a uniquely
powerful tool for developing well-coordinated operational plans with a high probability of
success in the complex environment of joint operations.

CASES provides a shell for the integration of a variety of warfare simulation and
performance prediction models. CASES provides planners with a complete set of tools for
choreographing the campaign analysis. The human computer interface allows planners to
define and modify a wide variety of model inputs which drive the simulation.

All warfare models in the CASES model suite are monte-carlo based simulations which
allows the planner/analyst the freedom to explore a wide variety of options and examine a
range of possible outcomes. CASES provides both an interactive and a batch evaluation
capability. The interactive mode provides the planner with a capability to "sanity-check"
the plan and ensure that all operations are occurring as intended and that plan objectives are
being achieved. Batch evaluation provides a full set of monte-carlo based results which
gives the planner a set of measures of effectiveness with which to compare alternative
courses of action.

By integrating tools for the creation, storing, and editing of plans with advanced
technology and wide-area networks, CASES provides a true distributed, collaborative
decision making environment which provides the military planner with the capability to:

• review and compare multiple alternative COAs quickly
• evaluate a broad range of options
• make timely decisions based on the current situation
• respond quickly to changing scenarios

CASES is used by a variety of commands including JCS, CINCPACFLT, and
COMSEVENTHFLT. CASES is compatible with both the DTC-II/Sun 4 and the TAC-
m/HP architectures. The CASES model suite runs on a wide variety of high performance
computing platforms including Encore, Cray, Sequent, etc.

Cronus is particularly designed for large-scale distributed applications involving many
components operating in diverse computing environments like CASES. CASES is a
complex Cronus application which includes a large number of application-specific object
managers, and a variety of client programs.

6.11 THETA (1985 - present)

Currently in its third phase, the THETA (Trusted HETerogeneous Architecture) project is
developing a prototype secure distributed computing environment heavily based on
Cronus. THETA is aimed at satisfying NCSC B3 requirements for security. THETA
assumes a layered architecture and is designed accordingly: like Cronus, it assumes that it
will be hosted on top of a native operating system. In THETA's case, the assumption is
that the native operating system will also be a secure operating system, and that secure
networking capabilities will be available. In Phase I of the project ("Secure Distributed
Operating System"), BBN, in conjunction with Odyssey Research Associates, developed
system goals and requirements, and an early model for the system. In Phase II
("Experimental Secure Distributed Operating System"), Odyssey Research Associates, in
conjunction with BBN, refined the model and developed an early prototype on AT&T 3B2
and 6386 systems running System V/MLS. Currently, in Phase III ("Evaluation /

88

BBN Report No. 8018 Cronus Enhancements Final Technical Report

Enhancements for THETA"), Odyssey Research Associates in conjunction with Trusted
Information Systems is expanding the functionality and completeness of the system, as
well as porting the system to a number of new platforms (for example the Sun
Compartmented Mode Workstation).

6.12 TVE (1987 - 1989)

The Cronus Technology Validation Experiment (TVE) was begun in February 1987 at the
request of the Air Force Electronics Systems Division (ESD) and the Rome Laboratory
(RL) as part of a program to develop and evaluate support for large, distributed Strategic
Defense Initiative (SDI) simulations. On this project, BBN focused on the Cronus
distributed system and its support for distributed application development and operation.

As part of their program to study SDI BM/C3 architectural issues, the Air Force Electronics
Systems Division and MITRE Corporation have been developing a set of simulation
programs which model SDI system components and the environment in which they
operate. To begin to explore how these simulations could be developed and operated in a
distributed environment, the Cronus TVE was devised. We were primarily interested in
how the simulation model could be incorporated into an object oriented distributed system;
in whether the resulting distributed simulation could be operated efficiently across a large
geographical area incorporating a variety of computer systems; and in what ways an
operator can effectively configure, monitor and control the simulation as it runs.

For this Cronus experiment, we chose a simulation previously developed by MITRE to
explore SDI data processing and battle management algorithms. The simulation models
threat trajectory and orbital propagation based on previously generated threat scenarios,
limited weapon system operation, sensor system operation, sensor correlation, target track
prediction using a Kaiman filter, determination of weapon coverage of the threat using a
two-stage filter, and assignment of individual weapons to targets. Our experiment
methodology was to adapt this suite of existing, non-distributed SDI simulation programs
to operate in a distributed environment using Cronus and its distributed application
development tools.

The overall MITRE SDI simulation system consisted of three major functions: threat
generation; simulation; and display. Threat generation produced simulated booster
trajectories, described as an evolving series of position and velocity state vectors.
The simulation models threat trajectory and orbital propagation based on previously
generated threat scenarios; limited weapon system operation; sensor system operation;
sensor correlation; prediction using a Kaiman filter and known reference trajectories;
determination of weapon coverage of the threat using a two-stage filter, and assignment of
individual weapons to targets. Display allows the monitoring of the simulation progress.

The non-distributed simulation was comprised of seven primary simulation programs
(including two sensors) and a few auxiliary programs. All components operated on a
single VAX/VMS system. Most of the software was written in VMS Fortran, with limited
sections written in Pascal and VAX assembly language. The operation of the simulation
was basically manual and sequential: programs generate inputs to other programs and
some programs must be run to completion before other programs are started. The principal
mode of communication among the programs was the use of files, although local host
interprocess communication (specifically, VMS mailboxes) was used among a small,
concurrently operating subset of components. We were supplied with threat files for two
scenarios: for a single booster; and for 105 boosters. The threat scenario was selected by
choosing one of two suites of input and simulation object parameter files and by various

89-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

execution parameters entered interactively when the modules are started Both scenarios
are run with two sensor platforms and 1300 weapon platforms.

The simulation components were as follows.

• Trajectory I Orbital Propagation (Boosters and Sensors) numerically integrates state
vectors to simulate the movement of the sensors, weapon platforms and boosters
described in the threat data provided as input to the simulation. The threat data input
file is a series of sensor and weapon platform state vectors at time zero, combined with
booster state vectors sampled at times ranging from time zero to the end of the scenario.
The output of this module is a series of state vectors describing sensors, weapons and
boosters for each epoch from time zero to the end of the scenario. Output is passed to
the sensors via VMS mailboxes to allow parallel operation.

• Orbital Propagation (Weapon Platforms) numerically integrates state vectors for
weapon platforms. This module is similar to the Trajectory / Orbital Propagation
module, but passes its output through a file. This eliminates the restriction on the
number of active objects which can be handled, but also disallows parallel operation
with other modules. Since changes of weapon platforms status do not occur in the
current simulation, the file approach is useful here and allows significantly greater
numbers of platforms to be simulated. Since, booster status may change as a result of
weapon actions in the current simulation, the booster simulation must be simulated in
parallel with other components. A follow-up filtering phase, the Geographic Filter,
calculates Kinetic Kill Vehicle (KKV) threat coverage based on straight line KKV
trajectories from weapon platforms to booster launch sites. It accepts the series of
weapon platform state vectors and filters out data representing infeasible weapon-target
pairings.

• Sensors generate two-dimensional sensor observations. These modules, of which
there may be one or two, accept state vectors sent via mailboxes and emulate the
behavior of two dimensional orbiting sensors. This phase-plane data represents what
the emulated sensor records based upon the environment situation described in the input
state vector data. The output of each sensor is a series of two dimensional sensor
observations from time zero to the end of the scenario. The output is recorded in a file
for later processing.

> Correlation performs multi-sensor correlation and two-dimension to three-dimension
conversion. This association and fusion processing takes data from multiple sensors,
associates target detections from the data and uses the associations and the sensor
positions to estimate the three-dimensional position of the targets. The module also
makes use of the original threat data to simulatefeedback from the Kaiman filter. This
simulated feedback data, which will actually be supported in a later version, is used to
resolve ambiguities between targets. The output is a series of correlated three-
dimensional sensor observations from time zero to the end of the scenario.

Kaiman Filter uses Kaiman filtering algorithms to predict future target positions. It
reads the three dimensional sensor observations and produces a series of target
predictions. This module also uses a set of matrices, provided by the pre-filter, which
describe a variety of known booster reference trajectories. It also uses a file of known
booster launch sites. An auxiliary Kaiman pre-filter generates matrices used by the
Kaiman filter which represent a set of known booster reference trajectories.

Dynamic Assignment Filter calculates KKV threat coverage, calculates probabilities of
kill for feasible engagements and performs weapon assignments. In the current

90

BBN Report No. 8018 Cronus Enhancements Final Technical Report

simulation these assignments are not fed back to the booster simulation; however future
versions will include KKV trajectory simulation and simulated interception with the
boosters.

The results of our efforts was a distributed version of the original simulation model. It
operated in a testbed that included both Sun UNIX and VAX/VMS systems. The testbed
was distributed across three sites: BBN, Cambridge, MA; MITRE, Bedford, MA; and RL,
Rome, NY. This software was demonstrated in February, 1988. After this initial
demonstration, we integrated improved versions of the simulation algorithms and used the
distributed simulation for performance evaluation studies.

6.13 INDEXER (1986 - 1989)

The Intelligent Document Indexing and Retrieval System (INDEXER) system was
developed by BBN for the U.S. Navy. The intent of this project was to provide a large
scale, multi-user distributed document storage and retrieval system which incorporates
intelligent components, based on a highly extensible and scalable architecture.

INDEXER provided basic card-catalog-style and keyword indexing and retrieval.
Documents and document indices were stored in a distributed fashion among several
machines. Users interacted with the system through a graphical interface which supports
document viewing, cataloging of new documents, and library searches.

Intelligent, concept-based indexing of documents was also supported by INDEXER. This
form of document indexing and retrieval was supported through use of a knowledge
representation system. Domain models were developed for the various documents in the
system, and were used as the basis for document indexing and retrieval. This concept-
based system supported retrieval queries whose target documents did not necessarily
directly contain the key words or phases specified in the original query.

The INDEXER system was implemented using Cronus. Cronus provided an object-
oriented architecture for developing indexing, storage, and other system modules
independent servers. In INDEXER, Cronus supported the integration of modules
implemented in both C and Lisp, as well as integration of commercial and custom software.

INDEXER ran on Sun 3 and Sun 4 machines, and consisted of Cronus-based indexing and
retrieval software, the KREME knowledge base system, an Informix relational database,
and the BBN Slate multimedia document editor.

-91

BBN Report No. 8018 Cronus Enhancements Final Technical Report

7. Technology Transfer / Advancement of State-of-the-Art
7.1 Installations

In addition to being a highly productive R&D effort, the Cronus Enhancements effort has
been successful at delivering highly stable, usable software to customer sites. The
following sites are representative of those that have used Cronus either directly or as part of
an application installation.

Advanced Decision Systems
Center for Naval Analysis
Cimflex Teknowledge
Defense Intelligence Agency
DIS A Joint Demonstration and Evaluation Facility
GE Advanced Technology Laboratory
GTE Laboratories
Harvard / Smithsonian Center for Astrophysics
ISX Corporation
McDonnell Douglas
MITRE Corporation
Johns Hopkins University Applied Physics Laboratory
NASA Goddard Space Flight Center
National Computer Security Center
National Parallel Architecture Center (NPAC) at Syracuse University
Odyssey Research Associates
SRI
U.S. Air Force Rome Laboratory (RL)
U.S. Army Communications and Electronics Command (CECOM)
U.S. Army Foreign Science and Technology Center (FSTC)
U.S. Navy NCCOSC RDT&E Division (NRaD)
U.S. Navy Pacific Missile Test Center
U.S. Pacific Command
U.S. Transportation Command
University of California, Los Angeles

7.2 Training

During the period of performance, we improved and modified our Cronus Workshop.
This five day workshop is designed to familiarize attendees with the methodology and tools
for designing and building Cronus distributed applications, and with the capabilities of
Cronus and its relevance to the customer's problems. We have found the workshop to be
instrumental in increasing user's understanding of Cronus concepts and mechanisms, and
also in the general concepts of object-oriented distributed systems.

The workshop is intensive and is oriented toward C programmers fluent in the language.
No previous Cronus experience is required. The workshop consists of approximately 50%
lecture sessions and 50% hands-on Cronus programming exercises. The lecture sessions
in turn consist of about 50% conceptual and 50% practical material typically including the
following major areas:

Motivation
Cronus Object Model

-92-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

Cronus System Managers
Cronus Command Set
Cronus Database Managers
Protocol Layering
Asynchronous Mechanisms
Manager Development Tools
Cronus Kernel
Other Environments: Common Lisp and Ada
Building Distributed Applications
Some Example Cronus Applications
Future Development
Cronus and CORBA
Question and Answer

During the five year contract period, the course was taught 18 times, 9 times at BBN and 9
times at customer sites. (12 of these courses were funded independently of this activity.)
The dates of these workshops and the number of attendees were as follows:

Course #7; January 1989; 10 attendees
Course #8; May 1989; 16 attendees
Course #9; June 1989; 14 attendees
Course #10; December 1989; 11 attendees
Course #11
Course #12:
Course #13
Course #14
Course #15
Course #16:
Course #17
Course #18
Course #19
Course #20:
Course #21
Course #22
Course #23
Course #24:

March 1990; 16 attendees
July 1990; 9 attendees
November 1990; 14 attendees
April 1991; 12 attendees
June 1991; 12 attendees
July 1991; 7 attendees
November 1991; 6 attendees
March 1992; 23 attendees
bruary 1991; 11 attendees
March 1993; 15 attendees
April 1993; 11 attendees
December 1993; 7 attendees
April 1994; 15 attendees
September 1994; 6 attendees

Contractors learning about Cronus at the workshops included:

Advanced Decision Systems
Analytics
BBN
Cimflex Teknowledge
COLSA
Computer Sciences Corporation
Draper Laboratories
GE Advanced Technology Laboratory
IBM FSC
ISX Corporation
Logicon
MITRE
McDonnell Douglas
SAIC
Syscon

-93

BBN Report No. 8018 Cronus Enhancements Final Technical Report

TASC
Texas Instruments

Government agencies learning about Cronus at the workshops included:

U.S. Army CECOM
NRaD
National Security Agency
Pacific Missile Test Center
Rome Laboratory

Academic institutions learning about Cronus at the workshops included:

Johns Hopkins University Applied Physics Laboratory
San Diego State University
University of California, Los Angeles
University of California, San Diego

Construed more broadly, the Cronus workshops have served to promote the concepts of
object-oriented distributed computing to a wide audience. In a sense, the wider acceptance
of these concepts is important to the longer-term adoption of these concepts into
commercial products.

94-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

7.3 Dissemination of Technical Information

For many years, BBN has provided paper copies of Cronus documents and reports on
request to interested parties in the Government, academia, and industry. Since early 1992,
BBN has also provided some Cronus technical information electronically via a repository
accessible via anonymous file transfer over the Internet. We believe that this mechanism,
which is now widely being used in the research community, has significantly broadened
the number of people who can leverage off of our pioneering work in distributed systems.
A sampling of organizations that have obtained our overview document "Introduction to
Cronus" electronically over the Internet from May 1993 through September 1994 includes:

ACE Associated Computer Experts, Netherlands
Advanced Decision Systems
Amdahl Corporation
ARCO Oil and Gas
Art-fCom, Germany
AT&T Bell Laboratories
Australian National University, Australia
Auto-trol Technology Corporation
Bell Northern Research, Canada
Brookhaven National Laboratory
Brown University
Bull SA, France
Cal Poly State University
Carnegie Mellon University
Catholic University of Nijmegan, The
Netherlands
CERN
Chorus Systems
Chungang University, Korea
Colorado State University
Columbia University
Conservatoire National Des Arts et Metiers,
France
Control Data Corporation
Defence Science and Technology Organization,
Australia
Defense Research Establishment, Canada
DePaul University
Duke University
East Stroudsburg University
Erasmus Universiteit Rotterdam, Netherlands
Ericsson Telecom AB, Sweden
ESRI
Facultes Universitaires de Namur, Belgium
Fermi National Accelerator Laboratory
George Washington University
Georgia Institute of Technology
Goldstar Corporation, Korea
GTE Government Systems
GTE Laboratories
Halliburton Company
Harvard University
Hewlett-Packard
IBM
Imperial College, London
Indiana University

INMOS Corporation
Institute for Information Industry, Taiwan
Intel
JP Morgan
Katholieke Universiteit Leuven, Belgium
Korea Advanced Institute of Science and
Technology, Korea
La Trobe University, Australia
Langley Air Force Base
Lawrence Livermore National Laboratory
Lehman Brothers
Matrix Corporation
Michigan State University
Middle East Technical University, Turkey
Mississippi State University
MITRE
Mitsubishi Electric Corporation, Japan
Motorola
NASA
NASA Langley Research Center
NASA Marshall Space Flight Center
National University of Singapore, Singapore
Naval Research Laboratory
New Mexico Tech
New York University
Nippon Electric Company
Northeast Parallel Architecture Center, Syracuse
University
Northwestern University
Novell, Inc.
Open Software Foundation
Oracle Corporation
Pennsylvania State University
Princeton University
Royal Institute of Technology, Sweden
Saint Cloud State University
Seoul National University, Korea
Siemens AG, Germany
Stanford University
Stephen F. Austin State University, TX
Stratus Computer
Sun Microsystems
SUNY Buffalo
SUNY College of Technology
Syracuse University
Technical University of Ilmenau, Germany

95

BBN Report No. 8018 Cronus Enhancements Final Technical Report

Technische Universitaet Muehchen, Germany
Teknekron Communications Systems
Texas A&M University
TFL, Denmark
Tour Total, France
Trinity College, University of Dublin, Ireland
U.S. West
Union Bank, Switzerland
Universita degli Studi di Milano, Italy
Universitaet Frankfurt, Germany
Universitaet Hannover, Germany
Universitaet Hildesheim, Germany
Universitaet Kiel, Germany
Universitaet Koeln, Germany
Universitaet Paderborn, Germany
Universite Catholique de Louvain, Belgium
University College Cork, Ireland
University of Alberta, Canada
University of Arizona
University of Bath, UK
University of British Columbia, Canada
University of California, Berkeley
University of California, Los Angeles
University of Cincinnati
University of Colorado
University of Illinois at Urbana-Champaign
University of London, England
University of Manitoba, Canada
University of Maryland Baltimore County
University of Massachusetts
University of Massachusetts - Lowell
University of Michigan
University of Pennsylvania
University of Pittsburgh
University of Sydney, Australia
University of Texas at Arlington
University of Toronto, Canada
University of Tromsoe, Norway
University of Twente, Netherlands
University of Waterloo, Canada
Unix Pros
Washington University, St Louis
Western Michigan University
WilTel
Worcester Polytechnic Institute
Yuan-Ze Institute of Technology, Taiwan

-96

BBN Report No. 8018 Cronus Enhancements Final Technical Report

7.4 Citations in the Literature

One measure of the success of an R&D activity, and its effectiveness at technology transfer
is the quantity and breadth of citations in the literature. Cronus has been cited numerous
times over the last five years. The following citations (some annotated) illustrate some of
the places where Cronus has been cited. Papers or reports with one or more BBN authors
are noted with a preceding asterisk (*).

"Design Strategies for Object-Oriented Simulation Testbeds that Support Software
Integration," Michael L. Hilton and Craig S. Anken, to be published in a Monograph by
IEEE Press.

* "The ARPA / Rome Laboratory Planning Initiative Common Prototyping Environment:
A Framework for Software Technology Integration, Evaluation, and Transition," Mark H.
Burstein, Richard Schantz, Marie A. Bienkowski, Marie E. desJardins and Steven Smith,
IEEE Expert, accepted for publication.

"Distributed Vertical Model Integration," Robert R. Lutz, John Hopkins University
Applied Physics Laboratory Technical Digest, February 1995, accepted for publication.

"Using THETA to Implement Access Controls for Separation of Duties," Rita Pascale and
Joe McEnerney, Proceedings of the 17th National Computer Security Conference, October
11-14, 1994.

Heterogeneous Software Configuration Management Apparatus, David C. Lubkin et. al.,
U.S. Patent No. 5,339,435, August 16, 1994.

* "Building Object-Oriented Distributed Applications Using Cronus," James C. Berets and
Michael A. Dean, Proceedings of the 4th Annual IEEE Dual-Use Technologies and
Applications Conference, Volume II, pp. 236-245, May 23-26,1994.

* "Distributed Computing with Photon," Edward F. Walker and Carl D. Howe,
Proceedings of the 4th Dual-Use Technologies and Applications Conference, Volume U,
pp. 246-254, May 23-26, 1994.

This paper describes Photon, a distributed computing environment. Photon's
design facilitates the construction of high-performance distributed applications,
particularly those in which network latency is the dominant factor in determining
application performance. Photon is loosely modelled on Cronus, and the two are
briefly compared in the paper.

"A Common Prototyping Environment for Planning and Scheduling Technology," Karen
M. Alguire and Louis J. Hoebel, Proceedings of the 4th Annual IEEE Dual-Use
Technologies and Applications Conference, Volume I, pp. 139-144, May 23-26,1994.

"The Adaptive Fault-Resistant System," P. Thambidurai, B. Gupta, D. Sutton, A.
Kitchen, and T.F. Lawrence, Proceedings of the 4th Dual-Use Technologies and
Applications Conference, Volume II, pp. 271-276, May 23-26,1994.

This paper mentions Cronus as one of the baseline systems used to implement an
experimental fault-tolerant distributed system that dynamically and adaptively

97-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

allocates resources in the presence of conflicting demans from different
applications.

Adaptive Fault Tolerance, GE Aerospace Advanced Technology Laboratories, RL-TR-94-
65, Rome Laboratory, May 1994.

An Introduction to the THETA: A Secure Distributed Operating System, ORA TM-94-
0012, Odyssey Research Associates, February 11, 1994.

This report provides an introduction to THETA (Trusted HETerogeneous
Architecture), a secure distributed operating system based heavily on Cronus.

* Gigabit Networking, Craig Partridge, Addison Wesley Publishers, Reading, MA, p.
322, 1994.

Distributed Computation Tools Experiment, Thomas J. Brando and Myra Jean Prelle, MTR
93B0000151, MITRE Corporation, November 1993.

"Object Orientation in Heterogeneous Distributed Computing Systems," John R. Nicol, C.
Thomas Wilkes, and Frank A. Manola, Computer, pp. 57-67, June 1993

This paper discusses the role of object-orientation in the construction of distributed
computing systems. A number of example systems are described, including
Cronus.

"Distributed Computation Tools Experiment," Myra Jean Prelle, Proceedings of the 3rd
IEEE Dual-Use Technologies and Applications Conference, pp. 24-30, May 1993.

Integration Of Data Between Typed Objects By Mutual, Direct Invocation Between Object
Managers Corresponding To Object Types, Dana Khoyi et. al., U.S. Patent No.
5,206,951, April 27, 1993.

* Introduction to Cronus, James C. Berets, Natasha Cherniack, and Richard M. Sands,
BBN Systems and Technologies Technical Report 6986, January 1993.

This report gives a detailed overview of Cronus.

* "Uniform Access to Signal Data in a Distributed Heterogeneous Computing
Environment," Steven Jeffreys, International Telemetering Conference Proceedings
XXVIII, Instrument Society of America, pp. 707-714, October 1992.

This paper describes a software interface to telemetry data in a heterogeneous
distributed environment, implemented using Cronus. It also describes the
integration of this data access subsystem with a data analysis expert system.

Distributed Office Automation System With Specific Task Assignment Among
Workstations, Charles Lapourtre and Gerard H. Rolf, U.S. Patent No. 5,136,708, August
4, 1992.

"Resource Management: Support for Survivable and Adaptable C3 Applications," Gary L.
Craig and Vaughn T. Combs, Proceedings of the Command, Control, Communications
and Intelligence Technology and Applications Conference, IEEE, pp. 295-299, June 1992.

98-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

"Advanced Artificial Intelligence Technology Testbed," John S. Zapriala and Russell R.
Irving, Proceedings of the Command, Control, Communications and Intelligence
Technology and Applications Conference, IEEE, pp. 44-47, June 1992.

Experimental Secure Distributed Operating System Development - THETA Phase II, ORA *
Corporation, RL-TR-92-110, Rome Laboratory, June 1992.

* "Building Distributed Applications: Why Use Objects?," James C. Berets, Workshop on
Object-Oriented Modelling in Distributed Systems, NATO AC/243 Panel 11 RSG.l,
Quebec, Canada, May 1992.

This paper describes the benefits of using an object-oriented approach to building
distributed applications.

"Adaptive Fault Tolerance in Complex Real-Time Distributed Computer System
Applications, K.H. Kim and Thomas F. Lawrence, Computer Communications, v. 15, no.
4, pp. 243-251, May 1992.

"A Survey of Asynchronous Remote Procedure Calls," A. L. Ananda, B. H. Tay, and E.
K. Koh, Operating Systems Review, v. 26, no. 2, pp 92-109, April 1992.

This paper describes various designs for RPC systems that support asynchronous
operation. Seven different systems are contrasted, including Cronus's futures
mechanism.

"Experiences with Accommodating Heterogeneity in a Large Scale Telecommunications
Infrastructure," John R. Nicol, C. Thomas Wilkes, Richard D. Edmiston, and Joseph C.
Fitzgerald, Proceedings of the 3rd Symposium on Experiences with Distributed and
Multiprocessor Systems, USENDC Association, March 1992.

This paper describes two applications of Cronus. The first uses Cronus's
capabilities to remotely access off-the-shelf relational databases; the second
implements a video server using Cronus.

JDL Tri-Service Distributed Technology Experiment, L. R. Dunham, M. J. Gadbois, and
M. F. Barrett, Naval Command, Control and Ocean Surveillance Center RDT&E Division
Technical Document 2332, March 1992.

This report describes an experimental distributed application built using Cronus by
the Naval Command, Control and Ocean Surveillance Center RDT&E Division
(NRaD), the Rome Laboratory (RL), and the Communications and Electronics
Command (CECOM).

"Nesting Actions through Asynchronous Message Passing: the ACS Protocol," Rachid
Guerraoui, Riccardo Capobianchi, Anges Lanusse, and Pierre Roux, Lecture Notes in
Computer Science, v. 615, pp. 170-184, 1992.

An Overview of Projects on Distributed Systems, Alfred J. Lupper, University of Ulm,
1992.

This survey describes 86 different projects in distributed computing, including
Cronus.

*N0TE: Although this is a limited document, no limited information has
been extracted. Distribution of this document is limited to USGD

Agencies and their contractors; critical technology; Jul 95.

- 99 -

BBN Report No. 8018 Cronus Enhancements Final Technical Report

"The Clouds Distributed Operating System," Partha Dasgupta, Richard J. LeBlanc, Jr.,
Mustaque Ahamad, and Umakishore Ramachandran, Computer, v. 24, no. 11, p. 34-44,
November 1991.

Cites Cronus as a distributed, object-based system.

"A Distributed Environment for Testing Cooperating Expert Systems," Jeffrey D.
Grimshaw and Craig S. Anken, AGARD Conference Proceedings 499: Machine
Intelligence for Aerospace Electronic Systems, NATO Advisory Group for Aerospace
Research and Development (AGARD), September 1991.

This paper describes a general framework for integrating decision support systems
using Cronus.

* Cronus Port to the HP 9000 Series 300: Final Report, Michael A. Dean, BBN Systems
and Technologies Technical Report 7616, June 1991.

This report describes the methodology for porting Cronus to a new machine and
discusses the process within the context of a port to the HP 9000 series 300
running HP-UX.

"ASTRA - An Asynchronous Remote Procedure Call Facility," Ananda, A.L., Tay, BJL,
Koh, E.K., Proceedings of the 11th International Conference on Distributed Computing
Systems, IEEE Computer Society, pp. 172-179, May 20-24, 1991.

Compares ASTRA mechanisms with other related ones, including Cronus futures.

"Autonomous Heterogeneous Computing - Some Open Problems," Hermann Schmutz,
Lecture Notes in Computer Science, v. 563, pp. 63-71, 1991.

"Current Trends in Distributed Systems," Gunter Muller, Lecture Notes in Computer
Science, v. 555, pp. 204-224, 1991.

This paper references Cronus as an example of a system facilitating distributed
computing in a heterogeneous environment

"Transforming LANs into Virtual Supercomputers," James Kobielus, Network World, v.
7, no. 49, p. 1, December 3, 1990.

This article describes some mechanisms for doing network-based parallel
computing, and includes a description of Cronus's futures mechanism.

"Vanguard: A Protocol Suite and OS Kernel for Distributed Object-Oriented
Environments," Finlayson, Ross S., Hennecke, Mark D., and Goldberg, Steven L.,
Proceedings of the Second IEEE Workshop on Experimental Distributed Systems, p. 42-
44, October 11-12, 1990.

"Automated Extensibility in THETA," Joseph R. McEnerney, Randall Browne,
Rammohan Varadarajan, and D. G. Weber, Proceedings of the 13 th National Computer
Security Conference, October 1990.

"Adaptive Fault Tolerance: Issues and Approaches," K.H. Kim and Thomas F. Lawrence,
Proceedings of the 2nd IEEE Workshop on Future Trends of Distributed Computing
Systems, pp. 38-46, September 1990.

-100-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

Distributed System Evaluation, Vaughn T. Combs, Patrick M. Hurley, Charles B. Schultz,
and Anthony M. Newton, RADC-TR-90-185, Rome Air Development Center, July 1990.

This report describes a variety of benchmarks that were performed on Cronus.
Using Cronus Release 1.5, the authors measured and compared Cronus and
SunRPC application-layer performance, and measured the performance of Cronus
IPC and replication mechanisms.

* "CASES: A System for Assessing Naval Warfighting Capability," Bruce M. Anderson
and John P. Flynn, Proceedings of the 1990 Symposium on Command and Control
Research (available as Science Applications International Corporation Report SAIC-
90/1508), June 1990.

This paper describes a knowledge-based decision-support application written in
Common Lisp that is using Cronus to access a variety of multiprocessor-based
FORTRAN simulation models and a relational database.

"Tri-Service Distributed Technology Experiment," Manchi J. Gadbois and Anthony M.
Newton, Proceedings of the 1990 Symposium on Command and Control Research
(available as Science Applications International Corporation Report SAIC-90/1508), June
1990.

This paper describes an application that uses Cronus in a multi-site internetworked
environment to implement a distributed command and control simulation.

* "Asynchronous Remote Operation Execution in Distributed Systems," Edward F.
Walker, Richard Floyd, and Paul Neves, Proceedings of the 10th Int'l Conference on
Distributed Computing Systems, pp. 253-259, May 1990.

This paper describes the design and implementation of a Cronus mechanism known
as "futures". Futures support asynchronous operation invocation at a level of
abstraction similar to remote procedure calls (RPC), and can be used to build
applications that perform coarse-grain parallel processing using networks of
computers.

* Cronus and Open Systems Interconnection: A Functional Comparison, James C. Berets
BBN Systems and Technologies Technical Report 7297, April 1990.

This report discusses Cronus in the context of the ongoing standardization work in
the ISO Open Systems Interconnection (OSI) efforts, and includes a brief survey of
a number of OSI implementations and some ideas for future work on Cronus in an
OSI environment.

"Retrospective on DACNOS," Kurt Geihs and Ulf Hollberg, Communications of the
ACM, v. 33, no. 4, pp. 439-448, April 1990.

This paper describes a research project conducted by the University of Karlsruhe
and IBM Germany. A comparison with Cronus is included.

"Networking the New Workstations," Daniel P. Dern, CommunicationsWeek, p. 29, April
9, 1990.

101-

BBN Report No. 8018 Cronus Enhancements Final Technical Report

The Matrix: Computer Networks and Conferencing Systems Worldwide, John S.
Quarterman, Digital Equipment Corporation, p. 91, 1990.

This book mentions Cronus in a survey section on distributed operating systems.

"The Security Policy of the Secure Distributed Operating System Prototype," Norman
Proctor and Raymond Wong, Proceedings of the 5 th Aerospace Computer Security
Applications Conference, December 4-8, 1989.

Distributed Systems: A Comprehensive Survey, Uwe M. Borghoff and Kristof Nast-
Kolb, Technical Report No. TUM-I8909, Techn. Univ. München, November 1989.

"The SDOS System: A Secure Distributed Operating System Prototype," Raymond Wong,
Matthew Chacko, Eugene Ding, Brian Kahn, Norman Proctor, John Sebes, and Ram
Varadarajan, Proceedings of the 12th National Computer Security Conference, October 10-
13, 1989.

* Cronus: A Distributed Computing Environment, Proposal to the Open Software
Foundation's Request for Technology on Distributed Computing Environments, October 6,
1989, 95pp.

"The Secure Distributed Operating System - An Overview," Rammohan Varadarajan,
Joseph R. McEnerney, and D. G. Weber, Proceedings of the 1989 Workshop on
Operating Systems for Mission Critical Computing, September 19-21,1989.

* "Distributed Query Processing in Cronus," Stephen T. Vinter, Nilkanth Phadnis, and
Richard Floyd, Proceedings of the 9th Int'l Conference in Distributed Computing Systems,
pp. 414-422, June 1989.

This paper describes extensions to the Cronus object storage facilities that support
associative access to objects and distributed query processing.

* "Integrated Distributed Computing Using Heterogeneous Systems," Stephen T. Vinter,
SIGNAL, v. 43, no. 10, pp. 157-162, June 1989.

This article provides an overview of Cronus and the system development issues in
heterogeneous distributed systems.

"The Software Bus - A Vision for Scientific Software-Development," D.E. Hall, W.H.
Greiman, W.F. Johnston, A. X. Merola, S.C. Loken, and D.W. Robertson, Computer
Physics Communications, v. 57, no. 1-3, p. 211-216, 1989.

* Cronus Multiprocessor Investigation, Michael A. Dean, BBN Systems and Technologies
Technical Report 6930, December 1988.

This report classifies multiprocessor systems, provides a brief survey of some of
the commercially available multiprocessor systems, and describes various
approaches for porting Cronus to multiprocessor systems.

"Upper Layer Interoperability," Franco Vitaliano, Connexions: The Interoperability
Report, v. 2, no. 10, pp. 6-10, October 1988.

Contains a one paragraph description of Cronus as an example distributed operating
system.

102-

Rome Laboratory

Customer Satisfaction Survey

RL-TR-

Please complete this survey, and mail to RL/IMPS,
26 Electronic Pky, Griffiss AFB NY 13441-4514. Your assessment and
feedback regarding this technical report will allow Rome Laboratory
to have a vehicle to continuously improve our methods of research,
publication, and customer satisfaction. Your assistance is greatly
appreciated.
Thank You

Organization Name: (Optional)

Organization POC: (Optional)

Address:

1. On a scale of 1 to 5 how would you rate the technology
developed under this research?

5-Extremely Useful 1-Not Useful/Wasteful

Rating

Please use the space below to comment on your rating. Please
suggest improvements. Use the back of this sheet if necessary.

2. Do any specific areas of the report stand out as exceptional?

Yes No

If yes, please identify the area(s), and comment on what
aspects make them "stand out."

3. Do any specific areas of the report stand out as inferior?

Yes No

If yes, please identify the area(s), and comment on what
aspects make them "stand out."

4. Please utilize the space below to comment on any other aspects
of the report. Comments on both technical content and reporting
format are desired.

<HJ.S. GOVERNMENT PRINTING OFFICE: 1996-710-126-2010

MISSION

OF

ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

