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FOREWORD 

This is the Final Report on IIT Research Institute 
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Composites," prepared by IITRI for NASA-Lewis Research Center, 
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1972 to June 30, 1974 was reported in the First Interim Report, 

NASA CR-134826 dated March 1975.  Dr. C.C. Chamis was the 
NASA-Lewis Project Manager.  Dr. I.M. Daniel of IITRI was the 

principal investigator.  Additional contributions to the work 

reported herein were made by Dr. T. Liber and Messrs. M. Iyengar, 

and T. Niiro. 
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LAMINATION RESIDUAL STRESSES IN HYBRID COMPOSITES 

ABSTRACT 

An experimental investigation was conducted to study- 

lamination residual stresses for various material and loading 

parameters.  The effects of hybridization on residual stresses 

and residual properties after thermal cycling under load were 

determined in angle-ply graphite/Kevlar/epoxy and graphite/S- 

glass/epoxy laminates.  Residual strains in the graphite plies 

are not appreciably affected by the type and number of hybridizing 

plies.  Computed residual stresses at room temperature in the 

S-glass plies reach values up to seventy-five percent of the 

transverse strength of the material.  Computed residual stresses 

in the graphite plies exceed the static strength by approximately 

ten percent.  In the case of Kevlar plies computed residual 

stresses far exceed the static strength indicating possible 

early failure of these plies.  Static testing of the hybrids 

above indicates that failure is governed by the ultimate strain 

of the graphite plies.  In thermally cycled hybrids, in general, 

residual moduli were somewhat lower and residual strengths were 

higher than initial values. 
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IITRI Research Project No. D6073-II 

LAMINATION RESIDUAL STRESSES IN HYBRID COMPOSITES 

1.0  INTRODUCTION 

In the design and evaluation of composite structures one 

must take into account any preexisting residual stresses and 

superimpose them onto those stresses produced by subsequent 

mechanical and thermal loading.  Lamination residual stresses in 

composite laminates are produced during curing as a result of 

the anisotropic thermal deformations of the various plies.  The 

analysis of these stresses has been the subject of many recent 

analytical and experimental investigations. ~  Residual stresses 

are a function of many parameters, such as ply orientation and 

stacking sequence, fiber content, curing temperature.and other 

variables.1"2  They can reach values comparable to the transverse 

strength of the ply and thus induce cracking of that ply within 

the laminate.  Residual stresses in each ply are equilibrated with 

interlaminar shear stresses transmitted from adjacent plies and 

thus may result in ply separation. 

Recognizing the need to verify the theory experimentally, 

the NASA-Lewis Research Center has sponsored a two-phase multi- 

task program with IIT Research Institute under Contract No. 

NAS3-16766.  This was a systematic experimental program with the 

following objectives: (1) to measure directly the magnitude of 

lamination residual strains in a variety of angle-ply laminates of 

various materials and hybrids thereof and evaluate their dependence 

on composite design variables, (2) to evaluate their influence 

on the structural integrity, stiffness and strength of the composite, 

(3) to study their relationship with composite response to 

dynamic loading and (4) to provide experimental data for verification, 
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extension and application of existing residual stress theory. 

The first phase of this program consisted of five tasks: 

(1) Literature survey and materials selection, (2) Residual 

strains and static strength, (3) Evaluation of stress relaxation, 

(4) Cyclic loading and residual strength, and (5) Effects of 

laminate configuration variables.  Results of this phase of 

work have been described in the first interim report and various 

publications.3'7,8 Embedded strain gage techniques were 

developed and used for measuring residual strains during curing. 

It was shown that strains recorded in the first part (heating) 

of the curing cycle are not significant as they correspond to 

the fluid state of the matrix resin.  Strains measured in the 

second part (cooling) of the curing cycle correspond to 

differential thermal expansion of the various plies.  It was 

concluded also that the extent of relaxation of residual stresses 

is low.  Tensile load cycling, thermal cycling and thermal 

cycling under tensile load did not have a measurable influence 

on residual strength and stiffness of the laminates.  Stacking 

sequence variations of the same basic construction did not have 

an effect on residual stresses and residual properties after 

thermal cycling under load. 

The objective of the second phase of this investigation 

described in this final report was to investigate the influence 

of hybridization on curing residual strains and residual properties 

after thermal cycling in angle-ply laminates.  The laminates 

investigated were graphite/Kevlar 49/high modulus epoxy and 

graphite/S-glass/high modulus epoxy of [0/+45/0]g and [±45/02]g 

layups where half or all of the 0-degree plies were Kevlar 49 or 

S-glass.  The same matrix, ERLA 4617, was used in all three 

material systems to insure uniform curing of the various plies 

and to produce more compatible hybrids.  Residual strains during 
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curing were determined using previously developed techniques, 

described in the First Interim Report.   Uniaxial tensile 

properties of these laminates under static loading to failure 

were determined and compared with similar properties after 

thermal cycling under load. 
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2.0 MATERIAL QUALIFICATION AND CHARACTERIZATION 

2.1 Material Qualification 

The three basic materials, HM-S graphite/ERLA 4617, 

Kevlar 49/ERLA 4617 and S-glass/ERLA 4617 were ordered and 

received in prepreg form, (Fothergill and Harvey, Ltd., 

Composite Materials Division, Summit Littleborough, Lancashire, 

England).  Unidirectional 15-ply laminates were prepared and 

the standard qualification tests were conducted.  Results of 

these tests for the three materials are tabulated in Tables 1 

to 6. 

It can be seen from these tables that the results 

for the graphite/high modulus epoxy are better than those 

obtained by the manufacturer.  In the case of Kevlar 49/epoxy, 

however, the qualification results indicate strength values 

lower than those suggested by the manufacturer. 

2.2 Laminate Fabrication 

Laminate plates were fabricated from each material system 

to provide specimens for the qualification testing, characterization 

of unidirectional laminates and residual stress studies. 

Each plate was layed up from prepreg sheets on a flat 

metal plate according to established procedures.  The prepreg 

layup was vacuum-bagged to the autoclave table using a teflon 

film sealed by means of "Prestite" tape vacuum sealant.  The 

curing schedule used for all three materials is as follows: 

1. Apply full vacuum to bagged layup 

2. Pressurize autoclave to 587 kPa (85 psi) 

3. Heat to 444° degK (340°F) and hold for 7 hours 

4. Allow to cool to room temperature 
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Table 1 

QUALIFICATION FLEXURE TESTS ON HM-S GRAPHITE/ERLA 4617 

Specimen 
Number 

1 
2 
3 
4 
5 

Thickness 
cm   (in) 

0.178 
0.175 
0.175 
0.178 
0.170 

(0.070) 
(0.069) 
(0.069) 
(0.070) 
(0.067) 

Width 
cm  (in) 

Flexural Strength 
MPa   (ksi)  

1.280 
1.273 
1.283 
1.283 
1.288 

(0.504) 
(0.501) 
(0.505) 
(0.505) 
(0.507) 

1110 
1035 
970 

1130 
1050 

(161) 
(150) 
(141) 
(164) 
(152) 

Average: 1060   (154) 
Manufacturer's Data: 1030    (149) 

Table 2 

Specimen 
Number 

Thickness 
cm  (in) 

Widtl 
cm  (: 

i 
Ln) 

(0.250) 
(0.257) 
(0.256) 
(0.250) 
(0.259) 

Shear 
MPa 

55.6 
58.4 
61.3 
55.2 
61.6 

Strength 
(ksi) 

1 
2 
3 
4 
5 

0.163 
0.160 
0.160 
0.160 
0.160 

(0.064) 
(0.063) 
(0.063) 
(0.063) 
(0.063) 

0.635 
0.653 
0.650 
0.635 
0.658 

(8.06) 
(8.47) 
(8.88) 
(8.00) 
(8.93) 

Average: 
Manufacturer's Data: 

58.4 
54.5 

(8.47) 
(7.90) 
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Table 3 

Specimen 
Number 

Thickness 
cm   (in) 

Width 
cm  (in) 

Flexural Strength 
MPa    (ksi) 

1 
2 
3 
4 
5 
6 

0.175 
0.170 
0.178 
0.188 
0.168 
0.165 

(0.069) 
(0.067) 
(0.070) 
(0.074) 
(0.066) 
(0.065) 

1.260 (0.496) 
1.262 (0.497) 
1.270 (0.500) 
1.260 (0.496) 
1.262 (0.497) 
1.260 (0.496) 

500 
500 
510 
500 
500 
500 

(72) 
(73) 
(74) 
(73) 
(73) 
(72) 

Average: 
Manufacturer's Data: 

500 
610 

(73) 
(88) 

Table 4 

QUALIFICATION INTERLAMINAR SHEAR TESTS ON KEVLAR 49/ERLA 4617 

Specimen Thickness Width Shear Strength 
Number cm (in) cm (in) MPa (ksi) 

1 0.163 (0.064) 0.645 (0.254) 27.4 (3.97) 
2 0.160 (0.063) 0.648 (0.255) 27.4 (3.97) 
3 0.168 (0.066) 0.648 (0.255) 28.3 (4.10) 
4 0.168 (0.066) 0.650 (0.256) 27.9 (4.04) 
5 0.165 (0.065) 0.645 (0.254) 28.2 (4.09) 
6 0.160 (0.063) 0.648 (0.255) 28.4 (4.11) 

Average: 27.9   (4.05) 
Manufacturer's Data: 49.7   (7.20) 
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Table 5 

QUALIFICATION FLEXURE TESTS ON S-GLASS/ERLA 4617 

Specimen 
Number 

Thickness 
cm  (in) 

Width      Flexural Strength 
cm  (in) MPa   (ksi) 

1 0.180 (0.071) 1.265 (0.498) 1309 (190) 
2 0.193 (0.076) 1.270 (0.500) 1245 (180) 
3 0.185 (0.073) 1.262 (0.497) 1495 (217) 
4 0.185 (0.073) 1.250 (0.492) 1313 (190) 
5 0.180 (0.071) 1.262 (0.497) 1415 (205) 

Average:  1355   (196) 

Table 6 
QUALIFICATION INTERLAMINAR SHEAR TESTS ON S-GLASS/ERLA 4617 

Specimen 
Number 

Thic 
cm 

0.170 
0.168 
0.173 
0.178 
0.168 

kness 
(in) 

Width 
cm  (in) 

Shear 
MPa 

Strength 
(ksi) 

1 
2 
3 
4 
5 

(0.067) 
(0.066) 
(0.068) 
(0.070) 
(0.066) 

0.630 (0.248) 
0.632 (0.249) 
0.630 (0.248) 
0.638 (0.251) 
0.630 (0.248) 

95.6 
96.0 
89.0 
90.4 
93.3 

(13.9) 
(13.9) 
(12.9) 
(13.1) 
(13.5) 

Average: 92.9 (13.5) 
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This procedure is slightly different from that used previously 

for the graphite/high modulus epoxy, in that the recommended 6- 

hour postcuring was combined with the 1-hour curing. 

2.3 Characterization of Unidirectional Laminates 

Two unidirectional [Og] specimens 2.54 cm (1 in.) wide 

and 23 cm (9 in.) long of each material were tested to determine 

0-degree tensile properties.  Stress-strain curves obtained are 

shown in Figs. 1 to 6.  For each specimen, the initial axial 

modulus, Poisson's ratio and strength were computed from the data. 

Results are indicated on the respective graphs and summarized later 

in Tables 7 to 12.  Strains in the graphite/epoxy are linear to 

failure.  In the Kevlar/epoxy they are linear up to a stress of 

approximately 965 MPa (140 ksi) thereafter, there seems to be 

a stiffening of the specimen.  The strains in the S-glass/epoxy 

are linear up to approximately 1450 MPa (210 ksi), thereafter 

they increase at a faster rate.  The graphite/epoxy has the lowest 

ultimate strain (0.0035) and the S-glass/epoxy has the highest 

(0.035), ten times that of graphite/epoxy. 

Two unidirectional [90g] specimens 2.54 cm (1 in.) wide 

and 23 cm (9 in.) long of each material were tested to determine 

90-degree tensile properties.  Stress-strain curves are shown 

in Figs. 7 to 13.  Results are indicated in the graphs and 

tabulated in Tables 7 to 12.  Strains in the graphite/epoxy 

and Kevlar/epoxy are linear to failure.  In the S-glass/epoxy 

they become nonlinear above a stress of 28 MPa (4 ksi).  The 

Kevlar/epoxy exhibited unusually low strength (5.3 MPa; 765 psi), 

much lower than published values. 
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Compression tests were conducted with the IITRI fixture. 

The specimens were 13.5 cm (5.3 in.) long and 0.63 cm (0.25 in.) 

wide.  The 0-degree graphite/epoxy and Kevlar/epoxy specimens 

were 8-ply thick with a gage section 0.63 cm (0.25 in.) long. 

The 90-degree graphite/epoxy and Kevlar/epoxy specimens were 

15-ply thick and had a gage section 0.95 cm (0.375 in.) long. 

All S-glass/epoxy specimens, prepared and tested last, were 

20-ply thick with a gage section 0.95 in. (0.375 in.) long.  All 

compression specimens were instrumented with longitudinal strain 

gages on both sides.  Strain gages were monitored throughout 

loading to failure.  Stress-strain curves and the computed 

modulus and strength values are shown in Figs. 14 to 22.  Figures 

14 and 16 for the 0-degree tests on graphite/epoxy and Kevlar/ 

epoxy show nonlinear behavior not associated with buckling. 

Figures 15 and 17 for similar specimens show linear response 

to failure.  Initial modulus and strength in both cases seem to 

be within expected experimental variability.  In the S-glass/ 

epoxy the 0-degree specimens respond linearly up to approximately 

890 MPa (130 ksi), but their strength is appreciably lower than 

the corresponding tensile strength.  The measured compressive 

modulus also appears somewhat lower than the corresponding 0- 

degree tensile modulus.  The response of the 90-degree compression 

specimens is nonlinear, apparently due to material response.  The 

nonlinearity in the S-glass/epoxy specimens is highly pronounced 

above a stress of approximately 48 MPa (7 ksi).  Strain data for 

the 90-degree Kevlar/epoxy specimens were erratic and inadequate 

due to their low strength.  Most specimens displayed negligible 

bending in compression.  In all cases the 0-degree compressive 

strength was lower than the corresponding tensile strength; it 

was relatively higher for the graphite/epoxy and lowest for the 

Kevlar/epoxy.  The 90-degree compressive strength is always 

appreciably higher than the corresponding tensile strength. 
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In-plane shear properties were determined by testing 

two 10-degree off-axis unidirectional specimens of each 

material.  The specimens were 1.25 cm (0.5 in.) wide, 6-ply 

thick, and 25.4 cm (10 in.) long.  They were instrumented 

with a three-gage rosette on each side.  Shear stress and 

shear strain computed from the measured data are plotted in 

Figs. 23 to 27.  The in-plane shear modulus and shear strength 

are also shown in the figures.  Of the two graphite/epoxy 

specimens the one described in Fig. 23 apparently failed 

prematurely at a low strength.  The second specimen (Fig. 24) 

shows linear response up to a shear stress of 16 MPa (2.3 ksi). 

The behavior of the S-glass/epoxy becomes nonlinear at a small 

fraction of its shear strength (17 MPa; 2.5 ksi). 

All of the characterization results obtained for the 

three materials tested are summarized in Tables 7, 8 and 9. 

Results for the graphite/epoxy are comparable to those obtained 

for the same material, but of lower fiber volume ratio, tested 

in Task II.   Properties for Kevlar/epoxy were compared with 
9 

similar data available from the manufacturer.   The latter 

are summarized in Table 10.  The longitudinal tensile properties 

measured are in good agreement, but in general the other 

properties measured are lower than those published. 
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Table 7 
PROPERTIES OF UNIDIRECTIONAL GRAPHITE/HIGH MODULUS EPOXY 

(HM-S/ERLA 4617) 

Property 

12 

21 

Ply Thickness 

Fiber Volume Ratio, FVR 

Longitudinal Modulus, E,-, 

Transverse Modulus, Ejo 

Shear Modulus, G^ 

Major Poisson's  Ratio 
Minor Poisson's Ratio 

Longitudinal Tensile 
Strength, S,,T 

Ultimate Longitudinal 
Tensile Strain,eViT 

Longitudinal Compressive 
Strength, S,-,c 

Ultimate Longitudinalu 
Compressive Strain, £,,„ 

Transverse Tensile 
Strength, S221. 
Ultimate Transverse 
Tensile Strain, ^u e22T 
Transverse Compressive 
Strength, S22C 
Ultimate Transverse 
Compressive Strain, e^r 

Intralaminar Shear 
Strength, S^ 

Ultimate Intralaminar 
Shear Strain, e u 12 

No. of 
Specimens 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

1 

2 

2 

Value Range 

0.114 mm (0.0045 in) 

0.61 
6__, 218.7-220.8 GPa(31.7-32.0xlODpsi) 

7.04 GPa (1.02 x 106 psi) 

6.0-7.3 GPa(0.86-1.06 x 106 psi) 

0.28-0.34 

0.02 
631-1007 MPa (91.5-146 ksi) 

0.0029-0.0041 

642-690 MPa (93-100 ksi) 

0.0033-0.0045 

33-39 MPa (4800-5600 psi) 

0.0048-0.0054 

143-159 MPa (20.8-23 ksi) 

0.0277 

30-72 MPa (4200-10,400 psi) 

0.0025-0.0061 
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Table 8 

PROPERTIES OF UNIDIRECTIONAL KEVLAR/HIGH MODULUS EPOXY 

(Kevlar 49/ERLA 4617) 

Property 
No. of 
Specimens Value Range 

Ply Thickness 0.114 mm (0.0045 in.) 

Fiber Volume Ratio, FVR 0.65 

69.0 GPa (10.0 x 106 psi) Longitudinal Modulus, E,-, 2 

Transverse Modulus, E22 2 4.35-4.67 GPa 
(630,000-680,000 psi) 

Shear Modulus , G-, 2 2 2.37-2.60 GPa 
(340,000-380,000 psi) 

Major Poisson's Ratio, v,„ 2 0.39-0.42 

Minor Poisson's Ratio, v«. 2 0.01-0.02 

Longitudinal Tensile 
Strength, S-^T 

2 1364-1481 MPa (198-215 ksi) 

Ultimate Longitudinal 
Tensile Strain, eVlT 

2 0.0189-0.0198 

Longitudinal Compressive 
Strength, Sllc 

2 180-207 MPa (26-30 ksi) 

Ultimate Longitudinal 
Compressive Strain, eVin 

2 0.0034-0.0048 

Transverse Tensile 
Strength, S22T 

2 4.8-5.8 MPa (700-830 psi) 

Ultimate Transverse 
Tensile Strain, £22T 

2 0.0011-0.0012 

Transverse Compressive 
Strength, ^"yic, 

1 64 MPa (9,200 psi) 

Intralaminar Shear 
Strength, S-j^ 

2 23.9-24.1 MPa (3460-3500 psi) 

Ultimate Intralaminar 
Shear Strain, £^2 

2 0.0049-0.0054 
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Table 9 

PROPERTIES OF UNIDIRECTIONAL S-GLASS/HIGH MODULUS EPOXY 

(S-Glass/ERLA 4617) 

Property 
No. of 
Specimens Value Range 

Ply Thickness 0.119 mm (0.0047 in.) 

Fiber Volume Ratio, FVR 0.58 

Longitudinal Modulus , E, -, 2 47.8-52.1 GPa 
(6.9-7.5 x 106 psi) 

Transverse Modulus, E22 3 19.1-19.3 GPa 
(2.77-2.80 x 106 psi) 

Shear Modulus , G-, 2 1 7.2 GPa (1.04 x 106 psi) 

Major Poisson's Ratio, v,2 2 0.29 

Minor Poisson's Ratio, v„-. 3 0.10 

Longitudinal Tensile 
Strength, S11T 

2 1587-1960 MPa (230-284 ksi) 

Ultimate Longitudinal 
Tensile Strain, ^YlT 

2 0.0325-0.0387 

Longitudinal Compressive 
Strength, S-,-,^ 

2 942-1072 MPa (137-155 ksi) 

Ultimate Longitudinal 
Compressive Strain, ^Ylc 

2 0.0187-0.0218 

Transverse Tensile 
Strength, S^o-p 

3 72-85 MPa (10.5-12.4 ksi) 

Ultimate Transverse 
Tensile Strain, E^T 

3 0.0041-0.0052 

Transverse Compressive 
Strength, S^op 

2 174-194 MPa (25-28 ksi) 

Ultimate Transverse 
Compressive Strain, £22c 

2 0.0142-0.0187 

Intralaminar Shear 
Strength, S,2 

Ultimate Intralaminar 
Shear Strain, e^o 

2 

1 

69-72 MPa (10.0-10.4 ksi) 

0.0101 
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Table 10 

PROPERTIES OF UNIDIRECTIONAL KEVLAR-49/EPOXY 

(DuPont Published Data) 

Property Value 

Fiber Volume Ratio, FVR 0.60 

Longitudinal Modulus, E,-i 76 GPa (11.0 x 106 psi) 

Transverse Modulus, ^"yn 5.5 GPa (800,000 psi) 

Shear Modulus , G-, ~ 2.07 GPa (300,000 psi) 

Major Poisson's Ratio 0.34 

Longitudinal Tensile Strength, 1379 MPa (200 ksi) 
S11T 

Ultimate Longitudinal Tensile 
Strain, e^lT 

0.018 

Longitudinal Compressive 
Strength, S,,c 

276 MPa (40 psi) 

Transverse Tensile Strength, 30 MPa (4,300 psi) 
S22T 

Ultimate Transverse Tensile 0.006 

Transverse Compressive 
Strength, ^inn 

138 MPa (20 ksi) 

Intralaminar Shear Strength, 
S12 

60 MPa (8700 psi) 
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3.0 RESIDUAL STRAINS 

3.1 Experimental Procedure 

The specimens were 2.54 cm x 22.9 cm (1 in. x 9 in.) 

eight-ply graphite/Kevlar 49/epoxy (HM-S Graphite/Kevlar 49/ 

ERLA 4617) and graphite/S-glass/epoxy (HM-S Graphite/S-Glass/ 

ERLA 4617) laminates of the following constructions: 

[0K/+45C/0C]S, [0K/±45C/0K]S, [±45C/0K/0C]S, [±45C/02
K]S 

[0G/±45C/0C]s, [0G/+45C/0G]S, [+45C/0G/0C]S, [+45C/02
G]S 

where superscripts C, K and G denote graphite, Kevlar and S-glass, 

respectively.  The same matrix resin, ERLA 4617, was selected for 

all three basic materials to insure compatibility and uniform curing 

of the various plies.  Three specimens of each of the laminate 

configurations above were prepared.  Unidirectional [0g] specimens 

of graphite/epoxy, Kevlar 49/epoxy and S-glass/epoxy were also 

used for control purposes to determine the unrestrained thermal 

deformations of the three basic materials.  The ply thicknesses 

for these materials are 0.114 mm (0.0045 in.), 0.114 mm (0.0045 in.) 

and 0.119 mm (0.0047 in.), respectively. 

In order to facilitate data reduction from embedded gages 
recorded during curing and thermal cycling of the laminates, a 

"zero expansion coefficient" gage was evaluated. Samples of this 

type of gage were bonded on a quartz specimen and subjected to 
thermal cycling between room temperature and 450° degK (350°F). 
The maximum purely thermal output of these sample gages was 
approximately 150 \ie.     It was then decided to use this type of 
gage for embedment in the hybrid laminates. 

The unidirectional specimens were prepared and instrumented 

with embedded two-gage rosettes (Micro-Measurements WK-00-125TM- 

350, Option B-157) between the second and third ply and between 

the fourth and fifth ply.  The angle-ply hybrid specimens were 
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prepared with embedded three-gage rosettes (Micro-Measurements 

WK-00-125RA-350, Option B-157).  One rosette was embedded in 

the middle of the laminate thickness and the other between the 

+45-degree plies and the outer G-degree ply.  The gages used 

were fully encapsulated and had a minimal purely thermal output. 

The attached ribbon leads were sandwiched between thin (0.013 mm; 

0.0005 in.) polyimide strips.  In all cases above a thermocouple 

was also embedded in the middle surface of the specimen.  To 

determine the purely thermal output of the gage, a Titanium 

Silicate specimen, which has a very low coefficient of thermal 

expansion (a = 0.03 x 10"6K_1 = 0.017 x 10-6 in/in/°F), was 

also instrumented with a two-gage rosette and a thermocouple. 

The instrumented specimens, including the reference 

unidirectional and Titanium Silicate specimens, were subjected 

to the curing and postcuring cycles in the autoclave.  Strain 

gage and thermocouple readings were taken throughout.  Subsequently, 

the same specimens were subjected to a thermal cycle from room 

temperature to 444 degK (340°F) and down to room temperature. 

Strain gages and thermocouples were recorded at 5.5 degK (10°F) 

intervals.  The true thermal strains were obtained by subtracting 

algebraically from the recorded apparent strains the small output 

of the gage on the Titanium Silicate specimen and adding the known 

thermal expansion of the latter. 

3.2 Residual Strains 

The purely thermal output of the gages used is shown 

by the apparent strains recorded on the Titanium Silicate 

specimen (Fig. 28).  The maximum apparent strain is 75 ye. 

Thermal strains recorded in the three [0g] unidirectional 

specimens are plotted versus temperature in Figs. 29 to 31.  Both 

Kevlar 49/epoxy and graphite/epoxy exhibit negative thermal 

strains in the longitudinal (fiber) direction.  The Kevlar 49/ 

epoxy exhibits the largest positive transverse and negative 
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longitudinal strains.  The S-glass/epoxy undergoes the lowest 

thermal deformation in the transverse direction and the highest 

(positive) in the longitudinal direction. 

Coefficients of thermal expansion computed from these 

data for the graphite :/epoxy are: 

At 297 degK (75°F) 

au = -1.26 x 10"6K_1 (-0.7ye/°F) 

a22 =  33.9 x 10"
6K_1 (18.8ye/°F) 

at 444 degK (340°F) 

a±1  = -1.26 x 10"6K_1 (-0.7ye/°F) 

a22  =     83.7 x 10"6K_1 (46.5ye/°F) 

Coefficients of thermal expansion computed for the 

Kevlar/epoxy are: 

At 297 degK (75°F) 

a,, = -4.0 x lO^K-1 (-2.2ye/°F) 

a?? = 57.6 x 10"
6K_1 (32.0ye/°F) 

at 444 degK (340°F) 

a,-, = -5.7 x 10"6K-1 (-3.2ye/°F) 

a22 = ^' ^  x lO^K"
1 (46.0ye/°F) 

Coefficients of thermal expansion computed for the S- 

glass/epoxy are: 
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At 297 degK (75°F) 

an = 6.6 x 10"6K_1 (3.7ye/°F) 

a22 = 19.7 x 10"
6K_1 (10.9ye/°F) 

at 444 degK (340°F) 

aix = 14.1 x lO'Sf
1 (7.9ye/°F) 

a22 = 26.5 x 10'
6K_1 (14.7ye/°F) 

Thermal strains recorded during cool down were very close 

to and averaged with those obtained during subsequent thermal 

cycling.  Thermal strains as a function of temperature obtained 

for the eight hybrid laminates described above are shown in 

Figs. 32 to 39.  It can be seen from these results that the 
stacking sequence does not have an influence on the measured thermal 

strains for laminates composed of the same type and number of plies. 

The longitudinal strains in all graphite/Kevlar specimens 

are negative.  The specimens with all 0-degree plies of 

Kevlar have higher transverse (positive) and longitudinal 

(negative) strains than the specimens with only half 0-degree 

Kevlar plies.  This is a direct consequence of the relative 

magnitudes of unrestrained thermal strains in unidirectional 

Kevlar/epoxy and graphite/epoxy (Figs. 29 and 30).  In 

the case of the graphite/glass specimens the substitution of 

the last two 0-degree graphite plies with glass plies changes 

the longitudinal strain from negative to positive (Figs. 36 

to 39). 

The residual stresses induced in each ply correspond to 

the so-called restraint strains, i.e., the difference between 

the unrestrained thermal expansion of that ply (unidirectional 

specimen) and the restrained expansion of the ply within the 

laminate (angle-ply specimen).  Restraint or residual strains 
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obtained for the 0-degree Kevlar, 0-degree graphite and 45-degree 

graphite plies of the [0K/+45C/0C]g and [+45
C/0K/0G]S graphite/ 

Kevlar 49/epoxy specimens are plotted in Figs. 40 to 45.  These 

strains are plotted as a function of temperature with room 

temperature shown as the stress-free level.  The actual stress- 

free level is at 444 degK (340°F), the temperature at which the 

matrix solidifies.  To refer these residual strains to this level, 

the curves of Figs. 40 to 45 must be shifted parallel to the 

strain axis until they intersect the temperature axis at 444 degK 

(340°F).  The highest residual strain is the transverse (eg0) 

strain in the 0-degree Kevlar plies exceeding 9 x 10 e (Figs. 40 

and 43).  This is associated with the high transverse thermal 

expansion of the unidirectional Kevlar 49/epoxy (Fig. 30).  The 

transverse strain in the 0-degree graphite plies is much lower 

reaching a peak value of 5.6 x 10  e.   The maximum strain in the 
-3 

45-degree graphite plies is 6.3 x 10  e. 

Restraint strains were computed for the 0-degree 
K   C K 

Kevlar and 45-degree graphite plies of the [0 /+45 /0 ] 
C        K and [+45 /00 ]  graphite/Kevlar 49/epoxy specimens.  Results, 

shown graphically in Figs. 46 to 49, do not differ much 

from corresponding strains in the preceding group of specimens. 

In the 0-degree Kevlar plies the only noticeable difference 

is the small reduction in the longitudinal (en) residual 

strain from -0.4 x 10  e to -0.2 x 10  e.  The strains in the 

45-degree graphite plies show a small increase in the longitudinal 

direction and a slight reduction in the transverse direction. 

Residual strains in the 0-degree S-glass, 0-degree graphite 

and 45-degree graphite plies of the [0G/+45C/0C]_ and [+45C/0G/0C]e 

specimens were obtained as before and plotted in Figs. 50 to 

55 with room temperature as the reference temperature.  The 

transverse strains in the 0-degree S-glass plies are relatively 

low, compared to similar strains in the 0-degree graphite plies, 

.because of the lower transverse thermal expansion of the unidirectional 
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S-glass/epoxy.  All three strain components in the 0-degree S- 

glass plies are close to each other because the corresponding 

strain components are similarly related in the unidirectional 

material.  Residual strains in the graphite plies are very close 

to those obtained for the graphite/Kevlar 49/epoxy specimens, since 

these strains are primarily dominated by the strains in the uni- 

directional graphite/epoxy. 

Residual strains in the 0-degree S-glass and 45-degree 

graphite plies of the [0G/+45C/0G]g and [+45
C/02

G]g graphite/S- 

glass/epoxy are not much different from the corresponding strains 

in the preceding group (Figs. 56 to 59). The main difference 

are a reduction in the peak longitudinal (so) strain in the 0-degree 
-3 -3 

S-glass ply from 1.75 x 10  e to 1.45 x 10  e and a reduction in 

the peak longitudinal (eQ) strain in the 45-degree graphite 

plies from 3.5 x 10~3e to 3.1 x 10-3e. 

The peak residual strains occurring at room temperature 

are tabulated in Table 11 for all laminates tested including 

the all-graphite laminate tested under Task II.   Several 

conclusions can be drawn from these results.  For laminates of 

the same composition, stacking sequence variations have no 
C   C 

influence on residual stresses.  Hybridizing the basic [02 /+45 ]g 

graphite/epoxy laminate by substituting Kevlar or S-glass plies 

for 0-degree graphite plies has a relatively small influence, a 

small reduction, on residual strains in the remaining graphite 

plies.  This is due in part to the fact that the thermal deformations 

in the angle-ply laminates are an order of magnitude lower than 

the unrestrained strains in the unidirectional material and in 

part to the relatively lower stiffness of Kevlar and S-glass. 

Increasing the number of Kevlar plies in the graphite/Kevlar group 

increases slightly the transverse (to the fibers) strains in the 

Kevlar and graphite plies.  Replacing Kevlar with S-glass reduces 

slightly the transverse strains in the graphite plies.  Increasing 

the number of S-glass plies in the graphite/S-glass group reduces 

the transverse strain in the graphite plies slightly more. 
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Table 11 

RESIDUAL STRAINS AT ROOM TEMPERATURE IN ANGLE-PLY 

GRAPHITE AND HYBRID LAMINATES 

Laminate Ply 
_3 

Strain, 10  e 

eo e90 e45 e-45 

[02
C/+45C]s 0C 

45° 

0 

3.4 

6.0 

2.6 

2.9 

-0.4 6.5 

[0K/+45C/0C]s 0K -0.4 9.0 4.3 

0C 0 5.6 2.8 

45° 3.4 2.4 -0.5 6.3 

[±45C/0K/0C]s 0K 

0C 
-0.4 

0 

9.2 

5.6 

4.4 

2.8 

45C 3.4 2.3 -0.5 6.2 

[0K/±45C/0K]S 0K -0.2 9.1 4.4 

45C 3.7 2.2 -0.5 6.3 

[+45C/02
K]S 0K 

45° 

-0.2 

3.6 

9.3 

2.2 

4.6 

-0.4 6.4 

[0G/+45C/0C]s 0G 

0C 
1.7 

-0.1 

2.4 

5.5 

2.0 

2.7 

45C 3.5 2.2 -0,6 6.3 

[+45C/0G/0C]S 0G 1.8 2.4 2.1 

0° 0 5.6 2.8 

■ r         r    G 
[0G/±45C/0 ]s 

45° 

0G 
3.5 

1.4 

2.2 

2.4 

-0.6 

1.9 

6.2 

45° 3.1 2.1 -0.8 6.0 

[+45C/02
G]S 0G 

45° 

1.5 

3.2 

2.5 

2.2 

2.0 

-0.7 6.1 
Note:  Superscrip ts K, C and G denote I Cevlar, gi ■aphite and S-glass, 

respectively. 
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3.3  Residual Stresses 

Residual stresses in any given ply can be computed from 

the residual strains using the appropriate orthotropic constitutive 

relations.  Assuming linear elastic behavior, these relations 

take the form 

[o±.(T)]   = [Q(T)] [Eij(T)] 

where [Q] , [a..] and [e..] are the temperature-dependent stiffness, 

stress and strain matrices, respectively.  In the case of uni- 

directional graphite/epoxy and Kevlar 49/epoxy the strain response 

in the longitudinal and transverse directions is linear to failure. 

In the case of unidirectional S-glass/epoxy the response in the 

longitudinal direction is linear up to at least a strain of 

25 x 10 e ,   but in the transverse direction is linear only up to 
_3 

a strain of approximately 1.5 x 10  e. 

In the linear range, the residual stress components in a 

given ply at a given temperature are given by the following stress- 

strain relations: 

Ell 
11 " l-v12v21  

[eH + V21e22] 

^22 
f22 = l-v12v21  

[V12£11 + e22 

°12   2G12e12 

where the subscripts 1 and 2 refer to the fiber and the transverse 

to the fiber directions and all quantities above correspond to 

one temperature. 
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Residual stresses at room temperature were computed for the 

various plies of the laminates studied assuming linear elastic 

behavior.  Results are tabulated in Table 12.  The maximum transverse 

tensile stress for the graphite plies is 45.0 MPa (6.5 ksi) in the 

all-graphite laminate and 41.0 MPa (5.9 ksi) in the hybrid laminates. 

Both of these values exceed the static transverse tensile strength 

of the material which is 36 MPa (5.2 ksi).  This means that these 

plies are most likely damaged in the transverse direction upon 

completion of curing.  In the case of Kevlar plies the computed 

transverse stresses far exceed the measured static strength, which 

means that these plies must be damaged transversely in the early 

stages of cool down.  Residual stresses in the S-glass plies reach 

values up to seventy-five percent of the static strength. 
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Table 12 

RESIDUAL STRESSES AT ROOM TEMPERATURE IN ANGLE-PLY 

GRAPHITE AND HYBRID LAMINATES 

Laminate Ply Stress, MPa (ksi) 

all a22 a12 

[02
C/±45C]s 0C 

45C 
13.1(1.9) 

-73.5C-10.6) 

42.5(6.2) 

45.0(6.5) 

0 

5.4(0.8) 

[0K/+45C/0C]s 0K -11.2(-1.6) 40.8(5.9) 0 

or 0C 12.3(1.8) 39.6(5.7) 0 

[+45C/0K/0C]S 45C -97.0(-14.0) 43.2(6.3) 6.9(1.0) 

[0K/+45C/0K]o 0K 2.8(0.4) 39.4(5.7) 0 

or 

[±45C/02
K]s 45C -85.5(-12.4) 44.0(6.4) 9.3(1.4) 

[0G/+45C/0C]S 0G 103.5(15.0) 58.0(8.4) 0 

or 

[+45C/0G/0C]s 

oc 

45C 
6.9(1.0) 

-117.8(-17.1) 

39.2(5.7) 

42.8(6.2) 

0 

9.0(1.3) 

[0G/±45C/0G]s 0G 88.3(12.8) 57.2(8.3) 0 

or 

[+45C/02
G]s 45C -151.3C-22.1) 41.0(5.9) 6.9(1.0) 

Note:  Superscripts K, C and G denote Kevlar, graphite and 
S-glass, respectively. 
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4.0  STATIC STRENGTH 

In addition to the specimens containing embedded gages, 

three additional specimens of each laminate construction were 

prepared without embedded instrumentation.  Two specimens, one 

with embedded gages and one instrumented with surface gages, 

of each of the eight hybrid laminates described before were 

tested statically in tension to failure.  Stress-strain curves 

to failure for these specimens are shown in Figs. 60 to 75. 

The axial modulus, Poisson's ratio and strength for each specimen 

are indicated in these graphs as well as tabulated in Table 13. 
10 

Measured values are compared with theoretically predicted ones. 

Predicted values for moduli and Poisson's ratios are based on 

linear lamination theory using measured values of the constituent 

properties.  The predicted ultimate strains are based on the 

predicted moduli and measured strengths of the hybrid laminates 

assuming linear behavior to failure. 

Specimens containing only two 0-degree Kevlar plies behave 

linearly to failure.  Measured moduli range between 90 and 96 GPa 

(13.0 and 13.9 x 106 psi), the average Poisson's ratio is 

0.79, and the measured ultimate strain is 3.9 x 10  .  These 

values are compared with corresponding predicted values of 85 GPa 

(12.3 x 106 psi), 0.76 and 4.2 x 10~3.  The measured and predicted 

ultimate strains are comparable to the highest measured ultimate 

strain of 4.1 x 10~3 in the unidirectional graphite/epoxy material 

(Table 7).    Specimens containing four 0-degree Kevlar plies 

display a characteristic nonlinearity starting in most cases at 

a strain of approximately 4 x 10" .  The measured modulus, Poisson's 

ratio and ultimate strain are 47 GPa (6.8 x 10 psi), 0.83 and 

17.4 x 10" , respectively.  The corresponding predicted values are 

47 GPa (6.8 x 106 psi),0.77 and 16.4 x 10" , respectively.  The 

reason for the lower predicted ultimate strain is the underlying 
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assumption of linearity made for the prediction.  The ultimate 

strain measured is still lower than the ultimate strain 

(19.3 x 10  ) of unidirectional Kevlar (Table 2-8), which indicates 

that failure may still be governed by the +45 graphite/epoxy 

plies. 

In the graphite/glass group specimens containing only 

two 0-degree S-glass plies behave linearly to failure (Figs. 

58 to 71).      The average measured modulus, Poisson's ratio 

and ultimate strain are 86 GPa (12.5 x 106 psi), 0.74 and 4.1 x 10~3 

compared to predicted values of 81 GPa (11.7 x 10 psi), 0.71 
_3 

and 4.3 x 10  .  The ultimate strain is comparable to that of 

0-degree unidirectional graphite/epoxy, indicating that hybrid 

failure is governed by the 0-degree graphite/epoxy plies. 

Specimens containing four 0-degree S-glass plies display a 

characteristic nonlinearity starting at a strain of approximately 
_3 

8 x 10  .  The average measured modulus, Poisson's ratio and 

ultimate strain are 37 GPa (5.4 x 106 pis), 0.77 and 27.5 x 10 

compared to predicted values of 39 GPa (5.6 x 10 psi), 0.68, 
_3 

and 21.7 x 10  .  The ultimate strain in the hybrid is lower than 
_3 

the measured unidirectional ultimate strain 35.6 x 10  in the 

S-glass/epoxy (Table 9) , indicating that failure may be 

influenced by a lower ultimate strain of the +45-degree graphite/ 

epoxy plies. 
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5.0 TENSILE LOAD WITH THERMAL CYCLING 

5.1 Residual Properties After Thermal Cycling Between 
Room Temperature and 411 degK (280°F) Under Tensile 
Load 

Two specimens, including one with embedded gages, of 

each of the eight hybrid configurations discussed were subjected 

to a static tensile load and to 100 thermal cycles between 

room temperature and 411 degK (280°F).  The first group of 

specimens tested, laminates [0K/+45C/0CJS, [+45C/0K/0C]s and 

[0K/+45C/0K1 , were subjected to a tensile load equal to 70 
—      s K   C C 

percent of the static strength.  Of these, the two [0 /+45 /0 ] 
C K C 

specimens survived the thermal cycling.  The [+45 /0 /0 ]g 

specimens failed on the 90th and 97th thermal cycles, and the 

[0K/+45C/0K]  specimens failed on the third and sixth thermal 
s 

cycles.  These failures are attributed to the higher strength 

reduction with temperature of the Kevlar 49 component.  In 

subsequent batches the tensile preload was reduced to 60 percent 

of the ultimate in those specimens containing two Kevlar 49 or 

two S-glass plies and to 50 percent of ultimate in those specimens 

containing four plies of Kevlar 49 or S-glass.  All these 

specimens survived the elevated temperature thermal cycling. 

All specimens that survived the thermal cycling above 

were tested statically to failure to determine residual elastic 

properties and strength.  Stress-strain curves obtained are shown 

in Figs. 76 to 87.  The modulus, Poisson's ratio and strength 

for each specimen are indicated in these graphs as well as 

tabulated in Table 14. 

All specimens containing two Kevlar 49 or S-glass plies 

behaved linearly to failure, with the exception of one of the 

[+45C/0G/0C]  specimens where the 0-deg. graphite plies had failed. 

The residual moduli in these specimens are somewhat lower than 

initially measured values, probably because of some damage in 

the 0-deg. plies.  Ultimate strains vary between 3.9 x 10  and 
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4.8 x 10"3, which are slightly higher than those measured 

initially.  Residual strength values are also somewhat 

higher than initial strengths, even in the specimen with the 

damaged 0-deg. graphite plies.  A possible explanation for 

this trend is some possible relief of deleterious residual 

stresses by thermal cycling under load. 

Specimens containing four Kevlar 49 or S-glass plies 

show some nonlinear behavior.  The residual modulus of the 
C  K c 

[+45 /09 ]  specimens was higher and that of the [+45 /0o] 

specimens was lower than initial values.  Residual ultimate strains 

were, with the exception of the [+45C/02
G]  specimens, lower than 

those measured initially.  The residual strengths in this group 

were, in five out of six specimens, somewhat higher than initial 
strengths. 

The modes of failure in some of the specimens above 

are of special interest.  One [+45C/0G/0C]g specimen failed 

in a "brooming" fashion (Fig. 2-88).  Upon loading, the 0- 

degree graphite plies failed first and isolated the outer 

layers consisting of the +45-degree graphite and 0-degree S- 

glass plies.  The residual tensile stresses in the S-glass ply 

made the layer curve with the convex side outward.  Specimens 

[0G/+45C/0G]  failed in a different fashion illustrating the 

relief of lamination residual stresses.  The outer layers 

consisting of one 0-degree S-glass ply and the +45-degree graphite 

plies curled up after the graphite plies probably delaminated 

from the middle 0-degree S-glass plies.  This again illustrates 

the presence of tensile residual stresses in the 0-degree S- 

glass plies. 
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5.2 Residual Properties After Thermal Cycling Between 
Room Temperature and 200 degK (-10(TF) Under 
Tensile Load 

Two specimens, including one with embedded gages, of 

each of the eight hybrid configurations discussed before were 

subjected to a static tensile load equal to 70 percent of 

the static strength and to 100 thermal cycles between room 

temperature and 200 degK (-100°F).  One of the [+45C/0G/0C]g 
specimens failed during static preloading prior to thermal 

cycling.  The rest of the specimens survived the thermal cycling 

above and subsequently were tested statically to failure.  Stress- 

strain curves are shown in Figs. 89 to 103.  The modulus, 

Poisson's ratio and strength for each specimen are indicated 

in these graphs as well as tabulated in Table 15. 

All specimens containing two Kevlar 49 or S-glass plies 

behaved linearly to failure, with the exception of a 
C K C [+45 /0 /0 ]  specimen in which a rapid increase in strain 

was noticed prior to failure (Fig. 91).  The residual moduli 

of these specimens are consistently lower than initially measured 

values.  Ultimate strains are higher than initial values. 

Residual strength values are also, with one exception, somewhat 

higher than initial values.  The results above may indicate some 

damage during thermal cycling but sufficient relief of deleterious 

residual stresses to increase the residual strength. 

Specimens containing four Kevlar 49 or S-glass plies 

showed some nonlinear behavior but less pronounced than in initial 

static testing.  Residual moduli, with one exception, are all- 

lower than initial moduli.  No significant differences were 

noticed in residual strength of this group of specimens. 
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6.0  SUMMARY, CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

Residual strains were determined experimentally in the 

various plies of angle-ply hybrid graphite/Kevlar 49/epoxy and 

graphite/S-glass/epoxy laminates. 

The unidirectional Kevlar 49/epoxy material exhibits the 

highest positive transverse and negative longitudinal thermal 

expansion.  The unidirectional S-glass/epoxy undergoes the lowest 

thermal deformation in the transverse direction and the highest 

(positive) in the longitudinal direction. 

For laminates of the same composition, the ply stacking 

sequence did not have an influence on measured thermal strains. 

Residual strains in each ply were obtained as the 

difference between the unrestrained thermal expansion of that 

ply (unidirectional specimen) and the restrained expansion of 

the ply within the laminate (angle-ply specimen). 

Hybridizing seems to reduce residual strains and 

stresses in the graphite plies, however, these strains are not 

affected much by the type and degree of hybridization.  The 

maximum residual strain at room temperature in the 45-degree 

graphite plies is 6.5 x 10  for the all-graphite laminate and 
-3 decreases to 6.3 x 10  for the graphite/Kevlar hybrids and to 

_3 
6.2 x 10  for the graphite/S-glass hybrids. 

In the hybrid laminates the 0-degree Kevlar plies have 
_3 

the highest residual strain, reaching a value of 9.2 x 10  in 

the transverse direction.  The 0-degree S-glass plies have the 
_3 

lowest (2.4 x 10  ) transverse strain. 
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Residual stresses at room temperature were computed for 

all the plies assuming linear elastic behavior.  Computed transverse 

to the fiber residual stresses in the S-glass plies are approximately 

seventy-five percent of the static transverse strength of the 

unidirectional material.  Computed residual stresses in the 

graphite plies exceed the static strength of these plies by 

approximately ten percent, indicating that these plies may have 

already failed transversely.  In the case of Kevlar the computed 

stresses indicate that these plies must have failed in the early 

stages of cool down before reaching room temperature. 

Specimens of all eight hybrid laminates were tested 

statically to failure.  Results were summarized in Table 2-13 and 

compared with predicted values based on linear lamination theory. 

Specimens containing only two Kevlar 49 or S-glass 0-degree plies 

behave linearly to failure, which is governed by the ultimate 

strain in the 0-degree graphite plies.  Specimens consisting of 

+45-graphite plies and 0-degree Kevlar or S-glass plies display a 

characteristic nonlinearity.  The ultimate strains of the hybrid 

laminates are lower than the 0-degree ultimate strains of 

unidirectional Kevlar or S-glass, indicating that failure in 

this group is governed by a lower ultimate strain of the +45- 

degree graphite/epoxy plies.  Specimens containing four 0-degree 

S-glass plies are only slightly stronger than those containing 

0-degree Kevlar plies although the ultimate strains in the 

latter are much lower.  This is another indication that failure 

in this case is governed by the +45-degree graphite plies. 

Poisson's ratios, influenced primarily by the +45-degree graphite 

plies, vary between 0.73 and 0.86.  No significant correlations 

can be seen between measured values and laminate construction. 
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Another group of hybrid specimens was subjected to a 

tensile preload and 100 thermal cycles between room temperature 

and 411 degK (280°F).  Subsequently they were tested statically 

to failure to determine residual properties.  Specimens containing 

two 0-degree Kevlar or S-glass plies behaved linearly to 

failure.  They exhibited somewhat higher than initial ultimate 

strains and strength, possibly due to some relief of deleterious 

residual stresses by thermal cycling.  Residual moduli were some- 

what lower than initial values, possibly because of some damage 

in the 0-degree graphite plies.  Specimens containing four 0-degree 

Kevlar or S-glass plies displayed the same characteristic non- 

linearity, as the initially tested specimens.  Their residual 

strengths were, in general, somewhat higher than initial values. 

The presence of tensile residual stresses in the S-glass plies was 

clearly illustrated by the failure modes of some of these specimens 

(Fig. 2-88). 

A similar group of hybrid specimens was subjected to a 

tensile preload and 100 thermal cycles between room temperature 

and 200 degK (-100°F).  Subsequently they were tested statically 

to failure.  Specimens containing only two 0-degree Kevlar or 

S-glass plies had consistently lower than initial residual moduli 

and higher residual ultimate strains and strengths.  These 

results may indicate some damage during thermal cycling 

which, however, is accompanied by sufficient relief of 

deleterious residual stresses to increase residual strength. 

Specimens with four Kevlar or S-glass plies had residual 

moduli lower than initial ones but unchanged residual strength. 
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In all the tasks conducted to date the effects of 

residual stresses are measured in an indirect manner, because 

there is no comparison with similar residual-stress-free 

specimens.  The independent influence of residual stresses 

should be studied by comparing conventionally fabricated 

angle-ply laminates with similar stress-free laminates pro- 

duced by bonding together precured plies at room temperature. 

The effect of residual stresses on laminates with defects and 

damaged areas would be of importance.  Specimens with cutouts, 

cracks or other defects with different laminate configurations 

should be prepared and tested.  The interaction of residual 

stresses and interlaminar stresses near edges or cutout boundaries 

should be investigated. 
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