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SECTION 1 

INTRODUCTION 

High performance computing can play a significant role in the military's evolving seamless 
design methodology to rapidly produce systems with reduced life-cycle costs by providing 
homogeneous communication and scalable computing frameworks. Two related programs 
underway at ARPA are focusing on providing efficient and effective computing solutions for 
the Department of Defense. The Rapid Prototyping of Application Specific Signal Processors 
(RASSP) program, sponsored by the Electronic Systems Technology Office (ESTO), has a 
goal of improving the process of specifying, designing, manufacturing, and supporting 
complex digital signal processors. On the other hand, the Computing Systems Technology 
Office (CSTO) has initiated the Embedded Computing program whose goal is to make 
available commercial scalable high performance computing technology to real-time 
embedded applications. For example, the CSTO/Honeywell Embedded Touchstone project is 
packaging the commercial Intel Paragon massively parallel processor (MPP). Our 
implementation of the RASSP synthetic aperture radar (SAR) image formation benchmark on 
the Intel Paragon explores the boundary between these two ARPA programs [Brown, et al., 
1995]. 

The transition of commercial programmable MPPs into real-time embedded applications 
promises to have a major impact on future military computing. However target applications 
will utilize MPPs quite differently than has historically been the case in the scientific 
computing community where real-time, size, weight and power constraints do not exist. 
Embedded real-time applications require high sustained processing rates, high sustained 
message passing rates, real-time services at the processing nodes, and real-time internode 
communication services. One particular aspect of the work reported here is the establishment 
of a scalable software design and benchmarking methodology for real-time embedded 
applications that replaces the traditional benchmark approaches and notions of scalability 
drawn from scientific computing. 

After providing a brief introduction to the Intel Paragon and Embedded Touchstone, this 
paper focuses on a software design process for mapping real-time applications onto MPPs. 
The design methodology incorporates a software test bench used to evaluate the level of real- 
time performance the processing nodes are capable of delivering. The test bench results 
incorporate the overheads of periodic processing (simple communication, control flow, 
buffering, etc.) and therefore provide realistic performance levels. The final integration step 
maintains the simple test bench interfaces and dedicates additional resources to deal with 
more complicated global communications. This makes the original single node test bench 
results highly predictive and reduces the complexity of integrating the components to satisfy 
the timing requirements of the overall application. 



The process is applied to the RASSP SAR benchmark to obtain an initial implementation that 
uses 12 Paragon GP nodes (each with a single i860XP microprocessor for computation) for a 
single polarization. Under OSF/1 this 12 node configuration satisfies all the real-time 
requirements. Under SUNMOS, a streamlined high performance operating system available 
on the Paragon, the throughput improves significantly with sustained processor utilization 
approaching 40%. The test bench provides significant insight into the current level of real- 
time guarantees available from existing non-real time operating systems. A projected 
implementation of the RASSP SAR benchmark on the Embedded Touchstone suggests that 
all three polarizations can be processed (including I/O) using 14 out of its 16 MP nodes. 
Finally, real-time scalability for the SAR application is discussed. 



SECTION 2 

INTEL PARAGON AND THE EMBEDDED TOUCHSTONE 

The Intel Paragon is a multiple instruction multiple data (MIMD) distributed memory MPP 
with nodes used for either service, computing, or I/O. Service nodes primarily compile, link 
and start jobs. Compute nodes are typically not time-shared and are used exclusively to 
execute application code. Nodes dedicated to I/O may have interfaces to RAID, a parallel file 
system, Ethernet, or HiPPI. The current generation GP node has 32 Megabytes (MB) of 
DRAM and two 50 MHz i860XP microprocessors; the next generation MP node has 3 
i860XPs and 64 MB of DRAM. 

The Paragon is delivered with a commercial version of the OSF/1 operating system. OSF/1 is 
a full featured micro-kernel-based operating system that provides system services such as 
virtual memory, threads and inter-process communication (IPC), and networking support for 
ftp and NFS [Zajcew, et al., 1993]. OSF/1 consumes up to 12 Mbytes of memory including 
the micro-kernel, OSF/1 AD server and system buffer space. Under OSF/1, one of the 
i860XPs at each node is dedicated to message handling and is unavailable to the application. 
A streamlined alternative operating system called SUNMOS (approximately 250 kbytes) has 
been developed by Sandia National Laboratory and the University of New Mexico [Maccabe 
et al., 1993]. SUNMOS provides minimal services but delivers higher performance (lower 
latency and higher throughput) and provides the application programmer access to the second 
i860XP at each node. Neither operating system has a preemptible kernel, which is a 
requirement for a real-time operating system, creating particular challenges in applying the 
current Intel Paragon for embedded real-time applications. 

The nodes are interconnected in a two-dimensional mesh topology with routers at each node 
employing dimension-order wormhole routing. The nodes have a direct memory access 
interface to the mesh through a single ported network interface chip. The mesh has a 
theoretical capacity of 200 MB/s with OSF/1, revision 1.2.7, achieving a sustained 
communication throughput of 80 MB/s and SUNMOS, B-step revision 1.6.3, sustaining 160 
MB/s. Intel supports the NX application programming interface (API) for message passing, 
and a subset of the API is available under SUNMOS [McCurley, 1993]. Applications which 
adhere to the subset are source compatible between OSF/1 and SUNMOS. 

ARPA/CSTO has sponsored the Honeywell Embedded Touchstone program [Blitzer, 1993] 
to develop an embeddable version of the Intel Paragon containing MP-nodes with three 
i860XPs per node. A requirement of this packaging effort is that the Embedded Touchstone 
will execute the exact same software as the corresponding commercial system. Honeywell is 
developing a 16 node prototype (4.8 Gflop/s) that will occupy .5 cu. ft. and consume 560 
watts of average prime power. Honeywell is currently working in collaboration with the 
Open Software Foundation-Research Institute (OSF-RI) on a real-time operating system that 
will run on the Embedded Touchstone. The physical parameters of the Embedded 



Touchstone make it an attractive target architecture for the RASSP benchmark. Assessing the 
limitation due to the current non real-time operating system is one objective of this work. 



SECTION 3 

REAL-TIME PARALLEL SOFTWARE DESIGN METHODOLOGY 

AH engineering design endeavors are facilitated by a clear specification of the system 
requirements. Real-time embedded systems are characterized by functional, timing and 
physical requirements. Military systems have additional requirements based on life-cycle 
costs which encompass maintainability, reliability, supportability, extensibility and 
scalability. This section describes a software design approach that utilizes a test bench 
implemented on the target architecture as a means of assuring functional and timing 
correctness. A small example is provided, with a more comprehensive example (the RASSP 
benchmark) to follow in Section 4. 

3.1 SOFTWARE DESIGN PROCESS 

The process starts with clear specifications of the functional and timing requirements and a 
high-level model of the target architecture. The specifications and model are used to perform 
standard data and control flow analysis that serves to identify the major computation and 
communication kernels of the application. The functional analysis includes memory 
requirements and operation counts that combine with timing specifications to yield operation 
throughput requirements. The throughput requirements and a knowledge of the system's 
capabilities can be used to get a rough estimate of the number of compute nodes that will be 
required for each task. A real-time test bench (described in the next section) is used to 
establish the actual level of real-time performance the system is capable of delivering on each 
of the identified kernels. After functional correctness is established, perhaps using specified 
ground truth data, the test bench facilitates the process of tuning the kernel to meet the timing 
requirements. This may be accomplished by including vendor supplied library functions or 
even customized assembly language functions. If the timing requirements at a node cannot be 
satisfied, then the algorithm partition needs to be reevaluated. 

After timing requirements at the node level have been satisfied, the same test bench is used to 
exercise collections of nodes as they are integrated, culminating with a complete system test. 
Maintaining the test bench interfaces in the final integration step usually guarantees timing 
compliance when nodes are integrated. This requires the use of dedicated processing 
resources to implement the more complicated global communication requirements found in 
applications. These additional nodes are primarily dedicated to packing and unpacking the 
messages involved in these global communication patterns, e.g., the "distributed corner turn" 
in the current two-dimensional processing example. This means that the nodes doing the 
processing are relieved of this duty (these activities would alternatively take place in the 
application code running on the compute processor) and so can deliver more useful work. 
This in turn reduces the number of compute nodes required. The test bench also facilitates 



rapid node reconfiguration to allow swift system integration and to encourage experimental 
(perhaps ultimately adaptive) approaches to algorithmic partitioning and mapping for real- 
time embedded systems. 

3.2 REAL-TIME TEST BENCH 

The test bench assesses the level of real-time performance the system is capable of delivering 
[Brown, et al., 1994]. At the topmost level the test bench is a software template or "wrapper" 
that provides a data source and data sink between which the application is embedded. 
Currently the source and sink are each implemented on separate compute nodes of the MPP. 
An actual embedded system would stream data into an I/O node from an external real-time 
data source such as a sensor. The I/O node would buffer this incoming data and would 
correspond to the source node in the test bench. To avoid the excessive impact of file I/O, 
timing experiments are performed with limited data already resident and locked on the data 
source node; however, tests for functional correctness are supported through file access 
options on the data source node. 

The test bench also provides a wrapper for the individual application kernels. The functions 
of real-time periodic processing such as buffering and flow control are incorporated into this 
second wrapper. This makes the performance results produced by the test bench very 
predictive as long as the test bench interfaces are maintained. The test bench is request driven 
and the application wrapper provides single and double buffered input options. The request 
driven characteristic of the test bench assures that "receives" for large data blocks are posted, 
and thus do not incur an extra memory copy from the kernel space to the application. Our 
experience has shown that eliminating unnecessary memory copies is essential for achieving 
high performance [Brown, et al., 1994]. 

Figure 3-1 shows pseudo-code for a test bench with two application nodes. The outer test 
bench wrapper consists of three functions: pipeline_init, pipeline, and 
pipeline_exit. The pipeline_init routine is used to configure the application under 
test. A node's initialization includes communication information (input source node(s), 
output destination node(s), and message sizes) as well as computation information (whether a 
computation can be done in place, single or double buffering, computation parameters such 
as FFT sizes). The pipeline routine is simply a switch on the logical node number which 
invokes an application wrapper with the appropriate work function. The pipeline_exit 
routine is used to do any cleanup that is required, such as testing functional correctness, 
outputting performance statistics, etc. 



Taatbench? 

pipeline_init() 

pipelined 

pipeline_exit () 

Pipeline: 

switch (mynode ()) 
case DATA SRC: 

case COMPUTE ND1: 

node_task(init_funcl, 
node_taskl,init_exitl) 
breaks- 

case COMPUTE ND2: 

node_task(init_func2, 
node_task2,init_exit2) 
breaks- 

case DATA SINK: 

BodijtMfc; 

(* init_func); 

while more iterations 
receive_data; 
(* work_func); 
output_results 

end 

(* exit_func); 

Figure 3-1. Test Bench Pseudo Code 

The application wrapper is contained in the pipeline routine and similarly consists of an 
initialization function, a work function, and an exit function to implement the application 
compute/communication kernel. The initialization function is used to set up any initial state 
required, for example generating the twiddle factors for an FFT or reading in convolution 
kernels from a data file. The actual application kernel code resides in the work function, 
which is called from the application wrapper. On a given node the application wrapper 
establishes (through requests) the input data for the compute task, calls the work function 
through a function pointer, and satisfies downstream data requests with the generated 
application output. The exit function performs any required clean-up tasks. 

The test bench is instrumented to timestamp three events at each node: (1) data receive, (2) 
compute, and (3) data send. The state transition events are timestamped at each specified 
node providing complete visibility into the parallel execution process. Graphical tools 
developed for viewing the timestamp data include timing diagrams, frame-to-frame work 
distribution profiles, and generation of probability density functions of the state durations. 
Worst case periods are used to guarantee compliance with real-time requirements, with the 
level of confidence in the design directly correlated to the duration of the experiment. 
Beyond these worst case times it is the actual distribution functions that fully characterize the 
performance. In all cases times can be converted to Mflop/s to reveal sustained processor 
utilization as measured as a percentage of peak Mflop/s. 

3.3 TEST BENCH EXAMPLE 

This section shows how the real-time test bench is used to evaluate the performance of a 
processing kernel under both OSF/1 and SUNMOS. The function under test in this example 
is a 1024 point fast convolution, which consists of a 1024-point complex FFT, a component- 



by-component multiplication by a 1024-point vector of complex weights, and a 1024-point 
inverse FFT. Vectors arrive in sequence at the processor to be individually convolved. A 
granularity study determines by how much the data should be blocked to allow more 
efficient coarse grain processing. If the real-time application had a strict latency requirement, 
then keeping the block size to a minimum would be preferred. In this example the test bench 
is implemented on three compute nodes of an Intel Paragon, one each for the data source, the 
processing node, and the data sink. 

The minimum sustainable period is determined as a function of block size r. For each value 
of r, this minimum sustainable period corresponds to the largest time between successive 
data requests at the data sink as observed over a 30 second experiment. A fixed length 
experiment provides a level window into operating system activities and results in roughly 
the same number of total processed vectors independent of block size. The worst case 
minimum sustainable period is used to determine the sustained Mflop/s rate, where the total 
(single precision) flop count for the 1024-point convolution is taken as: 2(5 x 1024 x 
Iog2l024) + 6 x 1024. Since the i860XP has a theoretical peak rate of 100 Mflop/s, this 
sustained rate corresponds to the percent utilization of the peak rate that is actually being 
sustained. 

Figure 3-2 shows the results for OSF/1, revision 1.2.7. The block size corresponds to the 
number of rows along the x-axis. The Paragon OSF/1 operating system limits the granularity 
(block size r) at which efficient processing can be maintained. The reduction in sustained 
utilization for small block sizes results primarily from operating system dropouts—periodic 
preemptions by the operating system of the application thread executing the fast convolution 
code. These dropouts artificially limit the size of the minimum period especially for small 
block sizes when the durations of the worst case dropouts are comparable to the processing 
times required. There is also a decrease in communication efficiency for smaller block sizes, 
but this is a lower order effect in the case of OSF/1. 

Figure 3-2 also illustrates the performance improvement if optimized library routines are 
incorporated. A completely portable C version of the fast convolution function was timed at 
approximately 8 Mflop/s (for blocks with r = 40, say). This improved to -30 Mflop/s when 
the FFT and inverse FFT were replaced by optimized Kuck & Associates FFT calls. The C- 
coded vector component multiplication in the middle of these two FFT calls causes a 
significant performance degradation even though this glue code only represents 6% of the 
floating point operations. Incorporating an assembly-level vector-component-multiplication 
library call increases the performance to -45 Mflop/s. 

Figure 3-3 repeats the experiment under SUNMOS, B-step, revision 1.6.3, revealing 
significantly better and more predictable performance, primarily due to a combination of less 
severe operating system dropouts and reduced overhead in the communication system 
software. The best case now has sustained utilization at approximately 50%. These 
granularity studies reveal the trade-off that currently exists for the Paragon between 
minimizing latency (operating with small block sizes) and obtaining high utilization of the 
processing resources. This will be revisited in the RASSP benchmark discussion. 
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SECTION 4 

REAL-TIME SYNTHETIC APERTURE RADAR IMPLEMENTATION 

The ARPA sponsored Rapid Prototyping of Application Specific Signal Processors (RASSP) 
program is focused on improving the process of developing application specific digital signal 
processors. The effectiveness of the proposed process improvements is being evaluated with 
a series of benchmark exercises. The initial exercise is a synthetic aperture radar (SAR) 
image formation problem that has moderate computational throughput and memory 
requirements. The embedded requirements are consistent with real-time processing on board 
an unmanned air vehicle (UAV). This section describes the RASSP SAR benchmark and its 
implementation on the Intel Paragon. Projections are then made to a solution based on the 
Honeywell Embedded Touchstone. A brief discussion of real-time scalability for the SAR 
application is given. 

4.1 RASSP SAR BENCHMARK 

The RASSP SAR benchmark is described in [Zuerndorfer and Shaw, 1994]. It is based on 
processing radar data collected from the M.I.T. Lincoln Laboratory Advanced Detection 
Technology Sensor (ADTS). The ADTS is a Ka-band SAR sensor, navigation and data 
recording system hosted on a Gulf-stream Gl twin-engine aircraft. The radar's three 
polarization channels (HH, VV, and VH) can be processed independently. The benchmark is 
a stripmap SAR where the maximum pulse repetition frequency (PRF) of 556 Hz induces a 
minimum pulse-to-pulse period of 1.8 ms. One foot (0.3 m) resolution is obtained in both 
range and crossrange with a 375 m range swath nominally at a range of 7.26 km. The radar 
parameters and imaging geometry result in a benign SAR image formation process. Range 
migration less than one resolution cell results in separable range and crossrange processing. 

Range processing is performed on individual radar pulse returns. Vectors of real video 
samples (a deramped linear FM range pulse) containing 4064 samples are first converted to 
2024 baseband complex samples (video to baseband conversion). The in-phase (respectively, 
quadrature) samples are the result of filtering the even indexed (respectively, odd indexed) 
input samples. The two finite impulse response filters are conjugate-phase low pass filters 
(identical coefficients but in reverse order). Range compression is accomplished by 
performing a 2048 point FFT on this baseband vector. A real window is applied to the FFT 
input to control sidelobe levels. This input weight vector (window) incorporates a modulation 
by (-4)n to position the center of the range swath in the middle of the output vector. An 
additional window is applied after the FFT to compensate for radar cross section variations. 

The separable nature of the ADTS SAR system allows the crossrange compression to be 
performed with a simple one-dimensional matched filter. This matched filter operates on 
individual range bins by processing across the range compressed radar pulses. The number of 
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samples in the matched filter template (512) is determined by the antenna beamwidth and the 
PRF, and represents the number of radar pulses transmitted as the aircraft traverses the (at 
range) distance corresponding to the beamwidth. To take advantage of FFT efficiencies, the 
matched filter is implemented as an overlap-and-save fast convolution process [Oppenheim 
and Schäfer, 1975] in which the transformed template coefficients are precomputed. The fast 
convolution operates on 1024 point windows to produce 512 valid output points.1 Each of 
these output sections constitutes a frame of the stripmap image. 

The RASSP timing requirements derive from the 556 Hz maximum PRF producing a 0.921 
second/frame specification. This results in a 1.1 Gflop/s requirement to process all three 
polarizations. Latency is required to be less than three seconds. There is also an accuracy 
requirement that can be met with single precision floating point. The embedded requirements 
include a 60 pound payload and 500 watts of average prime power. This implies a 
2 Mflop/s/watt solution. 

4.2 REAL-TIME INTEL PARAGON IMPLEMENTATION 

This section describes the application of the parallel software design process discussed in 
Section 3 to implement the RASSP SAR benchmark on the Intel Paragon. The functional and 
timing specifications are clearly stated in [Zuerndorfer and Shaw, 1994]. An executable 
specification in the form of sequential C code running on a SPARC workstation was also 
provided, along with ground-truth test data. Analysis of the SAR image formation algorithm 
begins by establishing the computational requirements of the three main computational 
kernels (1) video to baseband conversion, (2) range compression, and (3) azimuth 
compression. Figure 4-1 depicts the algorithmic operation for each of the kernels of the 
RASSP ADTS system. 

1 Although 513 valid output points are generated, only 512 points are used to maintain 
consistency with the RASSP ADTS benchmark description. 

12 
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Figure 4-1. Kernel Functional Descriptions 

The operations required for video to baseband conversion increase linearly with the number 
of pulses processed in each block, denoted by Np : 

OPs = NP *2024*2*8*2, 

where 8-tap filters have been assumed. The required operation rate of 36 Mflop/s (based on 
the maximum PRF requirement of 556 Hz) is independent of NP since the time available also 
scales linearly with number of pulses. 

The operation count for the range compression FFT (assuming a complex pre-multiplier and 
a real post-multiplier) is 

OPs = Np[NK{& + 5\og2NR)]. 
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The operation rate is again invariant with block size Np, and for an FFT size of NR = 2048, 
the required performance is 72 Mflop/s. 

The overlap and save fast convolution implementation of the azimuth compression results in 
transforms whose length (1024) is twice the frame size (NF=512). The operation count 
taken from Figure 4-1 is 

OPs = NR2NF[20NF\og2(2NF) + \2NF]. 

The resulting 241 Mflop/s throughput requirement is based on the 512 pulse frame period of 
0.92 seconds. In order to make the azimuth processing as efficient as possible, a corner turn 
operation is required (to obtain contiguous samples in memory for fast convolution 
processing). 

With the functional and timing requirements specified and the major computational and 
communication kernels identified, an initial pass at sizing can be made. A single node should 
suffice for the video to baseband conversion (36 Mflop/s). FFTs dominate the remaining 
computations. Realistically configured non repeated-instance FFTs (1024 or 2048 points) on 
the i860XP sustain 45-50 Mflop/s [Brown, et al., 1994]. The range compression requirement 
of 72 Mflop/s is unrealistic for a single node, but within reach for two nodes. Six nodes are 
expected to be required for the azimuth compression (241 Mflop/s). 

Several alternative parallelization techniques exist (e.g., data parallel, pipelining, and round 
robin) and trade-offs are often driven by throughput and latency requirements. For instance, 
pipelining will improve throughput, but each stage of the pipeline will add latency. Although 
the data parallel approach is a low latency solution, it necessitates more complicated data 
flow. 

The latency for the RASSP SAR benchmark is defined as the time between the arrival of the 
last pulse used to form the frame until the first corresponding image pixel is output. Latency 
is minimized by a front-end (video to baseband and range compression) solution that 
processes blocks with a small number NP of pulses (fine grain), so that when the last pulse of 
the frame arrives, most of the other pulses for the frame have already been processed. 
Previously described granularity studies suggest lower bounds on Np motivated by the desire 
to maintain adequate levels of processor utilization. In the current implementation, a 
blocksize (subframe) of Np = 64 pulses was chosen; it is a factor of the frame size (512), and 
is well out onto the flat part of the performance curve. 

The front end was implemented with a linear pipeline: the video to baseband and range 
compression functions each comprised a separate pipeline stage. The range compression was 
further parallelized using a "data-parallel pipelined" technique. Each range compression node 
passes the entire subframe of data but operates on only a fraction of it. This approach, 
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although arguably less efficient, was motivated by a desire to keep the front-end pipeline 
linear thereby simplifying the corner turn operation. The azimuth compression back end is 
necessarily a frame based (coarse grain) process that is naturally implemented as a data- 
parallel process partitioned over range subswaths. 

The test bench establishes the level of real-time performance the Paragon can actually deliver 
on the identified computation and communication kernels; see Figure 4-2. These results are 
similar to the granularity study described in Section 3.3, showing Mflop/s as a function of 
block size (number of rows). With some assembly level optimization, the video to baseband 
conversion can be accomplished (just barely) on a single node. Again the block size of Np = 
64 pulses is sufficiently large to accomplish this. Since each range compression node is 
getting approximately 25 Mflop/s (for sufficiently large blocksizes), a three-stage data- 
parallel pipeline is required to meet the specification of 72 Mflop/s. This appears to be too 
significant a cost for the simplified data flow yielded by the "data-parallel pipelined" 
technique; future scalable implementations will combine video to baseband and range 
compression functions on a single node and then utilize a data-parallel partition over the 
pulses in a frame. As expected, the azimuth compression required six nodes (a single node 
delivers approximately 45 Mflop/s.) 

Granularity Results 
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Figure 4-2. Granularity Results for SAR Application 
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Two particular constraints drove the design of the corner turn software: (1) OSF/1 consumes 
12 of the available 32 MB of DRAM on each GP node requiring a two node solution to 
support buffering (a single overlap extended frame is 16 MB), and (2) the fine grained front 
end must be transitioned into the coarse grain back end. Since the front end is a simple linear 
pipeline (the benefit of the "data-parallel pipeline") the corner turn is not "distributed" (i.e., 
the two corner turn nodes do not have to exchange data). Each corner turn node is responsible 
for half of the range swath (corresponding to three azimuth nodes). The last range 
compression node sends its complete output to both corner turn nodes which operate on the 
appropriate data subset. 

Each corner turn node has to accept eight subframes (64 pulses each) at a period of 0.115 
seconds, transpose the pulses in each subframe, shift half of the old frame for the "overlap 
and save" operation, and output completely corner-turned frame data (512 pulses) to its three 
azimuth nodes. After the last subframe of the current frame has been transposed, the current 
frame is ready to be sent to the azimuth nodes. However, the first subframe of the next frame 
will arrive before the three sends can be completed. In the current implementation this output 
is delayed until after the first subframe of the next frame is buffered. Completed frame data is 
then sent to two out of the three azimuth nodes before the arrival of the second subframe. 
After the second subframe is buffered, the output to the third azimuth node is completed. 
There is also time to complete the "overlap and save" frame copy before the arrival and 
buffering of the third subframe. As a result, three subframes are buffered to allow for these 
output and frame copy operations. The remaining intervals between subframes are used to 
transpose buffered and newly arriving subframe data. 

The single polarization solution using 12 GP nodes is shown in Figure 4-3. This solution is 
mapped to the mesh by a loader in a run-time library that is linked to the application code. In 
the current implementation each node receives the same program image and a switch 
statement in the application code determines the function performed based on the logical 
node number. The current mapping for a 4 x 4 mesh is shown in Figure 4-4. This mapping 
does not appear to have any serious communication contention problems. In the notation of 
Figure 4-4, corner turn node 0 sends data to azimuth nodes 0, 1, and 2; and corner turn node 
1 sends data to azimuth nodes 3, 4, and 5. It is also possible to load different programs on the 
respective nodes, but this is usually avoided because of the increased complexity of the 
software configuration and maintenance. 
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Figure 4-4. Mapping of the Single Polarization RASSP Benchmark Solution 
to a 4 x 4 Mesh (GP Nodes) 

4.3 CURRENT PERFORMANCE RESULTS AND LEVEL OF EFFORT 

Under OSF/1, revision 1.2.7, the 12 node single polarization implementation achieves a 
worst-case throughput performance of 0.85 second/frame and a 1.16 second latency, well 
within the real-time requirements of .92 second/frame and 3 seconds of latency. Under 
SUNMOS, B-step revision 1.6.5, the results improve to 0.71 second/frame throughput and a 
1.02 second latency. These results are based on seven minute runs to account for the non real- 
time behavior of the operating systems. Figure 4-5 shows typical histograms of the time 
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between successive arrivals of 1000 frames at the data sink under OSF/1 and SUNMOS. It is 
clear from Figure 4-5 that SUNMOS currently provides more predictable performance than 
OSF/1. The SUNMOS histogram, with a mean of 0.707 seconds, ranges between a minimum 
of .702 and a maximum of .712 seconds. The OSF/1 histogram, with a mean of 0.81 seconds, 
ranges between a minimum of .786 and a maximum of .835 seconds. The current SUNMOS 
results correspond to end-to-end processing utilization approaching 40% of the theoretically 
available 1200 Mflop/s of 12 GP nodes. Here we are assuming an OSF/1 compatible 
implementation that only has access to one compute processor per node. A SUNMOS- 
specific redesign with worst case performance closer to the specification and would reduce 
the number of processing nodes required. 
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Figure 4-5. Histogram of the Periods for OSF/1 and SUNMOS 

The implementation team had complementary skills and background. One staff member had 
a strong background in signal processing and SAR, but little experience with parallel 
machines. The other staff member had a strong background in programming parallel 
machines, but no background in signal processing or SAR. 

The overall effort took 9.5 staff months, although 4 staff months were devoted to 
background, the development of the test bench and other supporting infrastructure. The 
implementation and design iteration of the application code itself took 2.5 staff months, 

18 



including .5 staff months dedicated to developing optimized assembly-level code. Three staff 
months were spent testing and debugging. Debugging was more difficult than normal due to 
problems with system software on the Paragon and our use of remote machines. A more 
specific breakdown of activities is shown in Table 4-1. 

Table 4-1. Software Development Level of Effort 

Infrastructure: (4 staff-months) 

Background (ADTS/Paragon): 0.75 SM 
Test bench coding: 1.50 SM 
Generating results: 0.25 SM 

Support/analysis tools: 1.50 SM 

Application: (5.5 staff-months) 

Preliminary design partitions:  0.50 SM 
0.50 SM 
1.50 SM 
3.00 SM 

Initial functional coding: 
Design iteration: 

Testing and debugging: 

4.4 EMBEDDED TOUCHSTONE PROJECTION 

The next generation (MP) nodes of the Paragon have three i860XP microprocessors. If all 
three i860s are available to the application programmer (supported under SUNMOS), it is 
estimated that the RASSP SAR benchmark requirement could be met with 4 MP nodes per 
polarization, with 12 MP nodes for all three polarizations. Input could be accommodated by 
interfacing the RASSP fiber input source to a HiPPI I/O node. An additional I/O node could 
be required for output. With this estimate, the functional, physical, and timing requirements 
of the RASSP SAR benchmark would be satisfied with the Embedded Touchstone prototype 
using 14 out of its 16 MP nodes. 

4.5 SCALABILITY FOR REAL-TIME 

Parallel processing uses multiple processors to reduce the amount of time required to execute 
an algorithm, that is to speed up a computer program that implements the algorithm. The rate 
of reduction in the run time as additional processors are added is often regarded as a key ^ 
descriptor of how effective parallel processing is for the particular application. A system's 
scalability refers to the nature of the progression of reduced run times as the number of 
processors is increased. For a fixed problem size, there is a limit to the speedup that can be 
obtained with some applications bottoming out quickly because they contain portions of 
inherently sequential operation (Amdahl's law). As a result, there have been alternative 
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measures of scalability proposed that describe the behavior of the system as both problem 
size and the number of processors are increased [Gustafson]. The issue of scalability for real- 
time parallel processing is discussed in [Brown, et al., 1994]. 

A SAR problem scales in two ways. The simplest way is to increase the range swath with the 
same PRF. This does not effect the resolution but simply increases the number of samples 
within each pulse. A more aggressive scaling involves an improvement in resolution 
(resolution is assumed to be equal in range and azimuth) for a fixed range swath. In the range 
dimension the number of samples per pulse increases inversely proportional to the resolution 
reduction. In the azimuth dimension the wider beamwidth required increases both the 
azimuthal correlation template and the PRF so that the crossrange computation rate also 
increases inversely with resolution. With this second scaling, computational requirements 
increase as the square of the resolution reduction. 

The present front end (video to baseband conversion and range compression) limits the 
scalability of the current implementation. The "data-parallel pipelined" range compression 
quickly loses efficiency as the number of stages increases. A scalable solution requires a 
data-parallel front end combining both video to baseband conversion and range compression 
functions on a single node. With some further optimization we anticipate such a data-parallel 
front end would eliminate two out of the four GP nodes used in the current implementation. 
A data-parallel front end will also necessitate a distributed comer turn (i.e., the corner turn 
nodes have to gather data from the front end, format messages, exchange data between 
themselves, unpack messages, and then scatter data to the back end). 

A notional scalable SAR architecture is shown in Figure 4-6. One feature of this architecture 
is that it dedicates a separate stage to the distributed comer turn. In this way its overhead and 
impact on real-time scalability can be explicitly determined. Preliminary assessments of the 
scalability of the data exchange phase of the comer turn is given in [Brown, et al., 1994]. 
Scalable comer turn solutions are required for both scalable signal processing 
implementations and their synthesis with data flow shell tools. This is the subject of future 
work. 
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SECTION 5 

CONCLUSION 

A parallel software design process for real-time embedded applications has been described. A 
test bench implemented on the target architecture is used to assess the level of real-time 
performance achieved by any subsection of the system (single node application kernels 
building up to the completely integrated system). The simple control and data flow used in 
the test bench approach eases the integration process and can provide the basis for data flow 
shell synthesis tools. 

The design process was effectively applied in mapping the RASSP SAR benchmark onto an 
Intel Paragon. A single polarization solution was demonstrated with 12 (GP) nodes, and 
projections to the Embedded Touchstone suggest that a 14 (MP) node system will support 
processing of all three polarizations including I/O. These solutions use the current non real- 
time OSF/1 operating system but still provide worst-case timing guarantees that meet the 
RASSP real-time constraints. Fully taking advantage of the higher performance SUNMOS 
operating system would reduce this node count, as would presumably a future real-time 
version of OSF/1. Future work will focus on the area of real-time scalability. A scalable 
corner turn implementation is critical for truly scalable signal processing and to facilitate 
application of software synthesis tools. 
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