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Abstract 

It is well known there are no geometric invariants of a projection from 3D to 2D. However, 
given some modeling assumptions about the 3D object, such invariants can be found. The 
modeling assumptions should be sufficiently strong to enable us to find such invariants, but 
not stronger than necessary. In this paper we find such modeling assumptions for general 
3D curves under affine projection. We show that if we know one of the two affine-invariant 
curvatures at each point of the curve, we can derive the other one from its image. We can 
also derive the point correspondence between the curve and the image. 
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1    Introduction 

Almost all the work on invariants so far has been concerned with transformations between 

spaces of equal dimensionality, e.g. [1,2]. In the single-view case, invariants were found for the 

projection of a planar shape onto the image, although the planar shape was embedded in 3D. 

For real 3D objects, most of the work has involved multiple views with known correspondence, 

which amounts to a 3D to 3D projection. However, humans have little problem recognizing 

a 3D object from a single 2D image. 

This recognition ability cannot be based on pure geometry, since it has been shown (e.g. 

[3]) that there are no geometric invariants of a projection from 3D to 2D. Thus, when we 

only have 2D geometric information, we need to use some modeling assumptions to recover 

the 3D shape. Such assumptions can be used in a recognition system as follows. We can have 

a library of 3D objects classified by modeling assumptions. Each class will include all the 

3D objects that satisfy a certain assumption. For instance, one class can include all curves 

with constant torsion, which is the modeling assumption in this case. Another class can 

include curves which lie on a quadratic or a cubic surface. In the first stage, the recognition 

process can select the class to which the object belongs, or the modeling assumption. This 

is beyond the capability of pure geometric reasoning and beyond the scope of this paper. 

Once a class is selected, an object within it can be identified from the 2D geometric data, if 

the classification is done appropriately. This is the subject of this paper. 

An appropriate classification of the object library has several desirable characteristics. 

First, the modeling assumptions should be of sufficient strength to enable reconstruction 

from a 2D image. However, if they are too strong then the classes of objects satisfying them 

will be too narrow and we will need many different classes. This would complicate the first 

stage, mentioned above, of choosing the right class. Thus, we need to find minimal modeling 

assumptions that will enable us to reconstruct 3D from 2D. 

A second desirable characteristic is that of viewpoint invariance. This has the usual 

advantage of eliminating the need to find the correct viewpoint. This leads us to express 

both the classification assumptions and the object descriptions within classes in an invariant 

way. 
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Given these characteristics, the second stage of the recognition process can proceed as 

follows. Invariant descriptors are calculated from the 2D image. These, together with the 

invariant modeling assumption chosen at the first stage, are used to find the invariant de- 

scriptors of the 3D object. These descriptors are matched to descriptors stored in the library, 

belonging to the same class. Using some indexing scheme, a match can be found without 

trying every object descriptor stored in the class. 

In summary, the invariant modeling assumption and descriptors make it possible to per- 

form recognition regardless of viewpoint and with no need for an exhaustive search of the 

class. 

Earlier work connecting 2D and 3D invariants was done in [4] and [5]. This work did not 

use modeling assumptions, and therefore a 3D shape could not be recognized uniquely. In 

[5], five points in 2D were used to find two out of the three invariants that characterize a 

corresponding 3D quintuple. Thus a whole family of potentially corresponding 3D quintuples 

was obtained, with one free parameter (apart from an arbitrary affine transformation). Each 

additional point adds one more free parameter. The need to know the correspondence 

between the 3D points and their projections is another difficulty. Modeling assumptions 

have been used in special cases, e.g. in [6, 7]. Here we deal with general curves, and we 

establish the minimal invariant modeling assumptions needed to find a unique 3D shape and 

the point correspondence. 

2      Point Set Invariants 

2.1      General Relations Between 2D and 3D 

Here we introduce our method of connecting 3D and 2D invariants by applying it to point 

sets. We rederive the results in [5] in a much simpler way, using elementary algebra rather 

than algebraic geometry. In the next section we extend our method to general curves and 

show how a modeling assumption can be used. 

We denote 3D world coordinates by X, and 2D image coordinates by x. We have five 

points Xj, i = 1,... ,5 in 3D space, no four of which are coplanar. They are projected into 

x,- in the image. The correspondence is assumed to be known. In a 3D projective or affine 

2 



space, five points cannot be linearly independent. We can express the fifth point as a linear 

combination of the first four: 

X5 = aXi + 6X2 + cX3 + dX4 (1) 

In the projective case the coefficients a, b, c, d are determined only up to a common mul- 

tiplicative factor so we only have three independent coefficients. In the affine case, the 

coefficients are constrained by the requirement that the fourth homogeneous coordinate is 

always 1, again leaving only three independent coefficients. Because the projection from 3D 

to 2D is linear (in homogeneous coordinates), the same dependence holds in 2D: 

x5 = axi + 6x2 + cx3 + c?x4 

Since determinants are relative invariants of a projective transformation, we look at the 

determinants formed by these points in both 3D and 2D. Any four of the five points in 3D, 

expressed in four homogeneous coordinates, can form a determinant M,. We can give the 

determinant the same index as the fifth point that was left out. For example, 

M1 = |X2,X3,X4,X5| 

Similarly, in the 2D projection, any three of the five points can form a determinant rriij, with 

indices equal to those of the points that were left out, e.g. 

m12= |x3,x4,x5| 

Since the points are not independent, neither are the determinants. Substituting the 

linear dependence (1) in Mi above we obtain 

Mi = a|X2,X3,X4,X1| + 6|X2,X3,X4,X2| + c|X2,X3,X4,X3| + d|X2,X3,X4,X4| 

As is well known, a determinant with two equal columns vanishes. Also, when columns are 

interchanged in a determinant, the sign of the determinant is reversed. Therefore we obtain 

Mi = a|X2,X3,X4,Xi| = -a|Xl5X2,X3,X4| = —aM5 



Similarly for the other determinants, with a simplified notation: 

M2 = |1,3,4,5| = 6|1,3,4,2| = 6|1,2,3,4| = bM5 

M3 = |1,2,4,5| = c|l,2,4,3| = -c|l,2,3,4| = -cM5 

M4 = |l,2,3,5|=d|l,2,3,4| = dM5 

The coefficients a, b, c, d can now be expressed as invariants, using the above relations: 

Mx M2 M3 ,     M4 /0, a = -TTi        b=—r,        c=--—,        d=—— (2) 
M5' M5' M5' M5 

w 

Similar relations hold in the 2D projection: 

m12 = |3,4,5| = a|3,4,1| + 6|3,4,2| = a|l,3,4| + 6|2,3,4| = am25 + bm15 

mi3 = |2,4,5| = a|2,4,1| +c|2,4,3| = amZ5 - cm15 

rai4 = |2,3,5| = a|2,3,1| +d|2,3,4| = arn^ + dmis 

Other relations are linearly dependent on these. Substituting the coefficients a, &, c, d from eq. 

(2) in the above relations we obtain three relations between the 3D and the 2D invariants: 

M5m12 + M1m25 - M2mis = 0 (3) 

M5mi3 + Mim35 - M3m15 = 0 (4) 

M5mi4 + Mirni5 - M4m15 = 0 (5) 

These relations are obviously invariant to any affine transformation in both 3D and 2D. 

A 3D transformation will merely multiply all the M,- by the same constant factor, which 

drops out of the equations. A 2D affine transformation multiplies all the m^- by the same 

constant factor, which again drops out. However, in the projective case each point can be 

independently multiplied by an arbitrary factor A;, which does not in general drop out. Thus 

the above relations are not projectively invariant unless the same coordinates are used for 

both 3D and 2D, which is not the usual situation in our problem. 



2.2     Affine Case 

In the affine case, the above relations become linearly dependent so that only two of them 

are meaningful. To see this, we first note a relationship between the M,- which exists only in 

the affine case. We can write a determinant involving all 5 points as 

X\ X2 Xz X4 X5 

J/i 2/2 2/3 2/4 2/5 

Z\      Zi      Zz      24      z5    = 0 

11111 

11111 

The Mi are minors of this determinant so we can write the above equation as 

Mi - M2 + M3 - M4 + M5 = 0 

Similar relations can be derived in 2D. We have 

£2    £3    X4    X5 

2/2      2/3      2/4      2/5 

1111 

1111 

= 0 

leading to the relation 

"112 - "113 + ^14 - mis = 0 

Similarly, from the determinant involving points 1,2,3,4 we obtain the relation 

m15 - m25 + m35 - m45 = 0 

We now look at the following linear combination of the invariant relations, eqs. (3),(4),(5): 

(3) - (4) + (5) = M5{m12 - m13 + mM) + Mi(m25 - m35 + m45) + (-M2 + M3 - MA)m1?> = 0 

Using the two relations above between the m2j we obtain 

mi5(Mi - M2 + M3 - M4 + M5) = 0 

which is an identity, due the the relation between the M,- above. Thus, only two invariant 

relations, say (3),(4), are independent. This means that of the three independent invariants 
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Mi/M5,M2/M5,M3/M5, only two can be found given m^-. Since all three invariants are 

needed to characterize the five points in 3D (up to an affine transformation), we cannot 

find the 3D quintuple uniquely. Similar results were obtained for this case in [5], using 

Grassmannians, Schubert cycles and wedge products, which are hard to extend to curves. 

2.3     Projective Case 

The general outline of the derivation is analogous to the previous case and we only summarize 

it. To obtain invariance we need six points, having two projective invariants. We now have 

two linear dependencies rather than one: 

X5 = aXx + 6X2 + cX3 + dX4 

X.Q = a Xi + b X2 + c X3 + d X4 

The determinants M, are thus again not independent. We can express the dependencies 

among the M,- with the help of the coefficients a,...,d'. The various cross ratios of these 

determinants are also dependent, and the dependency can be expressed in terms of these 

coefficients. As we did before, we want to invert the problem and express the coefficients 

a,...,d' in term of the invariant cross ratios. Of the eight coefficients above, only six are 

"essential" because of the arbitrary multiplicative factors. However, since we have only two 

independent cross ratios, only two of the six essential coefficients can be determined, leaving 

four free parameters. 

The linear dependencies above are preserved under projection to 2D, and can be used 

to find relations between invariant cross ratios of the 2D determinants m^-. These relation- 

ships will again contain the coefficients a,..., <f, and these can be substituted from the 3D 

expressions, forming a relation between the 3D and 2D determinants. Unlike the affine case 

in which all of the coefficients a,...,d could be eliminated, here we will be left with four free 

parameters. This casts doubt on the usefulness of the exercise in the projective case. 

3      Curve Invariants 

Here we extend our method to general curves X(i) in 3D, with their 2D projections x(i). 

For the time being we assume we know the correspondence between the 3D and 2D curve 
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parameters, so we denote them both by t. We will later show how this requirement can 

be removed using a modeling assumption. This assumption will also eliminate the free 

parameters resulting from the missing depth information. 

We use derivatives in a way analogous to the way we used points before. We deal only 

with the affine case. The third homogeneous coordinate in this case is always equal to 1, so 

its derivatives are all 0. Thus we use Cartesian coordinates, and the derivation used before 

needs to be modified. We can write a linear relation between the first four derivatives in 3D: 

X"" = aX' + bX" + cX'" 

We define determinants in analogy to the previous case, but with a lower dimension, e.g. 

M1 = |X",X'",X""| = |2,3,4| 

m12 = |x'",x""i = |3,4| 

Using the linear dependency above we obtain 

Mi = |2,3,4| = a|2,3,l| = a|l,2,3| = aMA 

M2 = |1,3,4| = 6|1,3,2| = -6|1,2,3| = -6M4 

M3 = |l,2,4| = c|l,2,3| = cM4 

From this we can recover the invariant coefficients a, 6, c as 

Mx M2 M3 
Ö=M?        h=-W4>        

C=W4 
(6) 

Since the affine projection onto 2D is linear, it preserves these coefficients: 

x"" = ax' + foe" + ex'" 

Thus the 2D determinants can be written as 

"^12 = |3,4| = a|3,1| + &|3,2| = -am24 — 6mi4 

rni3 = |2,4| = a|2,1| + c|2,3| = —amM + crnxi 

m2z = |1,4| = 6|1,2| + c|l,3| = bm34 + crn24 
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These relations are not independent. To see this, we note that in 2D we have a linear relation 

x'" = ax' + ßx" (7) 

with some coefficients a, ß. Substituting this in the determinants in the equations above, it 

is easy to see that the first equation is the sum of the remaining two. 

We now substitute the invariants a, 6, c from eq. (6) in the last two relations between the 

rriij above to obtain the relation between the 2D and 3D invariants: 

M4m13 + M1m34 - M3m14 = 0 (8) 

M4m23 + M2m34 - M3m24 = 0 (9) 

These equation are simplified when we use a parameter which is affine invariant in 2D. 

Such a parameter can be defined so that [8] 

m34 = |x',x"| = 1 

This parameter can be obtained from any arbitrary parameter s by 

z — / |x5,Xss|    as 

All derivatives denoted by a prime are with respect to this 2D invariant parameter t. Since 

17134 is only a relative invariant, t is also a relative invariant, i.e. it is an affine invariant 

only up to a constant factor. However, it is easy to show that this factor drops out of the 

equations. In this system other 2D determinants are simplified too. Differentiating m34 = 0 

we obtain 

m24 = |x',x"'| = |x',xT = 0 

and differentiating the above relation 

|x',x'T = |x",xw| + |x',x,/"| = 0 

we obtain 

rau + m23 = 0 

With these expressions, the 2D to 3D relations (8), (9) simplify to 

M4m13 - M3m14 + Mx = 0 (10) 
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M4m14 -M2 = 0 (11) 

As in 2D, we define an invariant parameter r in 3D, which is different from the 2D 

invariant parameter t: 

T = j\X',X",X'"\1/6dt 

T is invariant only up to a constant factor, which drops out of the equations. In this system 

some of the determinants Mi simplify: 

M4 = |X*,X**,X***| = 1 

Mz = |X*,X**,X****| = |X*,X**,X*=T = 0 

with the bars denoting the dependence of M,-(T) on T, and the stars denoting differentiation 

with respect to r. The remaining two Mi are relative affine invariants characterizing the 

curve. They are similar to the "affine curvatures" &i, k2 defined in [8]: 

Mi = fci,        M2 = -k2 

Given these two 3D affine curvatures, the original curve can be reconstructed up to a 3D 

affine transformation [8]. 

We would like to build a library of 3D shapes characterized by invariant descriptors. The 

above two invariants with an invariant parametrization are a good choice for such descriptors 

because they are sufficient to characterize the curve. Thus we want to relate them to our 

2D invariants rriij. However, these quantities rriij, as well as the relations (10), (11), are 

functions of the non-3D-invariant parameter t. Thus, our task is now to transform from the 

invariant M{(T) to the non-invariant M{(t). 

We define 
dr, . 

1 = It w 
The coordinates transform as follows, with X' = ^(t), X* = ^(T): 

X' = X* j 

x" = x**j2 + xy 

X"' = X***j3 + 3X**jj' + X*j" 

X"" = X****j4 + 6X***jY + X**(4j"j + 3/2) + X*j'" 
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We use these relations to express Mi(t) in terms of M;(r). This is done as follows. 

First, the column with the lowest order derivative in Mi(t) is replaced by the corresponding 

expression involving r from the above relations. This yields several determinants, some of 

which vanish due to having equal columns. In the surviving determinants we proceed in the 

same way to the higher order derivatives. We will show the explicit calculation only in the 

simplest cases. In the simplified notation below, we denote X!(t) inside a determinant by 1, 

X*(r) by I, etc. 

M4 = |1,2,3| = j|I,2,3| = i3|I,2,3| = j6|I,2,3| = j6M4 = j6 

Ms = |1,2,4| = j|I,2,4| = j3|I,2,4| = 6j5j'lU,3| + j7|U,4| = 6j5j' 

where we have used the facts that |1,2,3| = 1 (an ordinary 1), and |1,2,4| =0. In a similar 

fashion we obtain (after a longer calculation) 

M1 = 15i3/3 - I0j4j'j" + j*jm + j7j'M2 + j9Mx 

M2 = 15j4j,2-4j5j" + j8M2 

Substituting this in the 2D to 3D relations (10),(11) we obtain 

m13f - 6m14i
2i' + 15j'3 - lOjj'j" + j2j'" + j4j'M2 + j6M, = 0 

m14j
2-15j'2 + 4:jj"-j4M2 = 0 

These equations can be simplified by eliminating M2 from the first equation and substituting 

u = 1/j: 

m14u
2 - lu'2 - 4uu" = M2 (12) 

m13u
3 + 5m14u

2u' + 6u'3 - uV" = -Mx (13) 

We have here two equations in three unknowns: the correspondence function u(t), and 

the two affine invariant curvatures M\,M2. To solve it we need to know one of the unknowns, 

or some relation between the unknowns. 

Here is where a modeling assumption is needed to supply the missing information. One 

example of such an assumption is that one of the M; is a constant, or some other simple 
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function. Another example is assuming that the curve lies on a quadric or a cubic surface. 

This provides a relation between the curvatures Mi,M2, namely a third equation. Given 

such modeling information, we can solve the system of equations and thus recover the 3D 

curve from the 2D image. This includes the recovery of the correspondence information, 

through u(t). In other words, we do not need to know the correspondence of curve points 

beforehand. 

If we assume that one of the curvatures is constant, it stays constant regardless of the 

parametrization, and we obtain a differential equation for u(t) which can be solved either 

analytically (in simple cases) or numerically. If a curvature is not constant, it can be written 

in the above equation as 

Mi(r(t)) = Mi(J l/u(t)dt) 

so we have an integro-differential equation. We still have up to three free parameters in the 

solution for u, but they are the same parameters for the whole curve. Without the modeling 

assumption we would have free parameters at each point. The search for these parameters 

can be greatly simplified by the fact that t is locally a quasi-invariant of the projection, 

when the affine curvatures are not too large. That is, we can calculate t up to a slowly 

varying scale factor. Thus, we can calculate a good approximation to dt around each 3D 

curve point, by projecting the curve onto the local osculating plane from the direction of the 

affine bi-normal. From this, a local approximation to u(r) = dt/dr can be found and stored 

in the library, and later used to eliminate most of the search space. 

In an object recognition system for curves, we can classify the curves according to, e.g., 

the kinds of surfaces they are assumed to lie on. Within such a class, the curvatures of 

different curves can be indexed in some way. Now, given a 2D image of a curve known 

to lie on one of the surfaces used in the library, we can recover its curvatures from the 

above equations, and then match it with the indexed library. No complex search or point 

correspondence is needed. 
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4      Conclusion 

We have used a model-based approach to assist in the recognition of 3D objects from single 

images. We have shown how a modeling assumption can be used to substitute for the missing 

depth information. We have dealt with general curves under affine projection, and have 

obtained a system of two differential equations in three unknown functions. Two unknowns 

represent the two 3D affine curvatures characterizing the curve, and the third represents the 

correspondence information. A modeling assumption provides a third equation, closing the 

system. For instance, we can assume that the curve lies on a quadric surface. This provides 

a relation between the curvatures, and we can recover both. So, if a modeling assumption is 

known, a 2D image can be used to recognize a 3D object, eliminating the need for extensive 

search or point correspondence. 
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