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ABSTRACT 

The longshore current maximum observed in the trough of a barred beach during 

the nearshore dynamics experiment DELILAH at Duck, North Carolina, is not predicted 

by present theory. The simplest longshore current models balance cross-shore changes 

in the alongshore wave momentum (radiation stress) with the alongshore bottom shear 

stress. Waves break over the bar, reform in the trough and again break on the foreshore 

resulting in changes in the radiation stress, which predicts two jets, one over the bar and 

the other at the foreshore, which does not agree with the observed current maximum in 

the trough. The advection of the momentum of the longshore current by mean cross- 

shore currents as a source of momentum mixing is investigated. The longshore current 

is strongest toward the surface and decreasing to zero at the bottom. The cross-shore 

mean current has an onshore transport in the wave crest/trough region and an offshore 

transport beneath (undertow). The net interaction can induce significant lateral mixing 

of the alongshore momentum of the mean currents, which is shown using a simplified 

three-dimension model of nearshore currents to explain much of the differences with 

observations. 
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I. INTRODUCTION 

The longshore current maximum observed in the trough of the barred beach during the 

nearshore dynamics experiment DELILAH at Duck, North Carolina, is not predicted by present 

theory. The simplest longshore current models balance cross-shore changes in the alongshore 

wave momentum (radiation stress) with the alongshore bottom shear stress. Waves break over 

the bar, reform in the trough and again break on the foreshore. Wave breaking results in 

changes in the radiation stress predicting two jets, one over the bar and the other at the 

foreshore, which does not agree with the observed current maximum in the trough. An example 

of the measured and modeled wave height and longshore current distributions are shown in 

Figure 1. The predictions suggest that a transfer of momentum is required to account for the 

current deficit in the trough. 

A number of mechanisms have been proposed to mix momentum laterally into the trough 

region to drive the longshore current. Traditional turbulent mixing, usually parameterized using 

classical eddy viscosity concepts associated with the shear of the longshore current (e.g., Bowen, 

1969; Longuett-Higgins, 1970; Thornton, 1970), would require up gradient mixing of the 

longshore current which is not feasible. Battjes (1975) formulated turbulent mixing induced by 

breaking waves. The scale of the turbulent mixing was the same order as the wave height, 

which is much too short a length scale to explain the observations. Smith et al (1993) described 

wave breaking as rollers that propagate with the wave at the phase speed; they applied a 

turbulent kinetic energy equation and argued that turbulence was diffused downward into the 

water column generating an additional alongshore thrust.   They applied their formulation to the 
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Figure 1. Cross-shore Distributions of Hrms Wave Heights (Upper Panel) and Mean Longshore 

Currents (Lower Panel). The Solid Circles are the Measured Values on 10 October 1990 During 

DELILAH Experiment. The Solid Lines are the Thornton and Guza (1986) Model Predictions. 
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DELILAH data and partially explained the momentum deficit in the trough. 

Changes in the bottom shear stress due to turbulence being injected from the surface by 

breaking waves and modifying the vertical distribution of the longshore current, which in turn 

modify the magnitude of the longshore current, were investigated by Church and Thornton (1993). 

They allow a spatially variable bed shear stress coefficient dependent on the breaking wave 

induced near bottom turbulence levels. The model predicted cross-shore profiles of the longshore 

current improved agreement with observation compared with treatments using constant bed shear 

stress values, but did not completely account for the momentum deficit in the trough. 

Instabilities of the longshore current have been identified as a mechanism for turbulent 

mixing of the longshore current originally suggested by Bowen and Holman, (1989). Dodd and 

Thornton (1990) showed that if shear instabilities exist, there is an accompanying cross-shore 

mixing of momentum. Putrevu and Svendsen (1992) carried out a numerical study of shear 

instabilities over various topography, and using an order of magnitude analysis concluded that 

even a weak shear in the longshore current might be capable of producing significant mixing. 

Significant shear instabilities of the longshore current have been observed in the field (Oltman- 

Shay et al., 1989). Church et al. (1995) calibrated the amplitude of the shear instabilities using 

field measurements, and then calculated the Reynolds' stress associated with the instabilities. 

They found that the mixing predicted due to shear instabilities to be in qualitative agreement with 

that required for modeled longshore current profiles to agree with observed profiles. 

The advection of the momentum of the longshore current by mean cross-shore currents as 

a source of momentum mixing was suggested by Putrevu and Svendsen (1993). The longshore 

current is strongest toward the surface and decreases to zero at the bottom. The cross-shore mean 
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current has an onshore transport in the wave crest/trough region and an offshore transport below 

(undertow). Putrevu and Svendsen (1994) showed that the net interaction could induce significant 

mixing of the momentum of the mean currents. 

The objective of this paper is to formulate a simplified three-dimension model to describe 

longshore currents, including turbulent mixing due to the cross-shore advection of mean 

momentum of the alongshore current by the shear of the mean cross-shore current as suggested 

by Svendsen and Putrevu (1994). The observations acquired during DELILAH and DUCK94 will 

be used to test the model predictions. 



II. THEORY 

A three-dimensional model of the nearshore circulation is derived assuming stationary 

wave conditions, straight and parallel bottom contours, and Gaussian distributed random waves 

which are narrow-banded in both frequency and direction (i.e., all waves are from the same 

direction and of a single frequency). A right-handed-coordinate system is used with x positive 

offshore, y alongshore and z positive upward from the sea surface. In the following, the random 

wave distributions are described, which is used to ensemble average the various equations. The 

conservation of mass flux is described next, which provides an integral condition for the solution 

of the vertical profile of the cross-shore velocity. The depth integrated cross-shore and alongshore 

momentum equations are considered next. The cross-shore momentum equation describes wave 

set-up/down, which is the primary forcing of the cross-shore undertow. The alongshore 

momentum equation contains the lateral transfer of mean momentum term, which requires 

specifying the vertical profile of U(x,z) by solving the vertical momentum equation. The 

alongshore momentum equation is then solved to find the longshore current profile, V(x). 

A.       RANDOM WAVE DISTRIBUTION 

The random wave heights are assumed Rayleigh distributed, p(H), everywhere even when 

breaking, which was shown to be a reasonable assumption at least for mild sloping beaches by 

Thornton and Guza (1983). The ensemble averaged wave energy is calculated by integrating Ew 

given by linear theory across the Rayleigh distribution to give: 
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<E> = bpgHms (1) 

where < > indicates ensemble averaging. 

B.       CONSERVATION OF MASS FLUX 

The conservation of mass flux for straight and parallel contours is given by 

11 (2) 
f p[U(z) + M(Z)] dz = 0 
-A 

where the boundary condition of no flow through the beach at x=0 has been utilized and the 

velocities have been partitioned into mean and wave contributions. Equation 2 states that onshore 

mass transport by waves is balanced locally by an offshore transport. In an Eulerian reference 

frame, there is an onshore mass transport by waves limited to an upper region between the crest 

and trough. Describing waves using linear theory, and expanding in a Taylor series about the 

mean water level, rf (Phillips, 1977), the onshore mass transport in the upper region is given by 

<9>  =     f pü(z)dz = ££-<H*> -  P£^2^ (3) 
8C 

n, 

where subscripts (c, t) refer to (crest, trough), and velocities are uniform over the crest-trough 



region to second order. The term on the rhs is the ensemble averaged wave contribution to the 

mass flux. The onshore mass transport in the upper region is balanced by a return flow below the 

trough (undertow) 

/' (4) <q>  =  -   f   pU(z)dz  =  -9Uht 
K 

-h 

where an equivalent mean uniform return flow (Ur) is defined and h t is the depth below the 

trough. 

C.       DEPTH INTEGRATED MOMENTUM FLUX 

The depth integrated cross-shore momentum equation is given by 

ox ox 

where S is the wave cross-shore radiation stress and r\ is the mean water level (set-up/down.) 

The depth averaged alongshore momentum flux equation is given by 

asj, +_dr r\„„,   .    /"_ . o (6) 
dx        dx 

—[   f pVUdz +     [ p(M V + v U)dz] = -T* 

-h n, 

where the surface wind stress is neglected, and the alongshore bottom stress is given by 



Xb  = nrAuUV + v) (7) pcf\il\(V + v) 

where cf is a bed shear stress coefficient. 

D.       VERTICAL PROFILE OF LONGSHORE VELOCITIES 

Assuming constant shear stress and Prantl mixing length theory, the vertical profile of 

the longshore current is given by 

V{z) = ILHLIA) (8) 
K Za 

where the von Karman constant, K = 0.4, and za is an apparent roughness due to the increase 

ineffective roughness owing to the presence of waves (e.g., Grant and Madsen, 1979) such 

that V(z = -h + za) = 0. The vertical profile of the longshore current is parameterized by 

v, and z,, where  the shear velocity is defined by 

b 2 (Q) 
T      =   PV, W 

To compare the predicted longshore currents with the measured values, the mean longshore 

current over the vertical is defined as the reference velocity given by 



0 

r»(r) = r f 7h(—)& = T[b_ + T ' 1] w ft    •>       K Z K Z ft 

Since bottom roughness was not measured during the DELILAH experiment, it is more 

convenient to rewrite V(z) by relating v* to Vm and z a to a bed shear stress coefficient cf , 

whose value for model applications has been previously calculated (Thornton and Guza, 1986; 

Church and Thornton, 1993; Whitford and Thornton, 1995; Thornton et al, 1995.) Using 

Equations 7 and 9 

tj = pv,2 = pC/F|rm (11) 

givmg 

Viz) = Vm + (f2^pL)T[ln(l  + £) + 1] (12) 

where it has been assumed z <<ft. 

E.       VERTICAL PROFILE OF CROSS-SHORE VELOCITIES 

The monochromatic wave formulation for undertow by Stive and Wind (1986) is extended 

using the random wave formulation of Thornton and Guza (1983). The vertical momentum 

equation is given by 



9    ,-TTs        9        3.„.        dR .... -— ?ißw) = —pv—U(z) = — (13) 
dz dz      dz ox 

where 

R = Pferi + i(«2 - v2)] (14) 
2 

and can be shown to be independent of depth using linear wave theory. The forcing of the 

undertow is due primarily to the gradient of the wave set-up and the radiation stress gradient terms 

in R. Integrating twice and solving for the integration constants by applying conservation of the 

mass (Equation 4) and equating stress across the trough level (by integrating the vertical 

momentum equation from the bottom to trough elevation) gives 

2    dR     .    _6r, 1 
U(z) = Ur{H) + (-C0+ClZ+C2z

2)—- + TJ1+- (r\rh)] (i5) 
dx 2pr| 

where 

c°= ife*'" 3h'} (16) 

c'" £ 
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r l 
c2 = — (18) 2pv, 

The trough depth is approximated as half the rms wave height, i.e., r\t "H^Jl, and 

ht = r\t + h. The bottom stress terms in Equation 15 are negligibly small inside the surf zone 

and are neglected. Thus, ensemble averaging Equation 15 gives 

<U(z)> =<Ur(H)> + (- C0 + Cxz + C2z
2)<^-> (19) 

ox 

The forcing of the undertow within the surf zone is due to the pressure gradient of the set-up and 

the onshore radiation stress gradient given by 

dx h     dx 2d: 'x 

where  <H2> = Hrms from the Rayleigh distribution. 

The set-up/down in R (Equation 14) is solved by applying a centered finite differencing 

scheme to Equation 5, and assuming that the wave set-up /down is zero at the most off-shore grid 

point. After determining the set-up/down, its cross-shore gradient can also be determined by using 

a centered finite differencing scheme. 

11 



F.       MOMENTUM TRANSFER BY MEAN CURRENTS 

Mixing is the result of the shear between the cross-shore and longshore mean currents as 

described by the 2nd and 3rd terms in Equation 6. In the surface region between the crest and 

trough of the wave, the alongshore momentum of the mean longshore current, pv, is advected 

shoreward due to the mean mass transport velocity of the waves. In the water column beneath 

the trough, pV is advected offshore by the undertow. Beneath the trough 

(pVUdz = p<£/>-Ä,[lnA-l] + —(-Ä,3)Ä (2D 
J r   K z 6KV, 3 dx 
-h 

Combining Equations 21 and 10 

"..3.3* f pVUdz = p<U>htVm + —^ht <—> (22) J   K v     r    t   n       9 dx 
-h 

A transfer of momentum in the crest/trough region is due to the interaction of the mass 

transport velocity by waves with the longshore current, third term in Equation 6, and can be 

simplified because the angle of wave incidence is generally small and the radiation stress 

contributions (pwv) in the crest-trough region are of higher order. Thus 

12 



f p(uV+vU)dz « p^TJ«0)«(ti*0) [ dz = <tf >—In— (23) 

1, 1, 

G.       LONGSHORE CURRENTS 

The cross-shore distribution of mean longshore currents is solved using Equation 6. The 

longshore currents were measured near mid-depth, but at arbitrary elevations, zm. To make 

comparisons with the model, the measured longshore currents, V^, are corrected to correspond 

to the reference mean longshore current Vm using 

- (In— + — -1) 
T/ U 

V    = — V    (z=z )=— V    (z=z ) (24) mm      T7/ \    meas^       m> _ meas^        m> 
Hz=z

m) Zm V     m \n(h-—) 
z a 

13 
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III. MODEL DEVELOPMENT 

The objective is to obtain a numerically stable scheme that can be applied to predict the 

mean longshore current,Vm , defined as our reference velocity (Equation 10), using the depth 

averaged alongshore momentum flux, Equation 6. 

A.       MODEL FORMULATION 

The first step is to rewrite Equation 6 in terms of Vm. The first term on the lhs, cross- 

shore gradient of alongshore radiation stress, is the forcing term; thus, it is a not a function of 

our reference velocity. Using linear wave theory and shallow water assumption, we obtain 

6pg3/2sincc   3      , 
F(x) = -Tl if-[/£iÄiflcoga] (25) 

co dx 

The remaining terms of this equation are all functions of the reference velocity. The second 

term on the lhs is the momentum flux gradient due to the mean currents. It can be divided in two 

terms, where the first term is the gradient from the bottom up to the trough level, with the second 

term in the region between the trough and the crest. The term on the rhs is the bottom stress. 

Again applying linear wave theory, and the predicted vertical profiles of mean cross-shore current 

(Equation 15) and mean longshore current (Equation 12) as a function of the reference velocity, 

these terms can be rewritten as 

15 



v, 
f pVUdz = Kl(x)Vi 

1/2 (26) 

—   f p(i? 7 + v" U)dz 
dx J 

n, 

*2(*) dr. 

V™     ÖX 
(27) 

-% = W„ (28) 

where the above coefficients K ,(x), K 2(x), and K 3(x) are given by 

1 2       A(x)    dx       2/7    (x)      dx 4A(x)    6x 
(29) 

r»w = IN 
11 
2N 

g   H^x)A(x) 

*       h ll\x) 
(30) 

K,(x) 
2 N 

P   #    (*) 

*     ft1/2(x) 
(3D 

16 



and 

A(x).. [_i_,;w<i|w> + ^21, ,32, 
9KV( dx K 

Substituting Equations 25 thru 28 into Equation 6 and rearranging the terms, we obtain a 

first order nonlinear partial differential equation for the reference velocity Vm 

dv      vm 

—Hi = -J?-[K%V   - Kjl1 - F ] (33) 
dx        K2     

3 m        * m 

B.       NUMERICAL SCHEME 

The Newton-Raphson method, applying a centered finite differencing scheme to rewrite 

the partial derivative, is used to calculate Vm . This method is a vectorized form of the Newton 

iterative method for solving nonlinear partial differential equations. An analogy can be made 

between this method and the "shooting method," as the behavior of the latter is more easily 

visualized. A simplified description of the necessary steps to apply the "shooting method" for 

determining the cross-shore variability of Vm is: 

1. First guess for Vm at the most offshore point of the grid; 

2. Applying Equation 26 to determine the cross-shore distribution of Vm; 

3. Compare the model output at the shoreline with the physically determined boundary 

condition, no longshore velocity at the beach (Vm = 0 at x = 0); 

17 



4. If the difference exceeds a predetermined tolerance, change the first guess, and restart 

the process; 

5. Repeat steps 1 to 4 until the tolerance is reached. 

In spite of its simplicity, the "shooting method" is a slowly converging scheme, and does 

not allow the inclusion of a second boundary condition (e.g., no longshore velocity at the most 

offshore grid point.) Some of the advantages of applying the Newton-Raphson method, is that 

it is a stable, and fast convergent method. Another important characteristic of this method is its 

vectorized form, which allows the comparison of the new calculated cross-shore distribution of 

Vm with the previous one at all the grid points across the surf zone, not just at the shoreline. 

C. BOUNDARY CONDITIONS 

The two natural choices for the boundaries are the shoreline (x =0) and the most offshore 

point where data were collected (x =°° ). At these boundaries, it is assumed that there was no 

wave forcing so that the longshore velocity vanishes. 

D. INITIAL CONDITIONS 

Due to its vectorized form, the Newton-Raphson method requires an initial vector for the 

cross-shore distribution of the reference velocity (Vm (x)). The natural choice would be a 

motionless state, but as it generates numerical problems (division by zero), the initial condition 

used was a small, constant, non-zero value for Vm (x.) The sensibility of the model to the first 

18 



guess field is limited to the number of iterations it takes to reach the steady state due to the applied 

forcing. 

E.       MODEL INPUTS 

The required inputs can be divided into three categories. The first is the observed data of 

incident wave angle (aQ ) and peak frequency ( fp), and bottom profile (h). The second is input 

from the Thornton and Guza (1983) model for the cross-shore variation of Hrms. The final are the 

parameters that should be constrained by data, which include the vertical eddy viscosity ( vt) 

defining the undertow and bottom stress and the bottom stress coefficient ( C f) defining the 

longshore current profile. Both parameters are assumed constant across the surf zone. 

19 
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IV. FIELD EXPERIMENTS AT DUCK 

The data were acquired as part of the DELILAH (October 1990) and DUCK94 (October 

1994) experiments conducted at the U.S. Army Corps of Engineers Field Research Facility (FRF) 

at Duck, North Carolina. Offshore directional wave spectra were measured in both experiments 

using a linear array of 10 pressure sensors in 8m depth. During DELILAH the cross-shore 

transect of wave heights and currents were measured using a cross-shore array of two-component 

Marsh-McBirney (model 512) electromagnetic current meters and pressure sensors at each of 9 

locations. The data were sampled at 8 Hz. The location and elevation of the current meters 

relative to selected beach profiles are shown in Figure 2. Mean tidal range in the study area is 

less than lm. The cross-shore array was designed to measure more intensely over the bar where 

the largest changes in the wave height occur due to wave breaking. The current meters were kept 

at the same elevation relative to mean-sea-level, with the exception of current meter 1 whose 

elevation had to be adjusted during the experiment to accommodate changes in the beach profile. 

The top of the bar was near sensor 3 early in the experiment and moved offshore to sensor 5 in 

response to the increased wave height commencing on 10 October 1990. During DUCK94, wave 

heights and currents were measured using a moveable sled. The sled initially was towed offshore, 

and then towed onshore stopping at offshore the bar, on the bar and in the trough to make 

measurements for at least one hour at five to eight locations each day. The sled was instrumented 

with a wave directional array of six pressure sensors and eight electromagnetic current meters 

located at elevations 0.23, 0.41, 0.68, 1.01, 1.46, 1.79, 2.24 and 2.57m above the bed. 

21 
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Figure 2. Bottom Profile During DELILAH Experiment on 10 October 1990 with Current Meter 

Locations Indicated. 
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A wide variety of wave conditions occurred during these experiments including 

northeasters, swell from the south, a frontal system from the south, and hurricane waves up to 

2.5m. The resulting longshore currents were generally strong, ranging up to 1.5 m/sec. The 

examples presented here from DELILAH are during times in which moderate swell waves were 

incident at relatively large angles driving a strong longshore current. 

The bar at this location is highly mobile and responded to the variable wave conditions 

during the experiment. The changing of the bar location has a significant effect on the resulting 

wave height and longshore current profiles. The bar tends to be three-dimensional, or rhythmic, 

during times of moderate waves and becomes linear during times of storms and associated strong 

longshore currents. For the cases presented here, a well developed, nearly linear bar was 

present. Hrms values were calculated using the variance, a2, of the surface elevation spectra 

across the wind-wave band of frequencies (0.05 to 0.3 Hz), and assuming the waves are Raleigh 

distributed, such that H^ = (So1)*. The surface elevation spectra were calculated by converting 

pressure data using a linear theory transfer function. 
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V. DISCUSSION AND CONCLUSIONS 

Vertical distributions of currents are examined using the DUCK94 data. The data from 

11 October 1994 was selected during a time of high onshore winds associated with short 

period (Tp = 7 sec) incident waves from the north at a mean angle of about 16 degrees just 

offshore the bar. The cross-shore mean currents are predicted using Equation 15. The wave 

heights are first predicted using the wave transformation model by Thornton and Guza (1986), 

which then are used to calculate the radiation stress gradients. The radiation stress gradients are 

the forcing terms required to solve for the wave set-up/down gradients (Equation 5) in order to 

describe the forcing term for the cross-shore currents and the longhore currents (Equation 6). 

The predicted wave set-up/down is shown in the upper panel of Figure 3. 

The cross-shore flow is onshore in the crest-tough region and offshore beneath (undertow). 

The predicted equivalent mean uniform return flow at various cross-shore locations are shown 

in Figure 4 and are compared with measurements. The model appears to under predict the strength 

of the onshore transport and consequently the return flow that is determined locally by applying 

mass conservation over the vertical. The mean uniform return flow and measurements are in at 

least qualitative agreement, except for the region over the bar where the strong undertow jet is 

under estimated by this model. 

The vertical profiles of the mean longshore current predicted using Equation 8 are shown 

in Figure 5. In the lower water column the longshore current is represented by the log profile and 

in the crest-trough region the log profile is modified since the averaged measured velocity is 

decreased as the current meter is out of the water part of the time. To account for this, the 
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Figure 3. Predicted Wave Set-up/down (Upper Panel), and Respective Bathymetry (Bottom Panel) 

During DELILAH Experiment on 10 October 1990. 
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Figure 4.  Equivalent Mean Uniform Return Flow at Various Locations on the Barred Profile 

During DUCK94 Experiment on 11 October 1994. 
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Figure 5.   Vertical Profiles of Mean Longshore Current at Various Locations on the Barred 

Profile During DUCK94 Experiment on 11 October 1994. 
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surface probability distribution function (pdf) is applied to the expected mean current profiles in 

the absence of waves. The percent of time the current meter is out of the water is given by 1-P(n), 

where P(ri) is the cumulative surface elevation pdf. In an Eulerian frame of reference, the mean 

current in the crest-trough region is given by 

V(z) = [l-P(.r\)]V(z=0) (34) 

The log profile appears to well describe the measured vertical variation of longshore currents. 

A comparison between the predicted longshore currents using the Thornton and Guza 

(1986) model and the new model that includes the contribution of the momentum flux gradients 

due to the mean currents is shown in Figure 6 for the DELILAH data on 10 October 1990. A 

sensitivity test of the model for values of the eddy viscosity coefficient extending over the range 

of expected values is shown in Figure 7. These preliminary results show that the model is 

numerically stable and not overly sensitive to changes in the eddy viscosity coefficient. 

Comparing predicted longshore currents by this simple three-dimensional model including 

the momentum flux gradients with the data, it is concluded that the momentum mixing provided 

by the mean currents, although an important term, is not sufficient to explain the current 

maximum occurring within the trough of the bar. 

This simplified three-dimensional model can be significantly improved by including the 

following mechanisms: 

1. Wave energy and radiation stress gradients based on solving the energy balance with the 

broken waves described as rollers, using the model of Lippmann and Thornton (1995). The roller 

results in an additional stress at the surface in the direction of the waves, which will change the 
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the wave set-up/down and consequently the forcing terms for both the cross-shore and longshore 

currents. 

2. An eddy viscosity that is allowed to vary both in the vertical and in the cross-shore 

direction. This variation could be related to predicted roller dissipation. The vertical variation will 

provide a more realistic undertow model, thus improving the calculation of the momentum 

mixing by mean currents. The cross-shore variation will take into account the observed variability 

of the intensity of the onshore mass transport by waves and by the roller of the breaking waves 

throughout the surf zone. 

3. For the undertow modeling, a better formulation for the eddy viscosity variation within 

the wave (bottom) boundary layer is necessary in order to obtain the more physical no-slip 

boundary condition at the bottom. The present undertow model over-predicts the currents near the 

bed, and consequently affects the calculation of the momentum mixing by mean currents. The 

measurements obtained with a new acoustic instrument, the Coherent Acoustic Sediment Probe 

(CASP), during DUCK94, can be used to calculate the Reynolds' Stresses. Thus, providing a 

unique data set to be used to validate a model within the wave boundary layer. 

4. A cross-shore variable bottom shear stress due to wave breaking and bottom roughness 

as suggested by Thornton et al. (1995). 

5. Modification of longshore current vertical profile by wind. 
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A SIMPLE QUASI-3D MODEL OF LONGSHORE CURRENTS 
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Figure 6.   Predicted Longshore Currents Using Thornton & Guza 1986 Model and the New 

Model that Includes the Contribution of the Momentum Flux Gradients Due to the Mean Currents 

During DELILAH Experiment on 10 October 1990. 
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