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FOREWORD 

This document contains a collection of papers presented at the "Symposium on 
Advances and Trends in Structural and Solid Mechanics," held in Washington, DC, on 
October 4-7, 1982„  Most of the papers appearing in this document were presented in 
the research-in-progress sessions of the symposium.  Most of the other 
presentations are contained in a separate conference proceedings published by 
Pergamon Press.* Consequently, this document constitutes a companion to the 
Pergamon Press release.  A supplement to NASA CP-2245 contains a synopsis of 
the panel discussion held at the symposium. 

As indicated by the symposium title, the conference had two objectives:  to 
present recent advances in structural and solid mechanics, including new solution 
procedures and new physical understanding of structural responses, and to identify 
the trends and future directions of the structural and solid mechanics disciplines. 
The first objective is accomplished by providing a forum for individuals to present 
their recent contributions and state-of-the-art reviews to their peers in industry, 
academia, and government, by providing an atmosphere for the interchange of ideas, 
and by compiling the symposium proceedings.  However, to what extent the symposium 
accomplished its second objective cannot be easily measured, by either the quantity 
or the quality of the documents derived from the conference. 

The task of discerning the trends in any existing discipline requires a 
comprehensive examination of the past and present states.  From such information 
an attempt is made to extrapolate into the future.  The fields of structural and 
solid mechanics 'are not short on history.  Relative to structural and solid mechanics, 
many other engineering and scientific fields, such as those related to electronics, 
are newcomers.  Thus, at first glance, it might appear that predicting the way 
structural problems will be solved in the next 10 to 20 years based on a history of 
many centuries would be a simple extrapolation (approximately 5 percent).  However, 
for the purpose of establishing trends, the past 2 decades of advancement are 
far more significant than the last 2 centuries.  Thus, 10- to 20-year trends 
become a 50- to 100-percent extrapolation.  Indeed this makes trend predicting 
somewhat hazardous.  Thus, the efforts of the symposium authors who tried to 
assess future trends are to be admired. 

It is not much of an oversimplification to attribute the difficulty in 
assessing trends to the dependence of structural and solid mechanics, as well as 
nearly all engineering and scientific disciplines, on the rapidly changing 
electronic computer industry.  The result of this dependence has been to produce 
rapidly growing and evolving structural and solid mechanics disciplines.  This has 
made trend prediction difficult and, at the same time, more important.  Much 
research could easily become useless or meaningless.  To keep researchers and 
engineers up to date, symposiums such as this one have become increasingly important. 
In addition, dynamically evolving disciplines permit individuals and groups of 
individuals to have a greater impact on the way problems are solved.  Symposiums 
such as the present one serve to stimulate and encourage the individuals who 
will play a part in setting, consciously or unconsciously, the 10- to 20-year 
trends mentioned earlier.  Probably it is primarily in this way that the 
symposium fulfills its second objective. 

*Noor, Ahmed K.; and Housner, J. M., eds.:  Advances and Trends in Structural 
and Solid Mechanics.  Pergamon Press Ltd., 1982. 
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The symposium was cosponsored by the NASA Langley Research Center and the 
George Washington University.  Cooperating organizations were the National Science 
Foundation, the Office of Naval Research, the Air Force Office of Scientific Research, 
the American Society of Civil Engineers, and the American Society of Mechanical 

Engineers. 

The papers in this document are divided into the following topics: 

1. 
2„ 
3„ 
4. 
5„ 
6. 

Computational strategies for nonlinear problems 
Material characterization 
Advances in boundary elements and finite element technology 
Advanced structural applications 
Structural stability and analytical techniques 
Structural dynamics and vehicle crashworthiness 

The use of trade names or manufacturers' names does not constitute endorse- 
ment, either expressed or implied, by the National Aeronautics and Space 
Administration„ 

Jerrold M. Housner 
Ahmed K. Noor 
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A SEMI-IMPLICIT DYNAMIC RELAXATION ALGORITHM 
FOR 

STATIC NONLINEAR STRUCTURAL ANALYSIS 

K. C. Park and C. C. Rankin 
Applied Mechanics Laboratory 

Lockheed Palo Alto Research Laboratory 
Dept. 52-33, Building 255 

3251 Hanover Street 
Palo Alto, California 94304 

SUMMARY 

A semi-implicit dynamic relaxation technique is presented to solve the 
nonlinear structural equilibrium equation. The technique employs the same basic 
transient response analysis algorithm previously presented, thus enabling us to use 
one solution method and one software module for both static and dynamic analyses. A 
theoretical comparison of the present method with explicit dynamic relaxation 
techniques shows that the present method offers a substantially improved convergence 
property without ostensible computational overhead. 

1.  INTRODUCTION 

In recent years, simplicity and program modularity in nonlinear structural 
analysis have been emphasized by many investigators. The overriding reasons for 
such emphasis have been due to the high cost of programming and of program 
modifications and the difficulties encountered in exchanging program modules among 
different analysis programs. There are three major computational complexities in 
nonlinear structural analysis programs: data management aspects; discrete element 
generations for quantities such as mass, damping, and stiffness or stresses; and, 
the solution of the discrete equilibrium equations. This paper is concerned with 
the last aspect. 

Traditionally, two distinct solution techniques have been implemented in a 
typical nonlinear structural analysis program: Newton-type techniques for solving 
quasistatic problems, and direct time integration (or modal synthesis) techniques 
for dynamics problems. Therefore, one is motivated to employ a unified family of 
solution techniques to both static and dynamic problems. In this regard the use of 
directtime integration techniques for both classes of problems offers one such 
possibility. When direct time integration techniques are used to solve static 
problems, they are called dynamic relaxation techniques in the literature (see [1] 
forexample). Here, an increment of load is applied to the structure which is in an 
equilibrium state with the previous load and displacement states. The solution 
usually oscillates around the new equilibrium state and reaches that state through 
an introduction of artificial damping in the relaxation equations and/or direct time 
integration formulas. So far, explicit time integration techniques have been 
overwhelmingly preferred to implicit time techniques in dynamic relaxation tech- 
niques. This preference has been largely due to the requirements of frequent matrix 
generations and matrix factoring in implicit techniques, whereas in explicit 
techniques the solution process can be carried out by vectorized calculations. 



In this paper, a semi-implicit direct time integration technique [2] is used to 
solve -ehe discrete quasi -static equilibrium equations, I he technique avoids matrix 
factorization regardless of step size changes and updated new stiffness matrices, 
Th^alaorithm maintains linear (or linearized)  unconditional  stability and acceptable 
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ation between the solution of equilibrium equation by Newton-like or dynamic 
axation techniques on the one hand, and direct time integration of canonical 
axation  eauations that  are derived  from the  homotopy equation, 

A general one-step implicit integration formula is introduced to time-discretize 
the relaxation equation and some approximations are introduced to several matrix 
operators so that 'the equations are practically tractable in most structural analysis 
programs. Normally, the canonical relaxation equations suggest that the mass matrix 
be the linearized stiffness matrix, and the damping matrix consist of the stiffness 
matrix plus the time derivative of the stiffness matrix, In this paper, the mass 
matrix is approximated by diagonalizing the stiffness matrix through absolute row sum 
?nd the damping matrix chosen to be proportional to both the mass and stiffness 
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where P is the applied load vector, u is the 
stiffness force operator that comes fro 
of strain energy, and r(Fyu) is the resiuud 
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v a r i a t i o n o f t h e R i t z f u n c t i o n a 1 

vector that is to be zero for 
ss for attaining the equilibrium state for (2,1) 

Suppose that there exists a unique equilibrium state u* for a given load P  and a 
solution' process starts at point u(0),  If the solution trajectory ultimately Reaches 
the desired equilibrium state u- Regard!ess of the starting point u(0), then the 
solution trajectory is callscT a homotopy and the equation which possesses such 



property is called a homotopy equation. In mathematical terms, such an equation can 
be expressed as 

provided 

r(P,u) -exp(-L(t)) r(P,u(0)) = 0 

exp(-L(t)) —> 0  as t --> » 

(2.2) 

(2.3) 

regardless of the initial estimate u(0). 

Note that by virture of equation (2.3) one has from equation (2.2) 

r(P, u*) as t -->'«> (2.4) 

which is the desired equilibrium state. 

Although equation (2.2) has the desirable mathematical property, it is hardly 
tractable by a computerized solution procedure. However, it turns out that the 
perturbation equations from equation (2.2) can be used as canonical forms for 
developing several computational solution algorithms. Differentiation of equation 
(2.2) once with respect to the relaxation time (t) gives 

-3S/3U u + L exp(-L(t)) £(P,u(0)) =0 

where P is assumed to be fixed.  Equation (2.5) can be rearranged to read 

K u = L r(P,u) 

where 

K = 9S/8U 

(2.5) 

(2.6) 

(2.7) 

and equation (2.2) is used to eliminate exp(-L(t)). Throughout this paper equation 
(2.5) or (2.6) will be called a canonical first-order relaxation equation, as it 
will be shown that many first-order solution techniques emanate from it. 

If equation (2.5) or (2.6) is differentiated once more, the following canonical 
second-order relaxation equation results. 

K u + (K + L K) u + L S(u) = L P (2.8) 

Here again, equation (2.8) can be shown to be a starting form for many second-order 
solution techniques. Now some of the special cases of the two canonical relaxation 
equations will be examined. 



2.1   Integration  of First-Order Relaxation  Equation 

A special   relaxation    path  for    integrating the first-order    relaxation  equation 
follows  if one chooses 

L = |2.9) 

and employs the  Euler explicit  formula 

u    ,  = u      +    h u 
~n+l     ~n ~n 

(2.10) 

to solve equation   (2„6)9 which yields 

u    ,  =    u    + h !<-1r(P9u  ) 
~n+l       ~n ~   ~v~9~n; (2.11) 

provided K is nonsingular» 

Note from equation (2.11) that if the step size h = 1, then (2.11) becomes 
Newton's method to solve the original equilibrium equation (2„1). Hences direct 
integration of the specialized first-order relaxation equation (2.6) with the choice 
of (2.9) for L and by the Euler explicit formula (2.10) yields the same 
computational method as the Newton method applied to the equilibrium equation (2.1), 
It should be emphasized that other Newton-like methods can be derived from (2.11) if 
the step size h and the Jacobian matrix K are approximated for computational 
expediency. For derivations of hierarchical relaxation equations and their 
consistenciess the reader may consult [3]. 

2.2 Explicit Integration of Second-Order Relaxation Equation 

Equation (2.8) can be specialized to 

K u  + a K u + S(u) = P (2.12) 

if one selects 

1 = 1 

K + L K = a K 

(2.13) 

(2.14) 

One of many explicit dynamic relaxation techniques is due to Underwood [1]9 which 
approximates K and a as follows. 

N 
(2.15) K * M = [m.L m. = J |K..|S j = l9N 

3 = 1 

a  =  2(uJ<T u/utM Li)1/2 (2.16) 



When equations (2.15) and (2.16) are substituted into (2.12), one obtains 

M u + a M u + S(u) = P (2.17) 

Now, equation (2.17) is integrated by the central difference formula 

~n+l/2  ~n-l/2   ~n 

~n+i   ~n   ~n+l/2 

Other second-order relaxation algorithms can be derived from (2.8) if I and J< are 
appropriately approximated. For example, the scaling of S(u) for a better convergence 
rate can be viewed from the present canonical second-order~relaxation, as choosing I 
other than the identity matrix. 

3. IMPLICIT DYNAMIC RELAXATION (DR) ALGORITHM 

It can be shown that if the second-order DR equation (2.8) is integrated by an 
implicit integration formula, the solution will converge in one step provided the 
step size h is large enough. This is because one must factor K that is associated 
with both ü and u. The idea is then to compromise a lower "convergence rate by 
adopting a diagonälized approximation of K in favor of computational simplicity. 
Hence, as in the case of explicit DR algorithms, K is approximated by 

K *    M L^L mi 

N 

I 
j = l 1J 

l,n (3.1) 

Note that the matrix & asocated with ü is the tangent stiffness matrix in the 
canonical equation (2.8), which is distinctly different from the mass matrix in 
structural dynamic equations. In fact, this explains why the diagonälized form as 
given by equation (3.1) is found to be superior in explicit DR techniques [1]. 

0 

Whereas the term K is ignored in explicit DR techniques, it will prove essential 
to retain K in implicit DR techniques. Hence, K is approximated by 

K ~ $ K (3.2) 

since one may express 

K ~ ((1+ß) K - K)/h = ß K (3.3) 

where ß = ß/h. 

With the above two approximations, equation (2.8) reduces to 



u + (L !< + ß !() u + L S(u) = L P [3A) 

which is the desired form for the present study0 However3 there are still three 
parameters ß 3 L and L to be fixed before equation (3,4) can be implemented» This is 
dealt with next. 

3d Selection of Relaxation Function I 

It must be observed that the three undetermined parameters cannot be selected 
independent of the integration formula as the integration formula strongly influences 
the overall convergence property of any DR technique» It turns out that among 
one-step integration formulas,, the Euler implicit formula is the most effective one» 
This is in contrast with the preference of the trapezoidal formula in dynamic 
problems for accuracy considerations. Hence, the integrator for the present study 
is 

4    -1 h u 

Substitution of (3,5) into (3,3) results in 

where 
(M + h(L M + 3 K)) unL, + h^ L S(u -) = g . 

!n+l + h(L M + ß !<) u + h M u + \\     L P . ^    ~>  ~n   ~ ~n     n+1 

Since L must exit,, L can be represented in the form 

hence. 

L = (t^/2 + b t + c) I 

0= o 

L = I and L = t + b 

tow, within the time interval 0 < t < h3 J_ may be chosen to be 

L = a = h + b 

(3,5) 

(3,6) 

(3.7) 

(3.8) 

(3,9) 

(3,10) 

3,2 Convergence Property of Implicit DR Method 

The convergence property of equation (3,6) can be examined by taking the linear 
(or linearized) case,, viz„s 

S(u ,.) = !< Li . nin ~x~n+l;  ~ ~n+l \O,LI) 

with the homogeneous state, P = 0„  If one seeks a nontrivial solution in the form 

Hn+k = A^n (3.12) 



the following equation results from equation (3.6) 

(M (A-l)2 + h(a M + 3 K) X(X-l) + h2K A2) un = 0 

As equation (3.13) can be decoupled via the transformations 

equation (3.13) has a nontrivial set of solutions if and only if 

(3.13) 

(3.14abc) 

where 

Xl,2 = ((1 + B) + Q)/(1 + 2B + C) 

= h(a + 3 u )/2 

= (coh)2 

n2     „ 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

The spectral radius X given by equation (3.15) is to be minimized for a faster 
convergence. For example, if A =0, the solution converges in a single iteration 
step. Note that there are two solution components given by equation (3.15). For 
optimum convergence, one would like to have the two solution components converge with 
the same rate. This is achieved if one chooses 

Q = B' 0 (3.19) 

In practice, however, equation (3.19) can be satisfied only for two frequency 
components. Here, these two states are chosen to be at a)max and <üm-jn» respectively. 
Hence, one obtains 

(a + 3 to . )2 - 4 (Ü2. = 0 v     mmy     mi n 

(a + 3 co  )2 - 4 cü2  =0 v   p max'     max 

Solving for a  and 3 from the above two equations, one obtains 

2 a). 

a  =   ■ 
"mm wmax 

max      mm 

(3.20) 

(3.21) 

(3.22) 

umax+ Vin 

(3.23) 



fhe spectral radius X now becomes from (3.15), (3.22), and (3.23) 

1 

h 
wmin<a)   <wmax (3o24) 

3„3 Comparison with Explicit DR Techniques 

It would be of interest to compare the spectral radii of both the present 
implicit DR vs„ explicit DR techniques as proposed by Underwood [1] and Papadrakakis 
[4]0 The optimum spectral radius for explicit DR techniques is given by 

!XP 

00 -   CO    . max        mm 

max        mm 

tomi n< OJ   < 00 max (3.25) 

while for the present  implicit  DR techniques   it  is  given  by   (3.24). 

In  explicit  DR technique, comax is often normalized to be unity while the optimum 
step  size  is  found to be 

h     ,  =  2/( oj2      + co2.   )1/2 -   2o0 opt        ' v    max        rain' (3.26) 

if comi n  << tomax,  which  is  often the case0 

Hence,  the  spectral   radius  for the explicit DR techniques  is  given  by 

X   -   (1   -  2 to   .   ),  ii)   .   <co<co x mm"    mm max (3.27) 

whereas for the present  implicit  DR method  it  is 

X  =  l/(l+coh)3co.<co<co        and    h  < oo 
mm     max :3.28) 

Note that for the present implicit DR method, the step size is not restricted to 2 as 
it does not suffer from stability loss0 Even if one takes h = 2 for the present 
method, the spectral radius is about the same at the lower eigenvalue while that of 
the present method approaches to 0»333 at the high eigenvalue end» 

Of course, the above superior convergence property of the implicit DR method has 
so far sidestepped the issue of factoring the solution matrix (M + h(a M + ß K) + 
h2K)„ This handicap is successfully overcome by the adoption of the semi-impl icit 
algorithm [2] as described in the next section. 

40  SEMI-IMPLICIT DYNAMIC RELAXATION ALGORITHM 

For completeness, the second-order DR equation is written from the previous 
section as 

MÜ+(aM+ß K) u+ S(u) = P (4.1) 



where 
a  =  2 a)   •     a)       /(ü) +0)-) min    max'v max        rrnn' 

0  =  2/( to      + <o   •   ) p        ' v    max      mm' 

and ü)2 is obtained from the eigenvalue problem 

2 
co M x = K x 

(4.2) 

(4.3) 

(4.4) 

The iteration equation, when the Euler implicit formula (3.5) is used to integrate 
(4.1)s is 

where 

EAun+1 = rn+1/(l+a h) 

E  = M + 6L  K 

(4.5) 

(4.6) 

AU„,,    =   U„,,-   U„ ~n+l     ~n+l   ~n (4.7) 

~Wh   (£n+rÄi)) + **bn 

■(M + h(a  M +ß   K))(uJ+1- un) (4.8) 

5    = ( ß + h)  h/(  1 + o h) 

and u^,,  is a suitable predictor. ~n+l r 

In  semi-implicit method  [2],  the solution matrix is approximated by 

E =  M + 62K + 64C 

(4.9) 

(4.10) 

where 

E =   {I + 62 KL)  M  (I  + S2 KU  ) 

M = M + 6 m 

K =  (  r + 6^k/2)  M (4.11a-d) 

KU =  (KL)\    KU  =  (KV 

in which m and k are diagonal  matrices to be determined by requiring that 

C<in = ° (4.12) 



W8K&mm 

Note that the approximate E as given by (4010b) consists of two triangular and one 
diagonal matrices,, Therefore9 factoring is bypassed and only substitutions are 
needed to solve the relaxation iteration equation (4„5)o For details on computing m 
and k the  reader may consult  [2]» ~ 
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SUMMARY 

The authors assess the relative merits and demerits of the minimization techni- 
ques using globally convergent quasi-Newton algorithms on the one hand and the homo- 
topy algorithms on the other hand for the solution of problems of nonlinear struc- 
tural analysis. Like the homotopy algorithms the globally convergent quasi-Newton 
algorithms are equally well suited for the solution of the nonlinear equations of 
structural analysis directly without having to pose the problem as an equivalent 
minimization problem. It is only in the close neighborhood of the limit and bifurca- 
tion points, however, that quasi-Newton algorithms experience difficulties. Homotopy 
algorithms on the other hand are robust for practically all types of nonlinear pro- 
blems but are computationally not as cost-effective since they provide an extremely 
accurate prediction of the response by calculating it at a large number of points. 
Globally convergent algorithms can perform well with very approximate Hessians, while 
homotopy algorithms require extremely accurate Hessians. Finally, while quasi-Newton 
algorithms can be very easily structured to exploit sparsity and symmetry, homotopy 
algorithms are not presently so structured and would require special modifications 
for exploitation of such features without sacrificing robustness and global 
convergence. 

INTRODUCTION 

Newton's method or its modification is undoubtedly one of the most popular 
methods for the solution of problems of nonlinear structural analysis. However, in 
spite of its very high efficiency, because of unsuccessful convergence, or at times 
even divergence, researchers are increasingly recognizing the need for making these 
algorithms robust and globally convergent. Globally convergent algorithms using the 
double dogleg strategy [1] not only eliminate the convergence problems of the conven- 
tional Newton's algorithms but are also more efficient as a result of the careful, 
automatically controlled step length procedures. 

* This work was partially supported by NASA Grant NAG-1-139. Acknowledgement is also 
due to the Flight Dynamics Laboratory, WPAFB, for allowing the first author to com- 
plete this work as a Visiting Scientist there. 
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But even so, globally convergent 
highly specialized response parameter 
the neighborhood of limit or bifurcati 
equations ceases to be positive defini 
algorithms cannot be used to locate li 
be5 and very efficiently at that, but 
in the absence of a proper and special 
limit point problems that techniques 1 
and Padovan [5] have to be resorted to 
such alternative. 

quasi-Newton algorithms, in the absence of very 
incrementation features [2], are ineffective in 
on points where the jacobian of the nonlinear 
te„ This is not to say that quasi-Newton 
mit or bifurcation points» They certainly can 
they cannot 'breeze' past such turning points 
ized response parameter control» It is for 
ike those proposed by Riks [3], Crisfield [4], 
. The homotopy algorithm presents yet another 

In this paper we discuss in detail the globally convergent quasi-Newton 
minimization algorithm and the homotopy algorithms and demonstrate their 
effectiveness in solving certain classes of highly nonlinear problems of structural 
analysis» The authors believe that it is through an optimal combination of the two 
algorithms that a highly efficient;, and at the same time robust., and globally 
convergent algorithm suitable for an extremely wide class of nonlinear problems can 
emergeo 

GLOBALLY CONVERGENT QUASI-NEWTON ALGORITHM - The Double Dogleg Strategy 

It is well known that standard Newton's method is not globally convergent; that 
is to say, a good starting point is essential for its convergence, and in fact it may 
diverge from a bad starting point if the strategy is to always take the full Newton 
step. For an extremely good example of such a phenomenon, consider the clamped beam 
of Figure 1.  It can be easily verified that, depending upon the size of the load 
step, the conventional Newton's method can diverge by producing nonpositive defi- 
nite Hessians during the iteration process. A globally convergent Newton's method 
using the double dogleg strategy overcomes this problem by controlling the direc- 
tions and the step lengths. 

The development of the double dogleg strategy as presented here is based on an 
excellent expose of the strategy by Dennis and Schnabel [1]„ The strategy was, 
however, first proposed by Powell [6], although the method as proposed by Powell 
lacked the sophistication and the efficiency features of the present method» 

Quadratic Model 

Newton's method for unconstrained minimization essentially approximates the 
multivariate function f:Rn ->  R about a point xc by a quadratic model of the type 

m
c(ü+) mc(üc + I) = f(xj + iV(xc) +\  STHci (1) 

where _S_ = (x^ - jO and _H_ is an approximation to the Hessian of f which is coerced 
to be positive definite Tr not already so. 

To render Newton's method globally convergent, the following two conditions must 
be satisfied: (i) sufficiently large decreases in f values must be achieved for the 
step lengths taken and (ii) the rate of decrease in the direction S at x+ must be 
smaller than the rate of decrease in the direction _S at x^ Both these criteria can 
be expected to be satisfied if the following definition of acceptability of an 
iterate x_+ is adopted 

f(x + ) < f(üc) + «If(üj 
T, 

*C' 
(2) 
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with a = 10 
-4 

Standard backtracking along the Newton or quasi-Newton direction by retaining 
the same step direction but by choosing shorter step lengths can achieve conver- 
gence. These new shorter step lengths are determined by a one-dimensional quadratic 
or cubic model built from only function and gradient information in the quasi-Newton 
direction. Such a strategy, although quite successful, suffers from the fact that it 
fails to utilize the n-dimensional quadratic model including the model Hessian during 
backtracking. The double dogleg strategy on the other hand uses the n-dimensional 
quadratic model to choose the new step direction and the shorter step lengths. 

There is a certain region within which the quadratic model mc can be trusted to 
adequately approximate the function. Let 6 denote the radius of such a trust region 
around the current pointy. If the trust region is large enough, that is if 

,N .. 
c   —c 2 

(3) 

where i 
Newton 
words 

SN i 
sT§p 

is the distance to the Newton point from the current point r, then the 
?s taken since the Newton point is the global minimizer of mc- In other 

sN = üclf(üc) (4-a) 

Ac
+Sc (4-b) 

The new point x, is checked for acceptability using Eq. (2). If the new iterate x+ 
is found to be satisfactory, a new quadratic model m is constructed around x^, the 
trust region radius 6 is updated, and the next iteration is begun. 

However, if the trust region radius 6 is less than the Newton step, then the 
direction S is determined as being that diFection that corresponds to the optimum 
solution oT the constrained problem: 

Minimize mc(_xc + _S) 

Subject to II S II < 6 

(5) 

(6) 

From the theory of constrained optimization, the necessary and sufficient conditions 
for an optimum are given by 

1 = S(y) = -(^ + yl)"1 Vf (x^) , y > 0 

such that II jS(y) II = 6 ; 

or i = K°) = S^, y = 0 

such that II S(0) II < 5, 

(7-a) 

(7-b) 

Thus the curve _S(y) shown in Figure 2 is a curve that runs smoothly from the Newton 
step when y = 0 to 

S(y) - -7Tlf(xJ x—c' 
(7-c) 
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whan u gets large. In other wordss the solution to Eqs„ (5) and (6) when oc is very 
small is a step length 6C approximately in the steepest descent direction. An exact 
solution of Eqs,, (5) and (6) to determine a direction S_ requires what is known as the 
model trust region approach utilizing methods like the locally constrained optimal 
'hook' step [7]s requiring approximately 0(n3) operations. The double dogleg strat- 
egy provides an approximate solution of Eqs. (5) and (6) which is not much inferior 
to the exact solution but at a substantially reduced computational effort - approxi- 
mately 0{n2) operations after s| has been calculated. 

Double Dogleg Strategy 

The double dogleg is an approximation to the S(y) curve that must have its two 
properties: namely that the distance from the current point x increases 
monotonically and the value of the quadratic model function also decreases 
monotonical ly along the double clog! eg „ The elbows of the double dogleg are chosen to 
guarantee these properties. The first elbow of the double dogleg is chosen to be the 
Cauchy point of the quadratic model, Thus., 

where cp = - X Vf(xc) 

X   = 
i! vffx ) ii 

Vf(xj\vf(x  ) 

(8-a) 

(8-b) 

(8-c) 

A point x_* is then chosen along the Newton direction such that the two desired pro- 
perties of the double dogleg are satisfied. The point x" is chosen as [8] 

x , 
x -:- nS 
—c   —c 

where n  =  0„8Y  -I- 0,2 

y being a quantity determined from the  relation 

(9-a) 

(9-b) 

S 
-cp 

T   I!    S"   II   <   Ü   Sl!   II 
—c —c 

and  is  givan by 
H   Vfi .)   11 

(Vf(xr)   H Vf (x  ))(Vf(x  ) V Vf(xr)) 
c —c 

The point x" is the second elbow of the double doqleq, 
—N 

The next  iterate x,   is then given by a  point along x      and x"  such that 
11  x^ - x_^.   II  =  6   ,    That  is3 ' 

xL = x + S  + ,6(SN - S ) 
—!-   —C   —CO     — C   —CO; 

(9-c) 

:9-d: 

(10-a) 

wnere ß is cnosen such tnau 

s + e(s" - s ) II = 6 
—Cp   v c  —cpy     c 

;i0-b) 

For _x+ to be an acceptable point it has to satisfy Eq, (2), If not, the trust region 
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radius must be reduced. The reduction factor is determined by the quadratic back- 
tracking strategy utilizing f(_0 , f(x^) and the directional derivative 
J?f(x. ) (x - x ) to fit a parabola and determine the new trust region radius corres- 
ponding to ttie^minimum of this parabola. The new trust region radius is given by 

Vf(xc) (x+-xc) 

C 2[f(xJ-f(xJ-Vf(xr)
T(x+-xr)] 

(11) 
v^c 

If 2L+ passes the acceptability test, then a check is made to determine how well 
the quadratic approximation is modeling the function f and whether a larger step from 
J^ using the current quadratic model should be attempted. When finally an acceptable 
x+ has been found, the quadratic model must be redefined utilizing _H+ or an approxi- 
Wation to it obtained by using, say, Toint's update [9]. The new trust region radius 
is determined as follows: 

If |Af I >  0.75 |Af  ,|, 6 1  '      ' pred1  + 

where 

If jA-f | < 0.1 |Af 

Af 

pred'' + 

= 26 
c 

öc/2 

pred m (x ) - fC*J cv—+'        K—c' 

(12-a) 

(12-b) 

(12-c) 

This in essence completes the discussion of the double dogleg strategy. Interested 
readers should consult reference [1] for additional details. 

Extension for Solving Nonlinear Equations 

The double dogleg strategy can be extended for developing global methods for 
systems of nonlinear equations such as 

F(x) = 0, (13) 

the Newton step for which is given by 

-It 
*+ = *£ -KäC)   Klc)> (14) 

_j_(x_c) being the Jacobian of _F at _xc. The double dogleg strategy is applied to 
minimize 

f(2L) =|f(x)T£(x) O5) 

the steepest descent direction for which is given by J^ = -J(_x_c) £i*c)  witn tne 

Newton direction S = -Jfx ) F(x ) being a descent direction. Since this Newton 
direction yields a root of 

M(X +_s) = _F(x.) + _J(xJT_S ix^^c 
it goes to a minimum of 

:(xc 
+i) =\  Mc(üc 

+i)T^c(üc 
+^ 

(16) 

(17) 

Hence, global methods for nonlinear equations can be developed by applying the double 
dogleg strategy to the positive definite quadratic model (17). 
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HOMOTOPY METHOD  [10]-[11] 

The equilibrium equations have the form 

F(x5 X)   = 0 :i8) 

where x5 F are n-vectors and A is a scalar» The zero set of (18) contains a smooth 
(assumTng~F is sufficiently smooth) curve y in {n+1)-dimensional {x,X)  space, which 
in the generic case does not intersect itself nor other zeros of £(x_3X), The excep- 
tional cases are where Y intersects itself or has bifurcation points. For simplicity 
only the generic case will be considered here - Y is assumed to have no bifurcation 
points , The smooth curve Y can be parametrized by arc length s3 so 

X = X (s) 5 X = X (s) 

along y.    Then 

F(x(s)5 X{s)) = 0 

identically in s, and the initial value problem 

•gf F(x(s), X(s)) [Dx£(x(s),X(s)),DxF(x(s),A(s))] 

dx 

ds 

dX 
ds 

= 1 

;i9) 

(20) 

(21-a] 

(21 -b) 

x(0) -*0! X(0) = 0 

has precisely Y as its trajectory. The idea (referred to as a 
solve (18) by solving the ordinary differential equations (21a 
tions (21-c), 

{21-c) 

homotopy method) is to 
-b) with initial condi- 

This technique differs significantly from standard continuation or imbedding in 
that: 1) the load parameter X is a dependent variable which can both increase and 
decrease along TS and 2) no attempt is made to invert the Jacobian matrix D F(_x5X), 

X " 

thus limit points pose no special difficulty whatsoever. It differs from initial 
value or parameter differentation methods also since arc length s5 rather than X, is 
the controlling parameter. The homotopy method is similar in spirit to the 
Riks/Wempner [3] and Crisfield [4] methods, but the implementation details are very 
different, and the emphasis is on ODE techniques rather than a Newton type iteration. 

The calculation of (dx/ds, dX/ds) in (21-a) will now be discussed, 
(21a-b) determine the derivative dy/ds = (dx/ds, dX/ds) only implicitly, 
ODE solvers require that the problem be specified in the form 

dy 

ds .G(s3y)5 y(0) = yQ. 

Note that 
and standard 

(22) 



The generic smoothness assumption on Y is tantamount to the nx(n+l) Jacobian matrix 

DF = [DxF, Dxn (23) 

having rank n. This means that DF_ has a one dimensional kernel, and thus the sub- 
space spanned by dy/ds is uniquely determined., Equation (21 -b) fixes the length at 1 
and the direction is determined by continuity (precisely, the current derivative 
dy/ds must make an acute angle with the previously calculated derivative). 

The calculation of the kernel of DF_ is the most expensive part of the algorithm, 
and also the most crucial in terms of accuracy. Thus, a technique was chosen which 
guarantees high accuracy at a slightly greater cost than some other possibilities. 
Using a modification of the algorithm in [12], the equation 

D[(l(s)) (^-) = 0 (24) 

is reduced to the form 

RZ = 0 (25) 

where R is an nx(n+l) upper triangular matrix, by multiplying both sides of (24) by a 
series of Householder reflections (see [13] and [12] for complete details). The 
columns of DF_ are interchanged such that the diagonal elements of R are as large as 
possible; _Z represents a scaled permutation of dy/ds. _Z is calculated by setting 
Zn+1 = 1 and then using back substitution in (25]". dy/ds is obtained by permuting 
and scaling Z, and also reversing its direction if necessary in order to maintain 
continuity oT the derivative. 

The use of Householder reflections on (24) destroys any sparsity that DF might 
have. Thus, the algorithm as described, while perfectly adequate for small dense 
matrices DF, is unsuitable for yery  large sparse matrices D_H with, for example, a 
skyline structure. Note that D_F is not square and that the (n+l)st column 
(=D F(x,l)) is generally full. A sparse direct algorithm is currently under develop- 
ment to overcome these complications and take advantage of the typical skyline struc- 
ture. Note that (24) could also be solved by an iterative method applied to the 
(n+l)x(n+l) positive semidefinite matrix (DF)TpF. 

The derivative dy/ds = G(s,y) for any point (s,y) is required by the ODE code 
used to solve (16). Since derivative evaluations are expensive, a method which needs 
few such evaluations is preferable. The chosen algorithm is a variable step, vari- 
able order Adams PECE method, as implemented in L. F. Shampine's subroutine STEP 
[14]. An Adams PECE method uses previous points, and derivatives at those points, to 
predict the next point on X by a high order interpolating polynomial. The derivative 
is then evaluated at the predicted point, and another high order polynomial is con- 
structed wich corrects the prediction. If the predicted value and corrected value 
agree sufficiently, the corrected value is accepted and the step size and order of 
the formulas are adjusted to optimal values. Finally, the derivative is evaluated at 
the accepted point. If the prediction and correction disagree, the step size and/or 
order are adjusted and a step is attempted again. The rules for the step size and 
order adjustment are very sophisticated, and are based on both theory and computa- 
tional experience (see [14]). 

As a final observation, the ODE based homotopy algorithm can calculate limit 
points (where dx/ds = 0) very  accurately and efficiently. Simply track X until 
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dX/ds changes sign.  «he limit po_i_nt 
on Xs and the problem is to find s suci 
tained by the ODE solverw dX/ds can_be 
poi nts on X wi th no f urther derivet i ye 

t h e n 1 i e s, b e t we e n t h e las t t wo calculated points 
■ that 4- (s") = 0, Using the information main- 

d s calculated anywhere between the last two 

secant method (applied to the 
required 

ze? 
valuations„ Thus 

o finding problem dX/ds 
s can be found by the 

= 0)3 and no extra deriva- 

tive evaluations ar 

DISCUSSION OF RESULTS AND CONCLUSIONS 

Performance evaluation of the globally convergent quasi-Newton and the homotopy 
elaorithms is especially interesting on those problems of geometrically nonlinear 
structural analysis for which the standard Newton's method (SNM) does not perform 
well o Three such problems are illustrated in Figures ls 3 and 4. A much more 
detailed evaluation of these algorithms on moderately large scale problems involving 
both geometric and material nonlinearities may be found in reference [15]. 

Centrally Loaded Clamped Beam 
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of Fig. 1 involves a slender clamped beam loaded by a concentrated 
pan. Because of symmetry only half the beam is modeled using 10 
'elements leading to a model with a total of 29 degrees of freedom» 
haracter of the model under large displacements leads to a response 
n the figureo Such a response curve poses significant problems for 
ton's method (SNM) or the modified Mewton-Raphson method (MNR) unless 
re small enough. However» globally convergent versions of both these 
g the double dogleg strategy permits extremely large load steps. 
te advantage for those cases (like the two cases to be discussed 
e objective of a nonlinear analysis may be primarily an accurate 
mit or a bifurcation point. 

A 
the qu 
On the 

globally convergent  Newton's method  (GCNM)   is  defined to be one in  which ji, of 
idratic model   of Eq.   (1)   is evaluated each time the quadratic model   is changed. 
other hand a  globally convergent modified  Mewton-Raphson1s method   (GCMMR)  is 

defined to be one 
at the beginning 

in which jj^ is evaluated only at 
if every few load  steps. 

the beginning of each load step or 

in predi 
response 
the algo 
permits 
avaluate 
that all 
scheme, 
response 
summariz 
loaded c 

nomo'copy 
cting the 
curve ha 

rithni tha 
■'- h o c n 1 0 ! U'C 

three m< 
Since V< 
curve a 

es the el 
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algorithms as expecteds experiences no difficulty whatsoever 
response for the' clamped beam of Fig. 1. In fact, since the 

s no turning points it is an easy matter to construct a version of 
t exploits the sparsity and symmetry of the Jacobian and also 
ion of Eq. (23) by a standard LDL1 decomposition scheme. To 
topy method in relation to GCNM and GCMNR methods it is necessary 
thods be used in conjunction with the same load incrementation 
e homotopy method generates a large number of points along the 
load step of 20 lb. was used for this evaluation. Table 1 
ficiency evaluation of the different algorithms for this centrally 
'am. 

A globally convergent quasi-Newton method performs a variety of checks before an 
iterate x. is accepted! Many of these checks will be redundant if the load steps are 
small; tffat is to say, such checks will be redundant for those cases for which SNM 
and MNR work well. Hence, it is not at all surprising that in Table 1 both GCNM and 
GCMMR are not as cost-effective when the load steps &re  small. But it is because 
these methods are  robust that they yield successful convergence for extremely large 



load steps. This 
extremely high cos 
that the method is 
of special feature 
required by GCNM t 
total of 5 load st 
on each of these 1 
may be possible by 
instance, by Toint 
definite Hessians. 
[15]. 

is the price that a robust method always must pay. In fact, the 
t paid by the homotopy method is a direct consequence of the fact 
robust and globally convergent and hence fails to take advantage 

s in some special cases. Note that on the Cyber 74 the CPU time 
o compute the response of the 29 degree of freedom beam model for < 
eps of 400 lb. each was only 5.29 sees. The accuracy requirement 
oad steps was « vf n < 10" . Further improvements in CPU time 
resorting to updated Hessian approximations provided, for 

's sparse updates [9] which are suitably coerced to yield positive 
The effectiveness of this option is investigated in reference 

Snap-Through of a Shallow Arch 

The particular case of the shallow arch shown in Fig. 3 involves a single con- 
centrated load at its crown. For such a case the entire response curve of the arch 
consisting of stable and unstable branches can be obtained by resorting to displace- 
ment incrementation [16]. Such a technique however has its' obvious limitations and, 
in general, recourse must be made to techniques like the homotopy method to be able 
to track response curves involving turning points. 

It was shown in Reference [17] that the BFGS algorithm along with appropriate 
load 'incrementation' can locate all points along the stable branches. This is the 
direct result of the use of positive definite inverse Hessian approximations in the 
BFGS algorithm. The globally convergent quasi-Newton algorithm GCMNR utilizing 
positive definite Hessians at the beginning of each load step has a performance iden- 
tical to the BFGS algorithm for this shallow arch problem. The GCNM algorithm 
exhibits even a better performance if care is taken to coerce the Hessian within the 
load step within which snapping occurs to be positive definite. The double dogleg 
strategy then permits the GCNM method to converge to the distant stable equilibrium 
configuration. The same coercion technique, however, does not work if the strategy 
of taking the full Newton step is maintained as in the case of the SNM and MNR 
methods. 

The CPU time on the Cyber 74 for the GCNM, GCMNR, and BFGS methods with 25 load 
steps of 400 lb. each were 16.75, 18.41 and 18.49 seconds respectively. To track the 
entire response curve the homotopy method required approximately 150 seconds. There 
is reason to believe that on larger scale problems both GCNM and GCMNR will be more 
cost-effective than the BFGS method not to speak of the reduced storage requirements 
of the globally convergent quasi-Newton methods. 

The 
entire re 
be used t 
lb. and a 
locate th 
would be 
The CPU t 
24.43, an 
of 400 lb 
reduced, 
point to 
limit or 
iterative 

homotopy method is ideally suited for such a problem since it generates the 
sponse curve with no difficulty. However, GCNM, GCMNR and homotopy may all 
o determine the peak load of the arch which was estimated by GCNM at 3039.48 
t 3039.78 lb. by the homotopy method [18].  If the objective is just to 
e peak loads, or for that matter the two limit points, both GCNM and GCMNR 
far superior to the homotopy method in terms of computational efficiency, 
ime on the Cyber 74 for the GCNM, GCMNR and the homotopy methods were 22.41, 
d 68.62 seconds respectively. Both GCNM and GCMNR used an initial load step 
. If even larger steps are attempted, the CPU time can be further 
For instance, GCNM with initial load steps of 800 lb. located the limit 

the same accuracy within 15.70 seconds of CPU time. The location of the 
the bifurcation point in the case of the GCNM and GCMNR methods is an 
process that involves the identification of the loss of positiveness of the 
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CPU time requirements of the homoto 
extremely accurate Jacobians. For 
point to an accuracy far in excess 
using Hessians calculated with the 
[20]o The homotopy method requires 
central differencing scheme of the 
preferable« With this in mind, a f 
Fiq. 4 will be discussed next. 
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ce loss of positive definiteness of 
s reduced by a factor of 4 and the 
ium point. The homotopy method 
ue described earlier. The rather high 
the result of its dependence on 
GCMM and GCMNR predict the limit 

reel for most engineering purposes 
rencing scheme of the PT strategy 
aluated using the rather costly 
Exact H essians or Jacobians would be 

0". the shallow reticulated dome of 

Shallow Reticulated Dome 

Using the exact Hessian derived on the basis of the strain definition 

L~L-0 (26) £ = 

"0 
with Ln and L being the undeformed and deformed lengths, respectively,, of the_three 
dimensional rod elements modeling the shallow dome of Fig. 4, its limit load is 
computed using the GCMM and the homotopy method0 Because of symmetry (in fact, 
axisymmetry could have been exploited) only half the dome was modeled resulting in a 
total of 11 degrees of freedom. Since exact Hessians are used both methods predicted 
the same peak load of 233,282 lb,; an initial load step of 100 lb, GCMM required 
5.78 seconds of CPU time, while the homotopy method required approximately 11.66 
seconds on Cyber 74. 
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Table 1. Evaluation of Algorithms - Clamped Beam, Fig. 1 

Method 
CYBER 74 CPU Seconds for a total load of 2 kips 

Load Step Size 

SNM 
GCNM 
GCMNR 
Homotopy (LDLT) 
iHomotopy 
(Householder Reflects.) 

20 lb. 

35.78 
40.85 
52.16 
93.47 

117.11 

40 lb. 100 lb. 200 lb. 

22.34 
27.68 

diverged 
15.23 

diverged 
8.28 

17.85 

400 lb, 

diverged 
5.29 
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ABSTRACT 

The spatial formulation of the elastoplastic dynamic problem for finite 
deformations is considered. A thermodynamic argument leads to an additive 
decomposition of the spatial rate of deformation tensor and allows an operator 
split of the evolutionary equations of the problem into "elastic" and "plastic" 
parts. This operator split is taken as the basis for the definition of a global pro- 
duct algorithm. In the context of finite element discretization the product algo- 
rithm entails, for every time step, the solution of a nonlinear elastodynamic 
problem followed by the application of plastic algorithms that operate on the 
stresses and internal variables at the integration points and bring in the plastic 
constitutive equations. Suitable plastic algorithms are discussed for the cases of 
perfect and hardening plasticity and viscoplasticity. The proposed formalism 
does not depend on any notion of smoothness of the yield surface and is appli- 
cable to arbitrary convex elastic regions, with or without corners. The stability 
properties of the global product algorithm are shown to be identical to those of 
the algorithm used for the integration of the nonlinear elastodynamic problem. 
Numerical examples illustrate the accuracy of the method. 

1.  Introduction 

A variety of techniques have been proposed for the numerical treatment of the finite 
deformation elastoplastic boundary value problem [4,7,13,19]. Those based on some notion of 
an elastoplastic modulus tensor, such as the tangent modulus tensor method, suffer from vari- 
ous shortcomings. For instance, the methods are ill-suited for dealing with corners in the yield 
surface. Furthermore, the consistency condition of plasticity which requires that the stress tra- 
jectory be confined to the elastic domain is difficult to enforce exactly. Frequently, projection 
techniques have been introduced to restore consistency. In addition, these methods require 
elaborate schemes for making the transition from the elastic into the plastic regimes that fre- 
quently involve discarding or truncating time steps. 

The limitations associated with the above methods have motivated the search for alterna- 
tive methods of solution. One such alternative method makes use of the concept of a "return 
mapping" algorithm and was originally proposed by Mendelson [32] for the case of infinitesimal 
deformations. This technique consists of solving for every time step an incremental linear elas- 
tic problem followed by the application of a return mapping algorithm to the stresses to restore 
consistency.  Clearly, this procedure automatically guarantees the satisfaction of the consistency 
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condition. Moreover, the method results in unconditional stability [33] and reasonable accuracy 
[29,30,31]. 

In order to be convergent, numerical solution schemes have to satisfy the requirements of 
consistency and numerical stability. A formal study of the consistency and numerical stability 
properties of the global solution schemes arising from the use of return mapping algorithms is 
missing in the literature. At best, the existing v/ork has only considered partial aspects of the 
global numerical solution scheme such as the integration of the constitutive equations 
[29,30,31]. It is shown in this paper how the operator split formalism provides a suitable 
framework in which these issues can be adequately studied. 

The operator split method, briefly discussed in Section 2, has recently been applied within 
the context of computational mechanics and shows considerable potential as a tool for the 
analysis of certain classes of linear and nonlinear problems [1,2]. For instance, this technique 
has been recently used in connection with the heat conduction problem [2] and the structural 
dynamics problem [1]. 

In Section 3 a spatial formulation of the elastoplastic dynamic problem for finite deforma- 
tions is developed. Central to the applicability of the operator split method to the elastoplastic 
dynamic problem is the additive decomposition of the spatial rate of deformation tensor into 
"elastic" and "plastic" parts. A brief discussion presenting a thermodynamic basis for such a 
decomposition is also presented in Section 3. 

In Section 4 an operator split of the field equations into "elastic" and "plastic" parts is 
introduced. Product formula techniques are then applied to this additive decomposition, result- 
ing in a step-by-step integration procedure in which a nonlinear elastodynamic problem is first 
solved, followed by the application of algorithms that bring in the plastic part of the field equa- 
tions. The nonlinear elastodynamic problem is solved by means of a Newton-Raphson pro- 
cedure based on consistent linearization of a weak form of the boundary value problem for 
momentum balance. The elastic rate constitutive equations are numerically integrated using an 
unconditionally stable and incrementally objective algorithm. 

For the rate-independent case, it is shown in Section 4 that the algorithms for the integra- 
tion of the plastic part of the field equations are return mapping algorithms in which the 
stresses corresponding to the elastic solution are projected into the elastic region by means of 
general return mappings. For the viscoplastic case, the plastic algorithms are shown to 
represent a relaxation process of the stresses towards the elastic region. In this context, the 
consistency and numerical stability of the resulting global solution schemes is demonstrated. 
The numerical stability properties of the elastoplastic product algorithm are shown to be identi- 
cal to those of the algorithm employed in the integration of the elastic part of the equations of 
motion. Also, the return mapping technique is extended to the dynamic, viscoplastic and har- 
dening cases. 

The proposed formalism does not depend on any notion of smoothness of the yield hyper- 
surface and is applicable to arbitrary convex elastic regions with or without corners. Under 
appropriate conditions, it is shown that the viscoplastic solution approximates the rate indepen- 
dent one in the limit of small viscosities. Finally, the accuracy of the method is demonstrated 
by means of numerical examples. 

2.  General Pretest Algorithms Based ©n Operator Splits of Equations of Evolution 
In the present section, a collection of results is presented regarding operator split methods 

and product formula algorithms for general nonlinear equations of evolution. These results 
illustrate the point that product formulas can be advantageously applied to any set of equations 
of evolution where the evolutionary operator has an additive decomposition (operator split) into 
several, hopefully simpler, component operators. The basic idea underlying product formulas is 
that of treating each one of the component operators independently. In a typical integration 
process, one applies an algorithm to the solution vector that is consistent with the first com- 
ponent operator,  the result of which is then operated upon with an algorithm which is 



consistent with the second component operator, and so on. 

Often in the numerical treatment of engineering problems one is led to consider equations 
of evolution of the following general form 

Ax + B(x) = f ;      x(0) = x0 (1) 

a particular case of which is the unforced equation 

Ai+B(x) =0   ;      x(0) = x0 (2) 

In the above, x is an s-dimensional vector, A is a positive definite symmetric matrix and B is a 
nonlinear function from Rs into Rs. 

It is useful for the subsequent discussion to endow Rs with the "energy" inner product 
<x,y> = xrAy for every x,y€i?s, having an associated norm ||x||2 = <x,x> . 

In this context, an unconditionally stable algorithm for equation (2) is a one-parameter 
family of (nonlinear) functions F(/?) : Rs—>Rs, h > 0, satisfying 

1) Consistency: 

F(A)x- : lim A 
A—0+ h 

B(x)  for every x€ Ri 

2) Unconditional stability: 

I|F(ä) x— F(A)y| ^ llx—y||  for every x,y6Äs,   h>0. 

(3) 

(4) 

In the linear case, the mapping F(A) is linear in x and the stability condition (4) reduces 
to the simpler form ||F(A)x|| < llxll for every x£ Rs. This in turn implies that the norm 
i|F(/?)|| ^ 1. Recalling the inequality p(F(//)) < ||F(A)||, relating the spectral radius 
p(FU)) = inf\\¥(h)"\\u" to the norm of F(h), it may be seen that the stability condition (4) 

n 

is in general more stringent than the usual concept of stability that requires p(F(/?)) < 1. If 
F(/z) is a stable algorithm for (2) in the sense of (3) and (4) then convergence is guaranteed 
under mild conditions on B [3]. 

In a variety of problems in mechanics the evolutionary operator B and the forcing term f 
admit an additive decomposition 

N N 

B=IB,      ;      f=Ef„ (5) 
;=1 ;=1 

We are concerned here with the problem of constructing a class of computationally efficient 
algorithms that exploit the additive form of B and f. 

Let  F,-(/?),   / = 1,2, • • ■ ,N denote stable algorithms consistent with  A and  B,. 
corresponding global product algorithm then takes the form 

The 

F(A) = ¥N(h) ¥N^(h) ■ ■ ■ Fj(A) = Jj¥,(h) 
;=1 

(6) 

In other words, the algorithm F(A) amounts to applying the individual algorithms F,-(/») con- 
secutively to the solution vector, taking the result from each one of these applications as the 
initial conditions for the next algorithm. The global algorithm is complete for a given time step 
when all the individual algorithms have been applied. 

It is shown in [1] that if all the individual algorithms F,U) are consisistent with A and B, 
in the sense of (3), then the global product algorithm F(/?) defined by (6) is consistent with A 
and B. It is further shown in [1] that if all the individual algorithms F,-(A) are unconditionally 
stable in the sense of (4), then the global product algorithm F(/?) is also unconditionally stable. 
In other words the norm stability of the individual algorithms, in the sense of (4), is preserved 
by the product formula (6). It is interesting to note, on the other hand, that no general state- 
ments can be made about the stability of the product formula in the sense of the spectral ratio, 
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given that, unlike the norm, this quantity is not well-behaved with respect to matrix multiplica- 
tions. A general discussion of these and other related issues can be found in [1]. Some of 
these results have also been discussed in [2] for the particular case of linear equations of evolu- 
tion and the trapezoidal rule. 

In Section 4, global product algorithms v/ill be employed in connection with an additive 
decomposition  of the  evolutionary  operator  governing  the  finite  deformation  elastoplastic 
dynamic problem. 

3.  Field Equations for Finite Deformation Fiastorolastieity. 

3,1.   Preliminaries 

In this section, definitions of tensors required for subsequent discussions are stated and 
connections among certain of these are established. For a complete account of the continuum 
basis underlying constitutive theory the interested reader is referred to [22,23]. 

A motion of a deformable body in the ambient space RN, relative to a reference 
configuration B, is given by a time dependent mapping <p,(X) : B—> RN, t > 0. Here, X 
denotes a set of material coordinates defined on the reference configuration. 

The material velocity of the motion «p, is defined as a vector field V over the reference 

configuration, such that V = — «pr the spatial velocity field v is defined by v = Yorp, '. 
at 

that the spatial velocity field v(x, t) is dependent on a set of spatial coordinates denoted x. 

Note 

The deformation gradient is defined by F ~r~r with components, F" A 
SÄ QXA From F 

one can obtain the Jacobian of the motion / = det F and the right Cauchy-Green deformation 
tensor C which is related to the deformation gradient by C = Fr • F. 

The spatial velocity gradient tensor ] is given by ] =■ Vv, where V denotes the gradient 
with respect to the spatial coordinates x. The symmetric part of ], d = Vsv is the spatial rate 
of deformation tensor, and the skewsymmetric part a> = S7Av is the spin rate or vorticity ten- 
sor. 

If y is a tensor field defined on the deformed configuration <£,(£), the pull back of 7 

through the motion «rp, defines a tensor field F on B denoted by F = <p, (7), For example, in 
the case of a second order contravariant tensor the pull back operation takes the form 

TAB= (rl)Aa(r
l)Bb(yabo4>t). 

This definition may be readily generalized to spatial tensor fields of any order. 

Likewise, if T is a material tensor field defined on B, the push forward of T through the 
motion «p, defines a spatial tensor field 7 on $,(i?) denoted by 7 — sp,.v(r).   In this case, for 

the example used above, the push forward operation takes the form 

y   - t  A U    o«p,  ;. 

A related concept associated with the push forward of material rates of material tensors is 
that of the Lie derivative of a spatial tensor v/ith respect to the spatial velocity field. The Lie 
derivative entails pulling back the spatial tensor to the reference configuration, taking the 
material time derivative of the resulting material tensor and pushing forward the result into the 
current configuration.   Formally, for a spatial tensor 7, 

Lv(y) = <j>. -jAt (7) (7) 

This notation allows for a compact expression of many relations in continuum mechanics. 
For example, the Cauchy stress tensor er defined on the current configuration and the second 
Piola-Kirchhoff stress tensor S associated with the reference configuration are related by 



ft , 

S=J<f>,(a-)    or   cr = $,*(./   S) 

These relations, involving /, are called Piola transformations. 
o 

The forward Piola transformation of the material time derivative of S, denoted o-, is 

a = <f>t!kU-lS), (8) 

the so-called Truesdell rate of Cauchy stress. For contravariant components (8) has the form 

1-0- - o- -lT + a- tr(d) 
o 

<x = o- 

oo- where <f denotes the material time derivative of cr given by d- = — h Vo- • v .  Alternatively, 
at 

in terms of the Lie derivative, (8) can be written 

o 
a 

A        * 
/-'Lv(r) (9) 

where T = (Jo<f>, ') o- is the Kirchhoff stress tensor.  These relations will prove to be useful in 
subsequent sections where their relevance is discussed in detail. 

It is noted that the Truesdell rate is objective [18,22]. The principle of objectivity 
requires that intrinsic physical properties of a body be independent of the body's location or 
orientation in space. This principle is embodied in constitutive theory by requiring that consti- 
tutive equations contain only objective tensor fields. Consequently, the Truesdell rate of Cau- 
chy stress may be considered as a candidate for use in spatial rate constitutive equations. 

Many other objective rates have been proposed within the context of constitutive theory. 
A frequent choice is the Jaumann, or co-rotational rate of Kirchhoff stress, 

v 
T  = T — (0 -T  + T -(i) 

The significance of the Jaumann rate as it relates to constitutive theory and its connection with 
the Truesdell rate has been considered in [18,28], 

The local form of linear momentum balance together with traction and kinematic boun- 
dary conditions can be expressed as 

pv= V  a + pb      x € </»,(£) 

<r-n = "t      x€ 0^,(5) (10) 

$ = $       x € 9„$,(£) 

where p is the mass density in <f>,(B), b is a spatial body force field, and t and <f> are the 
prescribed tractions and motion over the traction and kinematic boundaries ba<j>i{B)  and 
9w</>,(5), respectively. 

In order to have a complete set of equations suitable constitutive equations need to be 
specified. The form of these equations for a limited class of elastoplastic materials is the sub- 
ject of the next section. 

3.2.  Rate Constitutive Equations for Finite Deformation Elastoplasticity 

In analysis of finite deformation problems the use of constitutive equations in rate form is 
often required. In a spatial setting, these equations express a relationship between some objec- 
tive rate of a spatial stress tensor, such as the Cauchy or Kirchhoff stress tensor, and the rate of 
deformation. 

Rate constitutive relations can be alternatively formulated in a material or a spatial setting. 
The former case involves rates of material tensors which are always objective. In a spatial for- 
mulation, however, material rates of objective tensors are not objective and so-called objective 
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stress rates, such as the Truesdell or Jaumann rates, must be introduced. This has the effect of 
introducing additional complexity in the development of integration algorithms for rate consti- 
tutive equations and has motivated recent research in the area [19,20,28]. 

The correct choice of spatial rate constitutive equations has been the subject of consider- 
able conjecture [21,24,25,26,27], inasmuch as the principle of objectivity alone does not 
uniquely determine the choice of objective stress rate. It is noted, however, that the material 
and spatial formulations are equivalent expressions of the same physical principles and are 
therefore uniquely related to each other. This assertion rests on the fact that the mathematical 
formulation of the principles of mechanics has to be invariant with respect to the choice of 
reference configuration [22]. It has been shown in [28] that when this additional principle is 
invoked, indeterminacy in the choice of objective stress rate is removed. 

The following discussion is concerned with the problem of deriving adequate spatial rate 
constitutive equations. The approach taken is based on a thermodynamic formulation of consti- 
tutive equations in a material setting, the spatial representation of which is then consistently 
derived. 

The existence of a complementary free energy potential per unit mass of B, denoted 
x(S,Q), is assumed. Here, S is the second Piola-Kirchhoff stress tensor and Q denotes a set of 
internal variables defined on the reference configuration B. The justification for such an 
assumption is discussed in [9]. 

From the Clausius-Duhem inequality [9,10] it can be shown that the complementary free 
energy is a potential for the right Cauchy-Green deformation tensor C, i.e., 

ox C = 2p, 
dS 

(11) 

where p0 denotes the reference mass density.   A rate form of (11) is obtained by taking the 
material time derivative, resulting in 

C= M:S + N-Q 

where M is the material elasticity tensor, defined by M = 2p 

S x 
dS2 

(12) 

and N is an inelastic com- 

pliance tensor defined by N = 2p, Since material time derivatives of material tensors 
30öS 

are objective, constitutive equation (12) is also objective. 

A   spatial   form   of  constitutive   eq.   (12)   can   be   obtained   as   follows.    Noting   that 

C = 2®, (d) and eq. (8), the forward Piola transformation of eq. (12) reads 
o o 

m ■ o~ + ii ■ q ril 

where  m= -z-Jcp, .-,(M)  is the spatial elasticity tensor,  n 
2 

(13) 

J«p,.;.(N) is a spatial inelastic 

compliance tensor, q = /ft, .,(0) are the spatial internal variables and q=rpr(J ■ Q) is the 

Truesdell rate of q. 

Equation  (13)  has the interpretation that the total deformation rate d has an additive 
o o 

decomposition into an "elastic" part de and an "inelastic" or "plastic" part ip = n -q, i.e., 

äe + üp (14) 

This decomposition has been obtained independently of any kinematic considerations. Other 
theories of plasticity [11,12,14] have been based on different kinematic assumptions. By 
appropriate definitions of the kinematic variables these theories can be brought into correspon- 
dence with eq. (14).   Eq. (14) has the alternative form 

o 
a:(d- d") (15) 
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where a = m""1 is the spatial elastic modulus tensor. Further details regarding the above discus- 
sion can be found in [18]. 

In order to have a complete set of constitutive equations one has to supplement eq. (15) 
with some constitutive relations for d" and q. For the time being, it will suffice to assume that 
d" can be expressed as a function of the stresses and the spatial internal variables q, i.e., 

d" = T(or,q) (16) 

The internal variables q may for example represent the yield stress for an isotropic hardening 
model or the translation of the elastic domain for a kinematic hardening model. Eq. (16) is 
general enough to accommodate perfect and hardening viscoplasticity. Specific examples of 
such constitutive relations that are widely used in practice are given in Section 4.2. Also, for 
the purpose of the discussion on plastic algorithms that follows in Section 4.2, it proves con- 
venient to consider inviscid plasticity as a limiting case of viscoplasticity, as the viscosity tends 
to 0. In this indirect way, eq. (16) also encompasses the inviscid plasticity case. It is finally 
assumed that the evolution of the internal variables is governed by kinetic equations of the 
form 

o 
q: (17) f(<r,q) 

Note that the use of the Truesdell rate in the left hand side of (17) makes these equations 
objective and consistent with a set of material kinetic equations [18]. 

The spatial rate form of the constitutive equation (15) expresses the linear dependence of 
o 

the Truesdell rate of Cauchy stress or on the elastic part of the spatial deformation rate tensor 
de through the spatial elasticity tensor a. It can be shown by use of a Legendre transformation 
[18] that a is a function only of the deformation and the internal variables. However, eq. (15) 
is expressible in terms of other stress rates if the difference between these rates and the Trues- 
dell rate of Cauchy stress is absorbed in the definition of the elasticity tensor. In this case, the 
elasticity tensor will, in general, be a function of the stress tensor, the deformation and the 
internal variables [18]. 

3.3.  Summary of Field Equations 
For later reference, the field equations introduced above are summarized as follows 

<f>, = v o «fi , 

pv = V-cr + pb 
o 
o- = a: (d — T(o-,q)) 

q = f(<j,q) 

o- -n = t      x € b^4>,{B) 

4s = 4>      x € du<f>,(B) 

(18) 

It is demonstrated in the next section that the field eqs. (18) admit an additive decomposition 
into elastic and plastic parts suggesting a global solution procedure based on the product for- 
mula algorithms discussed in Section 2. The product formula algorithm applied to this decom- 
position results in a step-by-step integration procedure in which a nonlinear elastodynamic prob- 
lem is first solved, followed by the application of algorithms that bring in the plastic part of the 
evolutionary equations. 

4. The Elastoplastic Split of the Dynamic Equations of Motion and Related Product Algo- 
rithms. 

The field equations (18) exhibit an additive decomposition into an elastic part 

o 
4>,= \o4>, q=0 

pv= V'cr +pb <r-n=t      x € 9^,(5) 
o — 
o- = a:d <£ = $      x € du<f>,(B) 

(19) 
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and a plastic part 

0 p v 

Ö-/9; a: Uo-.qj 

i(:",c) 

(20) 

Ihis suggests the possibility of using the product formula techniques to construct efficient 
numerical algorithms that exploit such additive decomposition. It is noted that eqs. (19) define 
a finite deformation elastodynamic problem, while the second set of eqs. (20) leaves the 
configuration unchanged and defines a pointwise relaxation process for stresses and internal 
variables. 

In the present context, a product algorithm relative to the eiastoplastic additive decompo- 
sition of the equations of motion takes the following meaning. Consider two unconditionally 
stable algorithms ¥el(h) and ¥p'{h) consistent with the individual equations (19) and (20) 
according to the discussion in Section 2. Given two such algorithms, an algorithm ¥{h) con- 
sistent with the full equations of motion (18) can be obtained by means of the product formula 

¥(h) = ¥pl(h)¥e'(h) (21) 

It is recalled from Section 2 that ¥(h) is in fact consistent with (18) and that if the individual 
algorithms ¥el{h) and ¥p'{h) are unconditionally stable in the sense of (4) so is ¥{h). 

The product formula (21) simply states that a solution algorithm for the eiastoplastic 
problem can be obtained by solving for each time step an elastic dynamic problem first, and 
then applying to the solution vector so obtained a plastic algorithm operating on the stresses 
and internal variables bringing in the effect of the plastic constitutive equations. It is interest- 
ing to note that all the boundary value aspects of the eiastoplastic dynamic problem are 
included in the elastic eqs. (19) and are taken care of by the elastic algorithm ¥el(h). 

In practice, the above equations are solved by means of some spatial discretization tech- 
nique such as the finite element method. In this case, the plastic part of the equations of 
motion will correspond to a set of relaxation equations expressed at the integration points 
within the elements. Thus, the plastic algorithm ¥p'{h) is applied integration point by integra- 
tion point and amounts to solving eqs. (20) numerically or exactly at each one of them. In Sec- 
tion 4.2 several widely used plastic constitutive assumptions are considered, and the nature of 
the associated plastic algorithms and the resulting product formula solution schemes is re- 
examined for each case. 

Ihis Section is concerned with the development of an algorithm ¥el(h) for the numerical 
solution of the elastic dynamic boundary value problem given by eqs.  (19). A weak form of 
this problem is expressed by 

j    [p (v - h) -7J + o-: VT;] dv =    j   1-7] da (22) 
A,(B) d,Tä,(B) 

for all weighting functions -n which satisfy the homogeneous boundary conditions on dufp,(B). 
Spatial discretization is accomplished using the finite element method for which a set of global 
finite element interpolation functions Na, a = 1,2, •••,« is introduced. The interpolated 
motion and v/eighting functions take the form p = äö Na and -n = T}° Na, where the summa- 
tion convention is implied and &a and -qa denote the nodal values of to and 7j, respectively. 

The global interpolation functions are given by the expression Na = ]T Ne
a where the index e 

ranges over the elements and Ne
a denotes the element interpolation functions. Using the above 

results in (22) one obtains the following spatially discreiized weak form 

M' Hx = ¥{t) (23) 
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where M is the mass matrix with components 
Nel r 

e=\ n( 

P(o-, t) is the "internal force" vector with components 
Nel (, 

(24) 

(25) 

where Ba is a matrix involving spatial gradients of Na, finally F is the global force vector with 
components 

Nel 
F« = ECJpbJV'rfn + J INldY). (26) 

?=i ne 
dCl' 

In eqs. (24), (25) and (26) fl e is a domain given by the current configuration of a finite ele- 
Nel Nel 

ment e such that  U n e = d»,(B) and D O,e = 0. 
e=\ e=\ 

4.1.1.  Temporal Integration of the Weak Form 

The spatially discretized weak form (23) is integrated in time by the application of the 
implicit Newmark algorithm defined by 

M-v„+1 + P„+1(<r„+1) = F„+1 

1 
<K+i = <K + Av„ + h2[(--ß)yn + ßvn+l] 

v„+i = v„ + A[(l-y)v„ + yv„+i] 

(27) 

(28) 

(29) 

where subscripts n and «+1 denote variables evaluated at the nth. and «+lth time steps, 
h= tn+\— t„ is the time step size and ß and y are the Newmark parameters. Substituting (28) 
and (29) into (27) results in 

G(0„+i) = —yM'0„+i + P„+,(cr„+i) - P„+, = 0 
ßh 

(30) 

1 where P„+1 = F„+1 - M- [(1 - ^-)v„ - -±-y„ - 
Iß ßh ßh1 4»n}.   For this formulation ß ^ 0.   It is 

noted that the choice of ß = 0.25 and y = 0.5 corresponds to the trapezoidal rule. 

In order to complete eq. (30) the elastic constitutive equation (19.c) must be introduced. 
However, since the rate constitutive eq.(19.c) is not directly integrable it is not possible to 
replace a-n+x appearing in (30) directly in terms of the motion $„+1. In general eq. (30) 
together with (28) and (29) define a system of nonlinear equations whose solution can be 
obtained by consistent linearization and the application of a Newton Raphson iteration scheme. 
The next Section considers linearization of the weak form (30) consistent with the spatial rate 
constitutive equation (19.c). 

4.1.2.  Linearization of the Discretized Weak Form of Momentum Balance 

Formally, it is found that a consistent linearization procedure may be based on Taylor's 
formula for C1 functions [15,22]. Let A and B be Banach spaces and f:A->B be a C1 map- 
ping and let x' € A, Then the linearization of f about x' is 

L[f,u]x'= f(x') +Df(x') -u (31) 

for u€ A.   In (31) Df(x') is the Frechet derivative of f evaluated at x' and can be computed 
from the definition of the directional derivative 

Df(x')    "I!: 
de 

f(x' + eu)L=n (32) 
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In the sequel, x' 6 A will be interpreted as a set of spatial coordinates of the body given by the 
manning x' = & ,(X) and u: »',(-5) —> /?A' will be interpreted as an infinitesimal deformation 
superimposed on the configuration :p ,(B). 

If 7 is a tensor field defined on the reference configuration B then eq. (32) may be 
employed to obtain the directional derivative of T in the direction of the incremental motion u, 
resulting in 

D: B(Xj)-n= -^-TUr\t) 
de 

E = 0 (33) 

where <b,= eso-cp ,: B—> R*. Using definition (33), it can be shov/n [18] that the directional 
derivative of the second Picia-Kirchhoff stress tensor S is associated with the Lie derivative of 
the Kirchhoff stress tensor T taken with respect to the incremental motion u such that 

DS-u = (b't"[Lu(r)} (34) 

where 

L^) = ~ (^o^'r'M^u as 

This result is useful for the linearization of the discretized weak form (30) which is considered 
next. 

Applying definitions (31) and (32) to eq. (30) results in 

I[G(ri'„+1)] - W„+i) + DG(0',1+1) -u„+i = 0 (35) 

wnere 

DG(0'„+1) 
ßhl 

M-!3„+, + DF„+, -u « + 1 ' "« + !■ (36) 

In order to evaluate the directional derivative of ?„.+i appearing in (36)-consistent with the spa- 
tial rate constitutive equation (19.c) it is convenient to return to the weak form (22) and con- 
sider the part from which F„+i is derived, namely 

~   Pt7-.V^dn=   j   cr:V7jrfv = j tr(§-IT-V0^0) dV v (37) 
-b'AB) 

where T^='s]o4>', and  V0 denotes the gradient with respect to the material coordinates X. 
Using (32) and (34) it may be shown [18] thai 

G-: V in d\ 
ä'M 

15=  I rHDS-u] -JT- Vo^o-b SUVouo-ri'^-VoTjo) dV 

)     M(o--Vrr+ r'ljr)) -Voj] C/V. 
-y,(s) 

(38) 

Using (9) and the hyperelastic constitutive equation (19.c), i.e.   cr = J l Ly(r) = and leads to 
the approximation 

rlLSr) = a:Vsu. (39) 

Substitution of (39) into (38) results in 
Nel 

DP„+1-i3„+i= £j (Bo0r(ff-Vur+ a:Vsu)|„+i^fi 

It follows from (35), (36) and (40) that the linearization of (30) is given by 

W™-""' J Br-(c--Vn7"-ba:Vsc)U+1^--G(-ri;+i) 

(40) 

(41) 
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where <f>', in (35) has been replaced by 4>'n+i to represent an iterative solution procedure in 
which superscript / denotes the iteration counter. Equation (41) is linear in the incremental 
motion u/,+i. Updating of the motion is accomplished by setting 

(42) A. '+1 
<Pn+\ «K+l + Un+1 

However, updating of the stress tensor corresponding to <f>l,\\ is achieved by integration of the 
spatial rate constitutive equation (19.c), the subject of the next section. 

4.1.3.  Numerical Integration of Hyperelastic Rate Constitutive Equations 

From a numerical point of view, an algorithm for the integration of rate constitutive equa- 
tions should satisfy three requirements: 

(a) Consistency with the constitutive equations. 

(b) Numerical stability. 

(c) Incremental objectivity. 

Conditions (a) and (b) are required for the convergence of the numerical integration scheme 
[3]. The condition of incremental objectivity is a physical requirement expressing the fact that 
the algorithm has to be invariant with respect to superimposed rigid body motions. This notion 
was first formalized in an algorithmic context in [20]. More recently, a family of computation- 
ally efficient algorithms satisfying the requirements of consistency, numerical stability and 
incremental objectivity has been proposed in [28]. These algorithms fit naturally into a finite 
element implementation of the problem since they employ quantities that are readily available 
in such a context. This integration scheme applies equally well for any choice of objective 
stress rate appearing in the constitutive equations. 

The algorithmic problem can be stated as follows. It is assumed that at time t„ the 
configuration <f>„(B), denoted Q „, and the stress tensor a„ at each material point in fl, is 
known. At time t„+h the continuum occupies the known configuration <f>n+\(B), denoted 
fi „+].  The problem is to determine the corresponding or n+\ at each point in Ü „+\. 

In the past, some implicit numerical integration schemes applied to spatial rate constitu- 
tive equations have employed difference operations on the spatial stress components of the 
form [o-^+i — & n"l- However, such quantities are of limited value. From a mathematical point 
of view, the usual linear space operations such as addition and scalar multiplication can only be 
rigorously applied to relate tensor fields associated with a common configuration. * These con- 
siderations lead naturally to the idea of pulling back spatial quantities to a common reference 
configuration in order to define difference operators to be used in numerical algorithms. Recal- 
ling that the second Piola-Kirchhoff stress tensor is the backward Piola transformation of the 
Cauchy stress tensor (or, alternatively, the pull back of the Kirchhoff stress), the above discus- 
sion suggests defining algorithms for the integration of the spatial rate constitutive equations 
based upon difference operators employing the second Piola-Kirchhoff stress tensor. For 
example, a generalized midpoint rule algorithm for the spatial rate constitutive equations can be 
introduced as follows 

»n+i S„= hSn+a    0 < a < 1 (43) 

where h = t„+\ — t„ and S„+a will be evaluated on an intermediate configuration D, n+a defined 
as 

$ n+a a<f>n+\ + (1 — a) <f>„  0 ^ a< 1 (44) 

The set of all configurations of a body can be shown to be a smooth manifold [17]. Each configuration of 
the body defines a point in this manifold. A tensor field defined on a particular configuration is a member of 
the tangent space associated with that configuration. Therefore, tensor fields defined on different 
configurations belong to different linear spaces and cannot be combined by means of the usual linear space 
operations such as addition and subtraction. 
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Using (8) and noting that = JA. (-), (43) has the alternative representation 

■V; % ;; O 

'$„-M (Jcr) ~ 4> „ (Je) = h ©„+„ (Jcr) (45) 

In reference to the comments above, it is noted that quantities involved in (45) are all referred 
to a common configuration. 

To simplify  (45) it is advantageous to select the reference configuration  B to coincide 
instantaneously with D, i [26 i, in wmch case l-:ol reduces io ^   rp 

A,) (Jcr) h'b, 

Defining the deformation gradients 
•)-i 

9 -,       \ 

ana Jacooians 

J„+a = ciet (A „. J   0 

(Jcr) 

< 1 

< 

then, for contravariant components of stress, (46) has the form 

n+\ •Aj= hJ-lai\, -   .   ■ A T. 

(46) 

(47) 

(48) 

(49) 

ihis equation is completed by introducing the rate constitutive equation for uli+Ci. For example, 
for constitutive eq. (19.c), eq. (49) is expressed by 

e- n+I - J-1 A „ • - „ • A1= h J~la A n+a • (a: d) n+a ■ A J+a (50) 

This form requires the evaluation of quantities A„+a and ü,,+a.   It is shown in 128] that A„+„ is 
given by 

An+a = 1(1 -a) I + dAj"1 -A;, 

and that d„+„ is consistently approximated by 
',1 s 

C-A «f 

As noted above, from a numerical point of view, the proposed algorithm has to satisfy the 
three requirements of consistency with the spatial rate constitutive equations, numerical stabil- 
ity and incremental objectivity. It is shown in 128] that the above algorithm is consistent with 
the rate constitutive equation and that it is unconditionally stable for c^O.5; moreover, it is 
second order accurate for a = 0.5. The condition of incremental objectivity is a physical 
requirement expressing the fact that the algorithm has to be invariant with respect to superim- 
posed rigid body motions occurring over the time step. It is shown in 128] that such a require- 
ment is satisfied if and only if a is restricted to the value of 0.5. 

The algorithm (50) may be generalized to accommodate choices of objective stress rate 
other than the Truesdell rate of Cauchy stress by embedding the difference between the stress 
rate definitions into s. In this case (50) will, in general, become implicit in o-„+i and may be 
solved by means of an iterative solution procedure [281. 

A numerical example will serve to illustrate the accuracy and incremental objectivity of 
the algorithm.   The problem considered is the homogeneous finite simple extension  (i.e. with 
restrained Poisson effect) and simultaneous rigid rotation of a rectangular block.   The constitu- 

v 
tive    equation    employed    to    test    the    algorithm    was    taken    to    be    T = a: ä   where 
aijki = 'TS//S,w -r IJJ.8 i/ß j/ + 8 ,-/8 /k) and A, ,U are constants.   This constitutive equation is adopted 
only for the purpose of testing the integration algorithm.   Referring to Fig. 1 and noting that 
0(t) represents rigid rotation of the block at time t and \(t) the axial stretch ratio  (in the 
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rotated coordinated frame), the analytical solution for two of the stress components (relative to 
the fixed spatial coordinate system) for a unit cube is given by [18] 

cos 9 sin 9 
sin2ö cos2ö 

1 

E{\-v) 
i\+v){\-2v) 

lnX 

The time dependence of the kinematic variables defining the problem is prescribed as 

e{t) = 2TTt   and   \{t) = \ + t      for   0<?<1 

Thus, the cube is stretched to double its length and simultaneously rotated through 360 
degrees. The solid curves of Fig. 1 depict the analytical solutions for this combination of 9 and 
X. 

The numerical solution was obtained by discretization of the block into four quadrilateral 
plane strain finite elements. The mesh is shown in Fig. 1. The analysis was performed in the 
fixed spatial coordinate system with the 9 and X deformation states imposed by suitable 
prescription of the boundary node displacements. The numerical integration algorithm 
employed the iterative solution procedure mentioned above since it is implicit for the given 
constitutive equation. The stress components resulting from the analysis are shown as dots in 
Fig. 1. They display accuracy to within 0.1% of the analytical solution over the full range of 
deformation. Convergence was obtained for the problem using as few as ten equal increments 
of (ö,X). This analysis tends to confirm the incremental objectivity of the numerical solution 
procedure. 

4.2. Plastic Algorithms and Associated Product Formulas for Perfect and Hardening Plasti- 
city and Viscoplasticity. 

The algorithm for the solution of the nonlinear elastodynamic problem given by eq. (19) 
discussed above can be expressed as 

¥e'(h) 
\cr 

Vn 
e,k 

<t>n+\ 

<* n+\ 

where a ^+\ denotes the value of the solution particularized for integration point k in element 
e. 

This section is concerned with the development of plastic algorithms ¥pl{h) for the solu- 
tion of the plastic part of the field equations eqs. (20). These relaxation equations often admit 
closed form solutions that are readily obtained and which can be used directly in the plastic 
algorithm. In this case, a necessary and sufficient condition for ¥pl(h) to be unconditionally 
stable in the sense of (4) is that the plastic eqs. (20) be "dissipative" [34], i.e., 

— er :T(<r,q) = a-.dp ^ (q,f(o\q)) = (q,q) 

where (-, •) indicates some appropriate inner product for the internal variables. This dissipa- 
tivity condition is satisfied by all models of practical interest*. Four examples of the plastic 
constitutive mappings appearing in (20) i.e. T(<r,q) and f(tr,q) are given. For simplicity of 
presentation, inviscid plasticity is considered as a limiting case of viscoplasticity, as the viscosity 
is allowed to tend to zero. A detailed mathematical discussion regarding product formula tech- 
niques for the solution of the elastoplastic and viscoplastic dynamic boundary value problems 
can be found in [33]. 

In fact, if the quantity X(O%Q) = — cr:C:cr + a'.€p 1 
(q, q) is taken as the complementary free 

energy potential, then the above dissipativity condition is simply a statement of the Clausius-Plank dissipation 
inequality. 
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■4.2.1.  PsiJsci vlscopuas'tiei'iy. 

Consider a convex set C in stress space S = R^ containing the origin. Then, given any 
point u in S, there is always one and only one point Fccr in C which is closest to u [5,6]. 
The mapping Fc is called the closest point mapping (relative to C).   Clearly, if u is a point in 

v or a perfectly viscoplastic material, the existence of one such closed convex set  C is 
assumed such that the plastic constitutive mapping Tier) is given by 

c"=  — = T(o-) (51) 

Ihe parameter -q is the viscosity of the material.   Note that no internal variables are needed in 
this model. 

It is interesting to note that T is defined regardless of the smoothness of C, given that the 
closest point mapping is always well-denned for every closed convex set C [5,6]. If o- belongs 
to C then Fccr = u and d-° = 0. If, on the other hand, u does not belong to C then ip is 
directed along the vector that joins c- and its closest point in C and it points outside the elastic 
region.   The magnitude of üp is proportional to the distance from a- to C, the proportionality 

1 
constant being Fig. 2. 

V 
For this specific model, the relaxation eqs.  (20) at a generic integration point take the 

form 

r)«-a: 
O- - Pccr 

(52) 

otherwise (53) 

This is a system of ordinary differential equations whose solution is 

cr (/) = c- 0       if cr0£ C 

ait) = exp(— a tlr^'.a-0 + [3 — exp(— a tl-q)]:f ccr0 

For the familiar case of isochoric plasticity in which C is a cylinder oriented along the hydros- 
tatic axis and for isotropic elasticity, eq. (53.b) simplifies to 

-,/T) Trt cr(t) = e   ,hcr, e 

Pol ■,-lh a -th- 
)PrSo 

(54) 

where p0 = cr0:l is the initial hydrostatic pressure and T = ~q/G is the relaxation time of the 
process, given in terms of the shear modulus of the material G. 

For instance, for the von Mises yield criterion the elastic domain C is the set {a- 6 5  such 
?i 1 

that J2^ k j, where k is the shear yield stress, J2 = ys:s and s is the deviatoric part of cr.   In 

this particular instance, eq. (54) reduces to 

■(/) = Pgi + e -r/r. + (1 - e-'lT) 
k 

(55) 

where r0 = ^,;J -^s0:s0. 

Clearly, the simplest possible choice of plastic algorithm for this specific model consists of 
using the solution of the relaxation equations (53).  This algorithm can be expressed 

where cre'k(h) denotes the value of the solution (53) (or (54) and (55) when applicable) par- 
ticularized for integration point k in element e, initial conditions crQ = ■<je*k and /=/?. 

The resulting product algorithm (21) then consists of first solving an incremental elastic 

¥pl(h) (56) 
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problem, with time step h, ignoring the plasticity of the material. The stresses resulting from 
this operation are then allowed to relax at each integration point according to (53) for a period 
of time h, Fig. 3. Clearly, the stresses resulting from the application of the elastic algorithm 
that lie inside the elastic region are unaffected by this relaxation process. We finally note that 
the dissipativity condition discussed in Section 4.2 here reduces to a : dp ^ 0 which is always 
satisfied provided C contains the origin. Consequently, the plastic algorithm (56) is uncondi- 
tionally stable. The unconditional stability of the product algorithm then results provided the 
elastic algorithm is also unconditionally stable. 

4.2.2.  Perfect Plasticity. 

For a perfectly plastic material, the plastic constitutive mapping is given by 

d"= T(or) 
XN 
0 

if a € 9 C 
if a € Int C (57) 

where N denotes the normal to dC at cr and X is a positive parameter but otherwise indeter- 
minate. This definition presupposes the smoothness of the yield surface dC. For arbitrary 
elastic domains, X N has to be replaced by the normal cone at or, Fig. 2. In any case, it is clear 
that the resulting constitutive mapping T is not single valued. This situation is commonly 
encountered in the theory of nonlinear equations of evolution [34] and can be handled with 
relative ease with the aid of mathematical tools such as subdifferential calculus [33]. For sim- 
plicity, however, a simpler way around is taken below, namely that of considering perfect plasti- 
city as a limiting case of perfect viscoplasticity as t\—-0. Alternatively, one may think of this 
limiting process as the result of allowing an infinite period of time to elapse for the relaxation 
of the stresses towards the elastic region. Taking this limit on the viscoplastic algorithm (56) 
the following plastic algorithm is obtained for the perfect plasticity case 

F"'(A)' Icr e,k cr 
(58) 

where Ce- denotes the elastic domain at integration point e,k and Pc<.,* denotes the closest 
point projection onto Ce,k. Clearly, if at some given integration point the stresses ae'k lie 
inside Ce,k then they remain unaffected by the plastic algorithm. Algorithm (58) applies 
equally well to any closed convex elastic domain, regardless of the smoothness of the yield sur- 
face. Also note the independence of (58) from h and 17, which is a manifestation of the rate 
independent nature of the perfect plasticity constitutive equations. For instance, for the von 
Mises yield criterion one obtains from (55) 

<r'.*(oo) = Pc,ijk«re'* = 
cr e,k if re'k < k e,k 

re,k (59) 
ie'k\ +       k se,k    otherwise 

where ke,k denotes the shear yield stress at integration point e,k, pe,k and se'k the hydrostatic 

pressure and the deviatoric part of cre'k and re-k — (—se,k'se'k)'/2. 

The resulting product algorithm entails, as before, the solution of an incremental elastic 
problem first, ignoring the plasticity of the material. The stresses resulting from this operation 
are then projected at each integration point onto their closest points on the elastic domain. 
Clearly, this projection only alters the stresses lying outside the elastic region. 

Naturally, the heuristic argument that has been followed to derive (58) requires 
mathematical proof. This however is beyond the scope of this paper. A rigorous mathematical 
treatment of the viscoplastic approximation to the elastic-perfectly plastic dynamic boundary 
value problem can be found in [33].   It is also shown in [33] how product formulas for the 
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elastic-perfectly plastic problem can be treated directly without resorting to the viscoplastic 
limit. 

It is noted that the closest point mapping in (58) can be viewed as an instance of the con- 
cept of "return mapping" discussed in [29,30,31,32] for the particular case of static problems 
and von Mises yield criterion. Certainly, the closest point mapping does not exhaust all the 
possible choices of return mapping that can be used to project stresses back to the elastic 
domain. A set of conditions on the return mapping have been presented in [33] that guarantee 
the consistency of the resulting plastic algorithm. The closest point mapping, however, stems 
naturally out of the geometry of the problem and has the widest possible range of applicability. 

We finally recall a basic inequality regarding the closest point mapping for closed convex 
sets [6] 

IP c&i -CC-2l < \€T\ —  0"2 (60) for all CTI,<7 2 € S 

This inequality states that the closest point mapping is contractive for any closed convex set C, 
and therefore the plastic algorithm (58) is always unconditionally stable, by definition (4). This 
also follows from the unconditional stability of the perfect viscoplasticity plastic algorithm 
shown in the preceding section, given that the perfectly plastic algorithm is just a limiting case 
of the viscoplastic one. Consequently, the product algorithm (21) is unconditionally stable, 
provided the elastic algorithm is also unconditionally stable. 

4.2.3.  Hardening Viscoplasticity 

In the case of hardening viscoplasticity, the elastic domain  C(q) depends on the current 
value of the internal variables.   The plastic constitutive equations then take the form 

äf 
P C(q)&    _ 

T(cr,q) 

•      *r      \ (61) q = f(or,q) 

where Pc(q) denotes the closest point mapping relative to C(q).   The relaxation equations (20) 
then become, for a generic integration point 

.   _ .   Or -  PC(q)0" 

q = f(cr,{ 
(62) 

A specific example is furnished by the von Mises yield criterion with isotropic bilinear 
hardening and isotropic elasticity 

<f — — 2G äp : G<JJ?- k> 

k = 2H(jdp:ipyA" H 
<-JT2- k> 

7] 

(63) 

where H denotes the shear plastic modulus.   The solution of (63) is readily found to be 

ait) = tr0    ,     kit) ~ k0    ,     if r0 <  k0 

rn 

<r{t)-a0- ~ir0- k0) (1 - e~'h) — 
(64) 

kit) = k0+ —(/•„- k0){\ - e-'lr) 
otherwise 

where 

J2_ 
G 

r   = ^ q      H + T, 
(65) 
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are relaxation times for the process. It is seen from (64) that during a relaxation process 
corresponding to initial stresses outside the elastic domain, the stresses steadily approach the 
elastic domain, which at the same time expands towards the stress point. 

As in the case of perfect viscoplasticity, the closed form solution (64) can be utilized to 
define plastic algorithms through 

F"(A)- 
V, Vt 

ae,k 
■ = ' <re'Hh) 

qe,k qe'k(h) 

(66) 

where a-e'k(h) and qe'k(h) are given by (64) particularized for integration point e,k, initial 
conditions a0 = <re'k, q0 = qe,A: and t=h. In this case, however, not only do the stresses at 
the integration points vary upon the application of the plastic algorithm but so do the internal 
variables and, as a result, the elastic domains. 

k\ k2, the dissipativity Taking as inner product for the internal variables (qi,Q2) 
1H 

condition is readily checked, which in turn implies the unconditional stability of the correspond- 
ing plastic algorithm. Therefore, once again the unconditional stability of the product algorithm 
(21) follows provided the elastic algorithm is unconditionally stable. The further case of 
kinematic hardening has also been treated in [8]. 

4.2.4.  Hardening Plasticity. 

As in the case of perfect plasticity, plastic algorithms for the hardening case can be 
obtained from (66) by taking the limit TJ—O, which leads to the expression 

F"(A)' 

Here, the asymptotic values o-e**(°°) and qeA:(oo) can be obtained from (64) 

4>f <t>? 
<re'k 

■ = ■ 0-e'fc(oo) 

qe,k q^(oo) 

(67) 

O-(oo) 

0-(°°) 

o-, 

<Tn - 

k(oo) 

G 

k0    ifr0 < k0 

(j + H rn 

(68) 

fc(°°) = k0 + 
H 

■(/ K) 
otherwise 

G + H 

for the von Mises, isotropic hardening case.  Note that these limiting values are independent of 
V- 

Eq. (68) yields a suitable "return mapping" for the isotropic hardening rule. It is seen 
from (68) that the stress point and the yield surface meet at some intermediate point on the 
segment joining their initial values, the distances from these being proportional to G and //, 
respectively. A similar geometric interpretation can be derived for the return mapping 
corresponding to the kinematic hardening rule [8]. Note that the perfectly plastic case is 
recovered by setting H = 0. 

Finally, the unconditional stability of the plastic algorithm induced by this return mapping 
follows from that of the corresponding viscoplastic case. Consequently, the unconditional sta- 
bility of the product algorithm (21) follows also, provided the elastic algorithm is uncondition- 
ally stable. 
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5,  Numerical Fxmmples 

A number of examples are presented to illustrate the effectiveness of the algorithms 
described above. The first example concerns the deformation of an infinitely long (plane 
strain) internally pressurized thick walled cylinder. The tube was discretized by means of qua- 
drilateral elements, with 16 elements across the thickness.   For perfect plasticity employing the 

4 deoicts the boon and ,1 urf von Ivlises yield criterion, 
pressure corresponding to a plastification of 75% of the wall thickness. 
irate the rate of convergence of the method as the number of load inc 

i^ol 

the tube lor an internal 
The three curves illus- 

nents taken to reach 
e nnal pressure is increased, it is ooservec; mat a sman number of load increments (6) 

results in reasonable accuracy. For 100 load increments the solution obtained is virtually identi- 
cal to the exact solution [161. Fig. 5 shows the distribution of all stress components at various 
stages of the plastincation of the v/al! which are in good agreement with the analytical solution 
[16]. 

Fig. 6 shows results corresponding to the infinitesimal deformation of an internally pres- 
surized disk (plane stress) for the case of perfect plasticity and the Tresca yield criterion. The 
exact analytical solutions are compared in the same figure against the numerical solutions which 
for the load increment selected display an accuracy comparable to that obtained in the purely 
elastic solution. This example emphasizes the applicability of the proposed algorithm to the 
case of yield surfaces that exhibit corners. 

The next example shown in Fig. 7 illustrates the effect of viscosity. Again the infinitely 
long thick walled tube is considered, in this case for a perfectly viscoplastic material with a von 
Ivlises yield surface. All curves correspond to an internal pressure resulting in a plastification of 
50% of the wall thickness and depict the effect of varying viscosities. The figures clearly display 
the inviscid limit obtained by decreasing the viscosity to zero. The curves representing this 
limiting case are identical to those reported for perfect plasticity, Fig. 5. 

The final example concerns the finite deformation of the infinitely long, internally pres- 
surized thick walled cylinder. The material behavior was taken to be isotropic hardening plasti- 
city with a plastic hardening modulus H corresponding to 10% of the Young's modulus, Fig. 8. 
As discussed in Section 4.2.4, the plastic algorithm for this problem makes use of a return map- 
ping which simultaneously accounts for the evolution of the elastic domain. Fig. 8 depicts the 
hoop stress through the wall thickness for 12 prescribed inner radial displacements. The max- 
imum load result shown in Fig. 8 (curve 12), which corresponds to a 12% increase in the inter- 
nal radius of the tube, was obtained in 24 equal displacement increments with each increment 
requiring approximately 5 Newton-Raphson iterations as described in Section 4.1.2. 

Future Research 

It is observed from Fig. 4 that the accuracy of the solution resulting from the global pro- 
duct algorithm deteriorates as the time step is increased. Although it has been demonstrated 
that the global product algorithm is consistent with the field equations in the sense of eq. (3) 
and has a stability condition controlled only by the stability of the nonlinear elastic algorithm, 
under certain conditions, the accuracy of the solution for a given time step may not be satisfac- 
tory. 

On the other hand, "fully implicit" methods employing the elastoplastic tangent modulus 
are potentially more accurate but suffer from various shortcomings noted in Section 1. A. 
future research effort might usefully aim to combine the accuracy of the fully implicit methods 
(employing the elastoplastic tangent modulus) applied to the integration of the equations of 
motion together with the operator split method applied to the integration of the elastoplastic 
constitutive equations. It is noted that methods employing the elastoplastic tangent would 
presumably apply only to the case where the yield hypersurface is smooth. In the case where 
the yield hypersurface exhibits corners the solution procedure presented in this paper will 
remain appropriate. 
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(PLANE STRAIN) 

ANALYTICAL SOLUTION 

• FINITE  ELEMENT SOLUTION 

Fig. 1. Homogeneous finite simple extension and rotation.  Kirchhoff stresses rn and r2i versus 
axial stretch and rotation. Elastic constants E = 30,000, v = 0.3. 

NORMAL CONE 

Fig. 2. Definition of viscoplastic constitutive 
mapping. 

■ I  LOAD INCREMENT 
■ 10   LOAD INCREMENTS 
■ IOO     " 

6-n+, = Fel(h)g-n 

-*<?„♦, = FP'thJg-,,*, 

Fig. 3. Schematic representation of 
product algorithm. 

Fig. 4. Product formula solutions for an internally pressurized thick walled cylinder illustrating 
the rate of convergence of the algorithm. The results correspond to perfect plasticity with von 
Mises yield criterion and to a prescribed inner radial displacement 2Gu/ka = 1.5, G = shear 
modulus, k = shear yield stress, a = inner radius. 
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Fig. 7. Product formula solutions for an internally pressurized thick walled cylinder with perfect 
viscoplasticity and von Mises yield criterion. Curves 1-4 correspond to viscosities TJ/' Gh = 0, 5, 
10, 15, G = shear modulus, h = time step, and a prescribed inner radial displacement 
IGulka = 1.5. The solution was obtained in 60 time steps. 

Fig. 8. Product formula solutions for an internally pressurized thick walled cylinder with isotro- 
pic hardening plasticity and von Mises yield criterion. Curves 1-12 correspond to a plastic 
modulus H/E = 0.1, E = Young's modulus, prescribed inner radial displacements 
IGulka = 1,2,...,12, G = shear modulus, k = shear yield stress, a = inner radius, and 2 dis- 
placement increments from curve to curve.  Poisson's ratio v was taken as 0.3. 
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APPLICATION OF THE REDUCED BASIS METHOD TO 

NONLINEAR TRANSIENT THERMAL ANALYSIS 

Charles P. Shore 
Langley Research Center 

Hampton, Virginia 

SUMMARY 

An effort to apply the reduced basis method to nonlinear transient 
thermal analysis is described. The method combines the classical Rayleigh- 
Ritz and modal superposition techniques with contemporary finite-element 
methods to retain modeling versatility as the degrees of freedom in a problem 
are reduced. The essence of the method is to use a few thermal modes from 
eigenvalue analyses as basis vectors to represent the temperature response for 
a given thermal problem similar to the use of vibration modes to represent 
displacements in a dynamic-response problem. Approximate temperature 
distributions have been obtained using the reduced basis method for a small 
section of the Shuttle Orbiter lower wing undergoing reentry heating. Good 
agreement was obtained between the reduced basis method solutions and 
full system solutions with reductions in the degrees of freedom of up to a 
factor of 4. The good agreement indicates the reduced basis method has the 
potential for significant reduction in computing effort for thermal analysis; 
however, considerable work remains to determine techniques for selecting the 
type and number of basis vectors needed for approximate solutions to more 
complex transient thermal problems. 

INTRODUCTION 

For some time, researchers in structural analysis have recognized that 
the large number of degrees of freedom frequently required for the solution of 
structural problems has often been the result of geometry and structural 
arrangement rather than complexity of the response behavior. This fact has 
led to considerable research into methods to reduce the degrees of freedom in 
structural problems and, hence, computer resources and costs. These methods 
have become known as reduction methods and are thoroughly reviewed in 
reference 1. One technique to reduce the degrees of freedom in static and 
dynamic problems is the reduced basis method which combines the classical 
Rayleigh-Ritz and modal superposition techniques with contemporary finite- 
element methods to retain modeling versatility as the degrees of freedom are 
reduced. References 1 and 2 cite several dynamic response problems where 
reductions in the degrees of freedom of over an order of magnitude were 
achieved with the reduced basis method. 
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DESCRIPTION OF THE REDUCED BASIS METHOD 

Application to Dynamic Response Problems 

To illustrate the use of the reduced basis method for transient problems, 
the method of application to dynamic response problems is described in this 
section of the paper. The next section describes extension of the reduced 
basis method to transient thermal problems. The equation of motion for a 
nonlinear dynamic response problem neglecting damping may be written in 
matrix notation as: 

CM] {X} ={Q} -{F} 
m,m m m 

(1) 

where     {F}   = [K] {X}  + {G(X)} (2) 

In equation 1 
accelerations and 
forces, respective 
is denoted by m« 
[K]{X} and a vect 
indicated in equat 
vector of nodal di 
a few known modes 
the structure. Th 

, [M] represents the mass matrix, {X} is a vector of nodal 
{Q} and {F} are the applied loads and internal nodal 
ly. The total number of degrees of freedom in the problem 
The internal nodal forces consist of a linear portion 

or of nonlinear displacement dependent terms {G(X)} as 
ion 2 where [K] is a stiffness matrix and {X} is a 
splacements. The essence of the reduction method is to use 
or global basis vectors to represent the displacements in 
us, {X} is replaced by the following expression: 

{x} = [r] {*} (3) 
m.n n 

where [r] is a matrix whose columns are the known structural mode shapes and 
{i>}     is a vector of modal participation coefficients which become the new 
unknowns in the problem«, For practical application to dynamic response 
problems, [r] contains only the first few vibration modes; thus, n is much 
smaller than m. To reduce the equations, the expression for {X} (eq. 3) is 
substituted into equation 1 and both sides of the equation are premultiplied 
by the transpose of [r] to obtain: 

[M] {*} = {Q} - {F} 
n,n n   n   n 

(4) 

where: 
T 

[M] = [r] [M] [r] 
n,n  n,m m,m msn 

{Q} = Er] {Q} 
n   n,m  m 

(5) 
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In equation 4D  the  'oc.rr2Q  quantities  represent trie  reduced matrices  or 
vectors and are obtained by the matrix multiplications  indicated in equations 
5,    The reduced equation of motion  is now expressed in terms  of the n unknown 
modal   participation coefficients..    The solution process  consists of solving 
eigenvalue problems to obtain the basis  vectors,  using the basis  vectors to 
reduce the full   system equations  (eq,   1)  and then  integrating the reduced 
equations  (eq,  4}  to obtain the modal   participation  coefficients.    Equation 3 
is then used 'to algebraically add the contributions of the various modes to 
obtain the dynamic response of the structure. 

The above technique was  applied to a shallow spherical   cap  subjected to 
a step load in  reference  1=     Tue  problem shown  in figure 1  consists  of a 
clamped  spherical   cap  subjected to a point  load  of 40  Ibf  at the  apex applied 
as  a  step function  in time.     The  shell   is  axially  symmetric  and the meridian 
was modeled  by  10  shear-flexible curved  elements with  quintic  interpolation 
functions  for each  of the  displacement  and  rotation  components   (for a total   of 
148  nonzero displacement  degrees  of freedom).    Two  sets  of basis  vectors were 
tried.    The first  consisted of IG  eigenvectors  from the  solution  of a  linear 
eigenvalue  problem based  on  initi no ] t i u;icc ihe  second  set  consisted  of 
five  vectors from the   wnear prooiem and rive ?rom one so; um on  or  a 
steady-state  (static)  nonlinear eigenvalue problem where the structural 
stiffness matrix was modified to contain the nonlinear stiffness terms 
associated with the steady-state deflections,    Hondimensional  motion histories 
for the shell   apex from the full   system equations  (148  degrees of freedom)  and 
the two sets  of reduced equations  (10  initial  modes  and 5 initial  + 5 
steady-state modes)  are shown on the right of  figure 1,    The TO  initial   or 
linear modes track the full   system solution only for a short time and fail  to 
duplicate the full   response of the shell.    The combined linear and 
steadv-stete nonnnear mooesr  however5  oo a ver good joo  OT  approximating I'm 
response except for a slight shift  in phase after about 200 microseconds. 
This  good  agreement for the  second choice  of modes  led to  its  consideration 
for nonlinear transient  thermal   analysis  as  described  In the  next  section, 

Application   lo   iransient   I normal   Problems 

Matrix equations  describing  heat  transfer  in a heated  structure may  be 
written  as: 

D<] { T}   +  [C] { T}   = { 0} 
m3m    m        msm    m m 



where [K] is the conductance matrix, {T} the vector of nodal temperatures; 
[C] the capacitance matrix, {T} the time rate of change in the nodal 
temperatures, and {Q} the applied heat load. 
are functions of temperature. The total number 
denoted by m. To reduce the equations, {T} is 
representation 

The elements of [K] and [C] 
of degrees of freedom is 
replaced by a modal 

{T} = [r] M (7) 
m m,n n 

where [r] contains vectors of thermal mode shapes and {ty}    is a vector of 
unknown modal participation coefficients. The vectors in [r] may be 
obtained from solution of two thermal eigenvalue problems associated with the 
full system of equations. In the first eigenvalue problem, the elements of 
[K] and [C] are evaluated for thermal properties corresponding to the initial 
temperatures. In the second eigenvalue problem, the matrices are evaluated 
for thermal properties corresponding to temperatures from a quasi steady-state 
solution in which time-averaged thermal properties and heat load values are 
used. When {T} is replaced with the modal representation in the heat 
transfer equation and both sides of the equation are multiplied by the 
transpose of [r], the following set of reduced equations in terms of the 
unknown modal participation coefficients is obtained. 

[K] {*} + [C] M IQ} (8) 
n,n n n,n n 

where: [K] = [r] [K] [r] 
n,n n,m m,m m,n 

[C] = [r] [C] [r] 
n,n n,m m,m m,n 

{Q} = Cr] {Q} 
n,m m 

(9) 

The barred quantities represent the reduced matrices and vectors obtained by 
the indicated matrix multiplications. Similar to the dynamic response 
problem, it is assumed that local temperatures can be represented by a few 
global modes or basis vectors so that n will be much smaller than m. 

To implement the reduced basis method for thermal problems, the SPAR 
finite-element thermal analyzer (ref. 7) was used to generate conductance and 
capacitance matrices and heat load vectors. A standard eigenvalue extraction 
routine was used to solve the thermal eigenvalue problems to obtain thermal 
mode shapes used as basis vectors. These basis vectors were then used in a 
pilot computer program to reduce the full system equations (eq. 6), to integrate 
equation 8 using the implicit Crank-Nicholson algorithm to obtain the unknown 
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modes to obtain temperatures  in the structure«    ioiution tecnmques used in 
the pilot  computer program were patterned after those used in the SPAR 
programs   i,e,-3  the transient heat  pulse was divided into intervals  in which 
temoerature and time-deoendent thermal   oroperties were evaluated at the 
beginning of the interval   and held constant  during the interval«    Since the 
thermal   properties  changed from one time "Interval  to the next,   it was 
necessary to form and reduce the full   system matrices  at the beginning of each 
time  interval.    Results from ehe  reduced basis method were evaluated by 
comparison with  similar results  from the SPAR  program for the  sample  problems 
described in the next  section»    Time  intervals and time steps  used in the 
Crank-Nicholson  integration algorithm within each time interval  were the same 
for both the  reduced basis and SPAR  solutions-, 

seructu? 
freedom 
öS 

to be 
shown on the righ 
reentry» Thermal proper 
where specif 

Three versions of the problem shown in figure 2 were solved using the 
reduced basis method* The problems represent a 58 in» segment of the lower 
surface of the Space Shuttle wing and consist of a 119 mil thick aluminum skin 
covered by a 1«8 in» thick layer of Reusable Surface Insulation (RSI)» The 
RSI5 Strain Isolator Pad {SIP),   and Room Temperature Vulcanizing (RTV) 
adhesive were modeled with two-dimensional finite elements as shown on the 
left of figure 2«  One-dimensional elements with a quasi-linearized radiation 
representation were used on the RSI surface to model radiation losses,and 
one-dimensional conduction elements were used to model the aluminum 

" e grid shown has 84 node points and5 hence3 84 degrees of 
the elements used to model the structure have only temperature 

e nodal degrees of freedom« The lateral edges and backface were assumed 
and the surface was heated by heat pulses similar to that 

of figure 2 which is reasonably representative of Shuttle 
ies of the RSI are nonlinear as indicated in figure 3 

heat and conductivity are shown as functions of temperature« 
The specific heat varies with temperature,and because the RSI is very  porous, 
the conductivity varies with pressure as well as temperature« Thus» the 
nonlinear thermal properties of the RSI cause the heat transfer equation to be 
nonlinear. The version of the SPAR thermal analyzer used in this 
investigation accommodates only temperature and time-dependent properties« 
Consequently., the pressure dependency was converted to a time dependency by 
utilizing the known pressure history for a typical Shuttle reentry 
trajectory« Figure 4 shows the special and temporal heating distributions for 
the three cases considered in this study« The spacial distribution is shown 
above each model sketch and the temporal distribution below» The first 
problem involved uniform heating on the surface of the 1„8 in» thick RSI for a 
2000 sec heat pulse»  In the second problem., the heating was symmetric over 
the surface and the thickness of the RSI was reduced to 1 in» with a 
corresponding decrease in the heat pulse duration (to reduce computation 
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times) so that temperatures reached values comparable to those for the 
uniform surface heating. In the third problem;, the heating was asymmetric 
over the RSI surface. Since the surface heating in the first problem was 
uniform., the problem was one-dimensional with essentially 14 degrees of 
freedom. Problems two and three were two-dimensional with essentially 42 and 
84 degrees of freedoms respectively. 

RESULTS AND DISCUSSION 

Uniform Surface Heating 

A series of temperature distributions through the depth of the model 
with uniform surface heating computed by a full SPAR analysis are shown in 
figure 5 for several discrete times during the heat pulse. These 
distributions indicate the .type of behavior the basis vectors must approximate 
to be useful. Initially the entire structure is at a constant temperature of 
560°R. As heating is applied, the RSI surface experiences a rapid temperature 
rise which gradually diffuses through the RSI and SIP to the aluminum skin. 
After peak heating occurs, the surface begins to cool while the interior of 
the RSI and the aluminum skin continue to experience a temperature increase. 
To be useful, the basis vectors used to reduce the degrees of freedom must 
characterize this nonlinear response, must give accurate solutions and must be eas- 
ily and inexpensively generated. Normalized thermal mode shapes from a linear 
eigenvalue problem (in which matrices were evaluated at a uniform temperature 
of 560°R) are shown in figure 6. Although numbered sequentially, these modes 
do not represent the first five modes from the eigenvalue problem associated 
with the two-dimensional finite-element model shown in figure 2. Because of 
the two-dimensional nature of the eigenvalue problem, most of the lower modes 
involved multiple waves in the lateral direction. A total of 84 eigenvalues 
were extracted,and the modes shown have only a single constant wave in the 
lateral direction. As a first attempt to approximate the temperature 
distributions for the problem with uniform surface heating, 12 modes with only 
a single wave in the lateral direction from the eigenvalue problem for the 
uniform initial temperature condition were selected as basis vectors. 
Additionally, to enhance the representation of the diffusion character of the 
temperature distribution during the first 600 sec of the heat pulse (see fig. 
5), the reciprocal of the first mode shape was also used as a basis vector. 
Finally, to accommodate uniform temperature changes, a constant vector (all 
elements equal to 1) was included for a total of 14 basis vectors. 

Beginning with an initial set of four vectors (constant, mode 1, 
reciprocal of mode 1, and mode 2), increasing numbers of vectors were used to 
reduce the full system of equations for the uniform surface heating 
problem. To illustrate the convergence of the reduced basis method, figure 7 
shows the average absolute nodal error at t = 550 sec as a function the number 
of vectors used in the solution. The error drops sharply from four to five 
vectors and is nearly constant after six vectors. For six vectors, the 
individual nodal errors ranged from O.rto 1.7°R. Including additional 
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vectors beyond six only lowered the maximum nodal error by 0o2°Ro Results 
from the reduced basis method using six basis vectors are compared with the 
full system solution over the entire heat pulse in figure 8» Temperatures are 
shown for the surface., midpoint of the RSIa and the aluminum structure« The 
reduced basis temperatures agree very  well with the full system results for 
this essentially 14 degrees of freedom problem. The temperatures indicate, that 
for the uniform surface heating., six mode shapes from a single eigenvalue problem 
based on initial temperature conditions give an excellent approximation to 
the full system solution. 

Symmetric Surface Heating 

Since the set of eigenvectors from the eigenvalue problem based on the 
uniform initial temperature of 560°R proved effective for the uniform heating 
problems a similar set was tried for the problem with a nonuniform but 
symmetric distribution of the applied heating, However,, since these vectors 
were constant in the lateral direction they resulted in temperatures which 
approximated the average lateral temperature distribution from the full system 
solution« To obtain a closer approximation to the full system temperature 
solutions a set of basis vectors was generated from a second eigenvalue 
problem with thermal properties evaluated at temperatures from a "pseudo" 
steady-state problem« Time-dependent thermal properties and heat input were 
averaged over the heat pulse5and temperatures in the aluminum were held at a 
value expected during the mid-portion of the heat pulse (685°R) to define the 
steady-state problem« Only modes with a single wave in the lateral direction 
from the second eigenvalue problem were selected for use as basis vectors« In 
this instances the single wave had a shape similar to the symmetric heating 
distribution« Sets of basis vectors which combined a constant vector with 
equal numbers of vectors from the initial temperature eigenvalue problem and 
the steady-state temperature eigenvalue problem were used to obtain 
approximate temperatures for the problem. The average absolute nodal 
temperature error at t = 300 sec is plotted as a function of the number of 
vectors used in the reduction process in figure 9. The dramatic decrease in 
the error in going from 19 to 21 vectors indicates that some of the lower 
combined modes have only a small effect on the solution and could perhaps be 
eliminated from the solution. Obviously«, other combinations of the initial 
and steady-state thermal modes should be tried to find the set which 
approximates the SPAR solution with the smallest number of vectors« 
Individual nodal temperature errors for the solution using 23 vectors were 
less than 22°R for the higher temperatures (in the RSI) and were no greater 
than 2.2°R in the aluminum structure« Figure 10 shows a comparison of 
temperatures from the 23-vector solution and the full system solution with 
essentially 42 degrees of freedom« Temperatures are shown for the surface^ 
midpoint of the RSI, and the aluminum structure over the transient heat pulse. 
The agreement between the two solutions is very  good and indicates that the reduced 
basis methods with about one-half the original degrees of freedom., can predict 
temperatures with reasonable accuracy for nonuniform symmetric heating. 
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Asymmetrie Surface Heating 

Since the combined set of basis vectors using modes from the initial and 
pseudo steady-state temperature eigenvalue problems gave reasonable 
approximations for the problem with symmetric surface heating, similar 
combined sets of basis vectors were tried for the problem with asymmetric 
surface heating. Although several different combinations of these vectors 
were tried, errors in the nodal temperatures were as large as 200°R. The 
vectors from the psuedo steady-state problem with a single wave in the lateral 
direction contained large variations in the lateral direction (up to a factor 
of 9 compared to the variation in surface heating of 1.67). This seemed to 
preclude obtaining a good approximation to the full system solution. However, 
when a set of vectors which combined modes from the pseudo steady-state 
problem and edge-to-edge reflections of those modes was used a better 
approximation was obtained. 

The average absolute nodal temperature error at t = 300 sec for various 
numbers of vectors is shown in figure 11. The set of vectors begins with 12 
vectors which included a constant vector, the reciprocal of the first mode 
from the initial temperature problem and five modes and their reflected images 
from the steady-state problem. Although the average errors are somewhat 
larger than those for the problem with symmetric heating, the maximum error 
for a single nodal temperature was less than 5 percent of the full system 
solution. Since the error in the temperatures seems to level out near 18 
vectors, approximate temperatures were generated for the entire heat pulse 
using 18 vectors. Figure 12 shows a comparison of the temperatures from the 
reduced basis solution and temperatures from the full system solution. 
Temperatures are shown for the surface, midpoint of the RSI, and aluminum 
structure. Agreement between the reduced basis solution and the full system 
solution is reasonably good throughout the temperature history with the 
maximum error less than about 6 percent. Thus, for this 84 degrees of freedom 
problem, the reduced basis method gives good results with about one-quarter 
the original degrees of freedom. 

FUTURE WORK 

Although the results presented herein for nonlinear transient thermal 
problems with essentially 14, 42, and 84 degrees of freedom indicate that the 
reduced basis method can provide reasonably accurate approximate temperature 
distributions with up to a factor of 4 reduction in the original degrees of 
freedom, considerable work will be required to realize the full potential of 
the method for such problems. Additional sources of basis vectors such as 
eigenvalue problems based on various nonlinear steady-state problems which 
characterize the transient problem, time derivatives of eigenvectors, and 
possibly one-dimensional eigenvectors (similar to the use of beam vibration 
modes in plate vibration problems) should be investigated. Successful 
implementation of the reduced basis method will also depend on development of 
for selecting the type and number of basis vectors needed for a given problem. 
Finally, ways of sensing and controlling the error in the reduced system of 

ways 
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equations will be required so that the process can be automated and cost 
comparisons made with full system solutions for problems with large degrees of 
freedom to determine the cost effectiveness of the reduced basis method for 
nonlinear transient thermal problems» 

CONCLUDING REMARKS 

The effort described in this paper is directed toward applying the 
reduced basis method to nonlinear transient thermal analysis. The method 
combines the classical Rayleigh~Ritz and modal superposition techniques 
with contemporary finite-element methods to retain modeling versatility as 
the degrees of freedom in the problem are reduced. The method has been 
used to obtain approximate solutions for the temperature history of a model 
of the Shuttle Obiter wing subject to reentry heating. Results have been 
obtained for three heating cases: constant, symmetric, and asymmetric 
heating distributions applied to the outer Shuttle surface. Sets 
of basis vectors obtained from two thermal eigenvalue problems associated with 
the transient problems were used in the approximate solutions» The first 
eigenvalue problem was based on thermal properties evaluated at the initial 
temperature conditions for the transient problem» The second was based on 
thermal properties evaluated for a temperature distribution corresponding to a 
nonlinear steady-state problem with time-averaged thermal properties and 
heating from the transient problem» Good agreement was obtained between the 
reduced basis method and full system solutions for the problems with constant 
and symmetric applied heating distributions» For the asymmetric heating 
problems the reduced basis method gave errors of about 6 percent in the nodal 
temperatures» 

These results indicate that t 
reductions but the success of the 
basis vectors used to reduce the f 
focus on the use of basis vectors 
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NONLINEAR CONSTITUTIVE THEORY FOR TURBINE 
ENGINE STRUCTURAL ANALYSIS 

by 

ROBERT L. THOMPSON 
NASA Lewis Research Center 

Cleveland, Ohio 

ABSTRACT 

A number of viscoplastic constitutive theories and a conventional constitutive 
theory are evaluated and compared in their ability to predict nonlinear 
stress-strain behavior in gas turbine engine components at elevated 
temperatures. Specific application of these theories is directed towards the 
structural analysis of combustor liners undergoing transient, cyclic, 
thermomechanical load histories. The combustor liner material considered in 
this study is Hastelloy X. The material constants for each of the theories 
(as a function of temperature) are obtained from existing, published 
experimental data. 

The viscoplastic theories and a conventional theory are incorporated into a 
general purpose, nonlinear, finite element computer program. Several 
numerical examples of combustor liner structural analysis using these theories 
are given to demonstrate their capabilities. Based on the numerical 
stress-strain results, the theories are evaluated and compared. 

INTRODUCTION 

The development and implementation of new technology for more durable, 
reduced-weight, cost-effective gas turbine engine structures for the late 1980' 
is the objective of a recently expanded engine structures research program at 
the NASA Lewis Research Center. Coordinated programs involving in-house, 
university, and industry activities have been initiated to address difficult 
engine technological problems. Viscoplastic constitutive theories which model 
nonlinear material behavior are a part of this emerging technology which is 
receiving increased emphasis and use as an analytical tool for the structural 
analysis of turbine engine components. The severe internal thermomechanical 
environment in advanced turbine engines demands that these theories be used to 
predict cyclic stress-strain behavior. These theories are being developed 
because this new technology, although in its early stages of development, is 
inherently more suitable than the currently-used uncoupled plastic and creep 
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CONVENTIONAL CONSTITUTIVE THEOPV. 

in conventional tneory, xs total strain is additively split (decoupled) into 
elastic, plastic and creep components» Thus, this theory does not allow for 
simultaneous coupling between creep and plasticity»  It also does not allow 
for effectively taking into account a variable strain rate» Both of these 
effects occur in combustor liners constructed from Hastelloy X material., 
Hastelloy X is highly strain rate sensitive at elevated temperature, i.e,5 
creep and plasticity occur simultaneously. The differential heating and 
cooling of combustor liners produces a variable strain rate during the loading 
cycle. In analyzing the structural response of the combustor liner segment, 
procedures are developed for taking these effects into account in the 
conventional theory, These procedures are  briefly described, 



The MARC general purpose nonlinear finite element program (Ref. 3) was used to 
calculate the nonlinear stress-strain response of the combustor liner segment 
subjected to a complex cyclic thermomechanical load history. The conventional 
constitutive model incorporated in the MARC program was used in the structural 
analysis. 

The time independent plasticity algorithm in MARC uses a tangent stiffness 
approach in which the stiffness matrix is updated and reassembled for every 
plastic loading increment. An iterative scheme is then used to calculate the 
response of the structure to each of the load increments. Convergence of this 
iterative scheme occurs when the strains used to estimate the stiffness matrix 
in the assembly phase are within a user's specified tolerance to the strains 
obtained in the solution phase. After convergence, stress and strain 
vectors are updated by adding the incremental values generated to the current 
values of these variables at the beginning of the increment. The program 
increments the next load and repeats the process. Incremental plastic 
deformation is based on the Prandtl-Reuss flow rule of conventional plasticity 
with a Von-Mises yield surface and a combined isotropic kinematic hardening 
rule. 

The creep option in MARC allows time-dependent effects to be included by 
assuming the creep response equations are constitutive equations which are 
valid not only for constant stress histories, but also for general stress 
histories. The program option assumes the creep strain is independent of any 
prior plastic deformation. The program option also assumes that the 
nonlinearities due to the creep constitutive relation may be incorporated into 
a suitable load vector and treated by an initial strain technique. 

At elevated temperature, materials such as Hastelloy X will exhibit time- 
dependent plastic behavior, i.e., highly strain-rate sensitive. Since the MARC 
plasticity algorithm has no provisions for a time-dependent plasticity theory, 
this phenomenon can be approximated in the MARC program by applying plasticity 
and creep alternately. A single cyclic plasticity model based on an estimated 
average strain rate was used together with a creep simulation to account for 
the time dependence at the lower strain rates. A brief description of the 
creep and plasticity program options and how they are used in this analysis 
are described below. 

The plasticity model for the Hastelloy X material was developed and based on a 
trilinear representation of the monotonic tensile curves and cyclic hardening 
rule for a given strain rate. The monotonic stress-strain curves for 
temperatures between 1000°F (538°C) and 1800°F (982°C) in 
200°F(93°C) increments were constructed from stabilized isothermal strain 
controlled test data at a strain rate of 0.008/min. This strain rate is 
representative of those determined from a preliminary structural analysis of 
the liner. The monotonic stress-strain turves were incorporated into a user 
subroutine in the MARC program. 

A creep solution, which was activated alternatively with the plasticity 
solution, was included in the analysis to model the time-dependent material 

response of Hastelloy X at temperatures between 1300°F (704°C) and 
1800°F (982°C). The simulation of the time-dependent material response at 
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VISCOPLASTIC THEORIES 

Ten viscoplastic {coupled plasticity and creep) constitutive models available 
in published literature were evaluated against a set of criteria (Ref. 2). Of 
the ten theories evaluated, three were selected for further evaluation based 
on their mechanisms for predicting cyclic hardening/softening and the limiting 
behavior of the state variables at small strain rates» Those selected were 
Walker's functional theorys Miller's theory, and Krieg, Swearengen and Rhode's 
theorys each of which is briefly described below» These theories, determined 
to be the most appropriate for describing material behavior of Hastelloy X at 
elevated temperatures were incorporated into the MARC nonlinear finite element 
code» The theories were calibrated against experimental data for Hastelloy X 
material» Finally3 the most appropriate theory was applied to a 
three-dimensional finite element analysis of a combusfor liner segment to 
predict its structural response» 

WALKER'S THEORY 

Walker's functional theory (Rev» 2) was developed by modifying the 
constitutive relation for a three parameter viscoplastic solid» The two state 
variables in this theory, the equilibrium stress and the drag stress, account 
for the effects of viscop1asticity3 i.e., the coupling of creep and 
plasticity» The equilibrium stress accounts for the Bauschinger effect by 
introducing nonlinear kinematic hardening into the model, while the drag 
stress accounts for the hardening/softening of the material by introducing 
isotropic hardening into the model» The growth laws for both the equilibrium 
and drag stresses contain dynamic work hardening and static thermal recovery 
terms» The theory models the cyclic hardening/softening of hysteresis loops 
without the use of a yield surface» 

Creep, relaxation and strain-rate effects are modeled by assuming a power law 
for the inelastic strain rate» A limitation of this power law was'noted by 
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Walker in that it is applicable to strain rates between 10~6/sec. and 
10~3/sec. For strain rates greater than about 10~2/sec, the expression 
for the inelastic strain rate predicts stresses which are too large when 
compared to constant strain rate tensile test results. 
Walker's theory contains 14 temperature-dependent material constants. 
Determination of these constants requires cyclic isothermal strain-controlled 
uniaxial tests, as well as creep and relaxation tests. 

MILLER'S THEORY 

The formulation of Miller's theory (Ref. 4) is similar to Walker's theory. It 
includes the same state variables, the equilibrium stress and the drag stress 
state variables, which account for the Bauschinger effect and kinematic 
hardening, respectively. A hyperbolic sine function models the inelastic 
strain rate which includes the creep, relaxation and strain rate effects. 
Cyclic hardening/softening is modeled by the drag stress, not the equilibrium 
stress as in Walker's theory. The equilibrium stress contains a dynamic work 
hardening term and a static thermal recovery term. 

To characterize the material behavior, Miller's theory requires that 12 
material constants be determined from cyclic isothermal strain-controlled 
uniaxial tests, creep tests and relaxation tests. Of the 12 constants, nine 
are assumed to be independent of temperature; the other three are temperature 
dependent. 

KRIEG, SWEARENGEN AND RHODE'S THEORY 

This theory (Ref. 5) is also similar to Walker's 
example, in the formulation, a power law is used 
rate, and the two state variables are the equili 
stress. Cyclic hardening/softening can be model 
equilibrium stress equation contains two terms: 
and a static thermal recovery term. These terms 
those in Walker's theory. This difference resul 
loops that have a trilinear character. Miller's 
hysteresis loops that have this same character, 
required to characterize the material behavior, 
temperature dependent. 
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DIFFERENTIAL FORMS OF FUNCTIONAL THEORIES 

The one-dimensional differential forms of Walker's theory, Miller's theory and 
Krieg, Swearengen and Rhode's theory are*presented here for comparative 
purposes. They are derived from the three-dimensional differential forms 
presented in Ref. 2. The differential expressions for the equilibrium stress 
JL , drag stress K, and inelastic strain C are given below for each theory. 
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The dot denotes differentation with respect to time, R is the accumulation of 
inelastic strain, e is the total strain, a is the stress,, and x and M are 
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The 0' that appears in the inelastic expression is calculated from the 
following expressions which are dependent upon the metal melting temperature, 
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where T is the temperature in degrees Kelvin. The material constants n5 B, 
Hl= H2s Al? A2= c2s Q* and •< are independent of temperature; x, p 
and e' are temperature dependent. Note that k0 is the initial value of k. 

Krieg, Swearengen and Rhode's Theory 

w* 
r-JL 

The material constants x, u, Al, A2/Ä3, A4, A5, n and k0 depend 
on temperature, where !<0 is the initial value of k. 

(9) 

(10) 

(H) 

DETERMINATION OF MATERIAL CONSTANTS 

The material constants for Walker's theory, Miller's theory and Krieg, 
Swearengen and Rhode's theory were determined from uniaxial tests of Hastelloy 
X material. Test data were generated under cyclic strain-controlled 
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conditions for a range of temperatures from 800°F (427°C) to 1800°F 
(982°C) in increments of 200°F (93°C). Strain rates ranged from 2 x 
10~2/sec. to 1.25 x lO~^/sec. for strain amplitudes of ±0.6 and ±1.0 
percent strain. Creep and relaxation test data were also generated in order 
to obtain some of the material constants. Values of the material constants 
for each of theories are tabulated in Table I. 

COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS 

Based on the above one-dimensional differential equations with the appropriate 
material constants, Walker's theory, Miller's theory and Krieg, Swearengen and 
Rhode's theory were used to generate steady-state hysteresis loops for a range 
of temperatures and strain rates at a single strain amplitude. The predicted 
steady state hysteresis loops for Walker's theory, Miller's theory, and Krieg, 
Swearengen and Rhode's theory for a temperature of 1400° F (760° C) are 
shown in Figures 2 through 4, respectively. The corresponding experimental 
steady-state hysteresis loops are shown in Figure 5. The loops represent the 
predicted stress-strain behavior of the Haste!loy X for strain rates varying 
from 3.9 x 10~3/sec. to 1.2 x 10~^/sec. and for a strain amplitude of ±0.6 
percent strain. Both the theoretical and experimental data for a range of 
temperatures and strain rates are presented in Ref. 2. 

Some of the salient features in the comparison of these curves are discussed. 
The peak stresses in the hysteresis loops predicted from Walker's theory agree 
with the experimental results. However, at the lower strain rates the 
theoretical predictions of the stress-strain behavior are too rounded at the 
knees, while at the higher strain rates the theoretical predictions are too 
square. Miller's theory, while predicting the peak stresses fairly 
accurately, exhibits a trilinear character of the hysteresis loops for all 
strain rates shown and does not predict the roundedness of the experimental 
loops. Krieg, Swearengen and Rhode's theory does not predict the peak 
stresses as accurately as Walker's theory or Miller's theory. In addition, 
the theoretical predictions of the hysteresis loops from this theory are too 
square for all the strain rates considered. The squareness of the hysteresis 
loop at the lower strain rates for each of the theories is attributed to two 
factors: (1) because the equilibrium stress saturates to a smaller value at 
low-strain rates due to static thermal recovery and (2) because the constants 
which govern the hardening rate of the equilibrium stress, e.g., n2 in 
equation 1, Hi  in equation 4,and A^ in equation 9,result in the 
equilibrium stress saturating more rapidly at low-strain rates. Most of the 
features discussed in this illustrative example are equally valid for 
temperatures between 1200° F (649° C) and 1800° F (982° C). 

Both creep and relaxation tests were also conducted and the data obtained were 
compared with theoretical creep and relaxation predictions using the three 
theories. Experimental and predicted creep responses at various points on 
both the tension and compression loading branches are shown in Figures 6a and 
6b for a temperature of 1600°F (871°C), a strain rate of 3.7 x 
10"4/sec, and a strain amplitude of ±0.6 percent strain. Comparison of 
Walker's theory with experimental data shows good agreement. The creep 
response predicted by Krieg, Swearengen and Rhode's theory, although not 
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COMPUTER PROGRAM SIMULATIONS 

The viscoplastic theories of Walker, Miller, and Krieg, Swearengen and Rhode 
were incorporated into the MARC program in their three-dimensional form by 
means of an initial-stress technique, In this technique, all the material 
nonlinearities are incorporated into an initial load vector and are treated as 
a pseudobody force in the finite element equilibrium equations. 

The MARC nonlinear equilibrium equations governing the incremental response of 
the structures to an increment in load are generated from the principles of 
virtual work. The program assumes for a. nonlinear structural problem, e.g,, 
material nonlinearity, that the load history is divided into a number of 
incrementally applied load steps. Each load step is analyzed sequentially as 
a linear matrix problem using an appropriate stiffness matrix and load 
vector. At each load step, linear matrix methods are used to solve the 
incremental equilibrium equations, but the incremental equilibrium equations 
are nonlinear since the load vector depends on the displacement increment 
obtained in the solution of the incremental equilibrium equations. The 
computed displacement increment is compared with the initial displacement 
increment. If the computed increment is equal, within a user specified 
tolerance, to the initial value, the solution is assumed to have converged. 
Otherwise the process is repeated, 
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Walker has developed a method for reducing the number of subincrements 
required within the user subroutine for his theory (see Ref. 3). The 
constitutive equations for Walker's theory are written in integral form and 
these equations are integrated over a subincrement using a recursive 
integration technique. This integration technique is sufficiently accurate, 
efficient and stable so that possibly only one subincrement per finite element 
load increment is needed. The method, however, requires that the input 
history for the load or strain and temperature, each with respect to time, be 
accurately modeled with piecewise constant values. Even with these 
restrictions, the accuracy and stability of the recursive integration scheme 
allow the use of large loading increments in a nonlinear structural finite 
element analysis, with a. comparable reduction in computer-run time compared to 
the Euler forward-difference method. 

At this point, the selection of the constitutive theories to be used in the 
structural analysis and their incorporation into a finite element computer 
program have been presented and discussed. Still to be determined before a 
structural analysis can be performed are the temperatures of the combustor 
liner segment. 

COMBUSTOR LINER THERMAL ANALYSIS 

Because very little experimental data for combustor liners are available, 
i.e., temperature and strain data, a well-controlled experimental program was 
conducted on a simulated combustor liner segment to obtain good temperature 
measurements (Ref. 1). Results from this program provided the accurate 
measured temperatures needed to compare with analytical temperature 
calculations, and the data to be used in the calibration, evaluation and 
verification of the various nonlinear constitutive theories to be analyzed. 
Strain measurements were not obtained because existing strain gages have a 
limited lifetime, perhaps less than two or three cycles, in the severe 
thermomechanical environment. 

The selected component in the experimental program consisted of a simulated 
combustion chamber outer-liner segment, a stacked ring, louver configuration 
as shown in Figure 7. The test article was made of Haste!loy X. Cyclic 
engine level temperatures and temperature gradients were generated on the test 
article by using an induction heater in conjunction with a controlled cooling 
air temperature and flow rate. Induction heating, although not simulating an 
actual cyclic engine test with hot gases, is accurate to the extent that the 
metal temperatures and temperature gradients can be simulated. The test rig, 
procedures and data obtained are described in Ref. 1. 

The test program, conducted under accelerated cyclic thermal loading with a 90- 
second thermal cycle, provided the temperature and structural responses, and 
failure data for comparison with analytical results. The representative 
transient and steady-state measured temperature distribution responses at 
several thermocouple locations on the combustor liner are shown in Figure 8. 
Because the experimental program did not provide sufficient temperature 
information for a detailed structural analysis, additional data were obtained 
from a transient, three-dimensional heat transfer analysis of the combustor 
liner specimen. The experimental data were used as input data to this 
analysis and to verify the analytical results. 
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To obtain accurate temperatures requires the discretization of a section of 
the liner into a series of thermal finite elements, with a higher density of 
thermal elements around the cooling holes and in the lip region, i.e., those 
critical areas where either cracking or buckling could occur» This may not be 
known a priori and could require an iterative solution involving refinement of 
the thermal mesh» Boundary conditions which are also important in any thermal 
analysis for accurate temperature predictions, and especially a transient 
analysis such as this, are the surrounding temperature, heat loads (fluxes), 
and heat transfer coefficients along the surface of the model. For the 
transient analysis, not only must the external boundary conditions (film 
coefficients, surrounding temperature, gas temperature, gas flow rates and 
internal heat generation) be specified, but the metal thermophysical 
properties such as thermal conductivity and specific heat must be specified as 
functions of temperature and time. Other variables which should be included 
in the thermal analysis are the emissivity, absorptivity and reflectivity of 
the metal surfaces. Also, depending on the complexity of the geometry, the 
view factor which affects the radiative heat loss should also be included in 
the thermal analysis. Each of these factors was accounted for in the thermal 
analysis of the combustor liner segment. 

Based on the model discretization and boundary conditions, a thermal analysis 
of the combustor liner segment was performed. When the steady-state 
experimental surface temperatures of a louver section were compared with the 
theoretical results, it was found that the predicted temperatures were hotter, 
with the greatest differences between them being about 65°F (36°C). Since 
greater accuracy is required to compute stresses from the conventional and 
viscoplastic constitutive theories, some of the thermal variables were 
modified. The greatest degree of uncertainty was associated with the heat 
transfer coefficients. Therefore, in order to match the experimental with 
theoretical temperatures, modification of about 50 percent over the original 
heat transfer coefficients was required. For the transient analysis, the 
modified values of the heat transfer coefficients were held constant. This 
was a good assumption since the cooling air temperature and flow rate remained 
constant during the tests. As shown in Figure 9, comparison of predicted 
steady-state and transient temperature responses with measured data showed 
good agreement. The transient heat transfer solution was used to create 
transient incremental temperatures which were used as input to the structural 
analysis in which both the conventional and viscoplastic theories were used. 

STRUCTURES FINITE ELEMENT MODEL 
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The finite element model was only a small portion of the complete shell 
structure. This required that appropriate boundary conditions be determined 
to simulate the effect of the complete shell structure and a series of 
louvers. The technique for connecting louver segments is described in Ref. 
1. Basically, it permitted only radial displacements along radial edge planes 
of the louver segment modeled,and it required that the radial displacement on 
the front plane of the louver be related linearly to the radial displacements 
on the rear plane of the louver. An additional constraint on the front and 
rear planes was that the axial slopes of these planes must be equal. 

The three-dimensional model used 640K double precision words of storage on the 
IBM 370/3033 computer system. The loading cycles required 78 MARC 
viscoplastic increments for the conventional theory and 121 MARC increments 
for the viscoplastic theory. Each loading cycle for both theories required 
about 45 minutes of computer-run time. 

THERMAL INCREMENT FILE 

The thermal increment file generated from the heat transfer analysis was used 
to impose the temperature increments in the loading sequence for the louver 
structural analysis. For each loading increment, the mechanical pressure load 
increment was applied, followed by the thermal load increment. The finite 
difference mesh size used for the heat transfer analysis was based on locating 
temperature solution points close to the finite element integration points 
used in the structural analysis to minimize the spatial interpolation of the 
temperatures. A general interpolator was used to generate the thermal 
increment file and to perform the required spatial intepolations between the 
two meshes. However, the interpolater was not successful in that temperatures 
at the integration points could not be obtained within 5°F (3°C) of the 
desired value from the heat transfer analysis. Thus, the finite difference 
thermal increment file required a considerable amount of manual modification 
of the temperature increments. 

ANALYTICAL RESULTS - CONVENTIONAL THEORY 

For the combustor liner 
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The finite element model of the louver liner, shown in Figure 10, was run 
through six thermomechanical load cycles. The predicted hoop 
stress/mechanical strain history at the integration point closest to the lip 
for these cycles is shown in Figure 11. During the heat-up portion (refer to 
Figure 3) the lip goes into compression, and at point B, the strain becomes 
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stress-strain response did not stabilize for the thermomechanical loop 
considered; and cyclic plasticity was decreasing during the cycling which 
resulted in a narrowing of the stress-strain curves. Since none of these 
results was observed from the tests, they may be material model dependent. 
The conclusion is that future modification and improvements of the material 
modeling using conventional theories are required to accurately reproduce the 
thermomechanical stress-strain response of Hastelloy X. 

EVALUATION OF VISCOPLASTIC THEORIES 

An alternative to conventional theory is to use nonlinear viscoplastic 
theories since they do not have many of the limitations of the conventional 
theory, as discussed previously. Three viscoplastic theories were evaluated. 
The evaluation of Walker's theory, Miller's theory and Krieg, Swearengen and 
Rhode's theory was based on the comparison of predicted results with 
experimental data obtained from uniaxial tests described in the previous 
section. The "faithful cycle" (see Fig. 12) was used to evaluate the three 
viscoplastic theories. The most suitable of these theories was then used to 
predict the nonlinear three-dimensional structural response of the simulated 
louver liner. 

The experimental results (shown in Figure 13) are compared with the numerical 
results obtained from the MARC program using the three viscoplastic theories. 
The unaxial test specimen was modeled as an axisymmetric problem with four 
ring elements with appropriate boundary conditions. Incremental 
displacements which follow the mechanical strain history were given to the 
appropriate nodes, while each integration point of each element was given 
incremental temperature variations which follow the temperature history. 
Thermomechanical hysteresis loops were produced by integrating the" theories 
around the faithful cycle. The loops predicted by Walker, Miller, and Krieg, 
Swearengen and Rhodes's theories are shown in Figures 14 through 16, 
respectively. From points A to B on the hysteresis loops, the loading portion 
of the curves, the temperature increased from 940°F (504°C)to 1750°F 
(954°C). From points B to C, the temperature remained constant at 1750°F 
(954°C). Stress relaxation occurred during this portion of the cycle. On 
the unloading branch, from points C to A, the temperature decreased almost 
linearly to 940°F (504°C). 

Figure 14 shows the thermomechanical hysteresis loop predicted by Walker's 
theory. From points B to C, the theory predicts a relatively small amount of 
stress relaxation, although none is observed in the experimental response 
shown in Figure 13. In the tensile portion of the curve, the unloading 
portion C to A, the theory predicts some tensile yielding, but not at the same 
mechanical strain as the experimental response. In the compressive portion of 
the loading curve, the theory predicts some compressive yielding which is 
consistent with the experimental response. The cycles of the hysteresis loops 
show a progressive decrease in the stress relaxation at points B which result 
from the progressively lower stress levels at point B after each cycle. The 
loops stabilize as the stress relaxation decreases after about three cycles 
which is in agreement with experimental data. 
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I he thermomschanical hysteresis loop predicted by Miller's theory is shown in 
Figure 15. Contrary to the experimental results, the theory predicts a large 
amount of stress relaxation at-the maximum hold temperatures, points B to C. 
From points C to A, the tensile portion of the loop (cooldown phase), the 
theory predicts a linear behavior which is not observed experimentally 
Experimental results show some tensile yielding in this region, 

Figure 16 shows the thermomechanical loop predicted by Krieg, Swearengen and 
Rhode's theory. Only a relatively small amount of stress relaxation, points B 
to Cs is predicted by the theory at the maximum hold temperature» Some 
tensile yielding, comparable to Walker's theory, occurs late in the tensile 
portion of the loading, but at a strain much different than the experimental 
response. There is also a slight stress dip at the top of the tensile portion 
of the loop which is not observed experimentally. The loop, like Miller's 
theory, stabilizes in one cycle. 
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g the faithful cycle shows the theoretical predictions using Walker's 
ry and Krieg, Swearengen and Rhode's theory to be in reasonably good 
ement with the experimental data, whereas Miller's theory does not agree. 
aring Walker's theory to Krieg, Swearengen and Rhodes 's theory for 
tant temperature experimental hysteresis loops, together with creep 
ictions, Walker's theory gives better results. Although none of these 
ries accurately predicts the hysteresis loops below temperatures of about 
°F (649°C), Walker's theory provides better results when compared with 
rimental data. Also, two phenomena occur below temperatures of about 
°F (649°C) which are not modeled by the theories, although it is 
eved that Walker's theory can be modified to incorporate these effects, 
first of these phenomena is that below a temperature of 1200°F (649°C) 
hysteresis loops become progressively less strain-rate sensitive. A 
nd phenomenon that occurs at temperatures near 1100°F (593°C) is the 
rse strain-rate effect attributable to a strain age-hardening mechanism. 
means as the strain rate decreases the peak stresses of the hysteresis 

s in both tension and compression increase. Based on these considerations 
in view of the favorable comparison of the experimental and theoretical 
Its, Walker's theory was chosen to perform the structural analysis of the 
lated combustor liner segment. 

ANALYTICAL RESULTS - VISCOPLASTIC THEORY (WALKER) 

A three-dimensional inelastic finite element analysis of the simulated 
combustor liner segment was performed using MARC. The analysis of the liner 
segment was identical to that conducted using the classical constitutive 
theory available in MARC except that Walker's functional theory was used. For 
example, the three-dimensional finite element model of the combustor liner 
specimen (Fig. 10), types of elements, boundary conditions, faithful cycle 
(Fig. 12) and thermal increment file used were identical to those used for the 
investigation of the classical constitutive sory. The results are shown 
only for the integration point closest to the end of the louver lip since this 

is the critical fatigue location, as explained previously. 
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Figure 17 shows the louver lip hoop stress as a function of hoop mechanical 
strain for two thermal load cycles. The analysis predicts a thermomechanical 
response which exhibits an apparent ratcheting in the negative strain 
direction. This ratcheting may be attributed to the more nearly elastic 
behavior observed in the low-temperature tensile portion of the hysteresis 
loop. In the experimental hysteresis loop (Fig. 13), more tensile yielding is 
observed. At the maximum tensile stress in the loop, a stress dip phenomenon 
is calculated. This phenomenon may result since the theory does not 
accurately predict the hysteresis loops at low temperatures. This might also 
explain why there is less tensile yielding occurring during the loading 
portion of the curve. Neither the excessive elastic behavior nor the stress 
dip phenomenon is observed in the experimental hysteresis loop (Fig 13). At 
the maximum compressive stress in the loop, there is very  little relaxation 
occurring during the maximum hold period. This agrees with the experimental 
hysteresis loop where both creep and plasticity appear to be occurring 
simultaneously. 

The predicted stress dip phenomenon that occurs in the maximum tensile portion 
of the loop may be attributed to two factors. First, since Walker's theory 
cannot produce a rate-insensitive response at the relatively low temperatures, 
corresponding to the maximum tension, the material may be relaxing at the 
small strain rates. Second, during the elastic loading portion of the loop 
the equilibrium stress remains essentially constant and is temperature 
independent. Because the equilibrium stress remains constant during this 
elastic excursion, when yielding does occur, the strain will grow very 
rapidly. This rapid growth may produce the dip in the tensile stress. 

The stress dip phenomenon may be avoided with two changes to Walker's theory. 
First, the equation governing the growth of the equilibrium stress can be 
changed to incorporate a temperature rate term so that the equilibrium stress 
can grow with temperature during an elastic excursion. Second, the 
instantaneous stress response can be assumed to be inelastic rather than 
elastic. This could be accomplished with a growth law similar to that assumed 
for the equilibrium stress, with the result being a rate-insensitive response 
at lower temperatures. 

SUMMARY OF RESULTS 

The results of the evaluation of the conventional theory and viscoplastic 
theories used in the structural analysis of the combustor liner segment can be 
summarized as follows: 

1. Comparison of the experimental data with the theortical results 
indicated that neither the conventional theory nor the viscoplastic theory 
accurately predicted the cyclic thermomechanical response at the critical 
fatique failure location. The thermomechanical loops generated with these 
theories exhibited continued cyclic hardening and ratcheting after many 
cycles. Tests of a uniaxial strain-controlled specimen cycled through a 
temperature-strain history as computed for the three-dimensional structural 
analysis showed that the response stabilized after a few cycles. 
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3, There was difficulty in consistently determining accurate temperatures 
for the structural integration points from the thermal nodes because of the 
different heat transfer and structural finite element meshes used, 

4, For a therrnomechanical load cycle, computer-run time for a 
three-dimensional structural analysis of the combustor liner segment using the 
viscoplastic theory was about the same as an analysis using the conventional 
theory» However, the new integration scheme developed by Walker for reducing 
the number of subincrements required for each load increment for a 
viscoplastic theory could result in a substantial reduction in computer-run 
time over the conventional theory approach, 

FUTURE RESEARCH 

Current structural analysis activities for the development and design of gas 
turbine engine hot section components are and have been limited, for the most 
part, to linear, one-and two-dimensional (axisymmetric), steady-state 
analyses. This is due to a number of factors such as availability of 
accurate, efficient and usable viscoplastic theories, complex geometric 
modeling requirements;, limited interdisciplinary interactions, availability of 
software computer programs, computer hardware limitations and limited 
experimental data with which to compare, evaluate and verify analytical 
results. 

Detailed investigations of transient, nonlinear, three-dimensional structural 
analyses and life prediction of combustor liners have, for the most part, not 
been attempted. However, because of the need to be able to analyze hot 
section structural components and to predict their life with some certainty, 
work is beginning in many of these areas, as outlined above, One of the most 
comprehensive investigations undertaken to date and summarized here, for the 
structural analysis and durability analysis of a simulated combustor liner 
segments was accomplished by  the programs described in references 1 and 2, 
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theories« Even if the theories can be incorporated into computer programs, 
the analyst still needs to be familiar with the program and with the software 
programming. 

The complex geometry of existing, as well as structurally advanced, combustor 
liners complicates the structural finite element modeling. Not only are large 
numbers of finite elements required for the structural analyses of existing 
and advanced combustor liners, or even a segment of a liner, but 
three-dimensional finite elements are also necessary. There is, therefore, a 
need to generate and analyze finite element models automatically using a 
self-adaptive solution strategy. 

Another factor which limits the structural analysis of combustor liners is the 
interaction of several disciplines. Since temperatures and temperature 
gradients are required for the structural analysis, researchers in the heat 
transfer and structures disciplines must interact in order to transfer the 
thermal information from the heat transfer computer program to the structural 
analysis computer program accurately and efficiently. There must also be some 
interaction between the structures and life prediction disciplines since the 
output of the structural anlysis is needed to perform the durability 
assessment. To a lesser degree, and not discussed previously, some 
interaction between the structures, and the material and aerodynamics 
disciplines is also required so that a totally integrated aerothermal- 
structural-life analysis of a combustor liner can be performed. 

Nonlinear structural analyses of hot section engine components are also 
limited because there are but a few nonlinear finite element structural 
analysis codes available. The complexities of these codes limit their utility 
many times because of limited documentation and/or complex sets of input. 
Many programs are designed to be general purpose codes,and so they tend to be 
inefficient for component specific nonlinear structural analyses. This 
condition is expected to worsen, especially for very  large finite element 
models and nonlinear material modeling required for structural analysis and 
assessment of advanced combustor liner structural concepts. It is possible 
that for the finite element models required, as well as the other analysis 
requirements, existing large mainframe computers could be saturated in terms 
of their storage capacity with as few as 100 three-dimensional 20-node brick 
elements. 

Limited experimental data is another contributing factor which impacts and 
restricts the structural analysis of engine hot section components. Only 
limited data are available for characterizing material behavior at elevated 
temperatures. For the most part, the data have been obtained from isothermal, 
fast response time and uniaxial specimen tests. Some creep data are 
available, but they too are limited. There are limited data available for a 
wide range of temperatures and strain rates for any candidate material for a 
combustor liner application with the exception of Hastelloy X. Experimental 
data obtained from full-scale combustor liner tests, or even segment tests, 
are also limited, with most of the data being temperature data. No 
quantitative strain data have been obtained for the structural response. 
Multiaxial cyclic testing under isothermal and nonisothermal conditions at 
several strain rates needs to be done. Strain measurement data for a 
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combustor liner subjected to a severe cyclic thermomechanical environment have 
not been obtained because existing strain gages have a limited lifetime in 
this environment. 

Following is a summary of the major needs which should be addressed in order 
to perform a thorough and complete heat transfer and structural analysis of a 
combustor liner. 

1, Develop new and improve existing nonlinear constitutive theories, 
2, Develop more efficient, accurate, affordable and user-friendly 
component-related nonlinear structural and heat transfer analysis codes, 
3, 'Develop data communication linkages between thermal-structural-life- 
prediction analysis codes, 
4, Establish coordinated, well-controlled experimental/analytical 
programs, 
5, Develop durable, accurate instrumentation, 
6, Perform multiaxial tests for isothermal and nonisothermal conditions 
at variable strain rates, 

Each of these identifiable needs is being considered or addressed in NASA 
Lewis' Engine Structures Programs, which are broad in scope. The Hot Section 
Technology Systems Program ((H0ST),Ref, 6), for example, currently underway at 
NASA Lewis, is addressing many of the needs cited above , The basic intent of 
this program is to integrate existing analytical methodologies and 
technologies which have remained segmented up to now, to extend existing 
analytical methodologies and technologies where appropriate, and to conduct 
experiments to verify analysis methodologies, Another Lewis program which 
complements the HOST program is the development and implementation of 
nonlinear constitutive theories for structural analysis of combustor liners, 
The intent of this program is to broaden the basic knowledge and understanding 
of material nonlinear behavior when subjected to complex cyclic 
thermomechanical load histories at elevated temperatures, Researchers from 
industry, universities and NASA Lewis are participating in this program, NASA 
Lewis' involvement will be to integrate the activities of industry and 
universities to develop a coordinated, mutually beneficial program, as well as 
to provide an independent evaluation and assessment of the theories and 
methodologies developed. The overall objective is the pooling of resources 
available^from industry/universities/NASA for the purpose of developing and 
implementing nonlinear constitutive relations which can be used to accurately 
and efficiently predict the stress-strain response of hot section components. 
This, in turn, will have a significant impact on improving the fundamental 
technology of structural analysis and life prediction of engine components 
that will ooerate in a severe, complex, cyclic, thermomechanical environment. 
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89 



o CALCULATION  1 0 ) 
=       Fvocs v ;vi™MT 

J.     iVJä Us J    ill   d 

^§ 

U 

■>21o5 xsi 

->    7 9  w ^ J it   a £,     (Sä d 

^7c2 SCSI 
JL    U   D   =^        ii\ W j, 

21=5 xsi 

KSJ 

0    10      20     50     40     50    TIME IN SECONDS 

Figure 6  (a)  Creep Response at 1600° F  (871° C)  Generated With Walker's Theory 

~^=^-  7,2  KSS 
ll\3  KS! 

iME IN SECONDS 

Figure 6  (b)  Creep Response at 1600° F  (871° C)  Generated With Miller's Theory 

90 



SPECIMEN C. 

B 
*REPRESENTATIVE 
THERMOCOUPLE 

LOCATIONS 

Figure 7 - Assembled Liner Test Specimen (A) and 5-Louver Test Section (B) 
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PREDICTION OF RESIDUAL TENSILE STRENGTH 

OF TRANSVERSELY IMPACTED COMPOSITE LAMINATES 

K. M. Lai* 
NASA Langley Research Center 

Hampton, Virginia 

SUMMARY 

This paper discusses the response to low velocity impact of graphite-epoxy 
T300/5208 composite laminates.  Steel balls of 3/8-inch, 5/8-inch, and 1-inch diameter 
were the projectiles.  Impact energy was limited to 1.2 joules.  Impacted specimens were 
ultrasomcally C-scanned to determine the impact-damaged region.  The threshold 
value of impact energy for impact damage was found to be approximately 0.3 joules. 

A model was developed to predict the tensile residual strength of impact- 
damaged specimens from fracture mechanics concepts.  Impacted specimens were tested 
in tensxon to provide a fracture data base.  The experimental results agreed well 
with the predictions from fracture mechanics. 

In this study, the maximum impact velocity used to simulate the low-velocity 
transverse impact from common objects, like tool drops was 10 m/s. 

INTRODUCTION 

Aircraft, while in service, may be subjected to impacts from hail and bird 
strikes in the air, runway debris, and even ground service equipment.  Such impacts 
can reduce the strength of the structure.  In aluminum structures minor dents are 
usually ignored.  But in graphite-epoxy composites the surface damage may appear 
less severe than the hidden damage.  The effect of low-velocity impacts on structures 
in impact sensitive locations has therefore become an important consideration in 
assessing the suitability of composites for operational service. 

Up to now most impact studies [such as references 1-7] have dealt with the 
description of the strength reduction due to impact on an empirical basis.  The work 
described here represents a first step towards applying fracture mechanics concepts 
to correlate the damage caused by an impact with the residual strength after that 
damage. 

Impact damage in a composite consists primarily of delaminations, ply splits, 
and fiber breaks.  Fiber debonding and pul'lout may also occur, but are less 
significant in determining the residual strength. 

At low velocities a damage threshold appears to exist, below which neither 
matrix nor fibers are damaged.  Above the threshold initial damage may occur either 
in the matrix by ply splitting and delamination, or by fiber failures.  At high 

"Associate Prof, of Mechanical Engineering at Old Dominion University, Norfolk, Va. 
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No data exist in the literature to define the strength reduction in impact- 
damaged composites over the entire impact velocity domain up to the hypervelocity 
impact.  Figure 2 shows schematically two possible trends in the residual strength as 
a function of velocity.  Curve (a) assumes that no strength reduction occurs up to 
the velocity at which damage is first observed (threshold), and that the residual 
strength decreases monotonically to a minimum by the hypervelocity impact.  Curve^ (b) 
assumes that the strength may already be reduced at impact velocities less than the 
threshold of observed damage, and that the strength has a minimum coinciding with the 
maximum damage size.  Such a minimum might be substantially below the residual 
strength in the hypervelocity impact case. 

The data reported herein represent part of a continuing study and are limited to 
examining the residual strength in the low-velocity domain (<10 m/s). Figure^3 shows 
a specimen which has been damaged by a low-velocity impact.  The projectile did not 

penetrate but left a damage zone oi A d as measured by ultrasonic C-scanning. 
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To test this model the measured residual strengths for the impacted plates were 
compared to the computed strengths for plates with the assumed equivalent slit 
length. 

In the impact specimens not all the energy is available to fiber breakage and 
delamination.  The computed residual strengths are therefore expected to be a lower 
bound on the measured values.  The expectation was tested against the available data. 

Also, in the impact specimens, the damage distribution is more diffused than 
the model assumption of an equivalent slit with 100 percent of the fibers broken. 
The computed slit length is therefore expected to be shorter than the observed 
damage size (length).  This expectation is also tested against the available data. 

ANALYSIS 

The classical Griffith-Irwin fracture criterion [ref. 8, 9], for fracture of 
orthotropic materials [ref. 10], assumes that the energy G   required to create unit 
area of fracture surface is c 

JT = KJ /E 
I    I   c c    c 

(1) 

where KT   is the critical stress intensity and Ec  is the Young's Modulus of c composite laminate. 

If the energy  Gxic  is required to create a unit area of delamination by shear, 
the energy absorbed by delamination, 1^, will be 

xd = Gn V 
c 

(2) 

where A^ is the area of delamination detected by ultrasonic C-scan and n is 
number of delaminations.  The assumption that all the plies in the laminate delami- 
nate will give  n equal N-l, where N  is total number of plies. 

The energy  If, absorbed by fibers breaking, is then given by 

fad 

where     Ia    is   total energy  absorbed by  the  laminate  during  impact. 

(3) 

The equivalent slit length can be obtained from If  and GT , as 

L = If/2G]. h 
c 

(4) 

The fracture behavior of composite plates with transverse slits of length  2L 
is given by 

K  = a A(L+a ) I    c     c 
c 

(5) 
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where  Gc  is the failure stress and 
to describe the finite strength when 
stress intensity factor a 
mined as 

ac  is a characteristic length term introduced 
L approaches zero.  Kj   is the critical 

failure in mode I.  The residual strength is then deter- 

G  = K_ //iT(L+a ) 
c   l       c 

c 
(6) 

The fracture parameters, Kj Lc, ac and G-r   were determined experimentally, and 
Jjl was taken equal to 200 joules/m2 [ref.ll" The ratio of  o~„  and  a. 
strength of the laminate. gave the residual tensile strength retention factor 

the ultimatj 
R. 

Calculation of Absorbed Energy: 

The energy absorbed, Ia, during impact was obtained by subtracting the rebound 
energy from the maximum impact energy of the projectile, and is given by 

I  = 1/2MV2 - 1/2MV2 
a R (7) 

where  V  and  Vg_ are maximum impact and rebound velocities, being equal to, 

respectively, /2gH  and  /2gh  where  H  and  h  are drop and rebound heights of the 
projectile.  M  is the mass of the projectile.  One possible loss of energy not 
related to impact is caused by air dra| 
equation: 

which can be calculated by the following 

-  i ■ i      ■ 3 Pa n     V2 

percent loss in velocity = 1 - — — C , — J 8 p   d gD 
(8) 

where  p. and Pc are the relative mass densities of air and projectile, Ch  is 
the drag coefficient, equal to 0.5 in low turbulent flow conditions, V  and  D  are, 
respectively, the velocity and diameter of the projectile, and  g  is gravitational 
constant.  The energy losses due to air drag were found to be less than 1 percent 
of g, the maximum kinetic energy of the projectile, for impact velocities used in this 
study.  Therefore, the air drag losses in energy calculations were neglected. 

TEST RESULTS AND DISCUSSIONS 

In order to test the model presented in this paper, impact specimens were 
damaged by a dropped steel ball.  Impact-damaged specimens were first screened by 
ultrasonic C-scan to detect the damaged zone, and then tested in tension to obtain 
their residual tensile strength.  Fracture specimens, identical to the impact speci- 
mens, were tested to obtain the toughness parameters of the material. 

Impact Specimens: 

The impact specimens were produced from T300/52Q8 graphite-epoxy laminate. The 
fiber orientation of the laminate used in this study was [45/0/-45/90]s, The speci- 
mens were rectangular, 300 mm by 100 mm.  The tensile strength and the Young's 
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Modulus of the laminate (loading along 0° fiber direction) were respectively 555 MPa 
and 45 GPa. 

All the specimens were C-scanned before they were impacted to ensure that the 
specimens were free from defects like air-filled debonds and porosity.  Based on the 
results reported in reference [12], which showed that ultrasonic attenuation of good 
quality graphite-epoxy composites is uniform to within 6 dB over 99 percent of its 
surface, all the impact specimens were C-scanned with 6-dB attenuation level. 

Impact Tests: 

The rectangular panels were fixed by a rectangular window type fixture (fig. 4) 
such that all four edges were clamped to provide a free area, 150 mm x 100 mm.  All 
the specimens were clamped with uniform torque to keep mounting conditions uniform. 
The projectiles were 3/8-inch, 5/8-inch and 1-inch diameter.  They could be dropped 
from the heights up to 4.5 meters.  Table I lists the impact test data.  The 
variation of energy absorbed, I , during the impact with impact velocity V is shown 
in figure 5.  The absorbed energy was found increased with the size of the projectile 
and the impact velocity.  The computed values of energies absorbed by delamination 
and fiber breakage are listed in Table II.  The variation of absorbed energy  I  and 
fiber-breakage energy with maximum impact energy, I, is shown in figure 6. 

Ultrasonic C-Scanning Results: 

After impact, each specimen was inspected visually and by ultrasonic C-scanning. 
The magnitude of impact damage was difficult to detect visually, but the C-scanning 
technique defined the boundary of the impact-damage zone.  The .ultrasonic C-scanning 
technique can detect most discontinuities caused by impact damage in graphite-epoxy 
composites.  Figure 7 shows impact-damage  areas of several impact specimens detected 
by the C-scanning method.  The length and width of the impact-damage area, as defined 
in figure 8, are listed in Table I for each specimen.  In most cases, the shape of the 
damage zone was a parallelogram slightly skewed in the direction of bottom-ply. 
Also, the maximum length of the damage zone was along the bottom-ply fiber 
direction. 

The variation of damage area with impact energy is shown in figure 9.  The 
threshold value of impact energy for detectable damage by C-scanning was about 
0.3 joules. 

Fracture Tests of Impact-Damaged Specimen: 

Each impact-damaged specimen was tested in tension.  The load at which the 
specimen failed provided the residual tensile strength, defined as the load divided 
by the gross sectional area of the specimen.  The test data for residual strength 
are given in the column 7 of Table I. 

Fracture Tests of Center-Slit Specimens: 

The fracture mechanics tests were conducted to obtain the residual strength, 
Oc,   of a slit specimen, inherent flow size, ac, and the fracture toughness, 
KT , of the material. 
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The center-slit specimens were cut from the same lot of composite material 
that the impact specimens were.  These specimens were also the same size as the 
impact specimens«  Center slits of lengths 2 mm, 4 mm, 6 mm, 8 mm, 10 mm and 12 mm 
were ultrasonicaliy machined into these specimens.  The test data of fracture stress 
versus slit length for the center-slit specimens is shown in figure 10,  The 
leaj 

KT . 
-square analysis of fracture test dat ave the values of material toughness. 
and inherent flow S1Z£ respectively equal to 49,85 MPa/m and „002634 in. 

The ultimate strength of the laminate was found to be 555 MPa, 

TIK column  j  oi the  Table   li gives the energy absorbed by delaminat 
x^  from ia gives the fiber-breakage calculated from equation (2),  Substracting 

energy, If, which is listed in column 4 of Table II.  The slit lengths 2L, equi- 
valent to the impact damage, were found by using the fiber-breakage energy  If  in 
equation (4)»  The variation of equivalent slit length with maximum damage length D 
is shown in figure 11»  As expected, the equivalent slit length is about 15 percent 
of the C-scan damage length D„  The residual strength retention factors were then 
calculated by using the slit length  2L and the fracture parameters in equation (6) 
and listed in column 6 of Table II.  Figure 12 shows the variation of residual 
strength with the Impact energy.  The analysis provides a reasonable lower bound 
for the residual strength over the whole range of experimental impact energy. 

CONCLUSIONS 

Rectangular specimens of quasi-isotropic, 8-ply, grapbite-epoxy composite 
material were transversely Impacted by steel ball projectiles.  Impact damaged 
specimens were C-scanned and then their residual tensile strengths x-?ere obtained. 
An energy analysis was developed to design a damage equivalent slit-fracture 
specimen.  The following points were concluded for this material. 

1. The fracture mechanics energy model provided a reasonable lower bound 
for the residual strength of the impacted plates over the whole range 
of experimental impact energy. 

2. By C-scanning, the threshold value of impact energy needed to cause 
damage was found to be 0.3 joules, 

3. By energy calculations, the threshold value of energy absorbed was 
found to be 0.1 joules, 

4. The length of an equivalent slit was about 15 percent of the maximum 
linear dimension of the impact damage zone as directed by C-scan, 

5. The impact-damage zones were shaped like a parallelogram slightly 
skewed in the direction of bottom-ply fibers, 
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TABLE  I 
IMPACT TEST RESULTS 

(Spherical Steel Projectiles) 

1 2 3 4 5 6 7 

Projectile 
Impact 

Velocity 
V 

m/s 

Energy,  Joules Damage Zone 
Residual 
Tensile 
Strength 

MPa 
Diameter 
x  10_3 m 

Mass 
kg 

Maximum 
Kinetic,   I 

Rebound, 
IR 

Absorbed, 
la 

Maximum 
Size,  D 

x  10-3 m 

Width 
x  10-3 m 

Area 
x  10~6 m2 

25.4 .067 5.99 1.202 .701 .501 22.0 10.5 231 434.5 

25.4 .067 5.47 1.001 .634 .367 19.0 10.0 190 473.0 

25.4 .067 4.89 .803 .534 .269 13.6 9.5 130 495.0 

15.9 .0164 9.15 .695 .477 .218 13.3 6.7 89 481.3 

15.9 .0164 7.73 .496 .342 .154 8.9 4.5 40 529.0 

15.9 .0164 6.92 .398 .284 .114 5.2 3.1 16 506.5 

9.5 .00355 9.15 .148 .062 .086 0 0 0 544.5 

9.5 .00355 7.73 .105 .041 .064 0 0 0 550.0 

TABLE  II 

COMPUTATION OF VARIOUS  ENERGIES  AND FACTOR,   R 

1 2 3 4 5 6 

Impact 
I 

Absorbed 
1a 

ENERGY,   Joules 
Delamination 

Id 

Fiber  Breakage 

If 

Slit Length 
mm 

Computed Residual 
Strength Retention 

Factor,   R 

1.202 .501 .258 .243 3.64 .768 

1.001 .367 .189 .178 2.66 .815 

.803 .269 .137 .132 1.98 .852 

.695 .218 .0936 .124 1.86 .86 

.496 .154 .042 .112 1.68 .87 

.398 .114 .017 .107 1.60 .875 

.148 .086 0.0 .086 1.30 .898 

.105 .064 0.0 .064 0.96 .92 
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Figure 1 - Variation of damage zone size with velocity. 
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Figure 2 - Effect of velocity on the strength of impact-damaged specimen. 
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Figure  7  -     Impact-damage zones by ultrasonic  C-scanning   (20-percent  reduction) 

O 
O 

Figure 8 - Measurement of length and width of impact-damage zone obtained by 
C-scanning. 
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Figure 9 - Variation of impact-damage area with impact energy. 
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Figure 10 - Results of fracture-toughness tests. 
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INTERACTION OF HEAT PRODUCTION, STRAIN RATE AND STRESS POWER 

IN A PLASTICALLY DEFORMING BODY UNDER TENSILE TEST l 

A. Paglietti 
Istituto Scienza Costruzioni 

Universitä di Cagliari, 09100-CAGLIARI, Italy 

SUMMARY 

At high strain rates the heat produced by plastic deformation can give rise to a 
rate-dependent response even if the material has rate-independent constitutive equations. 
This effect has to be evaluated when interpreting a material test, or else it could 
erroneously be ascribed to viscosity. A general thermodynamic theory of tensile testing 
of elastic-plastic materials is given in this paper; it is valid for large strain at 
finite strain rates. It enables discovery of the parameters governing the thermodynamic 
strain-rate effect, provides a method for proper interpretation of the results of 
the tests of dynamic plasticity, and suggests a way of planning experiments in order 
to detect the real contribution of viscosity. 

INTRODUCTION 

Most of the mechanical work expended in producing plastic deformation of a ductile 
material is dissipated into heat by the material itself (ref. 1, 2). If the deformation 
process is slow enough and the body is not thermally insulated, the heat produced by 
plastic deformation can flow to the surroundings without producing any considerable 
variation in the temperature field of the body. For fast deformation processes as the 
ones considered in dynamic plasticity, however, the rate at which heat is produced 
may exceed the rate at which it is given off to the surroundings. The temperature of 
the body must, therefore, rise and eventually both its mechanical properties and its 
stress state are affected. 

In engineering problems involving high rates of plastic deformation, the stress/ 
strain properties of the material are usually determined by uniaxial tensile tests 
performed at different strain rates. The results of these tests are rate-sensitive; 
this fact is normally interpreted as providing evidence of visco-plastic behaviour. 
Accordingly, rate-dependent constitutive equations are postulated to model the 
behaviour of the material (see, e.g., ref. 3 and 4). The thermodynamic influence on 
rate-dependence should, however, be properly assessed before any rate dependence in 
the test response can be ascribed to rate-dependent constitutive equations. In the 
plastic range the thermomechanical coupling may transform the state of stress of the 
specimen from a uniaxial state to a tri-axial one. This may not only increase the 
amount of plastic work that can be dissipated in the process, but also facilitate a 
non-uniform production of heat within the specimen. The process may thus produce a 
state of stress that is far different from the uniaxial one on which the purely 
mechanical interpretation is based. This may provide an explanation of the discrepancies 
that Bell consistently observed in his extensive review (ref. 5) of the experimental 
results in dynamic plasticity. 

Rate-independent elastic-plastic materials will be considered in this paper, and 
a theory to evaluate the thermodynamic rate effect during a tensile test will be 

* Partially supported by Italian research grant CNR n. 81.0258.07, and MPI research fund for 1981/82. 
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proposed. The analysis enables some very general conclusions to be drawn concerning 

the correct interpretation of the experimental results of dynamic plasticity. It also 

enables design of appropriate experiments to evaluate the real contribution of viscosity. 

The resulting theory is valid for large deformations, and its numerical treatment is 

within the range of the current computational procedures. It is expected to be valid 
9     — 1 

up to strain rates of about 10  sec L  , since for higher strain rates the effect of 

strain wave propagation may not be negligible. The material is supposed to exhibit a 

rate-independent stress/strain response for guasi-static tensile tests at the standard 

Since strain rates above these limits will rates of strain of 10~3 to 10   sec" 

henceforth be considered, long term viscous effects such as creep are excluded. 

Apparently, the possibility that due to thermodynamic coupling a rate-independent 

elastic-plastic material can exhibit a time-dependent response was first anticipated 

by Drucker (ref. 6). 

KINEMATIC DESCRIPTION 

A material tensile test specimen will be regarded as a solid circular cylinder of 

indefinite length and external radius Rp . In its initial stress-free configuration, 

the specimen will be referred to a cylindrical co-ordinate system whose X -axis 

coincides with the axis of the specimen, and whose radial and angular co-ordinates are 

denoted by X1 and X . Each material particle of the specimen will thus be labelled by 

a triplet of material co-ordinates X1 ,X2 , X3 , v/here 0 < X1 < Re , 0 < X2 < 2 TT and X3 may 

be any real number. 

Deformation 

In a tensile test the end sections of the specimen are progressively displaced 

from each other by a rigid translation in the direction of the specimen axis. Let this 

relative displacement at time t be AL(t), and let B=B(t) denote the ratio between 

AL(t) and the length of the specimen. If the specimen is free from lateral forces and 

its temperature field is axially symmetric, its deformation will for symmetry reasons 

be a simple extension of the form 

x1 = X1 

x2 = X2 

,1 A(X1,t) 

(t) X3 + c 
(1) 

Here x^,xz and x3 are the co-ordinates at time t of the material point of initial 
19- co-ordinates X ,X  and d ,1 3 ;  the guantity A=A(XI,t) is a function of X1 and t, presently 

undetermined; while c is an irrelevant constant that depends on the choice of the 
origin of the adopted co-ordinate system. It is usually assumed that the temperature 

of the specimen is uniform, and thus it is concluded that Ä(X ,t) is constant. 
This assumption, however, is not generally true for tests at finite rate of deformation 

in the plastic range, owing to heat production ensuing from plastic deformation. In 

general, therefore, the guantity A will not be constant and, as a consequence, non- 

uniform stress and strain fields will be produced in the specimen. The analysis 

contained in this paper is then needed to relate the load/displacement data obtained 

from the test  to the stress/strain response of the material. 

Strain variables 

For a deformation that takes a material point from its initial position  X— (X 

X2,X3) to the final one x= (x ,x ,x3), the total deformation gradient is defined by 

F = 9x/3X . To describe the elastic and plastic components of strain, the tensor F 

will be decomposed in the form 

e  D 
F = F  F- (2) 
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as proposed by Lee and co-workers in a series of papers dating back to the late sixties 
(cfr. ref. 7). Here FP is the plastic deformation gradient relevant to an imaginary 
deformation process that takes the body from the initial stress-free configuration to 
a fictitious plastically deformed and stress-free configuration at the initial 
temperature, referred to as the intermediate configuration. The latter can also be 
reached by a rotation-free purely elastic unloading process starting from the final 
elastically and plastically deformed configuration. The reverse process of this purely 
elastic unloading process, therefore, takes the body from the intermediate configura- 
tion to the final one. It produces the elastic deformation gradient Fe with respect to 
the intermediate configuration. 

From eq. (1) the physical components of the total deformation gradient F imposed by 
the test on the specimen can easily be obtained: 

<iK> 

1+8A/3X1 0 0 
0 1+A/X1 0 
0 OB 

(3) 

These components form a symmetric and diagonal matrix, since the deformation does not 
produce any rotation in the elements of the body and since, moreover, the principal 
directions of strain are fixed in the body and coincide with the directions of the 
base vectors of the co-ordinate system. As the material is supposed to be isotropic, 
the matrix of the tensor Fe must be diagonal too. In view of eq. (2) this implies that 
also the matrix of Fp must be diagonal and that, therefore, in the considered system 
of co-ordinates the mixed components of Fe and FP have the form 

Fe   = 
<iK> 

0 f A? 

FP  = 
<iK> 

0 

AP; 

0 

(4) 

From eq. (2), (3) and (4) it follows that 

F   = Ae A*\ 
<ii>   l   l 

( i not summed) !5) 

Following Lee & Wierzbicki (ref.8) and Lee & McMeeking (ref.9), logarithmic 

strain measures will be introduced as follows: 

e . = in Ae. 
I       l 

£P. = in AP. 
1 x 

e.     = In A. 

(6) 

(7) 

(8) 

This greatly simplifies the analysis since, as immediately follows from eq.(5), 

equations (6)-(8) entail additivity not only for elastic and plastic strain, 

£    + £■"- 
1      1 

(9) 

but also for their strain rates, 

*e    *P 
E. = £ . + £ . 
ill 

(10) 

From the component representation (3) and from the definition of A. and e^ , it 

115 



can easily be verified that Xl  , £j , A  and £2 are all determined by the sole quantity 
A. This means, in particular, that £2 can be determined once £j is given. The relation 
between them can be obtained explicitly by observing that 

i - 3A/9X1 = A, = A2 + X^S^/ax
1) :u; 

as immediately follows from the expressions of the first and the second components of 
F appearing in (3). By integrating the differential equation (11), and by setting the 
integration constant equal to zero to prevent X„ from diverging as X ->- 0 , the relation 

17 1 

A2 = A^x
1,^ = ^ 

A 
A. dxJ 12) 

J0 

is obtained. From this and from definition (8) the relation between £1  and£2 follows: 

£2 = £2(X ,t) In exp e  dx' 13) 

CONSTITUTIVE EQUATIONS 

The absolute temperature 6 and the mechanical variables £e. and £ .  are the 
independent field variables adopted to describe the behaviour of the elastic-plastic 
materials considered in this paper. Explicit constitutive equations must now be given 
to relate these variables to derived quantities such as specific internal energy u 
(per unit mass), specific entropy n, (per unit mass), thermal energy flux vector e , 
and (Cauchy) stress tensor a. These quantities, however, depend on the independent 
variables in an involved way, since in general they are functionals (rather than 
ordinary functions) of £e^  , £P. and G. The internal energy of the material, for 
instance, may be affected by the crystal  lattice distortions resulting from the 
accumulation of plastic deformation, and hence will in general depend on the whole 
history of EP .   ,    rather than on their actual values. A simplification of the constitu- 
tive equations can be obtained by observing that the elastic properties of many 
materials are not in practice sensibly affected by plastic deformation up to values 
of plastic strain as high as 30 % , as remarked by Lee (ref.10) . It is then reasonable 
to assume that both O and e~  are unaffected by £Pj_ and that, therefore, their 
constitutive equations in terms of £ ^ and 0 are those of a thermoelastic material. 

On the other hand, as far as the constitutive equations of u and T] are concerned, 
it should be noted that to solve an initial boundary value problem, constitutive 
equations are needed for the time rates ü and f] , and not for u and r\  themselves. 
In what follows, therefore, constitutive equations for u and n, will be given, while the 
explicit expression of the functionals u and '(]  will be ignored. Since the proposed 
equations for u and n are not integrable, they cannot give u and n as functions of 
£e.;_ , &Pj_ and 0 . The values of u and T],   therefore, will depend on the process that the 
material undergoes, and hence the adopted approach amounts to introducing a functional 
dependence of u and n  on  eei , eP^   and 6. Though not explicitly introduced and, 
clearly, not the most general one, this dependence is adequate and makes the analysis 
simpler. 

Stress relation 

As mentioned before, it is assumed that the stress tensor is related to elastic 
strain and absolute temperature as in a thermoelastic material (cfr. hyperelastic 
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materials in Sect. 
he/r-e 

82   of  ref. 

3 

,e /a^e^ 

11).   There  will,   therefore,   be  a   scalar  function  IJJ6 

^e(Fe,6)= ipe(eti   , ee   ,ee
Q ,0)   from which  the  tensor a can be  derived through the relation 

a = p Fe   (8iJje/9Fe) (14) 

p denoting mass density in the actual configuration. The quantity ijje is usually 
referred to as the Helmholtz free energy per unit mass. Its experimental determination 
is discussed in ref. 8. It is of interest here to recall that the elastic part ue 

of the specific internal energy u can be defined in terms of tye  from the relation 

where 
= ue(Fe,6) = if;e + e n 

r\e =  -  d^e/dQ 

(15) 

(16) 

is the elastic specific entropy per unit mass. 

By expressing i(ie as a polynomial function of the invariants of the elastic strain 
tensor and of 6, and by confining our attention to the terms up to the second degree 
in ee-   and 6, it is not difficult to prove that in the adopted system of co-ordinates 
eq. (14) can be written in the explicit form: 

(Po/P) a. = X(ee +ee2+e
e
3) +2G£

e K a (( ) (17) 

Here p0 and 60 are the mass density and the absolute temperature of the body at the 
reference configuration, A and G are the Lame elastic constants, while K is the bulk 
modulus. In writing eq. (17) the abridged (one-index) notation 

a. 
def 

a ( i not summed) (18) 

has been adopted. This notation is particularly convenient for the present case, as in 
the present reference system all non-diagonal components of O  vanish, since the base 
vectors are in the same direction as the principal stresses. Equations (17) differ from 
the classical thermoelastic constitutive equations except for the term p0/p , which 
accounts for volume changes due to finite strain (cfr. ref. 8). 

For further reference  the expression of the time rate of elastic entropy is 
recorded here, as follows from eq. (16): 

rie = - tr [ ( Z^/dQ 9Fe ) 
J 

] + (19) 

In this equation the quantity cv is the material specific heat at constant volume: 

cv = - ( 32^e/362 ) 6 (20) 

(cfr.,e.g., p.31 of ref. 12). The first term in the right-hand side of eq. (19) can 
readily be calculated from eq. (14) and (17). However, the thermomechanical coupling 
that it implies is usually negligible (ref. 12, Chap. 2). This is expecially so in the 
present case, owing to the overwhelming contribution of the thermomechanical coupling 
due to dissipation of the plastic work. 

Thermal energy flux relation 

It will be assumed that the constitutive equation for e  is given by 

Sq = k  grad (21) 
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, 1 '»"'.«^ÄÄ-^'-H 

v/here ka > 0 is the heat conduction coefficient, for simplicity assumed to be constant. 
While not the most general relation compatible with the present assumptions, eq. (21) 
has  been  proved to be adequate for most materials in a wide range of conditions. 

Specific energy and specific entropy relations 

The contributions uP and rp of plastic deformation to u and T] can be evaluated 
on the basis of the celebrated experiments of Ferren & Taylor (ref. 1). According to 
these experiments the amount W of plastic work that is turned into heat is given by 
y w , where y varies slightly around the value 0.9 . The remaining fraction (1 -y) of 
plastic work is supposed to distort the crystal lattice of the material, and is thus 
stored in it as internal energy. On the basis of these experimental findings, it will 
be assumed that the same result applies locally and, therefore, that 

■P - (1 - y) wp/p (22; 

np = ) w ■p/(pe; (23) 

The quantity wP introduced in these equations is the specific plastic work per unit 
time (plastic power) expended on the material per unit volume of the actual configuration 
by the stress tensor. In the present notation it has the form 

v/P tr ( O F^ F-M  ) 
-1, 

c eP. 
i  i 

(24) 

as the  tensor  F  is rotation-free (cfr. ref. 7 and 9) 
components of u and f] to the elastic ones, we get 

By adding the plastic 

and 
u = ue + UP 

°e   p 
n = n + rf 

(25) 

(26) 

where the quantity ue is readily obtained by time differentiation of eq. (15), while f]e 

has the expression (19). 

Yield function and plastic flow equations 

According to what is experimentally observed in metal plasticity, it will be 
assumed that plastic deformation occurs at constant volume and that, therefore, 

det Fp = 1 

In view of eq.(2), this means that 

(27) 

det del P0/P (28) 

To embody requirement (27) in the theory, the yield function is usually regarded as 
depending on stress through the stress deviator. Rather than referring to the stress 
deviator of the Cauchy stress G , the symmetric Kirchhoff deviatoric stress 

def 1 
(p0/p) [ o   -  - ( C^+c^+ag) ] ( i not summed) (29) 

will be introduced in the formulae that follow. This was proposed by Lee (ref. 7) in 
order to make the yield stress depend on the factor pQ/p , and thus avoid the 
contradiction of having less plastic work as the hydrostatic component of elastic 
strain increases by a finite extent. 
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For non-isothermal plasticity, an approach which is essentially due to Prager 
(ref. 13), and further developed  by Boley & Weiner (ref. 12) and Lee (ref. 7), leads 
to the following expression of the constitutive equations of a work-hardening elastic- 
plastic material undergoing non-isothermal processes. A yield function of the form 

f = f(s.,eP.,l 

regulates the plastic flow by means of the following relations: 

eP. 

while 
.p  _ ^ 

if 
or if 

)f 

f < 0 
f = 0  and 

s  + 
'ds,  k 

k 

Here D is given by 

)f 
D = 

j5r   3^r 

3f  • 
ds,  k 

k 

df  • i6' -° 
if both f = 0 

and 
3f  • 

< 3T Sk + 
k 

) ^o 

(30) 

(31) 

(32) 

(33) 

A particular case is that of Von Mises elastic, perfectly plastic materials, for 

which the yield function becomes 

1,2     2     2N 
f = - ( Sj  + s2  + s3 ) [MO)]' 

where 

= k(6) = CfY/ /3 

(34) 

(35) 

is the yield stress in simple shear at temperature 
stress in uniaxial tension at the same temperature, 
eq. (34) is governed by 

V   -Y „ 
1, and a     = G (6) is the yield 
The plastic flow associated with 

and 

where 

while 

eP. = 0 if  f < 0 
i 

or if   f = 0 

ep. = y s. 
i    i 

if both f = 0 

and    2 y s 

and 2 y s . e . + 2 k 
D 3 

3k 
< 0 

•      o , 3k 2 y s, e. + 2 k7j 
: J 3Ü 

> o 

| s. eP. /[k(6)]2 
2 :  : 

def 
e.  = e. 
1     1 

(£, + £,+ £,) 3  .-l'-2"-3' 

are the components of the deviator of the total logarithmic strain tensor. 

(36) 

!37) 

:38) 

(39) 

P 
Remark 1.   Hypothesis (23) is equivalent to assuming that the mechanical power yw 
is entirely turned into thermal energy at the material element where it is expended. 
This may not necessarily be so for real materials, as transformations of heat into 
non-thermal energy may occur when the body temperature is not uniform. If this happens, 
it has the effect of diminishing the amount of plastic work that is actually turned 
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into heat at the element. Of course, somewhere else in the body the non-thermal energy 
thus produced must eventually be turned again into heat, if Farren & Taylor's experi- 
mental result is to be globally met. A material for which eq.(23) applies can be 
referred to as aperfectly dissipative elastic-plastic material. 

Remark 2.   Owing to the abridged notation introduced by equations (18) and (29) to 
express diagonal mixed tensor components by one-index symbols, the equations where 
these symbols appear lose their tensor character. In the orthogonal co-ordinate system 
adopted in this paper, however, diagonal mixed components of second order tensors 
coincide with their homologous physical components (ref. 14). Therefore, since the non- 
diagonal components of the tensors considered in this paper vanish, all the formulae in the 
one-index notation in fact coincide with the expressions of the correct tensor relations 
in physical component form. Of course the summation rule over repeated indices is 
assumed throughout unless otherwise stated. 

Remark 3.   In simple tension the hydrostatic component of the elastic strain is small 
since plastic yielding sets a limit to the elastic tensile strain. For many materials 
this limit is within the range of infinitesimal deformation. In such conditions it 
can reasonably be assumed that pQ%p , as plastic deformation does not produce volume 
changes. This justifies the simplifying assumption 

P0 / P = 1 

which will be introduced in what follows. 

(40) 

BALANCE EQUATIONS AND INITIAL & BOUNDARY CONDITIONS 

As is well-known, the local form of the 1st principle of thermodynamics is 
expressed by the balance equation 

P u div gq (4i: 

where wt denotes the total specific power expended per unit volume by the surroundings 
on the volume element to which eq.(41) is referred. Generally speaking, wfc is composed 
of two terms (ref. 15) : 

P (42) 

Here w denotes the part of wfc expended through changes in the independent variables 
describing the state of the element, while p is the power the element supplies to the 
surroundings in addition to -w and to the thermal power div i= . For the class of 
materials considered in this paper, w is simply the total stress working per unit 
volume, w= tr( a FF_1) . This reduces to 

w = ax er + a2 e2 °3    £3 (43) 

for the deformation process defined by eq. (1). It will henceforth be assumed that 
there is no other supply of energy per unit volume besides that originating from w and 
from the thermal energy flux e^ . In these conditions p reduces to energy production 
generated by the flow of heat through the element. It is expected, therefore, that 
p = 0 when  grad 6 = 0. 

In the above conditions the usual approach to thermodynamics neglects p altogether. 
This may not be correct, as observed in ref. 15. When it is not neglected, however, 
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p becomes a new unknown variable and, therefore, an additional equation is needed to 
determine it. This is provided by the general entropy equation (ref. 16): 

•     1 1 
p n = — div e  + — e^ • grad 6 (44) 

e    ~q  Q2 ~q 

While this equation can be justified in various ways, essentially it is a necessary 
consequence of the second principle of thermodynamics (ref.16). A complete discussion 
of it is well outside the scope of the present paper and has recently been reported 
elsewhere (ref. 16, 17). It is introduced here in order to make the present analysis 
consistent with the recent theory of non-equilibrium thermodynamics of ref. 15, 16 and 
17. The results of this paper, however, do not suffer any substantial change if both 
p and eq. (44) are ignored, and one of the standard thermodynamic approaches is 
followed. As will be observed below, this is equivalent to neglecting a term in the 
final expression of the energy balance, whose contribution is expected to be small for 
the class of processes considered in this paper. 

By observing that 

w = we + wP (45) 

and that 
div ( e / 0 ) = (dive) /0 -( e« grad 0) / 02 (46) 

by introducing eq. (44) into eq.(41) and, finally by exploiting the adopted constitu- 
tive equations for u and f) , the value of p can be determined: 

p= -£ eg- gradO (47) 

Once the entropy equation (44) is thus exploited, the quantity p can be eliminated 
from the energy balance equation, which therefore becomes 

p u = w + Q- |U * grad G - div e^ (48) 

Henceforth reference to this energy balance equation will be made. The results of the 
analysis which follows, however, hold true also when the term containing grad6 is 
dropped from it, which then reduces to the classical energy balance equation. 

Remark 4.   It is not difficult to verify that the condition p=0 is compatible with 
the entropy equation (44) only if grad0=0 . Hence, strictly speaking, the classical 
thermodynamic approach is not correct when applied to non-uniform temperature 
processes. It is expected, however, to provide a good approximation to the present 

approach, when grad0 is  sufficiently small. 

As far as the equilibrium equations are concerned, they reduce to 

div a =0 (49) 

since the effect of inertia and body forces can in the present case be neglected. 

Explicit expressions of both eq. (48) and eq. (49), and their relevant initial 
and boundary conditions are given below for the tensile test process considered in 

this paper. By setting 

x1 = r ,   x2 = <j>   and   x3 = z (50) 

and by making use of the adopted constitutive equations and of the axial-symmetry 
properties of the process, the energy balance equation (48) takes the explicit form: 
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P Cv ^ = T 
w* 

1 ( 36 .2      ,  3: 

?  Ö l3rJ  ' "q 3r2 

where 8=0(r,t). The relevant initial condition is 

6(r,0) = 60 

while the boundary condition reads 

)9 

r=r. 
■)     = [6(r ,t) - 9 ] h 

!5i; 

:52) 

:53) 

where from the first part of eq. (1), we have that 

ro = RP + Ä(Re,t) (541 

The coefficient h appearing in eq.(53) depends on the specific surface heat transfer 
H and on the heat conduction coefficient k  through the relation 

h = H/kg 

(cfr. ref. 18).  On the other hand, the only equilibrium equation which is not 
identically met is 

3G2 

3r~ 
+ ( Ol   -  02   )/r  = 0 

(55) 

(56) 

Since no surface tractions are applied to the cylinder, the boundary condition 
associated with eq. (56) is 

( a, ) 
r=r. 

0 (57) 

DIMENSIONLESS FORMULATION 

The nine relations (51) , (56) , (13) , (17) and (31)-(32) provide sufficient condition^ 
to determine the nine unknown fields E 2 ' ,  O,   ,   02   ,  O 3 , eP! , ep2 , eP3 and once 
the test procedure is specified by assigning the test velocity [ that is the function 
e'j = £j(t) or, equivalently, the function B = B(t)] and the initial and boundary condi- 
tions, eq. (52),(53) and (57). In the case of Von Mises elastic, perfectly plastic 
materials, the system of governing equations depends on 12 parameters, namely cv , y  , 
kq,A,G,K,a,y,k,h,Re  and 6fl . The discussion of its solutions is greatly 
facilitated by expressing the governing equations in dimensionless form. This is easily 
achieved by introducing the following dimensionless variables: 

r = r/Re 

e = e/e0 

t = t kq/(p cv Re
2) 

c. = a. / ( K a 8n ) 
11       ° 

e.   = e./ (a 
l   l 

) 

l 

ep. = 

ee± /(a 90 ) 

ep±/(a  90) 

k = k(0) = k(60 6)/(Ka0o) 

(58) 

The energy balance (51) and the conditions (52) and (53) then become 

and 

3_e 
3t 

JR-± 
dB 

9(r,l) = 1 

(59) 

(60) 
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(36/3r)_ „ = [ 6(1,t) - 1] JL 
r=l 

Here the two dimensionless parameters JR  and JL  are given by 

and 
JR  = Y wp Re

2/(60 kq) 

JL =  Re h 

The equilibrium equation (56) and the boundary condition (58) become 

9^/3? + ( ä1   -  Ö2 )/r =  0 

and 

Öx(l,t) = 0 

The elastic constitutive equations become 

(p0/p ) ö± = N   (ee
x   + ee2 + ee2 )   + M e± -   (0 -  1) 

where the dimensionless constants M and N are given by 

N = X/K = 3 V (1 + V) 
and 

M = 2 G/K = 3(1- 2V)/(1+V) 

and hence depend only on the Poisson ratio V of the material. Finally the yield 

function (34) becomes 

f = -(i2 + i2 + i2) - Ck(6)] 
2      1       2       3 

and the plastic flow equation (37) assumes the form 

where 

e*\ = V  s. 

y = K y 

(61) 

(62) 

(63) 

(64) 

(65) 

(66) 

(67) 

(68) 

(69) 

(70) 

(71) 

It is apparent now that, when expressed in the new_variables, the problem depends 
only on the six dimensionless variables JR, JL,V ,k and y . Moreover, if a given 
material is considered, then the constants V, k and y are fixed, and the characteristic 
parameters of the problem reduce to two, J? and JL   . 

Remark 5.   Strictly speaking the value of JR    depends on the point of the specimen 
where it is calculated, since wp does the same. As far as an estimate of the value of 
J?? is concerned, however, it is not unreasonable to assume that w? is roughly constant 
throughout the specimen and that, therefore, the usual approximation of uniform stress 
and strain holds true. One can thus speak of a value of JR   for the testing process. 
Such an approximation is justified by the fact that while the rate of strain  and 
hence the value of wP can vary greatly for different tests, only relatively small 
variations are expected for the values of wP at different points of the specimen 

during the same test. 
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RESULTS AND DISCUSSION 

The present analysis shows that tensile tests of a given material in the plastic 
range of deformations are governed by only two dimensionless parameters JR   and X . 
This means that any dimensionless ratio between quantities relevant to the testing 
process cannot depend on other quantities than Xand X. In particular, for a given 
value of £j, let 1  and TQ   denote the traction forces that must be applied to the 
specimen when the test is performed at a finite strain rate e1   and in a quasi-static 
fashion,respectively. Clearly the ratio T between T  and T0    is a measure of the strain- 
rate effect. Owing to the previous remark this ratio can depend on J? and X only. 
That is 

T/T0   = x(X ,X ) :72) 

This results in the following two conclusions: (a) since J? .depends on wP and, 
hence, on the rate of plastic strain, the force to be applied during a tensile test 
will depend on the rate of strain, even if the material is a non-viscous one; and 
(b) the tensile force T    will in general depend on the capacity of the specimen to 
transfer heat to its surroundings, because T depends on X . 

One cannot exclude, of course, the sheer possibility that T is almost a constant 
function of JR   and X , and that, therefore, there is no rate effect due to thermody- 
namics. Experimental evidence, however, hints at excluding such a possibility. 
Conclusion (a) is supported by the readily available evidence that while different 
traction forces are needed to perform tensile tests at different strain rates, the 
plastic deformation to rupture the specimen is roughly rate-independent. This supports 
the hypothesis of rate effects of non-viscous origin and, apparently, was first noticedj 
by Mann (cfr. pp. 326-327 of ref. 19). On the other hand, some experiments reported by 
Gruntfest (ref. 20) seem to lend grounds for conclusion (b). They show that different 
heat exchange conditions at the surface of a metal wire do in fact affect its plastic 
behaviour in tensile tests at non-vanishing strain rates. 

The analysis of the present paper should be borne in mind when planning and 
interpreting experimental tests in dynamic plasticity. The rate effect exhibited by 
these tests is usually interpreted as viscous in origin and, accordingly, the experi- 
mental data are fed into suitable visco-plastic constitutive equations to determine 
the material constants. Before a rate effect can be ascribed to viscosity, however, 
it must first be proved that the rate effects due to thermodynamics are negligible. 
In view of eq.(72), this can be done by comparing at different strain rates the results 
of different tests having the same values of X and X . For all such tests the value 
of T should be the same, if viscous effects are absent. Any dependence of T on the 
rate of strain should otherwise be ascribed to viscosity. 

If in the above tests the value of X is kept constant (which in practice and in 
good approximation can be obtained by keeping the initial temperature 6n constant), 
then for any two tests, say test 

X' = J? " 

is the only one that 

and test the condition 

we must take care to satisfy in the tests. In view of eq. 
condition (73) implies that 

(wPy/tw13)" = (R ")2/(R -)2 

(73) 

(62), 

(74) 

However, within the limits of the approximation discussed in Remark 5 , we can set in 
the plastic range 

(wP)' /(v/P)" rk (eP )' /(eP! )" ^ (Ej )' /(^ ) (75) 

124 



We can conclude, therefore, that eq. (74) and hence condition (73) are satisfied 
provided that the tests are carried out in such a way that the relation 

(e^' /(Ej)" = (Re")
2/(Re')

2 (76) 

is met. In other words, to evaluate viscous effects in the plastic range from tensile 
tests at different strain rates, the ratio of the square of the diameters of the speci- 
mens must be equal to the inverse ratio of the rates of strain at which the specimens 
are tested. Otherwise the contribution of thermodynamics to the rate effect is differ- 
ent for different tests, and it is not possible to detect which part of the resulting 
rate effect is in fact due to viscosity. Such a rule appears to have been consistently 
ignored in the experiments to detect the viscous effect in dynamic plasticity  thus 
far reported in literature. 

CONCLUDING REMARKS AND SUBJECTS FOR FUTURE RESEARCH 

Dissipation of mechanical energy into heat can produce a rate-dependent force/ 
deformation response in a tensile test at non-vanishing strain rate in the plastic 
range. This effect can occur in rate-independent elastic-plastic materials, and should 
be distinguished carefully from the seemingly similar effect produced by viscosity and 
governed by quite different laws. Under given conditions of heat exchange with the 
surroundings, a material specimen exhibits a thermodynamic rate effect that depends 
only on one dimensionless parameter J? . The latter plays a role analogous to that of 
the Reynolds number in the theory of viscous fluids. This analogy suggests the 
opportunity of defining a "drag coefficient" by which the tensile force relevant to a 
quasi-static test should be multiplied to obtain its value at different strain rates. 
Such a coefficient would only depend on J? , for given conditions of heat exchange 
with the surroundings. 

Further research, both numerical and experimental, is needed to determine the explicit 
relation between the tensile force and the parameter J? in a given material. Such a 
relation may help in finding the values of the strain rates at which the tensile force 
reaches a maximum or a minimum value. From the numerical standpoint, the research can 
be made on the basis of the equations presented in this paper. It should be remarked, 
moreover, that the introduction of these equations within the computational schemes 
treating deforming bodies should not, in principle, introduce more computational 
burden than the one introduced by the visco-plastic hypothesis. For materials whose 
rate effect is essentially thermodynamic in origin, the viscous hypothesis cannot give 
good approximations of general validity. In these cases a thermodynamic approach 
should be preferred to the standard visco-plastic one. 
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APPLICATION OF A BOUNDARY ELEMENT METHOD 

TO THE STUDY OF DYNAMICAL TORSION OF BEAMS 
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National School of Aeronautics and Space 

Daniel Gay 
National Institute of Applied Sciences 

Toulouse, France 

SUMMARY 

During dynamic torsion.of beam elements, consideration of nonuni- 
form-warping effects involves a more general technical formulation than 
that of Saint-Venant. Nonclassical torsion constants appear, in addition 
to the well-known torsional rigidity. In this paper, we describe the 
adaptation of the boundary integral element method to the calculation of 
these constants for general section shapes. The suitability of the fore- 
going formulation is investigated with some examples of thick- as well 
as thin-walled cross sections. 

SYMBOLS 

x longitudinal axis of the beam 

y,z coordinates in any cross section 

Q, domain occupied by the cross section 

T boundary of the cross section 

0(x,t) angular parameter 

0(x,t) warping parameter 

C torsion torque 

B generalized double moment 

c distributed torque 

(j)(y,z) Saint-Venant warping function 

w(y,z) weighting function 

g(ysz) supplementary warping function 
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( 1 ) 

in which: 

C(x,t) is the torsion torque, and B(xat) is the generalized double mo- 
men t: 

B (x s t) =  [ Cf ^x*dil 
J XX 

0   is the longitudinal stress arising from nonuniform warping, and 
x X 
6(y,z) is the classical Saint-Venant warping function defined as the 

solution of the potential problem in the domain £1  occupied by the cross 
section: 

v2© 0  over fi 

d<h/dn    = zn - yn   along l' 
j y    z 

/<j) du   = 0 

We can note in relations (1) the following torsion constants: 

opolar moment of inertia:  I =  jx2dti,    r being the radius from the 
■centroid. Q, 

oS ain t-Venan t torsion constant:  J = I- j(gradcj))dß 

( 2 ) 

»quadratic   warping   moment cf)2 dfl 

( 3-a) 

( 3-b) 
fi 

mo 



•shear coefficient for nonuniform torsion which is deduced from 
the solution g(y,z) of the Poisson's problem in the domain of the cross 
se cti on [2] : 

Vg  = 

3g0/3n = 

/ §odfi = 

I_-J 

o 

o 

xcf) (y , z)  over !T2 

along T (4 ) 

in the form of 

k, = - nLs°*äa ( 5) 

The similarities between relation (1) and Timoshenko's dynamic 
flexure theory are found again when writing the strain and kinetic ener- 
gies, and allow a simple procedure to obtain a finite element for tor- 
sion [2] . The setting up of such an element needs first the calculation 
of the constants noted above. In addition, longitudinal and shear 
stresses in every cross section can be written in the form of LU: 

Bx< 
xx 

xy 

xz 

r™t*$ -     ^ 4.   C-GJ86/3X   3gn 
^x^y Z) I-J             3y 

r36,3c|> A      . .    C-GJ36/3x„3g0 G^- lr" + y; +  ^—z x s— 3xdz I-J    3z 

The torsion constants can be evaluated analytically in a few cases 
of section shapes with simple geometry. For any general shape, problems 
(2) and (4) have to be solved first. In this way, we propose the Bound- 
ary Integral Element Method (BIEM) procedure. 

EVALUATION OF J AND I. 

The integral formulation of problem (2) is recalled as [3-4] 

i - /Ü" *r - /■ 3n r 
ÖW 

3n" 
dT 

in which a=1, 0.5 or zero,depending on whether i is inside the region fi, 
on the boundary T   or outside the region respectively. 

To find the solution of this problem, we divide the boundary into 
straight~line segments, and choose the nodes in their mid-points (con- 
stant elements).  As a fundamental solution we take: 

2 
2TT 

Log 

which gives the following statement: 
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2 IT act) i 
3<p 

.Z    /    ^ .Log   rij    dr j    -   £    /   <j>j 
J"-' r-, 

Log   r XJ dr 

When i ^ j, we adopt the Gauss quadrature to evaluate the above 
integrals, When i = js we perform the analytical calculation. Then, a 
system of linear equations is obtained as: 

[A]{X} = {B| 

in which {X} is the vector of unknown values of 3 cj)./ 3 n and cj), on the 
boundary. The solution is computed \vith the help of a standard subrou- 
tine. 

To find the values of J, we perform the following transformation 
of (3-a) : 

J = I - / (Vcf>)2 d^ 

J = i - /((j) 3<j> 

r 
3(t) 

^ "y     *ai n~) dr 

which allows J to be a function of calculated boundary values cp 
and 9 cp / 3 n as follows: 

J - i - / ,|i dp 
r 

Nows we have to calculate the expression (3-b) for I., which needs 
the discretization of the domain.  Usual discretization procedures 
employed in the Finite Element Method (FEM) need a great volume of 
computer memory.  We have opted for a special subroutine in view 
of discretization of Q0      The domain is divided into as small a 
number as possible of initial triangles (see figure 1)=  For every 
initial triangle, an option can be chosen, by which it is divided into 
4  (n = 1,...6) triangles without distortion in the geometry if the 
boundary is rectilinear.  For curved boundaries, discretization is 
performed as shown in figure 1-A„  Localization of triangles needs 
20, 32, 44 or 56 memory words, according to the option chosen for 
subdivision of triangles (fig,2) . 

EVALUATION OF k, 

The integral formulation corresponding to problem (4) is: 
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ag 
o 1 

ago 
3n w dr - r   9w I-J 

/  aH 8°dr "   T^ /   (j)W   dfi 

Evaluation   of   the   integral: 

/   <}>w   dft 

needs the discretization of the domain J2 to have been prepared already. 
To avoid a sharp increase in the size of the problem to be handled, and 
to preserve the advantage of the BIEM formulation, we have changed prob- 
lem (4) into a biharmonic one, the solution of which we reach by the 
direct me thod. 

Integrating by parts four times, and considering as a weighting 
func ti on: 

w = r2 Log r 

we have the following statement at the point i of the boundary: 

4ug0i = /{agQ- b|f°+ cv|0- djL-(Vg0)}dr 

with the coefficients: 

a   =   f-{v2(r2Log   r) } 
du 

b   =   V2(r2Log   r) 

c   =   —(r2Log   r) 
3n 

d   =   r2 Log   r 

Since the values of Vg and r—(Vg) are known from the solution of 0     3n   o 
problem (2), we obtain the formulation below for g on the boundary with 
constant elements: 

- v °°o. N I-J 
*8oi -£*„.   / *ij  dr -.^ffj / bij  dr + £-=- H J Cij  dr 

N I-J 3c|)   , 
X   ~T7 ^ i J dii dT j = i I(j) 3nJ J      -"-J 

(6 ) 
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    „    .    a*^-i wr»j.».\.5*.-. -i.   . ST*3 ■>-:<«?7«B*.,'iA^*2&-?*ä 

When   i_r_j -i. I     o 

j aij dr 

/ bij dr 

/ c£j  dr 

/  dij dr 

When   i   =   j: 

4   /(ry   ny   +   rz   nz)/rMr 

=   4   /(Log   r   +    1)    dr 

/(2   Log   r   +    3)(ry   ny   +   r2   nz)    dr 

I    r2Log   r   dr 

/  aij  dr = H - f  |-(v2p)  dr 
rj 

/ bij 

r-r. 

= 4r£ LogCri/2) 

(p   =   r2Log   r) 

/  cij  dr = 

/ dij  dr 
ri 

JY r-CLogCTi/Z) - 1/3) 

A slightly different method to formulate Poisson's equation on the 
boundary only can be found in reference [5]. Such biharmonic problems 
can also be solved by indirect methods [6-7-8]. Due to the particular 
form of right-end side in problem (4), the direct formulation obtained 
above is more convenient for the problem on hand. 

Once the values of g and /3n are known on the boundary, evalua- 
tion of g inside the domain Q   is straightforward following the expres- 
sion (6) in which the first coefficient 4TT must be changed into 8TT .  In 
this way, we obtain the value of integral in (5), which leads to the 
coefficient k,. 

CD 

The suitability of the method has been investigated in some cases 
of cross section shapes shown in figure 3. Numerical results obtained 
for I ^, J, kA are grouped in table 1. We can note a good convergence of 
results when exact coefficients are known. In the case of thin-walled 
sections, the aforementioned constants can be obtained analytically with 
the help of approximate theories [8-9-10] »  Experimental torsion frequen- 
cies for rectangular and I-beams have shown excellent agreement with 
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analytical frequencies deduced from formulation (1) associated with 
computed torsion coefficients.  Thus, we can note the limits in the valid- 
ity for the thin-walled beams approximation [11]. 

CONCLUDING REMARKS 

We have developed a boundary formulation allowing the calculation 
of all torsion coefficients required for a dynamic torsion study. The 
input data consist of the description of the boundary elements only of 
the cross section, and a small number of initial triangles. Such a pro- 
gram needs only a little input data and a small memory size.  Moreover, 
with slight modifications, all cross section shapes can be treated, in- 
cluding the general case where shear center and centroid differ, i.e. 
when flexure and torsion are coupled. In this way, we hope to improve 
the corresponding developments [12] with the use of higher-order bound- 
dary elements to limit the number of nodal variables. 
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TABLE 1 

TORSION 

CONSTANTS ANALYTICAL VALUES CALCULATED VALUES 

number of boundary elements / number of surface elements 

SECTION  N °   1    (fig. 3) 

40   /   6x42 40   /   6x43 80   /   6x43 80   /   6x44 

J   (m<) 12.64 12.76   (err:H) 12.76   (err:U) 12.68   (0.341) 12.68    (0.344) 

Vm6) 7.634 exact   values 7.546          (H) 7.554          (H) 7.608(0.341) 7 .614(0.261) 

k* 9 
1 .281 1.267          (U) 1.263      (1.34) 1 .276(0.4   %) 1 .274(0 .5   4) 

SECTION  N °   2   (fig.  3) 

42   /   4x4 42   /   8x4 84   /   8x4 84   /   Sx42 

J   (m<) 

Vm6} 

.00167   experim.   Vlassov 

.00129, 

.00281   aP?r51^ (walled   theory 
1 .93 2 

.00246 

.00455 

1 .829 

.00246 

.00451 

1 .839 

.00161 

.00461 

1 .819 

.00161 

.00463 

1.811 

SECTION  N °   3   (fig.   3) 

34   /   1x42 34   /   1x43 68   /   1x43 68   /   1x4' 

J   (m<) 

Vra6) 1 . 186   E-4   (exact    [12] ) 

.02492 

1 . 169E-4 (1.4%) 

2. 126 

.02492 

1 . 179E-4 (.51) 

2.07 

.02497 

1 .184E-4(.24) 

2.059 

.02497 

1 . 185E-4 (0%) 

2.054 

SECTION  N °   4   (fig.   3) 

62   /   58x1 62   /   58x4 100   /   58x1 100   /   58x4 

J   (m<) 

k* 

20062 
158701?aPProxim-   thin 

(walled  theory 
5.03 

19324 

145817 

6.73 

19324 

155201 

6.53 

19269 

160410 

6.46 

19269 

162294 

6.47 
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A 

Figure 1- DISCRETIZATION OF ARBITRARY BEAM CROSS SECTIONS 

Figure 2 - DISCRETIZATION INTO 43 TRIANGLES FOR ONE INITIAL 

TRIANGLE NEEDS 44 MEMORY WORDS 
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Figure 3- CROSS SECTION SHAPES 
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A NOVEL BOUNDARY ELEMENT METHOD PROGRAM 
FOR HEAT TRANSFER ANALYSIS OF COMPOSITE MATERIALS 

Kamar J. Singh 
General Electric Company 
Schenectady, New York 

SUMMARY 

A Boundary Element Method Computer Program has been developed for heat transfer analysis of 2- 
Jdimensional composite structures. The program runs on a time-share mode and interacts with the user 
[for multi-run analysis. During a run, the geometry can be modified interactively by the user as many 
jtimes as desired by using various options available and the new results printed or plotted. A new con- 
jcept of plotting the results for Boundary Element Method is introduced which is unique in itself. The 
[advantage of such a program over Finite Element Method for simple design problems is quite evident. 

INTRODUCTION 

For most of the heat transfer design problems, it is necessary to modify the geometry of the struc- 
ture a number of times to study the effect on the temperature distribution. Such problems are usually 
[analysed using the Finite Element Method (FEM) which is an extremely powerful analytical tool. In 
JFEM, the whole domain is discretized into a finite number of elements as an approximation. However, 
because a new mesh has to be generated each time the geometry is changed even slightly, it becomes 
very expensive and time-consuming to go through these iterations. For example, if an insert or an 

»opening (e.g., a cooling hole) is to be placed in a structure at an optimum location, a number of meshes 
for models will have to be generated for each case to study the overall response on the whole structure. 

An attractive substitute to FEM for these types of problems is the Boundary Element Method 
(BEM) or Boundary Integral Equation Method. In this method, only the boundaries of the structure 
are discretized for solution of the complete domain. Though this method has its own limitations, yet 
for simple heat transfer or elasticity problems, the method can be utilized to its best advantage. The 
existing BEM computer programs have not taken the fancy of the users because of the drawbacks in 
their interaction with the user. If a computer program lets the user move the boundaries interactively, 
it becomes a very powerful method as the time spent in generating new data is almost negligible. 

THEORY 

The underlying theory of BEM is well documented in the literature [1-4]. However, a brief review 
of the theory for potential problems is included here. 

For a 2-dimensional potential problem, the Laplace equation is given by 

V2 v = 0      in domain O, (1) 

The boundary conditions for the problem are: 

v = v      on S| (2) 

and 

v' = v'      on S2 (3' 

where St and S2 are complementary subsets of boundary S of II and prime denotes the derivative 
of the function normal to the surface. 
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It is essential here that 

s = U st, (4) 

where Sis the boundary element approximation of 5. 

and     Si 0   Sj = 4>      for i^j 

Also lim  S = S, where superscript bar indicates closure of the quantity. 
m—'a: 

The weighted residual equation for the governing equation which satisfies Eq. (3) is: 

JJ Wv du = J(v' - v') v dS 

(5) 

(6) 

This equation identically satisfies Equation (2).  However, use can be made of the Lagrangian Multi- 
plier to include Eq. (2) in the formulation. 

The functional Fcan then be represented as 

F 1 
// 

/           } 2 / 71 
9 v + 9 v 

1 dx 9 v I du + J   \(v-v)dS 

- j  v' v dS 

Taking variation of Eq. (7) and equating it to ze 

(7) 

ro: 

SI [ 6 v 
dx 

11      / 

98 v 
9 A 

+ 9 v 
dy 

( ö S v ] 
1 By Jj dCl 

j 8A ( v- v) dS + j X 8 v dS - J  v' 8 v dS = 0 (8) 

If we choose a weighting function  V such that it is equal to grand substitute Lagrangian multiplier 
as (-v'), we get by integrating first term in Eq. (8) by parts: 

-JJ y2 l"vv cln -J ( 
v— v) —— dS 

an 

-J (v'-v')w dS = 0 

By further integrating by parts 

-SS d2w       92 w 
dx2       dy2 dtl - J 9 v 

9 // 

(9) 

w dS +   f   v ^ dS 
J        d n 

f V w dS+  f  v ^- dS = 0 (10) 

Assuming that the weighting function  w satisfies the governing equation but not the boundary con- 
ditions, the fundamental solution to satisfy the Laplace equation is given by: 

1A? 



J"  v (V
2
H) dSl = -v(. (11) 

where ve is the unknown function at point V.  However, at the boundary, it is equal to - — ve.  For a 

2-dimensional case 

1    . w = — In 
ITT 

where 'd"\s the distance of the node from the point under consideration. 

Substituting Eq. (11) in Eq. (10), we have: 

— ve — J   v' w dS + J   v w' dS — J   v' w dS 

+  f v w' dS = 0 
% 

The unknowns in this equation are vand v'.   Eq. (12) can be written as: 

— ve- f v' w dS - f v w' dS = J v' w dS - j v tv' dS 

(12) 

(13) 

Approximating the boundary by finite number of elements N\ and N2 on surfaces S\ and S2 respec- 
tively, we have: 

;Vj 112 "2 '1 

y ve - £   v' J w dS - £   v J w' dS= X   v' / ^5-X   v J w' rf5 (14) 
7=1      -s. y=l        S, 7=1 -5, 7=1        5, 

In Eq. 14, the right hand side has all known quantities. This equation can be written in matrix form 
in a more familiar way as: 

Ax = F 

Where  x'is the vector of unknown temperatures and fluxes and Fa vector of known quantities. 

Here A is a full positive definite matrix. The program has to store the whole matrix unlike a lesser 
storage required by FEM where the stiffness matrix is symmetric and banded. This is one of the draw- 
backs of BEM. For composite structures, the matrices for each material get coupled to form a larger 
matrix the size of which turns out to be the total number of elements in the whole structure. 

The accuracy of the solution is dependent upon the number of elements used in the discretization 
process of the boundary. The more the number of elements, the better would be the accuracy, particu- 
larly near the surfaces. The inaccuracy near the boundaries becomes obvious when the results are 
plotted inside the domain. Quite often a few glitches will occur near the boundary. The post-processor 
with this program attempts to smooth out these to some extent. 

THE PROGRAM 

The computer program BEMHT2 consists of linear boundary elements. The program is based on 
the concept of dynamic storage of vectors. The user, therefore, does not run into dimensional restric- 
tions.   It runs on time-share mode and interacts with the user on a Menu-system.   Thus the user is led 
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through the entire analysis by the program starting from the initial data input and through any remodel- 
ing desired. The user has a choice of saving modified data created during the run. A number of analy- 
ses can be made in one run at a minima! cost and time. As many number of materials as desired can be 
used with the limitation that the regions should be connected in a series. 

The program accepts coupled boundary conditions of conduction, convection and radiation. For con- 
vection, the user provides the heat transfer coefficient and air temperature; for radiation, the input 
needed is Stefan-Boltzmann constant, shape factor and source temperature. If the radiation boundary 
condition is used, the program goes through iterative computations until it converges. 

A.   NOMENCLATURE: 

The following nomenclature is used by the program: 

NODES: 

The extremities of an element are called nodes. They describe the geometrical location of an ele- 
ment in the cartesian coordinate system.  See Fig. 1. 

ELEMENTS: 

A surface is discretized into elements.   The numbering of nodes/elements is done counter- 
clockwise on the external and clockwise on the internal boundaries.   See Fig. 1. 

ELEMENTS 

es and Elements 

SURFACES: 

The boundary of the structure is broken into one or more surfaces depending upon the boundary 
conditions and also on user's choice. A surface cannot have more than one boundary condition code 
but a part of the boundary with the same boundary conditions can have more than one surface. If a sur- 
face is to be modified during a sequence of runs (moving or scaling), it should be a unique surface. The 
end nodes of two adjoining surfaces can have the same coordinates.  See Fig. 2. 

ZONES: 

Each material type has a bounded zone and the node/element numbering continues from one zone 
to next. The interfaces must have the same number of nodes at the same locations for compatibility of 
solution.  See Fig 3. 
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SURFACE 1 

•SURFACE 2" 

Fig. 2.   Surfaces 

^26 

^25 

z^24 

9        10    1120       21        22 

Fig. 3.   Zones and Interfaces 

BOUNDAR Y CONDITION CODE: 

Depending upon the boundary condition on the surface, each surface is assigned a code as 
described below: 

Code = 0, Temperature is specified 

= 1, Flux is specified 

= 2, Convection boundary condition 

= 3, Radiation boundary condition 

= 23, Convection and radiation boundary condition 

= -1, Interface surface. 

MOVING A SURFACE: 

A surface can be moved interactively by the user when given an option to do so.   The move- 
ment is limited to within the zone.  See Fig. 4. 
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Fig. 4.   Movim 

SCALING A SURFACE: 

A surface can be scaled about its geometrical center when given an option to do so. The surface can 
be enlarged or reduced depending upon the value of the scale factor being greater than 1.0 or less than 
1.0 respectively.  See Fig. 5. 

Fig. 5.   Scaling a Surface 

MOVING AND SCALING A SURFACE: 

A surface can be scaled and moved in the same step within a zone.   See Fig. 6. 

MODIFYING CUR VED SURFACES: 

A circular curved surface can be modified in two ways. Either its radius can be changed keep- 
ing the same end points or its radius can be changed with a change in the location of the end 
points.   See Fig. 7(a) and 7(b). 



Fig. 6.   Scaling and Moving a Surface 

(a) (b) 

Fig. 7.   Modification of a Circular Surface 

DOUBLING NUMBER OF ELEMENTS: 

The user can double the number of elements on any surface interactively. The overall number- 
ing of elements would, therefore, change because of additional new elements. All the boundary 
conditions are taken care of for the new elements. Elements can be doubled on a curved surface 
also.   See Fig. 8. 

NEW NODES 

#* ^-N *"* f~\ /^» r   i ft i ii f j i ^) x^J n     9 

NUMBER OF ELEMENTS DOUBLED 
ON SURFACE 4 

Fig. 8.   Doubling Number of Elements 
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B.   JNP U T DA TA FEA TUR ES: 

For setting up an input file, a number of data generation aids are available to reduce input 
effort. 

NODE INPUT: 

The nodes can be linearly generated at equal intervals. If any node number is negative, the 
program linearly generates nodes from the previous node to this node filling up the nodes in 
between. 

For example, from two node entries: 

6, 10.0, 25.0 j^~—I jj Z- 
-10, 14.0, 29.0 " 

(Format being:   node number, x-coordinate, y-coordinate), the resulting data is: 

=® 

6, 10 
7, 11 
8, 12 
9, 13 

10, 14 

.0, 25. 

.0, 26. 
• 0, 27. 
.0, 28. 
.0. 29. 

The user can generate nodes on a curved surface too. In that case, on the first line, one has to 
input 666 or 777 in place of node number for generation of nodes in anti-clockwise or clockwise 
direction respectively, followed by x and y coordinates of the center of the circular arc. (The choice of 
666 and 777 is obvious.) On the next two lines, the user enters the node numbers and coordinates of 
the two extremes of the curved surface. 

For example: 

666, 2.0, 3.0 
6, 3.0, 5.0 

-10, 1.0, 5.0 

will generate nodes in an anti-clockwise direction as shown 
and j 

777, 2.0, 3.0 
6, 1.0, 5.0 

-10, 3.0, 5.0 

will generate nodes in a clockwise direction as shown. 

For a complete circle, the input would look like 

777, 2.0, 3.0 
6, 2.0, 4.0 

-18, 2.0, 4.0 

Nodes 6 and 18 would have the same coordinates.   For anti-clockwise numbering, 666 is substituted for 
777. 

Nodes can also be generated in a geometric progression. If an 888 is entered in the first line, the 
program assumes a geometric progression. The entry following the 888 is the ratio between the length 
of the last element and the first element in the group. If the ratio is greater than 1.0, the size of the ele- 
ments will be increasing, and if it is less than 1.0, the size would be decreasing. The third entry has to 
be a zero. 
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For example, an increasing geometric progression would be 

888,   5.0, 0.0 12 3 4 5 
1,   0.0, 0.0 ®——#■     »»—..^—»^—^———fl 

-5, 10.0, 0.0 a b 

Here b/a = 5.0 

and a decreasing progression would be 

888,   0.2,0.0 1 2 3 4 5 
1,   0.0, 0.0 ©■- ■    #——■,..,.,._,„.#._„ _».—_Q 

-5, 10.0, 0.0 a b 

In this case, b/a = 0.2 

BOUNDAR Y CONDITION INPUT: 

The boundary condition can also be- generated in the same manner as nodes. The boundary condi- 
tion parameters will be linearly interpolated. If the surface has boundary conditions which are all zeros, 
input for the nodes on these surfaces is not required. 

INTERNAL POINTS: 

If solution is desired for points inside the boundary, these points can be included in the input file. 
A number of internal points can be generated in a straight line as done for the nodes. 

SOME OTHER FEATURES: 

» The internal surfaces are not connected with the external surfaces.   Therefore, they can be moved 
around within a zone 

® An internal surface can be removed entirely from the analysis by an interactive command 

• Two or more nodes on different surfaces can share the same coordinate 

C. POST-PROCESSING: 

The post-processing of results is in the form of plotting the contours of temperatures. The program 
plots the geometry of the structure with or without the node locations and node numbers as preferred 
by the user. Up to 20 contours can be plotted and these values are input by the user. The contour 
values can be entered in either of the two formats explained below: 

e enter all the values of contours (e.g., 100, 200, 300, 400, 500) 

• or enter the minimum, the maximum and the incremental value (e.g., 100, 500, 100) 

The Boundary Element Method provides results at the external and internal surfaces. However, a 
solution at any internal point in the domain can be found from these results at the boundary. The plot- 
ting program generates a mesh of points over the whole structure. The results are computed at these 
mesh points and contours plotted thereafter. Any point of the mesh which falls outside the structure is 
ignored. 

D. R UNNING THE PROGRAM: 

On running the program, the first set of results is obtained.  These results can be printed or plotted 
on a Tektronix terminal.  At this stage, the program offers the following options to the user: 

®   number of elements on any surface(s) can be doubled 

©   any surface (s) can be moved 
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o    any surface (s) can be scaled 

These modifications are made by the program and the new data used in the next run. This modified 
data may be saved on a file if so desired. Now the next set of results is obtained and can be 
printed/plotted,   in this manner, a number of runs are made by the user without getting out of the 
program. 

EXAMPLE PROBLEM 

The geometry and boundary condition of the problem are shown in Fig. 9. 

The center of radius R is 1.5" below the bottom surface AB. 

It is required to find the temperature distribution and heat flow into different surfaces and the effect oij 
moving the cooling hole 0.75" to the right and changing the diameter to 0.4".  The discretization of the 
structure is shown in Fig. 10. 

T = 1000°F, h = 20 BTU/HR - FT2 - F 

FLUX = 0.0 

f- 

f = 75°F, h = 1 5 BTU/HR - FT2 - F 

K = 12 BTU/HR - FT - F 

K 6 BTU/HR - FT - F 

T = 800°F 

FLUX = 0.0 

<3- 3"- 
T = 120°F 

Fig. 9.   Example Problem 
RESULTS: 

The temperature distribution in the structure was plotted as shown in Fig. 11.  The cooling hole was 
interactively moved and its diameter reduced for the second analysis.   The new results were plotted as 
shown in Fig. 12. 
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Fig. 10.   Discretization of Boundary 

C00LIN6 HOLE PROBLEM 
76       6.5n 

TEMP 
A 200 

8 250 

C 300 

D 3S8 

E 400 

F 4S0 

Q 500 

H 550 

I 600 

J 650 

K 700 

L 750 

Fig. 11.  Temperature Distribution for Case 1 
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COQLINS HOLE  PROBLEM 
78 8.S-1 

8.&? 

TEMP 
A 263 
S 25© 
C 3gS 
0 3E9 
£■ 4SB 
F 4ES 
G 5E$ 
H SSS 
I 6S© 
J 65® 
K 788 
L 75S 

r-P't-t 'i vr'TV t { i j i i ) t t a 
2'. 5 3.8 3.5 

BBWT2 

Fig. 12.   Temperature Distribution for Case 2 

REFERENCES 

1. Rizzo, F.J., "An Integral Equation Approach to Boundary Value Problems of Classical Elastostat- 
ics/1 Q. Appl. Math., Vol. 25, No. 83, 1967. 

2. Cruse, T.A.,and Rizzo, F.J., "A Direct Formulation and Numerical Solution of the General Tran- 
sient Elastodynamic Problem," Part I, J. Math. Anal.   Appl. 22, 1968. 

3. Cruse, T.A., "A Direct Formulation and Numerical Solution of General Transient Elastodynamic 
Problem," Part II, J. Math. Anal. Appl. 22, 1968. 

4. Cruse, T.A., "Application of Boundary Integral Equation Solution Method in Solid Mechanics," 
Variational Methods in Engineering, Edited by C.A. Brebbia and H. Tottenham, Southampton 
University Press, 1973. 

152 



IMPLEMENTATION OF A C  TRIANGULAR ELEMENT 

BASED ON THE P-VERSION OF THE FINITE ELEMENT METHOD t 

D. W. Wang , I. N. Katz  , and B. A. Szabo *** 

School of Engineering and Applied Science 
Washington University 

St. Louis, Missouri  63130 

SUMMARY 

The implementation of a computer code CONE (for C  continuity) based on the 
p-version of the finite element method is described.  A hierarchic family of tri- 
angular finite elements of degree p > 5 is used.  This family enforces C^-continuity 
across inter-element boundaries, and the code is applicable to fourth-order partial 
differential equations in two independent variables, in particular to the biharmonic 
equation.  Applications to several benchmark problems in plate bending are pre- 
sented.  Sample results are examined and compared with theoretical predictions.  In 
particular the analysis of the bending of a rhombic plate shows a significant improve- 
ment over other published results. 

INTRODUCTION 

One of the most widely used numerical techniques for the solution of partial 
differential equations (PDEs), is the finite element method.  This method is based 
on the minimization of the functional corresponding to the PDE by piecewise smooth 
functions on convex subdomains such as triangles.  The conventional approach termed 
the h-version, keeps the degrees of the polynomials of the approximation functions 
fixed and makes the diameters of the element subdomains approach zero.  Accuracy 
is attained by increasing the number of elements which represent the process being 
modeled.  Although theoretical asymptotic estimates are available for the error in 
energy when using the h-version, it has been observed in practice that the sizes of 
elements which must be used are often so large that they lie outside of the range of 
asymptotic behavior (ref. 1). 

In a new approach, called the p-version, the subdomains are kept constant but 
the degrees of approximating polynomials are increased.  Both numerical experiments 
and theoretical results show that the convergence rate of the p-version is no worse 
than that of the h-version; moreover in problems where convergence is limited by 

■k-k-k 
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singularities due to corners in the domain, the rate of convergence of the p-version 
is twice that of the h-version (ref. 2 and 3). 

In this paper, we describe the implementation of a p-version finite element 
program which solves fourth-order partial differential equations.  More specifical- 
ly, we consider plate-bending problems and we use the displacement method under the 
usual Kirchhoff-Love assumptions; that is, we solve the Dirichlet problem for the 
biharmonic ouerator A2: 

A2u = in fiCR , a bounded polygonal domain 

= 0   on r  (clamped edges) 

(la) 

(lb) 

where dv  is the first derivative normal to the boundary T.  A solution to (1) is 
sought in the weak sense, i.e. let H2Q(fi) be the Sobolev space of functions with 
square integrable second derivatives which satisfy (lb).  We seek v£H20(fi), which 
minimizes the functional 

J(v) = 
1 

+ 2(l-a) 
,2 ^2 
)  v 

i9x3y 

2   2 
)  v d  v 

2   2 
9x  3y 

dA - a   fvdA (2) 

where a  is Poisson's ratic 

Since second derivatives are present in the variational formulation, the 

conforming finite element method requires C1 continuity; that is, both displace- 
ments and the normal derivatives must be continuous across the boundary of each 
element. 

It is well known that in the case of C  continuity, conformity is not enforced 
as easily as in the case of C° continuity where only displacements need to be con- 
tinuous (ref. 4).  Various approaches have been proposed for enforcing C1 continu- 
ity while at the same time not enforcing continuity higher than C1.  These include: 
a) satisfying certain constraint equations at the vertices of each element, b) use 
of macroelements, c) use of penalty functions, and d) adding corrective rational 
functions to the polynomial basis.  We have chosen the last approach because it 
leads to a standard procedure for assembling the elements. 

We describe here the computer implementation of a C1 triangular element with 
the following salient features: 

1. 

2. 

3. 

The pth degree approximation contains a complete polynomial of degree p>5. 

The element is conforming because of the corrective rational functions. 

The element is hierarchic in the sense that the elemental stiffness matrix of 
degree p+1 contains as a submatrix the elemental stiffness matrix of degree p. 

4.  Precomputed arrays based on closed-form integration formulas for the corrective 
rational functions are used to compute elemental stiffness matrices. 

In the last section, computational results for several sample problems are pre- 
sented.  These results confirm the faster convergence rate of the p-version for the 

singularity problem, especially in the case of the difficult problem of a rhombic 
plate under uniform loading. 
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THE p-VERSION FINITE ELEMENT FOR (^-PROBLEMS 

The Convergence Rate for C -Problems 

In finite element computations, a determining factor in meeting prescribed rel- 
ative error tolerances is the number of degrees of freedom.  This number, however, 
is strongly dependent on the asymptotic rate of convergence. 

Suppose the variational problem (2) has a solution in the form:  (ref. 5) 

n 
w + Y   a.v.  with weHk(Q) DH2 (fi) 

*-*     11 o 
i=l 

(3) 

and v. = r  g.( In r )0. (0.)  for each corner i 

where g-r, &i   are functions with continuous and bounded derivatives of all orders, 
and Y- is a constant dependent on the vertex angle a±  at corner Ai and the boundary 
conditions at the corner.  Yi is obtained as the root of a nonlinear equation. 
Then we have the following theorem for the p-version finite element: 

THEOREM 

Let u0 be the exact solution of the variational problem (2), and let up be the 
p-version finite element solution.  Then for k>2, 

u -u  L   < C(e)p 1 o p ' ' 2 ,tt - 
-u+e 

[k,tt 
(4) 

where y = min [k-2,2(Y.-D] ,  if ueHk(fi), and e>0 is arbitrarily small. 

In the singularity problem the rate of convergence is always dominated by the 
factor 2(Y.-1).  Since p2*N in the p-version of the finite element, we have: 

-(Y-D 
u -u  L   < kN 
o p''2,Q - 

where Y = min Y•. (5) 

In the h-version finite element method, it is clear that 

2 ~ -. /*T      an(j it is known that 1/N 

Y-l 

■V^b,^ Ch CN 

y-i 
2 (6) 

Comparing (5) with (6), we conclude that the p-version of the finite element 
method has twice the rate of convergence of the h-version for singularity 
problems. 

A p-version, Hierarchic C -Triangular Element 

The hierarchic property of the finite element family is particularly important 
for the p-version.  To obtain a refined solution, the polynomial degree of the 
approximation functions is increased without modification of the topology of the 
mesh.  For the hierarchic element, only the portion of the stiffness matrix related 

155 



to the new higher order polynomials needs to be calculated, hence significant compu- 
tation time is saved in obtaining a more accurate solution. 

When increasing the polynomial degree from a starting value p-1 to p, p+1 new 
independent functions are added and therefore p+1 nodal variables have to be intro- 
duced.  The hierarchical structure arises if and only if the new nodal variables 
correspond to new shape functions, i.e. none of the previously used shape functions 
is changed.  This can be achieved if we choose as nodal variables p+1, pth order 
derivatives. 

Another goal in constructing a family of finite elements for the p-version 
is to have interpolation functions of arbitrary polynomial degrees which are exactly 
and minimally C-'--continuous . 

However, it is easy to prove (ref. 6) that no set of nodal variables exists 
which satisfies the following two requirements if the continuity of the slopes is 
required: 

1. There is a 1-1 transformation between the polynomial coefficients {aS} and the 
corresponding subset of nodal variables {6e}„ 

2. The {6 }Ts completely enforce the appropriate continuity requirements. 

9 9 
In fact, at the corner of a triangular element, since 9 w/3s23s-j_ = 3 w/3s]_3s2 , 

the second derivatives are linearly dependent 

a2 ,2 9 w 3 w 
 7T  cos <p +  „_ ^ _  sin 
3s 

1 
3s 3n 

X  X 

I 2 
w      j.    i  8 w cos <j) + — sin d> = 0 

3s 
2 

3s23n2 (7) 

xjhere 6  is the angle at the corner, 3^w/3s23s1 is the mixed tangential derivative. 

To destroy the analyticity of the polynomial approximation at the vertices, a 
set of rational functions are introduced. 

Nodal Variables and Shape Functions 

Fifth-Order Finite Element (p=5) 

In Fig. 1 we define the nodal variables for the fifth-order hierarchic finite 
element.  It can be represented as the set 

{w(a ), 3 w(a ), 3 w(a ), 3   w(a ), 3   w(a ), 3       w(a.), 
x     XX     y    X      z      1      Z      1     T .  _, V .  _    1 

T T.,.. 1-1 1-1 
1-1 1+1 

i+2 i+2 

where 3T;L , 3v_L are tangential and normal derivatives respectively along the edge 
i, and a     is the midpoint of a. and a  ,. 

i,l+i i     i+l 

The shape functions corresponding to the six nodal variables of mixed deriva- 
tives at the vertices are rational functions of the form: 
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nl= 

2 2 
L1L2L3 
L2 + L3 

2 2 
L1L2L3 
L2+L 

etc. 

Since sums of pairs of the rational functions are polynomials (e.g. n^+n2 
= 

L?L2L3), it is possible to express the fifth-order approximation function in terms 
of six rational functions and 18 polynomial shape functions which correspond to the 
remaining 18 nodal variables. 

2 2 
The simplest polynomial shape functions are of the form N]_9=L-|L2L3 which have 

zeroth order contact with one side and first-order contact with the other two, hence 
are shape functions corresponding to 3T4V w(a^2). 

The shape functions corresponding to the nodal variables of the second deriva- 
tives 3 2 w(ai) are the form L£L^'(L2-1) which has first-order contact with sides 
1 and 2 aiia the factor (L2-l) assures that the second derivative along side 3 at 
vertex 2 is also zero.  However, the mixed fifth derivative of this function at the 
midpoint a12 is not zero.  We must correct for these shape functions and hence 
obtain: 

N4 = \ L21L22(1-V " \  (1+5V III i 
N 21 + \  (1+P3} iMi 

(8) 

where |M| is twice the area of the triangle, and y^  is defined in Table 1. 

Similar procedures are applied to construct shape functions corresponding to 
the nodal variables of first derivatives and the displacements (ref. 6). These shape 
functions, however, are just linear combinations of polynomials and rational func- 
tions described before.  Some of the coefficients depend on the geometry of the 
element.  See Table 1 for a list of the shape functions for the Quintic C1 triangle. 

Higher Order Finite Element (p>6) 

Higher order shape functions do not correspond to simple nodal variables but 
they do enforce C continuity.  In this sense they are nodeless shape functions. 
Side modes assure conformity and internal modes are used to obtain a complete pth 
order polynomial. 

One of the shape functions for side modes represents rotation, and for side 1 

is of the form: 

Nh 
ro t,l  =  L1L2L2[LP-

5
+(-L3) 

?-5 (9) 

(10) 

The shape function corresponding to the deflection on side 1 is represented as: 

Ndef,l = ^[a2)
p-6+(-L3)P-

6]+L1L2L
2

3F(L2,L3) 

where the polynomial F(L2,L3) can be determined in such a way that the normal slope 
of  N" def ,1 

is   zero  along side  1.     A   straightforward  computation shows   that 

= T3T3rTP-6. n-6 2T2r3rTp-5_ ,P-5- Pdef,l = ^[ir+(-L3)p-D]  + L^^L* '-(-L3)*  ^ 

2   L 3 2 
P-6.T   f_T   ^P-6^  ^^1  TTP-^^T   NP-

5
- [L.L^+M-L,)1^]  +~f  [14    +(-L3)F  ^] 

Jl    2     [L3L2    _L2("L3) (11) 
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«1 el 

^ The pth-order internal modes are a set of polynomial terms which make the set 
of shape functions complete: 

2 £  P 
3 3  3 
V V L3 

[f]+i   [fi   if: 
Ll    L2  L3 

[f]+l  tll+1 ß] 
Ll    L23  L33 

if p=3n 

[f]  [f]+l  [f] 

[f]   [f]+l  [f]+l 
Ll  V   L3 

if p=3n+l 

f]+i [fl Cf]+i 

and  for n>3 

if p=3n+2 

LP-5     3    2       2    p-5     3    T3     2 Tp-5 
Ll       L2 L3'   Ll L2       L3'   Ll  L2  L3     < 

[f ]+l ^ [f ]  _ [f ]-l [f ]-l     [£]+i     [£] 
L2-  L3 

•3- 

' Ll  V   L3 1     "2   ~3 ' "1 

where [x] = the greatest integer < x. 

This gives^a total of p+1 shape functions of pth order, and ~  (p+1)(p+2)+3 shape 
functions in all.  The number of monomials in a complete polynomial of degree p is 
Y (p+l)(p+2).  The additional 3 functions correspond to 3 linearly independent rota- 
tional corrective functions. 

COMPUTER IMPLEMENTATION 

Computation of the Stiffness Matrix and the Load Vector 

The elemental potential energy of the variational problem (2) is; 

e  _  D    r r 1 
71     ~ T   ff //   lw    w    w 1   I I    |_ xx  xy  yy 

where   [S   ]   = 

10a 

0     2(l-a)     0 

a 0 1 

w      1 xx 1 
Se3)w     Uxdy  -   g>J\.      /dA 

yy 

where D = thickness of the plate 
and a   is Poisson's ratio. 

(12) 

Transferring to global coordinates from triangular coordinates, we have 

L, Xl  X2  X3 

yi  y2  y3 

111 

1 

L„ 
(13) 
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it  is  easy  to obtain: 

w      I 

xy 

yy 

4         4         4         2ala2 2ala3 2a2a3 

(a;Lb2+ (axb3+ (a2b3+ 
albl    a2b2    a3b3      b^) b^) b2a3) 

4        b2         b2         2b;Lb2 2blb3 2b2b3 

=   [Ge]   {w} 

where  a,   = 
y2"y2 

1 |M 

y3'yl 
a2 I Ml 

yry
2 

a3 I Ml 
(14) 

X3"X2        K        !l^3        .      _*J2± 
bl  = "TMT

- 2  ~     IMI °3 IMI 

Representing  {w}   in  terms  of nodal  variables  and  shape  functions,  we have 

{w}  =   [N]   {ae} 

**  -\  \*\   jy[N]T[6e]T[Se][6e][N]dA{ae}  - jj\f\ [Ge] [N]dA{ 

e e 

Therefore,   the elemental  stiffness  matrix is: 

[Ke]   =    /T[N]T[Se][N]dA 

a } (15) 

(16) 

where [Se] = [Ge]T[Se][Ge] 

In order to make the computation faster, we choose a set of primitive functions 
which are independent of the geometrical properties of each element, namely, 

[N] = [P][Q] 
T 

where all the geometric information is contained in [Q] .  Now we have 

[Ke]   =   [Q]     /T[P]T[S6][P]   dA   [Q]T 

(17) 

(18) 

The primitive functions for the cases p=6,7 are given in Table 2.  (The case p=5 has 
been omitted from the Table, for brevity.)  At this point, the integral still con- 
tains the matrix [SeL r,  which is element-dependent.  To decompose it, (ref. 7) let 

hxh J6x6 

6  6 
[se]  = £ £ S* [E. ] 

j=l i=l  J 

(19) 
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where   [E.    1 
1    k=i,   £=j 

0     otherwise 

e / 6       6 

tK ^ = [Q]|E Es 
\j=l i=l 

xj   ;y ^P]  [EijHP]dA   [Q; (20) 

Now the matrices inside the integral are all independent of the element, so we 
can precompute: 

f [P] [E  ][P]dA  i-l,2,...,6, j = l,...,i (21) 

and save them in a disk file for future use.  For the computation of the load vector, 
another set of precomputed arrays is also saved in the disk., 

The other computations involving stiffness matrices and load vectors for each 
element consist only of linear combinations of matrices.  These are much faster than 
numerical integration of functions. 

Integration of Rational Functions 

Since the primitive functions are just polynomials and rational functions of a 
specific form, the integrals of precomputed arrays fall into two classes:  (ref. 8) 

Class   I: 

J = 
LVLk 

ff a be 12 3 
I     LiL9Lo ~  dA 2A  (a+i) I (b+c+j+k+1-n) ! (b+.j) ! (c+k) ! 

(a+b+c+i+j+k+2-n)•(b+c+j+k+l)T~ 

a,b,c,i,j,k > 0, l<n<3 

Class II: 

(22) 

J = 
LaLbT C 

ff 1L2L3 

J   (l-L^d-^) m 
dA 

2Aa!c! k(k-l)...(k-m+2) 
(m-1)I k=m_1  (b+k-m+2)...(b+k-m+2+c)(b+c+3-m-n+k)...(b+c+3-m-n+k+a) 

where A is the area of the triangle. /23) 

The integral in (23) exists provided that b+c+l>n.  This condition is satisfied'by 
all rational shape functions in Class II so that (23) is always valid.  The series 
are also convergent if d=a+c+2-(m-l)>2.  (Actually, the series converge at least as 
rapidly as 21/kJ.) 

16 0 



Program Structure 

For practical applications, the C -triangular element was implemented with poly- 
nomial degree p up to 8.  The program was coded in FORTRAN and was tested on a 
VAX-11/780 super-mini computer with 1 megabyte core memory. 

The program has two major parts as shown in Fig. 2: 

1. Off-line computation for the precomputed arrays.  INTA and INTB compute type I 
and type II integrals for all possible combinations of rational functions and 
polynomials; PRE1, PRE2 and PRE3 calculate the integrals of the primitive func- 
tions, and save results in a disk file as precomputed arrays for both the 
stiffness matrices and load vectors. 

2. On-line computation for the plate bending analysis.  MULT prepares the elemental 
stiffness matrix and load vector using the input data and the precomputed 
arrays in the disk.  ASMBL works with SOLV to do the assembly of stiffness ma- 
trices and to solve the global system of equations by using a frontal-solver 
technique (ref. 9).  The solution of the nodal variables is manipulated by the 
postprocessor POST in order to compute displacement, moments, strain energy and 
other quantities of engineering interest. 

COMPUTATIONAL RESULTS AND DISCUSSION 

Several benchmark problems were tested with CONE, the p-version C -triangular 
finite element program, to examine the performance of the code. 

Uniform Load on a Simply Supported Equilateral Triangle 

In this case, the analytic solution of the displacement is a fifth-order poly- 
nomial (ref. 10). Using p=5 and a single element for the whole triangular plate, 
we can easily obtain the exact solution with only three degrees of freedom: 

At the center point, 

3     4 

Deflection = 5.787037x10  D/q L 
o 

Moment = 1.805556xl02/q L2 
o 

Square Plate Problems 

Tests were made on the square plate with simply supported edges or clamped 
edges, under uniform load or concentrated load at the center point.  Since all the 
four corners are 90 degrees, the roots y. are 2 and 3.75 for simply supported edges 
and clamped edges respectively. Hence the solutions are quite smooth. 
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By symmetry of the geometry, we can use either 1/2 or 1/8 of the plate as a 
single element to do the computation.  As shown in Table 3, with p=5, CONE obtains 
at least 4-digits accuracy using very few .degrees of freedom (DOF)„  The convergence 
rate, however, is dependent on the' smoothness of the solution.  For clamped edges, 
only 10 DOF's are needed, for simply supported edges, 18 DOF's are needed. 
Nevertheless, the p-version requires significantly fewer degrees of freedom than 
other finite element programs based on the h-version (ref. 11 and 12). 

Simply Supported Equilateral Triangular Plate Under a Concentrated Load 

Since the radial shearing force at distance r from the concentrated load p is: 

Q  = - -7T-  ,  where Q = - D — (Aw) 
r    2irr r      3r 

(24) 

it follows that the solution in the neighorhood of the point load is of the form: 

w P    2 o   r s--  r In — 
8TTD 

(25) 

Since 

N3 w _ p  1_ 
3 ~ 4TTD r 

(26) 

ana 

f  I  33w \ 
3 

3r / 
rdr = 

o 

3-e  ,    u3-e 
which is not integrable, we know that the solution is m the space H   , where H 
is a Sobolev space and e   is a positive number.  Based on the theorem which gives the 
rate of convergence, we expect an asymptotic rate of N-^'-', which is better than the 
^-0.25 predicted for the h-version„  The computational result (Fig. 3) shows a still 
better convergence rate in the non-asymptotic range.  With p=8, a 2-element mesh, 
and 39 degrees of freedom, the energy error reduces to only 0.3%.  The presence of 
rational functions which is not accounted for in the theoretical estimation of the 
rate of convergence in a polynomial function space, may be responsible for the 
improved-convergence rate. 

Simply Supported Rhombic Plate Under Uniform Load 

The simply supported rhombic plate with an angle of 150° at the obtuse vertex 
is a more difficult problem which has received a great deal of attention (ref. 13 
and 14). Based on William's paper (ref. 5), for a corner simply supported on both 

sides, the roots are: 

Y 
150* 

1.2. Y 
30c 



By the theorem, ||u -u ||    < C(e)p    ||u||   where y = min [k-2,2(y.-l)] 
OpZjüü K-jliü 1 

So we expect that in the p-version of the finite element method, 

= 0.4. 

u -u      < C, /p 1 o p''2,9, -    h 
0.4 

Ch/N 
0.2 where C, is independent of p, 

and in the h-version of the finite element method 

,0.1 
-V'2,fl - Up < C /N where C  is independent of h. 

P 

The computational results of the p-version and h-version for a quasi-uniform mesh 
(Fig.4(a)) are shown in Fig. 5; both the convergence rates of the p-version and 
h-version are quite close to the theoretical predictions (0.232 and 0,118, 
respectively). 

Since there is a very strong singularity at the obtuse corner, it is of inter- 
est to examine the computational performance when using a strongly graded mesh 
as shown in Fig. 4(b) (ref. 15).  By using this non-quasi-uniform mesh, with p=5, 
p=6, a very fast convergence rate is obtained as shown in Fig. 5.  Table 4 shows 
that at least 3 digits of accuracy (ref. 16) are obtained with only 60 degrees of 
freedom.  The solutions presented here are the most efficient of the solutions 
published to date for this sample problem. Development of a combined h-version 
and p-version of the finite element method, in which the mesh is graded and at the 
same time p is changed, is a very promising approach for future research. 
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TABLE 1. - LIST OF SHAPE FUNCTIONS (HIERARCHIC QUINTIC C  TRIANGLE) 

p=5 

nl- 

2   2 
L1L2L3 

L2+L3 

n2  = 

2,   ,2 
L1L2L3 

L2+L3 
2  2 

L1L2L3 
"3 Ll+L3 

2   2 
L1L2L3 

"4 L1+L3 

2       2 
L1L2L3 

"5 L1+L2 

LL2   2 
Ll  2   3 

IM I 

|M| 

|M|. 

|M| 

L1+L2 

Lx  +  3(N2+N3)   -   6(N4+N5+N6) 

(X2-X1)N2   +   (X3-X1)N3 

(Y2-Y1)N2   +   (Y3-Y1)N3 

ML2(1-V - ?(1+5VN2i+ y(1+,J3)ni 

IL1L3(1-L3)   -|<1-5l'2)N20+I<1-,,2),'2 

where 

,2   n2 
S.   - S. 

3  2 

2   2 
ff    -2, 

1     3 
2   „2 
2     1 

M|   =  2-(Area of  element) 

N5  -   L2
lL2L3 

»11  =   L1L2L3 

y= LiL2L* 
N2   =   L2L2(1-L2)   + 2N5  +  6N4 

N3  =   L2L3(1-L3)   + 2N5  +  6N6 

N3   =   L2L3(1"L3)   +  2N11 
6N 

10 

L2Lia-V   + 2N11 + 6N12 

14 

15 

L
3
Li(1-V 2N17   +  6N16 

L3L2(1-L2)   +  2N17 6N. 18 

»4-H^(i-v 4(l+5y3)N21 

\ - KL3(1"4)   " ?(1-5"2)N20 
N10  - |L2L2(1-L3)   - id+5Ul)H*9 

Ny   =   L2   +  3(Ng+N9)   -   6(N10+N11+N12) 

Ng  -   (X3-X2)Ng  +   (XrX2)N9 

N9  =   (Y3-Y2)N8  +   (YrY2)Ng 

N10 = rL2L3<1_L3)   " i(1+5,Jl)N19 + I-(1+Vn3 
Ni2 ■ ¥Ä{x-w - i(i-5^3)N2i+ r(i-^< 

N13 = L3 + 3(N14+N15> " 6(N16+N17+N18) 

N14 "   (VX3)N14  + (X2-X3)N15 

N15 "   (YrY3)N14 + <VVH15 

Ni6= iLiL3(1-Li) - i(1+5"2)N2o +i-a+Vn* 

N18 = 7L2L3(1-L2)   " l(1-5VN19 +\{1~vl)\ 

N19  = V^N 

20 
L2L21

2|M| 

21 I^L3 |M| 

(X     Y  ) (.   3,   y 

»12 " ML2(1-L1> " iC1-5w3)N2*i 

»16 = K^'V - 4L(1+5"2)N20 

»18  = KL3(1-^>   - iC1-5VN19 

N.  = -r-r N.   ,   1=19,20,21 
1 M       1 

M 1=1,2,...,6 
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TABLE 2. - LIST OF SHAPE FUNCTIONS IN TERMS OF PRIMITIVE FUNCTIONS (p=6 and 7) 

N2 5 

p=7 

32 

36 

N37 

OW 

2 0 0 MV1 
3-3p1 0 0 0 0 0 

0 0 0 1 -1 0 0 0 0 0 

0 2 0 0 0 3+3 v2 3-3n2 0 0 0 

0 0 0 0 0 1 -1 0 0 0 

0 0 2 0 0 0 0 3+3P3 3-3p3 0 

0 0 0 0 0 0 0 1 _I 0 

0 0 0 0 0 0 0 0 0 1 

1 0 0 1.5(l+Pl) -1.5(1-^) 0 

0 0 0 1 1 0 

0 1 0 0 0 1.5(1- 

0 0 0 0 0 1 

0 0 1 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 

0 

1.5(l+p,) -1.5(l-u2) 

1 

0 

0 

0 
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L1L2L3 
3  3 

L1L2L3 

L1L2L3 

V      1   2   3 

TABLE 3. - QUINTIC APPROXIMATION IN PLATE BENDING OF A SQUARE PLATE 

Boundary 

Condition Load 

Degrees 

of 

Freedom 

Displacement 

(103w  D/q   L4) 
c         0 

Bending  Moment 

(102M     /q  L2) 
XC       0 

Computational 

Results 

Analytical 

Values 

(ref.   10) 

Computational 

Results 

Analytical 

Values 

Simply 

Supported 

Uniform 

Load 
18 4.0626 4.0624 4.7912 4.7868 

Point   Load 
at 

Center  Point 
7 1.1501 1.1601     

Clamped 

Edges 

Uniform 

Load 
5 1.2541 1.26 2.4238 2.31 

Point   Load 
at 

Center  Point 
5 5.5382 5.60     
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TABLE 4.   - DISPLACEMENT OF THE  CENTER OF A RHOMBIC PLATE UNDER NON-QUASI-UNIFORM 

MESH REFINEMENT 

Polynomial 
Degree 

Degrees  of 
Freedom 

Central  Point 
Deflection %  error 

Sander     (ref.   13) >1000 24. 

Argyris     (ref.   14) = 1300 2. 

COMET-X     (ref.   15) 5  in  3 
fields 

CONE 8 2.8938 29.2 
16 3.1520 22.8 
25 3.4651 14.9 
33 3.8217 6.4 
42 4.0049 1.8 
51 4.0217 1.4 
60 4.0824 0. 

12 3.0375 25.6 
24 3.4081 16.5 
37 3.6708 9.9 
49 3.9198 3.9 
62 4.0471 0.8 
76 4.0660 0.3 

Analytic Value 
(ref.   16) 

4.08 
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FIG.3   RELATIVE ERROR IN ENERGY NORM vs. NUMBER OF DEGREES OF 
FREEDOM -SIMPLY SUPPORTED EQUILATERAL TRIANGULAR PLATE WITH 

CONCENTRATED LOAD AT CENTER  POINT 
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FIG.i RELATIVE ERROR IN ENERGY NORM vs. NUMBER OF DEGREES 
FREtDOM; SIMPLY SUPPORTED RHOMBIC PLATE UNDER UNIFORM LOAD 
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INTEGRATION OF MULTIDIMENSIONAL REGIONS 

WITH APPLICATIONS TO FINITE ELEMENT ANALYSIS 

Robert L. Mullen 
Department of Civil Engineering 

Case Institute of Technology 

SUMMARY 

Alternatives to Gaussian integration methods for multidimensional regions are 
presented.  These rules preserve the convergence behavior of the exact integrated 
element but require less evaluation points than the Gauss methods.  Numerical 
examples are given to verify the behavior of the new integration rules. 

INTRODUCTION 

A considerable portion of the computational effort involved in the solution of 
problems by the finite element method is consumed by the numerical integration neces- 
sary to compute the element stiffness matrices and/or the element internal forces. 
Therefore, a reduction in the number of integration points will reduce the overall 
time required to solve a problem.  This reduction will be most notable when the 
problem being considered involves a complex constitutive relationship.  A reduction 
in the number of integration points will also reduce the storage required for state 
variables  associated with the material law which, in explicit transient analysis, 
is often the largest component of the total storage required. 

In one-dimensional problems, it is well known that the quadrature method with 
the least number of evaluation points for a given truncation error is Gaussian quad- 
rature.  For integration in multidimensional regions, most finite element texts 
recommend quadrature rules based on Cartesian products of the one-dimensional Gauss 
rules.  These product rules have been shown to retain the same order of truncation 
error as their one-dimensional counterparts, but they may use more than the minimum 
number of evaluation points.  Irons [1] has presented some more efficient quadrature 
rules for brick based elements. 

In this paper, the integration of polynomials over rectangular regions will 
be considered.  In particular, the number of evaluation points necessary to com- 
pute the element stiffness of the linear displacement quadrilateral is examined. 

In the following section, a three point rule which is exact for quadratic 
polynomials over rectangular regions will be presented.  In the third section, an 
alternating two point rule is presented.  This two point rule does not integrate the 
quadratic polynomials that make up the stiffness of the bilinear quadrilateral 
exactly but will preserve the rank of the element stiffness matrix; this method 
will also preserve the convergence behavior of the exactly integrated element stiff- 
ness.  The fourth section contains numerical results in order to compare the various 
integration methods. 

THREE POINT INTEGRATION METHOD 

The general formula for numerical integration over- a rectangular region is [2] 
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1 1 

-1-1 

f(£,n) dg5dn = £ w.f(e.3ni) + E 
i=l 

(2.1) 

where w.  are the weight factors, (£.,n.) define the evaluation point, and  E  is 
the truncation error.  Similar expressions exist for other dimensions.  The evalu- 
ation points, weight factors, and truncation error for several quadrature methods 
in one and two dimensions are given in Table 1.  In order to develop specific inte- 
gration methods for a given element, the order of the polynomials that make up 
the unintegrated stiffness must be known.  For the rectangular bilinear element, 
shown in figure 1, when used for plane stress or plane strain analysis, the product 
of the first partial derivatives of the shape functions are either constant in one 
direction and quadratic in the other or linear in both directions.  If the constitu- 
tive law is assumed constant within an element, the terms that make up the uninte- 
grated stiffness are 

f(C,n) = a-,  + a2^ + a3n + a4^n a6n 
(2.2) 

The presence of the quadratic terms indicates the well-known result that the lowest 
order Gauss integration rule applicable to this element is the four point rule. 
Due to the linear form of the shape functions, some researchers have recommended 
the use of one point Gauss integration for this element [3,4,5,6].  The use of one 
point integration, i^hich reportedly results in a 1/3 to 1/4 reduction in the compu- 
tational effort, also results in the existence of an "hourglass mode".  In general, 
the rank of the element stiffness is reduced when the order of Gauss integration 
is reduced.  This reduction of rank has been noted by several authors  and is essen- 
tial in the formulation of the penalty method for incompressible problems [7], 

In order to construct a three point integration rule x-zhich will exactly inte- 
grate the stiffness of a rectangular bilinear element, equation (2.2) is substituted 
into equation (2.1) with  n = 3  and E = 0. 

4 Al 

+ (0) a. 

+ (0) a 

+ (0) a 

+ 4/3 ac 

3 

4 

+ 4/3 a, 

a.. (w-|+w„+w.,) 

a2^wl^l + w2^"2 + w3^3'1 

a~(w..n^ + w^rio + w-nO 

a4('Wl^lT1l + w2^2n2 + X
'
7
T)^3

T]
3^ 

a5(W;L5
2 + w2^2 + w3?2) 

a6(wlnl + w2n2 + W3T13) (2.3) 

Since the a   are arbitrary constants, equation (2.3) becomes the six equations 
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W-.   + w„  + w„  =  4 

w1?1n1 = w2C2n2 + w353n3 = 0 

w^ + w2^ + w3?2  =  4/3 

wl?l + w252 + w3?3 = ° (2"4) 

W,n?   +   W2n2   +   Wolß   =   4/3 

W-.T1-,   + w„ri2 + w3r>3 =  0 

with 9 unknowns. 

In order to have a reasonable integration rule, the following constraints will be 
added to equation (2.4) 

w.. , w„, w3 ^ 0 

q, x)i  e[-l, 1] 
(2.5) 

There are several solutions to (2.4) subject to the constraints (2.5); each 
solution represents an acceptable three point integration rule for the bilinear 
element.  Since a number of acceptable rules are available, the incorporation of 
some additional properties will be attempted. 

One possible goal is to have one of the integration points in the center of 
the element.  This would permit the reduction in the total number of integration 
points required to compute the stiffness matrix of an incompressible element 
based on the penalty method from five points to three.  This would also allow the 
stresses to be computed at a super convergent point within an element [8]. 

Unfortunately, there exists no real solutions to equation (2.4) when 

53 = n3 = 0 (2.6) 

An alternate goal would be to have the evaluation points as uniformly distributed 
within the element as possible, which may provide an advantage if any nonlinear 
material behavior occurs within an element.  To find the evaluation point and 
weights for an integral method with the above properties, the following nonlinear 
programming problem was solved. 

Find minimum x, where x is the maximum distance between any point in the 
element and the nearest integration point subject to the constraint Eqs. (2.4) and 
(2.5).  The solution to this problem is given in Table 1 as method 3c.  Three point 
integration rules with other properties can be constructed in a similar manner. 
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TWO POINT INTEGRATION METHOD 

it can be shown that no two point method based on eq. (2.1) that satisfies 
equation (2,2) exists.  However, there exists a two point method that preserves 
the rank of the stiffness matrix.  The two point method results in a small inte- 
gration error for smooth finite element solutions.  First, an estimate of the 
order of each term in the stiffness is made based on the material constant associ- 
ated with that term.  This estimate indicates that the  £n  term is Poisson's ratio, 

v, times the other term in plane stress and v 
times the other tension plane 

(1-v) 
strain.  For physically relevant values of v, the  gq  term is smaller than other 
terms in the stiffness and is a good term to eliminate the exact integration re- 
quirement . 

This reduces the number of equations to five 

w.j + w 

W1K1 + w252 

wlnl + w2n2 

Wl^l + W2^2 

wini+ w2^ 

4 

0 

0 

4/3 

4/3 

(3.1) 

These five equations subject to the constraint Eq. (2.4) yield the Integration 
rules 2a and 2b in Table 1 as solutions.  Since the truncation errors of the two 
methods are the same magnitude, but opposite in sign, alternating between method 2a 
and method 2b on diagonally adjacent elements, as shown in figure 2, could result 
in compensator}/ errors. 

NUMERICAL RESULTS 

In order to compare the integration rules presented, several problems were 
solved using the 1, 2, 3, and 4 point Integration rules given in Table 1. 

The first problem considered is a cantilever beam whose geometry and material 
constants are given in figure 3.  Several different meshes were run in order to 
determine the effect of the integration rule on the convergence behavior of the 
element.  The error In energy is given in Table 2 and plotted versus element size 
in figure 4.  The two, three and four point rules compare favorably, each exhibiting 
the expected second order convergence In element size, h.  The one point method, 
on the other hand, converges from the opposite side. 

The second problem considered is that of a circular hole in a rectangular 
plate.  This problem was chosen in order to see if non-vector isometric elements 
behave when the integration rules are employed.  The mesh used is shown in figure 5. 
The results given in Table 3 show little difference in the two, three and four 
point rules. 
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The last problem consists of a square block with an initial rotation at 
time zero.  The formulation used to solve this dynamic large displacement problem 
is the velocity strain-Cauchy stress formulation described in [9], using central 
difference time integration.  The displacement of a corner of the unit square is 
plotted as a function of time in figure 6.  There is again only a small varxation 
between the two and four point rules  and no difference between the three and four 
point rules while the one point rule was unstable due to hourglass deformation. 

CONCLUSION 

Several integration methods with fewer evaluation points than product Gauss 
rules have been examined.  The efficiency of these methods over Gauss integration 
in two dimensions has been shown.  These rules involve a change in weight factors 
and evaluation points.  The incorporation of these methods into existing finite 
element programs is very simple.  Integration rules can be developed for higher 
order elements [10] and higher dimensions [11], that require fewer evaluation points 

than the Gauss method. 

While the smallest number of evaluation points does not always result in the 
most efficient finite element formulation [12] in nonlinear problems, the use of 
the least number of points required to retain the expected accuracy should result 
in an economical numerical formulation. 
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TABLE     1 

Numerical  Integration Rules 

Dimension      Rule Weights Evaluation Points 

112 0 

Error 

2 
1  3   f 
—        2 
3  3£ 

1.1 
1 1 

3   ,   / 3 

1       3   f 

135     3?1* 

(0,0) 2 ,32f     32f 

3 3C2     3n2 

2a 2,2 <-^-    —),(—    -=±) 
JT  ,/3~      /T~,/T~ 

JL    111 
3     3?3n 

2b 2,2 0_^)>(zi_       1 4     3£f 

3     3£3n 

3a 8     8     12 ,7-1 7-1 
 — (—   -)(- —   —) (0,2/3) 
7,7,7 12,   2 12,     2 

t-Illi   _ 1A a3f 
3 3?23n  315  3n3 

3b I   I    12 (_7     1)(__7      l)(0>_2/i) 

7,7,7 12 , 2 12 ,    2 

J; j^f    + 14  3jf 
3  3£23n  315   3„3 

1. 2 a^f + 3"f 

135 351*     3n" 

1. (^ ^-) 
/T,/3~ 

1. (^    -i-) 

(=i ^-) /r,/r 

3c 1.2578343   (.85220159, .021027579) -.10398 ■£-£+.26811-2-i- 
3£3      3?23n 

18315722    (-.37877782,-.50116473) 

0.91059353    (-.4153000, -.97899901) 

.0206 34 -5-L. 10229 
3df 

3£3nz    3nd 
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TABLE 2 

Error in Energy for Various Integration Methods 

E lement 
S ize 

6 
4 
3 
1. 5 

6 
4 
3 
1. 5 

6 
4 
3 
1. 5 

6 
4 
3 
1. 5 

6 
4 
3 
1. ,5 

Integration 
Rule 

1 
1 
1 
1 

2 alternate 
2 alternate 
2 alternate 
2 alternate 

2b 
2b 
2b 
2b 

3a 
3a 
3a 
3a 

4 
4 
4 
A 

Energy 
Energy Error 

10.885 -2.785 
9.3325 -1.2325 
8.7292 -0.6292 
8.3915 -0.215 

7.3743 .7257 
7.7039 .3961 
7.8515 .2485 
8.0498 .0502 

7.0222 1.0778 
7.5740 .5260 
7.7928 .3072 
8.0423 .0577 

7.0071 1.0929 
7.5674 .5326 
7.7880 .3120 
8.0398 .0602 

7.0071 1.0929 
7.5674 .5326 
7.7880 .3120 
8.0398 .0602 

TABLE 3 

Hole in Plate Results 

Integration 
Rule Energy 

1 

2a & 2b 

3a 

4 

.012487 

.012146 

.012028 

.012030 
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Figure 1.- Generic finite element. 
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Figure 2.- Evaluation points for alternate 
two-point integration. 
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Figure 3.- Geometry of beam model problem. 
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Figure 5.- Mesh for hole in plate problem. 
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AN EMULATOR FOR MINIMIZING FINITE ELEMENT 

ANALYSIS IMPLEMENTATION RESOURCES 

Robert J. Melosh and Senol Utku 
Duke University 

Moktar Salama 
Jet Propulsion Laboratory 

Munir Islam 
NuTech Corporation 

SUMMARY 

When many calculations will be involved, a finite element 
analysis emulator provides a basis for efficiently establishing 
an optimum computer implementation strategy. 

SCOPE is such an emulator.  It determines computer resources 
required as a function of the structural model, structural load- 
deflection equation characteristics, storage allocation plan, and 
computer hardware capabilities.  Thereby, it provides data for 
trading analysis implementation options to arrive at a best 
strategy.  The models contained in SCOPE lead to micro-operation 
computer counts of each finite element operation as well as overall 
computer resource cost estimates. 

Application of SCOPE to the Memphis-Arkansas bridge analysis 
provides measures of the accuracy of resource assessments.  Data 
indicate that predictions are within 17.3 percent for calculation 
times and within 3.2 percent for peripheral storage resources for 
the ELAS code. 

INTRODUCTION 

Yearly structural analysis applications of finite element model- 
ing in the United States incur over one billion dollars of computer 
expense.  Thus, since run time for any particular large problem can 
be changed by a factor of two to five depending on the analysis 
strategy, considerable care is justified in selecting a near-optimum 
implementation approach. 

There are two types of decisions which affect run time;  problem 
model and the solution implementation decisions.  Decisions bearing 
on the problem model (number and type of finite element modes, number 
and allocation of nodal points and nodal lines) determine analysis 
accuracy and can have an important impact on analysis cost (ref. 1-4). 
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The focus of this paper, however, is the implementation decisions. 
Thus, the decisions of interest here are which computer code, computer 
hardware configuration, primary storage allocations, and data manage- 
ment plan should be used for a given structural analysis problem. 

The usual approach to making these decisions is to base them on 
data collected on benchmark problems.  Then run times for the prob- 
lem of interest are extrapolated from small problem tests or calcula- 
tion counts for equation solving, 

The authors' experiments Indicate that neither of these ap-- 
proaches leads to accurate resource assessments - probably because 
neither reflects the variety of influential data management strategies 
or accommodates large changes of the structural model or nonlinear 
analysis complications.  Accordingly, the SCOPE code was developed. 

This paper describes the capabilities and basis for estimating 
SCOPE computer resource needs.  It reports on calibration and test 
of SCOPE on an existing structure using the Amdahl computer. 

The authors acknowledge the financial support of Duke University 
and the Jet Propulsion Laboratory for the developments herein. 

SCOPE CHARACTERISTICS 

SCOPE Output 

Table 1 lists output produced by a SCOPE run.  In general, this 
output completely particularizes the structural geometry, loading and 
boundary conditions, and the computer hardware and software.  As a 
result of an emulation of the analysis, it produces partitioned data 
in the computer time needed for calculations and data management. 

Reference 5 provides an Illustration of SCOPE output, 

SCOPE Capabilities 

Table 2 defines the abilities of the emulator to represent 
structural finite element analyses.  The capabilities encompass 
the vast majority of production finite element analyses.  Studies 
suggest that with minor modifications SCOPE can be extended to 
parallel processors (ref, 6), 

SCOPE OPERATION 

SCOPE operates interactively on a microprocessor.  It consists of 
about 6000 BASIC instructions organized into 23 subprograms,  Because 
subprograms are chained, only 32K bytes of storage are required for 
execution. 
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SCOPE execution is divided into three phases.  In phase 1, file 
data defining the structural model is created and assessed.  This 
phase provides for accumulating a number of structural files before 
performing an emulation.  In phase 2, a "run file" is created and 
assessed.  This file contains all the computer implementation param- 
eters for an emulation.  In phase 3, the emulation is performed. 

Reference 7 documents subprogram functions and data interfaces 
in more detail. 

EMULATOR MODELS 

This section describes SCOPE'S models of the computer, generation 
of equation coefficients, equation solution, and stress-recovery. 

Computer Model 

SCOPE models the computer as a machine capable of performing 
micro-operations.  These include integer arithmetic, floating point 
arithmetic, and fetch and store in primary and secondary memory. 
Finite element operations are synthesized from the number of micro- 
operations required for their implementation.   Micro-operations are 
converted to machine cycles based on hardware capabilities.  Sums of 
machine cycles are converted to run requirements using the cost 
algorithm of the computer installation of interest. 

Generation of Equation Coefficients 

Finite element matrices are assumed to be generated by performing 
sparse matrix arithmetic.  Thus, multiplications by zero in obtaining 
stress-displacement and local coordinate stiffness matrices are 
ignored.  Similarly calculations for transforming to global coordin- 
ates are ignored. 

Equation Solving 

The SCOPE code finds the optimal solution stratagem, with re- 
spect to substructuring, by using the actual data about the computer 
resources and the problem, and interacting with its user iteratively. 

In any one iterative step, the user of the SCOPE code inputs the 
size data as follows:  the maximum size of a substructure stiffness 
matrix and size of the primary memory which should accommodate, at 
least, all the data needed for structuring.  The data needed for sub- 
structuring includes data obtained from the problem file:  the maximum 
size of an elemental stiffness matrix and the size of the constraint 
data.  With these, SCOPE determines the stratagem which is the most 
cost effective for a nonlinear analysis step (ref. 8) and outputs the 
details of this stratagem.  Included in the output also are the 
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primary memory size used,, 
secondary memory size usedf 
number of unformatted reads, 
number of unformatted writes, 
total number of words read, 
total number of words written, 
primary memory occupancy time, and 
central processing unit usage time 

for a nonlinear analysis step with one or more substeps. 

Following the output, the SCOPE code provides an opportunity to 
alter the size data for a new stratagem.  Thus the user may try 
various size data in an interactive mode to find the optimum strata- 
gem for the problem and the computer resources at hand« 

Given a consistent set of size data, SCOPE first tries the 
standard stratagem which assumes the following: 

1. Nodal data is N logical records IN is the total number of 
nodes,- and the nodal data for a node consists of the nodal 
coordinates (updated, and slopes and curvatures are in- 
cluded, if necessary), current nodal deflections (and 
as many of its spatial derivatives as necessary), and 
nodal loads]. 

2. Elemental data is M logical records [M is the total number 
of elements, and the elemental data of an element consists 
of the node labels of its vertices, geometric data (such 
as thicknesses, cross-sectional area, area moments), and, 
for each Gaussian point, the current stress tensor, the 
current strain tensor, the current strain rate tensor, 
and the current material data]„ 

3. Constraint data is 1 logical record (data defining supports, 
symmetries, etc.). 

4. Elemental stiffness matrices are generated as M logical 
records (each contains not only the stiffness due to 
material but also stiffness due to initial stresses, 
and other pertinent information)„ 

5. Elemental load vectors are generated as M logical records 
(each contains the free-free load vectors, and other 
pertinent information)„ 

6. Substructure stiffness matrices are generated as n  ——.      -1 g 
number of logical records (ns is the total number 
of substructures; both ns and substructure definition 
data are automatically computed by the SCOPE code, using 
the size data, labels of element vertices, and connec- 
tivity due to constraints as described in reference 6). 

7. Substructure load vectors are generated as n  logical 
records„ 
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8. 

9. 

10. 

11. 

Triangular factor matrix partitions are generated as 
ns logical records during Cholesky factorization. 

Substructure forward-pass results are generated as 
n  logical records, 
s 
substructure backward-pass results are generated as 
n  logical records, 
s 

Elemental residual force vectors are generated as ns 
logical records. 

12 All logical records are on disk files, and at a given 
time, not more than one logical record from the_11 
different types listed above can stay in the primary 
memory (excluding the first type). 

A loaical record is a data unit which requires one access time 
tisumed constant) , and one transfer time (assumed Proportional to 
thP record lenqth) for its transfer between primary and secondary 
storages   in the standard stratagem, the logical records are gener- 
ated one at a time (save type 1).  For example, a substructure stiff- 
ness marrix is generated by bringing from the secondary storage one 
elemental matrix It  a time, keeping the constraint data continuously 
!n tS primary storage.  If there is space in the primary memory, 

e  Opcode tries'other stratagems, called fitted^ ata^ems. 
The fitted stratagems are created by trying the feasibility of 

•keeping all nodal data as 1 logical record, 
•keeping all elemental data as 1 logical record and 
•computing residual force vector norms directly 

without substructures. 

The output tables contain data for both the standard stratagem, 
and the fitted stratagem. 

Stress-Recovery Model 

The primary task in the SCOPE stress recovery link is to estimate 
the computer resources required during computation of the stress 
components at one or more Gaussian integration points within each 
element, the equivalent element stress resultants at the nodes, and 
the Euclidian norm of the nodal unbalanced forces. 

The total Lagrangian formulation for large deformation is im- 
plied wherein all quantities such as deformations; strains  and 
stresses  as well as their increments, are associated with the 
currenrconfiguration relative to the original undeformed state. 
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Given the results of the equation solution phase at the current 
configuration, the computational resources associated with the follow- 
ing basic steps are simulated during the stress recovery: 

1. From the full set of incremental deformation, extract a 
subset pertaining to the element in question by making 
use of the element connectivity data, 

2. Transform the incremental deformation from the global 
coordinates to the element local coordinates„ 

3. For each Gaussian integration point in the element, 

a„  Generate the strain-displacement matrices of 
the zero and first order if these were not 
saved during the element generation link,, 
The latter involves the current deformation 
state«, 

bo  The incremental strains are computed. 

c.  Compute the total Green-Lagrange strains. 

do  Generate the elastic stress-strain material 
matrix from input material property data, if 
not already saved from the element generation 
link. 

g. 

Compute each component of second Piola- 
Kirchhoff stress and its increment„ 

If the material nonlinearity option is selected, 
the current stress state is checked against yielding, 
If yielding has occurred, compute the incremental 
plastic strains, the elastic-plastic material matrix. 
the corrected second Piola-Kirchhoff stresses and 
its increment» 

If updating the stiffness matrix is desired for the 
next loading increment, compute the tangent material 
matrix from the current incremental stresses and 
strains. 

h.  if the stresses are requested for output for the 
current configuration, the Cauchy stress tensor is 
computed for this configuration. 

Using consistent lumping of the stresses at the element 
nodes, the stress resultants are computed in the element 
local coordinates. 

Transform the stress resultants from the local element 
coordinates to the global coordinates to obtain the global 
equivalent stress resultants. 
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Again, using the element connectivity data, expand the 
subset of nodal stress resultants to the full set and 
form the residual unbalanced forces. 

In Step 3-f 
the program. Th 
and assumes the 
perfectly plasti 
plastic material 
Kirchhoff stress 
of the usual inf 
associated with 

, only one material nonlinearity model is included xn 
is material model employs von Mises yield condition, 
classical isotropic hardening which includes elastic 
c conditions.  It is further assumed that all elastic- 
relations used above along with the second Piola-_ 

es and the Green-Lagrange strains are valid extensions 
initesimal strains and engineering stress relations 
the small deformation theory. 

SCOPE CALIBRATION AND TEST 

SCOPE has been calibrated for the Amdahl computer and the_ELAS 
code (ref. 9).  Tests on a bridge analysis suggest some analysis 
policies for small problems.  This section describes these develop- 
ments (ref. 7). 

Calibration 

The SCOPE code has been calibrated on two levels:  the micro- 
operation and the finite element analysis phase levels. 

For the micro-operations level, pairs of tests of each operation 
were performed on the Amdahl computer to deduce the number of machine 
cycles per operation. 

Results of these tests are summarized in Table 3.  These data 
show large factors of up to three between machine specifications and 
measured calculation times.  Average times were developed, based on 
multiple experiments, because computer times varied + 50 percent trom 
the average depending on the computer load. 

For the phase level, CPU and PPU factors were determined for each 
finite element phase (generation, equation solution, stress recovery), 
to scale the SCOPE results to the ELAS code phase results.  By chang- 
ing the problem from a truss analysis to a frame analysis, a check 
on the validity of the phase calibration was developed. 

Tables 4 and 5 show results of these tests.  These data suggest 
high fidelity in PPU and CPU calibration.  The total error in PPU is 
less than four percent - all phases showing small errors.  The total 
CPU error is about 17 percent - with big variations between phases. 
In view of the + 50% range in CPU tests, these results are very good. 

Tests 

Phase and strategy tests were based on the bridge structure of 
figure 1 (ref. 10).  This steel bridge spans the Mississippi river at 
Memphis. 
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Quarter- and half-span models of the bridge were represented for 
SCOPE analyses.  The quarter-span model Involves 68 nodes, 120 ele- 
ments, and about 200 degrees of freedom,,  The half-span involves about 
twice as many nodes, elements, and degrees of freedom (ref. 11).. 

Linear and nonlinear SCOPE emulations were executed. For each 
analysis, the primary memory allocation was established to minimize 
computer run costs for various numbers of substructures. 

Table 5 provides a sampling of results. 

These and similar data suggest the following: 

1. The benefit of optimum substructuring for small 
problems (less than 500 D.O.F.) does not justify 
their emulation. 

2. The SCOPE code reflects the advantage of avoiding 
substructuring when the problem is small and sub- 
structuring for larger problems to balance total 
primary memory costs. 

3. Considering 15 load steps and averaging three 
iteration substeps to simulate nonlinear material 
effects increased computer time to about 16 times 
that of a linear analysis suggesting the desira- 
bility of minimizing load steps and the small penalty 
of substep iterations. 

SUMMARY AND CONCLUSIONS 

These pages describe the characteristics and models of SCOPE, a 
finite element analysis emulator.  They present an approach to cali- 
bration to a particular computer and finite element analysis code. 
They describe results of emulating small problems. 

Development, 
conclusionsi 

calibration, and use of SCOPE lead to the following 

1. SCOPE'S accuracy in predicting CPU and FPU time 
depends intrinsically on the accuracy of calibration 
data developed using a particular computer and finite 
element code.  (SCOPE tests on an Amdahl and ELAS 
basis indicate negligible PPU error, but CPU errors 
of about 18 percent.) 

2. Calibration requires actual tests of the hardware - 
the manufacturer's performance specifications were 
not sufficient.  (SCOPE tests indicated that actual 
performance of micro-operators took as much as 
three times the manufacturer's times.) 

3. For small problems (.less than 500 degrees of freedom, 
500 elements) substructuring is undesirable because 
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idle core storage prevents optimum use of 
memory. 

4. For small problems, the penalty for nonlinear 
analysis is nearly proportional to the number 
of load steps. 

The SCOPE code fidelity is established for small problems, 
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Table 1 

SCOPE OUTPUT 

Data Type 

Structural 
Configuration 

Structural 
Behavior 
Characteristics 

Computer 
Configurations 

Computer 
Storage 
Plan 

Solution 
Strategy- 

Required 
Computer 
Resources 

Tabular Printouts 

Finite element type data 
Element connectivity data 
Linear constraints data 

Characteristics of structural equations 
Characteristics of structural materials 
Characteristics of loadings 

Micro operation timing 
Secondary storage timing 
Arithmetic/storage relative costs 

Total primary storage available 
Words reserved for program logic 
Words reserved for substructure data 

Generate/assembly mode 
Stress recovery mode 
Data to be plotted 
Data to be printed 

Micro-operation counts for each F.E.A. step 
Storage requirements for each F.E.A. step 
Computer costs for each and all F.E.A. steps 
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Table 2 

SCOPE CAPABILITIES 

Capability Class 

Structural 
Configuration 

Specifications 

Structural 
Behavior 
Characteristics 

Computer 
Configuration 

Up to 12 00 nodes; 14,0 00 degrees of freedom 
Rod, beam, membrane, plate, shell and globe 

elements 
Analytical, reduced integration, complete 

integration, over-integration elements 
Up to 6 4 nodes/element 
Any number of element types/model 
Isotropie, orthotropic, and anisotropic 

materials 
One, two or three dimensional geometry 
Any number of linear constraints; up to six 

nodes per constraint 
Element and nodal loads 

Linear or nonlinear material 
Linear or nonlinear geometry changes 
Temperature varying or isothermal 
Static, rate, or acceleration dependent 

Uniprocessor 
Random and/or sequential secondary storage 
Serial execution of micro-operations (add, 

subtracts, . , . 
Off line, printing and plotting 
Any fixed number of words of primary memory 
Unlimited secondary memory 
In-core or chained finite element code 



Table 3 

TIMING FOR MICRO-OPERATIONS ON THE 
AMDAHL 470 V/8 COMPUTER 

MACHINE CYCLE TIME = 26 nano-seconds 

ITEM MICRO-OPERATION 

MANUFAC- 
TURER'S 
TIMING 
IN NANO-SECS 

AVERAGE 
TIMING 
IN NANO-SECS 

NUMBER 
OF 
COMPUTER 
CYCLES 

1. INTEGER ADD OR SUB 32 47 1.81 

2. INTEGER MULTIPLY 112 165 6.35 

3. INTEGER DIVISION 812 752 28.92 

4. INTEGER FETCH 32 100 3.85 

5. INTEGER STORE 32 100 3.85 

6. COMPARE 244 760 29,23 

7. FLOATING POINT ADD OR SUB, 96 168 6,46 

8. FLOATING POINT MULTIPLY 132 336 12.92 

9. FLOATING POINT DIVISION 440 685 26.35 

10. FLOATING POINT FETCH 100 3,85 

11. FLOATING POINT STORE — 100 3.85 

12. SIN FUNCTION 5620 216.15 

13. COS FUNCTION 5650 217.31 

14. TAN FUNCTION — 7360 283.08 

15. SQUARE-ROOT FUNCTION — 6470 248,85 

16. DISK ACCESS         25 ,000,000 961,538,46 

17. DISK WORD TRANSFER 3340 128,46 
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Table   4 

COMPUTER RESOURCE NEEDS FOR 
SPAM BRIDGE ANALYSIS 

ONE»FOURTH 

NUMBER 
OF 

SUBSTRUCTURE 

PRIMARY 
MEMORY SIZE 
(in kilowords) 

PRIMARY MEMORY 
USE TIME 

(in megacycles) 
ANALYSIS COST 
(in megacycles) 

1 35 »00 1210 1350 

1 25.00 1210 1310 

1 22.10 1210 1300 

1 10.22 1210 1250 

2 8.22 1220 1250 

3 7.52 1230 1270 

6 7.02 1270 1300 

9 6.75- 1300 1333 

Table   5 

COMPUTER RESOURCE NEEDS FOR ONE-HALF 
SPAM BRIDGE ANALYSIS 

NUMBER 
OF 

SUB- 
STRUCTURE 

PRIMARY 
MEMORY SIZE 
(in Kilo- 
words) 

PRIMARY MEM. 
USE TIME 
(in mega- 
cycles) 

LINEAR 
ANALYSIS 
COST 
(in megacycles) 

NONLINEAR 
ANALYSIS 
COST 
(in megacycles) 

NON- 
LINEAR 
COST 
FACTOR 

1 

2 

3 

14.32 

10.32 

10.22 

2350 

2360 

2370 

2460 

2440 

2450 

38500 

38200 

38400 

15.7 

15.7 

15.7 

1<5S 
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THE FINITE ELEMENT MACHINE:  An Experiment in Parallel Processing 

0. 0. Storaasli and S. W. Peebles 
NASA Langley Research Center 

Hampton, Virginia 

T. W. Crockett and J. D. Knott 
Kentron Technical Center 

Hampton, Virginia 

L. Adams 
University of Virginia 
Charlottesville, Virginia 

SUMMARY 

The Finite Element Machine at the NASA Langley Research Center is a pro- 
totype computer designed to support parallel solutions to structural analysis 
problems.  This paper describes the hardware architecture and support software 
for the machine, initial solution algorithms and test applications, prelimi- 
nary results, and directions for future work. 

INTRODUCTION 

A large class of structural analysis problems is solved by computer using 
finite element and finite difference approximation techniques.  Although these 
problems have traditionally been solved on conventional sequential computers, 
an analysis of these methods shows that they contain many calculations which 
could be performed simultaneously, thereby reducing the time required for a 
solution (ref. l).  To support this concurrency, special computers are needed 
which can perform many operations in parallel.  One option is to construct 
vector computers which operate on large arrays of data, but this approach is 
only effective when the data can be structured appropriately. A different 
approach is to construct a machine which consists of a large number of 
general-purpose processing elements coupled together in a parallel architec- 
ture. Advances in microcomputer technology during the last decade have 
reduced the size and cost of computing elements, making construction of this 
type of parallel processor increasingly practical.  Such processors are being 
actively investigated for their potential uses.  Examples include CM* and 
C.mmp at Carnegie-Mellon University (ref. 2), ZMOB at the University of 
Maryland (ref. 3), and the New York University Ultracomputer (ref. h). 

Work is currently underway at NASA Langley Research Center to investigate 
solutions of structural analysis problems using parallel microprocessor 
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systems«  Research topics Include hardware configurations;, software design, 
problem partitioning, and numerical algorithms«  As part of this effort, a 
prototype parallel processor designated the Finite Element Machine (FEM) is 
being built and evaluated.  This paper describes the Finite Element Machine, 
its support software, current applications and algorithms, and preliminary re- 
sult S o 

ü'^-l DM3' SnpTL.-p- riUr 

To support parallel processing, an appropriate combination of hardware 
features and system software is needed»  This section first outlines the FEM 
hardware organization, and then describes two packages of system software de- 
veloped to provide control and run-time support« 

Hardware Architecture 

The architecture of the Finite Element Machine was specifically designed 
to support a parallel decomposition of structural problems by assigning nodes 
in the structural model to processors in the machine (refs, 1, 5, and 6)« 
This approach is illustrated in figure 1 with an idealized wing model«  The 
calculations to be performed at nodes in the model are mapped onto the array 
of microprocessors«  The lines drawn between microprocessors indicate depen- 
dencies between nodes which lie on the same finite element, but have been 
mapped into different processors«  Because of these dependencies, data trans- 
fer is required between these processors«  The number of structural nodes is 
not limited to the number of processors, since multiple nodes may be assigned 
to a single processor (see, for example, ref« 7)«  The mapping of nodes onto 
processors is discussed in more detail in later sections« 

The Finite Element Machine is a multiple-instruction multiple-data (MIMD) 
parallel processor consisting of an asynchronous array of interconnected 
microcomputers (the Array) linked to a minicomputer front end (the Control- 
ler)«  A block diagram of the architecture is shown in figure 2«  Unlike many 
multiprocessor designs which use large shared memories, the FEM architecture 
provides each processor with its own local memory, and no sharing is 
possible«  Instead, special communication hardware (described below) allows 
the processors to communicate with each other«  The current prototype machine 
(figure 3) is being built in stages of k,   l6, and 36 processors«  In princi- 
ple, however, the architecture could be expanded to accommodate large numbers 
of processors (perhaps hundreds or thousands)«  At this writing, a four- 
processor Array is operational and the hardware for the l6- and 36-processor 
stages is nearly complete« 

All processors in the Array are identical and consist of a l6-bit micro- 
processor, an attached floating-point unit, 32K bytes of random access memory 
(RAM), and l6K bytes of read-only memory (ROM)«  Serial I/O ports called 
"local links" provide data communication paths between a processor and up to 
twelve of its neighbors«  The local links are reconfigurable and can support a 
variety of interconnection topologies«  A time-multiplexed parallel "global 
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bus" connects all processors to each other and to the controller, and provides 
a general-purpose secondary communications path. A network of binary flags 
spans the Array and is used for processor synchronization and other signaling 
needs. A distributed "sum/maximum" network computes the sum and maximum of 
the inputs from all of the processors.  This can be used for global 
calculations (ref. 8), cooperative sorting, and processor sequencing.  For 
more details on the Array hardware, see reference 9» 

The Controller is a small minicomputer which initiates and monitors 
activity on the Array and provides mass storage for programs and data on 
attached peripherals.  It also hosts the user interface to the system, 
including interactive graphics. 

Controller Support Software 

The Controller provides the user with program development tools and the 
ability to define problems, activate and monitor the Array, and obtain and 
process results.  The Controller runs a general-purpose disk-based operating 
system accessed by a menu-driven command interpreter.  Commands on the 
Controller are implemented as control language procedures.  All FEM commands 
are constructed in this manner.  This approach presents the user with a 
consistent interface which is a natural extension of the Controller operating 
system.  The system software provided on the Controller can be divided into 
four functional areas of support:  program development, problem description, 
program execution on the Array, and post-processing or analysis. 

Program development on the Controller is supported primarily by the 
vendor's standard software.  A screen editor, an assembler, a reverse 
assembler, a Pascal compiler, and a link editor are available.  Parallel 
application programs for the Array are written in Pascal; support for the FEM 
architecture is provided by a library of special routines.  Users ordinarily 
select a program from a package of solution algorithms available for general 
use.  Should a user prefer to write his own solution code or require special 
post-processing of data, he has access to all the necessary tools on the 
Controller. 

Before executing the parallel solution program, the user must model his 
problem and provide data in accordance with the protocols of the intended 
solution algorithm.  An interactive graphics interface allows the user to 
model structures and generate nodal coordinates, element connectivity, 
material properties, and constraints.  As an alternative, the user may choose 
to create or modify data files using the text editor or his own utility 
program. 

Normally, the program execution environment is established by entering a 
single Controller command.  One command can be structured to call all 
necessary sub-commands via the command interpreter.  Typically, the execution 
session involves Array initialization, selection of the Array configuration 
desired, downloading the selected algorithm and any necessary data, and 
entering an interactive execute mode.  During program execution on the Array, 
all messages from a preselected reference processor and errors from all 
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processors are displayed on the user's CRTo  Processors can send messages, 
make interactive queries, and report error conditions at any time during the 
execute sequence» 

Three files are maintained for the user during execution on FEM»  A 
"FEMDATA" file records all data transferred to the Controller, formatted in 
accordance with its type, and identified by source processor number»  A 
"FEMLOG" file is used to record events over the course of an entire FEM ses- 
sion»  This file is initialized when the Array is reset, and thereafter 
records each command invocation along with its associated data«  For example, 
the command to download a program writes entry and exit messages, the name of 
the file downloaded, status information, and the load and entry addresses of 
the object code for each of the affected processors«  The FEMLOG also records 
the source and error number for all errors as they occur.  This process pro- 
vides the user with a session record for later reference or analysis»  A 
"FEMERROR" file is initialized at the beginning of each commando  This file is 
used to record errors detected within the scope of a single command»  It con- 
tains the error number, severity, source, processor status information, and an 
expanded error message for each error detected»  If an error is detected 
during execution of any command, the FEMERROR file is displayed upon exit» 

Additional user support is provided in the form of interactive debug com- 
mands»  Debugging commands allow the user to dump memory and set breakpoints, 
to single step, halt, kill, and resume tasks, and to inspect and change 
status, registers, and memory»  In addition, the Array keeps execution 
statistics and can be directed to trace execution and check in with the 
Controller at regular intervals to maintain confidence during long 
computations» 

Software support on the Controller for post-processing and analysis of 
data consists of a set of utility programs»  Commands are provided to sort the 
data file to provide a listing of communications by processor, analyze the 
trace information to determine where each processor spent its time during 
execution, and upload and format the results of computations on the Array»  In 
addition, information such as nodal displacements can be displayed in graphic 
form (see figure *+)» 

System Software for the Array 

System software for the array of microprocessors consists of an operating 
system, a subroutine library, and a set of diagnostics»  The relationships of 
these components to each other and to the applications software are shown in 
figure 5»  Although diagnostics are vitally important for the validation and 
maintenance of a computer system, they are beyond the scope of this paper. 

A complete copy of the operating system, called Nodal Exec, is stored in 
ROM on each of the microcomputers in the Array»  Nodal Exec is divided into 
two major sections, a nucleus and a package of command routines»  The nucleus 
(the innermost portion of the operating system) provides such functions as 
interrupt handling, basic I/O, timing, memory allocation, task management, and 
a command monitor» 
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Command routines are used to implement all functions which the Controller 
may direct the microcomputers to perform. Such functions include downloading 
object code and data, establishing processor connectivity, executing programs, 
and uploading results. Several debug commands are also available to read and 
modify memory locations, inspect registers, set breakpoints, and step through 
instruction execution. The philosophy of Nodal Exec is to provide sufficient 
functionality with a set of relatively simple commands so that the Controller 
software can combine them into a sophisticated user interface. 

A library of Pascal-callable subroutines, PASLIB, provides support facil- 
ities for application programs.  The PASLIB routines are essentially an exten- 
sion to Nodal Exec, serving as high-level supervisor calls or, in some cases, 
interfacing directly to hardware functions.  They allow user programs to com- 
municate with other processors and with the Controller, to use the flag and 
sum/max networks, to access data areas, and to perform arithmetic using the 
floating-point processor.  Frequently used mathematical subroutines U-g-, 
vector dot product) are also available which use the stack architecture of the 
floating-point unit to optimize performance.  The most commonly used PASLIB 
routines are stored in ROM on the processors.  The remaining routines reside 
in a library file on the Controller where they can be linked to user programs 
and downloaded with the object code. 

Nodal Exec and PASLIB support three major concepts which are important in 
understanding the flow of data on FEM:  data areas, connectivity, and inter- 
processor communication.  Explanations of each of these concepts are presented 
in the subsequent paragraphs. 

Data areas are the primary mechanism for transferring data between the 
Controller and the application programs running on the processors in the 
Array.  Data areas required by an application are allocated in each proces- 
sor's memory prior to program execution.  They contain space for a specified 
number of data items of a particular type.  Allowable data types are integer, 
long integer, real, double precision, or user-defined records.  Once alloca- 
ted a data area can be filled with data from the Controller, initialized to 
some value, or left empty.  Application programs reference data areas_via 
pointer variables.  Data areas can provide input to the program, receive out- 
put or both.  Since data areas exist independently of the programs which 
access them, they can be used to pass information between separate programs 
which execute in a series.  When a program (or series of programs) is 
finished, results stored in data areas are uploaded to the Controller for file 
storage or post-processing. 

Connectivity is the concept of establishing communication paths between 
programs executing on different processors.  Connectivity may be viewed at two 
levels, the logical problem level and the physical processor level.  Logical 
connectivity refers to the interconnections between nodes in a structure by 
virtue of the fact that the nodes lie on the same finite element.  Physical 
connectivity refers to the physical I/O interconnections between processors. 
For simple or regular structures, mapping the logical interconnection pattern 
onto the planar mesh of physical processors may be straightforward._ In 
general, however, the mapping problem is difficult and the local neighbor 
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connections are insufficient; therefore, the global bus must be used.  Bokhari 
has addressed, this problem and developed an algorithm which attempts to maxi- 
mize the use of the local links (ref, 10),  This algorithm is implemented on 
the Controller by an auxiliary program whose output is the logical-to-physical 
•napping of node numbers to processor numbers, 

Interprocessor communication takes place via the local and global I/O 
paths which were enabled during the connectivity process.  Communication is 
based on the transmission of records which contain from one to 255 data 
words.  An associated tag word in the record header is used to distinguish the 
information content when multiple records are sent to the same processor, 
Interprocessor communication is handled either synchronously or asynchronously 
by the system software.  If synchronous mode is used, input from a neighboring 
processor is queued in the order in which it is received, and it must all be 
read and processed by the receiver.  In the asynchronous case, only the most 
recently received record (for each different tag) is saved.  An algorithm 
which uses this asynchronous or "chaotic" communication technique Is discussed 
in the next section. 

CUBSEIrT ÄL&QEITF1S MB  APPLICATIONS 

To solve structural problems in parallel requires the development of 
algorithms to support parallel computations and a scheme to partition the 
structural model for distribution among the processors.  The following section 
discusses the assignment of problems to the Array, and gives results from 
several applications run on the four-processor version of FEM, 

Problem Pa rtitioning 

Factors that influence the design of an appropriate algorithm for solving 
problems on FM Include the structural region discretization, the number of 
processors available, and the amount of communication required between proces- 
sors.  The following example Illustrates these considerations. 

Figure 6a shows a cantilevered rectangular plate in plane stress con- 
strained on one edge and loaded on the opposite edge,  If"the plate Is discre- 
tized by- linear triangular finite elements, a structural node is common to at 
most six elements, and is connected to at most six other nodes (see figure 
6b),  This is significant because It implies that in the system of equations 
for the vector of displacements,   us  the stiffness matrix,  K,  is a sparse 
matrix containing at most ik  nonzero entries in each row? 

K v. :D 

Twelve of these entries represent contributions of the six neighboring nodes 
(two per node) to the solution at a given node while two additional entries 
are contributions from the given node itself. 
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The sparsity of the stiffness matrix,  K,  suggests that an iterative 
algorithm could be used to solve equation (l) by assigning one processor to 
calculate displacements at each node in the plate.  For maximum efficiency, an 
algorithm should be developed such that each processor would only need to com- 
municate information to its six neighbors via the dedicated local links, as 
shown in figure 6c  This scheme is feasible only if the number of processors 
is not less than the number of structural nodes and if a suitable iterative 
algorithm can be found to take advantage of the connectivity shown in figure 
6c.  Furthermore, such an algorithm is efficient only if the overhead due to 
communication between processors is not prohibitive. 

In most instances, the number of structural nodes exceeds the number of 
available processors.  For these cases, it is necessary to assign multiple 
nodes to a processor and to develop algorithms to solve for the displacements 
at these nodes.  Figures 6d and 6e show, respectively, how nodes of the plate 
can be assigned to a h-  or l6-processor Array.  The local links that are used 
by the processors in figures 6d and 6e are illustrated in figures 6f and 6g. 

Even though FEM was designed with finite element discretizations in mind, 
the architecture also supports the solution of problems that are discretized 
by finite difference techniques.  Two such problems and their associated dis- 
cretizations are given in figure 7.  The five star discretization of the mem- 
brane equation is shown in figure 7a and the discretization for the plate 
equation is given in figure 7b.  For a one node per processor assignment, the 
iterative solution of the membrane equations using the discretization of 
figure 7a requires four local links of each processor while the iterative^ 
solution of the plate equation using the discretization of figure 7b requires 
all twelve of the local links.  In the case of multiple nodes per processor, 
the solution algorithm determines the proper assignment of nodes to proces- 
sors.  In the following, algorithms that have been run on FEM for both finite 
element and finite difference discretizations are discussed. 

FEM Applications 

Solution algorithms for the first applications run on FEM used three 
standard iterative methods:  Jacobi, conjugate gradient, and successive over- 
relaxation (SOR).  These methods contain suitable parallelism and were used to 
solve sparse symmetric positive definite systems of linear structural equa- 
tions resulting from finite element or finite difference discretizations. 

Smith and Loendorf (ref. ll) solved a cantilevered wing box finite 
element model using the basic Jacobi iterative method.  This small problem 
provided a useful benchmark for assessing a number of performance issues. 
Their results for one, two, and four processors show that the increased 
overhead for interprocessor communication largely offset the improvements 
gained by distributing the computation, thereby resulting in only modest 
reductions in the solution time.  Their analysis suggests that there is a 
break-even point beyond which additional partitioning of a problem is 
ineffective.  The results from this problem have also prompted a re-thinking 
of processor communication strategies and several modifications have been 
proposed to reduce overhead. 
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The same problem was also solved using an asynchronous Jacobi iterative 
method (see Baudet, ref» 12) in which each processor performs its calculations 
independently with no synchronization among processors»  Intermediate results 
were passed between processors using the asynchronous communication mode dis- 
cussed previously»  The asynchronous Jacob! algorithm was run using two and 
four processors, and the results were inconclusive»  In both cases, the 
asynchronous method required less time per iteration than the standard Jacobi 
technique, and the program converged to results which were similar to those of 
the standard Jacobi»  However, the number of iterations required for conver- 
gence differed, with the two-processor case using about the same number as the 
standard Jacobi, and the four-processor case using more.  The result was that 
for two processors, the asynchronous method slightly outperformed the standard 
Jacobi, but with four processors, the reverse was true»  Further experimenta- 
tion with modified communication procedures and other application problems is 
needed to better assess the asynchronous approach» 

While the Jacobi iteration can be easily adapted as a parallel technique, 
it is not guaranteed to converge for general symmetric positive definite sys- 
tems»  The SOR method is guaranteed to converge for these systems, but is 
sequential in nature»  To parallelize the successive overrelaxation method for 
FEM, the problem must be partitioned in such a way that the system is decou- 
pled»  A classical method of decoupling is the Red/Black ordering (ref» 13) 
for Laplace's equation»  This procedure colors the discretization grid in a 
checkerboard fashion»  Then an SOR sweep can be carried out by two Jacobi 
iterations, one on the equations corresponding to the red points, and one on 
the equations corresponding to the black points»  This strategy does not work 
for higher order finite difference or finite element discretizations, however, 
because two colors are insufficient to decouple the system»  Adams and Ortega 
(ref» 7) have developed a new iterative method that they call "Multi-Color" 
SOR which is a generalization of the Red/Black ordering»  In Multi-Color SOR, 
an ordering is imposed on the sequence in which the displacements at the nodes 
are calculated, based on the number of colors required for decoupling.  For 
example, if three colors (red, black, green) are used, the displacements for 
each color can be calculated by the processors in parallel»  Each iteration of 
the algorithm first computes all red values, then all black values, and 
finally all green values»  This scheme allows SOR to be implemented as a mul- 
tiple sweep (one for each color) Jacobi-type method on FEM= 

To test this method, Laplace's equation was solved on a square region 
discretized by quadratic triangular finite elements for which six colors are 
necessary and sufficient to color the discretization.  This six-color SOR 
algorithm was programmed on a minicomputer to test its convergence properties 
and on the four-processor FEM to test its suitability for parallel implementa- 
tion»  A comparison showed that the problem converged with identical results 
on both machines, 

A plane stress analysis of a plate was used to compare the Multi-Color 
SOR algorithm to the standard conjugate gradient method»  The computer program 
for this procedure can be used to solve large plate problems by assigning 
three structural nodes to each processor or by assigning any multiple of three 
nodes to each processor if the number of processors is limited»  The 
components of the program include the following: 
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1. Parallel assembly of stiffness matrix K 

2. Three-color SOR solution of K u = f 

or alternatively, 

Conjugate gradient solution of K u = f 

3. Parallel stress calculation 

The Array can be used to assemble, in parallel, the stiffness matrix from the 
problem data without any communication between processors. Linear triangular 
finite elements are used to discretize the plate so that three colors are 
necessary and sufficient to implement SOR (see ref. 7)• The calculation of 
the stresses can also be done in parallel without any processor communica- 
tion. A more detailed description of the matrix assembly and the stress cal- 
culation processes is given in reference Ik. 

A comparison of the performance of four processors to one processor on a 
plane stress problem with 60 degrees of freedom is given in table 1.  These 
speedups reflect the execution times of both the solution algorithms and the 
underlying system software.  The maximum theoretical speedup for a four- 
processor system is ^.00.  The processor efficiency values given are a measure 
of the overhead required for synchronization and communication in the multi- 
processor case.  Improved interprocessor communication times should increase 
the efficiency of these algorithms on FEM. 

FUTURE DIRECTIONS 

The solution of the plane stress analysis of a plate on FEM was felt to 
be a good starting place to address the issues of parallel matrix assembly, 
parallel displacement calculation, and parallel stress calculation.  The 
experience gained by solving this problem provides a basis for the solution of 
more complex structural problems. 

Although the initial applications of FEM have been based on iterative so- 
lution approaches, Gannon (ref. 15) has demonstrated that the architecture is 
sufficiently flexible to permit direct solution techniques.  The study of such 
techniques on FEM is a major research area currently being investigated. 

In conjunction with algorithm development, alternative processor inter- 
connection strategies may also be investigated.  To date, the local links have 
only been configured in an eight-nearest-neighbor planar mesh topology with 
toroidal wrap-around at the edges.  This scheme leaves four of the links un- 
used.  Since the local links can be reconfigured by merely unplugging and re- 
arranging the interconnecting cables, other topologies such as trees, rings, 
perfect shuffles (ref. 16), or cube-connected cycles (ref. 17) are possible. 
Because of the relatively large number of links per processor, it would even 
be possible to implement multiple interconnection patterns simultaneously 
(e.g., eight-neighbor mesh plus shuffle-exchange).  The development of 
algorithms to make efficient use of alternate topologies is another topic for 
research. 
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Table JU  Spssänp latios for the Plane Stress Problem 
on Four Processors ~TS =   'One Processor 

Algorithm 

Stiffness Matrix Assembly 

3-Color SOR (K u = f ) 

Conjugate Gradient (K U = 

Stress Calculation 

Speedup 

3 20 

2 81* 

2 ,82 

k ,00 

Processor Efficiency 

11% 

n% 

100% 
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Figure 3.- Prototype finite element machine hardware, 
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Figure 7>- Finite difference discretizations, 
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A MIXED FORMULATION FINITE ELEMENT 

FOR LINEAR THIN SHELL ANALYSIS 

S.W. Lee and S.C. Wong 
Department of Aerospace Engineering 

University of Maryland, College Park, Maryland 

SUMMARY 

An eight node curved thin shell element has been developed and tested.  The 
element is based on the degenerate solid concept and the mixed formulation with the 
independent inplane and transverse shear strains.  The number of unknown parameters 
in the assumed strains is chosen to alleviate the spurious constraining or locking 
effect.  Numerical results for a pinched cylindrical shell with diaphragmed ends and 
fixed ends indicate reasonably good performance of the present element. 

INTRODUCTION 

The degenerate solid approach (ref. 1) has been the subject of considerable 
research interest since it does away with the need for more complicated shell 
theories and can be used to model arbitrary shell geometries.  In addition, the 
interelement compatibility requirement is easily satisfied.  The degenerate solid 
approach can also be quite readily extended to problems involving geometrical and 
material nonlinearities.  For plate bending, the degenerate solid approach reduces 
to the Mindlin theory with the effect of transverse shear deformation included.  Un- 
fortunately, however, for thin plates and shells the inclusion of the transverse shear 
strain effect in the finite element modeling introduces an undesirable locking or 
overconstraining effect when exact integration is used for the generation of element 
stiffness matrices.  For thin curved shells, an additional locking effect associated 
with inplane deformation and rigid body modes has been identified.  Left uncured, 
the locking phenomenon imposes severe limitations on the deformation behavior of a 
finite element model. 

In an effort to alleviate locking, the reduced and/or selective integration 
schemes have been used (ref. 2-6).  In another development, Lee and Pian (ref. 7) 
showed that the locking or spurious overconstraining effect can be alleviated by 
using the mixed formulation based on the Hellinger-Reissner principle or a modified 
Hellinger-Reissner principle.  In special cases, the mixed formulation is equivalent 
to the reduced and/or selective integration scheme (ref. 8 and 9).  In reference 10, 
two plate bending elements, designated as PLAT8 and PLAT8H, have been developed 
following the mixed formulation.  In these elements, proper sets of assumed independ- 
ent transverse shear strains were used to eliminate spurious constraint.  Good 
modeling characteristics of these elements were demonstrated by solving various 
example problems which cover wide ranges of length to thickness ratios. 

Encouraged by the result of ref. 10, in this paper an eight node finite element 
with 40 degrees of freedom has been developed for analysis of thin shell structures. 
The element is based on the Ahmad's degenerate solid concept and the mixed 
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formulation with the assumed independent inplane strains and transverse shear 
strains.  The formulation and some numerical results for a pinched cylindrical shell 
are given in subsequent sections. 

FINITE ELEMENT FORMULATION 

The degenerate solid concept (ref. 1) is well described in existing textbooks 
on the finite element method.  Sees for example, Zienkiewicz (ref. 11) and Cook (ref. 
12).  In this approach, we need basically two coordinate systems.  A global coordi- 
nate system with Cartesian coordinates X, Y, Z and local coordinate systems located 
at the shell midsurface (fig. 1).  The local coordinates with orthogonal unit vectors 
a , a and a„ are defined at the element nodes and at the Gaussian integration 

points.  The local coordinate system at the nodes is prescribed as an input to the 
element subroutine.  For the local orthogonal coordinate system located at an inte- 
gration point, the x and y axes are tangential to the midsurface with the x axis 
parallel to the £ coordinate.  The z coordinate is normal to the Imidsurface.  The 
geometry of a shell element is defined by expressing the global coordinates of a 
point in the shell as follows: 
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where  X., Y., Z. = global coordinates at node i 
ill 

t. = shell thickness at node i 
l 

a„. = i component of the unit vector a„ normal to the midsurface at 
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node l 

N. = shape function 

5, n s ? = parent coordinates 

The three displacement components U5 V and W with respect to the global coordinate 
system are assumed as follows: 
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where u., v., w. are nodal displacements at node i defined with respect to the nodal 
ill .        . 

local coordinate system.  The nodal rotation angles  (j>,  and <j>„  are defined such 
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that <f.i represents the rotation around the t, axis while <^ is the rotation around the 

a axis.  Each node has five degrees of freedom. 

With the description of geometry and displacement given above, it is easy to 
establish a relationship between the strain components in the global coordinate 
system and the nodal degrees of freedom.  For a degenerate solid shell  it is 
necessary to express the strain-nodal-degrees-of-freedom relationship for the local 
coordinate system located at an integration point.  Therefore a strain transformation 
is required at each integration point. 

In the mixed formulation, based on the modified Hellinger-Reissner principle, 
it is necessary to introduce the assumed independent inplane strains and transverse 
shear strains.  With a proper set of assumed strains, it is possible to avoid locking 
or overconstraint without triggering unstable spurious kinematic modes.  Therefore 
maximum care must be exercised in the choice of assumed strains.  For the present 
eight node element, the following two sets of assumed inplane strains were tested: 

(1)  12a version with 

+ a2 K  +   a3n + a^n e  = a 
xx 

e  = ar + a, E,  + a^n + a ?n 
yy     5     6       /      Ö 

(3) 

£xy = a9 + al0? + "ll^ + ai2?n 

(2)  11a version with 

£xx = al + a25 + V + a45T1 

'yy 
a,- + a,5 + a-n + ag5n 

(4) 

Exy = a9 + a105 + alln 

In general  the 11a version should be less susceptible to overconstraint than the 
12a version.  The following two sets of the assumed independent transverse shear 

strains were tested: 

(1)  63 version with 

e  = 3 + 39£ + ßon xz   1   ^    J 

V - h +  ß55 + ^ 
(5) 

(2)  53 version with 

e       =  3,   + 30? + ß,n XZ 1 2 5 

e       = 3,   + 3o? + 3sil 
yz 4 J -> 

(6) 
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In reference 10, it was shown that the 53 version is less susceptible than the 
63 version to locking especially when the element geometry is non-rectangular.  Note 
that the above independent inplane and transverse shear strains are defined with 
respect to the local coordinate systems defined at integration points. 

For the numerical integration, the 2x2 point rule is used.  A higher order 
3x3 point integration could be used.  However it will result in more computing time. 

NUMERICAL EXAMPLE 

A pinched thin cylindrical shell (fig. 2) was chosen as an example to investi- 
gate the performance of the present shell element with different combinations of the 
assumed independent inplane and transverse shear strains.  Two boundary conditions, 
one with diaphragmed ends and the other with fixed ends, were considered.  Due to 
symmetry, only 1/8 of the shell was modeled by uniform 4x2, 5x3, 6x4 and 7x5 
meshes.  The first integer in each mesh indicates the number of element divisions in 
the circumferential direction.  Two different radius-to-thickness (R/t) ratios were 
considered. 

(a)  Diaphragmed Ends 

In figures 3 and 4, the computed nondimensional deflection w = —— at the 
R R 

load point is given for - = 100  and - = 500  respectively.  The solutions for 

different assumed strains seem to converge as the size of mesh increases.  The 
number of degrees of freedom shown in the figure are those after applying the bound- 

"p 
ary conditions.  For — = 100, the computed nondimensional axial inplane force 

MR N _ R ax 
ax    P 

B-C in figures 5 and 6 

(b)  Fixed Ends 

and circumferential inplane force  N 
cir are given along the line 

Computed nondimensional deflection w = —— at the load point is given in 

figures 7 and 8 for the fixed ends.  Again the solutions for different combinations 
of assumed strains seem to converge as the number of elements increases.  The 11a - 5£ 
combination seems to perform slightly better than other combinations.  However, the 
differences are small. 

DISCUSSION AND CONCLUSION 

Numerical results indicate that the present eight node element performs reason- 
ably well for both diaphragmed and fixed ends.  Solutions with different combinations 
of assumed strains seem to converge.  Although the 11a - 53 combination seems to be 
the best, other combinations also look good.  However, it should be pointed out that 
in the present calculation, only regular meshes were used.  That is, no distorted 
element meshes were considered.  As demonstrated in reference 10 for the plate bending 
problem, the performance of a particular choice of assumed strains can be degraded 
appreciably when the element geometry is distorted.  Therefore further investigation 
is needed to clarify the effect of element geometry.  In addition, the present 

222 



element possesses spurious kinematic modes. For the present example problem with 
diaphragmed and fixed ends, these kinematic modes are suppressed and do not cause 
any problem. However, research is needed to find a means of controlling spurious 
kinematic modes for all boundary conditions. 
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Figure 1.  Coordinate Systems for Shell Element 
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Figure 2.  A Pinched Cylinder (4x2 mesh) 
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AN EXACT ZOOMING METHOD FOR FINITE ELEMENT ANALYSES 

Itio Hirai 
Kumamoto University, Japan 

Bo Ping Wang and Walter D. Pilkey 
University of Virginia 

SUMMARY 

In this paper, an exact zooming technique is developed which employs static 
condensation and exact structural reanalysis methods. For a multiple level of zooming 
such that the successive level of zooming is contained within the prior levels of zoom, 
successive application of static condensation will reduce the system to one that is 
only associated with the degrees of freedom (dof) of the original model. Then, 
application of an exact static reanalysis technique permits the displacements at the 
dof of the original model that are contained in the zoomed portion of the structure to 
be obtained first. Next, the response external to the zoom, as well as the response 
of additional dof within various levels of zooming, can be computed. With the 
triangular factor of the stiffness matrix of the original system available, this 
approach involves only the solution of a system of equations of small order. The 
proposed method is demonstrated by a numerical example. 

INTRODUCTION 

In stress analyses using finite element methods, the mesh of the model is often 
non-uniform. In general, finer meshes are required in locations where rapid changes 
of stress may occur. To investigate the convergence of the solution, several different 
mesh configurations may be utilized. A conventional finite element analysis requires 
a complete assembly of system matrices and a new solution for each mesh used. In many 
analyses, the changed mesh may be limited to a small "local" portion of the system. 
Then, the mesh refinements constitute an attempt to "zoom" into the local area to study 
the detailed stress distribution. In this paper, an exact zooming technique is 
developed. This method permits the stress distribution in the zoomed area to be 
investigated with the same accuracy as the direct, brute-force approach, yet with 
reduced computational requirements. 

The exact zooming method presented here employs static condensation (ref. 1) and 
exact structural reanalysis methods (refs. 2,3). For multiple levels of zooming such 
that each successive level of zooming is contained within the prior levels of zoom 
(figure 1), successive application of static condensation will reduce the system to one 
that involves only the dof of the original model within the zoomed portion of the 
structure. Then, application of an exact static reanalysis technique permits the 
displacements at these dof to be obtained. All other responses of interest can then 
be calculated. This approach involves only the solution of a system of equations of 
small order if the triangular factor of the original stiffness matrix has been 
computed. 

This method is demonstrated by solving the classical problem of finding the stress 
concentration factor of a rectangular plate in plane stress with a center hole. 
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DEVELOPMENT OF THE METHOD 

Let {uQ}r [K^], and {FQ) be the displacement vector,  stiffness matrix,  and 
loading matrix of the original system before zooming.  The system is of order n . 
Partition the dof into two sets, {u } representing the n  dof which are outside the 
zoomed area and fu I representing t$e n, dof that are contained in the zoomed area 
Note that n = n T n . D 

o   a   b 

The displacement equation for system 0 is 

[K ]{u } = {F } 
o   o    l o 1) 

or 

K    K , 
aa   ab 

ba   bb 

(o) 
a 

(o) 
b 

F 
a 

(2) 

Assume equation (l) has been solved for (u },  which has decomposed fK ] 
° * o" 

[K ] = [L3[D][L/] 
o 3) 

For the purposes of discussion, assume fK ] X  is known 
" o 

First Level Zooming 

Suppose one level of zooming is imposed on system 0. For example, see system 1 
of figure lb.  Let {u^  be the n  new dof introduced by the first level zooming 
Then, the total number of dof of system 1 is t  = n  + n The governing equation of 
system 1 can be written as                       °   1 

[K(1)
](u

(1)) - {F
(1)} (4) 

where 

, (IK {u   } = 

r   (i) " u 
o 

(I) 
. ul   . 

r u
(1) 
oa 

u (1) 
'ob 

(1) 

(5) 
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(F(1M   - 

oa 

ob 

0 

(6) 

Here  the  superscript  /1)   is  used  to  indicate  that  this   is   first  level  zooming. 
stiffness matrix [K       ]   in partitioned  form is 

The 

K 

K 

K 

(1) 
aa 

(1) 
ba 

(1) 
la 

K 

K 

K 

(1) 
ab 

(1) 
bb 

(1) 
lb 

K 

K 

K 

(1) 
al 

(1) 
bl 

(1) 
11 

(7) 

By definition of the   {u   }   and   (u^ )   dof 
a '   b 

aa aa 

CKab)]   -   CKab] 

[K*1}]   =   [K.     ] 
ba ba 

al la 

Thus,   the partitioned matrix in  (7) becomes 

(8) 

[K'1», - 

K 
aa 

K 
ba 

K 
ab 

K (1)      „CD 
bb 

K. 
bl 

0 K(1)     K(1) 

° Klb       Kll 

(9) 

Substitute equation (5)  and  (9)   into equation (4): 

~0 

(10a) 

231 



O   K (O W + CW ={0} (10b) 

where 

/c. m 

Prom equation  (10b) 

K>} = - [/cf?]'1 [o  *#]{ t/0w} (ID 

Substitute equation (11) into equation (10a): 

i<S\ W = 05} (12) 

where 

K. to K o) K, a> 
1-1 

K -d) 
Of J L   W_ 

o   K a) 

or 

K1i K, aa K, ab 

We choose to redefine equation (12) as 

• Co) K^ -£K\{U™} =;[F0) 

(13) 

(14) 

where 

r "o     Ö" 
AK = o    £K 

53 

o o 

° Kbh   " ^bb + *•&/ K/f     */£ (15) 

Rewrite equation (14) as 

Mß '00 '06 
AK W (16) 
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Define 

[y]- X 
x 

— \ 

-1 ' o 
AK 

(17) 

Then equation (16) becomes 

oa 
u. n> 
ob 

U. 
Co) 

oa 
(J(o) 

'a 
Y«. '<&) 

(18) 

Thus 

{<4"} -(x -MH« (19) 

Once {u   )]is found, we can use the upper portion of equations (18) and (11) to 
compute {u   ) and {u   ). That is, a l 

{*£>} =W} +[YQ\{uig} (20) 

and 

fo«'}=-[c]"M{^>} (21) 

Equations (19) - (21) complete the displacement solution of system 1. 
variables can be computed readily. 

other response 

This procedure requires the decomposition of an Hn x n matrix ([I]-[Y. ]) 
6, . 6 „ .. b 
of 

and 
an n x n matrix [K  ], together with the computation of the" response of the~original 
model due to n, additional load cases (equation (17)).  A direct solution would 

n and (n +n ) > 
b      1  o 

% 
require solution of a system of (n +n ) equations.  For (n +n )   >   > 
>   n , the present method is definitely more efficient. 

MuIti-level Zooming 

Consider system 2 of figure lc, which has two levels of zooming.  Let (u }   be 
the n additional dof created due to the second level zooming.  Then system 2 has t 
=  n    * n    + n    dof and 

o 1 2 

f(/2>}   = 
U& 
l//'> 
u. (Z) 

(22) 
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E?H- -i ff  ■■■TV     ■  ^ Ct- --■   --• ■ « 

The system equation becomes 

/c C2) {V2>)    ={Ff2}) 
(23) 

where 

K® 

K (2) 

(Z) 
10 

^20 

K (2) 

AC« 

If (2) i 

/c (2) 
12. 

Kff 

J 

(24) 

Substitute equations  (22)  and  (24)   into equation  (23)  and  expand as 

Now,   in expanded  form  for   {u (2) 

we have 

},   i.e. 
(2) 

^-(W 

(25) 

*#>] = 
O   " 

«v?> >]=[o *V6 

(2) 
02 

AJ0 

~0  * 

\!>bz\ 

o    K£] 

(26) 

From equations (25b) and (25c) solve for 

where 

W = (42>- K<*>Kt?'K<?r'(K<*>K<?-'K<l> - K<?) 

Substitute equations (26) and (27) into equation (25a): 

K2)]K2>) + A< kca)} + {"&»}   =  lFo} 

(27) 

(28) 

or 
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p^K«}   = {/*} (29) 

where 

<? K<*> 

*aa 

+ 
O O 

0        KffAt + KgA, 

Kab 
<a>, 

^6a ^66   + KblAi + ^2^2 

(30) 

Substitute equation (30) into (29): 

~K?-AK]{U™}   ={F0} (31) 

where 
ÄK 

AK 

O   Jk 

tf?] - [** + *^A + **%] 
(32) 

Note the similarity between equation (31) and (14).  Following similar procedures, we 
can solve for 

KC2))> {</£*>}, WM«/»} 
The above procedure can be extended to systems 3,4,..., with 3,4,... levels of 

zooming. 

NUMERICAL EXAMPLE 

The proposed zooming procedure is applied to the problem of figure 2. The 400 mm 
x 200 mm plate has a center hole of 50 mm diameter. The plate is 1 mm thick and is made 
of steel with a Young's modulus of 2.059 x 10 N/mm and a Poisson ratio of 0.3. The 
uniform loading is 9.806 N/mm . It is desired to compute the stress concentration 
factor a. Since the plate is symmetric about the x and y axes, a quarter (hatched) 
part of the plate is taken as the finite element calculation model. 

The stress concentration factor a  is defined by 

« = <^axyl°ö y l "o (33) 

where 

a = the maximum stress in the y-direction 
max y 
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o 
= average stress In the y-direcflon at the 
narrower cross section of y = o 

= 980.6/75 = 13.075 N/mm 

The stress concentration factor a    is found from elastic  theory to be theoretically 
a    =2.43, which is used for comparison purposes as the exact solution. 
o 

The analysis begins with the two relatively crude finite element meshes of figures 
3 and 4, respectively. Since the maximum stress occurs near the hole, the region abed 
of figure 4 is chosen for the first level zoom and region aghi within abed is selected 
as the area for the second level zoom. 

The zooming approach proceeds using the finite element meshes shown in figures 3 
to 10. The names of the pmeshes in the figures represent the zooming zone and the mesh 
types. The subscript numbers indicate the zooming levels. If the subscript is zero, 
no zooming operation has been performed and the mesh represents the mesh of the 
original system.  The numbers in the mesh indicate the element numbers. 

The final finite element mesh produced by the several levels of 
indicated by the mesh names 
which is composed of mesh a 

zoominq Is 
For example, the zooming process a —a  produces a mesh 
a portion of which is zoomed to mesh a .   The  second 

o 1 
level zoom process designated as a -a -a means that after the mesh of a -a      is 

d 1    "P O   1 
completed, a portion of this mesh is zoomed to the mesh a . 

Numerical Results 

Starting with mesh a , the stress concentration factor is computed usinq four 
o " 

levels of zooming.  The results are summarized in figure 11.  Also shown in figure 11 
are some direct finite element solutions.  As expected, the direct solution and the 
zooming method yield the same results for the same mesh.  Table 1 summarizes the 
detailed distribution of the stress concentration factor for 3 different 4-level 
zooming solutions. 

The results of figure 11 show that the solution converges to the theoretically 
correct result monotonically from the no-zoom solution to the 3-level zooming solution. 
But the level 4 solution shows disappointing results. We suspect this is due to the 
numerical difficulty of using very small elements. Judging from the irregular 
distribution of the stress concentration factors near the corner having the maximum 
stress (per Table 1), it can be concluded that the type of mesh affects the stress 
distribution. 

CONCLUDING REMARKS 

An exact zooming method for finite element analyses using the displacement 
formulation is presented in this paper. A numerical example demonstrates the 
efficiency and accuracy of the method. This sort of zooming technique can be quite 
useful in stress analysis situations where many different meshes of a model are to be 
employed. This method may also be useful in adaptive mesh generation in analyses 
involving material nonlinearities where remeshing may be required due to high stress 
in some are?: of the model. 

At first glance, the proposed method may appear to be quite similar to 
substructuring techniques. We feel that this is not the case, since with the proposed 
method the analysis leads to new nodes and elements in the original system, whereas 
substructuring techniques connect several subsystems to make a total system. 

236 



REFERENCES 

Bathe,  K.-J.;  E.I.. Wilson:   Numerical Methods in Finite Element Analysis. 
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1976, pp. 259-253. 

Wang, B.P.; Palazzolo. A.B.; and Pilkey, W.D.:  Reanalysis, Modal Synthesis, and 
Dynamic Design. Chapter 8 of Special AMD Publication on State of the Art Survey 
of Finite Element Technology, edited by A. Noor and W. Pilkey, ASME, 1982. 

Wang, B.P.; and Pilkey, W.D.: Efficient Reanalysis of Locally Modified structures. 
Proceeding of First Chautaqua on Finite Element Modeling, Schaeffer Analysis, 

1980. 

237 



TABLE   I      DISTRIBUTION   OF   STRESS   CONCENTRATION  FACTORS 

Element  No. 

1 

2 

3 

4 

5 

6 

17 

18 

19 

20 

21 

22 

32 

33 

34 

35 

36 

37 

varwa4 

Stress  Concentration a 
for the  Zooming Process 

a  -c 

2.39 

2.32 

2.32 

2.40 

2.40 

2. 32 

2.33 

2.25 

2.26 

2. 33 

2.33 

2.25 

2.27 

2.19 

2.20 

2.26 

2.26 

2.19 

-1-Wa4 

2.40 

2.33 

2.33 

2.41 

2.40 

2. 32 

2.34 

2.26 

2.26 

2.34 

2.33 

2.26 

2.27 

2.19 

2.20 

2.27 

2.27 

2.19 

VdfWa4 
2.42 

2.34 

2.35 

2.42 

2.42 

2.34 

2.35 

2.27 

2.28 

2.35 

2.35 

2.27 

2.29 

2.20 

2.22 

2.28 

2.28 

2.21 
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Figure 1 Model for Zooming 
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Figure 4  Mesh a .  Nodes from the former mesh are 
represented by open circles. 
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DYNAMIC RESPONSE OF LINED TUNNELS BY BOUNDARY ELEMENTS 
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SUMMARY 

In this work, the dynamic stress concentration phenomenon manifested around a 
lined cylindrical tunnel buried in an infinitely extending linear elastic or visco- 
elastic medium due to the passage of transient disturbances is investigated. 
Conditions of plane strain are assumed to hold and the transient disturbances can be 
of any arbitrary time variation.  The numerical method employed is the Boundary 
Element Method formulated in the Laplace transform domain.  Isoparametric boundary 
elements are used in the discretization of the liner and tunnel surfaces.  Visco- 
elastic material behavior can be readily obtained from the linear elastic case in the 
Laplace transform domain through the use of the correspondence principle.  Finally, 
the transient solution is recovered by numerical inversion of the solution obtained 
in the transformed domain. 

INTRODUCTION 

The use of underground space is presently attracting attention as one possible 
factor that will aid the realization of national goals such as energy conservation, 
improved environment, power generation and efficient transportation L~lH.  Furthermore, 
the earth surrounding a buried structure ameliorates the effects of surface loads, and 
the amplitude of seismic disturbances decreases with increased depth of embedment [2]. 

The analysis of two-dimensional buried structures under dynamic loads commenced 
in the early sixties by first considering the case of a circular cylindrical cavity in 
an infinitely extending linear elastic medium [3,4]].  Subsequently, the harmonic [5] 
and transient [6,7] responses of a lined circular cylindrical cavity were obtained. 
Analytic methods of solution, however, are difficult for arbitrary structure 
geometries and for material behavior other than linear elastic.  Therefore, resort to 
numerical methods of solution must be made.  In recent years, the Finite Element 
Method (FEM) and Finite Difference Method (FDM) have been employed, but they do not 
provide an entirely satisfactory solution because of the fact that an infinite medium 
is represented by a finite size model.  The proposed Boundary Element Method (BEM) is 
a numerical technique well suited for problems of this kind because Sommerfeld's 
radiation condition for an infinitely extending medium is automatically accounted for 
[8].  Although integral equation formulations for the analysis of transient phenomena 
in solids as well as in fluids have a long history, their adaption for constructing 
numerical algorithms to be used in the solution of boundary value problems is recent 
[9,10,11 and 12]. 

In this work, the Laplace transform with respect to time is applied to the 
hyperbolic partial differential equations of motion, which become elliptic (in the 
Laplace transform parameter s) and as such are more amenable to numerical treatment. 
By using the appropriate Green's functions (fundamental solutions) that satisfy the 
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transformed governing equations of motion in conjunction with Betti's reciprocal 
theorem, the transformed dynamic equivalent to Somigliana's identity is obtained 
[ll].  Taking the field point to lie on the boundary of the problem results in a set 
of contraint singular integral equations on the transformed displacement and traction 
vectors.  For specified boundary data, these constraint equations, which are para- 
metric in s, become a system of algebraic equations that are used to numerically 
solve for the unknown boundary quantities in terms of the known ones.  For the pur- 
poses of this work, the boundary of the problem is discretized into a number of 
isoparametric elements employing quadratic shape functions, and Gaussian quadrature 
is used for the numerical integration of the fundamental solution times the shape 
function products.  The contributions of the singularities, which occur when the field 
point coincides with the source point, are evaluated analytically.  Finally, the time 
domain solution is obtained by a numerical Laplace inverse transformation [13] of the 
solution obtained by the BEM in the transformed domain.  Two examples are considered 
in order to illustrate the methodology presented in this work.  In reference to 
Figure 1, the first example considers a liner that is stiffer than the surrounding 
medium and the second example considers a liner that is softer. 

FORMULATION OF THE PROBLEM 

The equations of motion for a body of volume V with bounding surface S and under 
the assumptions of small displacement theory and linear elastic, isotropic, and 
homogeneous material behavior, are 

(c 
2, 

c„) u. 
1S1J 

+ c„ u. .. + f. 
2  J,n    J (1) 

In the above equation, a coordinate system (x,t) is employed, where x denotes the 
Cartesian spatial coordinates and t is the time.  Furthermore, u.(x,t) is the 
displacement vector and f. is the body force per unit mass.  Commas indicate 
differentiation with respect to space, dots indicate differentiation with respect to 
time, and the summation convention for repeated indices is implied.  Indices i and j 
range from 1 to 2.  The propagation velocities of the pressure (P) and shear (S) waves 
in the body are given, respectively, as 

c1 = (A + 2u)/p c2 = y/p (2) 

where A and u are the Lame constants and p is the mass density. 

The displacements u.(x,t) and the tractions t.(x,t) satisfy the boundary 
conditions 1 

t. = a..n. = p.(x,t) , x s S 

ui = q±(x,t) , x e S 
(3) 

where a  is the stress tensor, n  the outward pointing normal, and S = St U Su .  In 
addition, the displacements and velocities satisfy the initial conditions 

u.(x,0)=u.  3xeVUS 
i —        10   — 

+ 
ui(x,0 ) = u. ,   x e  V U S (4) 
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and the Sommerfeld radiation condition at infinity.  Finally, the constitutive 
equations are of the form 

a. .   =  p [ (c? - 2ch   u 6 . . + c2.   (u. . + u  ) ] 
ij   M LV 1    2      m,m  IJ    2  i,j   J,i 

(5) 

where 6.. is the Kronecker delta, 
ij 

The equations of motion, along with equations (3) - (5), state a well-posed 
problem in the time domain. This system of equations will be transformed to the 
Laplace domain.  The definition of the Laplace transform of a function f(x,t) is 

f(x,s) = L{f(x,t)} = fo  f(x,t) e 
-st dt (6) 

where s is the Laplace transform parameter and f(x,t) must be at least piecewise 
continuous in time.  With the aid of (6), the Laplace transform of the equations of 
motion becomes 

(c2 - c2) u  .. + c2 u. .. + f. - s u. + ü.  + su.  = 0 KC1       c2; ui,ij    2  j,ii   3 3   JO    JO 
(7) 

The boundary conditions and the constitutive equations do not involve time 
derivatives so their Laplace transforms simply are 

t. = P.(x,s) , x e S (8) 

u. = q.(x,s) , x e S 
l   h - u 

and 

a. .   =  p   [ (c2, - 2cl)   u   6. . + c2 (u,   + u  ) ] ij   M Lv 2    2'     m,m xj    2  i,j   J,i 

The additional assumptions that are made for the sake of convenience are (a) a 
quiescent state exists before t = 0+, which implies that the initial conditions are 
zero and (b) the body force is zero. 

As discussed earlier, equations (7) and (8) may be recast in the following 
integral equation form 

e(S) u. a,s) = / {G..(x,5,s):t (x,s) - F  (x,£,s)u (x,s)} dS(x)  (9) 

where ^ is a source point, x is a receiver point and G^ and 7±j   are_the Green's 
function and its derivative, respectively.  The physical meaning of G-^ is that it 
represents the displacement vector_at x in direction i due to a unit impulse at %  in 
direction j.  The kernels G^j and F-^j may be found in Reference 11.  The factor 
e(£) is equal to 0.5 6^, provided that the surface is smooth at |,.  Once the bound- 
ary problem is solved, then the transformed displacements at any interior point can 
be found via (9) with e(Q = 6±j (the Somigliana identity).  The BEM described herein 
is based on the numerical solution of equation 9. 

Finally, the inverse transformation to the time domain of the results obtained 
by the BEM is accomplished through the inversion integral 
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feft?.;.-;' 's--d\ 

f(x,t) = (1/2T71) f 
ß-i° 

f(x,s) e  ds (10) 

where i = \J  -1 and_ 3 > 0 is arbitrary but greater than the real part of all the 
singularities of f(x,s).  The integration over the complex plane in (10) is performed 
numerically through the use of the algorithm described in Durbin ["13].  The transform 
parameter is a complex number of the form 

s = ß + i (2TT/T)II (11) 

where T is the total time interval of interest and n ranges from 1 to N, the total 
number of steps used in the algorithm. 

NUMERICAL IMPLEMENTATION 

It is obvious that equation 9 cannot, in general, yield a closed form solution 
for the unknown displacements and tractions on the boundary S in terms of the 
prescribed boundary conditions.  Therefore, resort has to be made to numerical 
methods of solution.  To that purpose, the boundary of the two-dimensional body is 
discretized into N isoparametric curvilinear segments.  Each isoparametric segment is 
defined by K nodes.  Therefore, the discretized version of (9) becomes 

0.5 Ü. (f) 
N 

E 
n=l 

[' (x,5P) t.(x) dS(x) 

(12) 

AS 
/  F  (x,£P) u.(x) dS(x) j 

where p ranges from 1 to N(K-l) and ASn is the length of the nth isoparametric 
element.  It should be remembered that in (12) parametric dependence on the complex 
transform parameter s is implied, 

Assume that the variation of the displacements over an isoparametric element is 
of the general form 

u.(x) =  EK Nk(n) u.
k 

1     k=l       1 
(13) 

where Nk (n) are shape functions, n is a dimensionless length parameter ranging from 
-1 to +1, and uj is the value of the displacement vector at node k. In this work, a 
quadratic variation of the boundary quantities is adopted and, therefore, K = 3 and 

N1 (n) = - n/2 + TI
2
/2 

2 2 
N (n) = l - n 

N3 (n) = n/2 + n2/2 

(14) 
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The same isoparametric representation is also used for the tractions.  All that 
remains now is to express dS(x) in terms of n•  This is accomplished in terms of the 
Jacobian J (n) of the transformation so that 

1 
/ f(x) ds(x) = / f(x(n))J(n)dn 

AS 
(15) 

-1 

Therefore, in view of the above, the final form of equation (12) is 

0.5 u (5P) =  EN { ZK tk f1  G.. , , . rP, „Tk ,  w ,, 
j - ' , . -, i  -, ji (x(n),S ) N (n)J(n)dn 

n=l k=l    -1     —   - 

- zK uk f_]  F.. (x(n), £)  Nk(n) J(n) dn> 
k=l   x       J1 

For more details on the numerical evaluation of (16), reference should be made 
elsewhere [14H.  The matrix form of equation 16 is 

(16) 

[Q]  {u} = [P] {t} (17) 

where the column matrices contain the transformed displacement and traction vectors 
defined at the boundary of the problem, while matrices [Q] and [P] contain the values 
resulting from the numerical integration of the product of the tensors F — and Gi., 
respectively, times the shape functions and the Jacobian.  Note that equation 
17 requires complex arithmetic formalism in view of the form of the Laplace transform 
parameter s (11). 

Since the case of a liner reinforcing a tunnel opening is a problem involving 
multiple connected domains, the final part of this section develops the superposition 
procedure necessary for solving problems of this kind.  In reference to Figure 2, let 
UT(Q) and tL(Q) be the displacement and traction vectors at the inner surface of the 
liner, üL(P) and tr(P) be the respective quantities at the outer surface of the liner, 
and uM(P) and JEMO?) be the displacements and tractions at the surface of the medium. 
Note that the outer surface of the liner and the surface of the medium are the same 
surface.  The total field is decomposed into the incident field (superscript i) and 
scattered field (supercript s) so that the following equations hold true: 

V?) ■ 4(p) + %(p) ; vp) = 4(p) + 4(p) 

uL(P) = u£(P) + u^(P)  ;  tL(P) tJ(P) + t*(P) (18) 

uL(Q) uJ(Q) + u£(Q)  ;  tL(Q) tJ(Q) + t^(Q) 

Note that in (18) the bars over the vectors denoting Laplace transform quantities 
are omitted for convenience.  The boundary conditions for this problem are that (a) 
uT (P) = ÜM(P) because of compatibility, (b) tL(P) = -%(?) because of equilibrium, and 
(c) tL(Q) = 0. 
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Applying equation (17) to the liner alone for the scattered field gives 

*A ^B" 

* 

< >    = 

Y u^(Q) D 

t*(P) 

t*(Q) 

(19) 

where the matrices [Q] and [P] have been appropriately partitioned.  Application of 
the BEM to the medium alone for the scattered field results in a system of equations 
which reads as 

[Q]  (uJ(P)} = [P] U*(P)} (20) 

Thuss equations (19) and (20), in addition to conditions (a)-(c) result in a 
system of six equations in the six unknowns, which are u?,(P) , uf(P)s tu (Q) , jtS(P) , 

tT(Q).  The incident field is known and the total field can be recovered 
from equation (18) 

Alternatively, the BEM can be formulated for the total field as shoim belox^: 

[Q]  {^(P)} = [P]  (tM(P)} + (uJ(P)} 

r. 

L 

^A 

D 

uL(P) 

u-(Q) 
rL   J 

A 

'D 

tl(p) 

^«> 

(21) 

io 
I J 

The first of the above two matrix equations pertains to the medium, and the 
incident displacement field appears in the formulation because the radiation condition 
cannot be satisfied by the total field in an exterior domain.  The second matrix 
equation pertains to the liner, for which the radiation condition does not apply since 
it is an interior domain.  Finally, equation (21) along with conditions (a)-(c) are 
sufficient to solve for the six unknown quantities of the total field. 

EXAMPLES 

This section describes in detail the numerical solution of two examples that 
serve to illustrate the method as well as the dynamic behavior of a lined circular 
cylindrical cavity in an infinite plane. 

Example 1 

Consider an infinitely extending linear elastic medium with a circular 
cylindrical cavity of radius rQ and of infinite length reinforced by a linear elastic 
liner under the influence of a compressional plane shock wave whose front is parallel 
to the axis of the cavity, as shown in Figure 1.  The following numerical values are 
assigned to the constants describing the medium: 
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y = X  = 3,597,000 lb/in" 

p = 0.00025 lb-sec2/in4 
(22) 

The above material properties correspond physically to granite.  The liner material 
properties are 

2 
y = A = 12,000,000 lb/in 

i-j       J_i 

9    / 
pT = 0.00073 lb-sec /in 

(23) 

corresponding physically to steel.  The liner inner and outer radii are 

r. = 204 in 
l 

r = 212 in o 

(24) 

respectively, which result in a liner radial thickness of 8 inches.  The character- 
istic time 2T for this problem, namely the time required for the pressure wave to 
travel the diameter of the hole, is about 0.002 seconds.  The dynamic load is the 
step pressure wave front carrying the stress components o"x = s  and ou = (v/(l-v))s0, 
where V is Poisson's ratio and s0 is conveniently taken as -1.0 lb/in^.  The point 
with polar coordinates (ro,0°) is the first point of the liner to experience the 
arrival of the P«wave. 

The liner is divided into 40 equal curvilinear segments, 20 on each surface. 
The medium surface is also divided into 20 equal curvilinear segments so as to match 
the dicretization of the outer surface of the liner.  The time interval considered is 
T = 0.009 seconds divided into N = 10 intervals of 0.001 seconds each.  In addition, 
the finite element program SAP IV of Bathe et al Cl5[] is employed to solve this 
problem.  The finite element mesh used is shown in Figure 3 and it is observed that 
advantage is taken of the symmetry of the problem about the Y-axis.  Seventeen time 
increments of 0.001 seconds each are assigned, and the results are shifted by the 
amount of time it takes for the wave originating at the far right-hand side of mesh to 
reach the liner before they are plotted.  It should be mentioned at this point that 
the SAP IV program used numerical integration to solve the equations of motion. 

Figures 4 and 5 are plots of the stress concentration factor (SCF), defined as 
the ratio of the circumferential stress a  Q   to the applied stress sQ, versus the 
dimensionless time t/x at the polar location 9 = 90°.  In particular, in Figure 4 the 
results obtained by the BEM and the SAP IV program for the liner at r = r^ (the inner 
surface I.S.), are concurrently plotted with the analytic-numerical results of Baron 
and Parnes C7] and of Garnet and Pascal Co] pertaining to the middle surface (M.S.) of 
the liner.  There is a small difference (about 7%) between the results obtained by 
References 6 and 7, probably attributable to the inescapable errors (series 
truncations, etc.) associated with the numerical implementation of their analytic 
solutions.  The difference between the middle and the inner surface dynamic stresses, 
which reaches a maximum value of about 10%, is due to the additional effect of bending 
present in the latter surface.  It should be mentioned at this point that Reference 7 
employs a thin shell analysis and does not incorporate the bending stresses because 
they are regarded as negligible for the present case.  The results obtained by the 
BEM (Case 1) are in good agreement with the results obtained by Garnet and Pascal Co] 
at the inner surface.  All of the aforementioned solutions approach the exact static 
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value of -7.59 that can be computed from Savin Cl6j.  The results obtained from 
SAP IV underestimate the maximum SCF of -8.43 occurring around t/x = 6.0 by about 
11%,  Cases 1 and 2 associated with the BEM refer to formulations using the total 
field and the scattered field, respectively, as mentioned in the previous section. 
It is observed that the former case yields better answers than the latter one, in 
addition to being more efficient.  One possible reason is that the formulation for 
the total field basically involves one large operation (a matrix inversion), while 
the other formulation involves a number of smaller operations (matrix inversions and 
multiplications) that accumulate errors.  Another possible reason for this 
discrepancy is that the matrix inverted in the total field formulation is strongly 
diagonal, while some of the submatrices inverted in the scattered field formulation 
lack this characteristic.  This last fact, coupled with the occasional ill- 
conditioning of the original matrices, may be an important source of error. 

Figure 5 depicts the SCF history in the medium at r = rQ obtained by the BEM 
(Case 1) and by the FEM program SAP IV . Here the results from the two numerical 
methods are in reasonable agreement and predict a maximum SCF of -2.1 at the time 
point t/x = 4.0 and -2.5 at t/l = 6.0, respectively, well beloxj the corresponding 
SCF of -3.0 at t/x =4.0 obtained in Baron and Matthews \i3~]   for the case of the 
unlined cavity.  The static solution for the unlined cavity Cl6] predicts a SCF of 
-2.67.  It should be mentioned that Mow and McCabe C53, who solved for the harmonic 
(steady state) equivalent of this transient problem for material properties and a 
geometric configuration very similar to the ones used in this example, predict a 
maximum absolute value for the SCF of 8.3 for the liner and 2.2 for the medium. 
Finally, Table I presents the amounts of memory and time the dynamic BEM program and 
the finite element SAP IV program required for compilation and execution, where it 
appears that the former method is less efficient than the latter. 

Example 2 

in this example, a liner that is softer than the surrounding medium is consid- 
ered, and the following numerical values are assigned to its material properties: 

u  = 695,000 lb/in 

pT   =  0.00022  lb-sec2/in4 

AL = 1,042,000 lb/in 
2 

(25) 

The geometry of the problem remains the same as the one in Example 1.  Two cases are 
considered for the medium.  In the first case, the material properties assigned to 
the medium are listed in equation (22).  In the second case, the medium is represented 
by a linear viscoelastic Maxwell model with a coefficient of viscosity n equal to fu, 
where f is assigned the value of 0.5%.  Linear viscoelastic material behavior can 
easily be accounted for in the dynamic BEM in conjunction with the Laplace transform 
by replacing the elastic coefficients of the medium by expressions derived from 
application of the correspondence principle.  For the Maxwell model, these expressions 
are 

u  = us/(s + u/n) 

\  = (As + (u/n) (X  + 2y/3))/(s + u/n) 

(26) 
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The values for y and X  in (26) are taken the same as the ones used for the medium in 
Example 1. 

Figure 6 is a plot of the time history of the SCF obtained by the BEM at the 
polar location 0 = 90° in both the soft liner at r = ri and the medium at r = rQ. 
Concurrently plotted are analytic-numerical results of Garnet and Pascal Co] 
pertaining to the soft liner embedded in the linear elastic medium.  It is observed 
that the difference between the maximum SCF in the liner predicted by the BEM 
(1.02 at ü/T = 6.0) is about 17% over the maximum SCF predicted in Reference 6 
(.85 at t/x = 5.5).  The maximum SCF in the medium for this case is almost identical 
to the maximum SCF obtained for the unlined cavity case (see Figure 5), which 
indicates that the presence of the soft liner does not help in decreasing the peak 
stress in the medium.  The results of assuming linear viscoelastic material behavior 
for the medium are that on the one hand the peak SCF in the medium decreases by 15%, 
while on the other hand the liner experiences a maximum increase in stress of about 
84%.  The computer time and memory requirements for the BEM applied to the two cases 
of elastic and viscoelastic media are listed in Table I, where it is observed that 
there is very little difference between the two.  It should finally be mentioned that 
the BEM is formulated for the total field, in view of the comments made in Example 1. 

CONCLUDING REMARKS AND FUTURE WORK 

A general numerical method for solving for the dynamic response of underground 
structures under conditions of plane strain or stress is presented.  In particular, 
the structure may be of arbitrary shape embedded in a linear elastic or viscoelastic 
medium and under the action of general transient disturbances.  The method consists of 
solving the dynamic problem in the Laplace transform domain by the BEM and numerically 
inverting the transformed solution to obtain the time domain behavior. 

The use of curvilinear elements incorporating a quadratic representation for both 
the geometry of the problem and for the variation of the boundary quantities is a good 
improvement in terms of accuracy and flexibility over earlier formulations that 
employed straight line boundary elements and constant values of the boundary 
quantities over those segments.  Also, better agreement of the BEM results with 
solutions obtained by analytic formulations can be achieved by merely increasing the 
number of sampling points N for the Laplace transform parameter s, but this will 
increase the cost of the BEM program proportionally. 

The method is quite general and can be extended to propagation and diffraction 
problems in three-dimensional elastodynamics.  Such an extension would necessitate the 
construction of curved isoparametric "patch" elements in order to appropriately 
discretize the two-dimensional surfaces of such problems.  Also, Green's functions 
defined for the infinite space would have to be used instead of the ones defined for 
the infinite plane.  Furthermore, the use of specialized Green's functions in 
conjunction with the methodology presented herein will allow for the efficient 
solution of structures embedded in a half plane or in a half space that exhibit linear 
elastic isotropic or anisotropic material behavior.  Finally, the addition of volume 
integrals in the BEM formulation will allow for the incorporation of non-zero initial 
conditions as well as the incorporation of body forces such as the weight of the 
material. 
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TABLE I 

COMPUTER TIME AND MEMORY REQUIREMENTS 

CPU* execution 
time (sec) 

Total CPU* 
time (sec) 

Field length** 
(octal words) 

Cost 
($) 

BEM, strong liner, 
case 1. 

726.1 762.9 133400 43.3 

BEM, strong liner, 
case 2. 

738.2 775.4 151400 45.5 

SAP IV. 28.4 28.8 140000 10.4 

BEM, soft liner, 
elastic solution. 

624.2 661.0 133400 37.8 

BEM, soft liner, 
viscoelastic soln. 

625.4 662.3 133400 37.9 

*Central Processing Unit 

**During execution 
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Figure L- Lined tunnel in an infinite medium under the action of a suddenly 
applied P-wave. 

Figure 2.- Superposition concept for the lined tunnel, 
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Figure 3.- Finite element mesh used in the program SAP IV. 

6 = 90° 
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Figure 4.- Stress concentration history of the strong liner at 9 = 90°. 
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Figure 5.- Stress concentration history of the medium reinforced by the strong 
liner at     6  = 90°. 
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Figure 6.- Stress concentration history of the soft liner and the surrounding 
medium (both elastic and viscoelastic cases) at  6 = 90°. 
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SUMMARY 

A finite element model that is suitable for the static analysis of shells of 
revolution with arbitrary local deviations is presented. The model employs three 
types of elements: rotational, general, and transitional shell elements. The ro- 
tational shell elements, which are most efficient, are used in the region where the 
shell is axisymmetric. The general shell elements, which can simulate almost any 
shell geometry, are used in the local region of the deviation. The transitional 
shell elements connect these two distinctively different types of elements and make 
it possible to combine them in a single analysis. 

The form of the global stiffness matrix resulting when different forms of nodal 
degrees of freedom are combined is illustrated. Also studied is the coupling of 
harmonic degrees of freedom due to the locally non-axisymmetric geometry. An 
efficient solution procedure which takes advantage of many scattered zero terms in 
the stiffness matrix is suggested. These steps include the use of a substructuring 
technique and separate partial harmonic analysis. A numerical example is presented 
and compared with existing solutions to demonstrate the capability and efficiency of 
the new model. 

INTRODUCTION 

Many shells of revolution encountered in industrial applications have local 
irregularities which deviate from the basic axisymmetry of the shells. Examples are 
cut-outs, pipe connections, and constructional imperfections. From the design 
engineers' point of view, axisymmetry is a desired feature since it facilitates 
stress analysis, both theoretically and numerically. Once a deviation is created on 
a rotational shell, however, the structure is no longer a shell of revolution, at 
least in the region of the deviation. Thus, the usual techniques for the analysis 
of shells of revolution are no longer valid. In practice, these irregularities are 
frequently ignored, or are considered only approximately while the whole structure 

"This work was supported by the U.S. 
CEE-8111797. 

National Science Foundation under Grant No. 
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ROTATIONAL SHELL ELEMENT 

The geometry of this element is described by the middle-surface configuration 
and the corresponding thickness of the shell. The middle surface is described by 
the specification of the meridional curve in a cylindrical coordinate system (r 6 

and z), and the thickness is a function of a meridional parameter since the element 
is axisymmetric by definition (Figure 3a). Thus, the geometric data for a nodal 

circle, which is on the middle surface, are the two coordinates (r and z) and the 

thickness of the shell at the nodal circle.  As long as an adjacent element has a 
rotational boundary with the sam 

metrically compatible. 
coordinat r and z, the two elements are geo- 

Being based on a thin shell theory, this element Ignores normal strains acting 

on planes parallel to the middle surface.  Transverse shear strains, on the other 
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hand, are included by the use of independent rotational degrees of freedom, i.e., 
rotations of a normal to the undeformed middle surface about the two tangent lines 
along the principal directions of the surface. Therefore, this element requires 
only C° continuity. Since the displacements of any point on the shell can be 
uniquely defined by the corresponding middle surface translations and the rotations 
of the normal (Figure 3b), a displacement vector on a nodal circle has five com- 
ponents: three curvilinear components of the translation (u , uß, UR) and two 
rotational components of the normal (ß, and ßQ) about the circumferential and the 
meridional directions, respectively. The variation of each of the five displacement 
components along the nodal circle is expressed by 

r   \ 

n / 

lße J 

= i 

^ 
ui cos i8 

u" smji 

-Ux sin j6 

-u^ cos j0 

uJ cos j8 ) +2        ( -u^   sin j( 
n       I \  n 

j<0 

ßj cos j8 

VH6 smjt, 

■ßj sinj( 

K%  cosjey 

(1) 

.th where u^, u^, etc. are the unknown, j  harmonic coefficients for the node 
>'  8 

GENERAL SHELL ELEMENT 

This element is patterned after the super-parametric element developed by Ahmad 
et al. [5] with the reduced integration technique by Zienkiewicz et al. [6]. The only 
difference is the use of cylindrical coordinates (r, 8, and z) for the description 
of the geometry, instead of rectangular cartesian coordinates (x, y, and z) which 
are employed by the 'Ahmad' element. The adaptation of the cylindrical coordinates 
has twofold advantages: (1) it allows a better representation of the basically 
axisymmetric geometry of the shell; and (2) it facilitates a simpler formulation 
when this element is combined with the rotational element in a single analysis. 

To define the geometry, two vectors must be specified at each node which is 
located only on the middle surface (Figure 4a). One is the position vector of the 
node with three components r., 8., and z., where the subscript i designates the node 
i. The other is the normal vector, f~.f which is directed toward the positive 
normal direction of the shell, and whose Magnitude represents the thickness of the 
shell at the point. Establishing local curvilinear coordinates |, r\, and t, for each 
element, the geometry of the element is equated as 
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where N_. (|, n) is the shape function for the node i. 

Strains and stresses are defined with the same assumptions as those for the 
rotational shell element, i.e., the normal stresses are neglected and the transverse 
shear strains are included. Thus, this element also has five degrees of freedom at 
each node (Figure 4b). They are the three cartesian components of the translation 
(u±, v± and v^) and two rotational components of the vector V (a. and ß.) about 
the positive circumferential and the negative.meridional directions of the shell, 
respectively. Erecting two unit vectors, V and V such that they are parallel 
to the positive meridional and the positive circumferential directions, respec- 
tively, displacements are expressed in the global cartesian coordinates as 

f O 

I N (v ) + I N.£ fci  [V,. V..] 
M i /  -  i —   li 2i 

w. 

(3) 

where X.    is the thickness of the shell at the node i. 

TRANSITIONAL ELEMENT 

This element borders on a rotational element on one side, on a general element 
on the opposite side, and joins with other transitional elements on the remaining 
two sides. In this mesh arrangement, the transitional element must provide con- 
tinuity of displacement fields as well as geometry with adjoining elements. Suppose 
that a general shell element were used in place of the transitional shell element. 
Then, the compatibility is automatically achieved on three sides of the element, but 
is not satisfied on the remaining boundary with the rotational element. If a 
modification is made such that the element is also compatible with the rotational 
element on the remaining boundary, all of the continuity requirements are fulfilled. 
The transitional element achieves this by adapting a line node which extends all 
along the common boundary with the rotational element and which can accommodate any 
function along the line. The line node possesses three subnodes, one at each end of 
the line and a moving node which may be located anywhere on the line (Figure 5). As 
a set, these three nodes can represent any function that the adjoining element may 
impose on the common boundary. Details of the development of the line node as well 
as its shape function are given in reference 4. On the remaining three sides, the 
transitional element has the same point nodes, with the identical shape functions, 
as those of the general element. 
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Once the shape functions are developed, the remaining formulation follows 
similar steps as those of the general shell element. Thus, the position and the 
normal vectors are specified at each nodal point, including the moving node; the 
geometry is defined by equation (2); and displacements are expressed by equation 
(3). There are, however, some differences in applying these equations. First, it 
should be noted that 6. for the moving node in equation (2) is a function of the 
coordinates, instead of a constant, since the node itself can move along the 
boundary. Therefore, the nodal value of the moving node must also be differentiated 
when the Jacobian matrix is computed from the equation. Second, cartesian dis- 
placement components (u, v, and w) are used for the transitional and general 
element, while curvilinear displacement components (u , uQ and un) are used for the 
rotational element. Thus, a coordinate transformation" is necessary along the line 
node Furthermore, the generalized coordinates for the transitional element are 
physical displacement components at each node while those for the rotational element 
are Fourier harmonic coefficients along each nodal circle. (See equations (1) and 
(3).) Thus, at each subnode, the nodal degrees of freedom must be related to the 

harmonic degrees of freedom by 

u 

<v.}= [T.]I 

j 

w. 
l 
) 

cos jf 0     o 

sin 16.  0 J l \ 4) 
0  cos j0. 

l 
uj 

(4) 

and 
—       —| <M 

(a) 
i 

\"] 

cos i6.  0 J l 

< 

"i 

h 0  sin i6. J l 

{ k. / 

(5) 

where 8 is the 6 coordinate of the node i and [T ] is the matrix of coordinate 
transformation at the node i as defined in reference 4. In equations. (4) and (5), 
only the first terms of equation (1) are included for simplicity. If the second 
terms of equation (1) are used as harmonic degrees of freedom, they can be included 

in equation (4) and (5) in a similar form. 

GLOBAL SYSTEM 

The global stiffness matrix of a linear shell of revolution analyzed only with 
rotational elements has two distinctive characteristics: (1) all off-diagonal 
terms that relate one harmonic to the others are zeros; and (2) the bandwidth is 
very small in comparison to the total number of degrees of freedom of the structure 
As an example, if three harmonics are considered in an analysis of a cylindrical 
shell with eight nodes (seven elements), the stiffness matrix is in the banded form 
shown in figure 6. In the figure, each box is also a sub-matrix whose side 
dimension is the number of degrees of freedom per node per harmonic, i.e., five or 
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Although the presence of the point nodes creates, in the global stiffness 
matrix, several off-diagonal blocks that are filled with non-zero values, these 
blocks tie the point nodes with only two nodal circles. Any remaining off-diagonal 
blocks that connect the point nodes with any other nodal circles are still null. In 
order to avoid unnecessary numerical effort in dealing with many zero terms in the 
global stiffness matrix, the region between the two nodal circles is taken as a 
substructure. The stiffness matrix of the substructure consists of the portions of 
the global stiffness matrix that are marked "P" and "CH" in figure 8. Since all of 
the point nodes are internal nodes of the substructure, their degrees of freedom, 
marked "P" in the figure, may be eliminated by kinematic condensation at the 
substructure level. The stiffness matrix of the substructure after condensation 
contains only the harmonic degrees of freedom of the two external nodal circles, 
marked "CH" in the figure. Thus, the global stiffness matrix that is assembled with 
this reduced matrix for the substructure assumes a much simpler form, containing 
only harmonic degrees of freedom (Figure 9). 

The stiffness matrix in the form of figure 9 must now be considered. While the 
matrix is narrowly banded along the diagonal, it also has non-zero terms scattered 
off the diagonal due to the geometric non-axisymmetry. Since these off-diagonal 
terms couple all harmonics, separate harmonic analyses are not possible. However, 
the couplings are effected only through the two nodal circles that bound the region 
of the deviation. This property may be advantageously exploited if the uncoupled 
harmonic degrees of freedom, marked "UH" in figure 9, are eliminated first. In 
other words, separate harmonic analyses are partially carried out, so that the 
global stiffness matrix as shown in figure 9 is never assembled in the actual 
calculation. Instead, the stiffness matrix for each harmonic, i.e., the submatrices 
along the diagonal of figure 9, is computed. Since the uncoupled harmonic degrees 
of freedom are eligible to be eliminated without considering any other harmonics, 
they are eliminated at each harmonic level. This leaves only the degrees of freedom 
of the two nodal circles, marked "CH" in the figure, for each harmonic. When all 
harmonics are assembled after this partial harmonic condensation, the global 
stiffness matrix contains only the coupled harmonic degrees of freedom (Figure 10). 

The stiffness matrix of figure 10 is densely populated with non-zero terms even 
off the diagonal. Any standard solution method of simultaneous linear equations 
will yield all the harmonic degrees of freedom of the two nodal circles, i.e., the 
Fourier coefficients of the displacements along the nodal circles. Once the har- 
monic degrees of freedoom of the two nodal circles are found, the uncoupled harmonic 
degrees of freedom may be computed by back-substitution which may be carried out 
individually for each harmonic. Likewise, the back-substitution to find the 
displacements of the point nodes is carried out at the substructure level. This is 
a standard procedure that is well explained in many texts [7,8], and will not be 
repeated here. 

NUMERICAL EXAMPLE 

An infinitely long cylinder with a circular cutout has been analyzed by Van 
Dyke [9] using a shallow shell theory. Key [10] studied a long cylinder with a 
circular cutout (Figure 11) under axial tension and compared the results with those 
of Van Dyke to demonstrate the capability of his newly developed quadrilateral 
finite element. In this paper, the same shell used by Key is treated using^the mesh 
shown in figures 11 and 12. Taking advantage of the symmetry about Z - 0, only 
one-half of the length of the shell is considered (Figure 11), while the symmetry 
about 6 = 0 is utilized in the mesh of the substructure (Figure 12). 
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Since a local deviation from the axisymmetry couples all Fourier harmonics, an 
infinite number of harmonic terms must theoretically be included as degrees of 
freedom of rotational elements. In other words, an infinite series is necessary to 
express the displacements of the rotational elements. However, a good approximation 
can be obtained with only a limited number of Fourier harmonics. Figure 13 shows 
stresses at a few key points on the shell as the number of harmonic terms included 
in the analysis is increased. The harmonic terms included in each analysis are the 
smallest numbers possible, i.e., j = 0 through n-1, where j is the Fourier harmonic 
used and n is the truncation limit for the harmonics included in the analysis. 
Though the stresses change initially as the number n is increased (Figure 13), 
values stabilize fairly rapidly, i.e., when n = 12 in this example. It should be 
noted at this time that a larger value of n would be required to represent the 
displacements of rotational elements as the length of the substructure is decreased, 
and vice versa. This is due to the fact that the effect of the geometric deviation 
is most severe in the immediate vicinity of the deviation. 

The results of the analysis when 12 harmonics are included (n = 12) are shown 
in Table 1 along with those of Van Dyke [9] and Key [10]. In Table 1, o is the 
membrane stress, a is the bending part, and 0^ is the membrane stress at infinity. 
It should be noted that the new finite element model requires only approximately 
one-quarter the number of degrees of freedom of the conventional finite element 
model to obtain comparable results. This translates into an enormous savings in 
computing time when one considers that the CPU time required to solve simultaneous 
equations is nominally a cubic function of the number of equations. 

CONCLUSIONS 

A finite element model that is suitable for analyzing shells of revolution with 
arbitrary local deviations was developed. The model combines rotational shell 
elements and general shell elements in a single analysis by the use of transitional 
elements. The coupling of Fourier harmonics due to the loss of geometric symmetry is 
treated efficiently by the substructuring technique and by partially separate 
harmonic analyses. The rather complicated solution procedure of the new model is 
justified by the efficiency demonstrated. 

The technique may be used In the analysis of pressure vessels with cutouts or 
pipe connections, or for shells with construction or manufacturing imperfections. 
Shells with locally defective material may also be analyzed with the same model. In 
addition to the geometric and/or material non-axisymmetry of the shells, the model 
can be used for the analysis of perfectly axisymmetric shells, but with concentrated 
loads. The representation of concentrated loads by Fourier harmonic series gen- 
erally requires so many terms that precise analysis of such a loading by rotational 
elements only is often not economical. 

REFERENCES 

1. P. K. Basu and P. L. Gould, "SH0RE-1II, Shell of Revolution Finite Element 
Program - User's Manual," Research Report No. 49, Structural Division, Wash- 
ington University, St. Louis, MO, September 1977. 

2. P. K. Basu and P. L. Gould, "SHORE-III, Shell of Revolution Finite Element 
Program - Theoretical Manual," Research Report No. 48, Structural Division, 
Washington University, St. Louis, MO, September. 1977. 

272 



3. K. J. Han and P. L. Gould, "Quadrilateral Shell Element for Rotational Shells," 
Engineering Structures, Vol. 4, pp. 129-131, April 1982. 

4. K. J. Han and P. L. Gould, "Line Node and Transitional Shell Element for Ro- 
tational Shells," International Journal for Numerical Methods in Engineering, 
accepted for publication. 

5. S. Ahmad, B. M. Irons and 0. C. Zienkiewicz, "Analysis of Thick and Thin Shell 
Structures by Curved Finite Elements," International Journal for Numerical 
Methods in Engineering, Vol. 2, pp. 419-451, 1970. 

6. 0. C. Zienkiewicz, R. L. Taylor and J. M. Too, "Reduced Integration Technique 
in General Analysis of Plates and Shells," International Journal for Numerical 
Methods in Engineering, Vol. 3, pp. 275-290, 1971. 

7. 0. C. Zienkiewicz, "The Finite Element Method," 3rd Edition, McGraw-Hill, New 
York, 1977. 

8. R. D. Cook, "Concepts and Applications of Finite Element Analysis," 2nd 
Edition, John Wiley and Sons, Inc., New York, 1981. 

9. P. Van Dyke, "Stresses about a Circular Hole in a Cylindrical Shell," AIAA 
Journal, Vol. 3, No. 9, pp. 1733-1742, September 1965. 

10. S. W. Key, "The Analysis of Thin Shells with a Doubly Curved Arbitrary Quad- 
rilateral Finite Element," Computers and Structures, Vol. 2, pp. 637-673, 1972. 

273 



^Pf^S^SSösSI Eps-^M !jf.;vjv»*<?'-; 

!*  ^1 "r*." '■*•■*.*."* *'"?* ?*"2j 

TABLE 1. ? A CYLILLDES MBER AXIAL TENSION 

CIRCULAR CUTOUT 

! 1 r, i Mew Mod? 
Coarse mesh        fine mesh 
(1534 d.o.f.)     (5301 d.o.f.)     (1447 d.o.f.) 

m4 ■c 
(a A (4.6%) (0.3%) (1.60%) 

&, /a 
&A 

±0.55 
(7   A°0 1-  a   j /ay 

L-0.55 ±0.554 
(6.06%) 

T-/0 
0- 

Oi /cr 
J@B 

,25 

±0.809 

■1.08 
.5.7%) 

0.805 
0  A7-) 

-1.18 

±0.812 
(0.4%) 

-1.20 
(3.87%) 

±0.795 
(1.71%) 

A is at the side of the hole at rG = 2b.4, 2 
B is at the ton of the he 

0.0 

27- 



(b)   Rotational  shell 
element. 

(a) Combined mesh. 
(c) General shell 

element. 

Figure 1.- Finite element mesh using different elements. 
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Figure 2.- Transitional shell element. 
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Figure 3.- Rotational shell element. 
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(a) Geometry. 
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(b) Displacement components. 

Figure 4.- General shell element. 
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LINE MODE 

Figure 5.- Transitional shell element. 
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Figure 7.- Stiffness matrix using rotational, general, 
and transitional shell elements. 
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Figure 8.- Stiffness matrix of shell of revolution 
with a local deviation. 
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Figure 11.- Cylinder with circular cutout and finite element mesh. 
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SYNTHESIS OF FRAMEWORKS UNDER MULTILEVEL PERFORMANCE CONSTRAINTS1 

Donald E. Grierson and Thomas C.W. Chiu 
Solid Mechanics Division 

University of Waterloo, Waterloo, Ontario, Canada 

SUMMARY 

A method is presented for the minimum weight design of practical planar frame- 
works under both service and ultimate-loading conditions.  Acceptable elastic stresses 
and displacements are ensured at the service-load level while, simultaneously, ade- 
quate safety against plastic collapse is ensured at the ultimate-load level.  The 
features of the design method are illustrated for an industrial steel-mill building. 

INTRODUCTION 

This study addresses the problem of efficiently designing practical engineering 
frameworks for proper performance at a number of distinctly different loading levels. 
A conventional approach to design in this regard has been to separately proportion 
the structure for proper performance at one loading level, and to then modify the 
resulting design to satisfy requirements at one or more other loading levels of con- 
cern.  For multistory steel frames, for example, several procedures have been 
developed whereby a plastic design is initially conducted to ensure adequate safety 
against plastic collapse under specified ultimate loads, and then the member propor- 
tions are modified to satisfy elastic stress and displacement limitations under speci- 
fied service loads (e.g., ref. 1).  A major drawback to such an approach, however, xs 
that design decisions at one loading level must be made in the absence of explicit 
information as to their consequences at the other loading levels of concern.  As such, 
previous design gains are very often unnecessarily negated and, at best, a cumbersome 
iterative procedure is required to achieve a reasonably efficient design. 

A recent study considered thin-wall structures composed of bar, membrane and/or 
shear-panel elements and developed a minimum weight design method whereby performance 
constraints are satisfied simultaneously  at both a specified service-load level and at 
a specified ultimate-load level (ref. 2).  Specifically, for proportional static load- 
ing, the design method ensures acceptable elastic stresses and displacements under 
specified service loads while, at the same time, ensuring adequate post-elastic 
strength reserve of the structure under specified ultimate loads.  In other words, a 
serviceable design is found cognizant of the margin of safety against failure in a 
plastic mechanism mode.  The method represents an extension to the conventional 
'limit states design' philosophy that essentially defines 'failure' as being the onset 
of 'first-yielding' anywhere in the structure (e.g., ref. 3).  This latter failure 
definition is somewhat artificial for hyperstatic structures and, in contrast to that 
considered in ref. 2 and herein, provides little information as to what the real 
margin of safety is against actual catastrophic failure. 

Research sponsored by the Natural Sciences and Engineering Research Council (Canada) 
under Grant No. A5306. 
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The minimum weight design method developed in ref. 2 involves an iterative pro- 
cess having the following essential features: 1) for a given design (e.g., the ini- 
tial 'trial' design), sensitivity analysis techniques are employed to approximate the 
performance constraints as linear functions of the design variables; 2) optimization 
techniques are applied to find an improved (lower weight) design; 3) the constraints 
are updated for the next weight optimization, and the process is repeated until weight 
convergence occurs after a number of design stages. 

The present study extends the described design method to planar frameworks com- 
posed of beam and column elements under combined axial and bending stresses.  It is 
shown that the iterative (re)analysis/(re)design scheme developed for thin-wall struc- 
tures (ref. 2) is directly applicable for this type of structure as well. It is shown 
specifically that the stiffness and strength properties of the elements may be 
approximated as linear functions of the sizing variables so as to permit each weight 
optimization to be conducted using a 'generalized optimality criteria' technique 
(refs. 2,4).  And, it is also shown that consistent updating procedures may be applied 
so as to ensure a monotonically converging iteration history through to the final 
minimum weight design. 

The notation used in the paper is as follows:  an underscored 'bar' ( ) denotes 
a matrix or vector; a superimposed 'tilde' (~) denotes the transpose of a matrix or 
vector; a superimposed 'dot' ( ) denotes rate quantities. 

THE DESIGN PROBLEM 

All loads are taken to be static, and the specified service loads are propor- 
tionally related to the specified ultimate loads.  The framework is discretized into 
an assemblage of n  prismatic elements, which may be of a variety of member types 
(e.g., HSS columns, WF beams, open-channel bracing struts, etc.).  The design varia- 
ble for each element i is taken to be its cross-section area ai. 
the minimum weight design problem is expressed as 

In its general form, 

Minimize: 
n 
1 

i=l 
w.a. 
i l (la) 

Subject to: 5.   <  S    <   6. 

a, < a, < a, 
^k — k — k 

(j = 1,2,...,d) 

(k = 1,2, ...,s) 

(lb) 

(lc) 

a < a < a 
^m — m — m (m = 1,2, ... ,p) (Id) 

a. < a. < 
/si — l — 

(i = 1,2, ,n) (le) 

where:  Eq. (la) defines the weight of the structure (\<r±  is the weight coefficient for 
element i); Eqs. (lb) define the d  service-load constraints on displacements 6-=; Eqs. 
(lc) define the s  service-load constraints on stresses ak; Eqs. (Id) define the p 
ultimate-load constraints on plastic collapse-load factors am; and Eqs. (le) are" side- 
constraints on element sizes a±  to satisfy fabrication and technological requirements. 
(Quantities with under- and super-imposed 'hat' " denote specified lower- and upper- 
bounds, respectively.) 



In their present form, the performance constraints Eqs. (lb)-(Id) are 'implicit' 
functions of the design variables ai.  To facilitate implementation of the design 
method these constraints are reformulated as 'explicit' functions of the variables a^. 
To this end, the stiffness-size and strength-size relationships for the elements are 
first established. 

STIFFNESS-SIZE RELATIONSHIP 

For the case of combined axial and bending stresses, the (global) stiffness ma- 
trix for a planar element i can be expressed as 

K. = KAa. + KBI. 
—i  —i l  —ii 

(2) 

where K^ and K? are constant matrices that correspond to the axial and bending stiff- 
ness properties of the element, respectively, and Ii is the cross-section moment of 
inertia. 

In general, the relationship between the moment of inertia I^_  and the cross- 
section area a±  for element i can be expressed as 

I, = k.aX 
i   ii 

(3) 

where the constant \n±  depends on the shape of the element cross-section (e.g., hollow- 
box, wide-flange, etc.), and the exponent x, often an integer, depends on the way the 
cross-section shape varies as the size varies.  When x = 1, Eq. (3) refers to thin- 
walled elements of fixed overall cross section dimension (e.g., hollow tubes of fixed 
outside radius, open channels of fixed height and width, etc.).  For x = 2, the cross 
section uniformly  varies in size (i.e., maintains a constant shape).  When x = 3, 
Eq. (3) refers to an element cross section for which the height varies while all other 
dimensions remain fixed.  Other values for the exponent x are also possible (ref. 6). 
However, for the reason that is noted in the following section concerning the strength- 
size relationship for an element, the 'constant-shape' case is adopted herein (i.e., 
x = 2).  As such, Eq. (3) becomes 

I. 
i 

= k.af 
l l 

(4) 

(Formulae for the constant k^ in Eq. 
sections;. e.g., see figure 1). 

(4) are given in ref. 5 for a range of cross 

To facilitate the application of an efficient 'generalized optimality criteria' 
technique to conduct the weight optimization for each design stage (refs, 2,4), Eq. 
(4) is approximated as a linear  function of the design variable a±.     Suppose that the 
cross-section area a±  has the known value a\  for a given design stage (e.g., the 
initial 'trial' design).  Eq. (4) can then be expressed as the linear function 

I. 
l 

k.(a°)a. = k*a. 
ill   ii 

(5) 

where the constant kj is such that Eq. (5) gives precisely the same value for the 
moment of inertia 1-^ as Eq. (4) when ai = a|. 
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From Eqs. (2) and (5), the stiffness matrix for element i can be expressed as 
the linear function 

K. = K.a. 
—i  —i l 

K.k*a. = K*a. 
—ill  —ii (6) 

,A .A where K? = K± + KAa^  is a constant_matrix (note that K? = Kf for a bar element under 
axial stress alone, while K? = KPlq for a flexural element under bending stress alone) 
Eq. (6) defines the 'stiffness-size' relationship prevailing for element i at the 
beginning of the design stage when a±  = a?.  The matrix K* is taken to prevail con- 
stant during the next weight optimization and, then, it is updated through Eq. (5) 
for the new cross-section area of element i found for the next design stage. 

STRENGTH-SIZE RELATIONSHIP 

To facilitate the application of an efficient 'finite-incremental' plastic analy- 
sis technique to determine the 'critical' collapse mechanism for each design stage 
(refs. 5,7), a conservative (inscribed) piecewise-linear (PWL) yield criterion is 
adopted to govern the plastic behavior of each element under combined axial and 
bending stresses.  For example, adopting intermediate yield-point vertices (±v1,+y2) 
on the bisector axes of the four quadrants of the 'normalized' (non-dimensionalized) 
stress space, the 8-sided yield surface in figure 1 defines the 'normalized' PWL 
yield condition for a WF cross section under combined axial force N and bending mo- 
ment M; where Np and Mp are the 'principal' plastic axial and bending capacities of 
the :ross section, respectively, and the RN = [rN,rf,...,r®}   are the 'normalized' 
plastic capacities corresponding to the linear yield modes (orthogonal distances from 
the origin of the 'normalized' stress space for the cross section). 

It is of interest to note that a 'normalized' yield condition (e.g., fig. la) 
has exactly the same form for all similar-shape cross sections (i.e., regardless of 
cross-section size).  On the other hand, the form of the PWL yield condition in the 
'actual' stress space for an element cross section depends on both the shape and the 
size of the cross section.  If, however, the shape of the cross section is'maintained 
constant as the size varies, the form of the yield condition is then only a function 
of the magnitudes of the 'principal' plastic capacities for the element.  Exploita- 
tion of this fact significantly improves the computational efficiency of the design 
process (refs. 5,8 ), xvhich is the fundamental reason for adopting the 'constant- 
shape' assumption noted in the preceding section.  (While resulting in less computa- 
tional efficiency, other 'shape' assumptions can be readily adopted). 

Adopting similar PWL yield conditions to govern plastic behavior at the two 
end-sections j and k of element i, the vector of plastic capacities corresponding to 
all linear yield modes in the 'actual' stress space for the element is 

R. 
—l V (7) 

where, for a 'constant-shape' cross section, the components of the subvectors Rn 
are fixed functions of the 'principal' plastic capacities for the element.  For 
example, for the WF cross-section shape and 8-sided yield surface in figure 1, 
Ü] = ük = tri=r2,••.,r8], where 

Rk 
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ri = rk  =  r5 = r8 = 0.545N M /(0.2079N2±+0.2970M
2)°'5 

pi pi 

r    = r3  = r5  = r7  =  0.545N   .M  ./(0.29701T.+0.2079MZ   ) 2 ^ b ' pi pi pi pi 

2 v 0 . 5 

(8a) 

(8b) 

(Similar relationships as Eqs. (8) are given in ref. 5  for a number of other cross 
sections under combined axial force and bending moment). 

The 'principal' plastic axial capacity Npi of element i is a linear function of 
the cross-section area a-j_, i.e., 

N . = a a. 
pi   y i 

(9) 

where ay is the material yield stress.  On the other hand, for a 'constant-shape' 
cross section, the 'principal' plastic bending capacity Mpi is related to a±  as 

l. 5 
M . = m.a. 
pi   li 

(10) 

where the constant m±  depends on the shape of the cross section.  (Formulae for the 
constant m±  in Eq. (10) are given in ref. 5 for a range of cross sections; e.g., see 
fig. 1).  For the cross-section area a-j, having a known value a? at the beginning of 
any given design stage, Eq. (10) can be expressed as the linear function 

M . = m.(a.)   a. = m5;a. 
pi   li    l   li 

(ID 

where the constant m£ is such that Eq. (11) gives precisely the same value for Mpi as 
Eq. (10) when a^ = a?. 

Having Eqs. (9) and (11), the vector of plastic capacities Ri can be expressed 
as a linear function of the design variable a^ for element i as 

R. = R*a. 
—l  —i l 

(12) 

where R* is a constant vector.  For example, Eqs. (8) become from Eqs. (9) and (11), 

ri = Vk  =  r5 = r8 = 0.5450 m*a../ (0.2079a
2+0.2970m*2)' 

r.   =  r,  =  rK   =  r7  =  0.545a m*a./(0.2970a2+0.2079m*z) Z30/ yii y l 

o. 5 

0.5 

(Note that R* = [a ,0   ]   for a bar element under axial stress alone, while R^ = [m^.m-L, 
m*,m*] for "a^flexural element under bending stress alone).  Eq. (12) defines the 
'strength-size' relationship prevailing for element i at the beginning of the design 
stage when a^_ =  a?.  The vector R* is taken to prevail constant during the next 
weight optimization and, then, it is updated through Eq. (11) for the new cross- 
section area of element i found for the next design stage. 
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EXPLICIT SERVICE-LOAD CONSTRAINTS 

Having the linear 'stiffness-size' relationship Eq. (6) for each element i 
(i=l,2,...,n), the formulation of the explicit service-load constraints for each 
design stage can proceed exactly as for thin-walled structures (refs. 2,4).  First, 
since displacements and stresses vary inversely with the sizing variables ai5 it is 
recognized that 'good' quality constraints are achieved by formulating them as explicit 
functions of the 'reciprocal' variables 

1 
Ai  a. 

i 

(i = 1,2, ,n) (13) 

Then, first-order Taylor's series expansions and elastic sensitivity analysis based on 
'virtual-load' or 'pseudo-load' techniques are employed to formulate each of the dis- 
placement and stress constraints Eqs. (lb) and (lc) as the 'explicit-linear' con- 
straints 

5. <  E d° .x.   < 
^ ~  1=1  U i - 

a, <  Z  s° x. < a 
/sk — . 1  lk l — k 

i=l 

(14a,b) 

where the superscript ° denotes quantities evaluated for the current design stage. 

Based on, say, 'virtual-load' techniques, the displacement and stress sensitivity 
coefficients (gradients) dy and s?k in Eqs. (14) are evaluated as 

a . . ^ (u.K.u)0 s   = —o   (u, K.u) 
lk  x.   k— l— 

i 
(15a,b) 

where the (global) element stiffness matrix K? = K*a? from Eq. (6) for aj_ = a°, and 
the various vectors of nodal displacements for the structure are found from elastic 
analyses as 

u = K  P u. = K *b. 
~3   - -J ük = K

-1^ , (16a,b ,c) 

in which K = ±Z^  K± is the structure stiffness matrix, u. is the vector of nodal dis- 
placements due to (each) applied load vector P_, and uj and uk are 'virtual' displace- 
ment vectors associated with 'virtual-load' vectors b^ and t_k, respectively. 

The 'virtual-load' vectors in Eqs. (16b,c) are identified from 

o . 
J 

D .U Gk = h£ (17a,b) 

where _bj is a specified vector that identifies the nodal displacement 6-j of concern to 
the design, and _tk is the row of the particular element stress matrix that is associ- 
ated with the stress ak of concern to the design.  Regardless of the type of struc- 
ture, the vector bj remains constant throughout the iterative design process.  As well, 
the vector _tk is invariant for thin-walled structures (for a truss, e.g., t^  is row k 
of the structure topological matrix multiplied by Young's modulus and divided by the 
length of bar element k).  For a flexural structure, however, the vector t^ is a func- 
tion of the neutral-axis position for the element cross section associated with the 
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stress C7k» and therefore it varies as the design changes over the iteration history. 
For a 'constant-shape' cross section, the position of the neutral axis y-j_ (the 'maxi- 
mum' distance to the extreme fibers of the cross section) is related to the cross 

section a-j_ for flexural element i as 

y. = n.a. 
. 5 (18) 

(Formulae for the constant rii in Eq. (18) are given in ref. 5 for a range of cross 
sections; e.g., see figure 1).  Having Eq. (18), the vector t^ is readily updated at 
the end of each design stage to account for the change in the neutral axis position 

for element i. 

EXPLICIT ULTIMATE-LOAD CONSTRAINTS 

Having the linear 'strength-size' relationship Eq. (12) for each element i 
(i = l,2,...,n), the formulation of the explicit ultimate-load constraints for each 
design stage also can proceed exactly as for thin-walled structures (ref. 2).  To be 
consistent with the service-load constraints, the 'reciprocal' variables x^ are 
adopted here as well.  Then, first-order Taylor's series expansions and sensitivity 
analysis are employed to formulate each of the load-factor constraints Eqs. (Id) as 
the 'explicit-linear' constraint 

a - 2a° 
^m    m 

n 
Z 

i=l 
p. x. < a 
im l — m 

2ac (19) 

The load factor am in Eq. (19), which defines the load level at which plastic collapse 
mechanism m forms for the current design stage, is evaluated from plastic analysis as 

a° = (R X )' 
m m 

n 
Z  (R.X. )° 

. ,  -i-im 
i=l 

(20) 

where R° is the vector of plastic capacities for all elements of the structure (for 
element i, the subvector R±  = R'fa? from Eq. (12) for a± =  a?) , and X^ is the vector 
of element plastic deformation rates associated with collapse mechanism m (A_im is the 
subvector associated with element i).  Each of the load-factor sensitivity coeffi- 
cients (gradients) p£m in Eq. (18) is evaluated as 

p. im x  —i—im 
(21) 

Note that, for fixed structure topology, the vector X£i (hence X|m) is invariant with 
changes in the design.  (An efficient 'finite-incremental' plastic analysis technique 

to find a^ and X.m 
is presented in refs. 5, 7 ). 

The ultimate-load constraint Eq. (19) is of poorer quality than the service-load 
constraints Eqs. (14a,b).  This is because collapse load factors vary directly rather 
than inversely with the sizing variables a^   (whereas the latter is the case for dis- 
placements and stresses).  However, Eq. (19) is always a 'conservative' (safe) con- 
straint for any intermediate design stage and, like Eqs. (14), is an 'exact' con- 
straint for the final stage that determines the minimum weight design (ref. 2). 
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THE EXPLICIT DESIGN PROBLEM 

From Eqs. (la), (le), (13), (14) and (19), the minimum weight design problem 
Eqs. (1) expressed explicitly in terms of 'reciprocal' sizing variables x^ is 

n 
Minimize:   E w./x. 

i=l X     X 
(22a) 

Subject to; 

S. <  E  d. .x. < 6. 
O - -_n  i] i-  ] l-l 

(j = 1,2,...,d) (22b) 

a < E s° x. < a. 
/xk — . n  ik i — k 

i=l 

\ iv        -1- fti_-"j o a a    y  KD  J (22c) 

n 
a - 2a° <  E p. x. < a - 2a° 
^m    m ~ . T  im i — m    m 

i=i 

(m = 1,2, ...,p) (22d) 

x. < x. < 
^i —  l — 

(i = 1,2, . ,n) (22e) 

where, from Eqs. (le) and (13), x- 1/a- and x- = 1/a-. 

Eqs. (22) define the weight optimization problem for each design stage.  After 
each weight optimization, the sensitivity coefficients d° . , s!M and V±m  are updated, 
if necessary the design is scaled to restore feasibility, and the weight optimization 
is repeated.  The numbers d.  and s of service-load displacement and stress constraints 
are the same for all design stages.  However, the number p of ultimate-load con- 
straints progressively increases to account for new 'critical' plastic collapse modes 
as the design changes over the iteration history.  Initially, for each load case, 
there Is one such constraint corresponding to the 'critical' collapse mechanism for 
the given 'trial' design.  For each design stage thereafter, one nexj ultimate-load 
constraint may or may not be added depending on whether or not the load factor for 
the 'critical' mechanism is strictly less than that for all mechanisms accounted for 
in the previous weight optimization.  For each load case, the maximum possible number 
of ultimate-load constraints at the final design stage is equal to the number of 
degrees of freedom for the structure (the number is usually much less due to the 
service-load and sizing constraints). 

The iterative process converges to the final minimum weight design when there 
is no change in the design weight from one design stage to the next.  (A full exposi- 
tion of the iterative design process, as well as of an efficient 'generalized opti- 
mal ity criteria' technique to solve Eqs. (21), is provided in refs. 2,4,5). 

EXAMPLE APPLICATION 

A computer program named STRUSY (STRUctural SYnthesis) has been developed in 
ref. 5 to implement the described design method. For each design stage, the pro- 
gram employs a finite-element elastic analysis technique to establish the service- 
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load constraints, a 'finite-incremental' plastic analysis technique (refs. 5,7) to 
establish the ultimate-load constraints and a 'generalized optimality criteria' tech- 
nique (refs. 2,4) to conduct the weight optimization.  With a view to improving the 
computational efficiency, enhancing the convergence properties and meeting special 
design requirements, the program also incorporates the following special features: 
1) a 'constraint-deletion technique' is employed to retain only those constraints 
that are critical or potentially critical for each design stage (ref. 9); 2) an 'area- 
averaging technique' is employed to stabilize the convergence history and reduce the 
number of iterations required to achieve the minimum weight design (ref. 8); 3) a 
'design-variable linking technique' is employed to group elements together so as to 
meet special fabrication requirements concerning relative element sizes (ref. 9). 
The STRUSY program was used to conduct the example design presented in the following 

(ref. 5). 

Industrial Steel-Mill Building 

The industrial steel-mill building in fig. 2 is composed of 7 roof-truss web 
elements (of any cross-section shape) and 26 beam, column and chord elements having 
the 'constant-shape' WF cross section shown in fig. 2.  (Note that the formulae given 
in fig. 1 for the constants k, m and n apply as well for the WF shape in fig. 2). 
Axial stresses alone are of concern for the web elements, while combined axial and 
bending stresses are of concern for the WF elements.  A PWL yield condition similar 
to that in fig. 1 (but for the WF shape in fig. 2) is adopted to govern the plastic 
behavior of the WF elements.  The frame is subject to the three independent load 
cases indicated in fig. 2 (the load parameter P = 44.4 KN defines the service-load 

level). 

Material properties and constraint bounds are given in table 1 (p = material 
density; E = Young's modulus).  Note that the compressive yield stress ay has been 
(artifically) taken to be less than the tensile yield stress Oy  so as to indirectly 
account for compression buckling of the elements.   For all elements, the elastic 
stresses in tension and compression are limited to 66.67% of the yield stresses 
Oy  and a , respectively.  The lower-bound value of 1.8 on collapse-load factors 
requires the frame to withstand a 80% overload beyond the service-load level without 
failing in any plastic mechanism mode.  The size of each element cross section is 
bounded from below by an arbitrarily small value (see table 1), and is unbounded from 

above. 

Since the structure and the loads are symmetrical, 'design-variable linking' is 
employed to reduce the number of independent design variables from 33 to 17.  For each 
of the 3 load cases:  1) one (tension/compression) stress constraint is imposed for 
each of the 4 groups of web elements; 2) two constraints are imposed on the 'maximum' 
extreme-fiber stresses for each of the 13 groups of WF elements (i.e., one constraint 
at each of the two element ends).  The total number of stress constraints is 90.  Six 
horizontal displacement constraints are imposed (at nodes 2, 3, 7, 9, 11, 13) for load 
case 2 alone.  Ultimate-load constraints on plastic-collapse load factors are imposed 
for load cases 1 and 2 alone. 

An arbitrary 'trial' design corresponding to a structure weight of 5256.75 kg. 
is selected to commence the design process.  The 'final' design corresponding to the 
'minimum' structure weight of 4150.43 kg. is found after six iterations of the design 
process.  The 'optimum' cross-section areas for the 13 groups of WF elements (num- 
bered 1 to 13 in fig. 2) are 26.77, 137.56, 32.15, 51.44, 51.44, 36.53, 36.53, 65.77, 
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111.59, 8.94, 9- i>l, 6.93 and 6.93 cm2, while those for the 4 groups of web elements 
(numbered 14 to 17 in fig. 2) are 7.26, 4.21, 2.75 and 0.79 cm2. 

The history of the iterative design process is shown in fig. 3 (note that mono- 
tonic convergence is exhibited through to the final minimum weight design).  Three 
'critical' plastic collapse modes (numbered 1,2,3 in fig, 3) become active at various 
design stages of the iterative process.  The three collapse mechanisms are shown in 
fig. 4 along withothe values of their load factors a at the final design stage (the 
parameters S and 6 refer to axial and flexural plastic deformation rates, respective- 
ly).  Note that collapse mode 1 occurs under load case 1, while modes 2 and 3 occur 
under load case 2.  The 'active' or 'potentially active' constraint conditions at the 
final design stage are:  1) horizontal displacements at nodes 3 and 11 under load 
case 2; 2) stresses in the elements of groups 2,3,6,7 and 8 under one or more of three 
load cases; 3) plastic-collapse modes 2 and 3 under load case 2; 4) lower-bound sizes 
of the elements of groups 12, 13 and 17. 

CONCLUDING REMARKS 

Through the coordinated use of approximation concepts, finite-element elastic 
analysis, incremental plastic-collapse analysis and generalized optimality criteria 
techniques, the described design method (and associated computer program STRUSY) can 
provide the designer with an efficient and effective tool to conduct the design of 
practical engineering frameworks under multiple performance constraints. 

Some important features of the design method are:  1) the number of iterations 
required to achieve the minimum weight design is generally quite small, and is almost 
totally independent of the complexity of the structure (as demonstrated in ref. 5 for 
a range of example structures, including the example presented herein, six to seven 
iterations are required on average to achieve 1% weight convergence); 2) for collapse- 
load factors that are consistent with the ultimate load levels specified by current 
design practice, a mix of both service-load and ultimate-load constraints will often 
control the design (in fact, as demonstrated by the example herein, a number of inde- 
pendent collapse modes may be critical for a design); 3) whenever both types of con- 
straints are active for a design, the required structure weight will be greater than 
that determined by a minimum weight design that accounts for service-load constraints 
alone. 

The computer implementation of the design method is quite efficient.  For example, 
the steel-mill building design involved 90 stress constraints, 6 displacement con- 
straints, 17 sizing constraints and, at the final design stage, 3 plastic-collapse 
constraints, and required only 2 minutes to complete using the STRUSY program on an 
IBM 4341 computer (University of Waterloo). 
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TABLE 1 - DATA FOR INDUSTRIAL STEEL-MILL BUILDING 

Material 
Properties 

Steel, p = 0.00849 Kg/cm3 (0.283 lb/in3) 

E = 2.0685 x 108 KN/m2 (30 x 106 lb/in2) 

a    = +248,220 KN/m2 (36,000 lb/in2) y 
0    = -165,480 KN/m2 (24,000 lb/in2) 

Size Limits 

Lower Bounds:  6.4516 cm  (1.0 in ) for 
WF elements 

0.6452 cm2 (0.1 in2) for 
web elements 

Upper Bounds:  none 

Displacement 
Limits 

Nodes 2, 3, 7, 9, 11, 13; 6 = + 3.81 cm (1.5 in) 

in horizontal direction 

Stress Limits a.   = +165,480 KN/m2 (24,000 lb/in2) 

O.   =  -110,320 KN/m2 (16,000 lb/in2) 

Load Factor 
Limits 

a = 1.8 for all critical modes, ^m 
No upper bounds 
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Figure 1 (a) - Normalized Piecewise-Linear Yield Condition for Figure 1 (b) 
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Figure 1 (b) - Constant-Shape Wide-Flange Cross Section 
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SUMMARY 

Advantages and disadvantages of using simulation languages in solving structural 
problems are given.  Emphasis is placed on those structural and solid mechanics prob- 
lems which have strong interactions with other disciplines.  An aeroservoelastic 
illustration is described with significant interactions between the dynamics of a 
flexible flight vehicle structure, the aerodynamics to which it is subjected, the 
dynamic flight equations, and the vehicle's servo-control system. 

INTRODUCTION 

More and more in the fields of structural and solid mechanics, interaction with 
other disciplines is on the increase in the successful solution to "real world" 
problems.  For instance, sharp increases in fuel costs have sped the trend toward 
more fuel efficient vehicles (land, air, and sea).  This, in turn, has led to more 
flexible flight vehicles which require more in-depth aeroelastic analysis, for 
example.   And land vehicles, while more fuel efficient, are less tolerant of vehicle 
crashes and more apt to become unstable.  Numerous other examples exist including 
off-shore structures, long flight space vehicles, zero-gravity orbiting structures, 
and new structure-material concepts like those in the forward swept wing concept. 
To the structural and solid mechanics analyst, such interactions usually increase the 
complexity of the simulations considerably.  Such complexity may force research into 
a field new to the analyst, or they may force heavy involvement with an engineer in 
one or more of the related fields.  That such intra-field cooperation cannot be 
ignored is well documented in well publicized failures such as the Tacoma-Narrows 
suspension bridge (which failed in aeroelastic flutter), or the Electra aircraft 
(which failed in propeller-induced gyroscopic oscillations following hard landings 
which "softened" the propulsion plant suspension system).  The reader is referred to 
reference 1 for an unprecedented presentation of many up to date examples of other 
flow-induced oscillations/instabilities. 

The point is, very often the structures/solid mechanics researcher/engineer must 
involve either the simulation of these non-structural aspects in his own simulation, 
or he must deal very closely with a companion specialist in a non-structural field. 
While most of us might belittle the difficulties of the latter, there do exist some 
documentations of the shortcomings of such interfacing between specialists (refs. 2 
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and 3.) .  Such shortcomings are rarely documented, but anyone with significant engi- 
neering experience knows of similar instances. 

SIMULATION LANGUAGES 

The authors are not so brazen as to suggest a solution to these engineer- 
interface problems in one paper. But a part of the solution to problems that usually 
exist in structural interaction problems is the use of advanced simulation languages. 
Much of this paper will explore further the advantages, disadvantages, and an 
illustrative example of such use.  Certainly there is no intent to demean other tech- 
niques by which the engineer A/engineer B and discipline P/discipline Q interfacing is 
enhanced. 

What features would such an advanced simulation language have? What trends for 
future modification should it incorporate?  What appealing characteristics should it 
possess to woo the engineer already deeply ingrained in a solution language and tech- 
nique pattern?  Table I summarizes some of the answers to these questions.  The table 
is ordered with those features easiest to achieve listed first; those most difficult 
to achieve towards the end.  Obviously the last three features in the table are 
probably not achieved very well to date except in very specialized simulation prob- 
lems.  But as storage capacities of large digital systems increase, as more software 
research is successful, and as man/machine interaction arrangements improve, even 
these three should fall within the achievable.  (The authors suspect the last feature 
will always escape solution, however!) 

STRUCTURAL SIMULATION WITH ACSL 

Figure 1 indicates the typical interrelationships involved in many simulations 
of structural systems.  As mentioned previously, the "structure" may be an actual 
flight vehicle or automobile, a hydraulic gate, or a space platform.  In some cases 
any particular element of figure 1 may dominate the simulation in terms of the simu- 
lation software effort, but in general, it is the structure itself and how it 
responds that play a major role in the interaction, both physically and simulation- 
wise.  And often it is the structure itself which catches the brunt of any real 
failure which might occur, even if the root cause of the failure is not really pri- 
marily a structural shortcoming. 

One excellent simulation language x-zhich incorporates many of the ideas previous- 
ly mentioned is ACSL - Advanced Continuous Simulation Language.  The language, 
developed by Mitchell and Gauthier, Associates, is well documented in reference 4. 
It has been used extensively by the authors in research efforts and extensively by 
the first author in a teaching environment.  While its capabilities are primarily 
geared to solving systems which are described by time dependent, non-linear differen- 
tial equations, the language is extremely versatile and has many of the table I 
features. 

To give some introduction to the types of simulation capabilities, consider 
figure 2.  First, note the one-to-one relationship for each statement and each block, 
or event, to be simulated.  The first three shown are typical control system blocks, 
a second-order transfer function (a complex pole), followed by a real pole and a 
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lead-lag simulation.  Shown fourth on the figure is a typical integrator simulation 
(simulations involving dozens of integrators are common).  Last on figure 1 is a 
vector integration.  In this instance, the three variables BX (for ßx), BXDOT, and 
BXIC are vectors of direction cosines, their time rates of change, and their initial 
conditions, respectively.  One advantage of using the latter in simulations is that 
the nine direction cosines may be "kept up with" using only three statements, for 
ß , ß , and ß .  Such use has certain advantages over the use of Euler angles with 
their often different definitions as illustrated by references 5, 6 and 7. 

A very important structural-related use of the ACSL vector integrating capabil- 
ity is illustrated in figure 3.  Starting at the top center of the figure, all time 
zero initializations in a structural time domain simulation are accomplished.  From 
a separate structural finite element model (FEM) it is assumed that a digital model 
of the elastic structure is available.  This would include the stiffness matrix [K], 
the mass matrix [M], a modal matrix [cj)] , and a set of natural frequencies fcoj. From 
this information, one may form a set of n normal coordinate equations for q as shown 
in figure 3.  The right-hand side of these equations, of course, involves the normal 
coordinates q and a generalized force vector.  A simple vector integrator of the form 

QD = INTVC(QDD,QDO), i.e., {q} = /{q}dt + {q } 

yields the lower order of the normal coordinates.  Here conversational names for the 
variables have been used.  These variables are easily dimensioned in an ARRAY state- 
ment which plays the same role in ACSL as the DIMENSION statement does in FORTRAN. 
There follows a move of the q vector to dummy storage with a standard call followed 
by another vector integrator of the form 

Q = INTVC(QD,QO), i.e., {q} = J{q}dt + {qQ} 

The elastic motions of the structure can now be formed from FORTRAN statements within 
ACSL which accomplish the following: 

{x} = [cj>]{q} and {x} = [cj>]{q} 

Here [§]   is the modal matrix.  The structural grid point coordinates {x} and their 
derivatives can now be used in forming the load vector, {P}, and then completing 
the loop by forming the generalized force vector, [<t>]T{p}.  Recall that this force 
vector was required to form the q equations to start with.  Often an algebraic loop 
is formed by this loop as described, however; this is easily handled by the use of an 
ACSL IMPLICIT statement which incorporates mathematically efficient iterative tech- 
niques.  Concluding our consideration of figure 3, the illustration is used here of a 
structure which has its motions governed by a control system as shown on the right- 
hand side of the figure.  Various kinds of disturbance(s) can be introduced from the 
ACSL collection of forcing functions.  The analyst can then examine a critical co- 
ordinate' s rate with time, for instance, and assess the structure's stability as 
indicated in the center of figure 3.  Of course, other structural calculations of 
interest may be made using the structural grid point coordinates {x}. 
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Before proceeding further with a specific illustration of simulation language 
use as described, it seems appropriate to consider typical disadvantages which face 
the structures/solid mechanics analyst in such use.  Table II summarizes these.  The 
most significant in structural interaction problems are the third (because often the 
digital structural model has to be handled by overriding the normal ACSL sorting 
algorithm), and the last (in cases where changes to the FEM may still be occurring 
such as in design or optimization problems). 

It should be pointed out that, while oversimplified, ACSL essentially has five 
"sections."  The first can be thought of as a preface to the simulation; next are 
all those instructions done at time = 0 in an INITIAL section.  The "meat" of the 
simulation occurs next in DYNAMIC and DERIVATIVE sections (for 0<t<tmax).  A 
TERMINAL section (for t=tmax instructions) completes the model definition.  A RUN- 
TIME control section is then used similar to a Case Control Deck of NASTRAN. 

A FLIGHT STABILITY STUDY ILLUSTRATION 

An early version of the F-16 experienced some in-flight instabilities which 
proved to be rather difficult to simulate with traditional approaches.  One reason 
was that one of the instabilities involved an interaction between the elastic struc- 
ture, especially as it affected the aerodynamic loading on a tip-mounted missile. 
Also involved was the aircraft's complicated control system, the first fly-by-;jire 
system.  And, of course, the flight dynamic equations in their less restrictive forms 
are quite extensive by themselves.  The latter are given in table III, primarily to 
indicate the level of complexity of equations which are easily handled by an ACSL 
simulation in addition to a structural simulation.  In table III, the large brackets 
set off the Euler angle form of some of the equations on the left, and those of the 
direction cosine form on the right.  Note the twelve integrations involved (or nine 
plus three vector integrators for the direction cosine form). 

Figure 4 indicates the various modules of this aeroservoelastic simulation.  All 
elements of the simulation within the bold lines are performed in a "built-in" and 
extremely versatile time stepping loop within ACSL.  The blocks above and below the 
bold lines are performed at time equal zero.  The right-most block is performed by 
the analyst in this stability assessment study after the run. 

A thorough description of the results from a flight dynamics perspective is 
given in reference 8 while the emphasis herein is on the structural interaction and 
simulation aspects.  One should recognize that all of the elements of figure 4 are 
present in the stability assessment simulation whether a full flight dynamic simula- 
tion is performed, or whether any one of the several typical flight dynamic simplifi- 
cations is used such as lateral-directional, longitudinal, etc. 

In this particular study, flight tests yielded a fairly good definition of the 
boundary between stable and unstable flight (ref. 9).  This boundary location varied 
with Mach number and altitude, of course.  It was also heavily dependent on whether 
or not the tip missile was on, or off. 

A roll-only ACSL simulation (without elastic effects) was sufficient to simulate 
the missile-off instability.  It was dominated by an aircraft roll oscillation with 
few structural flexibility effects.  The frequency of the instability simulation 
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matched extremely well with that recorded in-flight, 
be limited in its buildup with time. 

The missile-on instability proved much more elus 
without the inclusion of elastic effects in the ACSL 
figures 3 and 4. And even with an almost exact simul 
of the instability (almost twice that of the missiles 
stability boundary turned out to be unconservative, y 
imately 10% above the observed flight Mach number ins 
12,000 feet, matching the observed boundary at 15,000 
bility at 20,000 feet and above. (Flight results ind 
increases in altitude as well.) Figure 5 indicates a 
instability for the missiles-on case. 

Also, the instability seemed to 

ive, not predictable at all 
simulation as described in 
ation of the in-flight frequency 
-off case), the simulated in- 
ielding unstable speeds approx- 
tabilities up to an altitude of 
feet, and predicting no insta- 

icated greater stability with 
typical, diverging with time 

While a number of avenues were explored to explain this discrepancy, most were 
of an aerodynamic or stability and control nature and are discussed in Ref. 8.  The 
only one of a structural nature was to vary the number of free vibration modes used 
in the simulation.  It made little difference:  both five-mode and ten-mode simula- 
tions yielded practically the same results.  With the frequency of the instability so 
well predicted, areas other than those of a structural nature were more highly 
suspect.  It should also be mentioned that the time-domain results of this effort 
yielded much better results than some of the non-time-domain efforts.  This was 
probably due to the more capable simulation in ACSL of non-linear effects. 

CONCLUSION 

Present-day structures tend to be more interactive with nonstructural parts of 
a system.  For these types of structures, advanced simulation languages offer sig- 
nificant capabilities to the structural and solid mechanics engineer.  Some of these 
capabilities have been explored in this paper, especially as they relate to incor- 
porating the influence of flexible structures into an overall simulation. 

A flight stability and control investigation is used to illustrate the concepts 
described herein and the use of the ACSL language.  Results of this study were 
slightly unconservative with in-flight results.  Frequencies of the instabilities 
were very accurately modeled only when elastic effects were considered in the simu- 
lation. 
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TABLE I.  DESIRABLE FEATURES OF LANGUAGES FOR 
STRUCTURAL INTERACTION SIMULATIONS 

FORTRAN-like  in its makeup (realizing the almost universal appeal of 
FORTRAN among engineers for what is now approaching 25 years). 

Conversational  in its use for almost any discipline 
t 

Widely versatile  with features that incorporate ease of integration, 
ease of incorporation of arrays, ease of relating time-domain 
and frequency-domain analyses and others. 

Easily modularized  (with the ability to have mini-simulations within 
simulations or easily invoked mini-simulations). 

Possessing a trend to uncomplicate  difficult simulations (at least 
compared to typical host-language simulations).  Tends to 
"compress" a simulation to fewer instructions.  "Flow" of 
program closer to physical problem. 

Simplified input/output  arrangements with versatile plotting schemes 
and arrangements. 

The ability to generate a model, then run variations of cases with 
the model - much like the Bulk Data and Case Control Decks of 
NASTRAN. 

Machine times which tend to approach  real time. 

Diagnostics which really communicate  to the user. 

Protection  against erroneous simulations. 

t A major advantage  in interdisciplinary problems, and when returning to 
a simulation when it is cold. 
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TABLE II.  DISADVANTAGES OF ADVANCED SIMULATION LANGUAGE USE 

Diagnostics less extensive than typical host languages; 
often very misleading to the novice. 

Large storage required. 

Sorting of statements, normally done internally3 often has 
to be overridden by the user. 

Tailored output form5 instead of standard output form, slightly 
more involved to obtain if desired. 

All variables and constants are REAL unless specified otherwise 
(no real disadvantage). 

Run times are increased. 

Some limitations exist re use of variable names for certain 
arguments which ought to be totally general. 

Bulky output; some of it rather automatically generated and of 
little real use to the engineer. 

While excellent for studying interaction of a specific model 
(garnered from a FEM), it is not always very convenient 
to change the FEM itself without linking ACSL with other 
programs. 
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Figure 1.-   interrelationships   involved  in  simulation  of  elastic   structures 
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Figure  2.-  Typical ACSL modeling  features, 
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Figure 3.- Time loop sequence for structural interaction simulations. 
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Figure 4.- Flow chart of aeroservoelastic time domain simulation 
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SUSCEPTIBILITY OF SYMMETRIC STRUCTURES 

TO NONLINEAR TORSIONAL COUPLING 

O.A. Pekau and Pradip K. Syamal 
Department of Civil Engineering, Concordia University 

Montreal, Canada 

SUMMARY 

This paper presents the results of an investigation of the susceptibility to in- 
duced torsional response of symmetric building structures with nonlinear resisting 
elements.  Results are presented in the form of stability curves showing the effect 
of the arrangement of the load resisting elements on induced torsional coupling in 
these nonlinear but otherwise symmetric structures.  Universal upper and lower bound 
instability curves are also derived;  these identify the susceptibility to torsional 
coupling of symmetric structures having different stiffness arrangements but which have 
equal mass and total lateral stiffness, and which are intended to model alternative 
structural strategies for lateral load resistance. 

INTRODUCTION 

In recent years numerous studies concerned with the response of both symmetric 
and unsymmetric structures subjected to earthquake excitation have emphasized the 
importance of dynamically induced torsion.  Torsional motion is usually the result 
of a lack of symmetry (refs. 1-4), although nonlinearity of resisting elements (refs. 
5-8) as well as rotational ground motion (refs. 9-10) are equally capable of induc- 
ing torsion.  Kan and Chopra (ref. 2) demonstrated that torsion in elastic multi- 
story buildings can be modelled by analogy to torsion in single-story structures. 
Thus, torsional coupling in symmetric and unsymmetric single-story building models 
has been the subject of many studies in recent years (refs. 3-9).  Even code provi- 
sions for torsion are, to a large extent, based on the results of the analysis of 
partially symmetric single-story building models.  A recent evaluation of code re- 
quirements (ref. 11) for earthquake resistant design of torsionally coupled build- 
ings concluded that for small eccentricities and particular building configurations 
current seismic codes fail to predict correctly the effects of torsion. 

Several previous studies of linear structures (refs. 1, 4 and 10) have indicated 
that the susceptibility of symmetric buildings to induced torsional response is in- 
fluenced to a significant degree by the distribution of the resisting elements within 
the plan area of the building. 

Thus, this paper presents the results of an investigation of the susceptibility 
to induced torsional response of symmetric structures with nonlinear resisting ele- 
ments.  Attention is directed toward parameters such as the influence of the distri- 
bution and geometric arrangement of the lateral load-resisting elements (see figure 1). 
Results are presented in the form of stability curves showing the effects of the ar- 
rangement of the load-resisting elements on the induced torsional coupling in these 
nonlinear but otherwise symmetric structures. 
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METHOD OF ANALYSIS 

A simplified single-story system with rigid diaphragm and coincident centers of 
mass and resistance is considered in the present study (figures 1 and 2).  Letting 
kix and k^  represent the translational stiffnesses of the ith resisting element in 
the x- and y-directions respectively, the total translational stiffnesses Kx and K 
and the torsional stiffness of the structure KQ are given by 

y 

K Ek. 
IX (1) 

K = Ek. 
ly 

2        2 
Ek. y 4- Ek x 

ix i     ly i 

(2) 

(3) 

The load-displacement relationship of resisting elements is taken to be weakly 
nonlinear and of the elastic softening type, with cubic nonlinearity expressed as 

R (6.) = k 6.[1 - A(-^r] 
x j    x j      6 (4) 

R (6.) 
y J 

k 6. [1 - A(-J-)2] 
y J °„ 

(5) 

in which kx, k  are the linear stiffnesses of the resisting elements in the x- and y- 
directions respectively; 60 is some convenient reference displacement; A is a measure 
of the nonlinearity of the force displacement relation; 5A   are the displacements of 
the lateral resisting elements,and R^CSj) and R (5j) represent the restoring forces 
in the x- and y-directions of element ' jT. 

The necessity of using nonlinear resisting elements with cubic nonlinearity can 
readily be visualized as follows.  The corner displacements Si   (figure 2) may be ex- 
pressed in terms of mass center lateral displacements u and v and rotational dis- 
placement 8 by the following relations 

b9 (6) 

52 = 
u + hi (7) 

6., = v - ai 

5,   =    v + aG 
4 

(8) 

(9) 

It   is  now assumed   that   restoring   forces  R^S-;)   and   Ry(5j)   are   antisymmetric   functions 
about   the   origin.     Expanding   one   of   the   restoring   functions,   say  Rx(5j_),    in   the  form 
of   Taylor's   series   (ref.   7)   about   equilibrium  position   Rx(o)   for   element   1   yields 
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1                                  R   (5.)   = R   (u   -  b9) 
H                                    x     1             x 

R7// (o) 
b9)   + ^p     (u  - b0)     +  .   •   .                                        (10) I                                                  = R'(o)      (u   - 

WS                                                       x 

HH       For  a  linear  load-displacement relationship  R^(o)   represents   the  linear  stiffness  of 
HBI       the  resisting  element  and   the motions u and  6  are uncoupled.     However,   if  resisting 
PIH       elements  are nonlinear   it  can be  seen  that   the  lateral motion becomes  coupled   to   the 
HHJ       torsional motion. 

HH                    TO   approximate   earthquake effects,   the  structure  is   subjected   to   sinusoidal 
H       ground  acceleration   in  the x-direction  of magnitude 

Hi                            U    - U cos tot |H                     g (11) 

WSm                  The nonlinear  system init .ially had  three degrees  of  freedom  (u,   v and  0   in x-, 
HH        y-,   and  6-directions,   respectively).     Since  ground  excitation  exists  only in the 

II        x-direction,   v is  assumed  zerc ,   and  the  system is  governed by  the  following two 
H|       nondimensionalized coupled  equations  of motion 
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CO t 
X 

E2 = (Ek. y2)/(b2Zk. ) 
IX 1 IX 

F2 = (Ik. x2)/(a2Ek. ) 
ly i       ly 

(14g) 

A (T) x u(t)/6 A0(T) = 8(t)/S, (14h) 

6 = U/o) 
X        X 

6Q = u/rov (14i) 

where ?x, C.Q are translational and torsional damping coefficients; co^., 0)Q are funda- 
mental uncoupled frequencies of the system; r is the building plan aspect ratio; V  is 
the mass radius of gyration about the vertical axis through the center of mass; T re- 
presents nondimensional time; Ax, AQ represent nondimensional response of the system. 
Also, E and F are coefficients representing the stiffness distribution over the plan 
area of the building; M denotes mass of the rigid diaphragm,and 2a and 2b are the 
building plan dimensions in x- and y-directions, respectively. 

To investigate torsional stability of the system, equations (12) and (13) are 
cast into the form of damped coupled Mathieu-Hill variational equations (refs. 8 and 
12). 

Neglecting torsional damping, the region of instability is defined by the fol- 
lowing upper and lower bound equations (ref. 12), respectively 

02 _  2   27ADE 
0 ~ "   4(l+rO (15) 

O2 - O2 4- 9ADE 

e 4(i+r2) (16) 

where 

D = [(1 - ft2)2 + (25 ß)2] X 

x (17) 

It should be noted that stiffness distribution coefficient E appears in equations 
(15) and (16) above.  Thus, the torsional stability of a particular system is depend- 
ent upon the location of resisting elements within the plan area of the building. 

However, to validate these instability equations for a general system, equations 
(15) and (16) may be normalized by dividing by E2, yielding the following upper and 
lower bound equations, respectively 

"2   "2 27AD 
4(l+r2) (18) 
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In  the above, 

fin   = fiQ/E (20) 

tt = fl/E (21) 

In deriving   the above  instability equations  the magnitude  of   reference displace- 
ment   60   (in  equations   (4)   and   (5))   was chosen  as 

6    =A 
O        CO   /- 

X 

(22) 

which represents  static  displacement  or  the  steady-state  elastic  displacement when^ 
forcing  frequency approaches  zero.     However,   one  can  choose an alternative definition 
of   <50  given   by  the following   expression 

„ UD 
0        =    T 

O Ü)   z 

(23) 

which indicates that the magnitude of the reference displacement is nonstationary and 
dependent upon the steady-state amplitude of vibration. 

Using this definition of 60 the upper and lower instability bounds (equations 

(15) and (16)) become 

..   9X, n2  n2  27XKr2E2 

(1 - -J-)   %  =  n  "  4(l+r
2) 

(24) 

3X.   02  _    2       9XKr2E2 

(1   - X}   "e  ~ "     " 4(l+rO 
(25) 

in which < represents the ratio between total translational stiffnesses in y- and x- 

directions of the system, given by 

K 

K 
(26) 

The corresponding universal upper and lower bound expressions of equations (18) and 

(19) can be reformulated as 

r,        9^ o2  a2       27XKr (27) 
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These bounds are now applicable for any distribution of lateral resistance within the 
plan area of the building. 

RESULTS AND DISCUSSION 

To investigate the influence of the distribution of resisting elements, a vari- 
ety of structural strategies have been examined.  Figure 1 shows typical examples, 
namely, systems with periphery resistance, uniformly distributed resistance, central- 
core resistance, and 9- and 4-column resistance.  The plan dimensions are selectively 
constant (2a x 2b) for all systems.  To obtain a meaningful comparison, total trans- 
lational stiffnesses Kx and Ky and mass M are also assumed equal for all systems. 
With equal translational stiffnesses, the torsional frequencies of these systems are 
related as follows 

pa 
3OJ de et) nö    f£ (29) 

where   subscripts  p,   d,   c,   n,   and   f   denote  periphery,   distributed, 
4-column   sy 
s2,   2/3 ,   an 
spectively. 

4-column   systems,   respectively.     The magnitudes   of  E2   for   these   systems  are  1.0,   V3 , 
s   ,    /3 ,   and   1.0   for   periphery,   distributed,   core,   9-column  and   4-col 

core,   9-column  and 
are  1.0,   V3 

umn   cases,   re- 

The  following   relationships   between   torsional   frequency cog   and   stiffness  distri- 
bution  parameter   E  result   for   the 

0J 
PO 

wde GJ GJ 

various   systems 

constant (30) 

The above equation indicates that, for a particular aspect ratio and equal mass and 
total translational stiffness, the parameter (<*§_)  remains constant regardless of the 
distribution of stiffness. \F/ 

To demonstrate the application of the results equations (15) and (16) are plot- 
ted.  Typical curves for the instability regions in QQ   - Q  parameter space of the 
aforementioned systems and an example set of values for parameters r, A and Cx are 
shown in figures 3-6.  Assuming a distributed resistance system to lie within the un- 
stable region of figure 5, the corresponding periphery system (figure 3) will fall 
outside the stability curves, thus indicating that the distributed system is more 
susceptible to torsional response than the companion periphery system having equal 
mass and total lateral stiffnesses. 

Figure 7 presents the universal upper and lower bound stability curves drawn for 
equations (18) and (19).  For any plan layout of the structural system, knowing prop- 
erties such as frequencies and aspect ratios, the stability of the system can easily 
be determined.  If the values of fig and £} are such that they fall within the insta- 
bility boundaries the system is unstable, whereas falling outside the curves means 
tne structure is torsionally stable. 



In figures 3-7 it may be observed that the stability curves for all systems do 
not include any point on the equal frequency line QQ  = tt;   all the lower bound curves 
are asymptotic to this line.  While it is known that coincident lateral input and 
translational frequencies result in translational resonance, üQ  = Ü   (i.e., coincident 
torsional and input translational frequencies) does not induce torsional coupling. 
Parametric excitation is thus possible only when the torsional frequency of the sys- 
tem is slightly higher than the translational exciting frequency. 

Equations (24) and (25) are plotted in figures 8-10 for periphery, distributed 
and core systems, respectively.  In these diagrams the peaks of figures 3-7 do not 
exist and the upper and lower bound curves are almost straight lines.  The magnitude 
of static torsional buckling is also shown.  Static torsional buckling corresponds 
to zero magnitude for the "apparent" torsional frequency (ref. 7).  In terms of real 

frequency fifl this condition yields 

n? = 9XE 
2(1 + r2) 

(31) 

for which further normalization gives 

Slr 
9X 

2(1 + rz) 
(32) 

Equation (31) is represented by the dashed lines in figures 8-10. In these figures, 
some overlapping of the static buckling regions with the dynamic coupling regions is 
noticed. The overlapping zones do not have any physical meaning in the sense of in- 
stability since, for this condition, the Mathieu-Hill equation does not exist. This 
situation only arises in the neighborhood of zero £1  values. 

The corresponding universal upper and lower bound instability curves defining 
the zone of induced torsional coupling, following equations (27) and (28) and again 
without resonance-resembling peaks, are identical to those of the periphery system 

shown in figure 8. 

CONCLUSIONS 

Within the scope of the present investigation, the following conclusions are 

noted. 

1. Torsional motion in a symmetric structure can be induced due to nonlinearity 

of the resisting elements. 

2. The distribution of the resisting elements influences stability against in- 
duced torsion; selectively rearranging the resisting elements can eliminate torsional 
coupling for given excitation frequency. 

3. Universal upper and lower bound instability curves have been presented to 
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identify the susceptibility of symmetric structures with different stiffness distri- 
butions and equal mass and total lateral stiffness to torsional coupling. 

4.     It   has  been   shown   that   torsional  oscillations  are   induced   only when fig   is 
greater   than   input   frequency  ratio  ti. 

Thus, in summary, the results obtained in this study can usefully be employed in 
evaluating the susceptibility to nonlinear torsional coupling of a proposed or ex- 
isting building structure, even though the structure is symmetric and the expected 
ground excitation is purely translational. 

SYMBOLS 

a,b 

D 

E.F 

K , K 
x   y 

R (6.), R (6.) x J    y J 

t 

u(t), v(t) 

U 

x>y 

r 

5 
o 

5 
J 

cx' ?e 

9(t) 

plan dimensions of building 

square of nondimensional amplitude of single degree of freedom 
system 

stiffness  distribution  parameters   in  x-  and   y-directions,   respec- 
tively 

ratio of total translational stiffnesses (K /K ) 
x  y 

total translational stiffnesses in x- and y-directions, respec- 
tively 

torsional stiffness of the system about vertical axis 

building plan aspect ratio (a/b) 

resisting forces in element 'j' 

ratio of length of core with respect to lateral dimension of 
building 

time 

lateral displacements of mass center 

amplitude of sinusoidal ground excitation 

principal coordinates 

mass radius of gyration 

reference displacement 

displacements of resisting elements 

critical damping ratios 

rotational displacement 
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A (T), Afl(x) X        0 

V ^6 

y 

coefficient of nonlinearity 

nondimensional response 

nondimensional time 

frequency of sinusoidal ground excitation 

uncoupled frequencies 

ground  excitation  frequency ratio   (üJ/üJ ) 

translational frequency ratio (to /a) ) 
^ y x 

torsional frequency ratio (ü)fl/ü) ) 

normalized frequency ratio (ft/E) 

universal torsional frequency ratio (fifl/E) 
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(a) Periphery resistance        (b) Uniformly distributed resistance 

2a 

I "m     , 
ny 

AA 

2b 

£A 

(c) Central-core resistance       (d)  9- and 4-column resistance 

Figure 1 - Arrangement of structural systems 
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Figure 2 - Displaced position of building, 
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ADVANCES AND TRENDS IN PLATE BUCKLING RESEARCH' 

Arthur Leissa 
Department of Engineering Mechanics 

Ohio State University 

SUMMARY 

Recent advances and current trends in plate buckling research are summarized. 
The field is divided into three parts:  (1) classical buckling studies, including 
plates of rectangular, circular and other shapes; (2) classical complicating effects, 
including elastic foundation, anisotropic material, variable thickness, shear 
deformation and nonhomogeneous material and; (3) nonclassical considerations, 
including postbuckling, imperfections, parametric excitation, follower forces, 
magnetoelastic buckling and inelastic buckling.  Approximately 100 references for 
the period 1978-present are cited. 

INTRODUCTION 

The buckling of plates is a vast, complicated and somewhat disordered subject. 
Analytical solutions to problems began ninety years ago with the classical paper of 
Bryan (ref. 1) and have continued at a rapid rate since that time, yielding on the 
order of 2000 publications in the technical literature.  Part of the achievement of 
earlier decades was summarized in the well known works by Timoshenko and Gere (ref. 2), 
Gerard and Becker (ref. 3) and Bulson (ref. 4).  The writer is currently engaged in 
a research project attempting to organize, clarify and summarize this vast body of 
knowledge dealing with plate buckling by means of a comprehensive monograph.  The 
intent of the present paper is to identify recent advances and current trends in 
plate buckling research from the relatively recent literature (i.e., 1978 - present). 

CLASSICAL BUCKLING STUDIES 

Classical buckling theory is based upon the assumptions of small deflections and 
a linearly elastic material, and yields the bifurcation behavior depicted in figure 1. 
That is, the well-known plot of transverse plate displacement versus inplane loading 
follows the ordinate (I) upwards, showing no displacement with increased load until 
a critical force (Pcr) is reached.  At this bifurcation point the curve theoretically 
may continue up the ordinate (II) or, more realistically, may follow a buckling path 
(III), which is horizontal for the linear idealization. 

The classical plate buckling problem is governed by the universally accepted 
differential equation of equilibrium: 

* This work was supported by the Office of Naval Research and the Air Force Office 
of Scientific Research under Contract No. N00014-80-K-0281. 
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in rectangular coordinates, where w is the transverse displacement, D is the 
flexural rigidity, V^ is the biharmonic differential operator, Px and Py are 
compressive inplane forces (per unit length) and Pxy is inplane shearing force, along 
with appropriate linear equations representing the boundary conditions.  This set of 
homogeneous equations defines a linear eigenvalue problem for which the eigenvalues 
are nondimensional buckling parameters, and the eigenfunctions describe the 
corresponding buckled mode shapes. 

On the order of 1000 references can be found dealing with classical plate 
buckling.  These treat a variety of shapes (e.g., rectangular, circular, triangular, 
parallelogram, sectorial), edge constraints (clamped, simply supported, free, 
elastically supported, intermittently supported, point supported), loading conditions 
(e.g., uniform and variable edge loads, body forces) and interior complications 
(e.g., holes, cracks, point supports).  Exact solutions exist only for a very few 
problems involving rectangular and circular plates subjected to uniform normal edge 
loading.  For all others solutions are necessarily obtained by approximate methods 
(e.g., Rayleigh-Ritz-Galerkin, finite elements, finite differences, collocation) the 
exact solution ultimately requiring the formulation of an infinite eigenvalue 
determinant.  Approximate solutions are then obtained to any desired degree of 
accuracy by successive truncation of the determinant (and/or generating mesh size). 

Rectangular Plates 

Although hundreds of references are available for classical, bifurcation 
buckling problems for rectangular plates, the subject is far from exhausted (cf., 
refs. 5-17) and, indeed, quite a bit of useful information still needs to be found. 
The design considerations entering the problem include:  (a) edge conditions 
(b) loading conditions  (c) aspect ratio and  (d) Poisson's ratio.  For any arbitrary 
loading, there exist 108 combinations of classical boundary conditions (i.e., clamped, 
simply supported or free).  Typically, one can find a significant amount of results 
in the literature for relatively few of these combinations (e.g., all sides simply 
supported, all sides clamped), and mostly for constant uniaxial or biaxial loading 
(i.e., Px and Py constant, and Pxy = 0 in eq. (1)). 

The thorough development and widespread understanding of approximate analytical 
methods, along with the continued increase in digital computer speed and storage 
capabilities, have made it possible to obtain numerical results straightforwardly and 
cheaply which, not too long ago, were out of the question.  Efficacy of this type 
was notably shown by Bassily and Dickinson (ref. 5) who used the Ritz method with 
beam functions to determine first the nonuniform inplane stresses present under 
certain loading conditions, and once again to calculate critical values of the 
loading parameters for buckling.  The procedure was demonstrated with a cantilevered 
plate subjected to inplane acceleration loads (fig. 2).  Kielb and Han (ref. 11) 
gave comprehensive results for hydrostatically loaded (i.e., Px = Py = constant, 
PXy = 0 in eq. (1)) plates having all six possible combinations of clamped and simply 
supported edges. 

The most extensive results to date for rectangular plates were obtained recently 
by Kairo (ref. 10) using the Ritz method with algebraic polynomial trial functions. 
Complete sets of critical buckling loads were presented for rectangular plates having 
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three aspect ratios (a/b = 0.5, 1, 2) and the following loading conditions: 
(1) uniaxial compression (36 cases) 
(2) hydrostatic compression (21 cases) 
(3) constant shear stress (21 cases) 
(4) inplane bonding (54 cases; e.g., fig. 3) 

The results for shear loading may be seen in Table 1, arranged in order of descending 
buckling loads for square (a/b=l) plates. 

Considerably more research has recently taken place on the buckling of rectan- 
gular plates having internal holes (refs. 18, 19) and cracks (refs. 20-22) than for 
the corresponding free vibration problems (ref. 23).  Buckling mode shapes have also 
been determined experimentally by means of moire fringes (ref. 24). 

Circular and Other Shapes 

Not a great deal has been done recently to determine buckling loads and mode 
shapes for plates having non-rectangular shape.  Circular plates have received some 
attention (refs. 25-28).  Ku (ref. 27) developed a method for obtaining lower bounds 
for buckling loads, and used it on clamped and simply supported plates loaded in 
hydrostatic compression.  Pardoen (ref. 28) demonstrated the finite element method 
on the same two problems, as well as on a clamped-free annular plate.  Sato (ref. 29) 
analyzed elliptical plates utilizing the solution of equation (1) in elliptical 
coordinates in terms of Mathieu functions to solve problems for simply supported 
boundaries having elastic moment constraint. 

Plates of parallelogram shape were analyzed by a number of researchers (refs. 
30-36).  Edwardes and Kabaila (ref. 30) discussed a method for dealing with the 
stress singularity that exists at the obtuse corners of simply supported plates by 
means of finite elements.  The buckling of simply supported, isotropic plates was 
also studied by Kennedy and Prabhakara (refs. 31, 32) using a form of the series 
method; by Mizusawa, Kajita and Naruoka (refs. 33, 34) using the Ritz method with 
B-spline functions as trial functions; and by Thangam Babu and Reddy (ref. 36) 
using a finite strip method.  Numerical results for the buckling parameters of 
regular polygonal, isotropic plates having 5, 6, 7 and 8 sides all clamped, subjected 
to hydrostatic compressive stress, were obtained by Laura, Luisoni and Sarmiento 
(ref. 37), using the Ritz method and algebraic polynomial trial functions. 

CLASSICAL COMPLICATING EFFECTS 

In this section a number of phenomena will be considered which serve to 
complicate the classical differential equation of the buckling problem (eq. (1)) 
and make it more difficult to solve.  These complicating effects include: 

(1) elastic foundation 
(2) anisotropic material 
(3) variable thickness 
(4) shear deformation 
(5) nonhomogeneous material, including laminated fibrous composites. 

In each case, however, the resulting formulation typically still yields eigenvalue 
problems, and they are linear.  The aforementioned phenomena arise quite commonly in 
practical design situations and their effects in buckling problems have all been 
studied for decades.  Advances in understanding in each of these areas have been 
made during the past several years. 
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Elastic Foundation 

In the' case of a plate having its transverse displacement (w) resisted in both 
directions by a force supplied by an elastic foundation (or surrounding medium), the 
governing differential equation of equilibrium (1) is traditionally modified by 
adding a linear term, kw (where k is the stiffness of the foundation) to its left- 
hand side.  The eigenvalue problem of free vibration is essentially unaffected by 
this added term, yielding frequencies whose squares are shifted upward linearly by 
the foundation stiffness (cf., ref. 38, p. 1),  However, the plate buckling problem 
is typically a different one, requiring a more complicated solution of the governing 
differential equation. 

Several recent works have appeared dealing with the effects of elastic founda- 
tions (refs. 39-43).  Cimetiere (refs. 39, 40) examined the problem of the plate 
having unilateral constraints.  Wang (ref. 43) used finite difference and finite 
elements to analyze the elastic buckling of an ice sheet, which is modeled as a 
semi-infinite plate on an elastic foundation with a semicircular cutout at the edge. 

Anisotropie Material 

For a plate composed of material which is generally anisotropic the first term 
(DV4W) of the governing equation (1) is replaced by 

a4 
d w ,4 o W 

2   3 
dx dy 3   2 

3x dy 
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s4 
d W 

5   4 
9y 

(2) 

where Dj_,..., D^ are constant coefficients depending upon the material properties. 
However, the second and fourth terms of expression (2) prohibit separation of variables 
and exact solution of the resulting differential equation.  For plates of ortho- 
tropic material, with directions of rectangular orthotropy parallel to the edges, 
these terms vanish, and exact solutions are possible which are algebraic generali- 
zations of the well-known ones for isotropic plates (i.e., plates having two opposite 
sides simply supported). 

Considerable research has been reported in recent publications for the buckling 
of orthotropic plates (refs. 31, 32, 36, 37, 44-50). Of particular interest are the 
results for plates of non-rectangular shape, viz: 

(1) parallelograms (refs. 31, 32, 36) 
(2) regular polygons having 5, 6, 7 or 8 sides (ref. 37) 
(3) polar-orthotropic annular plates (ref. 50) 
(4) circular sectors having polar orthotropy (ref. 51) 

Variable Thickness 

Plates of variable thickness introduce considerable complication into the mathe- 
matical eigenvalue problem.  In particular, the governing equation (1) must be 
generalized so that its first term (DV^w) is replaced by a more general set of terms 
having variable coefficients, viz: 
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in rectangular coordinates (with similar complications in other coordinate systems, 
such as polar), where V2 is the Laplacian operator and v is Poisson's ratio.  The 

flexural rigidity is defined, as in equation (1), by 

D = 
Eh~ 

12U-V ) 

(4) 

but now the thickness, h, is a variable.  The resulting differential equation 
although linear has, in general, been incapable of exact solution. 

However, if an energy approach is used, such as the Ritz method, no major 
complication is added by the presence of variable thickness.  This method was 
recently used by Laura, Ficcadenti and Valerga de Greco to analyze the buckling of 
circular plates having a quadratic (ref. 52) and a piecewise linear (ref. 53) thick- 
ness variation.  Gupta and Lai (ref. 54) were able to obtain solutions to the differ- 
ential equation in polar coordinates by the method of Frobenius and used them to 
determine the critical buckling parameters for hydrostatically loaded, clamped and 
simply supported circular plates of linear thickness variation. 

Shear Deformation 

Consideration of shear deformation, in addition to the usual bending defor- 
mation, adds to the flexibility of a system, thereby decreasing the buckling loads 
and becoming of increased importance as the thickness-to-length (or width) of a 
plate increases.  Mathematically, the theory is typically generalized to include^ 
three dependent variables, transverse total displacement (w) and orthogonal bending 
slope changes (I|JX and ipy), yielding a governing set of differential equations of the 
sixth order (compared with the fourth order eq. (1)), and requiring three independent 
boundary conditions per edge.  An application of a typical shear deformation theory 
to rectangular plates having two opposite sides simply supported was made by Hinton 

(ref. 55). 

Ziegler (ref. 56) recently made a significant further development of thick 
plate theory including the effects of inplane (i.e., extensional) deformation 
together with shear deformation.  He further showed that the inplane deformation 
effects can be more important than the shear deformation effects in the same problem. 

Nonhomogeneous Material 

Nonhomogeneous material may involve either continuous or discontinuous nonhomo- 
geneity.  The first case may readily arise, for example, for certain non-metallic 
materials such as rubber or styrofoam, or because of nonuniform thermal or other 
environmental effects upon the material properties, and includes material property 
variation through the thickness and/or in the other two directions.  The second case 
includes layered, sandwich and fibrous composite plates.  A number of references 
dealing with layered and sandwich plates have recently appeared (refs. 57-63). 
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Laminated ribrous composite plates have received a particularly large amount of 
interest^in recent years.  Here the geometry of the laminate (e.g., elastic modulus 
ratios of individual plies, angle-ply or cross-ply layups, number of plies, symmetry 
with respect to the midplane) is exceedingly important in determining stiffness 
properties of the plate and, hence, its buckling characteristics,  For example, a 
cross-ply plate symmetrically laminated with respect to its midplane may be treated 
as an orthotropic plate.  Similarly, a symmetric angle-ply plate may be accommodated 
by homogeneous, anisotropic plate theory.  However, antisymmetric or asymmetric 
laminates result in bending-stretching coupling, resulting in an eighth order set of 
governing equations (as for a shell).  For such plates it has been shown that 
buckling loads are significantly reduced from those predicted by homogeneous plate 
theory when only a small number of layers is used.  A summary of research in the 
buckling of composite plates has recently appeared (ref. 64). 

NONCLASSICAL CONSIDERATIONS 

In this part considerations relevant to buckling will be treated, which are not 
dealt with by the foregoing linear, eigenvalue problems.  These include 

(1)  postbuckllng 
(2) 
(3) 
(4) 
(5) 
(6) 

geometric imperrections 
parametric excitation 
follower forces 
magnetoelastic buckling 
inelastic material 

Postbuckllng 

It is well known that, if a plate should reach its critical loading condition 
and buckle, under usual conditions it will deflect Into a shape having finite 
amplitude which will be able to support the buckling load.  This postbuckllng 
configuration will correspond to another equilibrium state, and will typically require 
utilizing nonlinear, large amplitude plate equations in order to be determined analy- 
tically,  indeed, the plate will typically be able to withstand still larger loads 
by suffering larger displacements (curve IV in fig. 1) until it fails due to another 
reason, such as plastic collapse. 

The subject of postbuckllng has 
past four years (refs. 65-77).  Numei 
70, 72, 73, 75, 76), circular (refs. 
(ref. 67) plates have appeared. 

received significant consideration during the 
■ical results for rectangular (refs. 66, 68, 69, 
66, 71, 77), annular (ref, 74) and parallelogram 

Another phenomenon that may occur in the postbuckllng range is called "secondary 
buckling".  It has been shown both theoretically and experimentally that for loads 
sufficiently greater than the critical buckling value, and after significant post- 
buckling displacement has occurred, the plate may jump from one postbuckled config- 
uration into another, having a different number of waves,  Thus, curve IV of figure 1 
may have a "secondary" bifurcation point.  Indeed, still more bifurcation points may 
be reached as the load is increased further.  This topic has received recent 
attention (refs. 68, 69, 72, 73, 75). 

-i- J_  c 

Geometric Imperfections 

plate is not perfectly flat, then the application of small innlane forces 



at its edges or its interior will cause finite transverse diaplacements.  This devi- 
ation from flatness (called an "imperfection") may be present in the unloaded state 
due to, for example, manufacturing or previous loading conditions, or it may be due 
to the presence of initial transverse loading or edge moments.  The resulting inplane 
load-transverse displacement curve, is a nonlinear one.  A representative plot is 
depicted by curve V in figure 1.  That is, the curve deviates from the first part of 
the linear bifurcation path (I) as the load is increased, and then typically adapts 
itself to become asymptotic with the bifurcation postbuckling curve (IV) for large 
inplane loads.  No bifurcation exists.  As the imperfection amplitude approches zero, 
curve V smoothly approaches the kinked bifurcation path I-IV with sharply increasing 

curvature at the bifurcation point. 

Recent studies of the effects of imperfections have included rectangular (refs. 
78-80) and circular plates (refs. 81-84).  Hui and Hansen (ref. 79) studied the 
infinite plate on an elastic foundation.  Turvey (ref. 84) examined simply supported 
and clamped circular plates having linear thickness variation. 

Parametric Excitation 

In the case of "parametric excitation" part of the inplane forces are caused to 
vary periodically (usually sinusoidally) with time.  Under some circumstances the 
forced vibration response will become dynamically unstable at smaller critical loads. 

There has been a small amount of recent work on this subject (refs. 85-87). For 
example, Datta (ref. 85) made an experimental study on a thin rectangular plate 
having an internal slot with straight sides and circular ends, subjected to initial 
static tension in addition to the sinusoidal end force.  As in the purely static 
case, local instability was observed in the vicinity of the slot.  Tani and Nakamura 
(ref. 86) examined clamped annular plates having both edges subjected to the same 

static plus periodic radial loads. 

Follower Forces 

In classical plate buckling problems the inplane loads are prescribed to remain 
acting in the same plane while the plate deforms.  If one prescribes that the 
direction of the force must follow the rotation of the plate at the point of force 
application, about an axis perpendicular to the force, then one has what is termed a 
"follower force".  If the force only rotates some fraction of the total plate slope, 
then the fraction is called the "tangency coefficient".  The resulting system is non- 
conservative with respect to energy and the analysis is a dynamic one. 

Celep (ref. 88) recently studied the axisymmetric instability of a completely 
free circular plate having edge loads of arbitrary tangency angle.  Farshad (ref. 89) 
examined the square cantilever plate and obtained results for the case of uniform 
compressive loads upon the two opposite free edges.  Leipholz (ref. 90) treated the 
rectangular simply supported plate having tangential body forces of the follower type. 

Magnetoelastic Buckling 

A plate of magnetically soft material oriented so that its face is normal to a 
magnetic field may buckle as the field intensity is increased to a critical value. 
The destabilizing load may be a magnetic body torque which is proportional to the 

rotation of the plate at each point. 
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Miya, Kara and Someya (ref. 91) obtained experimental results for a cantile- 
vered rectangular plate, and numerical results for solid and annular circular plates, 
Numerical results for the first problem were subsequently achieved (ref. 92).  Van 
de Ven (ref. 93) examined circular plates having clamped, simply supported or free 
edges. 

Inelastic Material 

In this section we will consider plates made of material which, under the given 
loading conditions, violates the classical assumption of a linear elastic stress- 
strain curve.  A typical and Important case is that of elastic-plastic material 
behavior.  In this case the inplane load-transverse displacement curves IV or V of 
figure 1 would begin to fall away from the curves shown when the load corresponding 
to the yield point is reached at any point in the plate.  Another important case is 
that of creep buckling.  Here the material undergoes time-dependent deformations. 
This case is not a stability problem of the classical type, but rather a matter of 
determining the length of time before failure. 

Inelastic plate buckling problems have received considerable attention in the 
past four years (refs. 66, 94-114).  A sample of the problems considered follows 
below.  Dietrich et al. (ref. 96) made experimental, plastic buckling studies for 
simply supported rectangular plates subjected to biaxial compression.  Gupta 
(ref. 100) developed a numerical procedure for the solution of plastic buckling 
problems, and demonstrated it for simply supported and clamped plates subjected to 
uniaxial compression.  Popov and Hjelmstad (ref. 106) made tests of plate girder 
webs (which may be considered as plates) subjected to cyclic loading in the inelastic 
range. Needleman and Tvergaard (ref. 105) made analyses of the imperfection sensi- 
tivity of simply supported square plates exhibiting elastic-plastic behavior. 
Tvergaard (ref. 113) also considered creep buckling.  Shrivastava (ref. 109) included 
transverse shear deformation effects in a plastic analysis of various uniaxially 
loaded rectangular plate configurations. 

CONCLUSIONS 

The field of plate buckling research is a reasonably active one, with more than 
100 technical references having appeared in the past four years. 

However, it seems that the rate of research using classical plate theory has 
ebbed somewhat in recent years, compared with the activity of previous decades. 
Certainly the 30 references found in the present search are far less than the 100 
found for classical plate vibrations over a similar period (ref. 23).  A similar 
disparity exists for classical complicating effects - less than 30 in the present 
work covering buckling, and about 200 for plate vibrations (ref. 116).  Furthermore, 
the literature search for the present plate buckling paper was more complete than 
for the vibration ones (refs. 23, 116). 

The number of classical buckling problems yet unsolved is still great.  And 
because of their practical importance it is hoped that researchers will return to 
them in the coming decade and provide accurate and comprehensive results useful for 
design and to serve as a solid foundation upon which further nonclassical studies 
may be based.  The analytical methods and computational capability used for plate 
vibration problems are equally useable for buckling solutions. 
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TABLE I.-CRITICAL VALUES OF P  b2/D FOR INPLANE SHEAR LOADING xy 

a/b 
Edge 

Conditions 0.5 1 2 

CCCC 404.89 144.50 101.20 
CCCS 399.69 132.08 84.278 
CSCS 397.48 124.06 66.232 
cess 326.29 115.69 81.573 
CSSS 319.83 105.69 65.285 
SSSS 258.78 92.064 64.692 
CCCF 323.66 83.997 27.260 
CSCF 326.87 83.406 23.213 
CFCF 319.10 74.175 17.509 
CCSF 246.41 64.180 24.048 
CSSF 247.54 63.665 19.146 
CFSF 247.14 57.394 12.206 
CSFS 90.308 49.027 45.605 
SSSF 182.16 47.097 16.123 
SFSF 174.60 41.823 8.0238 
SFFF 38.452* 17.745* 5.0360* 
FFFF 11.977* 9.9489* 2.9942* 
CCFF 18.047 6.2201 4.5118 
CSFF 17.896 4.8615 1.7462 
CFFF 17.724 3.8833 .82613 
SSFF 5.3476 2.6476 1.3369 

-First nontrivial eigenvalue (i.e., not a rigid body mode) 

l&f. 



w 

Figure 1.- Representative curves of load 
versus transverse displacement. 
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H8L   .-__ 

Figure 2„- Cantilever plate with inplane 
acceleration body forces. 

Figure 3.- Clamped, simply supported, simply supported, free 
(CSSF) rectangular plate with inplane bending stresses. 
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SOLUTION OF VON KARMAN'S PLATE EQUATIONS 

WITH PERTURBATION AND SERIES SUMMATION 

L. Glen Watson 
Transportation Centre, University of Saskatchewan 

Joseph M. Chudobiak 
Department of Mechanical Engineering, University of Saskatchewan 

SUMMARY 

Problems involving finite deflections of plates with simply supported or free 
edges have, in the past, been regarded as almost intractable.  In this paper a 
nonlinear-series summation technique has been combined with Chien's small-parameter 
perturbation technique to solve the problem of the finite deflection of a simply 
supported circular plate subjected to a uniform transverse load.  The results 
demonstrate the great advantage of incorporating the summation method into the 
solution procedure and are in excellent agreement with previous results. 

INTRODUCTION 

Many investigators have found ways of obtaining approximate solutions to 
Von Karman's plate equations [1].  In particular, they have produced load versus 
central-deflection curves for circular plates with geometric boundary conditions. 
When one attempts to extend these methods to obtain better approximations for the 
inplane "membrane" loads or for cases with one or more "natural" boundary conditions, 
one usually encounters almost insurmountable difficulties.  These difficulties take 
several forms.  Often the cases treated in the literature have degenerate boundary 
conditions and while generalizations may not be impossible, the labor^involved in 
"solving" Von Karman's equations for a different set of boundary conditions is 
prohibitive.  Other methods, particularly the well-known Berger's method [2] can 
lead to incorrect and, in some cases, nonsensical answers [3].  A similar method due 
to Goldberg [4] appears to yield incorrect solutions when applied to a transversely 
loaded annular disc with a free outer edge [5]. 

Chien's method [6] has been used by numerous investigators to obtain solutions 
to the Von Karman plate equations [7], [8], [9] but with few exceptions these 
investigators terminated the asymptotic series after obtaining two non-zero terms. 
Those who invested the effort to obtain further terms encountered difficulties with 
series divergence [10]. 

Workers in fluid dynamics have long encountered such divergence problems when 
trying to extend the range of their solutions.  Many have treated or advocated the 
treatment of their series with various summation and transformation procedures [11]. 
However, workers in solid mechanics do not appear to have utilized this technique. 
In this paper the authors combine the nonlinear e-^  transform of Shanks  [12] with 
Chien's [6] small-parameter perturbation method to obtain a solution to the problem 
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of a simply supported circular plate subjected to a transverse load. 

This set of boundary conditions was chosen for a test problem since Berger's 
method had been found to fail for this problem and in addition Bromberg [13] had 
solved the problem using a combination of a power-series method, a perturbation 
method, and an asymptotic boundary layer method.  These methods \oexe  matched to 
provide solutions over a wide range of transverse loads. 

SYMBOLS 

b 

f. 

h 

q 

r 

D 

E 

P 

S , S 
r'  t 

W 

w. 

r'  t 

Q , Q xr' xt 

Plate boundary radius 

Coefficients in the asymptotic expansion of S 
r 

Coefficients in the asymptotic expansion of S 

Plate thickness 

Uniform transverse loading 

Radius 

Flexural rigidity of a plate 

Modulus of elasticity 

Dimensionless loading intensity 

Dimensionless radial and tangential average stresses 
(i.e., S  = N /h, S  = N /h) 

r   r    t   t 

Dimensionless plate deflection 

Coefficients of the asymptotic solution of dimensionless 
plate deflection 

Coefficients in the asymptotic expansion of P 

Dimensionless central deflection of a circular plate 

7      7 
1 - r /bZ 

Poisson's ratio 

Normal force per unit length (radial direction) 

Normal force per unit length (tangential direction) 

Radial and tangential moments per unit length 

Radial and tangential shearing forces 
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VON KARMAN'S FINITE DEFLECTION 
PLATE EQUATIONS 

Von Karman's equations are usually given as: 

and 

4 
V w 

V4F 

2 
1     r      .   9  F 
D     tq+~ 

w 
? 2 2 2 

25 F    3 w rr   3_w , 

3y       3x 3x9y     3x3y 3x       3y 

2      2    2 
, r ,3 w v   3 w  3 w  , 

Eh [ ( ) ö —5—ö J 
3x3y 

2   2  2 
3x  3x 3y 

(1) 

(2) 

where F is a stress function, such that 

„2„ 

N 
ay2 

N  = 
y 

N 
xy 

in. 
3x3y 

and 

Eh' 

12(l-v ) 

Chien [6] expressed the axisymmetric form of Von Karman's equations in terms 
of the dimensionless radius n.  Thus 

Id r,_      ,   dW 
4    T2    [(1"n)  dn" ] 

dn 
16       4 r dn 

(3) 

dn 

1 ,dW- 2 
2  [(1-n)  Sr]+   1(f) =    0 (4) 

and 
dS 

st    =    sr - 2(l-n) ^ (5) 

where 

W-H N     =*f S 
h r       , 2       r 

Eh      Q Nt = TT st 

P  = ^  (1-v2)       and 
h4E 

n = 1 - 
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Chien [6] expanded "P", "W", "S , and "S "  in power series of <5, the 
dimensionless central deflection, as 

3P 3       5 
16     1      3       5 

w  = w1(n)6 + w3(n)5
3 + w5(n)6

5 + 

Sr = f2(n)6
2 + f4(n)5

4  + f6(n)6
6 + 

(6) 

(7) 

(8) 

and 

st = g2(n)ö
2 + g4(n)6

4 + g6(n)<5
6  + (9) 

Equations (6), (7), (8), and (9) were then substituted into equations (3), 
(4), and (5) and the coefficients of each power of S  were collected to form 
families of governing equations. 

The family of differential equations governing the transverse deflections 
is to the seventh order in <5. 

2 dW 
-^ [d - n) —]  = a 
4dn' 

,2 

dn 

dW, 

dn 

1 

dW, 
-i_ [(1 - n) 11]  = a - | a  - v

2)(f ^1) 
4d Z dn       3   4 2 dn 

(10) 

(ID 

d2 dW5 ■* ? dWi      dW-5 
~ [(1 - n) -1]  = a5 - | (1 - v2)[f4 -1 + f2_l] 
4dn dn dn "dn 

(12) 

A
2 dw

7 , dW      dW. 
«       [(i - n)_l ]  = a    J (1 _ v

2
)[f _1 + f  3 

4dn
2       dn       7   4        6 dn    4 dn 

+ f, 
dfoL 

dn 
(13) 

and the radial stresses are governed by the series, 

d2 1  dWl 2 
-^2 [(1 " n)f2] + I ( -I)2 = 0 
dn dn 

(14) 

i*,? 



dn 

2 dW   dW 
^2 [d " n)f4] + —-  —-  = 0 

dn   dn 
(15) 

2 dW   dW dW 
-^ [(1 - n)f6] + —-  — + {  ( —) 
dn dn   dn       dn 

= 0 (16) 

,2 dW,   dW^    dW_ dW_ 
-^  [(1 - n)f8]  + -i  -2 + -1 —1 
dn dn   dn    dn  dn 

(17) 

Finally, the circumferential stresses are given by; 

df. 

5. = f. - 2(1 - n) — 
11 J dn 

2, 4, 6 . . (18) 

For a simply supported circular plate subjected to a uniform transverse load 
the governing boundary conditions for the transverse deflections are: 

w1(i) = 1 

W (1) = w5(i) = W?(l) = 0 

(19) 

(20) 

and 

dWn dW„ dW, dW. 

dn   n=l   dn   n=l   dn   n=l  dn   n=l (21) 

are finite. 

W (0)  = W (0) = w5(o)  = W (0) = 0 (22) 

dW. 
- (1 + v) —- 

2d2W. 
+ 

dn  TI=0   dn   n=0 
i = 1, 3, 5, 7 (23) 
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The radial stresses must satisfy the conditions 

f£(0) i = 2,4,6, (24) 

md 

f.(l) should remain finite for 
l 

2, 4 3 6. (25) 

The equations (10) to (18) were then solved sequentially in the order: 
(10), (14), (18) with i = 2, (11), (15), (18) with i = 4, (12), (16), and (18) 
with i = 6»  At  this point the unknox-m functions in equations (7) to (9) were 
known up to the sixth order in 6.  The boundary conditions (19) - (24) were then 
invoked to evaluate the constants of integration.  Table I gives the values for 
W., f., g. and a. for the case v  -  0.3. 
l   i  °i     l 

Figure 1 shows plots of the approximate relationships between the central 
deflection <5 and the dimensionless loading parameter  qb_4 .   The approximations 

Dh 
were obtained by retaining 1, 3 and 5 terms of equation 6.  Figure 2 shows the 

stress for v = 0.25 and 6 = 3.78 (this was chosen because Bromberg [13] had 
studied it).  These curves were produced by retaining 1, 2 and 3 terms of equation 
(9).  In both figures the problems caused by retaining the highest order terms are 
illustrated. 

From Figure 1 it can be seen that the inclusion of the fifth order term 
causes the solution to become meaningless at central deflections of about nine 
plate thicknesses.  Figure 2 illustrates the divergent behavior of equation (9) 
with the sixth order term dominating the second and fourth order terms with a 
central deflection of only 3.78 plate thicknesses.  The sixth order solution 
would be rejected because the sixth order term dominates near r = 0.  Hox-zever, 
it would be difficult to decide whether or not to retain the fourth-order term. 
Thus, for deflections of only 3.78 plate thicknesses the membrane stress solutions 
are of little value. 

The divergence of the series was not completely unexpected since other 
investigators had noted the same phenomena [10]. 

SERIES TRANSFORMATION 

Van Dyke [11] notes that many asymptotic series appear to initially converge 
and then diverge.  He illustrates such behavior for asymptotic series and notes 
that one gets the best answer by retaining the initial decreasing terms but 
discarding the later divergent terms.  However, the rate of convergence of many 
series can be improved. 

Many authors, among them [12], [14], [15], [16], [17], and [18] have presented 
methods for improving such series but Shanks' e., transform [12] appears to be the 
most appropriate when only 3 terms of the series are knovra. 
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Using this transform, the partial series of the form 

3     5 
f(<5)  = a.. 5, + a 6  + a 6     

are summed with the relation, 

f(5)  = 

2 2 
a..a„(5 + 6 (a - a^a ) 

a3 - a56 
(26) 

If the e.. transform is applied to Equations (6), (8) and (9), the following 

expressions are obtained. 

(a)  To relate the intensity of transverse loading and deflection; 

qb 
4 

Dh 

2 2 
,, P   r-  a,an  + 6   (a.oi,.   -  a01 64o   L        1   i 1   3 3J 

-  a„  + ctj-52 

(27) 

(b)  The radial and circumferential stresses at any radius are given by 
Equations (28) and (29) respectively; 

(    \ Eh2 K1    I Gr    = ~~2~ 

f2(n)f4(n) + 6 [f2(n)f6(n) - f4(n)f4(n)] 

- f4(n) + f6(n)6
2 

} (28) 

2     - g2(n)g4(n) + 5 [g2(n)g6(n) - g4(n)g4(n)] 
/ N    Eh  2 {  } 

a (n)  = ~Y~  
ö      

- g4(n) + g6(n)S 

(29) 

RESULTS 

Figures 1 and 3 demonstrate the efficacy of Shanks' e., transform in improving 
the behavior of asymptotic series for deflection and membrane stresses.  Figure 1 
shows that equation (27) is in extremely close agreement with Bromberg 's solution 
for deflection versus transverse load intensity.  Figure 3 indicates how the e.. 
transform rectifies the divergent and oscillatory series (9) and how closely 
the values of equations (28) and (29) follow Bromberg's values for membrane 
stresses at a central transverse deflection of 5.61 plate thicknesses. 
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DISCUSSION 

A comparison between the asymptotic series and Bromberg's solutions shows that 
the two-term asymptotic series is a good approximation for the relationship between 
the central plate deflection and the intensity of the transverse load.  However, 
for deflections greater than 4 plate thicknesses, it i>7ould appear to overestimate 
the nonlinear effects.  The transformed solution appears very reasonable and is in 
good agreement with Bromberg's work.  However, at this point it is not obvious how 
to estimate the upper limit of the validity of this solution. 

The two-term solutions for membrane stresses are found to be unreliable at 
very low transverse deflections, certainly by deflections of 4 plate thicknesses. 
The transformed solution was,again, in excellent agreement with Bromberg's work, 
even at 5.6 plate thicknesses of deflection, 

DIRECTIONS OF FUTURE WORK 

The authors have already used Chien's method for a var 
plate problems with excellent results. These include large 
plates with transverse loads of varying intensity, and annu 
edge conditions under transverse loads. In two of the case 
necessary to extend the asymptotic series to three terms in 
ingful results. The first Is for an annular plate held on 
jected to a transverse load and held in such a manner that 
boundary must remain zero. The second case was for a study 
being pressed Into elastic foundations. In order for these 
it appears to be imperative to use the transform technique, 
anticipative of further work on each case. 

iety of axisymmetric 
deflections of circular 

lar plates with various 
s investigated it appears 
order to get any mean- 

the inner radius, sub- 
the Inplane displacement 
of annular plates 
solutions to be useful 
The authors are 

It appears that with the e, transform, Chien's method is a viable method of 
investigating finite deflection plate problems where "boundary layer" effects are 
significant.  The results presented in this paper indicate that in order to invest- 
igate the membrane stresses in the boundary layer at least three terms of the 
asymptotic series are required and in order to get useful numerical results a 
series summation procedure must be used. 

The Shanks' e. transform also appears to be useful in other areas in solid 
mechanics, for example, in predicting the limit of sequences generated by finite 
element solutions with progressively smaller elements. 

The utility of Chien's method may also be extended by using approximate 
solutions to the families of differential equations and then evaluating higher 
order coefficients for the asymptotic series and finally, summing the series 
with a higher order transform. 

CONCLUSION 

Using Shanks* e1 transform to sum the asymptotic series generated by Chien's 
smalls-parameter perturbation method greatly increases the range and usefulness 
of the perturbation solutions. 
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TABLE I - CONSTANTS FOR ASYMPTOTIC EVALUATION OF DEFLECTION AND STRESS FOR v 

Coefficients For Asymptotic Equation (3) 

0.3 

a = 0.245283D 00 a  = 0.704351D -01 a = -0.504526D -03 

-/b = 0.00 

r/b = 0.20 

r/b = 0.40 

r/b = 0.60 

r/b = 0.80 

r/b = 1.00 

Coefficients For Asymptotic Equations (7), (8) and (9) 

0.295894D 00 

0.295894D 00 

0.100000D  01 

0.280549D 00 

0.250182D 00 

0.950581D  00 

0.236430D 00 

0.122551D 00 

0.807034D  00 

0.169056D 00 

-0.601012D -01 

0.583487D  00 

0.868525D -01 

-0.258338D  00 

0.303487D  00 

0.138778D -16 

-0.428266D 00 

-0.104738D -16 

-0.145090D -01 

-0.145090D -01 

0.000000D  00 

-0.120942D -01 

-0.752062D -02 

0.380473D -02 

-0.628974D -02 

0.655742D -02 

0.120971D -01 

-0.531546D -03 

0.129866D -01 

0.174822D -01 

0.189606D -02 

0.257408D -02 

0.133758D -01 

-0.138778D -16 

-0.179975D -01 

-0.416334D -16 

0.182860D -02 

0.182860D -02 

0.000000D  00 

0.145080D -02 

0.755947D -03 

-0.440150D -03 

0.639145D -03 

-0.987341D -03 

-0.126014D -02 

0.952714D -05 

-0.117427D -02 

-0.153774D -02 

-0.145700D -03 

0.384606D -04 

-0.957788D -03 

-0.975782D -18 

0.101237D -02 

-0.867362D -18 

f4> f6 
g4' g6 
W0, W, 

f4' f6 
S4' g6 
W3> W5 

f4' f6 
84' g6 
w3, w5 

f4' f6 
g4' g6 
W3' W5 

V f6 
g4' 86 
w3, w4 

V f6 
g4' g6 

359 



KrS;^ 

Linear Solution "TYansformed 
Solution ^ 

3rd Order  Solution 

/     /•' 

•2b 

Bromberg's 
Solution A 

8 

HI11IUII1 : L. 

.wvrrat 

UNIFORMLY      LOADED     CIRCULAR     PLATE 

SIMPLY      SUPPORTED 

v = 0.3 

1000 2000 3000 4000 
qb4 

Dh 

Figure  1.   -  Calculated  central  deflection. 

5000 

Kf    0 

-2 

-<4 

-6 

-8 

-10 I- 

2     .3      .4 \5  Nß    .7\   .8     .9      1.0 

s^ 2n    Order   Solution- 

Kt Eh 

\     r/b 

Figure 2. - Circumferential membrane stress in a uniformly loaded, 
simply supported circular plate. Central deflection 
3.78 plate thickness. 

360 



20r 

10 

10 

■20 

MEMBRANE STRESSES IN A UNIFORMLY 
LOADED,SIMPLY SUPPORTED PLATE 
WITH  ZERO RADIAL  STRESS  ON THE 
OUTER  BOUNDARY 

Central   Deflection = 5.61  plate   thicknesses 

krEh* 
V~?" 

= 25 

Perturbation Solutions are 
given  for   8 = 5.61 

-Bromberg's   Solution 

-radial stress coefficient   kr 

Perturbation Method using  e, transform, 

Bromberg's    Method 

Figure 3. - Comparison of predicted membrane stresses for a central 
deflection of 5.61 plate thickness. 

361 



CONSTRAINED MULTIBODY SYSTEM DYNAMICS 

- AN AUTOMATED APPROACH" 

James W. Kamman and Ronald L. Huston 
University of Cincinnati 

SUMMARY 

The governing equations for constrained multibody systems are formulated in a 
manner suitable for their automated, numerical development and solution. Specifi- 
cally, the "closed loop" problem of multibody chain systems is addressed. 

The governing equations are developed by modifying dynamical equations obtained 
from Lagrange's form of d'Alembert's principle.  This modification, which is based 
upon a solution of the constraint equations obtained through a "zero eigenvalues 
theorem," is, in effect, a contraction of the dynamical equations. 

It is observed that, for a system with n generalized coordinates and m constraint 
equations, the coefficients in the constraint equations may be viewed as "constraint 
vectors" in n-dimensional space.  Then, in this setting the system itself is free 
to move in the n-m directions which are "orthogonal" to the constraint vectors. 

INTRODUCTION 

This paper presents a formulation of the governing equations of constrained 
multibody systems.  The objective is the establishment of procedures for the 
automated generation of the equations. 

Recently there has been an increasing interest in the efficient development of 
governing dynamical equations of multibody systems.  This interest is stimulated 
by the fact that many physical systems can be modelled by systems of connected rigid 
bodies.  Foremost among these physical systems of interest are robots, manipulators, 
human body models and biodynamic systems, and flexible cables or chains. 

There have been a number of formulations of the equations of motion of multi- 
body systems (refs. 1-19).  The majority of these have been restricted to "open tree" 
systems:  that is, systems of rigid bodies such that adjacent bodies have at least 
one common point and such that no closed loops are formed.  Figure 1 illustrates 
such a system.  The formulation of the governing equations of motion of such systems 
has advanced to the point where the coefficients of the governing differential 
equations can be formed automatically (numerically) by simply knowing the connection 
configuration (refs. 10-12). 

However, during recent years, there has also been interest in the dynamics of 
systems possessing closed loops, where some of the branches of the tree or chain 
are connected.  Figure 2 illustrates such a system.  These systems are useful in 

Partial support for this research was obtained from the Office of Naval Research 
under Contract N00014-76C-0139 
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modelling such physical systems as:  closed mechanisms, "docking" manipulators 

of spacecraft, ship cranes, restrained human body models, and cables 
anchored at both ends. 

As noted above, this paper presents a procedure for the automatic formulation 
of the governing equations of such closed-loop multibody systems»  The procedure 
is based upon Lagrange's form of d'Alembert's principle as exposited by Kane et al. 
(refs. 14, 20-22) and as used in refs. 9-12  to develop the dynamical equations of 
motion.  It is also based upon a "zero eigenvalues theorem" as exposited by Walton 
and Steeves (ref. 23) to provide an automatic inclusion in the analysis of the 
constraint equations.  The balance of the paper itself is divided into four parts, 
with the follox-zing part providing some preliminary information useful in the sequel. 
This includes a review of dynamical formulations of multibody systems and a state- 
ment of the "zero eigenvalues theorem."  This is followed in the next part by the 
governing equation formulation for constrained or closed-loop multibody systems.  The 
final two parts discuss generalizations and other features of the formulation. 

PRELIMINARY CONSIDERATIONS 

Coordinates and Kinematics 

Consider again the multibody system of figure 1.  This system will have, in 
general, 3N+3 degrees of freedom where N is the number of bodies of the system. 
These degrees of freedom might be delineated as follows:  Arbitrarily select a 
body of the system as a reference body.  Call this body B-^.  Next, label or number 
the remaining bodies of the system in ascending progression away from Bi through 
the branches of the tree structure, moving from branch to branch.  Then the orienta- 
tion of B]_ relative to a fixed (inertial) reference frame R together with the 
orientation of the remaining bodies of the system relative to their adjacent lower- 
numbered bodies defines 3N degrees of freedom.  Finally, the location of an 
arbitrary reference point in Bj_ relative to R defines an additional 3 degrees of 
freedom. 

The position and configuration of the system can thus be described by 3N+3 
generalized coordinates x^.  Let y^(l=l,...,3N+3) represent their time derivatives.* 
Next, let n^ (i=l,2,3) represent a mutually perpendicular unit vector set fixed in R. 
Let Gk represent the mass center of body B^ (k=l,...,N).  Then, it has been shown 
(refs. 20,21) that the velocity of G^ in R and the angular velocity of B^ in R may 
be expressed in the form: 

v, = v, „ y„n 
~k   k£nr£~m 

and "Wl&n (1) 

(Regarding notation, a repeated index, such as I   or m in Equation (1) represents a 

The reason for using the symbol y^ instead of x„ is that there are instances 
when it is convenient to select the y  prior to the selection of the x,,  This 
often results in functions y„    (called "generalized speeds") which cannot be 
integrated to obtain the coordinate x^.  In such cases, the x^ do not, in 
general, exist (and are sometimes called "quasi-coordinates").  This occurs, 
for example, when the y  are selected as angular velocity components.  (See 
ref. 24.) l 
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sum over the range of that index, unless otherwise stated.)  The coefficients vk£m 
and iüVÄm in equation (1), and their derivatives, play a central role in the 
analysis of the sequel.  They are components of the so-called "partial velocity 
and "partial angular velocity" vectors:  3vk/8y£ and 9yk/3y£.  These vectors are 
useful in forming the generalized active and inertia forces of the system.  The 
coefficients vk£m and ü)kÄm and their derivatives may be formed by simple multiplica- 
tion algorithms as developed in refs. 9-12.  Hence, by differentiating in equatxon (1), 
the acceleration of Gy.  in R and the angular acceleration of Bk in R may be expressed 
as : 

*k = (W£ + W*)5m and  Sk = (W£ + WÄ (2) 

Equations of Motion 

Consider the system in figure 1 to be subjected to an externally applied force 
field which may be represented on a typical body Bk by a single force Fk passing 
through Gk together with a couple with torque Mk.  Similarly, let the inertia force 
system on Bk be represented by a single force Fg passing through % together with a 
couple with torque Mg.  Then F£ and Mg may be expressed as (ref. 21): 

F* = -m,a    (no sum) (3) 

and 

M* = -I, • a, - co x (I  • co )   (no sum) (4) 

where im, is the mass of Bk and Ife is the inertia dyadic of Bk relative to Gfc. 
Through use of orthogonal transformation matrices (ref. 10), Jk may be expressed in 
the form: 

I  = T  n n (5) 
~k   kmn~m~n 

Lagrange 's form of d'Alembert's principle then leads to governing dynamical 
equations of motion of the form (ref. 21): 

h + F£ = ° £ = l,...,3N+3 (6) 

where F  is called the "generalized active force" and may be expressed as 

F = v, „ F,  + co, . M, I k£m km   k£m km 
(7) 

where there is a sum from 1 to N on k and from 1 to 3 on m, and where Fkm and Mkm 
are the nm components of FR and Mk.  Similarly, F*, in equation (6), is called 
the "generalized inertia force" and may be expressed as: 

F* = v, „ F* + co, „ M* (8) I k£m km   k£m tan 

where there is a sum from 1 to N on k and from 1 to 3 on m, and where F*m and M£m  . 
are the n components of F* and Mr. ~m ~K    ~K 
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Substituting from equations (1) to (5) into (7) and (8) and finally into (6) 
leads to the equations of motion which may be written in the form (ref, 10): 

a y = f 
£qJq    I 1,. 3N+3 (9) 

where there is a sum from 1 to 3N+3 on q and where a  and f  are given by: 

and 

i        =   IIL v        v +   I        ÜL       CO, 
£q k  k£m kqm kmn  k£m kq (10) 

h  -  F£ (m v  v  y + I   co, „ d),  y 
k k£m kum u   kmn k£m kun u 

-    T,1!  ^  W
T  w-, „, y y nmh kmr kun ksr k£h u s (ID 

where there is a sum from 1 to N on k, from 1 to 3N+3 on u and s and from 1 to 3 
on the other repeated indices and where e   is the standard permutation symbol 
(ref. 25), nmh 

Constraint Equations 

Equations (9) represent the governing dynamical equations for open chain or 
o^en tree systems.  However, if the system has one or more closed loops, as 
illustrated in figure 2, there are additional equations Xi/hich need to be satisfied 
to insure that the closed loops are maintained throughout the motion of the system. 
These equations are holonomic constraint equations (ref. 21) and they may be 
written in the form: 

Si(V ,m; m < 3N+3 (12) 

(These equations may be obtained by simply adding to zero the relative position 
vectors of the connecting joints around the respective loops.)  It should be noted 
that constraint equations of the form of equation (12) can arise in ways different 
than that of the closed loops mentioned above.  This can occur, for example, with 
restrictions on the motion at a joint or with the anchoring of one or several of 
the bodies to a fixed frame R.  Finally, by differentiating, equation (12) becomes 
a linear relation in the y  and may be expressed in the form: 

0     i = 1,...,m; 1=1,...,3N+3 b  v (13) 

where the b±£ are, in general, functions of x^ and t.  Equations (9) and (13) thus 
constitute the governing equations for a "closed-loop" system.  These are to be 
cast into a solvable form in the sequel. 

Zero Eigenvalues Theorem 

For a constrained N body chain system, the n dynamical equations (9) together 
with the m constraint equations (13) constitute n+m equations for the unknown yg, 
where n is 3N+3.  Hence, the system is overdetermined.  One approach to overcoming 
this difficulty is to solve equations (13) for m, say the last m, of the y£ in 
terms of the first n-m y£ as "independent" generalized coordinate derivatives.  The 
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velocities and angular velocities can then be expressed exclusively in terms of 
these y£ (ref. 21).  Finally, by following the procedure suggested by equations (6), 
(7), and (8), n-m governing dynamical equations are obtained for the y^ 

(1=1,...,n-m). 

Although this approach is suitable for relatively small systems, there are 
difficulties encountered in attempting to automate it for large systems.  Among 
these difficulties is the development of an automated procedure for obtaining a 
consistent solution of equations (13) for m of the y£ in terms of the remaining 

n_m y   Another difficulty is the problem of automatically eliminating these m y£ 
from the velocities and the angular velocities.  However, in 1966, while working 
on a constraint problem of a different context, Walton and Steeves (ref. 23) 
developed an automated procedure for solving equations such as equations (13) , for 
the y5 (£=l,...,n) in terms of p > n-m new independent coordinates zr (r=l,...,p). 
Moreover, an extension of their procedure can be developed to automatically elimi- 
nate m of the yt  from the velocity and angular velocity vectors.  Their procedure 
and its extension are based on a "zero eigenvalues theorem" as outlined in the 

following paragraphs: 

Consider equations (13) to be written in the matrix form as: 

By = 0 (^ 

where B is an mxn rectangular matrix with elements b±l  and y is an n element 
column matrix with elements y .  From B, form the n x n symmetric matrix S, defined 

as: 

T- (15) S = B B 

where BT is the transpose of B.  Since S is symmetric, there exists an orthogonal 

matrix T such that: 

TTST = A (16) 

where A is an nxn diagonal matrix with real elements or "eigenvalues" \±   (i=l,...,n) 
(ref. 26).  These eigenvalues are readily seen to be non-negative as follows:  Let 
v be a typical column of T and let w be Bv.  Then wTw = vTßTßv = vTSv.  But wTw _> 0, 
and by equation (16), vTSv is seen to be an element of A, say X±.     Hence, X±  >_  0. 
It is also readily seen that there exist zero eigenvalues:  Since B is an mxn 
matrix, its rank is less than or equal to m (ref. 26).  Then, by equation (15), 
the rank of S is also less than or equal to m.  But since m<n the rank of the nxn 

matrix S is less than n. 

Let the columns of T in equation (16) be arranged so that the eigenvalues of 
S, or the diagonal elements of A, are ordered.  That is, arrange T such that 
xl  >   x? - * * ' — Xn-  (From the preceeding argument, the last p of these will be 
zero, where p >^ n-m.)  Next, let the mxn matrix D be defined as: 

D = BT (1?) 

Then, from equations (15) and (16) it is seen that: 

DTD = A <18> 
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Hence, since the last p rcws (and columns) of A are zero, 
partitioned form: 

D may be written in the 

D = [D|0] (19) 

where D is an (n-p)x(n-p) matrix with mutually orthogonal columns, and where 
n-m £ p < n. By noting that TTT is the nxn identity matrix, the constraint 
equation (14) may be written as: 

By = BTTTy =  Dz = 0 (20) 

T 
where z is the n element column matrix defined at T y.  In view of equation (19), 
the final equality in equation (20) is satisfied if the first n-p elements of z 
are zero, irrespective of the values of the last p elements of z. 

Since T is orthogonal, the definition in equation (20) may be "inverted" 
leading to the expression: 

y = Tz       z is n x1 vector (21) 

However, since the first n-p elements of z are zero, y may be rewritten as: 

y Tz z is p x1 vector (22) 

where T is the nxp matrix whose columns are the last p columns of T.  (In view of 
the ordering defined above, these columns are the columns of T associated with 
the zero eigenvalues of S.)  Thus, equation (22) provides a solution to equation (14) 
for the n y£ in terms of the p independent (the last p) elements of z.  Moreover, 
equation (22) is an "algorithmic" expression in that standard numerical procedures 
exist for matrix diagonalization, eigenvalue determination, and hence, for the 
numerical evaluation of the nxp matrix f. 

In index notation, equation (22) may be written as 

(23) 

where the t^r may be thought of as components of the column eigenvectors t  in 
n dimensional space. ~r 

Finally, the formal statement of equation (22) constitutes the "zero eigen- 
values theorem" (ref. 23). 

GOVERNING EQUATIONS 

The procedures outlined above can be used to systematically formulate governing 
equations of the multibody system which will automatically satisfy the constraint 
equations (13).  To develop this formulation, consider again the partial velocity 
and partial angular velocity vectors discussed above.  From equations (1) and (23) 
the velocity of Gk in R and the angular velocity of Bk in R may be expressed in 
the form: 

-k 
v, „ t  z n 
k£m £r r~m 

and (D,. t  z n k£m £r r~m (24) 
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where the zr (r=l,...,p) may be viewed as new generalized coordinate derivatives, 
The partial velocity of Gk in R and the partial angular velocity of Bk in R, 
with respect to z , then become: 

3v, /3z  = v. . t. n   and ~k  r   k£m £r~m 
Bco, /8Z  = co, . t„ n ~k  r   k£m £r~m 

(25) 

Hence, the generalized active and inertia forces of equations (7) and (8) become: 

t„   F,      + tu, „   t„  M, (26) 
r Run 

and 

k£m"£r''km   '   wk£i"£r'km 

F* = v. „   t„   F*    + a). .   t.   M* 
r k£m £r  km k£m  £r Ton 

(27) 

Then, from Lagrange's form of d'Alembert's principle, the governing equations (6) 
become: 

F + F* = 0 
r   r 

1, . . . ,p 

or, more specifically: 

(28) 

a. t. y = f„t„ 
£q £r q    £ £r 

r = 1. (29) 

where a„  and f„ are given by equations (10) and (11). 
£q      £ 

Equations (29) together with the constraint equations (13) constitute the 
system of equations to be solved.  A numerical procedure for their solution can be 
formulated as follows:  Consider the general case where p=n-m.  Then, by differen- 
tiating, the constraint equations (13) become: 

bi£y£ = "bi£y£ 
i = 1,...,m (30) 

Equations (29) and (30) form a total of n equations for the 2n unknowns y^ and x^. 
Hence, there needs to be annexed to these equations the expressions: 

X£ = Y£ 
£ = 1,...,n (31) 

for the consistent numerical formulation of the governing equations.   If the yÄ 
are chosen such that the x£ do not exist, as mentioned earlier, then equations (11) 
must be replaced by analogous expressions relating y£ to other variables (such as 
Euler parameters (ref. 10) which define the relative orientations of the bodies). 

The balance of the numerical formulation of the solution of equations (29), 
(30), and (31) is now routine:  It is perhaps most conveniently expressed in 
matrix notation.  To this end, let C be the nxn matrix containing the coefficients 
of y  in equations (29) and (30).  Then, in partitioned form C is: 

£ 

C = 
£q £r 

i£ 

r = 1,...,n-m 
i = 1,.. . ,m 
q,£ = 1,...,n 

(32) 
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Similarly, let the right sides of equations (29) and (30) be combined into the 
column matrix f, which in partitioned form is: 

r 
1- 

r = 1,..,,n-m 
i = 1,...,m (33) 

r t 
I   £r 

-b,ny 1, 

Then the governing equations to be solved may be expressed in the relatively compact 
matrix form; 

-1 
y = C  r    and x = y (34) 

where x and y are the column matrices with elements x and y  (£ = l,„..,n) 
respectively. 

DISCUSSION 

At this point there are several comments and observations which might be 
helpful.  First, In the procedure of the zero eigenvalues theorem, the m constraint 
equations are solved for the n y„ In terms of n-m new variables zr.  Interestingly, 

these new variables zr do not in the subsequent formulation of governing equations 
appear.  Indeed it is only the coefficients to  of the zr which ire used. As 
noted earlier, these coefficients are the components in n-dimensional space of the 
eigenvectors tr associated with the zero eigenvalues of S.  However, in this 
context, since the corresponding eigenvalues are zero, St  is zero and the eigen- 
vectors tr are thus "orthogonal" to the rows of S.  This in turn means that these 
eigenvectors are orthogonal to the rows of the constraint matrix B.  (This conclu- 
sion was also reached in an earlier analysis of constraint equations in n-dimensional 
space (ref. 27).)  Hence, let the roxvTs of B be thought of as "constraint vectors" 
in n-dimensional space.  Then, since the t»r are used to form the new partial 
velocity and partial angular velocity vectors, the physical system can be considered 
to be constrained to move, in n-dimensional space, in directions orthogonal to 
these constraint vectors — that Is, in directions defined by the eigenvectors tr. 

Next, Lagrange's form of d'Alembert's principle is an ideally suited method 
for formulating the dynamical equations when there are accompaning constraint 
equations.  Indeed, the governing differential equations may be developed by 
simply contracting the dynamical equations obtained, via the principle, by using 
the tc„ array obtained from the zero eigenvalues theorem.  This procedure is seen 
to be successful since the generalized forces are linear, homogeneous functions of 
the partial velocity and angular velocity vectors, which in turn, are coefficients 
of the generalized coordinate derivatives (in the velocity and angular velocity 
vectors).  Therefore, a modification of these derivatives directly changes these 
vectors and hence, also the generalized forces.  This means that the modification 
procedure for the generalized coordinate derivatives, as developed by the zero 
eigenvalues theorem, may be directly applied to the dynamical equations themselves. 
Also, due to these arguments, it is seen that this procedure xrould not necessarily 
be successful if the dynamical equations were obtained by some other method, 
(Additional discussion of the merits of Lagrange's form of d'Alembert's principle 
may be found in refs. 10, 14, 20, 21, and 22.) 

Finally, the procedure developed herein is deemed to be well suited for the 
automated development of the governing equations.  Numerical algorithms are 
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currently being prepared to be incorporated into the computer codes discussed in 
refs. 10, 11, and 12.  Additional information on this may be obtained from the 
authors. 
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Figure 1.- An open-chain multibody system. 

Figure 2.- A multibody chain system with closed loops. 
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SYSTEM IDENTIFICATION:  A QUESTION OF 

UNIQUENESS, REVISITED* 

Joseph E. Hardee and Vernon C. Matzen 
North Carolina State University 

Raleigh, North Carolina 

SUMMARY 

Questions of uniqueness of parameters obtained from a system identification 
algorithm were investigated by using the local properties of the surface defined by 
the error function. Static and dynamic numerical experiments on determinate and 
indeterminate trusses and on shear buildings were used to illustrate the procedure. 
Examples are given of loading and sensor configurations which will ordinarily pro- 
duce unique parameters. 

INTRODUCTION 

System identification as a method of forming or improving mathematical models 
using measured data is becoming more widely used in structural and solid mechanics. 
Conceptually, the method is very simple. As described for parametric models** by 
Bekey (ref. 1), the method involves the following steps: 

1. Select the form of the model and the parameters which are to be 
determined . 

2. Select an error function to quantify the difference between the 
measured and predicted responses. 

3. Minimize this error function using a parameter adjustment algorithm. 

Unfortunately, the simplicity of the concept does not always lead to simplicity 
in the application. Complications can and often do arise which prevent the process 
from producing useful results.  Three types of problems commonly encountered are 

1. The parameter adjustment algorithm fails to converge. 

2. Even if it does converge, the resulting parameters are not unique. 

3. Even if the parameters are unique, they have little physical sig- 
nificance. 

«This work was performed under NSF Contract Number PFR-8007389. 

^Mathematical models for which terms and parameters have some physical signifi- 
cance, as opposed to nonparametric models in which they do not have any phys- 
ical significance. 
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The primary purpose of this paper is to discuss the second of these problems in 
light of several static and dynamic numerical experiments conducted on trusses and 
shear buildings. In particular, we sought to find a method which would enable us to 
determine a) whether or not the parameters are unique, b) how many sensors are 
needed and where to place them, and c) the practical implication of parameters not 
being unique.  We also touch briefly on the other two problems mentioned. 

In this paper, we will describe our implementation of the three steps of system 
identification, the numerical experiments on trusses and shear buildings, our con- 
clusions based on these experiments, and finally some recommendations for future re- 
search. It is perhaps worth repeating here that this work is based on numerical and 
limited physical experiments, and not on mathematical proofs. There have been sev- 
eral papers on the mathematical side of this uniqueness question (see refs. 2 and 3 
for example), but they provide no direct help in obtaining parameters in time-domain 
models. 

SYSTEM IDENTIFICATION 

The choice of the model and the parameters to be found depends not only on the 
structure, but also on the reasons for constructing the model. Because our interest 
was in the use of mathematical models to locate damaged members in structures, we 
chose a time-domain model with individual member properties as parameters«, Two 
methods of excitation* were used for the dynamic tests. The first was ground accel- 
eration. The second was a pull-back-and-quick-release test. This second method is 
commonly used for testing structures, but it presents a problem in system identifi- 
cation. The pull-back load produces an initial set of displacements (with zero ini- 
tial velocities) but, since displacements are not usually measured at every degree 
of freedom, the initial condition is not completely known. The solution we found 
most satisfactory was to use the current set of parameters in a static analysis to 
compute an initial condition. 

Our error function was the integral of the weighted squared errors between the 
measured and computed accelerations (displacements for the static tests) at those 
degrees of freedom having sensors. As alluded to earlier, the number and placement 
of sensors affect the uniqueness of the results. This point will be discussed 
later along with the results of the numerical experiments. Another interesting 
point is how much time to use in the error integral. Using different amounts of 
time did not have the effect we expected of merely scaling up or down the ordinates 
of the error surface, but in some cases radically changed the surface configuration. 
This point, too, will be discussed later. 

The parameter adjustment algorithms we used were the Conjugate Gradient and the 
modified Gauss-Newton. In most cases, the Gauss-Newton method worked very well, but 
in the more difficult situations, it was necessary to use the slower but more robust 
Conjugate-Gradient method. 

*Not all methods of system identification require that the excitation be known, 
but ours does. 
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TRUSSES 

Static Loading 

Numerical Experiments 

The early stages of our work dealt with statically loaded, planar trusses. (See 
refs. 4 and 5.) A truss configuration typical of those we considered is shown in 
figure 1.  The mathematical model was of the form 

[K] {xJ} = {Pj} 1) 

where [K] is the stiffness matrix, jxJj- is the displacement vector, and |pJjis the 
load vector, both for the jth loading condition. The error function had the form 

E2 (K! 
NLC NS 

J=1 1=1 

.J Jl2 !K)J - X J] 
1   m. 

1 

(2: 

where the subscripts  c and m refer to the computed and measured quantities, NLC 
is the number of loading conditions, NS is the number of sensors, and [K) indi- 
cates dependence on the member axial stiffnesses, 
was used for this part of the work. 

The modified Gauss-Newton method 

After verifying that the procedure would locate the correct set of parameters 
if the displacements were known at every degree of freedom (DOF), we proceeded to 
the more realistic (and more interesting) case in which displacements were not known 
at every DOF. Our approach to investigating this question was to see how various 
changes in the given information affected the configuration of the error surface. 
The first truss considered had only two bars, with the obvious advantage that the 
error surface could be plotted. As a reference, figure 2 shows the surface for the 
case of a single load and displacements measured at both DOFs. The circled point 
has a zero error and corresponds to the correct values of the member stiffnesses. 
We might ask, if the figure were drawn using a wider range of values for K-] and K2, 
would we encounter other points having exactly the same displacements as X-] and X2 
and hence a zero error? No. In fact, physical insight leads us to the conclusion 
that the minimum shown is the only strict local minimum in the entire space of 
positive stiffnesses and is therefore a strict global minimum (i.e. the parameters 
are unique). Physical insight can be used here to make this determination about the 
global property of the minimum, but, unfortunately, it is■not possible to use this 
approach on structures much more complex than this two-bar truss. 

If displacements are known at every DOF, as they were in the example just 
given, then we say that the displacements are complete. It is possible to have 
incomplete displacement information and still have the parameters be unique. For 
example, if the two-bar truss shown in figure 2 had had only one sensor, but there 
had been two independent loading conditions, the surface would be similar to the one 
shown in figure 1 and the parameters could still be found uniquely. It is 
instructive here to consider other configurations of a single-node truss. If there 
are three members connected to the node, the truss becomes statically indeterminate, 
but this is of no consequence as long as there are at least as many measurements as 
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there are members. Complete displacement information and two independent loading 
conditions (producing four measurements) will work. If there are four members 
connected to the node, it may seem as though we could use the same loading and 
sensor configuration to obtain the four member stiffnesses. We cannot though 
because of another limitation which has to do with the number of independent terms 

A two-DOF structure has only three independent 
structure)  and there are an 

in a symmetric stiffness matri 
terms   (N(N+1)/2  independent terms for an N DOF 
infinite number o combinations of member stiffnesses in a four-bar truss that will 
give the same stiffness matrix, Thus, it is impossible to obtain unique values for 
the four member stiffnesses using only displacement information. 

The investigation of the two-bar truss described above was made easier by plot- 
ting the error surface as a function of the member stiffnesses, and noting the char- 
acteristics of the surface, When there are more than two parameters, this visual 
approach can no longer be used, but the characteristics of the surface can still be 
obtained mathematically. In particular, the eigenvalues of the Hessian matrix are 
the principal curvatures of the surface at the point where the Hessian is evaluated. 
For example, in figure 2 the eigenvalues at the minimum are both positive, indica- 
ting a strict local minimum, The surface for the three-bar truss would have the 
same characteristics. The error surface for the four-bar truss, on the other hand 
although it cannot be plotted, would have an infinitely long valley of zero error. 
The correct set of stiffnesses would lie somewhere at the bottom of this valley, 
but, without more information, there would be no way of knowing where. The param- 
eter adjustment algorithm would converge to different zero-error points along the 
valley for different sets of initial parameters. At each of these minima the error 
and the gradient would both be zero, and the Hessian would have one zero eigenvalue. 
Based on these (and other) examples, we see that, as a general rule, the way to de- 
termine whether a minimum is strict, or whether it is merely one of the points along 
the bottom of the valley, is to do one or both of the following: 

1.  Compute the eigenvalues of the Hessian at the minimum to see if 
are zero, and/or 

any 

2.  Perturb the final set of parameters and restart the minimization 
algorithm to see if it converges to another set of parameters 

This rule can be used for trusses of any complexity. 

Returning to the two-bar truss, we consider two cases in 
are not unique.  The first of these, shown in figure 3, has 
The displacements,  X-|  and X2,  are independent of K2,  and 
found uniquely.  The Hessian at every point along the bottom 
zero eigenvalue, and starting from different sets of initial 
different values for K2 but not, of course,  K-],  The second 
in figure 4, is a truss having a single loading condition and a 
this sensor provides only one piece of Information, and since t 
ters, the information is clearly Insufficient.  Again for this 
would converge to some point along the bottom of the valley, an 
have a zero eigenvalue associated with it. 

which the parameters 
a zero-force member, 
hence K2  cannot be 
of the valley has a 
parameters will give 
of these cases, shown 
single sensor. Since 

here are two parame- 
case, the algorithm 
d this point would 

In addition to the two-DOF truss, we also worked with the ten-bar  eight-DOF 
truss  shown in figure 1„  Since there can be at most eight independent loading 
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conditions, there must be at least two sensors* in order to have at least ten meas- 
urements. We used five independent loading conditions and sensors at degrees of 
freedom one and three, and the algorithm converged easily to the correct set of 
stiffnesses. 

Physical Experiments 

We report here briefly on a set of static experiments performed in our labora- 
tory on a small truss model. The results turned out to be rather poor, but the ex- 
periment is a good example of one of the problems that can arise when using real as 
opposed to simulated measured data. 

The structure tested was not actually a planar ideal truss, but rather a sym- 
metric rectangular space frame. It was fabricated of 1A" square aluminum bars 
bolted to double 1/8" steel gussett plates. Loads were applied symmetrically at 
nodes, and displacements were measured on both sides of the structure to ensure that 
the response was symmetric. Displacements were measured with 0.0001" dial gauges. 
Mathematical analyses of the structure, considering it to be first a truss and then 
a frame, demonstrated that the dominate effect was truss action. 

Several loading conditions were applied in order to obtain a sufficient number 
of measurements. The minimization algorithm converged easily and the eigenvalue of 
the Hessian** at the minimum were all positive. To give the resulting parameters 
some physical significance, we used the known cross-sectional area and elastic modu- 
lus for each member, and computed an effective member length. Results from one of 
the truss configurations used are shown in figure 5. (The measured lengths are 
clear lengths between the gussett plates.) The measured and computed lengths are 
clearly not in good agreement. 

Our appraisal of this result is that the minimum found is indeed the global 
minimum, but that the mathematical model does not represent well the physical model 
(perhaps because of slipping at the joints). The solution is to change the mathe- 
matical model so that it better represents the truss model; system identification 
can do no more for this mathematical model since it has already found the best pos- 
sible set of parameters and hence the best possible equivalent "planar, ideal truss" 
model. 

From this example, we conclude that if the terms in the model are to represent 
specific structural characteristics (and not all researchers require this) then the 
resulting parameters must be treated with caution unless some independent verifica- 
tion is available. For this reason, we recommend including one or more parameters 
which can be determined by other means as a check on the work. 

We have *We reported in reference 5 that there must be a sensor at every node 
since learned that this is not necessary. 

**We do not actually compute the Hessian, but rather an approximation to it. The 
two matrices are identical when the error is zero. At the minimum in this 
example, the error was not zero, and so the eigenvalues of the approximate 
Hessian were not exactly the principal curvatures. However, the error was 
small enough that we still considered the eigenvalues to contain curvature 
information. 
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Dynamic Loading 

The second stage of our work involved dynamic numerical experiments on the 
truss shown in figure 1. The mathematical model given in equation (1) was modified 
to include lumped masses at each joint. Using a pull-back-and-quick-release test, 
we found that the program converged easily to the correct set of parameters using 
accelerations at every DOF0 We systematically reduced the number of accelerometers 
until we were using data from only one accelerometer. In all cases, the algorithm 
converged to the correct set of parameters. 

Except for the case of complete data, it is not possible to determine whether 
or not the parameters are unique. It seems possible that, when the data are incom- 
plete, there might be other combinations of stiffnesses that would also give zero 
error, although we did not find any such points. 

It is interesting to note that the number of sensors required for static and 
dynamic loadings are different. The truss shown in figure 1 required two sensors 
for static loading and only one for dynamic loading„ The reason for this difference 
is not yet understood. 

SHEAR BUILDINGS 

The only experiments performed on shear buildings "were for dynamic loading and 
numerically simulated data. The first was a two-story structure subjected to ground 
acceleration. This structure and type of loading have been discussed by Udwadia and 
Sharma in reference 6. The following summarizes two pertinent points from their 
paper: 

1.  If the accelerations are known at the base and at the first floor 
then all of the parameters (stiffnesses and/or damping coeffi- 
cients) can be found uniquely. 

2.  If the accelerations are known at the base and at the top floor 
then there are at most n!  different sets of parameters that give 
a zero error.  (n is the number of floors.) 

Our work supports these findings.  We considered three different placements of 
sensors in this investigation and obtained the following results: 

1. When the accelerations were known at the base and at both floors 
our program (using only the modified Gauss-Newton algorithm) conl 
verged easily to the correct set of parameters, regardless of the 
initial set used. 

2. If the accelerations at the base and at the first floor were used, 
the program coverged as above; again regardless of the initial set 
of parameters. 

When the accelerations at the base and at the top floor were used, 
the results were more interesting.  Our program located two differ- 
ent sets of parameters, each of which gave a zero error.  Udwadia 
and Sharma gave, and we verified, the following relationship be- 
tween the correct and alternate set of parameters: 
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2 r 

K, K„/m 
1 r 

where rar = r^/dn-, + m2), and the tilde indicates the alternate 
set. Each point is a strict relative minimum, as shown by the fact 
that the eigenvalues of the approximate Hessian at both points are 

greater than zero. 

The second case we investigated was the pull-back-and-quick-release test. We 
pulled the structure back in two different configurations. The structure was first 
pulled from the top floor, and then from the bottom floor. In each case, we used 
the same three sensor configurations that were used in the previous set of tests 
However, unlike the previous results, the algorithm converged to the correct set of 
parameters for each of the three sensor configurations, regardless of the initial 
values used. This result suggests to us that the restrictions needed to ensure 
uniqueness when ground accelerations are used, are probably not applicable to the 
pull-back-and-quick-release test. In this case, a single sensor placed at any floor 
is sufficient to ensure uniqueness. 

An unexpected result, and one that has practical implications, was obtained in 
this set of tests. In one test, the minimization became more difficult as more time 
was used in the error function. This was contrary to our understanding of how sys- 
tem identification ought to work for linear* structures. To investigate this be- 
havior we plotted the error surface for four different amounts of time m the error 
integral Figure 6 shows the result. These data were generated using sensors at 
each floor, that is, using complete information. This figure illustrates that, even 
though there may be only one point with zero error, there may be many points that 
have zero gradient and positive eigenvalues. Thus, if a very poor choice is made 
for the initial set of parameters, the algorithm may converge to one of these spuri- 
ous local minima. This problem can be avoided by adding to the error function the 
weighted squared difference between the current and initial set of parameters. The 
term can then be taken out as the algorithm begins to converge to the correct mini- 
mum. On the other hand, if one or more of the natural frequencies have been meas- 
ured than the weighted squared difference between these quantities and their com- 
puted counterparts could be added to the error function. Both of these terms have 
the effect of modifying the surface so that the spurious minima become less signifi- 

cant. 

The next structure considered was a three-story shear building. The test pro- 
gram for this structure was conducted in the same manner as before, with base 
excitation as the first loading. Again, three different sensor configurations were 
investigated.  The results are 

1 When the accelerations were known at the base and all three floors, 
our program converged with no difficulty to the correct set of 
parameters. 

When the accelerations at the base and at the first floor were 
used, the program again converges with no difficulty. 

«See reference 7 for an example of this behavior for nonlinear structural re- 

sponse. 
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3.  When the accelerations at the base md at the top floor were used. 
however, the results were less straightforward.  Six sets of ini- 
tial parameters were tried, with the following results: 

a. From three of the sets of initial parameters, the program did 
converge to the correct set, although the Conjugate-Gradient 
method was needed in the first few iterations before the modi- 
fied Gauss-Newton method would work well. 

b. One initial set was at a minimum identified by Udwadia and 
Sharrna. In that case, the convergence criterion was satisfied 
at this first point, and no further iterations were required„ 
It is perhaps worth noting here that our algorithm failed to 
converge to any of the other five minima indicated by Udwadia 
and Sharma to exist (but not given). 

c. From the two other sets of initial parameters, the program 
failed to converge after a reasonable number of iterations. Our 
assessment was that, whereas this difficulty was directly 
linked to having the sensor at a poor location, the real prob- 
lem was an algorithm that was not robust enough,, 

The second series of tests with this structure were conducted using the pull- 
back-and-quick-release loading. We pulled the structure in three different configu- 
rations . 

1.  In the first configuration, the structure was pulled from the top 
floor. 

a. Using accelerations at all floors, the algorithm converged eas- 
ily to the correct set of parameters . 

b„ Using only the acceleration at the top floor, the program still 
converged to the correct set of parameters from every initial 
set we tried. 

Using the acceleration at the bottom floor only the program 
still usually converged to the correct set. However, three of 
the initial sets led to what we thought at first might be a 
second minimum which was very close (5-7% difference in each 
parameter) to the correct set. However, by using more time in 
the error function and restarting the minimization at this 
point, the algorithm converged to the correct set. Thus it 
seems that using more time in the error function has two 
effects.   It may add spurious minima to the error surface 
while at the same time improving 
borhood of the true minimum. 

;he surface in the neigh. 

The second configuration was pulling the structure from the bottom 
floor. In the only experiment conducted with the load in this 
position, the acceleration from the top floor was used. The algo- 
rithm converged, but with some difficulty. This difficulty is 
thought to be similar to the problem discussed above in 1c, 
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3. In the third configuration, the loads were applied such that the 
deflected shape was exactly the same as the first mode shape. The 
algorithm converged with no difficulty. This result is in contrast 
to a statement by Ibanez (ref. 8) in which he lists as one of the 
limitations of this type of testing the possibility of exciting 
certain modes and not others. In our example, it seemed to make no 
difference that only one mode was excited. 

These results on the three-story shear building seem to reinforce the tentative 
conclusion given for the two-story shear building. We can now restate the conclu- 
sion as follows: For a pull-back-and-quick-release test, a single sensor placed at 
any floor is sufficient to ensure uniqueness, as long as an appropriate amount of 
time is used in the error function. 

CONCLUSIONS AND RECOMMENDATIONS 

The conclusions given here are based on numerical experiments with two types of 
structures (planar ideal trusses and shear buildings) subjected to two types of 
loading (ground acceleration and pull-back-and-quick-release type loading). Whether 
or not these conclusions will turn out to be valid under all conditions and whether 
or not they might be applicable to other types of structures and loading, we do not 
yet know.  Answers to these questions must await further research. 

Based on our numerical static experiments with planar ideal trusses, we con- 
clude that all member stiffnesses can be found uniquely if the number of independent 
measurements is greater than or equal to the number of stiffnesses. If the condi- 
tion on the number of independent measurements is not met, the error surface will 
have at least one valley of zero error going through the correct set of stiffnesses, 
and there will be an infinite number of sets of parameters satisfying the^measured 
information, 
uniquely. 

Parameters for zero-force members can, of course, never be found 

Based on our numerical dynamic experiments with pull-back-and-quick-release 
tests on trusses and shear buildings, we conclude that all member stiffnesses can be 
found uniquely using accelerations measured at any one of the degrees of freedom. 

Numerical dynamic experiments with shear buildings subjected to ground acceler- 
ation lead us to the same conclusion Udwadia and Sharma (ref. 6) arrive at—that, 
for almost all cases except for sensors placed at the base and at the first floor, 
parameters cannot be found uniquely. Our experience, however, was that all sets of 
parameters other than the correct set were very difficult to locate; and, once 
found, were different enough from the correct set that, under normal circumstances, 
there'would be no difficulty in determining whether or not a set is correct. 

Further research is needed in the following areas: 

1. Determine the validity of the conclusion given above using addi- 
tional numerical experiments and, if possible, theoretical mathe- 
matical methods. 

2. Extend the application of this work to include more complex and 
realistic structures. 
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3. Investigate the effect of imperfect models and noisy data, and 

4. Obtain and use high-quality data from well-controlled static and 
dynamic experiments on trusses, shear buildings 
tures of interest. Benchmark data such as 
be a valuable asset to all researchers involved in system identific 
tion research. 

and other struc- 
this, in my opinion, would 
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FIGURE 1.  TYPICAL TRUSS CONFIGURATION 
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A COMPUTER PACKAGE FOR THE DESIGN AND EIGENPROBLEM 

SOLUTION OF DAMPED LINEAR MULTIDEGREE OF FREEDOM SYSTEMS 

Mehdi Ahmadian and Daniel J. Inman 
Department of Mechanical and Aerospace Engineering 

State University of New York at Buffalo 

SUMMARY 

Systems described by the matrix differential equation of the form 
[M]x(t) + [C]i(t) + [K]x(t) = 0 are considered. For the case of positive definite 
mass, damping, and stiffness matrices an interactive design routine is presented. 
Designing is accomplished by adjusting the mass, damping, and stiffness matrices to 
obtain a desired oscillation behavior (overdamping, underdamping, critically damping, 

mixed  damping).     The  algorithm  also   features   interactively  modifying   the  physical or 
structure of the system, obtaining the matrix structure and a number of other systei 
properties. In case of a general system, where the [M], [C] , and [K] matrices lack 
any special properties (i.e., symmetry, positive def initeness, ...), a routine for 
the eigenproblem solution (latent roots and latent vectors) of the system is 
developed. The latent roots are obtained by computing the characteristic polynomial 
of the system and solving for its roots. The latent vectors are computed by 
substituting the latent roots in the equation DjtX^Zj i = l,2,...,n and solving for 
the zr The above routines are prepared in FORTRAN IV and prove to be usable for the 
machines with low core memory. 

INTRODUCTION 

Many linear damped multidegree  of  freedom   systems   can be  described by using   the 
matrix  differential   equation: 

[MÜ(t)   +  [C]£(t)   +   EK]x(t)   = 0 (1) 

where x(t) is an n-dimensional vector representing the displacement and [M],[C],[K] 
are nxn mass, damping and stiffness matrices. A computer package based on equation 
(1) has been developed for designing and obtaining the eigenproblem solution of 
linear damped systems. The package consists of two programs', i) an interactive 
design routine based on the adjustment of mass, damping and stiffness matrices, ii) a 
batch routine for solving the eigenproblem of a general damped system, regardless of 
any property of the matrices. 

Assuming positive definite mass, damping, and stiffness matrices, the properties 
of such systems have been studied in previous works (ref. 1). It has been shown that 
a great deal of information regarding the osc il latory behavior and stability of a 
damped linear system can be obtained by studying the properties of these matrices. 

* This work was performed under National Science Foundation Grant Number MEA 8112826, 
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It   also   lias   been   shown   in 
critically damping can "be 
matrices   in  a prescribed  fas] 
has been developed.     This  procedure   alles 
structure   so   that   each  mode   of   the   fre 
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the above, th 

iy 
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Lgn routine. 
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system,  plots  the mode  shapes,   and  indi 
if    [C][M]_iiI]     =    [K][M]_I[C])(ref.     2), 

information   is   useful   for   comparison,    as   well   as   for   indicating   the   success   of   th« 
design 

In most classical approaches and even in a large number of recent publications, 
damping has been either ignored or assumed as a linear combination of the mass and 
stiffness matrices (Eayleigh damping). The above assumptions cannot be made for 
every practical system and such assumptions may result in intolerable errors. Even 
the restriction of symmetric damping and stiffness matrices are sometimes not 
reasonable» For instance, many systems contain gyroscopic forces and/or constraint 
damping which produce an asymmetric matrix equation. As a result a more versatile 
routine, capable of solving the eigenproblem for any mass, damping, and stiffness 
matrix is also provided. The program provides the definiteness of the matrices, 
characteristic   equation,   latent   roots,   latent  vectors   (ref.   3),   and   a  plot   of  modes. 

Two examples, a clamped-end flexible beam with internal and external damping and 
a simply supported rotatory shaft with an axial load, are used to illustrate the 
utility  of  the  package. 

INTERACTIVE DESIGN ROUTINE 

First   equation   (1)   is   transformed   into   a   more   tractable   form. 
[M]~1/2y(t)   and premultiplying by   [M]-1'2   results   in: 

where 

y_(t)   +  [£]£(t)   +   [KJy(t)   = 

[C]   =  [M]~1/2[C][M]~1/2 

Assuming   x(t)   = 

(2) 

and 

[£j   =   IMI -1/2 [K][M]' -1/2 

Note that in the above transformation, [M] ' denotes the inverse of the unique 
square root of the mass matrix. Since [M] is assumed to be positive definite 
(denoted   [M]>0),   the   matrix   [M]1/2>0   exists   and   is   unique   (ref.   4). 

Inman and Andry (ref. 1) have shown that the oscillation behavior of the system 
is determined by the definiteness of the matrix [Ü-2f*' ]. These concepts can be 
used to develop a design routine. But it is observed that the computation of the 
matrix   [K] is   a   lengthy  process.      Thus   a   more   efficient   routine   is   desired. 
According to Bellman (ref. 5), if [A]>0 and [B]>0, then [A] 1/2 and [B]1'2 are also 
positive definite matrices. And, if [A-B]>0, then [A^-'^-B1'2] is also positive 
definite.      This   theorem   can be  used   to  rewrite   the   results   in  reference   1   in   a  more 
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1/2 efficient fashion which does not involve [K]   as follows: 

If [t2-4K]>0, then the system is overdamped in each mode. This case results in 
negative real latent roots. 

If [4£-C2]>0, then the system is underdamped in each mode. In this case all the 
latent roots are complex numbers with negative real parts. 

If [C2-4K]=0, then each mode is critically damped. In this case all the latent 
roots are pairs of negative real numbers. 

If [C2~4K] is indefinite and if t and I commute (i.e., CK = f€), then the system 
has mixed damping. In this case some of the modes are overdamped, which results in 
negative real latent roots, and some are underdamped resulting in complex latent 
roots with negative real parts. 

Before discussing the design strategy for each case, the following theorem is 

required: 

THEOREM 1: If [A] is not a positive definite matrix, then there exists a 
diagonal positive definite matrix [A] such that [A] + [A] is positive definite (ref. 

6). 

OVERDAMPED SYSTEM 

As mentioned above, if the matrix [C2-4f] is positive definite we have an 
overdamped system. Performing an orthogonal transformation on this matrix by using 
the  modal   matrix of  [£]   (denoted  [S])  results  in: 

[S]T[C2-4S:] [S]   =  [XCJ   - 4[S]T[E][S] (3) 

where [Xp2] presents a diagonal matrix whose elements are the eigenvalues of the 
matrix [Ü]2. According to theorem 1 if (3) is not positive definite, it is possible 
to  find  a positive definite diagonal  matrix   [A]   such  that: 

[A]   +  UCj]   - 4[S]T[S:][S]   >  0 (4) 

Assume   [A]   is  chosen such that: 

[A]   = aUC*] <5> 

where a is a scalar. Replacing [A] by aUg2] in (4) and performing the inverse 
orthogonal   transformation results   in: 

(ct+l)UCa]   + 4[S]T[f][S]   =  [(a+l)C2 - 4g]   >  0 (6) 

Thus, we have succeeded in constructing a damping matrix, [C]'a = (a+l)[C]2, which 
makes the original system overdamped. Note that the matrix [A] has been chosen in a 
special form, shown in (5), in an attempt to keep the physical structure of the 
original system unchanged (i.e., so that no extra dampers or springs must be added 
to,   or  eliminated from,   the  system). 

The   above   concept   is   programmed   through  an  interactive  routine.     In each 
iteration a  value  of  a  is  chosen,   [(a+l)C2-4K]   is  calculated and tested  for  its 
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IP* 

L S     IB.3 IT'3 £1S ■' 

if   fko  «usitris   is  positiva  definite   tiia   itesraticm  is   stopped*   otherwise 
5 ■£}   'S   S?l    *|-  ,*S :f] sd   and   replased by e 

IBDE1LAMPED  SYSTEM 

Considering   the   urderdasiped   ease,    combined   with   theorem   (1)    it   is   possible   to 
Q"O.I iCipie   vor   iiLj   Siici tnat 

[4(G+l)S-Sa]   >   0 (7) 

Again   its   above   equation   is   programmed   through  an   iterative   routine   similar   to   the 
previous  oasa. 

laiAüJ  L'i-ii'ir^jiJj   ölaint'j 

The   system   exhibits   mixed   damping   if   [Cs—4h]   is   indefini' 
concepts   can be  used  to alter   [C2-4K]  by forming  the matrix 

[{1+G)ES  - 4(1+6)1] 

Tne  previous 

(8) 

where a  and ß are two sealars.  If the above is positive definite, ß is increased and 
if it is negative definite a   is increased»  Tie process cF o1k 

variables is continued until the matrix shown in (§) becomes indefinite 

CRITICALLY DAMPED SYSTEM 

For a critically damped system, we must have 

[S2-4fj = 0 

which also   implies   commutivity between  the   [Ü]   and   [IH   matrices   (i.e.,   [£] [J 
[S][C])o     Applying   an  orthogonal   transformation  to  the  above   equation results   in: 

!S]Tit;]3[3]   - 4[S]T[Kj[S]   = 0 (9) 

where [S] is the modal matrix of [S3. Because of commutivity between [£] and [S], 
both [C32 and [f] matrices are simultaneously diagonalized by the orthogonal 
transformation and (9) can be written as 

[Aga] - 4[Ag] = 

This   imnlies 

AlS - 4Aif (10) 

e Ajfs  and A-f are   fks   ith  eigenvalues  of  the   [C]   and   [I]   matrices.    Then,   to mahe 4K 
a  system critically damped,   we proceed  as   follows: 

i -   find  the  eigenvalues   and modal  matrix of   [S] 

ii   -   use   the   eigenvalues   and   (10)   to   find   eigenvalues   of   [€?]    (i.e.,   A-p   = 
1/2 iC 
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iii - use the modal matrix [S], obtained in step i, to calculate the matrix [C] 
according to the following transformation 

[C] = [S][AC][S]
T 

Note that in this case there is no guarantee that the physical structure of the 
system remains unchanged. This means that we may have to add (eliminate) a number of 
dampers or springs to (from) the system. 

EIGENPROBLEM SOLUTION OF GENERAL DAMPED SYSTEMS 

It was mentioned previously that the dynamic behavior of a linear damped 
multidegree of freedom system can be described by equation (1). The characteristic 
equation associated with this equation is: 

][MU2 + [C]X + [K]| =0 (ID 

where LI denotes the determinant of the matrix. The determinant of a matrix is 

defined as: 

IAl = ) a.. A.. i=l,2,3,...,n 

j=l 1J  1J 

where A., is the (i,j)th cofactor and aj, is the (i.j)th element. In our case a^ 
and also1Jeach element of A., are quadratic elements in X. Carrying out the above 
operation will result in the characteristic polynomial of the system which can be 
solved  for   the   latent  roots. 

To find the product of two polynomial elements, each element is stored in two 
string storages B (B(N), N=l,2,3,...,!) and C (C(N), N=l,2,3..... J). Their product 
is   stored   in  another  string   storage D  (D(N),   N=1,2.3,...,(I+J-D)  according  to: 

D(N)   =    J ( C(N+1-I)*B(K) (12) 

where 

C(N+1-I)   =0     if     I< N+l   <  J+I 

Each  element   (i.e.,   element  m)   of   the  above  arrays  represents   the  coefficient   of   the 
(m-l)th power of X (i.e.,  Xm_1). 

After finding the characteristic polynomial of the system, it is desired to 
compute its roots. Although many classical methods are available, most of them 
suffer from complications resulting from dealing with complex roots. One of the most 
suitable and efficient methods for dealing with complex roots is Lin-Baristow's 
method (refs. 7,8). This method works by extracting quadratic factors from the 
polynomial and solving each factor individually for its roots. The concepts 
presented in references 7 and 8 have been modified to handle zero roots and is used 
in  this   package. 

The next step in the eigensolution of the system is to find the latent vectors. 
A non-zero vector z4  is  called an eigenvector corresponding  to  the  eigenvalue  Xi  if 
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or 

[M]l?  +   [C]X.   +   [K] 
L 1 1 J-1 

= o Vi£ * 

[A]z. 0 (13) 

where   [A]   is  in general  a  complex matrix»     Tie  above  implies  that  tie  matrix   [A3   has 
a  null   space   of   at  least  rank  1»     Equation  (13)   can be  written as: 

*11 

£12 

a-i In 

ä12 

a22 

a2n 

in 

~2n 

~nn 

"1 

z2 

= 0 (14) 

Because of the non-trivial null space» at least one of the rows of the above matrix 
is linearly dependent on the others. For the sake of discussion let's assume the 
last row is the dependent row. Using Gauss elimination method» the matrix [A] can be 
transformed  into an upper triangle  form  and be  written as: 

'11 

0 

0 

°12 

°22 

Dln 

fe2n 

zl 

z2 

= 0 (15) 

Assuming a known value for zn and using the backward substitution method, equation 
(15) can be solved for the vector z.^. In general if the jth row is the dependent 
row,   the  matrix   [A]   is  transformed  into: 

'11 b 12 

22 

0 

'(j+Dj 

52n 

'In (16) 

Again, by assuming z • to be known, the backward substitution method can be used to 
compute the vector z... 

The above concept is generalized for a null space of any rank, in order to 
compute the latent roots of a system with multiple latent roots. 
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FEATURES OF THE PACKAGE 

The package consists of two programs for interactively designing a symmetric 
linear damped system (INTSYD) and eigenproblem solution of a general damped system 

(MUDSYS). 

INTSYD is an interactive design routine which enables the user to interactively 
design a system by taking advantage of a large number of options provided in a MENU. 
The user is capable of obtaining all the important information regarding the system 
(i.e., the matrices, latent roots, la tent vectors, characteristic polynomial, ...). 
It is also possible to change tbe structure of the system (by adding or eliminating 
mass, damper or spring), or to ask the program to design a system with a desired 
oscillation behavior. Loading the program, the user is provided with an introduction 
presenting the main functions of the program. Next the program requires the 
necessary data which include the degree of freedom of the system, mass, damping, and 
stiffness matrices. To simplify the inputting process, all the required data are 
free-formated. Completing this step, the program informs the user of the status of 
the system (i.e., overdamped, underdamped, ...) and starts the interactive routine by 
providing the user with the list of the available options. Completing each mputed 
option, the interactive process is resumed and the user is provided with a chance to 

exercise   another   option. 

MUDSYS is a routine for computing tbe eigenproblem solution, and other necessary 
information, of a general linear damped system. This routine computes the latent 
roots, latent vectors, a plot of mode shapes, and the characteristic polynomial of 
the system. It also provides the user with the def initeness of tbe mass, damping, 
and stiffness matrices as well as the commutivity of [C] and [K]. The required 
inputs to the program are the degree of freedom, printing code, [M],[CJ, and LKJ 
matrices. These are all inputted in free-format form. Three different sets of 
information can be  printed  out by using   tbe  following printing  codes: 

IPRINT=1: Only tbe final results which are the latent roots and latent vectors 
are  printed  out. 

IPRINT=2: This results in printing [M],[C], and [K] matrices along with the 
latent roots  and vectors. 

IPRINT=3: All the computed information which includes latent roots, latent 
vectors, characteristic polynomial, definiteness of mass, damping, and 
stiffness   matrices  are printed  out. 

EXAMPLE I: 

Consider a clamped-end flexible beam with internal damping. It has been shown 
in reference 9 that the beam can be discretized as n equal masses connected in a 
continuous chain by springs (with the same spring constant) and by dashpots (with 
equal damping). If no external damping is considered, the equation of motion for tbe 

i"- mass is: 

x£(t) =| (xi^t^XiUHx^t)) +| (xi+1(t)-2xi(t)+xi_1(t)) 

Assuming four masses along tbe beam and using the  above  equation,   the matrix  equation 

of motion  is 
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AUTO—Lttl9LC39LKl   ARE FOUND AUTOMATICALLY FOR DESIRED 
TYPE OF SYSTEM 

Q QUIT?TERMINATE PROGRAM 

ENTER M»C»K»CH>EV»EE»POL»CKFR»H»P»TP»AUTO»Q..»»OR MENU FOR 
? POL 

CHARACTRISTIC POLYNOMIAL OF SYSTEM IS I 
.iOOOOOOE+Ol X« 8-f 
.8000000E+01 X« 7+ 
.29Ö000ÖE+Ö2 X« 6-f 
♦ 620000QE-f02 X** 5+ 
.8600000E+02 X« 4+ 
*8000000Ei02 X« 3+ 
*5000000E+02 X** 2+ 
♦2000000E+02 X** If 
♦ 5000öö0E-föi 

ENTER M»C»K»CH»EVfEE»POL»CK»R»H»PfTPi-AUTOfa»*..OR MENU FOR 
? EU 

EXPLANATION 

EXPLANATION 

**** EIGENVALUES 
REAL 

~.190983E-f00 
-.190983E+00 
-.690983E+00 
-*690983E+00 
~*130902E+01 
-.130902E+01 
-.180902E+01 
-.180902E+01 

IMAG 
*587785E+00 

-*587785E+00 
.951057E+00 

-.951057E+00 
.951057E+00 

-.951057E+00 
.587785E+00 

-.587785E+00 
ENTER M»C»K»CHrEV»EE»POLfCKfRfH»P»TP»AUTO»Q....OR MENU FOR 

DO YOU WANT TO CHANGE Lhl     ?Y/N 
? N 

DO YOU WANT TO CHANGE LCI      ?Y/N 
? Y 

READ IN NEW VALUES OF LCI 
? 2*5?~l?0)>0j~ls>2*5)>-i?0p0?-l!>2*5i»--:j.p0?0-:l.y2.5 

DO YOU WANT TO CHANGE CKD  ?Y/N 
? N 

STATUS OF SYSTEM * 
MIXED DAMPED 

ENTER M»C»K»CHyEV» EE» POL» CKJ-RJHITPJ'TPS'AUTO» Q. » . »OR MENU FOR 
? AUTO 

ENTER DESIRED TYPE OF SYSTEM (OVDA?UNDA»CRDA»MXDA) 
? OVDA 

STATUS OF SYSTEM : 
OVERDAMPED 

ENTER M 9 C v K»CH i EV r EE t POL ? CK 9 R * H ? P t TP s» AUTO r Q * . * . OR MENU FOR 
? C 

** DAMPING MATRIX . 
0.00 
0*00 
-2*00 
5*00 

ENTER M»C»K»CHfEV»EE»POL>CK»R»H»PFTP>AUTO»Q....OR MENU FOR 
? Q 

*352 CP SECONDS EXECUTION TIME* 

EXPLANATION 

EXPLANATION 

EXPLANATION 

5.00 -2.00 0.00 
2*00 5.00 -2.00 
0*00 -2.00 5*00 
0*00 0*00 -2*00 

EXPLANATION 
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EXAMPLE 2: 

Consider an elastic, simply supported, rotatory shaft. The shaft is rotating 
with a constant angular velocity f and is loaded viiik a constant asial force T[. The 
asial coordinate is indicated by s and y^(i, t) (i = l,2) denotes the transverse 
displacements in the principle directions» u denotes the mass per unit length, & the 
length, and si=EIi (i=l,2) the flesural rigidities in the principle directions« 

Assuming both internal (dp and external (d"e) damping for the shaft, the matris 
equation of the motion corresponding to the first two modes is given as: 

z+Cdj+dg) 

M 
z+2§ 

0  -M 

M   0 
z+ 

\u-T\E-$,m 0 

o   Y-nE-ini 
z=0 

(17) 

wiies 

.3 
M = 

U = 

V = 

0 

r.5 
„£2 

0    S ^ 

1 
E = — 

2 
I 

„3 

-  ^Z1P z12' Z2P z225 
T 

5 = V- ^/§i) .Jl/ Ojj 
1/2 

7\    = 
T{lz 

7tsS, 

h ^7 ^/§i)1/2 

= *   r (p/S^172 

zik «Presents the displacement at mode  k  v/ith respect to y.0 
the above equation is presented in detail in reference 10. 

The derivation of 
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Assuming  d.=.5,  de=.4, r\=.6,  £=.3, &=1,   an d S-|=S2 equation (17)  can be written 
as: 

.5     0       0         0 ~45       0    -.3         O" ".155 0      -.06           0 

0   .5       0         0 
z+ 

0   .45         0    -.3 • 
z+ 

0 6.755         0      -.06 
z = 0 

0    0     .5         0 .3       0     .45         0 .06 0         .155         0 

.0    0      0       .5. 0     .3         0     .45. 0 .06           0      6.755 

MUDSYS   is  used   to   compute   the   latent   roots,    1 atent  vectors,    and   the   characteristic 
polynomial   of   the  above  asymmetric   equation. The  actual  listing  of  the  output  is  as 
follows: 

##   MASS   MATRIX   I 

.5Q000E+00     0,                              0. 0. 

0«                                 ♦50000E+00     0» 0. 

0*                             0,                                 ♦50000E+00 0. 

0.                              0,                              0» .50Ö00E+00 

##   DAMPING   MATRIX   i 

.45000E+00     0.                              -.30000E+00 0. 

0.                                 .45000E+00     0* -.30000E+00 

♦30000E+00     0.                               .45000E+00 0, 

0.                                 ♦30000E+00     0. ♦45000E+00 

##   STIFFNESS   MATRIX   J 

.15500E+00     0,                              -,60000E~01 0, 

0»                                 ♦67550E+01      0» -.60000E-01 

♦60000E-01      0»                                 .15500E+00 0» 

0.                                 *60000E~01      0, ♦67550E+01 

401 



• 2076250£-f0 ■1   V •-',■ tf,<        /    i! 

♦ 4945500E + 01 XXX 5-f 

«1740002ET02 X$S 4-f 

""5 s, s o ^ o ^ r~* -1- A *"'j v *v *v *4 --• 

.216S900E+02 x«;:? 2+ 

*8177642E4-0i X*# IT 

»126Ö629ETÖ1 

LAIEN I ROOTS I 

29i090ET00 

^5 o *; Q o ä"i ;r J. /) fi 

60891ÜETÖ0 

■42931ÖET0Ü 

.47Ö490ETÖ0 

JHAG 

171966E-;-üü 

/ /19 6 6 h T 'J 0 

-i> -5 6 0 -J5 2 ir. T 01 

39ÖÖ32ETÖ1 

396Ö32ETÖ1 

NOTE:     Because  of the  lengthy output,   the  latent vectors   are not  presentee 
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CONCLUSION 

Linear damped multidegree of freedom systems were studied by using the matrix 
differential equation. For systems with symmetric positive definite matrices, 
previously developed theorems were used to develop an interactive designing routine 
to design and obtain the important information regarding the system. A second 
routine for the eigenproblem solution of a general system, where the matrices lack 
any special properties (i.e., symmetry, positive definiteness, ...), was presented. 
A clamped-end flexible beam with internal and external damping and an elastic, 
simply-supported  rotatory  shaft were used  to  illustrate  the utility of both routines. 
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SUMMARY 

In recent years considerable crash-dynamics research has been devoted to improv- 
ing passenger survivability in transportation vehicles of all types.  One of the 
objectives of this research is to attenuate the load transmitted to an occupant by 
the structure, either by modifying structural assembly, changing geometry of its 
elements, or adding specific load-limiting devices to help dissipate kinetic energy. 

General aviation aircraft (both rotary and fixed wing) have fuselage sub- 
floors of a built-up structure which are generally very stiff perpendicular to the 
floor of the cabin.  The subfloor structure, designed to crush at an appropriate 
force level, can be used to advantage in a crash by dissipating energy through plas- 
tic buckling of the floor beams and frames.  Simple closed-form solutions to predict 
the mean crushing-force levels of subfloor designs would be useful in engineering 
practice.  With that objective in mind, the complicated problem of analyzing the 
crushing process of thin-walled, plate-formed, open structures with particular empha- 
sis on "L" and cruciform shapes has been successfully attacked by using a simple type 

of analysis. 

Lower- and upper-bound solutions for the mean crushing strength of cruciforms^ 
have been obtained by considering modes of deformation which account for both bending 
and extensional deformation.  The analysis and experimental data show the importance 
of extensional deformation to the energy absorption process, representing at least 

one-third of the dissipated energy. 

INTRODUCTION 

In recent years considerable crash-dynamics research has been devoted to trans- 
portation vehicles of all types with the objective of improving passenger surviv- 
ability.  It is generally understood that in a crash environment an occupant should 
be maintained in a livable, unintruding volume, be well restrained, and not be sub- 
jected to intolerable acceleration levels.  The vehicle structure, seat, and 
restraint system should act together as a protective system for the occupants. 

Crash-dynamics research at the NASA Langley Research Center (ref. 1) focused on 
general aviation aircraft during the period from 1973 to 1982.  This effort has been 
concerned primarily with determining vehicle crash loads, identifying structural 
failure modes during crashes, evaluating restraint system/seat performance, and 
assessing loads imposed on anthropomorphic dummy passengers for potentially 
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surviveble crashes.  The development of structural concepts to reduce the load trans- 
mitted to the occupant in a crash is an important aspect of this research program, 
(See ref. 2J  The objective of the research program is to attenuate the load trans- 
mitted by a structure by modifying structural assembly, changing geometry of its 

-   adding specific load-limiting devices to help dissipate kinetic energy. =ilic:l. _iD 

rerai aviation aircrart (Ootn rotary and fixed-wing) have fuselage subfloors 
;-ap structure which are generally very stiff perpendicular to the floor 
;abin„  A typical subfloor has intersecting floor beams and frames which form 
:ra elements.  The :IL", "T'b and ;!Z:" structural elements are also common in 

or JOT. 

cruc J 
aircraft construction.  These elements are not simple structures because there is 
generally reinforcement at joint intersections.- as well as discontinuous connections, 
that is, rivets, 
level, can be ur 
buckling of the 
deformation „ 

The subfloor structure, designed to crush at an appropriate fore« 
to advantage in a crash by dissipating energy through plastic 

[frames) through local bending and extensional oe snu 

The objective of the present work is to describe the crushing process of a class 
of thir.-wallecl open structures, with particular emphasis on angle shapes ("L") and 
cruciforms,  Simple expressions will be derived for the mean crushing force and for 
the local buckling wavelength; and  comparisons will be made with experiments on thin 
copper specimens of various flange widths and heights.  The problem of local plastic 
collapse of angle elements will first be reexamined in this paper.  A cruciform may 
be regarded as two angles joined together along the vertical edge.  Because of addi- 
tional geometrical constraints on the deformation field imposed by the joint, the 
collapse mechanisms of a cruciform differ substantially from that observed in angles, 
ir necessarily involves much more in-plane extension leading to increased strength 
and energy dissipation. 

problem of :ic buckling of short angles and cruciforms is extensively 
covered in the classical treatise by Timoshenko and Gere in reference 3.  The bifurca- 
tion and maximum loads of cruciform columns undergoing torsional buckling in the 
plastic range were determined by Hutchinson and Budiansky in reference 4.  The same 
problem was discussed more recently by Needleman and Tvergaard in references 5 and 6. 
Their solutions apply to slender columns for which the reciprocal of the square of 
the slendsrness ratio is small compared to unity.  The cruciforms studied here have 
slenderness ratios that are not small, and the higher-order slenderness-ratio terms 
cannot be neglected. 

An exhaustive theoretical study of the maximum strength of cruciform columns, in 
which shear, compression, and bending deformations of flanges were taken into account, 
was conducted by Stowell in reference 7„  Good correlation of the theoretical pre- 
dictions with experimental data for 24S-T4 aluminum alloy cruciforms and "H" section 
columns was reported.  Empirical formulas for the maximum strength of flanges with 
various end conditions were developed independently by Gerard in reference 8.  The 
maximum strength of thin plates in compression can also be predicted in an approxi- 
mate way by the so-called "effective width" theory of Von Karman, et al., in 
reference 9. 

The problem of crushing of metal columns with closed cross sections of rectangu- 
lar, square, or hat-shaped configurations has received considerable attention.  The 
progressive crushing of "L" shapes and cruciforms appears not to have been studied in 
the literature except for reference 10 in which some aspects of the optimum design of 
progressively crushing angle elements were discussed.  Most authors have used an 
empirical or semiempirical approach for the determination of the maximum strength and 
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mean crushing force (refs. 10, 11, and 12) of thin-walled columns.  In a recent 
paper Wierzbicki and Abramowicz (ref. 13) developed a self-consistent theory describ- 
ing the local crush response of thin-walled structures.  In the present paper this 
theory is further extended to include additional in-plane deformation in the 
localized zones of plastic deformations. 

SYMBOLS 

"■j r ^o ' "o f ^-A constant coefficients 

flange width 

E-,        energy dissipation of a continuous deformation field in the section of a 
toroidal shell 

E?       energy dissipation of the discontinuous velocity field in the horizontal 
hinge line 

E,       work done by an inclined hinge line through the deformation process 

E4       energy dissipation of extensional deformation in the trapezoidal region 

Er       energy dissipation along a stationary horizontal hinge line (same as  E ) 

Eg       plastic work in the inclined stationary plastic hinge 

H        mode half-wavelength 

h        flange thickness 

j,k,l     extensional deformation region end-point identifiers 

L        length of the thin-walled structure 

"L","H","T",-"Z"    cross-sectional shapes of structural members 

£        length of the inclined stationary plastic hinge 

fully plastic yield moment 

P        load 

Mo = aQh
2/4 

max 

R1'R2 

critical load 

mean crushing load 

maximum load 

principal curvatures of a shell 

radius of the toroidal surface 

displacement component in y-coordinate direction 
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V 

x,y,z 

a 

3 

Y 

6 

e  ,e 
y yz 

velocity component in y-coordinate direction 

magnitude of the velocity field in the deforming region 

right-handed Cartesian coordinate system 

angle defining current mode geometry 

angle formed by intersecting plates 

angle defining deformation process 

end displacement 

nonvanishing components of the strain-rate tensor 

flow stress; taken as 0.7a 

ultimate strength 

angle formed by intersection plates 

COLLAPSE MODES 

The present paper is concerned with the deformation process of thin-walled 
structures in which deflections exceed 100 to 1000 times the wall thickness and 
become comparable to the linear dimension of the structure.  A typical load- 
deflection curve for a thin-walled structure in compression is shown in figure 1. 
The thin-gage compression member loses stability in the elastic or plastic range at 
a critical load  Pc.  in the post-buckling stage the flanges can usually carry addi- 
tional loads until the maximum strength is reached at a load  Pmax-  Then, the 

resistance of the member diminishes rapidly as the local collapse mode develops.  An 
interaction between this local mode and an Euler (global) buckling mode accelerates 
the failure of the structure.  However, for short structures, which are of interest 
here, the member often regains its strength after an initial dramatic drop in the 
resisting force.  Additional load peaks signal the formation of the second and subse- 
quent folds.  (See fig. 1.)  On continuing the crushing process, a quite complicated 
pattern is formed as the member is fully compressed.  (See fig. 2.)  The mean crush- 
ing force  Pm  is also shown in figure 1.  This mean force is determined by measuring 
the area under the load-deflection curve and dividing by the maximum displacement 
considered. 

Isometric Transformation Modes 

A distinctive feature of isometric transformation modes (inextensional 
deformation) is that the strain energy function (in the case of elastic shells) or 
the dissipation function (in the case of plastic shells) is concentrated over narrow 
zones called fold lines or hinge lines while the remainder of the structure undergoes 
a rigid body motion.  The area of these zones is small compared with the total area 
of the structure.  It can be shown that a sheet of paper or thin metal foil can be 
easily bent, but not so easily stretched, in either direction.  To activate exten- 
sional deformations a considerable amount of energy and a sufficiently high force 



level are required.  Thus, it would be expected that the folds and wrinkles in a 
crushing structure be formed predominantly by bending with as little extension as 
necessary to ensure material continuity.  Physically, this means that the structure 
tends to assume an inextensible deformation mode.  Mathematically, the transformation 
of two surfaces, which preserves the lengths of corresponding arc elements (inexten- 
sional deformation), is called an isometric transformation.  Most crushing deforma- 
tions are quasi-isometric since some extension is always inevitable. 

A necessary condition for a transformation to be isometric is that the Gaussian 
curvatures of both surfaces be the same. The Guassian curvature K is a product of 
two principal curvatures of the shell,  1/R1  and  1/R2/ at any point.  Thus, 

K = — U) 
R1 R2 

An example of an isometric transformation is a cylinder transformed into another 
cylinder (with a smaller, larger, negative radius) or into a flat plate.  Another 
example is that a transformation which interchanges curvatures as seen in equation (1) 

the first nonvanishing principal curvature becomes the second — = 0,  — ^ 0] is 
Rl      R2    / 

isometric.  (See fig. 3.)  The foundations of the mathematical theory of isometric 
transformations were laid by Pogorelov in reference 14.  His work was recently fol- 
lowed by Lukasiewicz and Szyszkowski in reference 15.  A parallel but independent 
study of the compression of thin elastic shells was made by Foster in reference 16. 

The isometric transformation is a local property of the surface and does not 
impose boundary conditions.  However, the mathematical theory does not state how one 
surface transforms into the other; it simply states conditions about the initial and 
final states.  In mechanics, however, the energy dissipated is a function of the 
deformation path between the initial and final states.  There may be many alternative 
paths to reach the same final state, some isometric, others not. 

Illustrations are provided in figure 4 of inextensional and extensional deforma- 
tion paths from an initial to a final state.  In figure 4(a) the initially flat ele- 
ment is folded inextensibly along the stationary hinge line AB to arrive at a final 
state.  The same final state is achieved in figure 4(b) by first folding along hinge 
line AB and then simultaneously folding about hinge lines AB and AC.  Again, the 
deformations are inextensional.  In general, the inextensional collapse mode of thin- 
walled flat plates or panels involving folding along stationary hinge lines can be 
formed only if the boundaries have sufficient freedom to deform.  An illustration of 
an extensible deformation path is shown in figure 4(c) where the element is first 
folded inextensibly along the stationary hinge line AB and then the panels are 
rotated extensibly to obtain the final state. 

Isometric failure modes of thin-walled structures formed by folding along sta- 
tionary straight hinge lines were studied in references 17 and 18.  These modes can 
be easily visualized by means of models made of construction paper.  Certain con- 
straints imposed in the deformation process, for example, by restricting the motion 
of a part of the boundary, preclude in general the existence of these simple collapse 
modes.  Because of limited applicability, these simple collapse modes will not be 
considered in this paper. 
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Hinge Collapse Modes 

Consider a system of two plates joined at a vertical edge and forming a short 
angle column.  The column is placed between two rigid plattens and is subjected to 
compressive loading.  The geometrical constraints are imposed by the condition of 
continuity of displacements at the joint and the requirements that the horizontal 
edges remain in contact with the plattens and that the angle between edges is kept 
constant„ 

With increasing end shortening, the initially vertical flange intersection 
becomes more and more inclined until it assumes a horizontal position and the angle 
element is completely flattened out.  (See fig. 2(c).)  The deformation of the flange 
may follow different paths depending upon whether the line of slope discontinuity is 
a material line or a propagating plastic hinge. 

Propagating hinge line (Mode I).- If the hinge line is allowed to move with 
respect to material points,, then effectively a part of the material from one flange 
continuously passes to the adjacent flange and a shape distortion is produced which 
apparently does not require any in-plane extension in the flanges.  However, the con- 
dition of kinematical continuity in the propagating hinge line requires that some 
form of extensional deformation be produced in the vicinity of the hinge line, as 
discussed in reference 13.  This mode of deformation, where extension is limited to 
the neighborhood of the hinge line, will be referred to as Mode I.  This mode is 
observed in all crushed thin-walled structures consisting of two intersecting plates, 
such as box beams and columns, and channel and "L" sections subjected to bending or 
compression. 

Stationary hinge line (Mode II).- Suppose now that the hinge line is fixed in 
the material.  Then, both side flanges of an initially rectangular shape are trans- 
formed into trapezoidal elements.  Evidently, there must be considerable in-plane 
extension in one flange and likewise in-plane compression in the other flange to 
accommodate such large shape distortion.  This mode of deformation in which extension 
occurs over an entire flange will be called Mode II.  A modification of this mode, 
shown in figure 4(c), involves extension in both flanges. 

Assembled Collapse Modes 

A  method of assembling the folding patterns shown in figure 4 into more compli- 
cated symmetric, asymmetric, and mixed collapse modes is shown in figure 5.  A ques- 
tion arises into which of the modes the compressed shell will actually collapse. 
This depends to a large extent on the boundary and symmetry conditions of a given 
structure and on additional geometric constraints, if any.  A triggering of a par- 
ticular mode in the structure may also depend on the shape of an initial elastic 
buckling mode and on initial imperfection.  In the later stages of the crushing pro- 
cess, the modes are more likely to persist which minimize the plastic energy dissi- 
pation.  This problem has been extensively discussed in reference 19.  Of particular 
interest here are the modes shown in figures 5(a) and 5(b), because they are observed 
in many crushed thin-walled structures.  The definition of geometrical parameters 
involved in these modes is given in figure 6.  The initial geometry of either of the 
modes is defined by the half-wavelength  H, width of each flange  C, and an angle 4> 
formed by intersecting plates.  The current geometry is described either by the 
angle  a or the end displacement 

5 2H(1 cos a) (2) 
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ANALYSIS 

Theoretical Crushing Strength of Angle Elements 

Extensional collapse mode with a propagating hinge line (Mode I).- Consider an 
idealized structure made of a rigid perfectly plastic material collapsing in Mode I. 
The theory of perfectly plastic solids states that there may be a jump in the dis- 
placement gradients only across stationary hinge lines.  Such discontinuities are 
inadmissible across propagating hinge lines.  Consequently, the displacement field 
should be described by a continuous and smooth function.  When referring to figure 6 
this means that a straight hinge line should be replaced by a single curvature sur- 
face.  At the same time a double-curvature surface should be introduced in the small 
neighborhood of the corner point.  (See point B in fig. 6.)  It is this small area 
where all extensional deformations are now concentrated.  (See fig. 7.)  This 
approach has been extensively discussed in reference 13 where the concept of a basic 

folding mechanism was first introduced. 

The collapse mode (fig. 7), which is consistent geometrically (displacement 
field) and kinematically (velocity field), consists of the following: 

(I) Four plane trapezoidal elements moving as rigid bodies 

(II) Two sections of cylindrical surfaces at which continuous bending takes 

place without any extension 

(III) Two sections of conical surfaces in which material is bent and rebent 
again as the material moves from one flange to the other 

(IV) A section of a toroidal surface which produces extension in a circum- 
ferential direction and continuously changes principal curvature in the other 
direction (from positive to a larger negative curvature) 

Calculations based on an energy-balance postulate, presented in reference 13, 
show that the zones of extensional deformations are, indeed, restricted to a small 
fraction of the total area of the structure but dissipate as much as one-third of 
the total work done by the applied load during the crushing deformation mode.  The 
remaining two-thirds of the energy dissipation is concentrated in equal proportions 
in inextensional deformations at stationary and moving hinge lines. 

Experiments show that short angle elements subjected to compressive loading 
usually collapse in an asymmetric mode.  Therefore, the foregoing analysis of Mode I 
deformation can be directly applied to find a mean crushing strength Pm of 
"L"-shaped angle elements.  By omitting the details of the calculations, which are 
presented in reference 13, only the final results are presented here. 

The energy of a continuous deformation field in the section of a toroidal shell, 
which is dissipated on complete folding of the wall through the angle  TT/2, is given 

as 

Hr 
Ei = 9-28Mo IT 

(3a) 
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The internal energy dissipated by the discontinuous velocity field in the hori- 
zontal hinge line of length C  is 

E_ = - M C 
2   2  o (3b) 

where  r  is the small radius of the toroidal surface and  M  = 0 \?I&     is the fully 
plastic yield moment, ° ' 

The work done by an inclined hinge line through the deformation process is 

E3 = 2.22M0 \ (3c) 

m the basic folding mechanism there are eight horizontal hinge lines, two 
inclined hinge lines, and one toroidal shell section.  The mean crushing strength of 
the member is, therefore, defined by the energy balance equation 

2HPm = E.j_ + 8E2 + 2E3 (41 

The deformation  6  from equation (2) is taken to be the complete folding of a local 
collapse mode of wavelength  2H.  By using equation (3), equation (4) becomes 

= A  - + A  - + A  - 
1 h ' A2 H   A3 r (5) 

where the numerical values for the coeffici ents are 

A  = 4.64 

2TT 

A3 = 2„22 

The first term in equation (5) represents the contribution of extensional 
deformation, in the section of a toroidal shell.  The second term results from the 
bending about horizontal hinge lines, whereas the last term describes the energy of 
bending and rebending along the inclined plastic hinges of region III.  (See fig. 7. 

Equation (5) can be optimized with respect to the unknown local radius  r  and 
the half-wavelength  H„  Thus, 

~m 
3H 

= 0 (6) 
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The optimized values of  H and r are 

3/     '2  'S? r =  V/A2A3/Ä1 ? (7a) 

=  v/^M»  V^ C7b) 

Substituting equations (7a) and (7b) back into equation (5) gives the general expres- 

sion for the mean crushing force: 

- = 331 

M 
3iÄlA2A3  ^ 

(8) 

the three basic Regardless of the numerical values of the coefficients A]_' A2' A3 
mechanisms of energy dissipation appear equally weighted in the final equation for 

A- and A^ for the mean crushing force.  Introducing the numerical values of A1( 
an "L"-shaped column into equation (8) yields the theoretical crushing strength given 

by the simple, formula 

-^= 12.04 
Mo 

\/cÄ (9) 

Short-angle columns fold up and fail almost always in an antisymmetric mode unless 
very large initial imperfections are introduced in the shape of the symmetric modes. 
As shown in reference 20, the symmetric mode leads to an instantaneous and mean 
crushing force which is two to three times greater than the asymmetric mean crushing 
force.  The structure assumes the configuration with the least resistance, and an 
asymmetric mode constitutes such a configuration. 

Extensional collapse mode with a stationary hinge line (Mode II).- Consider next 
the Mode II (fig. 6) deformation discussed previously.  The energy is dissipated 
through plastic bending of adjacent panels about horizontal hinge lines and through 
the shape distortion of each of four panels.  (See fig. 6.) 

Consider a current deformation state of a single trapezoidal element which 
originally was of a rectangular shape.  (See fig. 8.)  Assume that there is only one 
component of the displacement vector (0, uy, 0) and that the plastic deformations are 
confined to the curvilinear triangle denoted by  jkl.  The shape of the boundary 
between the deforming and rigid region is an arbitrary function of the z-coordinate. 
By assuming a linear variation of the velocity field in the y-direction, 

v (y,z) = -V 
g(z) 

(10) 
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The r.onvanishinc components of the strain-rate =nsor are 

y       H g (z) 

-/z    H dz g(z) 

(11) 

. 2 
sm Y 

The rate of energy dissipation can be expressed 

t'A 
Ed   = h // 

Jo 

'g(z) 

(£yay + £yzayz5 dy 
dz (12) 

3y neglecting the energy dissipation due to the shear strain rate Z     ,   equation (12) 
reduces to 

,fH/ />g(z)      \ 

^4 = aoh ' £v dy | dz 
JO    \J0 J       j 

(13) 

SubsLituting equation (11) into equatio: !) and performing the integration gives 

=4 = ~  V/Kh = 2M0V (14) 

Tne result is seen to be independent of the extent of plastic zones since the 
function  g(z)  drops out during the integration. 

The angle y  in the expression for velocities varies from TT/2  at the begin- 
ning of the deformation process to  TT/4  at the end.  Substituting for V  from 
equation (11) into equation (14) and integrating with respect to  y  from  TT/2  to 
71/4  yields the final expression for the plastic work on the continuous deformation 
field 

,2 fTT/4  ^ 

4    o h :/ 
yiT/2  sm y 

2„   2Mo h 
(15) 



The rate of energy dissipation along the stationary horizontal hinge line of 

length  C  is calculated as before to give 

~\ 

5   o 
(16) 

•V2 
E5 = MoC f     äa = 2 M°C 

Finally, the rate of plastic work in the inclined stationary plastic hinge is 

E = M £3 (17) 

6   o 

where I     is the length of the hinge and is given as 

I  = -$— (18) 

sin Y 

and  3 denotes the angle formed by the intersecting plates and is related to a by 

• 2 <19) cos 3 = -sin a 

The exact integration of equation (17) can be performed over the whole deformation 

process (0 < a < TT/2  in fig. 6) and the result is 

E  = 2MB 
6     o 

:20) 

Theoretical Crushing Strength of a Cruciform 

Consider a cruciform in which four flanges are rigidly joined along the 
initially vertical edge.  It has been demonstrated by tests that the local kinematics 
of the crushing process is quite complicated.  However, a few relatively simple 
mechanisms can be identified, which incorporate basic deformation modes, as discussed 

earlier. 

Mode II/Mode II.- It is advantageous to think of a cruciform as being made of 
two angle elements." These elements should deform in such a way that the pint line 
is not separated.  This can be accomplished by assuming that the two angles deform 
in the Mode II pattern.  The joint line, which is an inclined hinge line fixed in 
the material, stays in the plane of symmetry and is inclined by 45° to the neighbor- 
ing flanges.  It is postulated that the rate of external work is equal to the total 
energy required to make a complete single fold of length  2H.  That - is, 

(21) 
2HPm = 8E4 + 16E5 + 4E6 
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SubstiLuting equations (15) to (20) into equation (21) produces 

p 
~m  „ H     C 
— =8-+4lT-+d 
M      h      H 122) 

The right-hand side of equation (22) can be optimized with respect to the wave- 
length  H.  Th e minimum exists at 

H= JjCh (23) 

and equation (22) becomes 

(24) 

The constant term in equation (22) is small compared with the leading term and can be 
neglected without loss of accuracy. The crushing strength of a cruciform column then 
oecomes 

~  = 20.05v£ Mo        Vn 
(Upper bound) :25) 

wore unat ehe contributions of in-plane deformations and discontinuous bending along 
Horizontal hinge lines are the same.  (See eqs. (22) and (24).)  Also, the ene-ay 
dissipated at Lhe inclined hinge lines is negligible for sufficiently large  C/h.  In 
most oi. Lhe experiments on cruciforms the ratio  C/h was 143. 

Tne presenL solution has been obtained on 
four trapezoidal panels was subjected to the u 

he assumption that the material in 
niaxial extensions, whereas in the 

remaining iOUr panels a state of uniaxial compression prevailed. 

The width-to-thickness ratio of the small trapezoidal panels, calculated from 
equation (23), is of the order of  H/h = 15.  It is very likely that such moderately 
L.nin plates will lose stability prior to developing their full compressive strength 
witn uniform compressive stress.  Consequently, the prediction of the formula in 
equation (25) should be regarded as an upper bound in the compressive strength of 
crucirorms. 

Mode I/Mode I.- A lower bound on P /M m7 o can also be given by noting that a con- 
tmuous ]om. along the vertical edge of a cruciform increases the column strength as 
compared to a column composed of two unjoined angles.  The crushing strength of the 
crucirorm can, thus, be bounded from below by doubling the result of equation (9) for 
an assemblage of two single "L"-shaped columns 

3/ 
= 24.08 xfc/h (Lower bound) (26) 
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Mode I/Mode II.- A careful inspection of several crushed cruciforms revealed 
that the actual collapse mechanism is a combination of the two basic deformation 
modes, Mode I and Mode II.  However, a modified Mode II shown in figure 5(b) should 
now be used.  This would involve extensional deformation only.  A model of such a 
combined mode made of the construction paper is shown in figure 9.  The mean crushing 
force is defined, as before, by the energy balance postulate 

2HPm = E1 + 8E2 + 2E3 + 4E4 + 8E5 + 2Eg (27) 

where the first three terms represent the energies dissipated in the Mode I and the 
last three terms represent the energies dissipated in Mode II.  A substitution of the 
previously derived expressions for energies  E-^  through  Eg  into equation (27) 
yields 

m r C H H 
M -1-h z  H 3r 4ft (28) 

where 

An   =  4.64 

A0  =   12.56 

A.,   = 

A,   = 

2.22 

4 

(29) 

The right-hand side of equation (28) is subjected to the optimization with respect to 
two free parameters  r  and  H.  The condition for a minimum gives rise to the fol- 
lowing fourth-order algebraic equations for the nondimensional wavelength H/h 
and radius  r/h: 

H 
h 

A1/rv2 

A3Vh 
(30) 

1  + 
A. 

A  A,  . 
2   3/C 

(31) 

A numerical solution for  r/h  as a function of  C/h  is shown in figure 10 by the 
the dashed line.  In particular, for C/h = 143,  X  = r/h = 3.06.  The objective is 
to find a closed-form solution for  r/h,  H/h, and  Prn/M, Note that equation (31) 
can be solved by means of the method of successive approximation: 
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n-1 A3 

■1/3 
(32) 

A sufficient accuracy is obtained by taking just the first iteration, i.e., by sub- 

stituting  - = x   into equation (32).  (See the solid line in fig. 10,)  By substi- 
h   o 

bating the approximate solution for the free parameters into equation (28), a general 
solution for the dimensionless crushing force is 

_m 
3\/AlA2A3   \  h 

3    A, 

o  A- 

A1A3 
A4 

C0  AT 

(33) 

Except for the small constant last term, the above expression reduces to equation (8) 
in the limiting case of  A  -> 0„  By using equation (29) and neglecting the constant 

term in equation (33), the final formula for the crushing strength of a cruciform 
becomes 

\ h 
(34) 

DESCRIPTION OF TESTS AND ANALYSIS OF DATA 

Aluminum was the preferred specimen material, because an aircraft structure is 
usually made of that material.  However, cruciforms with continuous joints were 
desired as -well for simplification of analysis.  To produce continuous joints on 
aluminum specimens, a number of bonding materials were tried unsuccessfully, as well 
as continuous spot welding.  However, thin copper sheet joined by soldering satis- 
factorily met the requirements. 

A copper sheet of 0.014-in. thickness was first fully annealed and cut in strips 
of width  L plus 0.5 in., such that the grain would be parallel to the direction of 
loading in the finished specimen.  Strips of length 2C were next bent to form 90 
equal-leg "L"s.  To form a cruciform two "L"s were butted along the bend line and 
soldered with common 60-40 lead-tin solder.  An uncrushed cruciform specimen is shown 
in figure 2 along with a crushed specimen and the test clamping fixture. 

The 4-in.-square fixtures were designed to provide clamping of 1/4-in. of the 
flanges on both ends.  This is the reason for the additional 1/2-in. of strip width. 
The clamping fixtures were aligned parallel prior to testing.  The test specimens 
with parallel clamping fixtures were placed between the table and head of the Baldv/in 
Southwark Täte-Emery Testing Machine.  Double-backed tape was used between the clamp- 
ing fixtures and the testing machine to reduce the tendency of the specimen to twist 
during loading.  The Baldwin Testing Machine has loading ranges of 120,000 lb, 



24,000 lb, and 6000 lb.  A loading rate of approximately 1/2-in. per minute of head 
movement was used.  This was slow enough to be considered quasi-static for all 
practical purposes.  These data are shown in table I.  For the majority of the speci- 
mens the maximum displacement considered in computing the mean crush force represents 
40 to 60 percent crushing of the original length.  Several of the test specimens of 
table I were crushed to only 30 to 35 percent of the original length.  There are 
several reasons for the variation in degree of specimen crushing.  When joint separa- 
tion was judged to be excessive and/or the flanges began to pull out of the fixtures, 
the test was terminated.  These occurrences varied from specimen to specimen, giving 
rise to a range of acceptable maximum crushing displacements. 

Specimen length  L varied from 2.0 to 4„0 in. with the preponderance of speci- 
mens being 4.0 in.  Flange widths of 1.0, 1.25, 1.5, and 2.0 in. were tried.  For 
the series of tests reported here the ratio  L/C  of specimen length to flange width 
varied from 1.0 to 4.0, and the ratio  C/h of flange width to thickness varied 
from 71 to 143. 

For the simplified analysis of these cruciform specimens, only the value of the 
fully plastic yield moment,  MQ = crQh

2/ 

to be 0.7 times the ultimate stress 
copper used to make these specimens, 

>2/ 
a, 

4, is needed with the flow stress taken 

of the material.  For the fully annealed 

au = 27,400 lb/in. 

a0 = o.7au 

19,180 Ib/i 

M„ = \  aoh
2 

o 

= 0.940 lb 

-2 :35) 

for  h = 0.014 in.  Thus, the nondimensional mean crushing force  Pm/
M
0  is given in 

table I. 

DISCUSSION 

The lower- and upper-bound solution for the mean crushing strength of cruciforms 
is plotted against the width-to-thickness ratio of a flange in figure 11.  The 
experimental points for joined cruciforms are shown by circles.  A considerable 
scatter of experimental points indicates that there are many collapse mechanisms in 
which the cruciforms fail and that the collapse is imperfection sensitive.  This is 
in sharp contrast with the crushing behavior of rectangular box column and hexagonal 
cell structures where the magnitude of the crushing strength was well reproducible 
for all values of  C/h. 

However, all joined-cruciform test points fell within the region bounded from 
above by equation (25) and from below by equation (26).  The curve representing the 
mixed-mode formula (eq. (34)) passes between the two bounding curves and approximates 
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the trend of experimental points better„  This solution seems to lead to the best 
prediction of the strength of cruciforms with the present understanding of the crush- 
ing phenomenon and with the simple energy approach to the problem. 

The quantitative correlation between the theory and experiments is not good 
because of several difficulties encountered in trying to satisfy experimentally all 
of the assumptions used in the theoretical analysis,  The main difficulties are as 
follows: 

(1) The force deflection of the 2-in,-high cruciform columns used in the experi- 

ments exhibited only two to three peaks.  The first peak, corresponding to the ini- 

tial strength of the member, is much higher than the following ones.  The presence of 

this peak increases the experimental mean crushing force.  This effect is not taken 

into account by the theory, 

(2) In most test specimens the joint failed locally at some stage of the crush- 
ing process,  Clearly, this weakens the cruciform and diminishes the average crushing 

strength measured in experiments.  Thinner gage sheets could be used to eliminate 

this problem. 

(3) The free edges of the flanges do not deform in a plane of symmetry, as 

assumed in the theory.  Instead, noticeable in-plane displacements  Uy were found in 

all tested cruciforms which clearly reduces the energy  E^  of extensional deforma- 

tion.  The displacements  uy  in the plane of symmetry vanish only for cruciforms 

arranged in a cellular structure,  Besides, there are certain members of "T" and 

"L"-shaped columns in the boundary cells.  Consequently, it is not possible to deter- 

mine the strength of a single cruciform in the experiment performed on the cellular 

structure.  Also, the structure manages somehow to minimize the amount of in-plane 
extensions by breaking the joint and by pulling the material from the edges. 

(4) It was observed that the local folding modes interact with the "global" mode 

with fewer waves seen in the free edge.  The lines of interaction between these 
"local" and "global" modes form the stationary or moving plastic hinges which con- 

tribute to the overall energy dissipation.  No consideration to this complicated 

interaction was given in the present theory. 

(5) The work-hardening properties of the material are accounted for in our cal- 

culation by raising the average flow stress to the value  0o = 0»7GU„  However, the 
work hardening also changes the details of the kinematics of the problem.  For 

example, the slope discontinuities at stationary plastic hinges are rounded to a 

finite radius so that a double-curvature shell is formed locally around the corner 

point 3,  (See fig, 6„)  Consequently, some additional extensional deformation must 
be produced and the crushing force may increase even slightly above that predicted 

by equation (25). 

The experimental points for "L" columns, denoted by triangles, are seen to fall 

considerably below the curve representing the theoretical solution.  This discrepancy 
is largely due to the interaction of the global elastic buckling mode with the local 

plastic failure mode which eventually changes the plastic collapse mode to the one 

giving a lower crushing force.  Several experiments were performed with cruciforms 

consisting of unjoined angle elements.  When loaded in the testing machine, there was 

little interaction between the angles (separation occurred almost immediately) and 

the mean crushing force was simply the same as doubling that of a single angle 

element. 



CONCLUDING REMARKS 

The subfloor structure of general aviation aircraft can be used to advantage in 
a crash by absorbing energy through local plastic buckling with bending and exten- 
sional deformation.  In order to use this advantage the structural designer must 
design the subfloor to crush at an appropriate force level.  Simple closed-form 
solutions to predict the mean crushing force levels of subfloor designs would be use- 
ful in engineering practice.  To this end, the very complicated problem in mechanics 
of analyzing the crushing process of a class of thin-walled open structures with 
particular emphasis on "L"-shaped and cruciform cross sections has been successfully 
studied by using a simple type of analysis. 

Lower- and upper-bound solutions for the mean crushing strength of cruciforms 
have been obtained by considering modes of deformation which account for both bending 
and extensional deformation.  The analyses and experimental data show the importance 
of extensional deformations to the energy-absorption process, representing at least 
one-third of the dissipated energy. 

Experimental data for joined cruciforms reveal considerable scatter, indicating 
that there are many collapse mechanisms in which the cruciforms fail and that the 
collapse is imperfection sensitive.  However, all joined-cruciform data points fell 
within the region bounded by the analytical solutions.  A mixed-mode solution, which 
falls between the bounding solutions, yields the best prediction to the strength of 
cruciforms with the present understanding of the crushing phenomenon and with the 
simple energy approach used. 

These results represent a starting point in the analysis and optimum design of 
riveted cruciforms and other more complicated structural elements. 
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TABLE  I 

EXPERIMENTAL DATA FOR  COPPER  CRUCIFORM AND  "L"  ELEMENTS 

Test Pmax>   lb 

4 
5 a8 

all 
a12 

16 
18 
19 
21 
22 
23 
24 
25 
27 

?37 D38 
39 

42 
44 
45 
46 
48 

27? 
277 
121 

98 
90 

370 
331 
257 
286 
273 
357 
337 
323 
305 
393 
216 
196 
225 
220 
233 
245 
238 
270 
283 

Pm,   lb 

156.4 
138 
38 
35 
31 

174 
173 
150 
119 
154 
224 
153 
164 
168 
168 

84 
90 

138 
117 
140 
155 
132.2 
162.3 
171.0 

in. 

3>5 
3>5 
3.0 
4,0 
4.0 
2.0 
3,0 
4,0 
4,0 
4.0 
3-5 
3»5 
3-5 
4,0 
4.0 
4.0 
4.0 
4,0 
4.0 
4.0 
4.0 
4.0 
4.0 
4.0 

in. 

2,0 
2,0 
2, 
1, 
1, 

2 
2, 

1, 
1, 
1, 
1. 
1, 

2,0 
2.0 
1.0 
1.5 
1,5 
2.0 
2.0 
2.0 

2.0 
2.0 

0 
0 
0 
5 
25 

L/C 

1.25 
1.50 

l»75 
1.75 
1.50 
4.00 
4,00 
1,00 
1,50 
4.0 
2,67 
2,67 
1.75 
1.75 
1.75 
2,00 
2.00 
2.00 
2,00 
4,00 
4,00 
4.00 
2.67 
3*20 
3-20 
2.67 

C/h 

143 
143 
143 
71,4 
71.4 

143 
143 
71,4 

107 
107 
143 
143 
143 
143 
143 
143 
143 
71.4 
71.4 
71.4 

107 
89»3 
89-3 

107 

P A 
Iff     o 

166.4 
147„3 
81,1 
75=1 
67»7 

185»9 
184,5 
160.0 
126.7 
I63.9 
238,9 
I63 »6 
174.5 
179»6 
179.6 
89.8 
95.9 

147.2 
125.4 
149,3 
165.5 
140.6 
172.7 
181,9 

£Single "L" test specimen; P /M 
Cruciform specimen consisting 8f two unjoined "L"s 

value doubled 
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Figure 1.- Typical load-deflection characteristics of a crushed cruciform. 
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(a) Before testing with clamping fixture. (b) Partially crushed. 

(c) Fully crushed. 

Figure 2.- Thin-gage cruciform compression specimen= 
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[l'o>lm°] ii"0'i'0) 

Figure 3.- Isometric transformation of a cylinder. 
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Intermediate Final 

(a) Inextensional deformation path. 

(b) Inextensional deformation path. 

A 

(c) Extensional deformation path. 

Figure 4.- Illustrations of inextensional and extensional deformation paths. 
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(a) (b) (c) 

(d) 

Figure 5.- Assembling folding modes into more complicated patterns. 
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A /L. 

Mode I 

Mode II 

Figure 6.- Extensional collapse modes; definition of geometrical parameters, 
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Conical region 

Figure 7.- Basic folding mode with continuous and smooth displacement field. 

Hinge line 
of length I 

Zone of plastic deformations 

Figure 8.- Plastic distortion of a rectangle into a trapezoid. 
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Mode   I/Mode   I 

-71 

aSsHaS 

Mode I/Mode II 

Figure 9.- Two computational models of a crushed cruciform. 
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O Experiments   on  cruciforms 

A, Experiments   on  "L"   (tine 

O Unjoined   cruciforms 

cu = 275400 lb/in2 

a0 = 0,7 au =195180 lb/in5 

h = 0.014 in 

% = T °o ^ 0,940  lb 
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C/h 

Figure   11.-  Mean  crushing   strength  of  a  cruciform versus     C/h. 
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