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ABSTRACT

A finite element analysis was made of crack growth in a
center-cracked specimen subjected to monotonically increasing
load until the point of fast fracture. Since part of the
specimen experienced unloading, the boundary value problem
‘which was formulated was based upon incremental theory of
plasticity. Experimental load and crack-size records were
utilized. Linear relations between plastic energy and crack
growth were observed. Fracture toughness parameters éc’ which
were evaluated at the onset of unstable crack propagation, ob-
tained from finite element analysis were in good agreement

with those determined experimentally.



1. Introduction

Lincar elastic fracture nechanics is widely used by research
workers and cnginceers as a tool to determine fracture toughness,
KC or CC, for cvaluating the susceptibllity of engineering
materials to unstable fracturc. Since ductile materials have
higher resistance to crack growth than brittle materials, the
rccent trend is to dcvélép‘more ductile materials for structural
applications. However, ductile materials show a considerable
amount of crack-tip plasticity and significant amount of crack
growth prior to the onsect of unstable fracture.

A plastic zone correction [1,2], the J-integral [3,4]:and
COD methods [5] have been proposcd to treat fracture involving
crack-tip plasticity in the absence of crack growth. Further,
the crack growth rcsistance curve method [6] has been proposed
for cases having subcritical crack growth. Liebowitz and
Lftis [7,8] introduccd the nonlinear energy method which is
applicable to semibrittle fracture. Jones et al [9] developed
a corresponding cxperimental program to determine the toughness
paramcter Gc and Liebowitz et al [10] provided theoretical
and cxpcrimental comparisons between their nonlinear energy
nethod and other existing methods. Recently Jonce et al [11]
used four cmpirical methods to determine ﬁc in the range of
crack growth.

In this work, a finite element analysis is developed for

crack growth problems based upon incremental theory of plasticity.




in this paper, mention is made of the work of Newman [12] whose
crack growth criterion is based on crack-tip strain with element-
mesh size being a parameter, and that of de Koninyg [13] who
found crack tip opening anglc as constant during the process of
crack growth. 1In this analysis, the rcqlistic experimental
curve relating load and crack size is taken as an input. In
order to demonstrate the validity of this work, the numerical
output of load and displacement is compared to its experimental
counterpart. Morcover, a lincar reclation 1s observed between
plastic cnergy and crack size during the process of crack
growth. The finitec-clement valucs of GC, based upon empirical
methods derived by Jones ct al [l11], arc in good agreement

with the experimental values.



2. Stress-Strain Relations

In lincar elasticity, the stress-strain relations for a

homogencous isotropic material can be written in either of the

following forms [14]:

o35 = A egx Sqj T A gy o

1
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where A and p are the Lame constants, Gij and Eij are the

stress tensor and strain tensor respectively. Introducing

stress deviator Slj as follows:

. = o1
sij = 9i5.7 3 %kk °ij >
(2.2) can be rewritten as:
. _ L 1 - 2v

where I and v are Young's modulus and Poisson's ratio respec-
tively.

In nonlinear elasﬁicity, adopting the model suggested by
Ramberg and Osgood, we generalize the stress-strain relations
as follows:

Le.. = {1 + V) s.. + 1 -2V o s+ uon_ls .
1j b 1] 3 “kk T1j e ij,
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whcre‘the cffective stress Oq is defined as:
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In slmplo tcnslon tcst namely, all stress components are zero
exccpt 011"5.0; we obtaln tho follow1ng nonVanlshan components

of €., sijland_the cffective stress:
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lor thc thcory of incremental plasticity, a certain portion of

“the matcrial is said to be in an unloadlng situation if its current
'cffoctivg stress 0, is less than the maximum effective stress

og it ¢xp¢rienccd Scfore othe1w1se it is sald to be in a 1oad1ng
vsifuation The rclatlons between 1ncrementa1 stresses and in-
Lromcntal strains in the 1oad1n5 51tuat10n can be derived from

cqn;»(Z,S) as{follows:

fﬁdg[,_;'(i+v)-ds.. + L- 2y do
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* 5 00 dbij Y7 a(n 1)0 sij S11 dskl . (2.8)

In the .unloading situation,; we assume the incremental stress-
‘strain rclations arec the same as those in linear elasticity,
i.e.,

‘de. o= ) , | 1= 2y ' ' . o LR
LQeij (1+v)ds.j + —~§f—"dgkk 6ij . . (2.9)
The stress-strain rclatlon in the case of. simple tension is

~illustrated graphically in Fig. 1.‘ In the case of generalized



planc stress, cqn. (2.8) may be written

form:
dux hll h12 h13 dox
dcy = hlz h22 hZ" dOy
dYyy hyg hys Nz 404y
where
- o - - 2 :
hyq = {1 + g + h(2o, Oy) }E
h12 = {- v - g/2 + h(ZOX-oy)(Zoy—OX)}/E ,
h13 = 6h(20x—oy)oxy/ﬁ ,
hzz = {1 + g + h(Zoy—ox)‘}/E s
'h23 = 6h(20y—ox)oxy/ﬁ R
2
h33 = {2(1+v) + 3g + 36h oxy}/E ,
and
n-1 n-3
g = ao , h = a(n-l]oe /4

Equivalently, eqn. (2.10) can be expressed as

do d.

" 11 412 933
dog 1= |d1z 42z o3
doyy diz dpz dsg

where matrix [djj] is the inverse of matrix [hij].

of unloading, we have

in the fpllowing matrix

de
X

(2.10)

(2.11)

In the case




do_ .
X

do.

do

v 0
10

de

“y

(2.12)




3. Strain Energy

In the casc of a simple tension test

first loaded monotonically from o

Note that, in evaluating the first and se
(3.1-3.2), the general incremental stress

and (2.9) are utilized respectively. €44

loaded monotonically from ¢ = o* to o = 0, we obtain the follow-
ing strain components:
ag* 0
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0 o¥ |
*
7 n-1 ?
= f E[l + ano Jdo + Edc
0 o*
1 n-1
= {1 + ao® Jo* - o¥*}
1 n -
= EO'G* ’ (3.1)
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, if the specimen is

0 to o = o* and then un-

cond integral of eqns.

-strain relations (2.8)

E

= ¢ and €y9 = €37




so obtained in eqns. (3.1-3.2) are called plastic strains which

are the residuals after the applied load is removed. Comparing
eqns. (3.1-3.2) with eqn. (2.7)4 and eqn. (2.7)2, we may rewrite

eqmn. (2.5) as

= E(e€ P
Eeij. E(eij + Eij) , - (3.3)

where the elastic strains Eij and plastic strains egj are

1-2v

. e - - 1 .
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Now supﬁose, in a general case, the loading and unloading
hiétory'of a certain portion of the material can be divided into
~ two stages. In‘the first stage the effective stress o, increases
monotonically to'cg which corresponds to ogj and in the second

stage the effect stress decreases monotonically to O which corre- T
:

sponds to Ulj. Then the strain encrgy density ¢ can be obtained as: E

o* ' o
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we notice the strain energy density can be separated into two

parts:
0 = ATV o0 L 1oty o (3.5)
e ET 3 “e 6 “Ykk ’ . -}
_ n LN+l ,
¢p E(n+l) acy E - | (3.6) 1




where the elastic straln energy density ¢e is a function of the
current stresses gij and the plastic strain energy density ¢p
is a function of maximum c{fective stress cg . The irrever-
sible and dissipative nature of plastic strain energy density
is indicated in eqn. (3.0). In two dimensional problems, the elastic-

and plastic-strain cnergy per unit thickness over an area A

can bc obtained as:

. f o, dA, (3.7)
A | |

u, = f 0p AN - | (3.8)
)

o=
n

il




4. Center-Cracked Specimen

In this work, we focus our attention on a rectangular
plate of length 2%, width 2w, and thickness B, with a centered
line crack of initial crack size Zao subjected to symmetric
boundary conditions (cf. Fig. 2). Therefore only the first
quadrant of the plate R = [x,y]0 < x <w, 0 <y < 2] needs to
be analyzed. Experimentally one may obtain a curve of applied
stress ¢ vs crack size. A reallstic experimental curve relating
g and a is shown in Fig. 3. We are interested in the investiga-
tion of the process that crack size slowly increases from a = 2, i

to a = a_ as the applied stress increases from o = 0 to 0 = O_-

(1) 4

Suppose we have two adjacént states: o = 0(1) and a = a
State 1, o = 0(2) and a = a(z) at State 2. Correspondingly,

the boundary conditions may be specified as (cf. Fig. 4):

g = ko) - . - | 1
Ty ko » Oy © 0 on Sy = [x =w, 0 <y < 2], (4.1)
o =) 5 - opons, =z y=28,0¢<xc< wl (4.2)
y - 0 Oxy 2 - » 02X T L
u, = 0o Oxy =.O on 53 = [x =0, 0 <y < 2] , (4.3)
o =0  —oons. fly=0,0c<x<aP, @
y o Oxy g =TT T ’
=. — = - (i)
uy o , OXY = 0 on S5 = [y =0, a < x < wl. (4.5)

In other words, the boundary conditions associated with the

process from State 1 to State 2 can be expressed as (cf. Fig. 5):




-

- (2)_ (1) -
dox = klo o ], SOXY 0 on S1 , (4.6)
- (2. () .=
doy =0 o s éoxy 0 on 82 s (4.7)
éux =0, 5«xy = 0 on 83 , (4.8)
56 =0 . S5 = o0onT,=ly=0,0c<xc<al], (4.9
y ’ Xy 1~ > > 2 s .
— 1
éoy = - Oy R chy =0onT, = ly = 0, a(‘)fxfa(z)], (4.10)
Su_ =0 So = 0 on T, = [y =20 a(2)<x<w] (4.11)
}, ’ Xy 3 - ’ SAaD ’ .

where & is the stress of State 1 distributed along y = 0

between a(l)f x < 3(2).

If we have the solutions of State 1, then, for any given

(2)

adjacent state specified by o and a (2), the boundary con-

" ditions for the transition from State 1 to State 2 are well de-

fined in cqns. (4.6-4.11). The equations of equilibrium and
the strain-displacement relations in the incremental form can

be writtcn .as:
So =0, (4.12)

.1 |
Seyy = F(8uy 5 suj 5) - | (4.13)

LEqns. (4.6-4.13) with eqn. (2.8) and/or eqn. (2.9) mathematically
definc the crack growth problem as a boundary value problem.
After the boundary value problem is solved, the stresses,

strains, and displacements at State 2 may be obtained as




b

0(2) = G(%) + 80,
. 1

1] ij J

’

e(z) = e(l) + §e..
1) 1) 1)

u§2) = ugl) + éui

Following the same procedure, one may analy:ze stepwise the

whole process of slow crack growth up to the onset of fast

crack propagation.

(4.14)
(4.15)

(4.16)




5. Il'inite Element Procedure

Let a finite element mesh with Np nodal points and N,

PA

triangular elements be set up in recglion R = [x,y|0 <w, 0 <y 2].
In this work, Np = 300, Ne = 518, and a series of very fine
elements are being distributed along the path of slow crack
growth. The areca of those elements 1is in the order of 10_6w2.
If j is thc number of a certain nodal point, then qu-l and qu
are the displacement of that point in x and y direction respec-
tively, ij-l and f2j are the corresponding external concentrated
force componenfs(acting on that point. The displacement field
within cach triangular element is assumed to be linear with

respect to the coordinates. Therefore the strain field, and accord-
ingly the stress field, within cach triangular element are constant.
For gach element (cf. Fig. 6), let the incremental strain field

[6€], incremental stress field {8o], and incremental nodal point

displacements [6] be represcented by

T
[(SE]E [(SEX, 65),) 6ny] ’ | (S'l)
. T
| [60]A: [6qx, Goy, Soxy] s (5.2)
e ’ . ’ yr
[6] :.[GuZiFl’SUZi’GDZj-l’Uqu’SUZk-l’OUZk] . (5.3)
Then we have
[se] = [BI[8] , (5.4)
[s0] = [d][&e] ,




where [d] is a 3 x 3 matrix as indicated in eqns. (2.11) and (2.12)

which are valid for loading and unloading respectively, and

bl 0 bj 0 bk 0
_ 1 .

[B] = -—Z—E 0 Ll 0 Cj 0 Ck > (S 5)
c, by c; bj Cy by
LX)

20 = det 1 X . Y- , (5.6)

J J

1 Xy Yk

by T Yy C Yk S5 77X Xy (5.7)

with the other coefficients obtained by a cyclic permutatidn
of subscripts in the order of i, j, k. The stiffness matrix
per unit thickness of this triangular element linking incre-
mental forces and incremental displacements may be obtained as
[15,16]:

T .
(k] = (B] [d][B] A, (5.8)

where A is the arca of the element. Finally the governing

cquation can be written as:

K, 6u, = 8f , a = 1,2,...0c0. 2 (5.9)



where the 2N X ZNp stiffmess matrix [K] is equal to the sum of

P
Ne local stiffness matrices [k]I, T = 1,c0... N

As matrix [d] of cach clement depends on t

he current stresses

when that element is in a ljoading situation, the matrix [K] also

depends on the whole stress field. Thus, an iteration process

has to be taken to solve the nonlincar matrix equation (5.9). The

iteration process could be described as follows. Suppose, in a step

by step process, WC have the solutions of State 1, (i.e., for each ele-

ment we have the current stresses Oij and the maximum effective

A~

stress og). Then, for cach element, we guess at the stresses Oij of

State 2. Then the current cffective stress 0O,

stress o, maybe obtaincd respectively from

o_ = (02 + 02 - og_o, * 302 )

e X Xy Xy ?
~ .;2 ~2 ~ ~2 k
0o = (ox + Gy - oxoy + Soxy)

and the effective

(5.10)

(5.11)

The corresponding matrix [d] for each element may be found from one

of the three followilng cases:

>

For casc (1), the eclement is in a loading situation; matrix [d] is

assumed to be the average matrix corresponding to two states of

stresses, 1.€.,

_ 1
d.. = f[dlj(g)

ij * dij(g)]

(5.12)




- l 6 -
‘s
For casc (2), the element 1is in an unloading situation; matrix

[d] should be the same as indicated in eqn. (2.12).

~

*
(3) o, < ¥ and o > ©
c e e e

For casc (3), the clement has cxperienced unloading and is belng -

loaded again, the matrix [d] is obtained as

dj5 = £ dgya) (1-£) dg(0) (5.13)

where

~

(5, - 08/ (g - ) > (5.14)

f

1

and dij(g) denotes the matrix corresponding to vanishing
stress state.

After solving eqn. (5.9), one may obtain the calculated
stresscs-Eij and its corresponding ecffective stress Ee . The
iteration process will be continued until, for each element,
the gucssed stresses and calculated stresses are approximately the
same and the averaged percentage difference between ;e and

30 is below certain allowable values of error. After the itera-

tion process is completed, it is straightforward to calculate

quantities of interest in fracture mechanics.




6. Dissipated Lnergy and Crack Growth

The irreversible and dissipative nature of plastic strain

encrgy density have been indicated in Sec. 3. After the iteration

process for a certain incrcmental step 1s completed, we have the

corrcctly guesscd stresses 055 and the corresponding effective

stress o, of a new state for each finite element. If the newly

obtained effective stress is larger than the maximum effective

%
stress 0, obtained in the previous statecs, one should replace

* ~
04 by 0o » which will be used as the maximum effective stress

for the next incremental step. Now we recall the expressions for

elastic and plastic strain cnergy density as follows:

2 2
1,1+ v 1 - 2v
6, = glg— 9% * T 0k Yo (6.1)
n+l

(6.2)

-
i

_ n B %
o T T+ %% :

Wc notice that ¢c depends on the current stresses and therefore

demonstrates its clastic nature. On the other hand, ¢p is a
monotonically incrcasing quantity because OZ is always increasing,
this corresponds to the irreversibility of plasticity and

the dissipative naturc of plastic energy. After the finite
clement analysis for each incremental step 1S completed, it 1is

straightforward to obtain the total plastic cnergy P (per unit

thickness) for the whole region R as follows:




p=z (0,05 - (6.3)

1=1

For a stationary crack problem, the crack size is regarded
as a given quantity and hence the question is to determine the
critical load at the onset of slow crack growth. However, as
the crack starts to grow in a stable situation, one has to
treat crack size as a variable. Strictly speaking, one more
variable corresponds to one more governing equation for the
system. Before one can establish a governing equation for
crack size, the relation between crack size and other fracture
parameter has to be proposed and tested [12,13]. Motivated by
the Griffith's concept [17,18] that surface energy is propor-
tional to its area, and the energy for the new fracture surface
has to be supplied from the released strain energy of the speci-
men, wc decided to take the energy approach. Since crack growth
is generally regarded as a irreversible process and crack size
is an ever increasing quantity, we propose that crack growth

is a function of plastic energy, i.e.,

a - oa, = £(P) . o (6.4)

We mention that Broberg [19] proposed a similar concept which

can be expressed as:

dUO/da = dDO/da , (6.5)

where UO is the energy flow to the process region and Dy is

the energy dissipation in the process region. However Broberg's
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engincering approach 1s based on the so called approximate
path-independence of J-integral even in the cases of crack
growth.

After we analyzc a realistic crack growth problem with all
the input data obtained experimentally, we observe the following

fact:

a - a; -~ g(P-P (6.5)

0’
which mecans the amount of crack growth 1is linearly proportional

to the increment of plastic energy. The normalized plastic

energy per unit thickness p = PE/O%WZ is plotted against normalized

crack size ¢ = a/w in Fig. 7. The correlation coecfficient

attains a high value of 0.9997. Eqn. (6.5) may be rewritten as

1)

P =Py * (8'80)/8

0

i

(Py- ag/8) * 5 a - | (6.6)
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7. Fracture Toughness

Liebowitz and Eftis [7,8] developed a nonlinear energy
method to evaluate the toughness parameter Ec from a single
load-displacement record for cases of no crack growth. The
method may be briefly described as follows. First, let the
experiment load-displacement record be represented by

P o

_ F
veEgt ko o (7.1)

where v is the load point displacement, F is the load, 1/M 1is

the crack size dependent elastic compliance, n and k are constants.
Then for a given critical load FC, one may obtain a dimensionless
quantity C representing the nonlinearity as follows:

n-1

F
~ 2nk, C :
cC =1+ T (7.2)

The nonlinear toughness parameter GC is obtained as:

G. = CG. (7.3)
where CC is the corresponding linear elastic fracture toughness and

may be obtained by using Irwin's G-K relation, i.e.,

-~ 2.
G, = Kc/h X (7.4)

And KC is determined using the following polynomial expression
for center-cracked specimen [20]

2
K= o./ia [1-0.1 AR I I (7.5)

W w

Jones et al [11] further developed four different methods to

account for the effect of subcritical crack growth. We briefly



describe these four methods and in each method we compare the

experimental valuc of GC with the numerical value of GC

by finite-clecment analysis.

Method 1

obtained

The cxperimental part of this method can be separated into

two steps: (1) to determine C from
placement record,{2) to calculate UC
actual critical stress O and initial crack size.
trative purpose,

and the data for that specimen are listed below:

2w = 12 in. ,
Za0 = 6 1in.,
29 = 32 1in.,
E = 10300 ksi,
v = 0.33 ,
Oy = 55.04 ksi ,
n=6.025,

n-1
ay = 2.207

And load-crack size relation is plotted in Fig.

taken as an input in this woTK.

data for
analysis are plotted in Fig.

curve. 1n this particular casc we have

the experimental load dis-
by eqns. (7.4-7.5) using
For illus-

we take specimen #11 (2024-T3) as 2an example

(7.6)

3, which is
As an output the numerical
joad-displacement Curve obtained by finite element

8§ to compare with the experimental




éc (Exp) = 521 1b/in., G_. (FE) = 473 *h/in. (7.7)

The difference is about 10%; 2% comes from the calculation of
CC due to fact that eqn.(7.5) always gives higher value for K.,
and hence higher value for Cc from eqn. (7.4) and 8% comes

from the calculation of ¢ due to the discrepancy between

finite-element and experimental data in the load-displacement record.

Method 2

The experimental part of this method involves the deter-
mination of a hypothetical load-displacement Curve assuming

there is no crack growth. Eftis et al. [12] propose that

F = F_ M(ao)/M(aC) (7.8)

being used as the critical load corresponding to the hypo-
thetical load-displacement curve. Lee and Liebowitz [22] de-
veloped a computer program which can be used to analyze a
center-cracked specimen 1in the nonlinear range without crack
growth, and therefore it 1is straightforward to find F assuming
critical displacement v tO be the same as obtained experiment-

ally. We find that

"
(@K

G. (FE) (FE) CC (FE)

2
= 1.1325 x 381.77 (14.01/12.8)

= 518 1b/in. . (7.9)

No experimental value for CC has been reported by Jones et al

(11].




part of this method involves the deter-

\

\

|

Mcthod 3
| The experimental

| mination of My> Mo kO’ and C accordingly, from the portion of

load-displacement curve, which has no crack growth, and the

value of T from the following cquation

(7.10)

<
1]
==
+
-
<
~
Zl

| The experimental value of éc is reported to be 520 ib/in. and

the finitc-element value of éc is found to be 519.7 1b/in.

Mcthod 4

Utilizing ko and n, obtained in Method 3, we recall eqn.

(7.1) and write as follows

r. "o :
_c (7.11)

which is used to determine Mc = M(ac) The experimental

Kq»

The experimental

part of this method is to determine C. based upon Mc’ ng,

F_, and CC, based upon critical crack size a.
valuc of CC is reported to be 531 1b/in. However, we€ found
that @C (FE) = 491.6 1b/in., which we believe is more reliable.

In summary, the finite-element values of CC for four different

methods are 473, 518, 519.7 491.0 comparing with experimental

- valucs 521, - , 520, 581 respectively.




8. Conclusions

In this work, we focused our attention on the finite ele-
ment analysis of crack growth in a center-cracked specimen
subjected to monotonically increasing l1oads until fast fracture
occurs. During the process of crack extension, although the
applied load 1is increased monotonically, part of the specimen
has experienced unloading. Therefore, in this work the boundary
value problem formulated is based upon incremental theory of
plasticity.

Since, in a crack growth problem, crack size 1s no longer
a given constant parameter and must be treated as 2 variable, a
governing equation for crack size is needed. Before we can
formulate such a governing equation, an experimental curve
relating load and crack size is taken as an input and hopefully
from the output one may find the relation between crack size
and other fracture parameters derivable from the stress field.
Because of the irreversible and dissipative nature of plasticity
and crack growth, we believe that crack size should be related
to plastic energy. Indeed, after the completion of the analysis,
we do observe the fact that the amount of crack growth is
linearly proportional to the increment of plastic energy. In
another study of ours which is in progress, the linear relation,
will be employed as an input replacing the experimental load-
crack size curve. If the result yields a joad-crack size

curve which is in agreement with the corresponding experi-




mental, arc then onc may claim a governing equation for crack
size.

Another aspect which is of concern is the fracture tough-
ness parameter @C . Licbowitz and his coworkers [8-10] developed
a nonlincar cnergy method and its corresponding experimental
procedure for the determination of GC at the onset of stable
crack growth. Recently Jones et al [11] presented four dif-
ferent cmpirical methods to account for the effect of subcritical
crack growth. These methods enable us to determine the fracture
toughness paramcter @C at the onset of unstable crack propa-
gation bascd upon the experimental load-displacement record.

Then the finite-element values which were determined for éc were
comparcd to the corresponding experimental values; satisfactory
agreement was found.

The following points should be stressed. Inputs for the
computer program include the material constants o and n, in addi-
tion to Young's modulus [ and Poisson's ratio v, determined from

the simple tension test of unnotched spccimén. However, as a
matter of fact, a and n vary over a wide range when one tries to
describe the experimental stress-strain curve by a three parameter
expression and, from our experience, the finite element computer
program is quite sensitive to the input o and n. We believe this
is the major reason for the existing discrepancy between the experi-
mental load-displacement curve and its finite-element counter-

part, which has a 5.2% difference in displacement at the critical




load. Although there is a discrepancy, we find that the finite-
element valucs of &c based on the empirical mcthods have less
scatter than the experimental counterparts. jenerally speaking,
this work provides support to thc nonlincar energy method de-
veloped by Licbowitz and Lftis (7], Lftis and Liebowitz (8] and
its corresponding cxperimental proccdures Jones ct al [9],
Liebowitz et al [10] and Jones ct al [11], 1in determining the

fracturc toughness values in the range of stable crack growth.
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