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ABSTRACT 

A finite element analysis was made of crack growth in a 

center-cracked specimen subjected to monotonically increasing 

load until the point of fast fracture.  Since part of the 

specimen experienced unloading, the boundary value problem 

which was formulated was based upon incremental theory of 

plasticity.  Experimental load and crack-size records were 

utilized.  Linear relations between plastic energy and crack 

growth were observed.  Fracture toughness parameters G , which 
c 

were evaluated at the onset of unstable crack propagation, ob- 

tained from finite element analysis were in good agreement 

with those determined experimentally. 



1.  Introduction 

Linear elastic fracture mechanics is widely used' by research 

workers and engineers as a tool to determine fracture toughness, 

K or G , for evaluating the susceptibility of engineering 
c    c 

materials to unstable fracture.  Since ductile materials have 

higher resistance to crack growth than brittle materials, the 

recent trend is to develop'more ductile materials for structural 

applications.  However, ductile materials show a considerable 

amount of crack-tip plasticity and significant amount of crack 

growth prior to the onset of unstable fracture. 

A plastic zone correction [1,2], the J-integral [3,4] and 

COD methods [5] have been proposed to treat fracture involving 

crack-tip plasticity in the absence of crack growth.  Further, 

the crack growth resistance curve method [6] has been proposed 

for cases having subcritical crack growth.  Liebowitz and 

Gftis [7,8] introduced the nonlinear energy method which is 

applicable to semibrittle fracture.  Jones et al [9] developed 

a corresponding experimental program to determine the toughness 

parameter Gc  and Liebowitz et al [10] provided theoretical 

and experimental comparisons between their nonlinear energy 

method and other existing methods.  Recently Jones et al [11] 

used four empirical methods to determine Gc in the range of 

crack growth. 

In this work, a finite element analysis is developed for 

crack growth problems based upon incremental theory of plasticity, 



In this paper, mention is made of the work of Newman [12] whose 

crack growth criterion is based on  crack-tip strain with element' 

mesh size being a parameter, and that of dc Koning [15] who 

found crack tip opening angle as constant during the process of 

crack growth.  In this analysis, the realistic experimental 

curve relating load and crack size is taken as an input.  In 

order to demonstrate the validity of this work, the numerical 

output of load and displacement is compared to its experimental 

counterpart.  Moreover, a linear relation is observed between 

plastic energy and crack size during the process of crack 

growth.  The finite-element values of (L , based upon empirical 

methods derived by Jones ct al [11], arc in good agreement 

with the experimental values. 

^ 
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2.  Stress-Strain Relations 

In linear elasticity, the stress-strain relations for a 

homogeneous Isotropie material can be written in either of the 

following forms [14]: 

°ij = X   £kk 6ij + 2U  £ij ' 
(2.1) 

a.. - „^-r-^ uu 6,, , (2.2) 

w 

eij = 2U °ij " 2u(3A + 2y) ukk  ij 

here A and u are the Lame constants, a^   and e±.   are the 

stress tensor and strain tensor respectively.  Introducing 

stress deviator s— as follows: 

(2.2) can be rewritten as: 

EGij = (1 + v) stj + ±-^ ökk 6i;j , (2.4) 

where li and v are Young's modulus and Poisson's ratio respec- 

tively. 

In nonlinear elasticity, adopting the model suggested by 

Ramberg and Osgood, we generalize the stress - strain relations 

as follows: 

n-1 

Bei;j = (1 + v) Sij + M-^-^k «ij + I aae  sij,  (2.5) 

where the effective stress OQ   is defined as: 

c2 = 3  s.- s-. C2-6) ae " 2   IJ  ij 



In simple tension test, namely, all stress components are zero 

except'ö,, = ö, we obtain the following ndnvanishing components 

of c.-, s.. and the effective stress: 

n 
lies , = c + aa , . 

.1   n 
lic22 = Le33 = - va - 2 ao;,- 

sll '"'I G ' ' ''- c2-7.) 

s22 = S33 = " I °' 

0=0. . e . 
Vor the theory of incremental plasticity, a certain portion o± 

the material is said to be in an unloading situation if its current 

effective stress o  is less than the maximum effective stress 

a*   it experienced before, otherwise it is said to be in a loading 
e    . ■ 

situation. The relations between incremental stresses and in- 

cremental strains in the loading situation can be derived from 

cqn. (2.5) as, follows: 

lidei;j = (l + v) dSij + ^-^ dakk &±. 

+  1 %  dsij: +'!' a(n-l'0öe'  stj skl dskl . (2.8) 

In the unloading situation, we assume the incremental stress- 

strain relations are the same as those in linear elasticity, 

1. e 

1 ■- 2v hd£ij = (l + v)dSij + ^-3-^dakk 6ij . (2.9) 

The stress-strain relation in the case of simple tension is 

illustrated graphically in Pig. 1.  In the case of generalized 
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plane stress, cqn. (2.8) may 

form: 

be written in the fallowing matrix 

dc 

de 
'y 

dy xyi 

hll  h12  h13 

h12  h22  h23 I 

h13  h23  h33 

(2.10) 

where 

h11 = {1 + g + h(2ax-ay)
2}/E , 

h12 = {- v - g/2 + h(2ox-Gy)(2ay-ax))/E , 

hi3= 6h(2vWE • 

h 22 
{1 + g + h(2a -ax)'}/E , 

h23 = 6h(2ay-ax)axy/E , 

h33 = (2(l+v) + 3g + 36h a2y}/E , 

and 
n-1 

ao, 
n-3 

h = a(n-l)oe  /4 

Equivalcntly, eqn. (2.10) can be expressed as 

do 

da 
y 

da xy 

dll  d12  d13 

d12  d22  d25 

d13  d23  d53 

de x 

de 
y 

dY xyl 

(2.11) 

where matrix [dy]   is the inverse of matrix [h^].  In the case 

of unloading, we have 



do 
X 

dö. 
■y 

da ■    xy 

l-v 

1 v 0 de. 

1 0 de. 
y 

(2.12) 

0 0      (l-v)/2 dy xy 
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3.  Strain Energy 

In the case of a simple tension test, if the specimen is 

first loaded monotonically from a = 0   to a = a* and then un- 

loaded monotonically from a  =   o* to a - 0, we obtain the follow 

ing strain components: 

a* 0 

/ «n- / de. ell = e = J   utll     I        ""11 
0 'a" 

u n-1 
=   f      |[1 + «no   ]da +   f      | 

0 ^* 
i        n'1 

= i{[l + aa*   ]a* - a*} 

±dc 

E 

1 ,/ (3-D = Eaa 

a* 

0 a* 

e22 = £33 '   £ =   I"  aE22 T   I  de22 

/•  l      ,  n-l -     /- 
j   |[- v - iana   ]da + 

; V_ 
E 

|aa*n  /E  . C3.2) 

Note that, in evaluating the first and second integral of eqns. 

(3.1-3.2), the general incremental stress-strain relations (2.8) 

and (2.9) are utilized respectively. e^  =   e and e22 = e33 = e 



so obtained in eqns. (3.1-3.2) are called plastic strains which 

are the residuals after the applied load is removed.  Comparing 

eqns. (3.1-3.2) with eqn. (2.7)1 and eqn. (2.7)2, we may rewrite 

eqn. (2.5) as 

where the elastic strains e?. and plastic strains e?• are 

Ee!j.- (1+v)sij + T^°kk hj     > 

,  n-1       ■ 
T- P    3 he-- = ,aao  s.- i]   2  e   i] 

Now suppose, in a general case, the loading and unloading 

history of a certain portion of the material can be divided into 

two stages.  In the first stage the effective stress oQ   increases 

monotonically to a* which corresponds to a*, and in the second 

stage the effect stress decreases monotonically to o     which corre- 

sponds to a...  Then the strain energy density <{> can be obtained as 

o* 

/'   °'ij deij +  J  °ij d£iJ 
0 a* 

we notice the strain energy density can be separated into two 

parts: 
2 2 

lrl  +  V .   1  -  2Vr"    ^1 (-Z       C-\ 
*e = E{ —3— °e + ~T~ Kk^ }  ' (3-5J 

aa*n+1 , (3.6) 
p   E(n+1) 



where the elastic strain energy density <j>e is a function of the 

current stresses a^   and the plastic strain energy density <Dp 

is a function of maximum effective stress a* .   The irrever- 

sible and dissipative nature of plastic strain energy density 

is indicated in cqn. (3.6).  In two dimensional problems, the elastic- 

and plastic-strain energy per unit thickness over an area A 

can be obtained as: 

Ue =   f    *e dA, 

A 

/ 
A 

U  5   /   *p dA . 

(3.7) 

(3.8) 
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4. Center-Cracked Specimen 

In this work, we focus our attention on a rectangular 
- 

plate of length 2JL, wi _dth 2w, and thickness B, with a 
centered 

line crack of initial crack size 2aQ 
subjected to symmetric 

boundary conditions (cf. Fig. 2).  Therefore only the first 

quadrant of the plate R = [x,y|0 < x < w, 0 < y <   £] needs to 

be analy zed.  Experimentally one may obtain a curve c f applied 

stress a vs crack size.  A realistic 
experimental cui •ve relating 

a and a is shown in F ig. 3.  We are interested in the investiga 
- 

tion of the process that crack size slowly increases 
from a = a 0 

to a = a 

Suppose 

as the appl 
c 

we have two a 

ied stress increases from a - 0 

djacent states: 0=0^       and a 

to a = ffc. 

> a^ at 

State 1, o = a(2) and a = a(2) at State 2.  Correspondingly, 

the bour Ldary conditions may be speci fied as (cf. Fig • 4): 

ox = kc«, a   = 0 on S, 
xy        l 

= [x = w, 0 < y < Jt] ,  (4'. 1) 

°y - °ci)'. a  = 0 on S9 
xy        2 

= [y = l>  ° _ x < w] ,  (4 2) 

u  = 0  , 
X 

a  = 0 on S, 
xy        $ 

= [x = 0, 0 < y <i] ,  (4 • 3) 

o  - 0 , 
y. 

0       = 0 on S. 
xy        4 

= [y = 0, 0 < x < a(i)], (4.4) 

U  = 0 , 
y 

a  = 0 on Se- 
xy        J 

-=   [y -  0, a^< x < w] . (4 • 5) 

In other words, the boundary conditions associated with  the - 

process from State 1 to State 2 can be expressed as (cf. Fig. 5): 
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6ox - k[ö(2)- ö
(1)

], &oxy  -   0 on S1 , (4.6) 

60  = ö^2)- a(1) ,   öci  = 0 on S, , (4.7) 
Y AV i 

6u  - 0 , 5ovv = 0 on S  , (4.8) 

6a = 0 , 6a  = 0 on I\ s [y = 0, 0 < x < a(1)], (4.9) 
y        xy        l     ■ 

5a = - a     , 5ax = 0 on Y2  =   [y = 0, a(1)<x<a(2)] , (4.10) 

6u = 0 ,  6a  =0 on r, =   [y = 0, a(2)<x<w],    (4.11) 
y xy        .3 

where ä is the stress of State 1 distributed along y = 0 

between a^< x < a*-  . 

If we have the solutions of State 1, then, for any given 

adjacent state specified by a(2) and a ^2\   the boundary con- 

ditions for the transition from State 1 to State 2 are well de- 

fined in cqns. (4.6-4.11).  The equations of equilibrium and 

the strain-displacement relations in the incremental form can 

be written as: 

6a.. • = 0 , (4-12) 

6c .. = i(6u. • + 6u. ,) . (4.13) 
13   2^  i,j     3,1 

Eqns. (4.6-4.13) with eqn. (2.8) and/or eqn. (2.9) mathematically 

define the crack growth problem as a boundary value problem. 

After the boundary value problem is solved, the stresses, 

strains, and displacements at State 2 may be obtained as 
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4f - ^5 * 'Hi • 
u<2> = u(1) * 6u.  . 
11 1 

Following the same procedure, one may analyze stepwise the 

whole process of slow crack growth up to the onset of fast 

crack propagation. 

(4.14) 

(4.15) 

(4.16) 
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5.  Finite L: lenient Procedure 

Let a finite element mesh with Np nodal points and Nß 

triangular elements be set up in region R = [x,y|0 < w, 0 < y < I]. 

In this work, N = 300, N - 518, and a series of very fine 
P        u 

elements are being distributed along the path of slow crack 

growth.  The area pf those elements is in the order of 10 wJl. 

If j is the number of a certain nodal point, then u2-_1 and u2- 

are the displacement of that point in x and y direction respec- 

tively, f.•_! and f2- are the corresponding external concentrated 

force components acting on that point.  The displacement field 

within each triangular element is assumed to be linear with 

respect to the coordinates.  Therefore the strain field, and accord- 

ingly the stress field, within each triangular element are constant. 

For each element (cf. Fig. 6), let the incremental strain field 

[6e], incremental stress field [So], and incremental nodal point 

displacements [6] be represented by 

T 
[6eL=-[6ex, 6ey, 6Txy]  , (5>1) 

[6a] =■[6o . 50. So']    , (5'2) ■x'  y'  xy 
T 

[6] =-[&u2i_1,8u2i,6u2._1,&u2.,&u2k_l,6u2k ,6u?v]  .    (5.3) 

Then we have 

[5e] = [B][6] , 

[6ö] = [d][6e] , 

(5.4) 
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where [d] is a 3 x 3 matrix as indicated in eqns. (2.11) and (2.12) 

which are valid for loading and unloading respectively, and 

W   =  JE 

bt   0   b.        0 b,   0 

c   0    c.   0 
i 3 'k 

Cr   bi   C3   b3 
Ck   bk 

(5.5) 

2A = det 

1 X . 
1 ?i 

1 X ■ 
3 y3 

9 

1 xk *k 

c. 
1 

=   -   X . 
3 

+   xl y 

(5.6) 

bi E y3 - >\ ' ci 

with the other coefficients obtained by a cyclic permutation 

of subscripts in the order of i, j, k.  The stiffness matrix 

per unit thickness of this triangular element linking incre- 

mental forces and incremental displacements may be obtained as 

[15,16]: 

(5.7) 

T 
[k] = [B] [d][B] A, 

where A is the area of the element.  Finally the governing 

equation can be written as: 

(5.8) 

2N 

£ 
6=1 

K „ 6uD = 6f aß   ß     a 
a 1,2, 2N (5.9) 
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„here the 2Np * 2Np stiffwss matrix W   is equal to the sum of 

N local stiffness matrices [k] j, I - 1 N
e • 

0  As matrix [d) of each element depends on the current stresses 

when that dement is in a loading situation, the matrix [K] also 

depends on the whole stress field.  Thus, an iteration process 

has to be taken to solve the nonlinear matrix equation (5.9).  The 

iteration process could be described as follows.  Suppose, in a step 

by stop process, we have the solutions of State 1, (i.e., for each ele 

„it wo have the current stresses oy and the maximum effective 

stress op.     Then, for each element, wo guess at the stresses o^ of 

State 2.° Then the current effective stress og  and the effective 

stress o maybe obtained respectively from 

7    2 , 2 i1* (5.10) 
% ■  (°x + °y - °x°y + 3oxy}  ' 

~2   ~2   - ~     -2 h (5.11) 

°e = (üx + °y " cx°y + 3axy}  " 

The corresponding matrix [d] for each element may be found from one 

of the three following cases: 

(1)  ü  = o*   and ae > OQ 

Vox  case (1), the element is in a loading situation; matrix [d] is 

assumed to be the average matrix corresponding to tw.o states of 

stresses, i.e., 

lij-lfijt«) ♦diJ<*2)1 • (5'12) 

(2)  oc < o|  and oe < oe 
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For case (2), the element is in an unloading situation; matrix 

[d] should be the same as indicated in eqn. (2.12). 

(3)  oc < o* and OQ   >  oß 

For case (3) , the element has experienced unloading and is beinj 

loaded again, the matrix [d] is obtained as 

d.. = f d..(o)  + (1-f) d  (0) , 
(5.13) 

where 
^ (5.14) 

£ = (öe - o*)/(ae - öe)  , 

and d^- (0) denotes the matrix corresponding to vanishing 

stress state. 

Alter solving eqn. (5.9), one may obtain the calculated 

stresses o^- and its corresponding effective stress ö£ .  The 

iteration process will be continued until, for each element, 

the guessed stresses and calculated stresses are approximately the 

same and the averaged percentage difference between OQ   and 

a     is below certain allowable values of error.  After the itera- 
c 

-i^i  -; +■ n c ctni oht forward to calculate tion process is completed, it is straignrioi 

quantities of interest in fracture mechanics. 
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6.  Dissipated linergy and Crack f.rowth 

The irreversible and dissipativc nature of plastic strain 

energy density have been indicated in Sec. 3.  After the iteration 

process for a certain incremental step is completed, we have the 

correctly guessed stresses o^   and the corresponding effective 

stress ;c of a new state for each finite element.  If the newly 

obtainedCeffective stress is larger than the maximum effective 

stress a* obtained in the previous states, one should replace 

o* by a     , which will be used as the maximum effective stress 

for tlJnext incremental step.  Now we recall the expressions for 

elastic and plastic strain energy density as follows: 

.2   -,   9,, -   2 

. i + v 
i   - v.,  r 

c   h 
lrl + v    + * " 2v(a     ■)   } (6.1) 

*p = IT[nTT)aöe 

n + 1 (6.2) 

We notice that ±     depends on the current stresses and therefore 

demonstrates its elastic nature.  On the other hand, *p is a 

monoton ically increasing quantity because o*e   is always increasing, 

this corresponds to the irrevcrsibility of plasticity and 

the dissipativc nature of plastic energy.  After the finite 

element analysis for each incremental step is completed, it is 

straightforward to obtain the total plastic energy P (per unit 

thickness) for the whole region R as follows: 



N e 
(6.3) 

i=l 

P =^  («frpADi  • 

For a stationary crack problem, the crack size is regarded 

as a given quantity and hence the question is to determine the 

critical load at the onset of slow crack growth.  However, as 

the crack starts to grow in a stable situation, one has to 

treat crack size as a variable.  Strictly speaking, one more 

variable corresponds to one more governing equation for the 

system.  Before one can establish a governing equation for 

crack size, the relation between crack size and other fracture 

parameter has to be proposed and tested [12,13].  Motivated by 

the Griffith's concept [17,18] that surface energy is propor- 

tional to its area, and the energy for the new fracture surface 

has to be supplied from the released strain energy of the speci- 

men, we decided to take the energy approach.. Since crack growth 

is generally regarded as a irreversible process and crack size 

is an ever  increasing quantity, we propose that crack growth 

is a function of plastic energy, i.e., 

a - aQ = f(P)  . C6-4) 

We mention that Broberg [19] proposed a similar concept which 

can be expressed as: 

dU0/da = dDQ/da , (6-5) 

where UQ is the energy flow to the process region and DQ is 

the energy dissipation in the process region.  However Broberg's 
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engineering approach is based on the se called approximate 

path-independence of J-integral even in the cases of crack 

growth. 

After we analyze a realistxc crack growth problem with all 

the input data obtained experimentally, we observe the following 

fact: 

(6.5) 
a - aQ = B(P-P0) 

w hich means the amount of crack growth is linearly proportional 

to the increment of plastic energy.  The normalized plastic 

energy per unit thickness p s PE/a*w2 is plotted against normalized 

crack size c = a/w in Fig. 7.  The correlation coefficient 

attains a high value of 0.9997.  Eqn. (6.5) may be rewritten as 

P = P0  
+ (a-aQ)/3 

1 (6.6) 
- (P0- a0/ß) ♦ f a  . 



- 20 - 

7.  Fracture Toughness 

Liebowxtz and Eftis [7,8] developed a nonlinear energy 

method to evaluate the toughness parameter G£ from a single • 

load-displacement record for cases of no crack growth.  The 

method may be briefly described as follows.  First, let the 

experiment load-displacement record be represented by 

v = M + k(M)   ' 

where v is the load point displacement, F is the load, 1/M is 

the crack size dependent elastic compliance, n and k are constants. 

Then for a given critical load Fc, one may obtain a dimensionless 

quantity C representing the nonlinearity as follows: 

„  n-1 
r        i + 2nkf

Fc,                                  (7-2) 
C ~ l       n+l^M J 

The nonlinear toughness parameter GQ   is obtained as: 
(7.3) 

Gc ="CGC  , 

„here G"c is the corresponding Unear elastic fracture toughness and 

may be obtained by using Irwin's G-K relation, i.e., 

2                                         (7.4) 

And Kc is determined using the following polynomial expression 

for center-cracked specimen [20] 

Kc . „cAlf [1 - 0.1 ^ (I)']  ■                 (7-5) • 

Jones et al [11] further developed four different methods to - 

acconnt for the effect of snhcrltica! crank growth.  We briefly 
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describe these four methods and in each method we compare the 

experimental value of 5C with the numerical value of G, obtained 

by finite-clement analysis. 

Method 1 

The experimental part o£ this method can be separated into 

two steps:  (1) to determine C from the experimental load dis- 

placement record,(2) to calculate i?c  by eqns. (7.4-7.5) using 

actual critical stress OQ  and initial crack size.  For illus- 

trative purpose, we take specimen #11 (2024-T3) as an example 

and the data for that specimen are listed below: 

2w = 12 in. , 

2aQ = 6 in. , 

2%  =   32 in., 
(7.6) 

E  = 10300  ksi, 

v  = 0.33 ,' 

oY = 55.04 ksi , 

n = 6.0 25 , 

n-1 
aay   =2.207  . 

And 
load-crack size relation is plotted in Fig. 3, which is 

taken as an input in this work.  As an output the numerical 

data for load-displacement curve obtained by finite element 

analysis are plotted in Fig. 8 to compare with the experimental 

curve.  In this particular case we have 

L 
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Gc (Exp) = 521 lb/in.,  Gc (FE) = 473 ib/in.      C7.7) 

The difference is about 10%; 1%   comes from the calculation of 

Ü due to fact that eqn.(7.5) always gives higher value for Kc, 

and hence higher value for üc from eqn. (7.4) and 8% comes 

from the calculation of C due to the discrepancy between 

£lnite-element and experimental data in the load-displacement record, 

Method 2 

The experimental part of this method involves the deter- 

mination of a hypothetical load-displacement curve assuming 

there is no crack growth.  Eftis et al. [12] propose that 

(7.8) 
F = Fc M(aQ)/M(ac) 

being used as the critical load corresponding to the hypo- 

thetical load-displacement curve.  Lee and Liebowitz [22] de- 

veloped a computer program which can be used to analyze a 

center-cracked specimen in the nonlinear range without crack 

growth, and therefore it is straightforward to find F assuming 

critical displacement vc to be the same as obtained experiment- 

ally.  We find that 

G  (FE) = C (FE) G  (FE) 
c v c 

= 1.1325 x 381.77 (14.01/12.8.) 

(7.9) 
= 518 lb/m. 

No experimental value for Gc has been reported by Jones et al 

111]- 
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Method 3 

The experimental part of this method involves the deter- 

mination of M0, n0, kQi and C accordingly, from the portion of 

load-displacement curve, which has no crack growth, and the 

value of F from the following equation 

F  . ,.  ,F, ° (7.10) 
Vc=M0 

+ k0 W0 

The experimental value of Gc is reported to be 520 lb/in. and 

the finite-element value of Gc is found to be 519.7 lb/in. 

Method 4 

Utilizing kQ and. nQ obtained in Method 3, we recall eqn. 

(7.1) and write as follows 

F       F  n0 c, u (7.11) 

c  ■ " "C 

vc = FT +.k0(M_) 

which is used to determine MQ E M(aQ) .  The experimental 

part of this method is to determine C. based upon Mc, nQ, kQ, 

Fc> and Gc, based upon critical crack size aQ.     The experimental 

value of 5c is reported to be 581 lb/in.  However, we found 

that G  (FF) = 491.6 lb/in., which we believe is more reliable. 

In summary, the finite-element values of Gc for four different 

methods are 473, 518, 519.7 491.6 comparing with experimental 

values 521, - , 520, 581 respectively. 
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8.  Conclusions 

In this work, we focused our attention on the finite ele- 

ment analysis of crack growth in a center-cracked specimen 

subjected to monotonically increasing loads until fast fracture 

occurs.  During the process of crack extension, although the 

applied load is increased monotonically, part of the specimen 

has experienced unloading.  Therefore, in this work the boundary 

value problem formulated is based upon incremental theory of 

plasticity. 

Since, in a crack growth problem, crack size is no longer 

a given constant parameter and must be treated as a variable, a 

governing equation for crack size is needed.  Before we can 

formulate such a governing equation, an experimental curve 

relating load and crack size is taken as an input and hopefully 

from the output one may find the relation between crack size 

and other fracture parameters derivable from the stress field. 

Because of the irreversible and dissipative nature of plasticity 

and crack growth, we believe that crack size should be related 

to plastic energy.  Indeed, after the completion of the analysis 

we do observe the fact that the amount of crack growth is 

linearly proportional to the increment of plastic energy.  In 

another study of ours which is in progress, the linear relation, 

will be employed as an input replacing the experimental load- 

crack size curve.  If the result yields a load-crack size 

curve which is in agreement with the corresponding experi- 
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mental, are then one may claim a governing equation for crack 

size. 

Another aspect which is of concern is the fracture tough- 

ness parameter G  .  Liebowitz and his coworkers [8-10] developed 

a nonlinear energy method and its corresponding experimental 

procedure for the determination of Cc at the onset of stable 

crack growth.  Recently Jones e.t al [11] presented four dif- 

ferent empirical methods to account for the effect of subcritical 

crack growth.  These methods enable us to determine the fracture 

toughness parameter G  at the onset of unstable crack propa- 

gation based upon the experimental load-displacement record. 

Then the finite-element values which were determined for Gc were 

compared to the corresponding experimental values; satisfactory 

agreement was found. 

The following points should be stressed.  Inputs for the 

computer program include the material constants a and n, in addi- 

tion to Young's modulus E and Poisson's ratio v, determined from 

the simple tension test of unnotched specimen.  However, as a 

matter of fact, a and n vary over a wide range when one tries to 

describe the experimental stress - strain curve by a three parameter 

expression and, from our experience, the finite element computer 

program is quite sensitive to the input a and n.  We believe this 

is the major reason for the existing discrepancy between the experi- 

mental load-displacement curve and its finite-element counter- 

part, which has a S.2%   difference in displacement at the critical 
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load.  Although there is a discrepancy, we find that the finite- 

element values of C, . based on the empirical methods have less 

scatter than the experimental counterparts.  Generally speaking, 

this work provides support to the nonlinear energy method de- 

veloped by Liebowitz and ilftis [7], Eftis and Liebowitz [8] and 

its corresponding experimental procedures Jones et al [9] , 

Liebowitz et al [10] and Jones et al [11], in determining the 

fracture toughness values in the range of stable crack growth. 
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