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1.0 SUMMARY

This report describes the results of a 20-month program designed to
investigate parameters which effect the foreign object damage resulting
from ingestion of birds into fan blades of a QCSEE-type engine and to
design, fabricate, and impact test QCSEE fan blades which show improvement
in FOD resistance relative to existing blades. 1In order to accomplish
these objectives, two phases of effort were accomplished. In the first
phase, strain-gage-instrumented QCSEE-type fan blades were single-blade
impacted in a Whirligig facility at selected impact conditions using small
RTV projectiles while the resulting dynamic strains in the blades were
recorded. Nine instrumented impacts were conducted. The mass of the
impacting projectile was small [14 to 28 gm. (1/2 to 1 ounce)] in order to
ensure elastic behavior in the blades and the strain gages. The impact
strain data was also compared to results obtained from a finite element
computer program. In the second phase of the program, four improved QCSEE-
type fan blades were designed, fabricated and impact tested. A pin root
attachment concept was also investigated from an impact standpoint in this
phase.

In the first phase of the program, it was found that, in general, for
the small objects used, the strains in the blade are proportional to the
mass of the impacting object and the square of the relative velocity com-
ponent normal to the blade at the impact location. These parameters can be
further combined into an average or nominal force normal to the blade at
the impact location. 1In general, the finite element computer program gave
results that compare well with the test data. In the second phase of the
program, the four improved blades exhibited substantial improvement in FOD
resistance relative to former designs.




2.0 INTRODUCTION

Over the last several years, General Electric has been conducting a
continuous effort under NASA-sponsored and other related programs directed
at improvement of composite blade foreign object impact damage resistance.
Field service reports for both commercial and military operations indicate
the severity of the FOD problem. High incident rates of bird strikes
occur, particularly during takeoff and landing phases of the flight envelope.
Of the incidents listed, a fairly high percentage cause damage to the
engine.

Engine FOD capability requirements are quantatively defined by FAA
specifications. The QCSEE engine will be required to absorb the impact of
16 starlings, eight 0.68 kg (1.5 1b) birds or one 1.8 kg (4 1b) duck. To
satisfy these specifications, it will be necessary for the engine to sustain
little or no damage during starling ingestion, to be able to maintain 75
percent engine thrust following the eight 0.68 kg (1.5 1b) bird ingestionms,
and to have a safe engine shutdown with all damage being contained within
the engine casing following a 1.8 kg (4 1b) bird ingestion.

In order to maintain engine thrust after starling or 0.68 kg bird
impacts, rotor unbalance must be held to a low value. This requirement
makes it manditory that fan blades exhibit little or no loss of material when
subjected to up to 0.68 kg bird impacts.

QCSEE single-blade Whirligig impact testing conducted in 1974 revealed
that the candidate fan blade exhibited unacceptable local impact damage.
For a 0.91 kg (2 1b) bird impact at takeoff conditions, the blade lost over
60 percent of its original weight and was completely delaminated. An
extensive posttest failure analysis of the impacted blade was conducted to
gain insight into the failure characteristics of the blade. Among the
items analyzed were high speed motion pictures of the impact, dye penetrant
inspection, ultrasonic inspection and scanning electron micropscopy of the
damaged blades. The general conclusion reached from the data was:

° The blades failed because of the low interlaminar shear strength
of the materials used. This was, in turn, caused by the low bond
strength between the untreated graphite and Kevlar fibers and the
resin.

To improve the impact resistance of the QCSEE-type blades, the current
program, which was already underway, was redirected in July, 1975. The
original program was intended to develop a pin root attachment concept as a
backup to the circular keyhole/outsert attachment used on the QCSEE blade.
Since the pin root attachment had been designed and hardware procurement
already was underway when the redirection occurred, the pin root concept
was carried through into the current program and a pin root blade was
fabricated and impact tested.




The purpose of the redirected program was two fold:

° To investigate the effect of various impact parameters such as
fan speed, bird slice weight, span, and incidence angle on the
impact severity due to bird strikes.

. To design, fabricate, and whirligig impact test four new types of
blade designs to evaluate their impact resistance relative to
existing blades. All blades were fabricated using existing QCSEE
blade tooling, thus geometry was constant.

To accomplish the first objective, a series of existing QCSEE composite
blades were whirligig tested at various impact conditions. Three of these
blades were instrumented with strain gages.

Those impact parameters that most greatly affect FOD to composite fan
blades were defined based upon data generated in this test series. A
finite element computer program was also utilized to calculate the strain
at the locations where strain gages were installed on the blade. Compari-
sons between the strains from the computer model and the test data were
made.

The second objective was accomplished through the design of the inter-
nal laminate configuration, fabrication, and testing of a series of four
QCSEE-type composite fan blades. Each of these blades incorporated dif-
ferent materials and/or laminate designs that were expected to have a
positive influence on FOD tolerance improvement. Specimen testing of
various materials and layup configurations was conducted to help define
improved material systems to be used in the blades. All blades were designed
to meet frequency, stability, and strength criteria required for satisfac-~
tory engine operation. One blade of each of the four designs was fabricated.
The tooling for molding these blades was the same tooling as that used for the
QCSEE variable pitch fan blades (Reference 1).

Each of the four blades was impact tested in the whirligig facility., All
blades were tested using the same slice size, incidence angle and relative velocity,
velocity.




3.0 EVALUATION OF IMPACT PARAMETERS

To establish those parameters which have the greatest influence on blade
impact damage and FOD resistance, a series of 'same-design' composite
blades supplied by the QCSEE program were whirligig tested at various
impact conditions. Three of these blades were instrumented with strain

gages.

The impact slice sizes were small [14 to 18 grams (1/2 to 1 ounce)] to
assure blade response would be elastic and to avoid destruction of the strain
gages. A finite element computer program was also utilized to calculate the
strain at the locations where strain gages were installed on the blade.
Comparisons between the strains from the computer model and the test data were

made.

3.1 BLADES USED

The four blades used for this test series were preliminary QCSEE UTW
composite blades as fully described in Reference 1. The blade configuration
is shown in Figure 1. The blade molded configuation consisted of a solid
composite airfoil and staight bell-shaped composite dovetail. The molded
blade leading edge was slightly reduced in thickness along the entire span
to allow space for nickel plate leading edge protection. The correct aero-
dynamic airfoil profile was established when the nickel plate was installed.
An aluminum outsert was bonded to the dovetail to provide a bearing surface
at the blade/trunnion interface. This circular outsert concept permits the
blade to rotate about the root upon sufficienlty high impact forces, thereby
absorbing some of the impact energy.

A summary of the aero blade parameters is presented in Table I. The
blade chord, maximum thickness, stagger angle, and camber are plotted as a
function of blade span in Figures 2, 3, 4, and 5, respectively.

The airfoil definition is described by 15 radially spaced airfoil
cross sections which are stacked on a common axis. These are shown along
with details of the blade cross sections in Figure 6. Each section location
corresponds to the like designated elevation defined on the blade, Figure
1. The dotted portion of the leading edge defines the aero profile and the
solid inner portion describes the molded composite cross section.

The material and ply arrangement for the QCSEE composite blades is
based on previous development efforts which led to the selection of a
combination of fibers in a single blade to provide the proper frequency
responses to satisfy STOL engine conditions. Figure 7 shows the general
ply shapes, layup arrangement, fiber orientations and material in each ply
of the blade. Figure 8 shows a trimetric view of the general arrangement
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Table I. QCSEE UTW Composite Fan Blade Design Summary.

Aero Definition

Tip Speed 306 m/sec (1005 ft/sec)
Tip Diameter 180 em (71 in.)
Radius Ratio 0.44

Number of Blades 18

Bypass Pressure Ratio 1.27 Takeoff
Aspect Ratio 2,11

Tip Chord 30.3 cm (11.91 in.)
Root Chord 14.8 em (5.82 in.)
Tm Root 1.92 em (0.76 in.)
Ty Tip 0.91 cm (0.36 in.)
Root Camber 66.2°

Total Twist 45°

Solidity

Tip 0.95

Root 0.98
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of the plies in the blade. Torsional stiffening plies in the airfoil

region of the blade are oriented at * 45 degrees to provide the shear
modulus required for a high first torsional frequency. These plies contain
boron towards the outer surfaces of the blade and graphite in the inner
regions. Plies of Kevlar-49 are interspersed throughout the blade with
their fibers being oriented in the longitudinal direction of the blade.
Several Kevlar-49 plies in the tip region of the blade are oriented at 90
degrees to the longitudinal axis to provide chordwise strength and stiffness
to the blade. S-glass plies are included on the surface of the blade in the
root region for increased root flexibility.

The resin system used is a product of the 3M Company and is designated
as PR288. Material properties for the various fibers and the resin used are

shown in Table II.

A summary of the blade frequencies and weights for the specific
blades used for this testing are shown in Table III.

Figure 9 presents the strain gage map used. Blades QP010, QP013, and
QP014 were instrumented and strain data were recorded for the first nine
tests. Gage locations were selected to correspond to the centers of the
elements in the finite element computer model to allow direct comparison

between test and analysis (Figure 10).

The strain gage used was an FAE-125-35-S6E. This gage, purchased from
BLH, Inc., was selected because of its good elongation properties. It is a
0.32 cm (1/8 inch) long gage made of Constantan 400 foil and has an elongation
capability of three to five percent. The dynamic capability of this gage
has been demonstrated on previous programs to be well over 20 kHz.

The cement, BR610 a standard strain gage cement, was purchased from
W.T. Bean, Inc., and is rated between three and seven percent elongation
depending on test conditions. It is a thermosetting epoxy and requires a
heat cure of two hours at 135° C (275° F) minimum.

The jumper wires and lead wires were standard Teflon-coated stranded
copper. The jumpers were 36 AWG; the leadout wire was 30 AWG.

The lead wires on the blade airfoil were held down with "Metlbond 329'".
This is a thermosetting metal-filled epoxy on a synthetic fiber cloth
carrier. The cure temperature was 135° C (275° F) for 1.5 hours minimum.

Readout was on a constant DC voltage bridge balance circuit with a five
VDC supply. Output was recorded on magnetic tape at a speed of 152 cm/sec
(60 in./sec). Strain data versus time was then transferred to graphical form
for analysis.

3.2 TEST APPARATUS

The facility, shown schematically in Figure 11, consists of a 0.75 Mw
(1000 horsepower) drive motor, a variable-speed output magnetic clutch, a

14
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Table III.

Blade® Frequency Characteristics.

Measured Frequency, Hz Weight,
S/N 1F | 2F 1T 3T 2T kg 1b
QP010 | 58 | 190 | 285 430 | 672 2.24 4.94
QPO13 | 62 190 | 284 420 | 662 2.24 4.94
QP04 67 190 | 284 424 664 2.24 | 4.94

% Material AU/Boron/S-Glass/Kelvar
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speed-increasing gearbox, and a horizontal drive spindle shaft to the rotor.
The test setup was basically a standard TF39 fan package. The blade and
rotor were enclosed in an environmental chamber to control the atmosphere
and contain the debris. During testing, the chamber was filled with helium
to lower the heat buildup caused by the rotating blade. Figure 12 presents
a photograph of a blade installed in the facility.

The rotor was soft mounted to lessen possible rig damage should an
unbalance occur. The disk was provided with two opposing spindles, one for
the composite blade and the other for a counter weight. The blade spindle
was positioned for proper incidence angle for impact. This is shown in
Figure 13.

The environmental chamber is made with camera ports, located on both
sides and directly in front of the rotor, to permit high speed motion
pictures to be taken from several angles simultaneously. The blades and
background are appropriately painted to reflect light and provide contrast

for the movies.

The blades were impacted with simulated (RTV) birds injected into the
path of the blade at the agpropriate rotor speed. The density of the RTV
material used was 673 kg/m> (42 1b/ft3). The "Fixed Bird" technique is used
to set the impact bite. This means that the bird is securely fixed to a
mechanical system which inserts it at a set depth into the path of the
rotating blade and retracts it after impact. Basically, the mechanism shown
in Figure 14 consists of a cup (bird carrier) attached to the end of a spring-
loaded shaft which is supported and free to slide in ball bushings. It is
actuated by firing an explosive bolt which holds the shaft (and spring) in the
retracted (cocked) position. The particular springs used provided a maximum
stroke of 7.6 cm (3.0 in.) in 10 milliseconds. This yielded a maximum slice
size of 6.35 cm (2.5 in.) allowing 1.25 cm (0.5 in.) clearance between blade

and bird before impact.

To obtain the required slice, the explosive bolt must be fired when the
rotor is at the required speed, but at an instant which will permit the blade
to reach the impact point at the same time the bird reached the desired depth
(full stroke). In addition, the camera and lights must be activated to record
the event.

Figure 15 shows the block diagram of the firing system used to trigger
the events and fire the bolt at the proper time. The operating sequence for
the system is outlined below.

. The rotor speed signal is fed to a frequency counter. When
the proper speed is reached, the cell operator turns on the spot-
lights and activates the trigger switch, starting the cameras.

] When the control camera reaches operating speed, it trips a micro-
switch which completes a circuit to permit the 1/rev signal to
reach the delay unit. This signal also starts the firing of four
sets of sequenced flash bulbs.

20
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° After a preset delay has occurred, allowing the flash bulbs to
reach maximum lighting intensity, the delay unit dlscharges,
causing the bolt to fire.

Experience has indicated that setup and operation for impact testing
large composite blades in the soft mounted vehicle required that a large
number of details, parameters and procedures be checked, logged and followed.
Therefore, extensive use of check lists was made to insure that all prepara-
tions and setups are completed before each shot and that the established
test procedure was followed. In addition, an engineering data sheet was
included to be sure that pertinent data items were obtained.

3.3 TEST PLAN

Since the objective of the testing was to investigate the effects of
various impact parameters on FOD to composite blades, a test plan was
developed which varied the impact parameters in a systematic manner. Three
of the four blades tested were strain gage instrumented in order to measure
the strains resulting from the controlled impacts. This allows the relative
importance of each parameter in terms of FOD resistance to be identified.

The impact parameters investigated are defined in Figure 16; they
include total momentum (Mr), normal momentum (My), normal energy (Ey),
transferred energy (ET), and normal force (Fy). Total momentum (Mp) is
defined as the mass of the bird sliced off (Wg) times the circumferential
velocity of the blade at the impact location (Vygj). The normal momentum
(My) is the component of momentum normal to the chord of the blade at the
impact location, Wg Vye1 (sin ). The normal energy (EN) is the kinetic
energy of the bird slice relative to the blade in a direction normal to the
blade chord, Wg (Vye] sin 0)2/2.

The transferred energy (Et) is derived from conservation of momentum
considerations assuming the blade and bird move as one body after impact,
that is:

Ws Vye1 sin & = Vg (Wg + Wp)

the combined velocity of blade and bird after imapct

where V¢ =
Wp = effective mass of the blade
(sin 8) w
then v, = Vrel S
C Ws+WB

then Eg =(VC2/2)WB = energy added to blade by bird strike so that
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_(Vrel sin 6)2 Ys _ ¥s (Vrel sin 0>2 Wg Wp
i} 2 B\Wwg + wg)/ ~ 2 (Wg + Wg)

Wg Wp \
= En (Wg + wB)%

The normal force (Fy) is calculated using a fluid dynamic analogy.
That is, if the bird is assumed to have fluid-type properties under impact
conditions, then ideally the impact force on the blade would be:

Ep

Fy = 4pA
where Ap = pressure difference

A = area

For the case of a cylindrical bird being sliced by the blade, the
sggzsure component normal to the blade is Ap = 1/2 p VN2 or F=1/2p

The maximum contact area between the blade and bird would be an
ellipse and would occur when the blade was half way through the bird:

m i
A= 4 Dp <cos 8)

so that the normal force would be:

2 .
N 2 4 cos ©

noting that Wg = p(%) DB2 (i)
Ws VN2
Fy = 2 Dy cos 8§

Table IV presents the test schedule.- The last five columns on Table
IV present the variation of the impact parameters relative to run 1 on
QP010 for the 75% span impacts. For the 377 span impacts the parameters are
compared to run 5.
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3.4 TEST RESULTS

3.4.1 Tabulation of Impact Parameters

The impact parameters studied are discussed in Section 3.3 of this
report. The planned test conditions were shown in Table IV in Section 3.3,
while the actual test conditions and the calculated values for the five
impact parameters are listed in Table V. A comparison of the planned test
parameters to the actual test parameters shows that the only item that
varied significantly from the plan was the slice weight. In spite of this,
there is sufficient variation in the impact parameters to allow parameter
evaluation.

3.4.2 Presentation of Test Data

For each run made (see Table V), the dynamic strain data was recorded on
tape and then played back with the strain response of each gage being
presented versus time.

Figure 17 presents strain/time traces for several gages for the first
shot 16.0 gram (0.563 ounce) slice at 3200 rpm. Figures 18, 19, and 20
present strain/time traces for three other shots relative to the first 16.0
gram (0.563 ounce) slice at 3200 rpm data. Several observations may be
made from these comparative data:

° All the dynamic strain data appear to be of high quality with
regard to repeatability, accuracy, and noise level.

° The strain waveforms for a given impact location tend to be inde-
pendent of projectile variables. That is, the frequency of the
waveforms are independent of projectile variables. However, when
impacts at different spans are considered, shots 1 and 5 for
example, Figure 21, the waveforms show dramatically different
characteristics.

. Peak strain amplitudes in the impact region occur on the first
cycle and are dependent on projectile variables.

The strain/time traces for all shots made are included in the Appendix
for reference purposes. From the strain/time traces in the Appendix,
values for first peak strain and maximum peak strain were tabulated and are
shown in Tables VI and VII. Using this data and values for the impact
parameters from Table VI, plots were made showing impact parameter versus
first peak strain and impact parameter versus maximum peak strain for
impacts at 75 percent span and impacts at 37 percent span.

Representative plots showing total momentum (My), normal momentum (MN),
and transferred energy (Er) versus strain are shown in Figures 22 through
24. The data shown in these plots are for strain gages 2 through 7 and runs
1, 2, 3, 4, 8, and 9 which were 75 percent span impacts. From the data
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Run Ne¢. 1; 16 g Slice, 75% Span, 3200 rpm
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Figure 18,

Run 2 Compared to Run 1,




Run No, 1; 16 g Slice, 75% Span, 3200 rpm
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Figure 19, Run 4 Compared to Run 1.
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Figure 20. Run 3 Compared to Run 1.
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Two Different Spans.
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Figure 22. Strain Data Versus Total Momentum for 75% Span Impact Tests.
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Figure 23. Strain Data Versus Normal Momentum for the 75% Span Impacts.
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Span Impacts.




shown for run numbers 1 through 4, it appears that these parameters (Mr, My,
and Ep) account fairly well for changes in slice weight and rotor rpm.
However, when the data from runs 8 and 9 are included, it becomes apparent
that these parameters do not adequately account for a change in incidence
angle since the primary difference between runs 1 to 4 and runs 8 and 9 was a
change in incidence angle from 23 to 33 degrees.

Plots of strain data versus normal energy are shown in Figures 25
through 28. The normal energy parameter (EN) appears to handle variations
in slice weight, rotor rpm, and incidence angle better than the first three
parameters studied, so additional effort was spent to determine how well the
strain data correlates with EN. A least squares curve fitting routine was
used to plot straight lines through the data (and through the origin). The
difference between the curve fit and the actual data was then plotted
against normal energy. This is shown in Figures 29 and 30. From these
plots, it can be seen that the strain data falls within * 20 percent of a
straight line curve fit when the low energy data is excluded. When the
numerous possibilities for error are considered (stain gage variations,
errors in strain gage readout, etc.), this type of correlation is encouraging.

Based on the success of the normal energy parameter in correlating the
strain data, calculations were made using the normal force parameter which
accounts for bird diameter as well as slice weight. These data were plotted
against first peak strain data with the resulting plots shown in Figures 31
through 34. A straight line curve fit was made without forcing the data to
pass through the origin. This was done on the assumption that the normal
force does not account for all the forces which produce strain in the blade.
The difference between the actual data and the curve fit is shown in Figure
35. This indicates that the strain data, in general, can be made to conform
to a straight line when plotted against normal force when this line is not
forced to pass through the origin. There are several possible explanations
for the data not passing through the origin:

° There is a chordwise force not accounted for in the normal force
parameter.
. Not all of the energy from impact is absorbed by the blade. Some

is dissipated as heat energy and in deformation of the RTV bird.

In summary, it appears that based on the data obtained in this test
series, the total momentum (My), the normal momentum (MN), and the trans-
ferred energy (Er) do not correlate the strain data when changes in incidence
. angle must be considered. The local energy (Ey) and normal force (Fy), how-
ever do account for changes in bird slice weight, relative velocity, and
incidence angle for the same percent span. Further studies of the normal
force parameter (Fy) brought some additional insight into the impact process.
Though the data appears to vary in a linear manner with normal force, it is
apparent that the normal force is not the only factor affecting the strain
levels recorded. In order to completely describe the impact, more informa-
tion has to be made available on the additional forces that are involved.

The usefulness of either the local energy or the normal force parameters
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Figure 25, Maximum Strain Versus Normal Energy for 75% Span Impaéts.
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Figure 27, Maximum Strain Versus Normal Energy for 37% Span,
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Figure 31, First Peak Strain Versus Normal Force for 75% Span.
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spectrum obtained from the first 0.0125 second of the impact response (Figure
43) shows the two predominant frequencies to be 340 Hz and 1140 Hz with the
higher frequency (2400 Hz) still present. The spectrum from the first 0.006
seconds of the impact (Figure 44) indicates the primary dominance, over this
initial time span, of the 1140 Hz response with the 340 Hz and 2400 Hz
frequencies still making a significant contribution.

In summary, the following observations may be made:

) For the longer time span (0.05 second), the impact response
spectrum is composed primarily of the fundamental blade frequen-
cies (first and second flexural for the radial gage No. 3 and
first torsional for the chordal gage No. 4) along with a higher
frequency (approximately 1150 Hz).

° As decreasing time spans (0.0125 and 0.006 second) closer to the
impact time are evaluated, the fundamental frequencies decrease
in amplitude and the higher frequency (approximately 1150 Hz)
becomes predominant.

° For both strain gages No. 3 and No. 4, the contribution from
frequencies above 4000 Hz is negligible.

° In terms of blade design for impact, these results indicate that
any impact stress analysis must be capable of including blade
frequencies much higher than the first few blade natural frequen-

cies.

3.4.4 Test Data Comparison to Analysis

The QCSEE composite fan blade was analyzed using a parametric, 3-D,
finite element, eigenvalue, and thermal stress computer program named PARA-
TAMP~EIG. The program accounts for the inertial forces of rotation and
vibration. 1In addition, the stiffening effect of rotation is taken into
account. The program has the capability of giving directly the first eight
modes, frequencies, and corresponding stress for a specified speed of rota-
tion as well as the deflections and stresses in both stationary and rotating
bodies. The program uses an eight-noded box element (Figure 46) to build
up the stiffness and mass characteristics by Gaussian integration (Figure
47). Each box has 33 degrees-of-freedom: 24 corresponding to the three
motions of each of the eight nodes; and nine internally eliminated to mini-
mize strain energy. The program can handle 3-D-anisotropic material proper-
ties with the blade root restrained by both friction and springs and loads
being applied by either distributed pressures or point forces.

The dynamic impact analysis of the QCSEE composite blade model (Figure
48) was performed using the frequencies, mode shapes, and relative stress
distributions from the 3-D finite element program in combination with a
recently programmed dynamic impact response computer program. This program
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Figure 46, Isoparametric Representation of an Eight-Noded
Element,
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was generated to consider a lumped mass, spring-damper system applied at
the nodal points of the blade. The mass traverses the blade chord along
the "bird wipe line" as shown in Figure 49. This analysis determines the
interaction loads between bird and blade versus time, as shown in Figure
50.

Analytical predictions of impact strain versus time for run numbers 1,
5, and 8 were made using the PARA-TAMP-EIG finite element computer program
(see Appendix I). A comparison of the waveforms obtained from analysis and

test data for run No. 1 is shown in Figure 51, The following observations can

be made from this comparison:

° The analytical response compares favorably with the test data for
the initial peaks.

] The analytical model does not appear to damp out the strain
levels when compared to the test data.

3.4.4.1 Analytical and Test Peak Strain Comparison

A comparison was made between strain data recorded during impact and
analytical data obtained from the finite element computer program for the
following cases:

Slice
Run No. Blade Type % Span Wt (gm) rpm Incidence Angle

1 QCSEE 75 16 3200 23°
5 QCSEE 37 18 3202 40°
8 QCSEE 75 14 3200 33°

Figure 10 shows the finite element model used in the analysis and the
strain gage locations/type (radial or chordal). The same bird model and
impact force versus time curve was used for all runs. The data utilized in
the comparison was the first peak which occurred immediately following
impact. For ease of comparison, the data was plotted as analytical strain
minus test strain divided by maximum test strain for each strain gage.

This is shown in Figure 52 for runs 1 and 8 and in Figure 53 for run 5.

From Figure 52, it can be seen that, in general, the analytical and
test data agree within +25 percent and -12 percent. The largest error
occurred at gage location number 12 for both run 1 and run 8. One possible
reason for this larger error at this location is the relatively coarse
finite element model in the root area of the blade.
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The analytical versus test strain comparison for run number 5, shown in
Figure 53, exhibits somewhat poorer agreement than for runs 1 and 8. This
is a result of the fact that the impact occurred at 37 percent span, while
the same bird properties (spring constant and damping characteristics) were
used as had been used for the impacts at 75 percent span.

In summary, the comparison has shown good correlation between analytical
strain and measured strain for the impacts and strain locations studied. 1In
addition, it appears that with some additional work on the bird modeling
even better agreement may be obtained between analytical and test data.
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4.0 TIMPROVED IMPACT RESISTANT BLADES

The objective of this phase of the program was to investigate the
effectiveness of various material combinations and layup configurations on
the improvement of FOD resistance of composite blades. This was accom-
plished through the design of the internal configuration, fabrication, and
testing of a series of four fan blades.

Each of the blades was different in material and/or laminate design.
Selection of design features was based on the results of specimen testing of
various materials and layup configurations which was conducted. All blades
were designed to meet frequency, stability, and strength criteria required for
satisfactory QCSEE engine operation. These criteria are discussed in detail
in Reference 2.

One blade of each of the four designs was fabricated. The tcoling for
molding these blades was the same tooling as that used for the QCSEE variable-
pitch fan blades (Reference 3).

Blade quality was verified by a combination of quality control of
materials and processes combined with nondestructive inspection of the
finished blades, including frequency checks. Each of the four blades was
then impact tested in the Whirligig facility. All blades were tested using
the same object slice size, incidence angle, and relative velocity.

One existing QCSEE blade was modified to incorporate a pin root design.

The effect of this attachment on impact resistance was also tested in the
Whirligig.
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4.1 MATERIALS SELECTION

As part of the development of improved impact resistant blades, it is
necessary to assess various composite systems and laminate configurations.
It was the purpose of this portion of the program to fabricate and test a
series of composite specimens to establish the advantages of different
laminate configurations and material combinations. Test specimens were used
as a screening tool for evaluating and determining what material combinations
and layup configurations were to be used for fabrication of the improved
composite fan blades. 1In addition, if necessary, specimens were fabricated
and tested to provide data for the actual materials, ply configurations, and
processes used in each composite blade fabricated and impact tested. For each
material or ply combination, testing consisted of two tests each of short beam
shear, flatwise tensile and charpy impact.

An additional part of this effort was to evaluate fabrication processes
as they relate to the mechanical properties of fabricated parts. To accom-
plish this, specimens were taken from actual blades after impact test and
subjected to test. This permitted assessment of the properties achieved
under the actual conditions of molding temperature, time, and pressure
from a blade relative to properties from simple panels.

Figure 54 presents a drawing of the configurations used for the test
"specimens. For each material/ply combination, all specimens were cut from
a single flat molded panel. These test panels were 2.54 cm x 22.9 cm x 1.0
cm (I in. X 9 in. X .4 in.) in size and were molded using the same schedule
used on blades. This involves two hours at 110° C (230° F) and one hour at
177° C (350° F).

Specimens for longitudinal short beam shear strength, flatwise tensile
strength, and charpy impact strength were machined from the panels in
accordance with Figure 55. 1In general, the longitudinal direction in the
panels corresponds to the radial direction in a blade. 1In addition, a
sample was taken from each panel for chemical analysis. The mechanical
property tests were conducted at room temperature.

Six configurations were initially identified for test panel evaluation.
The basic material combinations used in these configurations are listed in
Table VIII. The orientation of the respective plies is representative of
the tip portion of QCSEE-type composite blades. Figure 56 presents the
detailed ply layups used for two typical panels. The layups were selected
because they represent a cross-section of the state of the art for current
composite blade use.

Panel 1 simulates the configuration of the preliminary QCSEE blades
discussed in Section 3.1. Panel 2 is the same as Panel 1 except the AU-
type graphite is replaced by AS-type graphite; this configuration simulates
the the QCSEE engine blades reported in Reference 2. Panel 3 was the same
as Panel 2 except the Kevlar material was replaced by S-glass.
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Panel 4 is different in three ways from the first three panels. The
layup orientation is * 0° * 35° instead of * 0° * 45°, the plies are 0.05 cm
(20 mils) thick instead of 0.025 cm (10 mils) thick, and the material is an
intraply or striped hybrid. Intraply hybrids have both AS and S-glass
included in the same ply. On the other hand, in Panels 1, 2, and 3, each ,
ply is either all graphite, all Kevlar or all S-glass (1nterp1y hybrid). All
the intraply material used was 80 percent graphite and 20 percent S -glass by
fiber volume.

Panel 4 had no boron plies on the outside, while Panel 5 had boron plies
at * 45° orientation. In actual blades, boron is sometimes required
to meet blade natural frequency requirements. Panel 6 was the same as
Panel 4 except an alternate graphite (T300) replaced the AS material.

Table IX presents the results of the tests. There appeared to be no
significant differences in the flatwise tensile properties of all eix con-
figurations. The data from five of the configurations were within 2.
~ percent; 23 MN/m2 (3380 psi). Short-beam shear strengths, on the other

hand, showed a range from 27.6 MN/mZ (4010 psi) to 74.0 MN/m (10,730 psi).
The rep]acement of low shear type AU graphite in Panel 1 with type AS in
configuration 2 showed no effect on the shear strength of the overall
composites. Examination of the specimens revealed that, in both cases,
failure occurred in the low shear strength Kevlar plies. Configurations 4,
5, and 6 produced the highest shear values. These materials averaged 150
percent greater strength than the first two configurations.

There appear to be no differences in the charpy impact test panel data
_between Configurations 1 and 2 as a result of changing the graphite fiber

from untreated type AU to surface-treated type AS. Both panels contained
approximately the same Fiber volume ratio of 5 percent boron, 27 percent
Kevlar, and 26 percent graphite. Configuration 3, which had an inter-

mediate shear strength of 51.0 MN/mZ2 (7400 psi), had the highest charpy
impact strength of all the candidates with a value of 39.9 N-m (29.4 ft-
1b).  This can be attributed to the high percentage of S-glass in the
composite (26.4 percent). lurthormore, with S-glass having a rather high
“specific gravity (2.49 p/om3), the Configuration 3 panel had the highest
density of the candidates (1.777 g/cm3). The remaining three systems,
which constitute the '"high shear" materials, had charpy impact strengths of
around 27.1 N-m (20 ft-1b). The volume of S-glass fiber in these configu-
rations remained fairly constant, 11.7 * 1.0 percent. Figure 56 presents
the short-beam shear and charpy data for all six configurations in graphical
form. Figures 58 through 63 present photos of the cross section of each
panel. :

At the conclusion of this test series, the following conclusions were-
made:

1, The flatwise tensile strengths of all panels was essentially
equal,
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2. The panels containing Kevlar produced low short-beam shear and
charpy values relative to the panels containing S-glass.

3. Replacing the untreated graphite (AU) with surface-treated graphite
(AS) did not improve short-beam shear or charpy values when
Kevlar was present; the Kevlar being the weak link.

4. The intraply hybrid panels (4, 5, 6) having a * 0° * 35° orien-
tation have higher short-beam shear values than the comparable
interply hybrid panel (3) having * 0° % 45° orientation. This
is probably due to the lower ply orientation angle.

5. The panel with a high percentage of S-glass had the highest
charpy value.

6. All three of the intraply panels had essentially the same pro-
perties.

Based on the above conclusions and other ongoing studies, additional
panel tests were conducted.

1. Panel 7 AS/S-glass panel representative of AS/S-glass interply
plus boron with * 0° % 45° orientation having 20% S-glass plies
(versus 45% for Panel 3) (Figure 64).

2. Panel 8; AS/S-glass panel as above with * 0° + 35° orientation.
This panel offers a direct comparison to Panel 5 relative to
interply versus intraply material (Figure 65).

These panels had short-beam shear strengths of 41.4 MN/mZ (6000 psi)
and 46.2 MN/m2 (6700 psi), respectively, which compare to previously tested
values of 51.0 MN/mZ (7400 psi) for a + 0° + 45° panel with a higher per-
centage of S-glass (Panel 3) and 68.9 MN/m2 (10,000 psi) for 80 AS/20 s-
glass panels (4, 5, and 6) which were otherwise similar to the current
panels.

From the results of these two panel tests, the following conclusions
were drawn:

° Reducing the amount of S-glass in Panel 7 relative to Panel 3
resulted in a 19 percent loss in short-beam shear strength.

° The interply panel had 32 percent lower short-beam shear strength
than the similar intraply panel. For this reason, more emphasis
in the remainder of the program was placed on the intraply
material.

, A wedge-shaped panel representative of the blade leading edge region
was fabricated to evaluate the effect of placing an adhesive layer down the
center of the lay-up, Figure 66. The objective of this study was to use
the adhesive to fill in the triangular regions at the ends of the plies
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which exist in an actual blade and thereby to potentially improve the shear
strength at this location. Short-beam shear specimens were tested at an
L/d ratio of 5:1. The data showed no improvement in shear strength by
using the AF126 layer; however, examination of the specimens revealed that
failures occurred in the outer plies and not the center. The failures were
of a tensile nature rather than shear. Additional specimens were then
tested using L/d ratios of 3:1 and 2:1. After testing a single specimen at
3:1 and examining the specimen, the failure mode was still tensile. The
remaining specimens were then tested at 2:1. Still, failure did not occur
along the center plane and no differences were noted in test data values.
In addition, due to the tapered nature of the specimens, testing of the
specimens in the short-beam shear setup was difficult because the panel
tended to slide when the load was applied. In view of the above difficul-~
ties, it was not possible to reach any definite conclusions relative to the
adhesive core panel. In an actual blade with a complex molding, improvement
by this technique might offer some advantages.

A test panel was also fabricated to evaluate chordwise shear properties
with ply "shingling'" angles of 5, 10, and 15 degrees. The theory being
that if the plies run across the neutral axis, the shear strength should be
improved over the case where the plies run parallel to the neutral axis.
Two short-beam shear specimens at each angle were machined and tested at
room temperature using a 5:1 L/d ratio. Like the tapered panels, these
specimens failed in bending instead of shear. In order to solve this test
problem, more specimens were fabricated with reinforcing outer plies to
improve the bending strength. Figure 67 shows a sketch of these panels.
Results of the tests are as follows:

Shear Strength

Angle NM/m2 (psi)
0° 60.0 8700
5° 62.1 9000

10° 55.8 8100
15° 58.6 8500

These results show that shingled angles do not significantly decrease or
increase the shear strength.of flat panels. Shingled plies however, may
offer the potential for improved blade strength by eliminating the potentially
weak center ply ends characteristic of conventional blade layups.

Following impact testing of the four blades fabricated from selected
material configurations described in Section 4.5, two blades were sectioned
and short-beam shear and flatwise tensile specimens were obtained. The
specimens were obtained from an undamaged area of the blade about four
inches above the outsert near the center of the blade. Table X shows a
comparison of the values from the original panel data and the specimens
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taken from the blades. As can be seen, the specimens obtained from the
blade exhibited as good, or better, flatwise tensile and short-beam shear
strengths as the panels. This result shows that the material properties in
a complex molded blade are as good as a simple panel in the location where
the blade specimens were obtained.

Table X. Blade/Panel Material Property Comparison.

Short-Beam Shear Flatwise Tensile
MN/m? (psi) MN/m? (psi)
Blade Panel Blade Panel Blade
PQP003 68.2 86.9 23.3 27.7
(9890) (12,800) (3380) (4020)
PQP0O06 68.2 86.9 23.3 22.3
(9890) (12,800) (3380) (3230)

4.2 BLADE DESIGN

4.2.1 Pin Root Blade Design

One of the objectives of the program was to design and test a blade
with a pinned root attachment and to determine if a blade with such an
attachment offered improvement in its resistance to foreign object damage.

A pinned root blade would be expected to provide an advantage in
foreign object damage resistance since the blade attachment would have
less frictional moment resistance to rotation because of the small pin
diameter as compared to the relatively large diameter of the outsert used
on blades with keyhole type attachment. Under high centrifugal loading,
the large contact forces on a keyhole outsert have the potential of restrict-
ing rotation of the outsert to such an extent that the blade bending stresses
in the root of the blade might exceed the blade's strength and result in
fracture or delamination. Another advantage of a pin root attachment is
that with special "tuning" the blade's first flexural frequency can be
designed to vary proportionally to the blade's speed thus avoiding first
flexural frequency crossover of the 1l/rev line. TFirst flexural frequency

crossover of this engine excitation condition can sometimes restrict operational

capabilities.

The pin root attachment hardware design is shown in Figures 68 through
71 and is shown installed on a QCSEE blade in Figures 72 and 73. The
attachment consists of a titanium slotted hub which encompasses the composite
blade's dovetail and extends radially inward to connect with a clevis and
pin attachment. The hub contains two slots which match two clevis lugs
attached to a trunnion which extends through the disk. This provides three
lugs in the hub. A 2.22 cm (7/8 inch) diameter pin provides the load
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Figure 72. Pin Root Blade Parts. Note: Only One of the Two Required
Slots has Been Machined in Blade Shown,

101




Figure 73. Pin Root Blade Parts and Assembled Blade. Note: Only One of Two
Required Slots has Been Machined on Unassembled Blade.
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transfer and locks the assembly together. The pin 1is retained by a 1.59 cm
(5/8 inch) lock nut.

Blade radial loading introduces large lateral or transverse loading in
the dovetail. This is counteracted by a combination of ribs which extend
down each of the three lugs on the hub and two steel internal tie bars
which fit in the two slots in the hub, immediately above the trunnion
clevis lugs. The blade is slotted up through the dovetail to provide
clearance for the two tie bars. The attachment assembly consisting of
blade, tie rods, and hub is integrally bonded together. When fitted together
with the trunnion clevis, pin, and lock nut, the blade and tie rods become
doubly secured and cannot separate, even in the event of a debond.

The design is based on using a blade with the configuration of the
QCSEE design molded blade (Reference 2) with the dovetail machined to
accommodate the pin root attachment hardware. The machined dovetail for
this configuration has a slightly greater width and chord length than the
QCSEE blade and has two 0.95 cm (3/8 inch) wide longitudinal slots extending
from the bottom of the dovetail upward approximately 3.2 cm (1-1/4 inch).
The greater width and chord length of the dovetail result in the same average
operating stress levels as the unslotted QCSEE dovetail.

The tested configuration actually consisted of a machined QCSEE pre-
liminary blade (Reference 1) removing its keyhole type outsert, and slotting
this to fit the attachment hardware. This provided a somewhat shorter chord
length and less dovetail on the attachment. Analysis showed that this was
acceptable for a demonstration test.

4.2.2 Improved Impact Resistant Blade Design

In this part of the program, four QCSEE blades with improved impact
resistance were designed. The same external geometry as the QCSEE engine
blades was used since the same die was used to mold the blades. The blades
were designed to have acceptable frequency characteristics and weight. The
candidate fibers and the selected resin and their properties for blade
fabrication are shown in Table XI.

The following specific considerations were used in the design of the
blades:

° From the panel tests discussed in Section 4.1, the Kevlar hybrid
material was eliminated from consideration due to low short-beam

shear and charpy values relative to the S-glass hybrids.

° Boron plies were necessary on the outside of the blade to obtain
sufficiently high first torsion frequency.
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. From the panel test results, the intraply hybrids exhibited
higher radial interlaminar shear strength than the interply
hybrids and were, therefore, considered to be the favored
candidate material.

Table XII presents a summary of the concepts considered. Configuration
A is the QCSEE engine blade (Reference 2) and was included for reference
only.

Configuration B is the same as A except the Kevlar has been replaced
directly with S-glass. This substitution results in a shear strength
increase of 85 percent and a charpy impact increase of 45 percent over the
Configuration A.

Configuration C utilizes intraply material and the standard layup con-
figuration similar to that used on the F103 blade (Reference 3). A sche-
matic comparison of the QCSEE and standard layups is shown in Figure 74 .
The layup orientation angles were also changed to * 0° = 35° versus the *
0° + 45° layup orientations used on QCSEE.

Configuration D was the same as C except a 0.025 cm (0.010 in.) strip
of AF126 adhesive was added along the centerline of the blade. The objec-
tive of the adhesive strip was to improve the shear strength at the center
where the ply ends meet and where the shear stress is highest under impact.

Configuration E uses the 80 AS/20 S-glass intraply material like C and
D and the QCSEE layup like B.

Configuration F is similar to C but uses a "one-sided layup', shown in
Figure75 . This type layup would eliminate the resin-rich area at the
center of the blade; however, warping and blade distortion might occur [due
to thermal effects] during blade molding.

Configuration G is similar to F except the plies would be "shingled"
or rotated as shown in Figure 76. This blade might have even more severe
thermal problems than F.

Configuration H, as shown in Figure 77, has an integral Titanium
leading edge spar which would transition into a pin~root-type dovetail.
The remainder of the airfoil would be composite material. This configuration
has been named the TICOM concept. This blade should offer significant
impact improvement. Manufacturing complexities, however, made fabrication
of this blade beyond the scope of this program.

After a detailed review of the above candidates including all the
variables listed in Table XII, Configuration B, C, D, and E were selected
for fabrication and impact testing. For manufacturing purposes, these
blades were renamed PQP003, PQP004, PQP006, and PQP005, respectively. The
detailed layup sequence and materials for each of these blades are shown in
Figures 78 through 81.
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Figure 75.
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Figure 76. Singled Layup.
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Selection of these blade designs permitted the following thorough
evaluation of several material and layup variationms.

. PQP003 and PQP005 provided direct comparison of the interply and
intraply material in an otherwise identical layup.

e  PQP004 and PQPO05 provided direct comparison between the standard
layup and the QCSEE layup using the same intraply material.

° PQP004 and PQPO06 allowed evaluation of the adhesive layer con-
cept in otherwise identical blades.

4.3 BLADE FABRICATION

To assure production of high quality blades, a quality control proce-
dure was established. The following paragraphs describe the methods used
to assure the required blade-to-blade consistency. All the materials used
were procured to General Electric specifications.

An established quality control plan for inspecting incoming epoxy pre-
pregs at General Electric was employed on all materials procured under this
program. This plan, which establishes the requirements and methods for
selecting satisfactory prepreg material for use in composite blade molding
activities, includes the following operations:

1. Checking inventory of incoming material and vendor's certifi-
cations for completeness and reported conformance to specifi-
cation requirements

2. Logging in each lot and roll received
3. Visual inspection of workmanship
4, Sampling of material and verification of compliance with speci-

fication requirements, including physical properties, reactivity,
and mechanical properties of a molded panel from each combination
of fiber and resin batch

5. Handling, storége, and reinspection of out-of-~date materials

6. Disposition of materials which fail to meet specification require-
ments.

Special material properties which were measured and compared to vendor-
reported data on each prepreg lot are given below:
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Prepreg Data Laminate Data

Fiber, g/m2 (Weight of fiber per Flexure strength at room temperature,
m2 of lamina area) 394 K (250° F)
Resin, g/m2 (weight of resin per Flexure modulus at room temperature,
m2 of lamina area) 394 K (250° F)
Solvent content of prepreg, Shear strength at room temperature,

% weight 394 K (250° F)

Gel time, minutes at 383 K (230° F) Fiber content, volume 7

Resin content, volume 7

Visual discrepancies Voids, volume 7%

Density, g/cm3

The basic sequence of operations involved in molding the QCSEE-type
composite blades is outlined below:

1. Cut out and lay up the individual plies.

2, The fully assembled mold tool was heated to the prescribed
temperature in the press such that all sections of the die were
maintained at a uniform temperature.

3. The press was opened and release agent was applied to the mold
cavity surfaces and any excess removed.

4, The assembled blade preform was loaded into the heated mold
cavity.
5. The press was closed at a fast approach speed until the top and

bottom portions of the mold engaged.

6. An intermediate closing speed was selected for preliminary
debulking of the blade preform.

7. The dies continued to close at a preselected, slow rate. The
movement continued until the die was closed and the prescribed
molding load/pressure attained. Figure 82 shows a typical rate
of closure and load application curve for molding a composite
blade with a gel time of 60 * 5 minutes at the constant molding
temperature 383 K (230° F).

8. The press was opened and the blade molding was rapidly trans-—
ferred into the postcure oven, thus, preventing thermal contrac-
tion stresses from being set up in the part. The blade was
allowed to hang freely in the postcure oven for the predetermined
process time necessary to achieve full material properties.
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After removing the blades from the postcure oven and trimming the
resin flash, the following inspection operations were carried out:

1. Meadsurement and recording of molded weight, volume, and density.

2. Recording of surface defects in sketch form and by photographs
taken of both sides of the blade.

3. Dimensional inspection and recording of the root and tip maximum
dimensions.

Although the blade form was molded well within the desired envelope
tolerances, it was extremely difficult to mold the dovetail profile to the
accuracy required. As a result, dovetail profiles were final machined to
size. A nickle plate leading edge protection system was also applied to
the blades. The principal finishing operations performed on the blades are
listed below:

1. Dovetail machining

2, Application of wire mesh to leading edge
3. Application of nickle plating to wire mesh
4. Trimming blade to length and tip forming

All blade specimens were subjected to through-transmission ultrasonic
C-scan (TTUCS) inspection before and after testing in addition to hologra-
phic and root dye penetrant inspection.

The C-scan inspection technique, shown in Figure 83, is basically a
measurement of sound attenuation due to both absorption and scattering. The
through-transmission approach (as opposed to pure pulse-echo or reflection-
plate pulse-echo/transmission approaches) provides for a more efficient energy
transfer with a minimal influence of test equipment configuration or
material/component shape. The scanner contour follows the airfoil with a
master/slave servomechanism. Even so, the attenuation values must be
referenced to a specific ply stackup and process sequence employed in the
manufacture of each component.

High-resolution scanning (75 lines per inch for 15,000 units of data per
square inch), combined with 10 shades-of-gray (5 percent of 95 percent on the
Oscilloscope) recording on dry facsimile paper, provides an "attenugraph"
image which is read much in the same manner as a radiograph.

The laser holographic facility, Figure 84, was also used to inspect the
blades molded during this program. It is highly versatile in that the optical
devices may be positioned to accommodate a variety of object types and fields
of illumination on panels, blades, and other contoured components. Interfero-
metry relies on secure blade fixturing and consistently reproducible stressing
for the second exposure of a double-exposure hologram. Typical interferograms
are presented in Figure 85,
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Test Technique for Ultrasonic C-Scan of Composite Blades.

Figure 83.
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Laser Holographic Facility.

Figure 84.




(a) Concave =~ Tip (b) Convex - Tip
No Discontinuity No Discontinuity

(¢) Concave - Root (d) Convex =~ Root
Slight Disconti- No Discontinuity
nuity Due to Ply
Slippage

Figure 85. Holographic NDT of QCSEE Blade.
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Dye penetrant inspection of the dovetail area was performed on each of
the blades. This test was used to detect surface-connected root delami-
nations in the machined dovetail. The dye penetrant check also gives

qualitative indications of root zone porosity.

The four blades fabricated were thoroughly nondestructively tested as
described above. Their quality was judged to be acceptable for test.

4.4 TIMPACT TEST PLAN

The same facility and procedures used for the testing described in
Section 3.2 and 3.3 were used in this testing except no strain gages were
used. Table XITI presents the test plan. The pin root blade was impacted
at 23 degrees incidence with an objective 241 gram (8.5 ounce) slice weight.
An identical blade but with a keyhole outsert was also tested at this con-
dition.

The four improved blades were impacted at the same condition [33
degree incidence angle and 340 gram (12 ounce) slice weight] that resulted
in serious damage to an early QCSEE blade, which had suffered over 60
percent weight loss and 100 percent airfoil delamination.

4.5 TEST RESULTS AND DISCUSSION OF RESULTS

4.5.1 Pin Root Blade Test

The first blade tested in this test series was the pin root blade
discussed in Section 4.2.1 which was otherwise identical to a keyhole
outsert blade previously tested. Results of the keyhole blade showed no
weight loss and 75 percent delamination of the airfoil at 23 degree inci-
dence angle at 3200 rpm and 241 gram (8.5 ounce) slice.

Before impact testing, the pin root blade was run up to 3800 rpm (117
percent of mechanical design), to demonstrate overspeed capability.
Following this test, a delamination in the composite dovetail was detected.
No damage was detected on previous runs at 3200 rpm. Figure 86 shows a
photograph of the delamination at the leading edge using die penetrant.
Figure 87 shows the extent of the delamination as defined by ultrasonic
inspection; the area below the white ticked line representing the area of
delamination. After a review of the extent of the delamination, it was
decided to proceed with the impact test of the blade. Since the damage was
confined to the root area of the blade, the ability of the airfoil portion
of the blade to absorb the impact should be unchanged. Therefore, any
impact advantage associated with the pin root concept could still be iden-
tified.
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The AU/Kevlar blade equipped with a pin root was then impact tested.
Figure 88 shows this blade after impact. This blade was tested at 3200 rpm
and 23 degrees incidence angle with an objective slice of 241 grams (8.5
ounces). Analysis of the high speed movies showed that an initial slice of
about 227 grams (eight ounces) was achieved with no weight loss to the
blade. However, on the third and fourth revolutions after the initial
impact, additional impacts occurred. The total slice size was 510 grams
(18 ounces). The secondary impacts occurred for two reasons: (1) when the
blade rotates about the pin, it moves axially outward toward the bird since
the pin is oriented off the axial direction to set the 23 degree incidence
angle, and (2) the injector oscillates after firing so that the bird is
again close to the blade after two or three revolutions.

Analysis of the high speed movies was conducted to find the blade
rotation for the pin root and keyhole blade. Although the initial slice
weight of the pin root blade cannot be determined with great accuracy, it
is felt it was not substantially different from the keyhole blade value of
241 grams (8.5 ounces). Comparisons of the rotation characteristics of the
two blades is shown in Figure 89.

As can be seen from the figure, the pin root blade rotated to an
initially higher angle than the keyhole blade, about 11 degrees versus five to
six degrees. Also, the pin root blade rotation damped out much more slowly
than the keyhole blade; this is due to the reduced friction associated with
the pin. These data show that the pin root concept might be helpful for a
particular blade design if the blade root was susceptible to root failure upon
impact since the pin root has low resistance to rotation.

4.5.2 Improved Blades Test

Prior to impact testing, all four improved blades were bench frequency
checked. Table XIV shows the frequency results. The range of the frequen-
cies for the QCSEE preliminary blade described in Section 3.1 are also
included for reference. As predicted, all four improved blades exhibit
acceptable frequency characteristics from an engine installation standpoint.
The weight of each blade prior to test is also shown. The weight of the
improved blades are slightly higher than the QCSEE blade due essentially to
the replacement of the Kevlar with heavier S-glass. Table XV presents the
results of the impact test for the four blades in terms of the percentage
of blade weight that was lost due to the impact and the percentage of the
airfoil that was delaminated. The area delaminated was measured by an
ultrasonic C-scan of the blades after impact. This technique, discussed in
Section 4.3, is able to identify areas of delamination even if only one or
two plies are delaminated.

Due to unavoidable variation in the timing and injector mechanism, it
is not possible to achieve exactly the same slice size on each shot. For
this reason, it is necessary to compare the data using results of the
impact parameter investigation discussed in Section 3. Figures 90 and 91
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Figure 88. Pin Root Blade after Impact.
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present the weight loss and area delaminated in graphical form versus the
normal energy parameter, Ey, which is described in Sections 3.3 and 3.4.
The results of testing on the original QCSEE blade in 1974 and the test
conducted in conjunction with the pin root blade test are also shown for
comparison. Note that blade PQP0O03 was also impacted with an 82 grams (2.9
ounce) slice. This was due to a malfunctior in the injector mechanism,
however, since the blade was not severely damaged, it was retested as
shown. Also shown on Figures 90 and 91 is the normal energy at takeoff for
a 0.68 kg (1-1/2 pound) bird impact. Photographs of the concave and convex
side of each blade after impact are presented in Figures 92 through 99.
Based on the data presented above, the following conclusions have been

drawn:

[ For the impact of a 0.68 kg (1-1/2 pound) bird at takeoff engine
conditions, the improved blades with high shear materials show
substantial improvement in FOD capability. The new blades exhibit
a weight loss of 15 to 25 percent versus over 60 percent for the
low shear material blades and an area delamination of 65 to 70
percent versus 100 percent for the low shear strength blades.

° On a weight loss basis, the standard-type and the QCSEE-type
layups show about the same FOD tolerance. That is the blades
having a standard layup (PQP004 and 006) and the blades having a
QCSEE layup (PQPO03 and 005) exhibited similar weight loss charac-
teristics when impacted by RTV birds weighing between 200 to 500
grams.

] Observation of the failed blades suggests the standard-type
layups PQP0O04 and 006 appear to lose a region at the leading edge
tip when impacted, whereas blade PQP003, having the QCSEE design,
lost the entire outer portion of airfoil. At lower span impacts,
this characteristic of the QCSEE layup could result in worsened
FOD capability relative to the standard layup.

° Adding a layer of AF126 adhesive along the center of the blade
did not improve or lessen impact resistance.

] From an overall standpoint, the standard layup with intraply

material appeared to offer the best FOD capability of any of the
other candidates for the limited testing conducted.
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Blade PQP0O03 Concave Side after Impact.

Figure 92.
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Figure 93. Blade PQP003 Convex Side after Impact.
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Figure 94. Blade PQP004 Concave Side after Impact.
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Figure 95. Blade PQP004 Convex Side after Impact.
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Figure 96, Blade PQPO05 Concave Side after Impact.
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Figure 97. Blade PQP005 Convex Side after Impact.
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Figure 98. Blade PQP006 Concave Side after Impact.

139




e
it

o

i

Figure 99. Blade PQP006 Convex Side after Impact.
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5.0 CONCLUSIONS

This report has presented the results of a 20-month program designed
to investigate parameters which effect the foreign object damage resulting
from ingestion of birds into fan blades of a QCSEE-type engine; and to
design, fabricate, and impact test QCSEE fan blades which show improvement
in FOD resistance relative to existing blades. To accomplish the first
objective, strain gage instrumented QCSEE-type fan blades were single-blade
impacted in a Whirligig facility at selected impact conditions using small
RIV projectiles while the resulting dynamic strains in the blade were
recorded. In the second phase of the program, four improved QCSEE-type fan
blades were designed, fabricated, and impact tested. A pin root attachment
concept was also investigated from an impact standpoint in this phase.
Based on the results of this program, the following conclusions have been
reached:

Evaluation of Impact Parameters

. Excellent quality strain data was obtained during the testing.

. Varying the impact parameters investigated effected the amplitude
of the resulting strain/time trace, but did not substantially
effect the frequency of the wave. However, changes in the impact
span changed both the amplitude and frequency of the waveforms.

° In the area of impact, the maximum strain occurs on the first
cycle of the stress wave after impact.

° Frequencies up to 4000 Hertz contribute to the strain response
for the small impacts studied.

° The kinetic energy of the bird normal to the blade chord and the
normal force correlate the strain data well for the range of
impact parameters studied.

™ A finite element computer program gave excellent agreement with

the test data for the impacts studied.

Improved FOD Resistant Blades

o A blade using a pin root attachment rotated more upon impact than
a similar blade with a keyhole outsert, and the blade oscillations
damped out much more slowly than for the keyhole design.
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AU/Kevlar and AS/Kevlar have a low interlaminar shear strength of

about 30 MN/m2 (4 ksi) in panel tests relative to AS/S-glass
panels which have about 10 MN/m2 (10 ksi) shear strength.

For the impact of a 0.68 kg (1-1/2 pound) bird at takeoff engine
conditions, the improved blades with high shear materials show
substantial improvement in FOD capability relative to the older
blade designs. The new blades exhibit a weight loss of 15 to 25
percent versus over 60 percent for the low shear material blades
and an area delamination of 65 to 70 percent versus 100 percent
for the old low shear strength blades at this impact condition.
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7.0 APPENDIX

The following 18 figures present the strain gage test data as measured
for Runs 1 to 9 as discussed in Section 3.0. For all gages, tension is up
the scale and compression is down the scale.
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Run No. 9
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Run No. 9 (Concluded)
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The following six figures present the analytical results obtained as
strain versus time for Runs 1, 5 and 8, as discussed in Section 3.4. These
curves are to the same scale as the test data curves found elsewhere in

the Appendix.
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