pDTIC |
@ ELECTERY
| ), DECiU 511993 a i

81-07

INFLUENCE OF FIBER ORIENTATION
DISTRIBUTION ON STRENGTH
OF NOTCHED COMPOSITES

MICHAEL C. LINDELL

19931214 088
CENTER FOR

COMPOSITE MATERIALS

College of Engineering
University of Delaware
~ Newark, Delaware

.l




*MSG DI4 DROLS PROCESSING LAST INPUT IGNORED

‘i_,,’ N

- . =xxDTIC DOES NOT HAVE TRIS ITEMxxs

== 1 - AD NUMBER: D43344)
-- 6 - UNCLASSIFIED TITLE: INFLUENCE OF FIBER ORIENTATION DISTRIBUTION

- ON STRENG[H OF NOTCHED CGHPOSITES
3

HAY 1981
1279
CCH 81-07
UNCLASSIFIED

ﬂDTE THESIS SUBNITTED TO UNIVERSITY OF DELAWARE
LLHENT OF REQUIREMENTS FOR BQCHELOR § DEGREE WITH

3

”’UNLmrEo' s

--33 - LIHHATION CODES | g
--XXXX$% o
-- _ . END OF DISPLAY LIST

- © GENTER NEXT COMMAND))




INFLUENCE OF FIBER ORIENTATION DISTRIBUTION

ON STRENGTH OF NOTCHED COMPOSITES

By
Michael C. Lindell

R. Byron Pipes, Thesis Advisor

PN QTATITY TNOTTATIN B

A thesis submitted to the Faculty of the University
of Delaware in partial fulfillment of the requirements for
a Bachelor's Degree with Distinction in Mechanical Engineer-
ing.

May 1981




ABSTRACT

A short fiber composite material containing a cir-
cular notch is analyzed to determine the effect of fiber
orientation on material property and strength character-
istics. Several models are presented, each assuming a
different state of fiber orientation, and analyzed with a
finite element structural analysis program to determine
performance under axial locad. Numerous contour plots are
presented for each model which display the dependence of
material characteristics on fiber orientation and show
the stress and displacement distributions. A failure
model is then developed which predicts strength reduction
as a function of notch size. It was found that, relative
to the isotropic or orthotropic condition, strength levels
of the various models vary by no more than 10-11 percent
for a given notch size. It is also shown that, given a
notch size and corresponding strength reduction in an
isotropic or orthotropic case, notch sizes up to 50 per-
cent larger result in no greater strength reduction.
Lastly, it is found that a particular model may be of
greater strength than another for a certain notch size

range and be of inferior strength in a different range. =

Thus, relative strength is found to be dependent on &r
a
|

absolute notch size. Unannouxced
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I. INTRODUCTION

When dealing with discontinuous fiber-reinforced

composite materials it becomes a difficult task to accu-
| rately predict the performance of a part made of such

material. This is due to the strong dependence of mater-
ial strength on the local fiber orientation within the
structure. For injection molded, short fiber composite
materials this orientation state is determined by the flow
conditions and molding geometry. 1In areas within a mold
near walls or other obstructions the shearing forces with-
in the flow and the sudden changes in flow direction cause
the fibers to deviate from the random orientation, iso=-
tropic condition. This gives rise to a variation in
material properties. Thus, isotropic elastic theory is
rendered useless since it cannot account for material
property variation. If the fiber orientation were non-
random yet uniform throughout, orthotropic elastic theory
could be used to predict performance since it can account
for directional-dependence of material properties. However,
flow condition typically yield wide variations in fiber
orientation and hence material properties can vary from

point to point throughout the structure. This local




2
material property variation can cause sharp variations in
stress distribution and hence strength. In structures con-
taining holes or notches of some sort, the fiber orienta-
tion in the notch region can lead to stress concentration
of greater magnitude than under isotropic conditions.
Since there is no analytical model which can account for
pointwise material property variation it becomes necessary
to develop experimental procedures and empirical models
which can predict fiber orientation and corresponding

material strength.

This paper investigates the variation of stress and
strength with fiber orientation distribution in an in-
jection molded, infinite plate containing a circular hole.
The material is a resin-fiber-filler composite consisting
of polyester, E-glass, and calcium carbonate, respective-
ly. The material properties and other characteristics of
this composite are shown in Table 1. The structural
analysis is accomplished with the aid of a finite element
structural analysis program. In the analysis the effect
of fiber orientation is taken into account by allowing
the material properties to vary from element to element
throughout the finite element grid. In the models pre-
sented fiber orientation was prescribed. Once the fiber
orientation is defined at various points in the grid,

material property assignment becomes possible. This is
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4
accomplished with the aid of a computer code developed at
the University of Delaware by Jarzebski et al. [1] which,
given the material composition and fiber orientation, can

estimate the corresponding orthotropic material properties.

The entire finite element set-up was accomplished
with a computer-aided design program written at the Uni-
versity of Delaware by Quigley [4]. This code interfaces
the material property predictions given by Jarzebski [1]
with the finite element grid by assigning each element
material properties which reflect the local fiber orienta-
tion and distribution. Thus, the structure is viewed as
consisting of as many different materials as there are
number of elements. As the elements are made smaller the
model approaches a system whose material properties vary
from point to point. Quigley's @rogram creates the mesh
by user input and organizes all the information necessary

in order to execute the SAPV finite element analysis code.

Finite element results are then analyzed and a
failure model is developed. Stress concentrations arising
at the hole are examined for various fiber orientations
including the isotropic and orthotropic conditions for
comparison. Contour plots are provided for Young's
mbduli, shear moduli, displacement, and stress to examine

the effect of fiber orientation on each of these
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parameters. The results are then extended to predict
strength characteristics for structures containing hole
sizes other than the one examined here. Lastly,

conclusions are drawn regarding the results of this study.




II. THE MODEL

The performance of discontinuous short fiber com-
posites depends upon the material properties determined by
fiber orientation. In a structure whose fibers are non-
randomly oriented, this dependence leads to a pointwise
variation in material properties which makes it impossible
to analyze the structure analytically. Finite element
analysis lends itself to this type of analysis and has
the ability to model complex geometries and material
property distributions. With the aid of existing computer
codes it is possible to create the model and assign
element-dependent material properties, given the state of
fiber orientation at various points throughout the finite
element grid. Once the element material properties are
assigned and the boundary conditions stated it becomes a
simple matter of executing a finite element code to

predict the stresses and deflections within the structure.
A. FINITE ELEMENT MODEL

The structure being modeled is a molded infinite
pPlate containing a circular hole. Since the finite element

analysis requires the structure to have finite boundaries
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it will be assumed that a width-to-hole radius ratio of
8.0 will approximate the infinite plate conditions.
Figure 2.1 shows the dimensions of the model used. The
structure is loaded such that the nominal stress in the
part is 1000 psi (6.89 MPa). In the finite element model
symmetry is assumed about the hole transverse to the load-
ing direction. This reduces the number of elements and
nodal points required to define the structure, hence
reducing solution time and cost. The finite element grid
and applied boundary conditions are shown in Figure 2.2

and Figure 2.3 is an enlargement.

The stresses and fiber orientation in the part in
areas away from the hole should be uniform since there are
no flow changes in those areas. Hence, the grid was not
made exceedingly fine there. However, significant vari-
ations in stress and fiber orientation should occur in
the region near the hole. Therefore, the grid was finely
divided in that region to allow for sharp stress and

material property variation.

To create the finite element model the computer-
aided design program written by Quigley [4] was employed.
This is an interactive program which organizes an input
data file compatible with the SAPV finite element analysis

code. The program permits automatic and manual mesh
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generation, nodal point boundary condition assignment,
material property assignment, and organizes all the input
information required for the finite element analysis.
Another feature of this program pertinent to this work is
its ability to make use of the finite element results for
the purpose of plotting stress, deflection, fiber orienta-
tion, and material property contours. The program was key

to the work and was used extensively.
B. FIBER ORIENTATION

Eight separate models are presented, each having a
unique state of fiber orientation. It was stated that
these fiber patterns were merely assumed, they are not
necessarily accurate. This is due in part to a lack of
information regarding the actual fiber orientation in such
a molded part. Therefore, several models based on sim-
plified fluid mechanics principles are presented. Before
discussing these models the basic ideas concerning fiber

orientation should be discussed.

Since the state of fiber orientation within a
structure is the most important factor in determining the
structure's strength, it becomes necessary to develop des-
criptors which quantitatively characterize the orientation
state. For the cases considered in this study the fibers

will be assumed to have orientations lying in the plane of
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the plate, i.e., out of plane fiber tilting is not permitted.
It is not the objective of this paper to present the theory
of these orientation descriptors; the reader may consult
Pipes et al. [7] for such a discussion. It will suffice to
say that, for the planar orientation states considered here,
there exists a parameter known as the Hermans Orientation
Factor, £, which takes on the value of £=0.0 for a com-
pletely random, planar isotropic condition and assumes the
value of £=1.0 for a completely columnated, planar ortho-
tropic orientation state. All other orientation states
between completely random and completely columnated will
assume values between 0.0 and 1.0 depending upon the degree
of randomness and columnation. It should be noted that
this orientation factor applies to localized bundles of
fibers and not to the structure as a whole. Such a

bundle of fibers is shown in Figure 2.4 having a random
orientation and a completely columnated orientation. Thus,
the structure is assumed to be composed of many bundles of
fibers diépersed throughout the resin-filler matrix, each

bundle having its own unique Hermans Orientation Factor.

For the purposes of this study there exists another
orientation descriptor which, in combination with the
Hermans Orientation Factor, will uniquely define the state
of orientation at a point within the structure. This

parameter is an angle, which will be called 8, which is a
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measure of the average angle from the horizontal of all
fibers in a particular fiber bundle. For example, a fiber
bundle with a Hermans Orientation Factor of f=0.8 might

be situated in the global Y-Z plane as shown in Figure ‘2.5.
The angle B is the average rotation from the horizontal of
all of the fibers in the bundle. Thus, for the example
shown the average rotation of the three fibers happens to
coincide with the alignment of the center fiber. Specify-
ing the Hermans Orientation Factor and the average rota-
tion of the bundle at numerous points within the structure
will then uniquely define the orientation state throughout
that structure. From these two parameters the correspond-

ing material properties can be computed.

A total of eight cases were studied in this work.
The first three cases dealt with homogeneous materials.
That is, the rotation of the fiber bundle, B8, and the
Hermans Orientation Factor, f, had constant values through-
out the structure. Specifically, Case 1 models an in-plane
isotropic material with £=0.0 and B=0.0 everywhere; Case 2
models an in-plane orthotropic material with f=1.0 and
B=0.0 everywhere; and Case 3 also models an in-plane

orthotropic material with £=0.5 and B=0.0 everywhere.

For the last five cases the rotation parameter, B8,

was assigned at points in the structure in such a way that
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the value it assumed for a particular fiber bundle corre-
sponded to the tangent angle of the streamline at that
point for the case of an ideal flow field over a circular
cylinder. The radius of the cylinder corresponds to the
radius of the hole. 1In other words, the fiber bundles are
situated such that they orient themselves along the stream-
lines of an ideal flow field over a circular cylinder.
Figure 2.6 shows the streamlines for an ideal flow over a

cylinder.

The equation for the streamlines in terms of the

coordinates shown in Figure 2.6 is:

RZ
v(Y,2) = vV, Z(l - '2—7) (1)
Y +2
where:
V, = Upstream velocity = constant
R = radius

When ¢ (Y,2) is constant, equation (1) corresponds to a

particular streamline. The equation can be written as:

VLN, =2 (1 - ) (2)
Y +2Z

By setting ¢ (Y,Z) egual to some constant, y', whose value

is determined by the choice of Y and Z, and taking the

total differential of the resulting expression the slope of




HAANITAD dVINDYID ¥V ¥YJAO MOTA TVIAI ¥0d SANITHYIAILS

9°C

"DIJd

LT




18
the streamlines, dZ/dY, can be expressed as a function of

the corrdinates Y and Z. Since v'/V_ is a constant, then:

d(w'/Vw) = 0 (3}
Hence:
' =0 = ¥ Y
d(Y'/V,) = 0 = 55 dY + = 4z (4)
Then, from equation (4):
_ _ du/3y
dz/4y = 30757 (5)
Since:
Y _ 2r%vz ¢
Y T 42422 (6)
and:
2 2
Y 2 (¥Y°-z°9)
~ =1 - R (7)
97 (Y2+ZZ)2
then:
dz _ _ 3v/3Y _ 2Y7 (8)
dy oY/92 2. .2
(Y2—Zz)—(Y +7 )2
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Equation (8) gives the slope of the streamline at
any point Y,Z in the flow field. By taking the arctangent
of this expression the rotation of the streamline from the
horizontal Y-axis is found. This rotation is the parameter
defined as 8.

- ean-l (G2
B = tan (dY) (9)

Hence, for cases (4) through (8) B values throughout the
structure were calculated from equation (9). All 8 values
for each model were calculated at the same points in the
structure and hence each model has the same B profile.
Figure 2.7 is a contour plot of constant values of B8 in
the vicinity of the hole. The contours all pass through
points A or B because the slope dZ/dY is undefined there.
A particular contour will then intersect the circle at a
point whose slope corresponds to the value of the contour
intersecting. This is because the streamlines just next

to the hole will be tangent to the hole.

With the exception of Case 4, the Hermans Orienta-
tion Factors for the cases with B8 following ideal stream-
lines are defined by various functions having radial and/
or angular dependences in regions within three radii of
the hole edge. Outside the three radii region the hole

will be assumed to have no effect and the material will be
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modeled as planar isotropic, i.e., £=0.0. For Case 4 the

Hermans Orientation Factor will be f=1.0 everywhere.
C. SPECIFIC CASES INVESTIGATED
CASE 1:

This case is modeling the planar isotropic condition.
This means that £=0.0 everywhere regardless of the presence
of the hole. The rotation parameter B for this case does
not matter since the local degree of columnation is com-
pletely random. This would be the model for a perfectly

inviscid flow field.
CASE 2:

The in-plane orthotropic state is modeled in this
case. The fibers are assumed to be perfectly columnated,
f=1.0, and B=0.0 everywhere. Again, the presence of the
hole is viewed as having no effect on the fiber orientation,
the fibers are all perfectly columnated and are aligned in

the direction of loading.
CASE 3:

This is another model of an in-plane orthotropic
orientation. However, in this case the fibers are semi-
random, semi-columnated, i.e., £=0.5, and have an average

alignment in the loading direction, i.e., B8=0.0. Once
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again the hole is assumed to have no effect toward orient-
ing the fibers. These first three cases are provided to
to give an idea of the strength characteristics in parts

with homogeneous fiber distributions.
CASE 4:

Case 4 deviates from the homogeneous condition. 1In
this model the fibers are all perfectly columnated, f=1.0,
but their average alignment is dependent upon the local
slope of the streamlines in the flow field. In areas re-
latively far from the hole the fibers will be aligned in
the loading direction but near the hole there will be a
wide variation in fiber alignment and hence, a wide vari-
ation in material properties. Once again, the hole has no
effect on fiber columnation, they have the same degree of
columnation everywhere. This particular case is provided
in order to judge the effect of fiber bundle alignment on

strength by comparing this case with Case 2 (f=1.0, B=0.0).

CASE 5:

In this and the remaining cases an attempt is made
to account for the shearing effects of the hole, in a
simplified manner, by imposing radial and/or angular de-
pendence on the Hermans Orientation Factor. This effect

will be assumed to be confined to an area within three
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radii of the hole edge. As stated earlier the average
alignment of the fiber bundles, B, for the remaining cases
depends on the local streamline slope. In this particular
case the Hermans Orientation Factor is assumed to be a
linear function of the radial position, independent of the
angle a. These radial and angular coordinates are shown
in Figure 2.8. The value assigned to f at the hole edge,
r=0.25, is £=1.0 and decreases linearly for a distance of
three radii to r=1.0 where it has the value £=0.0. The

function for £ is:
£(r) = 5 (1-r)  .25<r<l.o (10)

A contour plot for constant values of £ is shown in

Figure 2.9.
CASE 6:

In the case of fluid flowing over a cylinder there
are regions just before and just after the cylinder in
which local mixing occurs due to abrupt flow changes and
drag forces. It might be expected that the fibers in these
regions would have a somewhat random orientation due to
the mixing. In an attempt to account for this phenomenon
this case, in addition to a radial orientation dependence,

also imposes an angular dependence on the degree of
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orientation. This angular dependence is imposed by multi-
plying the function in Case 5 (equation (10)) by the sine
of the position angle a. The sine function was chosen to
suggest that the rate of change in dégree of columnation
is greater at values of o near 0° and =-180° and smaller
when o is in the vicinity of -90°. The function is given
by equation (11) where the negative sign is included

because o is negative.

f(r,a) = -s(l-r)sin o  0.25¢r<l.0 (11)
-180°<a<0°
Thus when o is near 0° or -180° the Hermans Orientation
Factor is small regardless of the radial value. Then for
values of a approaching -90° f begins to assume the dis-
tribution given in Case 5. A contour plot for constant

values of £ is shown in Figure 2.10.
CASE 7:

In Cases 5 and 6 the relationship between f and the
radial position was modeled as being linear. It may be
the case that the Hermans Orientation Factor drops off
sharply from a value near unity at the hole edge to a value
near zero a short distance away. Taking this into account
and still attempting to model the angular dependence with

a sine relationship, an exponential decay is imposed on
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the radial component. This exponential relationship has
the general form:
-B

f(r,a) = Ae Fsin o " (12)

where A and B are constants. This expression is then

subjected to the boundary conditions:

£(0.25, =-90°) = 1.0 (13)
and:

£(1.0, o) = .001 = 0.0 (14)
which state that f£=1.0 at the hole edge when the sine
function is unity, and £=0.0 at a distance of three radii

from the hole edge regardless of the angle. From (13) and
(14):

(15)

w
Il
o
N
-

Hence:
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flr,a) = -lOe—g'er

sin a 0.25<r<1.0 (16)
-180°<0<0.0°
By using this function the value of f drops off to at most

f=0.1 within one radius of the hole edge. A contour plot

for constant values of f is shown in Figure 2.11.
CASE 8:

When a real fluid flows past a cylinder a small
boundary layer can form near the cylinder wall. This
boundary layer can have the effect of causing a larger
area to be affected by shearing forces downstream of the
cylinder than the area affected upstream. Thus, there will
be a tendency for fibers downstream to retain a degreevof
columnation within a larger region than the region con-

taining similar columnation upstream.

In the cases studied thus far the Hermans Orienta-
tion Factor had a symmetrical distribution about a= =90°.
However, if the boundary layer effect is taken into account,
a particular point downstream may have a higher f value,
i.e., have a higher degree of columnation, than its
symmetrical counterpart upstream. In an attempt to model
this phenomenon two different expressions are used. For
the part of the structure lying upstream, i.e., to the left

of the hole center, the expression derived for Case 7
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(equation (16)) is used. For the part lying downstream of
the hole a combination of the functions used in Cases 6 and
7 is used to model the fiber behavior there. Both of these
expressions are shown and explained below.

f(r,a) = —l()e-'g'er

sin a  0.25<r<1.0 (17)
-180°<ag=90°

Upstream

-9.21r
e

£(r,a) = -[10 u + (3 (1-r) (1-u)lsin o (18)
0.25<r<1.0
-90°<0<0.0°
Downstream

where:
-90°<0<0.0° (19)

Thus for small values of a the slower decaying
linear term dominates equation (18) representing a slower
transition of the fibers back to the random orientaticn
state. As o gets larger the exponential term begins to
dominate the expression representing a departure from the
region affected by the boundary layer and a return to a
quick drop in the degree of columnation. The controlling

function U(a) was chosen on the basis of simplicity and
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because it produced a reasonable contour plot. This con-

tour plot of constant f values is shown in Figure 2.12.
D. MATERIAL PROPERTY ASSIGNMENT

Once the orientation state of the fibrous phase has
been uniquely defined, i.e., a value of £ and B has been
specified at numerous points throughout the structure,
elements in the finite element grid can then be assigned
unique material properties. For each of the cases consid-
ered, values for the coordinates Y and Z, and values for £
and B were specified at 1261 points throughout the struc-
ture. A computer code was written to generate this infor-
mation. The computer-aided design program written by
Quigley [4] makes use of this data deck to assign effective
material properties to the elements. Incorporated in
Quigley's program is a program written by Jarzebski et al.
[11 which, given the fiber orientation state and material
composition, provides reasonable engineering estimates for
the corresponding material properties. Quigley's code
takes the information generated by this subprogram and
through a local averaging process uses the material prop-
erties defined for the various fiber orientations within
an element to generate effective material properties for
the element as a whole. This process is done for each

element resulting in a structure whose material properties
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are allowed to vary from element to element.
E. FINITE ELEMENT ANALYSIS

With the material property assignment complete for
a particular case the problem is then ready to be prepared
for a finite element analysis. Quigley's program will take
all the information generated for the finite element grid,
such as nodal point coordinates, boundary conditions,
applied loads, element material information, etc., and
organize an input data file compatible with that required
for the SAPV finite element analysis code. The code is
then executed. The program output contains the stress

and displacement information to be used in the performance

analysis.




III. RESULTS

The results for each case will be presented in two
parts. The first part will contain information pertaining
to the finite element analysis. This'will include a typ-
ical deformed mesh, normal stress contours, loading
direction deflection contours, and Young's moduli, shear
moduli, and Poisson's ratio contour plots. The second
part will present a failure model for the cases studied
which also extends the results to predict failure in
similar structures with hole sizes other than 0.25 inch

(6.35 mm) .

All of the information presented in the first sec-
tion was created with the aid of Quigley's [4] computer-
aided design program. This program has the capability of
reading in solution output data created by the SAPV pro-
gram and use the information to plot contours of stress
and deflection. The material property contour plots are
constructed using the information contained in the element
material property data file. The variation of these
parameters with the fiber orientation state is then

discussed.
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In section 2 the reduction in strength of the part
due to the presence of the hole or notch is compared with
the unnotched strength. To accomplish this, models pro-
posed by Whitney [5,6] and Karlak [2] are used as a guide-
line. Whitney has proposed a failure criterion based on
the stress distribution adjacent to the notch. The cri-
terion assumes‘that failure occurs when the stress at some
characteristic length, do’ from the edge of the hole
reaches the unnotched ultimate strength of the material.

That is, when:

oY = g (20)
x=R+do
where Og is the unnotched strength. Figure 3.1 shows the

variables used in the model.

For an infinite orthotropic plate containing a
circular hole a simplified expression for the stress dis-
tribution along the x-axis has been calculated using the

exact elasticity solution to be [8]:

0v/5 = (3 12+ r/0) 23 @/%0 - (k5-3) 15 (R/%0) °-7 (R/%) °1)

(21)

where:
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FIG. 3.1 GEOMETRY FOR FAILURE ANALYSIS
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o 1/2_ 1/2
Ry = LH[2[(Ey/Ey) ™/ T=vy 4B, /Gy ] (22)
Koo is the stress concentration factor, E and

x’ Byr Vyx-

GYX are the effective orthotropic elastic material con-

T

stants, and ¢ is the nominal stress in the part.

Whitney [5,6] suggested that the dimension do be a
material constant. However, Karlak has proposed a modifi-
cation in which do is a function of the notch radius.

Pipes [3,7] suggested that the relationship have the form:

_
dO = R /C (23)

where m and C are material dependent parameters.

By combining equations (21), (22), and (23) an
equation is established which predicts the notched tensile
strength as a function of the notch radius and the
parameters m, C, and Og*

2

- 4_ o 6_-.8,.-1
cN/oo = 2{2+1°+3) (KT 3)[5A°=7A"1} (24)

where:

A o= (LR IcTh 1 (25)




39

oN is the notched strength of the material. It should be
noted that as R approaches infinity A\ approaches 1.0 and
consequently oN/cO approaches l/K;. This model has been

shown to be in good agreement with experimental data [3].

Using this model as a guideline a failure model was
developed for each of the cases studied. In these models
the parameters m, and C are assumed to have the constant

values given below. In reality these parameters

may vary with fiber orientation, but this variation is
neglected here. 1In each of the cases a polynomial, similar
in form to equation (21), was fit to the stress distribu-
tion near the notch as predicted by the finite element
analysis. This polynomial has the form:

2icr/x) D (r/x) S+E(R/R)E T (27)

0y/0 = 1 + B(R/X)
where B, C, D, and E are constants for a particular case
and ¢ = 1000 PSI for all cases. Using the failure cri-
terion established above in combination with equation (27)
it is possible to express the notched strength of the

structure in a form similar to equation (24).
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2 4
cN/oO = [1+BA"+C) +4DAX

6 1

a8 (28)

where:

A= (1 o+ ittt (29)

and on is the notched strength.

In summary, for a particular case the polynomial of
equation (27) is fit to the stress distribution near the
notch predicted by the finite element analysis. This is
done to establish the constants B, C, D, and E. Once
established they are then used in equation (28) to express
the notched strength of the structure as a function of the
notch radius. Thus, this establishes a failure criterion
for similar structures with hole sizes other than the one
examined in this study. This was all accomplished with
the aid of short computer programs and plotting routines
and the results are presented, along with the finite

element results, in the following section.




RESULTS

41




X00S

‘NOTILVODIAINODVW LNAWAODVTIISIA
HSHW ddWdO04dd TYOIdAL

€

"OId

am

aa
-
X
-
o

(A7




X00S : uorleoryrTubely JuswoOeIdsTd

IT0H THIL YYEAN HSIW IWMOJId dIdDIYING £°¢ "DId

43

1 1 111 11 1 1




£f = 0.0;

1. Finite Element Results

Fig.

Fig.

3.4

3.5

A.

CASE 1

B =0.0

2. Failure Model

Fig.

Fig.

3.6

3.7

il

(Planar Isotropic)

Y-Deflection Contours

GY~Stress Contours

Strength Ratio vs. Notch Radius

Strength Ratio vs. Log Radius

7

0.201 x 10" PsI

0.201 x 10’ PSI

6

0.779 x 10~ PSI

0.291
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B. CASE 2

£=1.0; 8

0.0 (Planar Orthotropic)

l. Finite Element Results

Fig. 3.8 Y-Deflection Contours

Fib. 3.9 GY-Stress Contours

2. Failure Model

Fig. 3.10 Strength Ratio vs. Notch Radius
Fig. 3.11 Strength Ratio vs. Log Radius
Note: EY = 0.286 x lO7 PSI
E, = 0.159 x 10’ PSI
_ 6
Gyy = 0.637 x 10 PSI
v = 0.296
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C. CASE 3
f =0.5; 8= 0.0 (Planar Orthotropic)
1. Finite Element Results

Fig. 3.12 Y-Deflection Contours
Fib. 3.13 GY—Stress Contours
2. PFailure Model
Fig. 3.14 Strength Ratio vs. Notch Radius

Fig. 3.15 Strength Ratio vs. Log Radius

0.231 x lO7 PST

Note: E

Y
EZ = 0.170 x lO7 PSI
i 6
GYZ = 0.779 x 10" PSI
v = 0.342
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.18
.19
.20

.21

Failure Model

.22

.23
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D. CASE 4

1.0

B (Streamlines)

Finite Element Results

Y-Deflection Contours

OY—Stress Contours

Longitudinal Young's Modulus Contours
Transverse Young's Modulus Contours
In-Plaine Shear Modulus Contours

In-Plane Poisson's Ratio Contours

Strength Ratio vs. Notch Radius

Strength Ratio vs. Log Radius
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E. CASE 5

f(r) = (4/3)(1-r) (Linear)

B = B (Streamlines)

l. Finite Element Results

Fig. 3.24 Y-Deflection Contours

Fig. 3.25 0,-Stress Contours

Fig. 3.26 Longitudinal Young's Modulus Contours
Fig. 3.27 Transverse Young's Modulus Contours

Fig. 3.28 1In-Plane Shear Modulus Contours

Fig. 3.29 In-Plane Poisson's Ratio Contours

2. Failure Model

Fig. 3.30 Strength Ratio vs. Notch Radius

Fig. 3.31 Strength Ratio vs. Log Radius
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F. CASE 6

f(r,a) = -(4/3) (1-r)sina (Angular
Dependent Linear)

w
n

[ (Streamlines)

1. Finite Element Results

Fig. 3.32 Y-Deflection Contours

Fig. 3.33 cY—Stress Contours

Fig. 3.34 Longitudinal Young's Modulus Contours
Fig. 3.35 Transverse Young's Modulus Contours

Fig. 3.36 In-Plane Shear Modulus Contours

Fig. 3.37 In-Plane Poisson's Ratio Contours

2. Failure Model

Fig. 3.38 Strength Ratio vs. Notch Radius

Fig. 3.39 Strength Ratio vs. Log Radius
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G. CASE 7
f(r,a) = —lOe—g'ZIrsina (Angular
Dependent Exponential)
B = B (Streamlines)

Finite Element Results

Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Failure

Fig.

Fig.

3.

Model

40

.41

.42

.43

.44

.45

3.46

3.

47

Y-Deflection Contours

GY-Stress Contours

Longitudinal Young's Modulus Contours
Transverse Young's Modulus Contours

In-Plane Shear Modulus Contours

In~Plane Poisson's Ratio Contours

Strength Ratio vs. Notch Radius

Strength Ratio vs. Log Radius
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H. CASE 8

£(r,a) = -[10e 2 21Ty & (4/3) (1-1) (1-u) ]sina
i

u(a) = (-a/90°)* -90° < a < 0°

(Angular Dependent Linear-Exponential Mix)

-9.21r

f(r,a) = -10e sino =180° < a < =-90°

i
|
|
(Angular Dependent Exponential)

B = B (Streamlines)

1. Finite Element Results

Fig. 3.48 Y-Deflection Contours

Fig. 3.49 GY~Stress Contours

Fig. 3.50 Longitudinal Young's Modulus Contours
Fig. 3.51 Transverse Young's Modulus Contours
Fig. 3.52 In-Plane Shear Modulus Contours

Fig. 3.53 1In-Plane Poisson's Ratio Contours

2. Failure Model

Fig. 3.54 Strength Ratio vs. Notch Radius

Fig. 3.55 Strength Ratio vs. Log Radius



X00S :NOILVOIJINODVW NOILVWNO4Add dINITLNO
(STHDONI) S¥NOLNOD NOILDATAAA-X 8¥°¢€ "DId

1700’ SE00 £00° G200’ 200’ ¢ o]0} 100° S000° 0

96




97

(IsSd) S¥NOLNOD SSEMLS-20 67 "¢

*OId

A

oooi




(T84 BOH X))

P

d ‘S9NOLNOD SNINAOW S,9DNNOX TYNIAALIONOT

0c°¢

"DI1Id

oz

0¢’

I
l

86



99

(Isd moﬁxv

4

4 ‘SYNOINOD SNINAOW S,

ONNOA HSYIASNVIL

16°¢ "DIdg

oc’

(o7




X
(Is4a woa )

z

K

)

2

SYNOLNOD SNTNAOW UVIHS ANVIJ-NI

(AR

"OId

8L

8L

00T



101

zK

4N

SYNOLNOD OILVY S,NOSSIOd ANVIJd-NI

€6 ¢

"DId

og’

og’




2y "8

gE"?

ce@d

SNIOvY HJL1ON

828

"SA OILlVd HLION3ALS

(S3HINI> SNIAavH HJILON

vee

gz o

g1°’8

¥S e "9Id

2 S

88 "0

14" "]

P8 "0

1

T

I

T

T

1

22 "2

—~ 82°8

-1 8v'a

-1 89°8

-1 28°2

28 "1

HLIN3YLS O3HJILONNN / HLION3®LS U3HJILON

¢0T



103

SNIAVY 907 °"SA OILVH HLINIYLS GSG°E "9Id

SNIAvy 901
28 "2 Gt 28 1 7S A 222 gs “A- 281~ 2s “1~- an 2~ ag "2- pa "e- .
] | | T T T T T T 828
= .
" =V v

2y g

792

n8 @

20°1

HLON3YLS T3HJLONNN / HLONIYLS Q3HILON



IV. SUMMARY AND DISCUSSION OF RESULTS

The most important factor determining the strength
of discontinuous short fiber composites is the state of
orientation of the fibrous phase. The effect of this
orientation is particularly important in structures contain-
ing notches of some sort since the stress concentration near
the notch plays an important role in determining the part's
strength. It has been the objective of this paper to pre-
sent several models of fiber orientation within a notched
composite and graphically show how various material and
strength characteristics are affected by the orientation
state. The primary tools used were a finite element code
and the failure model suggested by Whitney [5,6], Karlak

[2], and Pipes [3,7].

| Quigley's computer-aided design program [4] played
a major role in developing the finite element model and

in translating the results into the numerous contour plots
presented. It is with these contour plots that material
characteristics can be compared. Using the developed fail-
ure model as a guideline, failure curves were presented for

each case which predict failure strength as a function of
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absolute hole size. The major results of this study are

summarized and interpreted below.

A. EFFECT OF FIBER ORIENTATION ON MATERIAIL PROPERTIES

In cases 1 through 3, material properties were
constant everywhere since homogeneous materials were being
analyzed. In cases 4 through 8, however, material proper-
ties varied throughout the structure depending upon the
Hermans Orientation Factor and the local fiber bundle rota-

tion.

In Case 4, where the fibers were completely colum-
nated but followed the streamlines, all of the material
property contours are guite similar in shape to the stream-
line contours. This stands to reason since, due to the fact
that £ = 1.0 everywhere, the only factor affecting the
material properties is the streamline slope. Thus for this
type of situation the material property contours could be
assumed to have patterns identical to any streamline dis-

tribution that may be imposed.

For the remaining cases the material property con-
tours were more complex since they also depend on the
Hermans Orientation Factor. In general, the longitudinal

and transverse Young's Modulus contours in the vicinity of
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the hole near a = -90° had shapes somewhat similar to the
Hermans Orientation contours in that region. Their sharp-
ness in variation depended upon the sharpness in variation
of £. Maximum values of the longitudinal moduli occurred
near the hole edge near o = -90°, while the smallest values
occurred near the hole edge near o = 0° and o = -—-180°,

This follows from the fact that the fibers are generally
aligned in the loading direction in the former instance

and are aligned transverse to the loading direction in the
latter. The transverse moduli values exhibit just the

opposite pattern.

The in-plane shear modulus contours for all cases
appeared to have a pattern very similar to the streamline
contours with maximum values occurring near the hole edge
hear o = 0° and a = -180°. Their variation with radial

position is dependent upon the degree of variation in f.

In contrast, the in-plane Poisson's ratio contours
assumed shapes extremely similar to the particular Hermans
Orientation Factor contours. Maximum values typically
occur near the hole edge near a = -90° and decrease in the

same manner the f contours decrease.
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B. EFFECT OF FIBER ORIENTATION ON STRENGTH CHARACTERISTICS

More important than the particular material broper—
ty distribution was the effect of that distribution on the
state of stress and corresponding strength in a structure.
A summary of some stress and strength characteristics for
the cases examined is provided in Table 2. As it turns
out, for the hole size used in this study, the isotropic
model had the lowest stress concentration factor, one of
the lowest stiffnesses, and an intermediate strength value
when compared to the other cases. The highest stress con-
centration factor occurred in Case 8, the model attempting
to best represent actual orientation conditions. This case
had the same stiffness as the isotropic case but yielded
a 7 percent lower strength. The strongest model was Case 4,
where completely columnated fibers'followed ideal streamlines.
This case also had a high stiffness and a low stress con-
centration factor. Case 5 was the weakest model, where the
Hermans Orientation Factor varied linearly with radial dis-
tance independent of the angular position. This model had

low stiffness and a high stress concentration factor.

In order to contrast strength characteristics of
the various cases with those of the isotropic orientation
state, Table 3 is provided. This table shows the percent

change in stress and strength characteristics from those
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in the isotropic case. It is seen that for the hole size
studied, strength varied by no more than 10 percent, while
stiffness may vary by as much as 30 percent and stress

concentration may vary by 20 percent.

Similarly, Table 4 is provided in order to show the
percent change in stress and strength characteristics from
those occurring in the completely columnated, orthotropic
case. In this instance, strength and stress concentration
change by no more than 10 percent, while stiffness can vary
by as much as 41 percent. Thus, it is evident that for the
models presented and the hole size used, strength values
vary by no more than 10 percent from the values occurring

in the isotropic or orthotropic orientation conditions.

In order to judge how much the strength varies for
hole sizes other than 0.25 inches a plot is provided com-
paring strength curves for the isotropic case and the two
cases whose strength curves deviate most from the isotropic
plot. This is shown in figure 4.1. It can be seen from this
plot that over a wide range of hole radii the strength varies
by no more than 10-11 percent from the isotropic predictions.
The same holds true for comparisons with the completely
columnated, orthotropic case since figure 4.2 shows that

the strength curves for this case and the isotropic case

are almost coincident.
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Another interesting feature of Table 2 is the
information showing the hole size required to cause a cer-
tain percent strength reduction. To indicate the variation
in hole size for the different cases, Table 3 and Table 4
are provided to show the percent change in hole size from
the isotropic and completely columnated, orthotropic cases
respectively. Thus, if the strength of an isotropic or
orthotropic part containing a particular hole size is known,
the hole size required to cause the same strength reduction
in a part with a complex orientation state can be found.

It can be seen from the tables that the hole sizes can vary
by as much as 50 percent. It is also evident from the
tables that a particular case may be stronger than the
isotropic or orthotropic case at a certain strength level,
i.e. be capable of sustaining a larger hole size, and may
be weaker at another. This is expressed by the inter-
section of the various strength curves such as that shown
in figure 4.3. Thus, different orientations have different

relative strengths depending upon the absolute hole size.

C. CONCLUSION

It has been shown in this investigation that fiber
orientation plays a major role in determining materiszl prop-
erty distributions and corresponding strength characteris-

tics. Material properties were seen to be distributed in
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patterns very similar to the fiber orientation patterns.
Their sharpness in variation depended upon the sharpness

in variation of the local orientation. Since fiber patterns
are determined by flow conditions during molding, pointwise
material property variation should be expected in regions

within a mold where uniform flow is interrupted.

When compared to the isotropic and orthotropic cases,
the strength levels of the various models varied by no more
than 11 percent given a particular notch size. It was
seen that, given a notch size in the isotropic or ortho-
tropic case, notch sizes up to 50 percent larger could be
present in other models and yet cause no greater strength
reduction. Also, it was shown that a particular model
might be stronger than another for a certain notch size
range and be weaker for a different range. Thus, relative

strengths may vary depending upon the absolute hole size.

Future work in this area should be directed toward
developing a fiber orientation model which takes into account
the complexity-of the flow conditions and has a greater
flexibility with material specifications. It would also
be interesting to test the particular structure modeled

in this investigation to see whether or not any of the models

reflect actual experimental data.
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