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ABSTRACT 

A short fiber composite material containing a cir- 

cular notch is analyzed to determine the effect of fiber 

orientation on material property and strength character- 

istics.  Several models are presented, each assuming a 

different state of fiber orientation, and analyzed with a 

finite element structural analysis program to determine 

performance under axial load.  Numerous contour plots are 

presented for each model which display the dependence of 

material characteristics on fiber orientation and show 

the stress and displacement distributions.  A failure 

model is then developed which predicts strength reduction 

as a function of notch size.  It was found that, relative 

to the isotropic or orthotropic condition, strength levels 

of the various models vary by no more than 10-11 percent 

for a given notch size.  It is also shown that, given a 

notch size and corresponding strength reduction in an 

isotropic or orthotropic case, notch sizes up to 50 per- 

cent larger result in no greater strength reduction. 

Lastly, it is found that a particular model may be of 

greater strength than another for a certain notch size 

range and be of inferior strength in a different range 

Thus, relative strength is found to be dependent on 

jr 

absolute notch  size. 
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I.  INTRODUCTION 

When dealing with discontinuous fiber-reinforced 

composite materials it becomes a difficult task to accu- 

rately predict the performance of a part made of such 

material.  This is due to the strong dependence of mater- 

ial strength on the local fiber orientation within the 

structure.  For injection molded, short fiber composite 

materials this orientation state is determined by the flow 

conditions and molding geometry.  In areas within a mold 

near walls or other obstructions the shearing forces with- 

in the flow and the sudden changes in flow direction cause 

the fibers to deviate from the random orientation, iso- 

tropic condition.  This gives rise to a variation in 

material properties.  Thus, isotropic elastic theory is 

rendered useless since it cannot account for material 

property variation.  If the fiber orientation were non- 

random yet uniform throughout, orthotropic elastic theory 

could be used to predict performance since it can account 

for directional-dependence of material properties.  However, 

flow condition typically yield wide variations in fiber 

orientation and hence material properties can vary from 

point to point throughout the structure.  This local 
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material property variation can cause sharp variations in 

stress distribution and hence strength.  In structures con- 

taining holes or notches of some sort, the fiber orienta- 

tion in the notch region can lead to stress concentration 

of greater magnitude than under isotropic conditions. 

Since there is no analytical model which can account for 

pointwise material property variation it becomes necessary 

to develop experimental procedures and empirical models 

which can predict fiber orientation and corresponding 

material strength. 

This paper investigates the variation of stress and 

strength with fiber orientation distribution in an in- 

jection molded, infinite plate containing a circular hole. 

The material is a resin-fiber-filler composite consisting 

of polyester, E-glass, and calcium carbonate, respective- 

ly.  The material properties and other characteristics of 

this composite are shown in Table 1.  The structural 

analysis is accomplished with the aid of a finite element 

structural analysis program.  In the analysis the effect 

of fiber orientation is taken into account by allowing 

the material properties to vary from element to element 

throughout the finite element grid.  In the models pre- 

sented fiber orientation was prescribed.  Once the fiber 

orientation is defined at various points in the grid, 

material property assignment becomes possible.  This is 
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accomplished with the aid of a computer code developed at 

the University of Delaware by Jarzebski et al. [1] which, 

given the material composition and fiber orientation, can 

estimate the corresponding orthotropic material properties. 

The entire finite element set-up was accomplished 

with a computer-aided design program written at the Uni- 

versity of Delaware by Quigley [4].  This code interfaces 

the material property predictions given by Jarzebski [1] 

with the finite element grid by assigning each element 

material properties which reflect the local fiber orienta- 

tion and distribution.  Thus, the structure is viewed as 

consisting of as many different materials as there are 

number of elements.  As the elements are made smaller the 

model approaches a system whose material properties vary 

from point to point.  Quigley's program creates the mesh 

by user input and organizes all the information necessary 

in order to execute the SAPV finite element analysis code. 

Finite element results are then analyzed and a 

failure model is developed.  Stress concentrations arising 

at the hole are examined for various fiber orientations 

including the isotropic and orthotropic conditions for 

comparison.  Contour plots are provided for Young's 

moduli, shear moduli, displacement, and stress to examine 

the effect of fiber orientation on each of these 
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parameters.  The results are then extended to predict 

strength characteristics for structures containing hole 

sizes other than the one examined here.  Lastly, 

conclusions are drawn regarding the results of this study. 



II.  THE MODEL 

The performance of discontinuous short fiber com- 

posites depends upon the material properties determined by 

fiber orientation.  In a structure whose fibers are non- 

randomly oriented, this dependence leads to a pointwise 

variation in material properties which makes it impossible 

to analyze the structure analytically.  Finite element 

analysis lends itself to this type of analysis and has 

the ability to model complex geometries and material 

property distributions.  With the aid of existing computer 

codes it is possible to create the model and assign 

element-dependent material properties, given the state of 

fiber orientation at various points throughout the finite 

element grid.  Once the element material properties are 

assigned and the boundary conditions stated it becomes a 

simple matter of executing a finite element code to 

predict the stresses and deflections within the structure. 

A.  FINITE ELEMENT MODEL 

The structure being modeled is a molded infinite 

plate containing a circular hole.  Since the finite element 

analysis requires the structure to have finite boundaries 
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it will be assumed that a width-to-hole radius ratio of 

8.0 will approximate the infinite plate conditions. 

Figure 2.1 shows the dimensions of the model used.  The 

structure is loaded such that the nominal stress in the 

part is 1000 psi (6.89 MPa).  In the finite element model 

symmetry is assumed about the hole transverse to the load- 

ing direction.  This reduces the number of elements and 

nodal points required to define the structure, hence 

reducing solution time and cost.  The finite element grid 

and applied boundary conditions are shown in Figure 2.2 

and Figure 2.3 is an enlargement. 

The stresses and fiber orientation in the part in 

areas away from the hole should be uniform since there are 

no flow changes in those areas.  Hence, the grid was not 

made exceedingly fine there.  However, significant vari- 

ations in stress and fiber orientation should occur in 

the region near the hole.  Therefore, the grid was finely 

divided in that region to allow for sharp stress and 

material property variation. 

To create the finite element model the computer- 

aided design program written by Quigley [4] was employed. 

This is an interactive program which organizes an input 

data file compatible with the SAPV finite element analysis 

code.  The program permits automatic and manual mesh 
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generation, nodal point boundary condition assignment, 

material property assignment, and organizes all the input 

information required for the finite element analysis. 

Another feature of this program pertinent to this work is 

its ability to make use of the finite element results for 

the purpose of plotting stress, deflection, fiber orienta- 

tion, and material property contours.  The program was key 

to the work and was used extensively. 

B.  FIBER ORIENTATION 

Eight separate models are presented, each having a 

unique state of fiber orientation.  It was stated that 

these fiber patterns were merely assumed, they are not 

necessarily accurate.  This is due in part to a lack of 

information regarding the actual fiber orientation in such 

a molded part.  Therefore, several models based on sim- 

plified fluid mechanics principles are presented.  Before 

discussing these models the basic ideas concerning fiber 

orientation should be discussed. 

Since the state of fiber orientation within a 

structure is the most important factor in determining the 

structure's strength, it becomes necessary to develop des- 

criptors which quantitatively characterize the orientation 

state.  For the cases considered in this study the fibers 

will be assumed to have orientations lying in the plane of 
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the plate, i.e., out of plane fiber tilting is not permitted. 

It is not the objective of this paper to present the theory 

of these orientation descriptors; the reader may consult 

Pipes et al. [7] for such a discussion.  It will suffice to 

say that, for the planar orientation states considered here, 

there exists a parameter known as the Hermans Orientation 

Factor, f, which takes on the value of f=0.0 for a com- 

pletely random, planar isotropic condition and assumes the 

value of f=1.0 for a completely columnated, planar ortho- 

tropic orientation state.  All other orientation states 

between completely random and completely columnated will 

assume values between 0.0 and 1.0 depending upon the degree 

of randomness and columnation.  It should be noted that 

this orientation factor applies to localized bundles of 

fibers and not to the structure as a whole.  Such a 

bundle of fibers is shown in Figure 2.4 having a random 

orientation and a completely columnated orientation.  Thus, 

the structure is assumed to be composed of many bundles of 

fibers dispersed throughout the resin-filler matrix, each 

bundle having its own unique Hermans Orientation Factor. 

For the purposes of this study there exists another 

orientation descriptor which, in combination with the 

Hermans Orientation Factor, will uniquely define the state 

of orientation at a point within the structure.  This 

parameter is an angle, which will be called 3, which is a 
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measure of the average angle from the horizontal of all 

fibers in a particular fiber bundle.  For example, a fiber 

bundle with a Hermans Orientation Factor of f=0.8 might 

be situated in the global Y-Z plane as shown in Figure 2.5. 

The angle 3 is the average rotation from the horizontal of 

all of the fibers in the bundle.  Thus, for the example 

shown the average rotation of the three fibers happens to 

coincide with the alignment of the center fiber.  Specify- 

ing the Hermans Orientation Factor and the average rota- 

tion of the bundle at numerous points within the structure 

will then uniquely define the orientation state throughout 

that structure.  From these two parameters the correspond- 

ing material properties can be computed. 

A total of eight cases were studied in this work. 

The first three cases dealt with homogeneous materials. 

That is, the rotation of the fiber bundle, 3, and the 

Hermans Orientation Factor, f, had constant values through- 

out the structure.  Specifically, Case 1 models an in-plane 

isotropic material with f=0.0 and 3=0.0 everywhere; Case 2 

models an in-plane orthotropic material with f=1.0 and 

3=0.0 everywhere; and Case 3 also models an in-plane 

orthotropic material with f=0.5 and 3=0.0 everywhere. 

For the last five cases the rotation parameter, 3, 

was assigned at points in the structure in such a way that 



FIG. 2.5   AVERAGE ROTATION OF A FIBER BUNDLE, ß 
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the value it assumed for a particular fiber bundle corre- 

sponded to the tangent angle of the streamline at that 

point for the case of an ideal flow field over a circular 

cylinder.  The radius of the cylinder corresponds to the 

radius of the hole.  In other words, the fiber bundles are 

situated such that they orient themselves along the stream- 

lines of an ideal flow field over a circular cylinder. 

Figure 2.6 shows the streamlines for an ideal flow over a 

cylinder. 

The equation for the streamlines in terms of the 

coordinates shown in Figure 2.6 is: 

R2 
iMY,z) = vaz(i - -5^-50 (1) 

Y +ZZ 

where: 

voo = Upstream velocity = constant 

R = radius 

When iMY,Z) is constant, equation (1) corresponds to a 

particular streamline.  The equation can be written as: 

R2 
<MY,Z)/Vco = Z (1 - -J^) (2; 

Y +Z^ 

By setting iMY,Z) equal to some constant, 4>' , whose value 

is determined by the choice of Y and Z, and taking the 

total differential of the resulting expression the slope of 
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the  streamlines,   dZ/dY,   can be  expressed  as  a  function of 

the corrdinates  Y and   Z.     Since  I|J ' /V     is  a  constant,   then: 
'CO * 

dW/VJ   =0 (3) 

Hence: 

W/VJ   =   0   =  || dY  +  || dZ (4) 

Then, from equation (4): 

«'« -   -  !f$f <5> 

Since: 

life. =     2R2YZ 
8Y   "   (Y2

+Z2)2 

and: 

then: 

(6) 

li = i _ R2   (y2-z2) ... 
9Z 2      2   2 ^ '' 

££ =       MZg.Y  - 2YZ  
dY 8^/3Z        —— 2     2   2 

(8) 

(Y   -Z2)-(Y  + Z   )2 
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Equation (8) gives the slope of the streamline at 

any point Y,Z in the flow field.  By taking the arctangent 

of this expression the rotation of the streamline from the 

horizontal Y-axis is found.  This rotation is the parameter 

defined as ß. 

tan-1 (|£) (9) 

Hence, for cases (4) through (8) ß values throughout the 

structure were calculated from equation (9).  All ß values 

for each model were calculated at the same points in the 

structure and hence each model has the same ß profile. 

Figure 2.7 is a contour plot of constant values of ß in 

the vicinity of the hole.  The contours all pass through 

points A or B because the slope dZ/dY is undefined there. 

A particular contour will then intersect the circle at a 

point whose slope corresponds to the value of the contour 

intersecting.  This is because the streamlines just next 

to the hole will be tangent to the hole. 

With the exception of Case 4, the Hermans Orienta- 

tion Factors for the cases with 6 following ideal stream- 

lines are defined by various functions having radial and/ 

or angular dependences in regions within three radii of 

the hole edge.  Outside the three radii region the hole 

will be assumed to have no effect and the material will be 
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modeled as planar isotropic, i.e., f=0.0.  For Case 4 the 

Hermans Orientation Factor will be f=1.0 everywhere. 

C.  SPECIFIC CASES INVESTIGATED 

CASE 1: 

This case is modeling the planar isotropic condition. 

This means that f=0.0 everywhere regardless of the presence 

of the hole.  The rotation parameter 3 for this case does 

not matter since the local degree of columnation is com- 

pletely random.  This would be the model for a perfectly 

inviscid flow field. 

CASE 2: 

The in-plane orthotropic state is modeled in this 

case.  The fibers are assumed to be perfectly columnated, 

f=1.0, and 3=0.0 everywhere.  Again, the presence of the 

hole is viewed as having no effect on the fiber orientation, 

the fibers are all perfectly columnated and are aligned in 

the direction of loading. 

CASE 3: 

This is another model of an in-plane orthotropic 

orientation.  However, in this case the fibers are semi- 

random, semi-columnated, i.e., f=0.5, and have an average 

alignment in the loading direction, i.e., 3=0.0.  Once 
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again the hole is assumed to have no effect toward orient- 

ing the fibers.  These first three cases are provided to 

to give an idea of the strength characteristics in parts 

with homogeneous fiber distributions. 

CASE 4: 

Case 4 deviates from the homogeneous condition.  In 

this model the fibers are all perfectly columnated, f=1.0, 

but their average alignment is dependent upon the local 

slope of the streamlines in the flow field.  In areas re- 

latively far from the hole the fibers will be aligned in 

the loading direction but near the hole there will be a 

wide variation in fiber alignment and hence, a wide vari- 

ation in material properties.  Once again, the hole has no 

effect on fiber columnation, they have the same degree of 

columnation everywhere.  This particular case is provided 

in order to judge the effect of fiber bundle alignment on 

strength by comparing this case with Case 2 (f=1.0, ß=0.0). 

CASE 5: 

In this and the remaining cases an attempt is made 

to account for the shearing effects of the hole, in a 

simplified manner, by imposing radial and/or angular de- 

pendence on the Hermans Orientation Factor.  This effect 

will be assumed to be confined to an area within three 
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radii of the hole edge.  As stated earlier the average 

alignment of the fiber bundles, ß, for the remaining cases 

depends on the local streamline slope.  In this particular 

case the Hermans Orientation Factor is assumed to be a 

linear function of the radial position, independent of the 

angle a.  These radial and angular coordinates are shown 

in Figure 2.8.  The value assigned to f at the hole edge, 

r=0.25, is f=1.0 and decreases linearly for a distance of 

three radii to r=1.0 where it has the value f=0.0.  The 

function for f is: 

f (r) = | (1-r)   .25<r<1.0 (10) 

A contour plot for constant values of f is shown in 

Figure 2.9. 

CASE 6: 

In the case of fluid flowing over a cylinder there 

are regions just before and just after the cylinder in 

which local mixing occurs due to abrupt flow changes and 

drag forces.  It might be expected that the fibers in these 

regions would have a somewhat random orientation due to 

the mixing.  In an attempt to account for this phenomenon 

this case, in addition to a radial orientation dependence, 

also imposes an angular dependence on the degree of 
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orientation.  This angular dependence is imposed by multi- 

plying the function in Case 5 (equation (10)) by the sine 

of the position angle a.  The sine function was chosen to 

suggest that the rate of change in degree of columnation 

is greater at values of a near 0° and -180° and smaller 

when a is in the vicinity of -90°.  The function is given 

by equation (11) where the negative sign is included 

because a is negative. 

f(r,a) = -j(l-r)sin a   0.25<r<1.0 (11) 

-180°<a<0° 

Thus when a is near 0° or -18 0° the Hermans Orientation 

Factor is small regardless of the radial value.  Then for 

values of a approaching -90° f begins to assume the dis- 

tribution given in Case 5.  A contour plot for constant 

values of f is shown in Figure 2.10. 

CASE 7: 

In Cases 5 and 6 the relationship between f and the 

radial position was modeled as being linear.  It may be 

the case that the Hermans Orientation Factor drops off 

sharply from a value near unity at the hole edge to a value 

near zero a short distance away.  Taking this into account 

and still attempting to model the angular dependence with 

a sine relationship, an exponential decay is imposed on 
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the radial component.  This exponential relationship has 

the general form: 

—Bv 
f(r,a) = Ae  sin a (12) 

where A and B are constants.  This expression is then 

subjected to the boundary conditions: 

f(0.25, -90°) = 1.0 (13) 

and: 

f (1.0, a) = .001 =0.0 (14) 

which state that f=1.0 at the hole edge when the sine 

function is unity, and f*0.0 at a distance of three radii 

from the hole edge regardless of the angle.  From (13) and 

(14): 

A = -10.0 
(15) 

B = 9.21 

Hence: 
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f(r,a) = -10e"9*21r sin a  0.25<r<1.0      (16) 

-180°<a<0.0° 

By using this function the value of f drops off to at most 

f=0.1 within one radius of the hole edge.  A contour plot 

for constant values of f is shown in Figure 2.11. 

CASE 8: 

When a real fluid flows past a cylinder a small 

boundary layer can form near the cylinder wall.  This 

boundary layer can have the effect of causing a larger 

area to be affected by shearing forces downstream of the 

cylinder than the area affected upstream.  Thus, there will 

be a tendency for fibers downstream to retain a degree of 

columnation within a larger region than the region con- 

taining similar columnation upstream. 

In the cases studied thus far the Hermans Orienta- 

tion Factor had a symmetrical distribution about a= -90°. 

However, if the boundary layer effect is taken into account, 

a particular point downstream may have a higher f value, 

i.e., have a higher degree of columnation, than its 

symmetrical counterpart upstream.  In an attempt to model 

this phenomenon two different expressions are used.  For 

the part of the structure lying upstream, i.e., to the left 

of the hole center, the expression derived for Case 7 
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(equation (16)) is used.  For the part lying downstream of 

the hole a combination of the functions used in Cases 6 and 

7 is used to model the fiber behavior there.  Both of these 

expressions are shown and explained below. 

f (r,a) = -10e~9,21rsin a   0.25<r<1.0       (17) 

-180°<a<-90° 

Upstream 

f(r,a) = -[10e~9'21ru + (j) (1-r) (l-u)jsin a  (18) 

0.25<r<1.0 

-90°<a<0.0° 

Downstream 

where: 

u(a) = i^ö)1/2 -90°<a<0.0°       (19) 

Thus for small values of a the slower decaying 

linear term dominates equation (18) representing a slower 

transition of the fibers back to the random orientation 

state.  As a gets larger the exponential term begins to 

dominate the expression representing a departure from the 

region affected by the boundary layer and a return to a 

quick drop in the degree of columnation.  The controlling 

function U(a) was chosen on the basis of simplicity and 
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because it produced a reasonable contour plot.  This con- 

tour plot of constant f values is shown in Figure 2.12. 

D.  MATERIAL PROPERTY ASSIGNMENT 

Once the orientation state of the fibrous phase has 

been uniquely defined, i.e., a value of f and ß has been 

specified at numerous points throughout the structure, 

elements in the finite element grid can then be assigned 

unique material properties.  For each of the cases consid- 

ered, values for the coordinates Y and Z, and values for f 

and B were specified at 12 61 points throughout the struc- 

ture.  A computer code was written to generate this infor- 

mation.  The computer-aided design program written by 

Quigley [4] makes use of this data deck to assign effective 

material properties to the elements.  Incorporated in 

Quigley's program is a program written by Jarzebski et al. 

[1] which, given the fiber orientation state and material 

composition, provides reasonable engineering estimates for 

the corresponding material properties.  Quigley's code 

takes the information generated by this subprogram and 

through a local averaging process uses the material prop- 

erties defined for the various fiber orientations within 

an element to generate effective material properties for 

the element as a whole.  This process is done for each 

element resulting in a structure whose material properties 
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are allowed to vary from element to element. 

E.  FINITE ELEMENT ANALYSIS 

With the material property assignment complete for 

a particular case the problem is then ready to be prepared 

for a finite element analysis.  Quigley's program will take 

all the information generated for the finite element grid, 

such as nodal point coordinates, boundary conditions, 

applied loads, element material information, etc., and 

organize an input data file compatible with that required 

for the SAPV finite element analysis code.  The code is 

then executed.  The program output contains the stress 

and displacement information to be used in the performance 

analysis. 



III.  RESULTS 

The results for each case will be presented in two 

parts.  The first part will contain information pertaining 

to the finite element analysis.  This'will include a typ- 

ical deformed mesh, normal stress contours, loading 

direction deflection contours, and Young's moduli, shear 

moduli, and Poisson's ratio contour plots.  The second 

part will present a failure model for the cases studied 

which also extends the results to predict failure in 

similar structures with hole sizes other than 0.25 inch 

(6.35 mm). 

All of the information presented in the first sec- 

tion was created with the aid of Quigley's [4] computer- 

aided design program.  This program has the capability of 

reading in solution output data created by the SAPV pro- 

gram and use the information to plot contours of stress 

and deflection.  The material property contour plots are 

constructed using the information contained in the element 

material property data file.  The variation of these 

parameters with the fiber orientation state is then 

discussed. 

35 
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In section 2 the reduction in strength of the part 

due to the presence of the hole or notch is compared with 

the unnotched strength.  To accomplish this, models pro- 

posed by Whitney [5,6] and Karlak [2] are used as a guide- 

line.  Whitney has proposed a failure criterion based on 

the stress distribution adjacent to the notch.  The cri- 

terion assumes that failure occurs when the stress at some 

characteristic length, d , from the edge of the hole 

reaches the unnotched ultimate strength of the material. 

That is, when: 

aYl      = a (20) 
x=R+d^ 1    o 

where a  is the unnotched strength.  Figure 3.1 shows the 
o 

variables used in the model. 

For an infinite orthotropic plate containing a 

circular hole a simplified expression for the stress dis- 

tribution along the x-axis has been calculated using the 

exact elasticity solution to be [8]: 

OY/Ö  = (h  [2+(R/X)2+3(R/X)4-(K~-3)[5(R/X)6-7(R/X)8] 

(21) 

where: 
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A5" 

t * 

FIG. 3.1   GEOMETRY FOR FAILURE ANALYSIS 



K^ = l+[2[(EY/Ex)
1/2-VYX]+EY/GYX]

1/2 (22) 

K„, is the stress concentration factor, E , E , vvv, and J- X    Y    YX 

GYX are the effective orthotropic elastic material con- 

stants, and a is the nominal stress in the part. 

Whitney [5,6] suggested that the dimension d  be a 

material constant.  However, Karlak has proposed a modifi- 

cation in which d is a function of the notch radius. 

Pipes [3,7] suggested that the relationship have the form: 

dQ = R
m/C (23) 

where m and C are material dependent parameters. 

By combining equations (21), (22) , and (23) an 

equation is established which predicts the notched tensile 

strength as a function of the notch radius and the 

parameters m, C, and o   . 

aN/ao = 2{2+A
2+3X4-(K^-3)[5A6-7A8]}-1        (24) 

where: 

(l+R111"^-1)"1 (25) 
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a     is the notched strength of the material.  It should be 

noted that as R approaches infinity A approaches 1.0 and 
CO 

consequently o„/o    approaches 1/K_.  This model has been 

shown to be in good agreement with experimental data [3]. 

Using this model as a guideline a failure model was 

developed for each of the cases studied.  In these models 

the parameters m, and C are assumed to have the constant 

values given below.  In reality these parameters 

m = 0.5 
(26) 

C = 10.0 

may vary with fiber orientation, but this variation is 

neglected here.  In each of the cases a polynomial, similar 

in form to equation (21), was fit to the stress distribu- 

tion near the notch as predicted by the finite element 

analysis.  This polynomial has the form: 

0„/Ö  = 1 + B(R/X)2+C(R/X)4+D(R/X)6+E(R/X)8   (27) 

where B, C, D, and E are constants for a particular case 

and a -  1000 PSI for all cases.  Using the failure cri- 

terion established above in combination with equation (27) 

it is possible to express the notched strength of the 

structure in a form similar to equation (24). 
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O^/o     = [1+BA2+CA4+DX6+EX8]_1 (28) 
N  O 

where: 

X   = [1 + R111"^-1]"1        (29) 

and aN  is the notched strength. 

In summary, for a particular case the polynomial of 

equation (27) is fit to the stress distribution near the 

notch predicted by the finite element analysis.  This is 

done to establish the constants B, C, D, and E.  Once 

established they are then used in equation (28) to express 

the notched strength of the structure as a function of the 

notch radius.  Thus, this establishes a failure criterion 

for similar structures with hole sizes other than the one 

examined in this study.  This was all accomplished with 

the aid of short computer programs and plotting routines 

and the results are presented, along with the finite 

element results, in the following section. 



RESULTS 

41 



O 
O 
in 

3 
o 
H 
H 
rt! 

X u 
Ui H 
w fa 
s H 

3 
Q o 
W Ö 
2 «=-. 
o H 
Cn 2: 
H fa 
Q S 

w 
i-q u 
< < u 1-1 
H en 
ft W 
>H H 
E-i Q 

£M 

ro 

C5 
H 
fa 

3fr N 



43 

1 

w 
J 
o 
X X 

o 
w o 
K in 
E-t 

« 
< ö 
W 0 
S •H 

+J 
K (0 
w Ü 
H •H 
2 IK 

•H 
Q C 
W tT> 

(Ti 
■^ 
i^-4 

o 
fa -p 
w ti 
Q 0) e 
Q <u 
W u 
C9 (0 
« rH 
< & 
i-3 en 
S ■H 
w Q 

m 

m 

d 
H 
En 



44 

A.  CASE 1 

f = 0.0; 3 = 0.0      (Planar Isotropie) 

1. Finite Element Results 

Fig. 3.4 Y-Deflection Contours 

Fig. 3.5 ay-Stress Contours 

2. Failure Model 

Fig. 3.6 Strength Ratio vs. Notch Radius 

Fig. 3.7 Strength Ratio vs. Log Radius 

Note:  Ey = 0.201 x 10
7 PSI 

Ez = 0.201 x 10
7 PSI 

Gyz = 0.779 x 10
6 PSI 

vYZ = 0.291 
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B. CASE 2 

f = 1.0; 3 =0.0     CPlanar Orthotropic) 

Finite Element Results 

Fig. 3.8 Y-Deflection Contours 

Fib. 3.9 a -Stress Contours 

Failure Model 

Fig. 3.10 Strength Ratio vs. Notch Radius 

Fig. 3.11 Strength Ratio vs. Log Radius 

Note:  Ey = 0.286 x 10
7 PSI 

Ez = 0.159 x 10
7 PSI 

Gyz = 0.637 x 10
6 PSI 

vyz = 0.296 
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C. CASE 3 

f = 0.5; ß=0.0       (Planar Orthotropic) 

Finite Element Results 

Fig. 3.12 Y-Deflection Contours 

Fib. 3.13 cr -Stress Contours 

Failure Model 

Fig. 3.14 Strength Ratio vs. Notch Radius 

Fig. 3.15 Strength Ratio vs. Log Radius 

Note:  EY = 0.231 x 10
? PSI 

E„ = 0.170 x 107 PSI 
Li 

Gvl7  = 0.779  x   106   PSI 
X Lx 

vYZ  = 0.342 
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D.  CASE 4 

f = 1.0 

3=6 (Streamlines) 

1. Finite Element Results 

Fig. 3.16 Y-Deflection Contours 

Fig. 3.17 a -Stress Contours 

Fig. 3.18 Longitudinal Young's Modulus Contours 

Fig. 3.19 Transverse Young's Modulus Contours 

Fig. 3.20 In-Plaine Shear Modulus Contours 

Fig. 3.21 In-Plane Poisson's Ratio Contours 

2. Failure Model 

Fig. 3.2 2  Strength Ratio vs. Notch Radius 

Fig. 3.23  Strength Ratio vs. Log Radius 
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E.  CASE 5 

f(r) = (4/3)(1-r)  (Linear) 

$=ß (Streamlines) 

1. Finite Element Results 

Fig. 3.24 Y-Deflection Contours 

Fig. 3.25 a -Stress Contours 

Fig. 3.26 Longitudinal Young's Modulus Contours 

Fig. 3.2 7 Transverse Young's Modulus Contours 

Fig. 3.2 8 In-Plane Shear Modulus Contours 

Fig. 3.29 In-Plane Poisson's Ratio Contours 

2. Failure Model 

Fig. 3.3 0  Strength Ratio vs. Notch Radius 

Fig. 3.31  Strength Ratio vs. Log Radius 
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CASE 6 

f(r,a) = - (4/3) (1-r)sina  (Angular 
Dependent Linear) 

3=3   (Streamlines) 

1. Finite Element Results 

Fig. 3.32 Y-Deflection Contours 

Fig. 3.33 ay-Stress Contours 

Fig. 3.34 Longitudinal Young's Modulus Contours 

Fig. 3.35 Transverse Young's Modulus Contours 

Fig. 3.3 6 In-Plane Shear Modulus Contours 

Fig. 3.37 In-Plane Poisson's Ratio Contours 

2. Failure Model 

Fig. 3.3 8 Strength Ratio vs. Notch Radius 

Fig. 3.39 Strength Ratio vs. Log Radius 
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G.  CASE 7 

-9 21r f(r,a) = -lOe  "   sina  (Angular 
Dependent Exponential) 

3=3  (Streamlines) 

1. Finite Element Results 

Fig. 3.40 Y-Deflection Contours 

Fig. 3.41 a -Stress Contours 

Fig. 3.42 Longitudinal Young's Modulus Contours 

Fig. 3.43 Transverse Young's Modulus Contours 

Fig. 3.44 In-Plane Shear Modulus Contours 

Fig. 3.45 In-Plane Poisson's Ratio Contours 

2. Failure Model 

Fig. 3.4 6 Strength Ratio vs. Notch Radius 

Fig. 3.4 7 Strength Ratio vs. Log Radius 
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H.  CASE 8 

f(r,a) = -[10e~9,21ru + (4/3) (1-r) (1-u) ] sina 

u(a) = (-a/90°) 2  -90° < a < 0° 

(Angular Dependent Linear-Exponential Mix) 

f(r,a) = -10e~9*21r sina  -180° < a < -90° 

(Angular Dependent Exponential) 

ß = ß  (Streamlines) 

1. Finite Element Results 

Fig. 3.48 Y-Deflection Contours 

Fig. 3.49 aY-Stress Contours 

Fig. 3.50 Longitudinal Young's Modulus Contours 

Fig. 3.51 Transverse Young's Modulus Contours 

Fig. 3.52 In-Plane Shear Modulus Contours 

Fig. 3.53 In-Plane Poisson's Ratio Contours 

2. Failure Model 

Fig. 3.54  Strength Ratio vs. Notch Radius 

Fig. 3.55  Strength Ratio vs. Log Radius 
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IV.  SUMMARY AND DISCUSSION OF RESULTS 

The most important factor determining the strength 

of discontinuous short fiber composites is the state of 

orientation of the fibrous phase.  The effect of this 

orientation is particularly important in structures contain- 

ing notches of some sort since the stress concentration near 

the notch plays an important role in determining the part's 

strength.  It has been the objective of this paper to pre- 

sent several models of fiber orientation within a notched 

composite and graphically show how various material and 

strength characteristics are affected by the orientation 

state.  The primary tools used were a finite element code 

and the failure model suggested by Whitney [5,6], Karlak 

[2], and Pipes [3,7]. 

Quigley's computer-aided design program [4] played 

a major role in developing the finite element model and 

in translating the results into the numerous contour plots 

presented.  It is with these contour plots that material 

characteristics can be compared.  Using the developed fail- 

ure model as a guideline, failure curves were presented for 

each case which predict failure strength as a function of 

104 
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absolute hole size.  The major results of this study are 

summarized and interpreted below. 

A.  EFFECT OF FIBER ORIENTATION ON iMATERIAL PROPERTIES 

In cases 1 through 3, material properties were 

constant everywhere  since homogeneous materials were being 

analyzed.  In cases 4 through 8, however, material proper- 

ties varied throughout the structure depending upon the 

Hermans Orientation Factor and the local fiber bundle rota- 

tion. 

In Case 4, where the fibers were completely colum- 

nated but followed the streamlines, all of the material 

property contours are quite similar in shape to the stream- 

line contours.  This stands to reason since, due to the fact 

that f = 1.0 everywhere, the only factor affecting the 

material properties is the streamline slope.  Thus for this 

type of situation the material property contours could be 

assumed to have patterns identical to any streamline dis- 

tribution that may be imposed. 

For the remaining cases the material property con- 

tours were more complex since they also depend on the 

Hermans Orientation Factor.  In general, the longitudinal 

and transverse Young's Modulus contours in the vicinity of 
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the hole near a = -90° had shapes somewhat similar to the 

Hermans Orientation contours in that region.  Their sharp- 

ness in variation depended upon the sharpness in variation 

of f.  Maximum values of the longitudinal moduli occurred 

near the hole edge near a = -90°, while the smallest values 

occurred near the hole edge near a = 0° and a = -180°. 

This follows from the fact that the fibers are generally 

aligned in the loading direction in the former instance 

and are aligned transverse to the loading direction in the 

latter.  The transverse moduli values exhibit just the 

opposite pattern. 

The in-plane shear modulus contours for all cases 

appeared to have a pattern very similar to the streamline 

contours with maximum values occurring near the hole edge 

near a = 0° and a = -180°.  Their variation with radial 

position is dependent upon the degree of variation in f. 

In contrast, the in-plane Poisson's ratio contours 

assumed shapes extremely similar to the particular Hermans 

Orientation Factor contours.  Maximum values typically 

occur near the hole edge near a = -90° and decrease in the 

same manner the f contours decrease. 
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B.  EFFECT OF FIBER ORIENTATION ON STRENGTH CHARACTERISTICS 

More important than the particular material proper- 

ty distribution was the effect of that distribution on the 

state of stress and corresponding strength in a structure. 

A summary of some stress and strength characteristics for 

the cases examined is provided in Table 2.  As it turns 

out, for the hole size used in this study, the isotropic 

model had the lowest stress concentration factor, one of 

the lowest stiffnesses, and an intermediate strength value 

when compared to the other cases.  The highest stress con- 

centration factor occurred in Case 8, the model attempting 

to best represent actual orientation conditions.  This case 

had the same stiffness as the isotropic case but yielded 

a 7 percent lower strength.  The strongest model was Case 4, 

where completely columnated fibers followed ideal streamlines, 

This case also had a high stiffness and a low stress con- 

centration factor.  Case 5 was the weakest model, where the 

Hermans Orientation Factor varied linearly with radial dis- 

tance independent of the angular position.  This model had 

low stiffness and a high stress concentration factor. 

In order to contrast strength characteristics of 

the various cases with those of the isotropic orientation 

state, Table 3 is provided.  This table shows the percent 

change in stress and strength characteristics from those 
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in the isotropic case.  It is seen that for the hole size 

studied, strength varied by no more than 10 percent, while 

stiffness may vary by as much as 30 percent and stress 

concentration may vary by 20 percent. 

Similarly, Table 4 is provided in order to show the 

percent change in stress and strength characteristics from 

those occurring in the completely columnated, orthotropic 

case.  In this instance, strength and stress concentration 

change by no more than 10 percent, while stiffness can vary 

by as much as 41 percent.  Thus, it is evident that for the 

models presented and the hole size used, strength values 

vary by no more than 10 percent from the values occurring 

in the isotropic or orthotropic orientation conditions. 

In order to judge how much the strength varies for 

hole sizes other than 0.25 inches a plot is provided com- 

paring strength curves for the isotropic case and the two 

cases whose strength curves deviate most from the isotropic 

plot.  This is shown in figure 4.1.  It can be seen from this 

plot that over a wide range of hole radii the strength varies 

by no more than 10-11 percent from the isotropic predictions. 

The same holds true for comparisons with the completely 

columnated, orthotropic case since figure 4.2 shows that 

the strength curves for this case and the isotropic case 

are almost coincident. 
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Another interesting feature of Table 2 is the 

information showing the hole size required to cause a cer- 

tain percent strength reduction.  To indicate the variation 

in hole size for the different cases, Table 3 and Table 4 

are provided to show the percent change in hole size from 

the isotropic and completely columnated, orthotropic cases 

respectively.  Thus, if the strength of an isotropic or 

orthotropic part containing a particular hole size is known, 

the hole size required to cause the same strength reduction 

in a part with a complex orientation state can be found. 

It can be seen from the tables that the hole sizes can vary 

by as much as 50 percent.  It is also evident from the 

tables that a particular case may be stronger  than the 

isotropic or orthotropic case at a certain strength level, 

i.e. be capable of sustaining a larger hole size, and may 

be weaker at another.  This is expressed by the inter- 

section of the various strength curves such as that shown 

in figure 4.3.  Thus, different orientations have different 

relative strengths depending upon the absolute hole size. 

C.      CONCLUSION 

It has been shown in this investigation that fiber 

orientation plays a major role in determining material prop- 

erty distributions and corresponding strength characteris- 

tics.  Material properties were seen to be distributed in 
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patterns very similar to the fiber orientation patterns. 

Their sharpness in variation depended upon the sharpness 

in variation of the local orientation.  Since fiber patterns 

are determined by flow conditions during molding, pointwise 

material property variation should be expected in regions 

within a mold where uniform flow is interrupted. 

When compared to the isotropic and orthotropic cases, 

the strength levels of the various models varied by no more 

than 11 percent given a particular notch size.  It was 

seen that, given a notch size in the isotropic or ortho- 

tropic case, notch sizes up to 50 percent larger could be 

present in other models and yet cause no greater strength 

reduction.  Also, it was shown that a particular model 

might be stronger than another for a certain notch size 

range and be weaker for a different range.  Thus, relative 

strengths may vary depending upon the absolute hole size. 

Future work in this area should be directed toward 

developing a fiber orientation model which takes into account 

the complexity of the flow conditions and has a greater 

flexibility with material specifications.  It would also 

be interesting to test the particular structure modeled 

in this investigation to see whether or not any of the models 

reflect actual experimental data. 
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