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SUMMARY 

This report presents the theoretical foundations and experimental results of the generation 
and propagation of water waves from underwater explosions. Section 1 covers a brief 
overview of the physical processes and a presentation of the order of magnitude of 
Explosion Generated Water Waves (EGWW) as a function of explosion parameters. 
Sections 2 and 3 discuss linear theories and experimental calibration. Nonlinear wave 
theories and their calibration, which are necessary in shallow water when the water crater 
caused by the explosion is not small compared to water depth, are presented in Sections 4 
and 5. The importance of dissipation processes due to wave—seafloor interactions is 
emphasized particularly when an EGWW travels over a long continental shelf as presented 
in Section 6. Methodologies for the propagation of transient waves over 3D bathymetries 
are developed in Section 7. Section 8 reviews the simulation of EGWW in the laboratory. 
Finally, in Section 9, a numerical method based on Boundary Integral Equation Method is 
applied to investigate the dynamics of bubble formation and wave generation near the 
explosion. 
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PREFACE 

This report assembles in a single compendium the early 90's state—of—the—art prediction of 
water waves generated by underwater explosions. Most of the literature on this rather 
specialized subject is scattered amongst a number of reports — some of them quite old — not 
always readily available. Also, there are times, as science progresses, where a synthesis is 
needed to select the best theories and results and eliminate unfruitful efforts. It is the 
ambition of the authors to achieve this goal and to establish a milestone upon which any 
future research can be based without risk of duplication or forgetfulness. 

The content of this synthetical approach dwells upon years of research already described in 
a multitude of reports, but it mostly contains original contributions which the authors have 
carried out in recent years. 

The subject of Explosion Generated Water Waves (EGWW) has not had as high a priority 
as compared to other explosion effects; e.g., shock waves. Therefore, progress has been 
slow and with few experiments due to the relatively limited effort dedicated to its resolve. 
Nevertheless, it is a subject which cannot be ignored considering the fact that high yield, 
near surface explosions are able to generate water waves of considerable magnitude. Our 
objective is to contribute to the wealth of knowledge on the effects and wave generation 
capabilities of underwater explosions so that future questions concerning the effects of 
EGWW under various fictitious scenarios can be assessed. 

The effects of the waves on various structures, fixed or floating, in deep water, on the 
continental shelves, on the coastlines or inside embayments and naval bases are also an 
important aspect of the subject. A realistic assessment of the relative importance of water 
waves is obtained by comparing these effects with other explosion generated lethal effects. 
This work has also been done, at least partially. It was found that under some 
circumstances, the effect of water waves overcome the other effects. Indeed water waves 
have a propensity for long duration and for travelling long distances. This allows them to 
affect structures in areas beyond the stand off distance based on shock waves or other 
lethal effects. 

The effects of EGWW are very site—specific and will not be described herewith. This 
report is exclusively limited to the EGWW environment, more specifically to the 
hydrodynamic phenomenology of wave generation and wave propagation. The effects of 
EGWW in open water can be derived by direct application of the basic material presented 
herewith. Coastal effects, which include wave set—up, wave run—up and harbor response 
have been presented in a previous publication by one of the writers (Le Mehaute, 1971) and 
will not be reexamined here despite the increase of knowledge which has been achieved 
since. 

In a sense, this report marks the end of an era, which the most fundamental problems of 
wave generation and propagation have been resolved with an accuracy allowing a realistic 
appraisal of their magnitude. The gaps that remain appear even more evident and a 
guideline is provided for the continuing research. 

Our subject will be limited to the hydrodynamical phenomenology of wave generation and 
propagation. The physical behavior of these phenomena, the theories and experimental 
data are described in detail. Predictive mathematical tools are developed allowing a 
quantitative assessment of the wave field as a function of various explosion parameters and 
the environment. 

Section 1 is an overview of the wave generation process and the resulting wave field. The 
orders of magnitude of the physical characteristics of EGWW are presented to assess their 
relative importance.   Section 2 is entirely dedicated to the linear   theory of impulsively 
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generated water waves over a uniform depth. Section 3 deals with the calibration of the 
near theory relating the hydrodynamics to the explosion parameters quantitatively. 

Section 4 describes the wave generation process in shallow water from a water crater 
reaching the seafloor and forming a cylindrical bore radiating outwards to the 
transformation of this cylindrical bore into a nonlinear wave. In Section 5, the sizing of the 
shallow water explosion generated crater is determined as function of yield from the 
analysis of experimental wave records. Section 6 discusses the dissipation processes taking 
place by wave-seafloor interaction. Section 7 deals with the propagation of EGWW over 
nonuniform bathymetry. Section 8 details the production of EGWW in the laboratory for 
experimental purposes. Section 9 presents the mathematical formulation of the Boundary 
Integral Element Method (BIEM) to investigate the dynamics of bubble formation which 
initiates EGWW formation. The results of a parametric analysis using BIEM are 
presented and comparisons with the empirical derivations are discussed. 

The report is didactic in tone. Any reader with a fundamental background in 
hydrodynamics and water wave theories should be able to follow. The reader is led 
towards an understanding of the subject matter which should allow him or her to obtain 
quantitative predictions corresponding to various scenarios and/or pursue research and add 
further to our knowledge. 

From a hydrodynamic point of view, the study of EGWW extends beyond the classical 
wave theories and observed natural phenomenae. Nevertheless, despite the uniqueness of 
this hypothetical man-made phenomena and its fictitious implications, the study of 
EGWW has proven to be most useful for understanding many natural phenomena taking 
place in the ocean. In this context, we hope that this report can be used beyond its 
apparent initial goal. 

This work was initially sponsored by the U.S. Army Corps of Engineers, Coastal 
Engineering Research Center (CERC), Vicksburg, MS, and funded by the Defense Nuclear 
Agency (DNA). The authors acknowlegde the guidance and support of Lt. Camy Carlin, 
Lcdr. Harris O'Bryant, Lcdr. Kay Dinova and Dr. Thomas Tsai of DNA and Dr. Steven 
Hughes of CERC. Most of the experimental data was provided by the CERC under the 
direction of Douglas Outlaw. The authors are grateful for all the students who during their 
graduate studies have heavily contributed to the research presented here: Tarang 
Khangaonkar, Cha—Chi Lu, Sudhir Nadiga, Mills Soldate, Colby Swan, and Edward Ulmer. 
The authors also thank Dottie E. Mayol for her patience in typing the manuscript. 



CONVERSION TABLE 

Conversion factors for U.S. Customary to metric (SI) units of measurements, 

To Convert From To Multiply by 

angstrom 
atmosphere (normal) 
bar 
barn 
British thermal unit 

(therraochemical) 
cal (thermocheralcal)/cm **** 
calorie (thermocheaiical)/g**** 
calorie (therraocheraIcal)/g**** 

curie **** 
degree Celsius *** 
degree (angle) 
degree Fahrenheit 
electron volt**** 

erg/6econd 
foot 
foot-pound-force 
gallon (U.S. liquid) 
inch 
jerk 
joule/kilogram  (J/Kg) 

radiation dose 
absorbed **** 

kilotons **** 
kip (1000 lbf) 
kip/inch2 (ksi) 
ktap 
micron 
mil 
mile (International) 
ounce 
pound-force (lbf avoirdupois) 
pound-force inch 
pound-force/inch 
pound-force/foot 

pound-force/inch  (pel) 
pound-mass (lbm avoirdupois) 
pound-raass-foot 

(moment of inertia) 
pound-mass/foot 
rad (radiation dose**** 

absorbed) 
roentgen**** 
shake 
slug 
torr (mm Hg. 0° C)  

meters (m) 
kilo pascal (kPa) 
kilo pascal (kPa) 
meter2 (ra') 

1.000 000 x E -10 
1.013 25 x E +2 
1.000 000 x E +2 
1.000 000 x E -28 

joule (J) 1.054 350 x E +3 

mega Joule/m2 (MJ/m2) 4.184 000 x E -2 

Joule (J) 4.184 000 

joule per kilogram (J/Kg)* 4.184 000 x E +3 

giga becquerel (GBq)** 3.700 000 x E +1 

degree kelvin (K) t. - t°c +273.15 
1.745 329 x E -2 radian (rad) 

degree kelvin (K) tk - (t°F +459.6 

joule (J) 1.602 19 x E -19 

joule (J) 1.000 000 x E -7 

watt (W) 1.000 000 x E -7 

meter (m) 3.048 000 x E -1 

joule (J) 1.355 818 

meter  (m ) 3.785 412 x E -3 

meter (ra) 2.540 000 x E -2 

Joule (J) 1.000 000 x E +9 

gray (Gy)* 1.000 000 

terajoules 4.183 

newton (N) 4.448 222 x E +3 

kilo pascal (kPa) 6.894 757 x E +3 

newton-8econd/m  (N-s/m ) 1.000 000 x E +2 

meter (m) 1.000 000 x E -6 

meter (ra) 2.540 000 x E -5 

meter (m) 1.609 344 x E +3 

kilogram (kg) 2.834 952 x E -2 

newton (N) 4.448 222 

newton-meter (N'm) 1.129 848 x E -1 

newton/meter (N/m) 1.751 268 x E +2 
kilo pascal (kPa) 4.788 026 x E -2 

kilo pascal (kPa) 6.894 757 

kilogram (kg) 4.535 924 x E -1 

1 2 
kilogram-meter  (kg ra ) 
kilogram-meter  (kg/m ) 

gray (Gy)* 
coulomb/kilogram (C/kg) 
6econd (s) 
kilogram (kg) 
kilo pascal  (kPa) 

4.214 011 x E -2 
1.601 846 x E +1 

1.000 000 x E -2 
2.579 760 x E -4 
1.000 000 x E -8 
1.459 390 x E +1 
1.333 22 x E -1 

* the gray (Gy) is the accepted SI unit equivalent to the energy imparted 
by ionizing radiation to a mass of energy corresponding to one Joule/kllograra. 

** The becquerel (Bq) is the SI unit of radioactivity; 1 Bq - 1 event/s. 
*** Temperature may be reported in degree Celsius as well as degree kelvin. 

**** These units should not be converted in DNA technical reports; however, a 
parenthetical conversion is permitted at the author's discretion. 
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SECTION 1 

OVERVIEW OF THE WAVE GENERATION PROCESS 

AND THE WAVE FIELD 

1.1      EXPLOSION PARAMETERS. 

A submerged explosion, like any other physical event that produces a localized disturbance 
of the water surface, generates a group of surface gravity waves that expand radially. The 
characteristics of Explosively Generated Water Waves (EGWW) depends upon a number 
of parameters characterizing the explosive and the medium. 

The first parameter is the yield W. It is generally expressed in pounds (lbs) of TNT 
equivalent for high explosives (HE). In the nuclear range the yields are expressed in 
kilotons (KT or 2,000,000 lbs.). The weight coefficient of HE to nuclear equivalent varies. 
The value of 0.8 is often used for practical purposes. 

The second important parameter is the depth of burst, z, defined by the distance from the 
center of mass of the explosive to the free surface.  The scaled depth of burst parameter is 

1/3 defined as Z = z/W '  , where W is assumed to be linearly related to a volume of TNT 

equivalent by its specific weight (dimension L ). Z = z/W ' and Z = z/W have also 
been used. 

The third parameter affecting the efficiency of the wave generation process is the water 
depth d. If the water depth is sufficiently shallow such that the expanding gas bubble 
generated by the explosion interacts with the bottom, the wave field generation will be 
affected. 

Based on the yield and the water depth, explosions are classified into three broad categories 
in terms of the depth parameter 

(1.1) 
D = d/W1'3 (d is in feet and W is in lbs of TNT equivalent): 

1. Deep Water Explosion D > 14 

2. Intermediate Depth Explosion 1 < D < 14 

3. Shallow Water Explosion D < 2 

Qualitatively deep water explosions are those where the explosion crater on the water 
surface is small compared to the water depth. The waves created are analogous to those 
created by a pebble in a pond and may therefore be described by linear theory at a certain 
distance from ground zero (GZ). In past literature (Le Mehaute, 1970; Le Mehaute, 1971) 

D>6 (1.2) 



was considered as the criterion for deep water explosion. Newer evidence (Wang, et al., 
1991) infers that the wave generation mechanism is affected by larger values of the scaled 
water depth parameter than initially thought. 

Shallow water explosions are those where water depth is small compared to the explosion 
crater size. In this case, the ground is exposed and the wave generation mechanism is 
nonlinear, highly dissipative, and significantly different from the deep water explosions. 

For very shallow water, the wave generation process is affected by ground cratering. The 
soil is left with a significant crater surrounded by a lip (WES, 1955). The corresponding 
debris projected into the atmosphere and falling randomly add considerable noise to the 
main wave field. Therefore, in theory, the wave generation process is also a function of the 
soil characteristics. At this time, this problem remains unresolved quantitatively and will 
not be considered here, even though some of the experimental data used for the calibration 
of mathematical models have been obtained on muddy bottoms. In the nuclear range, 
rocky sea floors would most likely behave like a muddy bottom from the wave generation 
point of view. In order to simplify the data analysis and to neglect the effect of ground 
cratering, the latest series of HE tests (WES 1989) were performed on thick concrete slabs. 
It appears that the effect of soil response on the generation of water waves is the first gap 
which may require further research. 

The last parameter of importance is the stand-off horizontal distance, r (in feet), between 
the location of the explosion or ground zero (GZ) and the point of observation.  The stand 
off distance is nondimensionalized with respect to water depth: r   = r/d. 

There are, of course many other parameters that may need to be considered in the future, 
particularly those parameters concerning the explosion. The differences of energy density 
between HE and nuclear is quite large and the detonation process is, of course, completely 
different. It will be seen that, insofar as the water wave problem is concerned, both HE 
and nuclear explosions can be considered as point sources, and the general problem is 
simply reduced to an appropriate scaling of yield. In a word, given the same yield, the HE 
and the nuclear explosions will generate identical wave fields. This assumption has not 
been so much substantiated by experiments than by the application of theoretical and 
numerical hydrocodes. It implies that differences which may exist in the effect of the burst 
depth z for the two kinds of explosions are negligible. 

Finally, the wave generation process may be affected by the bathymetry (bottom slope). 
Practically nothing is known about this effect. Wave propagation is also influenced by the 
bathymetry, a subject which will be covered in Section 7. 

1.2      OVERVIEW OF THE INITIAL CONDITIONS. 

When an underwater explosion occurs, the submerged detonation almost instantaneouly 
produces a hot gas or plasma with a limited volume. High temperatures and pressures 
cause in two disturbances of the ambient fluid: 

1) Emission of a shock wave travelling outwardly. 
.2) ■  ■    "    2)  A radial motion of the fluid so that the "bubble" consisting of water vapor and 

explosive debris begins to expand. 

Many of the fluid motions occurring in the case of small HE near-surface explosions have 
been observed through reinforced glass windows and monitored by high speed cameras. 
Their detailed complexity have been described by Mader (1972), Craig (1974), Kedrinskii 
(1978). Figures 1—1 and 1—2 provide some insight on the form and evolution of various 
features. They demonstrate the wide range of phenomena and variations of these 
phenomena as a function of the depth of burst. 
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Figure 1-1.     Schematic of phenomena observed in near surface detonations (adapted 
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Figure 1-2. Sketches of phenomena observed in near surface 
explosions (Kedrinksii, 1978). 



From these, it is dear that near-surface underwater explosions produce a wealth of 
phenomena that are not all well understood. The limit of the "bubble" is ill-defined. A 
wide variety of gas clouds, upward moving jets, stems, and "roots" at the bottom of the 
bubble occur. Therefore, it would seem that there is little hope that such complex 
phenomenology can lead to well defined input boundary conditions to determine the wave 
field. Whether or not these effects would occur in the range of high (nuclear) yield remains 
an open question, but it is highly probable that they are not simple. 

Extensive work was performed on bubble dynamics of both conventional and nuclear 
explosive [Cole 1948, Snay 1966, Holt 1977). Later, small experiments were performed and 
families of hydrocodes were written and applied to underwater explosions adding a wealth 
of information to this earlier work. Recently, computer codes have been written based on 
the assumption that the fluid flow is irrotational and nondissipative, a subject which will 
be covered in Section 9. 

In the case where the explosion SDOB is large (large Z), the bubble begins to rise due to its 
buoyancy. During the expansion phase, the pressure within the bubble falls considerably 
below the ambient hydrostatic pressure due to the outward momentum acquired by the 
water. The motion then reverses; the bubble contracts under hydrostatic overladen 
pressure acquiring inward momentum and adiabatically compressing the central gas volume 
to a second — but lower — pressure level. Upon reaching its minimum diameter, energy is 
radiated by the emission of a second shock wave, and the bubble expands again. The 
surface of the contracting bubble is extremely unstable — it may break irregularly forming 
a spray, and jets. The bubble may lose enough energy through repetitive expansions and 
contractions that it collapses entirely, leaving a mass of turbulent warm water and 
explosion debris, and therefore no wave of any consequence will be generated. This case is 
typical for deeply submerged detonations (Z > 8) in deep water, and will not be discussed 
further since they do not present practical value for the problems addressed in this report. 

In the case of the near surface explosion, i.e., for smaller values of Z, the nature of the 
ensuing surface motion and the magnitude of the water waves depends upon the form of the 
bubble when it reaches the surface. Depending upon the value of Z, this may include a well 
formed hollow column, a very high and narrow jet or a low turbulent mound, followed by 
the development of a prominent "base surge". Photos of the apparent free surface effects 
and plumes as a function of the depth of burst can be found in Cole (1948, plate XI). 

The early work of Ballhaus and Holt (1974) and Chahine (1977) concerning near free 
surface explosions in deep water is particularly descriptive. Quoting Chahine (1977) and 
referring to Figure 1—3: 

"This (explosion generated) bubble remains approximately spherical during 70 per 
cent of its life, then collapses nonspherically and the upper side moves away from 
the free surface. However, this side reaches the opposite one before the formation of 
a microjet. During the growth of the bubble its upper side is attracted by the free 
surface and the bubble is elongated towards this surface, itself being disturbed 
regularly. Then the bubble collapses with the formation of a reentrant jet. A thin 
jet comparable to Taylor's instability arises from the free surface, while another 
microject penetrates the bubble, pierces it, and continues to be seen moving away 
from the free surface. This jet seems to carry away with it quantity of gases which 
later collapses, while two lateral jets are produced on the free surface on both sides 
of the first jet... The jet formed on the free surface or "plume" appears a very long 
time after the explosion, during the collapse and not the growth of the bubble". 

The explosive debris and water is thrown upwards then fall randomly. The complex free 
surface disturbance is at the origin of the wave generation process as described in the 
following. 

If the explosion takes place in shallow water (d/W '   <: 1) it is necessarily a near surface 



(a)     Bubble No.   20:   R„„/lo =  0.60,   time  scale:   13  x   10'5  s 
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(b)     Bubble    No.   23:   R„„/l0 =  0.95,   time  scale:   8  x  10'5  s, 
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(c)  Bubble No. 25: R„„/l0 =1.5, time scale: 8 x lO'3 s, 

Figure 1-3 Shape of the bubble and the free surface at 
different times. 



explosion. The shallow water wave generation process is relatively simple and well 
understood. Initially, the water is expelled upwards and radially, forming a plume and a 
water crater with a watery rim or lip. The lip evolves into a small cylindrical bore which 
expands radially and decays rapidly to form a leading wave (Figure l^ia). The water 
crater exposes the soil to the atmosphere. After reaching its maximum size, the water 
crater collapses and the water rushes inwardly under the influence of gravity onto the soil 
crater, analogous to the dam break problem (Figure 1—4b). The local reduction in sea level 
following the first wave crest caused by the inrush of water is transmitted outward as a 
long shallow wave trough. When the water edge of the inward motion reaches the center, a 
very high peak of water is thrown up in the center and a surge is formed which also 
expands radially on the top of the inward flow. This surge is analogous to a cylindrical 
bore, and dissipates a large amount (near 40%) of the potential and kinetic energy initially 
imparted by the explosion to the water (Figure 1—4c). As the bore expands radially and 
decays (Figure 1.4d), it is transformed into a nonbreaking (nondissipative) undulated 
cylindrical bore, with a number of smaller undulations (Figure 1—4e). The number of 
undulations increases with time and distance. The time interval between the leading wave 
generated by the initial lip and the following wave is directly related to the size of the 
limited crater and the initial water depth. 

1.3      CAVITY FORMATION. 

The time history of cavity formation has been investigated experimentally and 
theoretically. Of particular interest is a series of small scale experiments by Schmidt and 
Holsapple (1980) in a centrifuge, where gravity is a variable parameter. These experiments 
were performed under a variety of conditions and observed with a high-speed camera. The 
experiments included the cavity formation resulting from a drop of fluid falling on an 
initially quiescent body of fluid. The theoretical study was performed using hydrocodes for 
a 5MT near surface explosion. (Fogel, et al. 1983). In both experimental and theoretical 
studies, it was found that if T, is the time for the surface cavity to expand to its maximum 

volume Vf, and g is the gravity acceleration, then 

Tfz °-8 (~i)1/6 • (1-3) 
;" 9* 

A comparison of the calculated nuclear early—time (t/Tr < 0.01) cavity growth for the 

5MT shot with the experimental HE results indicates that the nuclear results show faster 
scaled cavity growths than found in the HE experiments (Figure 1—5). This is due to the 
higher initial energy density in a nuclear event as compared to an HE event with the same 
yield.  After sufficient cavity growth (t/T, > 0.01), the nuclear event is similar to the HE 

event (Figure 1—6). Since the water wave generation processes depend primarily on the 
final size and mildly on time history of cavity formation, this comparison gives credence to 
the similarity of the wave generation processes of nuclear and HE events, with appropriate 
scaling. Overall, the volume of the cavity as a function of time, Vol(t), is well 
approximated by the empirical relationship 

Vol # = «»5 TV (1-4) 
7 *  V 
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The maximum volume "V% is an ill-defined, complex function of the explosion parameters, 
8    3 as will be seen in Section 3. In the 5MT theoretical case, V, is 1.15*10   m . 

In shallow water, when the cavity depth reaches the seafloor, the radius of the cavity is 
well defined in a variety of sources.  It is found that the horizontal radius of the cavity R 
is given by a simple relationship (Le Mehaute and Khangaonkar, 1991) developed in 
Section 5: 

Rc = 4.4 W0-25 , (1.5) 

where R is in ft and W in lbs of TNT equivalent (Figure 1—7). The volume V* is nearly 
equal to 

VfißO.W1/2 d, (1.6) 

where d is the water depth in feet. 

1.4      UPPER AND LOWER CRITICAL DEPTHS. 

Limiting our subject to the depths of burst that may produce a significant wave field, we 
will concentrate our effort to the cases where Z is smaller than about 10. Then the 
following is observed. 

Experimental measurements indicate that the coupling between a detonation near the free 
surface and the wave field vary significantly as a function of the depth of burst, depending 
upon the water depth. For large depths of burst, the coupling variations can be explained 
by the phase of the bubble expansion when it reaches the surface. But, for near surface 
explosions in deep water, the variations cannot be explained by this effect. 

Figure 1—8 illustrates this point. It is an attempt by Schmidt, et al. (1986) based on the 
data of Pace, et al. (1970) to group the various parameters relating to the maximum wave 
elevation (amplitude) *7max at a stand off distance r as a function of yield W, depth of 
burst z and atmospheric pressure p. One observes a mild peak when the scaled depth of 
burst Z is about 3. This has been called the lower critical depth (LCD). The LCD is 
clearly analogous to the influence of burst depth on crater dimensions in solid material. It 
is related to the balance between the explosion energy going into cratering and that vented 
to the atmosphere. 

For very small values of depth of burst, the data exhibit considerable experimental scatter 
and peak in amplitude at a value varying between 0.5 to 2 times that at the LCD. This is 
called the upper critical depth or UCD. 

The UCD is a rather puzzling aspect of wave generation. As pointed out by Hirt and 
Rivard (1983): "The experimental scatter suggests that the physical conditions for 
generating large waves at this depth involve a crucial balance of many phenomena. This 
should not be surprising considering the wide variety of interesting (and complicated) flow 
features that has been observed in tests ....    Therefore it is not surprising that an 
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understanding of the origin of the UCD and LCD is also lacking". 

Another interesting feature which has been experimentally observed, but not clearly 
confirmed, is a change of phase of the leading wave radiating from GZ, depending upon 
whether the depth of burst is higher or lower than the UCD. This change, in fact, is 
predicted by theoretical models of wave trains generated by an initial impulse acting 
downward on the surface and by an initial surface elevation in the form of a crater, 
respectively. This suggests that the impulse model may be more appropriate for explosions 
above the UCD, and the water cratering model below the UCD. 

There is also source evidence that the UCD may only exist for small yield (smaller than 
300 lbs of TNT). The existence of the UCD is still somewhat in question for large 
explosions, since several attempts to reproduce it with 10,000 lbs HE charges have been 
unsuccessful. It has been suggested (Kriebel, 1969) that the UCD effect is obtained from 
interference between the direct incident shock wave and its reflected wave, resulting in 
more effective containments and greater cavity expansion than from deeper (or shallower) 
charges. As the detonation depth increases, the pressure impulse on the free surface has 
less and less effect on cavity formation and ultimately becomes negligible. This, according 
to Kriebel, would influence the shape of a theoretical cavity. In conclusion, wave 
generation process at the UCD is a very sensitive function of the depth of burst, leading to 
various forms of cratering collapses. Additionally, the large data scatter obtained under 
fixed experimental conditions at the UCD are the result of a chaotic process, resulting from 
Taylor instability of the collapsing cavity. 
The fact that less scatter occurs in the case of explosions in shallow water substantiates 
this hypothesis, because the collapse comes early from the side of the cavity and the sea 
floor forms a relatively fixed boundary. This seems to remain true as long as the sea floor 
is "clean dried" and exposed to the atmosphere during the phase of wave generation. The 
decrease of coupling for explosions taking place at the surface is a result of the increase in 
energy vented to the atmosphere. 

The basic question which remains, insofar as the EGWW is concerned, is whether or not 
the bubble dynamics, such as determined by hydrocodes, can be used as input boundary 
conditions for determining the wave field. In light of these physical observations, the 
problem is not an easy one to answer. The inherent limitations of the hydrocodes 
regarding the inclusion of turbulent dissipation processes alone present a severe limitation. 

Due to the extreme selectivity of the experimental conditions which are necessary to 
reproduce the maximum coupling at the UCD, the maximum waves are difficult to 
reproduce and obtain operationally. They are only of interest for determining the 
maximum possible effect of EGWW from a defensive point of view. The average values 
(AVG) obtained at the LCD should be used for a practical prediction for offensive effects of 
EGWW, because these are not as sensitive to precise depth of burst. 

1.5      THE COMPRESSIBLE HYDRODYNAMIC PHASE. 

A theoretical mathematical model for the simulation of the hydrodynamics related to 
underwater explosion and subsequent bubble dynamics and free surface effects was 
formulated. See for example, Amsden (1973); Hirt and Rivard (1983); Fogel, et al. (1983); 
and Mader (1988). 

The corresponding "hydrocodes" are based on the Navier-Stokes equations for a 
compressible fluid, which can be treated numerically, given the appropriate equations of 
state and initial boundary conditions imposed by chemical or nuclear effects. These codes 
provide the most realistic, theoretical picture of an idealized free surface time history and 
mass movement which is at the origin of the water waves generation process. The 
hydrocodes provide a wealth of information on the bubble dynamics.  They have been very 

13 



useful in establishing the hydrodynamic equivalence and scaling of nuclear and HE 
explosions. The results lend credence to the extrapolation of HE data to the nuclear range. 
But they also have their limitations as seen in the following section. 

Whereas the duration of the initial shock wave generation is nearly instantaneous, the 
phenomena involving mass motion of the water and the duration of initial disturbances 
may be quite large, starting from the first appearance of a mound as the "bubble" nears the 
surface, to the collapse under gravity of the water thrown upwards in the form of a 
"plume". The gravity effects are not related to shock interaction, and can be treated 
separately. 

In the initial phase, the flow is compressible. As soon as the shock wave separates from the 
bubble front, the flow left behind behaves like an incompressible fluid subjected to the 
pressure of the gas or plasma inside the bubble. Compressible hydrocodes can be used as 
initial conditions to a noncompressible fluid flow. This allows considerable simplification 
in the modelling of the water wave generation process. 

1.6      THE INCOMPRESSIBLE HYDRODYNAMIC PHASE. 

Hydrocodes for incompressible fluids are just simpler versions of compressible codes. They 
allow for the investigation of the bubble dynamics and mass movement beyond the time 
duration of the compressible phase, where the shock wave separates from the surface of the 
bubble. 

The hydrocode results compared quite satisfactorily with known experimental results. For 
example, Figure 1-9 was obtained by hydrocodes (Fogel, et al. 1983), and Figure MO was 
obtained with a high-speed camera from the explosion of a very small yield against a glass 
window. Figure 1—11 compares the results obtained by the hydrocodes with the 
experimental results at a given time. These figures clearly illustrate the validity of the 
theoretical approach. However, there are also limitations. 

The determination of the wave field requires that the hydrocodes be run over a long period 
of time and for a great distance from the origin. At the same time, the numerical 
calculations have to be done with finite differences defined by a very small mesh. Because 
of this inherent difficulty, not enough cases have been done to allow parameterization of 
the wave field as a function of all the explosion parameters. This task is technically 
possible, but so far, it has not been done. 

Additionally, hydrocodes have an inherent deficiency in their inability to assess the amount 
of energy dissipated by viscous turbulence. The choice of a suitable viscosity coefficient 
that realistically accounts for turbulent dissipation, by taking into account the considerable 
time and distance and the increase of temperature is beyond the state—of—the—art. In 
practice, the value of the viscous coefficient is chosen for numerical stability, and it is a 
function of the mesh size. Therefore any coincidence between the results of the viscous 
dissipation function given by hydrocodes and the energy dissipated by turbulence is purely 
fortuitous. 

As previously indicated, the hydrocodes provide a fairly realistic picture of the energy 
partition going into the various effects such as the shock waves. But, since only a small 
amount of energy goes into the wave field, a relatively small error in the other effects lead 
to large errors in the kinetic and potential energy at the origin of the water wave field. 

For the EGWW problem, the objective is to obtain an input boundary condition for the 
definition of the water wave field, rather than to resolve the many associated problems of 
shock propagation, chemical or radioactive debris distribution and thermal energy lost to 
heated or vaporized water.  Theoretically, all the effects should be included in an effective 
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model for analyzing the wave generation process, unless it can be shown that they can be 
neglected because they do not affect the wave characteristics. All these effects have indeed 
been investigated. Some of the studies neglect the effect of gravity, others make gross 
assumptions about the thermodynamic properties of the bubble dynamics and equations of 
state. Unfortunately, these effects cannot be assessed with sufficient accuracy for the 
EGWW problem. 

This explains, at the outset, why the explosion bubble phenomenology as given by 
hydrocodes has been largely disregarded in the solution of problems concerned with 
surface—wave prediction methods, as will be seen in Sections 2 to 5. This is remediable but 
requires much more research than has been dedicated to the problem. 

A promising method, which is still in infancy (as an application to EGWW generation 
process) is the Boundary Integral Technique. This method is presented in Section 9 and 
will only be explained succinctly here in the context of its adaptability to describing the 
physical processes. 

1.7      THE POTENTIAL FLOW APPROACH. 

If one assumes that the flow is incompressible, nondissipative and irrotational, then it can 
be defined by a potential function. This approach has been used by a large number of 
researchers involved in bubble dynamic problems — due to explosion or else (see, for 
example, Chahine, 1977). 

The Boundary Integral Equation Method (BIEM) consists of determining numerically the 
solution to a potential flow problem. This method compares quite well with the 
incompressible hydrocodes in terms of accuracy. The method also provides a clear picture 
of the bubble dynamics as a function of initial conditions imposed by the time history of 
the pressure induced by the explosion (see Figure 1—12 from Wilkerson, 1988, and Figure 
1-13 from Wang, 1992). The BIEM provides a frictionless solution whereas the hydrocodes 
provide a fictitious dissipative solution, so it is difficult to assess which method is the most 
accurate. The main advantage of the BIEM is its relative simplicity. The simplification 
introduced by the assumption of irrotationality leads to a computing time smaller by at 
least two orders of magnitude shorter than the hydrocodes. This permits systematic 
treatment of all the parameters which cannot be done with the hydrocodes. Because the 
corresponding solution is nondissipative, one expects that the corresponding wave field will 
be overestimated. Nevertheless, it is reasonable to assume that the time history of the 
bubble boundaries provided by the potential flow solution yields adequate initial input 
boundary conditions for the determination of the wave field. The potential flow approach 
is the most direct and simplest and at the same time it provides as much accuracy as the 
incompressible flow hydrocodes. On the other hand, a short but important dissipative 
process which is not given by the BIEM must be introduced between the bubble dynamics 
and the wave field. 

In the deep water case, dissipation can be introduced when the water wave exceeds limit 
steepness near ground zero so that an upper limit is imposed to the wave amplitude. But 
this modification may not be sufficient because turbulent viscous dissipation processes also 
result from the crater lip projections and the fall of the mass of water contained in the 
plume. Therefore, a wave field based on a complete nondissipative potential flow approach 
provides results which run the risk of being slightly overestimated. 

In the case of an explosion taking place in shallow water, satisfactory results are obtained 
deterministically. The nonlinear long wave approximation applies, and the powerful 
momentum theorem applied to a (cylindrical) bore allows a deterministic calculation of the 
energy loss. It will be seen in Section 4 that paradoxically, the shallow water case can be 
resolved theoretically practically in its entirety despite the complexities introduced by the 
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nonlinear convective forces inherent to shallow water waves. In deep water, even though 
the wave theory is simpler (i.e., the linear approximation is valid), it is not possible to 
resort entirely to a theoretical approach, unless the turbulent dissipative processes are 
negligible which is not the case. 

As is the case of the hydrocodes, this explains why the explosion bubble phenomenology 
has been largely disregarded in surface wave prediction methods thus far. The difficulties 
encountered with incorporating turbulent dissipative processes resulting from the fall of the 
plume, projections and gravity shock waves (bore and breakers) in the development of the 
codes are a major reason for this neglect. 

1.8      THE PREVAILING THEORETICAL APPROACHES. 

Owing to the complexities of the previously described methods, and faced with the problem 
of providing a quantitative assessment of the magnitude of EGWW, a mix of theory, 
experimental results and empiricism is the favored approach. The problem consists of 
defining a treatable surface wave generator as a function of the explosion parameters. Two 
approaches have been followed. 

The first approach is based on linear wave theory in which the dissipative and nonlinear 
convective terms are neglected. A generalized model is established which is valid for deep, 
intermediate and shallow water depths. The model is calibrated by experimental results of 
wave records in the far field, where the waves are nearly linear. 

The second approach is nonlinear and dissipative. It is nearly fully theoretical, and is 
verified by nearfield experimental results where the waves are nonlinear. This approach is 
valid in shallow water only. 

In brief the first approach assumes that the initial disturbance is defined by a (fictitious) 
linear localized perturbation in the form of either an impulse acting on the free surface I(r), 
or an initial free surface elevation 77 (r), or an initial vertical free surface velocity w (r) or 

o s 
any linear combination thereof.  This is termed the "Black Box" approach in which all the 
complex phenomena taking place at GZ are ignored, and replaced by an idealized linear 
equivalent. 

Because the wave motion is assumed linear and defined by a potential function <f>(x,t), 
where r is the radial distance from GZ and t is the time, the initial conditions in terms of 
the potential function at t = 0, are 

mt = o=I(ro) (i-7) 

or    WjS(iswW (L9) 

where the subscripts t and tt refer to first and second differentiation with respect to time t. 

Then, given an experimental wave record at a distance r from GZ, the initial conditions are 
determined numerically by reverse transforms (Le Mehaute, et al. 1989; Wang, et al. 1989; 
and Khangaonkar and Le Mehaute 1991). 

For sake of mathematical convenience, these initial conditions are matched by 
mathematical functions which are then quantitatively parameterized as a function of yield, 
depth of burst and water depth.  The best mathematical model obtained by this approach 
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yields the initial disturbance as the sum of a parabolic water crater with lip, */n(r ), and an 
upwards velocity, w (r ), in the form of a mound. Actually the results obtained with the 
parabolic crater alone such as given by Figure 1-14, 

r  2 

%(r) = nAW
Z) -1] r<R, (1.10) 
R 

T}0(r) = 0 r >R, 

provide a fit to most of the data. Then only the two parameters r/» and R need to be 
defined as functions of the explosion parameters. 

The limit of validity of the theory stems from the linear assumption, i.e. the Ursell 
parameter 

U = l^f«lt (1.11) 

where 77 is the maximum wave crest elevation and L is a typical wave length. This means 
that the theory is not a good description of the wave field near GZ or in shallow water. Of 
course its description of the initial condition at GZ itself is purely fictitious, as implied at 
the beginning. 

The second approach (nonlinear and dissipative) is valid in shallow water only. This 
method assumes that the motion at GZ follows the nonlinear long wave approximation, 
and it is dissipative due to the presence of a cylindrical bore. Initially, the disturbance is 
that of a crater reaching the sea floor with a lip (Figure 1^4a). The size of this initial 
crater can be obtained by reverse calibration from wave records as done in Section 5. It 
can also be obtained theoretically by application of the BIEM to the bubble dynamics as 
proposed in Section 9. 

Referring to Figure 1-4 which describes a physical phase of the wave generation process. 
For shallow water explosions, the following hydrodynamic methods are used: (1) the 
collapse of the water is analyzed based on the nonlinear long wave theory, in analogy with 
the dam break problem; (2) the bore formation and propagation is investigated by 
application of the momentum theorem in analogy with the treatment of a dissipative tidal 
bore; and (3) when the bore height reaches a critical value, the initial disturbance evolves 
into a nondissipative, cylindrical, nonlinear wave defined by the Kordeweg and deVries 
(KdV) equation in a cylindrical coordinate system. The vertical acceleration is no longer 
neglected as in the long wave theory and the Ursell parameter is approximately unity. Due 
to the wide range of frequencies encountered in an EGWW train, the KdV equation has 
actually been extended to describe the higher frequency waves so that the theory remains 
valid from the long leading wave to the shorter trailing waves. The extended KdV (EKdV) 
equation is a recent (1990) original contribution developed specifically for EGWW, which 
is also valid and applicable to all kinds of periodic or transient gravity waves whether plane 
waves or waves with cylindrical symmetry (Khangaonkar and Le Mehaute 1991). By 
virtue of this extension, the EKdV equation overlays not only the range of conoidal wave 
(Ursell parameter: U«l), but extends the validity into the range of nonlinear Stokesian 
wave (U<1). Eventually as time and distance increase, wave amplitude decreases, and the 
KdV equation matches the linear solution. 
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These two routes are schematically described in Table 1—1 for the linear theory and Table 
1—2 for the nonlinear shallow water case. 

1.9      BRIEF HISTORICAL REVIEW OF PAST INVESTIGATIONS 
ON THE LINEAR WAVE FIELD. 

The first theoretical treatment of wave generated by an initial free surface disturbance of 
infinitely small radius, but finite energy, is due to Cauchy (1815) and Poisson (1816). The 
method is presented and extended by Lamb (1904, 1922, 1932) by use of Fourier's Integral 
Theorem in the one—dimensional case and Neuman's Theorem in two—dimensional cases. 
The solution of the movement of the free surface, in the form of an infinite series has 
limited physical significance because the input energy is implanted on an area of infinitely 
small extent. Kelvin's method of the stationary phase applied by Lamb, nevertheless 
serves to show that at large distances r from the original source or GZ, the wave amplitude 
of the maximum wave decays as 1/r. 

The generalization of Lamb's method to a case of an initial disturbance of finite extent was 
developed by Terazawa (1915), for the cases of deep and intermediate water depth. 
Terazewa also investigated the effect of the depth of burst z in the case of an impulsive 
explosion.    He found that the initial amplitude of the wave motion is proportional to 

z— '  . For a different model of explosion in which an abrupt pressure rise is followed by a 

gradual fall, Lamb (1922) deduced that the wave amplitude varies like z    . 

Following this, much was learned from Japanese scientists as a result of their concern for 
tsunami waves, particularly Unoki and Nakano (1953a,b,c) who extended the work of 
Lamb and Turazawa where the initial disturbance is a uniform piston—like displacement of 
the surface over a circle of radius R. They found that the free surface elevation exhibited 
beats with modes determined by zero values of the Bessel function J,(kR).   Unoki and 

Nakano also extended their work to the case of an initial impulse I(R) of Gaussian form in 
which the solution exhibits an absence of beating and merely decays monotonically with 
time. A generalization of the Cauchy-Poisson Theory to a finite disturbance of arbitrary 
form was developed by Le Mehaute (1963). Analytical solutions were also given for 
uniform circular and paraboloid free—surface disturbances in the form of a series. 

Eckart (1948) demonstrated that the method of the stationary phase is not valid at the 
wave front in the one—dimensional case. By making use of higher order approximations, 
however, he showed that the leading wave may be represented by Airy's integral such that 
its wave length increases as the cube root of time and its amplitude decreases as the cube 
root of distance. By approximating the dispersion relationship to include only the long 
wave portion of the spectrum and limiting the source disturbance to a long narrow strip, 
Kajiura (1963) arrived at a similar result. This approximation was in fact equivalent to 
that of the Boussinesq Theory of dispersive long waves. The approximation of longitudinal 
dimension of Kajiura led to the conclusion that the source distribution affects only the 
overall amplitude (but not significantly) on the broadside propagation at a long distance 
from the origin. 

Reverting again to the more pertinent two-dimensional case, a solution for EGWW was 
presented by Kranzer and Keller (1959) in which the influence of water depth was taken 
into account. The initial conditions were given either by an impulse or a free surface 
deformation of finite size in the form of a paraboloid. Kranzer and Keller's derivations are 
asymptotic solutions based on the method of stationary phase, which are valid at a far 
distance from GZ. They follow transform techniques initially developed by Sneddon (1951) 
and Stoker (1957), which will be used in a following section. The approach of Kranzer and 
Keller has been retained to characterize EGWW in deep and intermediate water depth ever 
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Table 1—1. Linear wave theory for deep, intermediate and shallow water. 

THEORY 
(nondissipative) 

EXPERIMENTS 

GZ 

Near field 

Far field 

fictitous linear 
disturbance at time t=0 

Not valid 

linear wave solution 

calibration 
measurements of free 
surface elevation rj{t) 
at distance r. 

Table 1- 2. Methodology nonlinear wave theory for shallow water. 

THEORY EXPERIMENTS 

GZ   crater collapse 
bore formation 

Nonlinear long wave theory 
Bore equation, dissi— 
pative. 

calibration 
measurements of free 
surface elevation r]{t) 
at distance r. 

Near field Extended nonlinear 
KdV 

Far field Extended linear 
KdV 

measurements of free 
surface elevation j/(t) 
at distance r. 
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since. Because the method is based on the stationary phase approximation, which is not 
valid for the leading wave, the theory of Kranzer and Keller is pertinent in cases where 
most energy is found in the trailing waves. This is the case of EGWW in deep water at a 
long distance from GZ. 

Much is to be learned from a paper by Kajiura (1963) on the leading wave. Even though 
not developed for EGWW, the Kajiura theory resolves the problem ofthe leading wave. In 
theory, his approach also allows waves due to time dependent free surface deformation to 
be determined. The theories of Kranzer and Keller and Kajiura have been used by a 
number of researchers on EGWW (Whalin, 1965; Le Mehaute, 1970, 1971; Fogel, et al., 
1983). So far, the main purpose of this research had been to determine the most suitable 
initial surface deformation used as input boundary conditions, which would yield a time 
history of free surface elevation at a distance from GZ that resembled recorded 
experimental results. In the process, the sizing of the initial water crater in a parametric 
form as a function of yield, depth of burst, and water depth was determined. Also Le 
Mehaute (1970), Fogel, et al. (1983) applied the theory of Kajiura to a time dependent free 
surface initial deformation. The Airy integral was integrated numerically by Whalin 
(1965) to determine the error resulting from the method of the stationary phase used by 
Kranzer and Keller. The method, however, is extremely complex numerically and cannot 
be generalized for practical use. 

1.10    MAIN PHYSICAL FEATURES OF EGWW AS SEEN 
THROUGH THE LINEAR WAVE THEORY. 

If the water is of constant depth, the wave field will show circular symmetry even though 
the initial disturbance is chaotic. The immediate analogy is that of a pebble dropped in a 
pond (Le Mehaute, 1971). 

If the initial disturbance is thought of as a kind of "white noise" of all frequencies, many of 
the properties of the developing wave system may be anticipated. In particular, since the 
medium is dispersive for the propagation of gravity waves, it is expected that with time the 
waves will be sorted according to frequency, the longer waves running ahead and the 
shorter waves trailing behind. A curve of the transient wave period versus time at any 
location, therefore will be monotonically decreasing. 

The energy distribution among the generated frequencies will not be uniform. Intuitively, 
we may expect that the spectrum will be peaked near a frequency corresponding to a wave 
length of a small multiple of the initial disturbance radius. For large yield explosions, this 
radius is large so that the dominant wave can be expected to be rather long. On the other 
hand, the dimension of an explosion source (for realistic yields) is small compared to 
seismic sources responsible for tsunami generation. We then see that the study of EGWW 
will cover a range roughly midway between wind waves (short) and tsunamis (very long). 
Therefore, considering the possible range of generated wave lengths, attention should be 
given to the effect of the bathymetry and wave soil interaction over water depth which is 
considered deep water for wind waves. Wave energy displays in the trailing waves in the 
case of deep water, but tends to shift towards the leading wave in the case of a large 
explosion taking place in shallow water. 

In amplitude, explosion waves may exceed both tsunamis and wind waves which implies 
that nonlinear effects can be important as described in the following section. Table 1—3 
gives the amplitude and period of the maximum wave as a function of yield and distances 
in the case of near surface explosions in deep water. The "UCD" results yield the 
maximum possible coupling between the explosion and the water waves. The "average" 
results (AVG) correspond to the most probable in the case of a near surface explosion 
(Z < 6). 
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The waves resulting from a free surface disturbance as defined by Equation (1.6) are shown 
in Figure 1-15, where the parameters R = 1478 feet and r/A = 173 feet.  The case treated 
here corresponds to a 10 MT explosion in deep water. The wave pattern is given as a 
function of time t at three distances r from GZ. The theoretical wave pattern is generally 
well verified as shown on Figure 1—16 by the experimental wave record obtained from a 
9,260 lbs of TNT explosion and the corresponding theoretical envelope. At a given location 
the wave system appears as a series of wave trains, or modulated waves of monotonically 
decreasing wave period. All of the waves originate within the same central disturbance and 
are simultaneously released to propagate radially outward. If the water depth is uniform 
everywhere, or relatively very deep, the wave pattern will be perfectly circular and consist 
of concentric rings of crests and troughs, bounded at the outside by an intangible "front" 
that expands outward at the limiting velocity c   = (gd) '   for free gravity waves.  At any 
instant in time the radial separation between successive crests (wavelength) will be largest 
near the front and progressively smaller towards the center. All individual waves of the 
system will retain their identity, although the total number of waves present will increase 
with time as though they were being pulled like accordion bellows out of a black box that 
comprises the source region. 

In general, no two waves of the system will be of the same size, nor will the amplitude of 
any wave remain constant with position and time. Within this ever changing pattern, the 
energy distribution among waves will be manifested by amplitude modulation of the wave 
train in a manner which is determined by the nature of the source, its distance from the 
point of observation, and the depth of water. As the pattern expands, the amplitudes of all 
the individual waves will diminish, on the average, because the wave system contains a 
finite and constant amount of energy which is diffused with increasing time or radial 
distance. This effect can be resolved into two factors: dispersion, due to the increase in 
wavelength and number of individual waves; and geometric expansion, caused by the 
increase of crest length necessary to circumscribe progressively larger radii. 

Most of these features are well illustrated in Figure 1—15 which shows three successive 
stages in the development of an explosion-generated wave train. The three theoretical 
computer-generated oscillatory curves of Figure 1-15 show the amplitude—time histories of 
a wave train generated at the origin as they would be recorded at the distances of 12, 24, 
and 36 thousand yards, respectively. The symmetrical curves bounding the wave trains, 
comprise the wave envelope, and serve to define the distribution of energy within the train. 
The precise shape of the envelope depends upon the initial source conditions, whereas the 
space—time coordinates of the individual waves are independent of the source and depend 
only on the water depth. A characteristic of the wave envelope is that any identifiable 
portion of it, say, a node or antinode, propagates at uniform group velocity, as shown by 
the straight lines o—a connecting the origin with the nodal points delimiting the beginning 
(wave front) and o-b ending points of the first envelope maximum in Figure 1—15. The 
space—time trajectories of all waves of the system are curves, concave upwards because the 
waves are continuously accelerating towards the limiting phase velocity c  = (gd) '   of the 
wave front. Thus the waves travel faster and pass through the successive nodes of the 
wave envelopes, and therefore there are progressively more waves in each envelope segment 
with increasing time or distance. For a large explosion in the deep ocean, by the time the 
wave system has traveled a distance equivalent to 300 water depths, there would be more 
than 100 waves between the front and the first nodal point. 

A second important feature of the wave envelope is that its amplitude, as measured along 
any straight line through the origin of r—t diagram presented in Figure 1—15, is inversely 
proportional to its distance from the origin. Thus, the height of the highest wave in the 
upper wave train (Figure 1-15) is about 1/3 that of the corresponding wave in the lower 
train. 
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In theory the above features are related to the linear dimensions 77» and R of the original 

crater. In particular the maximum amplitude of the wave envelop Vmax 1S given by 

The period of the maximum wave T is also of particular interest.   It remains constant as 
function of the distance from GZ and is given by 

T = 2t R—\       . (1.13) vn\ 
The time duration between the wave front which travels at a speed of (gd) '    and the 
wave of maximum amplitude which travels at a speed of gT/4?r is 

At = r 1 1* (1.14) 

In summary, the wave trains generated by a theoretical linear disturbance, such as defined 
by Equations (1.7). (1.8) and (1.9) for example, in deep water are characterized by the 
following features: (Le Mehaute, 1971) 

1) The waves travel radially outward from the explosion. 
2) The leading free surface disturbance or leading wave travels at velocity 

3) At a given location, the passing waves are of increasing frequency. 
4) The wave amplitude is modulated so that the train of waves appear with 

time or distance as a succession of groups. (The wave envelope of those wave 
trains is a Bessel function. The waves are defined by the product of a Bessel 
function and cosine.) 

5) The number of waves in a given group increases with time or distance 
traveled. 

6) The length of a group increases with time or distance traveled. 
7) The frequency associated with a specific crest decreases with time or distance 

traveled (equivalently, a given crest moves forward within a group). 
8) The frequency associated with the maximum amplitude of a given group is 

constant. 
9) The maximum height of a given group decreases with time or distance 

traveled. 
The maximum height of successive groups passing a given point decreases. 
The maximum wave height varies inversely with distance from the explosion. 
The product of the maximum wave height and distance is simply related to 
yield and depth of burst. 

All these features have been relatively well verified experimentally. Figure 1-16 is a typical 
comparison between an experimental wave record with the corresponding theoretical wave 
envelope. 

In shallow water, the features presented in the deep water case remain generally valid, 
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Figure 1-16. Typical correlation between experimental 
results and mathematical model. Yield, 9620 
lb TNT; depth of explosion, 125 ft; depth of 
gage, 96 ft; distance between gaqe and G.Z, 
3600 ft. 
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except for the fact that the leading wave takes on more importance (Figure 1—17). 
There are fewer waves per wave group, so the modulation in amplitude shown in Figure 
1-17 is much less apparent.  Close to GZ, there may be only one or two waves in the first 
wave envelope, so that the maximum of the envelope is ill defined.   The most significant 
feature is that the dispersion law is different in deep and shallow water.  In shallow water 

—2/3 the leading wave, which tends to be the largest, decreases in height with distance as r   ' 
instead of r as in the deep water case. More importantly, nonlinear effects start to show 
importance, so that the linear wave model becomes less valid, especially in the near field. 
The sinusoidal appearance of the wave profile is replaced by a conoidal profile, which 
exhibits high peaky wave crests separated by long wave troughs. 

Despite these limitations, the linear methodology used for predicting waves generated by 
underwater explosions in deep water is remarkably simple. What is really surprising is 
that such a simple model works as well as it does considering the great complexity of the 
process. In particular, the linear wave theory based on the static water crater model is 
perfectly suitable, even though improvements can be obtained by using more complex 
initial disturbances, as will be seen in the shallow water case presented in Section 4. 

1.11    DATA SOURCES AND SCALING. 

The experimental data used to verify and calibrate the mathematical predictive EGWW 
model, varies considerably in range of yield and in quality. 

The largest bulk of data is found in a series of reports on experiments done at the 
Waterways Experiment Station (WES), Vicksburg, MS in the 1950s and 1960's. Some 
data of nuclear tests at Bikini Islands are also available. Most recently, a series of shallow 
water and intermediate water explosion tests were conducted at WES under sponsorship of 
the Defense Nuclear Agency. A summary of the data available for empirical correlation is 
listed in Table 1-4. 

The correlation was intended to cover both shallow and deep water explosions. As 
indicated earlier, one significant difference between shallow water and deep water wave 
propagation is the dispersion law. In deep water, wave height varies inversely with radial 
distance r, as a combined result of frequency and radial dispersion. In extremely shallow 
water, however, the large leading wave is expected to behave like a nondispersive solitary 
wave as a limit and its height should vary inversely as r ' instead of r. It follows that the 
following decay law should hold 

?7 ra = constant       2/S <  a(d, W,z) < 1, (1.15) 

where a is a function of the water depth d, yield W and submergence z. The decay ratio a 
is to vary from 2/3 to 1 for shallow to deep water, respectively, and r/ is the maximum 
elevation of the leading wave. 

In order to verify this relationship, Wang, et al. (1991) and Khangaonkar and Le Mehaute 
(1991), developed an inverse method by which the initial conditions defined by the sum of 
a free surface deformation and initial free surface velocity, are determined numerically from 
measured wave records. 

In the most simplified static form of the initial disturbance, the size of the water crater is 
defined by its radius R and its depth r/.   (Equation 1.10).   These are related to yield W, 
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measured at a fixed point. 
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TABLE 1.4 Data Source 

Experiment Date Yield Water Depth (ft) 

WES 1960-1965 0.5 - 385 lbs 20 - 100 

WES 1955 0.5 - 2048 lbs 0.5 

Baker 23.5 KT 180 

Umbrella 8 KT 140 

Flathead 375 KT 121 

Dakota 1.08 MT 140 

Navaho 4.69 MT 163 

Union 7 MT 145 

Yankee 13.5 MT 220 

Mono Lake 1965 9250 lbs 10 - 100 

WES 1986 10 - 50 lbs 1 - 2.7 

WES 1988 10 lbs 1 -4 

WES 1989 0.5 - 10 lbs 1 -5 
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depth of burst z and water depth d. If A is a convenient geometrical linear scale between 
two explosions, the scaling problem is as follows (Johnson, 1959); the energy released by a 
conventional explosive (HE) is proportional to its volume, i.e., A3. When the charge is 
detonated, the gases expand and create a cylindrical crater; much of the water originally in 
the crater is pushed above the original water level in a plume and around the rim forming a 
base-surge which is the origin of the first outward travelling circular wave front. If L is 
designated as a characteristic length of a given explosion (i.e., A = L,/L2 for two 
explosions 1 and 2), the scaling law may be expressed by the following dimensionless 
parameter 

*l=iLW^> (1.16) 

where p denotes the overburden pressure exerted on the crater boundary at the 
cavity-fluid interface and W is yield in terms of energy. 

On the other hand, the total energy of the surface wave as required for geometrical 
similarity must be proportional to 77A R , the potential energy of the crater, and follows a 

quadruple scaling A , which may be expressed by another dimensionless parameter 

**=<#. (1.17) 

in which p is the fluid density. 

There is experimental evidence (see Section 3) that, in deep water, jr.   is proportional to 

W ' , whereas the radius R is proportional to W1'3. This means that similitude is not 
possible: the EGWW generated by a large yield cannot be simulated at a small scale by a 
small yield. The small linear crater equivalent due to the small yield is a distorted 
(vertically exagerated) model of the crater generated by large yield. 

If one reproduces the magnitude of the wave envelope in similitude, which requires that: 

nt        Wj 1/4 
X=V~2

=(WJ      > (1.18) 

then the wave length, and time histories which relate to R are not in similitude. 

The second option is to simulate the radius 

Rt        W1 1/8 

A™^;   ' (L19) 
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but now the amplitude of the wave envelope is not reproduced. 

In the case of shallow water explosions when the water crater reaches the sea floor, it is 

'c found that the radius of the crater R  is proportional to W '  . Then similitude is possible 

as 

d,     Rr1      W1 1/4 

a2    Kc2      w2 

This explains the complexity of the calibration and the necessity for a large number of tests 
to obtain a realistic quantitative prediction of EGWW as explained in Sections 3 and 5. 

1.12    PROPAGATION OF EGWW OVER NONUNIFORM WATER DEPTHS. 

The slope of the sea floor is generally gentle enough that the wave generation process is a 
function of water depth at GZ, but is practically not affected by bottom slope. Conversely, 
the wave field is deeply affected by the bathymetry. 

The leading wave travelling at speed (gd) ' is affected by the bathymetry even in the 
deepest ocean. The following waves (and in general the wave of maximum amplitude) 
"feel" the seafloor when the water depth d becomes smaller than half the deep water wave 
length, i.e. when 

where a is the transient frequency and T the transient wave period. 

Referring to the wave periods presented in Table 1—3, for many hypothetical cases of near 
surface explosions in offshore deep water even the trailing waves are affected by the sea 
floor as soon as the waves reach the continental slope. For example, the period of the 
transient maximum wave due to a 1 KT explosion in deep water is 15.6 sec, corresponding 
to a transient wave length of 1,246 feet which begins to be affected by the bottom as soon 
as the water depth is less than about 600 feet. 

For shallow water explosions on the continental shelf, in embayments or harbor basins, the 
waves are affected by the bathymetry as soon as they radiate from GZ. Therefore, the 
wave field no longer follows radial symmetry. The wavefield is modified by refraction and 
energy dissipation due to wave-seafloor interaction and ultimately by wave breaking. 

When EGWW originating in the deep ocean approach the continental slope, a small part of 
the energy of the leading waves is reflected seaward. A fairly accurate estimate of the 
reflection coefficient can be made by assuming that each wave behaves as a periodic wave 
of the same period. From a hydrodynamic viewpoint, continental slopes are so gentle and 
wavelengths so short that, for most practical purposes, the methodology based on the 
conservation of energy flux is valid and reflections can be ignored (Le Mehaute, 1971). 
(This is not the case for the longer tsunami wave). Under the assumption of the linear 
wave theory, the energy flux per unit length of wave crest is 
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F = ^pg/Cg} (1.22) 

where p is water density, g is gravity acceleration, r) is the amplitude of the wave envelope 
and C   is the group velocity.   Accordingly, for a wave arriving perpendicularly to bottom 

g * 
contours, the wave amplitude rj is modified by a shoaling coefficient Kg such as 

c   t/2 

V* = 1*oKS> KS=[-A       • (L23) L  9 J 

where the subscript o refers to the deep water value. 

At the edge of the outer continental shelf where d ^ 300 ft, Kg is given by linear shoaling 

wave theory as a function of the wave period (Table 1—5) (Le Mehaute, 1976). In the 
range of explosion waves described in Table 1—3 with periods ranging from 10 sec to 70 sec 
or more, the increase of wave height due to shoaling remains small. If the wave height H = 

2 Tj  is large enough to break on the outer continental shelf or on the continental slope (i.e., 

for H/d > 0.78 or H > 230 ft), a nonlinear wave shoaling coefficient must be used, giving a 
larger wave shoaling effect as shown in Fig. 1—18.   The shoaling coefficient Kg is then 

determined by application of the principle of conservation of energy flux by taking into 
account nonlinear convective effects (Le Mehaute and Wang, 1980).   Note that in Figure 

2 
1—18, L   is the deep water linear wave length, L   = gT /2T, H   is the equivalent deep 

water wave height, obtained by reverse calculation and H /L    the deep water wave 

steepness (Svendsen and Brink—Kjaer, 1972). A more accurate breaking index than the one 
given by the limiting wave is given in the following as a function of bottom slope. 

In reality, as the EGWW originating in deep water approach the continental slope and pass 
into shallow water, they continue to disperse both radially and angularly, even though the 
dispersive effect due to frequency is now reduced by water depth. In addition to wave 
shoaling, the waves also refract and tend to become parallel to the bottom contours. 

The propagation of nonperiodic waves over a varying bathymetry is based on simple 
theoretical principles of conservation of energy flux or conservation of wave action (see 
Section 7). The wave rays are defined by application of Snell's Law for wave refraction. 
Since the wave periods vary continuously with time and space, the wave rays change 
continuously at any given location. The wave energy flux also changes continuously 
because both the group velocity and wave amplitude change with time and distance. 
Because of the time dependency, and the nonlinearity of shoaling and dissipative processes 
due to wave seafloor interaction, the mathematical implementation of these relatively 
simple principles could be extremely complex and has been partly developed only recently. 
Approximate methods have been developed offering great simplication without significantly 
impairing the accuracy of results. 

As a dispersive wave train (i.e. a train which consists of a series of waves of different 
length, or period, and thus different group velocities) arrives in shallower water, the 
individual wave amplitudes tend to become larger and their length shorter as the energy 
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Table 1- 5.       Linear shoaling coefficient Kg for 300 ft (100 m) 

water depth vs wave period (note H = 2 TJ ). 

T (sec) KS=H/HQ 

10 1 

20 0.91 

30 0.98 

40 1.084 

50 1.19 

60 1.288 

70 1.375 
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Figure  1-18.       Nonlinear shoaling of EGWW Waves. Adapted from 
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increment within each wave is concentrated in an increasingly smaller volume of water. 
This effect opposes the tendency for waves to become smaller due to dispersion and 
geometric spreading, and therefore, there exists for each wave a minimum amplitude at 
some point in its history. 

In very shallow water (d/L < 0.05, L ~ T Jtt), the linear wave dispersive effect tends to 
become negligible. Linear phase and group velocity approach a common value depending on 
the water depth only: <J%&. The influence of wave period disappears and each wave keeps 
its identity. An approximate theory (used until 1983), consists of matching the linear deep 
water dispersive wave solution with the shallow water nondispersive solution, assuming 
that all the waves arriving at the edge of the continental shelf are nondispersive and behave 
like quasi-periodic conoidal waves or like a succession of solitary waves. This simplified 
approach, even though theoretically questionable, has proven to be reasonably successful 
over a relatively short distance. The subsequent transformation of the wave on the shelf is 
then treated wave by wave (Houston and Chou, 1983). The method described in Section 7 
overcomes these limitations. 

Eventually as water depth decreases and wave growth continues, the local wave amplitude 
will amount to an appreciable fraction of the water depth. In this "shallow water" regime, 
additional modification of the wave system is caused by amplitude dispersion. This wave 
amplification is nonlinear as convective acceleration effects become more important. 
Subsequently, the phase speed in very shallow water is also a function of wave amplitude, 
i.e., a higher wave tends to travel faster than a smaller wave of the same length. More 
importantly the wave height increases faster than predicted by the linear wave theory. 

In shallow water the wavelength as well as the phase speed also becomes a function of the 
wave height, and therefore, not only wave shoaling but also wave refraction exhibits 
nonlinearity. The wave then becomes "amplitude dispersive" in addition to being 
"frequency dispersive". However, nonlinear refraction effects generally have been ignored 
so far, owing to their complexity and their relatively small overall effect on wave 
amplitude. Also due to convective inertia, the individual wave profile may become 
unstable, each wave subdividing into a succession of two or three undulations which travel 
either as solitons or as undular wave packets separated by long flat troughs (Benjamin and 
Feir, 1967). 

In the case where the explosion takes place in shallow water, the basic principle of wave 
propagation remains the same as previously described, i.e., the waves are also affected by 
wave refraction. However the difficulty is compounded by the fact that this effect occurs 
near GZ and the waves are also affected by the nonlinear convective forces. 

So far the problem is resolved in the linear case, at some distance from GZ using an 
asymptotic expansion. The method will be described in Section 7. The nonlinear nearfield 
waves in shallow water has been resolved for a uniform water depth only. 

1.13    DISSIPATIVE PROCESSES BY WAVE-SEAFLOOR INTERACTION. 

As soon as waves generated in deep water reach a continental slope and interact with the 
seafloor, various energy dissipation processes occur. The dissipative processes due to 
wave-seafloor interaction are small on a steep continental slope such as encountered on the 
West Coast of the U.S. But they cannot be neglected on long shelves such as on the East 
Coast, or in the Gulf of Mexico, for example. They are of fundamental importance on the 
exceptionally long shelf of the Bering Sea. 

For gentle slopes, the increase of wave height by shoaling is overcome by the decrease of 
wave height by energy dissipation (in addition to the remaining dispersive effects).   The 
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reasons why this effect is relatively important are twofold: 
1) Explosion generated waves are relatively long (as compared to wind waves) 

and therefore interact with the seafloor in much deeper water than wind 
waves. 

2) Most energy dissipation processes are nonlinear. The larger the wave 
amplitude, the more important the wave damping is. EGWW are of much 
larger amplitude than tsunami and storm waves. 

These dissipative effects have been formulated and presented in Section 6. The present 
developments are based on a combination of theories, laboratory data and field 
measurements, mostly in the range of wind waves. Therefore their application to the 
relatively larger range of EGWW is obtained by theoretical extrapolation. These 
phenomena are not scalable, and in this respect, there are no existing phenomena in nature 
which parallel EGWW. A maximum bottom velocity of 30 ft/sec at the limit of a 6 ft 
boundary layer is conceivable, inducing a shear on the sea floor which remains unheard of 
under any observed natural phenomena. 

Typical values of the maximum particle velocity under the wave crest of an EGWW at the 
still water level (S.W.L.) and near the seafloor are presented in Table 1-6. These results 
have been obtained by application of a nonlinear periodic wave theory over horizontal sea 
floor (Colby, 1984). Particle acceleration remains, of course, smaller than the gravity 
acceleration g as in any gravity wave. The pressure fluctuations are also very large since 
they are of the same order of magnitude as pgH (p is the density, H is the wave height). 
Furthermore, the results are a function not only of the bathymetry, which is generally well 
defined, but also of the soil and sub—soil physical characteristics of the bottom. This 
information is site specific and is not well known in general. 

The wave motion and wave induced pressure fluctuations on the seafloor cause three 
dissipative processes to occur (Colby, 1984). 

1) A turbulent boundary layer is developed over a movable bed (Carstens, et 
al., 1969; Vitale, 1979; Grant and Madsen, 1982). 

2) Coulomb friction in the soil sublayers is generated as a result of induced 
wave pressure fluctuations in soil (Yamamoto, et al., 1978, Yamamoto, 1983; 
Takahashi, 1982). 

3) Energy is lost as a result of pressure induced fluid flow in the permeable 
bottom soils (Putnam, 1949; Reid and Kajiura, 1957). 

The relative importance of these three effects depends upon bottom soil characteristics. (1) 
is generally the most important on sandy shelf, but (2) is more important on a clay bed 
(silt or ooze such as encountered at the mouth of the Mississippi River, the Amazon, the 
Yangtsu), and (3) is more important on coarse sand. 

The energy loss in a turbulent boundary layer is a function of the relative roughness of the 
seafloor. In the case of a movable (sandy) seafloor, in addition to the loss of energy 
resulting from the relative roughness, the bed load regime also influences the energy 
dissipation. 

One distinguishes three movable bed regimes: (1) the equilibrium sand ripple regime with 
alternate vortices on each side of ripple-crests; (2) the post vortex regime as the ripple 
wavelength increases and sand ripples are flattened out; (3) the sheet flow regime, for 
which the flow entrains and transports layers of sediment, contributing heavily to energy 
dissipation. 

For EGWW, all three cases can occur. For large amplitude waves, the sheet flow regime 
prevails and a considerable amount of sediment is moved. The bottom velocity can easily 
reach a very large value, say 30 ft/sec (10 m/sec) at the limit of the boundary layer which 
may be 6 feet (2 m) thick.   Accordingly, the wave-induced shear on the seafloor can be 
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Table 1-6 „ Particle velocities near the seafloor and at 
still-water level under the wave crest 
(maximum value) as function of water depth d, 
wave period T, and wave height H obtained by 
application of the parameterized nonlinear 
wave theory. (Le Mehaute et al, 1984). 

Water 
Depth 

Wave 
Period 

Wave 
Height 

u bottom u still water level 

dft 

<■) 
T sec Hft 

(m) 
ft/sec 
(ni/sec) 

ft/sec 
ra/sec 

300 
(91.4) 

30 200 
(60.9) 

26.7 
(8.2) 

41.2 
(12.5) 

100 
(30.5) 

15.6 
(4.7) 

22.2 
(6.8) 

70 200 
(60.9) 

33.4 
(10.2) 

43.5 
(13.3) 

100 
(30.5) 

21.5 
(6.6) 

26.1 
(7.9) 

200 
(60.9) 

30 100 
(30.5) 

20.3 
(6.2) 

28.4 
(8.7) 

70 100 
(30.5) 

24.6 
(7.5) 

30.6 
(9.3) 

100 
(30.5) 

30 50 
(15.2) 

16.1 
(4.9) 

21.1 
(6.4) 

70 50 20.6 
(6.3) 

25.8 
(7.8) 
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extremely large. 

The results which are relatively well determined for the equilibrium sand ripple regime and 
post vortex regime but rather ill—defined in the sheet flow regime, which, as mentioned 
above, is the most probable regime in the case of large EGWW. It is the least well defined 
because EGWW's are so rarely encountered in nature. Damping coefficients due to 
boundary layer effects have been determined using the best available sources of information 
in the oceanographic and hydraulic literature with theoretical extrapolation. 

As previously indicated, the boundary layer damping coefficient, DR, is a function of wave 

height. Over a relatively short travel distance AS (< 1 n.mi), the wave height variation 
remains small and the damping can be approximated by an exponential decay: 

Hn+l=HnexP[-DB*SJ> (L24) 

where H and H . are the wave heights at two locations along wave rays separated by a 

distance AS. Because of nonlinearity, the damping coefficient Dg remains a function of 

wave height and water depth. The value of Dn corresponding to different soil 

characteristics defined by the sand diameter D is given in Table 1-7. 

Similar calculations have been made recently to account for other dissipative processes. 
The results are a function of the permeability of the marine sediments, density, sand 
diameter, bulk modulus and thickness of sediments. 

The implication of these results for EGWW are: 

1) If a wave originating in deep water is not high enough to break on the continental slope 
(i.e., H < 240 ft, 80 m) it travels over long reaches of the continental shelf without 
breaking because the wave damping effect (in addition to dispersion and refraction) 
overcomes wave shoaling.   This is the case, for example, for the East Coast of the U.S. 

(slope s 10 ). The wave becomes a spilling breaker only in shallower water and evolves 
into a fully developed bore where the steepness of the bottom becomes somewhat greater 
than that of the deeper part of the shelf (Figure 1—19). The steepening of the seafloor 
occurs in the vicinity of the 30 foot (12 m) depth contour, which is less than one n.m. from 
shore. A series of spilling breakers forms a "surf zone", which extends from the shoreline to 
the line of breaking inception of the maximum wave. It is what is known as the "Van Dorn 
Effect". In the past, the wave damping effect seems to have been underestimated. 
Consequently, the surf zone was estimated to extend far offshore on the continental shelf. 
Even though the estimation of the wave dissipation processes are still uncertain, there is 
nevertheless a general concensus that the Van Dorn effect or the maximum surf zone due to 
large EGWW does not extend much beyond that of a very large storm on a long 
continental shelf. This is due to the importance of the wave damping mechanisms by 
wave—sea—floor interactions. 

2) If a wave is large enough to break on the continental slope, (H > 240 ft, 80 m) it will 
most likely be a plunging breaker. When the waves reach a long shelf, the breakers will 
reform as a nonbreaking wave on the continental shelf because of wave damping. (In this 
process, each breaking wave could generate 2 or 3 waves of higher frequency, called 
"solitons"). Then a second breaker will occur nearshore where the bottom becomes steeper. 
This is not the case for a steep continental shelf such as the West Coast of the U.S., where 
once the wave reaches limiting condition and breaks, it will keep traveling towards shore as 
a spilling breaker or as a fully developed bore (Figure 1—19). This implies that at some 
slope steepness, a breaking wave will not be damped enougn to reform into nonbreaking 
waves.    In reality the phenomenon is ill—defined due to the relative randomness of 
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Table 1-7 Wave damping coefficient by turbulent boundary 
layer over a moveable bed. 

DD (m_1) x 106 (SG = 2.6). 
D 

Fine sand Hedi urn sand 
D - D. 1 mm D - 0.5 mm 

Wave period Wave pel ic >d 
Water depth Wave height ( 9ec) (sec ) 

d(ra) 2n(m) 
(ft) (ft) 40 70 40 70 

30 10 30 24 20 16 
(98) (32) 

50 10 9.4 7.7 5.3 4.3 
(164) (32) 

40 66 52 64 50 
(131) 

70 10 4.3 3.6 2 1.6 
(229) (32) 

40 30 24 28 23 
(131) 

90 10 2.4 2.1 .79 70 
(255) (32) 

40 17 14 15 13 
(131) 

70 37 30 37 30 
(229) 

110 10 1.5 1.3 1.6 0.24 
(360) (32) 

40 10 8.9 9.2 4.9 
(131) 

70 23 19 22.0 19 
(229) 
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refractive effects over a long somewhat irregular bathymetry, allowing breakers traveling 
on this critical bottom steepness to appear and disappear at random like whitecaps. 

1.14    WAVE BREAKING AND NEARSHORE PHENOMENA. 

Ultimately as the water depth decreases and the wave height increases (by nonlinear 
shoaling), each wave becomes unstable and, depending upon its steepness and the slope of 
the bottom, will either break as a plunging breaker or as a spilling breaker and surge up 
onto shore. As previously stated, this occurs only if the slope of the bottom is steep enough 
so that the wave damping effect by seafloor interaction does not prevail over wave 
shoaling. 

An approximate simple breaking criteria based on the theory of limit solitary wave 
(MacCowan, 1894) has often been used: 

Hb/dh = 0.78. (1-25) 

H,   is the wave height and dfa is the water depth at the breaking inception.    More 

accurately, the family of curves presented in Figure 1-20 which account for the effect of 
bottom slope, m, and wave steepness should be used (Goda, 1970; SPM, 1977). It is seen, 
for example, that the limit wave height can actually be larger than water depth on a steep 
slope quite unlike the result obtained using the above approximate criterion. The type of 
breaker also depends upon bottom slope and steepness.  An approximate criterion which is 

valid in the range of EGWW (Hb/gT2 < 5*10-3) is proposed: 

TO . g 7Hh/g'I2 . (1-26) 

If m < m , i.e., on gentle slopes, the wave forms a spilling breaker.  If m > mc a plunging 

breaker results. A wave which is large enough to break on the continental slope will 
generally form a plunging breaker, whereas a limit wave which breaks on an inner 
continental shelf will form a spilling breaker. 

Following breaking inception, the crest of a spilling breaker approximately follows the 
breaking index curve defined by H % 0.78 d as long as the slope remains gentle (Figure 

1-21). When the slope m exceeds 2« 10 the spilling breaker evolves into a fully 
developed bore which eventually runs up onto the shore (Le Mehaute, 1963; Divoky, et al., 
1970). 

Whereas the wave energy is dissipated by the free turbulence induced by wave breaking, 
the wave momentum flux (or "radiation stress" or "wave thrust") needs to be balanced by 
an external force. The application of the momentum theorem to the area defined by 1) a 
vertical plane parallel to shore located at wave breaking inception, 2) the seafloor from the 
line of breaking inception up to the shoreline, indicates that in order to balance the wave 
momentum flux towards the shore, an external seaward force is needed. This force is 
exerted by an additional horizontal pressure component of the seafloor on the fluid, 
resulting from a gentle rise (the "wave set-up") of sea-level in the wave breaking zone (the 
"surf zone") (Figure 1-22). This raise of mean sea level is, in the case of EGWW, a 
non-negligible fraction of the breaking wave height.   It is about 10% the breaking wave 
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Figure 1-21. The largest wave (1) does not cause more run- 
up than the wave (2) which breaks at M - 10'2. 
The smaller wave (3) causes less run-up. 

48 



a> 1 
JC P 
P CP 

n 
JN_ 
ia > 

fO 
TJ 5 
0) 
u 0 c p 
0 

r-( CO « 3 
X) T3 

CO <D 
•H t-t 

3 
03 

X 0) 
3 (1) 
iH P. 
>W a 
e e 
3 0 

■P p 
C P 
0) 0 
e-a 
0 
E«M 

0 
0) 
> <D 
(0 
* 

CO 
(0 
a> 
u 

CD u  • 
J= c a 
E-i- H 3 

CM 
CM 

I 

CO u 
3 

•H 
fa 

■o >> 
X 

49 



height for monochromatic waves, but can reach a much higher maximum value in the case 
of transient waves (Le Mehaute, 1971). 

When the wave reaches the shoreline of an open coast, in addition to the wave set-up, the 
wave runs up the shore.   The maximum possible wave run-up is reached by the wave 

 o 
which breaks at a depth where the bottom slope becomes steeper than about 10 . Indeed, 
as previously seen, a larger wave will dissipate its energy farther offshore and will not cause 
much more run-up than a smaller wave which breaks closer to shore. (The only cause for 
a larger wave run-up is the wave set-up.)   For example on the East Coast of U.S. the 

continental slope steepens to a value larger than 10~ , by a depth of about 30 feet, which is 
about 1000 feet offshore. The maximum wave run-up is roughly that of a wave having 
0.78 x 30 feet in height, i.e., 24 feet. The wave run-up of each wave in the EGWW train is 
then practically that of a limit solitary wave at that particular water depth. Accordingly, 
the wave run-up, R , on the top of wave set-up can be estimated by the following 

approximate implicit formula: 

R 25(dh+Rj ,      N 
T?»25m =        b     u , (1-27) 
V tE 

—2 
where H, is the limit wave height where the bottom slope becomes steeper than a 10    , 

and m is the average slope between that point and the maximum elevation reached by the 
water edge. 4r is the horizontal distance between the breaking line and the wave run-up. 

1.15 THE EGWW ENVIRONMENT ON CONTINENTAL SHELVES DUE TO 
LARGE YIELD EXPLOSION IN DEEP WATER. 

In the previous sections a qualitative description of the phenomenology involved in all the 
phases of evolution of EGWW has been presented. The quantitative treatment of these 
phenomena and their integration into a single computer program is extremely complex. 
The methodology used to calculate the EGWW environment in shallow water is site 
specific. Therefore, for practical site specific application, a rather sophisticated computer 
program should be used. 

However, the simple case of a plane bathymetry (2-D continental shelf) is amenable to a 
form of presentation which, at least by interpolation, allows a direct approximate 
assessment of the magnitude of EGWW environment in a multiplicity of situations of 
greater complexity. 

Many continental shelves and continental slopes can be approximated by a plane 
bathymetry. This simplifying assumption allows us to classify offshore bathymetries into a 
few typical categories which can then be used to estimate the EGWW environment. For 
this reason, a computer program has been developed and applied to a number of typical 
shelves for a large variety of yields and distances from shore. The corresponding results 
can then be used for order of magnitude site specific applications at any location. In the 
case of specific complex 3-D bathymetries, the results need to be more carefully 
interpreted due to the vagaries of refractive effects as a function of wave period. 

In order to keep the amount of information to an acceptable volume and still provide the 
reader with the appropriate information for practical use, results have been categorized 
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into typical examples to which other cases could be assimilated. 

Three types of shelves have been considered, whose characteristics are given in Table 1—8. 
Type 1 are the very long shelves (» 100 n.m., 185 km) exemplified by the Gulf of Mexico, 
offshore Galveston. Type 2 are the long shelves (a 60 n.m., Ill km) exemplified by South 
Carolina on the Atlantic coast. Type 3 are the short shelves h 6 n.m., 11 km) exemplified 
by the bathymetry offshore of San Francisoco. It is assumed that the shelves are covered 
uniformly by a 0.5 mm diameter, uniform sand with a 2.65 specific gravity. 

The maximum wave heights along a wave ray perpendicular to shore are presented in a 
series of 3 nomographs (Figures 1—23 to 1—25) giving the maximum wave height reached 
by an EGWW along a bne from GZ perpendicular to the bathymetry towards the shore. 
The period of the maximum wave is also given. The distance is measured from shore in 
n.m. (1852 m). 

There are two figures per shelf corresponding to UCD and AVG respectively. Each figure 
gives the result corresponding to a distance of GZ from shore, corresponding grossly to an 
optimum location: in the case where the GZ is closer to shore, the wave generation process 
is less efficient because of the limits imposed by water depths. On each graph the yields 
correspond to 1, 5, 10, 25, 50 MT respectively, and the periods of the maximum wave 
corresponding to these yields are also given. In all these figures the maximum extent of the 
surf zone can be assessed, because the maximum wave height then becomes the image 
(multiplied by 0.78) of the water depth. 

The sensitivity of the shallow water calculations to variations in friction law is illustrated 
by comparing Figure 1-23 (UCDl obtained with a grain diameter of 0.5 mm and Figure 
1-26 in which friction is completely neglected. It illustrates the importance of friction on 
long shelves and gives an upper bound to the possible error due to friction. The 
introduction of energy dissipation by wave—seafloor interaction considerably reduces the 
extent of the surf zone. 

The time history of the free surface elevation for the first wave train at three locations on a 
long shelf (Type 2) between GZ and the shore is also given (Figures 1-27 to 1-29). Note 
that in the surf zone the wave amplitude is reduced to a constant value proportional to 
water depth. 

1.16    ACCURACY OF RESULTS AND RESEARCH NEEDS. 

Even though much progress has been made in the prediction of EGWW, some uncertainties 
still remain particularly concerning the wave amplitudes. A lesser uncertainty is associated 
with the periods of the waves. 

The accuracy of the results depends upon the magnitude of errors introduced at each phase 
of the generation and propagation processes by the assumptions. A large cause of error 
probably results from extrapolating H.E. data to the nuclear range. Errors are also due to 
neglecting nonlinear convective effects: nonlinear refraction, instability of wave profile and 
apparition of solitons, caustics on 3-D bathymetry with crossing of wave orthogonals, 
reformation of nonbreaking waves after breaking, transient mass transport, and wave 
set-up. 

Energy dissipation processes by wave-seafloor interaction also involves uncertainty due to 
both marginal knowledge of the effect of sediments, particularly in the sheet flow regime, 
soil response and the lack of precise information on the in situ soil characteristics. The 
comparison of the results with the case where friction is completely neglected (Figure 1—24 
and Figure 1-26 at UCD) established an upperbound for this uncertainty. 
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Figure 1-23. A comparison of wave heights along a wave ray 
perpendicular to the bathymetry from G.Z. to 
shore for yields 1, 5, 10, 25, 50 MT at UCD 
and AVG for a very long shelf. 
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Figure 1-24, A comparison of wave heights along a wave ray 
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shore for yields 1, 5, 10, 25, 50 MT at UCD 
and AVG for a long shelf. 
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Figure 1-27. Time history of free surface elevation of the 
first wave train at a distance from G.Z. of 50 
nm over a long shelf (Type 2). 
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Figure 1-28, Time history of free surface elevation of the 
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as a result of dispersion. 
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Figure 1-29, Time history of free surface elevation at a 
distance from G.Z. of 163 nm over a long shelf 
(Type 2). Note the cut-off in wave heights 
due to due to depth control. 
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It is evident that the research needs have to be dictated by strategic, tactical or operational 
implications, as presented in the following section. From a scientific point of view, the 
research in practically all the aspects of the EGWW generation and propagation processes 
can be pursued for further accuracy. A number of important gaps remain concerning the 
effects of soil, the intricacies of UCD, the propagation of nonlinear waves over 3-D 
bathymetries, and the dissipative processes due to wave/seafloor interaction. 

Despite these limitations, a thorough assessment of the state of the art indicates that at 
least orders of magnitude are represented. The state of the art is satisfactory in many 
cases where operational or strategic decisions are to be made. This may not always be 
sufficient in some important specific cases where the vulnerability of new defense systems is 
to be considered. 

1.17    TACTICAL, STRATEGIC AND OPERATIONAL IMPLICATIONS. 

Many tactical and strategic implications resulting from the effects of EGWW have been 
considered in the past. Overall the effects of EGWW are mild and generally overcome by 
other lethal effects. By their very nature of being gravity waves, the accelerations of the 
wave field are always smaller than the gravity acceleration, g. The only exception is 
during the growth of the initial cavity. EGWW induced forces and accelerations are 
generally small compared to shock waves for example. A structure (for example, a silo 
built on the continental shelf) can easily be designed to sustain EGWW. Ships subjected 
to EGWW in deep water may be subjected to large amplitude motion, but the wave 
periods and wave steepnesses are such that the accelerations do not present more problems 
than ordinary wind waves or swell, except near GZ. However, EGWW have a longevity 
and a range which far exceeds other lethal effects, so that their effects can be felt at long 
distances from GZ, where other effects have become negligible. 

Initially, the effects of EGWW due to large yield (> 10 MT) was considered a potentially 
serious threat. "A tsunami wave of 1 ft height in deep water may produce 20 ft of run-up; 
so an EGWW of 100 ft height in deep water may have devastating effects on the coast and 
even far inland". This problem was resolved when it was demonstrated that the analogy 
between tsunami waves and EGWW does not hold: EGWW dissipate most of the energy 
on the continental shelf, first by wave-seafloor interactions, second in a nonsaturated 
breaker as previously explained (Le Mehaute, 1963). Therefore, the damages would be 
limited to coastal installations much the same as would result from large storm waves. For 
example, on the East Coast, the sand dunes may be overtopped. 

The second concern was about harbor oscillations. Indeed, the periods of EGWW due to 
large yields, correspond to the natural period of oscillations of typical harbor basins as seen 
on Table 1-3, so that even an explosion at a very large distance generating at an entrance 
of a harbor a "long wave" of small amplitude induces a standing wave (seiche) of 
significant amplitude. This is due to the fact that long waves do not break like wind waves 
on beaches, rip-rap or wave absorbers. They reflect their energy back and forth causing 
standing wave which at times match the natural oscillation of the harbor basin. Indeed, 
since the "periods" of EGWW decrease slowly with time, eventually the excitation at the 
harbor entrance will match successively the natural periods of oscillation of the basins 
causing resonance. This phenomenon is known under natural circumstances to create a 
problem for moored ships which can break the mooring lines. In the present context of 
EGWW, the problem has been investigated in the past, when field tests were considered. 
Due to the Test Ban Treaty these tests were never done. At the time, it was a source of 
concern for harbor basins even at a very large distance from GZ. This subject has been 
amply covered in the past (Le Mehaute, 1971) and will no longer be covered in the present 
treatise. 

The effect of EGWW which has retained the most attention is due to the possibility for 
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large yield of generating a large surf zone on the continental shelf which could be lethal for 
transiting surface ships or submarines. For example, a submarine caught in a 100 feet 
breaker may pitchpole and hit the seafloor violently. An aircraft carrier might capsize. 
This is known as the "Van Dorn" effect (Moulton and Le Mehaute, 1980). One has seen 
that this effect was exaggerated. Indeed, in the case of long shelves as on the East Coast of 
the U.S.A. the wave would be damped by wave-seafloor interaction before reaching limit 
conditions. In the case of short shelves, as on the West Coast, the surf zone would 
necessarily be small. Nevertheless, this potential threat still exists. The danger would be 
particularly acute in the case of a landing operation where an EGWW can cause a 
considerable amount of casualties to landing ships. 

The EGWW environment on the three typical shelves previously described are presented in 
plan view in a coordinate system defined by distances offshore X and alongshore Y, Figures 
1-30 to 1-32. This presentation allows assessment of the alongshore lateral spread of the 
maximum height as well as the direction of the maximum wave. Each graph presents a 
family of isolines of constant wave height. After breaking, the height of the breaker is 
assumed to be controlled by water depth (Hb/db = 0.78) in which case, the isolines of 

constant height are simply parallel to the bottom contours. The line of maximum breaking 
inception is defined by the departure from a curve isoline to a straight line defining the 
maximum extent of the surf zone. For the three nomographs the yield is 10 MT and the 
distance from GZ is 10 n.m. from the 6,000 ft (1829 m) contour. 

Finally, the case of relatively low yield, such as found in tactical weapons (< 50 KT), has 
also been investigated in regard to the vulnerability of moored ships and submarines inside 
a naval base. Submarines at surface are not very vulnerable to shock waves since they are 
such hard structures. The question was raised whether EGWW may cause the breaking of 
mooring lines, the hitting of the seafloor by the submarine hull, or even the grounding of 
the hull, so that the submarine if not killed, can at least be impaired operationally. It was 
found that, under certain circumstances, this could occur. In this operation, however, it is 
realized that the amplitude of EGWW is depth controlled, and that it is not possible to 
generate a large EGWW in shallow water, regardless of yield. 

For these reasons the optimum general scenario for the best use of effects of EGWW would 
be: 
1) A few very large yield detonations offshore of the continental shelf may create a 

large surf zone on the shelves, possibly causing havoc to a landing fleet, or to 
transiting surface ship and submarines. However, in order to be significant, the 
yield must be so large that it may not be available in the present nuclear arsenal (> 
50 MT). In this regard one 50 MT explosion in deep water is more lethal than five 
10 MT explosion, in the sense that it would create a larger surf zone. Still, this 
scenario has limits resulting from energy dissipation processes by wave seafloor 
interactions. 

2) In the case of a naval base, a multiplicity of small tactical weapons (< 1 KT) would 
be more efficient than a smaller number of larger ones. This is due to the fact that 
the wave heights are depth controlled. The efficiency, e, of shallow water explosions 
is given by the ratio of the energy in waves to the energy given by the explosion. It 
is given by 

<= 0A5S (^r/i* > ("a). 

where the water depth d is in feet, and the yield W in lbs of TNT (Le Mehaute and 
Khangaonkar, 1991).  Typically, at most only 4% of the explosion energy is transmitted in 

61 



0111. 

< u. 

b 

20 100  120  140  160  1B0 40   60   60 

DISTANCE FROM SHORELINE ( M1 ) 

60 

500 

1° 
200 

B0   100  120  H0  160  1B0  200 

DISTANCE OF GZ FROM SHORE - 210.0 NM 
YIELD STRENGTH - 10.0 MT 
BURST DEPTH LOCATION - LCD 
UATER DEPTH AT BURST - B000.0 FT 
CRATER RADIUS - 11751.BFT 
CRATER LIP HEIGHT URT MSL - 911.8 FT 
PERIOD OF MAXIMUM NAVE - 58.8 SEC 
SOIL PARTICLE DIAMETER - 0.5 MM 1111100 

Figure 1-30. Very long shelf Type 1, 
maximum wave height. 

Plan view of the 

62 



o 
500 

20 

20 

40    60    80    100   120   140 

DISTANCE FROM SIIORELirE ( NM ) 

40    60    60    100   120    140 

o 

160 

160 

DISTANCE OF GZ FROM SI ORE - 170.0 tJM 
YIELD STRENGTH.          - 10.0 MT 
BURST DEPTH LOCATION     - UCD 
UATER DEPTH AT BURST     - Ö000.0 FT 
CRATER RADIUS           - 11751.BFT 
CRATER LIP (EIGHT LRT MSL - 911.8 FT 
PERIOO OF MAXIMUM UAVE   - 5B.8 SEC 
SOIL PARTICLE DIAIETER   - 0.5 MM 

Figure 1-31.  Long shelf Type 2 
wave height. 

Plan view of the maximum 

63 



64 



the form of water waves. 

Underwater explosions are poor wave generators. For these reasons the subject presented 
in this treatise has traditionally taken a back seat in the research on the effects of 
explosion. Nevertheless EGWW needs to be evaluated and known. For example, the effect 
of EGWW was used erroneously as a reason for not locating launching silos on the 
continental shelf. Whatever the many reasons for such decision, EGWW should not have 
been one, as one can certainly design an underwater structure capable of withstanding their 
impact. EGWW-induced pressure has also been considered for triggering pressure mines 
on beaches during Operation Desert Storm. It was called Operation "Storm Wave". It 
evidently did not work as the reader of this treatise might have surmised. Whatever its 
importance, the subject of EGWW belongs to the arsenal of effects which need to be 
known. 
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SECTION 2 

LINEAR THEORY OF IMPULSIVELY GENERATED WATER 

WAVES ON A HORIZONTAL BOTTOM 

2.1      DERIVATION OF A GENERAL MATHEMATICAL MODEL. 

The theoretical problem consists of determining the wave field resulting from a localized 
disturbance of the free surface. The corresponding mathematical model is a synthesized 
approach of the methods presented by Lamb (1932), Kranzer and Keller (1959), and Stoker 
(1957). The method which is developed here is the most general and is able to accept as 
initial conditions any form of initial disturbances (Le Mehaute et al., 1987). 

The wave motion is defined with respect to time t and space (r,z,0), in a cylindrical 
coordinate system, centered at ground zero (GZ). The parameter r is the radial distance 
from GZ and z the vertical distance (positive upward) from the still water level (SWL). 
The water depth d is constant and the motion is symmetrical with respect to the axis oz, 

{■gn = 0).   The motion is irrotational allowing the definition of a potential function 4> = 

$(r,z,t) and the free surface is r?(r,t). 

The motion is nondimensionalized with respect to water depth d, such as the dimensionless 
water depth becomes unity and 

r*, z*, Tj* = (r, z, T])/d 

t* = t[0/~d 

V*(u^ w) = V(uf w)/[gT (2.1) 

v* = v/pgd 

a* = a -JKfg 

<j>* = <t>/d I gd 

where g is the gravity acceleration, V is the velocity, u and w denote the radial and 

vertical partical velocity, respectively, p the pressure and a is frequency. 

In terms of dimensionless variables, the equation of motion is given by 

lU'tn + tn + Uv (") 

It is understood that the notation * has been dropped from the nondimensional variables 
and the equation is dimensionless.    In the following of this chapter, all notations are 
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dimensionless  unless  otherwise  specified.     Also,   the  nonlinear  terms   are  neglected. 
Accordingly, the free surface boundary condition is 

<t>t = ~ V ~ V 
for z = T] * 0 (2.3} 

At the bottom 

<pz = 0 for z = -1 . (2.4) 

A general solution to Equation (2.2) is of the form 

<t> = F(T) G(Z) [A sin at + B cos at]. (2.5) 

Inserting (2.5) into (2.2), yields 

§-=7^"+|F;ä*8, (2.6) 

where k is an arbitrary constant and the primes denote partial differentiation with respect 
to the argument. The solutions to Equation (2.6) are 

F(r) = A1J0(kr) + B1Y0(kr) (2.7) 

G(z) = A2ekz + B2e~kz. (2.8) 

where J   and Y   are zero order Bessel functions of the first and second kind, respectively. 
Since the solution must be finite when r -» 0 

F(r) = At Jo(kr) (2.9) 

and inserting Equation (2.4) into Equation (2.8) gives straightforwardly 

G(z) = cosh k(l + z) . (2.10) 

Then the solution is of the form 
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cosh k(l + z) 
<f> = JQ(kr) [A sin at + B cos at], (2.11) 

cosh k 

which, when introduced into Equation (2.3) yields the dispersion relationship 

9 
a   = k tanh k, (2.12) 

k is the dimensionless wave number (k = 2 ird/L). Since the solution is linear and k is 
arbitrary, the most general solution is given by a continuous linear superposition of the 
form of solution presented in Equation (2.11), i.e., 

oo cosh k(l + z) 
<t>(r,z,t) = I   JQ(kr) [A(k) sin at + B(k) cos at]k dk , (2.13) 

o cosh k 

The coefficients A(k) and B(k) are defined from the initial free surface conditions at time 
t = 0. 

2.2      INITIAL CONDITIONS. 

The problem now consists of defining the initial conditions imposed on the fluid by the 
underwater explosion. In hydrodynamic terms, this could be done by considering that the 
explosion causes either: 1) a positive or negative instantaneous pressure or impulse on the 
free surface I(rQ,0), 2)  an initial free surface negative displacement in the form of a cavity 

or crater,  3)  a positive elevation forming a dome above the still water level T) (r ,0), or 

4) an initial downward or upwards velocity of the free surface w (r ,0). 
'ov o' 

sv o' 

The problem now consists of relating these physical definitions to the potential function 
(Equation 2.13) at time t = 0. 

1) An initial dimensionless impulse I at the. surface is defined by 

PfrJ = I(rJ W) at z = no = 0 (2.14) 

where 6 is the Dirac delta function which is 1 at time t = 0 and 0 otherwise. Inserting this 
into Equation (2.3) and since 

Jpdt = / IfrJ 6(t) it = l(T() = }t=0 4>t dt = <t>(ro,0) (2.15) 

then 
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I(ro,0) = <t>(ro,0). (2.16) 

2)   Also referring to eq. (2.3) where p = 0, the initial dimensionless disturbance of 
the free surface elevation 77  (r ,0) in terms of the potential function is: 

Vo(ro,0) = - <}>t(ro,0) . (2.17) 

w ,then 
3) If the initial conditions are defined by a dimensionless velocity of the free surface 

w/ro,o; - - <Pz(ro>0) , (2.18) 

or alternately 

Then Equation (2.13) at time t = 0 reduces to one of the following, depending upon the 
type of initial condition which is used. 

I(rJ = J   dkkJjkr)B(k), (2.20) 

VV = ->   dkkJo(kr)a(k)A(k), (2.21) 

Equations (2.20) to (2.22) can be inverted by virtue of the Fourier-Bessel Theorem.  Then 
introducing the notation Hj, H , H   one finds: 

R 
Hj(k) = B(k) = !   WVVVV (2-23) 

Hn(k) = - A(k) a(k) = /    VVV*VrodV (2-24) 
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and 

Hjk) = B(k) a2(k) = /* w/r^ JQ(krJ rQ drQ , (2.25) 

where R is the dimensionless maximum value of r corresponding to the limit of the initial 
disturbances. (The integrals from R to infinity are nil.) Note that the H-'s are the Hankel 
transforms of I, T/Q, wg respectively. They are independent of the physical definition of the 
initial disturbance, i.e., for an identical mathematical definition of I, rj , and w , the H.'s 

0/5 1 
are mathematically the same but they are dimensionally different if converted into 
dimensional form. 

Inserting Equation (2.23) to (2.25) into Equation (2.13) yields: (in the three cases 
considered here above) 

(fi/r.z.t) = J   dk Hj(k) J(k) cos at, (2.26) 

<t>v(r,z,t) = I dk Hv(k) J(k) s-^ , (2.27) 

tw(r,z,t) = /" dk Hjk) J(k) c-f^J!i , (2 28) 

where 

The free surface elevation given by Equation (2.3) then becomes in the three cases: 

CD 

Vj(r,t) = J kdkHj(k) JQ(kr) a sin at, (2.30) 
o 

\(r,t) = - J kdk H (k) J (kr) cos at, (2.31) 
' o ' 

%(r,t) = fkdk Hjk) Jo(kr) s-i%-°t. (2.32) 
o 
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w (2.34) 

Note that the only differences in the time functions between the three forms of initial 
conditions are 

f(t) = a sin at, cos at, ^^ , (2-33) 

in Equations (2.30) to (2.32) respectively. Note also that 

and 

dr\ d2r) 

The formulation (2.30) to (2.32) is very general and is valid for any kind of initial 
conditions and their linear superposition so that the general solution is: 

v(r,t) = fjjhr) [H (k) cos at + (Hflt) o + Hjk) a  *) sin at]k dk.        (2.36) 

In the general case, the integral (2.36) cannot be solved analytically. However there exists 
a number of numerical methods which allows its integration. One is by Fast Fourier 
Transform. There also exists a number of simplifying assumptions which can be 
introduced, which permits its analytical integrations. 

2.3      INTEGRATION BY FOURIER TRANSFORM. 

Consider the time history of the free surface elevation rj(t) at a particular distance r from 
GZ. Then consider the Fourier transform pair defined by 

V(t) = 4F I* A(°) e~iat da , (2.37) 
—tu 

and 

A(a) = f \(t) eiat dt, (2.38) 
—CD 

where A(a) denotes the complex Fourier coefficients defined by 
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A(c) = F1(a) + iF2(a). (2.39) 

FJa) is the real part and FAa) is the imaginary part of A(a). Introducing (2.39) into 
(2.37) 

v® = h^ FiW e~iat da + i F2^ e~iat dal> (2-4°) 

which is 

1      ,W  fP   /   ,        /   ,1   ,   n   /   ,   •   /   .wJ      ,   t        " I® = fe '   [FjMcosffft) + F2(a)sin(at)Jda + fa /   ^^COä ^ 
—00 —CD 

- FJa) sin (at)] da. (2.41) 

Since r/(t) is real, the Fourier coefficients follow the symmetry defined by A(—a) = A (a) 
where A   is the complex conjugate of A. This implies that 

FJa) is an even function; or FJ-a) = FJa) , (2-42) 
and 

F2(a) is an odd function; or F2(-a) = - F„(a) . (2-43) 

Therefore, the 2nd part of Equation (2.41) 

55P /   lF
2(

a) cos(ffi) ~ FJa) sin(at)] da = 0 . (2.44) 
—OD 

Thus 

1® = H '   Fl(<x) cos^ + F2^ sin(at^ da ' (2-45) —a» 

which can be written using eqs. (2.42) and (2.43) 

V(t) = ± Iw [F1 (a) cos(at) + F£(a) sin(at)] da . (2.46) 

This is true for a time series recorded at any distance r, and since the group velocity 
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W=|?, (2.47) 

then Equation (2.46) becomes 

V(r,t) = | / [FJo) cos at + Fg(a) sin (at)] V(k) dk. (2.48) 
o 

Equations (2.36) and (2.48) are identical provided 

■K k J (kr) 
F1(a)=       V(°hJ     Hv(k), (2.49) 

and 

* k JJkr) .„ ... ■ -   -1 Fd°)=—vftr~{Htk)a + H*(k)a J- (2-5°) 

Thus if the initial Hankel transforms H(k) are known, the solution is simply Equation 
(2.37) where the real and imaginary parts of A(a) (Equation 2.39) are given by Equations 
(2.49) and (2.50). 

2.4      OVERVIEW OF ANALYTICAL AND NUMERICAL SOLUTIONS. 

In the case where the initial conditions I, TJ , w  are defined numerically, then the problem 

is solved numerically. First the H(k) functions are determined (Equations 2.23 to 2.25). In 
general this numerical integration does not present much difficulty.   For r   small, J (kr ) 

can be replaced by the first few terms of its power series expansion. 

The numerical integration of Equation (2.36) is much more complex since it has to be 
carried out from 0 to infinity and the integrand is, in general, a product of slowly 
converging oscillating functions. Even in the cases where the initial disturbances allow an 
analytical solution to the Hankel Transforms (Equations 2.23 to 2.25), an exact analytical 
solution to Equation (2.36) is not possible. This is due to the complexity introduced by the 
dispersion relationship (Equation 2.12) through the cosine and sine functions of the 
integrand. At this time the standard procedure is by Fast Fourier Transform, such as 
given by Equations (2.37) combined with Equations (2.49) and/or (2.50). 

However a number of simlifying assumptions can be introduced in the integration of 
Equation 2.36. Then partially valid solutions are obtained when combined with some 
analytical forms of the H(k). The solutions are obtained in closed forms, from which a 
clearer picture of impulsive generated water waves emerges. 

In order to understand the relative validity of the simplifying assumptions, one must note 
that the energy spectrum is distributed as a function of the wave number k. The small 
values of k correspond to the wave elements which travel the fastest (i.e., the leading 
waves), the larger values of k should yield the wave trailing behind. Accordingly, any kind 
of assumption which relates to the k values is indicative of the relative accuracy which is 
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obtained for different parts of the wave train. The relative validity of the simplifying 
assumptions is dictated by the location of the energy peaks within the wave train and their 
relative effects. 

For example, if the energy is mostly in the leading waves, then an assumption based on k 
<< 1 would be valid. If the trailing waves are the most important, then assumptions 
based on k >> 1 are introduced. In general, we may expect that the energy spectrum will 
be peaked near a wave number corresponding to a wave length of a small multiple of the 
initial disturbance radius. 

Referring to Equation (2.12), it appears immediately that the assumption k << 1 leads to 
a = k. Then, neglecting that part of the integral (2.39) from a large value of k to infinity, 
should yield a negligible error. In principle, this assumption is valid for the tip of the 
leading wave, in very shallow water, or for large values of the parameter R (R >> 1). The 
solution is then nondispersive. 

In the case where k < 1: 

a = [ktanh kf/2 ~ Jfc - t- , (2.51) 

and a mildly dispersive solution is obtained, which is valid for the leading wave. 
When k >> 1, then 

a = k1/2 . (2.52) 

The leading wave solution is not valid, but the trailing wave, in deep water, for small value 
of R are then obtained. 

The solution at GZ (r = 0) or for small values of r is also of great interest, since it allows 
the determination of the time history of the dome or cavity caused by the explosion. Then, 
when r = 0, i.e. at GZ: 

Jo(kr) = 1 (2.53) 

which allows a considerable simplification (both in the analytical and numerical schemes). 
A number of nondispersive and dispersive solutions can then be obtained.    Actually, 

dispersion needs time and distance to be effective. Therefore the dispersive (o=k ' ) and 
nondispersive (^=k) solutions are nearly identical quantitatively at GZ. (It will be seen 
that the motion at GZ is nearly nonoscillatory and stops very rapidly.) 

Probably the most frequent approximation is kr >> 1 which is valid for the trailing wave 
at a large distance from GZ 

asymptotic expansion namely 

at a large distance from GZ.    Then JQ(kr) can be replaced by the first term of its 

J0(kr) = (fa      cos (* - i ■ (2-54) 
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The insertion of this approximation into Equation (2.39) allows us to define a number of 
analytical solutions which are obtained by the method of the stationary phase. This 
method is described in the following section. It is emphasized that this solution is not valid 
for the leading wave nor for any waves close to GZ. Despite these limitations, it has been 
the most widely used method in the field of EGWW. 

Finally, one can also mention the power series solutions which are valid for all wave 
numbers that k < T/2. The method is based on the combination of power series in k, i.e., 
each function of the integrand in Equation (2.39) is replaced by a power series. The terms 
of equal value in k are combined and integrated analytically.  This method was initiated by 

Whalin (1965) and pursued to a power k by Le Mehaute, et al. (1987). This method has 
now been dropped in favor of the others and will not be presented here. 

In summary one has: 
1) the numerical solutions uniformly valid for all values of k and r obtained by 

Fast Fourier Transform (Le Mehaute, et al. 1989; Wang, et al. 1989; 
Khangaonkar 1990). 

2) the nondispersive solutions valid for the tip of the leading wave and nearly 
valid within the confines of the initial disturbance (Wang and Le Mehaute 
1987; Le Mehaute, et al. 1987) 

3) the mildly dispersive solution valid for the leading wave (Wang 1987), and 
4) the asymptotic solutions and the method of stationary phase valid for the 

trailing wave at a distance from GZ (Kranzer and Keller, 1959; Le Mehaute, 
1971). 
The relative limits of these approaches will be presented in section 2.10. 

2.5      ANALYTICAL SOLUTIONS- THE STATIONARY PHASE APPROXIMATION. 

The method of stationary phase was originally developed by Kelvin (See Jeffreys and 
Jeffreys, 1956, for example). 

Assuming kr >> 1 , i.e., at a large distance from GZ, JQ(kr) in eq. (2.36) is replaced by 

its asymptotic form (Equation 2.54). Then Equation (2.36) can be written: 

ri(r,t) = I   iF^kJfcosfat -kr + j) + cos(at + kr-j)] 

(2.55) 

+ F2(k) [sin(at - kr + j) + sinfat + kr-Z)]\ (•£)     dk, 

where 

Ffi) = Hn(k) (2.56) 

Ffi) = HJ(k)a + Hyf(k)a-1. (2.57) 

For a fixed value of r, the solution appears as the sum of sinusoidal functions varying 
rapidly with time, modulated in amplitude by the strength 
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For a small change in k, the contributions of cosine and sine tend to cancel.  Furthermore, 
the strength depends upon the particular mode k = k. which arrives at that time (for which 
F(k) = F(k-)) and the neighborhood points around k.. 

Since, energy travels at group velocity V(k), each mode k. will be exited at a time t such as 

VN=^=V (2-58) 

which is equivalent to say that the phase 

Mk) = (*-£), (2.59) 

is constant. Indeed 

which corresponds to a stationary phase. Consider a small neighborhood around k-, such as 

W2^j(l-i/V-- (2.61) 

For simplicity, consider the term Fj(k) only.   By taking the contributions of the wave 
elements arriving at r at time t according to Equation (2.58), then Equation (2.55) 
becomes 

i    "V^ f   w 1 9   «       i 
V(r,t) = (-^J     FjfkJ Re\ J   exp [- it(i>{ + \(k- k/ tjdk] , (2.62) 

or 
k 

V(r,t) = (4r//2piN "P t- { *#*«{/" exp[-^(k- kMjdk) ,        (2.63) 

which yields after some arithmetics 
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1/2 
V(r,t) = FfiJ f^r]      Re \fexp(-i ^ • (2.64) 

Note 

n      d   V(kJ 
^=-1^- (2-65) 

Therefore referring to Equation (2.59), by considering all the stationary points for which k 
= k-, the solution becomes 

FlM    k Vfk) */2 

l(r,t)=^(JdV
(
/d{J      cos(at-kr). (2.66) 

Similar calculations done on F2(k) yields a similar expression.    Replacing the F(k) 
function by Equations (2.56) and (2.57) and adding gives the general analytical solution: 

nM-i(^Jr//2L(k)f (2.67) 

where 

L(k) = H (k) cos (at - kr) + (Hfi) a + Hjk) a'1) sin(at - kr) . 

The group velocity V(k) is given by differentiating the dispersion relationship (Equation 
2.12) 

vfk) _ da _ r _ 1 jtanh kU2 1      f_k V2 (t) RR, 

This is equivalent to considering that the wave motion is defined by rapidly time varying 
functions such as 

rCOS 

f(r,t) = \      [(k tanh k)1/2 t - kr]\ , (2.69) 
*-sin ' 

where the amplitudes of the modulations are 
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An(k), 

AI,Jk)- 

i L±vü0j1/2 

7' -dV/dV 

Hn(k) 

. Hj(k) a + Hjk) a -1 
(2.70)(2.71) 

For small values of r, the stationary phase approximation is no longer valid, because the 
asymptotic value of the J (k,r) given by Equation (2.54) is no longer valid. 

2.6      DETERMINATION OF THE NUMERICAL INITIAL DISTURBANCES. 

The initial conditions I, rj , w   are fictitious linear equivalents to the complex explosion 
0      s 

wave generation process.    Therefore, it will be illusory to determine these from the 
explosion physics and bubble dynamics within the confines of the linear approximation.  In 
particular, since the energy dissipation processes are neglected, one should expect that the 
real water motion will be larger than its linear equivalent.   Therefore the only process by 
which the initial conditions can be determined and related to explosion parameters is 
through the analysis of wave records. 

Given the time history r/(t) at a distance r from GZ, and referring to Equations (2.38) and 
(2.39), then 

and 

Fj(a) = ReA(a) , 

F2(a) = Im A (a) , 

(2.72) 

(2.73) 

which are obtained from the forward Fourier transform of the wave record rj{t) (Le 
Mehaute, et al. 1989; Wang, et al. 1989; Khangaonkar and Le Mehaute 1991). 

Given F,(a), the function H (k) can be obtained from Equation (2.49): 

HJk) = 
FjM V(k) 

ir k J (kr) 
(2.74) 

Theoretically, as long as the wave propagation follows the linear wave theory, all the wave 
records r^i), obtained at different distances r for the same experiments, should yield a 
unique function distribution for H (k). Then by applying the Fourier—Bessel theorem and 

inverting Equation (2.24), the initial condition for n (r ) is obtained 

W = >   H(k)Jo(kro)kdk 
0      ' 

(2.75) 
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The numerical problems associated with that procedure are resolved by replacing F1/JQ in 

Equation (2.74) by the equation of the envelope JQF/J0   + e (e is a very small number). 

Now given F2(a), by the same procedure one obtains: 

,     FJa) V(k) 
EJk)o + Hjk)a~1^   lkJo(kr)- (2-76) 

The solution for Hj(k) and H (k) cannot be resolved without additional information.  The 
simplest method consists in assuming that the initial condition is either that of a free 
surface elevation 77 (rQ) and an impulse I(rQ) with the effect (contribution) of wg(rQ) 
already included into the two others, or it is that of r/0(r0) and a velocity wg(rQ) with the 

effect of initial impulse included in these two. 

In the first case, inverting Equation (2.23) and inserting the expression for Hj(k) gives 

0   FJa)  V(k) 

and in the second case, inverting Equation (2.25) and inserting Hw(k) 

«c a FJa) V(k) 
W = /     ihJJkr)  V*V^ ^ 

Then r] (r ) and I(r ) or 77 (r ) and w (r ) are related to the explosion parameters 

of the corresponding wave records. 

2.7      ANALYTICAL FORMS OF INITIAL DISTURBANCES, CLOSED FORM 
SOLUTIONS. 

In order to parameterize the initial disturbances as a function of the explosion parameters, 
it is convenient to match the curves I, rjn, and wfr ) obtained numerically by Equations 
(2.76), (2.77), and (2.78) with analytical functions which can be Hankel transformed. Then 
the EGWW model will be obtained by simply relating the corresponding function 
parameters to the explosion parameters. 

Referring to Equations (2.23), (2.24) and (2.25), note that the Hankel transforms Hj, H , 
H are identical for the three physical definitions (impulse, free surface elevation and 
velocity) of the initial conditions if I, T) , and wg are defined by the same mathematical 

function, regardless of their physical meaning. 
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There exists a number of functions for I, rr, w„ which can be Hankel transforms and are 
physically reasonable candidates for fictictious linear representation of explosion generated 
disturbance. Some of these candidate functions can be indiscriminately positive or negative 
in which case, the corresponding sign for r/(t) is changed from positive to negative. 

Seven solutions are presented in Table 2-1. These solutions could be considered either as 
an impulse, a free surface elevation or a velocity indiscriminately, so that there are in fact 
21 types of candidate solutions. Furthermore, since the theory is linear, these 21 solutions 
can be added linearly with any appropriate coefficients. (The maximum amplitude of the 
initial disturbance displayed in Table 2-1 is unity.) Accordingly, the most adaptable 
mathematical linear models for EGWW can be represented by any of the 21 functions of 
the following forms and their linear superposition. 

Vj(r,t) 

1 o 

Vjr.t) w 

%Jt(kR) 

JJkR) 72" 2 

| Js(kR) 

^ J/kR) 

R2e-kR 

^expf-^f] 

(kR)n'1RSexp (-kR) 

sin at 

cos at 

a sin at 

Jo(kr)kdk 

(2.79) 

Using the stationary phase approximation, the corresponding ?/(r,t) functions can be 
expressed in closed form as follows 

%(r,t)'\ w 

H(kR) 1     *  V(k) 
r (-dV/dk)1'2 

— sin(kr-at) a 
cos (kr-at) 

a sin(kr-at) 

(2,80) 
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Table    2-1.     Hankel   transforms. 

initial disturbance      initial conditions 
cases     /7g, *•„ / r)0, w„ I 

Hankel 

transform 

<7o."». I 

vol.*    energy* 

nR7     InogR1 

uniform 

-r-i---nr 
,„£*„ = /?     -l 

rD>R0 = R 0 
-7y,(*Ä) 

AC 

r0%R0 = R 

r0>R<» = R       0 

-7j^l(*Ä) 
k 

parabolic 

zero volume 

ro$Ro=R       2^ 

rB>R0 = R        0 

■7j(*Ä) 

quadric 
zero volume r« % R» = /3/? 

r0>Rt = ]fiR   0 

--j74(**) 

Ä3 

2 _L ,?\J/a (R1 + ^) 
-v?V 

Gaussian 

- exp -(?)'] 
Ä2 [   lkR\7-\ 
— exp [-(T)J 

A^TT (tf' + O J 

Ä 

(Ä2 + d) 
(*/?)n_l exp (~kR)R2 

These two columns are for free surface elevation tjü only. 
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{IM) 

where H(kR) is the Hankel Transform of the initial conditions, regardless of their physical 
characteristics. 

Note that some solutions  (cases 3  and 4)  satisfy continuity when the free surface 
disturbances are defined by a free surface elevation n (r ).   For the other the displaced 
volume is determined. 

R 
Vol = 2*J    nirjr^r^ (2.81) 

Also the corresponding potential energy E is determined. 

R    % 
E = pg2*J    [}    Vjrjdrjjr^r^ (2.82) 

o     o 

The theoretical parameters are the A and R coefficients. Note also that the last Hankel 
transform (Case 7) has an additional parameter, n. 

Considering the number of possibilities, it is easily realized that practically any kind of 
numerically determined initial distubances, Equations (2.75), (2.77), and (2.78) can be fit 
by analytical functions. Therefore the accuracy of the method is only limited by the limit 
of validity of the linear wave theory. Also the complexity of the calibration increases with 
the number of parameters A and R to be determined. We will see in the next chapter, that 
the accuracy and numbers of experimental data do not justify the use of more than one or 
two Hankel transforms. The problem then boils down to determining the most appropriate 
functions which fit most of the data. If only one function is used, then only one value for A 
and one value for R needs to be determined as a function of the explosion parameters. 

The mathematical linear model for EGWW then exhibits a remarkable simplicity. What is 
even more remarkable, is that such a simple model translates so accurately to such a 
complex phenomena, particularly in the case of deep and intermediate water depths. In 
shallow water, the nonlinearity of the problem imposes more severe limitations, as will be 
seen in Section 4. 

The general characteristics of EGWW, such as mathematically formulated herewith, have 
been presented in Chapter I. Basically, there are two types of solutions. 

The first one is described by a Hankel transform in the form of a Bessel function, in which 
case the solution appears as a succession of wave trains of decreasing amplitude and 
duration... (cases 1 to 4 of Table 2-1). Figure 1-15 is a typical example of this type of 
solution, given by a parabolic crater with lip (case 3). 

The second ones are in exponential form (cases 5 to 7), for which the wave amplitude 
decreases monotically. There is no beating and the maximum wave is the leading wave 
(Figure 1-17). 
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The first case fits the wave records obtained in deep water rather well. In shallow water, 
the energy tends to shift towards the leading wave. There are very few waves per wave 
trains and cases 5 to 7 are more representative. 

Therefore, the second family of mathematical models has been used in the past in the case 
of explosion in shallow water (Wang, et al. 1988). The latest investigations retained here 
indicate that the best models are uniformly valid for deep and shallow water. They are 
given by the sum of an upward velocity w (r ) in the form of a dome given by case 5, and a 

free surface elevation n (r ) in the form of a parabolic crater with lip given by case 3, or by 

a quadric (case 5). In conclusion the general linear solution for EGWW is a function of 
four parameters A , R , A   , R  , such that 

R 
V(r,t) = / (Ay -f Js(kRJ cos at + Aw R* exp(-kR^) sin at) JQ(kr) k dk. (2.83) 

Applying the method of the stationary phase, one obtains: 

VM = -F (^0/2l\ T2 V*V cos (« ~ W 

+ A^ Äw exp [- k Äw7 a sin (at - kr)J. (2.84) 

The time histories presented in Figure 1—15 are given by this equation where Aw has been 

set to zero. 
w 

2.8      THE LEADING WAVE. 

As discussed previously, for shallow water explosions the maximum wave is the leading 
wave or the second wave. The shallow water explosion generated waves generally present 
no beating after a long distance of propagation. If the investigation is limited to shallow 
water propagations, an initial exponential source form should be an excellent choice for 
wave analysis, as it yields a distinctive feature of the leading wave, which dominates the 
significance over all the trailing waves. In the following, therefore, the theory of leading 
wave for an exponential disturbance assimilating an explosion in shallow water is 
presented. 

Consider the most general case (case 7 of Table 2—1) which defines a surface disturbance of 
the following form 

%(r) = -A 
n! R n+1 

PJ- 
R 

[R2+r2]   2 (K +r J 
J, (2.85) 

if the maximum displacement at the centerline (GZ) is A.   The parameter R represents a 
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characteristic radius of the disturbance and P   is Legendre's polynomial of degree, n. 

This initial disturbance has a transform 

H(k) = -AR2(kr)n  1 exp(-kR) . (2.86) 

Consider the initial disturbance as a static crater, then the resulting wave history is given 
by Equation (2.31). 

T) (r,t) = AR \   (kR)n exp(-kR) JQ(kr) cos at dk . (2.87) 
o 

For the leading wave we are looking at mildly dispersive solution for which the dispersive 
relation can be approximated by the leading two terms of its expansion (Equation 2.51), 

a = k - kS/6 . (2.88) 

For the possibility of an analytical approximation, the problem is further limited to a large 
distance from the source where 
asymptotic form (Equation 2.54). 
distance from the source where the Bessel function J (kr) can be represented by its 

J (kr) = (2/rkrf/2 cos (kr - j/4) . (2.89) 

Substituting Equations (2.88) and (2.89) into Equation (2.87) and neglecting the terms of 
order (1/r) '   and higher gives 

T](r,t)  =  A(l/2mr)^2 Rn+1  j"  Jbn"1/2   exp(-kR)   cos(kr-kt+kSt/6-Tr/4)   dk . 
o 

(2.90) 

In complex variable notation, Equation (2.90) may be written as 

r}(r,t)=^Ml^Rn+1    « 

Re {(1-i)  " *n"1/2 exp [i(kr-kt+kSt/6) - kR]dk} (2.91). 
o 

Using new variables 
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s = (6/t)1/8 (r-t) , 
q = (6/t1/3) R , (2.92) 

v? = (6/t)-
1/Sk, 

Equation (2.91) can be expressed in the following form 

r,(r,t) = A(l/rf/2 (6/t)-1/61(s,q,n) , (2.93) 

where 

I(s,q,n) = Re{^V- qn+1 /Vn exp[i(u6+su2) - qu2J du} . (2.94) 
X1'2 0 

The integral is affinitive to the Airy integral but no closed form or tabulated solution is yet 
established. Replacing u by ve1*"'     in (2.94) yields 

I(s,q,n) = (2A)qn+1 R^W6 /> ^ e^f(sW)1/2 e^/9^ v2]dv} , 

(2.95) 

where 7 = tan    (q/s).  Further expanding the exponential function inside the integral into 
a series, Equation (2.95) may be written as 

I(s>qln) = (2A)1/2qn+1Re{ei(n-1^6    « 

/V*5    5   (l/m!) (s2+q2)m/2 v2m+2n eim(2^S+^ dv) . (2.96) 
0 m=0 

Before integrating the series term by term, setting 

r, = v6 , (2.97) 

Equation (2.96) yields: 

I(s,q,n) = 1/6(2/^ qn+1 Re^^6 J V'    ■ 
0 

I (l/m!) (sW)m/2 rj(2m+2n-5^6 t™(**/*+l) dn). (2.98) 
m=o 
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It is known that the gamma function can be expressed by an integral of the following form 

T(y)=fj,~1e~xdx. (2.99) 
o 

In terms of the gamma function, the function I(s,q,n) is therefore given by 

I(s,q,n) = l/6(2^2 qn+1 R^»'1)*/6 

I  (1/m!) (s2+q2)m/2 eim(2*/S+^ T(2m+2n+1)} . (2.100) 
m=o 

The function I(s,q,n) is unique for a given source function T? (r) and the surface wave 
motion can be uniquely determined from (2.93). In particular, for n=l (case 5) 

Vjr) = A RS[R2+r2fS/2 , (2.101) 

T)(r,t) = Afl/r)1/2 (6/tf1/61(s,q,l) . (2.102) 

The waves generated by an initial surface displacement are directly related to the function 
I as shown in Equation (2.102) Consequently, the behavior of the waves are uniquely 
determined by the behavior of the function I. 

Shown in Figure (2—1) are the variations of I as a function of negative s for various values 
of q ranging from small to large. The value of negative s corresponds to the time at a given 
observation point r. The variation along the —s axis for each case therefore may be viewed 
as a time history of the wave train at a fixed point. The value of s = 0 refers to the 
theoretical arrival time of long waves from the origin. That the leading wave in fact 
arrives considerably earlier than the theoretical arrival time is partially a result of 
nonlinear dispersion effects. The approximation (2.88) for the dispersion relationship is 
equivalent to adding a nonlinear correction to the long waves which propagate with a 
velocity equal to the square root of gd. 

As shown in these figures, these functions become less and less dispersive when the 
parameter q increases. This simply indicates that at a given location of observation, waves 
appear to be more dispersed from small source disturbances and less dispersed from very 
large source disturbances. On the other hand, if one considered the parameter q as a field 
parameter for a fixed source radius R, the results clearly demonstrate that waves are 
nondispersive in the relatively near field but dispersion gradually becomes significant as 
waves propagate outward. Furthermore, these plots indeed verify that waves are dispersive 
in deep water (small q) but tend to be less dispersive in very shallow water (large q), if one 
regards q as a water depth parameter with everything else held fixed. 

The same function I may be plotted as a function of positive s as shown in Figure 2-2. 
Considering the source being located at s = —w, the plots can be read as snapshots of the 
waves arriving at different locations along the spacial, radial coordinate, while propagating 
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toward the positive s direction. Viewing from large to small q (considering q as a field 
parameter), the evolution of waves propagating trom near to far from the source is 
particularly demonstrated by these plots. 

It is clear that at the wave front, r « t. Consequently, (2.102) can be expressed as 

»7~r~i/51($,q,l) (2.103) 

A careful analysis of the function I reveals that the leading wave (first peak) varies as a 

function of q   when q approaches zero.  Since q itself varies as t    '   or r    '   for a given 

60urce dimension R, (2.103) simply indicates that the leading wave varies as r when q is 
small. Therefore, for small source disturbances, for a distance far away from the source, or 

for propagation in very deep water, the leading wave decays like r . However, for 
relatively large q (q > 3), the leading waves behave differently, the function I varies 
approximately as a linear function of q when q is large. This indicates that for large source 
disturbances, for a location relatively near to the source region as compared to a far away 
distance, or for waves propagation in very shallow water, the leading wave decays 

approximately like r- '    in accordance with (2.103).    In other words, wave decay of 

two—dimensional shallow water propagation should approach r ' as a limit, like in the 
case of a cylindrical solitary wave. 

2.9      MOVEMENT AT OR NEAR GZ. 

The solutions represented by Equation (2.80) which are based on the stationary phase 
approximation are not valid at or near GZ. In order to obtain the wave motion at GZ, the 
integral forms (2.79) must be retained. At GZ, (r = 0) 

J0M = 1 ■ (2.104) 

Furthermore, the movements at or near GZ are little affected by dispersion, even in deep 
water. Indeed, to be effective dispersion requires time and distance. The movement at GZ 
vanishes very rapidly as it will be seen in the following, and the distances are practically 
limited to the radius R of the original localized disturbances. Therefore, it is reasonable to 
assume that the solutions at or near GZ are given by taking a £ k. The Equation (2.79) is 
then considerably simplified and can be integrated analytically? (Le Mehaute, et al. 1987). 
In particular the movements at GZ, corresponding to the various original conditions (water 
elevation, impulse, velocity) analytically defined in Table 2-1 (case 1 to 5) are given by 
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tfo.t) = J 
0 

£      JJkR) 
k        1 

K    J8(kR) 

T      Js(kR) 

**    J4(kR) 

R2exp(-kR) 

k coski 

sin kt 

k sinkt 

dk (2.105) 

These integrals have been integrated analytically and the results are presented in Table 
2.2. In this table, the notation r is introduced 

H (2.106) 

The results are presented graphically in Figures 2—3, 2-4 and 2—5 which correspond to the 
case of an initial crater, initial velocity and initial impulse, respectively. The five curves 
presented on each figure correspond to the five types of Hankel Transform inserted in 
Equation (2.105). 

It is easily verified that in accordance with eq. (2.35) the curves in Figure 2-5 are the 
derivative of the curves in Figure 2-3 which themselves are the derivatives of the curves in 
Figure 2-A. 

Fully dispersive solutions (case 5), namely: 

r/(0,t) = /   JT exp(-kR) 
o 

cos at 

— sin at a 
a sin at 

kdk (2.107) 

have also been resolved numerically thanks to the exponential convergence of the 
integrand, for a variety of values of the R parameters. The results are shown in Figures 
2—6, 2—7 and 2—8 corresponding to the case of initial disturbance in the form of a crater, 
velocity and impulse respectively. A comparison between these figures where R = 1 
(middle curves) and the curves in Figures 2-3 to 2-5, which correspond to the same 

Hankel Transform (R exp(-kR)) (last curves), substantiates the fact that the dispersive 
effects are very small at or near GZ. 

From this investigation the following features appear: 
1.        It is seen that all the solutions are nearly nonosällatory as most solutions yield a 
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Table 

initial conditions 

fiee 
surface       vrlncily       impulse 

2-2.       Non-dispersive solutions at GZ. 

cases 

1                                                                                        2 

r*--                 0                r»>R„ = R                              0 

v('.d)         0                   0 

0                  »,('.<!)        0 

integrand     - RJ,{kR) cos *f                                          -7k'j,(k /?) cos *( 

solution       nil                                          n ^ 0< r <1       - 1                                             0< 
-7(0.0 

r<1 

T < OB - 

2(1-0-1 

4 1 
1 ^ "-"'(,'- !)"'(, + (,'-0'")          ' k r4(r'-l)'")' 

integrand     - Rk~'j,{k R) sin kt                                 - 7k~'j7(kR) <m kt 

solution 

— R 

T<|- 

T < CO - 

y [2(1-0+1] 

Ä(r4 2(r'-1)'") 

3(r + (r'-!)"')' T4(r!-1)'" 

0                  0                   /(r.O) integrand     - RkJ,(kR) sin kl                                       7J,{kR) sir kt 

solution 

,(o.,)       °<r<l    °                                 0< 

l2r + (t'-l)'"] 

T<l 

r < en - 

4r 

~ R 

2 
,<T<"     Mr'-irirMr'-l)'"]   '< (,'_!)"'(, ♦tr'-l)'")1 

cases 

i 4 5 

l(g)'-l        rlS*.-A 

0                          r„ >/?„=/? 0                                            r„g/3^-fi 

"*'          R     R 
(ä' + O"1   fio 

- RJs{kR) cos *< -4/T'./,(*/?) cos Ar - *'*(■-'" cos *i 

0<r<l            -4(l-r')4j 

- 1 

n  ^ -   - t                                             o/l       .'W   .   ofl       .'\       I 
!-r! 

- 1 
O + O' 

,-r<"               (,>-.)'»(, 4   (,'- 1)'")'           ,-r-U'                                     (T4(T'-I)"T 

- /?A   '/,(*/?) sin *r -ik'j,(kR) sin kt -*V"sin*f 

4 
0< r < 1            - Ar 4 - AT 

- RkJs[kR) sin *( 

0< r< 1                               _f!£(|_t>)'"sin(4 

*r         I,   ■   -I  \  cos (4 sin    r) 

/?[T + 4{r* - 1)'"] 
,<r<m            i5[i y(r'-irr 

sin'r) 

Ar 
~l + r' 

-4J,{kR) sin Ar -R'*V" sin Af 

O<T<.      L' 

-Mt'-ir 
l<r<~    R(T'-in.4(,' 

4 sin (4 sin_lr) 

°<r<'                             '    *(l-,')"" 
'                                                                                  4 

4«"'(J-0 
O + r')' 

-1)"']      '"'""•                           Ä(r,-I)"'(.4(,'-I)1")1 
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Figure 2-3. Nondispersive solution. Movement at the center of a free surface 
disturbance as function of the dimensionless time t, defined by an initial 
crater corresponding to cases 1 to 5 of Table 2-1, R = 1. 
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unique peak—trough (or trough—peak) solution. 
2. In many cases where the initial conditions exhibit a discontinuity, it is seen that 

r^Ojt)—» a» when r—> 1. In case 5 with n = 1, the continuous nature of the initial 
condition and of its derivative insures continuous solutions for r/(r,t) and that 7?(0,t) 
is always finite. 

3. In shallow water, the free surface elevation r/(r,t) due to an initial elevation n (r ) 

depends solely upon r and is independent of R for a constant r value. When the 
movement results from an initial velocity, or pressure, the solution f?(0,t) is function 
of the two parameters R and r. 

When the initial condition is given by a velocity w , the elevation at GZ, J?(0,t), is 
D 

proportional to R (for a constant r) and when they are given by an impulse I, r^O.t) is 
inversely proportional to R.   It is possible that when the extent of initial velocity is large 
(large R) or when the initial impulse is small (small R),  77(0,t) can theoretically be smaller 
than -1.  Since the sea floor is at z = -1, w„ or I which here has been taken equal '   s max      max n 

to unity, should be reduced by a linear coefficient A, so that this does not occur. The case 
where rj  „(0,0 is less than -1 is nevertheless possible for an explosion in very shallow 

water, inducing ground cratering in addition to water waves. In such a case, nonlinear 
effects need to be taken into account as done in Section 4. 

In the previous analysis, the theoretical results were limited at the origin (r = 0). Since 
the general solutions (Equation (2.79)) are valid at any distance from the origin, the time 
history of the collapse of domes and cavities can also be obtained. This can also be done 
either numerically in the general case or analytically in the nondispersive case. Analytical 
solutions are presented for case 4, when the initial condition is that of a free surface 
elevation 77 (r ). Then the solution for f?n(r,t) is 

rj (r,t) = j kdk JJkrjR* exp (-kR) cos at, (2.108) 
' o 

which can be integrated analytically in the nondispersive case where a = k, to give: 

S 
r,(r,t) = — (2ac + cd - d2)/[dS(a + d)1/2], (2.109) 

T2 

where 

a = R2 + r2 -t2 

b = SRt (2.110) 

c = R2 + T
2
 + t2 

d = (a2 + b2)1/2. 

It is verified that when r = 0, eqs. (2.109) and (2.110) yield the same solution as the one 
presented in Table 2-2, case 5, vJjJ- 

The corresponding time history of the free surface elevation is presented in Figure 2-9 in 

98 



K-5.0 

Figure 2-9.     Cavity shapes describing the collapse of cavi 
R = 0 , 1, and 5. cavities in case 5 of Table 2-1 for 
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the cases where R = 0.1, 1 and 5, where the nondimensional time step is 0.5. The 
nonoscillatory nature of the movement is confirmed. The same Equation (2.107) has also 
been integrated numerically in the dispersive case, (a t k). The lack of dispersion near the 
origin is also confirmed. 

In summary, the investigation of the wave motion at or near GZ shows the following: 
1. It confirms that the impulse solution is the time derivative of the elevation solution 

which is the time derivative of the velocity solution. 
2. The solutions are either nonoscillatory or quasi nonoscillatory at the origin. 
3. The solution near the origin are little affected by frequency dispersion even in deep 

water. 
4. The multiplicity of radiating circular waves observed at a distance is solely the 

result of frequency dispersion from that unique oscillation at the origin. 
5. The solutions, even though linear, give apparently realistic results even in the cases 

where the movement should, a priori, be highly non-linear. 
6. The vertical projection of water at the origin in the form of a jet, a spike or a drop 

is explained theoretically by discontinuity in the initial conditions. 
7. The qualitative comparisons between theoretical results and examples of physical 

phenomena lead to the conclusion that linear calibration of the initial disturbance is 
possible in specific cases where a quantitative prediction is needed. 

2.10    LIMITS OF VALIDITY. 

The approximations made in various versions of solutions involve essentially two 
assumptions on the relevant variables, the assumption of a relatively simple dispersion 
relationship and the assumption of far distance from the source region. In addition, the 
variable of time is implicitly involved through the variable of distance. In order to identify 
the various regions of validity for the various approximation methods, three characteristic 
parameters are defined. 

(1) The dispersion (or water depth) parameter 

The dispersion characteristics are governed by a single variable, the wave number k. Since 
the wave is directly related to the radius of the disturbance, a dispersion parameter 6 is 
defined as the ratio of the water depth to the characteristic radius. 

6 = 1/R . (2.111) 

It is evident that the variation of this parameter from small to large would indicate the 
significance of the dispersion or the water depth effect. One should also realize that the 
inverse of this parameter, 1/6, may be viewed as a source dimension parameter when such 
interpretation is needed. 

(2) The distance parameter 

The argument kr governs the applicability of the asymptotic form of the Bessel function 
implemented in the mildly dispersive and stationary phase solutions. Again relating the 
wave length to the source disturbance radius, a distance parameter A is defined as the ratio 
between the distance and the characteristic radius, 

\=r/R. (2.112) 

This indicates that the relative length of the stand-off distance with respect to the source 
of disturbance dimension in fact dictates the validity of the distance approximation. 
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(3)      The time parameter 

The time of arrival of an individual portion of a wave system constitutes in part the 
characteristics of propagation of that particular distance. Consequently, a time parameter 
T is defined as the ratio between the elapsed time and the stand—off distance, 

T = t/r. (2.113) 

It is clear that r = 1 corresponds to the theoretical long wave arrival time from r = 0. 

It has been shown that the nondispersive solution is valid at a close distance from the 
origin when the disturbance is large. In order to get a quantitive statement of how close 
the distance and how large the source radius should be, one must examine a great number 
of distances close to the origin and a great number of source radii, R's. A better way to 
identify these ranges of validity is by using the parameter q which has been established in 
the mildly dispersive solution. 

The parameter q can be approximately written as: 

A     1/S 

«=£-;  R, (2.H4) 

at the wave front where r 2 t. Consequently, this parameter would provide a guide to the 
distance and source radius. Further, referring to (2.92), the negative s may be viewed as a 
time variable at a fixed observation point. 

The nondispersive solution, the numerically obtained fully dispersive solution and the 
mildly dispersive solution are plotted on a common basis of —s for several values of q and 
compared in Figure 2—10. 

By comparing the nondispersive results with the fully dispersive solution, one may find 
that the nondispersive solution is sufficiently accurate when q is larger than 4, or: 

T<S/S2R
S
. (2.115) 

In terms of parameters 6 and A, the relation for the nondispersive solution to be valid may 
be written as: 

62\  < S/S2 (2.116) 

The time parameters seems to be non—relevant in the nondispersive case when q is large. 

The validity in the prediction of the leading wave by the mildly dispersive solution is 
confirmed again by comparing it with the fully dispersive solution in Figure 2—10. The 
agreement for all values of q between the two solutions indicates again that the mild 
dispersion assumption (2.88) is valid for leading wave approximations. The only constraint 
to the leading wave solution is, therefore, the distance requirement imposed by the 
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approximation of the Bessel function. It is known that the zero order Bessel function can 
be approximated by its asymptotic expression with sufficient accuracy if its argument is 
greater than 10; in the present case. 

kr>10. (2.117) 

On the other hand, the period T of the leading wave is known to vary proportionally to the 
cube root of the distance and is approximately given by (Wang, 1987) 

Ti(^r)^3. (2.118) 

Also, for the range of k where the leading wave applies, the long wave approximation is 
valid and the dimensionless wave length can be approximated by the dimensionless period, 
so that one may write 

k?2*/T. (2.119) 

Consequently the constraint imposed to the mildly dispersive solution can be derived by 
inserting (2.118) and (2.119) into (2.117) to yield 

r>6(j£)     il2. (2.120) 

Therefore the mildly dispersive solution should provide an accurate prediction for the 
leading wave at a distance of approximately 12 depths away from the active source region. 
In terms of 6, X and r, the constraints for the mildly dispersive solution can be written as 

X/6> 12 , 
TZI. (2.121) 

As for the method of stationary phase, the constraint of (2.118) imposed by the 
approximation of the Bessel function is equally valid. As discussed earlier, this method is 
valid for waves trailing behind the leading wave and should provide a good approximation 
for motions in relatively deep water. On the other hand, this method provides good 
predictions for the trailing waves in shallower water as well. However, this is not really 
interesting because in shallow water propagation the energy content of all waves longer 
than the water depth is confined in the leading wave and little is left in the trailing waves. 
From a mathematical point of view, the method is valid nonetheless, as long as the interest 
is not focused on the leading wave. By comparing the stationary phase solution with the 
numerically obtained fully dispersive solution for a series of cases through varying the 
radius R between 1 and 5, the following empirical criteria are established for the stationary 
phase method to be valid 

(X + 12.5)6 > 22.5 , (2.122) 
T > 1. 
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This relation indicates that the dispersion parameter 6 can be balanced by the distance 
parameter A and the stationary phase solution would provide a good prediction of the 
trailing waves even for shallower water large disturbance but at a rather far away distance. 
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SECTION 3 

CALIBRATION OF THE LINEAR WAVE THEORY 

3.1      REVIEW OF PAST INVESTIGATIONS - EMPIRICAL CORRELATIONS. 

The purpose of this Section is to calibrate the linear wave theory, presented in Section 2, 
by means of comparing the theoretical time-history of the free surface elevation due to a 
fictitious initial disturbance with the experimental results generated by factual explosions. 

For deep water explosions, experimental data obtained through several series of explosion 
tests using chemical charges at the Waterways Experimental Station (Pinkston 1964, Pace, 
et al. 1970) and Mono Lake (Pinkston and Skinner 1970) provided the following empirical 
relations for the maximum amplitude n       and the corresponding period Tas summarized 

by Le Mehaute (1970) 

'max r=18W°-5< 

T = 1.669 W°J5 

°<-^rs<0-25> (3.1a) 

r?m ax r=10W°^ 

T = 1.773 W0'15 

z 

w°- °-25<zh<7-5> (3.1b) 

where Wis the yield of the explosive in pounds of TNT and z is the charge position relative 
to the free surface in ft, positive downward. In this correlation the numerical coefficients 
are not dimensionless. The correlation relationship (3.1a) applies to bursts which are very 
close to the free surface, commonly referred to as the upper critical depth as described in 
Section 1 due to the fact that the wave generation efficiency is highest in this region. 
Smaller waves would result from bursts at a deeper submergence. However, test results 
exhibited a second hump, that occurred in the middle of the burst region as specified by 
(3.1b), which is known as the lower critical depth.   No sufficient data exist for bursts at 

depth lower than z = 7.5 W°'S. The product of rjmax r obtained from the original data is 

exhibited in Figure 1-8. Using Equations (3.1a) and (3.1b), a correlation of A (crater 
height) and R (crater radius) was given by Le Mehaute (1970) 

A = S.07 W0-2*       I 

•    0 < -4-s < 0.25 
W° 

(3.2a) 

R = 9.54 w°-s 
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A = 1.51 W0-24 

R = 10.77 wO-s 

0.25 <-^-s< 7.5 (3.2b) 

These relations suggest that the parameters A and R are proportional to  W' * and 

W°'S0, respectively. These correlations are purely empirical and no interpretation based 
upon consistent dimensional analysis was pursued in the original research. 

The data available for shallow water explosions are very limited. The small charge tests 
conducted by the Waterways Experiment Station (WES 1955 and WES 1986) are probably 
the only source providing wave data with systematic variations of charge weight and water 
depth. Other information includes two high-explosive events fired at the bottom in 
shallow water at Mono Lake (Whalin 1966) and a 23-KT mid-depth nuclear burst of Baker 
at Bikini (DNA EMI 1978). In addition, the Navy's Project Heat (Willey and Phillips, 
1968) provided some information of the plume diameter, but no wave measurements were 
made. In the following discussion, only data obtained from tests of chemical explosives are 
considered; nuclear data are not included. 

By means of small scale charges (0.5-2048 lbs) the 1955 WES program was designed to 
estimate wave effects from a 20-KT explosion in water 30-200 ft deep. The charge position 
varied from beneath the bottom to above the free surface. The results show that the 
variation of charge location z to water depth ratio from 0 to 1.0 has no well-defined effect 
on wave height, except in the case of near surface bursts, where wave generation decreases 
significantly. The 1986 WES program included tests of explosions with yield ranging from 
10 lbs to 50 lbs in 2.7 ft and 1 ft of water with the purpose of obtaining the complete time 
history of the free surface at various distances from GZ. Again, no consistent dependence 
on the depth of burst was observed. 

One significant difference in shallow water wave propagation is the dispersion law. As seen 
in Section 2, recall that in deep water, wave height varies inversely with radial distance r 
as a combined result of frequency and radial dispersions.   In extremely shallow water, 
however,  one has  seen  that  the large leading  wave is  expected  to  behave like  a 

2/8 
nondispersive solitary wave as a limit and its height is to vary inversely as r '   instead of 
r. It follows that the following decay law seemingly should hold 

I ra = constant 2/8 < a(d, W) < 1. (3.3) 

Here a is a function of the water depth d and yield W\ the decay ratio a is to vary between 
2/3 and 1 should the extrapolation be extended to deep water. 

An attempt by Wang, et al. (1977) to correlate the WES 1955 test data with the largest 
high-explosive events of Mono Lake gave an empirical relationship 

a 
'max    _ r (3 4\ 
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where TJ       represents the maximum wave amplitude (ft) in the wave train generated by 

an explosion of yield W (lbs TNT) passing at a distance of r ft. The coefficients a, ß and 
C^are given by 

a = 0.8S (d/W1/*)0-07 

ß =a/S + 0.25 

Cw=:l.U(d/W1/S)°-9S, (3.5) 

where d is water depth in ft.   The above relations show that all these coefficients can be 
1/8 expressed as a function of the water depth to charge yield ratio, d/W '  . 

Several important features are presented in this empirical formula. First, the empirical 
formula embraces both dynamic and energy scalings. It is well known that the energy 
released by a conventional explosion is proportional to its volume, or the cube of a linear 
scale. From dimensional analysis, it may be expressed by the following dimensionless 
parameter, as seen in Section 1 (Equation 1.16) 

^=^/   , (3.6) 

Recall that p denotes the overburden pressure exerted on the crater boundary or the 
cavity—fluid interface and L represents a characteristic length. Here E is the yield in terms 
of energy released. 

On the other hand, one has also seen in Section 1 that the total energy of the surface wave 
2    2 as required for geometrical similarity must be proportional to TJ   R , the potential energy 

of the crater, and follows a quadruple scaling, which may be expressed by another 
dimensionless parameter (Equation 1.17) 

**=*#. (") 

in which p is the fluid density and g the gravitational constant. 

Since W has been defined in pounds of TNT, one may write 

E = (iW, (3.8) 

where /x is an energy—weight conversion factor of dimension L and may be interpreted as a 
specific energy. The two parameters TT, and T„ then can be written as 

*, - 7, tf (39) 

where 7. and 7«, are two physical parameters of the fluid and the explosives defined as 
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7, = I (a-") 

Tj-J*. (372) 

If the effect of charge position in shallow water could be ignored as suggested by the WES 
1955 and 1986 data, the pressure p should be approximately constant. Under this 
postulation, if the conversion factor ß is constant for a given explosive, the parameters 7. 

and ip must be invariant.   Thus, for a given yield W, the linear dimensions of the cavity 

should be proportional to W ' , but the wave height must vary like W '\ The empirical 
formula indeed supports this fact, and it can be demonstrated more clearly if one rewrites 
the empirical formula (3.5) in the following form: 

where 

rjra = Cw, (3.13) 

_      V. 
V = 

T =■ 

max 

(3.14) 
r 
575* W 

Subject to 7j and 7« being constant, 77 varies inversely as r   as suggested by the law of 

decay postulated in (3.3).   In particular, the decay constant a approaches 2/3 as a limit 

when d/W ' becomes small. This may also explain why the commonly used formulae 
Equations (3.1a) and (3.1b) do not always give satisfactory predictions even for relatively 
deep water explosions because it fails to take into account the most important parameters 
for scaling, the depth—yield ratio, which in turn governs the other important feature, the 
wave decay. 

The 1955 WES data cover only the range 0.088 < d/W1/8 < 0.585.   The 1986 and 1988 

data extended the coverage to d/W' =1.89. Assuming that the results are 
extrapolatable, the following limits for the parameters a, ß and Cy, in the empirical 

formula (3.5) may be obtained 

2/S<a<l 

0.47<ß< 0.58 

0.079 < Cw< 17.12 

for 0.044 < d/W1/8 < 14.82 (3.15) 

In particular, at the deep water limit, Equation (3.5) has the following extrapolated result: 

Tj       r 
max    = 17.12 (3.16) 

w0.58 
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which is very similar to the formula for upper critical depth established long ago for deep 
water scaling (3.1a), i.e., 

r'maxr   =18 (317) 

w0.54 

Now the more generalized approach to the calibration of the linear wave theory is 
presented in the following section. 

3.2      GENERALIZED MODEL BASED ON INVERSE CORRELATION. 

One has seen in Section 2 that given an experimental wave record rj(t) at a distance r from 
GZ, it is possible to determine the initial fictitious linear disturbance which would simulate 
a similar time history (see formulae 2.32 to 2.78). The method was used based on a series 
of explosion tests of small charges in shallow to intermediate depths of water conducted at 
WES (1988 and 1989). To demonstrate the inverse identification process, a particular shot 
of 10 lbs charge in 4 ft water at 0.6 ft below the surface is used for a more detailed 
discussion. 

The wave data of this particular shot at a fixed distance r=50.2 ft from GZ are shown in 
Figure 3—1. The direct Fourier transform of this data gives the real and imaginary 
components F Jo) and Fja), respectively, according to Equations (2.49) and (2.50), (2.72) 

and (2.73).   In Figure 3-2, (a) presents the product of the real component F Jo) and the 

group velocity 7 as a function of frequency o. Similarly, (b) presents the product V o 
Fjo). The former corresponds to the product of zkH (k) J (kr) and the latter is rkH (k) 

J (kr) as seen in Equations (2.74) and (2.76).    The high frequency oscillations should 

correspond to the Bessel function J (kr) if the linear theory is exactly valid.   Comparing 

the zero crossings of Figure 3-2 with that of J (kr) substantially confirms the above 

statement, although not exactly. Ignoring the irregularities appearing in the oscillations, 
which are probably due to, in some extent, nonlinearity, the envelope of the oscillations 

should approximately correspond to (2irk/r) '    Hjk) and    (2^k/r) '    H (k) if r is 
7/ W 

sufficiently large. 

Figures 3—3 and 3—4 show the two corresponding products multiplied by r ' , derived from 
actual wave data collected at r = 32.7', 45.2' and 50.2' from the origin. The similar 
envelopes shown by the results indeed support that  rH (k) and H (k) are unique, 

7/ w 
regardless of the location where the input data are collected. 

Integrating H (k) and H (k) according to (2.75) and (2.78) yields the initial disturbances 
7/ W 

TJ (r) and w (r), respectively.    The numerically integrated results using the envelopes o s 
presented in Figure 3—2 are shown in Figure 3—5. 

A direct forward procedure using TJ (r) and w (r) obtained above yields a time history of 

wave elevation 77(r,t) at any distance r. In order to demonstrate the validity of this 
process, the computed results for r = 50.2 ft are compared with the actual record and 
presented in Figure 3-6.  Shown in Figure 3-7 are the components due to rj (r) and w (Vj, 

O 3 
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Figure 3-1. Wave data of 10 lbs. explosion in 4.0 ft of water recorded at a 
distance of 50.2 ft from G.Z and the depth of charge = 0.6 ft. 
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obtained by integrating each of them separately. The results indicate that the disturbance 
of initial velocity is probably more responsible for leading waves than trailing waves in this 
particular case.   Using the same disturbance functions, 77 (r) and w (r), waves at other 

i/ 3 

distances are computed and shown in Figure 3-8 compared to actual measurements The 
good agreement at different spatial locations substantiates the validity of the process. 

All the results have been presented by Wang, et al. (1989], and Khangaonkar and Le 
Mehaute (1991). As discussed in those papers, the success of this method depends upon the 
accuracy in determining the source disturbance, or more precisely the envelope functions of 
Fj(a) and FJa) *n *^e inverse process.    Direct forward integration of these functions 

would yield the time history r\(r,t) exactly, although the source function r\ (r) and w (r) 
v 3 

obtained through this process represents only a mathematical equivalent, not the actual 
disturbance. 

The source disturbance functions TjQ(r) and w (r) or their transforms H (k) and H (k) 

derived from the envelope functions of F^a) and FJa) are a function of yield, water depth 

and burst depth in the physical process. In general, if there are sufficient data of Tj(r,t), the 
geometric characteristics  of 77 (r) and  w (r) can  be  correlated  with  those  physical 

U 3 

parameters through the inverse process. For instance, the source disturbances for the case 
of 10 lb explosion in 4 ft of water presented in Figure 3—5 can be mathematically approx- 
imated by a combination of two mathematical expressions 

L   )2 *<V 
%V 

r< R_ 

r> R 

w/rj  w 

w 

(3.18) 

and their corresponding transforms are 

R. 

W-'WW 
Hfk)= A  R2e~kRvr. wl y w  w 

(3.19) 

By fitting with the results obtained from the inverse process as shown in Figure 3-9, the 
four parameters A . R , A   and R   are determined as follows: 

If Tf Yf W 

\ = O.4OS, Rv = 1.767, 
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A^ = 0.808, Rw = 0.8. 

A generalization of the mathematical model would require correlation of the four 
parameters as a function of the physical parameters of explosions, primarily the yield, 
water depth and burst depth. The difficulty in achieving this goal at the present moment 
is partly due to numerical difficulty in obtaining a unique and accurate solution of the 
inverse problem and partly because there are no sufficient data to support the analysis. 

3.3      DESCRIPTION OF THE SIMPLIFIED BUT UNIFORMLY VALID 
MATHEMATICAL MODEL. 

While the inverse method is potentially powerful in data analysis for many problems, it is 
unlikely to be a satisfactory tool for phenomenon correlation or scaling of the explosion 
generated water waves until uncertainties involved in the physical process can be resolved. 
The method relies strictly upon the information provided by experimental data. Thirty to 
forty percent or even 100% discrepancy in wave measurements from experiments of 
supposedly identical explosions is not unusual. Consequently, any effort trying to improve 
the numerical accuracy involved in the correlation process beyond the limit of experimental 
uncertainty would be fruitless and even meaningless. 

By the inverse method outlined above, the correlation process requires four parameters to 
describe the equivalent source disturbance, two for the real part of the equation and two 
for the imaginary part. The former two describe an equivalent water surface depression 
and the latter two describe the initial velocity of the surface movement. Balancing the 
error involved from possible numerical inaccuracy in four parameter correlations versus the 
possible uncertainty involved in the physical process, a two-parameter, mathematical 
model is believed to be sufficient under the present state of the art in describing the actual 
phenomenon. 

Past experience indicates that a source model with initial surface depressions has been 
satisfactory for correlating waves to deep or shallow water explosions at a far distance. To 
formulate a uniformly valid model, initial surface depression of the type (3.18) 
corresponding to case 3 of Table 2-1 with A    = 0 has been selected as the basic source 

model to cover both shallow and deep water, near and far field. 

This source model represents an equivalent source displacement TJ (T) with zero initial 

velocity w (r) on the surface. Neglecting the initial velocity has little effect on the trailing 

waves in the case of deep water simulation. In the shallow water case, only the source 
disturbance TJ (r) is primarily responsible to the leading waves.    The two governing 

parameters for this source model are A   and R .  For simplicity, it is designated as A and 

R for the case w (r) = 0. It is recalled that the transform of the source model gives 
s 

H (k) = -(A R/k) Js(kR) . (3.20) 

The two correlation parameters, A and R, are a function of yield, water depth and burst 
depth. If A and R are specified, the wave elevation at any distance r and time t, Tj(r,t), can 
be computed utilizing the methods presented in Section 2. 
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3.4      CALIBRATION OF THE MODEL. 

The two parameters, A and R, are a function of yield W, water depth d and burst depth z. 
More generally, they are probably a function of ocean bottom or soil characteristics as well, 
especially for the case of shallow water. The burst depth effect is more evidenced in deep 
water than shallow water and will be treated separately. As to the effect of the soil 
characteristics on the bottom, no sufficient data are available for the present correlation. 

The calibration of the mathematical model then involves the correlation between the two 
mathematical parameters A and R and the two explosion parameters W and d, 

A=f1(W,d) 

R=f2(W,d), (3.21) 

where A, R and d each has a linear dimension and Wis normally given in terms of weight. 

The correlation of the mathematical equivalents of the disturbance with realistic explosion 
parameters can be obtained by comparing the predicted wave trains with the measured 
data of known yield W and water depth d. For a given r and t, the predicted wave train is 
given in terms of the correlation parameters as follows: 

ri(r,t) = - A(W,d) R(W,d) \   JjkR(W,d)]J (kr) cosat dk. (3.22) 

This mathematical wave form provides the basis for comparison with experimental wave 
records of known explosions to calibrate the correlation parameters A and R. 

In general, the process of calibration can be divided into two steps; first the radial 
parameter R and then the intensity parameter A. The radial parameter R governs the 
time interval of free surface oscillations but contributes little to the amplitude of the 
waves. The general shape, the location of peaks and troughs, and the zero crossings with 
respect to time, especially that of the leading wave in shallow water or the maximum wave 
of the wave train in deep water, generally determine the value of R. Once R is determined, 
the intensity parameter A can be determined by comparing the absolute value of the 
amplitude obtained from the mathematical model with that obtained from measurements. 

The above procedure would be valid given sufficient data. The number of measured data 
are nonetheless limited, especially over the range of intermediate water depth. In order to 
establish a uniformly valid model for either small or large yield, and shallow or deep water, 
incorporation of analytical procedures in the correlation is necessary. 

The method is a hybrid of forward and inverse procedures as opposed to strictly using the 
inverse procedure discussed previously. The hybrid procedure involves a forward approach 
using a pre—assumed mathematical model for wave propagations, calibrated by inversely 
correlated empirical formula of the maximum wave in the wave train. 

Recognizing d/W'1 as a valid scaling parameter between water depth and yield, Equation 
(3.20) can be written in the following dimensionless form 
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(3.23) 

The dimensionless variables have been defined by Equation (2.1). In addition: 

A* = A/d 
R* = R/d 

The procedure assumes a priori the proposed model (3.23) is valid and calibrates the two 
unknown parameters A* and R* by the empirical formula (3.4).  One has seen in Section 2 
that the evaluation of the integral in (3.23) is difficult when r is small or t » r and that 
this integral can be approximately evaluated by the method of stationary phase valid for 

large r* and t* (Equation 2.67). 

Then alternatively, the integral in (3.23) can be more conveniently evaluated by an inverse 
Fourier transform as shown in Equations (2.37) to (2.50). This is purely a mathematical 
representation subject to the postulation of source disturbance.   Analytically evaluating 
Tj(r,t) by varying R* from small to large, the time history of rj/A for each R   at several 
different r*'s, is computed and shown in Figure 3-10.   From these plots, it is clear that 
small values of R* generally yield deep water characteristics of wave propagation while 
large R*'s give the shallow water wave characteristics. The transformation of wave 
characteristics from near to far field may be directly observed from the results at different 
locations of r* for a given R*, but the general features of near and far field wave charact- 
eristics can also be identified by examining the results for various r /R values from small 
to large regardless of the value of R*. One may also observe from the wave trains that the 
leading wave generally is the largest wave in shallow water (large R*) or near field (small 
r*/R*), but the largest wave shifts to the trailing group in the far field (large r /R ) or in 

deep water (small R ). 

The value of R* is a measure of the disturbance relative to the water depth.    It is 
anticipated that R* must be intimately related to wave decay.   By plotting the maximum 
Tj* versus r*, the decay characteristics for different values of R* are shown in Figure 3-11. 
The well-organized trends of these results are clearly demonstrated in the figure. The 
slope of these numerical results on the log-log plot provides the information on decay of 
these waves. The data align orderly toward a linear decay or -45° slope when R  becomes 
very small.    The other extreme is the 2/3 power decay or -33.69   slope when R 
approaches 10 or more.  The solid lines are drawn at arbitrary but convenient positions in 
the plot to show the slope variation only, using linear interpolations between 1 and 2/3 for 
R* between 0 and 10, respectively. The slope of the solid lines seems to support the trends 
of the estimated points very well. 

It must be noted that the points shown in Figure 3-11 are computed results using 
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mathematical model (3.22) with systematic variations of R* or R/d. The solid lines are 
not regression of these points, however. The solid lines are intended to show only the 
variation of the decay law, should it vary linearly between 1 and 2/3 for R/d varying 
between 0 and 10, respectively.  The computed data points appear not smoothly varied in 

some cases of large R   as shown in the plot.   This is due to a large phase shift of the 

maximum waves in shallow water explosions (large R*).   The maximum wave is generally 

the leading wave in the case of large R , but it is not necessarily the largest possible wave 

in the theoretical wave envelope. In deep water explosions or 6mall R cases, the 
maximum waves are likely coinciding or close to the maximum of the wave envelope, as 
there are more waves in a wave envelope in deep water explosion generated waves. 

Incorporating with relationship (3.4), the correlation of R* with the explosion parameters 
is derived as follows 

R* = SO - 24-9 (—^T-/'
01
 , 0.05<d/W1/S<14. (3.24) 

This relationship suggests that when d/W '   is small, R approaches 10d.   It also suggests 

that when d/W ' is greater than 10, R is less than 0.75d, sufficient to be considered a 
deep water explosion by the definition of R. 

For a given R*, the value of d/W^z is determined from (3.24).   The empirical formula 

(3.5) then can be used to estimate, for the particular explosion (d/W*3), the maximum 
wave or the leading wave which compares with that of the computed wave train of the 

corresponding R to determine the parameter A . A calibration of the parameter A* with 
the explosion parameters is given by 

A* = 2.7(R*)~°-7Z W^4/d, 0.05<d/W1/S<14. (3.25) 

In the 1986 WES tests, wave records for five different yields (10, 20, 30, 40 and 50 lbs) in 
shallow water, 2.7 ft deep, were collected at several locations from the origin. The natural 
mud bottom was approximately flat. The charge position was half-depth.  Using Equations 

(3.24) and (3.25) the calibrated values of A* and R* for the five shots are listed in the 
following: 

TABLE 3-1. Calibrated values of A* and R* 

W{lbs) A* R* 

10 0.572 4.71 

20 0.639 5.12 

30 0.690 5.34 

40 0.720 5.51 

50 0.750 5.64 
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Time histories at selected locations computed using mathematical model Equation (3.22) 
with the above calibrated parameters are compared with the actual recordings and shown 
in Figures 3-12 through 3-16. The agreements in both magnitude and the major phase 
shifts are remarkable, despite the crudeness and simplicity of the model. 

A comparison with the 1988 WES test of 10 lb yield in 4 ft water, on the other hand, is not 
as good (see Figure 3-17). The calibrated A* and R* from Equations (3.24) and (3.25) are 
0.435 and 4.0, respectively. The difference between the 1986 and 1988 tests is the bottom 
of the water body. The 1988 test was conducted in water over a concrete slab, instead of 
the mud bottom used in the 1986 tests. The bottom soil structure therefore seems to have 
a significant influence in shallow water explosions. Unfortunately, there are insufficient 
data to support bottom soil calibrations at the present time. 

3.5  DEPTH OF BURST (DOB) EFFECT, POSTULATION FOR SUBSURFACE 
EXPLOSIONS. 

The effect due to depth of burst has been observed in the results of deep water explosion 
experiments (Pace et al, 1970). Surface waves were observed to be particularly amplified 
at two different DOB's, which are known as the upper and lower critical depths. Deep 
water correlations are customarily prescribed by two different sets of relationships. 

In shallow water experiments (WES 1955), the DOB effect is not evident, except in a thin 
layer very near the surface. The observed waves are substantially lower for explosions 
detonated in this thin layer beneath the surface. Allen (1979) analyzed a series of shallow 
water tests conducted by URS (Kaplan and Cramer 1963) together with the Mono Lake 
tests (Whalin 1966) and some nuclear events (DNA EMI, 1978); in terms of W, Allen 
defined this layer as 0.5 W™3 meters, where Wis in KT, which corresponds to the range 

Wi/3 
< 0.01S (3-26) 

in ft-4b system. It is a very thin layer; even well-planned experiments would have 
difficulty placing the explosives in the precise position. In addition, because this layer is so 
thin, an explosion within this thin layer must have its bubble breached at the surface 
before the completion of its expansion. In order to analyze the problem more reliably, any 
explosion within this layer is excluded from being considered as a fully contained 
sub—surface event. 

The 1988 WES tests were 10 lb explosions at several DOB's in water of 2.7 ft and 4.0 ft 
depth.  In terms of the depth-yield parameter d/W^2, these tests covered the range from 
d/W^% = 1.25 - 1.86, the intermediate water depth, the range which had not been 
explored before. The decay of the maximum wave elevation JJ versus distance r for 
explosions at various submergence is plotted in Figure 3-18. The solid line indicates the 
anticipated decay predicted by Equation (3.4) with a = 0.84 and 0.87 for the two water 
depths. As seen from the plots, the test data support the general trend suggested by the 
prediction but with significant scatter above and below, which is not unusual for explosion 
experiments.   Except for the case of zero DOB, which consistently yields a lower wave in 

130 



A' = Ü.572      If = 4.71 

IS 

W 

<s . . 

ca 
<3 

—)  
8.80 

—I  
28.08 

-H 
21.00 0. 00 4 . 00 12.00 16.00 

Time (sec) 

Figure 3-12. Comparison of the computed result with measurement at r = 42.5 
ft, for 10 lbs shot in 2.7 ft of water. 
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Figure 3-14. Comparison of the computed result with measurement at r = 47.5 
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the deeper case ( d = 4 ft ), there is no consistent trend leading to any conclusion toward 
the burst depth effect. If these data are plotted as a function of DOB ratio {z/d), the same 
degree of scatterness results as demonstrated in Figure 3-19. This approach is unsound 
because the data do not present any self-consistent trend for any given submergence 
(Figure 3-18). On the other hand, the data coDectively support the predictive formula 
(3.4) indicating that the burst depth effect is probably minor or negligible, within a certain 
error margin. The response of zero DOB in 4.0 ft water is substantially lower, evidently 
because the charge is too close to the surface and should not be categorized as sub-surface 
explosions as inferred above. 

It is clear that the decreasing burst depth effect in intermediate and shallow water cannot 
be generalized to deep water, as there is strong evidence that waves are particularly 
pronounced due to bursts at the upper critical depth as explained in Section 1. Besides the 
pronounced amplitude peak at the upper critical depth, data also show a mild hump at the 
so-called lower critical depth (Figure 1-8). As Whalin, et al. (1970) indicated, however, 
this lower critical depth cannot be defined, if the data of very small charges are discarded 
(Figures 3-20 and 3-21). On the other hand, the peak at the upper critical depth seems to 
definitely exist for either large or small charges. This indicates that the burst depth effect 
is governed not simply by the reduced submergence (submergence depth of burst/linear 
scale reduced from yield). It seems evident that the optimal submergence should be related 
to the size of the bubble formed by the explosion. The size of the bubble is a function of 
the yield but the optimum position of the bubble for wave generation depends upon water 
depth, if the water is not sufficiently deep.   This leads to a parameter which should be a 

function of both z/Yn% and z/d, or alternatively written as 

(=f(z/Wl/3
ld/W^). (3.27) 

The charge submergence depth governs the relative importance of the pressure and 
gravity effects during the process of bubble expansion. In an analysis for the optimal burst 
depth, Schmidt and Housen (1987) selected a parameter of the following form 

p   =1+JLL- (3.28) yo p  g z v      ' 

to account for the relative measure between the atmospheric and the static overburden 
pressure as seen in Figure 1-8. In Equation (3.28) K is a constant determining the 
transition between the pressure-predominated and gravity-dominated regimes. Schmidt 
and Housen adopted a value, K = 10, based upon scaling of soil cratering but additionally 
stated that the value of K is not critical. To account for the submergence depth effect, a 
form similar to Equation (3.28) is considered here, but the product KP is taken instead as a 
measure of the bubble pressure. Since this pressure should be a direct measure of the yield, 
the parameter p  is assumed to be in the following form o 

wi/s 

in the present correlation.   In Equation (3.29) c^ is a proportionality constant, possibly 

determined from data correlation. 
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Following Schmidt and Housen's result from data regression, assuming the generation 
0 2 ■    ■ process of surface waves in deep water to be proportional to p '   and tentatively assigning 

c. = 1, the parameter £ is postulated in the following form 

(=[1 + W—p, z/W1/3 > 0.05, (3.30) z 

with 

cs = 0.014 d/W1/8, (3.31) 

to account for both the burst depth and water depth effects. The limit of z/W ' > 0.05 is 
taken to be consistent with Equation (3.26) but extended from 0.013 to 0.05 to exclude 
near-surface explosions.    For the deep water extreme, by definition Equation (3.15), 

d/W1/3 = 14.32, 

1/3 
( = (1+^—.)°-Si (deep water). (3.32) 

For z/W '   varying from 0.05 to 14, the parameter £ is tabulated in Table 3-3. 

TABLE 3—2. Variation of (in deep water. 

z/W1/* z/d                     £ 

0.05 0.0035                    1.84 
0.25 0.0175                    1.38 

1 0.07                       1.15 
5 0.35                       1.04 

10 0.70                       1.02 
14 ~1.0                      ~1.0 

The above postulation seems to support the existence of an upper critical depth.   The 
pronounced amplification also seems to be limited to the layer of 0.05< z/W ' < 0.25 and 
gives a factor of 30 to 80 percent higher than that for deeply submerged cases. It should be 
noted, however, the postulation of the factor £ Equation (3.30) at the present stage is 
purely a conjecture which needs more credible evidence to prove or calibrate. As a 
minimum, the proportionality constant c< in Equation (3.29) and the exponent c„ in 
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Equation (3.31) should be carefully correlated using systematically established data, which 
are not available at the present time. 

Also note that the present analysis is confined to subsurface explosions, which are 
tentatively defined by those depths of the burst z greater than a critical depth z (=0.05 

W ' )i as indicated in Equation (3.30). It is believed that this limit is related to the depth 
at which the bubble may reach its maximum expansion for that submergence before 
breaching the surface, and consequently this depth may be intimately related to the 
so-called upper critical depth. Undoubtedly, this critical depth is a function of the yield. 

In shallow water where d/W '   < 1, the parameter ( approaches unity with little influence 
from charge location z, which agrees with the evidence shown in the shallow water test 

1/8 data. In terms of z/d and d/W '   , the parameter (is tabulated in Table 3-2. 

TABLE 3-3. Variation of C as a function of z/d and d/W1/3. 

d/W1' j 

z/d 

0.1 0.5 1.0 2.0 6.0 10.0 

0.005 1.53 
0.01 1.27 1.40 
0.05 1.04 1.07 1.13 1.17 
0.1 1.02 1.03 1.05 1.09 1.10 
0.25 1.02 1.02 1.03 1.04 1.05 
0.5 1.00 1.01 1.02 1.02 1.02 1.03 
0.75 1.00 1.01 1.02 1.02 1.02 1.02 
1.0 1.00 1.00 1.00 1.00 1.00 1.00 

3.6      CORRELATION OF BURST DEPTH EFFECT IN THE MATHEMATICAL 
MODEL. 

To account for the DOB effect, the following parameter is postulated for empirical 
correlations: 
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wi/s 

=f = /——77r-/*> z>-zc- (3-33) 
^c      1 + w1/s c 

zc 

1/8 When z has been assigned a value equal to 0.05 W '  , 

A = [0.0476 (1 + W^S/z)J 2 . (3-34) 

The parameter A may be regarded as a factor to incorporate various burst levels to the 
response. 

Further note that the propagation of the surface waves and the energy coupling depends 
upon the charge submergence depth as shown from the test data of Pace, et al. (1970). 
This indicates that wave propagation itself is a function of z/W '   in addition to d/W ' . 
To include the DOB effect, therefore, a new parameter 3 defined by   , 

3 = A d/W1/8 (3-35) 

is used to replace d/W1'   in the correlation relations.   Again, when d/W '   > 14, it is 
taken as equal to 14 so that 3 < 14 A. 

Consequently, the empirical formula of Equation (3.4) can be written as follows 

T>max_ra = ACw> (3.36) 

W 

or       I™*.!*     =CW, (3.37) 
Wp A w 

where a = 0.8S sP'01 

ß = a/8 + 0.25 (3-38) 

CW=1.44 0°-9S. 

In shallow water when d/W1//S < 1, A - 1 and 9-* d/W1'8, Equation (3.37) reduces to 
Equation (3.4) identically. 
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To be consistent with Equation (3.37), the correlation parameters R Equation (3.24) and A 
Equation (3.25) are modified ana given by 

R = (S0- 24.9 SP-07) d (3.39) 

A = 2.7A1+a(R/dr°-7S W1/* . (3.40) 

Again, in Equations (3.37), (3.39) and (3.40), all the linear dimensions are in ft and yield 
W in lbs. This correlation indicates that the depth of submergence directly relates with 
the behavior of wave propagation. The crater radius becomes larger, the waves become 
longer but smaller and decay more slowly when the charge submergence moves toward the 
lower level. The correlation of R Equation (3.39) is not anticipated to be valid for deep 
submergence beyond a certain critical level.   However, the effect of charge submergence 

becomes negligible in shallower water when d/W '   < 1. 

Following the empirical relationship of Equation (3.37), all experimental (non-nuclear) 

data are plotted and shown in Figure 3-22 The data cover test points for 0.05 < z/W1//S 

< 4.  By plotting the experimental values of J?_,,_ra/A Vr versus 3, the data are shown 

to align with the empirical line of C = I.44 äP'9S closely. The scatter of the data 
exhibited in Figure 3-23 essentially reflects the scatter of the actual event, which is 
especially evident for the upper critical depth cases as they are intrinsically unstable. 
Consequently, regardless of being an upper or lower critical event or at other submergence 
levels, the empirical prediction from (3.37) and (3.38) should provide a guide for an event 

of a given water depth (d/W1'8) and submergence (z/W1//S). 

3.7      WAVE MAKING EFFICIENCY. 

Theoretically, the energy in wave formation from an underwater explosion can be 
estimated from the potential and kinetic energies of the initial disturbance postulated in 
the mathematical model.    The present model takes a static crater r\ (r) described by 

Equation (3.18).   Because no initial velocity is assumed in the model (w (r)=0), only 

potential energy contributes to wave formation. The potential energy for a static crater 
Equation (1.10) is given by 

E^=\P9A2R2 (3.41) 

with A and R defined in Equation (3.18) as A    and R .    Assuming the foregoing 

correlations are valid and substituting into Equation (3.41) the relationships of A and R 
from Equations (3.39) and (3.40), the energy of wave formation can be expressed as a 
function of the parameter 3, which is in turn a function of yield W, water depth d and 

charge submergence depth z. On the basis of one lb TNT releasing 5 x 105 calories, the 
efficiency of wave generation from an underwater TNT explosion is given by 
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WES (1955) 

WES (1961) 

x   W =0.5 - 2048 lbs. 

a    W =    0.5 lbs. 

*   W =    2.0 lbs. 

A    W = 10.0 lbs. 

+   W =125.0 lbs. 

*   W =385.0 lbs. 

WES (1986) 0   W =10. • 50. lbs. 

WES (1988) 

WES (1989) 

O W = lO.lbs. 

w  W =0.5- 10.0 lbs 

MONO LAKE(19661 « W =9250. lbs. 

o — 

1—i X I I I i 

10 
i—I  i I i i 

10* 

d 

Figure 3-22. Empirical fit of maximum wave by generalized formula (3.37) in 
terms of yield, water depth, submergence depth and distance. 

146 



i                                    e = Ew/E = 158.S5 , 10~6 k2a sfiSO^.gSp-01)0-5^1/6                         (3.42) 

Equation (3.42) indicates that if 3 is kept constant, wave generation efficiency increases 

as W '  , where W is the i weight of TNT in pounds. Efficiency increases also with water 
depth.   In water of identical depth, the lower yield explosion is more efficient than the 
higher yield.  The generation efficiency for mid-depth burst is given in Table 3-4.  In the 
case where these figures can be compared with the wave making efficiency obtained by 
using the nonlinear wave 
conclusion that the linear 

theory as given in Section 5 the discrepancies should lead to the 
wave theory is inadequate in shallow water.  Also, in deep water, 

the large increase of efficiency exhibited by Table 3-4 indicates that there are limits of 
validity even though ill—defined, as it is indeed much less energy being found in water 
waves than given by Equation (3.42). The experimental evidence on which the empirical 
formulae are based simply does not exist, and one should be careful in extrapolating the 
range of application of the formula presented in this  Section beyond the range of 
experiments on which they are based. 

Table 3-4. Wave | generation efficiency for burst at mid—depth submergence. 

din ft, WinKT. 

d/w1/8 W(KT) d(ft) m 
1 126 .37 

1.0 10 271 .54 
100 584 .80 

1000 1259 1.17 

1 252 1.10 
2.0 10 542 1.61 

100 1169 2.36 
1000 2519 3.47 

1 630 3.25 
5.0 10 1357 4.77 

100 2924 7.01 
1000 6299 10.3 

1 1259 4.37 
10.0 10 2714 6.41 

100 5848 9.41 
1000 12599 
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3.8      SUMMARY. 

This Section presented a single mathematical model to describe the wave history due to an 
underwater explosion at any submergence and a single empirical formula to predict the 
maximum wave amplitude, at any distance near or far, in water of any depth, deep or 
shallow. The nearest distance applies to the smallest circle where the leading wave feature 
is distinctly important but the nonlinear phenomenon can be ignored, which is generally 
three to four plume radii outside the source center. With this understanding, the model 
and predictive formula are uniquely valid for near and far field, shallow and deep water, 
shallow and deep burst, underwater explosions over a uniform depth bottom. 

The subsurface event is defined by limiting the burst depth to be under a certain critical 
layer, which is contemplated as a depth at which the bubble of the expansion may reach its 
maximum radius for that submergence before breaching the surface. This depth is believed 
to be intimately related to the so-called upper critical depths, although no exact 
relationship has been established. 

The burst depth, as well as the water depth and yield, affects the prediction through a 
definitive functional relationship. Since thirty to forty percent or even 100 percent 
discrepancy in observations from supposedly identical explosions is common, the 
uncertainty exhibited in the prediction model can be explained by the actual uncertainty of 
the physical process. 

The model provides an additional dimension to examine various effects due to the burst 
depth; it directly affects the crater (or plume) radius, the wave period, as well as the wave 
amplitude. In some sense, an event of deeper burst depth seems to be equivalent as a 
relatively shallower water event. The effect of burst depth on very shallow water events, 
however, is negligible. 

The water depth versus the charge yield ratio is an important parameter even in "deep 
water" explosions, because no ocean is really deep for yields of one megaton and higher. 
Consequently, the efficiency in wave formation of an underwater explosion does not 
increase with yield as anticipated in the past, instead it decreases for larger yield in water 
of equal depth. For a given yield, the efficiency increases rapidly when in deeper water. 
However one must be careful to apply the empirical relationship presented in this Section 
beyond the range of experiments on which they are based. 
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SECTION 4 

NONLINEAR WAVE GENERATION MECHANISM AND 

WAVE PROPAGATION IN SHALLOW WATER 

4.1      PHYSICAL OVERVIEW AND THEORETICAL APPROACH. 

The phenomena described in the two following chapters applies when the relative depth 

(d/W ' ) < 1. Then the water crater is considered to reach the seafloor and the nonlinear 
effects are of such importance that they can no longer be neglected as in the two previous 
chapters. The development of the corresponding theories has been done recently. The 
contribution of Khangaonkar (1990) to the solution of these problems has been tremendous 
allowing a quantum step in the understanding of shallow water explosion. Most of the 
material presented in this chapter is from his work in a series of publications which 
includes: Khangaonkar (1990), Khangaonkar et al (1991) and Le Mehaute et al (1992). 

The distinguishing characteristics of EGWW in shallow water are (see Figure 1—3) 
1. A large leading wave which behaves almost like a solitary wave, followed by an 

extended long trough. 
2. The long trough is followed by a succession of conoidal—type waves of increasing 

frequencies akin to an undular, nondissipative bore. 
3. The wave—trough conoidal—type system is followed by a group of higher frequency 

waves which are of Stokesian type. 
4. At large "t" (period of propagation) and large distance r from GZ, as the wave 

amplitude decreases the waves are of the linear Airy type. 

The linear model is not capable of generating a wave record bringing out these features. A 
number of small scale tests [WES 1988, 89] have been done to simulate shallow water 
EGWW. After studying the video tapes of the tests it became apparent that the shallow 
water phenomenon could be split into a number of small phenomena which could be 
analyzed in sequence. 

A first look at the videos shows a seeming chaos following the explosive burst and the 
splash of water resulting in a lot of turbulent agitation. A careful observer can however 
discern the pattern contained in every test case that is pertinent and responsible for water 
wave generation. Most of the explosions (1 lb to 50 lb of TNT) in 2.7 ft of water created a 
crater that reached the bottom and exposed it. The body of water beyond the crater 
seemed to be undisturbed while the charge released pressure to the atmosphere during its 
first expansion phase, creating a large vertical plume and a hollow crater. The expansion 
of the crater created a lip which evolved into a cylindrical breaker which was damped 
rapidly to form the leading wave. Meanwhile the cylindrical crater collapsed inward on the 
dry bed and water converged at the center resulting in a reflection on itself. The water 
accumulated in the center, the resulting column rose and began to fall while dissipating 
energy very similar to that in a moving hydraulic jump. This propagated a short distance 
like a second bore. As this bore height diminished and the flow became tranquil, the 
dissipative phenomenon stopped and a high frequency trailing wave group was observed 
well behind the leading wave which had a considerable head start over the rest of the waves 
behind it. The waves propagated in the form of an undulated bore in the region where the 
amplitudes were large in comparison to the water depth. Thus, the waves retained their 
nonlinear structure of steep crests and shallow troughs as they propagated outwards. 
Meanwhile the collapse of the plume on the forming waves, adding considerable water to 
the moving wave, caused some damping by momentum transfer and turbulence. After 
travelling a certain distance due  to cylindrical spreading and  dispersion,  the wave 
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amplitudes became small, the waves became linear and of the Airy type. 

Study of several tests in slow motion enabled us to decipher the complex phenomenon of 
shallow water wave generation and propagation described above (see Figure 1-4). Based 
on our understanding and evaluation of the physics of the phenomenon, the following 
specific objectives are laid out. 
1. Use a theoretical crater with a lip as the initial free surface disturbance with the bed 

exposed to solve the hydrodynamics of the collapse of a cylindrical cavity on a dry 
bed. 

2. Solve for the hydrodynamic dissipative losses in the bore formation from the sell 
convergent crater collapse and its propagation behind the leading wave. 

3. Evolve the dissipative bore and the leading wave into nonlinear nondissipative 
Boussinesq or Cnoidal waves. 

4. Develop a technique to propagate waves from a weakly nonlinear, weakly dispersive 
region into the fully dispersive linear region. 

5. Perform a preliminary calibration of the nonlinear shallow water model using the 
near field test data. Estimate the efficiency based on the preliminary calibration. 

4.2      WAVE GENERATION MECHANISM. 

We begin with the assumption that in shallow water (d/W ' < 1), the underwater 
explosion crater radius is much greater than the water depth. The force of the explosion 
pushes the water off creating an axisymmetric cavity extending down to the bottom and 
exposing it almost entirely. The pressure meanwhile is released to the atmosphere from the 
free surface. The displaced water is prevented from moving outwards by the presence of a 
large body of stationary water whose inertia cannot be overcome by the radial momentum 
of a relatively small volume of water from the cavity. Thus most of the water is thrown 
upwards creating a large plume visible on the surface. Figure (4-1) shows the crater and 
the plume formation schematically due to a shallow water explosion. Water particles 
beyond the crater and the plume are observed to be calm and relatively unaffected by the 
burst. The shock wave effects do not interfere with the process of water wave formation 
and may be neglected. 

Based on the scenario described above and taking into account the mathematical 
convenience, the crater and the plume may be replaced with a cylindrical static cavity and 
a lip as a theoretical model for the initial disturbance to the body of water [Figure 4-1). 
The size of the static theoretical cavity is very close to the maximum size of the physical 
cavity due to the explosion, when most of the kinetic energy is nil. 

The lower part of the plume without the splash of water, is equivalently represented by the 
release of a volume of water above the free surface level on the perimeter of the cavity. 
This causes the leading wave just as in a real explosion. The plume falling under gravity 
may also contribute to the formation of the leading wave (based on observation). The 
dimensions of the lip are governed by the amplitude of the leading wave and conservation 
of mass (mass lost in the crater = mass of water in the lip). 

Exact shape of the crater and the lip can be obtained using Hydrocodes. But the state of 
the art for application to explosion generated craters is still inadequate for generalized 
usage. Thus for the purpose of mathematical modeling of the wave generation phenomena, 
a cylindrical cavity with a lip has been chosen to represent the initial conditions. While it 
is obvious that the real 'crater-plume' system produced by an explosion would not be as 
well defined as its mathematical equivalent, it is our contention that the acute geometrical 
features like the nonuniform crater surface, exact shape of the lip, etc. will not affect the 
large scale wave effects. Dispersion coupled with cylindrical spreading will quickly smooth 
out the effects of small scale sharp discontinuities, and generate water waves such that 
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Figure 4-1. Expansion of the explosion bubble and its subsequent burst through the 
free surface and theoretical representation of the physical crater with a 
cylindrical cavity surrounded by a lip. h is the water depth, n„ is the 
height of the lip and R is the crater radius. 
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important wave parameters such as the wave height, wave period, and the group 
formations will be well reproduced. In other words, waves resulting from the exact 
explosion generated crater and that resulting from its mathematical fit would be equivalent 
for all practical purposes. 

Thus the problem of wave generation by underwater explosions in shallow water is 
formulated as, "The Waves Caused by the Collapse of a Cylindrical Cavity with a Lip onto 
a Dry Bed". The parameters which govern the wave generation namely, crater radius and 
the lip size and shape are the unknowns which will be determined by calibration with the 
experimental data (Section 5). The collapse of the cavity is followed by the formation of a 
dissipative bore resulting from the reflection on itself at the center of the cavity or at GZ. 
This bore follows the leading wave up to the point where the flow becomes tranquil and the 
bore is converted to a group of trailing waves. 

4.3      COLLAPSE OF A CYLINDRICAL CAVITY ONTO A DRY BED. GOVERNING 
EQUATIONS. 

Collapse of a cylindrical cavity onto a dry bed can be analyzed analogous to a 
"Dam—Break" problem in cylindrical coordinates. On releasing the initial cavity, the 
leading edge on the lower side of the "Dam" may be expected to converge to the center 
with a splash, while the rarefaction wave travels away causing a drop in the water level as 
it moves. The release of an initial wall of water has been investigated using the nonlinear 
long wave equations in cartesian coordinates. 

The nonlinear long-wave equations in cylindrical coordinates for axisymmetric motion are 
given by the momentum balance: (All notations are nondimensionalized with respect to the 

* 
still water depth d, which is labeled h  in Sections 4 and 5). 

jft+j; [(l+h) U] + %-r [(r,+h) U]=0, (4.1) 

and continuity 

dU  ,   rrdU  ,     &. 
Jt + U% + 9fr = 0. (4.2) 

The pressure is hydrostatic. U represents the nondimensionalized, vertically averaged 

horizontal velocity in the radial direction. (Note: h = h /d = 1) 

Classical solution to the dam—break problem in 1—D (one dimensional (x,z,t) coordinate 
system) has been presented in analytical form by Stoker (1957). Numerical solutions of the 
long wave equations for the dam—break problem have been found using the method of 
characteristics and the finite difference method (e.g., Katopodes and Strelkoff, 1978; Sakkas 
and Strelkoff, 1973; Fennema and Chaudhury, 1987). 

The method of characteristics is adopted to solve the problem of cavity collapse because of 
its flexibility in handling shocks and discontinuities and its ability to provide stable 
solutions. 

Application of the method of characteristics involves conversion of Equations (4.1) and 
(4.2) into suitable form by performing a change of variables.  Wave elevation r; is replaced 

152 



by introducing the quantity C defined by, 

C2 = g(h + T]), (4.3) 

such that Equations (4.1) and (4.2) can be rewritten as; 

2Ct + 2UCr + CUr=-^ß, (4.4) 

Ut+UUr + 2C Cr=0. (4.5) 

Adding and subtracting Equations (4.4) and (4.5) the following pair of characteristic 
equations are obtained; 

[& + ^+c;Jr]fff**c; = ±
£r> (4-6) 

This implies that along the characteristic lines given by, 

the equation 

D.(U+2C) = ±*LQ (4.8) 

holds good. 

This is an initial value problem where the free surface elevation at time t=0, is given; 
Figure (4—2a). The characteristic grid is constructed on an (r-t) plane, which means that 
the x—axis contains points from the initial condition. Each point carries with it 
information on quantities U and C. In the 1-D problem, the quantities U+2C and U-2C 
are constant along each characteristic and are referred to as the 'Reiman Invarients'. 
However in the context of the 2-D problem in the cylindrical coordinate system, the 
quantities are no longer invarient. So we will refer to them as 'Pseudo Reiman Invarients'. 

Two characteristic lines may be drawn through each point on the 'r' axis. The curves 
satisfying Equation (4.7) are called C+ characteristics or C- characteristics depending 
upon sign. Equation (4.8) is integrated along C+ and C- such that at the point of 
intersection of C+ and C-, the Pseudo Reiman Invarients are fully determined. Thus four 
unknowns U, C, r and t are solved using the four Equations (4.7) and (4.8) progressively 
along the characteristic mesh. 
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Figure 4-2.     (a) PONM is the initial free surface,  (b) Schematic representation of the 
positive characteristics expected from the collapse of the crater PONM. 
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Before the application of the method, it is necessary to have a good idea about the 
expected behavior of the solution and the characteristic mesh. Figure (4—2b) shows the 
type of characteristic behavior that might be expected from the initial condition chosen for 
the solution of the cavity collapse problem. The characteristic mesh is divided into four 
regions and the solution in each region is discussed below. 

The first region is the calm region.    A point p(i,j) represents the point p on i 

characteristic at j time step. The location of the point is r(i,j) and t(i,j) on the (r—t) 
plane and carries the information C(i,j) concerning the free surface elevation [Equation 
(4.3)] and U(i,j) is the radial water particle velocity. Any point 'p' in this region is 
situated far enough from the origin so that at time t, the rarefaction wave has not reached 
it yet.   The characteristics in this region are straight parallel lines with the same slope. 

Since the initial velocity is U   = 0 and initial wave speed is C   = \ g h, this means that C 

for this entire region is a constant equal to C   and the water particle velocity U is always 

zero. The characteristic equations in cylindrical coordinates reduce to the same form as in 
the plane case. This also implies that the free surface elevation given by 

is always equal to zero in this region. 

In the second region, the characteristics emerge from the initial condition specified by the 
lip of the crater.    The point A on the (r—t) diagram corresponds to '0' in the initial 

condition shown in Figure (4—2a).   A—B represents the propagation of the leading wave 

front. At the edge of the disturbance, the particle velocity is zero always, therefore A—B is 
a straight line with slope equal to C , marking the end of region I. The boundary points on 

A—B are given by; 

U(l,j +1) = 0 
C(l,j + i) = co 

r(l,j+l) =r(l,j)+kr 
t(l,j+l) =t(i,j)+jf, 

o 

where Ar is the specified increment along the radial direction. To the left of A—B, C+ 
characteristics start off, each with increasing slope given by, 

$ft = U(i,l) + C(i,l). (4.10) 

The initial conditions here are, 
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^—"- -■"---=—-■" 

ffßj; = ö 

ca,i)=r~rt^(~ö) 
r(i,l) = R      -Vr- (i-j r(i,l) = R " -ir-'(i-l) 

max 
t(i,l) = 0. 

j/(i,l) is the initial surface elevation of the lip at r(i,l) and R       is the distance of the tip 

of the lip from the origin GZ.   Thus known values of U and C on the line A—B are made 
use of to solve Equation (4.8) along each characteristic to generate the solution and the 

next characteristic A '—B l . 

As shown in Figure (4—3) the known boundary values of the variables C, U, r and t at 
P(i-l,j) along A-B and the initial value P(i,j) are used to compute P(i,j+1) .   First the 
location of the new point P(i,j+1) is determined. Equations (4.7) are discretized as; 

r(i,j+l) - r(i,j) = [U(i,j)+C(i,j)][t(i,j+l)-t(i,j)], (4.11) 

and 

r(i,j+l) - r(i-l,j) = [U(i-l,j) - C(i-l,j)][t(i,j+l) - t(i-l,j)J. (4.12) 

P<l,J> PO-1J) 

Figure 4—3.  Grid point computation (region II). 

Solving the above two equations simultaneously, we obtain 

t(i,3+l) = { r(i~l,j) - r(i,j) + t(i,j)[U(i,j) + C(i,j)] 

~t(i-l,j)[U(i-l,j) - C(i-l,j)J} / 

[C(i,j) + U(i,j) - U(i-l,j) + C(i-l,j)], (4.13) 

and 

r(i,j+l) = r(i-l,j) + [U(i-l,j) - C(i-l,j)].[t(i,j+l)- t(i-l,j)]. 
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Thus, the new grid point P(i,j+1) is generated. 

Similarly to determine the velocity and elevation at the new grid point, Equation (4.8) are 
discretized as follows 

[U(iJ-hl) + 2C(i,j+l)] - [U(i,j) + 2C(i,j)] = 

~U(%($ MW) - «ML (4-15) 

and 

[U(i,j+1) - 2C(i,j+l)]-[U(i-l,j)-2C(i-llj)] = 

W'lfitffi1'1*   [t(i,j+l)-t(i-l,i)]. (4.16) 

Solution of the above two simultaneous equations yields; 

U(i,j+1) = [U(i,j+1) + 2C(i,j) + U(i-l,j) - 2C(i-l,j)]/2 

-U(i,j)C(i,j) [t(i,j+l) - t(i,j)l/[*r(hj)] (4-17) 

+U(i-l,j)C(i-l,j) [t(i,j+l) - t(i-l,j)]/[2r(i-l,j)J. 

and 

C(i,j+1) = [U(i,j) + 2C(i,j) - U(i-l,j) + 2C(i-l,j)J/4 

-U(i,j)C(i,j) ft(i,j+l) - t(i,M4r(i,j)] (4.18) 

-U(i-l,j)C(i-l,j) [t(i,j+l) - t(i-l,j)]/[4r(i-l,j)]. 

By successive increments of j, points are computed along each characteristic line and the 
points on each completely computed characteristic are used to compute the next 
characteristic line given by the next value of i. Thus the solution is obtained for the entire 
region of characteristics arising from the 'lip' up to the characteristic C—D, marking the 
beginning of the third region. 

The third region as shown in Figure (4—2b), C—D is the characteristic which corresponds to 
the apex of the lip. This region is called the 'expansion fan.' This region represents the 
solution to spreading out due to rarefaction as the leading edge moves inwards on the dry 
bed withdrawing water from the surrounding reservoir.    M—N in Figure (4—2a) is the 
vertical wall. C—E and C—D are the extreme characteristics which represent the leading 
edge and the rarefaction edge, respectively.   The leading edge moves on the dry bed at a 
velocity 2vg(h+r/ ) on being released. The variable 'r/ ' here is the elevation of the peak of 
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the lip and is set to h .  The point C is the fan node.  The initial conditions for this region 

are; 
r(i,l) = R  (the crater radius), 

t(i,l) = 0, 
C(i,l)=y/g(h+T}*(i,l)), 

Tj*(i,l) is the elevation of the point on the vertical wall of the crater. 

PO-1.J + 1) 

Figure 4-4.  Grid point computation—(region III). 

U(i,l) is specified for each point depending on the location, varying from 0 at the top to 
—2vg(h+f7 ) at the bottom.   Thus the maximum slope is for the characteristic from the 

apex N, along C-D; 

dr ft     = U(i,l) + C(i,l) (4.19) 

and the minimum slope is for the characteristic from the bottom of the crater M, along 
C=PJ; 

dr ft = U(i,l) + C(i,l) 

= - tygih+rij + 0 

(4.20) 

The characteristic grid is determined once again except that this time, for the first step, 
point C is common. The characteristics C+ and C— are discretized with the initial points 
P(i,j) and P(i—1, j+1) Figure 4-4 and the solution of the resulting simultaneous equations 
in r and t gives the point P(i,j + 1) as; 
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t(i,3+l) = {r(i-l,j+l) - r(i,j) + t(i,j) [U(i,j) + C(i,j) (4.21) 

-t(i-l,j+l)[U(i-l,j+l) - C(i-l,j+l)j) 

[C(i,j) + U(i,j) - U(i-l,j+l) + C(i-l,j+l)J, 

and 

r(i,j+l)    =    r(i-l,3+l)+[U(i-l,j+l)-C(i-l,i+l)]       [t(i,j+l)-t(i-l,j+l)J 
4.22) 

Similarly, discretizing Equation (4.6) with P(i,j) and P(i—1, j+1) and solving the resulting 
equations simultaneously for U and C yields, 

U(i,j+1) = [U(i,j)+2C(i,j) + U(i-l,j+l)-2C(i-l,j+l)]/2 

-U(iJ)C(i,j)[t(i,j+l)-t(ilj)]/[2r(ilj)] 

+U(i-l,j+l)C(i-l,j+l)[t(i,j+l)-t(i-l,j+l)]/ (4.23) 

[2r(i-l,j+l)]t 

and 

C(i,j+1) = [U(i,j)+2C(i,j)-U(i-l,j+l)+2C(i-l,j+l)]/4 

-U(ij)C(ij)[t(ij+l)-t(ij)]/[4r(ij)l (4.24) 

-U(i-U+l)C(i-l,j+l)[t(i,j+l)-t(i-l,j+l)]/ 

[4r(i-l,j+l)]. 

Thus the complete solution is obtained for the 'expansion fan' region. 

Finally, the fourth region is ahead of the leading edge of the down side flow from the cavity 
collapse. The point P(r,t) in this region is situated at a distance from GZ such that the 
flow has not reached that location at time 't' yet and the ground is still dry. Thus the 
entire collapse has been solved. 

* 
To obtain the free surface elevation or the water particle velocity at any particular time t , 
a horizontal cut is made in the (r—t) diagram at t = t to obtain P(r,t ). This involves 
interpolating between the computed U and C at the surrounding mesh node points; once 
with respect to 't' and once with respect to 'r'. The surface elevation is given by Equation 
(4.9).  Solution of the cavity collapse for the leading edge holds up to the critical time t   •■ 
given by 
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«crf-Äl' (4-25) 

the time at which the leading edge touches the origin and the solution becomes unstable 
UC due to the singularity in the cylindrical spreading term, -—, at r = 0 in the Equation (4.8). 

4.4      APPLICATION. 

As explained in the previous section, the explosion crater may be modeled using a 
cylindrical cavity with a lip.  For the purpose of this test case, a cavity of radius, R  = 10 
ft, with a lip of length of R /2 = 5 ft is chosen. Water depth h = 2.7 ft and lip height h  is 
to be determined using conservation of mass.  The volume of water in the triangular lip on 
the periphery must equal the water removed from the cylindrical crater. 
Volume in the Cavity; 

Vt = *R*h . (4.26) 

Volume in the Lip; 

V2     =Sr-(r + ^)-l--^h0 (4.27) 

Equating V. and V„ we obtain 

h0=fh. (4.28) 

Once again the method of characteristics is applied to the initial condition as described 
above. Figure 4-5 shows the characteristics grid. Regions I, II, III and IV indicating the 
calm region, the lip evolution, the expansion fan and the dry unaffected regions are clearly 
developed. Figure 4—6 shows the free surface profiles. Evolution of the leading wave from 
the lip collapse is observed. Care is taken to prevent instability due to the singularity at 
the origin as r tends to zero. 

4.5  BORE FORMATION AND PROPAGATION. 

When the leading edge of water strikes GZ, due to the existing axisymmetry, the problem 
may be analyzed analogous to a supercritical stream of water striking and rebounding from 
a wall. The process up to the point of contact with the wall is a nondissipative process. 
But the moment water reaches r = 0, turbulence, and dissipative reflection on itself begins. 
The momentum of the incoming flow, balances the pressure head of the water accumulating 
at the center, very similar to a hydraulic jump.   However, with continuity being obeyed, 
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CRATER-COLLAPSE 2-D (r,Z) 
WITH WATER CONSERVATION 

•.•I it.•• it.•• 

Figure 4-5. Characteristics grid resulting from the collapse of a cylindrical cavity with 
a lip. Crater radius is 10 ft, water depth is 2.7 ft. The lip height h„ = 4.62 
ft and the lip radius 1 = 5 ft. To demarcate the regions, only positive 
characteristics are plotted in region III. 
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CAVITY-COLLAPSE 2-D (R-Z) 

w 

Figure 4-6. Free surface profiles resulting from the collapse of a cylindrical cavity 
with a lip. Crater radius is 10 ft, water depth is 2.7 ft, the lip height h„ = 
4.62 ft and lip radius 1 = 5 ft. Evolution of the lip into the leading wave 
is observed. 
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the radius of the upper side of the jump increases, seemingly like a translatory bore or a 
moving hydraulic jump. The averaged horizontal water particle velocity in the upper side 
is assumed to be zero. Using the momentum balance approach for the bore formation as 
described above, the dissipative process is handled externally, without having to analyze 
the exact internal turbulent flow structure. 

Figure 4—7 shows the schematic representation of the bore formation.   Quantities U* and 

h. are water particle velocity, and the free surface height measured from the bed, on the 

'down' side respectively. These are known quantities obtained from interpolation of the 
already computed characteristic mesh solution; Figure 4—5. They are the flow parameters 
of the incoming leading edge. The variable h   is the height of the water accumulated (h   — 

h, = bore elevation) and W, is the bore front velocity of propagation or simply the 'bore 

di 
velocity'. The unknowns are h   and r , to be determined as a function of time. W, is -*p. 

The governing equations are the continuity and the momentum equation. 

Considering Figure 4—8, the subscript 1 denotes known quantities at the beginning of the 
time step, and subscript 2 indicates the quantities after an interval At. The quantity of 
water flowing into the turbulent region is equal to the increase in volume of the turbulent 
region; i.e., 

2 2 I 
hJr ~ \nr = /\a uu T\At + ha udi riAi? <4-29) 

Net inflow momentum per second plus the rate of change of momentum within the control 
volume due to the translatory term concerning the bore velocity is balanced by the 
difference of pressure forces. 

For the application of momentum theorem consider the control volume given by 'acod' in 
Figure 4—7. The external force is, 

ZFe=pg[±hu
2

2-lh2
d2]. (4.30) 

Change of momentum with respect to space or change of momentum flux is given as: 

p\\U- Unds =pU2
d2hd2-0. (4.31) 

Change of momentum with respect to time is given by the term, 

MSJi fldv=uf£ + Mw. (4.32) 

(M and U denote mass of water and velocity). 
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Figure 4-7. Schematic representation of the turbulent dissipative processes resulting 
from the rebound of the leading edge of the collapsing crater at the center, 
'aocd* is the control volume for application of the momentum theorem. 
The bore formation is shown with a flat rectangular representation with a 
frontal velocity Wb. 
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Figure 4-8. Schematic representation showing the progress of the iterative process over 
an interval At, from 1 to 2. The dashed profile is the advanced solution 
at 2, and the smooth profile shows the condition at the beginning of the 
step. The shaded region indicates the unsteady loss term due to the motion 
of the bore from u to d over the step At. 
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The first term u|y corresponding to the translatory part ['aoer', Figure 4-7] is zero since 
U= 0 on the upper side.   The second term corresponding to the unsteady part 'reed' is 
given by, 

MTTt=Phd2Wb(ud2-°)- (4-33) 

Equating the external force given by Equation (4.30) with the total change of momentum 
with respect to time given by Equations (4.31) and (4.33) we obtain, 

liMhl2-lp3hS
d2] = pUS

d2kd2 + fiUd2hdsWb, (4.34) 

which gives, 

h n % 
kul = {[-rl+v2i2hd^Ud2hd2Wi}l}'   ■ <4-35> 

Equations (4.29) and (4.35) are solved simultaneously using an iterative scheme. Iterative 
solution of Equation (4.29) gives r„ the new bore radius.  Using the characteristic solution 
for the down side flow parameters, the new values hjg and U^ ^e computed by 
interpolation between the characteristic mesh points. These values are input into Equation 
(4.35) to obtain h „ .  The new value of hu2 is re-fed into Equation (4.29) to re-compute 
r„. This process is continued until h „ aQd r2 converge to a solution. 

The solution is advanced in the above manner, step by step.  At each time step the Froude 
U, 

Number, F   = -—9— , is computed.   The bore formation and the process as described 

above exists only when the Froude Number is less than 1. This is used as a criterion to 
stop the dissipative bore propagation model and begin wave propagation with a nonlinear 
nondissipative model. Another criterion for bore existence is the ratio of the bore height to 
the water depth. Bores are known to disappear when the ratio (Favre, 1935) 

d 

However, our calculations show that the Froude Number criterion is always satisfied first. 

Figure 4—9 shows plots of ß,   and F   as a function of time along with the bore-limit 
criterion to stop the computations. We have the bore height and the radius as a function 
of time from our previous computation.  Free surface elevations are plotted in Figure 4-10. 
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BORE-LIMIT CRITERIA 

£ 

^ 

"t.ea a.^e e.se 1.20 
Time (s) 

1.60 2.00 

Figure 4-9. Plot of Froude number Fn and the bore height to depth ration ß, with 
respect to time. Bore computations are stopped when Fn reaches the'value 
1. As shown, the condition Fn < 1 is reached before ß < 0.6. 
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Crater with a lip 
Bore vel. Included 

t = 1.019 
I I ! I 

i.i«        «.ii        i.ii ii.ii       i«.•«       it.ii       t«.ie 

t = 0.850 

••ii «.ii i.II i!.ii        U.II       je.ii       i«.ii 

t = 0.700 
-4 1 :  |  J_ 

»-»• «.I« I. II U.II It.II 28.11 2i.ll 

t = 0.579 

i        —(— 1- 
l.ll «.II I.II 12.11 

—> l i 
U.II 21.11 I«.II 

R 

Figure 4-10. Computed free surface profiles showing the leading wave followed by a 
decaying bore. Water depth h is 2.7 ft, the initial crater radius R was 10 
ft, lip height h„ was 4.6 ft, and the lip radius was 5 ft. 
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Time 't' indicated for each profile is the time elapsed since the release of the cavity. 
Propagation of the leading wave followed by the bore is shown. 

The distance between the leading wave peak and the bore front controls the leading wave 
length as the bore transforms into an undulatory bore and then into a group of high 
frequency waves. This is directly dependent upon the crater radius. The last wave profile 
shown in Figure 4—10 is at a time when the flow on the down side just turns subcritical or 
tranquil. At this time, the wave profile may be used as an input to an appropriate 
nondissipative wave propagation model. 

4.6      NONLINEAR WAVE PROPAGATION - IMPORTANCE OF 
NONLINEARITIES. 

It is clear from the observed and recorded wave data close to the explosion in shallow 
water, that the waves exhibit highly peaked wave crests and longer shallow troughs. The 
leading wave followed by the undular bore, propagates under the influence of the nonlinear 
convective forces in this region close to GZ. As the wave disperses both angularly and 
radially, the wave amplitude decays and the existing linear theory is valid only at the limit 
of the nonlinear range, at a distance from GZ. In this section, the appropriate nonlinear 
equations are derived in the cylindrical coordinate system, and an improved formula for 
propagation of transient EGWW is proposed. 

Figure 1—17 shows a typical near—field wave record with the nonlinear characteristics 
mentioned before. In order to assess the relative importance of the nonlinearities, one can 
calculate from the wave records a number of criteria which are grossly related to the ratio 
of the nonlinear convective inertia to the linear local inertia. One of these is the Ursell 
parameter 

"r-^. (4.37) 

where TJ   is taken here as the mean leading wave amplitude, L is the linear (long wave) 

wave length based on the time interval elapsing between the first two crests and h is the 
still water depth. Then, using the wave records obtained from a 10-lb TNT explosion in 4 
ft and 2.7 ft of water depth at a distance of 27.7 ft from GZ, the following averaged values 
are obtained. 

Table 4—1. Average Leading Wave Characteristics. 

h*ft. 

2.7 

4.0 

* 

*0 
T sec. 

* 
Ur 

0.368 2.053 6.84 

0.253 2.275 2.63 

The corresponding values of the Ursell parameter, [1 < U < 10 or « 0(1)] substantiate the 
fact that EGWW in shallow water near GZ enters in the family water waves of the 
Boussinesq type.    This type of water wave has been subjected to a large number of 
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theoretical developments particularly in the case of two dimensional Solitary or 
monochromatic waves. In the latter case, they are described by the Cnoidal wave theory. 
However, little work has been done in the case of cylindrical waves with radial symmetry. 
Therefore, Boussinesq equations in a radial coordinate system are established first. 

4.7      THE BOUSSINESQ EQUATIONS IN A CYLINDRICAL COORDINATE 
SYSTEM. 

The Boussinesq equations are established here, based on their general form in a Cartesian 
system as given by Mei (1983). Like in the two—dimensional case, the Boussinesq 
equations are derived based on the assumption that the two parameters governing 
nonlinearity and dispersive nature remain small, i.e., 

A* 
£=-£-<<i) (4.38) 

h* 
I? = (k*h*f <<1, (4.39) 

* * * * 
where A   is a typical wave amplitude and k =2T/L   is the wave number, where L   is a 
typical wave length.   Then the corresponding wave is described as "weakly nonlinear and 

2 weakly dispersive".   V is the measure of the nonlinearity and ß   « 1 indicates that the 
dispersion relationship may be replaced by the long—wave approximation. The above 
assumption that 0(c) = 0(p ) « 1 implies that the Ursell parameter 

Ur = V 0(1). (4.40) 

In order to establish Boussinesq equations in general cartesian (x,y,z,t) system, all the 
quantities are nondimensionalized as follows, 
(The star referring to dimensional quantities): 

(z,y) = k0(z*,v*)t (k*=^). (4.41) 
Lt 

The dimensionless time is, 

I 
t = t*(g h*f k* , (4.42) 

where g is the gravity acceleration. The dimensionless free surface elevation is, 
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„=•*!, (4.43) 
A* 

* 
where A   is the amplitude. The dimensionless potential function is given by 

i^fl-T-iW*?}-1 . (4.44) 
U*   h* J 

The horizontal and vertical velocity components are expressed as; 

U(u,v)=-^~U(u*lv*) (4.45) 
A ylgh 

and, 

A*   <Jgh* 
w=hllL- -JL.W* . (4.46) 

Here, «*, v* and w are the velocity components in the x, y and z directions respectively. 
The solution satisfies continuity and therefore under the assumption of irrotationality the 
Laplace equation, 

"'(*xc + V + +zz = ° (4-47) 

is obeyed for —1 < z < cr/ and V is defined to operate only the horizontal plane; 

The kinematic boundary condition at the free surface (z = erj) is, 

M* (lt 
+ ^x% + £W = *z ■ (4-49) 

The dynamic free surface condition (at z = er/) is, 

£(*t + ^+? tfto\ + ty + til = ° (4-5°) 
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The impermeable bottom condition is written as, 

4>  = 0 atz=- 1. (4.51) z 

Combining Equation (4.48) with Equations (4.49), (4.50) and (4.51) using a series solution 
for <p and neglecting a 
equations are obtained: 

2     2 for <p and neglecting all the terms of 0(t , /t   and above), the following Boussinesq 

rit + 1'[(€Ti + l)tr]=0, (4.52) 

2 
trt + etf. vtr + VT7-§ vfl.ty = o. (4.53) 

Replacing Ü by V<f> and taking the derivative of Equation (4.53) with respect to t and 
submitting Equation (4.52) to a V operator, r\ can be eliminated from Equation (4.52) so 
that, 

which is the alternate form of the Boussinesq equation. 

For the problem under consideration, the equations derived above are easily transformed 
into a cylindrical coordinate system (r,0,z) with axisymmetry. Considering the fact that 
partial derivatives with respect to 6 are zero, the following relations may be written; 

W = i<t>r (4-55) 

V^=H (4.56) 

12<P=i(r<t>T)r. (4-57) 

Inserting Equations (4.55) to (4.57) into (4.52) and (4.53), the Boussinesq equations in 
cylindrical coordinates are obtained as; 

Ht = ±> [«€1+1)4^=0, (4.58) 

Ut + tU. ^ + V = §-^r"Wrt- (4-59) 
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These equations are identical to those obtained by Chwang and Wu (1976). They are also 
equivalent to the one established by Le Mehaute, et al. (1987), with some simple 
transformations. Eliminating 77 as previously done in the Cartesian system yields the 
alternate Boussinesq equation in a cylindrical coordinate system; 

h ~ trr - W + <Mr*Tt + r¥r+¥rr> = S^W r «W 
(4.60) 

Given r\ and using the relationship 

J] = -<t>t + 0(t, n2) , (4.61) 

Equation (4.60) can be solved numerically. However, this task is better accomplished by 
using a moving coordinate system travelling at the phase speed. The Boussinesq equations 
are then transformed into KdV (Korteweg and de Vries) equation as follows 

4.8      TRANSFORMATION OF THE BOUSSINESQ EQUATIONS INTO KdV 
EQUATIONS. 

A moving coordinate system in a and r is defined using the relations, 

a = r - t 
T = et, (4.62) 

so that the phase is given by 

i = r-t + 0(e). (4.63) 

Q 
Thus the observer moving at C = * observes only a slow variation in the wave form 

with respect to time.   So, we have the forward transform operator pair to transform the 
f;overning equations from the stationary coordinate system to a moving coordinate system 
(r,t) - W)], 

d  _d 
~5r~~Bä' 

and the reverse transform pair to go from the moving coordinate system back to the 
stationary coordinate system; 
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i=i (465) 
d -id   ,ld 

Inserting these forward transform operators into Equation (4.60) and retaining the terms 
2 

only of 0(f,/i ) one obtains, 

<t> o    » fi/       2r <f> 

Also, 

aaa = 0. (4.66) 

^)(T=-<Pt = rl + 0(ttl?) , (4-67) 

from the dynamic boundary condition.   Therefore <j>   can be replaced by r? at the leading 
order of approximation. Thus Equation (4.66) becomes 

„  +JL + 8       + 3r+ä-[v      +
1k°-l=o. (4.68) 

Reverting back to the stationary coordinates using Equations (4.65) one obtains, 

Equation  (4.69) leads to two forms of the KdV equation.     A stretched system of 
coordinates given by, 

r1 = er (4-70) 
t' = t - r 

is introduced such that, the operator pair transforming to the stretched coordinates is, 

i-'^-jr (4J1) 
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2 
Substituting these into eq. (4.69) and dropping all the terms of order higher than e and p , 
one obtains, 

Reverting back to the normal coordinates finally gives us the first form of the KdV 
equation; 

It is possible to arrive at another equivalent form of the KdV equation by introducing once 
again the a and r coordinate system Equation (4.62) into Equation (4.74) and keeping 
terms of only 0(e, n ) to get, 

57777 „        2 

Reverting back to stationary coordinates yields the second form of the KdV equation; 

Equations (4.74) and (4.76) are two equivalent forms of the KdV equation in the 
nondimensional coordinates systems. Rewriting them in terms of dimensional quantities, 
two canonical forms of KdV equations in cylindrical coordinates are obtained. These are: 

2 

^AJUl + S-£j^+£-.\J*+\7h*f^s = 0, (4.77) 
dt* 2bT dr*    2r* °    dr*s 

2 

^Vfi-K-^-f^ ~T-^S = 0. (4.78) 
dr* 2h*Jgh* dt*    2r*     6(9 h*)2   di** 

4.9      EXTENDED KdV EQUATION. 

The validity of the previously established KdV equation depends upon the relative 
importance of the nonlinear convective terms which are grossly characterized by the Ursell 
parameter.    Based on this, one has seen that the KdV equation seems to be most 
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appropriate to describe the leading waves of EGWW in shallow water. However, the 
theory is seldom valid for the trailing waves in deeper water which are better approximated 
by Stokesian theory. In order to prevent the use of two separate families of wave theories 
and keeping the same validity for the leading waves as well as trailing waves in shallow or 
intermediate water depth, a modification to the classical KdV equation is introduced 
through the dispersion relationship. 

To analyze the phase speed of wave propagation, we consider the linearized KdV equations, 
without the cylindrical spreading for the sake of simplicity. Equation (4.77) becomes, 

^Vv^*^v4-^ *^Vö> (4-79) dt dr dr* 

and equation (4.78) can be written as, 

2 
<tll+    1     dZL_JL_^ Q-IL = o (4 80} 
dr      fih    dt (gh*ßdt* 

The above equations yield the dispersion relationships, 

2 ,*2    8 
u*=\gh*   (k* -§-**;, (4.81) 

and 

2 
k* = -^- +    h* t , J , (4.82) 

respectively.   Figure 4—11 is based on the dispersion relations (4.81) and (4.82) along with 
linear wave dispersion given by, 

2 
u*   =gk*tanh(k*h*). (4.83) 

Clearly, it is seen that the linear dispersion relationships given by Equations (4.81) and 
* * 

(4.82) match the classical Airy theory Equation (4.83) for small values of k h , but they 
lose their validity for the larger values. In order to expand the range of validity of the 
KdV equation into intermediate water depth, an extended form of the KdV equation is 
presented. This incorporates the linear wave dispersion relationship given by the Airy 
theory into the KdV equations instead of the long—wave approximation. This allows a 
smooth transition from shallow water nonlinear waves to intermediate and deep water 
waves.    The nonlinearity is a function of wave height and is also expected to vanish 
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DISPERSION RELATION 

3.20 

Figure 4-11.   A comparison of the nondimensional wave frequency a function of 
nondimensional wave number as given by the three dispersion relations 1 
2 and refer to equations 
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smoothly as the wave amplitudes decay with distance. The extended KdV equation was 
first proposed by Whitham (1974) for water waves using integro differential equations. In 
context of the split step method described in the following section, Tappert and Judice 
(1972), wrote the extended KdV equation for an ion acoustic wave. An approach based on 
the above two works is followed here. The linear equation (4.80) may be written as; 

£L + u y = o (4.84) 
dr*        op 

Here, 
*2 S 1      d h* dy 

"»'wlT'-läTfl-?-' (485) 

0     corresponds to the dispersion relation (4.82).   In order to obtain the operator for the 

full wave dispersion, one can write Equation (4.83), 

k*= TTT/- (4-86) 
g*tanh(k h ) 

The u is replaced on the right hand side by - i -KT such that, 

*    g-tanh(k h ) *.* 

Putting the above expression back into Equation (4.85) and including the spreading and 
nonlinear terms, the Extended KdV equation for time series analysis is obtained. Thus 

ijL^Sji_J_dT^ + TL___ i__ &il = 0 (488) 
dr*     Sh* JgK* dt*    2r*    g tanh(k*h*) dt*2 

4.10     MODES OF SOLUTIONS AND NUMERICAL PROCEDURES - SPLIT STEP 
FOURIER ALGORITHM. 

Analytical two-dimensional steady state solutions of the KdV equation have already been 
obtained. These are the Cnoidal wave and Solitary wave solutions (Whitham, 1974). 
However, in the case of transient water waves in three-dimensions, with the presence of a 
cylindrical spreading term, analytical solutions are not possible. Numerical solutions have 
been developed and tested with experimental data, by many investigators. The following 
numerical methods can be used: 
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1. Finite Difference Technique 
2. Numerical Integration 
3. Split-Step Fourier Algorithm [SSFA] 

Peregrine (1967), gave finite difference schemes to solve both KdV and Boussinesq 
equations in two dimensions. Chwang and Wu (1976), used a similar scheme to solve the 
Boussinesq equations in a cylindrical coordinate system. Solutions to the cylindrical KdV 
equations, first derived by Miles (1978) in the context of free surface gravity waves, was 
experimentally tested by Weidman and Zakhem (1988). Numerical solutions for the same 
cylindrical KdV equation was given earlier by Ko and Kuehl (1979), using numerical 
integration. The SSFA has not found as much application in free surface gravity waves as 
in plasma waves. The only application was by Chang et al (1979), who used the SSFA to 
solve the KdV equation over a slowly varying channel. They found that the SSFA gave 
solutions with a high degree of accuracy. All the aforementioned solutions made use of a 
solitary wave as the input for analysis. The experimental verification was also carried out 
for solitary waves. The numerical scheme shows a high level of accuracy for the 
propagation of solitary waves. 

or the problem of explosion generated water waves, propagation over large distances and 
many wave periods is expected. Typical values for At and Ax used in the finite difference 
schemes were At = Ax s 0.2. Limitations imposed by stability and convergence criteria 
make both finite difference and numerical integration schemes inadequate. Therefore, the 
SSFA method is adopted to propagate real wave records in cylindrical coordinates for the 
first time in view of its particularly suitable computational scheme for EGWW. 

Explosion test data recorded are in the time series of the free surface elevation recorded at 
various distances from GZ. Thus, Equation (4.78) which is suitable for time series analysis 
is retained. It may also be re-organized as, 

(*'s to indicate dimensional quantities are removed for convenience). The essence of SSFA 
lies in separating Equation (4.89) in two parts, 

$-Ü7isi?-». (4'90> 
and 

Equation (4.90) consist of only the nonlinear part which is perceived as the nonlinear 
correction part of the KdV equation. Equation (4.91) is the linear dispersive part. In the 
absence of nonlinear terms, solutions represented by Equation (4.91) follow the long wave 
approximation in shallow water. The solution is obtained in two steps. Step I involves 
solution of eq. (4.90) using an implicit iterative finite difference scheme. The solution is 
advanced by a step Ar, (r -♦ r + Ar), using Equation (4.90). In Step II, the corrected time 
series is advanced using Equation (4.91) over the same step in r. Thus Steps I and II, 
which yield partial solutions, are combined by performing individual operations in sequence 
to give the complete solution. 
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4.10.1 Step I: Nonlinear Correction. 

Solution of the nonlinear Equation (4.90) is done in two steps in order to set up the 
implicit finite difference scheme. 

4.10.1.1 Step la. For convenience we use the following notation; 

i = r, 
j = t, 
the solution is advanced in r using simple forward deference. Equation (4.90) is split as; 

i+ri^-JT1  s    , (492) 
Ar      -2At.y/gh     ' 2h° V ^92> 

This gives, 

*'-^ft-TO^W"H (493) 

4.10.1.2 Step lb. Availability of r?(r + Ar) now enables us to split Equation (4.90) using 
an implicit finite difference scheme as follows 

which gives 

<li-4 + &-jfe(tä-tä + #'-'t''>i (495) 

17?,. is obtained from Equation (4.93) and is fed into the right hand side of Equation 

(4.95) to obtain i}±r This is once again fed into the right hand side of Equation (4.95) 
in an iterative loop until a sufficient level of accuracy has been achieved. The time series 

T/. j*, is the corrected time series. 

4.10.2 Step II: Linear Propagation. 
In this step, the corrected time series is propagated using the Fourier transform solution of 
the linear partial differential Equation (4.91). We define the Fourier transform pair as: 
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V(u)=rv(t)eiutdt FFT + (4.96) 

and 

V(t)=^rv(u)e-iutdw FFT' (4.97) 

A forward Fourier transform is applied in eq. (4.91) so that, 

(4.98) 

where 

a =■ 
6(Jgiy 

(4.99) 

Separating 77 to one side, we obtain the 1st order ordinary differential equation in TJ and r; 

ÖTj _ -*+p-J. dr. (4.100) 

Integrating the above equation from r to r + Ar, we obtain 

wAr 
^+Ar'") = /ri^^™3^ *..«) (4.101) 

Inverse Fourier transform on both sides yields, 

wAr 
*r + Ar't) - JihiFFT_1 [^ ^71^°" Ar)]. (4.102) 

which is the same as, 

./wAr 
4+i - /FTSJ^T"

1
 {[FTT+'hti,)] ^i(7P+^Ar)} (4.103) 

181 



Note that jj(r,w) on the right hand side of Equation (4.102) has been replaced by the 
Fourier transform of the corrected time series from Step I. T^ ,, from equation (4.103) is 

the final advanced solution. 

4.11    THEORETICAL AND EXPERIMENTAL VERIFICATION. 

Two computer codes have been developed based on Equations (4.77) and (4.78) 
respectively, using the SSFA as described in the previous section. The first one, 
'KdV.FOR' is based on Equation (4.78) in which case a time series of the free surface 
elevation at a fixed distance r can be used as input. The output is then the time series of 
the free surface elevation r^t) at a given distance r from GZ. The second 
one,'KdVR.FOR', is based on equation (4.77). The input is the free surface elevation at 
time t=0 given as a function of r. It generates the free surface elevation, ty(r) at any time 
t > 0. 

In order to verify the 'KdVR.FOR' program, the evolution of a solitary wave in a wedge 
was investigated so as to be able to duplicate the results obtained by other methods 
(Chwang and Wu, 1976). The peak amplitude and the phase speed match the values 
obtained by Chwang and Wu very well. 

The 'KdV.FOR' program is also verified by duplicating the results of Weidman and 
Zakhem (1988) where the input is the time history of the free surface elevation. For 
outgoing waves, a dispersive tail appears.   The theoretical law of decay of wave height 
(r"2's) is also well verified. Therefore, both models are verified and substantiate the results 
previously obtained for the case of cylindrical solitary waves. The computer codes are 
both accurate and efficient. 

The previous theory has been applied to a series of wave records obtained from underwater 
explosions. The experiments took place in a shallow water pond at the Coastal 
Engineering Research Center, Waterways Experiment Station, Vicksburg, Mississippi. The 
basin was rectangular (100' x 140') and surrounded by a levee with a 3/2 slope. A series of 
tests were performed varying the yield, the depth of burst and the water depth. The 
explosions took place on a thick 30' by 30' concrete horizontal slab so as to prevent the 
projection of mud which would add significant noise to the wave records. Using the models 
constructed above, it is possible to propagate waves generated by an explosion in the 
near—field. To test the validity of the numerical scheme, the first time series at r = 15.2 ft 
is used as the input. Then at subsequent intervals, the experimental wave record is 
compared with the one generated numerically. Figure 4-12 is an example of these 
comparisons. The numerical solutions seem to match the experimental data very well, 
reproducing the nonlinearities in terms of steep crests and shallow troughs. However, a 
small phase difference between the numerical and experimental solution is evident 
indicating that there is a small difference in the phase speed of propagation. This has been 
observed in other cases. This could be accounted for by the fact that experiments were 
done on a muddy bottom which could damp the phase speed of propagation. Another 
reason could be faulty reading of water depth. By adjusting the water depth it was 
possible to externally reduce the phase speed of the numerical waves to that of 
experimental waves to obtain very good match between theory and data as shown in Figure 
4—13. Therefore the question can be raised about the accuracy of the depth measurements. 
The water depth was measured at GZ where a thick 30'x30' horizontal concrete slab was 
built as previously mentioned. Beyond this slab, the rest of the basin is silt and fine sand, 
which could have been moved by successive explosions. Therefore, the water depth may 
vary from one area to another. This affects not only the phase velocity but it may also 
induce some wave dissymmetry by refraction. If one adds the possibility of the effect of 
wave—bottom interaction resulting from  the  wave-induced  pressure fluctuation  and 
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and the depth of burst z = 0.6 ft. The adjusted water depth is 22 ft 
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I 
boundary layer, it is concluded that the theory is verified by experiments within the 
accuracy of the experimental errors. 

For further confirmation of the theory, another series of tests were conducted entirely on a 
concrete slab to minimize the previously described errors. However, before presenting 
these results, it is interesting to determine the relative importance of the nonlinear terms. 
This is brought out by running the computer program without the nonlinear terms. Even 
after depth adjustments, the numerical solution is unable to match the data when the 
nonlinear terms are suppressed. Although nonlinear time series are used as input, the 
nonlinearity soon disappears and the wave form adjusts itself symmetrically about the 
mean water level. Figure 4—14 shows the comparison. 

Nonlinear waves in shallow water were also generated by dropping a circular plate in very 
shallow water to simulate waves like those produced in an explosion. These were done over 
a concrete bottom, thus water depth measurements may be assumed to be accurate. 

Once again the time series, both experimental and numerically generated using the KdV 
solver, were compared. This time the two matched directly. 

It is possible to run the models in the reverse direction. That is a far—field wave record can 
be used as input to generate a time series at near—field. Figure 4—15 shows comparison 
between experimental data and numerical solution, using far—field data as input and 
running the model in the reverse direction. Judging from the fact that KdV equation 
solver gave a direct match between the data and numerical solution for the flat plate, 
indicates that KdV equation is a good model for propagating nonlinear shallow water 
waves. It also shows that the depth adjustments, which are necessary for the 104b shots, 
were to account for external effects like soil damping or uneven bottom. Differences in 
phase speed between theory and data were due to external effects. 

Instead of using the KdV equation, we now use the extended KdV form, such as given in 
Equation (4.88). Once again using the split step procedure, the nonlinear part of extended 
KdV Equation (4.87) ['*'s are removed for convenience], 

u _|2JL.|2 = ö, (4.104) Jr     2h7ghdt 

is solved using finite difference. The solution of the linear part, 

Yr+lr--fdm)^2 = ° (4-105) 

is given by, 

-Jlkr- »™-l <='-.*--*"f*r, V(r+b,t) = / ^^ FFT'1 fi(r,u) e~iau} LrJ, (4.106) 

where 
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a=g tavh\k(u)hj- (4'10?) 

Split stepping and the Fourier analysis permits the iterative computation of k for each 
frequency u. 

Once again this numerical scheme has been tested with a 10—lb shot and the plate test 
results. Figure 4-15 shows a comparison for the falling plate test without any depth 
adjustment. Because of the good match that we had before, it is difficult to notice any 
significant difference. But a close examination reveals that the peaks are better aligned. 
Also a longer stretch of waves are better matched than before. So as waves move to 
intermediate or deeper waters, better results are expected. It must be noted that the 
extended KdV equation used here is an approximation. But since the KdV equation itself 
is an approximation, its extension is justified on the basis that the solution is improved and 
its range expanded. 
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SECTION 5 

APPLICATION OF NONLINEAR THEORY AND CALIBRATION 

5.1      EVOLUTION FROM BORE TO NONLINEAR WAVE. 

Section 4 demonstrated the ability of the cylindrical KdV equation to predict the 
propagation of real EGWW. The wave generation phenomenon discussed in Section 4 was 
carried to a point with the intention that suitable nonlinear propagation theory would be 
applied thereafter to generate and propagate waves. In this section, the wave generation 
mechanism is continued using the KdV solvers. The input to the KdV equation are the 
wave records that resulted from the cavity collapse and the resulting bore formation. 

Following the wave evolution process, an attempt to calibrate the initial condition, namely 
the crater radius, R, is made. This is done on the basis that the leading wave period or the 
distance between the leading wave and the second wave is directly proportional to the 
crater size. Therefore, by adjusting the crater radius, the leading wave characteristics are 
matched with the recorded real EGWW. This is presented as a preliminary estimate of the 
physical crater resulting from the explosion. The crater radius is calibrated with the yield 
of the explosion. Hydrodynamic dissipation is computed and efficiency of underwater 
explosions in shallow water is given. 

Based on the method of characteristics and 'bore' computations, water elevation was 
presented in Figure 4—10. The computations were stopped at t = 1.019, based on the 'bore 
limit' criterion. Now this wave record as a function of 'r' is to be used as the input (initial 
condition) to propagate the resulting waves using the KdV equations. The appropriate 
KdV equation is Equation (4.78) which allows computation of wave elevation after each 
successive time interval. Figure 5—1 shows the wave record from bore computations 
evolving into undulatory waves. The leading wave looses its sharp peak, and the 
rectangular representation of the bore takes on nice undulatory wave-like character similar 
to a translatory undular non—dissipative bore. 

In view of the fact that available real explosion wave records are in the form of time series, 
one must convert from a wave elevation distribution in 'r' at a particular time 't' (wave 
snap-shot), to a time history of wave elevation at a particular distance 'r' from GZ. This 
is achieved quite simply, owing to the numerical computation scheme of solving the KdV 
equation. Referring to Figure 5—1, in computation of wave record at t = 1.019 to the one 
at t = 11.019 using Equation (4.78), a vertical cut is made at a specified r (r   = 22.7 in 

this case). While advancing the solution over every At, the wave elevation TJ is noted at 
the fixed r. In order to obtain a good and smooth time series, At is made sufficiently small 
and the number of time steps increased to an average of about 300 steps per wave length. 
Figure 5—2 shows a time series resulting from the vertical cut. 

At this stage, we recall that this is the time series resulting from a crater of R = 10 ft, in 
water depth h = 2.7 ft and crater lip length of 5 ft.  The time series is at a distance r   = 

22.7 ft from GZ. This time series could be propagated to any desired distance 'r' from GZ 
using Equation (4.79) as in Section 4 for comparison to the recorded wave time histories 
obtained from real data. 

5. 2     HYDRODYNAMIC ENERGY DISSIPATION AND EFFECT OF LIP SHAPE. 

A very important feature of this model is that it is dissipative during its early phase. 
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Figure 5-1. Evolution of the initial critical bore and the leading wave using equation 
(4.90). Formation of undulated bore and then a transient wave train 
consisting of the leading wave and the trailing group of high frequency 
waves is shown. Initial condition was the previously computed critical 
bore and leading wave system resulting from the collapse of a crater with 
Rc = 10 ft in 2.7 ft of water (section 2). 
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Figure 5-2.     Time series at r = 22.7 
obtained by making a vertical cut in Fig. 5-1. 
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While the collapse of the crater itself is not dissipative, a considerable portion of the initial 
potential energy is lost as a result of the turbulence in the cylindrical bore radiating 
outwardly from the rebound of the inward flow at GZ. This is not accounted for by the 
linear theory. Application of the momentum theorem permitted computation of the bore 
elevation external to the turbulent processes, just like in the case of a hydraulic jump. It is 
possible to compute the rate of energy dissipation in a hydraulic jump by the application of 
Bernoulli's theorem; the same approach is followed here. 

Consider Figure 4-8; the bore formation is more like a moving hydraulic jump, and 
Bernoulli's theorem must be used in its full form including the unsteady terms. Bernoulli's 
theorem is applied between the point u and d for 'up' and 'down' regions of the flow and it 
is, 

Ti TJ U 

PQ9 tfchj - PQ9 hrs
+hJ - P

Q
 i ft * = si • (5-1) 

Q is the volume flow rate given by (R, is the bore radius r, in Figure 4-8) 

Q = 2rR*bhdUd. (5.2) 

U   = 0 and ds = W, x At. Thus the integral in the above equation may be replaced by, 

(0-VJ 
pQ-Kf-Wb At (5.3) 

So energy dissipation per second is given by, 

$ = pQ9f£ + hd-hJ + pQWbUd. (5.4) 

In this process, the effect of variation in the lip—height and lip—length on energy 
dissipation are noted.   The main criteria for the selection of the lip size were: 

• Magnitude of the leading wave 
• Shock formation at the leading wave 

The above two factors are conflicting in the sense that a higher lip—height would mean a 
higher leading wave, but a smaller lip-radius causes a spilling breaker at the leading wave. 
Equations to handle bore formation at the leading wave have not been incorporated. This 
is because of the fact that we are still uncertain about the exact shape of the lip. Figure 
5—3 shows three configurations of the crater and lip dimensions. The lip—height of the 
crater is computed by conservation of mass as described in the previous Section. 

The initial potential energy in a static crater is given by the integral 
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Figure 5-3. Three trial lip shape configurations A, B, and C. The crater lip shape with 
the highest possible potential energy without causing the formation of 
breaking leading wave was chosen. 
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Eo = p g / '/" (Z&) Z(r)r dr dO (5.5) 

where Z is the initial elevation at a distance r from GZ and the origin is on the free surface. 
Potential energy computations for the three lip configurations are given in Table 5—1. 

The three cases listed above were subjected to rigorous numerical tests. Initial cavities 
varying from R /h = 1.0 to R/h = 8 were allowed to collapse and the computations were 
performed up to the bore limit criterion. Total energy dissipated was computed for each 
case (Table 5-2). 

It is very interesting to note that energy dissipated is not sensitive to the lip 
configurations. Thus, we may choose a mass conservative lip for convenience and yet have 
the same amount of energy transmitted to the waves. The energy dissipated 
hydrodynamically remains approximately a constant 40%. 

Concerning mathematical stability, model A and C were always stable but model B tended 
to form a shock, i.e., a breaking wave, at the leading wave. Model A resulted in very small 
leading and trailing waves compared to the experimental wave records, indicating that the 
initial energy content was not sufficient. Model C was determined by trial and error as the 
case which just prevents the formation of shock and allows maximum possible energy to be 
transmitted to the waves without causing instability. This case was selected as the 
optimum model for the wave predictions and calibration. 

5.3     CALIBRATION. 

Model C was allowed to collapse, to form a bore behind the leading wave and propagate 
undulatory waves using the KdV, Equation (4.79), for a large number of initial conditions 
defined by a value of R  (ft) over a foot of water depth. Figures 5^1 and 5-5 are examples 
of these computations in four different steps for R   = 1 ft and R   = 8 ft, respectively. 
Each figure shows four curves.   The first curve is the initial crater.   The second curve 
shows the collapse up to the point where the leading wave just touches GZ.   The third 
curve shows the leading wave and the bore formation behind it at the bore limit point. 
This is the input to the KdV equation solver which generates the last curve showing 
propagating nonlinear waves.  The resulting wave forms are studied.  For large R/h, [R/h 
> 4] the waves show the characteristics that we have been looking for namely, a large 
leading wave, large shallow trough followed by a group of higher frequency trailing waves. 
It now only remains to match the data with the numerically generated wave form.  Figures 
5-6 and 5—7 show the resulting wave train for various values of R at a relatively equivalent 
time. 
To achieve the match with available data, which is given as a function of time, the crater 
radius R   is varied at the given water depth in which the explosion took place.   R   is c *» 
adjusted, until the best match for the leading wave period, along with the magnitude of the 
trailing waves, is obtained.   Figures 5—8 and 5—9 demonstrate the success of the method, 
where the comparison between the numerically generated wave records (dotted curves) 
with large yield explosion data is shown.    The explosion phenomena for these tests 
probably occurs exactly as proposed.   An attempt was made to apply this theory to the 
intermediate region but the matches obtained were not as impressive.   However, the best 
estimate for the physical crater radius in the intermediate water depth also may be given 
using modelling judgment.   Figures 5-10 to 5-12 show the comparison of intermediate 
water depth data from small scale explosion tests conducted at  WES,  Vicksburg, 
Mississippi, with the numerical solution. 
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Table 5—1. Potential energies corresponding to various crater lip configurations as 
shown in Figure 5—3. 

Cajea A B Q 

Lip length 0.75RC 0.5RC 13Rc 

Lip height I5h 
195, 
I45h 

Potential energy 

2Tpgh2R2 0.4175 0.5254 0.461 

Table 5—2.        Ratios of hydrodynamic energy dissipated with respect to the initial 
potential energies for various values of R and for three lip configurations 
A, B, C. 

Configurations C A B 
R/h E0c &E/EoC &EA/EoA &EB/EoB 

1. 250.2 0.4116 0.415 0.403 
2. 1001.1 0.399 0.392 0.393 

2.5 1564.3 0.399 
3. 2252.5 0.417 0.406 0.4 

3.5 3066. 0.4 
4.0 4004.6 0.39 0.406 0.395 
4.5 5068.3 0.402 
5.0 6257.2 0.404 0.414 0.408 
5.5 7571.2 0.410 
6.0 9010.3 0.397 0.416 0.379 
6.5 10574.6 0.390 
7.0 12264.1 0.392 0.38 0.367 
7.5 14078.7 0.366 
8.0 16018.4 0.351 
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Figure 5-4. Initial crater of Rc = 1 ft in water of h = 1 ft is allowed to collapse. 
Subsequent bore formation and propagation is followed by propagation of 
nonlinear waves using the KdV equations. 
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Figure 5-5. Initial crater of Re = 8 ft in water of h = 1 ft is allowed to collapse. 
Subsequent bore formation and propagation is followed by propagation of 
nonlinear waves using the KdV equations. 
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Figure 5-6. Free surface elevation at relatively equivalent time as a function of the 
imua radius of the crater Rc from Rc = 1 to Rc = 4.5 ft using the KdV 
equations (water depth h = 1 ft). S 
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Figure 5-7. Free surface elevation at relatively equivalent time as a function of the 
initial radius of the crater Re from Rc = 5 to Re = 8 ft using the KdV 
equations (water depth h = 1 ft). 
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Figure 5-9. Comparison of wave records resulting from large yield shallow water 
explosion with the numerically generated wave record using the nonlinear 
wave theory with from top to bottom RJh = 7, 5.7, 4.5. The nearfield 
time series at bore collapse is taken at r/h = 19.37, 14.36, 11.58 
respectively, and the wave records are at r/h = 39.87, 50.71, 58.61. The 
dotted curves are the theoretical predictions. 
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Figure 5-10. Comparison of wave record resulting from a small yield shallow- 
intermediate water explosion with the numerically generated wave record 
using the nonlinear theory. The dotted curve is the theoretical prediction. 
(a) W = lOlbs, h = 1.0ft, r = 25.0ft. 
(b) W = lOlbs, h = 2.7ft, r = 27.7ft. 

202 



w 

0.80 

(b) 

0.00 

6. «0 

cdot2Z2,   W = 20.0/6. 
fie = 8.5,   /i = 2.7,   r = 25.0,   T» = 0.0 

12.80 19.20 25.60 32.00 

uß 

c<Zo*333 ,   W = 30.0/6. 
Rc = 10.5,   A = 2.7,   r = 30.0,   T0 = 0.0 

B.00 16.00 24.00 32.00 40.00 

*i/E 

Figure 5-11. Comparison of wave record resulting from a small yield shallow- 
intermediate water explosion with the numerically generated wave record 
using the nonlinear theory. The dotted curve is the theoretical prediction. 
(a) W = 201bs, h = 2.7ft, r = 25.0ft. 
(b) W = 301bs, h = 2.7ft, r = 27.7ft 
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Figure 5-12. Comparison of wave record resulting from a small yield shallow- 
intermediate water explosion with the numerically generated wave record 
using the nonlinear theory. The dotted curve is the theoretical prediction 
(a) W = 401bs, h = 2.7ft, r = 30.0ft. 
(b) W = 501bs, h = 2.7ft, r = 35.0ft. 
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Using the wide range of data from small explosions (few lbs of TNT) to large yield 
(megatons of TNT), a calibration curve to relate the explosion yield to the crater radius 
was obtained.  Figure 1-7 shows the least squares fit relating 'ly and 'W\   The relation 

may be written in the form of a power law as 

R   = IS929W0-2476 (5-6) c 

where R  is in ft. and W is in lbs. of TNT.   As seen, the crater radius is independent of 
c 

depth based on our hypothesis that every explosion classified as a shallow water explosion 
removes the water entirely from the crater exposing the bottom. It must be mentioned 
that some of the large explosions actually took place on a floating barge. So the coupling 
may not have been as good as an underwater explosion. In many cases the impact of the 
explosion not only removed the water but also created a big crater on the sea bed. The 
requirement of a horizontal bottom was not satisfied in many cases as the waves had 
travelled a few thousand feet over natural bathymetry. Finally, the measurements 
themselves are questionable, the best one being obtained from the movement of ships 
moored at a distance from GZ. Taking into account the errors introduced due to the above 
mentioned shortcomings one may retain Rc = 4.4 W0"25 for the predictions after rounding 
off the decimals. Only one measurement of the real crater resulting from a 1 lb explosion 
in 1 ft of water has been made using high speed photography. The measured physical 
crater fits the same law given by Equation (5.6) which further confirms the theory. Figure 
1-7 shows also the measured crater radius corresponding to a 1 lb charge. 

Thus, given a yield W, the crater radius Rc can be obtained by Equation (5.6).  Model C 
defines the lip parameters using the water depth. Then collapse of this crater results in 
waves that closely resemble waves from a real explosion of yield W. 

5.4      EFFICIENCY OF SHALLOW WATER EXPLOSIONS. 

Since a large portion of the potential energy imparted to the water in crater formation is 
lost to hydrodynamic dissipation, it is interesting to calculate the efficiency of shallow 
water explosions. 

The yield of an explosion or the energy released in the explosion process is described in 
equivalent pounds of TNT. Since 1 lb. of TNT » 1.9 x 106 J, the energy yield can be 
expressed in Joules.   For model C in water depth h, the potential energy in the crater Wj^ 

is: 

W1«2rpg(0.46118)[r|j]     [£%]   , (5-7) 

which is, 

Wl = 251.48 h2 R„2 Joules, (5.8) c 
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where h and R in are ft.   We have demonstrated that hydrodynamic loss is a 40% (Table 
5-2). If W2 is the energy contained in the propagating waves, then 

W2 = 0.6 Wl . (5.9) 

Therefore, the efficiency e is now directly obtained as 

f = 
W2 
W 

Energy in  Waves 
£■ x 100 = -p    p   v* "J    •     r   /    •     x 100 . Energy Released   t n Explosion (5.10) 

Using Equations (5.6), (5.8) and (5.9), the efficiency may be expressed as 

c = 0.1529 
i2 

W 0.2524 
(5.11) 

where h is in ft and W is in lbs. of TNT.    Figure 5-13 shows a plot of efficiency vs 

[h/W ]. Table 5-3 shows examples of efficiencies of typical shallow water explosions. 

Table 5-3. Examples of Typical Shallow Water Explosion Efficiencies. 

'Win kt Depth 'h' « % 
1. 12. 0.0137 
1. 63. 0.3812 
1 126. 1.524 
1000. 126. 0.0465 
1000. 630. 1.666 
1000 1259. 4.658 

It is seen that shallow water explosions are extremely inefficient with respect to wave 
generation ability. Typically at the most only » 5% of the explosion energy is obtained in 
the form of waves. Most of the energy is distributed in other explosion effects. A part is 
lost to the shock wave in water and in the atmosphere via the free surface. Of the 
remaining energy, 40% is lost due to hydrodynamic dissipation and the remaining energy is 
used in wave making. 

5.5      COMPARISON BETWEEN LINEAR AND NONLINEAR THEORDZS. 

The importance of linear wave theory as a practical tool in deep and intermediate depth 
waters has been established.    The same model extended to shallow water predictions 
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Figure 5-13. Efficiency of shallow water explosions as a function of yield W and water 
depth h. 
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succeeded in producing large leading waves. Using the leading wave amplitude as the 
governing criterion, the linear model was calibrated for the shallow water (Wang, et al. 
1991). 

The linear wave record is given by Equation (3.25) where the scaling coefficient, 

* l 

W = ^=2.7(R)^73^. (5-12) 
max       h h 

In other words, the vertical scaling parameter solely depends on the yield of the explosion. 
The nondimensional crater size R is given by, 

R = % = 30. -24.9(-5-r)      . (5.13) 
h W3 

The above empirical relations were obtained by calibration with a large data set of 
the maximum wave amplitudes recorded. It was established that in shallow water, the 
model parameters are independent of the depth of burst effect. 

l 

The result of the nonlinear theory is R   « W* (Equation 5.6).   The depth of burst effect 

was not considered for the same reason that the wave response was practically constant for 
different depths of burst in shallow water. The. effect of water depth is included in the 
calibration of the mass conservative crater. 

For a comparison of the wave prediction ability of the two theories, the Mono Lake 
explosion was chosen. Here. W = 9250 lbs, and h = 10 ft. The linear theory parameters 
using Equations (5.12) and (5.13) are, 7/       = 0.686 and R  = 6.359. The nonlinear wave 

theory prediction of the crater radius using Equation (5.6) is R  = R x h = 53 ft. 

The two theories were applied and the resulting wave forms at r = 621 ft. are plotted on 
the same graph, Figure 5-14, along with the data recorded. The curve with circles shows 
the nonlinear prediction while the triangles represent the linear theory. The smooth curve 
is the real wave record. 

Clearly both theories predict the leading wave very well. However, the expected 
shortcoming of the linear theory is its inability to give the correct nonlinear wave form. 
Linear theory is unable to predict the characteristic long shallow trough. Thus leading 
wave period as per linear theory is too small, nearly 50% off. This affects the 
representation of the following trailing waves. Similar results may be expected for other 
cases in this shallow nonlinear region. Therefore, we conclude that the proposed nonlinear 
theory correctly describes the phenomena and predicts the waves both in magnitude and 
shape with better accuracy than the linear theory. 

In summary, when the relative water depth d/W ' is less than unity, a method has been 
developed which allows the determination of the physical size of the water crater which 
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Figure 5-14. Comparison of the linear theory and the nonlinear theory applied for the 
prediction of shallow water waves. Mono Lake experiment is used for the 
qualitative and predictive comparison. The data from the explosion of W 
= 9250 lbs, recorded at r = 621 ft at a depth of 10 ft. The curve with 
circles represents the nonlinear prediction, the curve with triangles is the 
linear prediction while the data is given by the smooth curve. 
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reaches the seafloor. The crater was chosen here schematically as being with vertical limit 
and surrounded by a triangular lip. Its exact shape has not been determined but it does 
not seem to influence the resulting wave. 

The method seems to provide a good estimate of the energy dissipated by turbulence even 
though the energy dissipated by the plume is not exactly known. Finally, the method 
allows the determination of the nonlinear features of the wave train and in particular the 
time elapsed between the first two wave crests. 

Accordingly given the yield W and the water depth, one is now able to estimate the wave 
motion at any distance from GZ following the explosion including to some extent the 
region within the crater. 

5.6      EFFECT OF WATER DEPTH AND DEPTH OF BURST. 

The calibration of the linear wave theory has indicated a dependency of the wave 
generation processes in general and the linear crater radius Rc in particular to water depth 
(Equation 5.13) as seen in Section 3. This dependency is mild for shallow water explosions. 
It was shown that these dependencies could be neglected altogether and that the radius of 
the water crater is solely related to the yield. The validity of such a simple result may be 
questioned, but it seems to hold true within the accuracy of the experimental results. 
However, it is reasonable to assume that more controlled experiment would indicate that 
both the water depth and the depth of burst affect the size of the water crater. This trend 
is particularly significant in the case of the depth of burst z. 

Even though the experimental results obtained at WES are too erratic to indicate a 
definite trend, it seems that the wave amplitude of the maximum wave decreases suddenly 
by half when the depth of burst tends to zero, i.e., when the charge is at the free surface. 
The nuclear results seem to yield the same trend, even though the depth of bursts are 
ill-defined when the charges were aboard floating barges. 

There is an indication that the radius of the water crater decreases slightly when the crater 
depth decreases as indicated by a recent experiment done in very shallow water at WES, 
with very small yield (0.25, 0.50 lbs of TNT) behind a glass window (Bottin, 1990). A high 
speed camera provided the time history of the water crater formation and its collapse 
(Figures 5-15). The results support the theoretical developments presented in Section 3 
tor the most part (the presence of a steel plate near GZ does not allow verification of the 
theory of bore formation decay and transformation into a KdV wave). 

The analysis of the wave record via the theory presented in Section 4 would allow us a 
direct comparison of the theoretical crater R   versus the experimentally observed one. 
This work has not yet been done. The tests indicate that the maximum crater size is 
slightly smaller than predicted by our previous analysis (by about 5 to 15%) and that the 
discrepancy increases as the water depth (or depth of burst) decreases. 

To resolve this problem, more tests are needed. Nevertheless, until more carefully planned 
tests are done, the overall conclusion of this Section, which assumes that only the yield 
matters, holds true and the accuracy of our method of prediction is sufficient for most 
purposes. 
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SECTION 6 

DISSIPATIVE PROCESSES OF WAVE PROPAGATION 

6.1      IMPORTANCE OF DISSIPATIVE PROCESSES BY WAVE-SEAFLOOR 
INTERACTION. 

Dissipative processes have an important effect on all the phases of generation and 
propagation of EGWW. During the generation phase the amount of energy dissipated by- 
turbulence in the cylindrical bore resulting from the collapse of the water crater in shallow 
water can be determined theoretically. It was found that about 40% of the potential 
energy of the original crater was lost in the process. Once the wave radiates, the 
dissipation processes continue as a result of wave—seafloor interations and wave breaking. 

In the case of large yields exploding in deep water (W > 1 MT), the dissipative process by 
wave—seafloor interactions become important when the waves reach the depths encountered 
on typical continental slopes. There are two reasons why this dissipative process is 
important, as compared to wind waves and tsunami waves. 

First, EGWW of interest have a much longer wave length than wind waves, therefore the 
wave motion interacts with the seafloor at larger depths than wind waves. For example a 
44 sec wave (which is the period of the maximum wave resulting from a 1 MT explosion in 
deep water) starts to interact with the seafloor at depths as large as 5,000 feet and it 

becomes a shallow water wave when the water depth is smaller than 100 feet (T- < 0.04). 

By comparison a 12 sec wind wave "feels" the sea floor at depths of 300 feet and becomes a 
shallow water wave by a depth of only 7.4 feet. 

The second reason wave—seafloor interactions are important is amplitude. A tsunami wave 
interacts with the sea floor in the deepest ocean but its amplitude is small, say one foot in 
deep water typically, which grows to less than 2 feet by 300 feet at the edge of the shelf. 
(Tsunami waves are partially reflected on the continental slope prior to reaching the 
continental shelf. (Le Mehaute, 1971))   The turbulent dissipation process is non linear. 

The shear on the seafloor is grossly proportional to the square of bottom velocity, u,.  The 
3 

energy dissipated is proportional to u,. According to the shallow water linear wave theory, 

the amplitude of bottom velocity u, is: 

H 
ub=l 

which is independent of wave period and directly proportional to the wave height H. 

(6.1) 

3 
Therefore the dissipated energy is proportional to H .  It is recalled that the energy flux is 

2 
proportional to H .   Therefore the wave decaying coefficient is proportional to the wave 
height H: The larger the wave height, the larger is the wave damping. It is seen that an 
EGWW with a wave height in a range of say 100 feet, is damped 50 times faster than a 
tsunami wave of longer period. 

The damping of EGWW is much larger than both the shorter wind waves and the longer 
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tsunami wave, thus, the damping of EGWW over long continental shelf, far from being 
negligible, is a necessary fact to take into account in any realistic prediction on the effects 
of EGWW. When EGWW arrive on a sloped beach and break, the dissipation process is 
further enhanced as was explained in Section 1. 

The damping of EGWW by wave-seafloor interaction is a function of the soil 
characteristics. For example on the East Coast, the seafloor is made mostly of sand and 
the prevailing dissipative process is in the turbulent boundary layer over a moveable bed 
made of sand. Near the gulf, the soil is made of ooze, fine silt, mud so that the soil 
responds to wave pressure induced fluctuations. The soil response induces a dissipative 
Coulomb friction between soil particles, which is the prevailing wave dissipation processes. 
The loss of energy by pressure induced percolation through the soil may also intervene. 

6.2  CONSERVATION OF ENERGY FLUX. 

Based on what has been learned from wind waves, there now is enough evidence indicating 
that dissipative processes may significantly modify the height of EGWW on long 
continental shelves such as that encountered on the east coast of the United States. 

The basic approach taken herein is initially to treat the waves as linear and monochromatic 
as a first approximation. Extensions of the model to EGWW can then be obtained by 
following a wave element of constant frequency, as will be described in the next chapter. 
The traditional approach is based on the conservation of energy flux along a wave ray 
which is mathematically expressed by: 

d(bFaJ 
ds 

--*♦„ (6-2) 

where 
b        is a distance between wave orthogonals, 
s is a wave ray , 
(jjj-j      is the dissipation function which expresses the average amount of energy 

dissipated per unit area , 
F        is the average wave flux which can be expressed for linear or nonlinear 

waves. 

In accordance with the traditional approach it will be assumed that the dissipation function 
<j)n is the sum of the dissipation functions due to various mechanisms without interaction. 

It is known that many dissipation mechanisms by seafloor interactions do exist. It can be 
shown that, prior to breaking, the dissipation processes in the free field are generally 
negligible (Mei, 1983; Chap.8). Therefore the most important dissipation processes are 
identified as resulting from 

1) The shear between wave—seafloor taking place in the (turbulent) boundary 
layer. 

2) The energy losses by percolation in the underlying soil under wave pressure 
fluctuations. 

3) The soil response under these pressure fluctuations involving  Coulomb 
friction between soil particles. 

The dissipation functions resulting from these three processes are labelled <}>£, 4, <J> 

respectively, such that 
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d(bFaJ=-Qr+t+$)b P/+^^V6- (6-3) 
ds 

It is assumed that there is no interaction between the first process and the remaining two 
and that these groupings can be determined independently of each other. The first function 
<j>£ is now established for a horizontal seafloor and periodic waves.   It is assumed that the 
formulation is valid locally for transient waves (EGWW) over a non-uniform bathymetry 
with gentle slopes. 

6.3      TURBULENT BOUNDARY LAYER EFFECTS. 

As EGWW propagate in shallow zones, boundary layers are established as the near bottom 
velocity field associated with these waves must be tranformed within a very small length 
scale to meet the conditions of zero tangential velocity at the boundary. The existence of 
velocity gradients normal to the direction of flow is known to be a consequence of shear 
stresses acting in the fluid. For example, 

Txz=fa + eD)-£> (6.4) 

where p is the viscosity of the fluid, e^ is the 'eddy viscosity' of the fluid that exists only 
for turbulent flow and u is the particle velocity in the x-direction in the boundary layer. 

While conceptually valuable, the above equation is usually not satisfactory for determining 
the shear stresses in EGWW because the velocity profile in the boundary layer is very 
difficult to define. Under turbulent flow conditions, which predominantly occur in the 
boundary layers, sand motion is initiated and ripples of varying geometry may be formed. 
The sand grain sizes and the complex ripple geometry confound attempts to adequately 
prescribe velocity profiles in the boundary layer. 

An alternate scheme is typically employed to determine the shear stress at the bottom 
boundary. Equation (6.5) relates the flow immediately above the boundary layer to the 
shear stress at the bed through a factor f commonly called the Darcy-Weisbach friction 
factor. 

Tb= i pf^lm C03(<jt + Ü I C03(at + VI (6-5) 

where: 
TL       is the shear stress at the bed , 
pt       is the fluid density , 

£        is the angle by which the shear velocity u* and the bottom particle velocity 
UL are out of phase , 

aad     ubm    is the maximum bottom velocity just outside of the boundary layer. 
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This equation is usually employed for rough turbulent and transitional boundary layer 
regimes. (For laminar flows, a simpler model can be used). 

Putnam (1949) have suggested that the instantaneous rate of energy dissipation <J>£ in the 

turbulent boundary layer per unit area can be given by the relation 

♦/= T° ^b = I pffubm C03(at+V I cos(at+£)\ cos(at) . (6.6) 

If u.     is determined from linear wave theory, this relation can be expressed as: 

*/=i Ha 
2sinh(kdJ 

S 

pf cos(at-kx+^)\ cos(at-kx+()\ cos(at-kx), (6.7) 

where H denotes the wave height, k the wave number, a the frequency, t the time, x the 
axis along which waves propagate and d the undisturbed water depth. 

When averaged over an appropriate time interval, the average rate of energy 
dissipation in the boundary layer per unit area is given by the dissipation function of Eq. 
(6.8) 

h=-%Z3 s7~J(ü> (6-8) 

where the phase correction factor F(£) provides a correction to the rate of energy 
dissipation, typically ranging in value from unity to 0.75. In practice, the correction factor 
is usually omitted as will be the case of EGWW. 

Consider a two dimensional wave (b = constant). The energy conservation equation for 
this simplified case can be written 

d F 

Integration of this equation between two distances s, and s2 yields 

s 

F      -F avg      av 
= -\\fds. (6.10) 

Substitution for the energy flux given by the linear wave theory and dissipation function 
yields 
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.2 $ 

*-A = T'    3       fV*. (6.11) Sgn LT2 sinh3(kd)3 K      } '1     "2 
jan bi    3inn'iicai 

l 

where n = 1/2(1 + (2kd)/sinh(2kd)). This equation is nonlinear and difficult to solve 
exactly. A simplifying scheme is to make ds small such that the wave height H and the 
friction factor f remain essentially constant over the interval.   In this manner Equation 
(6.11) can be approximated by 

*~rr*L?.iuk°W' (612) 

It is noted that the wave height Hx and friction factor ^ at the beginning of an interval As 

are used to compute the rate of damping throughout the interval.    Dividing Equation 
(6.12) by Hj and rearranging leads to 

H.  tsH. 
l2      ll 

r   _     16^/^As      , V* 

Sgn LT2 sinhS(kd)_ 

We now make the following substitution 

(6.13) 

nr\   1    I 
B~S9nL^sinh

S(kd)- <6'14> 

We observe in Equation (6.14) that when 2DBAs«l, the equation can be closely 
approximated by the relation 

H2 = Hx exp[+DBAs] . (6 15) 

This Equation (6.15) approximates Equation (6.13) to within one percent error when the 
product DgAs is less than 0.10. 

To minimize the error associated with this approximate method of calculating reduced 
wave heights it is suggested that the interval As be on the order of one kilometer When 
the wavelength is longer than one kilometer, it is recommended that the wave length be 
taken as the incremental distance As along a wave ray. 
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It should be noted that this method slightly overestimates the rate of wave damping over 
flat and mildly sloped bottoms (i.e., dd/ds < 0.005) since the rate of damping is assumed to 
be constant over an incremental distance when in actuality it decays in proportion to the 
wave height over the interval. Qualitatively, this method becomes more accurate for 
bottom slopes that are steeper since the damping and shoaling effects tend to offset, 
keeping the wave height, and thus the rate of damping, more nearly constant over the 
interval as assumed. When As is taken too large, however, the approximation of Equation 
(6.13) by Equation (6.15) tends to under estimate the rate of damping. 

Nevertheless, this procedure poses a very tractable method for calculating wave height 
transformation due to energy dissipation, except that f is a semi-empirical coefficient 
which depends upon the bottom flow regime which remains to be determined. The 
following section is, therefore, devoted to defining the bottom profile under various wave 
conditions, and thereby defining the friction factor f. 

6.4      WAVE FRICTION FACTOR OVER A MOVEABLE BED - OVERVIEW. 

The wave friction factor f over a fixed and moveable bed has been determined starting with 
the work of Jonsson (1966). A good synthesis of this work is presented by Graber and 
Madsen (1988). Theoretical expressions for f were obtained by Kajiura (1964, 1968) and 
Grant (1977) which introduced the concept of eddy viscosity equations. Trowbridge and 
Madsen (1984) improved on the formulation of f by including more realistic eddy viscosity 
models. In general, the wave friction factor is found to be a slowly varying function of the 
parameters characterizing the flow and the bottom roughness. A detailed treatment of this 
subject can be found in Grant and Madsen (1982). 

Grant and Madsen (1986) also argued that the fluid-sediment interaction must be 
accounted for as precisely as possible for accurate predictions of wave energy loss due to 
bottom friction (and this would certainly be the case for EGWW). From analyses of 
laboratory data they developed a formula for the equivalent bottom roughness of a 
moveable bed under the action of waves. Their roughness, which depends on sediment and 
near-bottom wave characteristics may in turn be used in conjunction with their model, 
Grant and Madsen (1986), to predict friction factors for a moveable bed in the presence of 
waves. Figure 6—1 presents the wave friction factors, f, as a function of the near-bottom 
wave orbital excursion amplitude, A,, for various diameter quartz sands.   Although the 
predicted values of f depend on wave period, this dependency is sufficiently weak to regard 
the results presented in Figure 6-1 for a period of 10 s to be representative for the range of 
wind wave periods expected in the marine environment. In the case of EGWW with a 
longer period Figure 6—1 is not quantitatively valid and the wave friction factor needs to be 
recalculated. 

Physically, the friction factor variation shown in Figure 6-1 represents, for low values of 
A^, the flow resistance of a flat, immobile bed, i.e., with a roughness equal to the sediment 
diameter.    As A^ increases the wave-sediment interaction reaches a threshold value 
(Madsen and Grant, 1976) at which sediment starts to move. Once the threshold value is 
exceeded, the sediment-fluid interface deforms and wave-generated ripples appear. 
Initially, this is the "equilibrium regime" characterized by the formation of alternate 
vortex on both sides of the sand ripple crest. The bottom roughness now scales vortex with 
the ripple geometry, which results in a dramatic increase in friction factors. Further 
increase of the flow intensity, i.e., A,, "smoothes" the ripples, first gradually then rapidly, 
and results in corresponding rates of decrease of the friction factor with increasing A, until 
the ripples are practically washed out and the bed is returned to its initial flat state. This 
is the "post vortex regime".    The friction coefficient reaches a minimum value which is 
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Figure 6-1. Movable bed friction factor fw vs near-bottom orbital excursion amplitude, 
\, obtained from Grant and Madsen, (1982) for a 10 s wave as a function 
of diameter (mm) of a quartz sand. 
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larger than the value associated with the initial flat bed.   As A,   increases further, in 

contrast to the immobile flat bed state, sediment now moves back and forth above the bed. 
This is the "sheet—flow regime" associated with the sediment in motion. There is an 
apparent increase in roughness reflected by the friction factor for large A, values.  Beyond 

the minimum of the friction factor for a mobile flat bed its variation is controlled by the 
increase in intensity of sediment movement above the bed. In many cases, EGWW are in 
the "sheet flow regine", moving a considerable amount of sediment across the sea floor. 

6.5      PROCEDURE FOR DETERMINING THE WAVE FRICTION FACTOR 
FOR EGWW. 

Determining the wave friction factor over a moveable bed is very complex. It has been 
described thoroughly for EGWW by and Colby (1984), and will not be repeated here. The 
justification and basis for the selected formulation is given in the aforementioned report 
which is a direct adaptation of the work of Grant and Madsen (1986) to EGWW. 

The determination of the wave friction factor over a moveable bed requires a succession of 
calculations and iterative procedures: 

1)    Initially, the horizontal fluid displacement immediately above the boundary 
layer is determined using the linear wave theory, i.e., 

VE 
ab = sink kd   ' (6-16) 

where 77™ is the amplitude of the wave envelope, k  is the local transiential wave number 

and d is the undisturbed water depth. The maximum bottom velocity at the limit of the 
boundary layer is: 

ub = ab<r , (6.17) 

where a is the transiential frequency (a = -?p-). 

2)   Next verify that the flow at the boundary is turbulent, which occurs when the 
Reynolds number 

u,8 
-$->160, (6.18) 

where S is representative of the boundary layer thickness, 

1/2 
6 = 

2v 
a (6.19) 

and v is the kinematic viscosity. 
3) Compute whether or not grain motion is initiated. This occurs if u, > u . u  is 
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a conceptual bottom velocity which depends upon the flow regime.    For EGWW, the 
regime is generally completely mixed, which occurs when the eddy viscosity    en > 1, 

therefore, 

a,/Da> 855 (u/a D%)0-6*5 , (6.20) 

where D is the sediment diameter. Then: 
8 

uc = (8i>gD//2, (6.21) 
l' = SG-l, 

where SG is the grain specific gravity. 
4) Evaluate the ratio of the hydrodynamic drag force on the grain to its weight #D: 

2 

0D-lsD> (6.22) 

where 
p         is the fluid density , 
7S       is the relative specific gravity of the sediment (p -p)g , and 
p        is the sediment density. 

5) If 0-Q < 40, the equilibrium vortex regime prevails, then 

f= 0.23 k °-9, 
3        ' (6.23) 

and the relative hydraulic roughness is 

L      2Dgo + 0.01rjr 

(6.24) 

where Dgo is the diameter of the largest sediment (90%) and r\ is the sand ripple height 
which is given by 

Vr*0.2ab, (6.25) 

221 



(the ripple length A  = 4/3 a.). 
6)    If 40 < #D < 240, the post vortex regime prevails.    Then the sand ripple 

geometry is defined by 

f- = exp {-1.11S*10~8^ + 1.846*1O~60S + 3.423*10~h2 - 8.144*1029 + 0.933} , 
\ 

(6.26) 

where A is the length of sand ripple length defined by 

-£■ = 102 {3.742* 103p* - .1435pS + 1.970p2 - 11.436p + 29.6911} , 
3 

(6.27) 

abx ,„-3 where p = (^-) 10     and D is the median diameter. 

it is the sheet flow regime and s 
vortex and sheet flow regime, the thickness of the saltation layer h. 

7) If 6 > 240, it is the sheet flow regime and all ripples are effaced. 
8) In the post vorl 

is determined: 

ht = 42.3 (SG + CJ Di>c [(r/ip//2 -0.7f. (6.28) 

Also: 

* ' = (f **J/*(SG - 1) gD . (6.29) 

and P = f is given by the following equation 

 l-Tn> + log     1
1/9 = - 0.254 + log -T- (6.30) 

4.05 f'*      4 r N 

where kpr is taken equal to D . 
Finally, ■$ is given as function of 

S,=j;y/($G-l)gD, (6.31) 

by Figure 6-2. 
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9)    Once h. is determined, the relative hydraulic roughness equivalent kg which 
takes into account both the form drag due to sand ripples (when they exist) and the 
near-bed sediment transport is 

ka=lf(SG + CJ DTPc[(r/i>/2-0.lf + 28^, (6.32) 

where C    is the added mass coefficient of sediment particle, m 
10)      Then   the   friction   coefficient   f  can   now   be  determined   by   successive 

approximations by the equation: 

/= \- (ker2 2C//2 + kei2 2C,^2f1 , (6.33) 

where K is the von Karman constant (0.4) and ker and kei are the Kelvin functions of 
zeroth order: ker(x) and kei(x) are the respective real and imaginery parts of KQ(xe T'  ). 
The Kelvin functions of zero order are computed using the approximations given by 
Abramovitz and Stegun (1964), Sections 9.11.3 and 9.11.4, page 384, as functions of x. 
Here: 

*o x = 2 C1/2 . (6-34) 

Finally, 

(   = 3 / • (6-35) 

Note f appears in £ , which is why f has to be determined by successive approximations by 

an iterative scheme (start with f £ 0.01). 
11)  Once f is determined, then the damping coefficient Dß (Equation 6.14) can be 

determined for an interval As. 

Tabulated values of damping coefficients Dß, as defined by Equation (6.14) due to energy 
dissipation in the turbulent boundary layer are presented for varying values of water depth, 
wave height, period and sand grain size in Table 1-14. They are presented in more detail 
in Tables 6—1, 6-2, and 6-3. It should be noted that the wave heights and periods utilized 
in the tables are representative of those anticipated in explosion generated waves. An 
application of these coefficients has been presented in Section 1 in computing the actual 
damping of EG WW over a long shelf. 

As a rough check on the validity of the friction coefficients computed by the formulation 
presented in this section, we can compare the friction factors obtained in the wind wave 

224 



Table 6-1.       Dissipation by the turbulent boundary layer fine sand (by USC Standard 
D, = 0.1 mm, S.G. = 2.65  Damping Coefficients (m1). 

20 a                 30 s 40 s                 50 s                 60 s                 70 s 

10 .36*10"* .33*10"* .30*10"* .27*10"* .25*10"* .24*10"* 
20 .99*10"* .89*10"* .79*10"* .72*10"* .66*10"* .61*10";*  d  "  30 ra 

10 .99*10"5 .10*10"* .94*10"' .87*10"' .81*10"; .77*10"' 
20 .87*10~4 .27*10"4 .25*10"* .23*10"* .21*10~4 .20*10"4 

30 .48*10"4 .48*10~4 .44*10"4 .40*10"4 .37*10"; .35*10"; d " 50 m 

40 ** .72*10"4 .66*10"4 .60*10~4 .55*10"* .52*10"* 
10 .39*10"5 .45*lO"5 .43*10'5 .41*10"' .38*10"' .36*10"^ 
20 .10*10"* .12*10"* .ll*10~4 .11*10"* .10*10*4 .94*10"' 
30 .19*10"* .21*10"* .20*10"4 .19*10"* .17*10"* .16*10"; d =■ 70 m 
40 .29*10~4 .32*10~4 .30*10"4 ,28*10"4 .26*10"4 .24*10"4 

50 ** .44*10~4 ,42*10"4 .38*10"* ,36*10"4 .33*10"4 

10 .18*10"5 .24*10"5 .24*10"5 .23*10~5 .22*10"' .21*10"^ 
20 .48*10~5 .64*10~5 .63*10~5 .60*10"5 .57*10"; .54*10"' 
30 .87*10"5 .U*10"4 .11*10"* .11*10"* .10*10"* .94*10"* 
40 .13*10"* .17*10"* .17*10"* .16*10"* .15*10"* .14*10"*  d  -  90 a 
50 .18*10"* .24*10"4 .23*10"* .22*10"* .20*10"* .19*10"* 
60 ** .31*10"* .30*10~4 .28*10"4 ,26*10"4   '      .24*10"; 
70 **                       ** .37*10~4    ■    .35*10~4 .32*10"4 .30*10"* 
10 .88*10"° .14*10"' .15*10"' .14*10"' .14*10"' .13*10"' 
20 .24*10"' .30*10"' .39*10"' .38*10"' .36*10"' .34*10"' 
30 .44*10"' .68*10"' .69*10"' .66*10"' .63*10"' .60*10"' 
40 .66*10"' .10*10"* .10*10"* .99*10"* .94*10"' .89*10"'  d  -   110 m 
so .9i*io"5 .i4*io~; .i4*io"; .14*10"* .13*10"; .12*10"; 
60 .12*10"* .18*10"* .18*10"* .18*10"* .15*10"* .16*20";' 
70 ** .23*10"* .23*10"* .22*10"* .20*10"* .19*10"* 

** wave steepness exceeds 0.14 tanh(kh) 
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Table 6-2. Dissipation by the turbulent boundary layer medium sand (by USC 
Standard D, = 0.5 mm, S.G. = 2.65  Damping Coefficients DB (m

1). 

20 s 30 s 40 s 50 s 60 a 70 s 

W.H.(m) 
10 
20 
10 
20 
30 
40 
10 
20 
30 
40 
50 
10 
20 
30 
40 
50 
60 
70 
10 
20 
30 
40 
50 
60 
70 

.24*10"4 

.88*10"4 

.50*10"* 

.22*10"; 

.44*10~4 

.32*10"J 

.12*10"* 

.75*10"* 

.16*10"; 

.26*10"4 

** 

.21*10"5 

.30*10~5 

.68*10"5 

.11*10"4 

.17*10~4 

** 
** 

ai*io"5 
.12*10 -5 

.53*10~5 

.79*10"5 

.U*10~4 

.23*10"4 

.80*10"4 

.56*10"* 

.22*10"; 

.44*10~4 

.70*10"4 

.19*10"* 

.91*10"5 

.19*10~4 

.30*10"4 

.43*10"4 

.69*10"6 

.45*10"* 

.95*10"* 

.15*10"4 

.22*10"4 

.30*10"4 

** 

.14*10"* 

.25*10 -5 

.31*10"* .54*10"* 
.39*10"* 
.13*10"4 

.17*10~4 

.22*10~4 

.20*10~4 

.70*10"4 

.53*10"* 

.20*10"; 

.40*10~4 

.64*10"4 

.20*10"* 

.88*10"* 

.18*10"; 

.28*10~4 

.40*10"; 

.79*10"6 

.46*10"* 

.94*10"* 

.15*10"4 

.22*10"4 

.29*10"4 

.37*10"4 

.16*10"* 

.25*10"* 

.56*10"* 

.92*10"* 

.13*10"4 

.18*10"4 

.22*10~4 

.19*10"4 

.64*10~4 

.49*10"* 

.19*19"; 

.37*10"; 

.58*10"4 

.18*10"* 
839*10'* 
.16*10"4 

.26*10"; 

.37*10"4 

.78*10"6 

.44*10 

.90*10 

.14*10" 

.20*10" 

.27*10 

.35*10 

-5 
-5 

-4 

.28*10-6. 

.26*10 

.54*10 

.88*10 

-5 
-5 
-5 

.13*10"4 

.17*10"4 

.21*10"4 

.17*10~4 

.58*10"4 

-4 
-4 
-4 
-5 
-5 

.46*10 

.17*10 

.37*10 

.53*10 

.17*10 

.77*10 

.15*10 

.24*10 -4 

.34*10"4 

.75*10"6 

.42*10 

.84*10 

-5 
r5 

.13*10~4 

.19*10 

.25*10 

.32*10 

-4 
-4 
-4 

.27*10"6 

.25*10"* 

.52*10 

.84*10 

-5 
-5 

.12M0"4 

.16*10"4 

.20*10 -4 

.16*10"4 

.54*10"4 

.43*10'* 

.16*10"; 

.34*10"; 

.50*10": 

.16*10"* 

.73*10"* 
•14*10"4 

.23*10~4 

.32*10"4 

•70*10"6 

.39*10"* 
-.80*10"* 
.13*10"4 

.18*10"4 

.24*10"4 

,30*10~4 

.24*10"6 

.24*10"* 

.49*10"* 

.49*10"* 

.11*10"4 

.15*10"4 

.19*10"4 

** wave steepness exceeds 0.14 tanh (kh) 
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Table 6-3.       Dissipation by the turbulent boundary layer coarse sand (by USC Standard 
D, = 1.5 mm, S.G. = 2.65  Damping Coefficients DB (m

1). 

20 s 30 8 40 a 50 9 60 s 70 s 

10 .19*10"* .18*10"* .17*10"? .16*10"* .16*10"* .16*10"* 
20 .44*10"* .41*10"* .37*10"* .33*10"* .30*10"* .28*10"* 
10 .12*10"5 .11*10"* .99*10-5 .90*10-5 .83*10"; .78*10"; 
20 .4l*10-5 .62*10-5 .60*10"5 .54*10"; .47*10"; .*3*10_; 
30       ** .24*10"* .26*10"* .24*10"* .22*10"? .20*10 * 
40       ** .50*10"* .46*10"* .42*10"* .39*10"* .36*10"* 
10 .53*10"5 .52*10"5 .50*10"5 .47*10"; .43*10*5 .40*10"; 
20 .38*10-5 .29*10-5 .27*10"; .27*10"; .28*10"; .28*10"* 
30 .58*10"5 .87*10-5 .87*10-5 .82*10"; .76*10"; -71*10"? 
40 .15*10"* .19*10"* .18*10"* .17*10-* .16*10"* -15*10"* 
50      ** .31*10"* .30*10"* .28*10"* .25*10"* .24*10"* 
10 .50*10"5 .30*10"5 .27*10-5 .26*10_; .24*10"; .23*10"; 
20 .53*10-5 .30*10-5 .28*10"; .27*10"; .26*10"; .26*10"; 
30 .76*1016 .31*10-5 .35*10-5 .35*10"; .33*10"; .31*10"= 
40 .48*io"5 .85*io"5 .88*io"; .85*io"; .80*10"; .75*10-* 
50      ** .94*10-5 .15*10-* .15*10"* .14*10"* .13*10"* 
60      ** .12*10"* .22*10"* .22*10"* .21*10'* .19*10"* 
70       ** ** .30*10"* .28*10"* .26*10"* .24*10"* 
10 .50*10"5 .23*10"5 .19*10"5 .19*10"; .16*10"; .14*10"; 
20 .30*10"5 .25*10"5 .24*10"5 .23*10"; .22*10"; .22*10"? 
30 .17*10"5 .66*10"5 .13*10"5 .14*10"; .13*10"; .12*10"; 
40 .12*10"5 .41*10"5 .46*10"5 .46*10"; .44*10"; .42*10"; 
50 .34*10-5 .77*10"5 ^.83*10"5 .81*10"; .77*10"; .73*10"; 
60 .60*10-5 .12*10"* .12*10"* .12*10"* .11*10"; .11*10"* 
70      ** .16*10"* .17*10"* .16*10"* .15*10"* .15*10"* 

** wave steepness exceeds 0.14 tanh(kh) 
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range to those actually obtained by a number of investigators in the field. It must be 
realized that, in general, the field investigators were dealing with random sea states rather 
than monochromatic waves as dealt with herein. Thus, to obtain friction coefficient for the 
random sea states a methodology such as that presented by Hasselman and Collins (1968) 
may have been employed. The computed friction factors are shown in Table 6—4 and the 
experimental field values in Table 6-5. 

It is seen from comparison of the Tables that, in general, the computed and experimental 
friction factors are on the same order of magnitude, though the computed values are 
usually slightly smaller. Neglecting all of the other uncertainties in the experimental data, 
this may be explained by the fact that dissipation by percolation and sea—seabed response 
actually occurred and was implicitly taken into account in the friction factors. With this 
in mind, the good comparison in the wind wave range suggests that our formulation 
presented here is indeed reasonable, and that its extension to the range of EGWW's should 
also give reasonable estimates of the damping that would actually occur. Nevertheless, one 
must keep in mind that only four experimental points are available in the open literature 
(Carstens et al., 1969) in the sheet flow regime where most applications to EGWW lie. 
Furthermore, there are no existing natural phenomena where the shear on the seafloor 
could be as high; for example, one could have a bottom velocity in the 10 m/sec at the 
limit of a 1 or 2 m thick boundary layer. Therefore, a doubt remains on the value of our 
quantitative extrapolations to EGWW. But one knows for sure that this effect is 
important even though ill-defined. 

6.6      RESPONSE TO WAVE INDUCED PRESSURE FLUCTUATIONS. 

In addition to the dissipation of wave energy by the oscillating, turbulent bottom boundary 
layer, a significant amount of wave energy may be dissipated within the seabed by various 
relaxation mechanisms. This is particularly important on oozy seafloors such as 
encountered near the estuary of the Misissippi River. Therefore, it may also be important 
for EGWW at some locations. Unfortunately, at this time, this effect has not been 
assessed quantitatively for EGWW. 

The subsoil characteristics (which are site specific) are less well known when the sediment 
surface layer and the subsoil is highly stratified. Most of the existing theory deals only 
with homogeneous soil. 

Of paramount importance in the prediction of the damping of EGWW by soil response is 
the knowledge of the subsoil characteristics. This in situ information remains one of the 
main difficulties for the application of the theoretical developments. It is, for the time 
being, an area of uncertainty. 

The interactions that occur between surface gravity waves and the seabed are modelled 
most generally by treating the seabed as a porous, elastic (hence the term poro-elastic) 
medium. Past investigators have, however, treated the bed as a heavy viscous fluid (Gade, 
1958) or as a rigid permeable medium through which only percolation is allowed (Putnam, 
1949; Reid and Kajiura, 1957; Liu, 1973; and Liu and Dalrymple, 1984). The works of Biot 
(1956, 1962) are now heavily relied upon in the establishment of the constitutive relations 
and the equations of motion for the marine sediment. A semi—analytic solution of these 
equations of motion allows us to derive a coupled, modified dispersion relation for surface 
gravity Waves propagating over such seabeds from which the rate of damping is 
determined. 

Specifically, the seabed is treated as an isotropic, homogeneous layer of finite thickness 
which is assumed to be underlain by a halfspace of impervious, infinitely rigid bedrock. 
Previous work treating the bed as a poro-elastic medium analyzed the interaction between 
an infinite, homogeneous halfspace (Yamamoto, 1983).   In addition, inhomogeneities and 
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Table 6-4.       Computed fricl ion factors for wind -generated waves - bed material is 
coarse sand I (by UCS standard) -D, = 1.5 mm, S.G. = 2.65. 

- 
8 s 12 s 16   8 

W.H.(m) 

4 .077 .058 .046 
d  ■  10 m 

8 ** ** .010 

4 .210 .127 .062 

8 .078 .053 .020 d =■ 20 m 

12 ** .008 .010 

4 .307 .169 .138 

8 .199 .056 .046 

12 .092 .022 .013 d =■  30 a 

16 ** .004 .011 

20 ** ** .023 

4 .349 .196 .151 

8 .287 .086 .044 

12 .222 
\ 

.058 .045 d  - 40 m 

16 ** .021 .008 

20 ** .007 .012 

4 .605 .228 .164 

8 .324 .157 .055 

12 .225 .059 .046 d - 50 m 

16 ** .058 .018 

20 ** .055 .006 

** Wave steepness exceeds 0.14  canh(kh) 
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Table 6-5.       Friction factors as computed from field experiments. 

Reference 

r' 

Location Friction Factor Ran^e 

0.060 - 1.934 

Remarks 

Bretschnelde Gulf of Mexico fw - 0.106 

(1954) 

Bretschnelde r Gulf of Mexico fw - 0.02 

(1954) 

Iwagakl Akita Coast fw - 0.116 0.066 - 0.180 

and 
Kaklnuma Izumisano Coast f - 0.280 w 
(1967) 

Hiezu Coast fw - 0.166 0.054 - 0.260 

(1963) 
Nishikinohana 

Coast 
Hienzu Coast 

fw - 1.100 

fw - 0.094 

0.560 

0.020 

- 2.320 

- 0.140 

20-40 ft 
slope: 

0.006 

(1964) 
Takehama Coast fw - 0.100 0.060 - 0.160 

Kishi 
(1975) 

Nirigata fw - 0.035 0.03 - ■ 0.04 6-8 ft 
slope: 0.018 

Hasselman Gulf of Mexico f - 0.015 Hurricane Hilda 
Collins 
(1968) 

Van Leperen Melkbo8strand f - 0.06 - - 0.10 

(1975) 

Breeding Gulf of Mexico V - 0.035 - 0.05 

(1972) 

Shemdin et al Florida Coast f - 0.008 0.002 - 0.05 - 
(1975) 

Collins 
(1972) 

f• - 0.015 Hurricane 
Dora, Betsy 

Note;  f - 
1 

2 
fw - f 
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anisotropy of the seabed have been taken into account utilizing the propagator matrix 
method to analyze the propagation of acoustic waves in the seabed (Yamamoto, 1983). 

An attempt at applying the theory of Yamamoto to the case of finite sediment depth has 
been developed by Colby (1984). Applications to EGWW have not been done at the time 
of this writing. Therefore, the subject here is only mentioned for future developments in 
the state of the art on EGWW. 

6.7      DISSIPATION BY WAVE BREAKING. 

As previously indicated, EGWW have often been compared to tsunami waves. From a 
dynamic point of view, the differences are very significant particularly when the wave 
reaches the gentle slopes encountered near the coastlines. A major difference is that the 
tsunami wave may not break before it reaches the shore and run-up the beaches, whereas 
EGWW of interest always breaks offshore. An EGWW of large amplitude may even break 
at the edge of the continental shelf. 

To determine whether a wave breaks on a slope, it suffices to verify that the wave 
steepness is larger than (Miche, 1944), 

H 
L 

2 

IT 7C max 
(6.36) 

where a is the slope.   Equation (6.36) indicates clearly that a very long wave (? small) 

does not break even on relatively gentle slopes. The waves run-up the shore and reflect 
seawards. At times a tsunami wave can form a tidal bore nearshore characterized by a 
near vertical wall of water which is very different from the breakers forming at the crests of 
EGWW. The breaking of EGWW is also very different from the breaking of wind waves 
(swell or sea). Indeed, if one assumes that EGWW have a very large amplitude, their 
breaking inception is further offshore than wind waves. In general, it means that EGWW 
break on a very gentle slope (say less than 1/100) such as encountered on continental 
shelves, whereas wind waves break on the steeper beach slope (say 1/10 to 1/50). 

The consequence of this are important to determine the wave run-up as it has been 
explained in Section 1: EGWW form a nonsaturated breaker, the height of which is depth 
controlled, up to the point where the beach slope steepens (Le Mehaute, 1963; Divoky, et 
al, 1970). We will not further extend here on this subject which has been well covered in 
the past. 
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SECTION 7 

PROPAGATION OF TRANSIENT WAVES ON NONUNIFORM BATHYMETRIES 

7.1      BASIC PRINCIPLES - A REVIEW. 

Studies on the transformation of transient waves on non—uniform water depth are limited 
to the case of linear waves. The usual approach is to follow the transport of wave energy. 
This has been employed by a number of researchers interested in the propagation of 
EGWW. Van Dorn (1964) gave a formula (attributed to G.E. Backus) for calculating the 
effect of frequency dispersion of a wave normally incident on a plane beach. Van Mater 
and Neal (1970) employed Van Dora's (1964) frequency dispersion factor in an early 
attempt to model the behavior of impulsively generated waves as they propagate in shallow 
water. Le Mehaute (1971) described a somewhat more general method in which ray 
separation for periodic waves together with Van Dora's frequency dispersion factor are used 
to propagate explosion waves. Houston and Chou (1983) used a combination of radial 
spreading and plane wave refraction to propagate explosion waves from the edge of the 
continental shelf into shallow water. All these theories are approximate and in some way 
empirical. 

Now the state of the art has progressed to the point where exact methods can be used and 
applied to linear transient waves. There are essentially three exact methods, none of which 
are simple. The level of difficulty varies with the intricacies of the arithmetic and the 
corresponding numerical and computer programs. 

The first method is based on the conservation of the wave energy spectrum in terms of 
wave numbers k, as it is used in the study of propagation of random irregular waves. 
Given a time history of an EGWW at a given point and the corresponding wave directions, 
the wave energy spectrum is determined by standard methods using FFT. The directional 
spectrum at that point is obtained. In the case .where the point is in deep water, and the 
spectrum is defined in term of frequency, a, and direction, 0 , by f (a,0 ), then the shallow 

water spectrum is given simply by (Pierson, Tuttell and Woodley 1953): 

o 

The shallow water wave direction, 8, is obtained by refraction as a function of a and 0 . 
o 

KR and Kg are the refraction and shoaling coefficients, respectively. In the case of crossing 

of wave orthogonals (caustic): KR -» m, ^ •    a.    but their product is finite as 
o 

demonstrated by Le Mehaute and Wang (1980). It is found that: 

KRW-T>   and KS-T> (7-2) 
o      o 

o 
which is always finite.    Since Kg is the ratio of group velocity (V /V), the transform 
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operator is simply: (kV /k V). 

This method is relatively simple, but unlike random waves, one is now concerned with the 
time history and phase of EGWW, information which is lost in the energy spectrum. 
Therefore another equation is necessary. In theory, since the energy as a function of wave 
number is well determined and conserved, it suffices to follow the wave elements with 
constant wave numbers, to calculate its phase, <p, along the wave rays: 

t 
<p(t) = <Pt=t   +<r(t-tJ-\    V(k)kdt. (7.3) 

0 lo 

Therefore in theory, the time history of EGWW is obtained by combining this information 
with an inverse FFT of the shallow water spectrum. In practice, this method is very 
complex. 

An alternate, simpler approach to the study of linear transient waves consists of 
decomposing a wave at a given location into components of varying frequency, a.   Each 
component is propagated into a fixed shallow water location, x. The wave train is then 
reconstructed using an inverse Fourier integral of the form 

r}(x,t) = r A(x,a) eiat da , (7.4) 

where A(x,a) is the complex amplitude of the component at frequency, a. This amplitude 
includes the effect of linear refraction, shoaling and radial dispersion. This transformation 
is in the frequency domain, which requires initial conditions at a given point as a function 
of time. 

Since the initial condition are often given at time zero as a function of distance, the 
amplitude spectrum is obtained in terms of wave number instead of frequency. Therefore a 
number of transformations need to be done initially. This method allows some convenient 
approximations such as the use of asymptotic solutions which are valid at a distance from 
GZ and make the problem tractable. It is the most convenient method in the case of 
complex 3D bathymetry, which is detailed in the following. 

For exactness, one has to rely on the principle of conservation of wave action between wave 
rays applied to a wave patch travelling at group velocity as shown in Figure 7—1. (Le 
Mehaute and Soldate 1986, Soldate et al, 1986). Since the limit of the patch AB and CD 
have different frequencies, they travel at different velocities, along different wave rays, so 
that the patch shape and area varies continuously. 

This method even though based on the linear appoximation allows the introduction of 
correction factors due to nonlinear effects. These include dissipative processes such as 
wave-seafloor interaction as presented in Section 6 and convective effects on wave shoaling 
as indicated in Section 1. The method has been applied to the propagation of EGWW from 
deep to shallow water. It is extremely complex; the corresponding numerical scheme is 
resolved by using twelve simultaneous differential equations, step by step. Also, the 
problem of transient caustics which occurs over 3-D bathymetry has not been resolved. 
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N i9^°; 
A^ 

B^ 

RAY D (period T + ^) 

Patch area at time U 

ea at time tx 

A A' = VA(dA,T) Ct2—tx) 

BB^VßCdß.T)^-^) 

CC'= Vc(dc,T+<5T) (tj-tj) 

DD'=VD(dD>T+6T)(t2-tl) 

Figure 7-1. Evolution of a wave patch from time tt to tj. A B, A'B' are parallel to 
wave crests at period T and C D, CD' are parallel to wave crests at period 
T + ÖT. 
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Because of its limitations, and complexity, the method has been applied to plane 
bathymetry only. Its advantage is the possibility of taking into account some nonlinear 
effects, such as energy dissipation, which are important over a long shelf. Figures 1—23 to 
1—31 have been obtained by application of this method. This method can be found in 
detail in Le Mehaute and Soldate (1986) and are not presented here. 

This method based on Fourier integral technique is presented for a 3-D bathymetry and 
verified experimentally. 

7.2      EVOLUTION OF A PERIODIC WAVE FROM A POINT SOURCE OVER A 
3-D BATHYMETRY. 

Consider a periodic wave of frequency, a, at a point source TQ (x ,y ) or T0(r0»^0) 
m the 

form of a delta function of amplitude, A (r ,0). In the case of a horizontal seafloor, the 

wave motion at any point, T(x,y), can be represented by 

V(x,y,t) = A0(T&OJ Jjkr) cos at, (7.5) 

where r is the distance between T (x ,y ) and T(x,y).   When (kr) is large, using the 

asymptotic form of the Bessel function, J , this equation can be approximated by 

V(x,y,t) = AJrJJ f-^fi cos (kr-^)cosat. 
7C/C T 

(7.6) 

When the sea floor is no longer horizontal but defined by a three dimensional bathymetry, 
then: 

T](x,y,t) = AQ(ro, V S?T 
x,y 

To>K 
cos at, (7.7) 

where KR, Kq are the refraction and shoaling coefficients, respectively, for parallel long 

crested waves travelling along the wave ray, s, between T (r ,0 ) and T(x,y), at frequency, 

a.     KT is  the angular dispersion  coefficient  which,  for large values of r,  can be 

approximated in amplitude and phase as: 

P  1/2 s 

o' o 

(7.8) 
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Therefore, 

V(x,y,t) « AJrJJ KR(a)Ks(a) *      [^2 cos(\\ds - \) cos at. 
ro,en ° 

The shoaling coefficient, K<,, is 

(7.9) 

K    iMkt' + j$-stl   ]1/2 

5
     Hanh kT f1    ,     2kT      , J 

(7.10) 

where k is the dimensionless wave number (k = k d) at the source (r ,9 ) where the water 
o' o' 

depth is d and kT is the dimensionless wave number (kT = k™dT) at T(x,y) where the 
water depth is dT. 

The determination of K^ is in general much more complex except for parallel bottom 

contours.    In this case, let  9 and 9^ be the angle between a wave ray and a line 

perpendicular to the bottom contours at the origin and T, respectively.   Then by virtue of 
the principal of conservation of energy between wave orthogonals: 

KR = 
cos 9 
cos 0, 

1/2 
(7.11) 

Applying Snell's law 

k  sin9 = kj, sin 9™. (7.12) 

KR = { 

k* -1,T cos [sin  Vjt7 sin9T)J -1/2 

cos 9, }   -{ 
cos 9 

-Ik* cos [sin    pj sin9)] 
fcj. 

.]T' (7.13) 

In general, there is only one possible path, s, for each frequency which insures that the 
wave ray goes from T(r0,öQ) to the considered target T(x,y), vice versa, there is only one 
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value 0 for a reverse wave ray to go from T to T. However, if an island or a mound 
interfers between T   and T, there could be two paths for each frequency. 

In general, the wave rays have to be determined by trial and error, for each frequency. In 
many practical cases, taking s along a straight line between the 2 points is a sufficient 
approximation which reduces the calculation by orders of magnitude. Further, assuming 
ftp as the angle between this pseudo ray and the perpendicular to the average bottom 
contour at T and applying Equation (7.11) for KR, permits us to resolve the problem 
straightforwardly. 

When these simplifications are not valid, the refraction coefficient KR has to be 
determined from the "ray separation factor" ß (Munk and Arthur, 1951). Then: 

4=i- (7-14) 
The determination of ß is a standard procedure in the field of water waves, which will not 
be detailed here. 

7.3      TRANSFORMATION OF A FINITE SOURCE FROM THE WAVE NUMBER 
DOMAIN TO THE FREQUENCY DOMAIN. 

Now consider the case of a axisymmetrical source of finite dimensions defined by a free 
surface elevation TJQ (ro,0o) at t = 0 such as drj/dO = 0, 0 < rQ < R, and drjjdt = 0.  The 
seafloor is assumed to be horizontal over the area source, and becomes three—dimensional 
when r   > R. 

Recall that the amplitude spectrum at time t = 0 in terms of wave number is given by the 
double Fourier integral 

, -ifk x+k y) 
B(k)=^r   r ri0(x,y)exp       x     V   dx dy, (7.15) 

where k"(k ,k ) is the wave number vector. Note the relationship x   y 

kxx + kyy = krQ cos (0^) , (7.16) 

where (6 -<p) is the phase angle between the vectors k" and r.  Because of the symmetry at 
the origin, the above relationship is independent of the value of <p, which is then taken 
equal to zero. Considering further, 
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n(*,y) = n(ro,60) = Ti(ro), (7.17) 

the above relationship can be written: 

B°(k) = ~2l0      0 ^ 6Xp[~lkro COS0J ro dro d0o- (7-18) 

Inserting 

j     2-K 

Jo^ = 2r^    exp (~ikr cos$) dQ > (7.19) 

yields 

BoW = /" W W ro dro • (7.20) 

which is the Hankel Transform of the initial free surface deformation as described in 
Section 2. 

Since this amplitude spectrum originates at various locations of the initial disturbance its 
transformation with distance over a 3-D bathymetry is not trivial. However, it allows the 
solution of the transient wave at the source as has been seen previously in Section 2. At 
the source, the wave motion is described by the general solution over a horizontal sea floor 
for a value of r = r . Then: o 

VV V^ = / B
0M V*V cos atkdk- (7.21) 

Each of these points (rQ,0o) originate an elementary transient wave over the 3-D 
bathymetry outside the source. This transformation is now analyzed. 

When the wave motion at TQ(ro,0o) is not periodic, but defined by a transient, r\ (r ,9 ,t), 
such as given by equation (7.21), the wave motion at this location can be considered as the 
sum of an infinite number of periodic waves of amplitude, A ,6 (a), as a function of 
frequency, a. 

The amplitude spectrum in terms of frequency which characterizes the wave motion at 
(rQ,0Q) is then given by the Fourier Transform 
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Sat 
Aro>6oW= I'oW''     dt- (7-22) 

The amplitude spectrum at a distance T(x,y) from {*Q,9Q) is given by multiplying all the 
values of A 0,9 (a) by the transformation coefficients Kjir), Kg(a), Krp(a) along the 
wave rays $(a) between T (r ,9 ) and T(x,y).  Note that the transformation coefficients as 
well as the wave rays s(a) have to be determined for all the frequencies.    Then the 
amplitude spectrum at T(x,y) resulting from Af   Q  (a) is: 

0' o 

V; = AroMa) I KR(0) KS^ KT^\'\   ■ (7-23) 
r ,9 o'  o 

The time history of the free surface elevation at T(x,y) due to a source location (r ,0' ) is 
given by the reverse Fourier Transform: 

-iat 
"roJotoV'*) = _l  Ax,y^e       da- (7-24) 

The total wave motion at T(x,y) is given by the sum of all the transient wave components, 
TJ    ^(x,y,t), originating at each point (r ,0 ) over the total area source: 

V(x,y,t)=^-2i    J    VrOi0o(*>y>t)rodrod0o. (7.25) 
■xR   0    0 

As seen, the determination of 7^x,y,t) requires a large number of integrals which are 
summarized in Table 7—1. The most demanding part is to determine the wave rays s(a) 
for all frequencies from all points T (r ,9 ) to T(x,y), and the values of the corresponding 
transformation coefficient KR, KT (the shoaling coefficient being a function of frequency 

and water depth only is the same for all points (r0,O). 

It is interesting to show that the above formulation yields previous results for a horizontal 
sea floor. For a horizontal sea floor the wave motion is symmetrical about r = o, so that 
the integral with respect to 9 vanishes. Also, 

KRKS = 1 and Kj, = JQ (kr) . (7.26) 

Considering that A    is a direct function of k (instead of a), KT can be extracted from the 
integral in a (inverse Fourier integral).  Then the two Fourier integrals cancel each other, 
so that 
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Table 7-1.       Summary   of   equations   showing   the   wave   spectral   contents   and 
transformation. 

Initial   Condition l0(
ro.9o) = lo(ro) 

Amplitude spectrum in the wave 
number domain 

1 
B0(k) = J n0(ro)Jo(kro)r0 d r 0 

1 
Transient wave motion at the 
source 0 < r = r0 < R0 

^o^o^o.t) = i Bo<k) J
0(
kro) cos at   k dk 

o 

1 
Amplitude spectrum in the frequency 
domain at the source (r0,9Q) 

Aro,9o(a) = i  Vro.eo'c) e    dc 

Amplitude spectrum in the frequency 
domain at T(x,y) due to a point 
source To(ro,0o) 

\ 

Ax,y(°> - Aro>6o(o)|K (o)KR(o)KT(a) 
x,y 

r0, o» o 

Wave motion at T(x,y) due to a 
point source (r0,80) 

1 
iot 

^ro.eo^.y.^ - " i  Ax,y(^e ^ d0 
2TI -00 

1 

Wave motion at T(x,y) due to the all 
area source (0 < r  < R) 

1   2TT R . 
n(x,y,t) = —- j  J n     (x,y,t)rodr0 d60 

"R o o  r0,8o 
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V(x,ylt)=-L2l     i   [j   B(k)J(kr)cosatJo(kr)kdk]rdrd9o. (7.27) 
7TÄ    0       0 0 

According to the Grafs addition theorem 

J0(kr) = J0(kr0)J0(*r) + 2  E   J (krj J (kr) cos n(0Q-0) (7.28) 
ri> 1 

and integration with respect to 0 from 0 to 2r of the summation is zero.   Therefore, the 

product of the two B 
in r. The integrand, 
product of the two Bessel functions in r   and r can be replaced by a unique Bessel function 

i" = B (k) JQ(kr) cosaT, (7.29) 

then becomes independent of r , and the integral yields: 

V(z,y,t) = T)(r,t) = \mBo(k) JQ(kr) cos at kdk , (7.30) 
o 

as previously demonstrated. 

7.4      ANALYTICAL VERIFICATIONS ON AREA SOURCE SOLUTIONS. 

Following step by step the operations presented in Table 7—1, consider a free surface 
deformation at time t = 0 such as 

%(ro) = (R2AJS
)S/2- (7-31) 

The amplitude spectrum in terms of wave number is, 

O    (f+Tp' 

which is: 
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B(k) = AR2 exp(-kR) . (7.33) 

Accordingly, the general solution is 

ri(r,t) = / AR" exp(-kR) J (kr) cos at kdk . 
0 

(7.34) 

Now consider this solution at r = 0 and assuming a 
dispersion near the origin was shown to be negligible.) 

= k. 
Then: 

(Recall from Section 2 that 

m      2 T](o,t) = j   AR   exp(-kR) cos kt kdk, 
0 

(7.35) 

which can be integrated to give 

2 
ri(o,t) = A   1  - T 

(1 + 7-T 
(7.36) 

where 
t = RT. 

The amplitude spectrum at r = o in terms of frequency is Equation (7.22) 
(7.37) 

/      <D   1 
Ao(a) = 2-K f                2 2 fC0S(-iaRT) -* sin(- 

-a> (1   +   T ) 
-iaRr )]dr (7.38) 

The second integral above (sin-term) is odd and equals 
is even and equal to 

zero. The first integral (cos —term) 

AQ(a) = AR2 a exp(-aR) , (7.39) 

which is the amplitude spectrum in terms of frequency at 
transform:. 

r = 0.   Therefore by reverse 

2 m 

r](o,t) = AR   j a exp(-aR) cos at da . 
0 

(7.40) 
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Introducing the transform operator, K™, in the case of a horizontal sea floor yields 

9  m 

T)(r,t) = AR' J a exp(-aR) J (kr) cos at da , (7.41) 
o 

which is consistent with the general solution (7.34) since dispersion is negligible at the 
origin (a = k) as seen in Section 2. This is also compatible with 

/ A(a) da = / B(k) k dk , (7.42) 
o o 

i.e., 

A(a)=B(k)±, (7.43) 

since the dimensionless group velocity 

C. 
v = — i7s = 1> C™) (gd) V2 

at the origin. 

7.5      SIMPLIFIED FORMULATION. 

Replacing dk by dcr/V in Equation (7.30) allows us to work in the frequency domain 
directly.   Therefore, the transform coefficients KoKRKT are applicable to each frequency 

under the initial integral.    Then   the inverse Fourier Transform in a.and the Fourier 
Transform in t cancel so that one is left with 

rifay.t) = / Bo (k(a)) I KR(s)Ks(a)KT(a)\  '      cos at k(a) jf- (7.45) 
0 r

n> K 

which is equivalent to transforming the wave amplitude spectrum in the wave number 
domain directly, as follows: 

ri(x,y,t) = j Bt(k) I KR(k) K^kjK^kn  '     cos a(k) cos a(k)t k dk, (7.46) 
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The previous method can further be simplified when r is large compared to the size of the 

area source, R, (r»R). Then, the transformation coefficients KR, KT can all be 

considered identical for all points (rQ,0 ) and equal to their values for r =o. Then 

x>y T,y 
KRKSKT\r   9 ~

K
R
K

S
K

T\ 
o' o 

(7.47) 

Since these K. values are no longer functions of r   and 0. the integrals (7.27) in r , and 9 
i 00ov/00 

are simplified.   If one considers further that the IC coefficients are expressed in terms of 

wave number k (instead of frequency), then they can be extracted from the integral in a. 

In analogy with the case of a wave on a horizontal sea floor (Equation 7.28) 

KT\T &~
KT\    =V^- 

x,y 

0 

(7.48) 

For practical use, the wave motion near the origin can then be determined by taking KT ~ 

JQ(kr) and calculating Kg and KR between the origin and T(x,y). Accordingly, 

Vfav.t) % ! BQ(k) Jo(kr) Ks(k) KR(k) cosatk dk (7.49) 

Far from the origin, using the asymptotic form for KT, one obtains: 

1/2 
rj(x,y,t) = / BQ(k) KR(k) KJk) [^j       cos at 

cos    j      kdS - J kdk (7.50) 

The solutions (7.49) and (7.50) can also be generalized to any form of initial disturbances 
as described in Section 2, whether the original disturbance is defined by a free surface 
elevation, free surface velocity or an impulse. Then the general solutions become 
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where 

s(a) 
(r,t) = f   B (k) F(a) cos f-f        kds+j] 

;/* 
m~*!f<>)K&)krtä  -vwm' 

cosat 

s inert 
a 

a sinert 

k da, (7.51) 

(7.52) 

and B (k) is any of the Hankel transforms TJ(I ) such as presented in Table 2-1.  Equation 

(7.51) can be integrated by FFT. More simply, all the solutions which have been obtained 
by making use of the stationary phase approximation (kr large) on a horizontal sea floor, 
can now be easily modified for their generalization over a 3-D bathymetry. For example, 
considering the case of a crater in the form of a parabola with lip (case 3, Table 2—1) one 
finds 

vfcv.t) = 'omax 

k s (a) 

R k Vfk) 
dV/dk 

1/2 s(a) 
\KR(a)Ks(a)\ 

3(a) 
JJkR) cos(at - I        kds) (7.53) 

7.6      PROPAGATION OF EGWW ON A GENTLE SLOPE. 

Now consider a wave propagating towards the shoreline along a line perpendicular to the 
bottom as shown on Figures (7—2). Since the wave crest along that line remains parallel to 
the bottom, it suffices to modify the amplitude of J   in Equation 7.21 for shoaling and 

CD 

(converging) refraction, and to change the phase kr by J k(r)dr, k being a function of r 
o 

through depth variation. Therefore, 7?(r,t) along this line can be written a$ 

Tj(r,t) = J BQ(k) J'o cos at kdk. 
o 

(7.54) 

where 

o 
(7.55) 
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(a) 

00 

Figure 7-2.(a). 

(b). 

Initially axisymmetric water waves due to an underwater explosion 
at h* are incident on a beach with uniform slope S. 

Schematic representation of the ray paths bending towards the 
shore line due to refraction. 
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*    * 
h -h. 

Referring to Figure 7-2, the slope m = —^— . The effect of shoaling at GZ with respect 
r 

to infinite depth (H ) is: 

H GZ 
H 

1/2 

W 
tanhM (llsinh(2k/ 

(7.56) 

the effect of shoaling at r with respect to H   is: 

H ta^l-SrJHl^liy^)) 
1/2 

(7.57) 

Therefore, the net effect of shoaling at r with respect to a wave at GZ is, 

H 
77 GZ~   5"Un^/i-5^(i/Jf^^.5^J 

(7.58) 

From Figure 7-2 the refraction coefficient is 

VR ~ [EF 
'  r tan(a)   ' 
J,rAtan(a ^+(r Q-rA)tan(a ^ +(rE~r c)tan(a2). 

1/2 

(7.59) 

which for small angles of incidence is, 

K„ = 
r  rsin(aJ 

R       ,r. 

1/2 
L / sin(a )ds^ 

o 

(7.60) 

sin(a ) k 
Taking sin(a ) to the denominator,   • /    \   can be replaced by (j ).    The refraction 

coefficient at any r can be computed as, 
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o   kr 

For shallow water, when k = a/(gd) ' , and at the shoreline, Equation (7.61) reduces 

simply to KR = IT". 

It is interesting to note that even though the wave ray is perpendicular to the bottom, the 
refraction coefficient is not unity, but tends towards a larger valve (Eq. 7.61) for a wave 
originating at a point source on a plane sloped bottom. 

Replacing dk by da/v as done previously, Equation (7.54) is evaluated using FFT.  Kq and 

Kp are computed for each value of a.   Every cr uniquely corresponds to a value of k 

computed iteratively. Figure (7-3) shows a comparison of a theoretical wave record on a 
1/20 slope with the one calculated on a plane bottom. The effects of shoaling and 
refraction are clearly seen. An important point is that maximum effect of 
shoaling/refraction is felt at the leading wave, where the solution obtained using the 
Stationary Phase method would have been of little use. 

7.7      EXPERIMENTAL VERIFICATION OF PROPAGATION ON 
3-D BATHYMETRY. 

A three—dimensional scale model of Sinclair Inlet was built at the Coastal Engineering 
Research Center, Vicksburg, Mississippi. Bottin et al. (1988 a and b) The model was 
geometrically undistorted at a scale of 1:250 (Time Scale: 1:15.81). The model was 
equipped with a programmable snake paddle with 15 individual panels able to generate a 
EGYVW-like transient wave. The programming of the paddles is discussed in the next 
chapter. 

The waves were recorded in the scale model at a large number of locations on the slope in 
front of the paddle, at the top of the slope where the natural bathymetry is reproduced to 
scale, inside the inlet and along the quays and wharfs near Bremerton (Figure 7-4). 

A hypothetical GZ was selected at a distance of 9.2 feet behind the wave generator, along a 
perpendicular crossing the center of the wave paddles. This corresponds to a minimum 
prototype distance of 5300 feet between GZ and the beginning of reproduced bathymetry. 

The movement of each paddle was determined by pair about the medium axis, allowing the 
reproduction of a transient wave with radial symmetry. Theoretical curves have been 
determined by application of the methods developed in this chapter with emphasis to the 
leading waves. It accounts for linear shoaling, refraction, and radial dispersion. These 
theoretical curves have been compared to experimental curves, obtained from the 
corresponding experiments. 

In general the experimental curves provide a good verification of the theoretical calculation 
for the leading waves, as shown on Figures 7-5 and 7-6. However, by simply looking at 
the experimental curves, it appears evident that they are affected by a number of nonlinear 
effects which the linear theory cannot describe adequately. The experimental curves are 
steeper and higher than their theoretical linear equivalents. This is particularly true for 
the wave gages located in very shallow water. 
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0.00 20.00 40.00 60.01 

Time (s.) 

80.00 100.00 20.00 

Figure 7-3. Comparison of wave records for a 'dome* initial condition of f^ = 1. and 
Rc = 3. The bottom slop S = 1/20. The dotted curve is the solution on 
slope at r = 15 from GZ, while the smooth curve is the solution on a flat 
bottom. 
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Figure 7-5.     Comparison of recorded wave with predicted wave for the case W = 100 
KT. 
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7.8      NONLINEAR SHOALING. 

The introduction of nonlinear effects compounds the difficulties by orders of magnitude. 
Nevertheless, in order to obtain more realistic results, the introdution of some correction 
factors due to nonlinear effects is possible. 

In shallow water, before breaking, the waves suddenly peak up in amplitude. This 
phenomenon is well explained by nonlinear shoaling and has been experimentally verified. 
Therefore, for better accuracy it is possible to replace K~ by a nonlinear shoaling 

coefficient KgNL (Iwagaki, 1968, Iwagaki and Sagai, 1971). 

KSNL = KS + 0M15 

o> 

-2.8 rH. 

<Lo> 

1.2 (7.62) 

where L   is the linear deep water wave length, d is the local water depth and H   is the 

equivalent deep water wave height obtained by linear shoaling.  H   = H/KQ which can be 
O u 

expressed in dimensionless terms as 

KSNL = KS + 0M15 

r 2, -1.6 rH i 1.2 n ] 
[2K [K0 W 

2.8 
(7.63) 

where H   and d  are the dimensionless local linear wave height and depth with respect to s s 
the water depth, d, at the origin.   Since the shoaling coefficient is a function of the local 
wave height, the calculations have to be done step by step along the wave rays.   Since the 
wave rays are functions of frequency, this can only be done approximately, where nonlinear 
shoaling is the most important, i.e., prior to wave breaking. 

The following empirical method is proposed: 
1) Determine the linear wave height until they reach the breaking index curve, such 

as defined by H,  = 0.78d.   2) Come back along the wave ray which corresponds to the 

associated zero—crossing frequency, to a value of d/L   2 0.2 to 0.05 where the nonlinear 

effects are small.  3) Then calculate the nonlinear value of Kg between the above d/L   and 

the breaking index curve by successive approximation. This method has been introduced 
in the calculation of Figures 1-23 to 1—31. 

This method, even though empirical, allows a much more accurate definition of the wave 
height before breaking, and of the extent of the surf zone. What is noticeable is that all 
the experimental leading waves exhibit a higher amplitude than their theoretical equivalent 
despite the fact that energy dissipation is neglected. This fact is in part attributed to 
neglecting nonlinear shoaling. 

Overall, it can be concluded that the theoretical results on the propagation of the leading 
waves of a transient wave is relatively well verified when compared with experimental 
results. Both the theory and the experiments suffer from inaccuracies so that a thorough 
comparison is difficult.    However, both methods appear adequate to predict the wave 
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environment generated by impulsive sources with an accuracy which is compatible with 
engineering purposes. For consistency, a method for nonlinear wave refraction should be 
used. This is beyond the state of the art for a transient wave. 
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SECTION 8 

LABORATORY SIMULATION OF EGWW 

8.1 THE NEED FOR SCALE MODEL SIMULATION. 

The propagation of transient waves over complex three dimensional bathymetry presents a 
challenging mathematical and numerical problem as shown in the previous chapter. 
Nonlinear convective and dissipative effects are difficult to resolve or even to formulate 
mathematically and these effects are often too important to be neglected. Such is the case 
of the wave dissipation processes taking place along the banks of an estuary, or along the 
wharfs of Naval bases. 

However, all these effects can be reproduced in similitude in physical models. The 
nonlinear inertial effects obey the Froude similitude. The short turbulent dissipative 
processes, such as due to wave breaking, obey the generalized Froude similitude (Le 
Mehaute, 1991). The scale effects on the wave propagation are limited to the viscous 
boundary layer and capillary forces. These can be minimized by selecting an appropriate 
scale. For example, the scale model wave period should exceed 0.3 sec, and the minimum 
water depth should exceed 2 inches. Under these conditions, the physical scale model 
becomes a better simulator than its mathematical counterpart. 

Therefore, the idea of investigating the propagation and effects of explosion generated 
water waves (EGWW) inside a Naval base of complex configuration and bathymetry 
experimentally in preference to or in parallel with mathematical modelling make sense. 
Theoretically, the problem would then consist of determining the size of the HE explosive 
for the laboratory scale model, which would reproduce the prototype EGWW in similitude. 

In order to reproduce EGWW at a small scale, three methods could be used. The first one 
is evidently to scale down the explosive. Even though this method is not practical, that 
possibility is examined. The second method consists of using a programmable snake 
paddle. The third consists in simulating EGWW by dropping a circular plunger or a 
circular plate into the water. This method is particulary convenient to simulate the effect 
of EGWW at a short distance from GZ. 

8.2 SCALE MODEL SIMULATION OF EGWW BY SMALL CHARGES. 

Can a small yield of TNT exploded in a scale model of a body of water simulate small 
EGWW which are in similitude with large EGWW generated by a large yield in the 
prototype? First since EGWW are gravity waves, the governing similitude is Froude. 
Therefore, given a geometrical ratio, A, between dimensions of the scale model and the 
prototype, the ratio for depths, d, free surface elevation, 77, horizontal distances and in 
particular, r, must equal A and the ratio for time scale is A1'2: 

In order to achieve this, it suffices that the ratio of dimensions of the initial disturbances 

also equal A. This leads to a very simple law in the case of shallow water, (d/W1/3 < 1). 
Indeed, in this case, as seen in Section 3, EGWW are practically independent of the depth 
of burst, z.  Furthermore, in Section 5 it was seen that the radius of the physical crater is 

proportional to W '    (Equation 5.6). 

For similitude, since (dm/dp) = A, one must have (R-Cm/Rcp) = A. The subscripts m and 
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p refers to model and prototype respectively.   Therefore, (Wm/W ) '    = A.   The yield 
scales to the one fourth power of the length scale. For example, a one MT explosion in 100 
feet of water generates EGWW, which can be simulated by 20 lbs of TNT in one foot of 
water (scale 1/100). The turbulent energy dissipation processes taking place near GZ are 
in similitude by virtue of the generalized Froude similitude, the same way that a small 
hydraulic jump (or tidal bore) could be in similitude with a large hydraulic jump. The fine 
structure of the flow, size of air bubbles, etc. are not reproduced but the total amount of 
energy dissipated is governed by application of the momentum equation, which is in 
similitude. 

The scale model wave records, 7?m(t), at a distance, r   , provides us with the 
r ij 

prototype wave record n (t) at a distance r   = -^ , by dividing r/m by A (n   = j—). The 

*m time scale t   is divided by y/X (t   = —j-jn) • 

In the deep water case (—YH > 16), the problems of simulation is much more complex, as 
Wi/,J 

the depth of burst (and atmospheric pressure) intervenes.  Recall, in Section 5, it was seen 
that the equivalent linear crater depth and the wave height should be proportional to 
W '    (Equation 5.6).  But the linear equivalent radius, R, is given by a complex function 
which is not amenable to a consistent similitude relationship.   This is even more evident 
when considering the deep water case. 
Recall 

tf^tfr (8-1} 
F w- 

When d/W1/3 > 16, a-» 1, and 0-» 0.58. 

Since r\ is proportional to VQmax R> if V (a^d f?0) is proportional to W '  , it follows that 

R has to be proportional to W ' (1/4 + 1/3 = 0.58). The equivalent initial disturbance 
defined by the two parameters, *?omax and R, do not follow the same power of W.   For a 
given relative depth of burst, a small yield causes a relatively deep narrow equivalent linear 
crater whereas a large yield causes a relatively large shallow linear crater. In a word, the 
small crater is a vertically "distorted" model of the large crater, but distortion is not 
allowed by the dispersion relationship.   So that even if the amplitude is in similitude (by 

keeping — = krr2      1   the wave length, wave period and complete time history of the 

Rm       rWm11/3 
... .      ft        m m    ' wave train is not.   If   p— = m Ty^      , the locations of wave crests, troughs and zero 

P" 
crossing on the time axis "should be in similitude, but the amplitudes are not. One may 
wonder whether one cannot simulate EGWW by "distorting" the depth of burst. It is 
possibile but the state of the art establishing the relationship between wave and explosion 
parameters as given in Section 3 does not allow us to determine it.    If it were, the 
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calibration explained in Section 3 would have been much simpler. 

As a conclusion, EGWW can be simulated quantitatively in a scale model only in the 

shallow water case (d/W ' < 1). We can then expect that the hydrodynamic energy 
dissipation processes due to the bore are also in similitude. Actually the problem of 
simulation of EGWW in the laboratory by explosion is rather academic, since the use of an 
HE explosive even of small size is not practical. The generation of EGWW by snake 
paddle is examined next. Initially, the simpler case of monochromatic waves at an angle is 
presented. 

8.3      GENERATION OF MONOCHROMATIC WAVES AT AN ANGLE 
SNAKE PADDLE. 

EGWW can also be simulated by a programmable continuous snake piston-type paddle 
located between GZ and the area where the wave propagates. Such a system has been 
described by Outlaw (1984).   The paddle described by Outlaw is made of 60 elements, 

individually controlled at the joints. The elements are p = 0.46 meters wide and 0.76 
meters high. They are designed to operate in d = 0.60 meters of water (2 feet). (Figures 
8.1 and 8.2). 

In the one dimensional case, the maximum wave height which can be generated is a 
function of the maximum horizontal stroke 2e    of the wave paddle and the period.   For 

nonbreaking monochromatic waves, the wave height is given by (Biesel and Suquet, 1951) 
9C 

H = em P(kd) = em 4 sinhhd  (g 2) 

sink kd   cosh kd + kd 

where k is the wave number. The wave paddle also generates an infinite number of 
harmonic perturbations which decrease exponentially with distance from the paddle. 

For small periods, the wave height is limited by the wave breaking conditions at the paddle 
and the maximum wave paddle velocity mechanically achievable. The corresponding limits 
are presented in Figure 8-3. If the wave movement is harmonic, the movement of the 
wave paddle is sinusoidal, then the free surface elevation rj{t) is given by: 

TT • 2     * 
jrft) = f sin at = em cos at     2 |lnh k* r , (8.3) 

sinhk coshk + k 

* 
where H is the wave height and k   = k d.   Note the phase difference between the free 
surface elevation and wave paddle displacement. 

When the waves are generated at an angle with the wave paddle axis, eq. (8.2) is modified 
as follows (the * is dropped from here on for the dimensionless wave number k): 

if _ , k 4 sinh k /Q .. 
n~em ,k2_k2jl/2 sinhk coshk + k' (8-4) 
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Figure 8-2.     Location of impulsion generated wave source, individual wave paddles, 
and wave gages. K       ^ 
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where k   is the wave number along the wave paddle, i.e. 

k = ksin 6 x 

where 

cos9=-j _ 9 1/P, (8.5) 
[l2+(nVff/2 

where I is the shortest distance from GZ to the wave paddle, and np is the distance 
between the perpendicular to the wave paddle passing through the GZ and the paddle 

element joint number, n (Figure 8—2). The width of a wave paddle element is p. 

The maximum possible wave angle without generation of spurious waves is given in Figure 
8-4. 

Accordingly, combining Equations (8.3) and (8.5), 

Generation of transient waves is presented next. 

8.4  GENERATION OF 3D TRANSIENT WAVE BY SNAKE PADDLE. 

The theory of generation of three dimensional transient waves by piston—type continuous 
snake paddle is now established. (Le Mehaute, et al. 1989). Since the movement is linear 
and composed of an infinite number of harmonic components, the transfer function which 
relates the free surface elevation, 7/(n,t), to the stroke, e(n,t), given by Equation (8.6) is 
applicable to each component of the spectrum. Assume lor example that the free surface 
elevation at each wave paddle is given by one of the solutions for Tj(i,t), then 

Ti(r,t) = d r,(r,t) = d A \ k dk H(k) JQ(kr) f(U%f(9) p(k) (8.7) 

where Hfk) is the Hankel Transform of the initial disturbance. For example, in the case of 
a vertical displacement in the form of a mound (see Section 2): 

H(k) = R2 exp~kR . (8.8) 
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A and R characterizes the size of the initial disturbance which can be related to yield and 
depth of burst. The parameter r is the distance between GZ and one edge of a wave paddle 
element given by 

r = (i2 + (np)2//2 , (8.9) 

and f(t) = a sinat for an impulse or fft) = cos at for a dome or crater; then the movement 
of each wave paddle is obtained straightforwardly as: 

Aid f0" L JL sinhk coshk + k 

2 sinh2 k 
e(n,t) = —p _ p i/s\   kdk ^ 

[t   + (npfr    ° 2 sinh^ 

(8.10) 

jA(t2+(npf)1/2JV(k) a cos at 

sinat 

This formulation is exact within the approximation of the theory, which is linear and 
neglects the terms which decay exponentially with distance from the wave paddle (Biesel 
and Suquet, 1951). If the wave paddle is located sufficiently far away from GZ, the 
integral form can easily be replaced by using the stationary phase approximation as in 

Section 2. Otherwise dk can be replaced by *£, and the integral is determined by FFT. 

8.5      EXPERIMENTAL VERIFICATION OF THE SNAKE WAVE PADDLE 
GENERATION. 

An experimental program of research has been carried out at the Coastal Engineering 
Research Center, Waterways Experiment Station, to verify the previous theory. The 
experiments were carried out in a 2-ft deep basin with a section of snake paddle composed 
of 16 elements (Figures 8-1 and 8-2). The movement of each wave paddle, e(x,t), is 
calculated from Equation (8.10) assuming radial symmetry from a GZ located on a center 
line perpendicular to the wave paddle at a distance, I, of 10 feet and 20 feet, successively. 

Figure 8—5 provides an example of the movement, e(t), of wave paddle corresponding to 
formula (8.10). The wave type histories were recorded at seven locations in the basin 
where the wave was initially determined theoretically from Equations (8.7) and (8.8). 

The experimental results provide a good verification of the theory for all the gages (Figure 
8—6). However, they indicate that the amplitude of the recorded wave is slightly smaller 
than predicted, a fact which can easily be explained by the energy losses due to friction and 
the leaks between the paddles and the bottom of the tank. The discrepancies are larger for 
the leading waves, which can also be attributed to the mechanical limitation (maximum 
possible acceleration) of the wave paddle. 

By multiplying the experimental results by a factor of 1.2 (corresponding to a paddle 
efficiency of 83%), the match between the theoretical and experimental results becomes 
excellent as seen on Figure (8-6), which corresponds to tests where the hypothetical GZ 
are at a distance of 10 feet. 

The small irregularities which appear for the gages at a distance from the paddle (i.e, gage 
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7 in Figure 8—2) are due to the vagaries of refractive effects. These results, from the fact 
that the basin, even though theoretically horizontal, actually introduces some very small 
irregularities in the water depth, which are sufficient to influence the wave amplitude at a 
distance. 

Identical tests have been carried out by varying the wave amplitude, or the factor A in 
Equation (8—10) by a factor of 2. The corresponding experimental results are presented on 
Figure. 8—7. To match theoretical and experimental results requires a multipüfying factor 
of 1.2, which indicates that the efficiency of the wave paddle is little affected by nonlinear 
effects. 

Eq. (8.10) is valid when the water depth at GZ, d, at the wave paddle d and in the model 

d    are all the same. This has been the case in the experiment previously described. 

For practical applications to specific locale, the bathymetry is in general three dimensional 
and the depth at GZ, can be different from the depth at the limit of the model where the 
three dimensional bathymetry is reproduced. Also the wave paddle may be located in 
deeper water than exists in the prototype. Then a number of transformations are needed. 

In order to solve this problem, the theory for the propagation of transient waves over a 
three—dimensional bathymetry developed in the previous section is applied. 

8.6      GENERATION OF A TRANSIENT WAVE WITH AXISYMMETRY IN A 
ONE-DIMENSIONAL WAVE FLUME. 

The effect of EGWW on structures with axisymmetry also can be investigated in a narrow 
one—dimensional wave flume, equipped with a programmable piston—type wave paddle, 
provided only a narrow segment needs to be reproduced. This procedure generally allows 
experimentation at a larger scale than in a 2-D basin. Referring to Figure 8-8, the 
problem now consists of determining the time history of the paddle movement at x = 0 in 
the one—dimensional wave tank which will simulate the same wave time history at x = x1, 

and the axisymmetry wave at a distance r = r. from a hypothetical source center at (GZ). 

Consider, for example, a free surface time history (r.,t) given by Equation (8.7) where r = 

r^.   In a one—dimensional wave tank, the time history at a distance x = x. is given by 

replacing the Bessel function JQ(kr) by cos(kx1) as follows: 

m 
Tjfrj.t) = \ dkcos kx1 cos (at) F(k) , (8.11) 

o 

FHc) defines the original disturbance at x = 0, which is unknown.   Replacing dk by dcr/V, 
where V is the group velocity, Equation (8.11) is recognized as a Fourier Transform of: 

F(k)  cos kx1 

G= u -, (8.12) 

such as: 
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Figure 8-8.     Generation of a wave with axial symmetry in a narrow wave flume. 
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ID 

7j(zJ,t)=l G cos at da. (8.13) 
o 

Replacing rj(x*,t) by 77(1«,t) and taking the reverse transform yields: 

F(k)  cos kx1     „  w 
G = v        1 = | \ ri(rvt) cos at dt (8.14) 

o 

which can be integrated numerically. Then F(k) is determined: 

Inserting Equation (8.15) into (8.11) the wave elevation at any location, x, in the wave 
flume is: 

H(x,t) = I   dk cos kx cos at fa  . (8.16) 
o I 

Considering the location of the wave paddle, x = 0, the wave paddle displacement, e(t), 
able to generate r/(x,,t) or equivalently rfo,,\) can be found by using the transform 

operator given in Equation (8.2): 
Then 

/i\     r™ JL   •     i     VG      sinh k cosh k+k fQ ,-\ e(t) = j   dk sin at , g , (8.17) 
o cos   tel     2ksinhTk 

which can also be integrated numerically. The response of a moored submarine to EGWW 
has been investigated in a large 2-D wave tank by using this technique. 

8.7      THE USE OF A PLUNGER. 

For the nearfield, i.e., to investigate the effects of EGWW on structures and ships near GZ, 
it is not possible to use the snake paddle. Instead, dropping a plunger plate at GZ can be 
used. Simulation of EGWW has been done by making use of a variety of plungers which 
were dropped and raised rapidly (Jordaan, 1964). The plungers included a cylinder, a flat 
disk, a paraboloid, and even an air jet striking the water has been used. In a series of tests, 
a 14-foot diameter, 3-foot deep paraboloid plunger was used. No attempt was made to 
relate its physical characteristics to yield. It did provide a reasonably good verification of 
the early theory of Kranzer and Keller (1959) on impulsive wave theory. 
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The dropping of a circular plate for simulating EGWW has been used in foreign 
laboratories and in the U.S. For example, the simulation of EGWW at a scale of 1/150 in 
the Naval Base of Mers-el-Kebir was done by this method in 1952 in the hydraulic 
laboratory of Sogreah, Grenoble. Earlier, Johnson and Bermel (1949) investigated the 
wave run-up due to the Bikini explosion on a scale model of the island in the Berkeley 
Hydraulic Laboratory, also by dropping a cylindrical plate. 

In both cases, little research was done on the sizing of the physical characteristics of the 
plate as a function of yield and scale. Also little was known at that time about the 
magnitude of EGWW which have to be simulated. Nevertheless, it was concluded that a 
plate with a vertical edge, causing vertical splashing at its perimeter, would be a better 
simulator than a plate with a tilted or a curved edge in shallow water. 

In view of what we have learned in Sections 4 and 5 and in this chapter, the sizing of the 
crater radius as a function of the yield to be simulated as a function of scale is 
straightforward in the shallow water case.   Indeed, we know that the radius of the water 

crater caused by explosion in shallow water at any scale is: R   = 4.4 W0"25.   Therefore 

any mechanical means allowing a rapid creation of a physical crater should have the same 
wave generation potential as its explosion counterpart.   This is most likely to be achieved 

by dropping a plate of the same radius R   = R      = AR     = AW1/4.  However, since the 

plate remains on the bottom of the scale model after it has sunk, it must be very thin, to 
allow for the free collapse of the water crater surrounding it. Indeed, referring to Sections 4 
and 5, a thick plate would cause a longer time elapsed between the leading wave created by 
the original splash and the following wave due to crater collapse than in the case of 
EGWW. This is due to the fact that the water depth becomes smaller at the location of 
the plate and wave velocities decreases as depth decreases. The dynamics of a falling plate 
in the water are now analyzed. 

8.8      SLAMMING OF A FALLING PLATE ON SHALLOW WATER. 

When a flat circular plate (or a vertical cylinder) is dropped on the free surface of a 
quiescent body of shallow water, the following physical phenomena take place. It is 
assumed that the plate hits the surface with perfect symmetry. Initially, a large slamming 
force occurs as evidenced by the splashing at the plate's edge. A compression pressure 
wave is transmitted towards the sea floor at the speed of sound in water and reflected back 
and forth. Assuming that the water depth is small compared to the plate radius, the entire 
mass of water under the plate is rapidly subjected to an initial increase of pressure 
uniformly.    Assuming that the plate is perfectly rigid, the initial slamming pressure is 
po=/7Wpc where p is the water densitv> wp is the plate's impact velocity (w * (2gz)1/2), g 
is the gravitational constant, z is the height from where the plate is dropped and c is the 
sound speed in water. The force due to this pressure, pQ, causes a considerable deceleration 

of the plate at impact. For example, assuming p = 2 slug/ft3, c = 4,500 ft/sec, and z = 6 
feet,  then w =  19.65 ft/sec and the total force, F, on a 6-foot  diameter plate is 

approximately 5 • 10 lbs. This causes deceleration of a 1" thick, 6 foot diameter rigid 
steel plate (weight 1062 lbs) on the order of 

$l=-%r-9*-5-10Sg, (8.18) 
V 
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where M is the mass of the plate. (The elastic property of the plate intervenes to reduce 

the value of the deceleration so that the plate does not slow down as much.) 

This magnitude of deceleration is difficult to record experimentally. It will be shown that 
the response of the accelerometers used in the experiments were unable to provide a 
quantitative verification of eq. (8.18) due to slamming. 

The large increase of pressure p   = pw c   which takes place uniformly between the plate 

and the concrete floor is now released at the edge of the plate, where the pressure is 
initially equal to atmospheric pressure (plus hydrostatic). A rarefaction wave travels in 
the water from the edge to the center of the plate at a velocity, a, (Figure 8-9) which is 
dependent on both the fluid compressibility and the elastic properties of the plate and the 
concrete floor. This is analogous to the theory of water hammer in a pipe. The pressure 
wave velocity in a steel pipe is around 3000 ft/sec and is much smaller in a concrete pipe. 
The velocity, a, is even smaller when one of the boundaries is a thin concrete slab built on 
a sandy foundation as is the case in laboratory scale experiments. Assume for example that 
it is 600 ft/sec.   Then it takes a time period, r = R /a = 3/600 = 0.005 sec, where R   is 

the radius of the plate, for the rarefaction wave to reach the center of the plate. The exit 
water velocity at the edge of the plate, where the pressure is initially p , is 

V 
Un=— = w  -~7.5u>   . (8.19) 

R    pa       p a- p v      ' 

If the value of w given in the previous section is used, then U^ = 150 ft/sec.    This 

horizontal outward movement is deflected vertically by the water inertia at a short 
distance from the plate edge causing the conspicuous vertical splashing. 

As the rarefaction wave travels towards the center of the plate, water is expelled and the 
pressure decreases. Since the cross section decreases with the radius, there is a "whip 
effect" like in penstock and pipeline of converging cross sections (Figure 8—9) i.e., the 
pressure keeps decreasing. As the pressure decreases it eventually reaches vapor pressure, 
p , which causes the water under the plate to cavitate.  The outward water velocity at the 

front of the pressure wave is then 

V ~  (~PJ r    Pv SO , Ur=     p   a =*p\ + p\ = m+-mo-m- (8-2°) 

2   2 
For continuity u  = UTJ(R /r ) where r is the horizontal radial distance from the center of 

the plate.   Because the plate is subjected to atmospheric pressure, p , on the top and the 

cavitation pressure on the other side, its acceleration becomes positive again and larger 
than g: 

{f:^*,*»,)*»!^-*!, (8.21) 
p rs p 
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Figure 8-9.     Initial water pressure under a plate falling on shallow water. 
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where p is the plate's density and H is the plate thickness. In the case of a one inch thick 
plate, the acceleration is then of the order of 3 g. 

2R After a time t = t = — 2 0.01 sec, the negative wave causing cavitation is replaced by a 
positive wave which causes a deceleration of the plate to a value smaller than g. The 
analysis can easily be pursued further, causing successively acceleration and deceleration. 
However, because of energy dissipation at the edge of the plate, the water hammer effect is 
rapidly damped. The downward movement of the plate is then governed by the hydro- 
dynamic forces of an incompressible fluid. Figure 8—10 presents a schematic time history 
of pressure and water velocity under a plate falling in shallow water. 

Once the compressible phase is over, the plate decelerates rapidly. The value of the 
velocity can then be approximated by the balance of forces as follows.   Let w   be the 
velocity of the plate at the end of the compressible phase.   It is assumed that w   is of the 
same order of magnitude as the velocity when the plate reaches the free surface. (The 
deceleration due to slamming is very large, but it is exerted over an extremely short period 
of time). Therefore, if one assumes the fluid to be incompressible, then when the plate hits 
the free surface, its momentum is suddenly reduced by a quantity AM = M(w—w ).  This 
change of momentum is equal to the impulse resulting from the pressure forces p(r,0) 
(where 6 is angle) exerted vertically by the water on the plate namely 

2w R     t 
AM = j    j   p \ ° p(r,9)r dr dd dt   , (8.22) 

OOO 

where tQ is the duration of the initial phase (t =0(e)).   Here dt   can be considered as a 
Dirac delta function St . o 

The same vertical pressure forces are also exerted by the cylinder on the water, which is 
expelled inducing a horizontal movement analogous to a vertical jet hitting a horizontal 
plate. Since the hydrostatic forces cancel, application of the momentum theorem to the 
volume of water under the cylinder gives 

d   2r R 
AM = j   j    j   p pu  rdrdOdz (8.23) 

ooo 

where u  is the horizontal radial velocity and d is the water depth.   Let E be the distance 

between the plate and the bottom (E|.   = d). Then by the equation of continuity 
o 

rr2 dH = - 2-K rd uf dt, (8.24) 
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Figure 8-10.   Schematic time history of pressure and water velocity under a plate falling 
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and dE/dt = - w , so that 

rw 

Inserting this into the integral (8.23) gives 

pww R 
M(w-v>0)=—^, (8.26) 

3 
or defining x = P^R^/SM = pR /Zp E , then 

'O=TH- <827> 
and 

&M = Mw1  y (8.28) 

Applying this formula then one finds: x = 1 and w ~ ?■ = 8.8 ft/sec. The plate velocity is 

approximately reduced by half during the initial impact. 

8.9       ESTABLISHMENT OF THE EQUATION OF MOVEMENT OF 
A SINKING PLATE. 

Once the compressible fluid phase is over and the plate speed velocity has been reduced, 
nearly instantaneously, from a velocity w to a velocity w , the plate penetrates into the 

water and is subjected to time dependent pressure forces forcing the plate to decelerate. 
With h being the distance between the bottom and the lowest plate cross section, the 
plate's deceleration is 

37 = ff = I"' (829) 

which acts in the same direction as gravity.   Therefore, its inertia adds with its weight to 
cause a total force on the water 

2-K R 
F = M(ltt + g)=\    \  pp(r)rdrd8, (8.30) 

o   o 
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where p(r) is the sum of three components. 

The first component is the hydrostatic pressure Pjr given as 

PH = pg(d-K). (8.31) 

Then the next pressure component pw is due to the gravity wave components generated by 

the plate's downward movement as the water is squeezed between the plate and the 
bottom.  (It is assumed that the large increase of pressure due to the initial impact recedes 
so rapidly than it could be characterized by the Dirac delta function as in the previous 
section.)  In compliance with the linear long wave theory, pressure due to wave generation 
is hydrostatic, i.e., 

Pw = P9V=P9Uwr(j)
1/2, (8.32) 

T] being the free surface elevation along the cylinder and u      being a fictive wave's 
horizontal velocity component.    The velocity,   u      is related to the radial outwardly 

distance, taking place at the limit of the plate, u    , as follows: wr 

d+ri                   a 
I       uwRdz"uwRD = l   uRdK = uRE, 
O                                                      O 

(8.33) 

where uR is the horizontal fluid velocity under and at the limit of the plate. Also from the 
equation of continuity 

■KR
2
 dH = - 2-xR   H uRdt, (8.34) 

thus 

ü
ä = -HIF^  

ht-§(\<0)- (8.35) 

Combining Equation (8.32) to Equation (8.35) yields 

pR        1/2 

Pw=-2(&     V (8.36) 
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Finally, the increase of pressure under the plate also results from the inertia of the water 
which is squeezed out radially between its lower section and the bottom. Because this 
increase of pressure pT (r) acts along a vertical plate of area, 27rrh, the total force on the 
plate of radius, r, to the inertia of the water between r and R is: 

,    2-K  R   o 
2*rKpI(r)=pfti     J    f    urdKrdrd9. (8.37) 

o     r   h(t) 

Note that the mass of the water involved is time dependent through h(t) as is the velocity 
ii . From the equation of continuity 

rr2 dH = - 2JT Kurdt, (8.38) 

and thus 
r   h u  = . (8.39) 

T 2Ü 

Inserting Equation (8.39) into Equation (8.37) and rearranging (since r does not 
depend upon t) yields 

Pj(r) =Lz \rr2 dr *-f   (--±) dh , (8.40) 
1 rK R ath(t)      2h 

n    R
3

r      J,tH2, 

rK        J      at o    21 

n  Rl ~ rS K2 
_ p     r  i 
~ 2r        S        fi2 (8.42) 

Inserting Equations (8.31), (8.36), and (8.42) into Equation (8.30) gives 

R R R —r    H 2 
MJhtt+3) = 2M  P \s(d-V ~ ~f(R//2 V Yr"V" & 1 rdr ■ <8-43) 
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Therefore, the plate movement obeys the following differential equation 

A \*tt       I 
7T + 1. 

r 
= l-*-BKt + Cf^f,                                                         (8.44) 

h 

where 

A -           9   ■>                                                                                                        (8.45) 
pic   R'd 

R 

2i(Sd)^'                                                                                                 (846) 

< 

with the initial conditions 

t = 0,   S = d,   Ht = wQ .                                                                                     (8.48) 

Equation (8.44) can also be written as 

K2Ktt + (pK2 + q)lt + sJiS = d,                                                                    (8.49) 

where p, q, s, and d are coefficients related to A, B, and C. 

8.10    ANALYSIS AND RESULTS OF A SINKING PLATE. 

Equation (8.44) (or 8.49) cannot be integrated analytically in the general case.    It's 
numerical integration has not been done at this time.    However, a number of partial 
solutions which are indicative of the solution can be obtained by simplifying assumptions. 
Neglecting the inertial forces of the water under the plate (C(E./E)2 yields a linear 
differential equation which can be integrated straightforwardly. However, the inertial term 
remains of paramount importance in determining the plate movement near the bottom. 
Therefore this term should remain in order to determine how much of the plate's 
momentum is left when it reaches the bottom. 

H one keeps this term, regardless of the other simplifying assumptions which are made for 
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the sake of mathematical convenience, the solution always implies that Ii.-tO when h-»0 (and 

also ht.-»0); i.e., the cylinder reaches the bottom with zero velocity. 

Indeed when h-<0, one finds that 

which tends to infinity when h-+0, and 

^^r1)1^. (8.51) 

The escape velocity, which is given by Eq. (8.35) where r = R tends towards 

Ä„   A        « 1/2      n,      B7, 1/2 0  1/2 

V 

when h -» 0; i.e., the plate reaches the bottom independent of the initial plate velocity w . 

Therefore uR remains finite. 

These apparently paradoxical results can be explained ad absurbo. Indeed, if the plate's 
velocity, h., and acceleration, h.., were finite when the plate reaches the bottom, i.e., when 

h -♦ 0, then the velocity Up will tend to infinity, and the pressure forces resisting the plate 

downfall will be infinite, as seen from Equation (24), forcing the velocity, h., to be zero. 

Nevertheless, the time for the plate to reach the bottom is not infinite. It remains in 
practice that the plate eventually ends up steady on the bottom. In reality, the end effect 
is confined to a very small distance from the bottom. The flow under the plate loses its 
perfect radial symmetry before reaching the bottom. A very small tilting, forces the plate 
to reach the bottom at its edge before being put to rest. 

This phenomena can be observed by dropping a horizontal sheet of paper onto a flat 
surface. The paper seems to slip sideways on a very thin layer of air before coming to rest. 
This indicates that, first it takes a relatively long time for the thin layer of air caught 
between the paper and the surface to escape, and second, the sideways movement indicates 
that the air escapes preferably on one side rather than another. 

The important conclusion from this analysis is that, for practical purposes, the plate 
reaches the bottom with practically zero momentum. Therefore all its fall momentum is 
eventually transformed into water waves. However, an important part of the 
corresponding energy is dissipated by splashing. 
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For the problem under consideration it also appears that the water waves generated during 
this second phase, the sinking phase, have little chance of resembling explosion generated 
waves such as described in previous chapters. This is in contrast with the initial pulse due 
to slamming described previously. Therefore the leading waves which are the least 
influenced by the sinking phase could be reproduced in similitude by dropping a plate but 
the trailing waves which result from the combination of the two modes of generation, the 
impulse and the flow movement under the plate, cannot. 

As the plate sinks to the seafloor, the water surges onto its top towards the center. The 
motion is akin to a surge on a dry bed or the "dam-break" problem as seen in Section 4. It 
is highly nonlinear. This radial convergence gives rise to a spike which collapses, forms a 
bore and radiates a second wave as was described in Section 4. 

The leading wave generated by the initial impulse is not influenced by the sinking of the 
plate and the return flow. The trailing waves are the result of the combined effects of 
dispersion from the initial impulse, the waves generated during the sinking of the plate, 
and the return flow. Its complexity defies analysis. However, one should expect that the 
time duration between the leading waves and the second wave crest to be of the order of T 

2 2R/(gd')1'2, where d' is the difference between water depth, d, and the plate thickness, 
H : (d'=d-H ). 

P v V 

8.11 EXPERIMENTAL VERIFICATION OF THE DROP OF A FLAT CIRCULAR 
PLATE. 

A series of tests have been carried out at WES with a 6-foot diameter, one-inch thick steel 
plate falling over water of various water depths. (Bottin, 1990; Bottin et al., 1990) An 
accelerometer was mounted on the plate near its center. Some typical results are presented 
in Figure 8-11. The experimental results were marred by considerable elastic vibration of 
the plate, which caused larger accelerations than expected with the noise exceeding the 
signal. Nevertheless, the period of these vibrations was well determined from the 
experimental data obtained before the plate reached the free surface. Therefore the data 
can easily be filtered. The average values of the acceleration support the theoretical 
developments done in the previous section. 

The peak deceleration at slamming was recorded, but did not reach the magnitude 
predicted by the theory. This is probably due to the very slow response of the sensor. The 
acceleration during the cavitation phase reaches nearly 2 g as predicted. As the plate sinks 
towards the seafloor, the vibrations are damped. Then it appears very clearly that as the 
plate nears the seafloor, its deceleration becomes very small and tends nearly to zero when 
the plate reaches the seafloor as predicted by the theory. 

8.12 WAVES GENERATED BY THE IMPULSE OF A FALLING PLATE. 

The problem of linear water waves generated by an impulse on the free surface was solved 
in Section 2. In the present case, the initial conditions are defined by an impulse on the 
free surface over a radius, R, equal to the plate radius and by a velocity, h (t), until the 

plate reaches the sea floor. The initial impulse, I, is 

IvMfw-wJ. (8.53) 
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Figure 8-11.   Accelerometer recording of falling plate. 
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However, one has seen that the plate reaches the sea floor with zero momentum as the 
momentum left, Mw , is nearly completely transmitted to the fluid during the sinking 
phase, so that practically I s Mw. Then, referring to Equation (2.23): 

B(k)=Jts£li
RJo(krJriT (8.54) 

p     T   K    0 

This integral is a Hankel Transform which can be integrated analytically giving 

B(k)=Msi£±Rj(kR). (855) 

Using the same methodology as the one presented in Section 2 yields: 

Tj(r,t) = Ej JQ(kr) J^kR) a sin at dk , (8.56) 

where 

Using the stationary phase approximation (Jeffreys and Jeffreys, 1956) which is valid for 
trailing waves at large distances, r, gives after some arithmetic 

_ n u y      1/2 
ri(r,t) = Efg JfiR) (_dy/dk)      sin(at-kr) . (8.58) 

It is seen from Equations (8.56) and (8.58) that the wave heights are proportional to the 
fall velocity, w. This should hold true for small values of w within the confine of validity 
of the linear theory. In reality, nonlinear effects are important and a maximum value for 
J/(r,t)|max is reached, corresponding to a maximum energy, after which the balance is 
dissipated by turbulent friction due to splash. 

A number of experiments aimed at measuring water wave trains generated by the drop of a 
circular plate were done at the Coastal Engineering Research Center at WES. Typical 
wave records are shown on Figure 8-12, resulting from the drop of a 1" thick steel plate of 
6 ft. diameter in 0.9 feet of water. As expected, the linear theory presented in the previous 
section is not verified due to the importance of nonlinear effects. However, this is of little 
practical importance. What really matters is whether the plate generated wave and 
EGWW look alike. 
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Figure 8-12.   Time history of the water waves produced by the drop of a 6 ft diameter 
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If our contention is right, i.e., if we assume that R   = R , then according to Equation c        p 

(5.6), this plate will be equivalent to an explosion of (-j^)4 = (j^)4 = 0.216 lbs of TNT, 
also in 0.9 feet of water. (This 0.216 lbs of TNT are equivalent to a 10.8 KT (0.216 lbs 
(100) ) explosion in 90 feet of water (scale A = 1/100)). 

A comparison between the two wave records (obtained by the plate and by the 0.216 lbs of 
TNT explosion) provide a direct verification of our assumption R   = R   or give the 
appropriate proportionality coefficient. Unfortunately, this test was not done. However, 
we can compare the wave record obtained with 10 lbs of TNT exploded in 1 foot of water 
at a radial distance, r, of 10.2 feet (Figure 8-12) with a wave record obtained at a distance 
r = 12 feet with the drop of a 6-ioot diameter plate in 0.9 feet of water (Figure 8.13). 
Despite differences, which does not allow a direct quantitative verification, it appears that 
the main features of the wave train are identical: a large leading wave followed by a long 
trough, an important second wave followed by secondary high frequency oscillations. 

On the positive side, the sharp steepening of the wave front (and bore near ground zero) 
which is due to nonlinear convective effects is reproduced experimentally whereas the linear 
theory gives too gentle a free surface slope. As long as the main damage is caused by the 
leading wave, the drop of a plate for simulating the effect of EGWW is a legitimate 
engineering tool and should provide realistic experimental results. However, if the damage 
is due to the trailing waves, the method is quantitatively invalid. We have seen that 
EGWW can be reproduced relatively satisfactorily by a programmable snake paddle. But 
this method is not possible in the case of investigating the effects of an explosion near 
ground zero. Therefore, despite its deficiency, the simulation of EGWW in shallow water 
by plate dropping appears to be the only possible method, short of a TNT explosion, to to 
simulate a prototype nuclear explosion. 

For a better correlation than the one presented in this chapter, more tests are necessary. A 
direct comparison of the wave records obtained by a small TNT explosion with the wave 
records obtained by dropping a plate of radius, R , equal to (or proportional to) R  in the 
same water depths, d, and at the same distances, r, is the best way to proceed. For the 
rest: the extrapolation to large nuclear yield, one relies on the findings presented in Section 
5. 
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SECTION 9 

BIEM FORMULATION OF EXPLOSION BUBBLE DYNAMICS 

9.1 INTRODUCTION. 

A numerical method to simulate the bubble expansion and crater formation resulting from 
an underwater explosion is presented in this chapter. It deals with the phase after the 
shock wave has been released, and therefore all the energy in this phase is assumed to be 
going to wave formation without any other dissipation. The bubble expansion is described 
by a potential flow model in which the fluid is assumed incompressible and inviscid. 

The correlation model of Wang et al (1989, 1991) provides a unified correlation for wave 
intensity predictions at any given distance from the explosion. On the other hand, this 
correlation is mainly based on small yield explosion tests. Extrapolation to large yield 
explosions is doubtful and uncertain. The logical approach to resolving this problem is to 
use a hydrocode. Several hydrocodes have been under development for a number of years 
and are showing a promising future and interesting results. However, they still have not 
reached the stage where they can provide input for surface wave generation. 

A short cut to bridge the gap between the EGWW correlation model and the hydrocode is 
an intermediate code. Unlike the hydrocode which is a full blown simulation of the actual 
state of explosion, the intermediate code considers only the phase after the shock energy is 
released. The emission of the remaining internal energy from the explosion to the 
surrounding water can be treated simply and easily. Since no thermodynamic exchange 
remains significant in this stage, the phenomonology of this phase is described by the 
potential flow theory where the fluid is assumed to be incompressible and inviscid. 

The technique used in the simulation is the Boundary Integral Equation Method 
(BIEM). An axisymmetric formulation is used with time-stepping of the Lagrangian points 
on the boundary surfaces.    On the free surface it is done by time-4ntegration of the 
nonlinear kinematic and dynamic boundary conditions that apply on the boundary. 

The method of time-stepping to follow an initial value problem using BIEM was first 
proposed by Longuet-Higgins and Cokelet (1976) to study the evolution of steep waves. 
Underwater explosions were studied by Wilkerson (1988) using BIEM, assuming constant 
potential and normal velocity in each element. The model presented here takes linear 
elements and, within a segment, the potential and normal velocity are linearly related to 
their nodal values at the end—points of each segment. 

9.2 MATHEMATICAL FORMULATION. 

9.2.1 Statement of the problem. 

An explosion is described by Cole (1948) as being a chemical reaction characterized by the 
extreme rapidity of the process and by the release of large amounts of energy. The original 
material (usually solid) is converted into a gaseous mixture at very high temperature and 

pressure (~3000°C and ~50,000 atm). The explosion converts the inherently unstable 
explosive material into a more stable product. 

The explosion creates a hot mass of gas at a tremendous pressure. This hot mass of gas, in 
turn, disturbs the surrounding medium. In underwater explosions, this medium is water. 
The explosion's initial disturbance to the water is caused by the arrival of the pressure 
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wave from the explosion. The fact that water is compressible causes pressure to be 
transmitted through the fluid at a large, but finite velocity. The outward (away from the 
explosive) movement of the water mass relieves the pressure wave. Once initiated, the 
disturbance propagates as a shock wave. The gas sphere or bubble expands radially at a 
decreasing rate due to the kinetic energy of the fluid surrounding it. The gas bubble 
overexpands until the pressure inside becomes a fraction of the surrounding fluid pressure. 
At this stage, the outward motion stops and the bubble begins to contract at an increasing 
rate. While this happens, the pressure inside builds up until the inward motion stops. 
This dynamic behavior occurs even as the bubble constantly floats upwards towards the 
free surface due to buoyancy. 

When the bubble hits the free surface, the pressure difference between the pressure inside 
the bubble and the atmospheric pressure above the free surface cannot be sustained by the 
capillary forces of the bubble for long. The bubble therefore explodes releasing high 
pressure gases into the air and causing a bowl—shaped crater. The disturbance caused by 
the crater collapse results in the propagation of very high amplitude waves away from the 
explosion. 

The explosion bubble problem is similar to the cavitation bubble problem. Cavitation 
bubbles affect propeller and turbine blade performance and underwater acoustics and have 
been extensively investigated by Plesset and Chapman (1971), Chahine (1977, 1982), Blake 
and Gibson (1981), Dommermuth and Yue (1987) and others. Experimental investigations 
of this phenomenon by Chahine (1982) and Blake k Gibson (1981) report a maximum 
bubble radial velocity of less than 50 m/s. Therefore the bubble surface velocity is much 
smaller than the speed of sound in water (> 1500 m/s). 

The initial disturbance from the underwater explosion results in the propagation of a shock 
wave. This is followed by the coalescing of the hot reacting gases into a bubble of very 
high vapor pressure. To formulate and solve this problem, an incompressibility condition 
is imposed on the fluid mass and a time—simulation of the bubble—fluid system is carried 
out numerically. The brief period of the compressible phase during which the shock wave 
propagates is not considered. 

A Reynolds number can be obtained by using the bubble radius and bubble radial velocity 
as characteristic length and velocity scales, respectively. The Reynolds numbers so 
calculated for cavitation bubbles are reported by Blake et al (1986) to be on the order of 
10 . For explosion bubbles, the Reynolds number is higher and remains high for the 
greater part of the bubble growth and collapse. Hence, viscous forces can be ignored in 
comparison to the inertia forces to assume the fluid inviscid. For an initially vortex—free 
flow field in an inviscid fluid, Kelvin's theorem of vorticity conservation allows the 
assumption of potential flow. With the assumption of incompressibility, numerical 
simulations can be carried out using an accurate and efficient technique called the 
Boundary Integral Equation Method (BIEM). 

9.2.2 The Integral Equation. 

Define a cartesian coordinate system (x,y,z) where z is the vertical coordinate with z = -h 
being the bottom and z = 0 being the undisturbed free surface. The assumption of 
irrotationality allows the introduction of a scalar velocity potential <p(x,y,z) such that the 
velocity vector Uin the flow field is given as 

U=V<p. (9.1) 

Also, irrotationality is fulfilled as 
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V « U=0. (9.2) 

The conservation of mass in incompressible fluids is given by 

V • U=0. (9.3) 

Combining Equation (9.1) and Equation (9.3) results in the Laplace equation 

V2<p = 0. (9.4) 

Now, introduce a second scalar potential ip(x,y,z) for which Green's second identity can be 
written in the form 

J <pV2ipdv - \iN2<t>dv = J(W-n - ^<p- n)da = j(<f>^ - ^ffj da, (9.5) 

where v represents an integral over the fluid volume, 5 represents an integral over the 
surface of the fluid and n is the unit normal vector on the surface pointing outwards from 
the fluid domain. From Equation (9.4) the second integral on the left hand side of eq. (9.5) 
goes to zero, and the equation becomes 

I W2i>dv = i(4$ - 1$) da. (9.6) 

Let ip be of the form ■„, where 

R = [(x-x'f + (y-y'f + (z-z'f 2=\X-X'\. (9.7) 

Here, the point X(x,y,z) is the reference point and X' (x',y',z') is the source point.   It is 
known that -5 is a valid solution of Poisson's equation that 

12({) = -4*6(R), (9.8) 

where 8(R) is the Dirac delta function. From Equation (9.7) and Equation (9.8), the 
volume integral in Equation (9.6) gives -^<$)(x,y,z). Hence, Equation (9.5) is reduced to 
the form 
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M(z,y,z) = -\(<t%,-^){ *' (99) 

Substituting a cylindrical coordinate system (r,9,z) for the cartesian coordinates {x,y,z), 
I 

2    2 2 one has r = (x + y ) , 0 = arctan (y/x),  ds = rdOdl, where it represents a line element on 
the r-z plane.  The unit normal vector n pointing outwards from the fluid domain has the 
direction cosines n  and n . where n  is positive radially outwards from the explosion and 
nz is positive upwards.   Also, X = X(r,9,z) and X' = X' (r',9',z').  Now, Equation (9.9) 
can be written as 

4T4>(r,9,z,t) = -I(4>fa-2fc)jf-dO'dl', (9.10) 

where in a cylindrical polar coordinate system 

R = 

I 

r2(X)+r2(X' )-2r(X)r(X' )cos[9(X) - 9(X' )]+[z(X) -z(X' )f (9.11) 

In the integral on the right hand side of Equation    (9.10), only R is a function of 9. 
Separating the integral with respect to 9, Equation (9.10) becomes 

2x 
M(T,0,Z, t) = -j r'(^-n-fn)\   '4%-dl* . (9.12) 

Here, <j> is written as a function of the radial coordinate r, the vertical coordinate z and the 
time t. The integral over 9 can be evaluated easily to remove all dependance on 9. As a 
result, the surface integral becomes a line integral and Equation (9.12) becomes 

4*tfr,z, t) = -f r'(^ - $fi) -r(r,z; r' ,z>')dl>, (9.13) 

where 7 is the Rankine ring source function and 

0      K        pl 

Here, K(m) is the complete elliptic integral of the first kind and the parameter m is defined 
as 
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m = (l-ty-), 

where p2
Q = (z-z' f + (r-r* f 

p\ = (z-z'f+ (r+r')2. (9.15) 

As shown by Newman (1985), the normal derivative of 7 is given by 

r2x 
\  -Jo -fane) 

J±n^ + itn^r + iß^MK  ■ (,16) 
PaPl ppl pl 

where E(m) is the complete elliptic integral of the second kind;    n   and n   have been 
defined as the direction cosines of the unit normal vector pointing outwards from the fluid 
domain. When p  -* 0, 7 and 7   develop logarithmic singularities. 

VJ lit 

As indicated in Equations (9.6)-(9.9),    -JV (-i)dv = 4*, where 4T corresponds to the 
v a 

included solid angle at the point inside the fluid domain. On a smooth surface, of which 
the tangetial plane is exposed to one half the space, the included angle is 2x. If there is any 
discontinuity in the computational perimeter, the included angle has to be handled with 
care. In general, the included angle is the solid angle in space enclosed by the surrounding 
boundaries. For an axial symmetrical conic enclosure of half vortex angle 6, the included 
angle a = 2?r(l - cos 6). At the intersection of the matching surface and the initially calm 
free surface, the included angle is one quarter of the whole space, equal to T. Hence, 
Equation (9.13) can be written as 

a(r,z,t)<MT,z,t) = Ar'(<t>%i-%bl(rlz;r<>z')dt', (9.17) 

where a(r,z,t) denotes generally the included angle at the boundary point (r,z). In an 
axisymmetric flow field, only a radial section of the computational domain needs be 
considered. 

9.2.3 Boundary Conditions. 

The boundary conditions prescribed for the problem are 

9.2.3.1 Bottom Boundary Condition. For an impermeable rigid bottom, no flow occurs 
normal to the bottom surface. This is expressed mathematically as 
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f£ = 0, atz=-A, (9.18) 

which is easily satisfied by augmenting j(r,z ; r' ,z') with its image at the bottom, j(r,z ; 
r1,-z' -2h).  By writing 

G(r,z; r'.z') = <y(r,z; V,z') + <y(r,z; r',-z' -2h) , (9.19) 

and inserting G instead of 7 in the field equation, Equation (9.13) becomes 

a(r,z)<t>(r,z) = - [ r' (<p fa - $fi)G(r,z; r' ,z>)dl>. (9.20) 

It is understood that the field equation in the present form satisfies the bottom boundary 
condition identically. 

The expressions for i(r,z; r', -z' -2h) and lJr,z; r', -z' -2h) are given as 

4K(m) 
<y(r,z; r', -z' -2h) = — l- (9.21) 

4(z+z' +2h)E(m1)nz     4(r-r' jEfm^        Efm^ -Kfm^ 
— _ + + 2[       -7— 

PSP2 Ptfs 
TP2 

\(r,z ; r'-z' -2h) = —j X-JL +    ^     1   r + 2[ Lj—J-^ 

(9.22) 

Ps 
where m, = 1 —|, 

PS 

p2 = (z+z'+2h)2+(r-r')2, 

p2
s = (z+z' +2hf + (r+r'f. (9.23) 

Here K(m) and E(m) as defined earlier are the elliptic integral of the first and second kind, 
respectively. 

9.2.3.2   Bubble Boundary Condition.  The kinematic boundary condition on the bubble is 
written as: 

m~ = ^> (9-24) 

292 



where -^ denotes differentiation following a fluid particle or the substantial derivative. V<j> 

can be split into two components, -$ , which is normal to the fluid surface and, -?&■ , which 

is tangential to the fluid surface. Also -TJT can be split into ^7 and 44f that 

(9.25) 

Dt~^nnz    37 nr • 

The dynamic boundary condition on the bubble surface can be expressed by a relation 
between the vapor pressure inside the bubble p, and the pressure outside the bubble from 
Bernoulli's equation, 

P=Pa-$-ipu2-Mz> (926) 

where p   is a reference pressure (taken here equal to the atmospheric pressure), p is the 
fluid density, and g is the acceleration due to gravity. Rearranging and adding the term 
pU-V<f> to both sides of the equation, one has 

P($ + V'W) = (Pa~P) + P(U'^ ~ |^ " P9Z ■ (9-27) 

By writing U-V<fi = U2 = $f + (^f, (9.28) 

and recognizing the left hand side to be the substantial derivative of <f>, the dynamic 
boundary condition on the bubble is given by 

m = (-p—) + 2ir-9z- (9-29) 

9.2.3.3 Free Surface Boundary Condition. The kinematic boundary condition on the free 
surface is the same as that specified for the bubble surface, Equation (9.25). The dynamic 
boundary condition on the free surface is a pressure relation. Since the pressure on the free 
surface is the atmospheric pressure, the dynamic boundary condition on the free surface is 
simply 
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9.2.3.4 Far Field Condition. To obtain a mathematically unique solution, a far field 
condition has to be posed. In this initial value nonlinear problem, a far field closure can be 
imposed by matching the nonlinear potential inside the computational domain to a linear 
solution of transient radiated waves at a cylindrical matching boundary placed at a far 
distance from the origin (Wang and Nadiga, 1990). This is justified on the premise that, in 
a three dimensional problem, the energy density of the radiated outgoing waves decreases 
rapidly with radial distance and the radiated waves become linear some distance away. 
However, this requires that the matching boundary be placed sufficiently far away from the 
origin so that the linear wave theory can be validly applied as the simulated time 
progesses. 

To shorten the computing time, the matching boundary can be placed at a reasonably far 
location but still allow fluid to flow through the boundary freely. This is 
possible because the normal derviatives of the velocity potential are known from the 
solution at the previous time step. This information is then fed into the next time step as 
the initial condition. Let the normal velocity at the matching boundary r=A be 
V(A,z,t) , then the boundary condition at the matching surface can be written as 

4>Jr,z,t)\ = V(A,z,t). (9.31) 
r=A 

This manipulation is consistent with the boundary condition applied on the bubble surface. 
An error check with the conservation laws must be applied at each time step of integration 
to ensure that mass and energy are conserved. 

Since the location of the radial boundary is held constant at r=A, at a fixed point (r,z) on 
the boundary, the condition requires: 

One may relax the vertical movement on the boundary, then the kinematic condition for a 
marker point (r,z) is given by 

Dr-0 

zs-8«,-Sfv <9«) 

The dynamic condition for this case is then 

9.2.4   Initial Conditions and Bubble Dynamics. 

For a spherical bubble of given radius and pressure, the radial velocity can be obtained by 
using Rayleigh's equation (1917). The conservation of mass flux requires that 
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4*r2u   = 4*r2u , (9.35) 

where r is a reference radius of the bubble and u  is the radial velocity of the fluid mass at 
this radius while r and u are the instantaneous values of the bubble radius and bubble 
radial velocity, respectively. The energy released from the bubble can be calculated from 
the kinetic energy of the fluid mass outside the bubble which is given as: 

| p j" 4*r2u2dr = 2*pu2
or

S
o . (9.36) 

The work done by the bubble against a pressure difference between the ambient pressure p 
and the pressure inside the bubble p is given as 

2=^-r>a-P;, (9.37) 

where rm is the maximum radius to which the bubble expands.  Equating the work done by 
the bubble to the kinetic energy of the fluid mass outside gives 

rS 

ro 

where Ap ■= Pa~P-  With respect to the reference radius r  and velocity u , the velocity of 
the bubble of radius r is given by 

m) = (—) %+st—p—X1 ~ if- (9-39) 

For the expansion of an explosion bubble, the input parameters are the yield and the depth 
of burst. The pressure inside the explosion bubble can be related to the explosion 
parameters by a pressure balance equation. For adiabatic expansion, Cole (1948) gives 

V = iM-jr—s^ • (9.40) 

where W- weight of explosive in grams of TNT, 7 = 1.25, r is given in cm, and p is given 
in kilobars. 
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The energy balance can be expressed by the following equation 

l*prS (£f + &rS(%)2 + ±*rSPo+ E(r) = Y, (9.41) 

where p is the fluid density, PQ is the hydrostatic pressure at the depth of explosion h , 
E(r) represents the internal energy of the explosion and Y   is the total energy of the 
explosion. The first term is the kinetic energy in the surrounding fluid resulting from 
expansion.   The second term represents the buoyancy effect and 4| is the upward velocity 
due to buoyancy.   The internal energy is a function of the bubble radius r and can be 
evaluated by 

E(r) = f    pdv , (9.42) 
J v(r) K      } 

where v is the bubble volume equal to | tr for a spherical bubble of radius r. Using the 
expansion Equation (9.40), the internal energy is given by 

*M = ™&(Jhr-'- (9.43) 

The total energy released by 1 gram of TNT is about 1060 calories. The quantity Y in 
Equation (9.41) represents the total energy left after the shock wave is emitted. Assuming 
58.5 percent of the total energy is emitted in the shock wave (Cole 1948), Y is taken to be 
440 calories per gram of explosive. Consequently, Equation (9.41) can be used to predict 
the initial conditions of radius and velocity for a given explosion. 

9.3      NUMERICAL IMPLEMENTATION. 

The equation to be solved is: 

a(r,z,t)(ß(r,z,t) = -[   V (^ - $)G(r,z; r',z')dl, (9.44) 
J L 

where 

G(r,z; r' ,z') = -y(r,z; r' ,z') + -y(r,z; r', -z' -2h). (9.45) 

The above equation is written so as to satisfy the bottom boundary condition as shown in 
Section 9.2.3. The path of integration L is the trace of the computational boundary and L 
= B -h F + M, where B refers to the bubble perimeter, F to the free surface and M to the 
matching boundary. To discretize the above equation, the trace of the computational 
boundary L is divided into small segments. Hence, 

296 



N 
L= S   /., (9.46) 

j=l 1 

where N is the total number of segments and /• is the arc-length of the jth segment. 

Within a segment, <p is linearly related to the nodal values <ß ■ and <f> •   , and, similarly, its 

normal derivative <f>n is linearly related to <f>   • and <p   ■   ,.   Thus, a system with infinite 

degrees of freedom is reduced to one with finite degrees of freedom. Then, Equation (9.44) 
can be expressed in terms of nodal values of <p and <p     and reduced to a set of linear 

algebraic equations with <p ■ or <f>   ■ as the unknown variable.  The solution is obtained by 

solving the equation by direct Gaussian elimination. 

9.3.1   Spline Interpolation. 

The solution of the field equation gives the velocity component <f>   normal to the fluid 

surface.   By using a finite difference scheme, the tangential velocity component <f>  can be 
s 

obtained from the known values of <p and the segment arc—lengths.    The values of the 
velocity potential and the locations of the points on the moving boundaries are then 
updated using the kinematic and dynamic boundary conditions on these boundaries.   It is 
clear that any errors in evaluating the direction angle or its cosines {n^n) on the moving 

boundaries will cause errors in positioning of these points. This might cause irregularities 
in the profile and an eventual breakdown in the simulation. Thus, it is very important 
that the trace of the computational surface be represented very accurately with an absence 
of any sharp discontinuities. 

To satisfy the above mentioned requirements, an interpolation of splines is taken through 
the points to ensure smoothness of the profile within segments. To have continuous slopes 
at nodal points, and to ensure further that the second derivatives are piecewise continuous, 
cubic splines are used.   Then, <p   and <f> are functions of the spline parameter and are 
related to their nodal values. 

Let C be the cubic spline parameter such that 1 > ( > 0, then over the jth element one may 
write 

<P/Ü = <t>hl + tCOfrj - 4>hl], (9.47) 
^n;/

s/     yn,3-l     slsy'^nj     ^n,j-lJ' 

where 

t(0=-t7-, with (9.48) 
3 

»{0 = 1   J/CJdC,   and (9.49) 
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l—sfl.O). (9.50) 

Here i-is the arc-length of the jth segment, and 

J/0 = [fäf+fyf? . (9-51) 

is the Jacobian of s((). 

The manner in which the perimeter is interpolated with cubic splines is shown in Figure 
9—1. It is important to note that the assumption of axisymmetry reduces the 
computational surface to a line contour. Then, all parameters can be expressed as 
functions of the line element and the nodal values of the parameter. As shown in the 
figure, the point of intersection of the matching boundary with the free surface is N , 
while the intersection point of the free surface and the centerline is N  .   The point of 
intersection of the centerline and the top of the bubble is N,  , while the point of 
intersection of the bottom of the bubble and the centerline is N. Also, the jth segment 
connects the points j-1 and j, so that: 

\=0 
= r;-i' 

r,. = 7\-> 
k=i 3 

w = zi-i • 

\-i ■ 
= y (9.52) 

The orientation of each segment is defined by 

Zj   -   z ■ 

0 =tan  1 (~i zV^- (9-53) 3 rj_1       rj 

The continuity of the potential <f>, the normal velocity <f>   and slopes n  and n  across the 
nodal points is expressed by 
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£ \ iu&We 

/nilial /ree surface z= 0 
* »- 

-«       "      -'-   "T c 

bottom z= - h 

N m 

matching boundary 

r= A 

Figure 9-1.     Sketch showing discretization of the boundary over the computation 
domain» 
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The interpolations along the various boundaries are specified by: 

(a) Matching Boundary 

r =A, 
z =zj-l + Qzfzj-i]> 

(b) Free Surface 

r =rj_1+([rj-rj_1], 

* = b0(j) + (bß + C2b2(j) + Chß) , 

Jr (rfrj_1f+(b1(j)+2Q2(j)+S(>
2bs(j)f 

where b (j) are the spline coefficients of z on element ; . 

(c) Bubble Surface 

Z3        Tj 
r = rj_1H[rfrj_1J, 

z = b0(j) + <b1(3) + (2b2(j) + C>h3(j), 

Jj = [(rfr3-l)2+(bl(j)+2<:b2^+3<:2b3^2 

(9.54) 

(9.55) 

(9.56) 

H|n  |<|n  |, 
zj     ri 

r = aß) + (afi) + (2a2(j) + (3a3(j) , 

Jj = [(YZhl)2+(al(j)'h2C'a2(j)+SC'2aS(i))i 2 (9.57) 

Similarly, a (j) are the spline coefficients of r on element j. 

9.3.2   Discretization of the Field Equation. 

By writing the field equation in a discretized form, Equation (9.44) becomes: 

N    rj N      i 
Vi  =    E r'AGdl.   -    S     [        r'<t>   G it-  , 1 *       j=i Jj-i        n     J       j=i Jj-i n   J 

i=0,l,2...N. 

(9.58) 
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It is understood that the subscript n denotes a normal derivative. 

Now introduce the cubic spline parameter £ into segment j.     Also, from Equations 
(9.49)-(9.50), it Mows that, 

dtj = dsj(0 = Jj(Od(.                                                                                   (9.59) 

Incorporating the above in Equation (9.58) yields: 

N 
' r> (OJ/O^JOGJOdC -  S   | f (OJ/Ot/OG^/O dt, 

(9.60) 

where                         GtfO    = 0^:^(0,^(0), 

^d                             Gnij(0 = Gn(ri>Zi; ^(0,^(0) ■                                           (9-61) 

Substituting by Equation (9.47), Equation (9.60) becomes: 

ai*i = f=1 \[ T' (WpyWnj-l+MtonS'tnj-lM 

N   A 
~ 1  J o r' (C)J/OGn)ijKBj_1H(Ü(<Pf<Pj_1)JdC.                          (9.62) 

The nodal values <p, <f>j_p <Pn ,-and <pn ■1 can be taken outside the integral sign to give: 

N                rl 

+JL1'nj-il/(vj/oyw-t(M 
N           rl 

- s <fiA  r'(OJ/OGnJOS(Od( 

" J^i J   ? (OJftGn.p[l-i(OK                            (9.63) 

301 



In general, the above equation can be written in the form of N+l linear simultaneous 
equations: 

N 
afa = £   [HfrjMj + Q(i,j)<t>nj, i = 0,1,2...N. (9.64) 

where 

0<j<N, 

H(i,j) = - J   r'(OJpGniiß)i(OdC - \    r'(ÜJj+1Wniij+1(0[l-Z(Om, 

H(i,0) = - [   r' (0 Jfi) Gn Ü(C) [l-i(0]d( , 

H(i,N) = -\   r'(C) JrfO Gn iN(0 i(C)d( , (9.65) 

and 

0<j<N, 

Q(i,3)    =   \o   r< (OJ/OGjüttÜdt    +   \     V(OJj+1(OGij+1(0[l-Z(0]d(l 

Q(i,0) = f   V (0 Jft) GU(C) [l-t(0]d{ , J o 

Q(i,N) = \   r> (0 J^O GiN(0 £ (0 d( . (9.66) 

The integrals in the functions H and Q can be evaluated using Gaussian quadratures. 
dGii However, when  :'=;' or i=j+l,  G-. and —-*r-f develop logarithmic singularities.    The 

integration of the singular terms can be performed by making use of the quadrature for 
logarithmic singularities. 

9.4      METHOD OF SOLUTION. 

The solution of the problem is governed by the integral Equation (9.44), of which the 
discretized form is given by Equation (9.64). The boundary is discretized into N segments, 
on which N+l nodal values of <j> or <p   are sought as a function of time t.  With ^ and <f> 
being known at any instant, the tangential derivatives <p  at the nodal points can also be 
determined for that particular instant. It follows then through time integration to obtain 
<p, <j>   and <p for the following instant at t + At. In general, the solution process consists of 
two steps, an Eulerian phase to solve the field equation at a fixed time t and a Lagrangian 
scheme to advance the solution to the next time step. 

9.4.1 Solution of the Field Equation. 
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Equation (9.64) is a linear algebraic system, corresponding to the integral Equation (9.44). 
As shown in Equation (9.44), it is a mixture of Fredholm integral equations of the first and 
second kind.   At a nodal point, either <f> or <f>   is known but not both.   To initiate the 
computation, the free surface is assumed to be calm and the potential <p is constant in the 
fluid domain except that adjacent to the small spherical surface of the bubble at the initial 
expansion. This corresponds to a very short instant after the explosion while the 
disturbance has not reached the ambient fluid. In particular, the fluid on the free surface 
and the matching boundary is assumed to be undisturbed at the initial instant, and the 
potential <f> is arbitrarily specified to be zero. On the bubble surface, the potential <p is 
unknown, but the radial velocity <p   can be determined.    This allows direct Gaussian 
elimination on the matrix Equation (9.64) to solve for <j> on the bubble surface and the 
normal velocity <p  on the free surface and the matching boundary. 

After the initiation, the value of (f> is specified at every nodal point so that Equation (9.64) 
can be rewritten by grouping all the unknowns on the left hand side and all the known 
quantities on the right in matrix notation, 

Vnjsfii' i = 0,l,2,...N. (9.67) 

where A ■ • is an (N+l) by (N+l) square matrix of coefficients equal to Q(i,j), and B- is an 
*J N 

(N+l) element column matrix of coefficients   equal to a-<£- - S   H(i,j) <j>-.   Again, this 
j=0 J 

equation can be solved by direct Gaussian elimination for the values of <f>   at the N+l 

collocation points. 

9.4.2 Time-Stepping. 

By following Lagrangian points on the bubble surface and on the free surface one has at a 
given time instant the position and the velocity potential at all the points on the moving 
boundaries. To perform time-stepping, one has to integrate the dynamic and kinematic 
boundary conditions with respect to time to obtain the new positions of Lagrangian points 
on the bubble and on the free surface. 

In order to integrate the dynamic and kinematic boundary conditions, the velocity vector 
(<p ,<p ) has to be specified completely.   On solving the field equation, <p   is known on all 
boundaries after the first time step. However, the velocity component tangential to the 
boundary does not come out explicitly on solving the field equation. By using a finite 
difference scheme the velocity component <p can be obtained. 

All the boundary segments are approximated by cubic splines and can be expressed as a 
function of the cubic spline parameter £. Accordingly, the potential <p is a function of ( as 
was shown in Equation (9.47) and the tangential derivative d<f>/6( can be calculated in a 

da, 
straightforward fashion. From Equation (9.49), it is clear that -yr1 = J., hence 

dtp-      d<p-   ds-       1 d(j>- 
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The kinematic and dynamic boundary conditions can now be integrated over time to give 
the new potential <p and the new position of points on the boundary surfaces. The 
governing differential equation for the bubble surface was specified by Equations (9.25) and 
(9.29), the free surface by Equations (9.25) and (9.30) and the matching surface by 
Equations (9.33) and (9.34). These equations are first-order ordinary differential 
equations in time t. To integrate, a multi-step scheme of Adam-Bashforth-Moulton 
method is appropriate. It is generally the predictor-corrector method of Milne (1953). For 
an equation of the form 

£t=f(y,t), O-69) 

the stepping process is as follows: 

1. the predicted value of y at time t. = t +&t 

vip=y0+¥4 (
55fo - 5gf-i+ SJf-2 - gf-s) - (9-7°) 

2. the corrected solution of y at t. 

yic = y0+¥4(
9fip + 19fo-5f-i+U- <9-71) 

It is a two-step integration from a third order polynomial fit to the derivatives of latest 
four solution points. Since the method requires information from three previous time steps, 
a simple Euler's method is used for the first three time steps from the initial condition. 

The integration of the kinematic and dynamic boundary conditions constitutes the 
time—stepping of the boundary position and the velocity potential. Then, the known 
values of the potential <f> on the bubble, on the free surface and on the matching boundary 
can be substituted into the field equation to advance for solutions of the next time step. 

9.5      SIMULATION OF BUBBLE BREAKING. 

9.5.1 Initiation of Bubble Breaking. 

When the gaseous mixture expands and breaches the free surface leading to bubble 
breaking, the phenomenon becomes complicated to handle numerically. In an underwater 
explosion, the submerged detonation produces instantly a spherical volume of hot gas. 
High temperatures and pressures then result in two distinctive disturbances in the 
surrounding fluid; one, the emission of a shock wave travelling outward and two, radial 
motion of the fluid resulting from the expansion of the hot gas and explosive debris. 
Immediately followed then is the growth of a spray dome right above the explosion. Water 
under this dome rises rapidly to form a vertical plume. The maximum height of the water 
column is governed by the initial pressure and velocity which in turn depend upon the 
charge weight and the burst depth below the surface. For sufficiently deep detonations, the 
dome and the subsequent plume may not be visible at all. For shallow charges, two types 
of plume spray can be formed; it can be a relatively narrow column of very high spray or a 
radial plume projected outward in all directions. Cole (1948) shows that the types of the 
plume can be correlated with the period of the bubble oscillation and the time at which the 
plume leaves the water surface, which again correspond to the charge weight and depth. In 
any case, this plume is a mixture of water spray and explosion products. Eventually, 
opposed by the force of gravity, capillarity and air resistance, the plume breaks into water 
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droplets together with explosion debris falling back on the water surface. While these 
fallouts of the plume spray may generate a lot of turbidity on the water surface, it is the 
cavity formed after venting of the explosive debris that is responsible for the surface wave 
generation. 

Fluid motions from near surface explosions of small H.E. charges have been reported by a 
number of researchers.  As a function of the charge weight and depth, the process of dome, 
älume and cavity formation was schematically demonstrated in Figure 1-2 by Kedrinskii 

1978). In particular, it showed that in some cases, a very high upward moving jet rose 
:om the dome right after the beginning of the gaseous bubble collapsing. Similar 

phenomena were observed in the growth and collapse of cavitation bubbles close to a free 
surface by Chahine (1977) and Blake and Gibson (1981). 

The phenomenon of jet development was investigated theoretically by Longuet-Higgins 
(1983). It was shown that as the surface dome rises, during the process of bubble 
expansion, the vortex angle progressively decreases while the surface dome becomes more 
peaked. As the vortex angle of the dome reduces to a certain critical angle, the motion 
starts   a  jolt,   such   that   the  jet   velocity   and   acceleration   both   become   infinite. 
Longuet-Higgins demonstrated that the critical angle is 2 arctan 2^2 by using a 
gravity-free potential flow model of Dirichlet's hyperboloid. The comformity of Dirichlet 
hyperbolic model to the profile of two-dimensional breaking waves (Longuet-Higgins, 
1972) was confirmed numerically by Mclver and Pergrine (1981). 

Physically, the jet or plume arises from instability of the free surface when the vortex of 
the dome surface reaches its critical angle. Numerically, this is the instant the 
computation breaks down, as the velocity and acceleration are becoming infinite. To 
continue the computation, the bubble is assumed simply broken up at the apex at this very 
moment, ignoring the jet formation. The fallouts from jet or plume may indeed produce 
turbidity on the water surface but is assumed to have no effect on wave disturbances. 

9.5.2 Bubble and Free Surface Intersection Point. 

As soon as the bubble breaks, there arises another difficult problem in the numerical 
scheme. This is because there are two different kinematic boundary conditions imposed at 
the intersection point.     There are two different  <p    values because of two different 
directional normals existing at the sharp corner of the intersection point. This results in a 
singularity at the intersection point. This singularity can have a global effect on the 
simulation and, if not properly treated, can cause a breakdown of the simulation. To 
circumvent this problem, Lin (1984) proposed that both <j> and <j>   at the intersection point 
be treated as known. In effect, this reduces the number of unknowns by one. 

In a different approach, the unknown is assumed to remain single valued at each 
collocation point including the sharp corner at the intersection point. It is understood that 
both <p   and <p   are continuous at any collocation point except the intersection corner. 
Hence, it is further postulated that these derivatives remain single valued at the corner, 
although the rates of change of these values are drastically distinctive around the corner as 
compared to that at other points. 

Following the convention adopted in the numerical scheme, the value <f> at point N is 
defined by a finite difference in the form 

'  c c c c 
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where lN is the arc length of the segment N , between points N -1 and N .   On the other 
c 

hand, it possesses a sharply different tangential derivative at this point, both in magnitude 
and direction, if interpolated from segment AT +1, 

\N+1 = (*N +1 ~ *NJ/1N,+1 ■ (9J3) 

The orientations of segments N and N +1 are known from spline interpolation (9.53) and 
given as 6M and 0M     , respectively, then the angle between the segments N and N+1 

Nc "c+1 c c 

is obtained by: 

ß=7T+eN     -9N. (9.74) 
1 c+1     nc 

Consequently, the magnitude of the tangential derivative at the corner can be justified by 
taking one half of the vector summation of that on the two sides of the corner1 

*s,N* = * i VIM  + **3,N+1 ~ 2 *,,*  *s,N+l C0S tf/2- <9J5) 

Here <p   *r* takes the + sign when <f>   ., is positive and — sign when <p   „ is negative, and 
'   c '   c '   c 

the tangential direction is supposed to be 

9N* = eN  _7' (9J6) 

where 

(9.77) 

The directional normal at the corner must be perpendicular to the tangential orientation 
and can be evaluated by 

lit is noted that the tangential derivative defined this way is equivalent to a second order finite 
difference evaluated at collocation point j, i.e. 
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(n, njx* = (sin 9^, cos 6^) . (9-78) 

By considering <p and <p at the breaking corner to be continuous and single valued, the 
included angle a in the field Equation (9.44) also needs to be adjusted at the corner point 
(rN , zN ); that is simply 

a(rN,zN,t) = 2ß. (9-79) 
c      c 

The directional normal at point N therefore is modified by substituting (n^ nj^* for (nf 
c 

n)N .   Similarly, the analysis can be considered for the intersection point N^ at the time 
c 

of breaking and the directional normal at N^ is substituted by (n^njtf*-    Thus, the 

multivalued problem is modified to a single value problem to solve <f>n at the corners Nc 

and Nh as well as all the other collocation points uniquely. 

9.6      PARAMETRIC PRESENTATION. 

There have been a number of investigations on the behavior of cavity bubbles by both 
experimental techniques and computer simulations. Cavity bubbles are very destructive on 
ship propellers and hydraulic pumps and play an important role in underwater acoustics. 
A typical list of investigations on this phenomenon includes Plesset and Chapman (1971), 
Lauterborn and Bolle (1975), Shima and Nakajima (1977), Blake and Gibson (1981), 
Prosperetti (1982), Chahine (1990), Dommermuth and Yue (1987). 

On the other hand, there are few reports on explosion generated bubbles in the literature. 
This might be due to a lack of scientific interest in the subject or the classified nature of 
the research. The two works which are relevant to this topic are Wilkerson (1988) and 
Chahine et al. (1988). 

9.6.1.   Sample of Typical Simulations. 

To demonstrate the validity of the BIEM formulation, the expansion and contraction of 
cavity bubbles were simulated and are shown here. Presented as an example is the 
computation of a TNT explosion in 58 ft deep water. The charge weight W is taken to be 
100 lbs and the depth of burst (DOB) zQ is 11.6 ft below the surface. 

Figure 9—2 shows the numerically simulated bubble contours at 18 equal time intervals 
after the initiation. Sixty nodal points in total are used over the computational boundary. 
Referring to Figure 9-1, N   = 10, N = 40, Nb = 41 and N = 59. The initial radius of the 
bubble is taken to be 6.5 ft, which is approximately 25% of the maximum attainable radius 
for this case. The time interval used in the presentation is 22.5 ms. The time at the end of 
simulation corresponds to 405 ms elapsed after the initiation. 

Figure 9—3 shows the vertical velocity variations along the centerline axis above and below 
the bubble.    Again, it presents the same 18 time steps.    These vertical velocities are 
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30 

W  =.   100   lbs 

DOB   »   11.6   ft 

Figure 9-2.     Simulation or crater formation and surface movement for subsurface 
explosion in 58 ft deep water. 
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computed at five equally—spaced points above and below the bubble surface. Straight lines 
are shown in the figure to connect the values at the bubble apex above and at bottom 
below. Only centerline velocities below the bubble are shown after breaking. The 
magnitude of the centerline velocity v presented in the figure is normalized by a 
characteristic velocity U equal to square root of gz .   The linear dimension of the vertical 

axis is normalized by the charge depth z .   The position —1 on the vertical axis is the 

charge position 

The pressure variations above and below the bubble are shown in Figure 9,4. The 
centerline pressure is presented in a non-dimensional form of (p-pJ/pgz .    The gas 

pressure inside the bubble is shown by a vertical straight line at any instant. The pressure 
above the bubble varies from the bubble gas pressure at the top of the bubble surface to the 
atmospheric pressure at the free surface. The bubble gas pressure decreases with time and 
becomes equalized with the atmospheric pressure after the surface layer is broken. Only 9 
time steps before breaking are shown in the figure. The pressure below the bubble is 
dominated by hydrostatics as indicated by the roughly linear trend on the pressure curve. 

9.6.2 Deep Water Simulations. 

Simulations have been conducted for various yields from 200 lbs to 1 KT. For each yield, a 
number of charge submergence ratios are taken. 

Using BIEM, the computation boundary must be fully specified. For the deep water case, 
the lower boundary is specified to be equal to 2.5 times the attainable radius of the bubble 
below the charge position. In order to enhance the presentation, only the crater shape at 
the instant when the top surface of the bubble reaches its peak level is shown for each case. 
This crater form may then be taken as the input to the wave propagation model to 
determine the wave information at the far field. For the case of deeper charge 
submergence, the top surface may not even break in the first cycle of bubble expansion, but 
the peak surface height of the first cycle generally governs the propagation and the 
magnitude of the waves. 

Graphic presentations for yields of 200 lbs, 1 ton, 10 tons, 100 tons and 1 KT are shown in 
Figures 9-5 to 9-9, respectively.   For each yield, 6 charge positions or depth of burst 

(z/W ' ) are shown in the figure. 

9.6.3 Shallow water simulations. 

Similar to the deep water case, simulations for shallow water explosions are conducted for 5 
yields ranging from 200 lbs to 1 KT. Graphic presentations of the crater forms for the case 
of W = 200 lbs are shown in Figures 9-10 to 9-14. 

For each yield, five different depths are selected to demonstrate the effect of water depth 

on wave generation.   The depth parameter is d/W '  .   These figures cover five subsets 

corresponding to d/W ' — 2, 3, 4, 5 and 6. For each d/W ' , four different charge 
positions are shown in the figure. The charge position parameter is taken to be the charge 
submergence to water depth ratio, z/d. 

Note that the product of the two parameters d/W '    and z/d gives the depth of burst 

(DOB) ratio z/W ' , which has been defined to parameterize the charge position for the 
deep water cases.    Consequently, the shallow water results provide also, although not 

i/o 
directly, indications due to z/W '   if compared with the deep water cases. 
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t = 22.5 -405 ms 

Figure 9-3.      Centerline velocity near the bubble. 

(P - Pa)/P9*n 

Figure 9-4.     Centerline fluid pressure before bubble breaking. 
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(a)      d/Ww = 2 
z/d = 0.35 - 0.8 

Figure 9-10.    BIEM simulated shallow water crater forms W = 200 lbs. 
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Figure 9-10.   BIEM simulated shallow water crater forms (continued). 
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Figure 9-10.   BIEM simulated shallow water crater forms (continued). 
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Figure 9-10.    BIEM simulated shallow water crater forms (continued). 
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Figure 9-10.   BIEM simulated shallow water crater forms (continued). 
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Figure 9-11.    BIEM simulated shallow water crater forms, W = 1 ton 
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Figure 9-11.   BIEM simulated shallow water crater forms, (continued). 
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(c)      d/WI/3 = 4 
z/d = 0.25 - 0.8 

Figure 9-11.    BIEM simulated shallow water crater forms, (continued). 
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Figure 9-11.   BIEM simulated shallow water crater forms, (continued). 
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Figure 9-11. BIEM simulated shallow water crater forms, (continued). 
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Figure 9-12.   BIEM simulated shallow 
water crater forms, W = 10 tons. 
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Figure 9-12.   BIEM simulated shallow water crater forms, (continued). 
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Figure 9-12.   BIEM simulated shallow water crater forms, (continued). 
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Figure 9-12.    BIEM simulated shallow water crater forms, (continued). 
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Figure 9-12.   BIEM simulated shallow water crater forms, (continued). 
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Figure 9-13.    BIEM simulated shallow water crater forms, W = 100 tons. 
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Figure 9-13.   BIEM simulated shallow water crater forms, (continued). 
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Figure 9-13.   BIEM simulated shallow water crater forms, (continued). 
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Figure 9-13.    BIEM simulated shallow water crater forms, (continued). 
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Figure 9-13.   BIEM simulated shallow water crater forms, (continued). 
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Figure 9-14.    BIEM simulated shallow water crater forms, W = 100 tons. 
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Figure 9-14.    BIEM simulated shallow water crater forms, (continued). 
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Figure 9-14.   BIEM simulated shallow water crater forms, (continued). 

338 



3UU i                i                i 

(\                                        'lk.5-15'     

i                      i i 

'lk.5-2*   

250 - IV - - 

0 
\     \^___ 

\        ^^^— 

-250 J J - 

-500 

1                                     !                                    1 i                     i i 

- 

5nn 

3                  250                500               750              1000 3                  250               500 750 1000 

i                      i                     i 

.                                            ' lk . 5-25 ■     
l                 i   l 

• lk.5-4 * — 

250 

o 

\ - 

-250 

J 
- 

-500 

i                     i                     i 

- 

C 250               500               750              10 00       t 250                500 750 10 00 

(d)      d/WI/3 = 5 
z/d = 0.15 - 0.0.4 

Figure 9-14.   BIEM simulated shallow water crater forms, (continued). 
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Figure 9-14.    BIEM simulated shallow water crater forms, (continued). 
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9.7      EQUIVALENT-ENERGY CORRELATIONS. 

9.7.1 Equivalent-energy crater forms. 

The BIEM model provides a crater form, which would be directly applicable as input 
information for wave predictions if an appropriate wave prediction model were available. 
Currently, the wave height prediction for the deep water case is based upon a linear 
Kranzer—Keller (1959) type model approximation where the crater form is assumed 
mathematically to have a Hankel transform (see Section 2). In order to connect the BIEM 
crater with the Kranzer-Keller wave model, a method to transform the BIEM crater into 
an energy equivalent crater is outlined here. 

At the moment the crater lips reach their peaks, the particle velocities over the crater 
surface are approximately zero. The crater then can be considered to possess only potential 
energy. For a cylindrically symmetrical crater, the potential energy E can be evaluated by 

CD 

E = *p g\ T}2 (r)rdr, (9.80) 
o 

where p is the density of water, g is the gravitational acceleration and 7] is the crater 
elevation, which is a function of radial distance r. 

In particular, we shall assume the crater model to be of a parabolic zero volume form 
(Table 2-1, case 3), for which 

V(r)=A[2(jl)
2-l], r<R, (9.81) 

= 0, r>R. 

Here, R is the radius at which the elevation of the crater has the highest value A (see figure 
in Table 2-1) or the crater height.   From Table 2-1, the potential energy for a parabolic 
zero volume crater is known to be * p g A R /6. 

To resemble the surface profile of the deep charge submergence case, we select the crater 
model to be of the hyperbolic form (Table 2-1, case 5), which is described by 

V(r) =     0
AR[ ,/, • (9.82) 

(R2+r2)/2 v      ' 

The potential energy for this form is known to be ir p g A2R2/4 as shown in Table 2-1. 

The potential energy for an BIEM crater is computed using Equation (9.80) and the 
equivalent crater height A is determined from the BIEM result. For consistency, the value 
of A is taken to be one half the total height from the bottom of the cavity to the tip of the 
lip. The value R is evaluated in accordance with Equation (9.81) if the surface is broken. 
Otherwise, Equation (9.82) is used to evaluate A and R. 

9.7.2 Summary of correlated results. 
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9.7.2.1 Deep water correlations. Through the energy—equivalent method, the equivalent A 
and R for each simulated case are summarized in Table 9—1. The results are arranged for 
yields from 200 lbs to 1 KT, with the charge sumergence as a parameter. One may 
compare these results with that presented in Equation [3.2) correlated by Le Mehaute 
(1970). Equation (3.2a) is for the upper critical depths ana Equation (3.2b) is for the lower 
critical depth.   The BIEM results should compare only with Equation (3.2b), the lower 

0.24 
critical depth case. Equation (3.2b) indicated that A is proportional to W a^d Ä to 
w' . The results shown in Table 9—1 generally support a W ' ^ law for both A and R. 

It is noted that Table 9—1 includes results obtained by two model correlations Equations 
(9.81) and (9.82). Figure 9—15 shows results of crater radius R as a function of yield Wfor 
those cases correlated using Equation (9.81).   First, one may notice that the crater radius 
is not sensitive to the parameter of charge submergence z/W '  .   Second, the radius R 
follows a W ' * correlation very closely.   Designating R   as the correlated value of R for 
the deep water case, its correlation with yield Wean be approximated as follows: 

RQ = 8.97 W1^ . (9.83) 

To accept Equation (9.83) that the crater radius is independent of charge depth and 
convert the Table 9—1 results in accordance with a single model Equation (9.81), Table 9—2 
is generated.  In Table 9—2, the R values are taken according to Equation (9.83) to be R . 
The A values are adjusted and reevaluated in accordance with the concept of equivalent 
energy and presented as A . 

Table 9—2 shows that while R   is independent of charge submergence z, A   varies as a 

function of z/W '   .   Figure 9-16 further indicates that at a constant z/W '   , A 

as W '* however. The results provide a correlation of the following form: 

vanes o 

AQ = 946fW1^, (9.84) 

where /is designated as a correction factor due to charge position z and is approximately 
given by 

f=exp(l - z/W1/8) , 0.75 < z/W1/3 < 2.5 . (9.85) 

9.7.2.2.   Shallow water correlations.   Following the same method applied to deep water 
correlations, the equivalent A and R is tabulated as a function of d/W^z and z/d. Again, 
two correlation models Equations (9.81) and (9.82) are used to obtain the results of A and 
R (Table 9-3). 

The computed results of R are plotted in Figure 9-17 as a function of yield W. This plot 
indicates that the crater radius R varies as W '    when d/W '   is small, but as W '^ 
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Table 9-1.       Energy equivalent correlation of crater forms (deep water). 

Yield z/W**l/3 A( ft ) R( f t ) Corr . Equ 

200 lb .875 E7 E9 9.81 
1 30 E9 H 

1 . B5 <43 El 9. BE 
1 .5 31 22 ii 

E 2<+ 19 " 

2.5 17 20 " 

1 ton .B75 59 59 9.81 
1 5B 63 ■ i 

1 .25 63 63 " 

1 .5 6^ A 1 9. BE 
E U3 ^2 " 

5.5 29 <+6 ■t 

10 ton .75 105 103 9.81 
.B75 10^ 1 15 " 

1 1 12 120 ii 

1 .25 . 106 1 10 " 

1 .5 1 1<4 83 9.8S 
E 71 85 " 

100 ton .75 EOO 2EE 9.81 
1 187 199 Ii 

1 . E5 18^ E03 ■ I 

1 .5 1B1 19B II 

1 .75 153 155 9.BE 
E 1E3 161 " 

1 kt .75 376 360 9.81 
1 365 35<+ " 

1 .25 336 365 n 

1 .5 E7B 366 H 

E 1B6 S9E 9. BE 
2.5 87 313 II 
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Figure 9-15.    Deep water crater radius plotted as a function yield. 
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Table 9-2.       Energy equivalent crater forms adjusted in accordance with (9.81) and 
(9.83) (deep water). 

Yield z/W** 1/3 Ao(ft ) Ro(ft) 

BOO   lb .875 23 34 
1 26 34 
1 .25 22 34 
1 .5 16 34 
2 1 1 34 
2.5 8 34 

1    ton .875 58 60 
1 61 60 
1 .25 66 60 

1 .5 36 60 
2 25 60 
2.5 18 60 

10   ton .75 101 107 
.875 1 12 107 
1 126 107 
1 .25 109 107 
1 .5 72 107 
2 46 107 

100   ton .75 234 190 
1 196 190 
1 .25 197 190 
1 .5 189 190 
1 .75 102 190 
2 85 190 

1   kt .75 402 337 
1 383 337 
1 .25 364 337 
1 .5 302 337 
2 132 337 
2.5 66 337 

■ 

Ro   = 8.97 *   W**l/4 
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Figure 9-16.    Deep water crater height plotted as a function of yield. 
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Table 9-3. Energy equivalent correlation of crater forms (shallow water). 

w =      200    lb s 
d/W» »1/3 z/d A( f t ) Rf f t ) Cor r .    Equ 

2 .35 1 3 1<4 9.81 
.5 1 3 15 
.6 1 3 18 " 
.B 12 23 9.82 

3 .55 19 21 9.8! 
.5 IB 2^ " 
.65 22 22 9.82 
.8 16 29 

U .2 21 2^4 9.81 
.25 28 32 " 
.5 20  ' 31 9.82 
.8 ! 3 35 

5 .2 27 29 9.81 
.25 30 31 " 
.5 15 27 9 . 82 

.8 o 37 " 

6 . 15 22 2-'< 9.81 
.2 3 1 31 " 
.5 1 1 28 9.82 
.9 6. 37 " 

W =.       1      ton 
2 .U 29 29 9.81 

.5 26 35 " 
.65 32 2^ 9.B2 
.8 33 28 " 

3 .25 3B "-.2 9.81 
.5 39 53 " 
.65 39 53 9.82 
.8 3B 39 " 

U .25 *tO ^3 9.81 
.3 60 65 " 
.5 37 ^U 9.82 
.8 25 50 " 

5 .2 5^ 50 9.B1 
.25 63 63 " 
.5 33 ^2 9.81 
.8 17 57 ti 

6 . 15 50 53 9.81 
.25 59 UB 9.82 
.5 25 <«2 ■• 

.B 1 1 66 •■ 
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Table 9-3.       Energy equivalent (continued). 

U 10 tons 

d / W * * 1 /3 z/d A( f t ) R( f t > Corr . Equ 

2 .*4 

.5 
55 
5 6 

6*4 

76 

9.91 

.65 53 100 9.92 

.9 58 108 

3 .25 
.5 

83 
86 

9*4 

1 10 
9.81 

.65 92 67 9.82 

.8 67 88 " 

U .25 B7 93 9.81 

.5 77 77 9.82 

.65 53 91 " 

.8 *«2 97 

5 .2 
.25 

80 
87 

8*4 

95 
9.91 

.5 55 81 9.82 

.8 22 1 19 

6 . 15 
.2 

72 
86 

79 
9*4 

9.81 

.5 37 83 9.82 

.8 1 3 1 3** 

D =   100 tons 

2 . *t 

.5 
138 
131 

139 
1*45 

9.81 

.65 126 205 9.92 

.8 123 233 " 

3 .3 
. *. 

202 
180 

228 
209 

9.81 

.65 1*<3 156 9.82 

.8 106 151 

*4 .2 2 10 
179 

238 
189 

9.81 

.6 93 153 9.82 

.8 51 196 " 

5 . 15 
.25 

19*4 

183 
20*4 
199 

9.91 

.5 82 1*.5 9.B2 

.65 *i0 187 " 

6 . 125 
. 15 
.25 

180 
206 
179 

192 
216 
197 

9.91 

.5 *<B 170 9.91 

• uf 

348 



1000 

u 
100 

10 

"T'-V   I     H   I   I T TV ' !       '   T '    r" —I'"'     T        I     f 

WW 

—i    l   IK Lit,,. i i      t    i   ■  ■ ■ . I A. _l—I—l-.l 1111 1 1—■   I ■ I t ■ 

100 1000      10000     100000 

»  (lbs) 

1000000   10000000 

Figure 9-17.    Shallow water crater radius plotted as a function of yield. 
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when d/W '   becomes large.  The effect of charge position on crater radius R, however, is 
not apparent.    Plotted over the data are the approximate relations of R in terms of 

1/8 d/W '  . They are approximated by: 

d     S8 

R = 1.422 (-^       VV", (9.86) 
W 

where 

0.25 

W 

0 25 
a = 0.5-0.141(—j^)'     , 2 < d/W1/8 < 10. (9.87) 

This relation is approximated by assuming that the crater radius R approaches the deep 

water relationship Equation (9.83) as a limit when d/W ' ~» 10, which is the basis used 
in the deep water BIEM computations. 

As in the deep water case, Equation (9.86) is taken to be the correlation for R, and the 
results in Table 9—3 are converted according to a single model given by Equation (9.81). 
The converted results are presented in Table 9^4. 

Table 9-4 clearly reveals two interesting points: 

1. the variation of crater height A is not sensitive to charge position z/d when 

d/W^/5 is small, 

2. the crater height A diminishes rapidly as charge depth ratio z/d increases 

when d/W '   is large. 

Point 1 is the well recognized fact that waves generated in shallow water explosions are 
insensitive to the charge submergence. Point 2 indicates, however, that the effect of burst 
depth emerges when the water depth d becomes not too shallow relative to the yield scale 

W*%.   In other words, the effect of z/W '    or the product of d/W '    and z/d must be 

considered when d/W '   > 2. 

For correlation purpose, data of crater height A presented in Table 9.4 are translated into a 
reference value B on the basis of deep water crater radius R   instead of R given by (9.86). 

Values of B are presented in Table 9-5. These values can be approximated by the 
following relation: 

,   0.75 j, 
B = [2.21 (—n$        ~ 2.97] W , (9.88) 

where ß = 0.49 (—77s)   °-29, 2 < d/W^z < 10. 
—ri/o WA 
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e 9-4.       Energy equivalent crater forms adjusted in accordance with (9.81) and 
(9.86). 

w 200 lbs 

d/UJ»» 1/3      z /D A( f t > R(f fc ) 

2                          .35 13 1<4 

.5 1^ 

.6 17 

.8 16 

3                          .25 22 IB 

.5 2^ 
.65 22 

.a 21 

A                          .2 2'« 21 

.25 <U3 

.5 2<4 

.8 18 

5                          .2 33 2^ 

.25 39 

.5 1<4 

.8 1   1 

6                           . 15 20 26 

.2 37 

.5 10 

.8 7 

UJ 1    t I n 

2                           .4 27 31 

.5 29 

.65 21 

.8 2^ 

3                          .25 ^2 3B 

.5 5^ 
.65 i*U 

.8 32 

U                          .25 ^0 <+3 

.3 91 

.5 31 

.8 2<* 

5                          .2 A7 m 
.25 B<* 
.5 2<4 

.8 17 

6                          - 15 53 50 

.25 ^6 
.5 17 

.B 12 
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Table 9-4.       Energy equivalent crater forms adjusted in accordance with (9.81) and 
(9.86) (continued). 

U  =  10 Lous 
d /IJ» * 1 / 3  z / D A < f t >     R(f t) 

2 .'i 53         67 
.5 6<f 
.65 65 
.R 76 

3 .25 100       ^B 

.5 121 
.65 65 
.0 62 

<i           .25 7't         86 
.5 56 
.65 ^6 
. H 39 

5 .2 7'i          9 1 
. 25 9 ! 
. 5 <t 0 
.0 23 

6 .15 59         96 
. 2 Q'k 

.5 26 
. • ■: 15 

■'1 

65 

■■{■■ 

, '' "f   l 

1 17 
8 m 

2 292 
M 198 
6 68 
a <tB 

15 21 1 
25 205 
5 55 
65 3^ 

125 189 

15 2A3 
25 173 
5 36 

171 

178 

183 
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Table 9-4.       Energy equivalent crater forms adjusted in accordance with (9.81) and 
(9.86) (continued). 

W 1 KT 
d/W**l/3 z/D A( f t ) R( f t ) 

2 .35 284 31 1 

.5 293 

.65 370 
.a 309 

3 .25 447 333 

.'i 346 

.6 352 
.B 100 

4 .2 466 343 
.25 370 
.4 339 
.6 77 

5 . 15 403 348 

.3 372 

.35 340 
.'4 1 1 1 

6 .'15 418 349 

.2 337 

.25 289 
. 4 68 

R   =1.422   *    <d/U**l/3>**.8   *   U*#a 

a   =    .5   -    .141    *    (d/U**l/3)**.25 
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Table 9-5.       Energy equivalent reference value B. 

W 200 Ihr, 
d/H« »1/3 z /d B < f' I ) Ro< ft > 

2 .35 5 3<4 

.5 6 

.6 7 

.8 7 

3 .?5 18 3^ 
.5 13 
.65 12 
.B 1 1 

U .2 15 3^ 
.25 27 

. 5 15 

.8 1 1 

5 .2 23 3^ 
.25 28 
.5 in 

.8 8 

6 . 15 15 3^ 
.2 28 
.5 8 
.8 5 

U 1  ton 

2 . U 1^ 60 
.5 15 
.65 1 1 

.8 12 

3 .25 27 60 
.5 3*4 

.65 20 

.8 20 

^ .25 29 60 
.3 65 
.5 22 
.8 17 

5 .2 37 60 
.25 66 
.5 19 

.B 13 

6 . 15 UU 60 
.25 38 
. 5 la 
.8 10 
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Table 9-5. Energy equivalent reference value B (continued). 

u 10 tons 
d/W» »1/3 2 /rl D( r t) Ro< ft ) 

2 . 'f 

.5 
.65 
.8 

33 
Mi 

'. 1 
'♦8 

107 

3 .25 
.5 

. 61 
.8 

73 
88 
m 
'.5 

107 

U .25 
.5 
.65 
.8 

76 
'«5 
37 
31 

107 

5 .2 
.25 
.5 
.8 

6 3 
77 
3'. 
2'J 

107 

6 . 15 
.3 
.5 
.8 

53 
75 
23 
13 

107 

U 100 to ITS 
2 

.5 
.65 
.8 

1 00 
100 

1 1 1 
123 

190 

3 .3 
. t* 

.65 
.8 

2't2 
198 
96 
69 

190 

^ .2 

.6 
.8 

263 
178 
61 
U3 

190 

5 . 15 
.25 
.5 
.65 

198 
192 

51 
32 

190 

6 . 125 
. 15 
.25 
.5 

182 
23<4 
186 
35 

190 
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T^WVS.E^ e^le^W^c« \i*\v;t  B.CCoAV4\ 

Tabte-ö-Ä-fnmtKwedjL---- 

W  = 1 KT 
d/W**l/3 z/d B( f t ) Ro(ft) 

2 .35 262 337 
.5 270 

.65 3M 
.8 285 

3 .25 ^4A2 337 
.'* 3^2 
.6 3^a 
.B 99 

<4 u '.7<4 337 
.25 377 

.4 3^5 
.6 78 

5 . L5 ^♦16 337 
.2 38A 
.25 35 1 
.<t 1 15 

6 . 15 <»33 337 

.2 3^9 

.25 299 

.A 70 

Ro   =   8.97   #   W**l/"+ 

356 



For d/W 'S = 2. 4, 6 and 10, the values of B are plotted in Figure 9-18. This plot shows 
that B varies as W^ as d/W1/3 

Equation (9.84). The correlation of crater height A may be obtained by 
approaches 10, the same relationship of A   as given by 

R. 
A=Btf), (9.89) 

where the depth independent radius R     is given by Equation (9.83) and the d/W ' 
dependent R is given by Equation (9.86).   The crater height A is approximately constant 
with respect to the charge position z/d for d/W ' 1 2. For larger d/W ' , the effect of 
charge position zmay be estimated in accordance with Equation (9.85). 

9.8      SUMMARY. 

This chapter presented the theoretical basis and a numerical procedure for the simulation 
of subsurface explosion based upon BIEM, the Boundary Integral Equation Method. 
Numerical results generated by using the BIEM code are also presented. 

The computation of the initial bubble forms is conducted parametrically to cover a 
systematic variation of yield W, water depth d and depth of burst z. The range of coverage 
for the yield is from 200 lbs to 1 KT. Correlation relationships for the crater radius R and 
the crater height A are obtained as a result of the parametric analysis. 

The analysis covers both deep and shallow water events, for depth—yield ratios from 
d/W1'9 = 2 to d/W1'9 a 10. The results are limited to a range of depth of burst (DOB) 
below a certain critical layer under the free surface.   In terms of submergence—yield ratio, 
the correlation covers from z/W ' = 0.75 to z/W ' = 2.5. For shallow water events, 
the burst depth ratio z/d is a convenient parameter for analyzing the charge position effect 
in water of a fixed depth. The combined effect of z/d and d/W ' provides the means to 
analyze the charge position influence in different water depths.   Nevertheless, the charge 
position has little effect in shallow water when d/W '   s 2. 

The analysis confirms that the crater height A varies as W ' "* as suggested by the linear 
wave calibration (Section 3).   The linear wave calibration suggests the crater radius R 
varies as W ' , however.  The BIEM results show that R is proportional to W1'    only in 
shallow water. The crater radius is proportional to W ' "* in deep water. In addition, the 
BIEM results show that a large—yield burst behaves quite differently from a small yield. 

In particular, the effect of water depth on large yield events is not as strong as that on 
small yield explosions.   The parameter to characterize the water depth is the depth-yield 
ratio d/W ' . The effect of this parameter is more evident for small yields than for large 
yields, on both crater radius and crater height.  For yield of W 2 1 KT, there is little effect 
due to water depth if d/W '    > 2.   On the other hand in a very small yield event, the 
effect of water depth remains apparent even d/W ' > 10, as indicated in the linear wave 
correlation presented in Section 3. 
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In linear wave correlations (Section 3), small yield experimental data mandate a deep 
water criterion with d/W ' « 14. Extrapolations have been applied uniformly in the 
linear wave correlation for small or large yields. It is evident that the linear wave 
correlations are biased by the experimental results of small yield with the majority of the 
shots ranging from 0.5 to 100 lbs (Section 3). With the new and more reliable information 
available from BIEM simulations, a revision of the linear wave correlation is warranted. 
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