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ABSTRACT 

The major problem addressed by this research is how to plan a safe motion for 

autonomous vehicles in a two dimensional, rectilinear world. With given start and goal 

configurations, the planner performs motion planning which will lead a vehicle to achieve 

its task safely. During the planning, in addition to the safety consideration, motion's 

smoothness is also taken into account. 

The approach taken was to divide whole motion planning task into two layers. The 

top layer finds a global path by decomposing the free space into convex regions, then 

searching for an optimal global path class. The bottom layer performs local motion 

planning which further subdivides the planning problem into mid-portion and end-portion 

motion planning. The local motion planning is carried out region by region along the global 

path class. As results, simple motion instructions are generated for each region. 

For execution of planned motion, a software system, Model-based Mobile robot 

Language (MML-11), was developed. This easy-to-use robot language provides users a 

convenient tool to program their applications through its function library. 

The results of the research were implemented in MML-11 and tested on an 

experimental robot Yamabico-11 successfully. 
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I. INTRODUCTION 

Imagine an autonomous robot vehicle moving indoors. The mission is to provide 

for its navigation. What are the problems that needs to be solved to accomplish its mission 

and how can those problems be solved? These have been major sources of research topics 

in robotics. We refer to these problems as motion planning problems. 

The basic motion planning problem was simplified and defined by Jean C. Latombe 

as follows: 

Let ^ be a single rigid object - the robot - moving in a Euclidean space W, 

called workspace, represented as 9ln, where n = 2 or 3. 

Let (Bj *Bq be fixed rigid objects distributed in W. The üB,'s are called 

obstacles. 

Assume that both the geometric descriptions of ßL, (Bj,..., 2L and the locations 

of the (Bfs in ^are accurately known. Assume further that no kinematic constrains 

limit the motion of ßL 

The problem: Given an initial position and orientation and a goal position and 

orientation of ßlin *W, generate a path, specifying a continuous sequence of positions 

and orientations of J?, avoiding contact with the $,'s, starting at the initial position and 

orientation, and terminating at the goal position and orientation. Report failure if no 

such path exists. [1] 

This definition was, of course, oversimplified. However, it stated the essential idea 

of motion planning. A formal statement of the problem, known as the configuration space 

formulation, then was presented in the book [1 p.7- 11] where the terms, configuration, 

configuration space (Cspace), obstacle, configuration obstacle (Cobstacle), free space, 

path, and free path, are defined more precisely. 



A.    REVIEW OF OTHER MOTION PLANNING APPROACHES 

Many different methods have been developed for motion planning over the years. 

Some of them are applicable to a wide variety of motion planning problem, whereas others 

have limited applicability. Latombe summarized the general approaches to the motion 

planning problem into three categories: roadmap, cell decomposition, and potential field 

[1]. We will briefly introduce these approaches and summarize them below. 

1.  Roadmap 

Roadmap approaches attempt to capture the connectivity of the set of free 

configurations of a robot in the form of a network of one-dimensional curves called 

roadmap [2]. Once a roadmap is constructed, it is used as a set of standardized paths. 

Motion planning is thus reduced to connecting the initial and goal configurations to the 

roadmap and searching the network for a path between these two configurations. 

Various methods based on this general idea have been proposed. The best-known 

types of roadmaps are visibility graph, Voronoi diagram, freeway net and silhouette. The 

visibility graph is one of the earliest path planning methods. In two-dimensional Cspace, 

this approach consists of considering all the vertices of the Cobstacles and the start and goal 

configurations as the roadmap nodes, while the links are all the line segments connecting 

two nodes that do not intersect any of the Cobstacles. The visibility graph can be searched 

for the shortest path between start and goal configurations. 

The Voronoi diagram is defined as the set of points that are equidistant from two or 

more objects [3]. The start and goal configurations are retracted in the diagram. A path is 

searched in the diagram between start and goal configurations. A comprehensive survey of 

the Voronoi diagram is presented in Aurenhammer [4]. The advantage of this diagram is 

that it yields free paths which tend to maximize the clearance between the robot and the 

obstacles. 

The freeway net method generates paths along generalized cones between the 

obstacles [5]. The silhouette method uses techniques from differential topology. It projects 



an object in a higher-dimensional space to a lower-dimensional space and then traces out 

the boundary curves of the projection, which is called silhouette. The silhouette curves are 

recursively projected to lower-dimensional space, until they become one-dimensional 

lines. Then the curves are connected at places where new silhouette curves appear or 

disappear using linking curves. This method is developed to find a path from a graph of 

one-dimensional curves. It is mostly used in theoretical algorithms analyzing complexity, 

rather than in developing practical algorithms [6]. 

2. Cell Decomposition 

The cell decomposition approaches have been very widely used and are based on 

decomposing (either exactly or approximately) the set of free configurations into simple 

non-overlapping regions called cells.The adjacencies of these cells are then represented in 

a connectivity graph. A collision-free path between the start and the goal configuration of 

the robot is found by first identifying the two cells containing the start and goal 

configurations and then connecting them with a sequence of connected cells. 

Cells can be object-dependent or object-independent. In object-dependent 

decomposition, boundaries of obstacles are used to generate the cell boundaries, and the 

union of free cells exactly defines the free space. The number of cells is small, but the 

complexity of decomposition is high [3] [7]. In an object-independent decomposition, the 

Cspace is prepartitioned into cells of a simple shape, and each cell is tested to determine 

whether it is inside or outside of Cobstacles [8] [9]. 

3. Potential Field 

The potential field methods generally employ repulsive potential fields around 

obstacles and an attractive field around the goal. The gradient of the combined potential 

guides the path away from the obstacles and toward the goal. A historical review of the 

potential field approach can be found in [10]. The major drawback with these methods is 

that the potential function will often lead the path to some local minimum from which it 

cannot escape and therefore causes the planner to fail [11]. 



4.  Layered Approach 

Mobile robots are likely based upon carts with wheels for steering and locomotion 

[12]. It is not possible to follow an arbitrary path. Many constraints need to be taken into 

account in planning paths for mobile robots. Based on the motion planning categories 

stated above, numerous algorithms have been developed for autonomous robots over a 

period of years. Laumond extended the basic motion planning problem to the case of a 

point robot with kinematic constraints [13]. He developed a method to break down the 

planning problem into two phases. In the first phase, the problem is solved by finding a 

collision-free path while ignoring the orientations of robot's start and goal configurations. 

Then in second phase the path is transformed into a topologically equivalent collision-free 

path using arcs and tangent line segments. The number of reversals in the path is not limited 

and the path involving reversals is not smooth. 

Another approach to this problem breaks up the free space into convex cells, and 

computes intermediate configurations at the border of every adjacent pair of cells [14]. 

Because of the characteristics of convex cells, a simple procedure is devised to connect the 

intermediate configurations with arcs and tangent lines. Reverse motions are allowed 

throughout the path in this research. Simulation results showed that the solution path 

involves many unnecessary reverse motions even in a spacious environment Moreover, the 

motions for the initial and final stages were not described clearly. 

One of the closely related research is to develop algorithms for motion planning 

with different layers [5]. This method proposed using Spine net to construct a global path. 

Then straight line segments and circular arcs were used to plan the detailed motion. The 

Cubic spiral was adopted to smooth the local motion. This method looks complete but is 

hard to implement. The other global motion planning and local motion planning ideas can 

be found in other research reports. Some of these focus on motion planning for 

manipulators [11]. Some of them provide general ideas [3] [15] [9]. 

The most recent research in layered motion planning is presented by Kovalchik, J. 

[7] in our research group. The method used in his research is to first decompose the free 



space into K-regions. After this a connectivity graph is built and searched to find a global 

path from the region that contains the start configuration to the region containing the goal 

configuration. A bidirectional motion planning method is also introduced in this research. 

In short, this research concentrates on the global path planning which will be adopted in 

this dissertation for the top layer of the autonomous vehicle motion planning. 

B. SCOPE OF DISSERTATION 

This dissertation solves the motion planning problem under the assumption to be 

described in Section C of this chapter. Our focus is on planning the motion as a physical 

approach. The algorithms for motion planning to be taken by real robot are deliberatively 

developed. Simulations are done to verify the algorithms either individually or globally. 

After this a high-level motion specification language, Model-based Mobile-robot 

Language (MML-11), which is suitable to describe the solutions to the motion planning 

problem, is developed as the implementation and verification of the algorithms. The 

dissertation also includes the description of MML-11. 

C. MOTION PLANNING PROBLEM 

1.  Problem Statement 

The world space "J^for the motion planning problem in this dissertation is a two- 

dimensional plane 9?2 on which a global Cartesian coordinate system is defined. The 

obstacles are closed subsets of W. In this dissertation obstacles are assumed to be simple, 

rectilinear, and polygonal. The free space, FreeCW), is the complement of the union of all 

obstacles in the world space W. 

The vehicle in the dissertation refers to a rigid-body robot which has fixed size. 

(During the research we will use Yamabico-11 for experiments although the algorithms 

will be suitable for robots with any size). 

A configuration q in this dissertation is defined as a triple q = (p, 6, k), where p 

indicates the position (x, y) in the global Cartesian coordinate system, 6 is the orientation 



related to the x-axis of the global coordinate system [16], and k is the specified curvature. 

The configuration defined in this dissertation is normally used to describe the robot's 

instantaneous status, either it is stationary or moving. This configuration is especially 

useful for specifying a path. For instance, if we use q = ((x, y), 6, k) to specify a line, this 

line passes through the point at (x, y) and with orientation 9. When the curvature element 

is k = 0, it is specifying a straight line, otherwise it is a curve. 

The motion of a vehicle is subject to nonholonomic and kinematic constraints. That 

is, the vehicle is able to perform both forward and backward motion but not sideways 

motion. The robot's orientation and curvature are continuous. There is an upper limit in its 

curvature when a turn is taken. 

The problem to be solved in this dissertation is: In a given world <W, with free space 

Free(W), let qs and qg be the start and goal configurations, respectively, lying completely 

inside free space. Let JZ.be the wheeled mobile robot vehicle. Given a mission to move from 

Qst0 Qg->tms research is to plan a safe motion symmetrically for the vehicle under the given 

constraints, to achieve its mission. 

2.  Layered Motion Planning 

As stated in Section A, numerous methods have been developed for motion 

planning. These methods are variations of a few general approaches: road map, cell 

decomposition, potential field, and mathematical programming [3] [1]. Some of them are 

applicable to a wide variety of motion planning problems, whereas others have a limited 

applicability. Unfortunately, none of them are complete in the sense of practical use for 

solving the motion planning problem defined in this dissertation. For example, 

nonholonomic constraints and kinematic constraints were not taken into consideration in 

many approaches. In particular, the robot's motions in the area of the start or goal 

configurations are more restricted, and so require more deliberative planning. Not all 

robotics systems proposed for motion planning are developed to address this consideration. 

Furthermore, most of research in motion planning for mobile robot is theoretically valuable 



but not practically useful. For these reasons, we propose a new approach which divides the 

motion planning into two layers: the global path planning and the local motion planning, 

as shown in Figure 1.1. 

Motion 

Planning 

/ 

< 

\ 

Top Layer: 

Global Path Planning 

Bottom Layer: 

Local Motion Planning 

Path Class Representation 

Path Class Determination 

Mid-Portion Motion 
Planning 

End-Portion Motion 
Planning 

Figure 1.1: Layered Structure of Motion Planning 

The top layer, global path planning, starts with decomposition of the free space of 

the given world into K-regions. Then a connectivity graph is built and searched to 

determine path classes which classify equivalent paths. At completion of motion planning 

in this layer, one path class among all distinct classes is determined. This path class, 

represented by a sequence of alternative region-borders called a crossing sequence [7], 

specifies the direction of a possible path for a robot, which will continue to plan its detailed 

motion in next layer. The details of top layer motion planning will be reviewed in Chapter 

H. 

With the global path determined, the motion planner at the bottom layer then takes 

the general direction guided by the global path to direct its local motion planning. The task 

of this layer is to produce a smooth collision-free motion for the robot. We further divide 

this layer into two types of motion planning: the mid-portion motion planning and the 



end-portion motion planning. In mid-portion motion planning, the robot's motion will be 

planned region-by-region along the global path, excluding the regions in or near the first 

and last regions. The end-portion motion planning determines the motion of starting or 

ending from start or final configurations which are called initial motion planning and final 

motion planning respectively. Both types of local motion planning are done under 

nonholonomic and kinematic constraints. The steering function and forerunner simulation 

are powerful methods to find solutions in this layer. The bottom layer motion planning will 

be discussed in detail in Chapters III, IV and V. The structure of motion planning and 

motion execution is shown in Figure 1.2. 

w 
qs 

qg 

► 

► 

Global Path Planner 

Tn (global path) 

Local Motion Planner 

T MP (local motion) 

Motion Execution 

Figure 1.2: Structure of Motion Planning and Execution. 

3.  Assumptions 

This research is based on the following assumptions: 

•    Two dimensional world: The world space is a flat planar world with obstacles. 



The floor is on the x, y plane. 

• Rectilinear obstacles: All obstacles in the dissertation refer to rectilinear, 

polygonal obstacles which have their edges perpendicular to the x, y axis of the 

coordinate system. 

• Stationary environment: The environment in this dissertation refers to a 

stationary world space. 

• Gross motion planning: We assume that free space is much wider than the 

objects' size with allowance for the positional error of the robot. This ensures 

that position error will not cause unexpected collisions while executing the 

collision-free paths generated by the motion planner. The motion planning 

under this assumption is called gross motion planning [3]. 

• No localization error: In this dissertation, we assume that the localization error 

has been corrected. Thus the localization error does not exist during the 

execution of the planned motion. 

• The motion is subject to constraints of robot's kinematic and nonholonomic 

characteristics. 

• The robot is a rigid-body autonomous vehicle. 

D.    ORGANIZATION OF DISSERTATION 

This dissertation provides a solution to the motion planning problem for 

autonomous vehicles. It includes descriptions of existing planning approaches, design of a 

robotic language, and implementations. In addition, an experimental robot, Yamabico-11, 

which plays a significant role during the entire project, will be introduced. The dissertation 

is organized as follows: 

Chapter I gives an overview of the dissertation. It reviews the general motion 

planning approaches, defines the scope of the dissertation, and states the problem to be 

solved. 



Chapter II describes the global path planning. We review the theory of homotopy 

path classes and the theory of K-decomposition that will be adopted in the top-layer 

planning. Then a path-finding method for building the global path represented by K-regions 

is discussed. 

In Chapter III, we break down the local motion planning into two types of planning: 

end-portion motion planning and mid-portion motion planning. We present the analysis of 

local motion planning tools to be used in this dissertation. The characteristics of steering 

function are studied in detail. The concepts of Forerunner simulation and reverse path are 

described. After then, we discuss the steps to be taken in local motion planning. 

Chapter IV discusses mid-portion motion planning in detailed. The planning 

methods for various types of K-region on the path are identified and analyzed. The 

algorithms for planning the robot's motion in regions other than the initial and final ones 

are developed. 

Chapter V gives a detailed description of end-portion motion planning including the 

initial motion planning and final motion planning. Planning tools are described prior to the 

discussion of planing details. 

Chapter VI introduces the hardware of the experimental robot Yamabico-11. 

Chapter VII, VIII, and IX describes the design of a robotic software system - 

Model-based Mobile robot Language, MML-11. Chapter VIII states the design of robot 

real time operating system. In Chapter IX, the language specifications and software 

architecture are described. 

Chapter X presents a sensor-based approach to motion control 

Chapter XI and XII present results and conclusions. 

10 



II. GLOBAL PATH PLANNING 

A. HOMOTOPY 

We consider a two dimensional world, W, with holes. A hole is an obstacle for a 

robot. A free space Free(W) is the complement of the union of all holes. There might be a 

hole among them which completely surrounds the free space. A hole with this property is 

said to be inverted. Every free space is a connected subset of W (Figure 2.1). 

fgKgSKKgKgSSSBSSSi. 

(a) Without Inverted Hole (b) With Inverted Hole 

Figure 2.1: Two-Dimensional World Space with Holes 

A directed curve or directed path II is represented by a continuous function/: [0, 

1] -» Free(W). The two points f(0) and f(l) are called endpoints of n. The path is said to 

join the endpoints. Obviously, there are infinitely many paths joining given two points S 

and G in Free(W) (Figure 2.2). In this figure, paths nx and U2 are somewhat similar and so 

are paths n3 and n4. However, r^ and n3 are not. This concept was formally defined in 
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the field of algebraic topology [17] and will be followed. Two paths II and II' (defined by 

/ and / respectively) are said to be homotopic if and only if there exists a continuous 

function <j>: [0,1] x [0,1] -> Free(W) such that 

l.(j)(0,0=/(0)foralHe [0,1], 

2.c|>(U)=/(l)forall*€ [0,1], 

3. <fr($, 0) =f(s) for all s € [0,1], and 

4.4>Cs, 1) =f(s) for alls e [0,1]. 

Figure 2.2: Homotopic Paths 

Informally speaking, iT^ can be continuously transformed into ü2, without running 

over any holes, with both endpoints fixed. So are paths n3 and ü4. If two paths II and IT 

are equivalent, we write 

11 = IT (Eq2.1) 

Therefore in Figure 2.2, D^ = Yl2 and n3 = n4 There are a countable number of 

equivalence classes of paths, even in a world with a finite number of holes. 
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B.   OVERVIEW OF CONVEX POLYGONAL K-REGIONS THEORY 

The ability to decompose a world into regions which capture the topology of the 

space in terms of distinct homotopy classes and which provide useful data for the local 

motion planner is important in global path planning. Joe Kovalchik developed the theory 

of convex polygonal K-regions in his dissertation [7]. We will adopt this theory to carry out 

the global path planning for the solution to the top layer of entire layered motion planning. 

This section reviews the theory briefly and leave the details to [7]. 

1. K-decomposition 

The K-decomposition produces convex regions which are easier to handle in the 

local motion planner. The global plan, called the path class, is a sequence of convex K- 

regions, which in turn specifies a sequence of borders belonging to these K-regions which 

must be crossed in order to execute the global plan. 

a. Borders 

Consider the problem of symbolically representing each homotopy class. A 

method based on "borders" is presented. (See Figure 2.3) A border in a world is a closed 

line segment B which satisfies the following conditions: 

(i)     Both endpoints are on the world's physical boundary, dW, and 

(ii)    The open segment of B is a subset of Free (W) . 

b. Decompositions and Regions 

In a world, a finite set 

L =   {BV...,BJ (Eq2.2) 

of borders in the world in which two borders' open segments do not intersect is called a 

decomposition (of the free space Free(W) ). Thus L divides Free(W)   into a finite 
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number of regions. A region, R, includes borders to which it abuts as part of its boundaries. 

Therefore, a border belongs to at most two regions. 

Figure 2.3: Borders 

c.   Normal Path and Crossing Sequence 

A normal path is a path which does not travel along a border, osculate a 

border or turn back when crossing a border. The sequence of borders B ■, for i = 1, ..., k, 

is called the border sequence. The sequence of regions R   , for i = 0, ...,k, is called the 

region sequence. For a normal path, f, the following sequence,   ß(/) , is called the 

crossing sequence: 

(i)      ß(/) = RmBjRmBj2Rm2...BhRm, (k>0), where 

(ii)    the start configuration is located in R     = Rs 

(iii)   the goal configuration is located in R     = R , and 
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d.   Convex K-decomposition 

Let R(W, L) be defined as the set of all regions contained in Free (W) 

created by a decomposition L in W. When L is a decomposition of Free (W) such that 

every region of R (W, L) is convex, it is called a K-decomposition. (see Figure 2.4) 

Figure 2.4: The Exampie of K-decomposition 

Obviously, there is more than one K-decomposition for a given W. A 

convex region so created by the above decomposition is called a Convex K-region and 

satisfies the following conditions: i) the interior of the convex polygon lies completely in 

free space, ii) each vertex defining the convex polygon is contained in a physical boundary 

ofW. 

2. Global Path Planning 

Given a world W, start configuration gs, and goal configuration q0, the global path 

planning problem is to find an optimal path connecting the K-region containing qs with the 

K-region containing q„. This planning is done by first decomposing Free (W) into K- 



regions, then building a connectivity graph, and finally using a modified Dijkstra's 

algorithm to search for an optimal path represented by a crossing sequence. The K- 

decomposition is introduced as described in the previous subsection. In this subsection we 

review how the: optimal path is obtained after K-decomposition of the world is done. 

a.   Connectivity Graph 

Given a K-decomposition of a world, its geometric adjacency relationship 

is represented by a directed connectivity graph, g. Each K-region is considered as a node 

of g, and each border is considered as an edge in g. Figure 2.5 is a decomposed world 

model with border and region names assigned. The connectivity graph corresponding to 

this world model is shown in Figure 2.6. and 2.7 

Figure 2.5: A K-decomposition of World Mode! 



Figure 2.6: The Connectivity Graph of a K-decomposition of World Model 

Ky 

Figure 2.7: A Connectivity 



b.  Path Class Representation 

Consider the problem of finding a path from a start configuration q to a 

goal configuration q0 in a K-decomposed world. In its most general form, a path class, P, 

is represented by the crossing sequence. In the example of Figure 2.8 and 2.9, one of the 

path classes, which connect region /?, with region R8, is represented by a crossing 

sequence as follows: 

P = (R^B^R^B^R^B^R^B^R.) 
'5>"6>    6'    3' 

(Eq2.3) 

Figure 2.8: A Path Class in the K-decomposed Regions 

c.   Finding Optimal Path Class 

A modified Dijkstra's algorithm is used to find an optimal path class given 

two configurations, qs and qg. The path class will be found in terms of the crossing 

sequences. Both position and orientation of the start and final configurations are taken into 



consideration when performing the search for the minimum cost path class. Relaxation of 

edges involving the start and the goal regions determines a cost by using a bidirectional 

motion-planning algorithm. This algorithm results in achieving a better approximation of 

the total cost of the path class by considering the maneuvers conducted in the initial and 

final motions. 

Figure 2.9: Highlight of the Path Class in Figure 2.8 
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III. LOCAL MOTION PLANNING APPROACH 

The regions on the global path class provide information for rough robot navigation. 

A safe motion plan for accomplishing the mission will not be ensured without further 

elaborative planning. The task of local motion planning is to produce a smooth, collision- 

free motion for the robot based on the global path class generated by global path planner. 

This chapter addresses an approach to the local motion planning. This approach provides 

the fundamental concepts to be used in the local motion planning of this dissertation. In 

Section A, we state the local motion planning problem. Section B describes the preliminary 

planning decision. In Section C, we will introduce a solution to the mobile robot motion 

control - steering function. Section D discusses one of planning methods - forerunner 

simulation. In Section E, the concepts of symmetric path and reverse path are presented. 

Section F describes the local motion planning steps. The planning details will be further 

discussed in Chapter IV and Chapter V. 

A.   PROBLEM STATEMENT 

The robot's motion is said to be safe if its trajectory is collision-free. The motion 

planning starting from configuration q1 to configuration q2 is said to be symmetric if the 

trajectory of the planned motion is exactly the same as the trajectory of the motion planned 

reversely (from q2 to qj with reverse orientations). The local motion planning is as follows: 

Given a K-decomposed world model W, a start configuration qs, a goal configuration 

q„, and a global path class II = {RmB-RmB.Rm ...B-Rm),k>0, in which q, 
6 '"0    J\      ml     J2     m2 Jk     mk 

locates in region Rm and qg in region Rm . The problem of local motion planning is 

that of planning a safe motion symmetrically for a rigid body robot to travel from qs to 

q„ with the global path class. 

For example, a given world is decomposed into K-regions as Figure 3.1. The start 

configuration qs resides in Rh and goal configuration qg in R8. The given global path class 

is IT = <Rj, B5, R6, B6, R3, B7, R7, B8, R8>, where the regions (covered by light shaded areas) 
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and borders between them are as depicted in Figure 3.1. The task for local motion planner 

is to plan a safe motion for the robot. Its outputs will be a safe and symmetric motion plan. 

The detail will be discussed in Chapter IV and V. 
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Figure 3.1: The Example of K-decomposition 

B.   PLANNING APPROACHES 

1.  Break Down Planning 

The global path class is the input to local motion planning. It provides useful 

information in directing the robot to accomplish its mission. That information is contained 

in K-regions separated by borders. It is convenient to break down the entire motion 

planning into individual regions. Therefore, the first decision of local motion planning is 

made to carry out the planning region-by-region along the global path class. 

With nonholonomic and kinematic constraints, the robot's motions near the start 

configuration and goal configuration should be planned separately in order to achieve the 

entire motion-planning task. Therefore, the local motion planning is further subdivided into 

two types of motion planning: 



»    end-portion motion planning and 

•    mid-portion motion planning 

The emd-portion motion planning deals with the motion taking place in the 

regions near two ends of the global path class as shown in Figure 3.2, and the mid-portion 

motion planning plans the robot's motion exclusively between the regions near the two 

ends as illustrated in Figure 3.3. As stated in Chapter II, the initial region is the first region 

on the global path class, in which the start configuration resides. The final region is the last 

region on the global path class, in which the goal configuration falls. Ideally, the end- 

portion motion planning involves only initial region and final region. However, in some 

cases, the regions next to the initial region and final region may be included in end-portion 

motion planning. The end-portion motion planning which involves the initial region is 

called initial motion planning, and the planning which involves the final region is called 

final motion planning. This will be discussed in Chapter V. 

Figure 3.2: The End-portion Motion Planning 



Figure 3.3: The Mid-portion Motion Planning 

2.  Crossing Border with Orthogonal Orientation 

Under the assumption in Chapter I, obstacles are assumed to be rectilinear 

polygons. Thus, when the free space is decomposed into K-regions, it is natural that the K- 

regions inherit rectilinear features even though there are a few exceptions. Since the 

orientation of borders is orthogonal in most cases, planning a motion that crosses a border 

at the center or at the point with minimum clearance from objects, with orthogonal 

orientation will be considered safe. This will be the essential idea of local motion planning 

in the dissertation. With a predetermined crossing point, the border's orthogonal 

orientation can define a border configuration. Two such configurations on the distinct 

border of a region can be taken to plan a safe motion in the region. Thus, our primary 

strategy for local motion planning is to cross borders at crossing points with orthogonal 

orientation (see Figure 3.4). Using border configurations in local motion planning links 

end-portion and mid-portion motion planning together into a complete motion plan. When 

the entire motion plan is finished, it will be as shown in Figure 3.5. 



Figure 3.4: Crossing Borders with Orthogonal Orientations 
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Figure 3.5: A Complete Motion Plan 
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C.   TERMINOLOGY 

A few other terminologies and concepts which are useful for the discussing the local 

motion planning are defined in this section. A K-region is a convex polygon [7]. The 

boundary of a K-region consists of a set of line segments. Each line segment is an edge of 

the K-region. An edge of a K-region can be a border, a portion of physical boundary or the 

combination of these two. The region in which the start configuration falls is called the 

initial region. The region in which the goal configuration falls is called the final region. 

DEFINITION 3.1 If a border is one of the edges of a K-region, the border is called a 

Full-border or F-border. Otherwise it is called a Partial-border or F-border, 

DEFINITION 3.2 Let C = < Rj, .... Rn> be region sequence of a global path class, 

where n>2. For any region Rit 2 <i < n, there must exist one and only one border 

between region Rt_j andRt. This border, denoted as Bin, is called the entrance border 

or Entrance to the region Rt. Similarly, the border between region Rt and Rt+j, 1 <i< 

n is called the exit border or Exit to the region R„ denoted as Bout. 

DEFINITION 3.3 Let v1-(x1, y}), v2=(x2, y2) be two end points of a border in a K- 

region. The orientation of the border is defined as an orientation which is perpendicu- 

lar to arctan2(yr y2, xr x2). The orientation of the entrance border is denoted by *¥in 

and the orientation of the exit border is denoted by ^F^ . 

For a specific border (either the entrance border or the exit border in a region of a 

path), the orientation of the border is decided by the direction of crossing border motion. 

For instance, let Vj-ixj, y}), v2=(x2, y2) be two end points of the entrance border. If v: is 

on the left side of the entrance direction, then the orientation of the border is computed as 

*F = arctan2(yj- y2, xr x2) - K/2. Figure 3.6 and Figure 3.7 illustrate these concepts in 

DEFINITION 31, DEFINITION 3.2 and DEFINITION 3.3. 
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I 
1 Ri 

\X¥in = arctan2(yr y2, xr x2) - n/2 

F-Border       I 

v2=(x2, Y2) ' 

Figure 3.6: Full-Border, Partial-Border and Orientation of Border. 

For a region in a global path class, the edge that contains the entrance border is 

called the Entrance Edge, denoted by Ein, and the edge that contains the exit border is 

called the Exit Edge, noted by Eout. We also denote the center of an entrance edge as ECin, 

the center of an exit edge as EC0Ut, the center of an entrance border as BCin, and the center 

of an exit border as BCout. For any rectangular region, there are two pairs of edges. The pair 

of edges that are parallel to the orientation of the entrance border is called Forward Edge, 

denoted by FE. The length of Forward Edge is called Forward Length of the region, 

denoted by FL. The pair of edges which is perpendicular to the entrance border is called 

Cross Edge, denoted by CE. The length of Cross Edge is called Cross Length, denoted by 

CL. Figure 3.7 shows the definitions. A configuration defined by a point Pin on the 

entrance border, the orientation ^ and a curvature kin (normally zero) is called an 

entrance configuration, denoted by qin = (Pin, ^in, kin). A configuration defined by a 

point Pout on the exit border, the orientation ^out, and a curvature kout (normally zero) is 

called an exit configuration, denoted by qout = (Pout, Wout, kout). When the curvature is 

set to 0, the entrance configuration and exit configuration specify a straight line that passes 

the entrance and exit border respectively. 
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Figure 3.7: Entrance Border, Exit Border, Entrance Edge, Exit 
Edge and their Centers. 

Basically, there are three major ways for entrance and exit borders to be positioned 

on the edges of a K-region. We categorizes intra-region motions in a K-region into 

following three types: 

• Type I: The entrance and exit borders are parallel. (Figure 3.8) 

• Type II: The entrance and exit borders are on edges which share the same vertex 

of a K-region. (As a special case, the entrance and exit share the same vertex of 

the K-region.) (Figure 3.9) 

• Type IB: The entrance and exit borders are on the same edge of the K-region 

(Figure 3.10) 

Entrance- Exit 

Figure 3.8: An Intra-region Motion of Type I 
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Figure 3.9: An Intra-region Motion of Type II 

Entrance 

Figure 3.10: An Intra-region Motion of Type in 

D.   MOTION PLANNING WITH STEERING FUNCTION 

1.   Smooth Motion Planning with Curvature 

An ordinary non-holonomic ground robot vehicle has two control variables: the 

curvature k of the motion trajectory and the linear speed v. Since a non-holonomic robot's 

heading orientation 9 is always equal to the trajectory's tangent orientation, the vehicle's 

rotational speed co is equal to kv (because CO = dQ I dt = (dQ I ds) {dsldt) = kv, where t is 

time and s is the traveling length of the robot). Therefore, the smooth motion planning for 

a mobile robot is to design (k, v) or (co, v) as function of t or s. 
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This control model with curvature is useful for vehicles with any kinematics [18]. 

If a vehicle has differential drive type kinematics, with a tread of 2W, its right wheel speed 

v+ and left wheel speed v_ should be v+ = (1 ± W k) v = v ± Woo. If a vehicle has bicycle 

type kinematics with a distance L between two wheels, the orientation (j) of the front 

steering wheel should be (J) = arctan(L k). Thus the real time evaluation of {k, v) appears to 

be the most direct method in smooth vehicle control 

One obvious method is to compute the curvature directly as a function of the 

geometrical constraints and the mission. However, one drawback of this method is that 

when some of the input has a discontinuity from the previous value, the output k also tends 

to be discontinuous. As widely known, a rigid body motion with a discontinuous curvature 

function is not physically realizable. In order to solve this problem, we compute the 

derivative of the curvature instead of the curvature itself. 

2.   Steering Function 

The best method for smooth vehicle navigation known so far by us is to compute 

the derivative of curvature, dk I ds, as a function of the geometric information and the 

mission (This function is called steering function). After computing this value dk I ds =f, 

the curvature k is updated through the incremental movement As. As long as/is a finite 

value, this method always gives a smooth trajectory in any circumstance. In the 

mathematical model, we understand the vehicle's curvature is not rapidly changed, hence 

we include k in the vehicle's configuration. A configuration q is a triple (p, 6, k) of position, 

orientation, and curvature. We have found the following steering function works in all 

situations we have applied: 

dk 
js = -(AAk + BAQ + CAd) (Eq3.1) 

In Eq 3.1, A, B, and C are positive constants which are related to the smoothness of 

robot's motion [19]. The meanings of these variables, Ak, AG, and Ad, are as follows: Afc 

is the difference between the current vehicle's curvature k and the desired curvature k^. A0 
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is the difference between the current vehicle's orientation 0 and the desired orientation 6^. 

Ad is the vehicle's position error (The exact equation is determined by situations. For 

instance, if the robot is tracking a directed reference path, it is the "signed" distance from 

the vehicle position to the directed path). 

All geometric information obtained by a robot must eventually be converted into a 

triple r = (Afc, A6, Ad) of the curvature difference, orientation difference, and position 

error. In most geometric situations, this interpretation task is surprisingly straightforward. 

Once this information T is obtained, the robot's motion can be controlled as desired. 

3.   Line Tracking with Steering Function 

a.   Introduction 

The steering function smooths the line tracking motion. In the line tracking 

motion, the configuration where the tracking motion starts is called start configuration, 

denoted by qs =(ps,Q s, ks). The line that is the goal of line tracking is called the reference 

line, denoted by qg =(pg,Qg,kg). We realize that a straight line has zero curvature. In this 

dissertation we focus on straight line tracking. Thus, the third element in the configuration 

which specifies a line is normally set to zero. The closest distance [19] from the point 

/?s,where the tracking motion starts, to the reference line is called the initial vertical 

distance, denoted by dinit. The length of the reference line from the point, which is defined 

by the image of the starting point ps on the line, to the point, where the tracking trajectory 

converges to the line, is called convergence length, denoted by L. Figure 3.11 illustrates 

an example of line tracking using steering function. The line tracking can be performed by 

robot either forward or backward. In forward line tracking the robot advances forward each 

step in the sense of robot's heading orientation. This is the most common use of line 

tracking. This section describes the general idea of line tracking. The detailed tracking 

technique was described as path tracking in [20] [21]. 

31 



qs = (p., es,u 

X 

Figure 3.11: The Example of Line Tracking 

b.   Two Important Types of Line Tracking 

Line tracking can be performed between an arbitrary start configuration and 

a reference line. We are interested in two special pairs of start configuration and reference 

line. They are considered as two basic types of line tracking. The first type is parallel line 

tracking, in which the orientation of the start configuration is equal to that of the reference 

line as in Figure 3.12. The second type is perpendicular line tracking, in which the 

orientation of the start configuration is perpendicular to the orientation of the reference line, 

as Figure 3.13. If the task requires the tracking motion converge to the reference line in a 

K-region, the convergence length is limited. The limited convergence length is denoted as 

^allowedin both Figure 3.12 and Figure 3.13. For parallel line tracking, the minimum length 

of convergence is Lallowed > 2.02 dinit (see Eq 4.9 and the analysis in Chapter IV). For 

perpendicular line tracking the minimum length of convergence is LaUowed > 3.38 dimt (see 

Eq4.10). 
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Figure 3.12: The Example of Parallel Line Tracking in K-region. 

QS =(PS'Q s> ks) 
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Figure 3.13: The Example of Perpendicular Line Tracking in K-region. 

E.   FORERUNNER SIMULATION 

1.   Overview 

A forerunner is a virtual robot which is used to simulate a real robot's behavior. A 

simulation that uses the foreruner(s) to simulate the robot's motion in path tracking is called 
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Forerunner Simulation. Forerunner Simulation can be applied to motion planning and 

motion control in many aspects. For instance, it can be used to determine the leaving point 

in the line-to-line transitioning. Using Forerunner Simulation in transition point 

computation is very meaningful in real-time robot motion control. We will describe this 

application in Chapter VII. Forerunner Simulation is especially helpful in local motion 

planning. In this section the mechanism of constructing a Forerunner Simulation will be 

discussed. 

As we know, Forerunner Simulation uses a virtual robot to simulate a real robot's 

motion. Thus it must perform all computations that are taken in a real-time robot control 

system, except the portion that is tightly related to the robot's hardware. In this dissertation, 

the real-time robot control system refers to the Model-based Mobile robot Language 

(MML) which will be introduced in Chapter VII, VIE, and Chapter IX. 

2.  Forerunner Simulation Structure 

The steering function described in Section A of this chapter and the Appendix A is 

fundamental component in MML, and is naturally inherited to the Forerunner Simulation. 

The framework of motion control is the use of a steering function to compute the required 

curvature change in each motion cycle. The curvature change is in turn used to compute the 

forerunner's new position. Given an initial configuration qmt = ((xint, yint), Qint, km) as the 

forerunner's current configuration q = ((x, y), 6, k) and a reference path of configuration 

path = ((xp, yp), Qp, kp).Based on this frame work, the Forerunner Simulation is constructed 

by computing the following elements: 

• Constants of Steering Function 

• Curvature Change 

• New Curvature and Orientation Change 

• New Configuration of Next Step 
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a. Constants of the Steering Function 

The constants A, B, C of the steering function are determined by the motion 

smoothness a as follows: 

k = l/c (Eq 3.2) 

A = 3 k (Eq 3.3) 

B^ßk2 (Eq 3.4) 

C = k3 (Eq 3.5) 

Because the smoothness is a variable, it be can changed at any time. Especially when 

dynamic smoothness strategy is applied, the smoothness is determined by the environment, 

for instance by the size of the K-region. Thus the constants A, B and C have to be computed 

whenever the smoothness o is changed. 

b. Curvature Change 

For the current configuration q - ((x, y), 9, k), the reference path 

configuration path = ((xp, yp), dp, kp), and constants A, B, and C, we compute the curvature 

change as follows: 

Ad=(y- yp) * cos(Qp) - (x - xp) * sin(Bp) (Eq 3.6) 

dk/ds = -(A(k- kp) + B(Q-Qp) + C Ad) (Eq 3.7) 

c. New Curvature and Orientation Change 

Once the curvature change dk I ds has been computed, we obtain the new 

curvature and orientation change by following calculations: 

Kew = k + (dk/ ds) * As (Eq 3.8) 

AQ = knew*As (Eq3.9) 

here As is the transitional length the forerunner advances in each sampling step and this 

value is given by the forerunner designer. Normally As is positive for forward forerunner 

to increment it next position forward. The value A6 represents the estimated orientation 

change between the current position and next position. 
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d.  New Configuration of Next Step 

Given the incremental transitional length As and the estimated orientation 

change A6, we can compute the relative configuration qr = ((xr, yr), 6r, kr) (with respect to 

the local coordinate system of the current configuration q = ((x, y), 6, k)) of the new 

configuration in next sampling step where [19]: 

xr = (l -A02/6)* As (Eq3.10) 

yr=(l - A02 /12) * (A6 / 2) * As (Eq 3.11) 

Gr = AG (Eq3.12) 

kr=0.0 (Eq3.13) 

The new configuration qnex[ - ((xnext, ynext), Qnext, knext) of the next sampling step is then 

computed by composing the current configuration q and relative configuration qr as 

follows: 

xnext = x+ cos(Q) * xr - sin(Q) * yr (Eq 3.14) 

ynext = y + sin(Q) * xr " ™s(Q) * yr (Eq 3.15) 

®next=Q + ®r (Eq3.16) 

k-next = ^new (Eq 3.17) 

3.   Algorithms 

With these elements, a forerunner simulation template is constructed by the 

following algorithms as shown in Figure 3.14 and Figure 3.15. 

As previously mentioned, the Forerunner Simulation can be applied to many 

different applications. When the simulation is developed for an application with a specific 

purpose, the code for performing the application and related preWORK and postWORK 

will be inserted into the template. The condition for the while loop and desired return value 

will be specified also. 
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Algorithm FRsimulation (q, p, G, others) 

Input: q: an initial configuration; p: a reference path; a: 
others: other parameters if any; 

Output: depending on application 

a smoothness; 

(1) Perform preWORK; 
(2) Qnew = <7>° 
(3) Compute constants of steering function; 
(4) while (condition not matched) 
(5) Qnew = AdvanceForerunner (qnew, p); 
(6) Application codes; 
(7) end while; 
(8) Perform postWORK; 
(9) return (desired value); 

Figure 3.14: The Algorithm for Forerunner Simulation Template. 

Algorithm AdvanceForerunner (q, p) 

Input: q: the current configuration^: the reference path; 
Output: next configuration 

(1) Compute curvature change in forward direction; 
(2) Compute new curvature and orientation change; 
(3) Compute new configuration of next step; 
(4) return (new configuration) 

Figure 3.15: The Algorithm for Advancing Forerunner in One Step. 

F.   SYMMETRIC MOTION PLANNING AND REVERSE PATH 

For a configuration q = (p, G, k), its reverse configuration rev(q) is defined by a 

tuple as (p, % +6, - k). Let q1 = (pj, Qj.kj) and q2 = (p2, ö2, k2) be two distinct configurations 

on the world. A motion planning method is said to be symmetric if, for any configuration 

q1 an q2, the trajectory of motions planned from q2 to q2 is exactly the same as the trajectory 
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of motions planned from rev(q2) to rev(qj). Figure 3.16 illustrates an example of symmetric 

motion planning corresponding to Figure 3.5. 

rev(qg) 

rev(qs) 

Figure 3.16: A Symmetric Motion Plan 

The steering function is powerful tool for producing a smooth trajectory while 

tracking a path. For smoothness considerations, when using the steering function to track a 

path, the trajectory moves toward the reference path quickly at the beginning, but it slows 

down when the trajectory is getting closer to the path. Thus a symmetric motion planning 

cannot be done by merely applying path tracking to reverse configurations with the steering 

function. 

For example, in Figure 3.17, the start configuration is qs = (ps, 6S, ks). The goal is 

to track the line specified by qg = (pg, dg, kg), finally stopping at or passing through the 

configuration q The trajectory converges to the line at the configuration qc = (pc, 6C, kc). 

Now tracking the line specified by configurations rev(qs) from the configuration rev(q„), 

we will have a trajectory as Figure 3.18. The motion plan in Figure 3.17 is obviously not 
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symmetric to that of Figure 3.18, even though their two end configurations might be the 

same. 

Qs = (Ps> Q
S'
ks) 

q„ =(p„,Q„,k„) 

Figure 3.17: A Motion Planned with a Line Tracking. 

rev(qs) 

rev(qg) 

Figure 3.18: A Reverse Line Tracking 

The trajectory in Figure 3.17 can be produced in real time by tracking a line 

specified by the configuration qg from the configuration qs. But in real time there is no way 

to produce such a trajectory by simply applying line tracking from rev(qg) to rev(qs). 

Fortunately, the forerunner simulation can be used to solve the symmetric motion planning 

problem. As mentioned, the forerunner is a virtual robot which can be used to simulate a 

real robot's behavior. Again we assume qs and qg are the start and goal configurations 

respectively. For symmetric motion planning, we set the forerunner at rev(q J to perform 

path tracking with rev(qs) as its reference line. The simulated trajectory can be stored as a 
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sequence of configurations. A reverse path can be constructed by reversing each 

configuration and rearranging configurations in the sequence with opposite order. Then the 

symmetric motion planning involves generating and tracking reverse paths. The reverse 

path is formulated in the following two steps: 

• Step 1. Set the forerunner to the reverse configuration of goal configuration q 

and run forerunner simulation to track a line specified by reverse configuration 

of start configuration qs. While the forerunner is traveling, store the trajectory 

(by configurations) until the tracking converges to the reference line. We 

represent this path with a sequence of configurations as: 

C - <qj,..., qir..., qn>     where n > 1 and qt = (pt, Qit ty  for all 1 < i <n; 

• Step 2: Reverse the entire sequence to generate a reverse path as follows: 

Crev = «ln>~> Qi>-> Ql> (Eq 3-18) 

where n > 1 and qt - (pt, % + Qi; - k{)   for all 1 < i <n; 

Ideally, the first configuration qn in path Crev should specify a line that is identical 

to the line specified by the start configuration qs = (ps, Qs, ks). 

If a local motion planning method is symmetric, reverse paths will be generated for 

many cases. Circumstances under which a reverse path needs to be generated will be 

discussed in Chapter IV and V. 

G.  REVERSE PATH TRACKING 

The normal path tracking provides a technique for vehicle odometry correction to 

catch up to the reference path. The reference path is normally specified by a configuration, 

and the vehicle odometry error can be computed based on that configuration. A reverse path 

consists of a sequence of configurations, as shown in Eq 3.18. Each configuration in the 

sequence can be a reference path element to the vehicle when the vehicle is tracking the 

reverse path. The difference between two consecutive configurations is normally small in 

all elements of the configuration. While the vehicle is moving, determining which 

configuration in the sequence is to be taken as a reference path becomes critical issue. In 



order to track the reverse path as precisely as possible, it is necessary to have a new path 

tracking technique other than the normal one. This section addresses how the reverse path 

tracking can be performed properly. We begin by determining the path tracking 

smoothness. 

Since the difference between consecutive configurations is small, the vehicle's 

turning motion needs to be sharpened so that it can converge to the reference path faster. 

Therefore, the smoothness, a, of the steering function in reverse path tracking should be 

smaller than the smoothness, ag, used to generate that reverse path. Our experiments 

showed that the proper smoothness for reverse path tracking is as Eq 3.19: 

o=og/2 (Eq3.19) 

Let's assume that a reverse path is generated by forerunner as illustrated in Figure 

3.19. In the figure, the reverse path H consists of the configurations qj,..., q6 in sequence 

(this is for purpose of illustration; the actual sequence will be much denser to specify the 

path more precisely), and qv= (pv, Qv, kv) is the vehicle's current configuration. A global 

coordinate system (GCS) is defined as shown in the figure. To track this path II smoothly 

by using the steering function, the vehicle takes the first configuration qj = (pj, Qj, kj) as 

the initial reference path. Then the differences of A0, M, and Ad are calculated as follows: 

AG =AG5 - A67 (Eq 3.20) 

Ak =Aks - Akj (Eq 3.21) 

Ad =y* (Eq 3.22) 

The signed distance value y* in Eq 3.22 is the shortest distance between the 

vehicle's current configuration and reference path [20]. These differences, A0, M and Ad, 

are applied to the steering function to determine vehicle's necessary curvature in the next 

control cycle so that the vehicle is made to travel along the reference path smoothly. 
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% 

gi = (Pi,Q1,k1)J^r
q4 

Qs 

Q2 

Qs =(Ps$s>ks) 

$3 

global coordinate system 

Figure 3.19: A Reverse Path 

X 

As the vehicle is moving along the path specified by a give configuration, a critical 

decision must be made to allow the vehicle to transition from the current reference path to 

the next. There is a simple way to determine when to transition, as described below. This 

method uses the relative position of the vehicle's current configuration and the 

configuration that specifies the current reference path element to determine whether the 

vehicle has passed the position of reference path. For this purpose, a local coordinate 

system (LCS) is defined as illustrated in Figure 3.20. The LCS takes the center of the 

vehicle as its origin. A line, which passes the origin and is parallel to vehicle's global 

orientation, defines the positive x axis of the LCS. The positive y axis of LCS is then 

defined by a perpendicular line (to the x axis), passing through the local origin and heading 

to the vehicle's left as shown in Figure 3.20. 

When the local coordinate system is established, the configuration of reference path 

can be transformed from global GCS to LCS. The computation of the configuration 

transformation is as following. Let qv =(pv, Qv, kv) and qref= (pref, Qref, kref) be the vehicle's 
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current configuration and reference path configuration in GCS respectively. Assume that 

the reference path configuration qrej-with respect to LCS is q* =(p*, 0*, k*). Then we have 

(Eq 3.23) 

(Eq 3.24) 

(Eq 3.25) 

qvoq* = qref 

Qv1 oqvoq* = qv'
} o qref 

q* = q;1 o qref 

Y n 

Qref = (P ref$ repKef) 

Qv =(PvA'kv) 

local coordinate system 

global coordinate system 

Figure 3.20: Local Coordinate System on Reverse Path Tracking 

In computing q*, we will simplify the configurations to transformations [20]. Thus, 

the transformation q* =(x*, y*, 8*) stands for configuration q* =(p*, 0*, k*). 

Transformation qv =(xv, yv, Qv)  stands for configuration qv =(pv, 0V, kv) and transformation 

Qref =(xref> Jrep ®ref)  stands for configuration qref= (prep Qrep kreß. Then we have 
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<7v_1°<W = 

-i 
Xv Xref 

yv 
0 yref 

- 

% 0   , 

-*vcos6v-;yvsin8, 

xvsin0v-yvcos0v 

-e.. 

X ref 

ref 

"ret 
(Eq3.26) 

(xref-xv) cos6v+ (yref-yv) sin0v 

-(xref-xv) sin0v + (yref-yv) cos0v 

0 -0  , v     ref 

The signed valued x* = (xref- xv) cos0v + (yref- yv) sin0v can be used to determine 

when to transition to the path specified by the next configuration in the sequence. When x* 

becomes negative, it means that the vehicle has passed the position of the current reference 

path segment. Then the next configuration is taken as reference path. 

H„  LOCAL MOTION PLANNING STEPS 

The local motion planning is executed in the following steps: 

• Compute intermediate configurations 

• Perform end-portion motion planning. 

• Perform mid-portion motion planning. 

The first step can be viewed as a preprocessing of local motion planning. The 

purpose of preprocessing is to make local motion planning standardized and simplified. In 

this section we discuss the preprocessing step, and an overall algorithm for local motion 

planning is provided. We will present the details of end-portion and mid-portion motion 

planning to Chapter TV and V. 

The local motion planner performs local motion planning region-by-region. The 

means of connecting the motion in consecutive regions becomes more important at this 

moment. The exit border of a region is the entrance border of next region in the global path 

class. Thus, a border can serve as the interface of two regions' motion communication. We 

define an intermediate configuration for each border in the crossing sequence using the 

border's crossing point and orientation so that the intermediate configurations in a region 
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can be used to plan robot's motion in that region while connecting the motion to the next 

region. How to determine the crossing points on borders will be discussed in this section. 

In order to standardize and simplify the local motion planning, an orthogonalized border 

orientation needs to be computed for those borders that are not parallel to X or Y axis. After 

the crossing point and orientation of a border are determined, an intermediate configuration 

for that border can be defined. For example, if p represents the crossing point obtained and 

0 represents the border orientation, then the configuration q is defined as q = (p, 0, k), 

where curvature k = 0. 

1.   Determination of Crossing Position on the Border 

Since the robot's motions in neighboring regions of the path are related, it is 

necessary to consider the motion in the region that follows the current one. The crossing 

point on a border actually connects and controls the motion on the two regions that shares 

the common border. Thus, determining where to cross the border between two regions is 

important to the local motion planning. A proper position to cross the border can make local 

motion planning easier in each region. In this dissertation, safety is the most important 

factor in local motion planning. Therefore, the crossing point on the border must be in a 

range that allows the vehicle to cross the border without collision. A border's safe crossing 

range depends upon the vehicle's width and the minimum clearance (if required). The 

global path class for motion planning is represented by a sequence of all passable regions 

accompanied by their related borders. This implies that every border has a safe range. 

Therefore, crossing a border at its center (mid-point) will be the most desirable plan in the 

sense of safety. We will apply this idea in the local motion planning in the following 

chapters. However, there is an exception in which we do not take the center of the border 

as a crossing position. That is in some special regions with parallel entrance and exit 

borders and in which following situations exist: 

♦    At least one of the centers of the entrance and exit borders has its image (a 

perpendicularly projected point) on another border in the safe range. 
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• FL<2.02* d, where FL is the forward length of the region and d is the distance 

between centers of the two borders measured in the direction perpendicular to 

the entrance orientation. 

In such a region, keeping the strategy of crossing the border at its center will make local 

motion planning complicated and is undesirable, because for these two parallel 

configurations there is not enough length for parallel line tracking from the entrance 

configuration to converge to the exit configuration (see Eq 4.9 in Chapter IV Section B). 

Figure 3.21 illustrates a possible region in a global path class. In the figure, the 

region, Rk, is the region that needs to be considered specially. The solution, which is to 

relocate the crossing point of the border at the image of another border's center, is also 

shown in the figure. 

The reasons for relocating the crossing point in this kind of region are because 

entrance and exit borders are parallel, and the region has not enough length in the forward 

direction to perform a complete parallel line tracking (from entrance configuration to exit 

configuration and converge in the region). Under this situation the local motion planning 

will be forced to plan the motion using other than parallel-line tracking. Thus, relocating 

the crossing point on E-border makes two crossing points in a straight line which is exactly 

on the exit configuration. The motion in this region then will be simpler and more desirable. 

Relocated crossing point 

center of border 

Ri V 
* 

FL 
< 2.02*d 

Figure 3.21: Relocating Border Crossing Point in an Exceptional Region. 
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2.   Orthogonalizing Border Orientations 

As we realize, K-region decomposition allows non-orthogonal borders in regions as 

illustrated in Figure 3.1. In Figure 3.1, the region R6 and R3 share a non-orthogonal border 

B6. The orientation of border B6 can be orthogonalized to its nearest orthogonal orientation 

as illustrated in Figure 3.22. Orthogonalizing the orientations of non-orthogonal borders 

makes the region standardized in the sense of orthogonal entrance and exit borders. The 

local motion planning then can be performed by simply using parallel line tracking and 

perpendicular line tracking techniques. 

Border 

Original border orientatii 

Orthogonalized border or entation 

ei<e2 

Figure 3.22: Orthogonalizing the Orientation of a Border 

3.   Algorithm 

Naturally, the local motion planning is conducted in the following order: 

• Compute intermediate configurations 

• Perform initial motion planning. 

• Perform mid-portion motion planning. 

• Perform final motion planning. 
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This is under the assumption that all end-portion motion planning can be done in 

initial and final regions. Under this assumption, the mid-portion motion planning is carried 

out region-by-region from the second region of the global path class to the region next to 

the final region on the path. The following algorithm for local motion planning is based on 

this assumption. If the final motion planning involves more than one region, the order of 

planning needs to be modified to let the end-motion planning be finished before mid- 

portion motion planning starts. 

Algorithm LocalMP (qs, q   IT, W) 

Input: qs: start configuration; 
q„: goal configuration; 
II: a crossing sequence; 

W: a world model 
Output: Motion planning data structure 

(1) if (length (Tl) = 1) then 
(2) SingleRegionMP (qs, qg, W); 
(3) else 
(4) Q = Qo = ComputeIntConfig(Yl W); 
(5) q = qs; 

(6) MP = null; 

(?) <lexit= car(Q)>' 
(8) rcurrent=car(n)>' 
(9) append (MP, InitialMP (q, qexit, rcurrmt, W); 
(10) q = qexit; 
(11) Ii = cdr(cdr(Yl)); 
(12) Q = cdr(Q); 
(13) rcurrent^ car(Tl); 
(14) while (not empty(Q)) 
(!5) Qexit = car(Q); 
(16) append (MP, MidPortionMP (q, qexit, rcurrenV W); 
(17) q = qexit; 
(18) n = cdr(cdr(U)); 
(19) Q = cdr(Q); 
(2°) Current = car(U); 
(21) end while; 
(22) append (MP, FinalMP (q, qg, rcurrent, W)); 
(23) end if; 
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The subroutine SingleRegionMP is a motion planning subroutine for a global path 

class having only one region, i.e. the start and goal configurations reside in the same region. 

Subroutine ComputelntConfig includes two steps. First, it determines the crossing point of 

each border by the rule described earlier in this section. Second, it orthogonalizes the 

orientations of borders. This part is also described in this section. Finally, the subroutine 

defines configurations for each border and stores the configurations in Q. The algorithm for 

this subroutine is not presented in this dissertation. Subroutine InitialMP and FinalMP are 

for end-portion motion planning which will be described in Chapter V. The subroutine 

MidPortionMP is a mid-portion motion planning subroutine which is presented in Chapter 

IV. There some other utility functions that are not presented in the dissertation because their 

functionality is pretty straightforward. The meanings of the functions are explained as 

follows. The function length returns the number of elements (including regions and 

borders) left in the global path class. The function append appends a planned motion 

instruction to a data structure MP. The function car returns the first element of the object 

passed in, while cdr returns all element but the first one. 
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IV. MID-PORTION MOTION PLANNING 

A.   INTRODUCTION 

The fact that the K-regions are convex polygons makes the mid-portion motion 

planning simple and straightforward. Nevertheless, the motion planning problem has 

complex aspects. Safety is one of the most important concerns in motion planning at this 

stage. The safest path in a region is the path that follows the Voronoi boundary [22], 

because this path stays equidistant among the closest objects. Unfortunately, most Voronoi 

boundaries cannot be a part of a feasible path for autonomous vehicles with kinematic and 

nonholonomic constraints. However, it gives us the idea that the motion will be considered 

safer if it stays further away from objects. Therefore, we propose a method in this chapter 

which plans the robot's motion along the global path class with its trajectory as close to the 

center line of the regions as possible. How to plan such motions for a rigid-body mobile 

robot is the main subject to be discussed in this chapter. 

1.  Problem Statement 

The problem to be solved in mid-portion motion planning is as follows: 

Given a world model, W, on a two-dimensional plane, 9l2, and a global path class 

n=</f j7, Bu,...., Ri(n.j), B[(n-i), Rin>< with Ris, Rit indicating the first region and the last 

region which are considered mid-portion of the global path class. The mid-portion 

motion planning is to plan a safe motion symmetrically for a rigid body robot to travel 

from the entrance configuration of region Ris to the exit configuration of region Rit 

along the global path class EL 

The inputs to the mid-portion motion planner are the world model W, the global 

path class n and the regions Ris, Rit which indicate the first region and the last region of 

mid-portion of the global path class. The outputs are a sequence of motions (Figure 4.1). 
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World model W 

Global path 
class n 
First region R^ 
Last region Rit 

Mid-Portion Motion 

Planning 

Motion Sequence 

MPmid=<MPj,...,MPn> 

Figure 4.1: The Mid-Portion Motion Planning 

2.   Definitions 

The crossing points of entrance and exit borders, Pin, and Pout, and the border 

orientations ¥,-„ and xP0Mf define the entrance configuration, qin - (Pin, ¥,•„, 0), and exit 

configuration, qout = (Pout, ^out, 0), which actually specify the lines crossing the entrance 

border and exit border with border orientations. Although most of the crossing points are 

at the centers of borders, there are a few exceptions which determine other points on the 

borders as the crossing points in the preprocessing of local motion planning. The definition 

of entrance and exit configurations will be intensively used in this chapter and in the 

chapters that follow. 

In order to describe the local motion planning clearly, we define some additional 

symbols to represent different distance measurements in a K-region based on the entrance 

and exit borders as Figure 4.2. In this figure, the line that is the bisector of two Forward 

Edges is called Horizontal Center Line, denoted by HCLine or HCL. The line that is the 

bisector of two Cross Edges is called Vertical Center Line, denoted by VCLine or VCL. 

We can use configurations to specify the enter lines. For instance, the Horizontal Center 

Line can be specified by the configuration q^cLine = (^in> ^iw 0),where ECin is the center 

of Entrance Edge and M*^ is the orientation of entrance border. The center line specified by 
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QHCLine can be the same as that specified by qin, depending on whether the centers of 

borders coincide with centers of its corresponding edges. 

By djj we denote the distance between two points projected by the crossing points 

of the exit border and entrance border on the Vertical Center Line. By d#,„ and duout we 

denote the closet distance from the crossing points of the entrance and exit borders, Pin and 

Pout to the Horizontal Center Line, respectively. Similarly, dy denotes the distance between 

two points projected by the crossing points of exit border and entrance border on the 

Horizontal Center Line. By dyin and dyout we denote the closest distance from the crossing 

point of entrance and exit borders Pin and Pout respectively, to the Vertical Center Line. The 

value of the dfj may be equal to the sum of dftm and d^out, but not always. For instance, in 

Figure 4.2, they are equal. If the entrance and exit borders are on the same side of 

Horizontal Center Line, they will be not equal. The same relationship is found among dVin, 

dVout and dV- 

^ 

iM 

dVin dVout 

dy 
^ 

Figure 4.2: The Definition of Distance Measurements in a K-region 
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B.   STEERING FUNCTION CHARACTERISTICS 

1.   Simulation Results Analysis 

Because most of motion in a K-region will be of the form of tracking a reference 

line that is parallel or perpendicular to the initial configuration, analysis will focus on the 

simulation of parallel line tracking and perpendicular line tracking. All of the simulations 

are done under the assumption that the tracking trajectory is considered to have converged 

if 

Ad<dini/1000, (Eq4.1) 

where Ad is the closest distance from the current configuration on the tracking trajectory to 

the reference line and dinit is the initial vertical distance. 

From simulation data, (Table 4.1, Table 4.2, Table 4.3 and Table 4.4), we found that 

in line tracking there is a close relationship among the smoothness a, the vertical distance 

dinit, and the convergence length L. Based on the relationship we found, some rule, that help 

in computing dynamic smoothness in line tracking can be developed. 

Table 4.1: The Relationship among Distances and Smoothness in Parallel Line 

Tracking (initial A6 = 0) with Minimum Smoothness a 

Initial A0 "-init a L °/dinit 

0 400.0 70.7 695.8 0.18 

0 300.0 53.0 521.2 0.18 

0 200.0 35.4 347.9 0.18 

0 100.0 17.7 173.28 0.18 

0 80.0 14.2 138.9 0.18 

0 60.0 10.6 103.2 0.18 

0 40.0 7.1 68.8 0.18 

0 20.0 3.5 33.1 0.18 
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Table 4.2: The Relationship among Distances and Smoothness in Parallel Line 
Tracking (initial A0 = 0) with Various Smoothness a 

Initial A6 "init a L L/G 

0 20.0 3.6 34.5 9.58 

0 20.0 10.0 109.6 10.96 

0 20.0 20.0 222.3 11.12 

0 20.0 40.0 447.1 11.18 

0 20.0 60.0 671.8 11.20 

0 20.0 80.0 896.3 11.20 

0 20.0 100.0 1120.8 11.21 

0 20.0 200.0 2243.8 11.22 

0 20.0 400.0 4489.7 11.22 

Table 4.3: The Relationship among Distances and Smoothness in Perpendicular Line 
Tracking (initial AG = % 12) with Various Smoothness 

Initial A9 "■init a L *ldimt 

71/2 100.0 22.0 200.0 0.22 

71/2 100.0 40.0 331.8 0.40 

71/2 100.0 41.0 334.3 0.41 

71/2 100.0 42.0 335.5 0.42 

71/2 100.0 43.0 335.4 0.43 

Till 100.0 44.0 333.4 0.44 

7C/2 100.0 45.0 329.1 0.45 

7C/2 100.0 50.0 246.3 0.50 
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Table 4.4: The Relationship among Distances and Smoothness in Perpendicular Line 

Tracking (initial A6 = n IT) with Various dv and Corresponding Maximum 

Smoothness a 

Initial A0 "■init o L ^ / dinit 

7C/2 400.0 168.0 1351.7 3.38 

7C/2 300.0 126.0 1012.9 3.38 

7C/2 200.0 84.0 674.3 3.37 

71/2 100.0 42.0 335.5 3.35 

7C/2 80.0 33.6 267.9 3.35 

7C/2 60.0 25.2 200.0 3.33 

7C/2 40.0 16.8 132.4 3.31 

7C/2 20.0 8.4 64.5 3.23 

Several facts are revealed after analyzing those simulation data. First of all, we 

found that the smoothness applied to the steering function in line tracking can be 

dynamically determined depending on the following factors: 

1. The vertical distance dinit. 

2. The allowed convergence length L. 

3. The initial orientation difference A9 = Qs - 0„. 

From the experiences of using steering function for motion planning over years, we 

realize that there is no maximum limitation in smoothness of parallel line tracking. 

However, if the proportion of smoothness to vertical distance is too small, the tracking 

trajectory will be unreasonable. And in even the worst case, the steering function cannot 

make the tracking trajectory converge to the reference line, (see Appendix A) The 

simulation results from Table 4.1 show that for acceptably smooth line tracking, the 

minimum proportion of smoothness versus various vertical distance is 0.18 as Eq 4.2. 
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G/dinit = 0.18 (Eq4.2) 

Being aware of the limitation of the minimum proportion, we would like to compute 

the desirable smoothness that allows the line tracking trajectory to converge in limited 

length of reference line. Table 4.2 shows a set of simulation results using various 

smoothness values (greater than or equal to the minimum one). We found that for all 

possible smoothness values G with a fixed din^ the converge distances L always satisfies 

Eq 4.3. 

L/a< 11.22 (Eq4.3) 

Eq 4.3 suggests that the maximum proportion of convergence length to smoothness 

G is approximately 11.2 for all possible smoothness in parallel line tracking. When the 

smoothness can be dynamically determined, we want to obtain the smoothness by simple 

computation. Eq 4.2 and 4.3 are the key factors in determining the smoothness of parallel- 

line tracking in a specific K-region. We will discuss this in the next subsection. 

For perpendicular line tracking, our task is to find the maximum desirable 

smoothness. The simulation results is summarized in Table 4.3. The table shows that when 

the vertical distance dinit is known, the most desirable (maximum) smoothness which does 

not lead to an oscillation convergence is as Eq 4.4: 

G = 0.42dv (Eq4.4) 

Although the Table 4.3 (based on dinit = 100 cm) is only a part of the simulation results, Eq 

4.3 is concluded from all simulations with various dinit. 

As the basic concept of smoothness shows, in line tracking using steering function, 

the larger the smoothness is, the longer it takes to converge. When the length of the 

reference line is limited, the smoothness determined by Eq 4.3 may not be able to make the 

line tracking converge within the limited range. Thus the constraint of Eq 4.3 should be 

considered. The Table 4.4 shows the relationship between L and dini( when the most 
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desirable smoothness for each individual dinit is applied. From Table 4.4, we observed that 

the maximum convergence length is given by 

L = 33Mmit (Bq4.5) 

Eq 4.5 can be viewed as a lower bound of convergence length when the vertical 

distance dinit is fixed in perpendicular line tracking. Equations 4.4 and 4.5 are the main 

factors of determining dynamic smoothness in perpendicular line tracking. We will discuss 

this in more detail in the next subsection. 

2.  Dynamic Smoothness 

For a specific K-region, motion planning based on line tracking needs to determine 

a reasonable smoothness so that the motion in that region is as smooth as possible under the 

safety consideration. We discuss the dynamic smoothness determination in two common 

types of line tracking in a K-region. 

a.   Parallel Line Tracking 

For the line tracking in a K-region, the length of the reference line is fixed. 

Thus there is a limitation on converge distance. As previously mentioned, the convergence 

length L in a region is actually the allowed convergence length Lallowed when discussing 

this subject. We intend to compute the smoothness that is most desirable under this 

limitation. Since the maximum proportion of convergence length to the smoothness is 

11.22 as the conclusion we found in Table 4.1, the smoothness a can mainly be determined 

by the allowed convergence length as following: 

a = LaiioWed/U-22 (Eq4.6) 

However, because of the characteristics of the steering function, the smoothness cannot be 

too small compared with the initial vertical distance dinit in the parallel line tracking. 

Otherwise its trajectory will be unreasonable. Thus we know the smoothness obtained from 

Eq 4.2 is the lower bound of all possible smoothness. We then can have the smoothness 

bounded as Eq 4.7. 
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G>0.18d/m, (Eq4.7) 

By replacing a of Eq 4.7 with 4.6, we have 

L
a/We/H-22>0.18rf/m7 (Eq4.8) 

L«zz™«/*2-02dWi (Eq4.9) 

Therefore the smoothness of parallel line tracking can be computed as Eq 4.6 under the 

condition of Lallowed > 2.02dinir 

The parallel hne tracking will mainly be applied in the motion planning in 

the region with two parallel borders. In most cases, LaUowed will be the length of the region 

FL in forward direction of two parallel borders. This implies that with minimum reasonable 

smoothness the minimum distance that allows a parallel line tracking to converge is as Eq 

4.9. Therefore if FL = Lauowed < 2.02 dinit, it is not possible to track a line that is parallel to 

the orientation of the entrance/exit border, from the center of entrance border such that the 

trajectory converges to the line before the point pout of configuration qout. To solve the 

motion planning problem under this situation, an extra step is needed in such a region. That 

is if FL <2.02* dinit, we will compute a center hne between entrance border and exit border 

that has its orientation perpendicular to the borders' orientation. The center line is actually 

the bisector of the entrance and exit borders. Then the motion in that region will become a 

perpendicular line tracking as Figure 4.3. The computation of perpendicular line tracking 

will be described in next subsection. 

b.  Perpendicular Line Tracking 

We are always seeking smooth motion in the motion planning. As the 

analysis in previous subsection, in perpendicular hne tracking, the maximum smoothness 

that does not make perpendicular hne tracking motion oscillate is a = 0.42 * dint for a 

known vertical distance dinit. However, as in parallel line tracking, there is a limitation on 

the length of the reference line that allows perpendicular line tracking motion to converge 

in a K-region. In order to make perpendicular line tracking possible under this limitation, 
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the configuration where the line tracking starts needs to be determined prior to the 

determination of smoothness. The Eq 4.5 gives us the minimum convergence length in 

general. It can be expressed as following: 

tallowed*™**™ (Eq4-10) 

Qs =(Ps>® s> ks)    I 

QP ~\Pe>"p>Kp) g'"g"*-g' 

Figure 4.3: An Example of Perpendicular Line Tracking on Center Line in 
a K-region. 

Eq 4.10 must be satisfied in any case if perpendicular line tracking is to be performed. 

Because the reference line and its length are fixed in a region, the start configuration must 

be movable to adjust its distance to reference line. We take the configuration q defined by 

the center of border as the initial position to measure the distance dinit. The configuration q 

can be either qin or qout. Then the start configuration can be decided by following 

algorithm: 

Qs = Q"> 

Compute dinit; 

if (^allowed < 3-38 * dinit) 
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Compute new start configuration qs along the line specified by q 

such that dlnlt = Lallowed 13.38; 

Once the start configuration is determined, the smoothness G can be computed by: 

a = 0.42d.B|, 

The Figure 4.4 illustrates the perpendicular line tracking in the case of 

^allowed < 3.38 * djmf at the beginning. The start configuration qs =(ps,Q s, 0) is moved 

forward to the new start configuration qnew = (pnew, 6 s, 0) to shorten dinit so that the 

condition Lauowed > 3.38 * dinit is satisfied. 

Qs =(Ps'Q s> °) u^— <L — _^. 

1   Qnew=       \ 
i (D     G    0) ^ Wnew'V s' u'    & 

i 

\ 
| ^allowed 

qs=(ps,Bs,0) ] 

Figure 4.4: Perpendicular Line Tracking Starting from a New Configuration 
in K-region. 

C.   PLANNING STRATEGIES 

The regions on the global path class provide information for rough navigation. The 

safe motion for accomplishing the mission will not be ensured without further elaborative 

planning. In order to simplify the complex task in mid-portion motion planning, we propose 

to solve the problem region by region starting from the first one of the mid-portion. That is 

to perform mid-portion motion planning in a single K-region independent of the situation 

in the neighboring K-regions. This strategy is possible as long as the motion in each 

individual region can be linked by continuous motion of its neighboring region. 
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To support this strategy, one possible method is to find a configuration on entrance 

and exit borders of a region and connect those configurations with a smooth path. The 

preprocessing step of mid-portion motion planning determined where to cross the two 

borders prior the main planning starts. Those crossing points together with their 

corresponding border orientations are used to define border configurations individually. 

Because the exit border of a region is exactly the entrance border of the region that follows 

it in the global path class, planning the motion between two configurations of the borders 

links the motions in two consecutive regions together. When the motions in all regions of 

the mid-portion of global path class are planned, a safe and smooth path is linked. 

D.   TYPES OF COMBINED MOTIONS 

Three types of combined motions using the steering function are identified as 

useful in mid-portion motion planning. They are: 

• Double parallel-line tracking. 

• Double perpendicular-line tracking 

• A parallel-line tracking followed by a perpendicular-line tracking, or vice versa. 

The basic type of "double parallel-line tracking" motion is to track a line which is 

parallel to the Entrance configuration when the robot crosses the entrance border of the 

region. Then at certain positions it starts to track another line parallel to the previous one. 

Figure 4.5 illustrates the basic double parallel-line tracking motion. Since the reference 

lines will be computed according to the different region situations, this type of motion may 

have some variations. For instance, two reference lines can be the same line. Figure 4.11 

shows this variation. Some other variations can be found in Figures 4.13, Figure 4.14,4.17, 

4.18, and 4.19. 

The basic type of "double perpendicular-line tracking" motion is to track a line 

perpendicular to the Entrance configuration at the beginning and then at certain positions 

it start to track another line which is perpendicular to the current one. Figure 4.6 illustrates 
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the basic two perpendicular line tracking motion. The variations can be found in Figure 

4.24 and Figure 4.25. 

Figure 4.5: The Basic Double Parallel-Line Tracking Motion 

Figure 4.6: The Basic Double Perpendicular-Line Tracking 

Another type of motion is to track a line parallel to the Entrance configuration, 

followed by tracking a line perpendicular to the current one. or vice versa. Figure 4.7 

illustrates this basic one parallel line tracking followed by another perpendicular line 

tracking motion. As two parallel line tracking, this type of motion have some variations. 

The Figure 4.20, 4.21, 4.22, and 4.23 are the examples of the variations. 

Recall that there are three major types on the positioning of the entrance and exit 

borders to the K-region as stated in Chapter HI. What and how the basic motions is applied 

to planning motions in those distinct types of K-regions will be discussed in detailed in the 

following sections. 
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Figure 4.7: The Basic Motion of a Parallel Line Tracking Followed 
by a Perpendicular Line Tracking 

E.   PLANNING INTRA-REGION MOTION OF TYPE I 

Obviously, this type of region has two borders with the same orientations, which 

means ¥,-„ = Your. In a region of motion Type I, the basic motion is a forward motion of 

tracking a reference line which has orientation the same as entrance / exit border. This is 

under the condition that the reference line is long enough for line tracking motion to 

converge. Otherwise, different line tracking motion will planned. Some factors should be 

considered in planning a safe motion in this type of region. They are the dimension of the 

region, the type of borders, and the position of borders in their corresponding region edge. 

Therefore we can further divide this type of region into three different categories as (i) 

Region with F-Borders in both entrance and exit borders as Figure 4.8. (ii). Region with 

one F-Border and one P-Border in entrance and exit as Figure 4.9. (iii). Region with P- 

Borders in both entrance and exit border as Figure 4.10. 

Entrance Exit 

Figure 4.8: The Category of K-region with F-Borders in Both 
Entrance and Exit Borders 
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1.   Region with Two Full-Borders 

This is the most common region we will meet in K-region decomposition. Since a 

K-region is a rectangle under our assumption, and since both entrance and exit border are 

Full-Border, it suggests that the crossing points of borders be the centers of borders. Thus 

the lines specified by entrance configuration qin - (BCin, *¥in, 0) and exit configuration qout 

= (BC0Ut, ^out, 0) are colinear with Horizontal Center Line. 

Exit 
Entrance 

Figure 4.9: The Category of K-region with One F-Border and One 
P-Border in Entrance and Exit Border 

_ _        Exit 

Entrance 

Figure 4.10: The Category of K-region with P-borders in Entrance 
and Exit Border Both 

The center line of a region is the most desirable path in the sense of safety. Thus the 

motion in this kind of region is a forward motion of tracking the line specified by qout from 

center of entrance border. Figure 4.11 illustrates an example of this motion. 

2.   Region with One Full-Border and One Partial-Border 

The typical example of this kind of region is illustrated in Figure 4.12. In the figure, 

entrance and exit borders define two lines, which are qin = (Pin, Win, 0) and qout = (BC0Ut, 
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"V0UV 0). The crossing point of entrance border can be the point other than the center of 

borders if forward distance FL < 2.02 *dH. There are two possible cases: 

• The lines specified by qin and qout are colinear. 

• The lines specified by qin and qout are not colinear. 

The motion planning in these two cases will be discussed in the following 

subsections. 

I     Qm = (BCin,Vin,0) Qout - (BCouv ™out< 0) | 

Figure 4.11: An Example of Forward Line Tracking Motion 

fc*JJKJ>a'Kg«maM?BI 

\9in=(Pin^in'0) 

\ 
Qout =(BCout>*out>0)   a 

Figure 4.12: A Typical Region with One F-border and One P- 
border as Entrance and Exit Border. 

a.   Colinear Entrance and Exit Configurations 

In this case, the exit configuration qout must be defined by the center of the 

exit border and the Entrance configuration qin can be defined by any point on the entrance 

border. Because the crossing point of the entrance border is predetermined as described in 

Chapter in, if it is not the center of the border, it implies tracking center line of the region 
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is not possible. Thus no matter what the qin is, the motion will be a forward motion tracking 

the line specified by the configuration qout = (BC0Ut, Y^,, 0) with smoothness a = dy I 

11.22 as illustrated in Figure 4.13. 

Figure 4.13: Forward Motion Tracking the Line qout 

b.   Non-Colinear Entrance and Exit Configurations 

In the region which has non-colinear entrance and exit configurations, the 

crossing point of the borders must be the centers of the borders and tracking center line is 

possible. This is how we determine the crossing point in this kind of special region. As the 

example illustrated in Figure 4.12, the entrance border is the F-Border. Thus the entrance 

configuration qin = (Pin, ^F^, 0) is actually specifying the center line of the region.The most 

straightforward motion in this region is to track the line specified by qin at the beginning of 

entering the region, then at certain position leave the first line and start to track the parallel 

line specified by qout = (BC0Ut, ^„f, 0). However, as discussed in Chapter IE, the trajectory 

of directly tracking two lines will not be symmetric to the trajectory traveled by the motion 

of reverse direction. Thus, planning motion in this type of region will need a reverse path 

Crev as described in Chapter III to support the symmetric motion planning. 

In this case, the reference line will be the Horizontal Center Line and dHin 

- 0 so that we have dH = dHout. The allowed convergence length will be L = dy which is 

the length of the Horizontal Center Line. The smoothness can be computed as oin = cout = 
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dy 111.22 (see Eq 4.6). Then the reverse path Crev is generated by tracking the Horizontal 

Center Line qc - (BCin, ¥;„ + %, 0) from the configuration qs = (BC0Ut, 
x¥out + n, 0) with 

smoothness <50Ut. 

Motion in this region is executed by tracking the center line after entering 

the region followed by tracking the reverse path Crev as Figure 4.14. Because the reverse 

path Crev is a sequence of configurations and its first configuration qn is exactly specifying 

a line the same as the configuration qin specifies.Therefore, the entire motion in this region 

can be simplified by tracking the reverse path Crev. 

Figure 4.14: The Motion Planning in Region with One F-border 
and One P-border as Entrance and Exit. 

For the case that the entrance border is a P-border and the exit border is an 

F-border, the motion in this region is simply to track the line specified by qout from the 

configuration qin. No reverse path is needed. Its trajectory will be exactly the same as the 

trajectory illustrated in Figure 4.14 except the motion orientation is opposite. Therefore the 

reverse path is needed only when the center of exit border does not coincide with its 

corresponding edge center in this kind of region. 

3.   Region with Two Partial-borders 

There could be three situations in the region with P-borders in both entrance and 

exit borders, (i). Both centers of entrance and exit borders are aligned with centers of their 
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corresponding edges as shown in Figure 4.15(a). (ii). Forward length of the region FL = dy 

< 2.02 * dH as shown in Figure 4.13(b). (iii). Forward length of the region FL = dv> 2.02 

* dH as shown in Figure 4.13(c). In the case of (i), the Local motion planning will be the 

same as the category in subsection 1 of this section. The cases (ii) and (iii) will be described 

in following subsections. 

un 

tin lout' 

(a) Centers aligned 

tin. 

■ ffcflU 

lout I 

' FL = dv    ' 

(b) FL = dv <2.02 * dH 

i        FL = dv    ' 

(c)FL = dv>2.02*dH 

Figure 4.15: The Cases of the Region with P-border in Both Entrance and Exit 
Border 

a„   Forward Length FL = dy < 2.02 * djj 

As described previously, the minimum length of reference line which 

allows parallel line tracking to converge is Lallowed >2.02* dinit. In our case as Figure 4.15 

b, Lauowed = dv and dinit = dH. Therefore, in this case since dy < 2.02* dH, it is not possible 

to track a parallel reference line and converge to the line in the region. The motion planning 

in this case will be taking the Vertical Center Lined as reference line and perform two 

perpendicular line trackings. One from entrance configuration qin and another one from 

Exit configuration qout. This implies dy = dvln + dVout and dVin = dVout. The later 

perpendicular line tracking will be performed by generating a reverse path to follow so that 

the motion is symmetric. In order to ensure perpendicular line tracking convergence, Eq 
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4.10 is adopted. Because there will be two perpendicular line tracking with same reference 

line, the length of reference line that allows line tracking to converge will be dH > 2 * 3.38 

* dy. If this is satisfied, then the perpendicular line tracking can be performed from the 

configurations qin and qout as Figure 4.16(a). Otherwise the start configurations need to be 

computed. The new start configurations, qsin and qsout are on the line qin and qout such that 

dynew = dH I (2 * 3.38) where dVnew is the distance as shown in Figure 4.16(b). The 

smoothness for one perpendicular line trackings can be calculated as Eq 4.4. In the case of 

double perpendicular line tracking on the same reference line, we have: 

oin = amt = 0A2*d v 

Qin 

(a)dH>2*3.38*dv (D) djJ < 2 *338 * dv 

Figure 4.16: The Example of Double Perpendicular Line Tracking 

The motion planning for the region in this case is as follows: 

• Motion Type: perpendicular line tracking: 

• Reference line: Vertical Center Line 

• Compute perpendicular line tracking start configuration qsin and qsout on line 
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^.^respectively. 

Compute perpendicular line tracking smoothness Gin and oout 

• Generate reverse path Crev by tracking qc from qsout 

• The motion execution will be: a. Track the line qin from configuration qin until 

start configuration qsin is reached, b. Track the reverse path Crev. 

b.   Forward Length FL = dv> 2.02 * dH 

In the region with the forward length FL-dy > 2.02 *dH, a parallel line 

tracking is expected. Ideally, tracking the Horizontal Center Line of this type of the region 

will be the most desirable motion. However, taking the center line as reference line is not 

always possible for many situations. We discuss this in following three different situations: 

(i). One of crossing point of Entrance or exit borders coincides with the center of its 

corresponding edge. (ii). Both crossing point of entrance and exit borders, are on the same 

side of the Horizontal Center Line. (iii). The crossing point of entrance and exit borders, 

are on the opposite side of the Horizontal Center Line of the region. 

For the case (i), the local motion planning will be similar to the motion 

planning in the region with one F-border and one P-border in entrance and exit border 

described earlier in this chapter. Keep in mind that the reverse path is generated only if the 

crossing point of exit border does not coincide with its corresponding edge center. The 

followings are the motion planning in the rest of cases. 

(1) Crossing Points on the Same Side of Center Line: Because the 

crossing points of two borders are on the same side of the center line, to track the center 

line must take some extra efforts. Thus whether to track the center line is an important 

decision. Since the safe motion is our major concern in local motion planning, and tracking 

the center line in a region is considered the safest motion, our decision for this is to track 

the center line whenever it is possible. As analysis in this chapter earlier, the converge 

length for a parallel line tracking is 2.02 * dinit. Therefore if the Eq 4.11 is satisfied, the 

(parallel) center line tracking motion will be performed: 
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dv>2.02(dHin + dHout) (Eq4.11) 

where dHin and dHout are the distances from Horizontal Center Line to qin and qout 

respectively. In the center line tracking motion planning, a reverse path Crev is always 

generated from the crossing point of exit border reversely. Because distances dHin and dHout 

may be different, the smoothness ain and oou[ need to be computed separately as follows: 

FL x dHin 

G<«= 11.22 x(dHin + dHoJ 
(E(14-12) 

a°Ut = UMx«H"
0

+
UdHoJ 

(Eq4-13) 

The entire motion in this region then is tracking the reverse path Crev as Figure 4.17. 

On the other hand, if FL= dv <2.02* (dHin + dHout), the forward length of 

the region is not long enough for tracking Horizontal Center Line and converging on the 

line. In this case, instead of tracking the center line, the reference line will be chosen 

according the distance from the crossing point of borders to the Horizontal Center Line. 

Since the motion which is closer to the center line is consider safer, we take the line which 

is closer to center line as the reference line. The smoothness is computed as Eq 4.14 

°in = °out = dv/U.22 (Eq4.14) 

For symmetry reason, when the reference line is qin, a reverse path Crev will 

be generated from qout with reverse orientation. The entire motion in the region of this 

situation is tracking the reference line or the reverse path Crev if it exists. The Figure 4.18 

illustrates the example. 

(2) Crossing Points on the Opposite Side of Center Line: In the region of 

crossing points on the opposite side of the Horizontal Center Line, because the center line 

is between qin and qout, and the length of the center line is long enough for parallel line 

tracking to converge, the motion in this region will be simply tracking the center line as 
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Figure 4.17: The Example of the Motion Tracking the Horizontal Center 
Line When FL= dv > 2.02 * (dHin + dHout). 

Figure 4.18: The Example of the Motion Tracking a Reference Line Closer to 
the Horizontal Center Line When FL= dv < 2.02 * (dHin + dHout). 
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illustrated in Figure 4.19. The computation of smoothness and motion planning for this 

situation is similar to that of the first case of the region with crossing points on the same 

side of the Horizontal Center Line. 

Figure 4.19: The Example of the Motion Planning in the Region with qin 
and qout on the Opposite Side of the Horizontal Center Line 

F.   PLANNING INTRA-REGION MOTION OF TYPE H 

The characteristics of this type of region is that entrance orientation is perpendicular 

to the orientation of exit border. Therefore the basic motion in this type of region is a left 

or right turning motion. 

There are basically two categories in this type of region which is separated by the 

relationship between Forward Length FL and Cross Length CL of the region. 

1.  Forward Length Greater than or Equal to Cross Length 

In the region of FL > CL, the main reference line will be the Horizontal Center Line 

defined by bisector two Forward Edges. Since the motion tracking the center line is always 

considered a safe motion, we will plan the detailed motion which follows the center as 
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much as possible. However, as in other type of region, it is not always possible to track the 

center because of its length limitation. If tracking the center line is taken, the motion must 

be a parallel line tracking at the beginning of entering the region and followed by a 

perpendicular line tracking to cross the exit border. In order to plan a symmetric path, a 

reverse path will be generated with perpendicular line tracking starting at exit border. Thus, 

both line trackings take the center line as reference line. This give us a hint in calculating 

how long the center line is needed for parallel and perpendicular line tracking to converge. 

As analyzed in this chapter earlier, the minimum length on reference line that allows 

parallel line tracking to converge is 2.02 * dinit and in this case we have dinit = dHin. The 

minimum length on reference line that allows perpendicular line tracking to converge is 

3.38 * dinit. In this case we have dinit = dHout. Because the center line is parallel to the line 

specified by qin, the distance dH is total length on center line that allows both line trackings 

to converge. Therefore, whether to track the center line in this kind of region depends 

whether the following inequality is satisfied.: 

dv > (2.02*dHin + 3.38*dHout) (Eq 4.15) 

When Eq 4.15 is satisfied, tracking the center line is possible. A reverse path Crev 

will be generated after their individual smoothness is calculated as Eq4.16 and 4.17. 

dv-33*xdHout 
CT» =  1L22  (Eq416) 

°OBr = 0-42 * dÄOH, (Eq4.17) 

Then the motion in this region is to track the reverse path Crev as Figure 4.20 and Figure 

4.21. 

If Eq 4.15 is not satisfied, center line tracking will not be possible. Then a single 

perpendicular line tracking motion will be planned. Either the line specified by entrance 

configuration or the line specified by exit configuration will be chosen as the reference line 

depending on the length it allows line tracking to converge. For consistence, if the distance 

dv > d#,which means the line specified by qin will be longer (measured from the crossing 
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Figure 4.20: The Example I of Tracking Horizontal Center Line in the 
Region of Type IL 

Figure 4.21: The Example II of Tracking Horizontal Center Line in the 
Region of Type H. 

point to the intersection of two lines qin and qout), then the line qin will be the reference line. 

Again for the symmetric path consideration, a reverse path may be generated if the 

reference line is entrance configuration qin. With the reference line selected, we are able to 

compute the start configuration qsout such that its distance to reference line satisfies d = dv 

I 3.38. Then its smoothness for perpendicular line tracking will be a = 0.42 * d. We 

generate the reverse path Crev by tracking the reference line from qsout with reverse 

direction. The entire motion in this region then is tracking the reverse path Crev,. Figure 
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4.22 illustrates the single perpendicular line tracking planning. If dy < dH then the line qout 

will be selected as reference line. The start configuration qsin and its smoothness a for 

perpendicular line tracking can be calculated in similar way. The motion in this region then 

is planned to track qin when entering the region until reaches qsin. Then perform 

perpendicular line tracking with qout as reference line. No reverse path is needed in this 

case. 

 ^ 

Figure 4.22: The Example of Single Perpendicular Line Tracking in the 
Region of Type II 

2.  Forward Length Smaller than Cross Length 

In the region of Forward Length less than Cross Length, the Vertical Center Line of 

the region define by the bisector of two Cross Edges is to be considered as reference line if 

possible. The local motion planning rule in that kind of region is similar the region of FL > 

CL except the center line is defined by different pair of edges. Figure 4.23 illustrates an 

example of the motion planning in this region. 
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Qouh 
reverse path Cj-e 

Vertical Center Line 

Cross Edge 

Figure 4.23: An Example of Tracking Center Line Defined by Two Cross 
Edges of the Region of Type II 

G.  PLANNING INTRA-REGION MOTION OF TYPE HI 

In the region of the entrance and exit border on the same edge, the motion can be 

planned with the combination of two perpendicular line trackings. The reference line will 

be the Vertical Center Line or a line parallel to it. In this type of region, we will consider 

whether to track the Vertical Center Line or not. Let d^, dvin and dvout be the distances as 

shown on the Figure 4.24. For a perpendicular line tracking, we have the restriction that the 

length on the reference line must be Lallowed > 3.38 * dinit (Eq 4.10). Thus, if Eq 4.18 is 

satisfied, then the Vertical Center Line will be the reference line of the perpendicular line 

trackings. 

dH> (3.38 *dVin +3.38 *dVout) 

dH>2*3.38*dVmt (Eq4.18) 

And the smoothness for the line tracking is 

°in = °out = 0.42 * dVout 



For symmetric motion, the reverse path Crev is generated by tracking the center line from 

the exit configuration qout with reverse orientations. Then the entire motion in this region 

is tracking the reverse path Crev. The motion of tracking center line of this region is 

illustrated in Figure 4.24. 

Qout 

Figure 4.24: The Motion of Vertical Center Line Tracking in the Region of 
Motion Type HI. 

VCLine 

t 
Reference line 

Qout 

Figure 4.25: The Motion of a Reference Line Tracking in the 
Region of Motion Type HI 
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For the case that dH<2 * 3.38 *dVout, instead of tracking the Vertical Center Line, 

the motion is tracking a reference line parallel to the center line such that du -2 * 3.38 

*dVout where dVout is the distance between the reference line to the edge containing the 

borders. The rest of planning in this region will be all the same. Figure 4.25 illustrates this 

type of motion planning. 

H„   MID-PORTION MOTION PLANNING RULES 

The previous sections analyzed how the local motion planning in the individual 

regions is done. We summarize those analysis into motion rules based on the type of 

regions. Each of different type of regions can be subdivided into two planning situations 

depending on the region feature which allows certain type of line tracking being performed. 

Figure 4.26 shows the decision tree for the mid-portion motion planning rules. 

1.   Region with Two Parallel Borders 

a.   dv >2.02(dHin + dHout) 

(1) Motion type: Two parallel line trackings. 

(2) Reference line: Horizontal Center Line. 

(3) Planning: 

(a) Compute smoothness: 

For ain, if dmn = 0, GJW = dyl11.22, else Eq 4.2 

For oout, if dHout = 0, aout = dyl 11.22, else Eq 4.3 

(b) Generate a reverse path Crev from qsout using smoothness oout. 

(4) Motion execution: 

Tracking path Crev with smoothness Gin. 

(5) Example: 

Figure 4.11, Figure 4.13, Figure 4.14, Figure 4.17, Figure 4.19. 
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dv >= 2.02(dHin + dHout 

Type II 

Double parallel- 
line tracking 

Single parallel- 
line tracking 

Double 
perpendicular- 
line tracking 

Parallel-line & 
Perpendicular- 
line tracking 

Single 
Perpendicular- 
line tracking 

Perpendicular- 
line & Parallel- 
line tracking 

Single 
Perpendicular- 
line tracking 

Double 
perpendicular- 
line tracking (on 
VCL)  

Double 
perpendicular- 
line tracking (on a 

" ft  """" 
dH < 2*3.38 dy 

line paralleFto VCL/ 

Figure 4.26: The Decision Tree for Mid-portion Motion Planning Rules 
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b.   dv < 2.02 (dHin + dHout) 

Case 1: dy > 2.02 dH 

(1) Motion type: Single parallel-line trackings. 

(2) Reference line: 

Qin        if dUin < dHoui-> 

Qout     Otherwise. 

(3) Planning: 

(a) Compute smoothness a = dv/11.22. 

(b) if djjin < d}jou(, generate reverse path Crev from qout. 

(4) Motion execution: 

if dHin < dHout, tracking reverse path Crev, otherwise tracking qout. 

(5) Example: 

Figure 4.18. 

Case 2: dv < 2.02 dH 

(1) Motion type: Double perpendicular-line trackings. 

(2) Reference line: Vertical Center Line. 

(3) Planning: 

(a) Compute start configurations qsin and qsout for perpendicular-line 

tracking. 

(b) Compute smoothness G = 0.42 dy. 

(c) Generate reverse path Crev from qsout. 

(4) Motion execution: 

(a) Tracking entrance line qin until the configuration qsin. 

(b) Tracking the reverse path Crev with smoothness o. 

(5) Example: 

Figure 4.16. 
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2.   Region with Two Perpendicular Borders 

a. dy > djj 

(1) Motion type: Parallel-line tracking for entrance motion 

Perpendicular-line tracking for exit motion 

(2) Reference line: 

Horizontal Center Line if dv > (2.02 dHin + 3.38 dHout), 

qin Otherwise. 

(3) Planning: 

(a) If reference line is qin, compute start configurations qsout and its 

distance to the reference line, dHout, for perpendicular-line tracking as 

illustrated in Figure 4.22. 

(b) Compute smoothness: 

Gm = (dy - 3.38 dHout) 111.22, Gout = 0.42 dHout 

if ain <= 0, Gin = oout. 

(c) Generate a reverse path Crev from qsout using smoothness oout 

tracking reversed reference line. 

(4) Motion execution: 

Tracking reverse path Crev with smoothness oin. 

(5) Example: 

Figure 4.20, Figure 4.21, Figure 4.22. 

b. dy < djj 

(1) Motion type: Perpendicular-line tracking for entrance motion 

Parallel-line tracking for exit motion. 

(2) Reference line: 

Vertical Center Line if dH > (3.38 dVin + 2.02 dVout), 

qout Otherwise. 
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(3) Planning: 

(a) If reference line is qouP compute start configurations qsin and dVin for 

perpendicular-line tracking similar to Figure 4.22. 

(b) Compute smoothness: 

cin = 0.42 dVin, aout = (dH - 3.38 dVin) 111.22. 

if aout <= ö>  °W = °in- 

(c) Generate a reverse path Crev from qout using smoothness aout tracking 

reversed reference line. 

(4) Motion execution: 

(a) Tracking entrance line qin until the configuration qsin. 

(b) Tracking the reverse path Crev with smoothness G;w. 

(5) Example: 

Figure 4.23. 

3.   Region with Borders on the Same Edge 

a.   dH>2*3.38dv 

(1) Motion type: Double perpendicular-line trackings. 

(2) Reference line: Vertical Center Line. 

(3) Planning: 

(a) Compute smoothness G = 0.42 dy. 

(b) Generate reverse path Crev from qout with smoothness a. 

(4) Motion execution: 

Tracking the reverse path Crev with smoothness G. 

(5) Example: 

Figure 4.24. 
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K   dH<2*3.38dv 

(1) Motion type: Double perpendicular-line trackings. 

(2) Reference line: 

A line or parallel to Vertical Center Line such that its distance to the 

border dr = dH/ (2* 3.38) 

(3) Planning: 

(a) Compute smoothness a = 0.42 dr 

(b) Generate reverse path Crev from qout with smoothness a. 

(4) Motion execution: 

Tracking the reverse path Crev with smoothness a. 

(5) Example: 

Figure 4.25. 

I.    ALGORITHM 

The mid-portion motion planning is performed region by region starting from the 

first region of global path class which is not included in initial motion planning, and ending 

in the region which is the last region on the path that is included in final motion planning. 

The following algorithm of mid-portion motion planning is designed for a single region on 

the mid-portion of global path class. Thus, the inputs of the algorithm are the entrance and 

exit configurations, the current region identification and the world model. The output of the 

algorithm is the motion instructions which includes a reference path, named reverse path 

represented by a sequence of configurations, a smoothness, which control the sharpness of 

turning while tracking a reference line, and a starting configuration which indicates where 

to start the path tracking. Based on the rule described above, the algorithm is developed as 

below. 
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Algorithm MidPortionMP (qin, qouP rcurrm, W) 

Input: qin: entrance configuration: 
qout: exit configuration; 
rcurrent- current region; 
W: a world model 

Output: MP: motion instruction 

(1) region     rcurren> 
(2) qin = qin; 
(3) qOut =qout; 
(4) ComputeDis (region, qin, qOut); 
(5) if (regionType(region) =TypeI) then 1* parallel borders*! 
(6) if(dv >=2.02* (dhin + dhout) then /* Two parallel line tracking */ 
(7) refLine = HCL /* Horizontal Center Line */ 
(8) ComputeSigma (Sigmaln, SigmaOut,rulel); 
(9) else 
(10) if(dv >=2.02* dh) then          /* single line tracking */ 
(11) if (dhin < dhout) then          /* select the line closer to center line */ 
(12) refLine = qin 
(13) else 
(14) refLine = qOut 
(15) ComputeSigma (Sigmaln, SigmaOut, rule2.1); 
(16) else                                        I* two perpendicular line tracking */ 
(17) refLine = VCL  /* vertical center line */ 
(18) ComputeSigma (Sigmaln, SigmaOut,rule2.2); 
(19) ComputeTrackConfig (refLine, qin, qout); 
(20) else if (regionType(region) =Type2) then  /* perpendicular borders */ 
(21) if(dv >- dh) then          /* single line tracking */ 
(22) if(dv >= (2.02*dhin + 3.38*dhout)) then /* HCL tracking (H&V)*/ 
(23) refLine = HCL 
(24) else 
(25) refLine = qin 
(26) ComputeTrackConfig (refLine, qin, qout); 
(27) ComputeSigma (Sigmaln, SigmaOut, rule3); 
(28) else 
(29) if(dh >= (3.38*dvin +2.02*dvout)) then /* VCL tracking (V&H) */ 
(30) refLine = VCL 
(31) else      /* tracking entrance line*/ 
(32) refLine = qOut 
(33) ComputeTrackCofig (refLine, qin, qout); 
(34) ComputeSigma (Sigmaln, SigmaOut, rule4); 
(35) else if (regionType(region) =Type3) then  /* borders on same edge*/ 
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(36) if(dh >= 3.38* (dvin + dvout)) then I* Two perpendicular tracking */ 
(37) refLine = VCL 
(38) ComputeSigma (Sigmaln, SigmaOut, rule5); 
(39) else I* tracking a new line parallel to VCL*I 
(40) refLine = computeRefLine(); 
(41) ComputeSigma (Sigmaln, SigmaOut, ruleö); 
(42) MP.rvsPath = genRvsPath (refLine, qOut, SigmaOut) 
(43) MP.sigma = Sigmaln; 
(44) MP.startConfig = qln; 
(45) return (MP); 

The subroutine ComputeDis computes all distance measurements in a given region 

as defined in Section A. The measurements include dv, dh, dvin, dvout, dhin, and dhout, 

Subroutine regionType takes region name as input and returns the type of region which is 

Typel, Type2 and Type3 as described in Chapter HI Section C. Subroutine ComputeSigma 

computes smoothness according to different region situations which are described in 

Section H. The subroutine ComputeTrackCofig computes the start configurations of path 

tracking if necessary. The situations that need to compute start configuration of path 

tracking are described in Section H. The subroutine genRvsPath generates a reverse path 

represented by a sequence of configurations according to given reference line, starting 

configuration, and smoothness. The reverse path generation uses forerunner simulation as 

tool. The details of reverse path generation are described in Section E and F of Chapter HI. 
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V. END-PORTION MOTION PLANNING 

The end-portion motion planning refers to initial motion planning and final motion 

planning. Let qs and qg be the start and goal configurations respectively. Assume there is a 

collision-free motion planning from qs to q„, with path E^. In the sense of symmetric 

motion planning we stress in this dissertation, if the orientations of all configurations are 

reversed, the path U2 of the motion planned from the final configuration to initial 

configuration will be identical to n^ Therefore the planning for the initial motion would 

be similar to that of the final planning except the they are reverse in orientations. The 

chapter addresses how the end-portion motion will be planned. 

A. PROBLEM STATEMENT 

Since the two plannings in end-portion motion planning are actually the mirror of 

each other, the problem to be solved in final motion planning is the same as that of initial 

motion planning. We describe the initial motion planning problem as the following, so that 

the final motion planning problem becomes trivial. 

Given a world model with decomposed K-regions on a two dimensional plane, %2, and 

a global path class II = <Rtf, Bu,...., Rin_j, Bin_i, Rin>, with start configuration qs and 

goal configuration q„. The crossing points of borders are determined initially. The ini- 

tial motion planning problem is to determine whether there exists a collision-free 

motion for a rigid body robot to move from qs to the regions next to the initial one cross- 

ing the border perpendicularly. If so, plan a safe motion symmetrically. 

B. PLANNING METHODS 

The inputs to the end-portion motion planning are the initial mission parameters, i.e. 

start configuration, qs, goal configuration q and the world model, W, and the result of 

global path planning, i.e. the global path class II. The output of this planning is a sequence 

of motions instructions, MPend = <MPj,..., MPn>, to be taken, where n > 1 and each MP{ 
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includes type of motion (either forward or backing-up), a reference path, the configurations 

to initialize and end the motion. Figure 5.1 illustrates this idea. 

Mission parameters 
qs, qg and W 

Global path II 

End-Portion Motion 

Planning 

Motion Sequence 

MPend = <MPh...MPn> 

Figure 5.1: The End-Portion Motion Planning 

According to these I/O requirements, the end-portion motion planning will be 

designed to use methods described in this section to accomplish the planning job. The 

Forerunner Simulation has the key role in the entire end-portion motion planning. How to 

apply the Forerunner Simulation to end-portion motion planning is described in Subsection 

1. To plan a collision free motion is the main purpose of end-portion motion planning. 

Therefore, collision detection is one of important topics that will be discussed in Subsection 

2. In the simulation, if no forward motion is possible, backing up motions will be planned 

as a supplemental motion. We discuss this in Subsection 3. 

1.  Forward Forerunner Simulation Application 

The generic Forerunner Simulation template is presented in Chapter VI. In this 

chapter we discuss how it is applied to a forward simulation in the end-portion motion 

planning. The path tracking technique is one of good methods in solving local motion 

planning problem. Because the Forerunner Simulation is basically using line tracking 

method to simulate a real robot's motion, we found it is especially useful in end-portion 

motion planning. 
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Given an initial configuration qint = ((xint, yint), Qint, kint), a reference path specified 

by the configuration path = ((xp, yp), Qp, kp) and a smoothness a, what we expect the 

Forerunner Simulation to do is to perform a forward line tracking with following output: 

• If the forerunner's trajectory converges to the reference line before the point on 

the line where it is supposed to converge, output the line tracking trajectory 

from qint to the configuration where it converges. Otherwise indicates not 

converging case. 

• If collision happens, output a collision signal. 

With these expectation, a forerunner simulator can be constructed by modifying the 

simulation template in Figure 3.6 of Chapter HI Figure 5.2 and 5.3 show the algorithms. 

As aforementioned, the Forerunner Simulation can be applied to many different 

applications. In the ForwardSimulation application, the related codes are inserted to the 

template. In Figure 5.2, line (1), (2), and (3) are the PREwork and line (8) to (14) are the 

application codes. The collision checking function in line (8) will be discussed later in 

Subsection 3. The function overImage() in line (10) is to check the image [19] of current 

configuration on the reference line with the point where the trajectory is supposed to 

converge before it. If the image runs over the point, the function returns TRUE, otherwise 

FALSE is returned. The algorithm for the function overImage() is omitted. The 

convergence checking algorithm in line (11) is presented in Figure 5.3. The algorithm of 

ForwardSimulation returns a path IT^ containing a sequence of configurations of the 

tracking trajectory. Two other boolean variables, FWcollide and FWPerfectConverge, are 

also updated and returned. FWcollide indicates whether the simulation collides with 

objects and FWPerfectConverge indicates whether the trajectory converges before the 

point specified in the reference line. 
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I Algorithm ForwardSimulation (q, q^ a, W) 

Input: q: an initial configuration; q^: a reference path; a: a smoothness; 
W: a world model; 

Output: update forward path EL„; update FWcollide and FWPerfectConverge; 

(1) Initialize path Yl^ = NULL; 
(2) Initialize FWPerfectConverge =FALSE; 
(3) Initialize overRun =FALSE; 
(4) Qnew = <?-' 
(5) Compute constants of steering function; 
(6) while (not FWcollide and not overRun and not converge) 
(?)        Qnew = AdvanceForerunner (qnew, q^); 
(8) FWcollide =CollisionCkecking (qnew W); 
(9) if (not FWcollide)  then 
(10) overRun = overlmage (qnew, q^); 
(11) FWconverge = ConvergeChecking (qnew, q^); 
(12) if (not overRun and converge)  then 
(13) FWPerfectConverge =TRUE; 
(14) Append qnew to Uj^; 
(15) end while; 

Figure 5.2: The Algorithm for Forward Forerunner Simulation Applied in 
End-Portion Motion Planning. 

Algorithm ConvergeChecking (q, qreß 

Input: q: a configuration; qref. a reference path; 

Output: TRUE I FALSE 

(1)    Ad= \the closest distance from q to path qrefi 
(2)   Ae = |e-ere/| 
(3) Ak = j k - k ref | 
(4) if (A d<e and A 0 < e and A k < z) then 
(5) return (TRUE); 
(6) else 
(7) return (FALSE); 

Figure 5.3: The Algorithm for Convergence Checking in Path Tracking. 
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2.   Collision Detection 

While the forerunner is running in end-portion motion planning, collision detection 

is being performed in each advancing step. This is rather an important step in motion 

planning because the safety of the planned motion relies on it completely. In this 

dissertation, we assume that the robot is an autonomous vehicle with rigid body. A convex 

hull [23] can be constructed to enclose the shape of the robot. In motion planning, we 

compute the robot's current configuration based on its center. Thus each vertex of the 

convex hull can be calculated by adding the offsets to the coordinates of the robot's center. 

As defined in Chapter V, the free space is the compliment of the union of obstacles in the 

world. Thus the robot's motion is considered collision free if and only if all vertices of the 

convex hull fall into the free space. 

Therefore in local motion planning, instead of checking possible collision with 

arbitrary obstacles, the collision detection task can be carried out by checking the convex 

hull with decomposed-regions. If all vertices of convex hull are inside of the regions in each 

sampling step, the collision will never happen. Now it comes to the question: Is it necessary 

to require the robot's motion having its trajectory always fallen into the regions on the 

global path class? Ideally, the robot's trajectory is passing through region by region along 

the global path class. For instance, if the global path class contains the regions Rp R2>--> 

Rn, the robot should move from the initial region Rj then -R^..., and finally stops at the 

final configuration in the region Rn. The robot is not expected to run into a region which is 

not in the sequence of the global path class. However, there will be some exceptions at end- 

portion. Figure 5.4 illustrates an example of the robot's motion in the initial region. In the 

figure, the region Rt is the initial region and Rj is its next region in the global path class, but 

the region Rk is not any region in the path. The broken curve shown on the figure is a 

possible traveling trajectory from the initial configuration qs to the next region. Although 
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part of this trajectory falls into the region Rk which is not the region in the path, the motion 

traveling along this trajectory is obviously a safe one and probably a desirable one. This 

example suggests that to plan a safe motion, it is not necessary to keep the trajectory always 

in the regions listed on the global path class. 

Since the motion is continuous, if the sampling step is small enough, the robot's 

position change will be relatively small in either real time or simulation. Thus, we can 

assume that the next position is either in the current region or the region adjacent to the 

current one. The current region, to which the robot's current position belongs, and the 

regions adjacent to the current one, are considered related regions. We conclude that 

collision detection can be done by checking robot's position with the related regions in each 

sampling step. If robot's position is in one of those related regions, it is appropriate to 

declare that there is no collision in current step. Figure 5.5 shows the algorithm for the 

collision detection. 

Figure 5.4: An Example of the Possible Motion Planning in the 
Initial Region. 
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Algorithm collisionCkecking (q, W) 

Input: q: a configuration; W: a world model; 

Output: TRUE I FALSE 

(1) Find the region R of current configuration q; 
(2) if (no region found) then 
(3) return (TRUE); 
(4) for all regions R; adjacent to R do 
(5) if q in region Rj then 
(6) return (FALSE); 
(7) endfor; 
(8) return (TRUE); 

Figure 5.5: The Algorithm for Collision Detection. 

3.   Backing-up Motion Simulation 

A forward motion is always preferable in motion planning. However, in some 

situation, forward motion may not be able to accomplish the task at the end-portion of 

entire motion planning. For instance, if all possible forward motion can not avoid collision 

with the obstacles, then other solutions will be needed. For a robot with nonholonomic 

constraints, the backing-up motion is the only solution. Figure 5.6 illustrates the situation 

in which the backing-up motion is required. 

The Forerunner Simulation is applied in forward motion simulation as described in 

Subsection 1 of this section. The backing-up motion simulation can also be constructed by 

modifying Forerunner Simulation template in Figure 3.14. The purpose of backing-up 

motion simulation is to find the positions along the backing-up trajectory where a collision- 

free forward motion can start. For this purpose, in constructing backing-up motion 

simulation the followings are considered: 

•    Backing-up motion itself must be a collision free motion. 
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• In each sampling step, the forward forerunners should be issued to check 

whether it is possible to have a collision-free forward motion from the current 

configuration, while simulation is running backward. The Figure 5.7 illustrates 

the backing-up simulation with forward forerunner simulation. 

Figure 5.6: Unavoidable Collision with Forward Motion in the 
Initial Region. 

While the simulation is running, both backward trajectory and forward trajectory 

are saved for planning use. Although the forward forerunner may complete a full 

simulation in each backing-up step, only the last forward trajectory will be kept. 

The backing-up motion simulation terminates in one of following conditions: 

• When backing-up motion collides with obstacles. 

• When the virtual robot's orientation is identical to the orientation of its main 

(forward forerunner's) reference line. 

• When the forward forerunner converges to it reference line before the point the 

reference line specified. 
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Forward 
simulation 
trajectory 

backing-up 
simulation , 
trajectory 

Figure 5.7: Backing-up Motion Simulation with Forward 
Forerunner Simulation. 

If the backing-up simulation terminates with collision detected, it suggests that 

more forward or backward motions will be needed to complete the planning. We will 

discuss this in more detailed in Section B. 

The second termination condition stops the backing-up simulation when the 

orientation of the virtual backing-up robot reaches the same orientation of forward 

reference line. Then the forward motion can be planned to track the line specified by the 

last configuration. Even though this motion may not cross the exit border at the originally 

planned crossing point, it will be an acceptable safe motion. This is because it crosses the 

border with an orthogonal orientation, so that the motion in the next region can be planned 

accordingly without any unexpected interference. Figure 5.8 illustrates this case. 

The third termination condition will be met when the forward forerunner simulation 

makes its tracking trajectory converge to the main reference line before the point its 

configuration defines. This kind of convergence is called a perfect convergence because a 

forward motion then can be planned to track the reference line from the configuration the 

backing-up motion reaches. This forward motion will be able to cross the exit border at the 

planned crossing point. The trajectory %f2 in Figure 5.7 is an example of this case. 
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Forward 
simulation 
trajectory 

Backing-up 
simulation . 
trajectory 

Planned 
motion 
trajectory 

lout 

Backing-up 
simulation 
terminates 

Figure 5.8: Backing-up Motion Simulation Terminates at the 
Configuration Where Its Orientation Is Identical to the Exit 
Orientation 

Figure 5.9 and Figure 5.10 show the backing-up motion simulation algorithms. The 

algorithm for subroutine BackUpForerunner in Figure 5.10 is similar to the algorithm for 

AdvanceForerunner in Figure 3.15. The differences are (i). in line (1) of Figure 5.10, the 

curvature change will be computed by Eq 3.6 and Eq 3.7 based on planning a backward 

motion. Thus the virtual robot's orientation must be reversed. As a result, the orientation 0 

in Eq 3.7 will be replaced by 9 + n in computing the curvature change, dk I ds. (2). In line 

(2), computing new curvature and orientation change by Eq 3.8 and Eq 3.9, the increment 

step As of Eq 3.8 and Eq 3.9 has to be a negative value to make the position change 

backward. The rest of computations are the same as described in Chapter III Section E.2. 

The subroutine ForwardSimulation in Figure 5.9 is presented in Figure 5.2. 

C.   INITIAL MOTION PLANNING 

In Chapter III and IV, we describe mid-portion motion planning in a single region. 

This is obviously a workable solution, because the entire motion is linked by the motion 

passing through crossing point of borders shared by neighboring regions in the global path 

class. When we discuss the end-portion motion planning, we notice that it may involve not 
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only the initial or final region but also the regions next to initial or final one. This is because 

the initial or final configuration is arbitrary. Therefore, the robot moving from the initial 

region to the next one does not necessarily cross the first border at its center and with 

orthogonal orientation. This would be a conflict with essential idea of mid-portion motion 

planning. When this does happen, the motion planning in the region next to the initial 

region or final region will be considered a part of end-portion motion planning. 

Algorithm BackUpSimulation (q, qbw q^ a, W) 

Input: q: an initial configuration; qbw: a reference path for backing-up simulation; 
Qfw' a reference path for forward; a: a smoothness; M: a world model; 

Output: The set of data including the path of backward motion, the path of forward 
motion, and collision indicator for backward motion. 

(1) Initialize FWPerfectConverge = FALSE; 
(2) Initialize B Wcollide = FALSE; 
(3) Initialize BWfinished = FALSE; 

(4) Qmw = q; 
(5) Compute constants of steering function with smoothness (5min; 
(6) while (not BWcollide and not BWfinished and not FWPerfectConverge) 
(7) Qnew = BackUpForerunner (qnew,qbw); 
(8) BWcollide =CollisionChecking (qnew W); 
(9) if (not BWcollide) then 
(10) if ($new*%) then 
(11) ForwardSimulation (qnew q^ a, W); 
(12) else BWfinished = TRUE; 
(13) Append qnew to path Ubw; 
(14) end while; 

Figure 5.9: The Algorithm for Backing-up Motion Simulation in End- 
Portion Motion Planning. 

Based on the line tracking of steering function, the Forerunner simulation described 

in Section A are applied to the initial motion planning. Let qs = (ps, Qs, ks) be the start 

configuration, and qout = (CP0Ut, \\fout, kout) be the configuration defined by the crossing 

point, PCouP and orientation, yout, of the exit border in initial region. Let dv denote the 
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dosest distance between start configuration qs and the reference line. (For example in 

Figure 5.11 reference line is the line defined by qout) 

Algorithm BackUpForerunner (q, qreß 

Input: q: the current configuration; qref. the reference path; 
Output: next configuration 

(1) Compute curvature change in backward direction; 
(2) Compute new curvature and orientation change; 
(3) Compute new configuration of next step; 
(4) return (new configuration) 

Figure 5.10: The Algorithm for Backing-op Forerunner in One Step. 

Exit Border 

Qout -\(CP0ut> Youfc Kilt) 

Figure 5.11: An Example of the Initial Region. 

The initial motion planning will be performed by following basic steps: 

• Determine a reference line qrej. 

• Determine smoothness a. 

• Run forward Forerunner Simulation. 

• If no collision-free forward motion is possible, run backing-up motion 

simulation. 
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1.   Determination of Reference Line 

The reference line is used to drive the virtual robot to a desired direction in 

Forerunner Simulation. In the initial motion planning, the crossing position of the exit 

border, CP0Ut, is predetermined (in most cases, it is the center of the border). With the 

orientation of exit border, \\fout, it defines the exit configuration qout = (CPout, \\fout, kout). It 

is desirable to plan a motion that leaves the region at exit configuration (at the position 

CP0Ut and with orientation yout) because the exit configuration in this region is exactly the 

entrance configuration of next region on the path. Thus the line specified by the exit 

configuration of the initial region will be the first choice in determining reference line of 

forward Forerunner Simulation. In some cases, we may need to adopt a reference line other 

than the exit configuration of initial region. In this dissertation, four different lines will be 

considered useful in end-portion motion planning. We define these lines as follows: 

* Qi = Qout-init- The line specified by the exit configuration of initial region. 

• q2'- A line which passes through the position of initial configuration and is 

perpendicular to the qout4nit. 

* <?3 = ^out-next'- The line specified by the exit configuration of the region next to 

the initial region. 

• Q4 = Qref-next'- The line computed as the reference line in the region next to the 

initial one by the method described in mid-portion motion planning. 

The line qj and q2 are illustrated in Figure 5.12(a). The figure shows the examples 

of two different start configurations, qsl and qs2, which need different reference line in 

motion planning. The Figure 5.12(b) illustrates the situation that reference line q3 and q4 

are adopted. In the figure Rinit is the initial region where the start configuration locates, 

and the region Rnext is the region next to the initial region on the global path class. 

In this dissertation a line is specified by a configurations defined as q = (p, 0, k), 

where p can be any point on the line it defined. However, for planning convenience, when 
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a line is adopted as the reference lines in line tracking, we would like to use a more specific 

configuration to specify this line. That is the point p that will be the farthest point on the 

line where we expect a line tracking to converge. The reference line candidates qj and q$ 

are on the borders of the regions. The points on the specifying configuration are already the 

farthest points on the lines, because beyond those points the lines will be out of their 

regions. For line q2 and q4, the expected converge points can be calculated. The Figure 5.13 

illustrates how the expected converge point for line q2 is calculated. The line q2 is designed 

as a line perpendicular to the line specified by qout. Its orientation can be computed as G2 = 

\|/ou,±7t/2. 

Vout, °) 

93- Qout-nextg- (C^out* ^out> #) 

(a) (b) 

Figure 5.12: The Reference Lines in the Initial Motion Planning. 
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Qoul= (CPout, Vout> 0) 

perpendicular line tracking 

1 ^2=(p2,yVoat + %/2t0) 
1s= <Ps> 0s> ks) 

Figure 5.13: An Example of Reference Lines q2 in the Initial Motion 
Planning. 

For a smooth motion planning in the example of Figure 5.13, eventually there 

would be a perpendicular line tracking from a point p2 on q2 to line qout as indicated in the 

figure. For perpendicular line tracking using minimum desirable smoothness, the distance 

to converge is twice of the distance from the starting position to the reference line as shown 

on Table 4.3 and Table A.2. Since the line q2 is also designed to pass through the initial 

position, the distance to converge, d, can be calculated easily. As a result, the point p2 is 

then computed easily. Therefore the line q2 is defined as (p2, yout + K/2, 0) in the example 

of Figure 5.13. 

The reference lines described above are for the forward Forerunner Simulation. 

Once the reference line is determined, with proper smoothness the simulation starts a 

forward Forerunner Simulation. If the forward simulation can not complete the planning, 

then the backing-up motion simulation will be issued. As forward one, the backing-up 

motion simulation needs a reference line to start its work. Since the backing-up simulation 

is a supplemental tool whose main task is to make forward simulation possible to fulfill the 

end-portion motion planning, the forward reference line can be considered as its goal. So 

that while the backing-up simulation is running, the virtual robot's orientation is changing 

and gradually heading toward the direction of the forward reference line. This suggests that 

the reference line for backing-up motion simulation must have its orientation opposite to 
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the orientation of forward reference line. We conclude this subsection with defining the 

reference line for backing-up motion simulation as: 

Qbackup - (Ps> ^forward + ^ °) (Ecl 5-*) 

where ps is the position of start configuration, and 6/orwar^ is the orientation of 

predetermined forward reference line. 

2.  Dynamic Smoothness in Initial Motion Planning 

In order to simply the initial motion planning among various situations with start 

configuration, the minimum desirable smoothness will be computed dynamically 

depending on the relationship between the position of start configuration and the reference 

line. As shown on Table A.l and Table A.2 in Appendix A, the Max-Min smoothness for 

various orientation is 

a = 0.22 * dv (Eq 5.2) 

where the dy is the closest distance from the start configuration to the reference line. The 

smoothness computed by Eq 5.2 may satisfy most of line tracking cases. However, the 

distance dy can be very small, even close or equal to zero, but the smoothness used in 

steering function can not be too small. Therefore a lower bound of minimum smoothness 

is required. According to our experience in using steering function, the smallest 

smoothness that makes line tracking work is twice as much as the distance the robot 

advance in a motion control cycle (a step in simulation). For instance if each step is 0.1 cm, 

then the minimum smoothness is a = 0.2. As we know, the smaller the smoothness is, the 

sharper its turning will be.To avoid unreasonable sharpness, we set the overall minimum 

smoothness to be 

Gmin = 5.0 (Eq5.3) 

Therefore, the smoothness is determined as Eq 5.4 

a = max(amin, 0.22 * dy) (Eq 5.4) 
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3.   Motion Planning Simulation 

Since four lines can be taken as a reference line for forward forerunner simulation 

in initial motion planning, we will describe the motion planning simulation with those 

different reference lines individually in this section. In addition, the backing-up motion 

planning is also discussed in detailed in this section. We name the motion planning 

simulations as follows: 

• The First Planning Simulation. 

• The Second Planning Simulation. 

• The Third Planning Simulation. 

• The Fourth Planning Simulation. 

• The Backing-up Motion Planning Simulation. 

The initial motion planning begins with First planning simulation, then the other 

planning simulations may follow if necessary. 

a.   The First Planning Simulation 

This forward forerunner simulation takes the line specified by the exit 

configuration, qh of initial region as its reference line. In the forward forerunner 

simulation, the alternative tracking methods in Two-way Line Tracking (Appendix A) will 

be tried after the normal tracking fails to find a motion with its trajectory perfectly 

converging to the reference line. If a trajectory with perfect convergence and no collision 

is found, the First planning simulation is done. Then the motion will be planned to track the 

line q} directly. Figure 5.14 illustrates this planning. 

If there is a collision in the First planning simulation, we may need to try 

other simulations which is the Second Planning Simulation. We will discuss this simulation 

later in this section. 

If this simulation has no collision detected, but its trajectory does not 

converge in the region. This suggests that the start configuration is close to the exit border. 
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It may be better to track a reference line in the region next to the initial one. Therefore the 

Third Planning Simulation follows this case. 

9out ~, (cPout> Vout> kout) 

Figure 5.14: An Example of Forward Forerunner Simulation with No 
Collision and Converging in the Initial Region. 

b.   The Second Planning Simulation 

Figure 5.15 shows the situations when a collision will be detected in forward 

forerunner simulation. In the figure, qsl and qs2 represent start configuration in two 

different case. In the case with start configuration qsl, the image of start configuration on 

the exit edge falls on the border. When there is a collision in forward simulation, there is 

no other way which leads to the exit border but making a backward motion first. Thus in 

this case, the backing-up motion planning simulation will be tried. It will be discussed in 

the subsection e. In the case with start configuration qs2, the image of start configuration on 

the exit edge is not on the border. Although tracking the line specified by the exit 

configuration will result a collision in forward simulation, there might be a solution other 

than backward motion. This solution is to compute an alternative reference line q2 as 

described in Section C.l, and then try a simulation of tracking the alternative reference line. 

If the simulation makes its tracking trajectory a perfect convergence, the initial motion can 
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be planned to track q2 first followed by tracking the line of exit configuration as Figure 

5.16. 

1oul\- (cPout> Vout) kouU 

Figure 5.15: The Cases of Forward Forerunner Simulation with 
Collision Detected 

If the simulation with alternative reference line can not make a perfect 

convergence trajectory, the backing-up motion planning simulation then follows to seek the 

solution. 

9out\— (cPout> Youf» k0ut) 

Figure 5.16: An Example of Alternative Reference Line in Solving 
Forward Forerunner Simulation with Collision Problem. 
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e.   The Third Planning Simulation 

This simulation is conducted after knowing the start configuration is too 

close to the exit border to make tracking the reference line converge. It takes the exit 

configuration q3 in the next region on the global path class as its reference line for the first 

trial. If this simulation find that the tracking trajectory is non-collision and perfectly 

converges to the reference line, the simulation terminates and the motion is planned to track 

the reference line q3 as illustrated in Figure 5.17. 

93- 9out-nextg= (CPoul> V\>ut> 0) 

Figure 5.17: The Example of Initial Motion Planning with Reference 
Lines in the Region Next to the Initial Region. 

If the Third Planning Simulation find that it is not possible to have a perfect 

convergence in the tracking trajectory with q3 as its reference line, the other alternative 

reference line in the second region of the global path class will be computed and the Fourth 

Planning Simulation will follow to try to find the solution. 

d.   The Fourth Planning Simulation 

The line q4 will be computed and used as the reference line in this 

simulation.This line is defined in the region next to the initial one. Consulting the planning 

rule in mid-portion motion planning, we can identify the reference line in that region in 

mid-portion motion planning. It can be one of the center lines or the line specified by 
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entrance configuration or exit configuration. Since the entrance and exit border of the 

region are known, the position p4 on the line q4 = (p4, Q4, 0), where we expect the line 

tracking to converge, can be computed as described in Section C.l. 

The Fourth Planning Simulation is a forward forerunner simulation. It 

tracks the reference line q4 from start configuration qs. If it outputs a trajectory of perfect 

convergence, the initial region motion will be planned to track the reference line q4 until 

the robot reaches p4. Then a perpendicular line tracking from q4 to the line of exit 

configuration follows. Figure 5.18 illustrates this planning. If no such a trajectory is found, 

it goes to performing backing-up motion planning simulation. 

I3- Qout-nextg - (C^oui) ~%out> ®) 

Figure 5.18: The Example of Initial Motion Planning with Reference 
Lines in the region Next to the Initial Region. 

e.   The Backing-up Motion Planning Simulation 

When a single forward motion is not possible to complete the initial motion 

planning, the backing-up motion simulation will be the only solution to this problem. The 

goal this simulation is either the virtual robot backs up to the orientation of the forward 

reference line or the forward simulation achieves a perfect convergence. The algorithms for 

backing-up motion simulation is presented in Section C of this chapter. This simulation 

109 



requires two predetermined reference lines. One is for backward motion and another one is 

for forward motion. Basically the reference line for forward motion is the line defined by 

exit configuration in initial region for most cases. However, it can be a line which is 

perpendicular to the line of exit border as referred q2 in Section C. The simple rule for 

determining forward simulation reference line is: if the image of start configuration on the 

exit edge is not on the border, then compute a line q2 for the reference line. Otherwise, the 

reference line will be the line specified by the exit border. For backing-up motion 

simulation, the reference line is as Eq 5.1 in Section C.l. 

The smoothness for forward forerunner simulation is computed as Eq 5.4. 

For backing-up motion simulation, the minimum smoothness as Eq 5.3 will be applied to 

make the backward motion achieve its goal as quickly as possible. 

After the reference lines and smoothness are determined, the backing-up 

simulation algorithm with forward simulations inside of it can perform its first simulation. 

Once the goal is reached, the simulation stops. Let qs, qbw, qrefbe the start configuration, 

the configuration the backing-up simulation stops and forward reference line respectively. 

The initial motion is thereby planned as follows: (i) backing-up from qs to qbw. (ii) perform 

a forward motion tracking qref. Figure 5.19 demonstrates an example of initial motion 

planning with single backing-up simulation. In the example, the backing-up simulation 

terminates at the configuration where the forward forerunner can make a perfect 

convergence in tracking the forward reference line. 

In the case that the initial motion planning can not be completed by single 

backing-up simulation, a forward simulation and a backing-up simulation will be repeated 

in order until the goal is reached. In the repeated back and forth simulation, a few works 

will be processed before next simulation begins: 

• The last configuration, where the backing-up or forward simulation stops, is 

taken as an initial configuration for next simulation and its curvature is reset to 

zero. This is necessary and possible because back and forth motion is a 
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combination  of many  discrete  motions.  The  robot's  curvature  can  be 

discontinuous. 

• The smoothness for the forward simulation will be recomputed according to its 

distance to the reference line. 

♦ The reference line for the backing-up simulation will be recomputed according 

to the new start configuration: 

There is a possibility that neither backing-up nor forward simulation can be 

conducted. In this case, the simulation will terminate and report an error. 

i   Forward Forerunner 
I   Trajectory 

backing-up Trajectory 

Figure 5.19: An Example of Backing-up Motion Simulation in the 
Initial Motion Planning. 

4.   Initial Motion Planning Algorithms 

Some notations will be used in the initial motion planning algorithms. They are 

listed as follows: 

• qs: Start configuration; 

• qref = (pref, Qref, 0): current reference line; 

'    Qrefl = (Prefh ®refb 0): tne reference line for backing-up simulation; 

• Qreß = (Preß> ®reß> 0): ^e reference line for forward forerunner; 

• qh q2, <?f, q4: the lines defined in Section B.l; 



• dy, the distance from current configuration to the reference line; 

• o: current smoothness; 

• Gmin- The minimum smoothness as defined in Eq 5.3; 

• n^,: a path of a sequence of configurations used to store a forward trajectory; 

• Tlbw: a path of a sequence of configurations used to store a backing-up 

trajectory; 

• backup: a flag indicating whether backing-up motion is needed; 

• FWcollide: a flag indicating whether a collision exists in forward simulation; 

• FWPerfectConverge: a flag indicating whether forward motion converges 

perfectly; 

• BWcollide:  a flag  indicating  whether  a  collision  exists  in  backing-up 

simulation; 

• BWpath[]: a structure used to store backing-up paths; 

• FWpath[]: a structure used to store forward motion paths. 

The initial motion planning algorithms are presented as the followings: 

Algorithm InitialMP (qs, path, W) 

Input: q:: initial configuration; path: a global path class; W: a world model 
Output: Motion planning data structure 

(1) backup - FALSE; 
(2) FirstPlanning (qs, path, W) 
(3) if (backup) then /* back-up motion is needed */ 
(4) BackUpPlanning (qs, path, W); 

Algorithm FirstPlanning (qs, path, W) 

Input: qs: initial configuration; path: a global path class; M: a world model 
Output: Motion planning data structure 

112 



(1) qref= <?/,' /* the line specified by exit configuration in initial region */ 
(2) compute dy; 
(3) G = max (<Jmin, 0.22 * dv); 
(4) ForwardSimulation (qs, qref, G, W); 
(5) if (not FWcollide) then /* no collision */ 
(6) if (FWPerfectonverge) then 1* converge perfectly* 1 
(7) Motion Planning: Tracking qrej-from qs with smoothness G. 
(8) else /* not converge before pj on line qj */ 
(9) ThirdPlanning (qs, path, W); 
(10) else /* collision in initial region */ 
(11) SecondPlanning (qs, path, W); 

Algorithm SecondPlanning (qs, path, W) 

Input: qs: initial configuration; path: a global path class; M: a world model 
Output: Motion planning data structure and backup: a boolean variable 

(1) if (image of start configuration qs is on exit border) then 
(2) backup = TRUE; 
(3) else 
(4) qref= compute forward reference line q2; 
(5) " — "min' 
(6) ForwardSimulation (qs, qret, a, W); 
(7) if ((not FWcollide) and (FWPerfectConverge)) then 
(8) Planning: 
(9) 1. Tracking qreffrom qs with smoothness G until reaches qrej. 
(10) 2. Tracking qjfrom qref. 
(11) else 
(12) backup = TRUE; 

Algorithm ThirdPlanning (qs, path, W) 

Input: qs: initial configuration; path: a global path class; W: a world model 
Output: Motion planning data structure and backup: a boolean variable 

(1) Qref ~ a3< 1* aout°ftne re&on next to initial region */ 
(2) compute dy; 
(3) G = max (omin, 0.22 * dy); 
(4) ForwardSimulation (qs, qrep G, W); 
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(6) if ((not FWcollide) and (FWPerfectConverge)) then 
(7) Planning: Tracking qrejfrom qs with smoothness a; 
(5) else 
(9) Fourthplanning(qs,path,W); 

Algorithm FourthPlanning (qs, path, W) 

Input: qD: initial configuration: path: a global path class; W: a world model 
Output: Motion planning data structure and backup: a boolean variable 

(1) qref = compute q4; I* reference line of next region */ 
(2) compute dy; 
(3) a = max (omin, 0.22 * dy); 
(4) ForwardSimulation (qs, qrep a, W); 
(6) if ((not FW collide) and (FWPerfectConverge)) then 
(7) Planning: 
(8) 1. Tracking qrej-from qs with smoothness o until reaches pref.; 
(9) 2. Tracking q3 from qref. ; 
(10) else 
(11) backup = TRUE; 

Algorithm BackUpPlanning (qs, path, W) 

Input: qs: initial configuration; path: a global path class; W: a world model 
Output: Motion planning data structure 

(1) if (image ofqs is on exit border) then 
(2) 1reß = <ll>' 
(3) else 
(4) Qreü ~ compute forward reference line q2; 
(5) compute dy for forward forerunner with reference line qreß; 
(6) G = max (<5min, 0.22 * dy); 

(?)      Qrefl = (Ps> ®ref2 + *> °)>' 
(8) BackUpSimulation (qs, qreß, qreß, a, W); 
(9) counter = 1 ; 
(10) BWpathlcounter] = store TLbw; 
(11) if (FWPerfectConverge) then 
(12) FWpathlcounter] = store 11^; 
(13) while (BWcollide and not done) 
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(14) qnew = last configuration in 11^; 

(**) Qnew — (Pnew "new 0), 
(16) ForwardSimulation (qnew qref2, omin, W); 
(17) if (qnew = last configuration in Yl^) then exit and report error; 
(18) if (FWPerfectConverge) then 
(19) FWpathlcounter] - store IL^; 
(20) done = TRUE; 
(21) else 
(22) qnew = last configuration in EU,; 
[ZJ) Qnew ~ \Pnew "new ^'! 

(24) a = max (<3min, 0.22 * dv); 
(25) qrefl = (pnew, Qref2 + 7C, 0); 
(26) BackUpSimulation (qnew, qrefl, qref2, G, W); 
(27) increment counter; 
(28) BWpathlcounter] = store Hbw; 
(29) if (FWPerfectConverge) then 
(30) FWpath]counter] = store U^; 
(31) end while; 
(32) Planning; 
(33) while (counter >0) 
(34) backup tracking BWpathlcounter]; 
(35) forward tracking FWpathl counter]; 
(36) decrement backupPath; 
(37) Tracking qj; 

D.   FINAL MOTION PLANNING 

Let the path n = (Rj, Bj,...., Rn) be the global path class obtained in global path 

planning execution after a mission is given, where n > 1. The local motion planning for the 

final region Rn and probably the region near the final one is called final motion planning. 

The characteristics of the robot's motion in the final region of the path is that the robot must 

stop at the goal configuration specified in the given mission. A normal path tracking motion 

maybe suitable for some cases in which the orientation of goal configuration has small 

difference compared to the orientation of entrance border of the final region. In many other 

cases, however, the difference between those two orientations may be large. Then the 

simple path tracking motion may not be able to fulfill the task in the final region. One of 
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the methods for solving the final motion planning problem is proposed as Bidirectional 

Motion Planning [7]. 

As we notice that the Bidirectional Motion Planning is used to generate a reference 

path between two configurations. In the case of final motion planning, one of these two 

configurations is the goal configuration which is fixed and given by the mission. But 

another configuration is unknown until we determine where the Bidirectional Motion 

Planning commences will be better. In order to make a better or possible final motion 

planning using the Bidirectional Motion Planning algorithm, the determination of the 

starting configuration is important. However, this still remains an open question. 

Another important task in the final motion planning is to plan a collision-free 

motion. The Bidirectional Motion Planning is an excellent approach in planning a path to 

connect two configurations. However, it is provided that the planning will be performed in 

an obstacle-free space. As we know, final motion planning is based on a global path class 

which relies on decomposed regions. That means the obstacles exit not only in the real 

world, but also in the world model we are working on. For those reasons, the Bidirectional 

Motion Planning is considered not practical in this dissertation. 

Local motion planning is to plan a safe and symmetric path for robot to follow. The 

final motion planning is actually the mirror of the initial motion planning in the sense of 

symmetry. Therefore, we propose that the final motion planning be performed by the 

approach used in initial motion planning. Only by doing this, can the entire path planned 

from start configuration to goal configuration be symmetric to the path planned reversely. 

To apply the motion planning approach used in initial planning to final motion 

planning, the algorithm described in Section C can be adopted with a minor modification. 

First of all, the goal configuration qs = (ps, Qg, 0) needs to be replaced as Eq 5.5: 

qg = (pg, Qg+ 7C, 0) (Eq 5.5) 

That is to reverse the orientation of the goal configuration. The same operation will be 

applied to the orientations which define the entrance configurations, qin, of the final region 
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and the region prior to it. After then the entrance configurations will be rephrased as exit 

configurations. So as to the entrance borders and entrance edges. With all those orientations 

and names reversed, the final motion planning can be done by the algorithm presented 

below. The algorithms of all other subroutines called by the algorithm FinalMP will be 

similar to the algorithms described in Section C. 

Algorithm FinalMP (q„, path, W) 

Input: qg: goal configuration; path: a global path class; W: a world model 
Output: Motion planning data structure 

(1) backup = FALSE; 
(2) q„ = reversed q„; 
(3) Qout-init = reversed qinforfinal region; 
(4) Qout-next= reversed q[nfor the region prior to the final region on the global path; 
(5) FirsiPlanning (q„, path, W) 
(6) if (backup) then /* back-up motion is needed */ 
(7) BackUpPlanning (qg, path, W); 
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VI. YAMABICO HARDWARE ARCHITECTURE 

This chapter introduces the hardware structure of the robot - Yamabico-11 which is 

used to test most of our algorithms experimentally. 

A. OVERVIEW 

Yamabico-11 is a wheeled untethered indoor mobile robot for AI and robotics 

research. It has been developed at the Naval Postgraduate School over the last several 

years. However, the vehicle is a result of Dr. Yutaka Kanayama's long history of 

autonomous robotics research at the University of Electro-Communications, the University 

of Tsukuba, Stanford University, and the University of California at Santa Barbara [24], 

[25]. Its main CPU board consists of the SPARC microprocessor and a 16 Mbyte RAM 

storage and is mounted on a VME bus. Besides that, a dual-axis controller for two motors 

and two shaft encoders, a tailor-made sonar board, and a serial communication board are 

also mounted on the VME bus. One lap-top computer is used for a real-time input/output 

device. The size is 60(W) by 60(L) by 70(H) centimeters. It weighs about 60 kilograms. 

The differential drive kinematic architecture is used for the wheel system. Two 35 watts 

DC motors with shaft encoders are used with 1/24 gear boxes. Twelve 40KHz sonars and 

one CCD camera are mounted on board. Its power source is two 12 volt car batteries. 

When object code is downloaded from a UNIX system, the vehicle operates as an 

untethered (self-contained) autonomous robot. [19]. Figure 6.1 illustrates the Yamabico-11 

hardware architecture. 

B. IV-SPARC-33 CPU 

The Ironies IV-SPARC-33 is a single processor, VMEbus Interface, CPU board. It 

contains a 25Mhz SPARC Integer Unit, a Floating Point Unit, and a Cache Controller and 

Memory Management Unit. The card installed in Yamabico has 64 Kbytes of cache, and 

16 Mbytes of 80ns DRAM. It provides two RS-232 serial I/O ports, two programmable 

timers, and seven user-definable LEDs [26]. 

[19 



User 

Real Time 
Operation Interface 

Figure 6.1: Block Diagram of Yamabico-11 Hardware Architecture 

120 



1.   Address Map 

The Ironies SPARC board contains 16 Mbytes of physical memory, yet provides 32 

bit addresses (4 GBytes). This 4 GByte address space is logically divided into several 

regions. The three most important regions are the Local DRAM, Region 3, and Local I/O 

(Figure 6.1). 

a. Local DRAM 

The Local DRAM is the physical memory present on the board, and is 

addressed from 0x00000000 to OxOOFFFFFF. The DRAM array is organized into two-word 

(64-bit) interleaved banks of 8 Mbytes each. Bidirectional latching data buffers direct to 

and from the two banks. The DRAM contains the SPARC trap table, ISPARCmon stack, 

uninitialized data segment (bss), Global Work Area, and all the target program segments. 

The target program (application program) is loaded by default starting at location 

0x00018000. From this lower limit up, the text segment is first, followed by the initialized 

data and uninitialized data (bss). The region for target program stack starts from the address 

(DRAM TOP - OxOOOOOOFF) because the top 256 bytes are reserved for mailbox interrupts. 

This stack is extended downward from the top of this region. 

b. Region 3 

Region 3 starts at the end of Region 2, and extends to the bottom of the 

EPROM space. The default configuration provides addresses from OxFCOOOOOO to 

OxFFOOOO, however, only the upper boundary is fixed. The lower boundary may be 

changed by writing to the appropriate register as defined in the Ironies manual. MML11 

currently does not change the default address map, but does provide for Region 3 to be 

VMEbus A16 addressable. All devices on the VMEbus are addressed from Region 3. 

Addresses are obtained by adding the 16-bit base address of a specific hardware device to 

the Region 3 offset of OxFCOOOOOO. This includes the shaft encoders, quad serial boards, 

and sonar board. 
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Local I/O: Board 
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0x00003000 

0x00001000 

0x00000000 

Figure 6.2: Memory Organization of Ironies IV-SPARC-33 board on Yamabico-11 
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c.   Local I/O 

The Local I/O region contains the addresses for the registers which control 

operation of the Ironies SPARC board. They are addressed from OxFFFOOOOO to 

OxFFFFFFFF. Both limits are fixed. 

2. Registers 

There are two sets of registers which control the CPU board; one set consists of 8- 

bit registers, and the other consists of 16-bit registers. The 8-bit registers start at address 

OxFFCOOOOO, and the 16-bit registers start at address OxFFDOOOO. The addresses, 

functions, and default settings are clearly defined in the Ironies users manual. 

The value of these registers many be changed by writing directly to the appropriate 

address, or by using one of the two library functions provided with the CPU board. 

Similarly, their values can be read directly or through library functions.The current version 

of MML11 uses the direct write/read method in order to avoid additional overhead 

associated with a function call. 

3. Interrupt Map 

The Ironies SPARC CPU board emulates a 680x0-style interrupt-acknowledge 

cycle. A library function, mk_handler(), assigns a user defined interrupt handler to an 

appropriate interrupt vector. All interrupt vectors are defined in the Ironies users manual. 

The syntax for this function is: mkjiandler (vector_number, interrupt_handler) 

4. Internal Interrupts 

Internal Interrupts are those generated on the CPU board. The two most important 

are the Timer 1 and Timer 2 interrupts. Timer 1 can be set to provide interrupts at 50,100, 

or 1000 hz. Currently, MML11 uses Timer 1 to provide the 10ms (100 Hz) motion control 

interrupt. Timer 2 provides a broader range of interrupts, and is currently unused. The 

interrupt vectors for Timer 1 and 2 are defined by the Local Interrupt Vector Base Register 

(0xFFFC0057). 
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5.   External Interrupts 

External Interrupts are those generated off the CPU board. The most important are 

from the Quad Serial Boards, and the Sonar Board, which are handled through the 7 

VMEbus Interrupt Request lines. Currently the VMEbus cards are hardware jumpered to 

the following interrupts: 

IRQ1: Serial Board 0, ports 1A and IB (which are unused), and the #5 timer 

IRQ2: Serial Board 1, ports 1A, IB, 2A, 2B, which are all unused 

IRQ3: Serial Board 0, ports 2A and 2B (host and old console connections) 

IRQ4: Serial Board 1, #5 timer 

IRQ5: Unused 

IRQ6: No connection 

IRQ7: Abort button 

Since the Serial Board ports jumpered to IRQ2 are unused, this request line is being 

used to handle interrupts generated by the Sonar Board. The number of the IRQ does not 

reflect its priority. Priorities are set by modifying the appropriate IRQ Interrupt Control 

Register (OxFFFC0007-0xFFFC001F). Additionally, the VMEbus cards must be set to 

assert an interrupt vector as defined in registers 0xFFFC0087-0xFFFC009F. 

C.   SONARS 

The sonar system mounted on Yamabico-11 consists of a sonar ranging board and 

a sonar array consisting of twelve Nippon Ceramic T40-16/R40-16 ultrasonic range finder 

emitter/receiver pairs arranged around the robot's perimeter. The ranging board is an 

Ommibyte OB68K VME I/O board that is controlled by an 8748 microcontroller. The 

sonar board is a separate input/output controller that makes the overall sensor process more 

efficient [21]. 

Currently, Yamabico's 12 sonars are positioned around the periphery of the robot 

with 30 degree increments from the central one on the robot's front edge. The actual 

positions of sonars are measured from the center of the robot with an imaginary Cartesian 
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Coordinate system. This positioning provides the most comprehensive sonar coverage. 

Figure 6.3 illustrates the sonars' configurations. 

X 

(25.2, -14.1) #11 
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(23.6,-0.5) 
#0 #3 (24.7, -14.6) 
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♦ 
Forward 

#10 (12.1, -21.3) 

#7  (0.0, -20.5) 

#6 (-12.6, -21.3) 

(-23.0, 13.1)  #1 #2 #9 (-23.5, -14.9) 

(-22.6, -1.0) 

Figure 6.3: Yamabico-11 Sonar Configurations 

1.   Sonar Control 

The sonar control board is actually a daughtercard which rides on a VME bus 

mothercard. The mothercard carries address decoders, bus drivers and interrupt control 

circuitry in the Bus Interface Module (BIM). 

When the sonar has completed a ranging cycle an interrupt request is provided 

to the BIM. The BIM's control register holds information which determines whether an 

interrupt is to be generated or not, and if so which interrupt level is to be generated. 

Presuming an interrupt is generated, when the correct acknowledgment returns on the 
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address lines the BIM's vector register provides the vector table entry where the central 

processor may find the vector to the interrupt handler. The correct interrupt level, the 

interrupt enable bit and interrupt vector are loaded to the BIM during  software 

initialization. 

2.   Sonar Grouping 

In order to reduce sampling time the sonars are operated in logical groups of four. 

The sonars of a logical group are all pulsed simultaneously and thus the sampling time is 

reduced by a factor of four as compared to individual firing of the sonars. The sonars of 

each logical group are oriented in such a way as to: 

• prevent mutual interference 

• provide a "look" in all four directions from each group 

• present a similar aspect from each sonar during a rotational scan 

Thus, logical group 0 consists of sonars 0, 2, 5 and 7, group 1 consists of sonars 1, 

3,4 and 6; group 2 consists of sonars 8,9,10 and 11; and group 3 is a "virtual" group which 

consists of four permanent test values. The sonars of a group are symmetric about the 

robot's axis of rotation. 

In addition to being logically grouped, the sonars are also physically grouped. The 

physical grouping of the sonars is made to distribute the electrical load over the driver 

boards evenly and thus minimize any electrical transients associated with operation of the 

sonar. The physical grouping connects sonars 0, 2, 8 and 11 to driver/amplifier board 1; 

sonars 4, 5, 6 and 7 to board 2; and sonars 1, 3, 9 and 10 to board 3. The reader will note 

that pairs of sonars from logical groups are assigned to physical groups, for example, sonars 

0 and 2 from logical group 0 are assigned to physical group (driver/amplifier board) 1. 
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VII. MML-11 SOFTWARE ARCHITECTURE 

A.   OVERVIEW 

The Model-based Mobile-robot Language (MML) is a library of mobile robot- 

oriented functions written in the C language in UNIX environment [25]. It has been 

implemented on the autonomous mobile robot Yamabico-11 at UCSB and NPS. Over the 

years, MML has been improved through its many different versions. Currently, we are 

developing its eleventh version called MML-11. 

From the robot control point of view, MML-11 is a programmable software system 

for mobile robot operation. The main procedure of the system conducts all necessary 

initializations for both hardware and software. A user program will be called after the 

initializations are done. Besides the main procedure, MML-11 mainly consists of two 

subsystems: 

• Motion Control Subsystem and 

• Sonar Control Subsystem 

A user application program is required for the robot's operation using this software. 

For user application programming convenience, the system provides a set of well-defined 

functions called user functions as interface between the user and the system. The user 

functions are categorized into four modules: 

• Operating System Module 

• Motion Planning Module 

• Motion Control Module 

• Sonar Control Module 

1.   System Architecture 

This software is developed with a special architecture which incorporates 

sequential structure and interrupt-driven structure. The system initialization and the user 

application program will be basically executed sequentially in the main procedure of the 
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system. Alternatively, the separate subsystems, i.e. Motion Control Subsystem and Sonar 

Control Subsystem, are periodically called for execution via interrupt requests for the 

required motion control and/or sonar control operation. Figure 7.1 illustrates the MML-11 

software conceptual architecture. 

Function Library 

I Operating System 
Module 

Motion Planning 
Module 

Motion Control 
Module 

Sonar Control 
Module 

Function 
Support 

Sequential 
execution 

Interrupting 
Request 

Figure 7.1: MML-11 Software Conceptual Architecture. 

2.   Interrupt-driven Subsystems 

There are three primary tasks that may be running at any given time. The highest 

priority task is motion control subsystem, which performs all motion control computations 
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and in turn translates them into low-level wheels control. This subsystem is designed to 

interrupt other tasks in the frequency of 10 milliseconds. The next highest priority is the 

sonar control subsystem, which processes all incoming sonar returns and generates line 

segments from individual sonar returns from obstacles if required. The sonar control 

subsystem issues interrupt request in the frequency of 50 milliseconds. The lowest level 

priority, but basic, task is the user program. This part of the system feeds both immediate 

and sequential commands to the motion control subsystem through a command queue. All 

higher priority tasks interrupt the tasks with lower priorities to gain the CPU control. The 

design of MML-11 subsystems will be described in following sections. 

3. Real Time Operating System 

The Yamabico-11 onboard CPU, IV-SPARC 33, provides no standard operating 

system functions but a small set of libraries for console I/O. All other operating system 

primitives, such as interrupt handling, memory management, data formatting and logging 

have to be provided by the MML system. The detailed design of real time operating system 

for robotic system will be presented in Chapter VIII. 

4. User Program 

In this software, the robot's motion is instructed by the user program, which sends 

commands to the motion control system and/or sonar control system. However, motion 

planning and control specific concepts are hidden from the user. Only those defined as user 

functions are allowed to be used in user program. Sonar data is available to the user in either 

a raw or processed format via user sonar functions. Appendix C gives an user program 

example. The MML-11 user function specifications will be described in Chapter IX. 

B.   MOTION CONTROL ARCHITECTURE 

The motion control must be performed in a short period repeatedly. It is difficult to 

impose this control in user's program. As we design interrupt-driven software system, the 

foreground job and background job concepts are introduced into MML-11 motion control 

129 



Software. In MML-11, motion control mechanism is designed in the way that the execution 

of user program is somewhat separated from motion control. This allows users being able 

to program their applications by using simple functions. The user program is considered the 

foreground process which sends either immediate or sequential commands to the system. 

The robot motion control task conducted by motion control subsystem is considered the 

background process which performs motion control to achieve the motion instruction it 

gains control at a frequency of 10 ms. The immediate commands in the user program will 

be executed immediately, while the sequential commands will be enqueued to a buffer 

called the instruction buffer waiting for execution sequentially. The motion control 

subsystem fetches an instruction sequentially. When the execution of one instruction is 

finished, the control subsystem picks and executes another instruction from the buffer until 

the buffer is empty. The motion control architecture is illustrated in Figure 7.2. 
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Figure 7.2: MML-11 Motion Control Software Architecture. 
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C.   MOTION CONTROL SUBSYSTEM 

Motion control subsystem, named MotionSysControI, is the foreground process of 

the entire system. It is designed to compute all data necessary for motion control by 

interrupting system main procedure (or user program) every 10 milliseconds. When the 

interrupt request is granted, this subsystem gains the control of CPU. It actually acts as an 

interrupt service routine. This section presents the structure of MotionSysControI 

subsystem and discusses how the robot decides its transitioning dynamically. 

1.   System Structure 

MotionSysControI performs following computations for the robot motion control in 

order to accomplish its mission. 

• Measure the distance traveled, A s, in a cycle by reading robot's left and right 

shaft encoders. 

• Compute the orientation changed A9 

• Localize current configuration q. 

• Compute commanded linear and rotational velocity, VL, Vra, for next cycle 

• Translate commanded velocity into control signals, PWM, for driving motors 

• Transition point simulation to decide whether to read next instruction 

The block diagram in Figure 7.3 illustrates motion control subsystem structure. By 

reading robot's left and right shaft encoders, the process can measure the distance traveled. 

Computations of distance traveled and orientation changed are done in order by a module 

with outputs A s and A9. These data will be used by localization module to compute robot's 

current configuration. The current configuration q is needed for motion rule module to 

compute commanded linear and rotational wheel velocities, VL, V^, for next cycle. These 

velocities are translated in left and right PWMs as signals to drive corresponding motors. 

The last step in MotionSysControI is to determine whether or not to start transitioning to 

next path. This is done by a forerunner simulation in real time. If it decides to transition, 

the next motion command in the instruction buffer will be read and followed. 
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2.   Transition from One Path to Another 

The last step in MotionSysControl is to determine whether or not to start 

transitioning to next path. In MML-11 software system, the robot's motion can be 

controlled by tracking successive path segments using path tracking algorithm. The 

possible path segments are straight line and circular arcs. In order to smooth motion and to 

ensure safety, the robot must transition from one path to another at the right time and right 

position. The position where robot begins to transfer from the current path to the successive 

one is called leaving point. The transition point is defined as the last leaving point on the 

current path segment such that the robot's motion trajectory does not intersect the second 

path segment. The distance between the transition point and the intersection of two 

successive paths is called transitioning distance Figure 7.4 shows the different trajectories 

of a robot transitioning from a path pi to p2 at different leaving points. The Figure 7.4 (a) 

is an early leaving point which makes the trajectory longer to converge to path p2. In Figure 

7.4 (b), the robot transitions to path p2 at proper leaving point. Figure 7.4 (c) shows a late 

leaving point making the trajectory intersect path p2. 

pi 

(c) 

Figure 7.4: The Different Motion Trajectories 
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Therefore, transitioning from one path to another at the right time and right position 

is very much important in motion control. In this section, we introduce a new method to 

efficiently compute a transition point for robot transition control. 

a.  Real Time Dynamic Transition Control 

In normal transition control, the transition point can be approximately 

calculated in foreground process when more than one path segments are present in user 

program. For instance for transitioning from a path segment to a perpendicular path 

segment, the transition distance is about twice as much as the given smoothness o. Its 

transition point can be easily calculated according to this distance. After the transition point 

is obtained, the transition can be controlled by checking robot's current position against the 

transition point. When the robot reaches the transition point, it transitions to track the next 

path segment. Knowing transition distance, the transition point calculation is not too hard 

in this case. However, the transition distance is not fixed in other cases. On the contrary, it 

varies from case to case depending on the some other factors, e. g. orientation difference of 

two path segment, curvature limitations, velocity and so forth. This makes transition point 

calculation inaccurate. It requires complex functions or a large data table to properly 

determine the correct transitioning position. 

For more flexible transition control, we propose a new method to determine 

when to transition dynamically without bearing heavy cost. The method is to use the 

forerunner simulation in real time. A forerunner is a virtual robot which is located in 

certain distance ahead of the real robot to simulate the robot's future trajectory. If the 

forerunner's trajectory converges to the reference path, another new forerunner is created 

based on robot's new configuration. These forerunner simulations keep running until the 

forerunner's trajectory intersects the reference path. When intersecting happens, it implies 

that transitioning from the initial position of this forerunner might be too late for a smooth 

motion. The correct transition point must be earlier than the last one. Therefore, we take 

middle position of the last two forerunners' initial position as the transition point. 

134 



Figure 7.5 illustrates forerunner simulation operation. In the figure, pi 

represents current path and p2 represents successive reference path. When the real robot is 

in configuration vl, the forerunner, with distance S ahead of robot's current configuration, 

in configuration f 1 is created. The forerunner simulates the robot's trajectory assuming that 

fl is the transition point. When the first forerunner finished its job, the robot had moved to 

configuration v2 in Figure 7.5 (b). Since the trajectory of forerunner in f 1 converges to path 

p2, the second forerunner in f2 is created with the same manner. The simulation of 

forerunner in f2 found that its trajectory intersects path p2. Thus the simulation stops and 

the transition point is computed as the point Tp in Figure 7.5(b). 

pi 

4 
fi 

\ 
\ 
\ 

P2 

(a) 

Pi 

P2 

(b) 

Figure 7.5: The Forerunner Simulation. 

b.   Fast Convergence Detection 

In straight line tracking simulation, if the trajectory intersects the reference 

line, it can be identified easily by transferring the reference line to X axis (it means the line 
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is y=0) and checking Y coordinate of the trajectory. When Y coordinate becomes negative, 

it intersects the reference line. However, the simulation takes significantly longer time to 

identify the convergency situation if it is done with this method. Therefore a faster way to 

determine convergency of simulation is needed in forerunner simulation. 

In this section, we are introducing a fast way to check the convergence 

situation in the line tracking. We define shadow, denoted \, as the distance between pj and 

p2, where p1 is the image of a configuration q = (p, 0, k) on the simulated trajectory, and 

p2 is the intersection of reference path and the tangent line of the trajectory at configuration 

q (see Figure 7.6). 

X 

Figure 7.6: The Shadow of a Trajectory 

It's obvious that the shadow E, is geometrically related to the component of 

configuration q as equation 7.1. 

S y 
tanG 

(Eq7.1) 

We define the normalized shadow, denoted Z*, as equation 1.2, where o is the given 

smoothness. 
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F* = h. 
o 

(Eq 7.2) 

We observed the normalized shadows in the simulation, and found that the 

normalized shadow £* reaches a maximum value in all cases. Figure 7.7.(a) shows the 

trajectory of tracking the line of q = ((0, 0), 0, 0) with initial configuration qinit - ((0,10), 

- 7C12, 0). Figure 7.7.(b) shows it positive normalized shadows vs. trajectory length. The 

maximum normalized shadow is ^* = 0.18 when the trajectory intersects the reference line. 

Another simulation result is shown in Figure 7.8. Figure 6.8(a) shows the trajectory of 

tracking the line of q = ((0, 0), 0, 0) with initial configuration qinit - ((0, 22), -it 12, 0). 

Figure 7.8(b) shows it positive normalized shadows vs. trajectory length. The maximum 

normalized shadow in this case is ^* = 1.17. 
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Figure 7.7: Positive Normalized Shadow vs. Trajectory Length I 
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Figure 7.8: Positive Normalized Shadow vs. Trajectory Length H 

The simulation results reveal an interesting phenomenon, in which ^*max < 

0.9 if the trajectory crosses the reference path and if the trajectory converges to the 

reference path, £,*max - 0.9. The table 7.1 shows the experimental data with initial 

conditions given as follows. 

• Initial configuration ql = (p, 6, k) = ((0, y0), -Tt/2, 0) 

• Reference path ql = (p, 0, k) = ((0, 0), 0, 0) 

• Distance constant, a = 70.0 

• Step size, As = 0.2 

Table 7.1: Max Shadow of Different Initial Configuration 

yO 10 18 19 20 22 25 

S max 0.179 0.738 0.839 0.946 1.152 1.362 

conver- 
gency 

crossing crossing crossing converging converging converging 



The data in Table 7.1 shows the experimental results for some fixed initial 

condition. This phenomenon, however, is consistent with other given initial configuration 

and smoothness. Therefore, the fast way to determine whether a path tracking converges to 

its reference line is by checking the normalized shadow as: 

• converge      if ^*max > 0.9 

♦ intersect      if ^*max<0.9 

The fast converge detection method is especially valuable in real time 

dynamic transition control because the transition point can be determined earlier so that the 

transition motion can be much smoother. This method has been successfully applied to 

MML-11 which makes the software more flexible. 

D.   SUMMARY 

MML-11 is the newest version in MML development history. One of the important 

features of this new version is that it is written in ANSI C, yet is designed with an object 

oriented perspective. Individual source files are similar to C++ classes by way of their data 

encapsulation and initialization. Each source file encapsulates all local data statically, and 

the only means of accessing the data from outside the file is through a well-defined set of 

interface functions [19]. This feature secures the important control data from being 

accessed or modified illegally resulting unexpected behavior. On software engineering 

point of view, this is especially helpful in the long term system development and 

maintenance. 
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VIII. ROBOT REAL TIME OPERATING SYSTEM DESIGN 

A.   INTRODUCTION 

Operating systems are primarily resource managers. The main resource they 

manage is computer hardware in the form of processors, storage, input/output devices, 

communication devices and data. For a robotic system, the computing device is normally 

a commercial product in which the basic operating system embedded. For instance, 

Yamabico-11 is currently equipped with an Ironies IV-SPARC-33 CPU which is a single 

processor [26]. It provides general computing capabilities. In order to support robot control 

in various aspects, a suitable operating system needs to be developed. In this chapter we 

address the design of real time operating system for the robot focusing on tasks scheduling 

and dynamic memory management. 

The design of robotic operating system mainly involves the robot hardware control. 

In what manner the attached hardware is to be controlled is the guideline of such a design. 

Robot motion control is the central issue of robotic system. How the operating system is 

designed to handle motion control is the most important of concerns. While the motion 

control is been carrying out, gathering surrounding information from the desired sensors 

for navigation is a natural operation. The robot's motion must react to the senors 

information in most cases. For a single processor robotic system as Yamabico-11, the 

operating system is designed to determine when and how each of control routines takes 

over the CPU. Obviously, a multitasking operating system is needed for a robotic system 

to handle those controls. The multitasking operation is made possible by implementing an 

interrupt mechanism for the tasks. In addition to the tasks scheduling, dynamic memory 

management is another issue to be solved in Yamabico-11. 

B.   MULTITASKING OPERATING SYSTEM DESIGN 

In order to properly design an interrupt-driven operating system for Yamabico-11, 

the interrupt mechanism of IV-SPARC-33 board must be understood. The IV-SPARC-33 
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board uses seven of 15 SPARC asynchronous traps to emulate 680x0 interrupt level 1 

through 7 exceptions. The remaining eight asynchronous traps are undefined and are not 

presented to the SPARC processor. Table 8.1 lists the traps recognized by the 1Y-SPARC- 

33 board. 

Table 8.1: SPARC/680X0 Interrupt Level Equivalence 

SPARC Interrupt Level 680x0 Interrupt IACK Address 

1 1 0xFFFFFFF3 

2 2 0xFFFFFFE7 

3 3 0xFFFFFFF7 

4 4 OxFFFFFFEB 

5 5 OxFFFFFFFB 

6 6 OxFFFFFFEF 

7-14 Spurious Interrupt Undefined 

15 7(NMI) OxFFFFFFFF 

Traps are controlled by several registers in SPARC board depending on the trap 

types. The interrupting traps are controlled by a combination of the Processor Interrupt 

Level (PIL) field and Trap Enable (ET) field of Processor Status Register (PSR). The ET 

field in the PSR must be 1 for traps to occur normally. While ET = 1, the Integer Unit (IU) 

prioritizes the outstanding exceptions and interrupt requests according to their priority 

ranks. For interrupt requests, the higher interrupt level possesses higher priority, e.g. 

interrupt level 2 has greater priority than interrupt 1, and so on. When an interrupt request 

occurs, the IU compares the Interrupt Request Level (IRL) against the PIL. If IRL > PIL or 

IRL = 15 (Non-Maskable Interrupt, NMI), the processor takes the interrupt request trap and 

the control goes to that interrupt service routine [27]. 
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Although the SPARC architecture specifies 15 interrupt levels, the onboard logic is 

capable of requesting only interrupt levels 1 through 6 and 15. Therefore, we must be aware 

of the interrupt-acknowledgment precautions that the interrupt level 7 through level 14 are 

not defined in SPARC board and interrupt level 15 (NMI) is a special case which requires 

a special handling. To avoid unexpected results, when we design interrupt-driven operating 

system, level 7 to level 14 should not be used in any case and the use of interrupt level 15 

must be very carefully handled. 

1. System Design Considerations 

For a real-time robot system, the robot's motion and sensing devices operation 

should be controlled by the software at all time until its mission is accomplished. This 

implies that the interrupts of motion control system and sonar control system of Yamabico- 

11 should occur periodically. Thus, the determination of interrupt frequencies is an 

important part of the design. Another aspect of the design consideration is which task 

should possess higher priority so that it is allowed to interrupt other less important tasks 

and preventing being interrupted by them. The hardware interface which is available for the 

implementation of interrupt design should also be selected. 

With these requirements, the frame work of multitasking operating system design 

is clarified. The system design may involve several decisions and implementations 

including: 

• Priorities and frequencies assignment decisions; 

• Selection of available interfaces; 

• Interrupt handling service routines design and 

• Installation of interrupt handler. 

2. Interrupt Level and Frequency Assignment 

Higher priority tasks are allowed to interrupt one or more lower priority tasks when 

required. Therefore, tasks should be assigned an appropriate priority depending upon their 

relative importances when designing an interrupt-driven operating system for a robotic 
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system.The higher the interrupt level is, the higher the priority of the associated task will 

be. Since the motion control is the most important task compared with other tasks, it should 

be assigned with the highest priority among the asynchronous trap level. The sonar control 

task can be assigned with other lower priority level. As Table 10.1 indicates, the highest 

interrupt level in SPARC board is Level 6 and the lowest level is 1. We design the operating 

system of Yamabico-11 with following priorities assignments: 

• Motion control system: interrupt level 6. 

• Sonar control system: interrupt level 3. 

This design allows control of future sensing devices like vision system to be 

inserted between those levels according to their relative importance. The Figure 8.1 

illustrates the interrupts which may occur in the MML-11. 

Figure 8.1: MML-11 Interrupts. 

In addition to the priority assignment, the frequencies of interrupts also needs to be 

determined in the design. For more precise control of robot's motion, motion control 

system interrupts should occur over short periods, while still allowing other task to regain 

control. Thus, we design the frequency for motion system control to be 100 Hz, and for 



sonar system control 20 Hz. This means the motion system control interrupt occurs every 

10 milliseconds, while the sonar system control interrupt occurs every 50 milliseconds. 

And that the motion system control task will interrupt the sonar system control. In our 

estimation, the motion system control task runs for approximately 400 microseconds (0.4 

ms) and sonar control system task runs for approximately 3200 microseconds (3.2 ms). 

3.   Selection of Available Interface 

The programmed interrupts are made possible by specifying desired interrupts 

using onboard registers as an interface. Some of the unused board configuration registers 

are chosen for our interrupts design as follows: 

a. Registers for Motion System Control 

We use Timer 1 Interrupt for the interface to enforce motion system control. 

The Timer 1 can be set to interrupt at rates of 50 Hz, 100 Hz, or 1000 Hz. This interrupt is 

controlled by: 

• Timer 1 Interrupt Control Register (address 0xFFFC002B) 

• Local Interrupt Vector Base Register (address 0xFFFC0057) 

• Slave Select 0 / Timer 1 Control Register (address 0xFFFC00C3) 

The vector return to the CPU when it issues an interrupt acknowledge in 

response to the Timer 1 interrupt is 0x4A. This vector indicates the location of interrupt 

handler vector table which will be replaced by the address of the interrupt service routine. 

Thus using a variable, MotionlntVector, to represent the vector location, we have: 

MotionlntVector = 0x4A; 

b. Registers for Sonar System Control 

For sonar system control the VMEbus IRQ2* Interrupt Control Register 

(address OxFFFCOOB) is selected because the sonar card is connected to VMEbus line 

IRQ2*. The vector associated to VMEbus IRQ2* Interrupt Control Register is identified as 

0xA2. Using another variable, SonarlntVector, to represent this vector location, we have: 

Sonarlnt Vector = 0xA2; 
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4. Interrupt Service Routine 

The interrupt service routines can be executed upon receipt of the vector associated 

with a specific interrupt. The content of an interrupt service routine reflects its desired 

functionality. For motion system control, the routine, named MotionSysControl, is 

designed firstly to read the shaft encoders and computes the vehicle's odometry 

configuration estimate. Then the desired curvature and velocity are calculated. This 

information is used to determine the necessary pulse width modulation commands for 

controlling the left and right wheel drive motors. For the sonar system control, the routine, 

named SonarSysControl, calculates the range of enabled sonar from its returned value. 

Then write it to the memory in order to be used as required. The detailed design of routines 

is beyond this chapter. 

5. Interrupt Handler Installation 

The steps required to install an interrupt service routine are: 

• Set up the required interrupt control registers 

• Assign interrupt service routine vector location. 

The design of motion control interrupt and sonar control interrupt follow these 

steps. They are described this the following two sections. 

a. Motion System Control Interrupt Handler Installation 

Firstly we set up the Timer 1 Interrupt Control Register (0xFFFC002B) 

which specify the interrupt level. The bit 7 of this register is used to enable the interrupt 

associated with the timer. Its value 0 indicates the interrupt is enabled. The bit 6:4 are 

reserved. Their values should be kept as they are in default setting. The bit 3 is read only, 

and a write on this bit has no effect. The bit 2:0 specify the interrupt level seen by the CPU. 

Setting this register to enable the motion system control interrupt in level 6 makes the 

contain of the register as [00110110]. This setting can be done by using bit-wise operation 

based on default value of the register. Two additional bit-wise variables are set as 
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InterruptMask = 0x30 and InterruptLevelö = 0x06 to accomplish the logic operation as 

Figure 8.2. 

Register Default Setting 

RegisterMask 

InterruptLevelö 

((Default Setting) and (Regist< 

Register Final Setting 

7                                       0 
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= 00110110 

1 11 1   1 # o| l| 1 

0 0 1 1 0 0 0 0 

0 0 0 0 0 11 1 0 

srMask)) or (InterruptLevelö) 

0 0 1 1 0 1 1 0 

Figure 8.2: Setting Timer 1 Interrupt Control Register 

Then set up the Slave Select 0 / Timer 1 Control Register (0xFFFC00C3) 

which is mainly used to specify the interrupt frequency. The setting is done by logic 

operation on register default setting and a bit-wise variable EnablelOOHz = 0x80 as Figure 

8.3. The final contain of this register is [11010010] where the value 11 in bits 7 and ö set 

the frequency to 100 Hz. 

7                                       0 
Register Default Setting 0 j 0 j 0 ■ 0 0 II H 0x12 

EnablelOOHz 1 1 | o 0 0 0 0 0 0x80 

(Default Setting) or (InterruptLevelö) = 110100 10 

Register Final Setting 1 1 0 1 0 0 1 0 
1 

Figure 8.3: Setting Slave Select 0 / Timer 1 Control Register 

147 



After those registers are set up, the interrupts are ready to run. Then we can 

install the motion system control interrupt service routine address into the corresponding 

interrupt service routine vector location, using the mk_handler() library function as below: 

mk_handler(MotionIntVector, *MotionSysControl); 

MotionlntVector: Location in interrupt handler vector table. 

*MotionSysContro: Function pointer to be placed into handler vector table; 

b.   Sonar System Control Interrupt Handler Installation 

Sonar system control interrupt frequency is set by firmware on the sonar 

card. The implementation of sonar interrupt involves setting the VMEbus IRQ* interrupt 

Control Register only. In eight-bit width register, the bit 7 is used to enable the interrupt. 

Its value 0 indicates the interrupt is enabled. The bits 2:0 specify the interrupt level seen by 

the CPU. The rest of bits are reserved and should be kept as they are in default setting. To 

set the sonar system control interrupt to level 3 and enable the interrupt, bit-wise logic 

operations are performed on the register with its default setting and two other variables, 

RegisterMask = 0x78 and InterruptLeveB = 0x03. The final setting on the register is 

[01111011] as Figure 8.4. The values in the bit 2:0 indicates the sonar interrupt level being 

set to level 3. 

7                                       0 

Register Default Setting 1 
* ij ij i| i 1 0 1 OxFD 

RegisterMask 1 0    1 i  i  i 0 0 0 0x78 

InterruptLevelS 0 0 0   0   0 0 1 1 0x03 

((Default Setting) and (Regist erMask)) or (InterruptLeveB) = 01111011 

Register Final Setting 0 l ll 11 1 0 1 1 

Figure 8.4: Setting VMEbus IRQ* Interrupt Control Register 
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As motion system control interrupt handler installation, we can install the 

sonar system control interrupt service routine address into the corresponding interrupt 

service routine vector location, using the mk_handler() library function as below: 

mk_handler(SonarIntVector, *SonarSysControl); 

SonarlntVector: Location in interrupt handler vector table. 

* Sonar SysContro: Function pointer to be placed into handler vector table; 

C.   DYNAMIC MEMORY MANAGER DESIGN 

Time Complexity and space complexity have been two important measurement of 

an algorithm in evaluation of efficiency. That is why the dynamic memory management is 

so important in a software development. MML-11 is a set of robot control functions written 

in ANSI C. The C language has already had memory allocation/deallocation functions to 

manage dynamic memory request. Then why bother to install them in MML-11? The 

answer is because Yamabico-11 is a self-contained robot. There is no operating system in 

its CPU — IV-SPARC 33 to handle the memory management. In order to use the available 

memory in SPARC 33 economically and efficiently, MML-11 has to have its own memory 

management capability. 

The most common known methods used in dynamic memory management are the 

following buddy systems [28]: 

• Binary buddy system. 

• Fibonacci buddy system. 

• Boundary tag buddy system. 

We adopt Fibonacci buddy system for use in MML-11 for the following two 

reasons. Firstly it allows for a greater variety of possible block sizes in a given amount of 

memory than Binary buddy system. Second, the Fibonacci buddy system provides an 

efficient method to allocate and deallocate memory blocks. The techniques the Fibonacci 

buddy system used to allocate and deallocate memory are briefly described in Appendix B. 
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In order to properly design a memory management system, the memory organization of 

working CPU board needs to be understood. 

1. IV-SPARC 33 Memory Organization Feature 

Yamabico-11 onboard CPU has DRAM of size 16 Mega bytes. Its memory 

organization is illustrated in Figure 6.1. The DRAM array is organized into two-word 

(64-bit) interleaved banks of 8 Mbytes each. Bidirectional latching data buffers direct to 

and from the two banks.This is the physical memory space where we can load the robot 

software for execution. Loading target process to the memory is in upward direction 

starting from the bottom. Although DRAM address ranges from 0x00000000 to 

OxOOFFFFFF, the space between 0x00000000 and 0x00018000 is reserved for system use. 

Thus, when a target process (the compiled programs called kernel) is downloaded to the 

SPARC board, it starts at address 0x00001800. Following the kernel, the uninitialized 

variables are placed followed by the initialized variables. The top address of the memory 

block is occupied by the target process and its variables depends on the size of the 

programs. On the upper part, the space between OxOOFFFFFF and OxOOFFFFOO is reserved 

for future use. The rest of memory space in DRAM will be used for stack of the client's 

program. The memory used by the stack is arranged in downward direction from the top 

the DRAM (actually it starts at the address OxOOFFFFOO). 

2. Memory Block for Dynamic Allocation 

When allocating a memory block to a request dynamically, caution must be taken 

that the memory space designated to system operation should not be interfered with. For 

SPARC-33 CPU, it's obvious that the only space that can be used for this purpose is the 

space from the bottom of program stack down to the top of memory occupied by initialized 

variables. Unfortunately, those addresses are not fixed. In other words, it is difficult to 

exactly measure what space will be available for dynamic allocation use. However, the way 

CPU handle the DRAM helps us find the appropriate space. As aforementioned, the target 

process stack will consume the space from the address OxOOFFFFOO downward. In the 
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meantime, target process text (program) and data are stored upward starting from 

0x00018000. In order to prevent possible overlaps between the data in dynamic memory 

blocks and that of other spaces, our policy is to set the dynamic memory block of size 4 

Mbytes in the middle of DRAM. This decision of choosing proper space for use is 

reasonable. By looking at the size of object codes of current MML-11 program, we found 

that it is relatively small (about 400 kbytes) compared to the total size of DRAM in SPARC. 

Therefore we decide to make the top address of dynamic memory space at 0x00800000 

which is exactly the midway point of 16 Mbytes DRAM. This allows for a stack having 

about 8 Mbytes to consume and the MML-11 kernel can be extended up to more than 3 

Mbytes. 

3.   Memory Block Partition 

In order to allow a memory block being returned to the available list to be coalesced 

with any other block(s) in the list, the memory block must be partitioned in such a way that 

any size can be represented as the sum of two smaller sizes and that the neighbor blocks are 

easy to identified. The most famous sequence of numbers having this property is the 

Fibonacci sequence.Therefore, the Fibonacci buddy system is adopted for memory block 

partition in MML-11 operating system design (see Appendix B). We design dynamic 

memory allocation function with memory block partitioned into the sizes of Fibonacci 

sequence (in byte) as follows: 

F1 = 8 

F2=16 

Fi = F(i-l) + F(i-2)    for i > 2 

The sequence generated is as follows: <8, 16, 24, 40, 64, 104, 168, 272, 440, 712, 

1152, 1864, 3016, 4880, 7896, 12776, 20672, 33448, 54120, 87568, 141688, 229256, 

370944, 600200, 971144, 1571344, 2542488, 4113832>. 

Why do we set F} = 8 instead of any number smaller? This is because IV-SPARC- 

33 memory has 8 bytes addressable boundaries and this size of the block will be used to 
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compute the address of its buddy blocks. Thus all partitioned blocks must be of size of 

multiple of 8 to meet address alignment requirement. This important feature was identified 

after many testing. 

4.  Dynamic Memory Allocation Functions Design 

As stated in Appendix B, the bookkeeping data is needed in each block for 

Fibonacci buddy system operation. In MML-11, we define a data type in C as follows: 

typedef struct head{ 

unsigned int  Active: 1; 

unsigned int  Lbc:7; 

unsigned int   Size; 

struct head    *next; 

struct head *prev; 

} HEADER; 

where Active is used to indicate whether the block is active or not. The unsigned integer 

Lbc is used to maintain a record of how deeply the block is nested as left buddy of other 

blocks. The size is obviously used to indicate the size of a memory block. The next and prev 

fields of the structure are pointers pointing to its next and previous block in the available 

list respectively. When a block is active, i.e. being assigned to a request, these two fields 

are not used. The algorithm for maintaining this left buddy count involves these steps. 

• As a block is split, the resulting left buddy has its left buddy count field 

increased by one. The resulting right buddy has its left buddy count field set to 

zero. 

• As coalescing occurs, the left buddy must always have its left buddy count field 

decreased by one. 

With the data structure for bookkeeping data of the memory block, the memory 

allocation and deallocation functions can be designed using the general algorithms 

described in [28]. 
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IX. MML-11 LANGUAGE SPECIFICATION 

A. OVERVIEW 

In this chapter, we describe the design of user functions which will be used as 

interface between user and MML-11 software. The specifications of functions for motion 

control, sonar control and geometric calculation are presented. Some of basic data 

structures which will be used to describe the functions are presented also. The user 

functions are categorized into following subsets: 

• Geometric functions 

• Motion planning functions 

• Motion control functions including sequential functions and immediate 

functions. 

• Sonar control functions. 

The geometric functions defines some utility functions for the algebraic 

manipulation of geometric variables. The motion planning functions provide the user 

simple interface functions to build a world model and to conduct motion planning when 

giving a specific mission. The motion control functions include sequential functions and 

immediate functions. The sequential functions define a set of motion control commands 

that will be stored in a buffer when they are used in the user program and will be executed 

sequentially as robot's background tasks. The immediate functions define the commands 

which take effect immediately when they are executed in user's program. The sonar control 

functions are the functions used to control sonar operation and to obtain sonar data. 

B. DATA STRUCTURE 

1.   Point 

The POINT structure is used to describe a position in two-dimensional cartesian 

coordinates system. The structure includes a double X and a double Y. 
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2. Velocity 

The VELOCITY structure is used to describe a two dimensional velocity vector. 

The data structure is made up of two doubles that represent the linear and rotational 

elements of velocity. They are appropriately named Linear and Rotational, respectively, in 

the VELOCITY structure. 

3. Configuration 

The CONFIGURATION is the standard structure for describing location and 

direction for an object. It consist of Posit, with type of POINT, which identifies an objects 

position in two dimensional cartesian coordinates. Another element is Theta of type double 

that describe's the object's orientation in relation to the X coordinate. Finally, there is 

another double called Kappa that represents the curvature of an object's path. 

4. Path Element 

The PATH_ELEMENT data structure is used to describe and store the various 

types of movements. This data structure consist of config which is of type 

CONFIGURATION. It holds the configuration of the path that the robot is to follow. 

PATH_ELEMENT also contains pathType, which is of type PATH_TYPE. A 

PATH_TYPE is a data structure used to identify the various paths that are available to the 

robot. It consist of the mode which is of type MODE and class which is of type CLASS. 

Type MODE is an enumeration type that gives a name to each path that the robot follows. 

Presently, the modes that are available include NOMODE, ENDMODE, STOPMODE, 

PATHMODE, ROTATEMODE, BIDIRMODE, KSPIRALMODE, PARAMODE, 

FOLLOWMODE and REGIONMODE. Type CLASS, which is also an enumeration type, 

is used to name and categorize the various PATHMODE types. The list of classes include 

NOCLASS, LINECLASS, CIRCLECLASS, BLfNECLASS, and BIDIRCLASS. 
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C.    USER FUNCTION SPECIFICATION 

1.   Geometric Functions 

a. Euclidean Distance 

Syntax: double euDis(pi, p2) 

Parameters: POINT pi; 

POINT p2; 

Description: 

This function computes an returns the Euclidean distance between two given points 

b. Normalize 

Syntax: double norm(angle) 

Parameters: double angle; 

Description: 

This function, when given an angle in radian, returns a normalized angle between - 

K and K. This is the most common normalizing function used in the system. 

c. Define Configuration 

Syntax: CONFIGURATION defineConfig(x, y, theta, kappa) 

Parameters: double x; 

double y; 

double theta; 

double kappa; 

Description: 

When passed the values that define a configuration (x, y, theta, kappa), this function 

allocates and assigns a configuration. It returns a configuration. 

The configuration can be used to represent a path which is either a line or a circle. 

If the configuration is defined with curvature zero, i.e. kappa = 0.0, it specifies a 

straight line passing through the point (x, y) with orientation theta. If its curvature 
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is greater than zero, i.e. kappa > 0.0, the path is a counterclockwise circle. If kappa 

< 0.0, then the path is a clockwise circle. Figure 9.1 illustrates these concepts 

kappa > 0.0 (counterclockwise) 

kappa = 0.0 (straight line) 

kappa < 0.0 (clockwise) 

Figure 9.1: A Configuration Represents a Line or a Circle 

d. Reverse Configuration 

Syntax: CONFIGURATION reverseConfig(ongma/) 

Parameters: CONFIGURATION original; 

Description: 

The purpose of this function is to reverse the orientation of a given configuration by 

180 degrees. It returns the reversed configuration. 

e. Inverse 

Syntax: CONFIGURATION inverse(ongma/) 

Parameters: CONFIGURATION original; 

Description: 

The purpose of this function is to calculate the inverse of a given configuration such 

that: original * inverse = Identity. The parameter --original — is the original 

configuration in global coordinates. This function returns the inverse configuration. 
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/.   Compose 

Syntax: CONFIGURATION compose(/zr.rt, second) 

Parameters: CONFIGURATION/^; 

CONFIGURATION second; 

Description: 

The purpose of this function is to calculate the composition of two configurations. 

Specifically, the function takes parameter —first and composes it with parameter - 

- second to calculate and return the composed value. The returned value is the goal 

configuration in global coordinates. 

g.   Circular Arc 

Syntax: CONFIGURATION CircularArc(/, alpha) 

Parameters: double /; 

double alpha; 

Description: 

Given a tangential orientation alpha and the arc length / in a curve, this function 

computes its configuration in the local coordinate system [19]. In motion control 

case, length would actually be delta-s and alpha would be delta-theta. The function 

can be called to determine the configuration after the incremental move in the local 

coordinate system of the original configuration. 

h.  Intersection of Two Lines 

Syntax: CONFIGURATION intersectLineToLine^i, q2) 

Parameters: CONFIGURATION^; 

CONFIGURATION q2; 

Description: 

Given two configurations representing straight two lines, this function calculates 

the intersection of lines and returns the configuration of the intersection. 
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i.   Depth 

Syntax: double depth(p, alpha) 

Parameters: POINT p; 

double alpha; 

Description: 

Given a point p and the orientation of the point alpha, this function computes the 

depth of the point along a line defined by the parameters. It returns a value of type 

double. 

2.   Motion Planning Functions 

a. Creating World Model 

Syntax: void createModel(wor/d) 

Parameters: worldModel world; 

Description: 

This function creates a world model decomposing the free space of a given world 

into K-regions. It will generate the a set of data which is needed in planning robot's 

motion. The resultant data includes a world model, World, a region table, 

RegionTable,  a border  table,  BorderTable,  an edge  table,  EdgeTable  and 

connectivity graph, CGraph. 

b. Global Path Planning 

Syntax: void FindPath(wor/d, startConfig, goalConfig) 

Parameters: worldModel world, 

CONFIGURATION startConfig, 

CONFIGURATION goalConfig; 

Description: 

This function finds the shortest path connecting the initial region and the final 

region which contains start configuration and goal configuration respectively. The 

158 



output of this function is a sequence which begins with a region followed by a 

border repeatedly and ends with a region. In the sequence, the first element is the 

region which contains start configuration and the last element is the region where 

the final configuration resides. The border between two regions in the sequence is 

their common. 

c.   Local Motion Planning 

Syntax: void LocalMP(wor/d, startConfig, goalConfig, path) 

Parameters: worldModel world, 

CONFIGURATION startConfig, 

CONFIGURATION goalConfig; 

pathClass path; 

Description: 

This function generates the motion instructions for each regions along the path. 

Those instructions will be taken to drive the robot in each region and finally stop 

the robot at the final configuration. 

3.   Motion Control Sequential Functions 

The sequential functions define a set of motion control commands which are stored 

in a buffer that acts as an interface between user and robot. When the user program is being 

executed, commands of this type included in the user program do not take effect 

immediately instead they are loaded in buffer as motion instructions. The motion control 

system reads the instructions from the top of buffer sequentially and controls the robot's 

motion accordingly. The transition control from one instruction to another is described in 

Chapter IX. The specifications of those functions are listed below. 

a.   Tracking a Line 

Syntax: void Iine(<?) 

Parameters: CONFIGURATION q; 
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Description: 

The function defines a command that orders the robot to follow the line or circle 

specified by the configuration q. If the robot's last configuration before the 

command is executed is not on the track of the line specified, the robot uses steering 

function to transfer to the line with smooth motion. Figure 9.2 illustrates robot's 

behavior when executing line(q) with a straight line q. 

Figure 9.2: The Line Function 

b.   Tracking the Line from Its Back and Stopping 

Syntax: void stopO(<?) 

Parameters: CONFIGURATION q; 

Description: 

This function defines a command which steers the robot to track the line specified 

by the configuration q from its back. If the robot's image is on the back half of the 

line, the robot tracks the line as function line() and stops when its image reaches the 

configuration. If the robot's image falls on the forward part of the line initially, the 

robot would not move, (see Figure 9.3) 
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The robot would not 
move in this case 

Figure 9.3: The Backward Line Tracking with Stop 

c.   Symmetrically Tracking a Line from Its Back with Stopping 

Syntax: void stopl(g) 

Parameters: CONFIGURATION q; 

Description: 

This function defines a command which steers the robot to track the line specified 

by the configuration q from its back with a symmetric trajectory. This type of line 

tracking is called symmetric line tracking. Let qs be the robot's initial configuration 

and qsr be a line specified by the reversed configuration of qs. Assuming qr is the 

reversed configuration of the parameter q passed in by the function. In the 

symmetric line tracking, a forerunner (virtual robot) simulation is needed to 

generate a trajectory running back from qr by tracking the reference line specified 

by qsr The following steps are taken in order: 

• Stepl: While the real robot is moving straight forward (by tracking the line 

specified by the initial configuration qs), run the forerunner backward as stated 

above and store the trajectory in a path II by appending a reverse configuration 

(negate its curvature also) of forerunner's current configuration. 

• Step 2: Compare real robot's position against forerunner's. If they do not 
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meet, continue Stepl. Otherwise, stop the forerunner simulation and start to 

track the prestored path H until the robot reach the configuration q. 

•    Step 3. When the configuration q is reached, the robot stops. 

Figure 9.4 illustrates the symmetric line tracking concept. In using this function, the 

caution must be taken that it is user's responsibility to make sure there is enough 

distance between initial configuration qs and configuration q to allow forerunner's 

trajectory to converge to its reference line. Otherwise the real robot and forerunner 

may not meet each other and it may cause an unpredictable robot behavior. 

Real robot 

Qs 

Figure 9.4: The symmetric Line Tracking with Stop 

d. Symmetrically Tracking a Line from Its Back without Stopping 

Syntax: void pass(g) 

Parameters: CONFIGURATION q; 

Description: 

This function defines a command which can make a robot have similar behavior as 

symmetric line tracking defined in function stopl() except it will not stop at the 

configuration q. Instead, when robot pass configuration q, it keeps tracking the line 

specified by q. 

e. Rotation 

Syntax: void Rotate(theta) 

Parameters: double theta; 
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Description: 

This function is to command the robot to rotate a given angle. Negative angle makes 

the robot rotate clockwise, while positive angle makes an counterclockwise 

rotation. 

/.   Switch Robot's Heading Direction 

Syntax: void switchDir() 

Parameters: void; 

Description: 

This function reverses the heading direction of the robot. 

g.   Set Robot's Configuration 

Syntax: void setRobotConfig(^f) 

Parameters: CONFIGURATION q\ 

Description: 

This function sets robot's configuration to a given configuration q. 

4.   Motion Control Immediate Functions 

a. Set Path Element 

Syntax: void setPathElementCnewPütf/z) 

Parameters: PATH_ELEMENT newPath; 

Description: 

This function sets   the value of the current path element in motion control to the 

path element passed in as a parameter. 

b. Get Path Element 

Syntax: PATH_ELEMENT getPathElement(vozd) 

Parameters: void; 

Description: 

This function retrieves the current path element in the motion control module. 
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c. Set Robot's Configuration Immediately 

Syntax: void setRobotConfiglmm(g) 

Parameters: CONFIGURATION q; 

Description: 

This function sets robot's configuration to a given configuration q immediately. 

d. Set Robot's Linear Speed Immediately 

Syntax: void setLmYe\Imm(speed) 

Parameters: double speed; 

Description: 

This function sets the robot's linear velocity immediately. 

e. Set Robot's Rotational Speed Immediately 

Syntax: void setRotVellmm^/wif) 

Parameters: double speed; 

Description: 

This function sets the robot's rotational velocity immediately. 

/.   Set Robot's Linear Acceleration Immediately 

Syntax: void setLinAccImm(acc) 

Parameters: double ace; 

Description: 

This function sets the robot's linear acceleration immediately. 

g.   Set Robot's Rotational Acceleration Immediately 

Syntax: void setRotAccImm(racc) 

Parameters: double race; 

Description: 

This function sets robot's angular acceleration for speed changes in rotation. 
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h.  Set Sigma Immediately 

Syntax: void setSigmalmmO/gma) 

Parameters: double sigma; 

Description: 

This function sets the robot's Sigma which control the sharpness of it trajectory 

when the robot is turning. 

i.   Set Total Distance traveled Immediately 

Syntax: void setTotalDistancelmm(efotance) 

Parameters: double distance; 

Description: 

sets the total distance travelled by the robot to the value passed as a parameter 

j.    Get Total Distance traveled Immediately 

Syntax: double getTotalDistancelmm(vojd) 

Parameters: void; 

Description: 

Returns the total distance travelled by the robot. 

k.   Stop Immediately 

Syntax: void stoplmm(void) 

Parameters: void 

Description: 

This function stops the robot immediately with the current acceleration rate until the 

speed reaches 0. 

/.   Halt the Robot Immediately 

Syntax: void haItImm(vo/<i) 

Parameters: void 

Description: 
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The function brings the robot to a stop with the current acceleration rate. The robot 

stays in the state until resumelmm() function is called. When the resumelmm() 

function is called, it resumes the original motion without changes. 

m. Resume the Robot"s Motion Immediately 

Syntax: void resumelmm(voirf) 

Parameters: void 

Description: 

The function allows the robot to resume the motion it was executing before the 

haltlmmO command was given. 

n. Set the Robot's Motor On 

Syntax: void MotionOn(voi<i) 

Parameters: void 

Description: 

Enables the motor control functionality. 

o.   Set the Robot's Motor Off 

Syntax: void MotionOn(vofd) 

Parameters: void 

Description: 

Disables the motor control functionality. By calling this function, users can push 

Yamabico as they like. 

p.   Logging Motion Data 

Syntax: void Motionlog(*Filename, Frequency, BufferSize) 

Parameters: char ^Filename, int Frequency, mi BufferSize; 

Description: 

This  function  prepares  the  tracing  system to  log  motion  data.  Tracing  is 

automatically turned on after this function is called. The Filename specifies a file 
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name that will be used to store data when the data is uploaded to the host. The 

Frequency specifies how many sonar cycles are skipped before data is logged. 

5.   Sonar Control Functions 

a. Enable Sonar 

Syntax: void EnableSonar(sonarNumber) 

Parameters: int sonarNumber 

Description: 

This function enables the sonar group that contains sonarNumber, which causes all 

the sonars in that group to echo-range and write data to the data registers on the 

sonar control board. 

b. Disable Sonar 

Syntax: void DisableSonar^onar/Vumo^r) 

Parameters: int sonarNumber 

Description: 

This function removes the sonar sonarNumber from the enabled_sonars list, ff 

sonar sonarNumber is the only enabled sonar from it's group, then the group is 

disabled, Otherwise, the group will continue echo ranging until all sonars in group 

are disabled. 

c. Logging Sonar Data 

Syntax: void Sonarlog(f 'requency, BufferSize, SonarNumber, LogType) 

Parameters: int Frequency, int BufferSize, int SonarNumber, int LogType; 

Description: 

This function prepares the tracing system to log sonar data. The Frequency specifies 

how many sonar cycles are skipped before data is logged. The Buffersize specifies 

how many bytes of storage to allocate to save the data. The SonarNumber indicates 

the sonar you wish to log data. The LogType specifies the type of data to be logged. 
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The type of logging data could be SONAR_RAW which logs the sonar range, 

SONAR_GLOBAL which logs the object's x, y coordinates and its range, 

SONAR_SEGMENT which logs segment data, and SONAR_ALL which indicates 

to log all three types of data. 

d. Get Sonar Returns 

Syntax: double Sonar(sonarNumber) 

Parameters: int sonarNumber 

Description: 

This function returns the distance (in centimeters) sensed by the sonarNumber-th 

ultrasonic sensor. If no echo is received, an INFINITY (999999.0) is returned. If the 

distance is less than 10 cm, then a 0 is returned. 

e. Get Global Sonar Returns 

Syntax: POINT Gloh&\(sonarNumber) 

Parameters: int sonarNumber 

Description: 

This function returns the data of type POINT which indicates the global x and y 

coordinates of the position of the last sonar return. 

/.   Get Segment 

Syntax: Segment GetSegment(sonarNumber) 

Parameters: int sonarNumber 

Description: 

This function returns the pointer to the oldest completed unread segment of the 

sonar passed in. If there is no completed unread segment NULL is returned. 

g.   Enable Linear Fitting 

Syntax: void EnableLinearFitting^onar/Vwmö^r) 

Parameters: int sonarNumber 
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Description: 

This function enables the linear fitting algorithm to be active. The algorithm gather 

data points from sonar sonarNumber and form them into line segments. 

h.  Disable Linear Fitting 

Syntax: void DisableLmearFitting(sonarNumber) 

Parameters: int sonarNumber 

Description: 

This function causes sonar system to cease forming line segments for sonar 

sonarNumber. 
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X. SENSOR-BASED MOTION NAVIGATION 

A.   SENSOR-BASED MOTION CONTROL 

The most typical way of using steering function is tracking a path specified by a 

configuration q. When the robot is tracking the path, Afc, A6, and M can be computed by 

motion control subsystem to determine the motor control value and eventually be used to 

drive the wheels in a short interval (which is 10 ms in MML-11). 

In addition to path tracking, there are some other flexible motion control methods 

which are helpful in local motion planning. This method requires integration of robot's 

sensors with motion control algorithm while not using path segment. Since motion control 

is basically based on the sensor returned information, we called it a sensor-based motion 

control. 

The essential idea of this new method is based on the fact that obstacles present in 

the working environment and the sensors are able to detect those obstacles and to return 

their distances for processing. We assume that the obstacles are all of rectilinear polygons 

and they have walls and corner on their outer appearance. Therefore, it is possible for a 

robot to travel in the free space along obstacles' outer boundary and to keep certain constant 

safety clearance (Safety clearance concept is to be defined in Section B). We name this kind 

of robot's behavior as wall-following. Since keeping clearance from objects is important 

in wall-following motion, the robot will travel along a wall, follow a wall in other words, 

with clearance required when it is available or desired. But when a comer is eventually met 

in wall-following, the robot needs to change its orientation to keep following the object. 

During the robot changing its heading orientation, it is traveling along the comer, following 

the corner in other words, trying to keep the required clearance from the object so that it 

can continue to perform the same motion when a wall is available again. Since the walls 

and comers are interpreted as edges and vertices of polygons in geometry, we name the two 

different motions described above as edge-following motion and vertex-following motion 

respectively. The wall-following motion can be either right-wall-following or left-wall- 



following depending upon right clearance or left clearance the robot is trying to keep from 

objects for navigation. For example, if the robot intends to keep its left clearance with 

objects, the wall on the robot's left will be used for navigation, and then the wall-following 

motion is called left-wall-following motion. 

B.   CLEARANCE DEFINITION 

In wall-following Motion the robot will use sensors for navigation, thus safety 

clearance is an important factor. For a better understanding of how the sensors are used in 

motion planning, first we define some terminologies related to safety clearance. The 

clearance w0 is defined as the distance from the robot's outside edge of the wheels to the 

object. The distance data the sensor returns is raw data which indicates how far the object 

is from the sensor. With the sensor configuration in hand, the clearance w0 can be 

computed. The robot's safety distance Wi is defined as the summation of clearance w0 and 

half of robot's width HWidth. Figure 10.1 illustrates the definitions of clearance elements. 

/ 
i 

wheel 

center of robot 
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k+ 
HWidth 

clearance w0 

safety distance wj 

Figure 10.1: The Definitions of Robot's Clearance Elements 



C.   EDGE-FOLLOWING MOTION 

While there is a wall on either side of the robot and robot is trying to keep itself 

away from the wall with a safety distance wj, it is following an edge. We define this as the 

robot is in edge-following mode. We apply the steering function in Eq 3.1 to control the 

robot while the robot is in edge-following mode. Let the robot's current configuration be q 

= (p, 0, k). The variables Ak, A0, and Ad in steering function can be computed based on 

some assumptions as followings. The desired curvature of the wall is zero because we 

assume the wall is flat like a line. The desired orientation of the wall, 6^, can be computed 

before the robot is following the wall. This desired orientation is orthogonal because we 

assume the environment consists of rectilinear polygons. The distance between the robot 

and the wall, dw,ca.n be obtained by using sensors. Therefore the variables for the steering 

function are defined as: 

Afc = k; 

A9 = e - Qd; 

Ad = wj - dw; 

Figure 10.2 shows the robot in edge-following mode in left-wall-following type 

Wj 

~dZ~ 

Figure 10.2: The Edge-following Mode in Left-wall-following 
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D.   VERTEX-FOLLOWING MOTION 

In a normal polygon (convex polygon), when the robot is coming to the end of an 

edge, the sensors can detect a convex corner which is interpreted as a convex vertex. In 

order to keep safety clearance from the object, the robot need to turn around the vertex with 

a circle motion taking the vertex as its center (that was obtained by sensor) and safety 

clearance w1 as its radius. We define the second mode, named vertex-following mode, in 

the sensor-based motion control for this situation. Let's take left-wall-following as an 

example. The curvature of the circle then is calculated as 11 r, where r is the circle's radius. 

Let the robot's current configuration be q = (p, 0, k) and Qdbe the desired orientation on 

the circle. The distance between robot's current position and center of the circle, dc, can be 

easily computed. Therefore, the steering function variables are computed as below: 

Afc = k - llr; 

A9 = 6 - Qd; 

Ad = r - dc; 

Figure 10.3 illustrates the vertex-following in left-wall-following. 
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Figure 10.3: The Vertex-following Mode in Left-wall-following 
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For an inverted polygon or a general polygon, the corner can be either convex or 

concave one. The motion of following a convex corner are described as above. For a 

concave corner, the same idea of vertex-following stated above will be applied to the 

concave vertex situation except the calculation of the center (the vertex) of the circle. 

Figure 10.4 illustrates the computation of the center of circle vertex-following on concave 

corner in left-wall-following. 
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Figure 10.4: The Vertex-Following on Concave Corner 

E.   WALL-FOLLOWING MOTION CONTROL 

This section describes how we control the robot's motion in wall-following motion 

planning. We define four states for controlling robot in accordance with the modes defined 

in wall-following motion as follows: 

.    EDGE, 
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♦ EDGEO, 

♦ CONVEX, and 

♦ CONCAVE. 

When the robot is in the edge-following mode, the state is defined as EDGE state. 

The robot will adjust itself to follow the wall with given safety distance Wj by computing 

steering function variables as described previously. When the robot is in the vertex- 

following mode and the corner is found as a convex one, we define the robot's motion is in 

CONVEX state. When the robot is in the vertex-following mode and the corner is a 

concave one, we define it's in CONCAVE state. In both CONVEX and CONCAVE states, 

the robot will take the computed center as a vertex and turn around the vertex with a circle 

motion. Because of the limitation of sensors, it is difficult to compute the exact position of 

circle's center for the motion to follow a convex comer. Therefore, an intermediate state 

EDGEO is created to prevent unexpected distance returned from sensors being used. The 

intermediate state EDGEO is a transition state between CONVEX state and EDGE state. 

The transitioning from CONVEX to EDGEO is controlled by checking the angle the robot 

turned in the circle motion.When the robot has turned desired angle (normally it is 90 

degree), the state changes from CONVEX to EDGEO. While the robot is in EDGEO state, 

it follows a desired path, which is computed at the beginning of CONVEX state, until it 

passes the point where the robot can start the edge-following. Then the robot changes the 

state from EDGEO to EDGE. 

At the beginning of Wall-Following motion, the robot is assumed in EDGE state. 

While the robot is following the edge, the state can be changed according to the 

environment. If the comer is not detected, it stays in EDGE state. If a convex corner is 

identified, the robot switches its state from EDGE to CONVEX. Similarly, if a concave 

corner is found, the robot switches its state from EDGE to CONCAVE. While the robot is 

in CONVEX or CONCAVE states, the sensors are not used. Before the turning of desired 

angle is finished, the robot stays in its original state. At the end of CONVEX states, the 

robot switches the state to EDGEO. Then it switches to the EDGE state according to the 
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position checking. Figure 10.5 illustrates the states change in wall-following in a convex 

corner. The state change from CONCAVE is directly to EDGE when the vertex-following 

is finished. Figure 10.6 illustrates the state change in a concave corner. Figure 10.7 shows 

the transition of robot's states in wall-following motion. 
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Figure 10.5: The State Change in Wall-following Motion I 

EDGE state 
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Figure 10.6: The State Change in Wall-following Motion n 
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Figure 10.7: The State Transition of the Wall-following Motion 

F.   ALGORITHM 

The algorithm for the wall-following motion is as following: 

Algorithm FollowRule (va, vc) 

Input: va: the actual velocity, vc: the commanded velocity. 
Output: Commanded linear and rotational speeds 

(1) get the desired clearance wO 
(2) case EDGE: 
(3) get sensor distance dist 
(4) if convex corner not found then 
(5) if concave corner not found then 
(6) get vertex for center of circle motion 
(7) get desired orthogonal orientation 
(8) compute Ad of edge-following 
(9) else 
(10) compute circle radius 
(11) compute circle curvature 
(12) compute center of circle 
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(13) compute desired orthogonal orientation 
(14) compute robot's desired orientation 
(15) compute desired curvature 
(16) compute Ad of vertex-following 
(17) switch state to CONCAVE 
(18) caseEDGEO: 
(19) if not finish turning then 
(20) compute Ad of the desired path following 
(21) else 
(22) compute Ad of edge-following 
(23) switch state to EDGE 
(24) case CONCAVE: 
(25) if not finish turning then 
(26) compute robot's desired orientation 
(27) compute Ad of vertex-following 
(28) else 
(29) compute robot's desired orientation 
(30) compute desired curvature 
(31) compute Ad of edge-following 
(32) switch state to EDGE 
(33) case CONVEX: 
(34) if not finish turning then 
(35) compute robot's desired orientation 
(36) compute Ad of vertex-following 
(37) else 
(38) compute robot's desired orientation 
(39) compute desired curvature 
(40) compute Ad of edge-following 
(41) switch state to EDGEO 
(42) compute Ak and A0 
(43) compute Ak 1 As (using steering fimction) 
(44) compute commanded linear and rotational speeds 
(45) return commanded linear and rotational speeds 

G.  IMPLEMENTATION 

The robot's motion is controlled by a motion control system. In Yamabico-11 this 

module is invoked every 10 milliseconds. To implement wall-following motion, we need 

to create new motion rules other than the regular motion rules which are used for path 

tracking motion control. These rules are named LeftFollowRule and RightFollowRule. 

L   Simulation 

rhe use of simulation to verify the theory is important in scientific research. As we 

know the desired curvature of edge-following is zero since we are assuming the wall is a 
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flat wall which will be a straight line if it is projected on the two dimensional plan. But the 

desired curvature of vertex-following will be the curvature of desired circle which the robot 

is supposed to follow. In order to maintain a smooth motion, the robot's curvature is not 

allowed to change abruptly. We were not sure whether the robot's curvature would be 

changing smoothly or not when the following mode changed. Instead of implementing it 

on real robot directly, we first simulate the mode change. Figure 10.8 illustrates the 

trajectory of wall-following motion simulation. Because we can not simulate sonar's 

operation, we assume the sonar always returns the safety distance. In other words, the Ad 

is always zero. Therefore, the simulated trajectory is actually a reference path for the real 

time robot's motion. From this simulation results, we know that the robot's curvature will 

change smoothly while it switches from one following mode to another. 

300 

250 

200 

150 

100 

-100 

-100 -50 50     100    150    200    250    300 

Figure 10.8: The Trajectory of Wall-following Simulation 
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2.   Experimental Results of Real Time System 

The implementation of wall-following motion will naturally require the utilization 

of sensors. In Yamabico-11, the available sensors are 12 sonars which are installed around 

the robot with 30 degrees apart from one another in their orientations. Figure 6.3 illustrates 

the configurations of the sonars in Yamabico-11. 

To follow a wall, the left and right sonars, # 5 and # 7, will be used to detect the 

distance of the wall on right and left sides respectively, so that the motion rules can steer 

the robot to follow a wall keeping the specified safety distance from the wall. The sonar # 

0 in front of robot is mainly used to check the wall in front. 

A lot of experiments have been done using real time robot after simulation 

succeeded. Figure 10.9 illustrates the trajectory of the real time robot Yamabico-11 

traveling around a box with right-wall-following motion. This proves that the robot is able 

to navigate itself by using its senors in an unknown environment. 

20 

0 

-20 ■ 

-40 

-eo 

-80 

-100 

-120 

-140 

-160 

-180 

'box.data' — 

*♦♦♦., 

X 

50 100 150 200 250 

Figure 10.9: The Trajectory of Real Time Wall-following Motion 

181 



,82 



XL IMPLEMENTATION 

A. OVERVIEW 

This chapter describes how to implement the local motion planning. The 

implementation of global motion planning was described in [7]. In the chapter, the data 

structures for end-portion motion planning and mid-portion planning are addressed first. 

Then the algorithms of implementation are discussed. At last, the experimental results 

conducted by Yamabico-11 using MML-11 software system will be presented. 

B. DATA STRUCTURES 

This section describes the data structures for implement local motion planning. 

Since end-portion motion planning is more complicated, it requires a data structure which 

is different from the data structure used in mid-portion motion planning to hold the motion 

instructions. We will describe the data structure for implementing end-portion motion 

planning first. After that, the data structure for implementing mid-portion motion planning 

will be discussed. 

1.   Data Structure for End-portion Motion Planning 

In the subsection we discuss the main data structure to hold motion instruction of 

the results of end-portion motion planning. The intermediate data structures required by 

planning operations are straightforward as described in Chapter V. In end-portion motion 

planning, both forward and backing up motion may be required to accomplish the task. 

Thus, the data structure needs to reflect this requirement in motion instruction. In order to 

make motion control (execution) as simple as possible, for any single motion, the data 

structure required includes: 

• Reference path: The reference path stores the whole path information which 

will be followed. A path is normally represented by configurations which 

include position, orientation and curvature. Since the reference path could be a 

straight line or a curve generated by simulator, it may consist one or more than 
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one configuration. Thus, a dynamic structure is needed for this data element to 

store finite number of configurations. A linked list will be used to construct the 

reference path, (see Figure 11.1). 

Reference Path 

T 
Configuration 

Next 

Configuration 

Next 

Configuration 

Next -► NULL 

Figure 11.1: Reference Path Data Structure 

• Sigma: The sigma is an important information for conducting path tracking. It 

will be used to decide the smoothness of tracking trajectory while this motion 

instruction is taken. The type of this element is double. 

• Motion type: This element indicates whether the motion is forward motion or 

backing up motion. 

• End configuration: This is a type of configuration which indicates the last 

configuration the robot needs to transition to next motion instruction. 

• Stop: This element indicates whether the motion need to stop or not. Normally, 

a backing up motion needs to stop at the end configuration as indicated. A 

forward motion may need to stop in the case of a backing up motion following. 

• Next: This is a pointer pointing to next motion instruction. 

As aforementioned, end-portion motion could be a combination of many forward 

and backing up motions. However, the number of different motions is dynamic. Therefore, 

the data structure should be designed to satisfy this need. Figure 11.2 illustrates the entire 

data structure for end-portion motion planning. 

184 



End-portion 
Motion Plan 

I 
Reference Path 

Sigma 

Motion type 

End config 

Stop 

Next 

Reference Path 

Sigma 

Motion type 

End config 

Stop 

Next 

Reference Path 

Sigma 

Motion type 

End config 

Stop 

Next -►NULL 

Figure 11.2: End-portion Motion Data Structure 

2.  Data Structure for Mid-portion Motion Planning 

Although there are many different kind of combined motions in the results of mid- 

portion motion planning, we can design a simple data structure to contain all kind of motion 

instructions. The basic information needed for the motion in a region includes: 

• Region ID, 

• Entrance configuration, 

• Reference path, 

• Sigma, 

• Initial tracking configuration, 

• Exit border ID and its corresponding, 

• Exit configuration. 

For instance, the simplest motion can be planned to track a reference line of exit 

configuration of a region. The example can be found in Figure 4.13. To specify this motion, 

we can store the exit configuration in Reference path and indicate where to start the 

tracking in Initial tracking configuration and store the proper smoothness in Sigma. Then 

the robot can conduct the motion as shown in the figure. Is it possible to use such a simple 
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data structure to specify a more complicated motion as the two perpendicular line tracking 

in Figure 4.16 (b)? The answer is yes. As long as the information of reverse path and the 

initial configuration, where the robot needs to start its path tracking, are stored, the robot is 

able to perform the desired motion. This is because the reference path can be designed as a 

linked list which stores a sequence of configurations that specify the reverse path and the 

first configuration of the reversed path specifies a line which is exactly the reference line 

of the first perpendicular line tracking. Therefore, in implementing mid-portion motion 

planning, the data structure required is designed as a linked list as shown in Figure 11.3. In 

the Figure 11.3, each node of the linked list holds the motion instruction for one region of 

the mid-portion of global path. 

Mid-portion 
Motion Plan 

I 
Region ID 
Reference Path 
Sigma 
Entrance config 
Initial config 
Exit border ID 
Exit config 

Next 

Region ID 
Reference Path 
Sigma 
Entrance config 
Initial config 
Exit border ID 
Exit config 

Next 

Region ID 
Reference Path 
Sigma 
Entrance config 
Initial config 
Exit border ID 
Exit config 

* Next -SHMULL 

Figure 11.3: Mid-portion Motion Data Structure 

The Region DD and Exit border ID are the type of integer which indicate the 

current region and it exit border. The Reference path of the structure is another linked list 

as shown in Figure 11.1. The Sigma is a type of double. The Entrance config, Initial 

config and Exit config are all type of configuration. 
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C. LOCAL MOTION PLANNING ALGORITHMS 

An overall algorithm for local motion planning are presented in Chapter IE (p. 42). 

The mid-portion motion planning and end-portion motion planning algorithms are 

described in detailed in Chapter IV and V respectively. Keep in mind that for symmetric 

motion planning, the final motion planning is conducted in reverse manner. All related 

configurations must be reversed while planning. 

D. EXPERIMENT RESULTS 

Most of motion planning algorithms described in this dissertation have been 

implemented in MML-11 and tested on experimental robot Yamabico-11. The results 

shows that the algorithms are practical to the robot motion planning and motion control. 

Figure 11.4 through 11.8, show the trajectories of motion executions with various given 

start and goal configurations on the model of the fifth floor in Spanagel Hall, NPS. 

Figure 11.4: Yamabico-11 Motion Planning and Execution Results #1 
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Figure 11.5: Yamabico-11 Motion Planning and Execution Results #2 

Figure 11.6: Yamabico-11 Motion Planning and Execution Results #3 
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Figure 11.7: Yamabico-11 Motion Planning and Execution Results #4 

Figure 11.8: Yamabico-11 Motion Planning and Execution Results #5 
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XII. CONCLUSIONS 

This dissertation addressed safe motion planning using layered planning approach 

which divides the planning task into global path planning and local motion planning. 

Among the researches in the subject of motion planning for mobile robots, the contribution 

of this dissertation provides a practical solution to safe motion planning problem which is 

a great step in promoting motion planning in the real world. The local motion planning is 

accomplished by planning motion in end-portion and mid-portion of the global path 

separately. Under the safety consideration, the smoothest motion is achieved by 

dynamically computing proper smoothness variable for reference path generation and path 

tracking. This dissertation analyzed various region situations and summarized the motion 

planning of any single region into six rules for mid-portion motion panning. These rules 

simply the local motion planning and enhance planning efficiency. 

There are some other contributions including: (i) design of real-time robot 

operating system which makes robot system control and other robot sensing devices control 

work on the interrupt-driven basis, (ii) incorporating forerunner simulation into real-time 

transition point calculation to make robot motion control more flexible, (iii) development 

of a standard high level robot language for motion planning and robot system control. 

In addition, the steering function was studied intensively through many simulations 

and experiments. The characteristics of limitation of the powerful motion planning and 

control tool are made clear. 

Those research results were implemented in a software system, MML-11 and tested 

on Yamabico-11. The experiment results show that the algorithms are successful in robot 

motion planning and motion control. 
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APPENDIX A.   FURTHER UNDERSTANDING OF STEERING 
FUNCTION 

The steering function as Eq A. 1 is a powerful tool for a mobile robot vehicle performing 

smooth path tracking. 

fs = -(AAk + BAQ + CAd) (EqA.l) 

In Eq A.l, A, B, and C are positive constants which are related to the smoothness of 

robot's motion [19]. The meanings of these variables, Afc, A6, and Ad, are as follows: Afc 

= k-kd, where kis vehicle's current curvature and k^ the desired curvature. AG = G - G^, 

where G is vehicle's current orientation and G^ the desired orientation. Ad is the vehicle's 

position error. How the steering function accomplishes a path tracking is fully described in 

[19], [21] and [7]. To better use the steering function in motion planning, we need to 

understand its characteristics deeply. First of all, we investigate the limitation of 

smoothness which will be applied to a vehicle in path tracking using the steering function. 

Then we look for a possible alternative way of using steering function. 

A.   LIMITATION OF SMOOTHNESS ON LINE TRACKING 

The path of the path tracking in this appendix refer to a straight line. Thus we 

rephrase the term path tracking as line tracking. A line tracking motion starts from a 

configuration qs =(ps,Q s, ks). The goal of the line tracking is the line called reference line, 

specified by a configuration qr =(prd r, kr). Since the line is a straight line, it has a constant 

curvature kr = 0. The constants A, B, and C in the steering function are determined by the 

smoothness a as follows: 

k= 1 la (Eq A.2) 

A = 3 k (Eq A.3) 

B = 3 k2 (Eq A.4) 

C = k3 (Eq A.5) 
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While the vehicle is tracking a line, its curvature is kept updated by steering function in 

each motion cycle [7] until the vehicle's trajectory converges to the reference line. Thus the 

smoothness a in turns determines the sharpness of the tracking trajectory. Figure A.l 

illustrates the change of sharpness of trajectories when different smoothnesses are applied 

in the simulation. In fact, we see that the smaller the value of smoothness is, the sharper the 

trajectory will be. And we also observed that the larger the smoothness is, the longer the 

vehicle travels to make its trajectory converge to the reference path. 
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Figure A.l: The Sharpness of Tracking Trajectory Affected by Different 
Smoothness 

While we know how the smoothness affects the tracking trajectory, we have to be 

aware of the limitation of smoothness that can be applied to a line tracking. It is important 

to know that not all arbitrary smoothness can be used in all cases of line trackings. As a 

matter of fact, there is no upper limit for the smoothness in a line tracking, even though an 
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oscillatory trajectory might occur if the applied smoothness is too large. However, we 

notice that a lower limit of smoothness does exist in using the steering function to track a 

line. 

By observing the simulation results of using steering function in line tracking, we 

found that the lower limit of smoothness is tightly related to the initial Ad which is the 

closest distance from the initial configuration to the reference line. Figure A.2 illustrates 

the results of simulations using some critical smoothnesses in line tracking. These 

simulation were set by tracking positively oriented X-axis of the global frame from a 

configuration with initial A0 = 0 and Ad = 100. Because the initial A9 = 0 means the 

orientation of the initial configuration and the reference line are parallel, this type of line 

tracking is called parallel line tracking. From these parallel line tracking simulation, we 

found that the smallest smoothness which makes the tracking trajectory converge to the 

reference line is 

G = 0.096 * Adinit (Eq A.6) 

where A<iinit represents the initial Ad. If a smoothness o less than 0.096 * Adinit is applied, 

the tracking trajectory never converges to the reference line, instead, it converges to a line 

which is parallel to the reference line. This case is shown as the trajectory 7t1 in Figure A.2 

where the smoothness is o = 0.095 * Adinit. 

The non-converging (to the reference line) situation happens when the tracking 

trajectory reaches the point where the variables of the steering function in Eq A.l are as 

follows: 

M = 0; (Eq A.7) 

A6 = 2m for an integer n; (Eq A.8) 

Ad *0; 

and      — = 0; 
ds 

Thus, we have 

BAQ+CAd = 0 (EqA.9) 
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Then by substitute Eq A.9 with Eq A.4, Eq A.5 and Eq A.2, we have 

Ad = 
5A0 

~ C 
3k x2nn 

-6ttCJ7t; (EqA.10) 

As the point on the tracking trajectory matches Eq A.7, Eq A.8 and Eq A. 10, the steering 

function can no longer steer the vehicle to the reference line. Therefore we use the steering 

function for line tracking, the proper smoothness must be carefully chosen to avoid the non- 

convergence from happening. 
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Figure A.2: The Trajectories of Line Tracking with Various Smoothness 

In addition to the worst case described above, 7t2 and 7C3 in Figure A.2 demonstrate 

other undesirable line tracking trajectories. Although they converge to the reference line 

eventually, the trajectories travel backward at first half. On the contrary, we consider JI4 as 

a desirable tracking trajectory because it always travels in the direction of the reference line 

heading. From these simulations, we conclude that for parallel line tracking the minimum 

desirable smoothness (which makes a desirable converging trajectory) is: 
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G = 0.18*Adinit                                                                              (EqA.ll) 

The Figure A.2 demonstrates only the simulation results of a parallel line tracking 

where we set initial A0 = 0. When the initial A6 is not zero, this variable is also found 

involved in the determination of smoothness. Fortunately, since in any cases both initial Ad 

and A6 are known, by using well-designed simulation, the minimum smoothness can be 

computed. Table A.l and Table A.2 list some simulation data showing the relationship 

between initial Ad and its minimum desirable smoothness a. From the tables we found that 

for all different initial orientations, the minimum smoothness is less than 0.22 * Adinit. We 

will take this Max-Min smoothness in some cases in Initial-portion Motion Planning. 

Table A.l: The Relationship among Distances and Smoothness in Line Tracking with 
Negative A9 (in degree), and Corresponding Minimum desirable Smoothness G 

Initial A9 "■Mt G L a/dimt L/o 

0 100.0 18.0 177.3 0.18 9.85 

15 100.0 19.0 191.6 0.19 10.09 

30 100.0 19.0 191.7 0.19 10.09 

45 100.0 20.0 2.04.6 0.20 10.23 

60 100.0 20.0 203.2 0.20 10.16 

75 100.0 21.0 214.4 0.21 10.21 

90 100.0 21.0 211.9 0.21 10.09 

105 100.0 22.0 222.3 0.22 10.10 

120 100.0 22.0 219.1 0.22 9.96 

135 100.0 22.0 216.3 0.22 9.83 

150 100.0 22.0 213.8 0.22 9.72 

165 100.0 22.0 211.6 0.22 9.62 

180 100.0 22.0 209.7 0.22 9.53 
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Table A.2: The Relationship among Distances and Smoothness in Line Tracking with 

Negative A0 (in degree), and Corresponding Minimum desirable Smoothness 0 

Initial AÖ "■init a L a/dimt L/<3 

-15 100.0 18.0 175.7 0.18 9.76 

-30 100.0 18.0 173.1 0.18 9.62 

^5 100.0 18.0 169.9 0.18 9.44 

-60 100.0 18.0 165.8 0.18 9.21 

-75 100.0 18.0 161.4 0.18 8.97 

-90 100.0 22.0 200.0 0.22 9.09 

-105 100.0 19.0 163.4 0.19 8.60 

-120 100.0 16.0 123.9 0.16 7.75 

-135 100.0 15.0 106.5 0.15 7.10 

-150 100.0 13.0 70.2 0.13 5.40 

-165 100.0 12.0 41.3 0.12 3.44 

B.   TWO-WAY LINE TRACKING 

Although the steering function is designed under the assumption of -7t /2 < A0 < 

JC/2, it is applicable to all orientation differences. For a given initial configuration and a 

reference line with a proper smoothness, the line tracking can be performed smoothly and 

its trajectory is unique. Figure A.3 shows the trajectories of tracking a reference line 

(positively oriented X-axis) from the initial configurations which are different in their 

orientations only. The trajectory %i starts the line tracking from the initial configuration ((0, 

100), -180, 0) and trajectory Tig starts from ((0, 100), 135, 0). The orientations in those 

initial configurations vary from - % to 3TC / 4. In steering function point of view, the 

orientation differences are - 7t < A0 < 3Jü / 4. It looks nature to have the trajectories as Figure 

A.3 for this line tracking example. However, in some cases, we may expect the vehicle to 
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travel a trajectory different from the one shown in Figure A.3 (starting at the same initial 

configuration and tracking the same reference line). For instance, the tracking trajectory JC8 

in Figure A.3 starts with a clockwise motion at the beginning. If there is no way to avoid a 

possible collision by traveling this clockwise trajectory, we may try a possible 

counterclockwise tracking trajectory. The Figure A.4 illustrate the idea of clockwise and 

counterclockwise tracking trajectory. In Figure A.4, clockwise trajectory Ti^ is exactly the 

same as %g in Figure A.3. The method we use to tracking a line either clockwise or 

counterclockwise ins called Two-way Line Tracking. 

-50 0 50 100 150 200 250 

Figure A3: The Trajectories of Line Tracking from Different Orientation 

The steering function of Eq A.l is capable for the Two-way Line Tracking. We 

notice that the line tracking trajectories in Figure A.3 have their initial orientations 

expressed as -K < 0 < 7t. Therefore, when tracking a line from those configurations, we have 

the orientation difference also as -7C < A0 < 7t. As we know, any orientation difference can 

be normalized to this orientation interval. We considered a line tracking with the 

normalized orientation difference as a normal line tracking. Besides the normal one, if the 
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initial orientation difference is expressed by the following rule, 

ifAe<0,Ae=A6 + 27L 

else A0 = A0 - 2%. 

the counterclockwise tracking trajectory as %ccw in Figure A.4 is produced. We consider 

the line tracking with this orientation difference as an alternative line tracking. The Figure 

A.5, A.6 and A.7 demonstrate some more examples of Two way Line Trackings. 
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Figure A.4: Clockwise and Counterclockwise Tracking Trajectory 
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Figure A.6: Clockwise and Counterclockwise Tracking Trajectory with 
Initial A0 = 0 
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A.7: Clockwise and Counterclockwise Tracking Trajectory with 
Initial A9 = - K 12 
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APPENDIX B.   DYNAMIC MEMORY MANAGEMENT STRATEGY 

A.   INTRODUCTION 

The dynamic memory management involves allocation and deallocation of memory 

blocks with requested size. If they are not handled properly, the memory fragmentation will 

eventually cause inefficient memory use. Without any management strategy, we may 

allocate memory blocks to the user sequentially as request and deallocate them in the order 

of deallocation request. For example, if we have 100 k bytes memory available for dynamic 

memory use, and the request for the memory are: 

a. Request a block of size 20 k. 

b. Request a block of size 30 k 

c. Request a block of size 15 k. 

d. Request a block of size 25 k. 

e. Release the block in request b. 

f. Request a block of size 25 k. 

g. Request a block of size 10 k. 

h. Release the block in request a. 

i. Request a block of size 10k. 

j. Release the block in request c. 

k. Release the block in request d. 

1. Request a block of size 20 k. 

m. Request a block of size 20 k. 

The request a- d will result the memory partitioned as Figure B.l. There is only one 

memory block free with size 10 k. The request e-m will result the memory partitioned as 

Figure B.2. There are several free blocks with total size 35 k after request 1. However, when 

request m comes, system will not be able to allocate any memory block to this request, even 

though the size of total available free memory is large than the size of current request. 
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After more allocation and deallocation operations, the dynamic memory space may 

be partitioned into many small blocks either consecutive or separate. This is not desirable 

because it will eventually make it impossible to fill the legitimate request of a user needing 

one larger memory block. The request m is an example. To remedy this problem, we must 

have a method that allows a block being returned to the available list to be coalesced with 

any other block(s) in the list that are the physical neighbor(s) of the returning block. 

Therefore a buddy system, which can coalesce neighboring free blocks to form a larger 

memory block available, is needed for dynamic memory allocation management. 

B.   BUDDY SYSTEMS 

The general purpose of a buddy system is to provide a method that designates one 

or two buddy blocks for each block when partitioning the memory. The buddy blocks have 

to reside right next to its corresponding block. When a block is to be released, its buddy 

block will be checked to see if it's available for coalescence. If the coalescence is possible, 

the two blocks will be returned as one larger block to available memory. The coalescence 

will be performed recursively whenever buddy block is available. To determine the buddy 

of a given block, it is necessary to impose certain restrictions on block sizes and/or to store 

a fair amount of bookkeeping information in each block. 

The most common buddy systems are [28]: 

• Binary buddy system. 

• Fibonacci buddy system. 

• Boundary tag buddy system. 

Among them, the Fibonacci buddy system is the most popular one for the following 

reason. Firstly it allows for a greater variety of possible block sizes in a given amount of 

memory than Binary buddy system. Second, the Fibonacci buddy system provides an 

efficient method to allocate and deallocate memory blocks. 

The basic requirement of buddy system is that any block size (except the smallest 

one) must result from coalescing two smaller blocks, so that the addresses of the buddies 
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can be easily computed in allocation and deallocation operation. In Fibonacci sequence, the 

ith member of the sequence is recursively defined as 

Fi = F(i-l) + F(i-2) for i > 2 

Therefore using Fibonacci sequence as the memory splitting strategy meet the requirement 

of buddy system. The Fibonacci sequence can be stored in an array of desired data structure 

which is used to indicate the free memory blocks with size corresponding to the Fibonacci 

number. In the array, each element may contain a pointer that points to the available block 

of corresponding size. 

Let's take an example to demonstrate how the Fibonacci buddy system works. 

Suppose we have Fj = 1, F2 = 2, then the members of the Fibonacci sequence are: 

1,2,3,5,8,13,21,34,... 

And suppose that we are managing 21k memory and are faced with the following requests 

for storage: 

a. Request for 7k. 

b. Request for 7k. 

c. Request for 2k. 

d. Release 7k of request b. 

e. Release 2k of request c. 

f. Release 7k of request a. 

Figure B.3 to B.9 illustrate the allocation, deallocation and resulting coalescing that would 

occur as these requests were processed. In each figure, the rectangle in the center illustrates 

the memory block(s) status. The blank block means it is a free memory block while the 

shaded block indicates an occupied space. On the left, a tree with a number in each circle 

illustrates the splitting of Fibonacci sequence after an allocation or a deallocation request 

is processed starting with the size of entire available memory space. Each node of leaves 

of the tree corresponds to a memory block. On the right, the array uses pointers that point 

to free memory blocks of corresponding size. 
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Free 

0 
Figure B.9: Dynamic Memory Allocation Partition 
after Request (f) Processed - 8 k Deallocated and 
Coalescing Occurs - One Free 21 k Block Results 

Naturally, some additional overhead is required when the Fibonacci buddy system 

is used. First, depending on the implementation scheme, it may be necessary to store the 

Fibonacci numbers themselves in an array to allow quick access to data necessary to 

allocate, split, and coalesce blocks. Second, it is necessary to store some bookkeeping data 

within each block so that it tells the block's status (free or not), size, links to other blocks, 

and depth of being left buddy to other blocks as Figure B.10. 

Free 
flag Size 

Left 
link 

Right 
link 

Not used if 
block active 

Left 
buddy 
count 

Memory block available 

Figure B.10: Bookkeeping Information in Block for Fibonacci 
Buddy System 
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APPENDIX C. USER PROGRAM EXAMPLES 

Program Name : user.c-#l 
Purpose : For Model Based Motion Planning demo. 
Parameters        : void 
Returns : void 
Comments        : 4/1/95 Chien-Liang Chuang 

*J* *!* *** *T* *T* *T* *T* *T* *T* *T* *T* *T* *T* *T* **• **■ *T* *T* *T* **■ *I* *** •T* *l* *T* *T* *T* *T* *T* *!• *T* *?■ *T* *T* *?• *r* *I* *^ *T* *T* *l* *7^ *I* ^" /T» *T* *J» *T* ^1* *I* *!* *I" 'I* *1* ^1* *s* *** ^* *J^ *I* *(* *T* *I* 

#include "user.h" 

void setconfig(); 
CONFIGURATION chooseConfig(); 
CONFIGURATION  q, qO, ql, q2, q3, q4, q5, q6, q7, q8, q9, qlO, 

qll, ql2, ql3, ql4, ql5, ql6, ql7, ql8, goal; 

void 
user() 
{ 

int go; 
double        theta; 
PATHJELEMENT   path; 

createModelO; 

go = l; 
setconfigO; 

printf("\nSelect 0-18 for default START,99 for input: "); 

q = chooseConfigO; 

setRobotConfiglmm(q); 

printf("\nSelect 0-18 for default GOAL, 99 for input: "); 

goal = chooseConfigO; 

setLinVelImm(30.0); 

MotionLog(NULL, 20,0); 

while (go) { 

gotolmm(goal); 

path = getPathElement(); 
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while (path.pathType.mode == STOPMODE) 
path = getPathElement(); 

while (path.pathType.mode != STOPMODE) 
path = getPathElementO; 

q = getRobotConfigO; 

printf("\n\nGo to somewhere else? 1/0"); 

go = GetlntO; 

if(go!=0) 
{ 
printf("\nSelect 0-18 for GOAL,99 for input:"); 
goal = chooseConfigO; 

} 
} 

Function : setconfigO to set default configuration 

void 
setconfigO 
{ 

qO = defineConfig(200.0, 214.0, 0.0,0.0); 
ql = defineConfig(125.0,345.0, HPI, 0.0); 
q2 = defineConfig(50.0,657.0, PI, 0.0); 
q3 = defineConfig(125.0, 872.0, HPI, 0.0); 
q4 = defineConfig(125.0, 2000.0, -HPI, 0.0); 
q5 = defineConfig(50.0,1862.0, PI, 0.0); 
q6 = defineConfig(50.0, 2148.0, PI, 0.0); 
q7 = defineConfig(50.0, 2433.0, PI, 0.0); 
q8 = defineConfig(190.0,1980.0,0.0,0.0); 
q9 = defmeConng(190.0,1390.0,0.0,0.0); 
qlO = defineConfig(555.0, 867.0, 0.0,0.0); 
qll = defineConfig(800.0,743.0,0.0,0.0); 
ql2 = defineConfig(707.0,720.0, -HPI, 0.0); 
ql3 = defineConfig(417.0,720.0, -HPI, 0.0); 
ql4 = defmeConfig(417.0, 546.0, -HPI, 0.0); 
ql5 = defineConfig(706.0, 546.0, -HPI, 0.0); 
ql6 = defineConfig(-93.0, 2138.0, PI, 0.0); 
ql7 = defineConfig(-278.0, 2121.0, PI, 0.0); 
ql8 = defineConfig(-505.0, 2150.0, PI, 0.0); 

} 
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Function : chooseConfigO for selecting a configuration 

CONFIGURATION 
chooseConfigO 
{ 

int set; 
double        x, y, t; 
CONFIGURATION q; 

set = GetlntO; 

switch (set){ 

case 0: q = qO; break; 
case 1: q = ql; break; 
case 2: q = q2; break; 
case 3: q = q3; break; 
case 4: q = q4; break; 
case 5: q = q5; break; 
case 6: q = q6; break; 
case 7: q = q7; break; 
case 8: q = q8; break; 
case 9: q = q9; break; 

} 

case 10: q = ql0 
case 11: q = qll 
case 12: q = ql2 
case 13: q = ql3 
case 14: q = ql4 
case 15: q = ql5 
case 16: q = ql6 
case 17: q = ql7 
case 18: q = ql8 

break; 
break; 
break; 
break; 
break; 
break; 
break; 
break; 
break; 

default: 
printf("\nlnput configuration:"); 
printf(" x = "); 
x = GetRealO; 
printf("y = "); 
y = GetRealO; 
printfC" theta = "); 
t = GetRealO; 
t = t * DAR; 
q = defineConfig(x, y, t, 0.0); 

break; 
} 
return(q); 
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Program Name :user.c-#2 
Purpose : For Sonar Testing 
Parameters       : void 
Returns : void 
Comments : 4/1/95 Chien-Liang Chuang 

#include "user.h" 

#defineFREQl 

int SONARNUM, DATATYPE; 
int type; 

void user 1(); 
void user2(); 
void user3(); 

void user() 
{ 

int selection; 

printf("\n Enter 1 for Stationary testing "); 
printf("\n Enter 2 for Moving (line) testing "); 
printf("\n Enter 3 for Moving (rotate) testing "); 
selection=GetInt(); 

printf("\n Input sonar #: "); 
SONARNUM=GetInt(); 

printf("\n Input 1 for logging RAW-data, 2 for logging GLOBAL-data: "); 
type=GetInt(); 
if(type==l) 
DATATYPE = SONAR_RAW; 

else 
DATATYPE = SONAR_GLOBAL; 

switch (selection) 
{ 
case 1: 

userl() 
break; 

case 2: 
user2() 
break; 

case 3: 
user3() 
break; 

default: 
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break; 

Function : userl() for stationary testing 

void user 1() 
{ 
double distance; 
int cnt = 0; 

EnableSonar(SONARNUM); 

SonarLog(FREQ,0,SONARNUM,DATATYPE); 

waitMS(30); 

while (++cnt <= 50) 
{ 
distance = Sonar(SONARNUM); 

printf("\nSonar Range is %f',distance); 

waitMS(50); 
} 

l^t ifc sfc sfe ifc sic sic J¥C sfe sir sfe sfe sic. sk sic sjc sfc sJc jfe rfc sfe sic sic sic sic sic sic rfc sic sic ^k sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic itc sic sic sic A sic sic sic sic sic sic sfe sic sic s¥c sic 

Function : user2() for moving (line) testing 
SyC Sj» ?fC SJC S|» SjC SJC *|» Sj£ *|C SyC S|C SfC SyC Sy» SjC J|C SJC Sy* SjC Sy» SyC 5JC Sj» SyC SfC SJC Sy% S|C SJC SjC SJC SJC SfC SyC SyC SyC SJC SyC SyC SJC ^jC SyC S|C SjC SyC Sy» SjC S|C SyC SyC SyC SyC SJC SJC SJC SJC SJC SJCSJC SJC SJC SJC / 

void user2() 
{ 
double dist, speed; 
CONFIGURATION q,p; 

printf("\n Input desired speed : "); 
speed = GetReal(); 
setLin Vellmm(speed); 

printf("\n Input traveling distance : "); 
dist = GetRealO; 

p = defineConfig(0.0,0.0,0.0,0.0); 



q = defineConfig(dist, 0.0, 0.0,0.0); 

setRobotConfig(p); 

EnableSonar(SONARNUM); 

SonarLog(5,0,SONARNUM,DATATYPE); 

bline(q); 
} 

*T* *I* *T* *T* *T* *I* *T" **■ 'T* *I* *¥* *T" *I» *T* *!• *T* *i* *T* *1* *T* *I" *!• **" *T" *T* *T* *T* *J* 'I* "T" 'T* •** *T* *1* *** *T* *T* *J^ *J* *1> *(■ 'I* *T* "T* <(* *i* *J* *T* *f^ ^f* *t* *T* *1* *T* *1^ *I" ^T* *T" ^** T* ^* *** 

Function : user3() for moving (rotate) testing 
~t* *v* *T* *r* *T* *I* *T* *T* *T* *T* *T* *** *** *T* *** *T* *T* ~t* *I* **• •*■ **• *T* *I* *T* *T* *r» ^» ^T* *T* *I* *** *I* *I* *1* 'i* *I» *P *r* *i» *t* *t» *f» *J* *i» *J* *!■ *!■ *J» *t* 'I* *J* *** ^P *t^ *t* *t* *F ^T* *I* *I* *!^ *!* / 

void user3() 
{ 
CONFIGURATION q; 

q = defineConfig(0.0,0.0,0.0,0.0); 

setRobotConfig(q); 

EnableSonar(SONARNUM); 

SonarLog(FREQ,0,SONARNUM,DATATYPE); 

waitMS(30); 

Rotate(PI); 

} 
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