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ABSTRACT 

This report covers experimental and analytical studies 
of T300/5209 and T300/5208 graphite-epoxy laminates:  (1) to 
determine the coupling between applied stress, internal resid- 
ual stress, and moisture sorption kinetics, (2) to examine the 
microscopic damage mechanisms due to hygrothermal cycling, 
(3) to evaluate the effect of absorbed moisture and hygro- 
thermal cycling on inplane shear response, (4) to determine 
the permanent loss of interfacial bond strength after mois- 
ture absorption and drying, aid (5) to evaluate the three- 
dimensional stress state in laminates under a combination of 
hygroscopic, thermal and mechanical loads.  Specimens were 
conditioned to equilibrium moisture content under steady 
exposure to 55 or 95% RH at 70 or 93°C.  Some specimens were 
tested subsequent to moisture conditioning and 100 cycles 
between -54°C and either 70°C or 93°C. 

The transverse and through thickness expansion of unidir- 
ectional composites due to absorption of equilibrium moisture 
concentrations were determined.  Desorption of moisture at 
70°C was found to be insensitive to initial moisture content, 
applied stress and internal residual stress.  Dimensional 
changes on (04,904)T laminates were measured during hygro- 
thermal cycling to assess alteration of laminate residual 
stress.  Elastic laminated plate theory was successfully used 
to predict the moisture altered residual stress state of T300/ 
5208 lmainates.  In T300/5209 the strong dependence of residual 
stress on hygrothermal history was indicative of viscoelastic 
behavior. 

The inplane shear response was determined as a function 
of moisture content, temperature, and hygrothermal cycling 
history.  Permanent alteration in room temperature interlam- 
inar shear strength after -hygrothermal cycling was also 
assessed.  Cycling was found to have no measurable effect on 
inplane shear and interlaminar shear response and caused no 
significant microstructural damage after 100 cycles. 

Finite element analysis showed that the most severe 
stresses near laminate free edges were introduced during mois- 
ture desorption and combined mechanical loading.  Arguments 
based on fracture mechanics concepts indicate that edge crack- 
ing due to hygrothermal loading alone will be more pronounced 
in thick laminates and suppressed in the thin 8-ply laminates 

examined in this study. 
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CHAPTER 1 

HYGROTHEKMAL DEGRADATION OF GRAPHITE-EPOXY COMPOSITES 

1.0  INTRODUCTION 

Since the study of Hertz et al. [1] in 1972, it has been known that the 

thermomechanical properties of graphite-epoxy laminates can be degraded by 

the absorption of moisture from humid environments.  The nature of degradation 

in a particular property can be attributed to the effect of absorbed water on 

the fiber, the matrix, and the fiber-matrix interface or combinations of these 

three.  Because of a number of studies which have determined little effect of 

water on fiber-dominated composite properties [2-4], it is generally accepted 

that graphite fibers, unlike glass fibers [5], are not degraded by exposure to 

moisture.  On the other hand, there is much evidence that the matrix or interface 

sensitive composite response, particularly under transverse normal, inplane shear, 

and interlaminar shear loading, is strongly altered by the hygrothermal hist- 

ory and test conditions [4-7].  Repeated exposure to temperature cycles such as 

those caused by aerodynamic heating of supersonic aircraft or space shuttle or 

even by radiative solar heating of commercial aircraft on the runway has been 

found to alter the moisture sorption kinetics of graphite-epoxy composites. 

There is concern that the thermo-mechanical properties may also be degraded by 

hygrothermal cycling [7,8]. 

Epoxy resins are particularly susceptible to significant moisture absorp- 

tion because of their hydrophilic polar character.  The epoxy polymer absorbs 

moisture by volumetric diffusion.  The absorbed water exists in the form of 

hydrogen-bonded molecules or clusters of molecules within the polymer [10]. 

Moisture in either form acts to swell the molecular structure, increasing its 

"free volume" [11].  The manifestations of moisture in the polymer include 

plasticization, enhanced creep and stress relaxation, and reduction in ultimate 

strength and stiffness properties.  The magnitude of these changes depends on the 
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amount of moisture absorbed, the moisture concentration profile and the am- 

bient temperature.  The degree of moisture absorption is in turn dependent on 

the composite geometry, ambient relative humidity and temperature, and the 

length of the exposure. 

The volumetric diffusion coefficient, D, associated with moisture absorp- 

tion at 20°C is several orders of magnitude smaller than the thermal diffusivity 

of the epoxy [12].  The time required to bring the polymer of thickness L to 

99.9% of equilibrium under a steady temperature and humidity is given approxi- 

mately by the equation [13] 

t  ~ 0.67 L2/D . 
eq 

For a polymer of 0.25 cm thickness and a diffusion coefficient at 20°C of 

5 x 10   cm /sec, the time to reach equilibrium is 8.75 x 10  sec or nearly 

three years.  Moisture diffusivity is, however, very sensitive to temperature 

and increases by several orders of magnitude in the 20°C to 150°C temperature 

range [14].  The process of moisture absorption can thus be accelerated in 

order to determine in a reasonably short period of weeks or months the 

effect of moisture on composite polymer properties. 

Accelerated moisture conditioning at high temperatures and humidities 

can result in the sorption of unrealistically high concentrations of water in 

the polymer compared to what would be absorbed under the ambient environment 

[15].  Under extreme conditions where the glass transition temperature of the 

graphite-epoxy composite is exceeded during steady exposure to temperature 

and humidity, the composites have developed delaminations which are totally 

absent in specimens exposed to lower temperature and humidity [14]. 

The effect of moisture on the fiber-matrix interface can be at least 

threefold.  Moisture may act to break chemical bonds (as observed in glass- 

epoxy composites [5]) between the fiber and matrix and result in a permanently 

altered interface strength even after desorbing the composite to the dry state. 
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Adsorption of moisture at the interface may also alter its surface free ener- 

gy.  By considering the effect of surface energy on the Griffith fracture equa- 

tion, Kaeble et al. [16] postulate a reduction in the interfacial strength of 

graphite-epoxy composites containing absorbed water which can sometimes 

be reversed if the water is removed.  Finally, toe swelling of the matrix 

due to absorbed moisture counteracts the contraction of the matrix caused 

by cooling the composite from its cure temperature.  At some combination 

of temperature and moisture the average residual stress normal to the fiber- 

matrix interface changes from that of compression due to the thermal con- 

traction of the matrix around the fiber to an average state of tension [7]. 

The state of tension may enhance chemical bond breaking or simply lower the 

effective applied stress at which the interface reaches its failure stress. 

In viscoelastic media, such as graphite-epoxy composites, the residual 

stresses in the matrix, fiber, and at fiber-matrix interface can be altered 

by the hygrothermal history.  A thirty percent increase in residual stress 

has been measured after hygrothermal cycling and returning the material to 

its initial dry state [14]. 

Matrix plasticization at high temperatures may also account for perman- 

ent interface damage by a mechanism proposed by Browning [36].  Browning 

studied a neat resin typical of the basic composition of the 175°C (350°F) 

curing epoxies (such as 5208, 3501 and 934).  He found microcracklng in the 

resin became apparent only when thermal cycling to a temperature greater than 

the wet glass transition temperature of the resin.  Surface intrusions and 

extrusions typical of metals under fatigue loading were observed which even- 

tually cracked after cycles at high temperatures and/or high moisture con- 

tents.  Permanent dimensional changes after drying were attributed to the 

microcracking.  Much of the microcracking was attributed to moisture enhanced 

creep rupture process occurring during exposure to the elevated temperature 

portion of the cycle.  One might expect an enhancement of fiber-matrix bond 

rupture by the same argument. 

A more insidious bond degradation can occur even at exposure temperatures 

below the wet glass transition temperature of the epoxy matrix.  In some 
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material systems the partially cured polymer sizing placed on the fiber bun- 

dles before prepregging may be more susceptible to moisture enhanced degrada- 

tion than the matrix epoxy.  Augl and Berger [29] attributed the proportion- 

ately greater loss of shear strength of moisture exposed T300/5208, com- 

pared to HTS/5208, to the epoxy sizing on the T300 fibers.  In this case, 

the shear strength returned to its initial value after drying.  Permanent 

losses in the dry 175°C flexural strength of T3O0/934 composites after 24- 

hour water boil were noted by Marks et al. [28]. However when T300 fibers 

were sized with a more moisture-reistant polyimide having a high wet glass 

transition temperature, the T300/934 composite suffered negligible per- 

manent loss in 20°C and 175°C flexural strength after 24-hour water boil 

and drying. 

At the laminate level, additional degradation mechanisms are influenced 

by hygrothermal history. Nonuniform distribution of moisture has been cal- 

culated to cause steep gradients of stress near laminate surfaces [18] or at 

the free edges [19] which could contribute to microcracking of individual 

plies or delamination of plies as observed in studies by Browning and Hartness 

[2] and by Hedrick and Whiteside [20]. 

Browning [36] describes a mechanism for crack formation and growth 

which is related to the gradient in moisture concentration.  These gradients 

in moisture content lead to stress gradients due to the swelling or expan- 

sion which accompanies the volumetric sorption of water into the resin matrix. 

Browning points out that stress relaxation can occur during thermal cycling 

which can result in the development of a tension-compressive stress cycle, 

concomitant with hygrothermal fatigue. 

Another damage mechanism has been identified which does not require ex- 

posures to extreme thermal spike conditions, typical of supersonic aircraft, 

to initiate damage.  Analysis has been made of the internal hygrothermal 

residual stresses in crossplied (0/90)  laminates which develop during 

absorption and desorption of moisture.  The hygro-thermal-elastic analysis 
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is based on a finite element model of the laminate structure coupled to a 

finite element diffusion analysis of the moisture distribution which develops 

under non-equilibrium and equilibrium conditions [19].  Results have shown 

that the highest hygrothermal tensile stresses develop near the laminate 

edges and surfaces after short desorption times when the gradients of 

moisture are most severe.  As a consequence of the desorption caused-near 

surface-tensile stresses, one might expect a greater propensity for cracking 

if surface desorption takes place at low temperatures where the matrix is 

brittle.  Cracking of neat resin specimens and graphite-epoxy laminates, 

indeed, has been noted by both Hedrick and Whiteside [20] and Browning and 

Harkness [2] after drying at room temperature.  However, Hedrick and Whiteside 

note that the microcracking is observed only in specimens thicker than 0.25 cm. 

It is evident from this brief discussion that the matrix, interface, 

and laminate degradation mechanisms are intimately coupled in graphite- 

epoxy composites.  The study described in this report was undertaken to 

elucidate the nature of this coupling and, from a deeper understanding of 

this process, to develop an accelerated moisture conditioning and test 

methodology appropriate for realistically assessing the effect of moisture 

on the alteration of composite thermomechanical properties.  The remainder 

of this chapter contains a literature review of methods to assess moisture 

related degradation and a discussion of previous studies of hygrothermal 

cycling in graphite epoxy composites.  An outline of the experimental and 

analytical program is then presented and followed by a description of the 

materials chosen for this study and the fabrication procedures employed. 

Chapter 2 describes a set of experiments designed to investigate the coup- 

ling between applied stress, internal residual stress and the kinetics of 

moisture sorption.  Chapter 3 examines the alteration of inplane and inter- 

laminar shear properties by hygrothermal cycling.  Chapter 4 describes the 

microscopic examination of composite laminates subjected to hygrothermal 

cycling,while Chapter 5 contains an elastic analysis of the stress state 

near laminate free edges as influenced by the gradient of moisture present 

during sorption.  Chapter 6 discusses the implications of the results to 

the development of a comprehensive test methodology and makes recommendations 

for additional research in this area. 
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1.1 ASSESSMENT OF HYGROTHERMAL DEGRADATION - LITERATURE REVIEW 

1.1.1 Definition of the Environment and Level of Moisture Absorption 

One of the first steps taken to realistically assess the effect of mois- 

ture on composite properties was the application of volumetric diffusion the- 

ory to determine the concentration of absorbed moisture as a function of posi- 

tion.  Shen and Springer [13] determined that under steady temperature and 

humidity exposure, the T300/934 composites obeyed the simplest form of the 

mass diffusion equations in which the mass flux J is given by 

J = - D V c 

where V c is the concentration gradient and D, the diffusion coefficient, 

is independent of concentration.  While this assumption of concentration 

independence greatly simplifies the mathematical modeling of diffusion in 

one, two, or three dimensions, Shirrell [21] has noted several additional 

mechanisms which can contribute to moisture transport in composites and may 

account for several anomalies in moisture sorption discovered by that in- 

vestigator.  Other studies [14] have shown that the desorption coefficient 

in GY70/339, T300/5209 and T300/934 systems is independent of initial equil- 

ibrium moisture content although the scatter in calculated diffusion coef- 

ficients on identically exposed specimens was typically + 20 percent. 

In the absence of well-defined diffusion models which unambiguously 

predict the anomalies which have been observed, the concentration independ- 

ent diffusion equations have been employed in many recent studies to assess 

the level of moisture absorption during exposure to in-service environments. 

Unnam and Tenney [22] and Whiteside [23] used data available from the Na- 

tional Weather Bureau to define the effective relative humidity and temper- 

ature at the surface of a composite aircraft structure exposed to a runway 

environment.  Daily, weekly, monthly and yearly weather cycles and local 

heating due to solar radiation were considered in the diffusion models. 

Typical 12-16 ply composites reached in three years of service a typical 
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absorbed moisture content of 1.0 - 1.2 percent water in average continental 

U.S. conditions, although consideration of tropical and desert climates led 

to a calculated range of 0.6 - 1.4 percent average water content. 

Springer [24] applied idealized hygrothermal cycling boundary conditions 

to his diffusion model to show that daily temperature humidity cycling causes 

large changes in moisture concentration near the composite surface.  The in- 

terior or core of the composite remains at a relatively stable moisture con- 

tent.  The boundary layer zone which sees large fluctuations in moisture con- 

centration is found to be approximately 0.012 cm (or roughly one ply in thick- 

ness).  Whifceside [23] verified this boundary layer size under conditions 

typical of tropical climates. 

These calculations have important implications for the investigation of 

hygrothermal damage mechanisms.  The thermomechanical response of composite 

specimens containing average moisture contents up to the maximum expected 

value encountered in service must be determined.  In addition, it may be nec- 

essary to examine certain properties of composites which may be sensitive to 

a steep boundary layer gradient of moisture which develops during hygrothermal 

cycling.  The next three sections review the literature with emphasis on 

those composite properties which have been found to be most sensitive to 

moisture sorption and hygrothermal cycling. 

1.1.2 The Effects of Moisture on Mechanical Properties 

Studies of the influence of absorbed moisture on ultimate tensile 

strength, and tensile and compressive moduli have recently been reviewed 

by Springer [3,4].  Longitudinal unidirectional and quasi-isotropic laminate 

properties were found insensitive to moisture and temperature.  Transverse 

unidirectional composite properties were susceptible to significant reduct- 

tions compared to ambient dry conditions.  The loss in room temperature 

transverse tensile strength was as large as 50 percent in T300/5208 composites 

although the loss of tensile modulus was on the order of 10 percent.  At ele- 

vated temperatures both transverse tensile strength and modulus was reduced 
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with increasing moisture content. Verette [26] showed similar results in 

tests of AS/3501-5 composites.  Interestingly, while the reduction of trans- 

verse compressive strength, transverse tensile modulus, and transverse com- 

pressive modulus was less than 20 percent at room temperature, the transverse 

tensile strength was reduced by nearly 40 percent after absorbing 1.9 percent 

water.  Verette also demonstrated the sensitivity of longitudinal compressive 

strength and in-plane shear strength (rail shear) to absorbed moisture. 

The flexure test has been employed most often to assess the effect of 

moisture on composite properties.  At small span-to-thickness ratios the 

specimen will often fail in shear near the midplane rather than by tensile 

or compressive failure near the outer surfaces.  The existence of these three 

possible failure modes, coupled with local bearing failures under the loading 

pins, often makes it difficult to interpret the trend of moisture effect on 

the composite.  Hertz [1] was one of the first to observe a change of failure 

mode from tensile to compression in flexure tests of dry and wet unidirec- 

tional composites conducted at 175°C. 

A literature survey [27] shows that the observed changes in room temp- 

erature flexural strength due to absorbed moisture have been found to be 

either positive or negative depending on the particular graphite-epoxy system 

being studied.  In the absence of any significant degradation in fiber domi- 

nated longitudinal tensile strength, the mixed results appear to be caused 

by the competition between an increased matrix ductility (allowing a more 

effective load transfer to the fibers and thus higher strength) and a de- 

crease in interfacial bond strength (which promotes debonding and less effect- 

ive load transfer to the fibers) [28]. 

Alteration of flexural failure modes due to moisture absorption makes 

a direct comparison of strength values meaningless in some cases.  Further- 

more the flexural test is also sensitive to moisture gradients.  The flex- 

ural strength is dominated by the failure of the highest stressed outer 

plies which, depending on the hygrothermal history, may contain more or 

less than the average moisture concentration.  Conclusive analysis of hygro- 



thermal degradation mechanisms by flexural testing does not appear to be a 

viable experimental procedure. 

Short beam shear tests are also commonly employed to evaluate moisture 

effects [27].  However, a loss in shear strength can be the result of a com- 

bination of matrix plasticization or loss of interfacial bond strength. 

Augl's study [29] of T300/5208 and HMS/5208 short beam shear properties as 

a function of temperature and moisture content shows distinctly different 

behavior for the two systems.  The more rapid loss of short beam shear 

strength with increasing temperature and moisture in T300/5208 is attributed 

by Augl to the degradation of the epoxy sizing at the T300 fiber-matrix inter- 

face. 

Short beam shear testing was originally developed for fiberglass compos- 

ites where the test served to determine the interlaminar (or interfacial) 

shear strength of the composite; and in evaluating early graphlte-epoxy com- 

posites, it served the same purpose.  However, with the development of surface- 

treated graphite fibers, the interfacial shear strength of the resulting com- 

posite rose to such high values that matrix shear deformation or compressive 

failure under the loading pins became commonly observed failure modes [27]. 

Interpretation of moisture-induced degradation of short beam shear strength 

is clouded by the nearly uniform absence of failure mode description in these 

studies. 

Beaumont [30] and Kaelble [9,16,31] have examined the effect of moisture 

exposure on the fracture energy under impact  (Charpy test) and under slowly 

applied loads (V-notch three-point bend test).  The two tests give similar 

fracture energy values [30].  However, the direction of change of fracture 

energy with moisture exposure depends upon the particular composite material 

chosen for study.  Beaumont showed that, for a particular fiber-matrix system, 

the fracture energy peaks at intermediate levels of interlaminar (or interfa- 

cial) strength.  By a micromechanical model, Kaelble [31] showed that the 

peak in the energy curve occurs at a critical shear strength of T* = a.   JlGl 

[4/!i7 f(V )], where af  is the fiber strength, E the fiber modulus, G the 
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matrix shear modulus, and f(V ) a geometric constant inversely related to 

fiber volume fraction.  If the dry interlaminar shear strength exceeds T*, 

then moisture, by lowering the shear strength, will drive the fracture energy 

higher.  If the dry interlaminar shear strength is already below T*, then 

moisture can only depress the fracture energy.  Trends in the moisture 

altered fracture energy of epoxy composites reinforced by HTS, AS, Morganite I 

and Morganite IS fibers [27] agreed with the micromechanics model just given. 

The work of fracture contains large contributions from both matrix shear 

and fiber pullout, both of which are influenced by the level of matrix plasti- 

cization and matrix swelling as well as by the degradation of interfacial 

shear strength by moisture. As was found with the flexure and short beam 

shear tests, measurement of fracture energy in bending does not provide a 

means to separate hygrothermal effects on the several failure modes which 

contribute to the overall composite response. 

1.1.3 Effect of Hygrothermal Cycling on the Kinetics of Moisture Sorption 

The first evidence that hygrothermal cycling itself could cause compo- 

site degradation was described by McKague [8] in experiments on T300/5208 

which simulated the thermal spike caused by aerodynamic heating during a 

supersonic dive in a jet aircraft.  McKague found that both the rate and 

level of moisture absorption were increased during and subsequent to hygro- 

thermal cycling between -54°C and 175°C.   Since that initial study, several 

other investigations have been conducted to assess the level of degradation 

in sorption kinetics as a function.of temperature extreme, temperature cycling 

rate, level of absorbed moisture, and material selection.  Bohlman and Derby 

[32] conditioned T300/934 laminates to one percent average moisture content 

and then exposed them to thirty thermal "space shuttle" spikes between 20°C 

and 175°C.  No alteration of moisture sorption kinetics was found.  The in- 

vestigators observed that the rates of thermal spiking were much less than 

those used in McKague's study.  They noted that the supersonic spike heatup 

rate was 50°C/min and the cooldown rate was 500°C/min.  In the space shuttle 
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spike,the heatup rate was 6°C/min and cool down rate was 4 C/min. Although 

they attributed the difference in behavior to the existence of large thermal 

gradients through the composite thickness in the supersonic spike, the con- 

ductivity of graphite-epoxy is sufficiently high [121 to bring a 0.10 cm 

thick composite to equilibrium in only one second and through thickness temp- 

erature gradients of only a few degrees are possible. 

Verette [26] found that room temperature moisture absorption in AS/3501-5 

was increased by thermal spiking between 20°C and 120°C at heatup/cooldown 

rates of 50°C/min and 17°C/min respectively. Augl [29] found that the 30°C 

diffusion coefficient of T300/5208 progressively increased from 1.2 x 10 
2 -10  2 

cm /sec to 2.54 x 10   cm /sec after exposure to 10, 40, and 80 cycles be- 

tween 20 C and 150°C at a heating/cooling rate of approximately 60°C/min. 

The moisture content prior to spiking was 0.6 percent. A number of studies 

have investigated the effect of initial moisture content on thermal spike 

damage.  Powell and Zigrang [33] examined T300/934 laminates humidified (95% RH 

at 60°C) to 0.6, 0.8, and 1.0% average moisture content and then exposed to 

100 space shuttle thermal spikes.  The specimens were subsequently dried 

and re-exposed to humidity (95% at 60°C) . Although the initial rate of weight 

pickup was identical to the unspiked specimens, the equilibrium water content 

was greater in the spiked specimens.  The largest increase was observed for 

the specimen humidified to 1.0 percent water prior to spiking.  Delasi and 

Whiteside [10] observed that thermal cycling enhanced the rate and level of 

moisture absorbed at 77°C in AS/3501-5 composites, when moisture contents 

were greater than 0.8 percent.  Specimens conditioned at relative humidities 

less than 50% did not show any change due to thermal cycling.  Studies by 

Mauri et al. [14] showed that increases by a factor of two in diffusion 

coefficient were common in T300/5209 and GY70/339 composites absorbed, de- 

sorbed and reabsorbed at 51 and 71°C and 95% relative humidity.  Similar 

sorption tests conducted at lower relative humidity (71 and 57%) and lower 

temperature (20°C/95% humidity) showed little or no change in diffusion co- 

efficient. 
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1.1.4 The Effect of Hygrothermal Cycling on Mechanical Properties 

Although the alteration of moisture sorption characteristics by hygro- 

thermal cycling is well documented, very little work has been done to examine 

the effect of cycling on the thermomechanical properties of composites.  Berg- 

man and Dill [34] examined the 0° and 90° compressive properties and rail 

shear properties of (0, +45, 0)  T300/934 laminates after 36 to 106 space 

shuttle thermal spikes.  The strength in all three tests decreased with in- 

creasing temperature and moisture content but was independent of the number 

of thermal spikes.  Augl found no degradation of the dry 20°C short beam 

shear and flexural strengths in T300/5208 composites moisture 

conditioned at 75°C/80% relative humidity and thermally cycled from 

20°C to 150°C for up to 40 times.  In fact, both flexural and short beam 

shear strength were found to increase after cycling and drying prior to test- 

ing.  Browning and Hartness [2] examined the flexural strength of HTS/2546 

composites at 175°C after exposure to 15 cycles consisting of 22.5 hours at 

50 C/95% humidity, one hour at -54 C and 30 minutes at 120 C. A 54-percent 

reduction in flexural strength compared to dry specimens was found, while a 

16-hour water boil reduced strength by only 27%.  However, it is not clear 

whether the thermal cycling caused a reduction in strength beyond that which 

would have been observed due to the absorption of water at steady conditions 

of 50°C/95% humidity. 

1.1.5 Assessment of Hygrothermal Degradation Mechanisms in Graphite-Epoxy 
Composites 

A strong case has been made in this survey of the literature that the 

degradation of graphite-epoxy composite properties due to hygrothermal expo- 

sure is related to a combination of matrix degradation and reduction of the 

fiber-matrix interfacial bond strength.  Although we seek to assess inde- 

pendently the hygrothermal degradation of matrix and interface and its rela- 

tive contribution to composite thermomechanical degradation, all of the mech- 

anical tests on composites necessarily involve the coupled response of fiber, 

matrix, and interface.  However, it is possible to determine, by means of 
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several experimental and analytical techniques, hygrothermal regimes where 

certain degradation mechanisms or coupled mechanisms predominate.  When 

these regimes have been assessed, additional tests may then be chosen to 

determine the individual contribution of matrix and interface degradation 

due to hygrothermal exposure. 

The first step that can be taken is to separate the degradation mechan- 

isms into those which are reversible or irreversible.  One might argue that 

the reversibility of a mechanism has little practical value for composite 

aircraft design since the material will rarely be returned to its original 

dry state; however Augl [29] points out that knowledge of reversibility 

enables one to predict composite strength degradation due to that mechanism 

as a function of the environmental variables (for example, as Unnam and 

Tenney [22] predict the level of moisture in composites).  If we place chemi- 

cal degradation of the epoxy matrix by processes such as photo-oxidation, 

hydrolytic polymer chain cleavage, and high-energy radiation outside the 

scope of this program, the major degradation mechanisms described in Section 

1.0 can be classified as follows: 

Component  Degradation Mechanism  

Matrix Plasticization 
" Moisture Swelling 
" Stress Relaxation, Creep 
" Cracking, Stress Rupture 

Interface Moisture-Altered Surface Energy 
" Altered Residual Stress at 

Interface 

"        Debonding 

Laminate    Ply Cracking 
"        Delamination 

Type 

Reversible 
Reversible 
Partially Reversible 
Irreversible 

Reversible 
Reversible* 
(*Partially reversible 
if matrix stress re- 
laxes) 

Irreversible 

Irreversible 
Irreversible 

In the program which is described in this report, experiments were de- 

signed to answer some of the questions which arose in attempting to assess 
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the separate contributions of the mechanisms listed to thermomechanical 

degradation of composites.  These questions were: 

1. Is moisture absorption sensitive to the lamination sequence? 

2. What is the level of moisture-induced swelling? 

3. Is the alteration of residual stress by moisture absorption 
reversible or history-dependent? 

4. Does applied stress alter the kinetics of moisture desorption? 

5. Does the application of applied stress during desorption alter 
the residual stress state? 

6. What is the degree of matrix plasticization as measured by com- 
posite inplane shear properties as a function of moisture content, 
temperature and hygrothermal cycling history? 

7. What is the degree of permanent interfacial damage, as measured 
by composite interlaminar shear strength, after hygrothermal 
cycling? 

8. What is the level of microscopic damage caused by hygrothermal 
cycling? 

9. What is the calculated level of stress caused by moisture grad- 
ients near laminate surfaces and free edges which can contribute 
to ply cracking and delamination? 

1.2 PROGRAM DESCRIPTION 

Two materials were chosen for this study: T300/5209 (a 125°C curing 

system) and T300/5208 (cured at 180°C and post-cured to 205°C). The T300/ 

5209 system was originally chosen for use in the NASA/Langley-sponsored 

program for flight service evaluation of an advanced composite vertical tail 

fin on the Lockheed L1011 [35], primarily because the lower cure temperature 

significantly reduced the cost of tooling and fabrication compared to the 

180°C curing systems.  However detailed thermal analysis showed that local 

areas of the tail fin painted with dark blue pigment and exposed to direct 

solar radiation and reflected radiation from the horizontal stabilizer 

would reach a maximum temperature of 90°C rather than the previously cal- 
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culated value of 70°C.  The pronounced drop in T300/5209 compressive prop- 

erties at this high temperature and moisture content of one percent indicated 

that the material would be marginal in meeting the structural requirements, 

and a change to the higher temperature curing T300/5208 system was agreed 

upon.  To examine the effect of hygrothermal cycling experienced by typical 

commercial aircraft, the temperature ranges chosen were -54°C to 70°C and 

-54°C to 93°C, corresponding to the extremes calculated for the vertical fin. 

The program is broken into four major tasks described separately in each 

of the next four chapters: 

1. The coupling between moisture sorption and laminate stress. 

2. The effect of moisture on inplane and interlaminar shear behavior. 

3. Microscopic examination of hygrothermally cycled laminates. 

4. Analysis of moisture altered laminate stresses. 

An outline of the program plan follows: 

TASK 1 - This task examined moisture induced swelling effects on altera- 

taion of internal residual stresses, dimensional changes and sorption kinetics. 

1A.  The transverse and through thickness swelling of unidirectional com- 

posites of both materials were determined for exposures to 55 and 95 percent 

relative humidity at 70°C.  Triplicate specimens were employed. 

Total:  12 specimens 

IB. Residual stress changes due to hygrothermal cycling were determined 

by warping measurements of (0,, 90,) laminates of both materials in the fol- 

lowing states: 

(a) As dried. 

(b) After moisture equilibrium is reached under 55% RH/70°C 

95% RH/70°C 
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(c) After cycling 100 times between -54CC to 70°C 

-54°C to 93°C 

(d) After complete desorption. 

Total:  24 specimens 

1C. Alteration of sorption kinetics and internal residual stresses in 

the absence and presence of mechanically applied stressed were studied for 

the following experimental variables: 

1C.1 Materials 2 

T300/5208 

T300/5209 

1C.2 Layup 5 

«V 9VT+ 

(VT* 
(908)T* 

(0, 90)2s* 

(90, 0)_ * 
t       2S 

T denotes the total laminate construction is shown 
* clad on one side with 75 ym (3 mil) Al foil 

1C.3 Initial Moisture Content 2 

Equilibrium @ 55% RH/93°Cf 

Equilibrium @ 95% RH/93°C 

t Aluminum clad laminates exposed to humidity would require 
approximately 3 months to reach saturation at 70°C, because 
the absorption is from one side only (i.e., the saturation 
time is four times that for samples absorbing from both 
sides).  In order to speed up the absorption process for 
these specimens, an exposure temperature of 93°C was used. 

1C.4 Applied Stress During Desorption at 70°C 3 

None 

Bending (Tensile on Side 1)** 

Bending (Tensile on Side 2)** 

**To 25% of curvature to cause flexural failure in the dry 
state at 20°C   

-,   -., Total:   60 specimens 



TASK 2.  Inplane and Interlaminar Shear Properties 

2A. Matrix Dominated Shear Behavior - (+ 45)„ tensile tests (dupli- 

cate specimens) were conducted to determine hygrothermally altered inplane 

shear response. The experimental variables included: 

2A.1 Materials 2 

T300/5208 

T300/5209 

2A.2 Moisture Content 4 

Dry 

Equilibrium at 55% RH/70°C 

Equilibrium at 95% RH/70°C 

Dried after equilibrium to 95% RH/70°C 

2A.3 Hygrothermal Cycling 3 

None 

100 cycles from -54°C to 70°C 

100 cycles from -54°C to 93°C 

2A.4 Test Temperature 3 

20°C 

70°C 

93°C 

Total: 144 specimens 

2B.  Evaluation of Permanent Interfacial Damage - Unidirectional spec- 

imens of both material systems were tested in flexure after hygrothermal 

cycling and drying to determine whether cycling alters the interfacial 

strength of the composite.  Interlaminar shear strength (triplicate speci- 

mens) was measured as a function of 

2B.1 Initial Moisture Content 3 

Dry 

Equilibrium at 55% RH/70°C 

Equilibrium at 95% RH/70°C 
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2B.2 Thermal Cycling 3 

None 

100 cycles from -54°C to 70°C 

100 cycles from -54°C to 93°C 

Total:  54 specimens 

TASK 3. Microstructural Examination - the purpose of this task was to 

assess microstructural damage in unidirectional and quasi-isotropic lamin- 

ates as a function of temperature cycling range, number of cycles and level 

of absorbed moisture. 

3A.  Materials 2 

T300/5208 

T300/5209 

3B.  Layup 3 

UD 

(+ 45, 0, 90)s 

(90, 0, + 45) 

3C.  Initial Moisture Content 3 

Dry 

Equilibrium @ 55% RH/70°C 

Equilibrium @ 95% RH/70°C 

3D.  Thermal Cycle Range 2 

-54°C to 70°C 

-54°C to 93°C 

3E.  Number of Cycles 2 

10 

100 

Total:   72 specimens 
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The influence of voids on damage accumulation were studied by exposing 

(+45, 0, 90)  "voidy" panels of both material systems to 95 percent relative 

humidity, then cycling according to 3D and 3E before microscopic examina- 

tion. 

Total:   8 specimens 

TASK 4.  Stress Analysis 

4A.  Plane Stress Analysis - The plane stress analysis code ADV*LAM 

was coupled to a one-dimensional diffusion solution for the moisture con- 

centration gradient through the laminate thickness.  Curvature changes in 

(0,, 90,)„ laminates and Al clad laminates were calculated on the assumption 

of elastic behavior and compared to experimental measurements to determine 

the moisture-altered residual stress state. 

4B.  Generalized Plane Strain Analysis - An elastic generalized plane 

strain finite element analysis program FREE*EDGE was coupled to a two-dimen- 

sional finite element analysis of moisture diffusion to calculate the alter- 

ation of inplane and through thickness stress components in unidirectional, 

cross-plied and quasi-isotropic laminates as a function of hygrothermal and 

mechanical loading. 

1.3 MATERIAL PROCESSING 

T300/5208 and T300/5209 prepreg in the form of 30.5 cm (12 in) wide uni- 

directional tape was ordered and received from NARMCO. The prepreg was supplied 

in a single roll of 3.6 kg (8 lb) for each material.  Samples from each roll 

were taken to assess the DDA (dynamic dielectric analysis) and DSC (differen- 

tial scanning calorimetry) response during the manufacturer's recommended 

cure cycle given in Table 1 of Appendix A.  Figure 1 of Appendix A plots the 

temperature and heat as a function of time.  The recommended cure temperatures 

(127°C for 5209 and 177°C for 5208) fall at the initial portion of the cure 

exotherm as expected. 
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Dynamic Dielectric Analysis was made of samples taken from the two pre- 

preg rolls of T300/5208 and T300/5209 used in fabricating the panels for this 

program.  Leveling off of the dissipation curve shown in Figures 2 and 3 of 

Appendix A is indicative of completion of curing.  The temperature-time pro- 

file used for each material was chosen to match the profile used during the 

cure of the laminates.  DDA measurements show that^the cure cycle chosen pro- 

vides for full curing of both prepreg rolls. 

Twenty-eight 30 cm by 30 cm panels of T300/5208 and T300/5209 laminates 

of the type listed below were fabricated according to the processes given in 

Table 1A.  In order to obtain some (+ 45, 0, 90)  laminates with a higher 
s 2 

void content, the applied pressure (Item 3 in table) was reduced to 138 KN/m 

(20 psi) for T300/5208 and 345 MN/m2 (50 psi) for T300/5209.  Several panels 

were successfully fabricated with a 0.008 cm aluminum foil cladding on one 

side. 

Layup   Number 

1 

1 

5 

1 

1 

3 

(0o)„ [one side Al clad]        1 o i 

(0, 90)2s [one side Al clad]    1 

(+45, 0, 90)  [2-4% voids]      1 

Table 2 of Appendix A shows the volume fraction and void fraction deter- 

mined by acid digestion measurements and based on assumed specific gravity of 

1.746 for T300, 1.247 for 5209, and 1.265 for 5208.  The negative void frac- 

tions obtained on most panels have been commonly observed on nearly fully 

dense composites and can be accounted for in the equation for void fraction 

V by an inaccurate value for resin or fiber density. 
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V  = 100 - p 
v c PR  PF 

where w is weight fraction, p is density and R,F,C subscripts refer to the 

resin, fiber and composite, respectively.  Fiber density measurements in 

T300 fibers have ranged from 1.72 to 1.80 gm/cc. A fiber specific gravity 

variation of 1.76+0.04 results in a void fraction range (and fiber volume 

fraction range) of + 1.4% in a nominally void free laminate. 

The results in Table A2 show that all T300/5209 panels lie in the fiber 

volume range of 65 + 2%.  T300/5208 panels contain fiber volume of 67-69% 

which lie at the high end of the acceptable range (60-68%) of fiber contents 

specified for NASA-sponsored L1011 ACVF program.  The low viscosity of 5208 

and the enhanced bleed-out at the edges of the small 30 cm x 30 cm panels 

fabricated for this program made it difficult to reduce the fiber volume 

fraction.  T300/5208 panels fabricated under reduced pressure to purposely 

develop voids contained approximately 58% fiber and void contents of 0.7% 

to 1.6%.  On the other hand T300/5209 "voidy" laminates (#13, 14) are indis- 

tinguishable fron all other laminates in their fiber and void content. 

Metallography of selected panels of each material representative of uni- 

directional, crossplied, clad, and quasi-isotropic layups are shown in Fig- 

ures A4-A7. The T300/5208 panels are shown to be essentially void free.  The 

"voidy" 5208 panel shows less compaction, lower fiber volume fraction and large 

large voids of 1-2 x 10  cm diameter interspersed primarily between plies. 

T300/5209 panels generally contained even smaller voids.  The estimated void 

content in this material is less than 1%, even in the "voidy" laminates. 
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CHAPTER 2 

THE COUPLING BETWEEN APPLIED AND 
RESIDUAL STRESS AND MOISTURE SORPTION 

2.1  DIMENSIONAL CHANGES CAUSED BY MOISTURE ABSORPTION 

After drying all specimens for 7 days at 93 C in vacuum, moisture con- 

ditioning to equilibrium moisture content at 70 and 93 C under 55 and 95 per- 

cent relative humidity was carried out in sealed desiccators containing a 

glycerol-water mixture of fixed proportions to provide the required relative 

humidity in the enclosure.  The specimen chambers were placed in air circu- 

lating ovens maintained at 70 + 2°C and 93 + 2°C.  Specimens were removed and 

weighed weekly until equilibrium moisture content was reached.  After equili- 

brium was attained, specimens were stored at room temperature under the same 

relative humidity to which they were exposed. 

Table 1 gives the average moisture content of laminates conditioned at 

70°C.  The observed scatter is approximately + .05 percent.  The moisture con- 

tent of specimens exposed to 70°C/55% RH shows little dependence upon material 

or configuration.  However, exposure to 95% RH at 70 C results in a consider- 

able difference in material response.  The T300/5209 specimens absorb 1.8 + .1 

percent water at this temperature and humidity, while T300/5208 samples aver- 

age only 1.3 + 0.1 percent.  The (+ 45)  specimens of each material are 

found to absorb a slightly higher level of water as are the laminates which 

were fabricated to provide a higher void content. While specimens exposed to 

93°C are discussed in a later section of this chapter, it is worth noting 

(Fig. 6, 7) that, while the equilibrium concentration of T300/5208 laminates 

under 55 and 95% humidity is essentially the same at 70°C and 93 C exposures, 

T300/5209 shows a large increase in moisture absorption when conditioned 93 C. 

The equilibrium moisture content under 55% RH increases from .66 percent at 

70°C to 1.35 percent at 93°C in identical  (0^, 904>T laminates.  The 

2-1 



Table 1 

AVERAGE MOISTURE CONTENT OF SATURATED* COMPOSITE SPECIMENS 

Panel ID Layup 

Exposure Conditions 

Material 70°C/55% RH 70°C/95% RH 

1 T300/5209 [o8]T 0.82 1.92 

4 [<V 904]T 0.66 1.82 

12 [+45, 0, 90]g 0.78 1.78 

13 [+45, 0, 90]s 
  1.97** 

15 [90, 0, +45]s 0.61 1.86 

7,8 t±45]2s 
0.69 2.00 

16 T300/5208 [o8]T 0.76 1.29 

19 [04, 904]T 0.74 1.32 

27 [+45, 0, 90]s 0.81 1.35 

28 [+45, 0, 90]s 
  1.98** 

30 [90, 0, +45]s 0.71 1.28 

22,24 ' &5hs 0.77 1.40 

* Exposed for 670 hours 

** "Voidy" laminates 
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equilibrium moisture content under 95% RH increases from 1.83 percent at 70 C 

to 2.90 percent at 93 C.  The steep rise in equilibrium moisture content of 

T300/5209 with increasing temperature and humidity is typical for graphite- 

epoxy laminates which are moisture conditioned at a temperature which exceeds 

the wet glass transition temperature [15]. 

Dimensional changes due to absorbed moisture were determined by micro- 

meter measurements on unidirectional 5 x 2.5 x 0.10 cm unidirectional specimens. 

Dimensions at three sets of fiducial marks in the longitudinal, transverse and 

thickness directions were taken and averaged.  The change in dimensions is ex- 

pressed as the difference between the value after equilibrium moisture content 

was obtained and the initial dry dimension, normalized by the initial value. 

The results are shown in Figure 1.  Longitudinal changes were essentially 

zero and are not plotted in the figure.  The inplane transverse expansion Ay/y 

shows a linear dependence on moisture content between 0.6 and 2.2 percent ab- 

sorbed water, but little or no swelling associated with moisture contents 

less than 0.4 percent.  The plot contains data from an earlier study [15]. 

Studies by De Iasi and Whiteside [10] and Hahn [37] have shown a similar 

threshold concentration below which no transverse swelling is observed.  One 

explanation of this behavior developed by Hahn is that the first water mole- 

cules which are absorbed move preferentially to microvoids (or free volume) 

within the polymer molecular structure where their tendency to swell the 

structure is considerably less.  However, in unidirectional specimens one 

would expect the same threshold phenomenon in swelling to occur in the thick- 

ness direction as well. 

The through thickness dimension change shown in the lower portion of 

Figure 1 appears to indicate a larger Az/z change than that obtained in the 

transverse inplane direction (the dotted line in both plots).  Epoxy-rich 

interlaminar zones between plies may account for such diverse behavior. 

T300/5208 specimens exhibited greater scatter in the Az/z measurements.  The 

range of measurements for each moisture content are given by the vertical 

bars in each plot.  The estimated absolute error in the micrometer measure- 
-4 

ments is + 2.5 x 10  cm, or an error of + .25% for through thickness expan- 

sion measurements, compared to + 0.01% for inplane transverse expansion. 
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O  T300/5209 (Ref.15) 
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O T300/5208 

O  T300/5209 (Ref.15) 

^L 
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-I % H20 

—I % H„0 
2.5   l 

Figure 1.  Dimensional Changes in Transverse (Ay/y) and Through Thickness (Az/z) 
Directions in Unidirectional Composites vs. Equilibrium Moisture Content. 
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2.2  MOISTURE ALTERED RESIDUAL STRESSES 

Figure 2 shows the curvature of T300/5208 (0,, 90.)  laminates before 

(0.0 percent water) and after sorption of equilibrium uniform moisture concen- 

tration at 70 and 93 C under 55 and 95 percent humidity.  Matrix swelling due 

to absorbed water counteracts the matrix contraction obtained in cooling the 

specimen from its stress-free temperature near the cure temperature to room 

temperature.  As a result, the curvature of these warped, nonsymmetric laminates 

decreases with increasing equilibrium moisture content as indicated in the 

figure.  The curvature was determined by measuring the chord height of a 15 cm 

long by 2.5 cm wide specimen by means of a traveling microscope with a precision 

of 2.5 x 10-3 cm [14]. 

Longitudinal and transverse unidirectional and (+ 45_)  tensile coupons 

of T300/5208 and T300/5209 were tested to determine the elastic constants at 

25 C.  Handbook values for the coefficients of thermal expansion were assumed 

and coefficients of moisture expansion were taken from Figure 1.  These 

properties, summarized in Table 1 of Appendix B were then used in the laminate 

analysis code ADV*LAM to compare the predicted elastic warping caused by 

the absorption of equilibrium amounts of moisture to the experimentally ob- 

served warping.  DeRuntz describes the analysis procedure in an earlier 

paper J38]. 

Pipes et al [18] have discussed how swelling strains due to moisture ab- 

sorption are analyzed in the same manner as expansion strains caused by a change 

in temperature.  The analysis makes use of the concept of path independence 

in the analysis of elastic structural response.  Hahn {39] has shown that the 

calculation of residual stress or strains at a given temperature requires only 

the elastic constants at the temperature of interest and the total swelling 

strains due to temperature and moisture referenced to the initial dry stress- 

free state at temperature T .  In Our analysis T  was chosen by requiring 

the predicted warping in the dry state at 25 C to coincide with the experi- 

mentally measured value. 

The predicted warping of T300/5208 (0,, 90 )  laminates possessing the 

elastic properties in Table Bl is plotted as the dashed line in Figure 2. 
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N   2 
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^1 

Predicted Curve T300/5208 (04,904)T 
(T = 170°C) 
° o 93°C Exposure 

do ^' o    70°C Exposure 

-l 10 

(IG"2 in.01) 

- 5 

_L. \  10 
0 

1.0 2.0 

Equilibrium Moisture Content (%) 

Figure 2.  Measured and Predicted Curvature of Nonsymmetric 
(04,904)T T300/5208 Laminates vs. Equilibrium 
Moisture Content and Exposure Temperature. 
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The pronounced nonlinear relationship between curvature and moisture content is 

shown to be a consequence of the bilinear transverse swelling response in Fig- 

ure 1.  The close agreement between predicted and measured warping suggests 

that the assumption of elastic time independent behavior is appropriate for 

the analysis of T300/5208 although there is evidence for a poorer fit at mois- 

ture contents above 1 percent. 

Figure 3 shows the curvature vs moisture content response observed and 

predicted in (0,, 90.)  T300/5209 specimens.  The large deviation in the 

observed response and that predicted by linear elasticity is evident.  The 

elastic analysis is appropriate only for moisture contents less than 0.8 per- 

cent absorbed water and exposure temperatures of 70 C or less.  The history 

dependent curvature vs moisture content is indicative of a significant moisture 

altered viscoelastic response in T300/5209 at 70 and 93 C.  Similar history 

dependent responses were found in T300/5209 (0 , 90.)  laminates brought to 

equilibrium moisture contents at 20 C and 54°C [15].  Sykes et al [40] studied 

the glass transition temperature and heat distortion temperature (HDT) of 

T300/5209 as a function of absorbed moisture.  Absorption of one percent mois- 

ture lowered the HDT to 85 C from an initial value of 135 C in the dry state. 

Experiments in this laboratory show that the heat distortion temperature of 

T300/5208 drops to 45°C after absorption of two percent water [41].  It is 

evident from Figure 3 that viscoelastic stress relaxation acts to reduce the 

amount of residual stress change caused by the absorption of a particular 

water content and that the actual change is now highly dependent on the ex- 

posure temperature and humidity.  Earlier absorption experiments on T300/5209 

[15] show that under room temperature and 95% relative humidity the equilibrium 

moisture content is only 0.85 percent. 

The use of elevated moisture exposure temperatures of 70 and 93 C causes 

two problems which must be dealt with in the formulation of a realistic accele- 

rated conditioning and test program.  First, the elevated exposure temperature 

allows the absorption of more water than will be absorbed under typical aircraft 
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environments near 25°C.  Secondly, even if we choose to equilibrate T300/5209 

to 0.85 percent by proper choice of temperature and humidity (for example, 

70°C/55% RH or 93°C/20% RH), the residual stress state and moisture induced 

laminate dimensional changes after moisture absorption to equilibrium will not 

necessarily be the same as those which develop under humidity exposure at 

25°C.  Absorption of .85 percent water at 70 C reduces the initial warping 

by approximately 60 percent.  Absorption of the same level of water at 93 C 

would reduce the initial warping by only 10 percent, based on interpolation 

of the 93°C data in Figure 3.  The curvature results shown in Figures 2 and 3 

suggest that the hygrothermal cycling experiments to be performed at 70 and 

93°C on both materials systems will enable a separation between quasi-elastic 

degradation mechanisms in T300/5208 and viscoelastic enhanced degradation 

mechanisms in T300/5209. 

2.3  DESORPTION UNDER STRESS 

Unidirectional and crossplied laminates clad on one side with aluminum 

foil and additional (0,, 90.)  laminates were equilibrated to 55 and 95 per- 

cent humidity at 93 C in preparation for experiments designed to examine the 

influence of applied stress on the rate of moisture desorption.  During the 

exposure blisters on the order of .5 to 1 cm in diameter were observed to 

form under the aluminum cladding, especially in those samples exposed to 

95 percent humidity.  As more moisture was absorbed, edge delamination of the 

aluminum cladding from the composite become evident in some specimens. 

Figure 4 shows the range in appearance of the specimens.  The top two speci- 

mens show very little cladding degradation.  The center specimen typifies 

the appearance of blisters at the edges,  while the lower specimens show the 

center blistering and edge pealing of the cladding. 

Equilibrium moisture content of the clad specimens was generally higher 

than the unclad (0,, 904) T laminates (see Figures 6-7).  The higher moisture 

content of the clad laminates can probably be attributed to a preferential 

collection of moisture in the blistered regions.  The random distribution of 

blisters over the surface of the specimens suggests that they are caused by 
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fZli 

RHP 

Figure 4.  Appearance of clad T300/5208 and T300/5209 (Spec. 3-10 only) 
after exposure to 55% RH and 95% RH (Spec. 21-8 only) at 93°C. 
Note edge delamination of 3-10 and blistering of 21-10 and 
21-8. 
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moisture induced swelling of the composite and a locally poor composite to 

aluminum bond.  The aluminum foil had been sanded and cleaned prior to curing 

the clad prepreg.  Perhaps the use of the standard FPL etch or phosphoric anod- 

izing treatments used for adhesive bonding of aluminum joints could reduce 

or eliminate the tendency to blister in future experiments. 

The curvatures of unidirectional and crossplied clad laminates were 

measured as a function of equilibrium water content after saturation at 93 C 

under 55 or 95 percent relative humidity.  Predictions were based on the 

elastic constants in Table Bl and the stress free temperatures of Figures 2 and 

3.  In general, the dry predicted values at zero percent water were higher by 

a factor of 2-4 than measured curvature, while the slope of the predicted 

curvature vs. moisture curves followed the experimental trend for moisture 

contents less than 1 percent. 

The large discrepancy in the predicted and experimental curvatures of 

the dry clad specimens was unexpected, particularly when the (0,, 90.) 

results were so well correlated.  The curvature results, higher moisture 

contents and blistering of the aluminum suggest that the aluminum-composite 

bond is poor.  The implications were that desorption of clad laminates would 

not be strictly that due to one-sided diffusion and that a comparison between 

the absolute rates for the various laminate sequences may not be valid.  At 

best one could examine the desorption rates of a given laminate configuration 

under positive, zero, and negative flexure to determine whether the sign of 

stress influences the desorption rate. 

Desorption under stress experiments were conducted with flexural loading. 

A simplified flexural fixture was designed to allow rapid removal of specimens 

for weight and curvature measurement during desorption experiments.  Figure 5 

shows a trace of the specimen shape in the fixture which consists of an 

aluminum plate and stops between which the ends of the specimen are placed 

to obtain a specified radius of curvature.  Approximately 10 cm of the speci- 

men length (15 cm) is at a constant curvature in this fixture.  Flexural 

tests were conducted on the dry clad materials which  were  employed to 

investigate stress effects on desorption kinetics.  Flexural strengths and 
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the appropriate radius of curvature needed to load specimens to 50 percent of 

ultimate strength are given in Table 2 of Appendix B. 

During desorption experiments conducted at 70 C in a chamber containing 

Drierite dessicant, stressing was accomplished by flexing specimens to a 

curvature which was nominally 25 percent of the curvature which resulted in 

flexural failure in dry specimens tested at 25 C.  The curvatures chosen for 

(0,, 90,)m laminates were 25 percent of the flexural strength of the 0 + Al 
4   4 T ° 

and 90'+ Al configurations with the clad side under compression.  Audible 
8 o 

cracking of the (0,, 90 )  specimens could be detected when the 90 layers 

were placed in tension.  As a result, the applied curvature was held to a 

value less than 25 percent of ultimate on several of these samples, as shown 

in Figures 9-10. 

Diffusion coefficients for the unclad T300/5208 and T300/5209 fall in a 
-9  2 

range of 4 + 1 x 10  cm /sec.  There is little to suggest that stress of 

this magnitude has any influence upon the diffusion kinetics at 70 C.  Un- 

stressed values are seen to appear below,  between, or above those obtained 

for stressed specimens in a given series.  Experiments with clad specimens 

provided mixed results.  A majority of specimens developed bubbling and edge 

delamination of the aluminum cladding during absorption of water.  If the 

cladding does not act to prevent moisture from wicking along the Al-composite 

interface and entering the specimen from both sides, then the effective diffu- 

sion coefficient, calculated by assuming one-sided diffusion,will be four 
_o  2 

times higher or approximately 16 x 10 ' cm /sec.  It is clear that some of the 

clad specimens in Figures 6 and 7 are approaching this condition.  Although 

the scatter in diffusion behavior is significantly greater in the clad series 

due to aluminum delamination, there is no consistent shift in diffusion co- 

efficient due to tensile or compressive stress. 

Evidence of viscoelastic stress relaxation or creep was found in 

T300/5209 (0,90)  clad specimens which were placed in flexure at 70 C after 

equilibration to 93°C/95% RH.  Figure 8 shows the permanent set taken by two 

specimens, one flexed to place the clad side in tension and the other flexed 

to put the clad side in compression.  Under a constant curvature, stress 
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mm* 

Figure 8.  Appearance of (0/90)2s clad T300/5209 laminates equilibrated 
at  93°C/55% RH and then desorped under flexure at 70°C. 
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relaxation serves to reduce the applied stress on these specimens. 

Therefore, the lack of evidence for stress altered desorption kinetics 

in T300/5209 may be partially a consequence of the low effective applied 

stress due to viscoelastic relaxation. 

2.4  THE INFLUENCE OF APPLIED STRESS DURING DESORPTION ON RESIDUAL STRESSES 

The specimens in Figure 8 demonstrate that although the desorption kinet- 

ics are insensitive to applied flexural stress up to 25 percent of ultimate, 

the internal stress state or specimen dimensions can be significantly altered. 

Figures 9 and 10 show the original as cured, dry curvature of a series of (0,, 

90,)  laminates and the final curvature after exposure to humidity at 93 C 

until equilibrium was reached and then drying at 70 C.  The curvature in the 

specimens containing equilibrium moisture content (denoted by the symbol S) 

and the curvatures applied during drying at 70 C (denoted with the symbol A) 

are also given. Two out. of three specimens in each series were flexed to 

place the 90 layers in either tension (low or negative curvature in the 

figure)  or compression. 

The T300/5208 laminates show about a 15-25 percent reduction in curvature 

in the final dry state in specimens subjected to positive or zero applied 

curvature.  Specimens which were flexed to place the 90 layers in tension 

show a reduced curvature in the dry condition of 40-55 percent. 

Alteration in the final curvature due to application of stress during de- 

sorption can be caused by either microcracking or by stress relaxation.  If 

stress relaxation is the dominant mechanism, then it will tend to shift the 

final curvature toward the applied value.  This shift should be noticed for 

both positive and negative applied curvatures, as is found for the T300/5209 

laminates in Figure 10.  Lack of shifting in T300/5208 under positive curva- 

ture suggests that the predominant mechanism for alteration of internal 

stresses in this material is microcracking, while in T300/5209, it is visco- 

elastic relaxation.  Note in Figure 10 that the final curvature of T300/5209 

specimens which absorbed water at 93 C and were desorbed at 70 C under no 

applied stress is higher than the initial dry curvature.  This increase in 
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in residual stress with hygrothermal cycling has been noted in earlier 

studies [14] of GY70/339 and T300/5209 composites and is a consequence of 

moisture altered viscoelastic response [15]. 

2.5 HYGROTHERMAL CYCLING EXPERIMENTS 

T300/5208 and T300/5209 laminate specimens destined for mechanical 

testing (Chapter 3), microstructural examination (Chapter 4), and residual 

stress analysis were subjected to 100 hygrothermal cycles between temperatures 

of -54°C and 70 or 93°C.  Specimens were held ten to fifteen minutes at each 

temperature and were hard-carried between air circulating chambers maintained 

at the two temperature extremes.  After every five cycles specimens were re- 

placed in the humidity chambers at the temperature/humidity level to which 

they were initially exposed and held for two hours to reintroduce moisture to 

the surfaces and edges before being exposed to the next set of five cycles. 

A total of 15 cycles were run each day.  Specimens were left overnight in the 

appropriate humidity chamber. 

During a desorption period at 70°C, the relative loss of moisture 

content, to/to is given by [19] 

/—-    / Dt (ü   _ 4  /Dt 4 r—r where t* t* ,      wnere L-  -   ^ 
W     /f ' LZ   /F L 

where t is the desorption time, D the diffusion coefficient and L the lam- 

inate thickness.  At 70°C, the eight-ply laminates in this study have a diffusion 

coefficient of 4 x 10~9 cm2/sec.  During a ten minute desorption period, the non- 

dimensionalized time t* is 2 x 10"4 and the expected weight loss is approximate- 

ly three percent of the total moisture content.  Five cycles at 70 C correspond to 

a total time t* of 10~3 or a weight loss of 7.1 percent.  The measured weight 

loss on unidirectional laminates after five thermal cycles between -54 C and 

70°C was found to be as large as 5.1 percent.  Cycling to 93°C resulted in up 

to a 9.0 percent loss prior to re-exposure to humidity.  Thus the experimentally 
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measured moisture contents during cycling agree reasonably well with the pre- 

dicted quantities based on diffusion theory. 

Figure 11 shows the moisture content of unidirectional laminates after 

oyarnight re-enposure to humidity as a function of the number of hygrothermal 

cycles. No significant change in equilibrium moisture content was found. 

Specimens cycled 100 times were examined for evidence of surface or edge 

cracking.  No macroscopic evidence of edge cracking, transverse microcracking 

or fiber-matrix debonding was found in any of the unidirectional and quasi- 

isotropic laminates which were examined.  (.0, , 90^)T laminates exposed to 

this series of 100 hygrothermal cycles were subsequently dried.  Curvature 

measurements taken before moisture sorption, after sorption, after cycling 

and after redrying at 70°C are shown in Figs. 12 and 13.  After thermal 

cycling of dry T300/5208 specimens, 19-4 and 19-2, the curvature was slightly 

reduced.  In all other specimens of T300/5208 exposed to moisture prior to 

cycling, a similar reduction (less than 12 percent) in curvature was noted, 

change in curvature was found immediately before and after the 100 cycles. 

No 

Thermal cycling of dry T300/5209 specimens, 4-4 and 4-2, produced no 

significant change in curvatures.  Specimens 4-12 and 4-10 exposed to 55% 

humidity before cycling showed significant increases in curvature due to 

cycling but the final curvature was not changed from the initial dry value. 

By contrast specimens 4-8 and 4-10 exposed to 95% humidity prior to cycling 

showed little change after the 100 cycles but a large 35% increase in curvature 

in the final dry state.  This large increase is greater than that noted in 

Fig. 10 for similar T300/5209 laminates moisture conditioned at 93 C and dried 

at 70°C.  Comparing the response of T300/5208 and T300/5209, it would appear 

that 100 hygrothermal cycles over the -54°C to 93 C have a neglible effect 

on the residual stress state of the more elastic responding 5208 system. 

The small reduction in curvature could be attributed to some viscoelastic 

stress relaxation or microcracking.  When there are significant changes noted 

in the 5209 residual stresses or curvature, it appears to be associated with 

the history dependent viscoelastic character of the system in this temperature 

range, since all changes noted show an increase in curvature. Microcracking 

damage would have a tendency to reduce curvature by partially decoupling the 

interaction of the 0 and 90 degree plies. 
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'Figure 12.  25°C Curvature of T300/5208 (O^O^ Laminates as a Function 
of Hygrothermal History. 
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Figure 13.  25°C Curvature of T300/5209 (0A,904)T Laminates as a Function 
of Hygrothermal History. 
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CHAPTER 3 

THE INFLUENCE OF HYGROTHERMAL HISTORY ON MATRIX 
AND INTERFACE DOMINATED LAMINATE PROPERTIES 

3.1  INPLANE SHEAR TESTS 

(+45 )  tensile specimens (2.5 cm wide by 7.5 cm gage length) were 

tested at 25, 70, and 93°c at a crosshead rate of 0.13 cm/min.  Two spe- 

cimens of each material were tested in four moisture conditions: 

(1) Dry 
(2) Equilibrated at 70°C/957=, RH, then dried 
(3) Equilibrated at 70°C/557. RH 
(4) Equilibrated at 70°C/957o RH 

Furthermore, two additional specimens in each of the four conditions listed 

above were cycled 100 times between -54 and 70°C and two others between -54 

and 93°C prior to testing. 

The specimens were tabbed with aluminum sheet stock and a 0°,90° 

strain gage was applied to one side of the specimen with Eastman 910 ad- 

hesive as shown in Figure 14.  The figure illustrates the typical failure 

modes found in this test.  Specimen 22-5 (T300/5208) shows a separation into 

two pieces and failed in a brittle manner in room temperature testing. 

T300/5209 specimen 7-14 shows a pattern of surface cracks parallel to the 

fibers but did not fail by separation.  In elevated temperature testing of 

T300/5209 the specimens deformed in a ductile manner showing a necking 

down (Spec. 8-29) prior to separation due to large applied strains (Spec. 

10-72).  Data for all specimens tested is tabulated in Appendix B, Table 

3, which provides values for the Young's modulus E , the Poisson ratio, v  , 

the inplane shear modulus Gu  = Ex/(2(l+v  )), and the shear strength 

T19 = a  12.     The shear strength of the majority of T300/5209 specimens 
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(front side) 

(back side) 

Figure 14. 

Appearance of <+ 452)s laminates after tensile testing. 
(a) 22-15 is T300/5208 equilibrated at 70°C/95% RH, and tested at 25°C. 
(b) 7-14 is T300/5209, equilibrated at 70°C/95% RH, and tested at 25°C. 
(c) 8-29 is T300/5209, dry, tested at 70°C.  Note necking. 
(d) 10-72 is T300/5209, dry, cycled 100 times to 93°C, and tested at 93°C. 
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is not a well-defined quantity because of the degree of necking observed 

while the measured load increased very slowly with large increases in 

strain.  In order to eliminate the need to measure the necked cross section 

to obtain the true net section shear stress, the shear strength tabulated in 

the Appendix was arbitrarily chosen as the value at a maximum applied strain 

e of 3.5%. 
x 

Figure 15 and 16 show the dependence of shear strength at 25°C on the 

hygrothermal history of T300/5208 and T300/5209.  Each data point represents 

a single test.  The T300/5208 results in Figure 15 show no significant loss 

of shear strength due to absorbed moisture or hygrothermal cycling.  On the 

other hand, T300/5209 specimens show a definite loss of 25°C shear strength 

as moisture content is increased.  Furthermore, specimens conditioned to 

equilibrium moisture content at 70°C/95% RH and then dried prior to testing 

also suffer a slight (5 percent) loss in shear strength. 

Given the scatter of data in Figures 15 and 16 for shear strength of 

specimens tested at a particular moisture content, the results indicate no 

influence of 100 hygrothermal cycles on shear strength.  This conclusion is 

shown even more graphically in Figure 17 where the entire shear stress- 

strain responses of cycled and uncycled T300/5208 specimens tested at 93°C are 

plotted and found to be nearly indistinguishable. 

Figures 18-20 provide the most comprehensive information of inplane 

shear response as a function of material, moisture content and test temper- 

ature.  The curves are designated with D for dry, 70/55 for specimens equil- 

ibrated at 70°C/55% RH, and 70/95 for those equilibrated at 70°C/95% RH 

prior to testing.  The material 5208 or 5209 is given in parentheses. 

Certain subtle changes in plasticization of T300/5208 with added mois- 

ture content are evident in Figure 18.  Note that,although the initial shear 

modulus and ultimate tensile strength of T300/5208 specimens is relatively 

independent of moisture content, the degree of nonlinear stress-strain res- 

ponse increases with moisture content.  If we were to compare the stress 
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3-4 



80 

70 

TUTS (MPa) 

60 

a 
12 

11 

Oo 
8 fr 

A 
10 

TUTS (ksl) 

50 

Tensile -25°C 
[+ 45j  T300/5209 
—  2 s 

O  No Cycles 

O  -54° to 70°C 

£  -54° to 93°C 

X _L 

Ö 
O 

D 

X 

Moisture 
Conditions 

Dry Equil @ 70°C 
95% RH 

Then Dried 

Equil @ 70°C 
55% RH 

Equil (3 70°C 
95% RH 
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Figure 19.  Representative Shear Stress-Strain Response at 70°C as a 
Function of Equilibrium Exposure to Moisture. 
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Figure 20.  Representative Shear Stress-Strain Response at 93°C as a 
Function of Equilibrium Exposure to Moisture. 
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carried by specimens D(5208) and 70/95 (5208) at a shear strain of 2 percent, 

the moisture laden specimen suffers a twenty percent reduction in load carry- 

ing ability at this strain. 

Figures 21-24 show the temperature dependence of shear modulus G1„ and 

inplane shear strength in both material systems. The entire range of data for 

cycled and uncycled specimens is shown for each moisture conditioning state 

and test temperature.  It is clear that the particular moisture conditioning 

and test temperature govern the stiffness and strength of both materials. 

The 5209 system is particularly sensitive to moisture induced reduction of 

modulus and strength at the elevated temperatures. 

3.2  INTERLAMINAR SHEAR TESTS 

Methods to evaluate the hygrothermal degradation of fiber-matrix bond 

strength were given a preliminary evaluation.  Initial results from notched 

compression tests on T300/5209 and GY70/339 dry unidirectional composites 

were found to be extremely low, as noted in Table 2, and subject to large 

scatter.  The required depth of one-half the specimen thickness, and the 
-3 

typical specimen thickness range of + 2.5 x 10  cm required that a number 

of individual machining measurements be made on each sample. 

A search for a more reliable test of interfacial shear strength uncov- 

ered a recent paper on flexural testing [42] in which T300/5208 unidirectional 

samples were found to fail in shear during four point bend testing.  An analy- 

sis of the three and four-point bend test shows the maximum tensile stress 

and maximum shear stress to be related to the specimen geometry shown in 

Figure 26 by the following equations 

max bh V 

3P_ 
4bh 
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Figure 21.  Shear Modulus of T300/5208 vs. Temperature.  Range 
Bands Include Data for All Cycled and Uncycled 
Specimens. 
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Table 2 

RESULTS OF FOUR-POINT FLEXURE TESTS (s L/3) 

Material 
L/h 

(see Fig. 3) 

T 
max 

at failure 
MPa  (ksi) Failure Mode 

T300/5209 
II 

M 

It 

11 

I 
I 
I 
II 
II 

69.7 (10.1) 
67.6 ( 9.8) 
58.6 ( 8.5) 
60.7 ( 8.8) 
75.9 (11.0) 

Shear 
IT 

II 

II 

II 

GY70/339 
it 

ii 

1! 

I 
I 
II 
III 

38.6 ( 5.6) 
53.1 ( 7.7) 
63.5 ( 9.2) 
44.1 ( 6.4) 

Flexure 
Flexure 

Flex/Shear 
Shear/Bearing 

T300/5209 Notched 
Compression 

12.4 ( 1.8) 
6.9 ( 1.0) 

Shear 

GY70/339 Notched 
Compression 

11.0 ( 1.6) 
9.7 ( 1.4) 

Compression 
Failure 

3-15 



T 
In terms of the ratio of a      /x   in a given test geometry, one obtains the 

max max ° J 

following result: 

T      2L a  /T = T— in 3 point bending 

T      L 
cr /T = — in 4-point bending 

where s = L/4 

Referring to Figure 25, lines BC and EF describe the transition from one 

failure mode to the other as a function of span (L) to depth (h) ratio. 

To the right of the lines, flexural failure is expected.  To the left, shear 

failure should occur.  However, at some small pin-spacing-to-depth ratio 

s/h one begins to see excessive matrix compressive bearing deformation be- 

tween the loading pins.  Taking s/h = 2 as the critical value, lines AB 

and DE are drawn in Figure 25.  To the left of these lines, bearing failures 

are expected to dominate the response.  For a particular ratio of tensile 

strength to shear strength, one notes that the four point bend test gives 

twice as large a range of L/h in which shear failure is dominant than the 

range available in the three point bend test.  Furthermore, if the matrix 

or interface shear strength is reduced due to absorbed moisture, elevated 

temperature, or hygrothermal cycling, the new composite 0T/x ratio (the 

dashed band in Figure 25) is driven upward.  Therefore, if one can choose 

the correct L/h ratio to give interlaminar shear failure in the initial 

dry condition, then all exposed samples will also fall within the shear 

failure window lying above DEF in the four point bend test. 

T 
Figure 26 shows the dry a  h  ratios for T300/5209 and GY70/339 com- 

posites.  Four point bend tests were run on both materials for span-to- 

depth ratios denoted by I, II and III in the diagram.  In this case the 

distance between each set of pins was equal and s = L/3.  The test data 

in Table 2 confirm the essential utility of the diagram in choosing the 

shear window.  T300/5209 specimens all failed by interlaminar shear paral- 

lel to the fiber orientation at values five to ten times higher than those 
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Figure 25.  Analysis of Expected Failure Modes in Unidirectional 
Composites as a Function of Span to Depth L/h Ratio 
and Flexure Test Configuration (See Fig. 26). 
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Figure 26(a).  Flexural Test Geometry for Short Beam Shear (SBS) and 
Four-Point Bend (FPB) Tests. 

S8P 

Figure 26(b).  Typical Shear Failures in the Four-Point Bending (S = L/3) 
Fixture.  See Table B4 for Specimen Hygrothermal History. 
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obtained in notched compression tests.  The test results for GY70/339 demon- 

trate that for intrinsic tensile strength to shear strength ratios of ten or 

less it is not possible to force an interlaminar shear failure in a simple 

bend test.  Mixed mode failures predominate as the corner (E') of the shear 

window is approached in testing. 

These preliminary experiments, therefore, identified the four point 

flexure test as a simple and reliable method to examine any hygrothermally 

induced alteration of interlaminar shear strength in T300/5209 and T300/5208. 

In samples which have been exposed to cycling and subsequently dried, any 

reduction in shear strength will be indicative of either interfacial debond- 

ing or matrix microcracking, since effects due to matrix plasticization are 

considered reversible upon redrying. 

Sixteen-ply unidirectional T300/5208 and T300/5209 laminates 2.54 cm 

(1 in.) long by 1.27 cm (0.5 in.) wide were tested under four point flexure 

at 25°C.  The loading pins were equally spaced 0.64 cm (0.25 in.) apart over 

a total span of 1.91 cm (0.75 in.).  The resulting span-to-depth ratio L/h = 9 

insured failure of all specimens by interlaminar shear rather than by tensile 

or compressive failure (see Figure 26b).  The interlaminar shear strength 

is calculated from the equation 

T    = 3P/4bh 
max 

where P is the peak load, b the specimen width, and h the specimen thickness. 

Figures 27 and 28 plot the interlaminar shear strength (ILS) of T300/5209 

and T300/5208 as a function of the equilibrium water content absorbed by each 

specimen at 93°C prior to hygrothermal cycling, drying, and testing.  Speci- 

mens were hygrothermally cycled 100 times over the temperature range indicated, 

as described in Chapter 2. 

In the T300/5208 series no statistically significant change in ILS can 

be observed as a function of prior moisture content or hygrothermal cycling. 

The T300/5209 series shows a significant loss of ILS after exposure to humid- 
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ity at 93°C.  However, the loss of strength appears to be independent of 

hygrothermal cycling.  The large reduction in ILS for T300/5209 specimens 

which absorbed 3 percent moisture may be contributed to by the extreme 

loss of inplane shear stiffness and strength noted in this system at 93°C 

after exposure to 95% RH at 70°C (see Figures 22 and 23).  The interlam- 

inar shear specimens exposed to 95% RH at 93°C have been subjected to temp- 

erature greater than the wet glass transition temperature of this material. 

The lack of ILS loss in T300/5209 exposed to lower humidity and in all 

T300/5208 tests indicates the importance of not exceeding the wet glass 

transition temperature during accelerated moisture conditioning at elevated 

temperatures. 

In T300/5209, accelerated moisture conditioning at temperatures near or 

above the wet glass transition temperature appears to cause a permanent loss 

of inplane shear strength (Figure 23) as well as interlaminar shear strength 

which accompanies those reversible losses due to moisture-induced plastici- 

zation. On the other hand, the lack of these effects in T300/5208 tests sug- 

gests that moisture conditioning at temperatures as high as 93°C can be used 

with this system in an accelerated test program. 
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CHAPTER 4 

MICROSCOPIC EVIDENCE FOR DAMAGE DUE- TO 
HYGROTHERMAL CYCLING 

4.1 MICROSCOPIC EXAMINATION FOR DAMAGE AFTER TEN HYGROTHERMAL CYCLES 

2.5 by 2.5 cm square specimens from eight-ply unidirectional, (+45, 0, 

90) , and (90, 0, +45)  laminates previously brought to equilibrium at 70°C 

with 55 and 95 percent humidity were cycled ten times between -54°C and 70 

or 93°C.  Specimens were held ten minutes at each temperature and were hand 

carried between air circulating chambers maintained at the two temperature 

extremes.  After five cycles, all specimens were replaced in the humidity 

chambers in which they were initially exposed and held overnight, in order 

to reintroduce moisture to the specimen surfaces and edges before the sec- 

ond set of five thermal cycles was completed.  The specimens were sectioned 

as shown in Figure 29 to provide a measure of microscopic damage near the 

laminate free edges, surfaces and interior and to determine the depth of 

penetration of surface or free edge initiated damage.  Macroscopic and 

microscopic examination of specimens showed little obvious damage after ten 

cycles, with the exception of (+45, 0, 90)  T300/5208 laminates which con- 

tained delamination cracks at the free edge, independent of moisture content 

and cycling history.  Based on these results, we chose to give all other 

specimens in the test matrix 100 cycles between -54°C and 70 or 93°C, accord- 

ing to the description given in Chapter 2. 

4.2 MICROSCOPIC EXAMINATION FOR DAMAGE AFTER 100 HYGROTHERMAL CYCLES 

From each material, specimens at three moisture contents (dry, equili- 

brated at 70°C/55% RH, and equilibrated at 70°C/95% RH) were exposed to 100 

hygrothermal cycles from -54°C to 70 or 93°C prior to sectioning.  Of the 

eighty specimens which were microscopically examined, very few 
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Surfaces Examined by Metallography 

Procedure: Sections were cut using a thin blade diamond wheel, and 
mounted in acrylic cold mount. They were polished with 
silicon carbide paper, and then on an automatic polishing 
wheel ending with 0.05 micron compound. 

Figure 29.  Schematic of Surfaces Examined by Metallography and Metallo- 
graphie Procedure. 
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showed any evidence that either the moisture absorption conditions or cycling 

conditions caused permanent microstructural damage in the form of microcrack- 

ing.  In those few in which microcracks were observed (with the exception of 

edge cracking in T300/5208 (+45, 0, 90)  laminates), microcracking was local- 

ized, scattered, and very sparse and did not appear to be related to a gen- 

eral degradation mechanism. The micrographs which are displayed in this 

chapter are shown primarily to demonstrate that the metallographic techniques 

which were employed can indeed observe cracking when such damage exists in 

the laminates. They should not be considered as representative of the speci- 

mens as a whole or even representative of the particular cross-section of 

the specimen unless so stated in the discussion. 

Figures 30 and 31 show low and high power micrographs of dry UD and 

quasi-Isotropie T300/5209 laminates cycled to a maximum temperature of 93°C. 

The microstructures, Figures 30a and 31a, are indistinguishable from micro- 

graphs of the original as fabricated panels shown in Appendix A. All 5209 

laminates contain rounded matrix voids with dimensions on the order of 

10-30 um.  There is little evidence that these rounded voids act as micro- 

crack iniation sites during hygrothermal cycling. 

Figure 32a shows the edge of a (+45, 0, 90)  T300/5209 laminate condi- 

tioned at 70°C/95% RH before cycling.  Lack of edge delamination should be 

noted for comparison to T300/5208 laminates in Figures 35 and 36.  In Figure 

32b a transverse crack in the outer 45° ply is shown after exposure to 70°C/ 

95% RH and cycling to a peak temperature of 70°C.  The crack runs around 

fibers.  The tortuous path indicates a propensity for debonding at the 

fiber matrix interface and a linking of interface debonding by matrix 

cracking.  The large void to the right of the crack shows no influence on 

the crack.  The fine "craze-like" lines in the matrix rich region at the 

bottom of Figure 32b are only artifacts of the sectioning and polishing 

procedures and do not extend to any great depth into the matrix perpendicu- 

lar to the section surface. 
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(a) Plate D2826, 100X, (Og)T. T300/5209, Spec. 1-4, dry, -54°C 
to 93°C/100 cycles. 

late D2828, 1000X, Spec 1-4. 

Figure 30. 
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(a) Plate D2829, 100X, (+45/-45/0/90)s T300/5209, Spec. 12-4, dry, 
-54°C to 93°C/100 cycles. 
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(b) Plate D2831, 1000X, Spec 12-4. 
Figure 31. 
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(a) Plate D2834, 100X, (45/-45/0/90)s T300/5209, Spec 12-S, exposed 70°C/95% RH, 

-54°C to 93°C/100 cycles. 

1 ■% 
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(b) Plate D2832, 500X, T300/5209, Spec 12-6, exposed 70°C/95% RH, 
-54°C to 70°C/100 cycles. 

Figure 32. 
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Figure 33 shows a large lenticular microvoid observed in only one other 

T300/5209 specimen.     It is believed to have been present after fabrica- 

tion and not caused by moisture absorption or cycling. However a micrograph 

at 500X (Figure 33b) shows microcracks ahead of the main lenticular void 

which may have propagated during hygrothermal conditioning and cycling. The 

linking up of stringer like voids and eventual delamination during moisture 

exposure was observed in GY70/339 exposed to water immersion or 95% RH at 

82° and 93°C [14], temperatures which are well above the glass transition 

temperature of the 339 epoxy.  The observations made here lead us to con- 

clude that voids in laminates will contribute to enhanced hygrothermal dam- 

age only if two conditions are met:  1) that they exist in stringers between 

plies; and 2) that the temperature of exposure is well above the glass trans- 

ition temperature of the matrix. 

Figure 34 shows two more isolated microcracks in T300/5209 which 

extend to a depth of the surface ply. The crack in Figure 34a is es- 

pecially interesting because it does not connect to the surface in this 

section.  This may be evidence that the local tensile stress at the fiber- 

matrix interface (due to swelling of the matrix by moisture) is sufficiently 

high to initiate debonding or interface rupture during hygrothermal cycling. 

Alternatively, we may argue that the chemical bonding between fiber and 

matrix can be broken more easily when the matrix changes from a glassy to 

rubbery state during the absorption of moisture at high temperatures. 

Figures 35 and 36 show evidence for free edge delamination of T300/ 

5208 (+45, 0, 90) laminates after 100 cycles between -54°C and 93°C. The 

delamination is found primarily within or between the outer 45° plies and 

extends into the laminate a distance of 1 to 3 ply thicknesses. The edge 

cracking is just as prominent in dry specimens as those exposed to moisture. 

Furthermore, some delamination was observed at the opposite end of the spec- 

imen section which had been sliced by the diamond saw prior to metallo- 

graphic polishing.  It is suspected that the delamination observed here is 

caused by a combination of high thermally induced free edge stresses, as 

discussed in the next chapter, and some degree of stressing induced by 
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(a) Plate D2837, 100X, T300/5209, Spec 13-2, exposed 70°C/95% RH, 
-53°C to 70°C/100 cycles. 
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(b) Plate D2838, 500X, Spec 13-2. Figure 33. 
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(a) Plate 2836, 500X, (90/0/+45)s T30Ö/5209, Spec 15-8, exposed 70°C/95% RH, 
-54°C to 70°C/100 cycles. 
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(b) Plate D2840, 500X, T300/5209, Spec 15-4, exposed 70°C/95% RH, 
-54°C to 93°C/100 cycles. Figure 34. 
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(a) Plate D2807, 100X, (+45/0/90)s T3O0/5208, Spec 27-4, dry, -54°C 
to 93°C/100 cycles. 

(b) Plate D2815, 100X, T300/5208, Spec 27-12, exposed 70°C/55% RH, 
-54°C to 93°C/100 cycles. 

Figure 35. 
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(a) Plate D2810, 100X, T300/5208, Spec 
-54°C to 93°C/100 cycles. 

27- exposed 70°C/95% RH, 

(b) Plate D2811, 100X, Spec 27-8, 

4-11 



the diamond saw cutting operation. No edge delaminations were observed in 

any T300/5209 specimens (Figure 

T300/5208 specimens (Figure 37), 

any T300/5209 specimens (Figure 32) or in unidirectional and (90, 0, +45) 

Figure 38 shows the only transverse cracking observed in the T300/5208 

series.  These specimens were taken from the panel fabricated at low pres- 

sure to develop large voids shown in Figure 38a. As in T300/5209, the rounded 

voids do not act as crack initiation sites during hygrothermal cycling. The 

transverse cracks appear to initiate at surface irregularities and extend only 

through the surface ply.  At higher magnification in Figure 38b, there is 

evidence of fiber splitting and less evidence for the smooth matrix-fiber 

interface debonding typical of the T300/5209 system.  Observations of trans- 

verse cracks in the thicker (0.14 cm) "voidy" T300/5208 laminate, but not in 

the thinner (0.10 cm) standard processed T300/5208 laminates is perhaps sim- 

ilar to observations by Hedrick and Whiteside [20] that thin laminates or 

neat resin specimens showed little or no evidence of surface cracking after 

hygrothermal cycling, while thicker laminates exposed to identical condi- 

tions exhibited surface cracks. 
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(a) Plate D2817, 100X, (90/Ö/45/-45)s T300/5208, Spec 30-2, dry, 
-54°C to 70°C/100 cycles. 

(b) Plate D2843, 100X, T300/5208, Spec 30-8, exposed to 70°C/95% RH, 
-54°C to 93°C/100 cycles. 

Figure 37. 
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(a) Plate D2843, 80X, .(9Ö/Ö/+45)  T300/5208, Spec 28-4, exposed to 70°C/95% RH 
-54°C to 93°C/100 cycles. 
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Figure 38. 
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(b) Plate D2844, 500X, Spec 28-4. 
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CHAPTER 5 

ANALYSIS OF HYGROTHERMALLY INDUCED STRESS 
IN GRAPHITE-EPOXY LAMINATES 

5.1 ANALYSIS DESCRIPTION 

The hygrothermally induced stress state near the edge of composites 

of (+45, 0, 90) , (90, 0, ±45)  and (0 )  configurations were calculated 
™ S S        o J. 

by the elastic finite element modeling procedures which have been des- 

cribed in a series of papers [19,43-45] by Wang and Crossman.  The details 

of the mathematical treatment used in the code FREE*EDGE for stress and 

mass diffusion analysis are provided in References 19, 43 and 45 and will 

not be repeated here. 

Figure 39 shows the cross-section of an eight-ply laminate of thick- 

ness L = 8h and width 2b = 32h which is assumed to be infinitely long in 

the x direction.  With this geometry of a flat composite coupon, we assume 

a state of generalized plane strain exists; i.e., that the strain ex is 

uniformly the same at all positions in the yz cross-sectional plane and is 

independent of the x coordinate.  Warping of the yz plane due to shear is 

permitted in the model.  The discrete model shown in Figure 39b consists of 

constant strain triangular finite elements concentrated near the free edge 

where stress gradients are expected to be greatest.  Because of symmetry 

about the y and z axis only the upper right-hand quadrant of the cross- 

section must be modeled to obtain the stress state over the entire cross- 

section. 

The elastic properties of the unidirectional plies in the laminate 

model were those chosen in previous papers to analyze free edge stresses 

in crossply laminates [19,43,44].  Using subscripts L, T, and Z to refer to 

longitudinal, transverse, and thickness directions of the individual ply we 

have assumed 

5-1 



(issussiiimmm 
OimiiXitmimXOiii vrirmmrmirmrrrn w& 

2b = 32h 

(a) 

5.0 - 

2.5 

0.0 

0.0 

(b) 

Figure 39. (a)  Geometry of Symmetric 8-Ply Laminate 
(b)  Finite Element Grid 
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LT 

= 138 GPa (20 x 10 psi) 

= E  = 14.5 GPa (2.1 x 106 psi) 

TZ LZ 

LT "  GTZ ~  GLZ " 

L 
= 0 

T 

L 

T 

= ß  = 5000 x 

= -0.36 x 10~6/°C 

= 28.8 x 10_6/°C 

0.21 

5.96 GPa (0.85 x 106 psi) 

3 D„ 3 D„ 

where E is the Young's modulus, v is the Poisson ratio,. G is the shear mod- 

ulus, ß is the moisture expansion coefficient,  = is the thermal expansion 

coefficient, and D is the moisture diffusion coefficient. A comparison of 

these properties to those measured for T300/5208 and T300/5209 in Table 1 of 

Appendix B shows that they are representative.  However, the experimentally 

measured transverse modulus E is some 30% less than the assumed value in 

this analysis and has some bearing on the discussion of results.  The through 

thickness constants E , v  , v  , GTZ, ß , and Dz have been assumed equal to 

their inplane components because of the lack of experimental data or, in the 

case of ß , bacause of the large scatter observed in Figure 1.  Recent exper- 

iments by Rajapakse and Sumsion [46] indicate that the shear modulus G  is 

as much as 30% to 40% less than G . Therefore the calculations of stresses 
J-ii. 

developed in this chapter should not be taken as providing a truly absolute 

measure of stress magnitude but more as a means to assess what combinations 

of hygrothermal and mechanical loading are most critical in the initiation 

and growth of damage. 

5.2  THE ANALYSIS OF MOISTURE INDUCED STRESSES 

Figure 40a shows a plot of average moisture content in laminate of thick- 

ness, L, much less than width and length. Moisture is assumed to enter from 

both sides and the average water content M approaches its equilibrium value 
2 

M at a nondimensionalized time t* = D^t/L « 0.75, where DT is the trans- s 11 
verse moisture diffusion coefficient,   L is the laminate thickness and t is 

the time.  The infinite series solution for average moisture content as a func- 

tion of time presented by Shen and Springer [13] can be approximated to within 

less than one percent error by the equations 
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Figure 40. (a) 

(b) 
(c) 

12 y/h 16 

Average Weight Gain (Loss) during Absorption (Desorption) Relative 
to the Equilibrium Moisture Content Mg 
Moisture Concentration C/Cs after Absorption Time t^ (M/Mg « 4%) 
Moisture Concentration C/Cs after Absorption Time t45 (M/Ms ä 45%) 
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M 
for   0.4 < — < 1.0 

Ms 

The equations assume that D is independent of moisture concentration and 

that desorption is obtained from the same function f(t) on the right-hand 

side of the equations above by the solution of M/Mg = 1 - f(t).  The times 

designated t,,   t„„ and t,. in-Figure 40 refer to times at which 4, 22, and 

45 percent of the total equilibrium water content has been absorbed,  t 

will be used to designate the time at which 99.9 percent of equilibrium 

moisture content is reached.  Negative subscripts such as t_^ refer to the 

desorption time required to lose 4 percent of the average moisture content 

after starting from an equilibrium moisture content Mg at t = 0. 

Figure 40b is a plot of the moisture concentration calculated at each 

nodal position near the free edge in the finite element model of Figure 39 

after an absorption time of t^  in a (902, 02>g laminate.  Only nodes for 

12 < y/h < 16 are shown and the y scale is expanded by a factor of two 

greater than the z scale to facilitate plotting of the local moisture concen- 

tration at each nodal position.  Boundary conditions were M = 0 in the interior 

at t = 0 and M = M on the surface at t > 0. Notice that moisture is diffus- 
s 

ing faster from the y = 16h free edge in the 90° plies which are located be- 

tween z = 2h and z = 4h in this analysis.  The longitudinal diffusion coef- 

ficient for diffusion parallel to fibers has been assumed to be three times 

higher than the transverse coefficient.  It is clear from the large differ- 

ences in moisture concentration over very short distances from the free edge, 

that large moisture concentration gradients exist at short absorption times. 

At a longer time, t,s, the moisture gradient in both y and z is clearly 

reduced as moisture penetrates deeper into the composite. 

After the moisture concentration is determined at each node point for 

a particular sorption time, the elastic analysis of moisture-induced stresses 
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proceeds.  In this process the swelling strains due to the average moisture 

concentration in each element are calculated and the effect of these strains 

(which vary from element to element) on the overall response of the finite 

element system is calculated in a manner analogous to the calculation of the 

effect of thermally induced expansional strains [19]. 

The analysis determines all six stress (strain) components in each finite 

element. Previous papers have shown that at distances greater than the lami- 

nate thickness, L, from the edge the components T , x , a    tend to zero and 

the plane stress state, assumed in classical laminated plate theory and em- 

ployed in Chapter 2, is rapidly approached.  Pipes et al [18] have calculated 

the effect of a moisture gradient on the stress distribution in a thin com- 

posite laminate using classical laminated plate theory and one-dimensional 

moisture diffusion.  Our aim in this analysis is to concentrate on the edge 

effects caused by the two-dimensional diffusion field. 

The existence of non-zero through thickness stress components near the 

free edge has some effect on the inplane components.  For example, the stress 

a    near the edge of 90° plies in quasi-isotropic laminate experiencing a ten- 

sile strain e is some 35 percent higher than the plane stress value far from 

the edge [43].  The stress x  peaks at the free edge in what appears to be 

a singular manner under applied tensile strain e .  However, the x  caused 
X xz 

by thermal stresses built in during cooling from the stress free cure temper- 

ature to ambient conditions are found to be of opposite sign to those caused 

by tensile loading and tend to cancel each other under combined thermomech- 

anical loading [45].  The stress x  is found to peak at a position y = 0.98b 

but must drop rapidly to zero at y = b to satisfy the boundary condition at 

the free edge [44].  Furthermore, the elastic analysis of shear stress compon- 

ents x  , x  and even x  ignores the highly nonlinear nature of the shear xz  yz xy e>     J 

stress-strain curve (as shown in Figures 17-20) and clearly will overestimate 

the actual level of stress which exists, particularly if the out-of-plane 

shear behavior is found to be less stiff than the easily measured inplane 

behavior [46]. 
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Because of these considerations our study of free edge effects under 

hygrothermal loading will concentrate on alterations in the through thick- 

ness normal stress component a    which is considered to be the main cause 

of edge delamination in polymer matrix composites [47]. 

5.3 HYGROTHERMAL STRESS ANALYSIS 

Figure Al shows the distribution of 0 in a unidirectional laminate 

which has been brought to moisture equilibrium at M = 1 percent and which 

is then desorbed.  Because of the assumed homogeneous continuum nature of 

the unidirectional laminate, a uniform distribution of moisture   M = Ms 

or M = 0 results in a zero stress state at the laminate level of analysis. 

On a finer microstructural scale large stresses exist locally around each 

fiber and matrix [48] but average to zero across the laminate under the 

stress free boundary conditions in this analysis. 

The a    distribution is shown as a function of position z along the free 
z 

edge at y = 0.999b in Figure 41a.  The distribution at several desorption 

times is shown.  In Figure 41b a    at the z = 0 midplane of the composite is 

plotted vs. position y.  In this figure the y scale is inverted to place 

the free edge at the left-hand side. The symbols used in the two plots are 

placed at positions occupied by the finite element centroids; and it is 

clear that the "free edge" stresses in Figure 41a are, in reality, located 

at a finite distance from the edge as shown in Figure 41b.  The desorption 

conditions depicted in this figure show that a high tensile a^  exists over 

a large portion of the edge at short desorption times.  As moisture diffuses 

outward from greater depths, the moisture gradient decreases (as in Figure 

40) and the stress peak at the edge decreases as well. We will use plots of 

a    vs. position z very near the edge at y = 0.999b in our analysis of com- 
z 

bined mechanical, thermal, and hygroscopic stresses, because this type of 

plot allows us to examine the peak stress a    in each of the laminate plies. 

The combined effects of hygrothermal and mechanical loading are studied 

by first analyzing individually the a    stresses caused by a unit change in 
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tensile strain   (uex),   temperature (°C), and moisture (%) at several 

sorption times. For simplicity we choose to determine a^  due to moisture 

at sorption times t4 and t1Q0 only. The resulting plots of o^   (y = 0.999b) 

vs. z are shown in Figures 42 and 43 for the two quasi-isotropic laminates 

examined in this study. The horizontal lines at z = 0, 1, 2, 3, 4h are the 

ply interfaces and the particular fiber orientation with respect to the 

x axis is shown at the right-hand edge of each figure.  A moisture equil- 

ibrium content of M = 1 percent is assumed throughout this analysis.  Be- 
s 

cause the analysis ignores the threshold phenomenon noted in Figure 1 in 

the transverse moisture expansion, this level of swelling is equivalent to 

that seen in T300/5208 laminates at 1.4 percent moisture, a value obtained 

under 95% RH exposure conditions.  A short time absorption of water (tj 

leaves the free edge in a state of compression, while the state of stress 

after absorption to equilibrium is strongly dependent on the stacking se- 

quence of the plies.  The thermal stress pattern and that at moisture ab- 

sorption time t1Q0 are nearly identical in shape because both are caused 

by expansions due to an uniform change in either temperature and moisture. 

Note finally that the a stress at the midplane of the composite due to 

tensile straining is negative for the (90, 0, ±45)g laminate but positive 

for the (+45, 0, 90)  laminate. 

Figure 44 shows the a stress state which develops during simulated 

hygrothermal cycling of the two quasi-isotropic laminates of T300/5208 used 

in this study.  The plots have been derived from Figures 42 and 43 by assum- 

ing a stress-free temperature of 170°C (Figure 2), an equilibrium moisture 

content of 1.4 percent, followed by a short desorption period t^, which 

causes a large tensile stress to develop at the free edge in the same man- 

ner as noted in Figure 41 for the unidirectional laminate.  The circles 

indicate the stress pattern at the low temperature end of the thermal cycle, 

while the squares denote the pattern at the maximum temperature during the 

cycle.  The peak a    stress occurs in the 0° plies of both stacking sequences 

at the high temperature end of the cycle.  However, in the (+45, 0, 90) g 

laminate, the peak stress in the 90° ply at -54°C is nearly as high.  The 
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variation of stress with temperature appears less important in these lami- 

nates than the tensile stress caused by desorption itself.  In both lami- 

nates the level of stress in all plies exceeds the commonly observed 50 MPa 

transverse tensile strength of T300/5208 [26]. One would expect edge delam- 

ination between several of the plies caused by hygrothermal cycling in both 

of these laminates. 

Published distributions of a    (at y = 0.999b) vs. z in crossply lami- 

nates under thermal [44] and hygroscopic loading [19] were used to investi- 

gate the combined hygrothermal stress distribution in (902, 02>g and (02> 902)g 

laminates to determine if crossplied laminates were more susceptible to edge 

delamination than the quasi-isotropic laminates. 

Figure 45 shows the individual a stress distributions due to short time 

absorption at t,, equilibrium moisture absorption at t^QQ, and thermal stress 

at -54°C. The combined effect of termperature at -54°C and equilibrium mois- 

ture absorption at t nQ is also shown to illustrate that edge stresses due to 

moisture sorption nearly cancel those due to thermal residual strains. 

Figure 46 shows the a    stress distribution at the temperature extremes 

used in the hygrothermal cycling experiments described in Chapter 2.  As in 

the quasi-isotropic analysis we find that stress levels as high as 100 MPa 

(15 ksi) are calculated at the two temperature extremes after a desorption 

time of t  ; however, the location of the peak stress moves from the 90/0 ply 
-4 

interface at -54°C to near the composite midplane at 93°C. 

Figure 47 shows similar calculations for the (02> 902)g laminate.  In 

this laminate, unlike the results for (902> 02)g and quasi-isotropic lami- 

nates, we find that the thermal stress at low temperatures (-54°C) has a 

large influence on the peak stress which develops under short time desorp- 

tion (t .).  The combined hygrothermal a    stress is projected to exceed 150 
—4 z 

MPa at the 0/90 interface, while the stresses at 93°C are found to be pro- 

portionately lower at all positions along the free edge. 
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We have seen in the analysis of crossplied and quasi-isotropic laminates 

that the peak a    stress due to hygrothermal conditioning is calculated to be 

1§ to 3 times greater than the transverse tensile strength of T300/5208 compo- 

sites, yet microscopic examination of these laminates in Chapter 4 showed a 

surprising lack of microcracking and edge delamination. A previous 

analytical and experimental study of coupled thermal and mechanical 

loading of quasi-isotropic laminates has shown that the onset of 

observed edge delamination correlates with a calculated peak o^  stress on the 

order of 80 to 100 MPa [45]. The values obtained for hygrothermal cycling 

are in this range for the crossplied laminates and only slightly below for 

the quasi-isotropic and unidirectional laminates, and yet we have observed 

little microscopic damage.  The high rate of viscoelastic stress relaxation 

in T300/5209 certainly reduces the stress level calculated here on the basis 

of elastic theory, but T300/5208 does not show a significant viscoelastic 

response over the times and temperatures we are concerned with in this pro- 

gram. 

The discrepancy between the predicted onset of edge delamination and 

the experimental results can be understood when we examine the magnitude of 

the stress a as a function of y rather than z. The right-hand plot in 
z 

Figure 41 shows that a    drops rapidly from the edge, at y = b toward the 

center of the laminate at y = 0. Far from the edge a state of plane stress 

is found which meets the assumptions of laminated plate theory.  Three pro- 

files are shown corresponding to desorption times resulting in weight losses 

of 4, 22, and 45 percent of the equilibrium moisture content. It is clear 

that at time t = 0 the infinitely steep gradient of moisture concentration 

near the edge will cause a stress singularity. 

However, we must realize that these stresses are calculated on the 

assumption of a homogeneous, anisotropic continuum. At distances from the 

edge or surface on the order of the graphite fiber diameter these assump- 

tions are not valid. On this fine scale, a micromechanical analysis of 
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fiber and matrix like that of Adams and colleagues [48] is necessary.  Fig- 

ure 48 plots the time dependence of the a    stress at several positions near 

the laminate edge.  Note that the peak stress at a given position decreases 

with distance from the edge.  The edge stresses 0 given in Figures 44-47 

are those calculated at position y = 0.999b and only 7 ym from the specimen 

edge.  The T300 fiber diameter is on the order of 7 um as well.  The assump- 

tion of a homogeneous continuum clearly should not be made over such a small 

distance.  If the material behaves homogeneously over a distance of approxi- 

mately 5 fiber diameters, then the peak a    stress is on the order of 40 MPa 

rather than 70 MPa calculated only 7 ym below the surface.  Similarly the 

peak hygrothermal a    stresses given in Figures 44-47 would be proportionately 

lower if they were plotted at a distance of several fiber diameters from the 

edge.  The calculated a    stresses may be reduced even further if we assume 

a lower transverse modulus in the analysis which is closer to the experi- 

mental value for T300/5208 and T300/5209, and if we were to carry out an 

incremental analysis, taking into account the nonlinear elastic or visco- 

elastic character of the shear and transverse stress-strain response. 

Given these considerations we must conclude that the level of a    stress 
z 

calculated by elastic analysis for the hygrothermal history examined in the 

experimental study is marginally below that level needed to initiate edge 

delamination.  However, the analysis of edge cracking in reference 45 sug- 

gests that edge stress induced hygrothermal damage at specimen edges or sur- 

faces will be significant under combined hygrothermal and mechanical loads. 

Figure 49 shows the combined effect of tensile strain e =0.5 percent on 

the a    stress distribution at -54°C and 93°C after a desorption time of 

t_,.  In the (+45, 0, 90)  laminate, we find a two-fold increase in a    above 

the level due to the hygrothermal state (Figure 44) alone.  On the other 

hand, the a    edge stress in (90, 0, +45)  laminates is lowered by tensile 

straining. 

The results of the finite element analysis of hygrothermal stresses 

near laminate-free edges presented in this report lead one to conclude that 
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the contribution of moisture absoption/desorption gradients to development 

of delamination at the free edge is less important than the thermal and 

mechanical contributions.  During absorption we have found experimentally 

as well as analytically that moisture lowers the residual stresses. While 

desorption creates large tensile stresses near the edge, the distance over 

which these stresses are high is on the order of several fiber diameters 

or less, where the homogeneous continuum model breaks down.  Based on these 

results, we would recommend that experimental and analytical studies of 

hygrothermal degradation due to environmental cycling should concentrate 

more on the combined effects of hygrothermal and mechanical loads. 
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CHAPTER 6 

DISCUSSION OF RESULTS 

6.1 ASSESSING PERMANENT AND REVERSIBLE INTERFACIAL BOND DEGRADATION 

The interlaminar shear tests reported in Chapter 3 for moisture ex- 

posed and dried T300/5208 indicated that the interfacial bond strength 

in the dry material was unaffected by prior sorption of equilibrium 

moisture content at 93°C up to 95 percent relative humidity.  In T300/ 

5209 prior exposure to 93°C/55% RH resulted in no degradation in the 

interlaminar shear strength of the dried material, while exposure to 

93°C/95% RH caused a significant reduction in strength as seen in Fig- 

ure 28.  The cause of the bond degradation during exposure to tempera- 

tures well above the wet glass transition temperature of 5209 is not 

clear.  Browning [2] has proposed a stress rupture mechanism which pre- 

dominates when the matrix is in a leathery or rubbery state at elevated 

temperature.  By this process the existence of tensile stress normal 

to the fiber-matrix interface may be sufficient to cause chemical bond 

breaking.    Miller and Adams [17] have shown that matrix swelling 

due to moisture absorption will cause a tensile stress to develop nor- 

mal to the fiber-matrix interface along the line of closest approach 

of fibers distributed in an idealized square array.  However, at a 

given temperature and moisture content, the interface stress which dev- 

elops is due to the combination of thermal contraction of matrix and 

moisture induced swelling of the matrix. 

Tensile interface stress will be most prominent at high temperature 

where the compressive thermal residual stress is minimized and at high mois- 

ture content where the tensile hygroscopic residual stress is maximized. 

Because the level of thermal stress is less in 5209 composites due to the 

lower cure temperature, one can argue that higher tensile interface stress 
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is developed during absorption to equilibrium at a particular temperature. 

Furthermore, 5209 is also found to pick up significantly greater amounts 

of moisture than 5208 and the interface stress component due to matrix 

swelling will be proportionately greater. 

These predicted interface stresses have been based on the assumption 

of elastic behavior.  It is clear from Figure 3 that the alteration of 

residual stress by absorbed moisture in T300/5209 laminates is much less 

than that predicted by elastic analysis.  In fact, if one uses the plots 

of (0,, 90.)  T300/5209 laminate curvature as a function of temperature in 

Reference 15,  one finds that if the curvature of the T300/5209 laminate 

exposed to 93°C/95% RH was measured at 93°C, it would be essentially zero. 

This implies that the zero stress state has moved from 137°C in the dry 

material to 93°C in the moisture equilibrated material by a stress relaxa- 

tion mechanism.  This balance between thermal and hygroscopic stresses on 

a ply-by-ply laminate level also implies that the local fiber-matrix inter- 

face stress is close to zero.  In the absence of applied mechanical stress, 

it is thus difficult to account for permanent fiber-matrix bond degrada- 

tion by a stress rupture mechanism due to the plasticization of the matrix, 

since plasticization has the simultaneous effect of reducing the hygro- 

thermal stresses at the interface by viscoelastic stress relaxation.  Al- 

though we have demonstrated that such extreme exposures will cause perman- 

ent interface damage in T300/5209, more experimental studies are required 

to account for the loss. 

Reversible interfacial bond degradation was not examined experimentally 

in this study but can contribute to mechanical property loss which at first 

glance one might attribute strictly to matrix plasticization.  The cleanest 

example of this coupling is the transverse tensile response of unidirection- 

al composites.  As noted by Verette [26] the transverse tensile strength of 

AS/3501 composites is reduced by nearly forty percent after absorption of 

moisture,while transverse modulus itself is reduced by only ten percent. 

Adams and  Miller  [48] used a micromechanical analysis to simulate a 

transverse tensile test of graphite-epoxy, taking into account hygrothermal 
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Stresses and moisture altered nonlinear stress-strain response of the 

epoxy matrix.  Yet the predicted transverse strength of the wet composite 

was essentially identical to the dry composite when a maximum effective 

matrix shear stress failure criterion was used.  Chiao et al. [49] showed 

that the transverse tensile strength of a series of flexibilized S2 glass- 

epoxy composites was much less sensitive to the degree of matrix plasti- 

cization than was originally postulated.  The decrease in the initial 

modulus of the epoxy correlated well with the observed decrease in trans- 

verse strength, while a large increase in strain to failure as a measure 

of matrix flexibility (or plasticization) did not result in a proportionate 

increase in transverse tensile strain or stress. 

These analytical and experimental results appear to indicate that 

transverse tensile strength is an interface strength dominated property. 

If we postulate that transverse failure occurs when the most highly 

stressed point on the fiber-matrix interface reaches some critical tensile 

stress we can use Adams' calculations to estimate the loss of transverse 

strength of graphite-epoxy composite due to the absorption of moisture. 

In his analysis the peak interface normal stress in transverse tension 

is 1.7 times the average applied stress.  The thermal residual normal 

stress, a.Th, at 20°C is -32 MPa (-4.6 ksi) at  this same point.  Taking 

55 MPa (8 ksi) as a typical transverse tensile strength, a   ,   of the dry 

composite at room temperature we calculate the interface bond strength, 
F 

a.   , to be 

1.7cT + o-. 
Th 

62 MPa (9 ksi) 

For a wet composite the combined thermal and hygroscopic residual interface 

stress, a. , is calculated by Adams to be 16.5 MPa (2.4 ksi).  The 

wet transverse tensile strength, a   , at the point of interface debonding 

is then calculated to be 

1 
1.7 

F    Th+wet a.    - a. 
x    l 

27 MPa (3.9 ksi) 
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and the percent reduction of transverse tensile strength due to absorbed 

moisture is (27/55) x 100 or 49 percent. 

While it appears that altered residual stress at the fiber-matrix 

interface is sufficient to account for the observed reduction in trans- 

verse tensile strength, Kaelble [16] has offered a second mechanism based 

on a reduction of the fiber-matrix surface energy y  by the absorption of 

water.  Kaelble employs the Griffith fracture equation a    <* -^ —- where E 

is the effective modulus, a* is the apparent defect size, and a    is the 

critical stress which must be exceeded for a crack of size a* to propagate 

unstably.  Kaelble determined the dispersive and polar contributions to 

the surface free energy of HTS/epoxy composites and predicted reductions 

in interface strength of 50 to 70 percent after absorption of moisture 

to the fiber-matrix interface.  Observed reductions of interlaminar shear 

strength measured by notched compression shear tests ranged from 40 to 55 

percent, but the degree of plasticization of the matrix on the shear test 

results was not examined in that study. 

The discussion of interfacial bond degradation has centered around 

three mechanisms:  (1) irreversible bond rupture at high temperature/mois- 

ture content; (2) hygrothermally altered interface residual stresses which 

are only partially reversible if the matrix is viscoelastic; and (3) revers- 

ible moisture altered interface surface energy.  The effect of the first 

mechanism on mechanical response is most easily assessed by comparing the 

original dry response vs. the exposed and dried behavior as we have done 

in Chapter 3.  The effect of the latter two mechanisms must be assessed 

in moisture-laden specimens where the response may be marked by the sim- 

ultaneous plasticization of the matrix. 

The ability to vary the residual stresses in T300/5209 laminates by pro- 

per choice of humidity level and exposure temperature, as noted in Figure 3 

and discussed in Chapter 2, provides a means to distinguish between interface 

bond strength degradation mechanisms which involve either (1) altered surface 

energy or (2) altered residual stresses.  Consider the following experimental 
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program.  Expose two sets of T300/5209 unidirectional laminates to 70°C/ 

55% RH and to 93°C/20% RH until equilibrium moisture content is reached. 

From Figure 3 both sets of laminates should contain approximately the 

same moisture content (0.85 percent), but the 93°C exposed specimens 

will contain nearly twice the level of residual stress.  Furthermore, the 

93°C exposed specimens will have a residual stress very nearly equal to 

the level found in dry laminates cooled from the cure temperature. 

We have chosen exposure conditions at low enough combinations of 

temperature and moisture that permanent degradation in interface bond 

strength by mechanism 1 will not be expected.  If surface energy controls 

the interface bond strength then both sets of moisture laden specimens 

should show similar transverse strength reduction compared to the dry 

value.  However, if residual stress controls the effective interface 

strength, then the transverse tensile strength of 93°C exposed specimens 

will lie close to the initial dry value, while that of specimens exposed 

at 70°C will show a significant reduction compared to the initial dry 

value.  Similar experiments could be designed to determine the dependence 

of compression strength and inplane and interlaminar shear strength on 

interfacial bond strength following those same hygrothermal exposures. 

The level of residual stresses could be followed by exposing (0^, 90^>T 

laminates to the same temperature/humidity conditions. The proposed 

experiments provide for the first time a means to assess interface dom- 

inated degradation of mechanical properties independent of matrix plasti- 

cization, by making use of the moisture-altered viscoelastic character 

of the material. 

6.2  ENERGY CONCEPTS FOR INITIATION AND GROWTH OF HYGROTHERMAL DAMAGE 

In Section 5.3 calculations were made to determine the through thick- 

ness normal stress near laminate free edges due to mechanical, thermal 

and hygroscopic loading.  The additional effect of a steep moisture grad- 

ient was particularly emphasized.  While the level of through thickness 
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normal stress o was calculated to be It? to 3 times higher than transverse 
z 

tensile values, it was argued that the peak stresses due to a moisture 

gradient acted only very close to the free edge over a distance of 1-5 

fiber spacings, where the assumption of a homogeneous continuum must be 

re-examined.  It was noted that the delamination of tensile loaded (+45, 0, 

90)  laminates was observed experimentally under conditions which correlated 

with a calculated peak stress, a  ,   of 80-100 MPa while observed transverse 

tensile strength was only 50 MPa [45].  While the calculated hygrothermal 

stresses in quasi-isotropic and cross-plied laminates were found to reach 

80-100 MPa levels only very near the surface, where the continuum model 

breaks down, we also noted in Section 6.1 that the expected transverse 

tensile strength of moisture laden composites may be as much as 50 percent 

less than the dry value due to interfacial strength loss.  Therefore the 

distance over which a wet transverse tensile strength of 25-35 MPa is ex- 

ceeded near the free edge of the unidirectional composite in Figure 41 is 

on the order of 5-10 fiber diameters, where the assumption of a homogen- 

eous continuum may indeed be adequate for the calculation of stress.  It 

is the purpose of this section to discuss an alternate explanation for 

the observed lack of hygrothermal damage during cycling. 

The continuum mechanical analysis provides us with a measure of stress 

magnitude and direction but not with a criterion for initiation and propa- 

gation of fracture. It is well established from studies of metals, glasses 

and ceramics that the fracture criterion involves not only a stress level, 

but also a material specific property, G (the crack extension force or 

energy release rate), which refers to the level of energy dissipated during 

an incremental opening of an advancing crack in the medium.  The critical 

value of stress a    at which a pre-existing flaw in the material begins to 

grow is given by the Griffith fracture equation 

= f. I EG 
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where f is a constant related to geometry and stress state, E,is the effec- 
ts 

tive stiffness, a* is the characteristic dimension of the largest pre- 

existing flaw, and G is the critical energy release rate (which takes 

the place of the crack surface free energy, y,   in materials where the 

creation of additional crack surface requires more energy than that need- 

ed to break a monolayer of chemical bonds on the crack surface). 

In a complex structure like that of a composite laminate, reach- 

ing the critical stress,  a   ,   in the vicinity of a flaw does not in 

itself lead to catastrophic failure by unstable growth of the flaw.  The 

growth of the crack alters the compliance or stiffness of the overall 

structure.  If the energy release rate G during the extension of the 

crack from a* to a*+da decreases below G , the critical value for initia- 

tion, the crack will run stably and require additional work be done on the 

structure to supply energy for the crack to extend.  If the energy release 

rate, G, during crack growth from a* to a*+da is greater than G , the 

crack extends unstably as the structure feeds the necessary energy to the 

crack to allow extension.  A third case involves a crack of length a* 

which grows stably as G decreases with increasing crack length a*+da.  If 

at some critical length, a  . , the energy release rate begins to increase 
°    crxt 

with increasing crack length, the crack will begin to grow unstably be- 

cause the structure can feed enough energy to the crack to allow exten- 

sion, even though the actual value of G is less than G .  For a more com- 

plete description of fracture mechanics concepts applied to composite 

materials, the reader is referred to a review by Kanninen et al. [50]. 

Rybicki, Schmueser, and Fox [51] have recently calculated the energy 

release rate of [(+30)2 / 90/90]  Boron-epoxy laminate which was observed 

to delaminate in a stable manner as tensile load was increased.  By finite 

element modeling, energy release rate was calculated to decrease initially 

with depth of the midplane delamination and then to increase as the depth 

exceeded approximately three ply thicknesses.  The energy release rate 

continued to increase slowly with depth to 17-ply thicknesses (one ply 

thickness = 0.018 cm) without exceeding its initial value at small delam- 

ination lengths.  Experiments determined that the midplane delamination grew 
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in a stable manner to a depth of  15 ply thicknesses before laminate 

tensile failure.  Calculations based on finite element modeling and ex- 

perimental observation of delamination depth resulted in an estimate for 
2 

G of 175 J/m . Observations of the strain at which delamination initiated 

led to an effective initial flaw size of one ply thickness based on the 
o 

fracture equation a* = EG /a  ir for an edge notched specimen.  In the 
c c 

above relation the delamination stress a    near the free edge must exceed 

a      to a depth of a* before the delamination crack will propagate inward, 
c 

However, the microscopic evidence for flaws of size a* existing near the 

edge of boron-epoxy or graphite-epoxy has not been shown. 

To understand the mechanism for the initiation of an edge delamina- 

tion, it is necessary to consider fracture mechanics applied on the micro- 

mechanical level [50].  A series of papers by Garrett and Bailey and col- 

leagues [52-54] have recently appeared which examine the onset of trans- 

verse cracking of 90° glass-epoxy plies in a (0, 90, 0)T crossplied lami- 

nate tensile loaded in the 0° direction.  By maintaining a constant thick- 

ness 90° layer and by increasing the thickness of 0° plies,  the strain at 

which transverse failure was initiated increased from 0.6% to greater than 

1.6%.  The explanation for such behavior, although stated differently in 

the papers, relates to the value for G, the energy release rate, which 

depends upon the relative proportion of 0° and 90° plies. 

The authors postulate that transverse cracks initiate at or near the 

fiber-matrix interface in regions where the random fiber packing has 

resulted in a locally high effective fiber volume fraction.  At a 70% 

fiber volume fraction, the local strain magnification factor can be on 

the order of 20 for a matrix modulus of 3.5 GPa typical of 175°C cured 

epoxy [53].  Alternatively we could choose to look at the local stress 

concentration in the fiber matrix interface region in the manner of Miller 

and Adams  [17].     Since it is clear that locally the stress (strain) 

concentration is high enough to cause fracture, the next stage in the 

fracture process is the linkup of these microcracks across several fiber 

spacings and eventually across the entire transverse ply.  Here the con- 

cept of G , the critical energy release rate and a property of the material, 

becomes important. 

6-8 



Consider the case of a 90° ply sandwiched between two 0° plies and 

loaded in tension parallel to the 0° direction.  It is possible to deter- 

mine the energy release rate G during the linkup and propagation of a 

potential transverse crack across the 90° plies.  One may use a micro- 

mechanics approach like that of Garret and Bailey [53] or a finite element 

approach like Rybicki et al. [51] to analyze the process.  If the energy 

release rate is less than the critical value G for the material, then 
c 

the potential crack will not be supplied sufficient energy to cause trans- 

verse fracture.  Garrett and Bailey found that by increasing the volume 

fraction of 0° plies relative to the 90° ply, less energy was released 

during the fracture process.  The growth of the transverse crack in the 

90° ply places a greater stress locally in the 0° plies and the composite 

as a whole sees an extension of SZ.     If the 0° plies are much thicker than 

the 90° ply then 6 I  will be proprotionately smaller and the energy released 

(G = Fäl where F is the tensile load on the composite) may be less than 

the critical value G required for propagation of the transverse crack. 

Let us now return to the problem of the energy criterion for free edge 

delamination of graphite-epoxy laminates due to hygrothermal environment. 
2 

Curtis et al. [55] have measured a value for G of 154 J/m in a HTS epoxy 

composite double edge notched tensile specimen.  Using the equation 

E* G 
*     c 

a  =     2 
ir a 

c 
2 

where E* will be taken as the transverse modulus 14.5 GN/m as assumed 

in our analysis, we can determine the depth a* to which a delamination 

crack will initiate if the stress a    >  a    from the edge to depth a*.  For 
z   c ° 

example, let us choose a stress level of 35 MN/m typical of the wet 

transverse tensile strength.  If this stress is exceeded to a depth 

of a* = 0.058 cm below the free edge, then a crack of that length will 

form at the edge.  In Figure 41 a is plotted versus the depth y for 

desorption times of t ,,  t_22>  
and t_,,  in a unidirectional 

laminate.  Assuming a ply thickness, h, of 0.013 cm for the graphite- 

epoxy composite and noting that the half-width b is taken at 16h in the 
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finite element model,we can determine the actual depth to which a partic- 

ular stress is exceeded in the desorption process.  From Figure 41, the 

assumed critical stress of 35 MPa is found to be exceeded to a depth of 

0.002 cm at t ., 0.006 cm at t_22, and 0.001 cm at t_45<  Since these 

depths are all less than a*, the crack will not initiate during desorption 

in the eight-ply laminate analyzed here. 

The stress field in a 64-ply unidirectional laminate is identical to 

that shown in Figure 41 because of the independence of the continuum mech- 

anics solution from the actual size of the structure being analyzed.  How- 

ever, because the physical dimensions (h, b, etc.) of the 64-ply model are 

increased by eight times, the actual depth to which the stress exceeds 35 MPa 

also increases by a factor of 8.  Now we find for a desorption time of t_22 

that this stress level is exceeded to a depth of 0.048 cm which approaches 

the critical depth a*.  Thus, under the same hygrothermal conditions, the 

thick laminates may delaminate at the edge while the thin laminates cannot. 

The consideration of the energy release rate as well as the level of 

stress thus indicates that hygrothermal damage in the form of delamination 

cracking is sensitive to the thickness of the laminate.  Hedrick and White- 

side [20] observed cracks in thick laminates and neat resin samples after 

hygrothermal cycling, but found no evidence for cracks in laminates less 

than 0.25 cm thick exposed to identical conditions.  These observations 

are consistent with the energy criterion for fracture discussed here. 

These results have important implications to development of a realistic 

accelerated test methodology for assessing hygrothermal degradation in 

graphite-epoxy laminates.  It is clear that tests which concentrate on the 

standard 8- or 16-ply laminates in studies of hygrothermal effects could 

underestimate the level of surface or edge damage in laminates of thicker 

construction and overestimate the level of damage in even thinner laminate 

constructions.  Additional studies of the effect of laminate thickness on 

the level of hygrothermal surface damage, especially around holes and 

cutouts are recommended to resolve the importance of the energy 
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concept of fracture on these micromechanical damage processes. 

6.3 CONCLUSIONS 

T300/5209 and T300/5208 graphite-epoxy laminates were studied (1) 

to determine the coupling between applied stress, internal residual 

stress and moisture sorption kinetics, (2) to examine the microscopic 

damage mechanisms due to hygrothermal cycling, (3) to evaluate the 

effect of absorbed moisture and hygrothermal cycling on inplane shear 

response, (4) to determine the permanent loss of interfacial bond 

strength after moisture absorption and drying, and (5) to evaluate the 

three-dimensional stress state in laminates under a combination of hygro- 

scopic, thermal, and mechanical loads.  Specimens were conditioned to 

equilibrium moisture content under steady exposure to 55 or 95% RH at 

70°C or 93°C.  Some specimens were tested subsequent to moisture condi- 

tioning and 100 cycles between -54°C and either 70°C or 93°C.  Based 

on results of the experimental and analytical studies, the following 

conclusions were reached: 

1. Transverse expansion of unidirectional T300/5209 and T300/ 

5208 due to absorbed moisture is linearly proportional to 

the equilibrium moisture content minus a 0.4 percent thres- 

hold level below which no expansion is observed. 

2. Through thickness expansion of unidirectional composites 

is greater than the inplane transverse expansion and ex- 

hibits no threshold phenomenon. 

3. Expansion due to absorbed moisture alters the laminate 

residual stress.  In T300/5208 the alteration can be pre- 

dicted by elastic classical laminated plate theory.  In 

T300/5209 the residual stress state is strongly dependent 

on hygrothermal conditioning history and requires a visco- 

elastic analysis to predict the altered stress state. 
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4. The desorption coefficient of T300/5208 and T300/5209 at 

70°C was found to be independent of initial moisture con- 

centration and the level of internal or applied stress. 

5. Hygrothermal cycling 100 times between -54°C and 93°C 

caused no significant microstructural cracking of eight- 

ply unidirectional and quasi-isotropic laminates and no 

change in the inplane or interlaminar shear response. 

6. While the inplane shear properties of T300/5208 and T300/ 

5209 were found to be independent of hygrothermal cycling 

history they were found to be quite sensitive to moisture 

content and test temperature. Shear stress-strain curves 

at 25, 70, and 93°C for each material and moisture condi- 

tion are provided. T300/5209 suffered a five percent deg- 

radation of inplane shear strength at room temperature when 

previously equilibrated at 70°C/95% RH and dried prior to 

testing. 

7. Only T300/5209 specimens previously exposed to 93°C/95% RH 

showed any permanent reduction in dry room temperature 

interlaminar shear strength. 

8. Residual stresses in dry T300/5209 laminates increased by 

35 percent after exposure to 70°C/95% RH, 100 hygrothermal 

cycles and desorption to the dry state.  T300/5208 laminates 

typically suffered a 5-10 percent loss of residual stress 

after hygrothermal cycling. 

9. Finite element analysis of free edge stresses in unidirec- 

tional, cross-plied and quasi-isotropic laminates due to 

hygroscopic, thermal and mechanical loads showed that stress 

levels were most severe during the initial desorption period 
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following absorption to equilibrium moisture content.  However, 

arguments based on fracture mechanics concepts indicate that edge 

delamination due solely to a severe moisture gradient during desorp- 

tion near the free edge will only initiate in thick laminates of 

approximately 64 plies or greater in thickness.  However, thinner 

laminates will be susceptible to moisture enhanced delamination 

under combined hygrothermal and mechanical loads. 

10. A test methodology is proposed which makes use of the visco- 

elastic character of T300/5209 to determine, independently of 

matrix plasticization, the mechanism for the reversible loss 

of fiber-matrix bond strength in the presence of absorbed mois- 

ture. 
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Table Al 

LAMINATE PROCESSING PROCEDURE 

•  1. Heat to 275 * ^ °F at 4-6°F/min under 20-25 in. vacuum 

CURE     \     2. Hold one hour (start time when 265°F is reached). 

PROCESS      3. Apply 100 psi (vent vacuum when pressure reaches 20 psi). 

FOR        4. Heat to 355 ^1° °F at 4-6°F/min. 

T300/5208     5. Hold two hours at 355 ^1° °F. 

LAMINATES     6. Cool under pressure to below 140°F. 

7. Post cure by heating to 400 + 10°F at 4-5°F/min and hold 
for 4 hours. 

1. Heat to 175°F at 4-6°F/min under 20-25 in. vacuum. 

2. At 165°F cut power for five minutes. 

3. Apply 85 psi 

4. Raise temperature to 260°F at 4-6°F/min. 

5. Hold at 260°F for two hours. 

6. Cool under pressure to below 140°F. 

CURE 

PROCESS 

FOR 

T300/5209 

LAMINATES 
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Table A2 

VOLUME FRACTION ANALYSIS OF LAMINATE PANELS 

(2 samples per panel) 

Panel No. Material Layup Fiber Volume 
% 

Void Volume 
% 

1 T300/5209 C°]8T 64.9 ,64.9 -.7,   -.7 

2 

3 

11 

[0]8T CladT 

62.9 

64.8 

,   64.2 

,   64.8 

-.6,   -.6 

-.8,   -.8 

4 11 

C°4>   9VT 
62.3 ,  63.8 -1.0,   -.8 

5 11 

t°4'   9°4]T 
67.0 ,   67.4 -.6,   -.6 

6 It [0,   90]2S Clad 65.6 ,  65.4 -.6,   -.6 

7 

8 

9 

11 

11 

11 

[±45l2s 
[±45]2S 

[±45]2S 

64.4 

64.0 

62.9 

,  64.9 

64.1 

64.2 

-.3,   -.6 

-.7,   -.6 

-.8,   -.4 

10 11 [±45]2S 63.7 63.1 -.6,   -.4 

11 

12 

M 

tl [+45,0,90]s 

65.8 

64.0 

65.6 

63.9 

-.4,   -.6 

-.5,   -.55 

13 II [+45,0,90],,* 64.5 64.6 -.6,   -.7 

14 It [+45,0,90]sClad* 64.0 64.3 -.5,   -.7 

15 It [90,0,+ 45]s 63.8 63.6 -.7,   -.7 

16 T300/5208 [°^8T 
68.8 68.9 -.5,   -.4 

17 11 

^6T 
67.5 67.4 -.5,   -.5 

18 It [0]8T Clad 68.6 68.5 -.6,   -.4 

19 It 

[°4>
9

VT 
69.4 ,  70.1 .6,   -.3 

20 11 

[°4>
9

VT 
69.7 69.8 -.5,   -.4 

21 11 [0, 90]2gClad 68.0 67.7 -.3,   -.3 

22 

23 

11 

It 

C±45^2S 
67.7 

67.5 

68.1 

67.7 

-.3,     .2 

-.2,   -.1 

24 

25 

26 

27 

It 

tl 

It 

tl 

[±^5]2S 

[±«]2S 

[±A512S 
[+45,0,90]s 

67.9 

67.7 

68.3, 

68.4, 

68.9 

67.8 

68.1 

68.5 

-.2,     .1 

.3,   -.2 

0.3,  0.0 

0.0,  0.1 

28 11 [+45,0,90]s* 58.1, 57.8 1.4,   1.6 

29 tt [+45,0,90]sClad* 57.9, 58.4 .6,     .7 

30 11 [90,0,+ 45]g 68.4, 68.0 -.3,   -.1 

*"voidy" laminates t Clad with 3 mil Al foil on one side 
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Table Bl 

KYGROTHERMOELASTIC CONSTANTS AT 25°C 

Property 

E  GPa (MSI) 

E GPa (MSI) 

G  GPa (MSI) 

Material 

T300/5208 T300/5209 

148.14 (21.5)   135.73 (19.7) 

9.99 (1.45) 8.89 (1.29) 

5.86 (0.85) I   5.17 (0.75) 

'12 

a  10  °C  (°F  ) 

a*  10"6 »C-VF-1) 

**   -6 
!   10  per % H20 

*** -6 
52  10  per % H20 

0.31 0.31 

0.36   (-0.2) -0. 36 (-0.2) 

28.8   (16.0) 28 .8 (16.0) 

60.0 60.0 

0.55 0.55 

*   Handbook values assumed 

**   Based on in-house measurements on HMS/3501 

***  Assumes no swelling below 0.4% H20 (see Fig. 1) 
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Table B2 

FOUR POINT FLEXURE TESTING 

Material 

T300/5209 

T300/5208 

Layup 

UD 

UD 

Flex 
Orientation* 

T300/5209  j(0,90) 2s! 

T300/5208  '(0,90) 
2s i 

L 

L 

T 

T 

L 

L 

T 

T 

L 

L 

T 

T 

Al on Tensile (T) 
or Compressive (C) 

Side 

T 

C 

T 

C 

T 

C 

T 

C 

T 

C 

T 

C 

T 

C 

T 

C 

Ultimate 
Strength 
(MPa) 

1797 

1663 

109 

95 

1919 

1635 

121 

84 

1297 

1241 

874 

622 

1435 

1151 

737 

580 

Radius of 
Curvature at 
50% of Ultimate 

(cm) 

6.09 

6.09 

9.61 

9.61 

4.17 

6.48 

5.75 

9.61 

6.09 

6.09 

4.33 

7.44 

*L = 0° fibers parallel to specimen length 

T = 90° fibers parallel to specimen length 
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Table B4 

^ND T300/; 

SHEAR STRENGTH RESULTS 

(0.,,),,, T300/5208 AND T300/5209 INTERLAMINAR 
16 T 

Specimen 

% H20 

Before 

After Drying 

Exposure 
TMAX 

Material T°C/RH% Number Drying MPa (KSI) 

T300/5209 25/0 2-1 0 75.11 (10.89) 

2 0 76.97 (11.16) 

3 0 76.38 (11.07) 

4 0 75.95 (11.01) 

5 0 76.66 (11.12) 

6 0 76.82 (11.14) 

7 0 76.82 (11.14) 

8 0 77.71 (11.27) 

' 1 9 0 75.95 (11.01) 

93/95 10 3.17 55.39 ( 8.03) 

11 3.13 56.97 ( 8.26) 

12 3.11 58.16 ( 8.43) 

13 3.11 58.61 ( 8.50) 

14 3.03 53.17 ( 7.71) 

15 3.11 59.74 ( 8.66) 

16 3.12 57.66 ( 8.36) 

17 3.06 57.26 ( 8.30) 

i 18 2.88 60.32 ( 8.75) 

93/55 19 1.27 73.08 (10.60) 

20 1.30 69.95 (10.14) 

21 1.26 76.23 (11.05) 

22 1.30 76.08 (11.03) 

23 1.27 74.08 (10.74) 

24 1.21 74.23 (10.76) 

25 1.30 73.57 (10.67) 

26 1.26 75.07 (10.89) 

  
\ 27 1.24 70.19 

i 

(10.18) 

(continued) 
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1 

Table B4 (continued) 

(0 )  T300/5208 AND T300/5209 INTERLAMINAR v 16 T 
SHEAR STRENGTH RESULTS 

Specimen 
Number 

% H20 

Before 
Drying 

After Drying 

Material 
Exposure 
T°C/RH% 

TMAX 
MPa (KSI) 

T300/5208 25/0 17-1 0 91.27 (13.23) 

2 0 86.72 ■ (12.57) 

3 0 90.58 (13.13) 

4 0 96.66 (14.02) 

5 0 93.55 (13.54) 

6 0 95.47 (13.84) 

7 0 89.77 (13.02) 

8 0 95.26 (13.81) 

' 9 0 90.90 (13.18) 

93/95 10 1.46 93.21 (13.52) 

11 1.51 89.90 (13.04) 

12 1.47 93.92 (13.62) 

13 1.47 87.71 (12.72) 

14 1.41 90.90 (13.18) 

15 1.49 90.58 (13.13) 

16 1.53 91.36 (13.25) 

17 1.44 90.26 (13.09) 

' ' 18 1.56 88.98 (12.90) 

93/55 19 0.85 88.69 (12.86) 

20 0.85 91.75 (13.30) 

21 0.85 95.83 (13.90) 

22 0.82 96.54 (14.00) 

23 0.84 98.43 (14.27) 

24 0.86 93.35 (13.54) 

25 0.81 96.32 (13.97) 

26 0.88 96.47 (13.99) 

27 0.84 95.38 (13.83) 
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