
DERIVING OPTIMAL SOLUTIONS FROM

INCOMPLETE KNOWLEDGE BASES

THESIS

Shawn Arnold Northrop
Captain, USAF

AFIT/GCS/ENG/95D-08

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

AFIT/GCS/ENG/95D-08

DERIVING OPTIMAL SOLUTIONS FROM

INCOMPLETE KNOWLEDGE BASES

THESIS

Shawn Arnold Northrop
Captain, USAF

AFIT/GCS/ENG/95D-08

199602O7 06
Approved for public release; distribution unlimited

AFIT/GCS/ENG/95D-08

DERIVING OPTIMAL SOLUTIONS FROM

INCOMPLETE KNOWLEDGE BASES

THESIS

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Science

Shawn Arnold Northrop, B.S.

Captain, USAF

December 1995

Approved for public release; distribution unlimited

Acknowledgements

I would like to dedicate this work to my parents Jack and Sandra Northrop,

my sister Debra Nissen and her husband Andrew, whose constant encouragement

allowed me to make it through the many tough times (and to this day still don't

know what artificial intelligence is).

Many thanks are extended to: Committee members Dr. Eugene Santos, Dr.

Richard Deckro, and Dr. Henry Potoczny, and also professors Lt Col James Moore

and Maj Price Smith. Howard "Duck" Gleason and Stan Kinderknecht for enduring

my endless list of C++ and LaTeX questions, and entertaining me with their dis-

cussions on life, the Star Trek universe, and just about everything in between. Ed

Williams for his insights and oversights into problem solving and surviving the AFIT

experience (he did come back, you know). Linda, Steve, Tracy, Kevin, and the rest of

the Food For Thought (FFT) gang for kidnapping me from time to time, and giving

me the greatly needed "Calgon bath" treatment. My fellow volleyballers, scattered

throughout Kettering and Centerville, who allowed me to vent my frustrations and

get a good workout in the process. The other GCS/GCE/GE lackeys that toiled by

my side, and whose wise-cracks and antics made the whole experience bearable.

This work was sponsored in part by AFOSR Grant #94-0006.

Shawn Arnold Northrop

Table of Contents

Page

Acknowledgements ii

List of Figures v

Abstract vi

I. Introduction 1-1

II. Background 2-1

III. BKB Inference Engines 3-1

3.1 BKB Polytrees 3-1

3.2 General BKBs 3-7

3.3 Cyclic BKBs 3-9

3.4 Performance Improvement Techniques 3-12

IV. AS-nodes as an Organization & Validation Inferencing Tool 4-1

4.1 Assumptions 4-2

4.2 AS-node Creation Scenarios 4-3

4.2.1 Scenario 1: Pure S-node Creation 4-4

4.2.2 Scenario 2: Summation Less Than One And

Multiple Missing Probabilities 4-5

4.2.3 Scenario 3: Summation Equal To One And Mul-

tiple Missing Probabilities 4-6

4.2.4 Scenario 4: Summation Less Than One And No

Missing Probabilities 4-7

4.2.5 Scenario 5: Summation Equal To Zero 4-9

4.3 The AS-node Creation Process 4-9

iii

Page

4.4 AS-node Reduction Techniques 4-17

4.4.1 Merging AS-nodes in a BIKB. 4-19

4.4.2 Cutting AS-nodes from a BKB 4-22

4.5 Inferencing with AS-nodes 4-24

4.6 The Utility of AS-nodes. 4-26

V. Test Results. 5-i

5.1 BKB Inference Engines. 5-i

5.2 AS-nodes as an Organization & Validation Inferencing

Tool. 5-3

VI. Conclusion 6-i

Bibliography BIB-i

Vita. VITA- I

iv

List of Figures

Figure Page

1.1. The four major subsystems of an expert system[26] 1-2

1.2. The PESKI architecture[26] 1-5

2.1. A simple Bayesian Network 2-2

2.2. A simple Bayesian Knowledge Base 2-3

3.1. A BKB Polytree 3-2

3.2. The General BKB Inference Engine[] 3-9

3.3. The Branch and Bound tree 3-10

4.1. A small Bayesian Knowledge Base 4-12

4.2. Example of merging AS-nodes 4-20

5.1. BKB Polytree inference engine test results 5-2

5.2. General BKB inference engine test results 5-2

AFIT/GCS/ENG/95D-08

Abstract

Many real world domains can not be represented using Bayesian Networks due

to the need for complete probability tables and acyclic knowledge. However, Bayesian

Knowledge Bases (BKBs) are a viable method for representing these incomplete

domains, but very little research has been performed on inferencing with them.

This paper presents three inference engines for extracting optimal solutions from

three distinct BKB subclasses: singly-connected, multiply-connected with mutually

exclusive cycles, and cyclic. The singly-connected inference engine has a worst case

polynomial run time. Performance improvement techniques for increasing inference

engine speed are discussed, in addition to a new tool for measuring incompleteness

and aiding in BKB Validation & Verification.

vi

DERIVING OPTIMAL SOLUTIONS FROM

INCOMPLETE KNOWLEDGE BASES

I. Introduction

Several areas of Artificial Intelligence (AI) attempt to aid the human user

by answering questions, constructing explanations, and deriving conclusions. In

many domains, approximate answers never seem quite good enough. Whether it

is diagnosing blood diseases[4] or identifying minerals and selecting drilling sites[9,

19], the optimal answer is usually of the utmost importance. Expert systems have

emerged as one of the leading mechanisms for providing these optimal answers, and

thus have become one of the user's most valued tools.

Feigenbaum[10], an early pioneer of expert systems technology, has defined

an expert system as " ... an intelligent computer program that uses knowledge and

inference procedures to solve problems that are difficult enough to require significant

human expertise for their solution." An expert system is comprised of four major

subareas: the organization of its knowledge, methods to validate that its knowledge is

correct, a mechanism to reason over its knowledge, and an interface to communicate

with the user (See Figure 1.1). At the heart of the expert system is the knowledge

base itself. Clearly, the structure of the knowledge base will profoundly affect how

these four subareas are designed and also how they function.

The first knowledge bases used "if-then" type rules[4], since this structure is

favored most by human experts. Statements like "All birds can fly" seem sound,

but they are filled with exceptions. Penguins, ostriches, emus, hatchlings, and even

deceased birds all violate this rule. As the number of exceptions grow, so does

the number of "if-then" rules. Soon, the knowledge base becomes so large and

1-1

complex, inferencing becomes nearly impossible. Thus, "if-then" rules do a poor job

at handling exceptions and the other uncertain events of the world.

In response to the shortcomings of "if-then" rule models, Bayesian Networks[18,

21, 23] were developed. Their graphical representation and strong roots in probabil-

ity theory allow them to handle uncertainty with greater ease. However, they have

two major shortfalls, the inability to represent any form of cyclic knowledge, and

the requirement of complete probability tables before any inferencing can begin. In

a small network with just two states and 10 random variables (r.v.s.), 210 1024

probability entries are needed. Assumptions on independence between r.v.s. can

markedly reduce the number probabilities, however in large networks, the number of

required probabilities can become staggering. Within many real world domains, a

1-2

number of these probabilities are unknown. thus incomplete knowledge makes main-

taining complete probability tables untenable. Similarly, cyclic knowledge permeates

many real world domains, a classic example being the rules "If fire, then smoke", and

"If smoke, then fire". In order to represent this type of relation, the Bayesian Net-

work must also be cyclic. Current algorithms attempting to inference over a cyclic

Bayesian Network are unable to distinguish between acyclic solutions, which are ac-

ceptable, and cyclic solutions, which are unacceptable, thus forcing the requirement

of an acyclic graph. Despite the fact that Bayesian Networks are relatively straight-

forward to implement, these two deficiencies, cyclicity and incompleteness, severely

limit their ability to represent many real world knowledge domains.

One proposed solution to incomplete probability tables was offered by Ramoni

and Riva[24]. Their method, Ignorant Belief Networks (IBNs), uses the same con-

structs as a Bayesian Network, i.e.. a directed acyclic graph and a probability table.

However, the probability table begins with probability intervals in the known entries,

and blanks in the unknown entries. After a refining process, a complete probability

distribution is derived. Ramoni and Riva[24] never clearly state how much incom-

pleteness this approach can regenerate, nor the minimum number of probabilities

needed to apply their method. This coupled with its need for complete probabil-

ity tables, either derived explicitly or implicitly, and its inability to express cyclic

knowledge, considerably dampens the appeal of this method.

The other approach that attempts to conquer incompleteness is the Bayesian

Knowledge Base (BKB)[2, 27]. BKBs differ greatly from both Bayesian Networks

and IBNs in that the latter methods represent knowledge at the random variable

(r.v.) level. BKBs break r.v.s. down and represent them at the instantiation level.

This results in BKBs being more flexible than both Bayesian Networks and IBNs

since they can represent some types of cyclic knowledge and can inference with

1-3

incomplete probability tables. BKBs are also known as Bayesian Forests or Bayesian

Multi-Nets 1 [1, 2, 27].

With BKBs appearing to be the logical choice for a knowledge representation,

there are several inferencing algorithms previously used for Bayesian Networks that

could serve as candidates to perform the reasoning task. Traditional graph search

techniques, such as Best-First search and A*[22], have been proven to find the optimal

solution, however they can run in exponential time in the worst case. An apparent

improvement is to convert the Bayesian Network to a Weighted AND/OR Directed

Acyclic Graph (WAODAG) and find the minimal cost proof using the same Best-

First search techniques[5, 15], or by further reducing the WAODAG to a set of 0-1

linear inequalities and then using the Simplex method[14] in conjunction with branch

and bound techniques[1, 31]. This latter method appears promising, exhibiting an

expected case polynomial time growth rate [1, 29, 31]. The major drawback to using

a WAODAG to solve a Bayesian Network is despite the fact that the conversion

can be performed in linear time, the number of nodes in the resulting WAODAG is

exponential with respect to the size of the original Bayesian Network[18]. Message

passing schemes used by [23, 35, 36] are the fastest running algorithms to date,

guaranteeing a worst-case polynomial run time, however, only on singly-connected

Bayesian Networks[35, 36]. Lastly, an algorithm for solving a Bayesian Network by

reducing it to an optimal ordering of factors has been presented, but its complexity

is 0(2n) even in singly-connected networks[18].

This work is in support of the integration of probability theory with expert sys-

tems into a complete framework called Probabilities, Expert Systems, Knowledge,

and Inference (PESKI)[26, 32]. The four major components of the PESKI architecture

(Natural Language Interface, Inference Engine, Explanation & Interpretation, and

Knowledge Acquisition & Maintenance) are combined into three subsystems: User

1 Originally dubbed "Bayesian Multi-Nets" [27], the name was changed to distinguish them from
the Bayesian multinetworks of Heckerman and Geiger [12].

1-4

User Interface Reasoning Mechanism

Transsition Interface Engine Factsweg

Knowledge
Explanation Acquisition

Interpretation &
Maintenance

SDomain / Knowledge racTool

EXPERT K ledge I Engineer ules & Facts ID3, HUGIN,

Knowledge Organization & Validation

FIG. 1.2. The PESKI architecture[26].

Interface, Knowledge Organization & Validation, and Reasoning Mechanism (See

Figure 1.2). The Knowledge Acquisition component of the Organization & Valida-

tion subsystem was developed and implemented in [2]. The other components and

subsystems are still being researched. When fully integrated, the PESKI architec-

ture can benefit many domains by helping a user make decisions, plan, and solve

problems. One such domain is NASA's Post-Test Diagnostic System for the Space

Shuttle's Main Engines[2, 3], where preliminary knowledge acquisition tasks have

already begun to acquire this domain into the BKB knowledge structure[2].

This paper concentrates on the Reasoning Mechanism subsystem, in particu-

lar, the inference engine algorithms that will be used to answer queries from the user,

and also aid in the Organization and Validation of the knowledge base. Chapter 2

discusses the background necessary to comprehend BKBs and their relative proba-

bilistic semantics. Chapter 3 presents three inference engines for extracting optimal

solutions from various classes of BKBs, plus additional optimization techniques to

1-5

increase speed. Chapter 4 addresses modifications that can be performed on the

inferences engines in Chapter 3 to aid in the Organization and Validation process.

1-6

II. Background

Bayesian Knowledge Bases are very similar in some respects to their cousins,

Bayesian Networks. However, the greatest difference is in one key area: Bayesian

Networks express dependencies between r.v.s., whereas BKBs express dependencies

between instantiations of those same r.v.s..

For example, examine Figure 2.1, a simple Bayesian Network. By decomposing

the r.v.s. into their respective instantiations and merging in the associated proba-

bility table, we can produce Figure 2.2, the corresponding BKB. The nodes labelled

A=aO and A=al, called instantiation nodes (I-nodes), are the instances of A, and

the blackened circles, called support nodes (S-nodes), house the probabilities once

held in the probability table of the Bayesian Network. The in-bound arcs of a S-node

denote the tail dependencies for the probability entry, and the out-bound arc denotes

the head I-node that receives both the dependencies and the associated probability.

For example, S-node x5 represents P(C = c0A = aO, B = bO). An S-node can have

zero or more in-bound arcs, but must have exactly one out-bound arc. S-nodes are

treated as AND nodes, i.e., in order to clamp an S-node, i.e. select it for inclusion

in a solution, every in-bound I-node must also be clamped. I-nodes are treated as

exclusive-OR nodes, i.e., in order to clamp an I-node, at most one in-bound S-node

must be clamped. Also, a single I-node must be clamped for every r.v., thus denoting

the r.v.'s state.

A careful eye will notice that Figure 2.2 is missing S-nodes for the probabilities

P(C = c0lA = aO, B = bl)

P(C = cO A = al,B = bO)

P(C = cl A = aO, B = bl)

P(C = cl A = al,B bO)

Thus, the BKB is said to be incomplete, since it only has eight of its full complement

of twelve probabilities. BKBs used to date[2] appear to be missing probabilities for

2-1

A B

C

FIG. 2.1. A simple Bayesian Network

nearly every r.v.. However, some r.v.s. may have a complete probability set, which

demonstrates a better understanding by the knowledge engineer for those particular

r.v.s.. Above all, the BKB must contain the necessary probabilities to answer the

majority, if not all, of the posed queries even though the BKB is incomplete. The

question of how many probabilities are necessary is an issue for Knowledge Validation

and Verification, and is beyond the scope of this research.

Unlike Bayesian Networks, we can still inference over the BKB despite incom-

pleteness. Inferencing is performed by computing the joint probability distribution

(JPD) by clamping one I-node for each r.v. in the BKB, and calculating the asso-

ciated probability. This is still accomplished by using Bayes Theorem [23], in this

case

P(A,B, C) = P(CIA, B)P(A)P(B)

Within any BKB, there are a combinatorial number of JPDs, the maximum JPD

being the resultant clamping that yields the highest probability. Computing the

maximum JPD is NP-hard, as stated in Theorem 2.0.1.

2-2

X1 x2 x3 x4

A=aO A=al B=bO B=bl

x5 x6 07 X8

FIG. 2.2. A simple Bayesian Knowledge Base

THEOREM 2.0.1. Computing the maximum joint probability distribution in a Bayesian

Knowledge Base is NP-hard.

Proof. It is obvious that any Bayesian Network can be converted to a BKB.

Since a multiply-connected Bayesian Network has been proven to be NP-hard[6, 33],

it follows that a BKB is also NP-hard[ll]. 0

In order to calculate a JPD, a BKB must be consistent. A BKB is inconsistent

when there are multiple ways to compute the same JPD with no guarantee that the

probabilities are equal [27]. Banks[2] developed eight constraints that guarantee a

BKB to be consistent. Constraints 4, 5, and 8 are the most relevant for our research,

and are discussed below. All eight constraints are described in-depth in [2].

2-3

Constraint 4: Any S-nodes which share the same head I-node must be mu-

tually exclusive [27]. Two S-nodes are rutually exclusive when there exists two

different I-nodes in the tail of both S-nodes, each of which belongs to the same r.v..

Constraint 5: Given a particular inference chain, an S-node's head cannot

re-occur in the tails of its successors in that chain, unless prevented by a mutual ex-

clusive condition[2]. In short, no logical cycles are allowed unless a mutual exclusive

condition exists in the cycle. The following equations form such an inference chain:

P(A a01B=b5, M=ml) = .45

P(B= b5C = cl) = .30

P(C clD=d4,M=m0) = .90

P(D d4JA = a0) = .50

The two different I-nodes belonging to r.v. M provide the necessary mutual exclusive

condition, without which, this logical cycle would not be allowed.

Constraint 8: S-nodes belonging to same r.v. that are not mutually exclusive

(MUTEX) cannot have the sum of their probabilities exceed 1.

During the course of our research, we discovered that Constraint 5 is not a

necessary condition. An inference engine in Chapter 3 was developed that can reason

over BKBs with cycles that violate Constraint 5. Not only was this inference engine

necessary to utilize our AS-nodes in Chapter 4 , but it also removes the burden on

Knowledge Acquisition to identify and eliminate the non-MUTEX cycles prohibited

by Constraint 5. References to Constraint 5 no longer being a necessary condition

for BKB consistency will be found throughout this paper.

2-4

III. BKB Inference Engines

BKBs have a very unique structure. Each I-node is surrounded by S-nodes,

and vice versa for S-nodes, i.e., I-nodes are never adjacent to I-nodes, and S-nodes

are never adjacent to S-nodes. We exploited this structure during the construction

of our inference engines in order to increase their speed. To this end, a BKB can fall

into one of three distinct subclasses, each of which has its own specialized inference

engine. The first inference engine can only be used on a certain type of singly-

connected BKB, and has a worst case polynomial run time. The other two inference

engines can both be used on multiply-connected BKBs, the latter handling cyclic

BKBs. Both of these exhibit expected case polynomial time growth rates, however,

if no solution exists, they will run in exponential time while exhausting the entire

solution space.

3.1 BKB Polytrees

This inference engine can only be applied to our first BKB subclass, BKB

Polytrees.

DEFINITION 3.1.1. A BKB Polytree is a BKB which any two rv.s., there exists a

single r.v. path between them.

DEFINITION 3.1.2. A r.v. path is a connected path between two nodes such that the

path is only composed of r.v.s.1.

An example of a BKB Polytree can be seen in Figure 3.1. Even though it

appears disconnected at the instantiation level, the dependencies still hold at the

r.v. level. This is evident by examining r.v. D, which is dependent on both r.v.s. X

and C.

'In this definition, a r.v. is the union of its I-nodes and S-nodes.

3-1

.9 7.3 .4 .6

X=xO X=xlI A=aO A=a I BbO B=bl

.82

D~DddI

.6 .4

Z=zO Z=z1I

FIG. 3. 1. A BKB Polytree

3-2

The main strategy of this algorithm2 is to designate a r.v.' in the BKB as a

sink and to propagate the minimal amount of necessary probabilities to the sink via

a set of unique paths to cover all the r.v.s. in the BKB.

In Figure 3.1, if we were to select r.v. A as the sink, there exists three unique

paths to A in the BKB, namely B -4 C --+ A, Z --- D -4C -- A, and X --+ D --+ C --+ A.

Notice that every path originates at a root or leaf node, and terminates at the sink.

By passing the appropriate probabilities along these paths, we can compute the

maximum JPD, or Max P(A, B, C, D, X, Z).

The path to the sink can be constructed by performing a Breadth-First dependency

search, and caching the results. Using the term dependency is a slight misnomer,

since we really mean all of the r.v.s. a selected r.v. depends on, and all of the r.v.s.

that are dependent on the selected r.v..

The algorithm requires a queue, Q, to temporarily hold dependent r.v.s., a set,

V, to hold the r.v.s. already visited, and a stack, P, to hold the paths back to the

sink. The path construction algorithm is as follows:

Enqueue the sink to Q
WHILE (Q $ 0)

Dequeue s from Q
V=vu{ 8 }
D = {the set of parent and child r.v.s of s} - V
Push a separate arc from s to each member of D onto P
Enqueue each member of D to Q

END WHILE

The path construction algorithm takes the same amount of time to run as a typical

Breadth-First search[7], O(IVJ + B J), where V is the set of all I-nodes and S-nodes,

and E is the set of all edges in the BKB. The path, P, gives a road map to allow

2This algorithm adopts a message passing scheme similar to [35], thus many of the definitions,
theorems, and proofs will bear a close resemblance to those found is Sy's work.

3The set of its I-nodes.

3-3

probability streams, also called message streams, to be passed from the outer leafs

and roots of the BKB and arrive at the sink.

Passing the probabilities of a r.v. b to a r.v. a is designated by Mb,.. If

b is a child of a, then we need only send the maximum probabilities that are de-

pendent on the receiving r.v., a, designated Maxa[P(b a)]. For example in Figure 3.1,

MZD = [P(Z = zO) = .6]. Since [P(Z = zO) = .6] is shorthand for [P(Z = z01D = dO) .6,

P(Z = z011 = dl) = .6], and P(Z = z01D = dl) = .6 > P(Z = z11D = dl) = .4, only

P(Z= zO) =.6 is passed. If b is a parent of a, then we need only send the max-

imum probabilities of the passed r.v., b, designated Maxb[P(b)]. An example is

Mx-D = [P(X = xO) = .9, P(X = xl) = .1]. These are the minimal number of prob-

abilities needed to calculate the maximum JPD. When these messages arrive at

r.v. D, we must combine them with the probabilities of r.v. D using an operation

called a convolution, denoted '. When all of the probabilities arrive at a r.v., the

result is called a belief vector.

DEFINITION 3.1.3. Given Md-, = [md-x 1 ,md-x 2 ,''',d-X,, and P(x A)

[P(Xllvlx), P(Xllv2,),. " - ,P(XIvkx)] (where vi, are the I-nodes of the r.v.s. in

Jx), the convolution of Md-x with P(xlJ) is defined as the product of every single

term in P(xlJ) with a consistent md-+ in Md,--; where Jx is the set of immediate

parent r.v.s. of x in a BKB. P(xlJx) and --nd.x are consistent with each other if the

I-node of x in md-x and that in P(xlJ) are identical.

DEFINITION 3.1.4. A Belief Vector of a node x, Bel(), is defined as the convolution

of all Md,_ with P(xlJ) such that Bel(x) = Mdl-- * Md2-X* ... * Md,-x * P(xI A)

where di are the r.v.s. which propagate Mdj to x for i = 1... k.

Using our definitions of convolution and belief vector, we can now calculate

Bel(D).

3-4

Bel(D) =MX-D * MZD * P(DIX, C)

[] [P(D=d0C=c0) = .21

.1 P(D=d1lX=xl) = .81

[P(D~d0,Z=z01C=c0) = .12]
=Mx-D* P(D=d1,Z=z0jX=x1) = .481

FP(X=X0) =*.1 [P(D~d0,Z~z0jCzc0) =.121
[P(X x1) = .1 L P(D=dl,Z z0lX xl) = .481

P(D=d0,X=x0,Z=z0jC=c0) .108
P(D=dO,X=xl,Z=z0fC=cO) .012
P(D=dl,X=xl,Z=z0) - .048

MD-C can now be formulated as Maxc[Bel(DIC)], where
Maxc[Bel(DC)] [P(D=d0,X=x0,Z=z0C=c0) = .1081

MP(D dl,X =xl,Z z) = .048

With Definitions 3.1.3 and 3.1.4, we can now formalize the message stream Mb,,, in

the following definition:

DEFINITION 3.1.5. A message stream that a r.v. b propagates to a r.v. a in a BKB

is defined as

Max,[Bel(bla)]
if a is an immediate parent of b

Maxb[Bel(b)]
if b is an Zmmediate parent of a

where

Bel (a) f M'd1 b * ' * d * P(bla,p,. .. pk)
[if a Zs an immediate parent of b

eel(b) = M,-b Mkb*Pbp..P)

[if b is an immediate parent of a

d,... dk are the immediate child r.v.s. of b, and P1...Pk are the immediate

parent r.v.s. of b

Using our path construction algorithm and Definition 3.1.5, we can now state

a formal algorithm for finding an optimal solution to a BKB Polytree:

3-5

Accept evidence, E
Choose r.v. S as sink and build path P for the propagation of message streams

DO

Pop P and compose Mb-a using Definition 3.1.5
Instantiate any probabilities in Mb-a using E

Perform a convolution operation to combine the incoming proba-
bilities within Mb,a and update Bel(a) at each r.v. traversal

IF a convolution operator yields an empty belief vector

Exit failing with no solution
END IF

UNTIL (P # 0)

The optimal solution is Max[Bel(S)].

If all of the r.v.s. in the BKB are not visited after performing this algorithm, sim-

ply re-apply it on the remaining r.v.s. and combine the results. The heart of the

algorithm relies on the sufficiency and completeness of the probabilities contained in

Mba, and is summarized in Theorem 3.1.1. The algorithm has the same worst case

complexity as [35] which is, O(kn), where k is the length of the longest path in the

BKB, and n is the maximum number of r.v. states - defined as the product of the

number of S-nodes of a r.v. and the number of parent and child r.v.s. of the r.v.[35].

THEOREM 3.1.1. Mb,, carries sufficient and complete information for the compu-

tation of the largest P(p1jJpl) ... P(pnlJpn)P(blJb)P(dllbJdl) ... P(dmlbJdm); where

p1, p2, ... , pn are the parent nodes of b, and dl, d2, ... , dm are the child nodes of

b.

Proof. Without the loss of generality, suppose p1, p2, . . ., pn and dl, d2, .. ., dm

form two paths to propagate message streams to b, i.e., pl ---+ p2' - ... -- pn ---+ b

and d1 - d2 -4 . - dm --- b.

Mpl-p 2 carries P(pl) for pl = all possible values of pl, and Mp2-p 3 car-

ries Maxp2[P(p1)P(p2 Jp2)] for every possible value of p2 , and so forth according

3-6

to Definition 3.1.5. When the message stream carrying all pi reaches b, we have

Max[P(pl)P(p2lJp2) ... P(pnIJp,)P(blJb)]. Similarly, Mdl-d2 carries Maxdl[P(dl Jdl)]

for every possible value of d2, Md2-d3 carries Maxd2[P(dllJdl)P(d2lJd2)] for every

possible value of d3, and so forth according to Definition 3.1.5. When the message

streams carrying all di reach b and are combined with all pi, we get, in a general

form, Max[P(p1lJpi) ... P(pnJJpn)P(b1Jb)P(d1JJdi) ... P(dmlJdm)] for every possible

value of b. From here we can see that one of the Maxb[e] must be the largest

of Max[P(pnlJp)... P(dllJpl) ... P(bIJb)) ... P(dmlJdm)], or else Maxb[e] = 0, in

which case there is no solution. n

3.2 General BKBs

This inference engine can be applied to multiply-connected BKBs, including

BKB Polytrees, but does not work on BKBs containing cycles that are not MUTEX

(See Constraint 5). The algorithm is based on those employed in [29, 31].

Our algorithm begins by converting a BKB to a series of 0-1 linear inequality

constraints and then uses the Simplex method[14] in conjunction with branch and

bound techniques[14] to find an optimal solution[29, 31]. This algorithm, based on

the Land-Doig[17] approach to integer linear programming (ILP), was chosen because

of its fast run time, the requirement that the graph be of the AND/OR variety4 , and

the ability to specialize the algorithm for even greater performance.

In order to convert a BKB into a series of linear inequality constraints, every

node' in the BKB is represented by a 0-1 variable. Let xn denote a variable repre-

senting the node n. Let every variable contain the value 1 if the node is clamped and

0 if it is not clamped. For example, if n is clamped, xn = 1 and if n is not clamped

xn = 0. Also, let Dn represent the set of all nodes that are in the tail of node n, and

In represent the set of all instantiations of a node n.

4 A BKB is an AND/Exclusive-OR graph.
5 A node can be either an I-node or S-node.

3-7

After modifying and simplifying the constraints in [1, 31], the constraints for

a BKB are as follows:

1. If q is an S-node,

lDqlxq- E Xp < 0 (3.1)
pEDq

2. If q is an I-node,

xq- I xp < 0 (3.2)
pcDq

3. If q is a r.v.,

E xp 1 (3.3)
PEIq

4. If q is an I-node submitted as evidence,

Xq 1 (3.4)

A cost function must also be provided. If Sn is the set of all S-nodes in the BKB,

and probq is the probability associated with an S-node q, the function is represented

by

Z log(probq) Xq (3.5)
qCSn

A least cost solution is regarded as an optimal solution.

Equation 3.1 represents that an S-node can equal 1 if all of its tail I-nodes

equal 1. Equation 3.2 represents that an I-node can only equal 1 if and only if at

most one of its S-nodes equals 1. Equation 3.3 represents that one I-node of every

r.v. must equal 1. Initially, the Simplex method finds an optimal assignment to the

variables that both satisfies the constraints and minimizes the cost function. A two

stage process is used. The first phase finds a solution in the solution space that may

not necessarily be optimal. The second phase then zeros in and finds the optimal

solution. The optimal linear program solution may or may not be integral, i.e., a

0-1 solution. If it is integral, the solution is both feasible and optimal to the integer

3-8

Simplex Phase 1 Create Genew
(fr i enitial solution) subproblems Yes

Simplex Phase 2c d e r a n orb ge a
(find opti rap rolutioenpeeto)ouc No

Yes

-- Cost moreAnmoeN

b h e than current t b branches to Current Best is the Most

Fd best? f te explore? Probable Explanation

Cost less Ye
so ntth m e t s Make this solution the

rate evti current best solution

FI3. 3.2. Tie General BKB Inference EngiKe[]

problem, and the inference engine stops. If it is not integral, the inference engine
will begin a Branch and Bound procedure, where it branches on non-integral values

forcing each variable to I and then 0, such that all possible combinations of integral

solutions are considered either by fathoming or bounding. Figure 3.3 is a Branch

and Bound tree, a graphical representation of the Branch and Bound process. Each

branch node is eliminated either through bounding, or solving a Simplex problem.

Figure 3.2 provides a detailed account of the entire inferencing process. Research has

shown that the entire algorithm exhibits an expected case polynomial time growth

rate when solving generalized AND-OR graphs[31].

3.3 Cyclic BKBs

This last inference engine can reason over ANY class of BKB, regardless of

whether it contains non-MUTEX cycles or is multiply- connected. By including addi-

3-9

* 0 60

A=al /A=al alAl

FIG. 3.3. The Branch and Bound tree

tional constraints to the Section 3.2 inference engine, we can eliminate the selection

of two paths that would cause a cycle in a solution subgraph.

For a solution subgraph to be acyclic, it must provide a topological ordering of

its nodes[30]. If a node p is a dependent tail node of q, then the topological value of

p must be less than the value of q. Therefore, we assign a real variable, tn, to every

node n in the BKB to hold n's topological value. We will continue using the same

notation as used in Section 3.2, however, let mpq denote the edge between node p

and q, and let V denote the number of S-nodes and I-nodes in the BKB. According

to [30], the following additional constraints must be added to those of Section 3.2 to

inference over a typical AND/OR graph:

3-10

1. If q is an S-node,

21VI(-Xq)+tq>tp+1, for eachp G Dq (3.6)

2. If q is an I-node,

mpq < Xp, for each p G Dq (3.7)

21VI(- mpq) + tq _ tp + 1, for each p G Dq (3.8)

The BKB's special structure allows us to further simplify these constraints.

Since an S-node has a single I-node in its head, xp can be used to identify mpq.

Therefore, Constraint 3.7 will always be true, and can be eliminated. Furthermore,

if an S-node does not have any I-nodes in its tail, there is no need to create a cyclicity

constraint between that S-node and its head I-node. This follows because a cycle

only occurs between I-nodes with S-nodes functioning as intermediaries, thus a cycle

must pass through an S-node. If an S-node has no tail I-nodes, there is no possibility

of it participating in a cycle. Lastly, because an I-node can only be selected if one

of its S-nodes is selected and all of the tail I-nodes of that S-node are selected, we

can merge Constraints 3.6 and 3.8 into a single constraint.

1. If p is an S-node and Dp # 0,

21S12 (1 - xp) + tq >1 + E Xr (3.9)
rEDP

where S is the number of S-nodes in the BKB. This constraint simply states that if

an S-node is selected, then the topological value of its head I-node must be greater

than the sum of the topological values of its tail I-nodes. This constraint enforces

the topological ordering necessary to prevent cyclic solutions, eliminates the need

for topological variables for the S-nodes, and greatly reduces the total number con-

straints originally proposed by [30].

3-11

Research has shown that this method also exhibits an expected case polynomial

time growth rate in generalized cyclic AND-OR graphs[30], however, it is somewhat

slower than the inference engine for generalized AND-OR graphs due to the addi-

tional constraints. Furthermore, it has the benefit of handling cycles without the

need for identifying them explicitly, thus, it is very effective on BKBs with a large

number of cycles. However, the number of additional constraints is a multiple of the

number of original constraints. For very large BKBs with few non-MUTEX cycles,

the number of additional constraints could be excessive. This could adversely affect

the relative size of cyclic BKBs this method could inference over.

Another method to prevent cyclic solutions is to explicitly identify every cycle

in the BKB, and construct the minimal number of constraints to eliminate these

cycles from the solution subgraph. Examples of this method can be found in [30].

Cycle identification can be performed efficiently in O((IV I + IEI)(n + 1)) using a

Depth-First search algorithm found in [25].

Regardless of which method is used, this inference engine renders Constraint 5

obsolete. The sole purpose of Constraint 5 was to prevent the occurrence of a cycle

in the solution subgraph, thus making the solution inconsistent. Since this infer-

encing method guarantees that all solution subgraphs are acyclic, it also guarantees

consistency.

3.4 Performance Improvement Techniques

All three inference engines can benefit greatly by preprocessing the BKB and

removing unneeded nodes. By using evidence submitted by the user, we can locally

propagate the truth values by attempting to satisfy, and as a result, remove BKB

constraints generated by Equations 3.1, 3.2, and 3.3.

Let H, represent the set of all nodes that are in the head of node n. By using

our previous notation, we can use the following pruning rules to reduce a BKB's size:

3-12

1. If q is an I-node and Xq = 1, then

E xR = 0 (3.10)
pelq-{q}

Remove Constraint 3.3 containing Xq (3.11)

2. If q is an I-node and xq = 0, then

E xp = 0 (3.12)
pEDq

E xp = 0 (3.13)
pcHq

Remove all Constraints 3.1 and 3.2 containing xp and Xq (3.14)

Remove Constraint 3.9 containing xp and tq (3.15)

3. If q is an I-node and xq 0 and IIq- {q} 1 1, then

E Xp 1 (3.16)
pEIq-{q)

4. If q is an I-node and Dq = 0, then

Xq = 0 (3.17)

5. If q is a r.v. and ZEi n XPl 0, then

There is no feasible solution. (3.18)

Applying these rules to a BKB will force certain variables to equal 0, thus their

corresponding nodes can be pruned from the graph. The rules are most useful on

the two Multiply-Connected Inference Engines, where they can preprocess the BKB

before the inference engine is evoked, and also at each branch in the Branch and

3-13

ft Input Receiving Rule
Evidence Rule 1
Rule 1 Rule 2

Rule 3
Rule 4

Rule 2 Rule 3
Rule 5

Rule 3 Rule 1
Rule 4 Rule 2

Rule 3
Rule 5

TABLE 3.1. Pruning rule dependencies.

Bound tree when additional nodes are clamped[14]. Rule 5 is particularly noteworthy.

Since a BKB is incomplete, it is possible to submit evidence that will result in the

BKB being unable to return a solution. By preprocessing BKBs submitted to all

three inference engines, not only will the computational efficiency increase[8, 16],

but these Rules, via Rule 5, may avoid the need to run the inference engine at all.

Furthermore, during the Branch and Bound process, if the pruning rules identify

a BKB with an infeasible solution, the inference engine can prune off that part

of the Branch and Bound tree and immediately backtrack. The reason is that the

additional clamped node from the tree caused the infeasible solution, and any further

solutions down that branch will include the clamped node, and as a result, will also

be infeasible. Since a natural flow exists in the application of these rules, i.e., the

results of one rule can be used as the input to another, these rules can be performed

in an efficient, step-wise manner. The input/output rule dependencies are shown in

Table 3.1.

Another method to increase performance is by using a jumpstart, i.e., using a

preliminary solution to help find the optimal solution. In the ILP-based Inference

Engines, 60% of the inference engines' time is spent finding an initial solution during

phase 1 of the Simplex method, which is not guaranteed to be optimal[28, 31].

By reducing the time required to find this initial solution, the overall time for the

3-14

algorithm to complete is also reduced. Baenen[1] uses various Depth-First search

and local propagation techniques to provide a jumpstart that is close to the optimal

solution. Genetic algorithms[20] appear to be another viable jumpstart candidate.

Their polynomial run times and ability to close rapidly on the optimal solution seem

to make them ideal. However, the number of feasible solutions for any query is not

necessarily combinatoric. In fact, there may be no feasible solution for a given query,

thus making the task of finding an initial solution very difficult indeed.

The Multiply-Connected Inference Engines can be further improved by using

the Polytree Inference Engines during the Branch and Bound procedure. Some BKBs

can be forced to take on the structure of a Polytree BKB by identifying certain nodes

to be clamped. By clamping these nodes during the Branch and Bound process, we

can allow the inference engine to run a Polytree algorithm instead of the Simplex

method. The requisite nodes can be identified during knowledge acquisition and

stored for later use. A Depth-First search algorithm similar to the one for finding

cycles[25] should be sufficient for the task. Since the Polytree Inference Engine has

the advantage of always producing integral solutions, it should be able to provide

an integral solution much quicker than the Simplex method, which produces both

integral and non-integral solutions.

Efficiency during the Branch and Bound process can also be dramatically in-

creased by only using the BKB's I-nodes when constructing the Branch and Bound

tree. Normally, an ILP will include every variable from the series of linear equal-

ity constraints. This includes variables from both S-nodes and I-nodes. Since the

optimal solution will contain one I-node from each r.v., it is sufficient to have the

solution space include all possible combinations of I-nodes. This is summarized in

Theorem 3.4.1. Using only the I-node variable will result in tremendous savings,

especially when no feasible solution exists. Since the number of I-nodes is always

less than or equal to the number of S-nodes, the path length from the root to a leaf

in the Branch and Bound tree will always be cut in half, at a minimum. In addition,

3-15

by clamping only I-nodes in the tree, we will always get the maximum benefit from

our pruning rules, since they are triggered primarily by the clamping of I-nodes.

THEOREM 3.4.1. Using I-node variables in conjunction with Pruning Rule 3.10 during

the Branch and Bound procedure is sufficient to cover all feasible solutions.

Proof. By only using I-nodes to construct the Branch and Bound tree, each path

will constitute a possible I-node solution to any query, and the union of these paths

constituting all possible I-node solutions. If the Branch and Bound procedure reaches

a leaf, a single I-node for each r.v. will be clamped. Consistency Constraint 4 states

that any S-nodes which share the same head I-node must be mutually exclusive.

Therefore, applying Pruning Rule 3.10 will leave a single S-node supporting each

I-node if a feasible solution exists, or no S-node supporting at least one I-node if

no feasible solution exists. If a feasible solution exists, Constraint 3.2 requires each

I-node select an S-node, and since each I-node has only one S-node supporting it,

the remaining S-nodes are selected. Therefore, all feasible solutions are covered. El

3-16

IV. AS-nodes as an Organization & Validation Inferencing Tool

During Organization & Validation, it is necessary to evoke the inference engine

in order to validate the knowledge base. The incompleteness of a BKB has led to

the problem of evaluating the quality of solutions received from the inference engine.

When the inference engine returns .000000000037287439, what exactly does that

mean and what can we compare it to? What does it mean especially in the presence of

incompleteness? Approximating Support Nodes (AS-nodes) are a tool the inference

engine can use to find an upper bound on the solution to a query, and thus provide

the knowledge engineer a measure of the quality, as well as the incompleteness of

that solution. The term upper bound is defined in Definition 4.0.1, however, we

must first describe the possible probability distributions (PDs) that will contain an

upper bound. These PDs are discussed in Theorem 4.0.2.

THEOREM 4.0.2. For any incomplete BKB, there exists a set containing an uncount-

ably infinite number of consistent probability distributions (PDs) from which the BKB

could be derived.

Proof. If a BKB is incomplete, it is missing at least one S-node. S-node

probabilities must assume a value in the range of [0,1]. Since the subset of real

numbers between [0,1] is uncountably infinite, it follows that any continuous subset

of real numbers between [0,1] is also uncountably infinite[34]. Therefore, there are

an uncountably infinite number of different S-nodes that can be added to the BKB,

thus creating an uncountably infinite number of consistent PDs. L

DEFINITION 4.0.1. Given an incomplete BKB, according to Theorem 4.0.2 there exists

a set S containing an uncountably infinite number of consistent PDs from which the

BKB could be derived. An identical query i submitted to Vs C S will yield a Max

JPD for each s. Of these Max JPDs, a single probability pi will dominate all others.

A BKB with AS-nodes is said to deliver a Tight Upper Bound, if for every query

4-1

i, its Max JPD is equal to pi. A BKB with AS-nodes is said to deliver an Upper

Bound, if for every query j, its Max JPD is pj > Pi.

AS-nodes possess an identical structure to S-nodes. AS-nodes contain the same

dependent probabilities between I-nodes, have tail I-nodes and a head I-node, and

for any I-node in its head, only one S-node or AS-node can be active at any given

time. The major difference is in functionality. Where S-nodes represent the known

probabilities of a BKB, AS-nodes represent the unknown or missing probabilities of

the BKB. By adding AS-nodes to a BKB, we are in fact, including the incomplete

knowledge, or a close approximation of it, back into the BKB. By summing the

probabilities of the S-nodes and AS-nodes to 1, and having the AS-nodes assume the

highest value they can with regard to the Laws of Probability, we can achieve a tight

upper bound as described in Definition 4.0.1. If we cannot achieve a summation to

one, we must over-estimate the probabilities of the AS-nodes, and settle for an upper

bound.

4.1 Assumptions

In order to achieve an upper bound using AS-nodes, we must make four neces-

sary assumptions. Without these assumptions, AS-node creation becomes untenable.

1. PDs potentially responsible for a given BKB obey the Laws of Probability, i.e.,

probabilities always sum to 1.

2. The knowledge engineer who has created a BKB attempted to mirror one

of these PDs. The normalization of a BKB's probabilities to maintain its

consistency[2] will be deemed necessary to maintain mappings to one of these

PDs. This enforces Constraint 8.

3. A r.v. A is dependent on another r.v. B if and only if there exists a directed

path, via an S-node, from an I-node of B to an I-node of A. Not making this

assumption implies a r.v. is potentially dependent on every other r.v. in the

4-2

BKB. This assumption prevents AS-node creation from exploding combinato-

rially in the worst case.

4. For each r.v., all of its I-nodes that could potentially impact the formation of

probabilities with other r.v.s. are known, and are included in the BKB. Bayes'

Theorem can only be used to fathom probabilities from known dependencies.

Since we do not know how many (if any) I-nodes are missing, let alone what

I-nodes in the BKB are dependent on them, working with missing I-nodes

becomes intractable.

5. The BKB is consistent.

4.2 AS-node Creation Scenarios

To create an AS-node, we begin by examining each r.v. 1 in the BKB, but

only one r.v. at a time, and determining what r.v.s. it is dependent on. Mutually

exclusive (MUTEX) sets are then constructed by taking all combinations of I-nodes

from these dependent r.v.s., but only one I-node from each r.v. will appear in any

MUTEX set. For example, if we are dealing with r.v.s. with only two states, say

TRUE and FALSE, there will be 2n MUTEX sets containing the probabilities for

each r.v. in the BKB, where n is the number of other r.v.s. that a r.v. is dependent

on. Each MUTEX set can be thought of as a "bucket" that contains a sum of the

probabilities for a r.v., and each "bucket" is labelled with a MUTEX combination of

dependent I-nodes. Generally, a BKB will only contain a fraction of the necessary S-

nodes to populate these MUTEX sets. By collecting the S-nodes that are present and

placing them in the appropriate MUTEX set, we can take 1 minus the summation of

their probabilities and determine the missing complement probability, if it is missing

at all. An S-node is considered a member of a MUTEX set if its tail I-nodes form a

subset of the MUTEX set's label.

'An r.v. is the union of its I-nodes.

4-3

The method by which an AS-node is created is based purely on the dependen-

cies shared between r.v.s.. Since we know that all tail compatible probabilities must

sum to no more than 1, we can use this fact along with the existing knowledge in the

BKB to fathom what knowledge could be missing. To this end, we have developed

five different scenarios for creating AS-nodes for a single r.v., considering only the

other r.v.s. it is dependent on and the S-nodes involved between them. There are

four important points to keep in mind when applying these scenarios:

1. Each r.v. in a BKB must be considered, and for any r.v., multiple scenarios

can exist.

2. Each MUTEX set will have at most one scenario applied to it.

3. The scenario to be used is determined solely by the MUTEX set, and the

known S-nodes that occupy that MUTEX set.

4. The results of one scenario do not immediately affect the results of any an-

other scenario, thus each scenario is applied independently. It is possible that

a conflict will arise where the probability of an existing S-node is changed mul-

tiple times because the S-node resides in more than one MUTEX set. In this

case, all results for the r.v. should be cached and the conflict be appropriately

resolved. This will be discussed in more detail in Section 4.3.

4.2.1 Scenario 1: Pure S-node Creation. For any MUTEX set, if there

exists a single I-node whose probability is unknown, we can use the Laws of Proba-

bility to determine what the missing probability is. This is performed by summing

the known probabilities for the other I-nodes and subtracting the total from 1.

For example, let's examine a BKB with instantiations consisting only of two

values. The r.v. we are concentrating on is D, and it is dependent on A, B, and C.

For the MUTEX set {A=a0, B=b0, C=c0}2 , we know that

P(D = dOJA = aO, B = bO, C = cO) = .70

2There are a total of 33= 27 MUTEX sets, but for this example, we will only examine this one.

4-4

the Laws of Probability tells us that

P(D = dlIA = a0, B = b0, C = cO) = .30

This knowledge can be added as a permanent S-node to the BKB. Similarly, in a

BKB where r.v.s. have three I-nodes, S-nodes are constructed in a like manner when

only one value of the MUTEX set is missing. Let the r.v.s. in this BKB have three

I-nodes. If we are given

P(D = d0jA = aO, B - bO, C = cO) = .70

P(D = dl A = aO, B = bO, C = cO) = .10

the Laws of Probability tells us that

P(D = d2 A aO, B = bO, C = cO) = .20

This method generalizes for all cases where the summation of the probabilities is less

than 1 and there exists a single missing probability.

4.2.2 Scenario 2: Summation Less Than One And Multiple Missing Proba-

bilities. Let us continue using our BKB with three instances. If our MUTEX

set still sums to less than 1 and we are missing more than one S-node, it is possible

that any one of the remaining I-nodes could be supported by the difference of the

probability. For example, given

P(D = dOA = aO, B = b0, C = cO) = .70

both of the missing S-nodes for D=dl and D=d2 could contain the remaining .3, in

the best case. Two AS-nodes would be constructed to reflect

P(D = d1 A aO, B = bO, C = cO) = .30

P(D = d2IA a0, B = bO, C = cO) = .30

Creating both AS-nodes will result in the summation

.70 + .30 + .30 = 1.30 , 1

a violation of Constraint 8. However, since only one of the created AS-nodes can be

selected during inferencing, the MUTEX set essentially sums to 1.

4-5

.70 + (.30 XOR .30) = 1

Although a consistency check will reveal the BKB to be inconsistent, for our pur-

poses, we only care about the probability of the optimal solution. This probability

will serve as an upper bound, or if possible, a tight upper bound. Therefore, a BKB

with AS-nodes is allowed to be inconsistent.

4.2.3 Scenario 3: Summation Equal To One And Multiple Missing Probabil-

ities. This scenario can occur because the remaining I-nodes either had S-nodes

with probabilities of 0 so they were omitted, or the existing S-nodes were normalized

for consistency purposes[2]. Normalization occurs when a set of probabilities that are

not mutually exclusive sum to greater than 1. It then becomes necessary to normalize

the probabilities so their sum equals 1 in order to maintain there relative frequency

and also to keep the BKB consistent via Constraint 8[2]. The normalization process

occurs during Knowledge Acquisition.

The first case is easy to verify. Simply maintain both the original and current

(normalized) probabilities for each S-node in the knowledge base and check to see if

they are equal. If they are equal, it implies the values were not normalized, and the

knowledge engineer intended the probabilities to sum to 1. Therefore, no missing

knowledge exists and nothing needs to be done. This first case will undoubtedly be

very rare, since the knowledge engineer will infrequently plan for this to happen. If

the original and current probabilities are different, we now consider the second case.

The second case is a little more difficult. Since the probabilities were normal-

ized to 1, 1 is no longer a relative number. Normalization has skewed the original

probabilities. For example, during Knowledge Acquisition if a MUTEX set contained

probabilities

.90 + .90 + .90 + .90 = 3.60

it would become necessary to normalize them to

.25 + .25 + .25 + .25 = 1

4-6

Before the probabilities were normalized, the maximum probability that an S-node

could assume is 1. Thus, to create an AS-node, we must also give it an initial prob-

ability of 1. The total number of AS-nodes to be created will equal the number of

S-nodes missing from the MUTEX set. Since our goal is to achieve a summation

to 1, the AS-nodes must be normalized in conjunction with the existing S-nodes.

Therefore, normalize each AS-node and S-node using their ORIGINAL probabili-

ties, that is, 1 for the AS-nodes and the original probabilities for the S-nodes. For

example, in a BKB where each r.v. has five I-nodes, if

P(D = d21A = aO, B = bO, C = cO) = .308, (original .40)

P(D = d31A = a0, B = bO, C = cO) = .154, (original .20)

P(D = d4 A = aO, B = bO, C = cO) = .538, (original .70)

our AS-nodes would contain

P(D = d0JA = aO, B = bO, C = cO) = 1

P(D = dlA = a0, B = bO, C = cO) = 1

and after all probabilities are normalized, we would have

P(D d0JA = aO,B = bO, C = cO) = .303

P(D dl A = aO, B = bO, C = cO) = .303

P(D d2JA = aG, B = bO, C = cO) = .121

P(D d3IA = aO, B = bO, C = cO) = .061

P(D d4JA = aO, B = bO, C = cO) = .212

This is the only method we could develop to handle both the missing knowledge,

and the problem of requiring summation to 1.

4.2.4 Scenario 4: Summation Less Than One And No Missing Probabilities.

There are two explanations for this situation. The first implies the existence of

another I-node(s) not included in the BKB. Since Assumption 4 states that all I-

nodes that could potentially impact the formation of probabilities are included in the

BKB, this first explanation is not a possibility. The second implies the probabilities

4-7

were entered as such, and were not intended to sum to 1. In [2], probability ranges

with tags were used to make knowledge acquisition easier for the knowledge engineer.

They are shown below:

inconceivable: 0.00 - 0.10

not likely: 0.10 - 0.35

possible: 0.35 - 0.65

probable: 0.65 - 0.90

almost certain: 0.90 - 1.00

Only on rare occasions would probabilities sum to exactly 1. BKBs by defi-

nition do not require summation to 1, however, Assumptions 1, 2, and 4 do require

summation to 1 in this special case. Therefore, we need to normalize the known

probabilities and force them to sum to 1 in order to achieve an upper bound. For

example, if a BKB has three instances and we know that

P(D = d0jA = aO, B = bO C = cO) = .40

P(D = d1A = aO, B = b0, C = cO) = .20

P(D = d2JA = a0, B = bO, C = cO) .20

normalizing these probabilities to sum to 1 would yield

P(D = d0lA = aO, B bO, C = cO) .50

P(D = dl A = a0, B bO. C = cO) .25

P(D = d2JA = aO, B bO., C = cO) .25

By normalizing probabilities, we maintain the ratio between them, and also guaran-

tee an upper bound by summing them to 1.

A special case of this scenario is the NULL MUTEX set, which only occurs in

root r.v.s.. Since the S-nodes of a root r.v. have no dependent tail I-nodes, all of the

S-nodes will fill the NULL MUTEX set. In this case, we simply normalize all of the

probabilities to ensure they sum to 1.

4-8

4.2.5 Scenario 5: Summation Equal To Zero. In the event that a MUTEX

set has no existing S-nodes in it, the unassigned probability is 1. This is a special case

of Scenario 2. AS-nodes with probability 1 would be created with tail I-nodes the

same as those defining membership into the MUTEX set. Each AS-node would have

a different head I-node covering all possible instances of the head r.v.. For example,

if each r.v. has three I-nodes and r.v. D has no S-nodes covering the MUTEX set

{A=al, B=bl, C=c1}, then we would create the following AS-nodes:

P(D = dOJA = al, B = bi, C = cl) = 1

P(D = dlA = al, B = bl, C = cl) = 1

P(D = d2JA = al,B = bl, C = cl) = 1

This type of AS-node, whose probability equals 1, will dominate all other AS-nodes

when calculating an upper bound. Whenever the appropriate dependencies are avail-

able, this AS-node will be selected in preference to all others.

4.3 The AS-node Creation Process

As mentioned earlier, conflicts can arise when an S-node occupies more than

one MUTEX set and one of those sets is normalized. If this occurs, the probability

of that S-node is no longer constant, and it will directly affect the probabilities in the

other MUTEX sets. To achieve a tight upper bound, each MUTEX set must sum

to 1. The method in which we resolve these conflicts directly affects whether or not

we can sum to 1, and thus attain a tight upper bound. There are three approaches

to handling these conflicts:

1. Allow the probabilities to be changed in each MUTEX and create new S-

nodes to hold these probabilities in their respective set. The problem with

this approach is that in order for the S-node to be in more than one set, the

number of I-nodes in the S-node's tail is less than the number I-nodes needed to

"label" each MUTEX set. Creating S-nodes to hold the different probabilities

4-9

will alter the initial knowledge of the BKB, so the S-node must hold the same

probability in each MUTEX set. Thus, this approach is not considered.

2. Normalizing a MUTEX set will send a ripple of changes to MUTEX sets that

share its S-nodes. These changed sets must now normalize to sum to 1, but they

will affect the MUTEX set that instigated the change. Thus, we must attempt

to normalize all of the sets at once, to prevent this see-sawing of normalizations.

If a MUTEX set must be normalized, find the MUTEX sets that share S-nodes

with that set, and find the MUTEX sets that share S-nodes with these sets,

and so on. By successfully applying Theorem 4.3.1, we can have each of the

intersecting MUTEX sets sum to 1, and thus in part, guarantee that a tight

upper bound is possible.

3. If applying Theorem 4.3.1 results in failure, the only recourse is to normalize

the MUTEX sets independently, and use the highest probability for each S-

node. Since the summations for each set no longer sum to 1, we can not

guarantee a tight upper bound, however, an upper bound is still possible.

THEOREM 4.3.1. A group of intersecting MUTEX sets can be successfully normalized

to 1 if and only if the sum of each intersecting MUTEX sets' ORIGINAL probabilities

are equal.

Proof. Let MUTEX set A {ao + a, + ... + am + s} and let MUTEX set B =

{b0 + b, + . .. + b,, + s}, where ai, bi, and s are S-node probabilities. Since both set

A and B share S-node s, they must be normalized at the same time. Let the original

sum of probabilities of set A be PA, and the original sum of probabilities of set B be

PB.

When normalizing probabilities we divide each member of each set by the

original sum of that set. However, S-node s can only hold one value, thus we know

s s

PA PB

4-10

S*PA S*PB

PA = PB

Therefore, the sum of each intersecting MUTEX sets' original probabilities must be

equal in order for the the MUTEX set to be properly normalized. Obviously, the

proof can be reversed to prove the bi-conditional. I1

The AS-node Creation Scenarios in Section 4.2 are the heart of entire AS-

node Creation Process. They are the workhorse for altering existing probabilities,

and adding new probabilities in the form of AS-nodes. To this point, we have only

alluded to how these Scenarios would be utilized. We are now ready to present the

formal AS-node Creation Algorithm.

FOR every r.v. x

Create the MUTEX sets for x
Fill each MUTEX set with the S-nodes of x

FOR every MUTEX set

Apply the appropriate Scenario
Cache each new AS-node
Cache the altered probability for each normalized S-node

END FOR

IF an S-node is normalized more than once

Resolve the conflicts for x
Create the cached AS-nodes for x
Normalize the cached S-nodes for x

END IF
END FOR

The algorithm's complexity is O(rd), where r is the number of r.v.s., and d is the

maximum product of MUTEX sets and S-nodes for any r.v. x in the BKB.

To illustrate the AS-node Creation Algorithm, we will apply it to the BKB in

Figure 4.1. Examining the BKB, there are a total of six r.v.s., four of which are

roots. We will process the roots first for clarity, however the relative order of the

r.v.s. is normally unimportant. The r.v.s. A, C, and E all have probabilities that

4-11

I

FIG. 4.1. A small Bayesian Knowledge Base

4-12

sum to 1, so nothing needs to be done. However, r.v. B only sums to .9, so we will

use Scenario 4's special case and normalize their probabilities. The new probabilities

are

P(B = b0) = .44

P(B = bl) =.44

P(B = b2) =.11

That only leaves two r.v.s., D and F. Consider r.v. D. D is dependent on two r.v.s.,

A and B, both of which have three I-nodes. Therefore, there are nine MUTEX sets.

Filling the MUTEX sets with their appropriate probabilities yields:

1. {A=a0, B b0}--+ .70 =0.7

2. {A = a0, B = b} -* 0.0

3. {A = a, B = b2}-- = 0.0

4. {A=al,B=b0}-* .60 + .40 = 1.0

5. {A = a1,B = b}- = 0.0

6. {A = al,B = b2} -0.0

7. {A =a2, b0} =b .30 + .30 + .30 0.9

8. {A=a2,1B=bl}-* .27-+.73 =1.0

9. {A = a2,B = b2} -0.0

Set 1 has a summation less than 1 and two missing probabilities, so we can use

Scenario 2 to create AS-nodes

P(D = dl A = aO,B - bO) = .30

P(D = d2 A = aO, B = bO) = .30

Set 4 has a summation equal to 1 and no missing probabilities. Upon further in-

vestigation, we discover that these are in fact the original probabilities, so we do

nothing. Set 7 has a summation less than 1 and no missing probabilities, so we can

use Scenario 4 to normalize the existing probabilities to

P(D = d01A = a2, B = bO) = .33

P(D = dlia = a2, B bO) = .33

4-13

P(D = d2JA = a2, B = bO) = .33

Set 8 has a summation equal to 1 and no missing probabilities. Upon further investi-

gation, we discover that the original probabilities were .8 and .3, and were normalized

to their current values. Therefore, we can use Scenario 3 to create one AS-node and

normalize the current probabilities to

P(D = dOA = a2, B = bl) = .38

P(D = dl A = a2, B = bl) = .48

P(D = d2JA = a2, B = b) = .14

Sets 2, 3, 5, 6, and 9 all have summations equal to 0, so we can use Scenario 5 to

create the following AS-nodes:

P(D = dOJA = aO, B = bl) = 1

P(D =diIA = aO, B = bl) = 1

P(D = d2 A = aO,B = bl) = 1

P(D = dO A = aO,B = b2) = 1

P(D = dI A = aO,B = b2) = 1

P(D = d2JA = aO,B = b2) = 1

P(D =d0A =a,B bl)

P(D = dIIA = al,B = bl) 1

P(D =d2A =al,B =bl)

P(D = dOA = at,B = b2) 1

P(D = dItA = al,B = b2) 1

P(D = d2JA = al,B = b2) = 1

P(D = dOA = a2,B = b2) = 1

P(D = dIA = a2,B = b2) = 1

P(D 7 d2JA = a2, B = b2) = 1

We are finished with the AS-node Creation Process for r.v. D. Since there are no

conflicts due to normalizing the same probability multiple times, all of the above

changes will occur as is.

4-14

Continuing with r.v. F, F is dependent on three r.v.s., C, D, and E, each of

which has two, three, and two I-nodes, respectively. Therefore, there are twelve

MUTEX sets. Filling the MUTEX sets with their appropriate probabilities yields:

1. {C=c0, D d0, E =e0} .05 =.05

2. {C=c0, D d0, E=el} .05 =.05

3. {C=cO, D dl,E=e0}-* .05 =.05

4. {C=c0, D dl,E =el}- .05+ .10 =.15

5. {C=c0, D=d2, E=e0}-- .05 =.05

6. {C cO,D =d2,E = el} .05 =.05

7. {C=cl,D=d0,E=e0}-- .05+.30 =.35

8. {C=cl,D=d0,E=}el}l .05 =.05

9. {C cl,D=dl,E=e0} .05+.60+.30 =.95

10. {C cl,D=dl,E=el} .05+.60+.10 =.75

11. {C cl,D =d2,E =e0}--+ .05 + .30 =.35

12. {C=cl,D=d2,E =el} .05 =.05

Sets 1, 2, 3, 5, 6, 8, and 12 all have a summation less than 1 and two missing

probabilities, so we can use Scenario 2 to create AS-nodes

P(F = flC = cO, D = dO, E = eO) = .95

P(F = f21C = cO, D = dO, E = eO) = .95

P(F = flC = cO, D = dO, E = el) = .95

P(F = f21C = cO, D = dO, E = el) = .95

P(F = flIC = cO,D = dl,E = eO) = .95

P(F = f21C = cO, D = dl, E = e0) = .95

P(F = flC = cO, D = d2, E = e0) = .95

P(F = f21C = cO,U = d2, E = eO) = .95

P(F = flC = cO, D = d2,E = el) = .95

P(F = f21C = cO, D = d2, E = el) = .95

P(F = fl C = cl, D = dO, E = el) = .95

4-15

P(F = f21C = cl, D = dO, E el) = .95

P(F = fIIC = cl,D = d2,E el) = .95

P(F = f21C = cl,D = d2, E el) = .95

Sets 4, 7, and 11 all have a summation less than 1 and a single missing probability.

Scenario 1 can create the following AS-nodes which can be permanently added to

the BKB

P(F = RIC = cO, D dl,E = el) = .85

P(F = flIC = cl,D dO, E = eO) = .65

P(F = flC = cl,D - d2, E = e0) = .65

Set 9 has a summation less than l and no missing probabilities, so we can use

Scenario 4 to normalize the existing probabilities to

P(F f0) = .05

P(F flC = cl,D=dl) = .63

P(F f21C=cl,E=e0) =.32

Similarly, Set 10 also has a summation less than 1 and no missing probabilities, so

we can use Scenario 4 to normalize the existing probabilities to

P(F = f0) = .07

e(F = flC= cl,D =dl) = .80

P(F=f2jD=dl,E=el) =.13

Notice that AS-nodes

P(F = f0) = .05

P(F=f1C=clD=-dl) =.60

are normalized more than once. In fact, they appear in more than one MUTEX

set. Theorem 4.3.1 can not be successfully applied to at least one of the conflicting

MUTEX sets, thus we will have to resort to our third method for handling con-

flicts. Since we initially considered each scenario independently, we did not use their

changed values in the other scenarios. Furthermore, since we are finished with this

r.v., and a conflict exists for AS-node

4-16

P(F = f0) = .05

P(F=flIC=cl,D dl) =.60

we will normalize them to .07 and .80 respectively, their highest probabilities during

the AS-node Creation Process. Since we could not resolve the conflicts using Theo-

rem 4.3.1, inferences to the BKB will only produce an upper bound. This concludes

our example for the BKB in Figure 4.1.

4.4 AS-node Reduction Techniques

The AS-node Creation Process is for the most part, a brute force method for

computing the possible probabilities for a given r.v., however, there seems to be little

alternative. Regardless of the number of existing S-nodes, we will always produce

a combinatoric number of AS-nodes. Therefore, reducing the number of AS-nodes

whenever possible is very important. Since AS-nodes reproduce the combinatorics

inherent in Bayesian Networks[23], inference run times for a BKB with AS-nodes

will be much slower than for those without. Section 4.4.1 and Section 4.4.2 are both

methods for reducing the number of AS-nodes added to a BKB, however Section 4.4.1

maintains a tight upper bound. Section 4.4.2, while only guaranteeing an upper

bound, does provide a much faster inference time especially for General and Cyclic

BKBs. The AS-node property for providing an upper bound, and possibly a tight

upper bound, is summarized in Theorem 4.4.1.

THEOREM 4.4.1. Applying the AS-node Creation Algorithm to a BKB provides an

upper bound to any query to the original BKB. Successfully applying both the AS-

node Creation Algorithm and Theorem 4.3.1 to a BKB provides a tight upper bound

to any query to the original BKB.

Proof. To prove Theorem 4.4.1, the key is to guarantee that any I-node or AS-

node in the BKB can assume it's maximum probability for any possible combination

of dependent I-nodes, and also that each MUTEX set sums to 1. The five scenarios in

4-17

Section 4.2 outline all possible cases. Thus, by proving these scenarios and resolving

conflicts appropriately, we prove Theorem 4.4.1.

For each scenario, assume we are creating AS-nodes for a single r.v. without

loss of generality. Let v1 , v 2,... , Vk be the known I-node probabilities for a dependent

MUTEX set and P1, P2,... , Pn be the unknown I-node probabilities for a dependent

MUTEX set. Also, 0 < vi, pi < 1.

Scenario 1: The Laws of Probability tell us that all tail compatible probabil-

ities must sum to 1, therefore

Vl+ V2 + ... + vk + Pl

P1 = I1-vl+v2 +...+Vk

Scenario 2: Following from scenario 1, we know the remaining unknown

probabilities must sum to 1 and pi 1 - v 1 + v 2 +... + Vk SO,

vl+v 2 +...+vk+pi+p2+...+pn# 1

but since at most one I-node can be selected for any single r.v.,

Vl + v 2 + ... + Vk + (Pl XOR P2 XOR ... XOR p1) = I

This will satisfy the Laws of Probability and also yield an upper bound.

Scenario 3: In the case where normalization must take place, scenario 3

dictates,

I > p
Vl+V 2 +...+Vk+1 Vl +V2 +... +Vk+ pl

4-18

(1)(V+ V+... + Vk + _v + V2+... + Vk + 1)

V V2+ -+ -- Vk+P1 >P VPl V2P + ... + VkPl + P1

VI+V2 +...+Vk _ V1P1±V2P1 +... +VkP1

V1 + V2 + Vk > pl(V + V2 + +± Vk)

VI+V2+...+Vk > pl(vl+v2+...+-Vk)

1 > P1

pi must assume a probability greaten than 1 in order to exceed the probability of

the AS-node, a clear violation of the Laws of Probability. Therefore, the AS-node

will bound the probability pi.

Scenario 4: We know that vI + v2 + ... + Vk < 1, and there exists no prob-

abilities pi. Satisfying the Laws of Probability requires vI + v2 + ... + Vk = 1 while

maintaining the proportionality between the probabilities. This can be achieved by

normalizing the probabilities.

Scenario 5: This is a special case of scenario 2 where v = v2 ... V= 0.

Since the algorithm independently caches the results of each scenario, we guar-

antee that the results of one scenario will not initially corrupt the results of another.

If Theorem 4.3.1 is successfully applied at every r.v. in the BKB, every MUTEX set

will sum to 1. This coupled with the fact that the AS-nodes created by Scenarios

1-5 will account for all missing probabilities, the BKB with AS-nodes will deliver a

tight upper bound. However, if Theorem 4.3.1 is not successfully applied, we only

save the maximum normalized probability for any single S-node. The AS-nodes will

still account for all missing probabilities, but each MUTEX set will now sum to a

value greater than or equal to 1. Thus, only an upper bound will be guaranteed. L

4.4.1 Merging AS-nodes in a BKB. When creating AS-nodes in Scenarios

2, 3, and 5, we will generally be creating multiple AS-nodes. Since the tails of each

AS-node are identical, we can merge the AS-nodes into a single node. For example

in Section 4.2.2, we ended up creating two AS-nodes:

4-19

A-aC B-aC C-aC AaC B=bC C=cC

.3

D~ ~2D=dl D=d2

(a) Before (b) After

FIG. 4.2. Example of merging AS-nodes

P(D = dlIA aO, B = b0, C = cO) = .30

P(D = d2[A a, B = bO, C = cO) = .30

Graphically, those AS-nodes would appear as Figure 4.2(a). Merging these two

AS-node together would involve maintaining the tail dependencies on a single AS-

node and then merging all of the head I-node dependencies. The resulting AS-node

can be viewed in Figure 4.2(b). This operation can only be performed on AS-nodes

with identical tails, identical probabilities, and head I-nodes belonging to the same

r.v.. Since the necessary AS-nodes are always available at the same time during the

AS-node Creation Process, this method is 0(1).

Additional merging can be performed on the AS-nodes generated in Scenario

5. Continuing our example from Figure 4.2(b), Scenario 5 would require us to create

an additional 33 - 1 = 26 AS-nodes with probability 1 to cover the other MUTEX

sets, assuming we have already merged the head I-nodes. It is at this point that the

savings can occur. Since r.v. D is not dependent on B=bl after running Scenarios

4-20

1-4 (no associated S-nodes), B=b1 can be considered independent of r.v.s. A and C.

The same can be said for B=b2 with respect to r.v.s. A and C, and A=al and A--a2

with respect to r.v.s. B and C, and also C-c1 and C-c2 with respect to r.v.s. A

and B. Thus, we would only need to include six AS-nodes, one for each unused tail

instance:

AS-node #1 AS-node #2 AS-node #3
P(D = d0jA = al) I P(D = d0jA = a2) = I P(D = d0jB = bl) = I
P(D = dIJA=al)=I P(D = dl[A=a2) =I P(D = dljB=bl)= I
P(D = d2JA = al) =I P(D = d2JA = a2) = I P(D = d2113 = bl) = I

AS-node #4 AS-node #5 AS-node #6
P(D=d0B=b2)-1 P(D=d0C=cl)=I P(D=d0C c2)=I
P(D = dl11B=b2)=I P(D = dl1C=cl) =I P(D = dllC c2)=lI

P(D=d21B=b2)=1 P(D=d21C=cl)=I P(D=d21C c2)=lI

This method would also reduce the number of MUTEX sets required for Sce-

narios 1-4 if applied beforehand. In this example, there are 3 * 3 * 3 = 27 MUTEX

sets for r.v. C. Since I-nodes A=al, A=a2, B=bl, and B=b2 are independent, we

no longer need to include them when calculating the number of MUTEX sets. We

now only deal with (3 - 2) * (3 - 2) * (3 -2) = 1 MUTEX set, the one containing the

existing S-node.

Identifying the AS-nodes for the preprocessing method can be performed in

0(n), where n is the number of S-nodes belonging to a given r.v.. Simply examine the

tail I-nodes of every S-node belonging to the r.v. in question. Any dependent I-node

not found in an S-node's tail is a possible candidate for this method. If the number

of I-nodes in an S-node's tail is less than the number dependent r.v.s., then remove

all of the missing r.v.'s I-nodes as candidates. Once AS-nodes are created using the

remaining I-node candidates, the I-node candidates are ignored when computing the

number of MUTEX sets. BKBs that are both sparse and contain r.v.s. with a large

number of instances would benefit the greatest from this reduction method.

4-21

By reducing the total number of required AS-nodes, the overall size of the BKB

is decreased while providing a net reduction in inferencing run times. In addition,

both methods maintain a tight upper bound as stated in Theorem 4.4.2.

THEOREM 4.4.2. Merging AS-nodes in a BKB maintains the tight upper bound prop-

erty.

Proof.

1. AS-nodes with identical tail probabilities and dependencies.

Merging AS-nodes with identical tail probabilities and dependencies does not

alter the probabilities nor dependencies of any I-node of that r.v.. Since only

a single S-node or AS-node can be selected for any r.v., an AS-node with mul-

tiple head I-nodes will be selected by at most one I-node of that r.v..

2. AS-nodes with probabilities of 1.0.

Let V 1 ,V 2 ,. . . ,Vn be r.v.s. with instances denoted v1 1 ,v1 2 ,. .. ,vl for V,

and similarly for the others. Let V., be dependent on V1, V2,... ,Vn- 1.

If P(V IV1 = v11,V 2, V3,... ,Vn 1) = 1, then we know that when V, = v 1 ,

P(V,) = 1 regardless of what instance V2, V3,... , Vn- 1 assumes. Therefore, V

is independent of V2, V3,..., V -,1 , but only when V1 = v1, thus P(VnV = v1l,

V2,V 3,... ,Vn- 1) P(Vn[V 1 = vil) = 1. This argument generalizes for all in-

stances of V2, V3,. ., Vn -

Since the joint probability of the r.v. is not changed, the tight upper bound property

is maintained. L

4.4,2 Cutting AS-nodes from a BKB. In large BKBs, the AS-node Cre-

ation Process reproduces the combinatorics inherent in a Bayesian Network. As such,

merging AS-nodes alone may not sufficiently decrease the total number of AS-nodes

to bring inferencing run times to a reasonable interval. The number of AS-nodes can

4-22

be significantly reduced by cutting the number of AS-nodes generated by Scenarios

1-4 down to a single AS-node per I-node. This can result in a material decrease in

the number AS-nodes added to a BKB, and therefore potentially reduce inferenc-

ing times[8, 16] to an acceptable range as determined by the knowledge engineer.

This method no longer preserves the tight upper bound property, however, it does

maintain an upper bound via Theorem 4.4.3. In some instances, an upper bound

may suffice, so by trading-off accuracy, we can gain the necessary inferencing speed.

Whether or not to use this reduction is totally subject to the domain in question,

and the needs of the knowledge engineer.

The AS-node cutting method is quite straightforward. AS-nodes which do not

hold a probability of 1 are the only nodes to be considered. For each I-node, eliminate

every AS-node except the one with the largest probability, and also eliminate all

of the AS-node's tail dependencies. This allows the I-node to assume the highest

probability all of its AS-nodes would have allowed regardless of dependencies. This

cutting will maintain the upper bound property, but the loss of the dependencies

will no longer keep it tight.

The reason the AS-nodes with probability 1 were not considered is for a very

obvious reason. For sparse BKBs (BKBs with very few S-nodes), it is conceivable

that nearly every I-node will have an AS-node with probability 1. Any inference over

a BKB that has cut away all of its AS-nodes, leaving only those with probability 1,

would yield a probability at or very near to 1. This upper bound is very loose, to

the extreme, and is of little use to the knowledge engineer, thus it is avoided.

THEOREM 4.4.3. Cutting AS-nodes from a BKB no longer guarantees that the upper

bound is tight.

Proof. Applying Theorem 4.4.1 to a BKB yields P(VlTri) = pi for any instance

V dependent on the set of I-node combinations 7 with probability p, where each

combination 7i corresponds to each pi.

4-23

Let's examine those AS-node probabilities where pi < 1.

P(V17j) = Pi

can be reduced to

P(Vlr) = max (pi),

but this no longer ensures a tight upper bound, however, it does maintain an upper

bound. This can be further reduced to

P(V) = max (pi)

This still maintains an upper bound since V can still only assume max (pi), the

maximum probability the AS-nodes would have provided. L

4.5 Inferencing with AS-nodes

Examining the effects of including AS-nodes in a BKB is a worthwhile venture,

mainly to ascertain the appropriate inference engine to be used. The structure of the

resulting BKB is solely determined by whether of not the original BKB contained

cyclic knowledge.

If a BKB contains acyclic knowledge, the addition of AS-nodes is guaranteed

to leave the BKB acyclic. This is due to the fact that the flow of knowledge is

unidirectional, i.e., all of the BKB's "paths" are travelling in the same direction, and

since AS-nodes include additional "paths" to the BKB based solely on the existing

knowledge, they simply reinforce the unidirectional S-node "paths" that previously

existed. Any of the inference engines in Chapter 3 can be used, provided the BKB in

question has the appropriate structure. Using the inference engine for Cyclic BKBs,

however, would be overkill.

On the other hand, the addition of AS-nodes to a BKB with cyclic knowledge

will render the BKB cyclic. This can be readily seen by examining the three types

of cyclic knowledge:

4-24

1. Type I cyclic knowledge is of the general form:

P(A = a01B b0) = .60 (4.1)

P(B = blIA al) = .25 (4.2)

Since the BKB is at the I-node level, the Type I paths never "intersect", and

thus, never form a "true" cycle.

2. Type II cyclic knowledge is of the general form:

P(A = a01B = bO, C cO) = .60 (4.3)

P(B = bOA = aO, C cl) = .25 (4.4)

Type II embodies the MUTEX cycles described in Constraint 5. A cycle is

prevented from occurring in the solution subgraph due to the existence of

r.v. C, the MUTEX variable, which forces only one path to be selected during

inferencing.

3. Type III cyclic knowledge is of the general form:

P(A = aOB b0)= .60 (4.5)

P(B = bOJA = a0) = .25 (4.6)

These are the cycles prevented by Constraint 5.

Normally, BKBs containing Type I and II cyclic knowledge would use the General

BKB Inference Engine, but BKBs containing Type III cyclic knowledge would have

no choice other than to use the Cyclic BKB Inference Engine.

The AS-node Creation Process can be employed in the same manner on BKBs

containing all three types of cyclic knowledge, however, we will only consider BKBs

with Type I and Type II since they do not already imply a Cyclic BKB. For example,

take Equation 4.1 and Equation 4.2, and assume there is a third I-node for both A

4-25

and B. We would include two additional AS-nodes producing:

P(A = aOB = b0) .60 (4.7)

P(B = b0lA = aO) .75 (4.8)

P(B = b1A = al) .25 (4.9)

P(A = al B = bl) .40 (4.10)

However, these probabilities no longer represent Type I cyclic knowledge. In par-

ticular, Equation 4.7 and Equation 4.8, and Equation 4.9 and Equation 4.10 form

cycles that now violate the now defunct Constraint 5. They are in fact, Type III

cyclic knowledge. Therefore, any BKB containing cyclic knowledge that includes

AS-nodes will become cyclic, and should use the Cyclic BKB Inference Engine to

compute an upper bound.

4.6 The Utility of AS-nodes

AS-nodes are of benefit to the knowledge engineer. With numerous proba-

bilities and instances to track, Knowledge Acquisition is a difficult task, however,

Validating & Verifying the knowledge can be equally as trying. Every tool can help,

and AS-nodes are just such a tool.

The first use of AS-nodes is summarized in Theorem 4.4.1. Too often, the

meaning of the JPD is lost, and the incompleteness of the knowledge stymies the

meaning even further. In a Bayesian Network, we know exactly what the optimal

solution is, and also its probability. In a BKB, we do not have that luxury. Thus,

AS-nodes can provide a measure of quality to a query by simply taking the difference

between a query to a BKB with AS-nodes and the same query to the BKB without

AS-nodes.

AS-nodes also provide a measure of the incompleteness of the BKB. This can

be accomplished by:

4-26

1. Physically counting the number of AS-nodes generated, thus giving an exact

number of the missing probabilities. This is only useful if the count is performed

before any AS-node pruning techniques are employed. OR,

2. Calculating the JPD with no evidence. A high probability would indicate a

large number of AS-nodes with probabilities of or near 1. This method can also

be used to measure incompleteness in various regions of the BKB by simply

pruning the BKB of all nodes except the region of interest.

Lastly, AS-nodes add new directed "paths" to the BKB. In the event that

knowledge engineer does not receive a solution for a given set of evidence, AS-nodes

can help identify the missing knowledge that is necessary for a query to succeed.

He/she can perform this simply by instructing the inference engine to add the AS-

nodes to the BKB, then clamping both the evidence and the expected solution.

The inference engine will return the most probable path between them. Thus, the

knowledge engineer can evaluate this path as a possible solution, or clamp additional

r.v.s. until an expected path is returned. He can then add the necessary knowledge

to make this path the returned solution.

4-27

V. Test Results

5.1 BKB Inference Engines

Both the BKB Polytree and General BKB inference engines were implemented

during the course of this research. The BKB Polytree engine included none of the

performance improvements from Section 3.4. However, the General BKB engine

used Pruning Rules 1 and 2, and only selected I-node variables in the Branch and

Bound tree. In addition, the Simplex method made use of sparse matrices to improve

computation speed.

Thirty consistent Polytree BKBs were constructed consisting of 20, 30, and 50

r.v.s., 10 BKBs each. A r.v. had 2-4 I-nodes, and each I-node had 1-3 S-nodes. The

BKBs utilized a layered structure such that the r.v.s. were evenly divided among

four layers and dependencies only occurred between adjacent layers. The layered

structure was chosen because of the similarity to the medical diagnosis decision trees

used in [13]. The statistics for the 30 BKB test cases are presented in Table 5.1,

where the term nodes refers to the total number of S-nodes and I-nodes in each

BKB.

All 30 test cases were run with no evidence on both the BKB Polytree and

General BKB inference engines. Computations were done on Sun Sparc 20 Worksta-

tions while keeping track of overall CPU usage. The results are plotted in Figures 5.1

and 5.2. As can be seen, the General BKB inference engine clearly outperformed the

BKB Polytree inference engine, even on the 50 r.v. BKB Polytrees. Additional tests

runs with larger BKBs should be performed to more fully quantify the run times of

JMin Nodes Min Nodes [Avg Nodes!
20 r.v.s. 131 145 138
30 r.v.s. 191 230 209
50 r.v.s. j 317 356 337

TABLE 5.1. BKB Polytree statistics.

5-1

the General BKB inference engine. Even though number of nodes was used to com-

pare the two inference engines, an alternate, and perhaps better, measure of BKB

size for the General BKB inference engine is to use the number of linear constraints.

10000 r

0oo 0

1000 -

E0 0F-

100-

10

100 150 200 250 300 350 400
Number of Nodes

FIG. 5.1. BKB Polytree inference engine test results.

1000 r-

100-

.E0
10- 0

o 0

00 0 0

Number of Nodes

FIG. 5.2. General BKB inference engine test results.

5-2

Original With AS-nodes

BKB 1 4.48657e-10 3.398470e-04

BKB 2 1.42536e-09 7.247120e-04

BKB 3 1.03678e-09 9.311250e-04

BKB 4 2.61670e-07 4.672080e-05

BKB 5 1.40797e-09 1.117870e-03

BKB 6 9.38309e-09 4.269590e-04

BKB 7 1.94161e-08 4.780170e-04
BKB 8 4.13341e-08 8.195600e-05

BKB 9 3.42332e-11 2.473160e-04

BKB 10 4.03598e-10 1.621950e-04

TABLE 5.2. AS-node query results.

5.2 AS-nodes as an Organization 6' Validation Inferencing Tool

The 10 BKB Polytree test cases consisting of 20 r.v.s. from Section 5.1 were

used as base cases for this experiment. AS-nodes were added to each of the BKBs

using only merging techniques. One query was issued to each of the 10 BKB base

cases, and an identical query issued to the corresponding BKB with AS-nodes. A

single I-node was submitted as evidence for each query. The results are shown in

Table 5.2. Of the 10 queries, the query to BKB 4 is of the highest quality1, and the

query to BKB 9, the lowest.

1Quality is measured by the difference in probabilities. A high difference implies a low quality,
and vice versa.

5-3

VI. Conclusion

This research presents three inference engines that deliver optimal solutions

by exploiting the structure of three distinct BKB subclasses. The first is the BKB

Polytree engine, which uses a message passing scheme to compute the optimal solu-

tion. Its main advantage is its guaranteed worst case polynomial run time of O(In),

but only on singly-connected BKBs. The final two inference engines utilize the Sim-

plex method with Branch and Bound techniques to calculate the optimal solution.

The General BKB engine can be used on multiply-connected BKBs that conform to

the structure dictated by the Consistency Constraints purposed by Banks[2]. These

constraints allow the inclusion of MUTEX cycles, which this inference engine can

easily handle. It's run times surpassed those of the BKB Polytree engine when a

solution was available, however when a solution is unavailable, the inference engine

runs in exponential time while exhausting the entire solution space. The final in-

ference engine is merely a modification to the General BKB inference engine. By

including additional constraints to the inference engine, we can force a topological

ordering of the I-nodes, and thus eliminate the selection of a cycle in the solution

subgraph. As such, these additional constraints give the inference engine the ability

to reason over virtually any BKB, most notably cyclic BKBs. However, the addition

of these constraints can severely limit the size of the BKB to be inferenced. It also

runs in exponential time when no solution exists.

Several performance improvement techniques for increased inferencing effi-

ciency were discussed, the majority of which focussed on reducing the number of

nodes within the BKB. Pruning rules allow the BKB to be reduced as a prepro-

cessing method before an inference engine is evoked, and also at each node during

the Branch and Bound procedure for the ILP-based inference engines. In addi-

tion, eliminating the need to include S-node variables in the Branch and Bound tree

significantly reduced the ILP search space, thereby decreasing inference run times es-

6-1

pecially in the worse case. Finally, a hybrid method that combines the BKB Polytree

inference engine with the ILP-based inference engines was presented. By ordering

the I-node variables to the Branch and Bound tree, the BKB could be forced to

become a BKB Polytree, eliminating the need to run the Simplex method at that

node. This method produces an integral solution much quicker, whereas the Simplex

method could continue deeper into the tree while arriving at non-integral solutions.

In addition, jumpstart techniques were discussed to provide an initial solution to aid

in constraining the search space by providing an initial bounding condition.

AS-nodes were presented as a inferencing tool to aid the knowledge engineer

in BKB Organization & Validation. Since BKBs inherently deal with incomplete

probabilities, AS-nodes deliver an upper bound, or possibly a tight upper bound,

to the solution of any query, giving the solution a measure of quality when no ab-

solute is available. In addition to measuring quality, AS-nodes can also measure

incompleteness. This can be achieved by counting the number of AS-nodes added

to a BKB, or simply by examining the probability of a query with no evidence. The

more AS-nodes and the higher the probability, the more incomplete the BKB. Lastly,

AS-nodes can propose possible solutions by adding paths to a BKB when no path

exists between evidence and a desired solution. This could be of considerable benefit

when knowledge grows too large during knowledge acquisition, and thus becomes

unmanageable.

Further research by conducting empirical studies on our inference engines and

performance improvement techniques is warranted, both in terms of improving in-

ferencing speed, and also in terms of maximizing BKB size1 . Another area to be

explored is improving the ILP methods beyond our preprocessing and variable re-

duction methods. The improvement techniques presented in this paper focus mainly

on reducing branching in the Branch and Bound procedure. Research into improved

bounding techniques, either in the form of a jumpstart or otherwise, also needs to

'Size refers to both number of edges, r.v.s., I-nodes, and S-nodes.

6-2

be considered, in addition to a possible successor to the Simplex method. Almost no

research has been conducted in these "Operations Research" areas and considerable

gains can be made.

6-3

Bibliography

1. Baenen, Eric P. Generalized Probabilistic Reasoning and Empirical Studies on
Computational Efficiency and Scalability. MS thesis, AFIT/GCE/ENG/94D-
02. Graduate School of Engineering, Air Force Institute of Technology, Wright-
Patterson AFB, Ohio, December 1994.

2. Banks, Darwyn 0. Acquiring Consistent Knowledge for Bayesian Forests. MS
thesis, AFIT/GCE/ENG/94M-01. Graduate School of Engineering, Air Force
Institute of Technology, Wright-Patterson AFB, Ohio, March 1995.

3. Bickmore, Timothy W. SSME HPOTP Post-Test Diagnostic System Enhance-
ment Project. Final Report Contract NAS3-25883, Sacramento, California:
Aerojet Propulsion Division, 2 February 1994.

4. Buchanan, Bruce G. and Edward H. Shortliffe. Rule-Based Expert Systems.
Addison Wesley, 1984.

5. Charniak, Eugene and Solomon E. Shimony. "Probabilistic Semantics for Cost
Based Abduction." Proceedings of the AAAI Conference. 106-111. 1990.

6. Cooper, Gregory F. "The Computational Complexity of Probabilistic Inference
Using Bayesian Belief Networks," Artificial Intelligence, 42:393-405 (1990).

7. Cormen, Thomas H., Charles E. Leiserson and Ronald L Rivest. Introduction
to Algorithms. McGraw-Hill Book Company, 1992.

8. Crowder, Harlan, Ellis L. Johnson and Manfred W. Padberg. "Solving Large-
Scale Zero-One Linear Programming Problems," Operations Research, 31:803-
834 (1983).

9. Duda, Richard 0., J. Gaschnig and P. Hart. "Model Design in the PROSPEC-
TOR Consultant System for Mineral Exploration." Expert Systems in the Micro-
Electronic Age 153-167, Edinburgh University Press, 1979.

10. Feigenbaum, Edward A., "Knowledge Engineering in the 1980's." Dept. of Com-
puter Science, Stanford University, Stanford CA, 1982.

11. Garey, Michael R. and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. New York: W. H. Freeman and
Company, 1979.

12. Geiger, Dan and David Heckerman. "Advances in Probabilistic Reasoning."
Proceedings of the Seventh Conference on Uncertainty in Artificial Intelligence.
118-126. 1991.

13. Healey, Patrice M. and Edwin J. Jacobson. Common Medical Diagnoses: An
Algorithmic Approach. W. B. Saunders Company, 1990.

14. Hillier, Frederick S. and Gerald J. Lieberman. Introduction to Operations Re-
search. Oakland, California: Holden-Dav Inc., 1990.

15. Hobbs, Jerry R., Mark Stickel, Paul Martin and Douglas Edwards. "Interpreta-
tion as Abduction." Proceedings of the 26th Annual Meeting of the Association
for Computational Linguistics. 95-103. 1988.

BIB-1

16. Hoffman, Karla L. and Manfred Padberg. "Improving LP-Representations of
Zero-One Linear Programs for Branch-and-Cut," ORSA Journal on Computing,
3(2):121-134 (1991).

17. Land, A. H. and A G. Doig. "An Automatic Method for Solving Discrete
Programming Problems," Econometrica, 28(3):497-520 (1960).

18. Li, Zhaoyu and Bruce D'Ambrosio. "A Framework for Ordering Composite
Beliefs in Belief Networks," IEEE Transactions on Systems, Man, and Cyber-
netics, 25(2):243-255 (February 1995).

19. McCammon, Richard B. "Prospector II." Proceedings of the Annual AISystems
in Government Conference. 88-92. 1989.

20. Michalewicz, Zbigniew. Genetic Algorithms + Data Structures = Evolution
Programs. Springer-Verlag, 1994.

21. Ng, Keung-Chi and Bruce Abramson. "Uncertainty Management in Expert
Systems," IEEE Expert, 5(2):29-48 (April 1990).

22. Pearl, Judea. Heuristics: Intelligent Search Strategies for Computer Problem
Solving. Menlo Park, California: Addison Wesley, 1984.

23. Pearl, Judea. Probabalistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference. Morgan Kaufmann Publishers, Inc., 1988.

24. Ramoni, Marco and Alberto Riva. "Belief Maintenance in Bayesian Networks."
Proceedings of the Conference on Uncertainty in Artificial Intelligence. 498-505.
1994.

25. Reingold, Edward M., Jurg Nievergelt and Narsingh Deo. Combinatorial Algo-
rithms: Theory and Practice. Prentice-Hall, Inc., 1977.

26. Santos, Jr., Eugene. "A Fully Integrated Probabilistic Framework for Expert
Systems Development." Research proposal from Air Force Institute of Tech-
nology to Air Force Office of Scientific Research Grant #94-0006, 22 October
1993.

27. Santos, Jr., Eugene. "Computing with Bayesian Multi-Networks." Unpublished
Report No. AFIT/ENC/TR93-10. Air Force Institute of Technology, Wright-
Patterson AFB, Ohio, 16 November 1993.

28. Santos, Jr., Eugene. "Efficient Jumpstarting of Hill-Climbing Search for the
Most Probable Explanation." Proceedings of International Congress on Com-
puter Systems and Applied Mathematics Workshop on Constraint Processing.
183-194. 1993.

29. Santos, Jr., Eugene. "A Fast Hill-Climbing Approach Without an Energy Func-
tion for Probabilistic Reasoning." Proceedings of the 5th IEEE International
Conference on Tools with Artificial Intelligence. 1993.

30. Santos, Jr., Eugene. "Modelling Cyclicity and Generalized Cost-Based Ab-
duction Using Linear Constraint Satisfaction," Journal of Experimental and
Theoretical Artificial Intelligence, 5:359-390 (1993).

31. Santos, Jr., Eugene. "A Linear Constraint Satisfaction Approach to Cost-Based
Abduction," Artificial Intelligence, 65(1):1-28 (1994).

BIB-2

32. Santos, Jr., Eugene, Solomon Eyal Shimony and Edward Williams. On a Dis-
tributed Anytime Architecture for Probabilistic Reasoning. Technical Report
AFIT/EN/TR95-02, Department of Electrical and Computer Engineering, Air
Force Institute of Technology, 1995.

33. Shimony, Solomon E. "Finding MAPs for Belief Networks is NP-hard," Artifi-
cial Intelligence, 68:399-410 (1994).

34. Stanat, Donald F. and David F. McAllister. Discrete Mathematics in Computer
Science. Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1977.

35. Sy, Bon K. "Reasoning MPE to Multiply Connected Belief Networks Using
Message Passing." Proceedings of the Tenth National Conference on Artificial
Intelligence. 1992.

36. Sy, Bon K. "A Recurrence Local Computation Approach Towards Ordering
Composite Beliefs," International Journal of Approximate Reasoning, 8(1):17-
50 (1993).

BIB-3

Vita

Captnin Shawn A. Northrop.

He atterded Girard High School, Girard. Pennsylvania ar.d graduated as \"ahvdi-

torian in 1983. He currvnty lolds a dual major Bachelor of Science Degree in

Mai hematics and Computer Systems from Grove City (llege. Grove City, Penasyl-

vania, fronr which he graduated Mna COn Laude or. 13 May 199. Upon receipt

of his commission, Capt Northrop was assigned to Keeler AFB, Mississippi for tech.

nical trairfing as a Communications-Computer Systems Programming awid Aalysis

Officer. On I7 Novetr.lcr 1989, he reported to his firs" duty station at the '2d Spatc

Warning Sctuadron. Buckley ANG Base. Colorado and served as a Communicat;,sm.

Programmer and later as the Chief. (ommunicatior' Computer Systems. He is

a member of Kappa, Mt Epsilon National Mathematics Honorary. Omicrov NTaa

Kappa National Leadership Honorary, and wa. rectgsiiPed as ount of the To? 5 C4

Systews O:Iicers in Ar Space Comm.nd i. 192. He was promoted to ti, curr-r."

rank onml' June 1'93.

VITA,'

AD '33S2t

R DForm Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Pubmic reporting burden for this collection of information is estimated to average I hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information including suggestions for reducing this burden. to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

" AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3 . R EP O R T TY PE AND DATES COVERED

I1 eeme 1995 L l Master's thesis
4. TITLE AND SUBTITLE 5. FUNDING NJMBERS

DERIVING OPTIMAL SOLUTIONS FROM
INCOMPLETE KNOWLEDGE BASES

6. AUTHOR(S)
Shawn A. Northrop

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATIONREPORT NUMBER

Air Force Institute of Technology REPOTTNUMBER

2950 P Street AFIT/GCS/ENG/95D-08

WPAFB OH 45433-6583

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONI TORING

Dr Abraham Waksman AGENCY REPORT NUMBER

AFOSR/NM
110 Duncan Ave
Bolling AFB, DC 20332

ii. SUPPLEMENTARY NOTES

12a. D!ITRiBUTION/ AVAILABILITY STATEMENT il 1) -IFUY'!l CODE

Distribution Unlimited

13. ABSTRACT (Maxim um 200 words)
Many real world domains can not be represented using Bayesian Networks due to the need for complete probability

tables and acyclic knowledge. However, Bayesian Knowledge Bases (BKBs) are a viable method for representing
these incomplete domains, but very little research has been performed on inferencing with them. This paper

presents three inference engines for extracting optimal solutions from three distinct BKB subclasses: singly-

connected, multiply-connected with mutually exclusive cycles, and cyclic. The singly-connected inference engine
has a worst case polynomial run time. Performance improvement techniques for increasing inference engine
speed are discussed, in addition to a new tool for measuring incompleteness and aiding in BKB Validation &
Verification.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Probabilistic reasoning, inference engines, Bayesian Knowledge Bases, Bayesian Net- 71

works, expert systems, incomplete knowledge bases, incompleteness, cyclic knowl- 16. PRICE CODE

edge, cyclicity
17. SECURITY CLASSIFICATION 18, SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave blank-). Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any

Block 2. Report Date. Full publication date availability to the public. Enter additional
including day, month, and year, if available (e.g. 1 limitations or special markings in all capitals (e.g.
Jan 88). Must cite at least the year. NOFORN, REL, ITAR).

Block 3. Type of Report and Dates Covered. DOLD See DoDD 5230.24, "Distribution
State whether report is interim, final, etc. If Stte e o n Technical
applicable, enter inclusive report dates (e.g. 10 Statmentso c
Jun 87- 30Jun88).Documents."

DOE See authorities.
Block 4. Title and Subtitle. A title is taken from NASA - See Handbook NHB 2200.2.
the part of the report that provides the most NTIS - Leave blank.
meaningful and complete information. When a
report is prepared in more than one volume, Block 12b. Distribution Code.
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification
in parentheses. DOE - Enter DOE distribution categories

:ro~n ,Standard Distribution for

Block 5. Funding Numbers. To include contract Unciassified Scientific and Technical

and grant numbers; may include program Reports.

element number(s), project number(s), task e... ,- n. k.
number(s), and work unit nu.nrs). Use the-
following labels:

C - Contract PR Proec, a 'rif (Maximum
G - Grant '. -- r ' t(most
PE - Program "din the repor.Element

Block 6. Authors). Name(s) of ,rcn(s) . . r words or phrases
responsible for writinp - r , r: . r 'in . n tihe report.
the research, or credited with te cthoi 1 !,
report. If editor or compiler, this should follow
the name(s). -fao,. Enter the total

Block7. PerforrminOQrganization ran. d
Address(es). Self-explanatory. ..r_-, Enter appropriate price

Block 8. Performino Orqanization Report codc_. (t IC l n
Number. Enter the unique alphanumeric ;-euort
number(s) assigned by the organization
performing the report. Belocks U7 itv CCassifications. Self-expiarn -co ,: -e U.5. Security Classification in
Block 9. Sponsorinq!MoritorinQ _qercv Names) accori. r(,v- . .ity Regulations (i.e.,

and Address(es). Self-exolanatory. JNCLA$SiH; _D. contains classified
in form:..ti0r, aei, r.) class:ification on the top andBlock 10. Sponsornn/Mo-ito"inoAqr\! boto c

Report Number. (If known)

Block 11. Supplementary Notes. Enter Block 20. Limitation of Abstract. This block must
information not included elsewhere such as: be cornk.h-...d to s:.ign a limitation to the
Prepared in cooperation with...; Trans. of...; To be abstract. Enter eithier UL (unlimited) or SAR (same
published in.... When a report is revised, include as report). An entry in this block is necessary if
a statement whether the new report supersedes the abstract is to be limited. If blank, the abstract
or supplements the older report. is assumed to be unlimited.

*Us.PO: 1993-0.336-043 Standard Form 298 Back (Rev. 2-89)

