19960207012

AFFTC-TR-95-78

Д

С

A LIMITED EVALUATION OF PREDICTING PILOT OPINION OF AIRCRAFT HANDLING QUALITIES IN THE LANDING PHASE OF FLIGHT USING THE CONTROL ANTICIPATION PARAMETER AND BANDWIDTH CRITERION (HAVE CAP)

> DAVID A. KIVIOJA Captain, USAF Project Manager

JANUARY 1996

FINAL REPORT

19960207 012

Approved for public release; distribution is unlimited.

AIR FORCE FLIGHT TEST CENTER EDWARDS AIR FORCE BASE, CALIFORNIA AIR FORCE MATERIEL COMMAND UNITED STATES AIR FORCE

DIR GOLDER LINE MOULES &

This technical report (AFFTC-TR-95-78, A Limited Evaluation of Predicting Pilot Opinion of Aircraft Handling Qualities in the Landing Phase of Flight Using the Control Anticipation Parameter and Bandwidth Criterion [HAVE CAP]) was submitted under Job Order Number M94C1400 by the Commandant, USAF Test Pilot School, Edwards Air Force Base, California 93524-6485.

Foreign announcement and dissemination by the Defense Technical Information Center are not authorized because of technology restrictions of the U.S. Export Control Acts as implemented by AFI 16-201.

Prepared by:

DAVID A. KIVIOJA Captain, USAF Project Manager

DAVID N. LARSON Captain, USAF Project Pilot

MA

CHRISTOPHER C. MCCANN Captain, USAF Project Pilot

JAMES C. MCEACHEN Captain, USXF Project Engineer

JUSTIN D. PAINES

Flight Lieutenant, RAF Project Pilot

MARK R. SCHAIBLE Captain, USAF Project Pilot

This report has been reviewed and is approved for publication: 10 January 1996

JAMÉS H. DOOLITTLE III Colonel, USAF

Commandant

ROGER C. CRANE Chief Engineer, 412th Test Wing

REPORT D	OCUMENTATION P	AGE	Form Approved OMB No. 0704-0188
Public reporting burden for the collection of inform and maintaining the data needed, and completin information, including suggestions for reducing th 1204 Artimeton VA 22202-4302, and to the Office	nation is estimated to average 1 hour per respong and reviewing the collection of information. is burden, to Washington Headquarters Service of Management and Budget, Paperwork Reduc	nse, including the time for reviewing Send comments regarding this bu is, Directorate for information Operal tion Project (0704-0188), Washingtor	instructions, searching existing data sources, gathering rden estimate or any other aspect of this collection of ions and Reports, 1215 Jefferson Davis Highway, Suite n, DC 20503.
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND DA	ATES COVERED
A TITLE AND SUBTITLE	January 1996	Final, July	5. FUNDING NUMBERS
A Limited Evaluation of Predicti Landing Phase of Flight Using Criteria (HAVE CAP)	ing Pilot Opinion of Aircraft Ha the Control Anticipation Para	ndling Qualities in the meter and Bandwidth	PEC: 65807F JON: M94C1400
6. AUTHOR(S) Kivioja, David A., Captain, USA McCann, Christopher C., Captain Schaible, Mark R., Captain, USA	F McEachen, James C n, USAF Larson, David N., C F Paines, Justin D., Fh	., Captain, USAF aptain, USAF t Lt, RAF	
7. PERFORMING ORGANIZATION NAME	E(S) AND ADDRESS(ES		8. PERFORMING ORGANIZATION REPORT NUMBER
USAF TPS/EDA 220 S Wolfe Drive Edwards AFB CA 93524-6020			AFFTC-TR-95-78
9. SPONSORING / MONITORING AGENO	CY NAME(S) AND ADDRESS(ES)		10. SPONSORING / MONITORING
WL/FIGC			AGENCY REPORT NUMBER
Wright-Patterson Arb On			N/A
12a. DISTRIBUTION / AVAILABILITY ST. Approved for public release; dist	ATEMENT ribution is unlimited.	<u></u>	12b. DISTRIBUTION CODE
12 A DOWD A CTE & (minute 200 seconds)			
This technical report present the landing phase of flight using test was to evaluate the validity MIL-STD-1797A, <i>Flying Quali</i> 1797A along with a new dropb Simulator Test Aircraft (VISTA)	ts the results of a limited evaluat the control anticipation parame of predicting pilot opinion using ties of Piloted Aircraft. The b pack criterion. Actual pilot op NF-16D in the approach and la	tion of predicting pilot o ter (CAP) and bandwidth the CAP and bandwidth bandwidth criterion used inion was obtained by f nding phase of flight.	pinion of aircraft handling qualities in a criteria. The objective of this flight- a criteria. The CAP was defined as in the current definition in MIL-STD- flying the Variable-Stability In-Flight
Testing was requested by the authority of the Commandant, U response requirements in MIL-S Wright-Patterson AFB, Ohio (W	he Flight Dynamics Laboratory JSAF Test Pilot School. The TD-1797B. This flight-test con L/FIGC), in predicting pilot opin	, Wright-Patterson AFB results of this test will b nplemented research don nion during the landing p	, Ohio, and was conducted under the be used to revise the short-term pitch he by the Flight Dynamics Laboratory, shase of flight.
14. SUBJECT TERMS			15. NUMBER OF PAGES
VISTA F-16D aircraft contro landing tasks handl	bl anticipation parameter dr ing qualities va	opback bandwid riable stability	th 258 16. PRICE CODE
	18 SECURITY CLASSIFICATION	19 SECURITY CLASSIFICA	TION 20. LIMITATION OF ABSTRACT
OF REPORT UNCLASSIFIED	OF THIS PAGE UNCLASSIFIED	OF ABSTRACT UNCLASSIFIED	SAR

NSN 7540-01-280-5500

.

 $\tau \rightarrow$

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

PREFACE

This technical report presents the results of a limited evaluation of predicting pilot opinion of aircraft handling qualities in the landing phase of flight using the control anticipation parameter (CAP) and bandwidth criteria.

Testing was requested by the Flight Dynamics Laboratory, Wright-Patterson AFB, Ohio, and was conducted under the authority of the Commandant, USAF Test Pilot School. The results of this test will be used to revise the short-term pitch response requirements in MIL-STD-1797B. This flight test complimented research done by the Flight Dynamics Laboratory, Wright-Patterson AFB, Ohio (WL/FIGC), in predicting pilot opinion during the landing phase of flight.

The HAVE CAP test team deeply appreciated the assistance and guidance of several very talented people. This flight test would not have been possible without the help of Dave Leggett from the Flight Dynamics Laboratory, Roger Hoh and David Mitchell from Hoh Aeronautics, Inc., Lou Knotts, Eric Ohmitt, Tim Bidlack, and Jeff Peer from CALSPAN, and numerous other support personnel from Edwards Air Force Base. This page intentionally left blank.

.

EXECUTIVE SUMMARY

This technical report presents the results of a limited evaluation of predicting pilot opinion in the landing phase of flight using the control anticipation parameter (CAP) and bandwidth criteria. The overall test objective was to evaluate discrepancies between the CAP and bandwidth criteria, and to evaluate the advantage of including a dropback with the bandwidth criterion. The overall test objective was satisified but some specific test points were not accomplished.

Tests were conducted by members of the USAF Test Pilot School Class 95A from 15 to 22 September 1995 at Edwards AFB, California. Nine practice sorties and two test support practice sorties were flown in the F-15, F-16, C-18, and T-38 aircraft. The actual test required 8 sorties for 10.5 hours of flight time. Testing was requested by the Flight Dynamics Laboratory, Wright-Patterson AFB, Ohio (WL/FIGC), and complemented their research in predicting pilot opinion. Testing was conducted under authority of the Commandant, USAF Test Pilot School, under AFFTC Job Order Number M94C1400.

The HAVE CAP test aircraft was the Variable-Stability In-Flight Simulator Test Aircraft (VISTA) NF-16D, owned by the Flight Dynamics Directorate of Wright Laboratory and operated by the Flight Research Department of CALSPAN Advanced Technology Center. This test used the VISTA variable stability system (VSS) to simulate aircraft predicted to have Level 1, 2, and 3 handling qualities.

Flight testing consisted of an offset landing task performed in the VISTA aircraft. Aircraft handling qualities were evaluated using 10 different VSS configurations. Cooper-Harper ratings were assigned by the project test pilots after each evaluation. Specialized runway markings and dedicated ground support were used to determine the level of pilot performance achieved during each rated landing event. Cooper-Harper pilot ratings were correlated and compared to each flight control configuration's CAP, bandwidth, and bandwidth with dropback criteria. The level of correlation for each handling qualities predictor was then analyzed with respect to the flight control configurations short period dynamic characteristics.

Overall, both the CAP and bandwidth criteria correlated with actual pilot opinion approximately 50 percent of the time. Incorporating the current definition of dropback to the bandwidth criterion correlation approximately decreased the to 30 percent. However, flight test results indicated excessive dropback and influenced pilot opinion only at relatively high values of CAP or short period natural frequencies. Applying the dropback definition to bandwidth in those regions where pilot opinion was influenced by excessive dropback correlation approximately increased the to 70 percent.

This page intentionally left blank.

ò

.

TABLE OF CONTENTS

Page No.

PREFACE	iii
EXECUTIVE SUMMARY	v
LIST OF ILLUSTRATIONS	ix
LIST OF TABLES	xvi
INTRODUCTION	1
General	1
Historical Background	1
Test Item Description	1
Concerl Aircroft Description	1
General Alicial Description	2
lest Item Instrumentation.	2
Variable Stability System	2
Test Objectives	2
Limitations	3
TEST AND EVALUATION	7
General	7
Methods and Conditions	7
Test Procedures	8
Erequency Surgens	ŝ
Dital Star Insurts	0
	0
Offset Landing Task	ð
Landing Zone	9
Landing Task Evaluation	9
Results and Analysis	11
VSS Configurations	11
Aircraft Evaluations	11
High Frequency Trends (VSS Configurations A C2 and D)	20
Mid Frequency Trends (VSS Configurations F. G. H. and I)	22
Low Frequency Trends (VSS Configurations L, G, H, and D)	22
Low Frequency Trends (VSS Configurations J, K, and F)	25
CONCLUSIONS	27
REFERENCES	29
BIBLIOGRAPHY	31
APPENDIX A - TEST POINT MATRIX	33
APPENDIX B - PILOT COMMENT DATABASE SUMMARIES	39
ALLENDIA C - FILOT COMMENT CARD, COULER-MARTER RATING SCALE, AND	62
PILUI-INDUCED USCILLATION KATING SCALE	60
AFFENDIA D - CAP, BANDWIDTH, AND DKOPBACK DEFINITIONS AND	~~
MAPPINGS	69

TABLE OF CONTENTS (Concluded)

	Page No.
APPENDIX E - FLIGHT TEST BUILDUP PROCEDURES	85
APPENDIX F - FLIGHT TEST DECISION TREE	89
APPENDIX G - RECORDED PARAMETERS	93
APPENDIX H - VISTA MODEL DEFINITIONS	97
APPENDIX I - FLIGHT TEST DATA PLOTS	103
APPENDIX J - SUPPLEMENTAL FLIGHT TEST DATA PLOTS	109
LIST OF ABBREVIATIONS AND SYMBOLS	233
DISTRIBUTION LIST	235

LIST OF ILLUSTRATIONS

Figure	Title	<u>Page No</u> .
1	Test Points Initially Submitted to CALSPAN Prior to Flight Test $(1/T_{\Theta_2} = 0.45, n/\alpha = 4.01)$. 4
2	Actual CAP Parameters After Flight Test $(1/T_{\Theta_2} = 0.45, n/\alpha = 4.01)$. 5
3	Lateral Offset Task Setup	. 10
4	Landing Zone Markings and Dimensions	. 10
5	Cooper-Harper Ratings	. 12
6	Pilot-Induced Oscillations Ratings	. 12
	APPENDIX A	
A1	Test Results Plotted Using the CAP Criterion From MIL-STD-1797A $(1/T_{\Theta_2} = 0.45, n/\alpha = 4.01)$. 35
A2	Test Results Using Bandwidth Criterion From MIL-STD-1797A and Proposed Bandwidth With Dropback Criterion	. 36
A3	VSS Configuration Dropback Locations	. 37
	APPENDIX C	
C1	Pilot Comment Card	. 65
C2	Cooper-Harper Rating Scale	. 66
C3	Pilot-Induced Oscillation Rating Scale	. 67
	APPENDIX D	
D1	Landing Phase CAP Criterion	. 73
D2	Relationship of Phase Margin to Closed-Loop Damping for $G(s) = Ke^{-ts}/s$. 75
D3	Definition of ω_{BW} from the Open-Loop Frequency Response	75
D4	Landing Phase Bandwidth Criterion	77
D5	Dropback Criterion Definition	77
D6	Area Map of CAP	79

Figure	Title	<u>Page No</u> .	
APPENDIX D (Concluded)			
D7	CAP Level 1 Mapped onto the Bandwidth Domain	79	
D8	CAP Level 1 Mapped onto the Bandwidth Domain With Dropback	80	
D9	Potential Areas of Discontinuity in CAP	80	
D10	CAP Level 2 Mapped onto the Bandwidth Domain	81	
D11	CAP Level 2 Mapped onto the Bandwidth Domain	81	
D12	CAP Level 2 Mapped onto the Bandwidth Domain—Jump Area	82	
D13	CAP Level 2 Mapped onto the Bandwidth Domain With Dropback	82	
	APPENDIX F		
F 1	Flight Test Decision Tree	91	
	APPENDIX H		
H1	VISTA NF-16D Component Layout	101	
	APPENDIX I		
I1	Longitudinal Stick Deflection Time Trace During PIO, Test Point 6.4	105	
12	Stabilator Position Time Trace During PIO, Test Point 6.4	106	
I3	Stabilator Rate Time Trace Prior to PIO, Test Point 6.4	107	
I 4	Stabilator Rate Time Trace with Rate Limiting During PIO, Test Point 6.4	. 108	
	APPENDIX J		
J1	VSS Configuration A Magnitude Bode Plot	. 111	
J 2	VSS Configuration A Phase Bode Plot	. 112	
J3	VSS Configuration A Bode Squared Coherency Plot	. 113	
J4	VSS Configuration A Pitch Rate Dropback	. 114	
J5	VSS Configuration A Pitch Angle Dropback	. 115	
J6	VSS Configuration A Pitch Input Dropback	. 116	

<u>Figure</u>

APPENDIX J (Continued)

J7	VSS Configuration A Time History of Theta and Longitudinal Stick Deflection	117
J8	VSS Configuration A Time History of Stabilator Movement	118
J 9	VSS Configuration A Time History of Stabilator Rate (Plot 1)	119
J10	VSS Configuration A Time History of Stabilator Rate (Plot 2)	120
J11	VSS Configuration A Time History of Pitch Rate	121
J12	VSS Configuration A Time History of Altitude and Descent Rate	122
J13	VSS Configuration A Time History of Calibrated Airspeed	123
J14	VSS Configuration C2 Magnitude Bode Plot	124
J15	VSS Configuration C2 Phase Bode Plot	125
J16	VSS Configuration C2 Bode Squared Coherency Plot	126
J17	VSS Configuration C2 Pitch Rate Dropback	127
J18	VSS Configuration C2 Pitch Angle Dropback	128
J19	VSS Configuration C2 Pitch Input Dropback	129
J20	VSS Configuration C2 Time History of Theta and Longitudinal Stick Deflection	130
J 21	VSS Configuration C2 Time History of Stabilator Movement	131
J22	VSS Configuration C2 Time History of Stabilator Rate	132
J23	VSS Configuration C2 Time History of Pitch Rate	133
J24	VSS Configuration C2 Time History of Altitude and Descent Rate	134
J25	VSS Configuration C2 Time History of Calibrated Airspeed	135
J26	VSS Configuration D Magnitude Bode Plot	136
J27	VSS Configuration D Phase Bode Plot	137
J28	VSS Configuration D Bode Squared Coherency Plot	138
J29	VSS Configuration D Pitch Rate Dropback	139

Figure	Title	Page No.		
APPENDIX J (Continued)				
J30	VSS Configuration D Pitch Angle Dropback	140		
J 31	VSS Configuration D Pitch Input Dropback	141		
J32	VSS Configuration D Time History of Theta and Longitudinal Stick Deflection	142		
J33	VSS Configuration D Time History of Stabilator Movement	143		
J34	VSS Configuration D Time History of Stabilator Rate	144		
J35	VSS Configuration D Time History of Pitch Rate	145		
J36	VSS Configuration D Time History of Altitude and Descent Rate	146		
J37	VSS Configuration D Time History of Calibrated Airspeed	147		
J38	VSS Configuration E Magnitude Bode Plot	148		
J39	VSS Configuration E Phase Bode Plot	149		
J40	VSS Configuration E Bode Squared Coherency Plot	150		
J41	VSS Configuration E Pitch Rate Dropback	151		
J42	VSS Configuration E Pitch Angle Dropback	152		
J43	VSS Configuration E Pitch Input Dropback	153		
J44	VSS Configuration E Time History of Theta and Longitudinal Stick Deflection	154		
J45	VSS Configuration E Time History of Stabilator Movement	155		
J 46	VSS Configuration E Time History of Stabilator Rate	156		
J47	VSS Configuration E Time History of Pitch Rate	157		
J48	VSS Configuration E Time History of Altitude and Descent Rate	158		
J49	VSS Configuration E Time History of Calibrated Airspeed	159		
J50	VSS Configuration G Magnitude Bode Plot	160		
J51	VSS Configuration G Phase Bode Plot	161		
J52	VSS Configuration G Bode Squared Coherency Plot			

~

Figure

Page No.

APPENDIX J (Continued)

J53	VSS Configuration G Pitch Rate Dropback	163
J54	VSS Configuration G Pitch Angle Dropback	164
J55	VSS Configuration G Pitch Input Dropback	165
J56	VSS Configuration G Time History of Theta and Longitudinal Stick Deflection	166
J57	VSS Configuration G Time History of Stabilator Movement	167
J58	VSS Configuration G Time History of Stabilator Rate	168
J59	VSS Configuration G Time History of Pitch Rate	169
J60	VSS Configuration G Time History of Altitude and Descent Rate	170
J61	VSS Configuration G Time History of Calibrated Airspeed	171
J62	VSS Configuration H Magnitude Bode Plot	172
J63	VSS Configuration H Phase Bode Plot	173
J64	VSS Configuration H Bode Squared Coherency Plot	174
J65	VSS Configuration H Pitch Rate Dropback	175
J66	VSS Configuration H Pitch Angle Dropback	176
J67	VSS Configuration H Pitch Input Dropback	177
J68	VSS Configuration H Time History of Theta and Longitudinal Stick Deflection	178
J69	VSS Configuration H Time History of Stabilator Movement	179
J 70	VSS Configuration H Time History of Stabilator Rate	180
J71	VSS Configuration H Time History of Pitch Rate	181
J72	VSS Configuration H Time History of Altitude and Descent Rate	182
J7 3	VSS Configuration H Time History of Calibrated Airspeed	183
J74	VSS Configuration I Magnitude Bode Plot	184
J75	VSS Configuration I Phase Bode Plot	185

<u>Figure</u>	Title	<u>Page No</u> .		
APPENDIX J (Continued)				
J76	VSS Configuration I Bode Squared Coherency Plot	186		
J77	VSS Configuration I Pitch Rate Dropback	187		
J78	VSS Configuration I Pitch Angle Dropback	188		
J79	VSS Configuration I Pitch Input Dropback	189		
J80	VSS Configuration I Time History of Theta and Longitudinal Stick Deflection	190		
J81	VSS Configuration I Time History of Stabilator Movement	191		
J82	VSS Configuration I Time History of Stabilator Rate	192		
J83	VSS Configuration I Time History of Pitch Rate	193		
J 84	VSS Configuration I Time History of Altitude and Descent Rate	194		
J85	VSS Configuration I Time History of Calibrated Airspeed	195		
J86	VSS Configuration J Magnitude Bode Plot	196		
J87	VSS Configuration J Phase Bode Plot	197		
J88	VSS Configuration J Bode Squared Coherency Plot	198		
J89	VSS Configuration J Pitch Rate Dropback	199		
J 90	VSS Configuration J Pitch Angle Dropback	200		
J 91	VSS Configuration J Pitch Input Dropback	201		
J92	VSS Configuration J Time History of Theta and Longitudinal Stick Deflection	202		
J93	VSS Configuration J Time History of Stabilator Movement	203		
J 94	VSS Configuration J Time History of Stabilator Rate	204		
J95	VSS Configuration J Time History of Pitch Rate	205		
J96	VSS Configuration J Time History of Altitude and Descent Rate	206		
J97	VSS Configuration J Time History of Calibrated Airspeed	207		
J98	VSS Configuration K Magnitude Bode Plot	208		

Figure

Page No.

APPENDIX J (Concluded)

J99	VSS Configuration K Phase Bode Plot	209
J100	VSS Configuration K Bode Squared Coherency Plot	210
J101	VSS Configuration K Pitch Rate Dropback	211
J102	VSS Configuration K Pitch Angle Dropback	212
J103	VSS Configuration K Pitch Input Dropback	213
J104	VSS Configuration K Time History of Theta and Longitudinal Stick Deflection	214
J105	VSS Configuration K Time History of Stabilator Movement	215
J106	VSS Configuration K Time History of Stabilator Rate	216
J107	VSS Configuration K Time History of Pitch Rate	217
J108	VSS Configuration K Time History of Altitude and Descent Rate	218
J109	VSS Configuration K Time History of Calibrated Airspeed	219
J110	VSS Configuration P Magnitude Bode Plot	220
J111	VSS Configuration P Phase Bode Plot	221
J112	VSS Configuration P Bode Squared Coherency Plot	222
J113	VSS Configuration P Pitch Rate Dropback	223
J114	VSS Configuration P Pitch Angle Dropback	224
J115	VSS Configuration P Pitch Input Dropback	225
J116	VSS Configuration P Time History of Theta and Longitudinal Stick Deflection	226
J117	VSS Configuration P Time History of Stabilator Movement	227
J118	VSS Configuration P Time History of Stabilator Rate	228
J119	VSS Configuration P Time History of Pitch Rate	229
J120	VSS Configuration P Time History of Altitude and Descent Rate	230
J121	VSS Configuration P Time History of Calibrated Airspeed	231

LIST OF TABLES

<u>Table</u>	Title	<u>Page No</u>
1	Requirements Traceability Matrix	3
2	Evaluation Pilots' Flying Experience	7
3	Variable Stability System Configuration A - Summary of Results	13
4	Variable Stability System Configuration C2 - Summary of Results	14
5	Variable Stability System Configuration D - Summary of Results	15
6	Variable Stability System Configuration E - Summary of Results	16
7	Variable Stability System Configuration G - Summary of Results	16
8	Variable Stability System Configuration H - Summary of Results	17
9	Variable Stability System Configuration I - Summary of Results	18
10	Variable Stability System Configuration J - Summary of Results	18
11	Variable Stability System Configuration K - Summary of Results	19
12	Variable Stability System Configuration P - Summary of Results	20
13	High Frequency Variable Stability System (VSS) Configuration Handling Qualities Levels	21
14	Mid-Frequency Variable Stability System (VSS) Configuration Handling Qualities Levels	22
15	Low Frequency Variable Stability System Configuration Handling Qualities Levels	23
16	Variable Stability System (VSS) Configuration Handling Qualities Levels Summar	y 24
	APPENDIX A	
A1	Summary of Flight Test Results for Each VSS Configuration	35
A2	Tabular Results Plotted Using the CAP Criterion From MIL-STD-1797A $(1/T_{\Theta_2} = 0.45, n/\alpha = 4.01)$	36
A3	Tabular Results Using Bandwidth Criterion From MIL-STD-1797A and Proposed Bandwidth With Dropback Criterion	37

LIST OF TABLES (Concluded)

<u>Table</u>

d.

<u>Title</u>

Page No.

APPENDIX D

D1	CAP Requirements on ω_{sp} and n/α (Landing Task)	73
D2	CAP Requirement on Time Delay (Landing Task)	74
D3	Nominal Values of $1/T_{\Theta_2}$ and τ_Θ for VISTA	78

APPENDIX G

G1	Data Acquisition System Parameters Recorded During Testing	95
G2	Flight Test Data Parameters Derived From Postflight Analysis	95

APPENDIX H

H1	Ground Based Simulator Load Factor	
	Per Angle of Attack at Different Fuel Weights	100

This page intentionally left blank.

~

....

INTRODUCTION

GENERAL

The MIL-STD-1797A, *Flying Qualities of Piloted Aircraft*, used the control anticipation parameter (CAP) and the bandwidth criterion to predict pilot opinion of aircraft handling qualities about the longitudinal axis. For the next revision of MIL-STD-1797, a new criterion called dropback was proposed for inclusion with the bandwidth criterion. Comparisons of current and proposed criteria by the Flight Dynamics Laboratory and the Air Force Institute of Technology, Wright-Patterson AFB, Ohio, showed the different criteria did not predict the same level of handling qualities in the landing phase of flight.

Project HAVE CAP's goal was to evaluate the discrepancies between CAP and the bandwidth criteria in the landing phase of flight as well as the advantage of including the dropback criterion with bandwidth. Flight tests using the Flight Dynamics Laboratory's Variable-Stability In-Flight Simulator Test Aircraft (VISTA) were conducted by members of USAF Test Pilot School Class 95A from 15 to 22 September 1995 at Edwards AFB. Eleven practice and test support sorties, requiring 12.0 flight hours, and eight test sorties, requiring 10.5 hours of flight time, were performed. Testing was requested by the Flight Dynamics Laboratory (WL/FIGC) and complemented their research in predicting pilot opinion. Testing was conducted under authority of the Commandant, USAF Test Pilot School, under Air Force Flight Test Center (AFFTC) Job Order Number (JON) M94C1400.

HISTORICAL BACKGROUND

New handling qualities criteria have been developed to predict pilot opinion of highly augmented aircraft. Many of the new handling qualities metrics are applicable to aircraft in the landing phase of flight (Bibliography 1 through 21). The handling qualities parameters compared in this flight test were the CAP and the bandwidth criteria, as defined in MIL-STD-1797A, and supplemented by the addition of a recommended dropback criterion (References 1 through 4). As applied in this flight test, these three handling qualities criteria predicted pilot opinion through the aircraft's short term pitch response. The MIL-STD-1797A states "the importance of the short-term pitch response reflects the high attention it has been given and the great need for further study to derive a clear-cut, generally applicable set of requirements" (Reference 5).

In many instances these criteria did not predict the same pilot opinion level. The MIL-STD-1797A defined each level as:

Level 1 Satisfactory: Flying qualities clearly adequate for the mission flight phase. Desired performance is achievable with no more than minimal pilot compensation.

Level 2 Acceptable: Flying qualities adequate to accomplish the mission flight phase, but some increase in pilot workload or degradation in mission effectiveness, or both, exists.

Level 3 Controllable: Flying qualities such that the aircraft can be controlled in the context of the mission flight phase, even though pilot workload is excessive or mission effectiveness is inadequate, or both (Reference 5).

The Air Force Institute of Technology in conjunction with the Flight Dynamics Laboratory, at Wright-Patterson Air Force Base, Ohio, has conducted research to evaluate differences among these handling qualities criteria outlined in MIL-STD-1797A. Results of this research will be used to derive a more clearcut, generally acceptable, comprehensive flying qualities criteria to predict pilot opinion in the next revision of MIL-STD-1797. Appendix D contains an indepth discussion of CAP, bandwidth, dropback and the mappings between the different domains.

TEST ITEM DESCRIPTION

General Aircraft Description:

The HAVE CAP testbed was the NF-16D VISTA, USAF S/N 86-0048. It was a USAF test aircraft owned by the Flight Dynamics Directorate of Wright Laboratory, Wright-Patterson AFB, Ohio and operated by the Flight Research Department of CALSPAN Advanced Technology Center. The aircraft was a highly modified Block 30 Peace Marble II variant of a two-seat F-16. Pilot in

command controls were moved from the front cockpit to the rear. The front cockpit had both a center and side stick with variable-feel. The front cockpit center control stick and rudder pedals were used by the evaluation pilot to provide inputs to a programmable flight control and variable stability system (VSS). The aircraft's basic empty weight (aircraft weight excluding usable fuel) was 21,750 pounds.

The aircraft had a dorsal fairing, heavyweight landing gear, an F110-GE-100 engine, and Block 40 avionics. Modifications to the aircraft included the additions of a production digital flight control system (DFLCS), instrumentation data acquisition system, and VSS interface. Items removed from the production aircraft included the 20 millimeter gun, ammunition drum, radar warning system, chaff flare dispenser, nuclear weapon capability, advanced medium-range air-to-air missile (AMRAAM) capability, and expanded envelope gun sight. The layout of major components added to the VISTA are shown in Figure H1.

Test Item Instrumentation:

The VISTA was equipped with an Ampex AR700 airborne digital data recorder. Two hundred channels of data were recorded at 100 samples per second with 12 bit resolution. An additional 60 analog VSS parameters were also recorded. The VISTA was equipped with two videocassette (VHS) video recorders, capable of recording the head-up display (HUD) and multifunction display (MFD).

Variable Stability System:

The VISTA's flight control system simulated a classical second order response for the different VSS configurations. To achieve the desired VSS configurations, VISTA used angle of attack (AOA), pitch angle, pitch rate, and velocity feedback loops. The angle of attack and pitch rate feedback loops were used to achieve the desired short period dynamic characteristics. The pitch angle and velocity feedback loops were used to decrease the influence of the phugoid mode. To simulate each configuration, the VSS provided computer-controlled commands to the horizontal tails, rudder, flaperons, and engine.

The aircraft's phugoid, lateral-directional and center control stick dynamics were held constant

throughout flight testing. For a detailed description of the VISTAs aircraft, control stick and actuator dynamic models refer to Appendix H.

In the event of a problem with the VSS flight controls or its handling qualities, the rear seat safety pilot was able to disengage the front seat stick and throttle. In addition to manual disengages by either pilot, the VISTA control system contained over 100 automatic trips. These safety monitors protected the aircraft from excessive loads, sensor or computer failures, and structural excitation.

TEST OBJECTIVES

The overall test objective was to evaluate discrepancies between the CAP and bandwidth criteria, and to evaluate the advantage of including a dropback with the bandwidth criterion in predicting pilot opinion in the landing phase of flight for a generic Class IV aircraft, or one which was highly maneuverable. Actual pilot opinion was correlated to predicted pilot opinion in areas of agreement and disagreement between the various criteria. Refer to Appendix D for a detailed discussion of CAP, bandwidth, dropback, and the mappings between the different domains.

To obtain pilot opinion regarding the longitudinal handling qualities of aircraft throughout the CAP and bandwidth domains, VISTAs short period natural frequency and damping ratio were varied. Each specific short period natural frequency and damping ratio combination was referred to as a VSS configuration and are described in Appendix A. Each VSS configuration was evaluated using a high-gain lateral offset landing task as described in the Test Methods section of this report. Specific objectives of the flight test were:

1. Areas of Agreement and Disagreement: Obtain and evaluate qualitative and quantitative pilot opinion and Cooper-Harper pilot ratings in those areas where the criteria agreed and disagreed.

2. Dropback Line: Obtain and evaluate qualitative and quantitative pilot opinion and Cooper-Harper pilot ratings about the dropback line. The dropback line was that line where, if crossed going from acceptable dropback to excessive dropback, one level must be added to the bandwidth criterion while the CAP level remained the same. In other words, if an aircraft predicted to be Level 1 by the bandwidth criterion exhibited excessive dropback, it would be predicted Level 2 by bandwidth using dropback. For a detailed description of the dropback criterion and the dropback line see Appendix D.

3. Minimum Short Period Natural Frequency (ω_{sp}) Region: Obtain and evaluate qualitative and quantitative pilot opinion and Cooper-Harper pilot ratings in the minimum ω_{sp} region. The minimum ω_{sp} region was the minimum ω_{sp} for the respective CAP Level 1 or 2 for Category C phases of flight as defined in MIL-STD-1797A.

4. Areas Across the Jump Line: Obtain and evaluate qualitative and quantitative pilot opinion and Cooper-Harper pilot ratings across the jump line. The jump line was a line in the CAP domain where, if ω_{sp} was increased or the short period damping ratio (ζ_{sp}) was decreased, the bandwidth would instantaneously go from a high frequency to a low frequency. Appendix D contains a description of the jump line.

5. Pilot Opinion Trends: Evaluate pilot opinion trends for those points that satisfy objectives 1 through 4.

6. Supporting Data: Collect and archive supporting data for future handling qualities analyses for the Flight Dynamics Laboratory and the Air Force Institute of Technology.

Evaluation Criteria: Pilot opinion was quantified using the Cooper-Harper and pilot induced oscillation (PIO) rating scales (Appendix C) based on the desired and adequate criteria set forth in the Test Methods section of this report. Qualitative pilot opinion was gathered after each lateral offset maneuver. Included in these comments were weather effects such as winds and turbulence, with turbulence rated using the standard light, moderate and severe descriptors. Comments also included firmness of touchdown using soft, medium, and firm descriptors. All of the specific objectives in this flight test used the same evaluation criteria. Table 1 summarizes the specific objectives that each test point satisfied.

LIMITATIONS

Development and flight test of the VISTA aircraft were completed in January 1995. HAVE CAP was the first flight test project to utilize VISTA. The nature of this project required CALSPAN to simulate specific short period dynamic responses using VISTA. While the VISTA aircraft was found to be an excellent evaluation tool for use in examining configuration characteristics, immaturity of the system was noted in its capability to precisely match a requested VSS configuration with regard to short period dynamics. As a result, test objectives 2 and 4 could only be partially addressed and test objective 3 could not be met.

Prior to flight testing, 18 points were submitted to CALSPAN to determine which configurations could be adequately simulated or landed. Figure 1 portrays the short period frequency and damping parameters of the 18 points initially submitted to CALSPAN for fulfillment of the test plan. Six of the original points (specifically points B, F, L, M, N, O) were removed from the list due to these configurations either tripping off in-flight or providing an inadequate match to the requested configuration based on a preliminary analysis. Two of the points (C1 and C3) were removed because

Objective	Test Point			
1. Areas of Agreement and Disagreement	A, C2, D, E, G, H, I, J, K and P			
2. Dropback Line	E, G, H, I, J, K and P			
3. Minimum ω_{sp} Region	Р			
4. Areas Across the Jump Line	A and D			
5. Pilot Opinion Trends	A, C2, D, E, G, H, I, J, K and P			
6. Supporting Data	A, C2, D, E, G, H, I, J, K and P			

 Table 1

 REQUIREMENTS TRACEABILITY MATRIX

Note: ω_{sp} - short period natural frequency

Short Period Damping, ζ_{sp}

their location was essentially encompassed by test point C2. Preliminary analysis of the remaining 10 points (A, C2, D, E, G, H, I, J, K, P) suggested they were within regions of interest for purposes of satisfying the objectives and were considered adequate. After the flight test, more extensive analysis was completed and showed these 10 points exhibited both a decrease in the damping ratio and an increase in CAP. In essence, when viewed in the CAP domain as shown in Figure 2, all of the test points actually flown during the landing task evaluation exhibited a shift in location upward and to the left. These ensemble were obtained by parameters averaging multiple frequency sweeps in order to enhance the squared coherence of each VSS configuration's respective bode diagrams (see Appendix J). A lower order equivalent systems (LOES) match was then generated by holding high frequency zero $(1/T_{\Theta_2})$ constant.

With regard to the dropback line referenced in test objective 2, all VSS configurations exhibited excessive dropback, thus trends on either side of the line could not be determined. However, an evaluation of pilot opinion trends could be made with regard to VSS configurations which progressively approached the dropback line from the excessive side. Because an evaluation of pilot opinion trends could not be made for acceptable dropback points, the test objective was only partially fulfilled. Regarding the jump line of test objective 4, collected data resulted in the development of trend information with regard to pilot ratings as the jump line was approached from increasing values of CAP. However, with no test

Figure 2 Actual CAP Parameters After Flight Test $(1/T_{\Theta_2} = 0.45, n/\alpha = 4.01)$

points above the jump line, the test objective was once again only partially fulfilled.

Lastly, objective 3 was not met. Preflight simulation on the VISTA suggested at least one of the test points would lie within the minimum short period natural frequency region in the CAP domain, which would satisfy this objective. However, postflight analysis revealed that the requested test points could not be accurately simulated by VISTA throughout the landing phase of flight, or were actually outside the desired region. Data were obtained in the areas of agreement and disagreement (objective 1) and the collection of supporting information (objective 6). Overall, the collected data provided substantial information regarding pilot opinion trends (objective 5) in a general sense and insight into the test objectives which were either partially fulfilled or not met as described above.

This page intentionally left blank.

GENERAL

The VISTA was used in this test because of the range of dynamic parameters it was capable of simulating. Ten different VSS configurations with a broad range of short period dynamics were evaluated during an offset landing task. Four test pilots of varying backgrounds were used for a broad range of pilot experience. Table 2 below details the evaluation of the pilots' weapon system experience.

Table 2 EVALUATION OF PILOTS' FLYING EXPERIENCE

Evaluation	
Pilot	Weapon System Experience
1	C-141B
2	GR-7 (Royal Air Force Harrier)
3	B-1B, B-52G/H, T-38A
4	U-2R, T-38A, T-37

Each of the four evaluation pilots rated the VSS configurations using the Cooper-Harper and pilot induced oscillation (PIO) rating scales during high gain lateral offset landing tasks. Frequency sweeps and pitch step responses were also flown to define and validate the VSS configurations' short period dynamics.

For some VSS configurations, handling qualities during tracking (HQDT) and pitch-capture tasks were flown before attempting to land those configurations. In this buildup approach, all VSS configurations with predicted Level 3 handling qualities underwent an initial evaluation composed of HQDT and pitch-capture tasks at approximately 10,000 feet pressure altitude. Additional VSS configurations with predicted Level 1 and 2 handling qualities were included in these buildups to maintain the aspect of blind testing by the evaluation pilots. Once the initial evaluation was accomplished for a particular VSS configuration, the determination as to whether a landing should be attempted was made using the HAVE CAP Flight Test Decision Tree presented in Figure F1.

During all of the flight tests, VISTA was configured with landing gear down and speedbrakes extended, at an onspeed angle of attack (AOA) of 11 degrees. This setup was required to set the initial conditions in the variable stability system at the proper load factor per angle of attack (n/α) .

Prior to the actual evaluations, the evaluation pilots flew the landing task in a variety of different aircraft to familiarize them with the task over a broad range of aircraft handling qualities. The practice aircraft included the F-15, F-16, C-18, and T-38.

METHODS AND CONDITIONS

For this flight test, a VSS configuration was defined as a unique combination of VISTAs short period damping ratio and frequency. Appendix A, Tables A1 through A3 and Figures A1 through A3 present the 10 VSS configurations evaluated during the flight test along with their defining short period LOES characteristics and predicted handling qualities.

All VSS configurations were evaluated by CALSPAN in the ground simulation mode of VISTA prior to flight. Each VSS configuration was cleared by CALSPANs safety pilots or USAF Test Pilot School staff pilots prior to being flown by the evaluation pilots. Clearing flights started with normal straight-in approaches and progressed to the lateral offset. Those points which were predicted to have Level 3 handling qualities by at least one of the prediction methods were evaluated during an HQDT task and a pitch-capture task. For detailed descriptions of the test procedures used for these buildup tasks see Appendix E. Flight tests were limited to a maximum steady-state crosswind of 15 knots and a tailwind of 10 knots for safety and data quality considerations.

Each VSS configuration was flown at least three times by two different evaluation pilots. For each VSS configuration evaluated, the pilot performed at least three landings to quantitatively and qualitatively evaluate the handling qualities of that particular configuration. Offset landings were accomplished as described in the Test Procedures section. Pilot comments were recorded during every evaluation and culminated in a single Cooper-Harper and PIO rating for each configuration. Ratings were assigned after the final landing attempt of that particular VSS configuration. These ratings were the pilots' overall evaluation taking into account the VSS configuration's performance and workload during the landing attempts.

The sorties were broken down with the intent of evenly distributing VSS configurations among the different pilots. No single pilot ended up with all predicted handling quality Level 3 VSS configurations, or conversely, all Level 1 VSS configurations. Rather, the attempt was made to evenly distribute VSS configurations among the pilots based principally on the predicted handling qualities of the various configurations. Further, during any particular sortie, only CALSPAN personnel, including the safety pilot, and the two project flight test engineers knew exactly which VSS configurations were being tested. Pilots were occasionally given the same test point without their knowledge to document their consistency.

TEST PROCEDURES

To ensure the VSS configurations flown had the proper dynamic characteristics, manual and programmed frequency sweeps and programmed pitch-step inputs were flown. Frequency sweeps were used to obtain data for frequency response analysis (FRA) while time responses from the step inputs were used to determine the dropback criterion.

Frequency Sweeps:

Frequency sweeps were flown between 10,000 and 12,000 feet pressure altitude. They were flown both manually and using the VISTAs programmed test input. The frequency range of the sweeps was from approximately 1 to 10 radians per second. Data were recorded by the onboard data acquisition system (DAS) at a rate of 100 Hz. The data were then reduced at a rate of 20 Hz. CALSPAN provided the data from the DAS. A minimum of 1,024 data points were required for the frequency response analysis. Recorded data parameters are listed in Table G1.

The FRA was performed through ensemble averaging with a program developed at the USAF Test Pilot School using MATLABTM. The CALSPAN took the resulting pitch rate to stick deflection Bode plots and performed a LOES match holding $1/T_{\Theta_2}$ fixed to identify the dynamic characteristics of each VSS configuration. The

matches were assumed valid if they fell within the bounds specified by MIL-STD-1797A (Reference 5) and were used to obtain the short period natural frequencies and damping ratios defining the CAP and equivalent time delay. The Bode plots were also used for the bandwidth analysis.

<u>Pitch-Step Inputs</u>:

The time responses from the pitch-step inputs were used to measure dropback. These step inputs were generated using VISTAs programmed test input and were flown between 10,000 and 12,000 feet pressure altitude. The step input was applied until a steady-state pitch rate was obtained; the step input was then taken out. The data were collected with the onboard DAS at a sample rate of 100 Hz and then downloaded to a personal computer at a rate of 20 Hz. Recorded data parameters are detailed in Table G1.

Offset Landing Task:

The offset landing task began at a 300-foot lateral offset at 300 feet above ground level (AGL). The task was to maneuver the aircraft to land softly in a predetermined landing zone. Pilots assigned one Cooper-Harper rating and one PIO rating to the task landing for each VSS configuration tested and made qualitative comments on the configurations handling The comment card used is shown in qualities. Appendix C. Each pilot performed the task at least three times for each assigned VSS configuration prior to assigning a single Cooper-Harper and PIO rating for that configuration, while comments were gathered after each landing attempt. More than three landing attempts were flown per VSS configuration if the evaluation pilot required more landings to accurately assign the pilot ratings.

The VISTA was configured for the specific VSS configuration by the safety pilot on downwind. The test aircraft was established on final, approximately 5 miles from the threshold, offset 300 feet to the left of the runway centerline and configured for landing with gear down and speedbrakes extended. When onspeed for an 11-degree AOA approach, the VSS was engaged and the safety pilot transferred aircraft control to the evaluation pilot.

The evaluation pilot flew the instrument landing system (ILS) glideslope down final, on speed while maintaining the 300 feet left offset. At 500 feet AGL, the front cockpit head-up display (HUD) was dimmed so it was not visible to the evaluation pilot, preventing flightpath marker (FPM) dynamics from influencing the task. The rear cockpit HUD was still visible to the safety pilot. At 300 feet AGL, referenced by the radar altimeter, the safety pilot called "Maneuver." The offset task setup is shown below in Figure 3.

At the safety pilot's "maneuver" call, the evaluation pilot maneuvered to lineup on the runway centerline and land in the touchdown zone box painted on the runway. The pilot attempted to land in the center of the desired box, on speed and on AOA, with a minimal sink rate. If the maneuver appeared unsafe, either pilot could initiate a go-around. If the VSS tripped off, the safety pilot immediately took control of the aircraft.

Landing Zone:

Specialized runway markings were painted on Runway 22 at Edwards AFB to delineate the desired and adequate touchdown zones. Standard 18-inch wide white paint lines were used for all markings. The desired landing zone was a 400 feet long by 25 feet wide box. The front of the desired zone was 800 feet down the runway. This placed the center of the desired zone 1,000 feet down the runway. The adequate landing zone was 1,000 feet long by 50 feet wide. The adequate zone was placed 600 feet down the runway. These distances also corresponded with the placement of the runway lights providing a backup in case the lines on the runway became obscured or otherwise unusable. The landing zone is shown in Figure 4.

Landing Task Evaluation:

The evaluation pilot used touchdown point information, firmness of touchdown and workload to assign a Cooper-Harper and PIO rating. The evaluation pilot received feedback on longitudinal touchdown position from the ground observers over the very high frequency (VHF) radio. The evaluation pilot and safety pilot assessed the lateral touchdown position. For the landing to be considered in a zone, both main gear were required to be on or inside the respective line.

and evaluation safety pilot Both the qualitatively assessed the landing as either soft, medium, or firm. Touchdown firmness was evaluated qualitatively and used in the Cooper-Harper rating. A soft landing was desired, medium was adequate, and firm was not adequate. qualitative evaluation was used as no Α quantitative feedback was accurate or timely enough. Vertical velocity from the aircraft instruments was considered, but determined to be inaccurate due to the lag in the system while the vertical acceleration or velocity from the data acquisition system were not immediately available to the pilot. The same safety pilot flew on all test flights, providing consistency in landing firmness assessments between evaluation pilots. The evaluation pilot's touchdown firmness ratings were used when assigning the Cooper-Harper rating.

Immediately after flying a VSS configuration, the evaluation pilot combined the landing zone feedback, firmness of touchdown, and workload required to assign a Cooper-Harper and PIO rating. On downwind, the safety pilot flew the aircraft while the evaluation pilot answered questions on the comment card (Figure C1) to help evaluate the aircraft's handling qualities. The landing and pilot comments were recorded on the HUD videotape for postflight analysis and data transcription. A camera on the ground near the approach end of the runway also recorded the aircraft from final through touchdown for post flight The onboard DAS recorded the time analysis. response data for each landing.

In addition, the evaluation pilot assigned a workload rating for the configuration, to reflect the degree of compensation and associated workload required in the offset landing task. Workload was assessed on a scale from 1 to 10, where 1 indicated negligible workload (compensation not a factor in the landing task) and 10 indicated intense and extreme compensation and workload. Workload ratings are not reliable indicators for comparison between different pilots. However, workload ratings given by the same pilot for different configurations have some value as a qualitative indicator. Nevertheless, the workload rating was secondary and did not provide a primary source of

Figure 4 Landing Zone Markings and Dimensions

pilot opinion information. It was used only when necessary to reflect on the more formal Cooper-Harper and PIO rating scales.

After each flight test mission, the evaluation pilot reviewed the HUD videotape and test card comments. All appropriate mission data were entered into the pilot comment computer database. The database contained pilot remarks for each VSS configuration flown, Cooper-Harper, PIO and workload ratings, data parameters for each individual offset approach, and many other pertinent pieces of information. A complete summary of data recorded in the pilot comment database is contained in Appendix B.

RESULTS AND ANALYSIS

VSS Configurations:

The dynamic characteristics of the VSS configurations evaluated are presented in, Table A1. The locations on the CAP, bandwidth, and dropback domains are graphically depicted in Appendix A, Figures A1 to A3 and Tables A2 and A3.

Preflight analysis showed that all points except VSS configuration H were predicted to have excessive dropback using the short period approximation. However, during the LOES match configurations' dynamic identifying the characteristics, all VSS configurations generally migrated up and to the left in the CAP domain. Flight test results indicate that all VSS configurations had excessive dropback as shown in Figure A3 and for this reason objective 2, "Obtain and evaluate qualitative and quantitative pilot opinion and Cooper-Harper pilot ratings about the dropback line" could not fully be satisfied. Despite this, some very useful trends were seen as the points approached the dropback line. These trends are explained in further detail below.

Objective 4, "Obtain and evaluate qualitative and quantitative pilot opinion and Cooper-Harper pilot ratings across the jump line" could not be fully satisfied since VSS configurations A and D did not have low bandwidths due to a shelf type Bode plot as predicted by the short period approximation. The discrepancy between theory and flight test results may have been due to VISTA's flight control actuators. The actuators added phase into the system above the short period natural frequency which delayed the configurations' bandwidth jumping from a high to a low frequency. Despite this, valuable trends were seen as the VSS configurations approached the theoretical jump line shown in Figure D6.

Aircraft Evaluations:

Cooper-Harper and PIO ratings are presented for all configurations in Figures 5 and 6. Appendix B contains a database of all pilot comments and details of each landing evaluation flown.

The following text presents a synopsis of pilot comments by aircraft configuration. For each configuration, Tables 4 through 12 show a summary of pilot ratings, as well as the predicted handling qualities Level (1, 2 or 3) according to each of the CAP, bandwidth and bandwidth with dropback criteria. In addition, the tables list the short period natural frequency (ω_{sp}), short period damping ratio (ζ_{sp}), bandwidth frequency (ω_{BW}) and an estimated phase delay (τ_p) for each VSS configuration. Where a single pilot evaluated a given configuration on more than one occasion, pilot ratings given on each evaluation are listed in order separated by commas.

Pilot comments are summarized for each configuration in the first three paragraphs. The first paragraph describes the dominant comments common to all or most of the pilots for that VSS configuration, followed by the effect on pilot technique and task performance. Subsidiary pilot comments, such as those noted by only one or two pilots for that configuration are then discussed. Where warranted, further engineering analysis is given in a fourth paragraph.

Configuration A.

A synopsis of pilot comments for aircraft configuration A is presented in the following paragraphs and Table 3.

Figure 6 Pilot-Induced Oscillations Ratings

Predicted Level:	CAP: 2	Bandwidth: 2	Bandwidth w/Drb: 2
Dynamics:	ω_{sp} : 5.68 ζ_{sp} : 0.384	ω _{BW} : 7.8 τ _p :	0.079 τ _θ : 0.040
Pilot	Cooper-Harper Rating	PIO Rating	Workload Rating
1	7	4	7
2	7,7	4, 4	8, 8
3	6	4	8
4	8	4	8

 Table 3

 VARIABLE STABILITY SYSTEM CONFIGURATION A - SUMMARY OF RESULTS

Notes: 1. CAP - control anticipation parameter

2. Drb - dropback

3. ω_{sp} - short period natural frequency

4. ζ_{sp} - short period damping ratio

The main comments of all pilots found this configuration sensitive or touchy, with a small amplitude, quick pitch bobble or PIO being generated as soon as they entered the loop, even with small inputs. This pitch bobble could not be avoided in closed loop flight. Pilot 1 noted that even trim actuation excited the pitch bobble. Most pilots reported that aggressiveness aggravated the bobble. On two separate evaluations, Pilot 2 reported that aggressiveness only slightly worsened the problem or did not effect it beyond a certain limiting amplitude. Pilot 4 reported a PIO on one evaluation.

The net result of pilot performance characteristic was that pilot workload was intolerably high, with considerable compensation variously reported as "lag" or "lag-lead compensation," "tight in the loop control with small inputs," and "smoothing and lowering" of pilot gains. Pilot 2 reported a strong tendency to back out of the loop to avoid aggravating the bobble, resulting in less precise aircraft control and degraded task performance. Desired criteria were met on only 6 out of 14 landings.

Subsidiary pilot comments by Pilot 2 (on two evaluations of this configuration) and Pilot 3 reported that despite the pitch sensitivity the flightpath did not respond rapidly enough. This was an indication of excessive dropback. See Appendix D for a physical description and definition of the dropback criterion. Predictability was reported as 5. ω_{BW} - bandwidth

6. τ_{p} - estimated phase delay

7. τ_{θ} - lower order equivalent system time delay

8. PIO - pilot-induced oscillation

poor by these two pilots. Due to encountering a divergent PIO, Pilot 4 considered control was in question and assigned the Cooper-Harper rating of 8.

The time histories of Pilot 4's PIO are presented in Appendix I. As seen, the pilot entered the PIO during the offset maneuver. However, there was sufficient altitude for the pilot to back out of the loop and recover from the PIO. A PIO was encountered a second time in the flare. This time the pilot did not back out of the loop due to the proximity of the ground.

Configuration C2.

A synopsis of pilot comments for aircraft configuration C2 is presented in the following paragraphs and Table 4.

Both evaluation pilots' main comments found this configuration sensitive, and reported a pitch bobble that was not divergent. Pertinent comments "ittery and bouncy" were (Pilot 1), and "nervous-darting down-extremely up and sensitive" (Pilot 3). In addition, both reported a tendency to overshoot and an inability to place the nose where required as the aircraft "gives you more than you wanted" in pitch (Pilot 3). These comments are again indicative of excessive dropback. The pitch bobble was nondivergent and could be damped with the pilot in the loop. Aggressiveness excited the motion.

VARIABLE STABILITT STSTEM CONTROLATION C2 - BONNER TOT REBUILTD					
Predicted Level:	CAP: 2	Bandwidth: 2	Bandwidth w/ Drb: 2		
Dynamics:	ω_{sp} : 4.97 ζ_{sp} : 0.632	ω _{BW} : 6.7	$\tau_p: 0.084$ $\tau_{\theta}: 0.075$		
Pilot	Cooper-Harper Rating	PIO Rating	Workload Rating		
1	6	4	5		
2					
3	6, 4	3, 3	8, 4		
4					

Table 4 VARIABLE STABILITY SYSTEM CONFIGURATION C2 - SUMMARY OF RESULTS

2. Drb - dropback

3. ω_{sp} - short period natural frequency

1. CAP - control anticipation parameter

4. ζ_{sp} - short period damping ratio

5. ω_{BW} - bandwidth

Notes:

The result of pilot performance was a requirement for small inputs or backing out of the loop combined with anticipation. However, task performance did not appear to be greatly impacted; seven desired criteria touchdowns were achieved in nine landings. Nevertheless, at least one landing which did not meet either desired or adequate criteria was directly attributed by Pilot 3 to being forced the loop by the "squirrely" aircraft each time he tried to "get in the loop."

Subsidiary pilot comments, including categories such as control harmony, were also reported as poor by both pilots, indicating a discrepancy between control forces and handling qualities in the lateral and longitudinal axes. Though the lateral axis of the VISTA was not under study, poor control harmony may have adversely effected pilot opinion of the configuration overall.

Configuration D.

A synopsis of pilot comments for aircraft configuration D is presented in the following paragraphs and Table 5.

The main comment regarding VSS configuration was that it was sensitive in the pitch axis with a high frequency pitch oscillation or bobble noted by all pilots and described as small or low amplitude. It was excited "with every little input—actuating the trim button causes undesirable motions" (Pilot 1) and

6. τ_p - estimated phase delay

7. τ_{θ} - lower order equivalent system time delay

8. PIO - pilot-induced oscillation

9. --- not applicable

was "very difficult to prevent" (Pilot 2). All pilots reported that aggressiveness or tighter control worsened the bobble. Pilot 2 on his second evaluation reported that once excited to a given amplitude, further aggressiveness did not exacerbate the bobble.

Pilot performance resulted in smoothing of inputs or a more open loop control. Pilot 1 reported devoting much attention to control of the pitch axis. All pilots reported backing out of the loop in the flare to avoid these unpleasant motions. Seven out of 12 approaches met desired criteria, but workload was considered intolerably high by all pilots.

Subsidiary pilot comments consisted of Pilots 1 with sustained 2 reporting problems and maneuvering ability despite the initial pitch sensitivity indicating excessive dropback. Pilot 1 noted the stick forces were high despite the sensitivity, particularly in the offset maneuver and flare. Pilot 2 noted a sluggishness in sustained maneuver during both of his evaluations of this configuration, and also attributed some deterioration in task performance to this feature. Pilot 1 considered the motions controllable and predictable, while Pilot 2 considered the aircraft response overall unpredictable because of the difference between initial sensitivity and sluggish sustained maneuver. Pilot 2 also reported increasing the size of pitch inputs to compensate for the sluggishness after initial smoothing to avoid exciting the bobble.

VARIABLE STABILITY SYSTEM CONFIGURATION D - SUMMART OF RESULTS					
Predicted Level:	CAP: 2	Bandwidth: 2	Bandwidth w/ Drb: 2		
Dynamics:	ω_{sp} : 5.40 ζ_{sp} : 0.290	ω _{BW} : 6.1	$\tau_{p}: 0.077$ $\tau_{\theta}: 0.080$		
Pilot	Cooper-Harper Rating	PIO Rating	Workload Rating		
1	7	4	7		
2	8,7	4, 4	7,7		
3					
4	7	4	7		

Table 5 VARIABLE STABILITY SYSTEM CONFIGURATION D - SUMMARY OF RESULTS

Notes: 1. CAP - control anticipation parameter 2. Drb - dropback

3. ω_{sp} - short period natural frequency

4. ζ_{sp} - short period damping ratio

Configuration E.

A synopsis of pilot comments for aircraft configuration E is presented in the following paragraphs and Table 6.

The main comments of both pilots reported good handling qualities with negligible deficiencies or better.

In regards to pilot performance, Pilot 3 even adjusted the task to attempt to increase pilot gains, but still effectively met desired criteria on all six approaches. Pilot 2 met adequate criteria on two of three approaches without reporting a reason; however, this was his first evaluation of the program and he was consequently less familiar with the task.

Subsidiary comments consisted of remarks such as the only deficiencies noted were a very slight pitch bobble on two of the three approaches flown by Pilot 2, and not as crisp as ideal pitch control noted by Pilot 3 on his first evaluation. While this may be an indication of excessive dropback, it did not significantly degrade either pilots' rating since each pilot rated the VSS configuration as a Level 1 configuration. This is supported by Figure A3 which shows configuration E lay closer to the region of acceptable dropback than configurations A, C2 and D. In these three configurations (A, C2 and D), pilot comments were indicative of excessive dropback and pilot ratings were in the handling qualities Level 2 and 3 regions. 6. τ_p - estimated phase delay

7. τ_{θ} - lower order equivalent system time delay

8. PIO - pilot-induced oscillation

9. --- not applicable

Configuration G.

A synopsis of pilot comments for aircraft configuration G is presented in the following paragraphs and Table 7.

Main comments of configuration G was that pilots found this to be a "good flying" configuration as reflected in the Cooper-Harper ratings. However, three of four pilots reported the configuration to be slightly sluggish, with control forces heavier than desired. Pilot 4 noted that quicker response might have made the task easier, with similar comments from Pilot 3. Pilot 2 described a mushiness or lagginess in response. No further deficiencies were noted. Pilot 1 found no deficiencies at all.

In the area of pilot performance, 6 out of 12 approaches met desired criteria, indicating the pilots may have had more trouble with this configuration than they themselves identified. However, no firm conclusions can be drawn since any number of reasons might account for these results. Though Pilot 1 failed to achieve even adequate criteria on one approach, this was on his first approach in the program when he was less familiar with the task. Pilot 4, again on his first evaluation of the program, attributed two adequate approaches to premature power reduction, though his angle of attack (AOA) on one of these was low (i.e., fast), perhaps indicating the configuration was in fact giving insufficient pitch response, or simply that he was still relatively unfamiliar with the task. Finally, some

Predicted Level:	CAP: 1	Bandwidth: 1	Bandwidth w/ Drb: 2	
Dynamics:	ω_{sp} : 2.18 ζ_{sp} : 0.523	ω _{BW} : 2.8 τ	.; 0.079 τ _θ : 0.072	
Pilot	Cooper-Harper Rating	PIO Rating	Workload Rating	
1				
2	2	2	1	
3	2, 1	1, 1	2, 1	
4				

6.

VARIABLE STABILITY SYSTEM CONFIGURATION E - SUMMARY OF RESULTS

Notes: 1. CAP - control anticipation parameter

Drb - dropback
 ω_{sp} - short period natural frequency

 τ_p - estimated phase delay

7. τ_{θ} - lower order equivalent system time delay

8. PIO - pilot-induced oscillation

4. ζ_{sp} - short period damping ratio

5. ω_{BW} - bandwidth

9. --- not applicable

VARIABLE STABILITY SYSTEM CONFIGURATION G - SUMMARY OF RESULTS				
cted Level:	CAP: 1	Bandwidth: 1	Bandwidth w/ Drb	

Table 7

Predicted Level:	CAP: 1	Bandwidth: 1	Balluwiulli w/ DIU. 2
Dynamics:	ω_{sp} : 2.50 ζ_{sp} : 0.785	ω _{BW} : 3.6	$\tau_{p}: 0.071$ $\tau_{\theta}: 0.078$
Pilot	Cooper-Harper Rating	PIO Rating	Workload Rating
1	1 1	1	1
2	4	1	5
3	2	1	2
4	3	1	3

Notes: 1. CAP - control anticipation parameter

2. Drb - dropback

- 3 ω_{sp} short period natural frequency
- 4. ζ_{sp} short period damping ratio

doubt must be expressed as to the validity of Pilot 3's Cooper-Harper rating of 2. This rating was assigned after the pilot noted some sluggishness, commented on increased workload, and achieved only one desired criteria approach out of three.

A subsidiary comment by Pilot 2 was that despite the sluggishness, initial pitch response was good, indicating some discrepancy between initial and sustained response.

In additional analysis, the comments point to a low steady state pitch rate compared to the initial pitch rate—or a tendency towards excessive dropback. As in VSS configuration E, configuration G's dropback lay closer to the acceptable region as shown in Figure A3 and seems to have had less impact on pilot opinion than the greater dropback on configurations A, C2 and D. Given the task criteria achieved, dropback may have affected task performance more than the evaluation pilots realized. 5. ω_{BW} - bandwidth

6. τ_n - estimated phase delay

7. τ_{θ} - lower order equivalent system time delay

8. PIO - pilot-induced oscillation

Configuration H.

A synopsis of pilot comments for aircraft configuration H is presented in the following paragraphs and Table 8.

Regarding main comments, it was noted that this VSS configuration was graded as a Level 1 configuration with few deficiencies and overall good pilot comments.

In the area of pilot performance, seven out of nine approaches met desired landing criteria. One instance of adequate criteria being met was on Pilot 3's first evaluation of the program, when he was less familiar with the task. Overall, consistently good results were achieved in the landing task. The pilot's subsidiary comments on deficiencies were mixed—Pilot 1 felt the pitch response to be a little slow but with "good command authority," while Pilot 4 felt that it was too quick initially with

••			
Predicted Level:	CAP: 1	Bandwidth: 2	Bandwidth w/ Drb: 2
Dynamics:	ω _{sp} : 2.29 ζ _{sp} : 0.967	ω _{BW} : 2.3 τ _p	τ _θ : 0.074 τ _θ : 0.070
Pilot	Cooper-Harper Rating	PIO Rating	Workload Rating
1	2	1	3
2			
3	1	1	1
4	3	1	3

 Table 8

 VARIABLE STABILITY SYSTEM CONFIGURATION H - SUMMARY OF RESULTS

Notes: 1. CAP - control anticipation parameter

2. Drb - dropback

3 ω_{sp} - short period natural frequency

4. ζ_{sp} - short period damping ratio

5. ω_{BW} - bandwidth

slightly slow steady-state response. Despite the apparent discrepancy here, the comments may in fact represent the same phenomenon: good initial pitch motion (or command authority) with slightly low sustained response. This again indicates excessive dropback, but as in configurations E and G the level of dropback encountered did not cause pilot opinion to drop below overall Level 1 ratings. It did, however, cause Pilots 1 and 4 to assign less than perfect Cooper-Harper ratings attributed directly to a "minor deficiency with pitch command rate" (Pilot 1) or because "the pitch response was mildly unpleasant" (Pilot 4). Pilot 3 felt there were no deficiencies. As seen in Figure A3, configuration H lay closest to the acceptable dropback region and is supported by the comments above.

Configuration I.

A synopsis of pilot comments for aircraft configuration I is presented in the following paragraphs and Table 9.

In the area of main comments, the principal comments on this configuration indicated the VSS configuration was sluggish, but with a disparity between initial pitch response (Pilot 1: "too quick," Pilot 2: "about right") and slower maneuver response (Pilot 1: "good AOA command," Pilot 2: "slow response for maneuver"). While this was identified by Pilots 1 and 2, Pilot 4's comments strongly stressed the sluggishness of maneuver response: "couldn't get the motion desired so had to pull more." Note, though Pilot 1 considered the maneuver response sufficient, stick forces were considered too high. Given the stick force gradient 6. τ_p - estimated phase delay

7. τ_{θ} - lower order equivalent system time delay

8. PIO - pilot-induced oscillation

9. --- not applicable

was the same for all VSS configurations tested, this may indicate that Pilot 1 too found the maneuver response too slow but did not identify it as such.

Regarding pilot performance, 8 out of 12 landings met desired criteria, showing degraded performance over other VSS configurations which were rated as Level 1, possibly as a result of the sluggish maneuver response. Pilot 4 particularly noted that in the flare he was "trying to let the aircraft down but couldn't get the nose down with smooth small motions."

In addition to the above comments, subsidiary comments of Pilots 1 and 4 included the comment that they noticed a pitch bobble. Pilot 4 found this only on the third landing and considered it easily compensated for, while Pilot 1 stated it was very distracting did not compromise but task performance. Pilot 2 did not identify this problem. It should be noted that Pilot 1's first evaluation of the configuration (also the first test point of the program) did not identify any of these deficiencies, but noted a tendency towards high angles of attack in This may have indicated a higher the flare. workload than Pilot 1 realized leading to poorer power and energy control.

In additional analysis, the pilot comments support the inference that this configuration had excessive dropback. This conclusion can be drawn from all pilots' comments more clearly than for some other VSS configurations where only one or two pilots noted characteristics associated with high dropback. This may indicate that pilots are sensitive to increasingly excessive dropback in this region.
Predicted Level:	CAP: 1	CAP: 1 Bandwidth: 1				
Dynamics:	ω_{sp} : 3.28 ζ_{sp} : 0.830	ω _{BW} : 3.0	τ_{p} : 0.071 τ_{θ} : 0.085			
Pilot	Cooper-Harper Rating	PIO Rating	Workload Rating			
1	4,5	1, 2	3, 6			
2	4	1	5			
3	3					
4	5	2	4			

 Table 9

 VARIABLE STABILITY SYSTEM CONFIGURATION I - SUMMARY OF RESULTS

Notes: 1. CAP - control anticipation parameter

6. τ_p - estimated phase delay
 7. τ_θ - lower order equivalent system time delay

2. Drb - dropback

3 ω_{sp} - short period natural frequency

4. ζ_{sp} - short period damping ratio

5. ω_{BW} - bandwidth

Configuration J.

A synopsis of pilot comments for aircraft configuration J is presented in the following paragraphs and Table 10.

The pilot's main comments were unanimous in identifying this VSS configuration as slow or sluggish. Pilot 1 reported he "ran out of pitch power in flare," while Pilot 4 stated he "could not get the nose authority I wanted."

The slow response in pilot performance gave just 4 desired criteria landings out of 12 approaches with both touchdown firmness and landing zone position responsible for this performance in roughly equal proportions. Pilot 4 reported touching down firm and fast due to the slow response using a variety of pilot techniques (high gain and low gain). PIO - pilot-induced oscillation
 --- not applicable

The subsidiary comments of the pilots included the following observations: Pilot 2 reported the slow aircraft response resulted in over control and slow oscillations about target pitch attitudes and during the offset correction to centerline, AOA excursions. These characteristics can be explained in terms of the slow pitch response—an input was made, the aircraft did not seem to respond and the size of the input was increased just as the pitch axis began to move, resulting in over control in pitch or AOA. Table 10 shows Pilot 2 gave this VSS configuration a Cooper-Harper rating of 4.5. Justification for this rating was the configuration required more than moderate compensation for desired performance; however, considerable compensation was not required to achieve adequate performance. Thus, the pilot felt a rating of 4.5 was the most accurate rating for this VSS configuration. Refer to Figure C2 for the Cooper-Harper Pilot Rating Scale.

Predicted Level:	CAP: 3	CAP: 3 Bandwidth: 2		
Dynamics:	ω_{sp} : 1.44 ζ_{sp} : 0.214	ω _{BW} : 1.7 τ _p	0.078 τ_{θ} : 0.066	
Pilot	Cooper-Harper Rating	PIO Rating	Workload Rating	
1	6	1	5	
2	4.5	3	6	
3	3			
4	5, 5	1,1	6, 4	

 Table 10

 VARIABLE STABILITY SYSTEM CONFIGURATION J - SUMMARY OF RESULTS

Notes: 1. CAP - control anticipation parameter

2. Drb - dropback

3 ω_{sp} - short period natural frequency

4. ζ_{sp} - short period damping ratio

5. ω_{BW} - bandwidth

6. τ_p - estimated phase delay

7. τ_{θ} - lower order equivalent system time delay

8. PIO - pilot-induced oscillation

9. --- not applicable

Additional analysis, illustrated in Figure A3, showed that this configuration should have had excessive dropback. However, due to the slow time response the evaluation pilots were not able to break out the difference between the initial and steady state response. Thus, dropback did not appear to be a factor in pilot rating for this configuration as supported by the above comments.

Configuration K.

A synopsis of pilot comments for aircraft configuration K is presented in the following paragraphs and Table 11.

In the main comments, the overall assessment was that this configuration was slow or sluggish. Pilot 2 simply assessed the aircraft as sluggish with no further deficiencies. Pilots 1 and 4 noted some form of apparent delay (Pilot 1: "a small lag," Pilot 4: "response seemed to ramp up"). Pilot 3 commented in a different way on the same phenomenon stating that "small stick movements produced no movement of the nose." This comment may reflect the slow response of the configuration to initial inputs requiring an increase in stick movement from the pilot, which then appeared to generate the aircraft movement that was in fact the slow response from the initial input. However, from the LOES match, the configuration had an equivalent delay of 0.066 second, which was within MIL-STD-1797A recommendations for acceptable delay. Thus, the configuration's time delay did not necessarily explain pilot comments of sluggishness.

Regarding pilot performance in this configuration, both Pilots 3 and 4 reported using a

technique comparable with lead compensation— an oversized initial input followed by a check in the opposite direction. Pilot 1 also described using lead compensation. Ten out of 19 approaches met desired criteria. Workload and pilot compensation required were the main factors in the assigned pilot ratings.

Pilots 1 and 3, in their subsidiary comments, remarked on some form of undesirable pitch motions. Pilot 1 directly assessed this as a tendency to overshoot desired pitch attitudes due to the larger inputs required to counter the slow aircraft response. It should also be noted that Pilot 4 assessed this configuration on three separate occasions and pilot ratings were somewhat inconsistent. On the first evaluation of this configuration, the pilot felt there was a deficiency, but was not able to identify it. Only the second look at the configuration (Cooper-Harper 2 assigned) was inconsistent with other pilot comments; on this, the pilot reports using a low gain technique.

In additional analysis, the safety pilot noted on Pilot 4's last evaluation of this configuration (Cooper-Harper 6 assigned) the pilot seemed more fatigued than usual. Thus, the pilot was either more aware of the compensation technique or was unable to compensate as well when fatigued. The safety pilot noted that Pilot 4 adopted a low gain technique—placing the aircraft close to desired parameters and then backing out of the loop and accepting what the aircraft gave him. Even though Pilot 4's Cooper-Harper ratings showed a wide range, it seems the pilot found a deficiency on one evaluation which he was better able to compensate for without noticing when less fatigued.

VARIABLE STABILITT STSTEM CONFIGURATION & SUMMART OF RESULTS						
Predicted Level:	CAP:	Bandwidth: 2	Bandwidth w/Drb: 3			
Dynamics:	ω_{sp} : 1.44 ζ_{sp} : 0.555	$\delta \qquad \omega_{BW}$: 1.9 τ_{p} :	0.082 τ _θ : 0.066			
Pilot	Cooper-Harper Rating	PIO Rating	Workload Rating			
1	5	3	7			
2	4	1	4			
3	3	1	4			
4	3, 2, 6	1, 1, 1	4, 2, 5			

Table 11	
VARIABLE STABILITY SYSTEM CONFIGURATION K - SUMMARY	OF RESULTS

Notes: 1. CAP - control anticipation parameter

2. Drb - dropback

3 ω_{sp} - short period natural frequency

4. ζ_{sp} - short period damping ratio

5. ω_{BW} - bandwidth

6. τ_p - estimated phase delay

7. τ_{θ} - lower order equivalent system time delay

8. PIO - pilot-induced oscillation

<u>Configuration P</u>.

A synopsis of pilot comments for aircraft configuration P is presented in the following paragraphs and Table 12.

In the pilots' main comments, all pilots noted either a PIO (Pilots 1, 2 and 3) or pitch bobble (Pilot 4). This was stressed as a very strong tendency by Pilots 1, 2 and 3. Pilot 2 described the pitch axis as very sensitive—but at a low frequency of response. Pilots 1 and 3 also described the response as slow, with Pilot 1 reporting running out of "pitch command" in the flare. All pilots reported that aggressiveness exacerbated the PIO.

The result of this configuration on pilot performance was that workload was high, significant compensation being required in the form of smoothing (Pilots 1, 2 and 3) and "backing out of the loop" (Pilots 1 and 2). Pilot 4 reported using small quick inputs. Only six out of 16 landings met desired criteria due to both touchdown firmness and position.

In their subsidiary comments, Pilot 2 felt control was in question. Pilot 1 also felt control was in question on his first evaluation of the configuration, but not on his second. However, on this second evaluation a PIO of sufficient amplitude to trip the VSS was encountered.

High Frequency Trends (VSS Configurations A, C2, and D):

Pilot comments for the high frequency VSS configurations (A, C2, and D) included an initial quick response followed by a slow or sluggish steady-state response. The pitch attitude of the aircraft was sensitive while the flightpath was sluggish. Both of these comments characterized the VSS configurations as having excessive dropback. Applying the dropback definition to the VSS configurations predicted them to have excessive dropback.

Configuration C2 had more favorable pilot ratings than A and D, and was not considered as pitch sensitive. Pilots reported that the pitch oscillation in C2 could be damped out by pilot inputs, while for configurations A and D the oscillations were very difficult to avoid. In the CAP domain, this correlates to a low damping. In the bandwidth domain, both points satisfied the two criteria needed for the discontinuous jump-both were gain limited and had a non-monotonic gain pitch attitude to pitch manipulator Bode plots. Thus, their handling qualities should have been poor due to the "shelf" type Bode magnitude plots. In the dropback domain, the worse pilot ratings may be attributed to excessive dropback.

Predicted Level:	CAP: 1	Bandwidth: 2	Bandwidth w/ Drb: 3
Dynamics:	ω_{sp} : 1.20 ζ_{sp} : 0.4	435 ω _{BW} : 1.4	$\tau_{p}: 0.077$ $\tau_{\theta}: 0.066$
Pilot	Cooper-Harper Rating	PIO Rating	Workload Rating
1	8,6	5, 3	9, 5
2	8	4	6
3	5	4	5
4	7	2	not rated

 Table 12

 VARIABLE STABILITY SYSTEM CONFIGURATION P - SUMMARY OF RESULTS

Notes: 1. CAP - control anticipation parameter

2. Drb - dropback

3 ω_{sp} - short period natural frequency

4. ζ_{sp} - short period damping ratio

5. ω_{BW} - bandwidth

6. τ_p - estimated phase delay

7. τ_{θ} - lower order equivalent system time delay

8. PIO - pilot-induced oscillation

Using the mode of pilot ratings, or the pilot rating with the greatest frequency, the actual handling qualities levels are shown in Table 13. Note that all evaluation pilots agreed upon the aircraft handling qualities levels except for VSS configuration A (Appendix B). Four evaluations gave this configuration a Level 3 rating while one gave the configuration a Level 2 rating. Table 13 also shows the CAP, bandwidth, and bandwidth with dropback criteria results. Shaded blocks indicated where the predictive methods matched actual pilot opinion.

Table 13 shows CAP and bandwidth both matched the actual VSS configuration C2 handling qualities level. Applying the dropback definition to configuration C2 preserved the predictive Level 2 rating. Applying the dropback definition to VSS configurations A and D increased the predictive ratings to Level 2 which agreed with both the CAP and bandwidth metrics. However, the evaluation pilots felt those two configurations had Level 3 handling qualities. Thus, all methods underpredicted the actual handling qualities of configurations A and D.

In summary, the bandwidth criterion with and without applying the dropback criterion correctly matched pilot opinion of VSS configuration C2, or the high frequency point without a shelf-type Bode magnitude plot. The evaluation pilots gave Level 3 ratings to both VSS configurations A and D, which satisfied both jump conditions-being gain limited and having a non-monotonic Bode magnitude plot. Bandwidth with dropback incorrectly matched VSS configurations A and D. Thus, these flight test results indicate a shelf-type Bode plot, as in VSS configurations A and D, indicate Level 3 handling qualities rather than the magnitude of bandwidth. The VSS configurations A and D also had PIO tendencies. Both configurations had PIO ratings of 4, indicating the oscillations were not divergent. All

evaluation pilots commented that each configuration had the tendency to pitch bobble or PIO as pilot aggressiveness increased. During landing 6.4, the variable stability system disengaged due to a Time histories of stick growing oscillation. deflection, aircraft attitude and angle of attack, stabilator position, and stabilator rate are presented in Appendix I. The PIO was encountered twice during the approach. The first encounter occurred just as the pilot aggressively corrected back to centerline during the lateral offset. A divergent PIO was not encountered during this maneuver since the pilot had enough altitude to back out of the loop and re-enter the loop slowly, as shown in the stick deflection plot in Figure I1.

The second instance where a PIO was encountered was during the flare, again shown in Figure I1. This time the pilot did not back out of the loop due to the close proximity of the ground. A divergent PIO was encountered and resulted in the approach being terminated when the VSS transferred control to the safety pilot. The PIO rating of 4 on this approach was a result of the extremely short time period of the PIO and the inability of the evaluation pilot to determine if the oscillation was divergent. It was not until postflight analysis that it was realized the oscillations were divergent.

Time traces of the left and right horizontal stabilators, refer to Figure I2, show the classical sawtooth form of a rate limit. Plotting the derivative of each stabilators' deflection versus time shows those areas where the stabilators were rate limited. As the surface reached the rate limit its derivative reached and remained at the maximum rate—approximately 70 degrees/second for VISTA. This is shown as a constant horizontal line on the derivative time traces. As shown in Figure I3, the first PIO did not result in rate limiting. Figure I4 shows the second PIO had 0.7 second of rate limiting

Table 13
HIGH FREQUENCY VARIABLE STABILITY SYSTEM (VSS)
CONFIGURATION HANDLING QUALITIES LEVELS

		Predictive Metric				
VSS	Mode of Actual	Control Anticipation		Bandwidth With		
Configuration	Pilot Opinion	Parameter	Bandwidth	Dropback		
A	3	2	2	2		
D	3	2	2	2		
C2	2	2	2	2		

before the VSS transferred control to the safety pilot. However, the important point was the divergent nature of the PIO began before the stabilators were rate limited.

<u>Mid-Frequency Trends (VSS</u> <u>Configurations E, G, H, and I)</u>:

The VSS configurations E, G, H, and I lay within the "heart" of both the CAP and bandwidth domains. All configurations were predicted to have excessive dropback. Pilot comments indicated that VSS configuration I clearly had excessive dropback while configurations G and H were in an area where excessive dropback was noticed by some but not all One evaluation pilot out of four for pilots. configuration G and one out of three for configuration H commented that initial nose movement was good while it was slow or sluggish in the steady-state response, thus indicating excessive dropback. As shown in Figure A3, configurations G and H lay closer to the proposed dropback line. Configuration E had no pilot comments which indicated excessive dropback despite the prediction of excessive dropback.

The mode of actual pilot opinion revealed trends among the predictive handling qualities criteria for these four configurations. The mode along with the predictive handling qualities are presented in Table 14. Shaded blocks indicate where the predictive methods matched actual pilot opinion. Generally, the evaluation pilots rated VSS configurations E, G, and H the best out of all evaluated VSS configurations stating the aircraft had good predictable initial and steady-state responses.

All evaluation pilots gave these four VSS configurations the same handling qualities rating except for Pilot 2 who gave configuration G a Level 2 rating while the three other pilots rated the

configuration as Level 1. Justification for the Level 2 rating was due to the "slight mushiness/ lagginess" in the steady-state response. This caused the pilot to over control initial inputs and approach the AOA test limit of 13 degrees. To prevent these undesirable AOA excursions, the pilot was required to compensate by anticipating aircraft response.

As seen in Table 14, both the CAP and bandwidth criteria matched predicted pilot opinion for VSS configurations E and G. The evaluation dropback pilots noticed excessive on all configurations except VSS configuration E. However, applying the dropback definition to bandwidth resulted in a conservative prediction for configurations E, G, and H because of their excessive dropback. Thus, though the evaluation pilots noticed characteristics of excessive dropback their performance did not appear to be compromised. They felt these VSS configurations had good, well-defined, and predictable handling qualities. These comments also agreed with Figures D7 and D8 which show that application of the dropback criterion for CAP Level 1 aircraft decreased the theoretical area of agreement between the criteria. Thus, results indicate application of the dropback criterion to VSS configurations E, G, and H did not help predict pilot opinion.

Increasing ω_{sp} and ω_{BW} from configuration H to I, as shown in Figures A1 and A2, resulted in worse handling qualities. Because of the worse handling qualities and noticeable dropback, the dropback criterion should be applied to VSS configuration I. These results may indicate the dropback criterion should be applied to those aircraft which lay above VSS configuration H in the CAP domain. Results from this flight test are not sufficient enough to determine the exact location where dropback should be applied. However, results do indicate pilot opinion began to be influenced by excessive

Table 14 MID-FREQUENCY VARIABLE STABILITY SYSTEM (VSS) CONFIGURATION HANDLING QUALITIES LEVELS

		Predictive Metric				
VSS	Mode of Actual	Control Anticipation		Bandwidth		
Configuration	Pilot Opinion	Parameter	Bandwidth	With Dropback		
Е	1	1	1	2		
G	1	1	1	2		
Н	1	1	2	2		
I	2	1	1	2		

dropback between an ω_{sp} of 2.3 and 3.3 radians per second and between a CAP value of 1.31 and $3.28/g^*$ second².

Low Frequency Trends (VSS Configurations J, K, and P):

The VSS configurations J, K, and P lay in the lower frequency range of CAP as shown in Figure A1. These points had low bandwidths, lying to the left of the bandwidth Level 1 region shown in Figure A2.

Configuration K lay between a Level 1 and 2 aircraft; three evaluations rated the configuration Level 1, while three rated the configuration Level 2. All evaluation pilots gave the configuration a PIO rating of 1 except Pilot 1 who gave the configuration a PIO rating of 3, meaning undesirable motions compromised task performance. The PIO rating of 3 was assigned because of undesirable pitch motions. These motions were due to large, fast control inputs required to compensate for the slow pitch response.

Pilot 4 flew the configuration three times assigning Cooper-Harper ratings of 3, 2 and 6. He flew this configuration during the sixth evaluation on his first sortie and during the second and fifth evaluations one his second sortie. During the first "There evaluation Pilot 4 commented, was something I didn't like, but couldn't put my finger on it." During the second evaluation he commented the configuration had a good initial predictable response. During the third evaluation he commented the configuration was slow initially and then would ramp up to a quick steady-state. This unpredictably required extensive pilot compensation that required improvement. The safety pilot noted Pilot 4 seemed more fatigued during the third evaluation and that he changed his compensation techniques between the second and third evaluations. The safety pilot stated that during the first landing of the third evaluation Pilot 4 was in a PIO reaching 14 degrees angle of attack. After this landing, Pilot 4 changed his technique and quit flaring the aircraft and began to accept harder landings. Thus, it seemed that Pilot 4 found what it was that he did not like during the first evaluation.

Decreasing the damping ratio from VSS configuration K to J resulted in a solid Level 2 rating by the evaluation pilots. Pilot comments indicated the decrease in pilot opinion resulted from the slow response and resulting over control and pitch overshoots. This over control led to AOA excursions during the initial offset correction. As a result the evaluation pilots had harder touchdowns because of a lack of pitch response in the flare. As shown in Table 15, bandwidth matched pilot opinion for VSS configurations K and J. Pilot comments did not indicate excessive dropback. Because of the configurations' slow time response, the evaluation pilots did not notice excessive dropback even though application of the dropback definition predicted excessive dropback.

Decreasing the short period frequency from VSS configuration K to P resulted in a decrease in the mode of pilot opinion rating to Level 3. Two evaluation pilots rated configuration P as a Level 2 aircraft even though pilot compensation was high and the aircraft had the tendency to PIO. The PIO ratings ranged from 2 to 5 for configuration P. Pilot comments did not indicate excessive dropback. Once again, the configuration's time response was too slow for pilots to judge the total response. Pilot comments centered around the configuration's very slow response and tendency to overshoot, resulting in PIOs. Pilot aggressiveness was a factor in the amplitude of PIOs. Compensation techniques were to

Table 15LOW FREQUENCY VARIABLE STABILITY SYSTEMCONFIGURATION HANDLING QUALITIES LEVELS

		Predictive Metric		
Control Anticipation	Mode of Actual Pilot	Control Anticipation		Bandwidth
Parameter	Opinion	Parameter	Bandwidth	With Dropback
K	1, 2	1	2	3
Р	3	1	2	3
J	2	3	2	3

back out of the loop allowing the aircraft to fly itself down the glideslope as much as possible. Applying the dropback definition to configuration P resulted in a correct match. However, this match was due to the wrong reasons. The evaluation pilots did not notice excessive dropback for this configuration, thus the definition should not be applied.

In summary, VSS configuration K was a borderline Level 1, Level 2 configuration. Decreasing the damping from K to J resulted in a clearly Level 2 aircraft. Although configuration J had excessive dropback, it was not noticed due to the slow response of the configuration. Decreasing the short period frequency from K to P resulted in three ratings as a Level 3 aircraft and two ratings as a Level 2 aircraft. However, all evaluation pilots commented on the susceptibility of a PIO during the maneuver.

Overall, the CAP and bandwidth criteria had a 50 percent prediction correlation on the actual pilot's statistical mode while bandwidth with dropback had a 30 percent prediction accuracy as shown Table 16. When CAP and bandwidth with dropback agreed or bandwidth and bandwidth with dropback agreed, there was a 25 percent prediction correlation on the pilot's statistical mode. When CAP agreed with bandwidth there was a 50 percent prediction correlation.

For the high frequency configurations (A, C2, and D), all predictive methods agreed however only configuration C2's prediction matched pilot opinion. The CAP and bandwidth predictions agreed for the mid-frequency configurations (E, G, and I). Actual pilot comments indicated only configurations E and G The CAP and bandwidth matched predictions. predictions for configuration I agreed but bandwidth with dropback matched pilot opinion. Bandwidth and bandwidth with dropback predictions agreed for configuration H but CAP matched pilot opinion. For the low frequency VSS configuration J, CAP and bandwidth with dropback predictions agreed, matched bandwidth pilot opinion. however. Bandwidth with dropback incorrectly predicted pilot opinion because it predicted excessive dropback when pilot comments did not support excessive dropback.

Table 16 VARIABLE STABILITY SYSTEM (VSS) CONFIGURATION HANDLING QUALITIES LEVELS SUMMARY

		Predictive Metric			
VSS	Mode of Actual			Bandwidth	Bandwidth With
Configuration	Pilot Opinion	CAP	Bandwidth	With Dropback	Modified Dropback ¹
A	3	2	2	2	2
C2	2	2	2	2	2
D	3	2	2	2	2
Е	1	1	1	2	1
G	1	1	1	2	1
Н	1	1	2	2	1
I	2	1	1	2	2
J	2	3	2	3	2
K	1, 2	1	2	3	2
Р	3	1	2	3	2

Note: CAP - control anticipation parameter

¹Bandwidth with modified dropback uses the proposed definition of bandwidth and applied the dropback definition only for VSS configurations which had a short period natural frequency greater than or equal to configuration I.

After defining bandwidth with modified dropback as in Table 16, Note 1, the predictive metrics matched the following statistical mode of pilot ratings:

CAP - 50 percent correlation

Bandwidth - 50 percent correlation

Bandwidth with modified dropback - 70 percent correlation.

When CAP agreed with bandwidth with modified dropback there was a 67 percent prediction correlation. When bandwidth agreed with bandwidth with modified dropback there was a 63 percent prediction correlation. Using the modified dropback, all predictive metrics agreed and matched pilot opinion for VSS configurations E and G. Configuration H was matched by CAP and bandwidth with modified dropback. Bandwidth with modified dropback was the only metric which matched pilot opinion for configuration I. Both bandwidth and bandwidth with modified dropback predictions agreed and matched pilot opinion for configurations J and K.

As shown in Figure A2, VSS configuration H lay between the current bandwidth Level 1 boundary and the proposed bandwidth Level 1 boundary. If the modified dropback definition is applied, then configuration H is predicted to be Level 1 by bandwidth with modified dropback. Thus, this configuration supports the location of the proposed boundary. Decreasing the bandwidth to configuration K crosses the proposed boundary to just the other side and agrees with pilot opinion as being a Level 1, Level 2 configuration. Thus, flight test results support the location of the proposed bandwidth with dropback Level 1 boundary.

This page intentionally left blank.

CONCLUSIONS

Information regarding pilot opinion trends across a widely varied array of variable stability system (VSS) configurations and predicted handling qualities was gathered from this first flight test using the Variable-Stability In-Flight Simulator Test Aircraft (VISTA) NF-16D aircraft. The overall test objective was to evaluate discrepancies between the control anticipation parameter (CAP) and the bandwidth criteria with and without incorporating a proposed dropback criterion. However, due to the limitations of VISTA to accurately model specified short period frequency and damping parameters, test objectives 2 and 4 were only partially fulfilled and test objective 3 was not met. Despite this limitation, objectives were met in the areas of agreement and disagreement (objective 1), pilot opinion trends (objective 2), and the collection of supporting data (objective 6).

Pilot opinion of the high frequency VSS configurations (A, C2 and D) were influenced by excessive dropback. Pilot comments characterized these configurations as having an initial quick response followed by a slow and sluggish steady-state response. Additionally, pilot comments stated the pitch attitude of the configurations was sensitive while the flight path was considered sluggish. Pilot comments also indicated these configurations were not predictable. Collectively, these indicators of excessive dropback were the primary factors contributing to the Level 2 and Level 3 Cooper-Harper ratings.

Pilot comments in regard to mid frequency VSS configurations (E, G, H and I) indicate the handling qualities were well defined and predictable. However, it was within this region that pilot indicated the first signs of excessive dropback and its relative influence on the handling qualities of the configuration. Pilot comments did not indicate excessive dropback for the low frequency configurations (J, K, and P) although the dropback definition predicted excessive dropback. Comments suggested the decrease in pilot opinion resulted from the slow response and resulting over control and pitch overshoots. This over control led to angle of attack excursions during the initial offset correction. As a result, the evaluation pilots had harder touchdowns because of a lack of pitch response in the flare.

During this test both the CAP criterion and the bandwidth criterion matched actual pilot opinion approximately 50 percent of the time. Incorporating the current definition of dropback to the bandwidth criterion decreased the prediction accuracy to approximately 30 percent.

However, flight test results indicate that excessive dropback may influence pilot opinion only at relatively high values of CAP or short period natural frequencies (ω_{sp}). All of the VSS configurations tested were determined to have excessive dropback. Results from flight test indicated there was a short period natural frequency or CAP value where excessive dropback began to influence pilot compensation techniques resulting in worse handling qualities. Results from this flight test are not sufficient enough to determine the exact location where dropback should be applied. However, results do indicate pilot opinion began being influenced by excessive dropback between an ω_{sn} of 2.3 and 3.3 radians per second and between a CAP value of 1.31 and $3.28/g^*$ second². Pilot opinion was not influence by excessive dropback at lower ω_{sp} or CAP values due to the relatively slow response. Thus applying the dropback definition to the bandwidth criterion in those regions where pilot opinion was influenced by excessive dropback increased the prediction correlation to approximately 70 percent.

This page intentionally left blank.

REFERENCES

- 1. Mitchell, David G. and David H. Klyde, *Reviews of the R. Smith and Bandwidth Criteria for the Prediction of Longitudinal Pilot-Induced Oscillations*, Working Paper No. 1291-4, Systems Technology, Inc., Hawthorne, California, September 1993.
- 2. Mitchell, David G., and Roger H. Hoh, *Concepts for a Mission-Oriented Flying Qualities Mil Standard,* Technical Report No. 1279-1, Systems Technology Inc., Hawthorne, California, July 1990.
- 3. Mitchell, David G., and Roger H. Hoh, Development of a Unified Method to Predict Tendencies for Pilot-Induced Oscillations, WL-TR-95-3049, June 1995.
- 4. Mitchell, David G., Roger H. Hoh, Bimal L. Aponso, and David H. Klyde, Proposed Incorporation of Mission-Oriented Flying Qualities into MIL-STD-1797A, WL-TR-94-3162, October 1994.
- 5. Military Standard, Flying Qualities of Piloted Aircraft, MIL-STD-1797A, January 1990.
- 6. Smith, Rogers E., Effects of Control System Dynamics on Fighter Approach and Landing Longitudinal Flying Qualities, AFFDL-TR-78-122, Volume 1, Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio, March 1978.

This page intentionally left blank.

BIBLIOGRAPHY

Anderson, Mark R., and David K. Schmidt, Closed-Loop Pilot Vehicle Analysis of the Approach and Landing Task, Journal of Guidance and Control, Vol. 10, No. 2, pp. 187 - 194, March-April 1987.

Arnold, J.D., An Improved Method of Predicting Aircraft Longitudinal Flying Qualities Based on the Minimum Pilot Rating Concept, AFIT Thesis GGC/MA/73-1, Wright-Patterson AFB, Ohio, Air Force Institute of Technology, June 1973.

Biezad, D.J., A Method of Predicting Pilot Rating for the Pitch Flying Qualities of Aircraft Flown on the Glide Slope, AFIT Thesis GA/MA/73A-1, Wright-Patterson AFB, Ohio, Air Force Institute of Technology, December 1973.

Bihrle, William, Jr., A Handling Qualities Theory for Precise Flight Path Control, AFFDL-TR-65-198, Wright-Patterson AFB, Ohio, Air Force Flight Dynamics Laboratory, June 1966.

DiDomenico, E.D., Study of Longitudinal Landing Flying Qualities Evaluation Using the Pilot Model Theory, AFIT Thesis GE/ENG/84D-14, Wright-Patterson AFB, Ohio, Air Force Institute of Technology, December 1984.

Hodgkinson, J., M. Page, J. Preston, and D. Gillette, Continuous Flying Quality Improvement - The Measure and the Payoff, AIAA-92-4327-CP, pp. 172 - 180.

Hodgkinson, John, Richard C. Snyder, and Rogers E. Smith, Equivalent System Verification and Evaluation of Augmentation Effects on Fighter Approach and Landing Flying Qualities, AFWAL-TR-81-3116, Volumes 1 & 2, Wright-Patterson AFB, Ohio, Air Force Flight Dynamics Laboratory, September 1981.

Hoh, Roger H., Thomas T. Myers, Irving L. Ashkenas, Robert F. Ringland, and Samuel J. Craig, *Development* of Flying Quality Criteria for Aircraft with Independent Control of Six Degrees of Freedom, AFWAL-TR-81-3027, Wright-Patterson AFB, Ohio, Air Force Flight Dynamics Laboratory, April 1981.

Manning, Clarke O., and Daniel Gleason, Flight Test Results using a Low Order Equivalent Systems Technique to Estimate Flying Qualities, AIAA-92-4425-CP, pp. 231-243.

Martz, J.J., D.J. Biezad, and E.D. DiDominico, Loop Separation Parameter: A New Metric for Landing Flying Qualities, Journal of Guidance and Control, Vol. 11, No. 6, pp. 535 - 541, November - December 1988.

Martz, J.J., Accurate Prediction of Longitudinal Flying Qualities for Landing Aircraft, AFIT Thesis GAE/ENG/87M-1, Wright-Patterson AFB, Ohio, Air Force Institute of Technology, March 1987.

McRuer, D.T., Irving L. Ashkenas, and C.L. Guerre, A Systems Analysis View of Longitudinal Flying Qualities, WADD-TR-60-43, January 1960.

Military Standard, Flying Qualities of Piloted Aircraft, MIL-STD-1797A, January 1990.

Mitchell, David G. and David H. Klyde, Reviews of the R. Smith and Bandwidth Criteria for the Prediction of Longitudinal Pilot-Induced Oscillations, Working Paper No. 1291-4, Hawthorne, California, Systems Technology, Inc., September 1993.

Mitchell, David G. and Roger H. Hoh, Concepts for a Mission-Oriented Flying Qualities Mil Standard, Technical Report No. 1279-1, Hawthorne, California, Systems Technology Inc., July 1990.

BIBLIOGRAPHY (Concluded)

Mitchell, David G., Roger H. Hoh, Development of a Unified Method to Predict Tendencies for Pilot-Induced Oscillations, WL-TR-95-3049, June 1995.

Mitchell, David G., Roger H. Hoh, Bimal L. Aponso, and David H. Klyde, Proposed Incorporation of Mission-Oriented Flying Qualities into MIL-STD-1797A, WL-TR-94-3162, October 1994.

Neal, T. Peter, and Rogers E. Smith, An In-Flight Investigation to Develop Control System Design Criteria for Fighter Airplanes, AFFDL-TR-70-74, Volumes 1 & 2, Wright-Patterson AFB, Ohio, Air Force Flight Dynamics Laboratory, December 1970.

Sarrafian, Shahan K., and Bruce G. Powers, Application of Frequency-Domain Flying Qualities Criteria to the Longitudinal Landing Task, Journal of Guidance and Control, Vol. 11, pp. 291 - 292, July - August 1988.

Smith, Rogers E., Effects of Control System Dynamics on Fighter Approach and Landing Longitudinal Flying *Qualities*, AFFDL-TR-78-122, Volume 1, Wright-Patterson AFB, Ohio, Air Force Flight Dynamics Laboratory, March 1978.

Woodcock, Robert J. and Douglas E. Drake, *Estimation of Flying Qualities of Piloted Airplanes*, AFFDL-TR-65-218, Wright-Patterson AFB, Ohio, Air Force Flight Dynamics Laboratory, April 1966.

APPENDIX A

TEST POINT MATRIX

This page intentionally left blank.

	Lower Order Equivalent System							
Aircraft Configuration	$\frac{\omega_{sp}}{(rad/sec^2)}$	ζ _{sp}	τ_{θ} (sec)	CAP [1/(g*sec ²)]	ω_{BWg} (rad/sec ²)	ω_{BWp} (rad/sec ²)	ω_{BW} (rad/sec ²)	τ _p (sec)
A	5.68	0.384	0.040	8.05	7.8	7.9	7.8	0.079
C2	4.97	0.632	0.075	6.16	6.7	6.8	6.7	0.084
D	5.40	0.290	0.080	7.27	6.1	6.1	6.1	0.077
Е	2.18	0.523	0.072	1.19	3.8	2.8	2.8	0.079
G	2.50	0.785	0.078	1.56	5.2	3.6	3.6	0.071
Н	2.29	0.967	0.070	1.31	2.3	3.8	2.3	0.074
I	3.28	0.830	0.085	2.68	3.0	5.1	3.0	0.071
J	1.44	0.214	0.066	0.52	2.1	1.7	1.7	0.078
K	1.44	0.555	0.066	0.52	3.2	1.4	1.9	0.082
Р	1.20	0.435	0.066	0.36	2.4	1.4	1.4	0.077

Table A1 SUMMARY OF FLIGHT TEST RESULTS FOR EACH VSS CONFIGURATION

Notes: 1. VSS - variable stability system

2. ω_{sp} - short period natural frequency

ζ_{sp} - short period damping ratio
 CAP - control anticipation parameter

5. τ_{θ} - lower order equivalent system time delay

6. ω_{BWg} - gain limited bandwidth

7. ω_{BWp} - phase limited bandwidth

8. ω_{BW} - bandwidth

9. τ_p - phase delay

Short Period Damping, ζ_{sp}

Table A2 TABULAR RESULTS PLOTTED USING THE CAP CRITERION FROM MIL-STD-1797A $(1/T_{\Theta_2} = 0.45, n/\alpha = 4.01)$

	Cooper-Harper Rating Levels			
Aircraft		Flight Test		
Configuration	Predicted	(based on statistical mode)		
A	2	3		
C2	2	2		
D	2	3		
E	1	1		
G	1	1		
Н	1	1		
I	1	2		
Ј	3	2		
K	1	1,2		
Р	1	3		

Notes: 1. CAP - control anticipation parameter

2. T_{Θ_2} - lower order equivalent system time delay

3. n/α - change in normal load factor due to a change in angle of attack

Bandwidth, ω_{BW} (radians/second)

Figure A2 Test Results Using Bandwidth Criterion From MIL-STD-1797A and Proposed Bandwidth With Dropback Criterion

Table A3 TABULAR RESULTS USING BANDWIDTH CRITERION FROM MIL-STD-1797A AND PROPOSED BANDWIDTH WITH DROPBACK CRITERION

		Cooper-Harper Rat	ing Levels
	Prec	licted	
Aircraft	Without	With	Flight Test
Configuration	Dropback	Dropback	(based on statistical mode)
A	2	2	3
C2	2	2	2
D	2	2	3
Е	1	2	1
G	1	2	1
Н	2	2	1
I	1	2	2
J	2	3	2
K	2	3	1,2
Р	2	3	3

Test Aircraft: VISTA - NF-16D Dates: 15 - 22 Sep 95 Configuration: Gear - DOWN, Speed Brake - OUT Data Source: Data Acquisition System (20 Hertz)

This page intentionally left blank.

.

....

APPENDIX B

PILOT COMMENT DATABASE SUMMARIES

(Note: Appendix B contains, in its entirety, the Variable Stability System Configuration Flight Test Summary Report and the Handling Qualities Level Prediction Correlation Summaries.)

This page intentionally left blank.

Have CAP VSS Configuration Flight Test Summary Report

06-Dec-95

Configuration I	D	Priority:	1	Actual SP Free	uency:	5.68	/	Actual S	P Damping	Ratio: 0.38	
-				Actual BW free	quency:	7.8	٦	fau P:	0.08		
A				Predicted FQ L	evels:	CAP:	2 8	3W: 2	BW with	DB: 3	
3.4 Mission	date:	15-Sep-95	Eval pilot	: (#1) Capt. Cl	nris McCa	nn					
Setup:	None.										
Feel system:	Extrem it's afta instrum	ely sensitive. Jus ched to a really ti ent panel.	st actuating ght bungee	the trim button of the trim button of the stick was	caused a s pulled b	pitch bol ack and	bble. H release	lad to sn ed it seer	nooth inputs. ns like it wo	Very springy stick, lik uld smack into the	ke
Handling qualities:	Pitch is operation	ratchety and jitte onal aircraft (i.e. i	ry. Nose to f this werer	racks in really sn n't a test), I'd sus	nall, high- pect a m	frequenc ajor fligh	cy motie It contro	ons arou ol maifun	nd the desire ction.	ed attitude. In any othe	er
Landing:	Pitch se	ensitivity not too r	noticeable i	n flare. Light tur	bulence ir	the fla	e caus	ed the no	ose to jiggle	around.	
	Appr	Landing zone	TD Firm	Criteria met	Fuel	A/S	AOA	Turb	Wind	VSS Trip and reas	on
	1	Desired	Soft	Desired	3,750	161	11	Light	220/6		
	2	Desired	Soft	Desired	3,500	160	11	Light	220/6		
	3	Desired	Soft	Desired	3,250	159	11	Light	240/7		
Cooper-Harper Ratin	g: 7	Notes on C-ł	ł: Highv ⊿	vorkload, deficie	ncies requ	iire impr	overne	nt.			
Recommendation	ns: Nor	ne	-								
4.4 Mission	n date:	16-Sep-95	Eval pilot	: (#2) Fit. Lt. J	ustin Pair	es		, , <u>.</u>	<u> </u>		
Setup:	1st & 2	nd: 1 dot high at l	MP. 3rd 1/	2 dot high.							
Feel system:	High fo	rces for maneuve	er.								
Handling qualities:	Plenty non line sustain	of trimming requir ear, not predictab ed control inputs	ed. Initial le. Aggres required (la	pitch sensitivity/k siveness only sli ag compensation	obble. Lightly exactly.	onger te ærbates	rm resp bobble	onse ve / pitch s	ry, very slow ensitivity. S	/ - large inputs required mooth-small initial/larg	d- je
Landing:	None										
	Appr	Landing zone	TD Firm	Criteria met	Fuel	A/S	AOA	Turb	Wind	VSS Trip and reas	on
	1	Go-Around	N/A	Neither	3,600			None	200/7		
	2	Neither	Soft	Neither	3,300	150	11	None	190/9		
	3	Adequate	Soft	Adequate	3,000	150	12	None	210/9		
Cooper-Harper Ratin	g: 7	Notes on C-I	H: Work	oad intolerably h	igh.						
Workload Ratir	ng: 8	PIO Rating:	4								
Recommendation	ns: Nor	ne									

41

5.5 Mission	n date: 1	6-Sep-95	Eval pilot	: (#3) Capt. Ma	ark Schaibl	e					
Setup:	None.										
Feel system:	Feel sys	stem good, but ha	armony wa	s bad due to hig	her long. st	ick forc	æs.				
Handling qualities: _	Aircraft the aircr was felt concent aggrava made th	exhibited a motio raft flight path did more in the seat tration in the flare ated the motions. ne A/C harder to o	on that was I not respor of the pan e, if you let Pilot had t control.	a cross between nd rapidly. The r ts than noticed in it get away from to be tight in the	n a pitch bo notion was n any attitu you, it wou loop with s	bble ar hard to de chai ild be d mall inj	nd a PIG o predic nge. Pi ifficult t puts to a	D. The s t and ha itch bobb o compe achieve e	tick seemed f rd to compen- le forced a gr nsate for. Ag desired criteri	to be v sate fo reat de igressi a. Tu	rery sensitive but rr. The motion al of veness rbulence definitely
Landing:	None.										
	Appr	Landing zone	TD Firm	Criteria met	Fuel	A/S	AOA	Turb	Wind	VSS	Trip and reason
	1	Go-Around	N/A	Neither	3,200			Light	230/16G2	\boxtimes	unknown
	2	Go-Around	N/A	Neither	3,100			Light	240/16G2		Tail hardover
	3	Desired	Soft	Desired	2,900	156	11	Light	220/16G2	님	
		Adequate	Soft	Adequate	2,600	152	11	Ligni	240/1892		
Setup: Feel system: Handling qualities:	Small, o None. Quick r	qiuck pitch oscilla esponse. Small	ation noted	as soon as I too there almost con	k control. stantly. St	ill poss	ible to g	get perfo	rmance with t	he bol	oble, but it was
Landing:	Externe lowering	htly there. The pit ely high worlkoad g the gains). Agg litude.	- Stopped gressivene	breathing in the ss did affect the	flare - extra task with g	eme co reater t	mpesat	tion in the cy to PIO	e smoothing t . Go-around	echnic becau	ue (backing off, se PIO inceased
	Appr	Landing zone	TD Firm	Criteria met	Fuel	A/S	AOA	Turb	Wind	vss	Trip and reason
	1	Adequate	Medium	Adequate	4,000	157	11	None	230/11		
	2	Go-Around	N/A	Neither	3,800			None	230/11	\boxtimes	Tail Limit, Safety
	3	Desired	Medium	Adequate	3,600	163	10	None	230/12		
Cooper-Harper Rati	ng: 8	Notes on C-	H: The g	o-around showe	ed a possib elv high be	le diver cause o	gent Pl	O putting	controllabilit	y in qu 1. The	estion. The configuration has
Workload Rat	ing: 8	PIO Rating:	4 major	deficiencies.	, ,				•		
Workload Rat	ing: 8	PIO Rating:	4 major	deficiencies.					·		

.....

.

-

8.3 Mission	n date:	18-Sep-95	Eval pilot	: (#2) Fit. Lt.	Justin Pain	es				
Setup:	Excelle	nt setups								
Feel system:	Initial s	ensitivity (very to	uchy) but h	igh forces for s	ustained/ste	ady sta	ate man	euver.		
Handling qualities:	Touchy out of l respon react q or any increas oscillat them -	r - pitch bobble (h oop to avoid aggr se was very sens uickly enough to o lead compensatio ed size of control ions were easy to they were non-div	igh frequen avating pito itive and tw control inpu on in the inp i input to ov excite with vergent.	cy/low amplitu th oscillations i itchy, sustaine ts to easily giv outs. Considen ercome sluggi a all but the sm	de) even wi n flare (resu d reponse w e desired pe able smooth sh sustained pothest con	ith smal lting in vas slug erforma ing of in d respon trol, one	ll inputs first ap gish - r nce, bu nputs / nse. Pe ce excit	- difficul proach "r not linear t the pitc lag-lead erforman ed furthe	t to avoid. S neither" perfi . In other w h sensitivity compensati ce not consi er aggressive	Strong tendency to stay ormance). While initial ords, the aircraft did not prevented a higher gain on with slow build up to istent. However, while the eness did not exacerbate
Landing:	None.							,		
	Appr	Landing zone	TD Firm	Criteria met	Fuel	A/S	AOA	Turb	Wind	VSS Trip and reason
	1	Neither	Soft	Neither	4,900	150	11	None	070/6	
	2	Desired	Soft	Desired	4,600	159	12	None	110/3	
	3	Desired	Soft	Desired	4,400	161	10	None	130/8	
Cooper-Harper Ratin	i g: 7	Notes on C-I	H: Workle	oad intolerably	high.					
Workload Rati	ng: 8	PIO Rating:	4							
Recommendatio	ns: Nor	ie		<u></u>						

06-D	ec-	95
------	-----	----

)	Priority:	3	Actual SP Freq	uency:	4.97		Actual S	P Damping R	atio: 0.63
<i>x</i> 1					Actual BW freq	uency:	6.7	٦	lau P:	0.08	
62					Predicted FQ L	evels:	CAP:	26	3W: 2	BW with I	DB: 2
3.6 Mis	ssion o	date: 1	5-Sep-95	Eval pilot	: (#1) Capt. Ch	ris McCa	nn				
Set	up: I	None.									
Feel syste	em: -	Pitch ax Displac	tis is jittery and b ement is slightly l	ouncy. Stid arge. Frict	ck forces really h ion and breakou	igh and re t are a bit	equire lo high.	ost of tri	mming.	Stick on a tigh	it, notchy bungee.
Handling qualiti	i es: l i	Low_free in pitch, diverger excursio	quency pitch bob but tends to ove nt. Control harm ons.	ble, excurs rshoot. Ag ony in offs	ions small but sl gressiveness ca et is poor due to	oppy and uses a pil pitch ove	controlla tch ratch rshoots	able. N net, pitc and rec	lotions o h rate is puiremen	lamped okay. not constant. nt for small inp	Response time is good PIO tendency is not uts to prevent
Landii	ng:	Control staircas	in the flare is pre e as the roundou	tty good, rr t/flare are i	nild pitch bobble nitiated.	encounter	red. No	t too toi	uchy in f	lare. Feels like	e stepping down a
		Appr	Landing zone	TD Firm	Criteria met	Fuei	A/S	AOA	Turb	Wind	VSS Trip and reason
	-	1	Desired	Soft	Desired	2,100	155	11	None	240/10	
		2	Desired	Soft	Desired	1,700	155	11	Light	220/12	
		3	Desired	Soft	Desired	1,500	152	11	None	220/14	
Recommend	lations	s: Non	e 	Eval pilot	: (#3) Capt. Ma	ark Schail	ble			<u></u>	
5.4 Mi: Set	ssion (up:	date: 1 None.	10-Sep-95	•	,						
5.4 Mix Set Feel syste	up:	date: 1 None. Stick is longitud	extremely sensit	ve to input enough stic	s. Can only use ck movement to o	fingertips determine	to fly.	No cont y.	trol harm	nony due to difi	frence in lateral and
5.4 Mi: Set Feel syste Handling qualiti	up: em:	date: 1 None. Stick is longitud Very ne a spring	extremely sensit inal forces. Not rvous aircraft. N board. Have to	ve to input enough stic ose is cont think way a	s. Can only use k movement to d inually darting up ahead of the A/C	fingertips determine o and dow to anticip	to fly. linearit n. Can pate requ	No cont y. 't place uiremer	rol ham nose wi nts beca	nony due to difi nere you want use if you need	frence in lateral and it and aircraft feels like I it now you won't get it
5.4 Mi: Set Feel syste Handling qualiti Landin	em:	date: 1 None. Stick is longitud Very ne a spring On last had to a	extremely sensit inal forces. Not vous aircraft. N board. Have to landing, every tir accept a long land	ve to input enough stic ose is cont think way a ne I tried to ling.	s. Can only use ck movement to o inually darting up ahead of the A/C o get in the loop t	fingertips determine o and dow to anticip o land, th	to fly. I linearity n. Can' pate requ e A/C w	No conf y. 't place uiremer rould ge	trol harm nose wi nts beca et squire	nony due to dif nere you want use if you need Ily and force m	frence in lateral and it and aircraft feels like I it now you won't get it e out of the loop, so l
5.4 Mi: Set Feel syste Handling qualiti Landin	em:	date: 1 None. Stick is longitud Very ne a spring On last had to a Appr	extremely sensit linal forces. Not rvous aircraft. N board. Have to landing, every tir accept a long land Landing zone	ve to input enough stic ose is cont think way a ne I tried to ling. TD Firm	s. Can only use of movement to d inually darting up ahead of the A/C o get in the loop t Criteria met	fingertips determine o and dow to anticip o land, th Fuel	to fly. Inearity n. Can bate requ e A/C w A/S	No conf y. 't place uiremer rould ge AOA	trol harm nose wi its beca it squirei Turb	nony due to dif nere you want use if you need lly and force m Wind	frence in lateral and it and aircraft feels like d it now you won't get if e out of the loop, so l VSS Trip and reasor
5.4 Mi: Set Feel syste Handling qualiti Landin	ssion (up: em: ies: 	date: 1 None. Stick is longitud Very ne a spring On last had to a Appr 1	extremely sensit inal forces. Not vous aircraft. N board. Have to landing, every tir accept a long land Landing zone Desired	ve to input enough stic ose is cont think way a ne I tried to ling. TD Firm Soft	s. Can only use k movement to o inually darting up ahead of the A/C o get in the loop t Criteria met Desired	fingertips determine o and dow to anticip o land, th Fuel 4,200	to fly. Inearity n. Can bate requ e A/C w A/S 162	No cont y. It place uiremer rould ge AOA 11	trol harm nose wi its beca it squire Turb Light	nony due to dif nere you want use if you need liy and force m <u>Wind</u> 240/18G2	frence in lateral and it and aircraft feels like I it now you won't get i e out of the loop, so l VSS Trip and reasor
5.4 Mi: Set Feel syste Handling qualiti Landin	ssion (up: em: ies: ng:	date: 1 None. Stick is longitud Very ne a spring On last had to a Appr 1 2	extremely sensit inal forces. Not vous aircraft. N board. Have to landing, every tir accept a long land Landing zone Desired Desired	ve to input enough stid ose is cont think way a ne I tried to ling. TD Firm Soft	s. Can only use inually darting up ahead of the A/C o get in the loop t Criteria met Desired Desired	fingertips determine o and dow to anticip o land, th Fuel 4,200 3,900	to fly. Inearity n. Can bate requ e A/C w A/S 162 163	No cont y. 't place uiremer rould ge AOA 11	trol ham nose wi hts beca it squirel Turb Light	nony due to dif nere you want use if you need lly and force m <u>Wind</u> 240/18G2 230/17G2	frence in lateral and it and aircraft feels like d it now you won't get i e out of the loop, so l VSS Trip and reasor
5.4 Mi: Set Feel syste Handling qualiti Landin	ssion (up: em: ies: ng:	date: 1 None. Stick is longitud Very ne a spring On last had to a Appr 1 2 3	extremely sensit inal forces. Not vous aircraft. N board. Have to landing, every tir accept a long land Landing zone Desired Desired Neither	ve to input enough stic ose is cont think way a ne I tried to ling. TD Firm Soft Soft	s. Can only use inually darting up ahead of the A/C o get in the loop t Criteria met Desired Desired Neither	fingertips determine o and dow to anticip o land, th Fuel 4,200 3,900 3,600	to fly. Inearity n. Can bate requ e A/C w A/S 162 163 165	No cont y. It place uiremer vould ge AOA 11 11	trol ham nose wi its beca it squire Turb Light Light Light	hony due to difference you want use if you need lly and force m Wind 240/18G2 230/17G2 230/16G2	frence in lateral and it and aircraft feels like d it now you won't get i e out of the loop, so l VSS Trip and reasor
5.4 Mi Set Feel syste Handling qualiti Landin Cooper-Harper F	ssion (up: 1 ies: 1 ies: 1 iag: 1 Rating	date: 1 None. Stick is longitud Very ne a spring On last had to a Appr 1 2 3 : 6	extremely sensit inal forces. Not rvous aircraft. N board. Have to landing, every tir accept a long land Landing zone Desired Desired Neither Notes on C-H	ve to input enough stic ose is cont think way a ne I tried to ting. TD Firm Soft Soft Soft	s. Can only use inually darting up ahead of the A/C o get in the loop t Criteria met Desired Desired Neither deficiencies.	fingertips determine o and dow to anticip o land, th Fuel 4,200 3,900 3,600	to fly. Inearity n. Can bate requ e A/C w A/S 162 163 165	No cont y. 't place uiremer rould ge AOA 11 11 11	trol harm nose wi hts beca tt squire Turb Light Light Light	nony due to dif nere you want use if you need lly and force m <u>Wind</u> 240/18G2 230/17G2 230/16G2	frence in lateral and it and aircraft feels like d it now you won't get i e out of the loop, so l VSS Trip and reasor
5.4 Mi: Set Feel syste Handling qualiti Landii Landii Workload	up: em: ies: ng:	date: 1 None. Stick is longitud Very ne a spring On last had to a Appr 1 2 3 : 6 ; 8	extremely sensiti inal forces. Not of rvous aircraft. N board. Have to landing, every tir accept a long land Landing zone Desired Desired Neither Notes on C-F PIO Rating:	ve to input enough stic ose is cont think way a ne I tried to ling. TD Firm Soft Soft Soft Soft I: Major 3	s. Can only use k movement to d inually darting up ahead of the A/C get in the loop t Criteria met Desired Desired Neither deficiencies.	fingertips determine o and dow to anticip o land, th Fuel 4,200 3,900 3,600	to fly. linearit m. Can bate requ e A/C w A/S 162 163 165	No conf y. 't place uiremer rould ge AOA 11 11 11	trol harm nose wi hts beca tt squirei Turb Light Light Light	hony due to difference you want use if you need lay and force m Wind 240/18G2 230/17G2 230/16G2	frence in lateral and it and aircraft feels like d it now you won't get it e out of the loop, so I VSS Trip and reasor

10.2 Mission	n date:	19-Sep-95	Eval pilot	: (#3) Capt. M	ark Schaib	le				
Setup:	None.									
Feel system:	Longitu aggrav	idinal forces were ate the undesirea	no where ble motions	near in harmony 5.	with the la	teral. I	.ongitud	linal requ	iired fingerti	p inputs or it would
Handling qualities: -	Nervou you to more the describ competed to turbu	is aircraft, intial re back out of the lo nan you wanted a ned as a PIO but r insated for by anti ulence.	sponse is f op. On rou nd doesn't nore like a cipating fut	oo quick and un ndout for the flai allow you to pick bobble type effe ure requirements	predictable re you go t (the spot) ct. The m s in the flan	e. Can' o smoo ou war otion co re (think	t be to a thiy app at to put ould be a way a	aggressiv oly an inp the aircr damped head of a	e with the a but to flare a aft down on with the pilo ircraft). Aird	ircraft because it forces ind the aircraft gives you a. It could not be it in the loop and could be craft was more sensitive
Landing:	None.									
	Appr	Landing zone	TD Firm	Criteria met	Fuel	A/S	AOA	Turb	Wind	VSS Trip and reason
	1	Desired	Soft	Desired	2,800	156	11	None	010/3	
	2	Desired	Medium	Adequate	2,500	157	11	None	Calm	
	3	Desired	Soft	Desired	2,200	154	11	None	Calm	
Cooper-Harper Ratir	ng: 4	Notes on C-I	I: Flying	qualities and wo	orkload dro	ve my	ratings.			
Workload Ratin	ng: 4	PIO Rating:	3							
Recommendatio	ns: Noi	ne					<u></u>			

	D	Priority:	1	Actual SP Freq	uency:	5.4		Actual Si	P Damping R	atio: 0.03
-				Actual BW freq	uency:	6.1	٦	au P: 🛛	0.08	
U				Predicted FQ Lo	evels:	CAP:	2 6	3W: 2	BW with I	DB: 2
4.3 Mission	date: 1	6-Sep-95	Eval pilot:	: (#2) Fit. Lt. Ju	ustin Pain	es				
Setup:	Last 2 a	pproaches 1 dot	high at ma	neuver						
Feel system:	Light an	d sensitive for ini	itial pitch re	psonse, too hea	vy for long	g term r	espons	e.		
Handling qualities:	Pitch bo respons maneuv worse - backs fu loop thu followed	bble/sensitivity - e slow. Non-line er - the a/c does lots of smoothing urther out of loop is degrading tight by stronger sus	very difficu ar - small in n't give you o of inputs r and pitch t a/c contro tained input	It to prevent this nputs made beca what you expec- required. Howev bobble stops due and degrading t ts for maneuver	with nom ause of the t. Didn't 1 er, no clift to discon ask perfo (lag), bac	nal inpur e pitch s feel pred fs or div nfort of l rmance king out	ts. Initi sensitivi dictable rergent bobble . Comp t of loop	al respon ity result . Aggres PIO appa when clo bensation to preve	in insufficient siveness malarent. In final se to ground required: sn int bobble/PIC	sitive, longer term inputs for desired kes pitch sensitivity/PIC stages of flare, pilot - inputs here very oper noothing of initial inputs).
Landing:	Pitch bo	bble stops as pil	ot appears	to come out of the	ne loop in Fuel			Turb	Wind	VSS Trip and reaso
	Appr	Desired	Soft	Desired	4 600	157	12	None	210/7	
	ו ר	Desired	Soft	Desired	4 300	153	11	None	200/8	H
	2	Neither	Soft	Neither	4,000	153	10	None	210/7	Ħ
Workload Ratir Recommendation	ng: 7 ns: Non	PIO Rating:	4	maduity in quest	on withou	it compe	211541101	1.		
Workload Ratir Recommendation 7.2 Missior	ng: 7 ns: Non	PIO Rating: e 17-Sep-95	4 Eval pilot	: (#1) Capt. Ch	on wanou	nn				
Workload Ratir Recommendation 7.2 Missior Setup:	ng: 7 ns: Non n date: 1 None.	PIO Rating: e 17-Sep-95	4 Eval pilot	: (#1) Capt. Cf	on wanou nris McCa	nn				
Workload Ratir Recommendation 7.2 Mission Setup: Feel system:	ng: 7 ns: Non date: 1 None. Very se very tig freeplay	PIO Rating: e 17-Sep-95 ensitive in pitch and ht and feels like it y at all, displacerr	4 Eval pilot kis. Stick s t's attached rent too low	: (#1) Capt. Cf o sensitive that a d with a strong ru v. Requires lots	nris McCa actuating t bber bung of trimmir	nn the trim gee. He	button eavy sti	caused u ck forces forces re	indesirable pi during offset easonable.	tch bobbles. Stick is maneuvering. No
Workload Ratir Recommendation 7.2 Mission Setup: Feel system: Handling qualities:	g. 0 ng: 7 ns: Non date: 1 None. Very se very tig freeplay Pitch be around Enterin attentio	PIO Rating: PIO Rating: 17-Sep-95 Institute in pitch ab ht and feels like if y at all, displacem obble requires a l quite a bit with en g the loop tighter n to pitch control	4 Eval pilot kis. Stick s t's attached hent too low ot of conce very little in causes mo	: (#1) Capt. Ch o sensitive that a d with a strong ru w. Requires lots Intration, other pa put, but still cont re bobbles. Sm	actuating the second se	nn gee. He ig to ke ssched nd pred puts an	button eavy stick k fall ou ictable. d keepi	caused u ck forces forces r t. Pitch i High fre ng them	indesirable pi during offset easonable. response is to quency, low a small and not	tch bobbles. Stick is maneuvering. No po quick. Nose bounce amplitude bobble. t abrupt. Devoting lots
Workload Ratir Recommendation 7.2 Mission Setup: Feel system: Handling qualities: Landing:	g. o ng: 7 ns: Non date: 1 None. Very se very tig freeplay Pitch be around Enterinn attentio Forces quickly.	PIO Rating: PIO Rating: 17-Sep-95 Insitive in pitch ap ht and feels like if y at all, displacem obble requires a l quite a bit with er g the loop tighter n to pitch control get heavy in the Backed out of t	4 Eval pilot kis. Stick s t's attached nent too low ot of conce very little in causes mo flare but sti he loop to l	: (#1) Capt. Ch o sensitive that a d with a strong ru w. Requires lots intration, other pa put, but still cont ore bobbles. Sm ill able to control ceep nose motion	actuating the second se	nn gee. He issched nd pred puts an oint wel o a mini	button eavy stii ep stick k fall ou ictable. d keepi l. Spee imum.	caused L ck forces forces ro t. Pitch I High fre ng them	Indesirable pi during offset easonable. response is to quency, low a small and not y noticeable b	tch bobbles. Stick is maneuvering. No po quick. Nose bounce amplitude bobble. abrupt. Devoting lots put forces increase
Workload Ratir Recommendation 7.2 Mission Setup: Feel system: Handling qualities: Landing:	g. o ng: 7 ns: Non date: 1 None. Very se very tig freeplay Pitch bo around Entering attentio Forces quickly. Appr	PIO Rating: PIO Rating: 17-Sep-95 Insitive in pitch ap ht and feels like it y at all, displacent obble requires a l quite a bit with er g the loop tighter n to pitch control get heavy in the Backed out of the Landing zone	Eval pilot Eval pilot cis. Stick s t's attached hent too low ot of conce very little in causes mo fiare but sti he loop to l TD Firm	: (#1) Capt. Cf o sensitive that a d with a strong ru w. Requires lots intration, other pa put, but still cont ore bobbles. Sm ill able to control keep nose motion Criteria met	actuating f bber bung of trimmir arts of cro rollable a oothing in landing p ns down t Fuel	nn the trim gee. He isscheck nd pred puts an oint wel o a mini A/S	button eavy sti ep stick k fall ou ictable. d keepi I. Spee imum. AOA	caused u ck forces forces ro t. Pitch I High fre ng them ed stabilit	Indesirable pi during offset easonable. response is to quency, low a small and not y noticeable to Wind	tch bobbles. Stick is maneuvering. No oo quick. Nose bounce amplitude bobble. abrupt. Devoting lots out forces increase VSS Trip and reaso
Workload Ratir Recommendation 7.2 Mission Setup: Feel system: Handling qualities: Landing:	g. o ng: 7 ns: Non date: 1 None. Very se very tig freeplay Pitch bo around Entering attentio Forces quickly. Appr 1	PIO Rating: PIO Rating: 17-Sep-95 Insitive in pitch as ht and feels like if y at all, displacent obble requires a l quite a bit with er g the loop tighter n to pitch control get heavy in the Backed out of the Landing zone Adequate	Eval pilot Eval pilot dis. Stick s t's attached hent too low ot of conce very little in causes mo flare but sti he loop to l TD Firm Medium	: (#1) Capt. Cf o sensitive that a d with a strong ru w. Requires lots intration, other pa put, but still cont re bobbles. Sm ill able to control keep nose motion Criteria met Adequate	actuating f bber bung of trimmir arts of cro rollable a oothing in landing p ns down t Fuel 6,000	nn gee. He ng to ke sscheck nd pred puts an oint wel o a mini A/S 160	button eavy sti ep stick k fall ou ictable. d keepi II. Spee imum. AOA	caused u ck forces forces re t. Pitch fre ng them ed stabilit Turb Light	indesirable pi during offset easonable. response is to quency, low a small and not y noticeable to Wind 210/12	tch bobbles. Stick is maneuvering. No oo quick. Nose bounce amplitude bobble. abrupt. Devoting lots out forces increase VSS Trip and reaso
Workload Ratir Recommendation 7.2 Mission Setup: Feel system: Handling qualities: Landing:	g. o ng: 7 ns: Non date: 1 None. Very se very tig freeplay Pitch be around Enterin, attentio Forces quickly. Appr 1 2	PIO Rating: PIO Rating: 17-Sep-95 Institute in pitch at the and feels like in y at all, displacem obble requires a liquite a bit with en- g the loop tighter n to pitch control get heavy in the Backed out of the Landing zone Adequate Desired	4 Eval pilot kis. Stick s t's attached hent too low ot of conce very little in causes mo flare but sti he loop to l TD Firm Medium Soft	: (#1) Capt. Cf o sensitive that a d with a strong ru w. Requires lots intration, other pa put, but still cont re bobbles. Sm ill able to control keep nose motion Criteria met Adequate Desired	actuating t bber bung of trimmir arts of cro rollable a oothing in landing p ns down t Fuel 6,000 5,800	nn gee. He isscheck nd pred puts an oint wel o a mini A/S 160 163	button eavy sti ep stick k fall ou ictable. d keepi inum. AOA 11	caused u ck forces forces re t. Pitch i High fre ng them ed stabilit Turb Light None	indesirable pi during offset easonable. response is to quency, low a small and not y noticeable to <u>Wind</u> 210/12 240/12G1	tch bobbles. Stick is maneuvering. No oo quick. Nose bounce amplitude bobble. t abrupt. Devoting lots but forces increase VSS Trip and reaso
Workload Ratir Recommendation 7.2 Mission Setup: Feel system: Handling qualities: Landing:	g. o ng: 7 ns: Non date: 1 None. Very se very tig freeplay Pitch bo around Enterina attentio Forces quickly. 1 2 3	PIO Rating: PIO Rating: 17-Sep-95 Institute in pitch at the and feels like in y at all, displacem obble requires a l quite a bit with er g the loop tighter n to pitch control get heavy in the Backed out of the Landing zone Adequate Desired	4 Eval pilot kis. Stick s t's attached hent too low ot of conce very little in causes mo flare but sti he loop to l TD Firm Medium Soft	: (#1) Capt. Cf o sensitive that a d with a strong ru w. Requires lots intration, other pa put, but still cont re bobbles. Sm ill able to control keep nose motion Criteria met Adequate Desired Desired	actuating t bber bung of trimmir arts of cro rollable a oothing in landing p ns down t Fuel 6,000 5,800 5,500	nn gee. He isscheck nd pred isscheck nd pred o a mini A/S 160 163 166	button eavy sti ep stick k fall ou ictable. d keepi inum. AOA 11 11	caused u ck forces forces re t. Pitch I High fre ng them ed stabilit Turb Light None None	indesirable pi during offset easonable. response is to quency, low a small and not y noticeable to Wind 210/12 240/12G1 230/14G1	tch bobbles. Stick is maneuvering. No oo quick. Nose bounce amplitude bobble. t abrupt. Devoting lots but forces increase VSS Trip and reaso
Workload Ratir Recommendation 7.2 Mission Setup: Feel system: Handling qualities: Landing: Cooper-Harper Ratin	g. o ng: 7 ns: Non date: 7 None. Very se very tig freeplay Pitch bo around Entering attentio Forces quickly. <u>Appr</u> 1 2 3 mg: 7	PIO Rating: PIO PIO PIO PIO PIO PIO PIO PIO PIO PIO	Eval pilot Eval pilot cis. Stick s t's attached tent too low ot of conce very little in causes mo fiare but sti he loop to l TD Firm Medium Soft Soft H: Pilot c	: (#1) Capt. Cf o sensitive that a d with a strong ru w. Requires lots intration, other pa put, but still cont ore bobbles. Sm ill able to control keep nose motion Criteria met Adequate Desired Desired Desired	actuating t bber bung of trimmir arts of cro rollable a oothing in landing p hs down t Fuel 6,000 5,800 5,500 b high, ma	nn the trim gee. He issched nd pred puts an oint wel o a mini A/S 160 163 166	button eavy sti ep stick k fall ou ictable. d keepi inum. AOA 11 11 11	caused L ck forces forces r t. Pitch I High fre ng them ed stabilit Turb Light None None	Indesirable pi during offset easonable. response is to quency, low a small and not y noticeable to Wind 210/12 240/12G1 230/14G1	tch bobbles. Stick is maneuvering. No po quick. Nose bounce amplitude bobble. abrupt. Devoting lots put forces increase VSS Trip and rease
Workload Ratir Recommendation 7.2 Mission Setup: Feel system: Handling qualities: Landing: Cooper-Harper Ratin Workload Ratin	g. o ng: 7 ns: Non date: 1 None. Very se very tig freeplay Pitch bo around Enterina attentio Forces quickly. <u>Appr</u> 1 2 3 mg: 7 ng: 7	PIO Rating: PIO PIO PIO PIO PIO PIO PIO PIO PIO PIO	4 Eval pilot kis. Stick s t's attached hent too low ot of conce very little in causes mo flare but sti he loop to l TD Firm Medium Soft Soft -1: Pilot c 4	: (#1) Capt. Cf o sensitive that a d with a strong ru w. Requires lots intration, other pa put, but still cont ore bobbles. Sm ill able to control keep nose motion Criteria met Adequate Desired Desired Desired	actuating t bber bung of trimmir arts of cro rollable a oothing in landing p ns down t Fuel 6,000 5,800 5,500 b high, ma	nn the trim gee. He osscheck nd pred puts an oint wel o a mini A/S 160 163 166 ajor defi	button eavy sti ep stick k fall ou ictable. d keepi inum. AOA 11 11 11 11	caused u ck forces forces re High fre ng them ed stabilit Turb Light None None	indesirable pi during offset easonable. response is to quency, low a small and not y noticeable to Wind 210/12 240/12G1 230/14G1	tch bobbles. Stick is maneuvering. No oo quick. Nose bounce amplitude bobble. t abrupt. Devoting lots but forces increase VSS Trip and reaso

.

....

.

•

-

8.4 Missior	n date:	18-Sep-95	Eval pilot:	(#2) Flt. Lt. J	ustin Paine	s				
Setup:	Excelle	nt setups								
Feel system:	Non-lin	ear - too light for i	nitial pitch i	response, too h	eavy for su	stained	•			
Handling qualities: -	Twitchy high fre resulted reduce Oversh were ea compar configu worse i	v and pitch sensiti quency pitch osci d in inadequate re excitation of pitch oot and high alph asy to excite, once red to the last con ration (8.4) was n n the sluggishnes	ve - but not illations. Si sponse for o oscillation a excursior e excited fu figuration (i ot as bad in s of sustair	excited just by ubsequent slugg easy achievem s followed by in- n on lateral offsee inther aggressive test point 8.3), s n the high frequence and maneuver re	resting har gishness in ent of desir creased siz et correction eness did r ince many ency pitch s esponse.	nd on st sustain ed perf e of inp n due to of exac of my o sensitiv	ick, onl ned rep formanc out to c o sluggi cornate commen ity/osci	y by delit sonse - n æ. Comp ompensa sh respor them - th nts (and t llations (r	perate contr onlinear. S wensation: s te for sluggi nse. Howev ey were no he ratings t not as twitch	ol inputs - low amplitude luggish response moothing and lag to ish response (lag-lead). ver, while the oscillations n-divergent. Note: as below) are similar, this hy), but was as bad or
Landing:	None.									
	Appr	Landing zone	TD Firm	Criteria met	Fuel	A/S	AOA	Turb	Wind	VSS Trip and reason
	1	Desired	Soft	Desired	4,000	160	10	None	330/5	
	2	Desired	Soft	Desired	3,700	150	11	None	040/6	
	3	Adequate	Soft	Adequate	3,400	160	10	None	050/6	
Cooper-Harper Ratin	ig: 7	Notes on C-F	i: Workle	oad intolerably h	igh.					
Workload Rati	ng: 7	PIO Rating:	4							
Recommendatio	ns. Nor	16								
										·····
9.3 Mission	n date:	18-Sep-95	Eval pilot	: (#4) Capt. N	ils Larson					
Setup:	Small r easily.	nedium rate pitch With aft stick the	oscillation oscillations	noted with the p s were more pre	pilot in the l valent.	oop. W	lith form	ard pres	sure the os	cillations were dampened
Feel system:	None.									
Handling qualities:	Aggres phase. phase	siveness incease seemed like a p with a quick pitch	d the ampli ossible tim input. Slig	itude of the pitch e delay or slow htly sensitive, b	n bobble, b initail input ut motions	ut backi followe were pi	ing off t ed by a redictat	the gain v quick ste ple.	vould quickl ady state.	y smooth it out. Out of Able to get 180 out of
Landing:	Smootl roundo off the	hing inputs were r ut, while the flare gain.	nore open l still had so	loop to arrest the me but they we	e PIO. PIC re lower an) notice nplitude	d more . It wa	during ag s slightly	ggressive m sensitive bu	aneuvers like the ut improved when backing
	Appr	Landing zone	TD Firm	Criteria met	Fuel	A/S	AOA	Turb	Wind	VSS Trip and reason
	1	Desired	Medium	Adequate	4,100	165	11	None	010/5	
	2	Desired	Soft	Desired	3,700	157	11	None	Calm	
	3	Adequate	Soft	Adequate	0	164	10	None	350/4	
Cooper-Harper Ratir	ng: 7	Notes on C-I	l: Worlo	ad was high and	the defici	encies r	require	improven	nent. Contr	ollability was not in
Workload Rati	ng: 7	PIO Rating:	questi 4	on.						
Recommendatio	ns: No	ne								

47

v .

E		Priority:	1	Actual SP Freq	uency:	2.18	ŀ	Actual S	P Damping R	tatio: 0.52
				Actual BW free	uency:	2.8	1	au P:	0.08	
				Predicted FQ L	evels:	CAP:	1 E	3 W: 1	BW with I	DB: 2
4.1 Mission	date:	16-Sep-95	Eval pilot	: (#2) Fit. Lt. J	ustin Pain	es				
Setup:	Excelle	nt								
Feel system:	Good									
Handling qualities:	Good, s both-ini	smooth control. S tial and long term	Small pitch I . High gair	bobble noted en control no prob	couraging lem -aggr	minima essiven	l smoot ess doe	hing of i is not ef	nputs. Predic fect HQ.	table, good response
Landing:	None									
	Appr	Landing zone	TD Firm	Criteria met	Fuel	A/S	AOA	Turb	Wind	VSS Trip and reason
	1	Adequate	Soft	Adequate	6,800	170	11	None	200/5	
	2	Desired	Medium	Adequate	6,500	160	12	None	200/5	
	3	Desired	Soft	Desired	6,000	160	11	None	210/6	
Cooper-Harper Ratin	g: 2	Notes on C-H	l: Very s	light pitch bobble	e noted or	n a coup	le of ap	proache	s	
Workload Ratin	ia: 1	PIO Rating:	2							
Workloud Rudin	·9· ·	i to tuality.	-							
Recommendation	ns: Nor	16		······						
5.6 Mission	date:	16-Sep-95	Eval pilot	: (#3) Capt. Ma	ark Schait	ole				
Setup:	None.									
Feel system:	Good o	control harmony o	bool							
Handling qualities:	Venuar	od handling char	actaristics	Ditch was eligh	thy elugaie	h (not a	s crisn	as I woi	ud like) but no	t objectionable. Overa
nandling qualities.	good A	/C.	auensucs.	Filler was slight	tiy siuggis	n (not a	s crisp	431 100	no inter but no	
Landing:	Touchd	iown on first landi	na occurre	d at the same m	oment IP	tripped o	off syste	em. Sho	ould not affect	rating.
	Annr	l anding zone	TD Firm	Criteria met	Fuel	A/S	AOA	Turb	Wind	VSS Trip and reasor
										•
	1	Desired	Soft	Desired	2 300	147	13	Liaht	230/17G2	AOA limit
	1	Desired Desired	Soft Soft	Desired Desired	2,300 2,100	147 155	13 10	Light Light	230/17G2 220/19G2	AOA limit
	1 2 3	Desired Desired Desired	Soft Soft Soft	Desired Desired Desired	2,300 2,100 1,900	147 155 155	13 10 11	Light Light Light	230/17G2 220/19G2 220/17G2	AOA limit
Cooper-Harner Ratin	1 2 3	Desired Desired Desired	Soft Soft Soft	Desired Desired Desired	2,300 2,100 1,900	147 155 155	13 10 11	Light Light Light	230/17G2 220/19G2 220/17G2	AOA limit
Cooper-Harper Rating	1 2 3 g: 2	Desired Desired Desired Notes on C-H	Soft Soft Soft	Desired Desired Desired	2,300 2,100 1,900	147 155 155	13 10 11	Light Light Light	230/17G2 220/19G2 220/17G2	AOA limit
Cooper-Harper Ratin Workload Ratin	1 2 3 g: 2 ng: 2	Desired Desired Desired Notes on C-H PIO Rating:	Soft Soft Soft I: 1	Desired Desired Desired	2,300 2,100 1,900	147 155 155	13 10 11	Light Light Light	230/17G2 220/19G2 220/17G2	AOA limit
Cooper-Harper Ratin Workload Ratin Recommendatior	1 2 3 g: 2 ng: 2 ns: Non	Desired Desired Notes on C-H PIO Rating: Ne	Soft Soft 1: 1	Desired Desired Desired	2,300 2,100 1,900	147 155 155	13 10 11	Light Light Light	230/17G2 220/19G2 220/17G2	AOA limit
Cooper-Harper Ratin Workload Ratin Recommendatior 10.3 Mission	1 2 3 g: 2 ng: 2 ns: Nor	Desired Desired Notes on C-H PIO Rating: ne 19-Sep-95	Soft Soft I: 1 Eval pilot	Desired Desired Desired : (#3) Capt. Ma	2,300 2,100 1,900	147 155 155	13 10 11	Light Light Light	230/17G2 220/19G2 220/17G2	AOA limit
Cooper-Harper Ratin Workload Ratin Recommendatior 10.3 Mission Setup:	1 2 3 g: 2 ng: 2 ns: Non	Desired Desired Notes on C-H PIO Rating: ne 19-Sep-95	Soft Soft I: 1 Eval pilot	Desired Desired : (#3) Capt. Ma	2,300 2,100 1,900	147 155 155	13 10 11	Light Light Light	230/17G2 220/19G2 220/17G2	AOA limit
Cooper-Harper Ratin Workload Ratin Recommendatior 10.3 Mission Setup: Feel system:	1 2 3 g: 2 ng: 2 ns: Non date: None. Very go	Desired Desired Notes on C-H PIO Rating: ne 19-Sep-95	Soft Soft 1 Eval pilot noted.	Desired Desired : (#3) Capt. Ma	2,300 2,100 1,900	147 155 155	13 10 11	Light Light Light	230/17G2 220/19G2 220/17G2	AOA limit
Cooper-Harper Ratin Workload Ratin Recommendatior 10.3 Mission Setup: Feel system: Handling qualities:	1 2 3 g: 2 ng: 2 ns: Non date: None. Very go Found	Desired Desired Notes on C-H PIO Rating: ne 19-Sep-95 bod, no problems no identifiable HC	Soft Soft Soft 1 Eval pilot noted.	Desired Desired : (#3) Capt. Ma es with this aircr	2,300 2,100 1,900	147 155 155	13 10 11	Light Light Light	230/17G2 220/19G2 220/17G2	AOA limit
Cooper-Harper Ratin Workload Ratin Recommendatior 10.3 Mission Setup: Feel system: Handling qualities: Landing:	1 2 3 g: 2 ng: 2 ns: Non date: None. Very go Found	Desired Desired Notes on C-H PIO Rating: ne 19-Sep-95 bod, no problems no identifiable HC	Soft Soft 1 Eval pilot noted.	Desired Desired : (#3) Capt. Ma es with this aircra	2,300 2,100 1,900 ark Schait	147 155 155 ole	13 10 11	Light Light Light	230/17G2 220/19G2 220/17G2	AOA limit
Cooper-Harper Ratin Workload Ratin Recommendatior 10.3 Mission Setup: Feel system: Handling qualities: Landing:	1 2 3 g: 2 ng: 2 ns: Non date: 7 None. Very go Found Last tw feet sho	Desired Desired Desired Notes on C-H PIO Rating: ne 19-Sep-95 no identifiable HC o landings I tried or on my last two	Soft Soft 1 1 Eval pilot noted. A deficiencie to land just landings.	Desired Desired : (#3) Capt. Ma es with this aircra after the desired	2,300 2,100 1,900 ark Schait	147 155 155 ole	13 10 11	Light Light Light	230/17G2 220/19G2 220/17G2	AOA limit
Cooper-Harper Ratin Workload Ratin Recommendatior 10.3 Mission Setup: Feel system: Handling qualities: Landing:	1 2 3 g: 2 ng: 2 ns: Non date: 7 None. Very go Found Last tw feet sho Appr	Desired Desired Desired Notes on C-H PIO Rating: ne 19-Sep-95 bod, no problems no identifiable HC o landings I tried ort on my last two Landing zone	Soft Soft Soft 1 Eval pilot noted. deficiencie to land just landings. TD Firm	Desired Desired : (#3) Capt. Ma es with this aircra after the desired Criteria met	2,300 2,100 1,900 ark Schait aft. d entry bo Fuel	147 155 155 ole x line to A/S	13 10 11 drive u AOA	Light Light Light p gains, Turb	230/17G2 220/19G2 220/17G2 unfortunately, Wind	AOA limit
Cooper-Harper Rating Workload Ratin Recommendatior 10.3 Mission Setup: Feel system: Handling qualities: Landing:	1 2 3 g: 2 ng: 2 ns: None date: 7 None. Very go Found Last tw feet sho Appr 1	Desired Desired Desired Notes on C-H PIO Rating: ne 19-Sep-95 bod, no problems no identifiable HC o landings I tried ort on my last two Landing zone Desired	Soft Soft Soft 1 Eval pilot noted. A deficiencient to land just landings. TD Firm Soft	Desired Desired Desired : (#3) Capt. Ma es with this aircr after the desired Criteria met Desired	2,300 2,100 1,900 ark Schait aft. d entry bo Fuei 1,900	147 155 155 ole x line to A/S 156	13 10 11 drive u AOA 11	Light Light Light Turb None	230/17G2 220/19G2 220/17G2 unfortunately, Wind 010/5	AOA limit
Cooper-Harper Ratin Workload Ratin Recommendatior 10.3 Mission Setup: Feel system: Handling qualities: Landing:	1 2 3 g: 2 ng: 2 ns: Non date: None. Very go Found Last tw feet sho Appr 1 2	Desired Desired Desired Notes on C-H PIO Rating: ne 19-Sep-95 bod, no problems no identifiable HC o landings I tried ort on my last two Landing zone Desired Adequate	Soft Soft Soft 1 Eval pilot noted. A deficiencient to land just landings. TD Firm Soft Soft	Desired Desired Desired : (#3) Capt. Ma es with this aircra after the desired Criteria met Desired Adequate	2,300 2,100 1,900 ark Schait aft. d entry bo Fuel 1,900 1,700	147 155 155 ole x line to A/S 156 153	13 10 11 drive u AOA 11 11	Light Light Light Turb None None	230/17G2 220/19G2 220/17G2 220/17G2 Wind 010/5 340/5	AOA limit
Cooper-Harper Ratin Workload Ratin Recommendatior 10.3 Mission Setup: Feel system: Handling qualities: Landing:	1 2 3 g: 2 ng: 2 ns: Non date: 1 None. Very go Found Last tw feet sho Appr 1 2 3	Desired Desired Desired Notes on C-H PIO Rating: ne 19-Sep-95 no identifiable HC o landings I tried or on my last two Landing zone Desired Adequate Adequate	Soft Soft Soft 1 Eval pilot noted. deficiencie to land just landings. TD Firm Soft Soft	Desired Desired Desired : (#3) Capt. Ma es with this aircra after the desired Criteria met Desired Adequate Adequate	2,300 2,100 1,900 ark Schait aft. d entry bo Fuel 1,900 1,700 1,400	147 155 155 ole x line to A/S 156 153 153	13 10 11 drive u AOA 11 11 11	Light Light Light Sains, Turb None None None	230/17G2 220/19G2 220/17G2 220/17G2 Wind 010/5 340/5 360/3	AOA limit
Cooper-Harper Ratin Workload Ratin Recommendatior 10.3 Mission Setup: Feel system: Handling qualities: Landing:	1 2 3 g: 2 ng: 2 ns: Non date: 7 None. Very go Found Last tw feet sho Appr 1 2 3 g: 1	Desired Desired Desired Notes on C-H PIO Rating: ne 19-Sep-95 bod, no problems no identifiable HC o landings I tried ort on my last two Landing zone Desired Adequate Adequate Notes on C-H	Soft Soft Soft 1 Eval pilot Noted. A deficiencia to land just landings. TD Firm Soft Soft Soft Soft	Desired Desired Desired : (#3) Capt. Ma es with this aircra after the desired Criteria met Desired Adequate Adequate Adequate irkload.	2,300 2,100 1,900 ark Schait aft. d entry bo Fuel 1,900 1,700 1,400	147 155 155 ole x line to A/S 156 153 153	13 10 11 drive u AOA 11 11 11	Light Light Light None None None	230/17G2 220/19G2 220/17G2 220/17G2 Wind 010/5 340/5 360/3	AOA limit
Cooper-Harper Ratin Workload Ratin Recommendatior 10.3 Mission Setup: Feel system: Handling qualities: Landing: Cooper-Harper Rating Workload Ratin	1 2 3 g: 2 ng: 2 ns: Non date: - None. Very go Found Last tw feet sho Appr 1 2 3 g: 1 hg: 1	Desired Desired Desired Notes on C-H PIO Rating: ne 19-Sep-95 bod, no problems no identifiable HC o landings I tried ort on my last two Landing zone Desired Adequate Adequate Notes on C-H PIO Rating:	Soft Soft Soft 1 Eval pilot noted. A deficiencia to land just landings. TD Firm Soft Soft Soft Soft Soft	Desired Desired Desired : (#3) Capt. Ma es with this aircra after the desired Criteria met Desired Adequate Adequate Adequate rkload.	2,300 2,100 1,900 ark Schait aft. d entry bo Fuel 1,900 1,700 1,400	147 155 155 ole x line to A/S 156 153 153	13 10 11 41 41 AOA 11 11 11	Light Light Light Turb None None	230/17G2 220/19G2 220/17G2 220/17G2 Wind 010/5 340/5 360/3	AOA limit AOA limit AOA limit STrip and reason

.

-

-

Configuration		Priority:	1	Actual SP Free	uency:	2.5		Actual SI	^o Damping	Ratio: 0.79
,onngulation i	0	•		Actual BW free	uency:	36		Tau P: 0	0.07	
G					uency.	0.0				
•				Predicted FQ L	evels:	CAP:	1	BW: 1	BW with	1 DB: 1
6.1 Missior	n date: 1	7-Sep-95	Eval pilot	: (#4) Capt. Ni	s Larson					
Setup:	None.									
Feel system:	None.									
Handling qualities:	Felt slig Predicta	htly heavy and re able.	sponse mi	ght have been a	little slow	r. Quick	er resp	onse mig	ht have mad	de task easier.
Landing:	Early po techniqu that initi	ower reduction ma ue. Needed to he ial response was	ade for ade old it off mo a little slov	equate touchdow ore. Trying to be v.	ns. Felt (too smoo	desired o oth. Cou	could h uld be t	ave been hat the ai	reached wit rcraft was he	th proper power eavyweight or could be
	Appr	Landing zone	TD Firm	Criteria met	Fuel	A/S	AOA	Turb	Wind	VSS Trip and reason
	1	Adequate	Soft	Adequate	6,800	169	10	None	240/10	
	2	Desired	Soft	Desired	6,500		11	None	240/10	
	3	Adequate	Soft	Adequate	6,200		11	None	240/10	Ē
Recommendatio	ns: Non	e						<u> </u>		
7.1 Mission	n date: 1	17-Sep-95	Eval pilot	: (#1) Capt. Cl	nns McCa	nn				
Setup:	First lar	nding short of Ade	equate due	to a/c weight an	d winds.					
Feel system:	Good p	itch sensitivity, ni	ce feel and	l displacement.						
Handling qualities:	Exceller Aggress	nt pitch precision siveness not a fa	. No tende ctor, harmo	ncy to overshoo ony excellent. No	t or bobbl o conscio	e. Good us comp	d resist pensati	ance to u on require	pset due to t ed.	turbulence.
Landing:	Very go	od control in the	flare. Cou	ld put the aircraf	right in t	he Desir	ed box	with con	sistency.	
	Appr	Landing zone	TD Firm	Criteria met	Fuel	A/S	AOA	Turb	Wind	VSS Trip and reaso
	1	Neither	Medium	Neither	6,700	162	12	None	220/10	
	2	Desired	Soft	Desired	6,500	167	11	Light	230/11	
	3	Desired	Soft	Desired	6,300	166	11	None	210/12	
Cooper-Harper Ratin	ig: 1	Notes on C-H	I: Excell	ent response all	the way a	around.	Great	jet.		
Workload Ratii	ng: 1	PIO Rating:	1							
Recommendatio	ns: Cha	nge the F-16 FLC	S to this c	configuration.						

8.5 Mission	date: 1	8-Sep-95	Eval pilot:	(#2) Fit. Lt. Ju	istin Paine	s				
Setup:	Exceller	nt setups								
Feel system:	About ri	ght to slightly hea	avy.							
Handling qualities:	Solid - s mushing sluggist does no	table. No undes ess/lagginess - th ness. No PIO of t effect HQ. Goo	irable motic lough initial r bobble. A od consister	ns, predictable, nose movement OA excursion or ncy.	linear. Re t response n offset con	esponse good. rrection	e slightly Modera due to	y slow for ate lead / mushine	r sustained/ anticipatio ss of respo	maneuver. Slight n to compensate for nse. Aggressiveness
Landing:	None.									
	Appr	Landing zone	TD Firm	Criteria met	Fuel	A/S	AOA	Turb	Wind	VSS Trip and reason
	1	Desired	Soft	Desired	3,200	160	10	None	360/3	
	2	Desired	Soft	Desired	2,900	157	11	None	060/3	
	3	Desired	Medium	Adequate	2,700	151	10	None	060/3	
Cooper-Harper Ratin	g: 4	Notes on C-H	l: Moder	ate compensatio	on for desi	red.				
Workload Ratin	ng: 5	PIO Rating:	1							
Recommendatio	ns: Nor	e								
10.1 Mission	n date:	19-Sep-95	Eval pilot	: (#3) Capt. Ma	ark Schaib	le				
Setup:	None.									
Feel system:	Sluggis	h response of air	craft seeme	ed to aggravate t	he high st	ick forc	es. Goo	od contro	l harmony.	
Handling qualities:	Aircraft the airc	was slightly slug raft seemed to be	gish. 1 like e sluggish.	the aircraft to re Overall a good I	spond mo handling a	re quick ircraft.	dy to m	y inputs.	The more	aggressive I got the more
Landing:	First tw	o landings were p	pilot error d	ue to early powe	r reduction	ns and i	insuffici	ent flare.		
	Appr	Landing zone	TD Firm	Criteria met	Fuel	A/S	AOA	Turb	Wind	VSS Trip and reason
	1	Go-Around	N/A	Neither	4,200			None	350/3	intentional go aroun
	2	Adequate	Soft	Adequate	3,900	156	11	None	350/3	
	3	Go-Around	N/A	Neither	3,700			None	020/4	🔀 aircraft on runway
	4	Neither	Soft	Neither	3,400	156	11	None	020/4	
	5	Desired	Soft	Desired	3,100	165	10	None	020/3	
	-									
Cooper-Harper Ratin	ng: 2	Notes on C-	H: Increa	sed workload dr	ove the C	H rating	j .			
Cooper-Harper Ratir Workload Rati	ng: 2 ng: 2	Notes on C-I PIO Rating:	H: Increa	sed workload dr	ove the C	H rating	j .			
Cooper-Harper Ratin Workload Rati Recommendatio	ng: 2 ng: 2 ins: Noi	Notes on C-I PIO Rating:	H: Increa	sed workload dr	ove the C	H rating	J.			

Configuration I	D	Priority:	1	Actual SP Freq	luency:	2.29	A	ctual SI	- Damping R	auo: 0.97
н				Actual BW freq	uency:	2.3	T	au P: 🛛	0.07	
п				Predicted FQ L	evels:	CAP:	1 E	SW: 1	BW with I	DB: 1
3.3 Missior	date: 1	15-Sep-95	Eval pilot	:: (#1) Capt. Ch	nris McCa	nn				
Setup:	None.									
Feel system:	Forces	average, maybe	a tad on th	e heavy side, go	od displae	cement.				
- Handling qualities:	Harmor pretty g	ny good. Pitch re ood configuratior	sponse feli 1.	t a little slow but	good com	imand a	uthority	. Felt the	way the F-16	should feel! Overall,
Landing:	Pitch sensivity okay in flare. Good pitch power with no tendency toward PIO. Able to get consistent landing attitude and airspeed/AOA control.									
	Appr	Landing zone	TD Firm	Criteria met	Fuel	A/S	AOA	Turb	Wind	VSS Trip and reason
	1	Adequate	Medium	Adequate	4,600	160	11	Light	160/7	
	2	Desired	Soft	Desired	4,350	156	11	None	100/5	
	3	Desired	Soft	Desired	4,100	151	12	Light	Calm	
Cooper-Harper Ratin	ig: 2	Notes on C-I	H: Minor	deficiency with p	oitch com	mand rat	te.			·····
Workload Rati	- ng: 3	PIO Rating:	1							
Recommendatio	ns: Nor	e								
5.1 Mission	n date:	16-Sep-95	Eval pilo	t: (#3) Capt. M	ark Schai	ble				
Setup:	None.									
Feel system:	Excelle	nt, control harmo	ny was ex	cellent						
					م به ما اما م	• - 6 • •	10 V-			(on prodictable No
Handling qualities:	Extrem	ely easy to put no reable characteris	ose where stics noted	you want it. Pow	er ala no	t anect r	ių, ve	iy goou i		very predictable. No
Landing:	Second	l landing was a m	nedium lan	ding due to a hig	h flare					
	Appr	Landing zone	TD Firm	Criteria met	Fuel	A/S	AOA	Turb	Wind	VSS Trip and reaso
	1	Desired	Soft	Desired	6,900	167	9	Light	230/12G2	
	2	Adequate	Medium	Adequate	6,500	165	11	Light	230/17G2	
	3	Desired	Soft	Desired	6,200	167	10	Light	230/15G2	
Cooper-Harper Ratir	ng: 1	Notes on C-	H:							
Workload Rati	ng: 1	PIO Rating:	1							
Recommendatio	ns: Nor	ne								
6.5 Missio	n date:	17-Sep-95	Eval pilo	t: (#4) Capt. N	ils Larson					
Setup:	None.									
Feel system:	None.									
Handling qualities:	Handle quick.	s relatively well.	Quick resp	oonse (then poss	ibly slowi	ng slight	ly in ste	eady stat	e). Predictab	le, maybe a little too
Landing:	Slight s	moothing, avera	ging the in	outs.						
	Appr	Landing zone	TD Firm	Criteria met	Fuel	A/S	AOA	Turb	Wind	VSS Trip and reaso
	1	Desired	Soft	Desired	3,300	162	11	None	220/11	
	2	Desired	Soft	Desired	3,000	158	11	None	250/13	Ō
	3	Desired	Soft	Desired	2,800	157	11	None	240/9	
Cooper-Harper Ratio	ng: 3	Notes on C-	H: Smoo	othing inputs con	sidered m	ninimal p	ilot com	pensatio	on. The quick	response was mildly
Workload Pati	na. 3	PIO Rating	unple 1	asant.						
		-	-							
Decommond-4:-										

Configuration	ID	Priority:	1	Actual SP Freq	uency:	3.28	A	ctual S	P Damping	Ratio:	0.83
				Actual BW free	uency: 3	3	Т	au P:	0.07		
I				Predicted FQ L	evels: (CAP:	1 E	SW: 1	BW with	DB:	2
2.4 Missio	n date:		Eval pilot	(#1) Cant Ch	ntis McCar	10					
3.1 missio	O							he a hi	tougher with	n lace ti	me on the GS to
Setup:	get AO	A/airspeed contro	a below 33 I down prio	r to maneuvering	g. Turned	inside e	east lak	eshore f	or approx. 5	min. pa	itterns.
Feel system:	Light st	ick forces, displac	cement fine	. Good feel sys	tem.						
Handling qualities:	A/C ha: AOA in	s nice feel. Pitch roundout and flar	axis is quic re.	k, controllable, a	and light. I	Respon	se is ve	ery good	. Deficiency	is sligh	t tendency to high
Landing:	Tenden	icy to go high on <i>i</i>	AOA. Very	similar to a con	ventional F	F-16 in t	he flare	with slip	ghtly better p	itch po	inting and control.
	Appr	Landing zone	TD Firm	Criteria met	Fuel	A/S	AOA	Turb	Wind	vss	Trip and reason
	1	Adequate	Soft	Adequate	6,500	160	13	None	210/4		
	2	Adequate	Medium	Adequate	6,100	160	12	None	210/4		
		Desired	Soft	Desired	5,950	150	13	None	210/4		
Cooper-Harper Rati	ng: 4	Notes on C-H	I: Minor	but annoying de	ficiencies (due to A	AOA ter	ding to	go high.		
Workload Rati	ng: 3	PIO Rating:	1								
Recommendation	ons: Nor	le									
		17 Can 05		(#1) Capt Cl	nic McCar						
7.5 MISSIG	n date.	17-3ep-30	Eval prior	. (#1) Capt. Ci	ins McCai						
Setup:	Winds	down the runway	8 to 11 knc	its.							
Feel system:	Forces	a bit high in pitch	during offs	et but deadbeat	. Stick dy	namics	aren't te	oo good,	a bit too tigh	nt	
Handling qualities:	Good A compro	OA command bu	it initial pitc nance. Ov	h response is to erall, a very ave	o quick. P rage config	itch res juration	ponse l that di	nas a bo dn't gene	bble that's ai erate a lot of	nnoying comme) but doesn't ents.
Landing:	Landing factor in	g in Desired box v n landing.	was pretty e	easy. No remark	ably good	or bad	charac	teristics	in landing. F	Pitch se	nsitivity not a
	Appr	Landing zone	TD Firm	Criteria met	Fuel	A/S	AOA	Turb	Wind	VSS	Trip and reason
	1	Desired	Soft	Desired	3,400	155	11	Light	240/12		
	2	Desired	Soft	Desired	3,100	153	11	Light	200/11		
		Desired	Soft	Desired	2,900	155	31	Light	200/11		
Cooper-Harper Rati	ng: 5	Notes on C-ł	I: Deficie	ency with pitch b	obble is p	retty ma	ijor and	very dis	tracting, stic	k force	s too high.
Workload Rati	ng: 6	PIO Rating:	2								
Recommendatio	ons: Nor	ne									
8.1 Missio	n date:	18-Sep-95	Eval pilot	: (#2) Fit. Lt. J	ustin Pain	es					
Setup:	Excelle	ent setups.									
Feel system:	Stick for	orces a little high.									
Handling qualities:	Solid, r slow re	easonably high o sponse for mane	ontrol force uver/sustai	s. No undesirab ned response. N	ble motions Not pitch se	s; predic ensitive	table. . Minin	Initial re al comp	sponse abou ensation (lea	tright (ad). Go	pitch response) - ood consistency.
Landing:	None.										
	Appr	Landing zone	TD Firm	Criteria met	Fuel	A/S	AOA	Turb	Wind	vss	Trip and reason
	1	Go-Around	N/A	Neither	6,800			None	090/5	\boxtimes	Flap rate limit
	2	Desired	Soft	Desired	6,500	170	11	None	Calm		
	3	Desired	Soft	Desired	6,300	170	10	None	360/4		
	4	Desired	Soft	Desired	6,000	168	10	None	360/4		
Cooper-Harper Rati	ng: 4	Notes on C-I	H: Mode	rate compensation	on required	d for de	sired.				
Workload Rati	i ng: 5	PIO Rating:	1								
Recommendatio	ons: Nor	ne									

.

9.1 Missia	on date:	18-Sep-95	Eval pilot:	(#4) Capt. Ni	ls Larson							
Setup:	None.											
Feel system:	None.											
Handling qualities:	Heavy.	Couldn't get the	motion des	ired, so had to p	oull more.	Initial re	esponse	e feit too	slow. It wa	s predictable.		
Landing:	Felt he easily of motion	avy. Sluggish in f compensated. Te . Workload was r	the flare. The flare. The flare. The flare	he third landing loat trying to let	produced a the aircraf	a pitch i t down	bobble but cou	during th Idn't get 1	e round-out the nose do	that was noticeable but wn with smooth, small		
	Appr	Landing zone	TD Firm	Criteria met	Fuei	A/S	AOA	Turb	Wind	VSS Trip and reason		
	1	Desired	Soft	Desired	6,800	162	12	Light	010/9			
	2	Adequate	Medium	Adequate	5,900	172	9	None	090/8			
	3	Adequate	Soft	Adequate	5,600	167	10	None	090/8			
Cooper-Harper Rat	ng: 5	Notes on C-I	H: It was	moderately obje	ectionable	and pilo	ot comp	ensation	was consid	erable but not too high.		
	ina: A	PIO Rating:	2									
workload Ra	ing. –											
onfigura	tion II)	Priority:	1	Actual SP Freq	uency:	1.44	A	ctual S	P Damping I	Ratio: ().21
-------------	----------------	-----------------------------	---	--	---	----------------------------------	--------------------------------------	---------------------------------	------------------------------------	--	-----------------------	------------------------------------
					Actual BW freq	uency:	1.7	т	au P:	0.08		
J					Predicted FQ L	evels:	CAP:	1 E	W: 2	BW with	DB: 3	
22	Mission	date: 1	5-Sep-95	Eval pilot	: (#1) Capt. Ch	ris McCa	Inn					
	Setup:	None	·									
Feel s	system:	Heavy s	tick, felt sluggish	. Sloppy a	nd slow pitch res	sponse in	flare. D	isplace	ment a t	bit large for p	itch resp	onse.
landling qu	- Ialities:	Pitch re	sponse pretty de	adbeat. Po	or consistency d	ue to los	s of pitch	power	in flare.			
La	Inding:	Ran out caused	of pitch power in medium firmness	the flare.	Stick pretty far a	ift and no	nose m	otion. M	lothing I	eft to pull wit	h in flare	nose dropping
		Appr	Landing zone	TD Firm	Criteria met	Fuel	A/S	AOA	Turb	Wind	VSS T	rip and reason
		1	Neither	Medium	Neither	5,700	157	13	None	210/4		Safety pilot trip
		2	Adequate	Medium	Adequate	5,300	161	11	Light	210/4	Ц	
			Desired	Soft	Desired	4,850	155	11	Light	160/7		
ooper-Har	per Rating	g: 6	Notes on C-H	l: Very o	bjectionable def	iciencies						
Workie	oad Ratin	g: 5	PIO Rating:	1								
Recomm	nendation	is: Che	ck command gai	ns on this d	configuration.							
	Mission	date: 1	17-Sep-95	Eval pilot	: (#4) Capt. Ni	ls Larson						
).3	Setup:	None.			- ()							
Fool	wetam	Ealt a li	ttie etiff									
reeis	system.	reil a ii	ue sun.									
Handling qu	ualities:	Respon	ise seemed a littl	e slow.								
La	anding:	Some la	andings showed a	a slow ope	n loop technique	, another hed dow	showed	a quick than de	i jabbing sired, (F	motion. Hig	her AOA	touchdowns
		Appr	Landing zone	TD Firm	Criteria met	Fuel	A/S	AOA	Turb	Wind	VSS 1	rip and reaso
		1	Desired	Medium	Adequate	4,800	167	10	None	230/13		
		2	Desired	Medium	Adequate	4,700	172	8	None	230/13		
		3	Desired	Soft	Desired	4,300	·	11	None	230/11		
Cooper-Har	per Ratin	g: 5	Notes on C-I	H: Slight	ly due to workloa	ad, mostl	y becaus	e adeq	uate per	formance wa	is due to	firmness of the
Worki	oad Ratin	ig: 6	PIO Rating:	1	downs.							
Recomm	nendation	ns: Nor	ne									
			40.000.05	Evel pilo	- (#2) Elt 1 t	luctin Pai	ines					
8.2	MISSION	Guale:	nt coture		. (#2) 11							
	Setup:	Excelle	ent setups.									
Feels	system:	A little	too high forces.									6 1
Handling q	ualities:	Sluggis oversh Aggres	sh response. Mu oots (overcontrol) sivenes does not	shiness/slo) / slow oso t effect HQ	w response. Co cillations in pitch . Mushiness give	mpensat (not dive es alpha	ion: antic rgent) - c excursio	ipation. loes no ns durir	lead red t seem to ig offset	uired. Slow otally predict correction.	response able. Lin	e of a/c results lear response.
L	anding:	None.				_	• •-		. .		V00	•
		Appr	Landing zone	TD Firm	Criteria met	Fuel	A/S	AOA	Turb	wind	v55	rip and reaso
		1	Adequate	Soft	Adequate	5,900	165	10	None	360/5	H	
		2	Desired	Medium Soft	Adequate Desired	5,600	171	10	None	020/5	H	
					identific econo	0,200	- doo!				<u>i</u>	
Cooper-Har	rper Ratin	i g: 4.5	Notes on C-	n: Cons	iderable comper	isation fo	i desirec	penon	nance.			
Work	load Patir	na: 6	DIO Rating	3								
TTOIR.		ig. U	Fio Rading.	5								

9.4 N	lission	date: '	18-Sep-95	Eval pilot	: (#4) Capt. I	Nils Larson					
s	etup:	Felt stif	f, or heavy.								
Feel sys	stem:	None.									
Handling qua	lities:	Stiff or	heavy. Not sensi	itive enougi	h. Slow initially	y.					
Lan	ding:	Comper movem Touchd the loop	nsating because ent (not enough). lowns were mediu o.	it felt heavy move stic um because	 Motion in the ck aft (pause) I could not ge 	e flare was s etc. Didn't et the nose a	tair ste get the uthority	pping. desirec / I want	Move sti I motion ed. Smoo	ck aft (paus of the nose othing techn	e)check nose I'd like to see iiques were to back out of
		Appr	Landing zone	TD Firm	Criteria met	Fuei	A/S	AOA	Turb	Wind	VSS Trip and reason
		1	Desired	Soft	Desired	3,200	167	9	None	270/4	
		2	Desired	Medium	Adequate	3,000	155	11	None	180/4	
		3	Desired	Medium	Adequate	2,800	162	11	Light	Calm	
Cooper-Harpe	r Rating	g: 5	Notes on C-ł	l: Adequ Consid	ate. Deficiend derable pilot co	cies warrante	ed some require	e impro ed.	vement a	ind were mo	oderately objectionable.
Workloa	d Ratin	g: 4	PIO Rating:	1							
Recomme	ndation	ns: Nor	ie			. <u> </u>					

-

Configuration IL		Drianit	1	Actual SD Erec	uenev.		A	ctual S	P Damping Ra	atio:
)	Priority:	1	Actual SP rieg	uency.		-	Dr	0.09	
К				Actual BW freq	uency:	1.9	1	au P:	0.08	
IX				Predicted FQ Lo	evels:	CAP:	1 E	W: 2	BW with D	DB: 2
4.2 Mission	date: 1	6-Sep-95	Eval pilot:	: (#2) Fit. Lt. Ju	istin Pair	nes				
Setup:	Exceller	nt on first 2 appro	aches. Ha	lf dot high at ma	neuver o	n last 2 a	ipproac	hes.		
Feel system:	Forces	a little high.								
Handling qualities:	A lot of little-slo Slow to	trimming required w - larger inputs i give me what I w	d (speed sta required for vant. VSS f	ability?): fairly so desired output. trip on one appro	lid. Stab Higher f ach duri	ole. No u forces rec ng initial (ndesira quired in offset n	ble mot n flare. naneuve	ions. Predictab Aggressivenes er due rate limit	le, linear. Response a s does not effect HQ.
Landing:	Desired	and adequate cr	iteria each	met on 2 approa	ches.					
	Appr	Landing zone	TD Firm	Criteria met	Fuel	A/S	AOA	Turb	Wind	VSS Trip and reason
	1	Go-Around	N/A	Neither	5,900		0	None	210/6	Flaperon rate limit
	2	Desired	Soft	Desired	5,800	160	11	None	230/8	
	3	Desired	Soft	Desired	5,400	160	10	None	240/9	Ц
	4	Adequate	Soft	Adequate	5,000	156	12	None	240/8	님
	5	Adequate	Soft	Adequate	4,800	157	11	None	220/7	
		16-Sen-95	Eval pilot	:: (#3) Capt. Ma	ark Scha	ible				
5.2 Mission Setup:	None.									
5.2 Mission Setup: Feel system:	None. Stick for movern displac	proces were too highert of the nose. ement.	gh longitudi High longit	nally compared v udinal forces imp	with later bacted co	al forces. ontrol har	Small mony.	moven Stick fo	nents of 1" or le rces increased	ess produced no drastically past 1-2" of
5.2 Mission Setup: Feel system: Handling qualities:	None. Stick for movern displac Slight le way to the pre to com winds/t taking t	proces were too hig ent of the nose. ement. predict how the o dictability. Usual pensate or smool urbulence. When me out of the loop	gh longitudi High longit ation (can't socilation w ly required th out eithe n I wanted to p.	nally compared v udinal forces imp call it a PIO) dur ould affect the ai a push input foll r of these inputs. to be aggressive	with later pacted co ing the n rcraft, th owed by Sluggis , the slug	al forces. ontrol har naneuver erefore, i a pull inp sh respon ggish resp	to land t negation. Land t negation. Land t se affe ponse c	movern Stick fo ling affe ively aff ck of pre cted my lamped	nents of 1" or le roes increased cted overall HC ected both the edictability of m almost all of m	ess produced no drastically past 1-2" of Decause there was no control harmony and ly input did not allow me bensate for ly inputs effectively
5.2 Mission Setup: Feel system: Handling qualities: Landing:	None. Stick for movern displac Slight le way to the pre to com winds/t taking i High st	proces were too highert of the nose. ement. ongitudinal oscilla predict how the o dictability. Usual pensate or smoot urbulence. When me out of the loop ick forces/sluggis	gh longitudi High longit ation (can't scilation w ly required h out eithe h out eithe h uwanted f p. sh reponse	nally compared w udinal forces imp call it a PIO) dur ould affect the ai a push input folli r of these inputs. to be aggressive increased work l	with later bacted co ing the n rcraft, th owed by Sluggis , the slug oad duri	al forces. ontrol har erefore, i a pull inp sh respon ggish resp ng flare a	Small mony. to land t negation t negationse affe ponse of and land	movern Stick fo ing affe ively aff ck of pre- cted my lamped ling.	nents of 1" or le roes increased cted overall HC ected both the edictability of m ability to comp almost all of m	ess produced no drastically past 1-2" of Decause there was no control harmony and by input did not allow me bensate for by inputs effectively
5.2 Mission Setup: Feel system: Handling qualities: Landing:	None. Stick for movern displac Slight le way to the pre to com winds/t taking i High st Appr	proces were too hig ent of the nose. ement. ongitudinal oscilla predict how the o dictability. Usual pensate or smoo urbulence. When me out of the loop ick forces/sluggis Landing zone	th longitudi High longit scilation (can't scilation w ly required th out eithe n I wanted p. sh reponse TD Firm	nally compared y udinal forces imp call it a PIO) dur ould affect the ai a push input foll r of these inputs to be aggressive increased work i Criteria met	with later pacted co ing the n rcraft, th swed by Sluggis the slug oad durii Fuel	al forces. ontrol har naneuver erefore, i a pull inp sh respon ggish resp ng flare a A/S	to land t negationse of lose affe ponse of and land AOA	moven Stick fo ling affe ively aff ck of pre cted my lamped ling. Turb	tents of 1" or le rces increased cted overall HC ected both the edictability of m ability to comp almost all of m	ess produced no drastically past 1-2" of Decause there was no control harmony and y input did not allow me bensate for ny inputs effectively VSS Trip and reason
5.2 Mission Setup: Feel system: Handling qualities: Landing:	None. Stick for movern displac Slight le way to the pre to com winds/t taking i High st Appr 1	arces were too hig ent of the nose. ement. ongitudinal oscilla predict how the o dictability. Usual pensate or smool urbulence. When me out of the loop ick forces/sluggis Landing zone Adequate	gh longitudi High longit ation (can't scilation w ly required th out eithe n I wanted f p. sh reponse TD Firm Soft	nally compared v udinal forces imp call it a PIO) dur ould affect the ai a push input foller of these inputs to be aggressive increased work increased work	with later pacted co ing the n rcraft, th owed by Sluggis the slug cad durin Fuel 6,000	al forces. ontrol har naneuver erefore, i a pull inp sh respon gish resp ng flare a A/S 162	Small mony. to land t negation to land t negation t neg	imovern Stick fo ling affe ively aff ck of pre- cted my lamped ling. Light	tents of 1" or le rces increased cted overall HC ected both the edictability of m ability to comp almost all of m Wind 230/17G2	ess produced no drastically past 1-2" of Decause there was no control harmony and y input did not allow me bensate for y inputs effectively VSS Trip and reason
5.2 Mission Setup: Feel system: Handling qualities: Landing:	None. Stick for movern displac Slight le way to the pre to com winds/t taking to High st Appr 1 2	arces were too hig ent of the nose. ement. ongitudinal oscilla predict how the o dictability. Usual pensate or smoot urbulence. When me out of the loop ick forces/sluggis Landing zone Adequate Desired	gh longitudi High longit ation (can't scilation w ly required th out eithe n I wanted f p. sh reponse TD Firm Soft Soft	nally compared o udinal forces imp call it a PIO) dur ould affect the ai a push input folli r of these inputs. to be aggressive increased work I <u>Criteria met</u> Adequate Desired	with later pacted co ing the n rcraft, th owed by Sluggis the slug cad durin Fuel 6,000 5,700	al forces. ontrol har erefore, i a pull inpo ggish resp ng flare a A/S 162 164	Small mony. to land t negation. Lac se affe conse consect and lanc AOA 11	movern Stick fo ling affe ively aff ck of pre cted my lamped ling. Turb Light Light	tents of 1" or le roces increased cted overall HC ected both the edictability of m almost all of m Wind 230/17G2 220/17G2	ess produced no drastically past 1-2" of Decause there was no control harmony and y input did not allow me bensate for y inputs effectively VSS Trip and reason
5.2 Mission Setup: Feel system: Handling qualities: Landing:	None. Stick for movern displac Slight le way to the pre to com winds/t taking t High st <u>Appr</u> 1 2 3	arces were too highent of the nose. ement. ongitudinal oscilla predict how the o dictability. Usual pensate or smoot urbulence. When me out of the loop ick forces/sluggis Landing zone Adequate Desired Desired	gh longitudi High longit ation (can't sscilation w ly required th out eithe h I wanted for sh reponse TD Firm Soft Soft	nally compared y udinal forces imp call it a PIO) dur ould affect the ai a push input folli r of these inputs to be aggressive increased work i <u>Criteria met</u> Adequate Desired Desired	with later pacted co ing the n rcraft, th swed by Sluggis the slug oad durin 6,000 5,700 5,300	al forces. ontrol har erefore, i a pull ing h respon ggish resp ng flare a A/S 162 164 170	to land t negations of the seaffer onse of and lance AOA 11 11 10	movern Stick fo ling affe wely aff ck of pre cted my lamped ling. Turb Light Light Light	tents of 1" or le roces increased cted overall HC ected both the edictability of m almost all of m <u>Wind</u> 230/17G2 220/17G2 260/16G2	ess produced no drastically past 1-2" of Decause there was no control harmony and by input did not allow me bensate for y inputs effectively VSS Trip and reason
5.2 Mission Setup: Feel system: Handling qualities: Landing:	None. Stick fc movern displac Slight le way to the pre to com winds/t taking i High st Appr 1 2 3 mg: 3	arces were too highent of the nose. ement. ongitudinal oscilla predict how the c dictability. Usual pensate or smoot urbulence. Whet me out of the loop ick forces/sluggis Landing zone Adequate Desired Desired Notes on C-	gh longitudi High longit ation (can't sscilation w ly required th out eithe n I wanted f p. sh reponse TD Firm Soft Soft Soft H: Highe	nally compared y udinal forces imp call it a PIO) dur ould affect the ai a push input foll r of these inputs, to be aggressive increased work i Criteria met Adequate Desired Desired er workload and o	with later pacted co ing the n rcraft, th Sluggis the slug oad duri Fuel 6,000 5,700 5,300 decrease	al forces. ontrol har erefore, i a pull inp sh respon ggish resp ng flare a A/S 162 164 170 d flying q	Small mony. to land t negati but. Lac use affe ponse of and land AOA 11 11 11 10 yualities	moven Stick fo ling affe ively aff ck of pre cted my lamped ling. Turb Light Light	ents of 1" or le rces increased cted overall HC ected both the edictability of m almost all of m Wind 230/17G2 220/17G2 260/16G2	ess produced no drastically past 1-2" of Decause there was no control harmony and by input did not allow me bensate for by inputs effectively VSS Trip and reason
5.2 Mission Setup: Feel system: Handling qualities: Landing: Cooper-Harper Ratin Workload Ratir	None. Stick for movern displac Slight le way to the pre to com winds/t taking 1 High st <u>Appr</u> 1 2 3 g: 3 ng: 4	arces were too highent of the nose. ement. ongitudinal oscilla predict how the o dictability. Usual pensate or smoot urbulence. When me out of the loop ick forces/sluggis Landing zone Adequate Desired Desired Notes on C- PIO Rating:	gh longitudi High longit ation (can't socilation w ly required th out eithe n I wanted for sh reponse TD Firm Soft Soft Soft H: Highe 1	nally compared v udinal forces imp call it a PIO) dur ould affect the ai a push input foll r of these inputs. to be aggressive increased work i <u>Criteria met</u> Adequate Desired Desired er workload and o	with later pacted cd ing the n rcraft, th bwed by Sluggis the slug oad durin 6,000 5,700 5,300 decrease	al forces. ontrol har erefore, i a pull inp sh respon ggish resp ng flare a A/S 162 164 170 ed flying q	Small mony. to land t negati but. Lac use affe conse conse and lanc AOA 11 11 10 yualities	movern Stick fo ling affe vely aff ck of pre- cted my lamped ling. Turb Light Light Light	tents of 1" or le roes increased cted overall HC ected both the edictability of om ability to comp almost all of m <u>Wind</u> 230/17G2 220/17G2 260/16G2	ess produced no drastically past 1-2" of Decause there was no control harmony and by input did not allow me bensate for y inputs effectively VSS Trip and reason

.

.

...

*

-

		ما ما م	7.0 0"	Evel attes	(#4) Cart Nº						
6.6	MISSION	date: 1	7-Sep-95	Eval pliot:	(#4) Capt. Nii	SLAISON					
	Setup:	None.									
Feel	system:	None.									
Handling q	ualities:	Respon There w	se seemed to rar vas still something	np up very g I didin't lik	slightly. Slow ini ke, but couldn't p	tially then o out my finge	quicker er on it.	steady	state. S	Slightly pitch	sensitive. Handled OK.
L	anding:	Slight s	moothing techniq	ue. Worklo	ad low to mediur	n.					
	-	Appr	Landing zone	TD Firm	Criteria met	Fuel	A/S	AOA	Turb	Wind	VSS Trip and reason
		1	Desired	Soft	Desired	2,500	157	10	None	240/10	
		2	Desired	Soft	Desired Adoquato	2,200		11	None	250/13 250/13	
			Desired	Medium		n,900			none	t my finger	
Cooper-Har	per Rating	j: 3	Notes on C-r	1: VVOTKIC	bad low to mediu	im, milaly	unpiea	sant bu	cantp	ut my miger	on a.
Work	oad Ratin	g: 4	PIO Rating:	1							
Recom	nendation	s: Non	e								
7.3	Mission	date: '	17-Sep-95	Eval pilot	: (#1) Capt. Ch	nris McCan	n				
	Setup:	None.									
Feel	svstem:	Stick is	deadbeat. Displ	acement hi	gh for small nose	e motions.					
Londling a	volition	Ditch m	coorce too clow	and has a	- small lag Comr	ensating h	w maki	ina larae	er faster	r inputs (lead	lina) to aet desired pitch
Handling q	uanties:	respons	se. Tended to ov	ershoot de	sired pitch attitud	de due to s	ize of i	nputs.	Fairly de	adbeat in pi	tch. Workload fairly high
		due to a resultin	requirement to lea q from large, fast	ad inputs ai inputs.	nd lack of pitch p	ower in fla	re. Pl	O rating	of 3 due	e to undesira	die pitch motions
	anding:	Ran ou	t of nitch authorit	v in the flan	e. Second appro	oach got A	dequat	e due to	wide la	teral displac	ement on runway. Pitch
	anang.	sensitiv	rity too low in the	flare. Aggr	ressiveness of co	orrections i	in flare	not a fa	ctor to p	erformance.	
		Appr	Landing zone	TD Firm	Criteria met	Fuel	A/S	AOA	Turb	Wind	VSS Trip and reason
		1	Desired	Soft	Desired	5,000	161	11	None	240/12	
		2	Adequate Desired	Firm	Neither Desired	4,800 4.600	157 159	11 11	Light	250/14 220/12	
0 11-			Notes on C I	H: Consi	domble pilot con	nensation	roquire	ad by le	adina in	nuts	
Cooper-Ha	rper kaun	g: 5 	Notes on C-r			npensation	require	su by ic	ading in	puto.	
Work	load Ratin	g: 7	PIO Rating:	3							
Recom	mendatior	is: Nor	ne		· · · · · · · · · · · · · · · · · · ·						
9.2	Mission	date:	18-Sep-95	Eval pilot	:: (#4) Capt. Ni	ils Larson					
	Setup:	None.									
Feel	system:	None.									
Handling c	- walities:	Eolt like	a Loculd put it wh	ere i wante	d to Good initia	al response	Pred	lictable	with no	undesirable i	motions.
nanunng c	juanues.	I CIL IIK									to loading Dowed
L	anding:	Low ga reduction	in used because on not a compena n weight Slight t	high gain n astion for p	ot required. Lat oor handling qua	e power re alities, com t like the po	duction ipensation	tion for	æd one heavywe idle Fe	long adequa eight when th It like I had t	te landing. Power ne aircraft was more o let it down and possibly
		a little s	slow to let it down	when back	k pressure relea	sed.					
		Appr	Landing zone	TD Firm	Criteria met	Fuel	A/S	AOA	Turb	Wind	VSS Trip and reason
		1	Desired	Soft	Desired	5,300	166	11	None	040/9	
		2	Adequate	Soft Soft	Adequate	0	165 166	11 11	None	040/9 040/9	H
• • • •			Desileu								
Cooper-Ha	rper Ratin	g: 2	Notes on C-I	H: Pilot o	compensation wa	as not a tao	πor. D	encienia	es were	e negligible.	
•											
Work	load Ratin	ig: 2	PIO Rating:	1							

9.5 Mission	n date: '	8-Sep-95	Eval pilot	: (#4) Cap	t. Nils Larson					
Setup:	Nопе.									
Feel system:	None.									
Handling qualities:	Intial re not line	sponse seemed s ar. It felt sensitiv	slow but the e but not to	en would rap luchy.	bidly increase to	o a qiud	ck stead	iy state.	lt feit unpre	dictable, as though it was
Landing: -	In the fi stopa then qu	are the stick tech quick jab forward ick getting too I	niques sho dsmoothly much pitch	wed the stic / aftstop, : rate/attitude	k slowly movin a quick jab forw e).	g aft ov varde	verall, b tc. Flar	ut the sti re got qui	ick would mo icker than a	ove aft smoothly nticipated response (slow
	Appr	Landing zone	TD Firm	Criteria m	et Fuel	A/S	AOA	Turb	Wind	VSS Trip and reason
	1	Desired	Medium	Adequate	2,600	149	12	None	040/4	
	2	Desired	Medium	Adequate	e 2,300	156	11	None	020/7	
	3	Desired	Medium	Adequate	e 2,000	154	11	None	Calm	
Cooper-Harper Ratir	ng: 6	Notes on C-I	I: Deficie	encies warra	ant improvemen se to giving it a	nt. Ven	y object er-Harp	tionable. er of 7.	Extensive p	pilot compensation
Workload Rati	ng: 5	PIO Rating:	1			•	•			
Recommendatio	ns: Nor	e								······································

ontinutation	חו	Priority:	2	Actual SP Free	uency:	1.2	/	Actual SI	^o Damping	Ratio:	0.44
onngurauon		•		Actual BW free	mency:	14	-	Tau P:	0.08		
P					1001091	04 D.			DIA		2
				Predicted FQ L	evels:	CAP:	1 1	5W: 2	BW WIU	106:	2
8.5 Missio	n date: 1	15-Sep-95	Eval pilot:	: (#1) Capt. Ch	nris McCai	nn					
Setup:	Able to	get a/c trimmed-u	up on the gi	lidepath, but ent	ering the l	oop sen	ds the	nose sho	oting off in p	oitch.	
Feel system:	Stick dy	mamics are fine,	but the airp	lane is lousy.							
landling qualities:	Extreme pitch inp inputs a	e tendency for no out causes nose i and work hard to r	se to pitch to wobble o maintain de	off. Very sloppy ff. Backed out o sired nose track	in the pite of loop to r . Aggress	ch axis v naintain siveness	with a la pitch a in late	arge amp attitude b ral correc	litude, low fi ut it is contro ction excited	requen ollable. I pitch j	cy oscillation. An Had to smooth problem.
Landing:	Turbule Very wa tripped runway	nce in the overru ary of getting into off. Definite PIO. hands-off.	n causes n the loop in . Compens	ose to wander of the flare. VSS t ated by setting t	ff. Tender trip on land up landing	ncy towa ding #3 attitude	ard PIC due to and bi	in the fla PIO in fla asically le	are when in are pitch ra et the aircraf	tight co ate pre it fly its	ontrol in the loop. diction (VIM) elf down to the
	Appr	Landing zone	TD Firm	Criteria met	Fuel	A/S	AOA	Turb	Wind	VSS	Trip and reasor
	1	Adequate	Medium	Adequate	3,100	162	11	Light	230/10		· · · · · · · · · · · · · · · · · · ·
	2	Adequate	Medium	Adequate	2,900	152	13	Light	260/12		
	3	Adequate	Medium	Adequate	2,650	152	11	Light	230/12	\boxtimes	Pitch rate limit
	4	Adequate	Firm	Neither	2,300	150	13	None	240/10		
Workload Rati Recommendatio	ing: 9 ons: Non	PIO Rating:	5					•			
Workload Rati Recommendatio	ing: 9 ons: Non on date: 1	PIO Rating: e 16-Sep-95	5 Eval pilot	: (#2) Flt. Lt. J	ustin Pain	es		•			
Workload Rati Recommendatio 4.5 Missic Setup:	ing: 9 ons: Non on date: Good s	PIO Rating: e 16-Sep-95 etups - but 1 dot	5 Eval pilot	: (#2) Fit. Lt. J d approach.	ustin Pain	es					
Workload Rati Recommendatio 4.5 Missio Setup: Feel system:	ing: 9 ons: Non on date: - Good s Forces/ tendend	PIO Rating: 16-Sep-95 etups - but 1 dot displacements to cies/poor FQs.	5 Eval pilot high on 2nd	: (#2) Fit. Lt. J d approach. ck too sensitive.	ustin Pain	es o deterr	nine th	e contribu	ution this ma	akes to	the PIO
Workload Rati Recommendatio 4.5 Missic Setup: Feel system: Handling qualities:	ing: 9 ons: Non on date: Good s Forces/ tendend Very pil input, s Howeve Compe of comp Without	PIO Rating: 16-Sep-95 etups - but 1 dot displacements to cies/poor FQs. tch sensitive (not trong tendency for er, difficult to assen nation required: bensation is nature to compensation, of	5 Eval pilot high on 2nd o light. Sti twitchy - sl or PIO. Cor ess this due anticipation ral to the pil control is in	: (#2) Fit. Lt. J d approach. ck too sensitive. ower rate than th ntrols very sensit e trip (see rec be n and smoothing lot, so that, thou, question.	ustin Pain Difficult t witchiness tive. Aggr slow). Low ; backing gh compe	es o deterr) but ter ressiven v gain c out of lo nsation	nine the ndency ess ha pontrol w pop req was ex	e contribu to oversi s very str rith comp uired; bei tensive, v	ution this ma noot desired ong effect - ensation fin ng very gen workload wa	akes to must t e - no l tile on o as high	the PIO nse to control we very smooth. PIO. controls. This for but not very high
Workload Rati Recommendation 1.5 Mission Setup: Feel system: Handling qualities: Landing:	ing: 9 ons: Non on date: / Good s Forces/ tendence Very pit input, s Howeve Compe of comp Without None	PIO Rating: PIO Rating: 16-Sep-95 etups - but 1 dot displacements to cies/poor FQs. tch sensitive (not trong tendency for er, difficult to asse nsation required: bensation is nature compensation, of	5 Eval pilot high on 2nd twitchy - sl or PIO. Cor ess this due anticipation ral to the pil control is in	: (#2) Fit. Lt. J d approach. ck too sensitive. ower rate than to throis very sensit e trip (see rec be n and smoothing lot, so that, though question.	ustin Pain Difficult t witchiness tive. Aggr elow). Low ; backing gh compe	es o deterr essiven y gain co out of lo nsation	nine the ndency ess ha pontrol w op req was ex	e contribu to oversl s very sti ith comp uired; bei tensive, t	ution this ma noot desired ong effect - ensation fin ng very gen workload wa	akes to must t e - no l tle on d as high	the PIO nse to control every smooth. PIO. controls. This for but not very high
Workload Rati Recommendation (5 Mission Setup: Feel system: Handling qualities: Landing:	ing: 9 pons: Non on date: Good s Forces/ tendend Very pil input, s Howeve Compe of comp Without None Appr	PIO Rating: e 16-Sep-95 etups - but 1 dot displacements to cies/poor FQs. tch sensitive (not trong tendency for er, difficult to asse nsation required: bensation is nature compensation, of Landing zone	5 Eval pilot high on 2nd oo light. Sti twitchy - sl or PIO. Cor ess this due anticipation ral to the pil control is in TD Firm	: (#2) Fit. Lt. J d approach. ck too sensitive. ower rate than th ntrols very sensit e trip (see rec be n and smoothing lot, so that, thoug question. Criteria met	ustin Pain Difficult t witchiness tive. Aggr slow). Low backing gh compe Fuel	es o deterr) but ter essiven y gain c out of lo nsation A/S	nine the ndency ess ha potrol w pop req was ex	e contribu to oversi s very str ifth comp uired; bei tensive, v Turb	ution this ma noot desired ong effect - ensation fin ng very gen workload wa Wind	akes to must b e - no l tile on o as high VSS	the PIO nse to control we very smooth. PIO. controls. This for but not very high
Workload Rati Recommendation 5 Mission Setup: Feel system: Handling qualities: Landing:	ing: 9 pns: Non on date: Good s Forces/ tendenc Very pil input, s Howeve Ocompe of comp Without None <u>Appr</u> 1	PIO Rating: e 16-Sep-95 etups - but 1 dot displacements to cies/poor FQs. tch sensitive (not trong tendency for er, difficult to asse nsation required: bensation is nature compensation, of Landing zone Desired	5 Eval pilot high on 2nc oo light. Sti twitchy - sl or PIO. Cor ess this due anticipation ral to the pil control is in TD Firm Medium	: (#2) Fit. Lt. J d approach. ck too sensitive. ower rate than th ntrols very sensit e trip (see rec be n and smoothing lot, so that, thoug question. Criteria met Adequate	ustin Pain Difficult t witchiness tive. Aggr slow). Low backing gh compe Fuel 2,800	es) but ter essiven y gain c out of lo nsation <u>A/S</u> 157	nine the ndency ess ha pontrol w pop req was ex AOA 10	e contributo oversit s very stu vith comp uired; bei tensive, s Turb None	ution this ma noot desired ong effect - ensation fin ng very gen workload wa Wind 210/8	akes to must b e - no l tile on o as high	the PIO nse to control se very smooth. PIO. controls. This for but not very high S Trip and reaso
Workload Rati Recommendatio 4.5 Missio Setup: Feel system: Handling qualities: Landing:	ing: 9 ing: 9 ons: Non on date: Good s Forces/ tendend Very pit input, s Howeve of compe of compe of compe Mithout None Appr 1 2	PIO Rating: PIO Rating: 16-Sep-95 etups - but 1 dot displacements to cies/poor FQs. tch sensitive (not trong tendency for er, difficult to asse insation required: bensation is nature compensation, co Landing zone Desired Go-Around	5 Eval pilot high on 2nc twitchy - sl or PIO. Cor ess this due anticipation ral to the pil control is in TD Firm Medium N/A	: (#2) Fit. Lt. J d approach. ck too sensitive. ower rate than th throis very sensit e trip (see rec be n and smoothing tot, so that, thoug question. Criteria met Adequate Neither	ustin Pain Difficult t witchiness tive. Aggr slow). Low ; backing gh compe Fuel 2,800 2,600	es o deterr) but ter essiven y gain co out of lo nsation A/S 157	nine the ndency ess ha pop req was ex AOA 10	e contribu to oversi s very stu- vith comp uired; bei tensive, v Turb None None	ution this man noot desired ong effect - ensation fin ng very gen workload wa <u>Wind</u> 210/8 220/8	akes to must b e - no l tile on o as high	the PIO nse to control e very smooth. PIO. controls. This for but not very high 5 Trip and reason Unknown
Workload Rati Recommendation 5 Mission Setup: Feel system: Handling qualities: Landing:	ing: 9 ing: 9 ons: Non on date: Good s Forces/ tendend Very pil input, s Howeve of compe of compe of compe 1 2 3	PIO Rating: PIO Rating: 16-Sep-95 etups - but 1 dot displacements to cies/poor FQs. tch sensitive (not trong tendency for r, difficult to asse nsation required: bensation is nature compensation, co Landing zone Desired Go-Around Desired	5 Eval pilot high on 2nc twitchy - sl or PIO. Cor ess this due anticipation ral to the pil control is in TD Firm Medium N/A Soft	: (#2) Fit. Lt. J d approach. ck too sensitive. ower rate than th throis very sensit e trip (see rec be n and smoothing tot, so that, thoug question. Criteria met Adequate Neither Desired	ustin Pain Difficult t witchiness tive. Aggr elow). Low ; backing gh compe Fuel 2,800 2,600 2,300	es o deterr essiven y gain co out of lo nsation A/S 157 152	nine the ndency ess ha pop req was ex AOA 10 11	e contribu to oversi s very str vith comp uired; bei tensive, v Turb None None None None	ution this management ong effect - ensation fin ng very gen workload war 210/8 220/8 220/8	akes to must b e - no l tile on d as high	the PIO nse to control e very smooth. PIO. controls. This for but not very high 5 Trip and reaso Unknown
Workload Rati Recommendation (5 Mission Setup: Feel system: Handling qualities: Landing:	ing: 9 ing: 9 ons: Non on date: - Good s Forces/ tendence Very pit input, s Howeve Compe of comp Without None <u>Appr</u> 1 2 3 4	PIO Rating: PIO Rating: 16-Sep-95 etups - but 1 dot displacements to cies/poor FQs. tch sensitive (not trong tendency for er, difficult to asse nesation required: bensation required: bensation is natuu compensation, of Landing zone Desired Desired Desired Desired	5 Eval pilot high on 2nd twitchy - sl or PIO. Cor ess this due anticipation ral to the pilo control is in TD Firm Medium N/A Soft Soft	: (#2) Fit. Lt. J J approach. ck too sensitive. ower rate than to throis very sensitive trip (see rec be and smoothing bot, so that, thou, question. Criteria met Adequate Neither Desired Desired	ustin Pain Difficult t witchiness tive. Aggr elow). Low ; backing gh compe Fuel 2,800 2,600 2,300 2,100	es o deterr v gain co out of lo nsation <u>A/S</u> 157 152 152	nine the ndency ess ha optrol w op requives was ex AOA 10 11	e contribu to oversis s very str ith comp uired; bei tensive, Turb None None None None	ution this ma noot desired ong effect - ensation fin ng very gen workload wa <u>Wind</u> 210/8 220/8 220/8 220/8	akes to must b e - no l tile on a shigh	the PIO nse to control we very smooth. PIO. controls. This for but not very high S Trip and reaso Unknown
Workload Rati Recommendation 4.5 Mission Setup: Feel system: Handling qualities: Landing:	ing: 9 pons: Non on date: 7 Good s Forces/ tendend Very pil input, s Howeve Ocompe of comp Without None <u>Appr</u> 1 2 3 <u>4</u> ng: 8	PIO Rating: PIO Rating: 16-Sep-95 etups - but 1 dot displacements to cies/poor FQs. tch sensitive (not trong tendency for er, difficult to asse insation required: bensation is nature compensation, of Landing zone Desired Go-Around Desired Desired Desired Notes on C-H	5 Eval pilot high on 2nc oo light. Sti twitchy - sl or PIO. Cor ess this due anticipation ral to the pil control is in TD Firm Medium N/A Soft Soft	: (#2) Fit. Lt. J d approach. ck too sensitive. ower rate than th ntrols very sensit e trip (see rec be n and smoothing lot, so that, thoug question. Criteria met Adequate Neither Desired Desired Deliability in quest	ustin Pain Difficult t witchiness tive. Aggr slow). Low backing gh compe Fuel 2,800 2,600 2,300 2,100 ion.	es o deterr) but ter essiven y gain co out of lo nsation <u>A/S</u> 157 152 152	nine the ndency ess ha portrol w pop req was ex AOA 10 11 11	e contribu to oversis s very str vith comp uired; bei tensive, t Turb None None None None	ution this mathematical terms and the sired ong effect - ensation fin ng very gen workload wathematical terms and te	akes to must b e - no l tile on o as high	the PIO nse to control we very smooth. PIO. controls. This for but not very high 5 Trip and reaso Unknown
Workload Rati Recommendation (.5 Mission Setup: Feel system: Handling qualities: Landing: Cooper-Harper Rati Workload Rati	ing: 9 ing: 9 ons: Non on date: 7 Good s Forces/ tendend Very pit input, s Howeve of compe of compe of compe 1 2 3 4 ng: 8 ing: 6	PIO Rating: e 16-Sep-95 etups - but 1 dot displacements to cies/poor FQs. tch sensitive (not trong tendency fo er, difficult to asse nsation required: bensation is natured compensation, of Landing zone Desired Go-Around Desired Desired Desired Notes on C-F PIO Rating:	5 Eval pilot high on 2nd twitchy - sl or PIO. Cor ess this due anticipation ral to the pilo control is in TD Firm Medium N/A Soft Soft 1: Control 4	: (#2) Fit. Lt. J d approach. ck too sensitive. ower rate than the throis very sensitive in and smoothing lot, so that, though question. Criteria met Adequate Neither Desired Desired Deliability in quest	ustin Pain Difficult t witchiness tive. Aggr elow). Low ; backing gh compe Fuel 2,800 2,600 2,300 2,300 2,100 ion.	es o deterr y gain co out of lo nsation <u>A/S</u> 157 152 152	nine the ndency ess ha optrol w oop req was ex AOA 10 11	e contribu to oversi s very str ith comp uired; bei tensive, f Turb None None None None	ution this ma noot desired ong effect - ensation fin ng very gen workload wa Wind 210/8 220/8 220/8 200/8	akes to must t e - no l tile on o as high	the PIO nse to control we very smooth. PIO. controls. This for but not very high 5 Trip and reaso Unknown

5.3 Mission										
	date: 1	6-Sep-95	Eval pilot:	(#3) Capt. Ma	rk Schaibl	9				
Setup:	None.									
Feel system:	Large lo	ongitudinal forces.								
Handling qualities:	Strong t the airc which c Winds a	tendency to PIO o raft unpredictable omplicates the PI and turbulence als	on final. Th because y O. Aircraft to aggravat	e more aggressi ou couldn't put it required conside ed the PIO. Gro	ive you get where you erable pilot ound effect	, the m wante competended	ore out d it. Re ensation I to dan	of phase esponse (smooth open out	you became of aircraft to i ning) to keep the PIO.	with the PIO. Made nputs is also slow, A/C from diverging.
Landing:	None.									
	Appr	Landing zone	TD Firm	Criteria met	Fuel	A/S	AOA	Turb	Wind	VSS Trip and reason
	1	Adequate	Soft	Adequate	4,900	167	11	Light	260/16G2	
	2	Desired	Soft	Desired	4,700	165	11	Light	260/16G2	
		Adequate	Soft	Adequate	4,400	165	10	Light	260/16G2	
Cooper-Harper Ratin	g: 5	Notes on C-H	I: Deficie	ncies in flying qu	ualities wa	rrant im	iproven	nent. Inc	reased pilot v	vorkload.
Workload Ratir	ng: 5	PIO Rating:	4							
Pecommendatio	ns: Non	P								
				(114) Orat 11						
6.2 Mission	n date: 1	17-Sep-95	Eval pilot:	(#4) Capt. Ni	s Larson					
Setup:	Slow ur	ndesirable pitch m	notions note	ed on final. Whe	n maneuve	ering du	uring th	e offset ti	ne motion be	came worse.
Feel system:	None.									
Leading qualifica:	Slow ni	tch hobble noted	Anaressia	eness increased	the ampli	tude of	the pite	h bobble	. Side qust a	also ended up effecting
Handling quanties:	the pitc	h axis and inceas	ing the am	plitude of the bol	bble.				J J	• •
Landing:	Compe	nsation required a	a lot of sma	II quick jabbing	motions	Ven/h	iah wor	klaad		
				a, quick, jubbing	mouons.	Act Auto	iyn wor	Roau.		
<u> </u>		Londing 2000	TD Eirm	Criteria met	Fuel	A/S		Turb	Wind	VSS Trip and reason
g.	Appr	Landing zone	TD Firm	Criteria met	Fuel	A/S	AOA 11		Wind	VSS Trip and reason
	Appr 1 2	Landing zone Desired Desired	TD Firm Soft Medium	Criteria met Desired Adequate	Fuel 6,000 5,700	A/S	AOA 11 11	Turb None None	Wind 240/8 230/12	VSS Trip and reason
<u></u> ,	Appr 1 2 3	Landing zone Desired Desired Adequate	TD Firm Soft Medium Soft	Criteria met Desired Adequate Adequate	Fuel 6,000 5,700 5,200	A/S	AOA 11 11 11	Turb None None None	Wind 240/8 230/12 230/13	VSS Trip and reason
Cooper-Harper Ratin	Appr 1 2 3	Landing zone Desired Desired Adequate Notes on C-F	TD Firm Soft Medium Soft I: Adega	Criteria met Desired Adequate Adequate	Fuel 6,000 5,700 5,200 performan	A/S	AOA 11 11 11 11 e attain	Turb None None None ed howey	Wind 240/8 230/12 230/13 ver the workle	VSS Trip and reason
Cooper-Harper Ratin	Appr 1 2 3 ig: 7	Landing zone Desired Desired Adequate Notes on C-H	TD Firm Soft Medium Soft H: Adeqa a majo	Criteria met Desired Adequate Adequate ute and desired or deficiency wh	Fuel 6,000 5,700 5,200 performan ich will req	A/S ce wer	AOA 11 11 11 11 e attain provem	Turb None None None ed howevent.	Wind 240/8 230/12 230/13 ver the worklo	VSS Trip and reason
Cooper-Harper Ratin Workload Ratin	Appr 1 2 3 ag: 7 ag: 1	Landing zone Desired Desired Adequate Notes on C-H PIO Rating:	TD Firm Soft Medium Soft I: Adeqa a majo 2	Criteria met Desired Adequate Adequate aute and desired or defliciency wh	Fuel 6,000 5,700 5,200 performan ich will req	A/S ce wer uire im	AOA 11 11 11 11 e attain provem	Turb None None None ed howev ent.	Wind 240/8 230/12 230/13 ver the worklop	VSS Trip and reason
Cooper-Harper Ratin Workload Ratin Recommendatio	Appr 1 2 3 ag: 7 ng: 1 ns: Nor	Landing zone Desired Desired Adequate Notes on C-H PIO Rating:	TD Firm Soft Medium Soft I: Adeqa a majo 2	Criteria met Desired Adequate Adequate aute and desired or defficiency wh	Fuel 6,000 5,700 5,200 performan ich will req	A/S ce wer uire im	AOA 11 11 11 11 e attain provem	Turb None None None ed howev ent.	Wind 240/8 230/12 230/13 ver the workle	VSS Trip and reason
Cooper-Harper Ratin Workload Ratin Recommendatio 7.4 Mission	Appr 1 2 3 ag: 7 ng: 1 ns: Nor n date:	Landing zone Desired Adequate Notes on C-H PIO Rating: ne 17-Sep-95	TD Firm Soft Medium Soft H: Adeqa a majo 2 Eval pilot	Criteria met Desired Adequate Adequate adequate ute and desired or defficiency wh : (#1) Capt. Cl	Fuel 6,000 5,700 5,200 performan ich will req	A/S ce were uire im	AOA 11 11 11 11 e attain provem	Turb None None None ed howev ent.	Wind 240/8 230/12 230/13 //er the workle	VSS Trip and reason
Cooper-Harper Ratin Workload Ratin Recommendatio 7.4 Mission Setup:	Appr 1 2 3 ng: 7 ng: 1 ns: Nor n date: None.	Landing zone Desired Desired Adequate Notes on C-H PIO Rating: ne 17-Sep-95	TD Firm Soft Medium Soft I: Adeqa a majo 2 Eval pilot	Criteria met Desired Adequate Adequate aute and desired or defficiency wh : (#1) Capt. Cl	Fuel 6,000 5,700 5,200 performan ich will req	A/S ce wen uire im	AOA 11 11 11 11 e attain provem	Turb None None None ed howevent.	Wind 240/8 230/12 230/13 ver the workle	VSS Trip and reason
Cooper-Harper Ratin Workload Ratin Recommendatio 7.4 Mission Setup: Eeel system	Appr 1 2 3 ng: 7 ng: 1 ns: Nor n date: None. Stick for	Landing zone Desired Desired Adequate Notes on C-H PIO Rating: ne 17-Sep-95	TD Firm Soft Medium Soft I: Adeqa a majo 2 Eval pilot	Criteria met Desired Adequate Adequate aute and desired or defficiency wh : (#1) Capt. Cl	Fuel 6,000 5,700 5,200 performan ich will req	A/S ce were uire im	AOA 11 11 11 11 e attain provem	Turb None None None ed howeven	Wind 240/8 230/12 230/13 ver the workle	VSS Trip and reason
Cooper-Harper Ratin Workload Ratin Recommendatio 7.4 Mission Setup: Feel system:	Appr 1 2 3 ng: 7 ng: 1 ns: Nor n date: None. Stick fe	Landing zone Desired Adequate Notes on C-H PIO Rating: ne 17-Sep-95 eels stiff, not too s	TD Firm Soft Medium Soft H: Adeqa a majo 2 Eval pitot	Criteria met Desired Adequate Adequate aute and desired or defficiency wh : (#1) Capt. Cl	Fuel 6,000 5,700 5,200 performan ich will req hris McCar	A/S ce weruuire im	AOA 11 11 11 e attain provem	Turb None None None ed howev ent.	Wind 240/8 230/12 230/13 ver the worklop	VSS Trip and reason
Cooper-Harper Ratin Workload Ratin Recommendatio 7.4 Mission Setup: Feel system: Handling qualities:	Appr 1 2 3 ng: 7 ng: 1 ns: Nor n date: None. Stick fe Turbule sloppy	Landing zone Desired Desired Adequate Notes on C-H PIO Rating: ne 17-Sep-95 seels stiff, not too s ence caused large and imprecise.	TD Firm Soft Medium Soft H: Adeqa a majo 2 Eval pilot eensitive. E e, quick AO	Criteria met Desired Adequate Adequate aute and desired or defficiency wh : (#1) Capt. Cl Displacement oka	Fuel 6,000 5,700 5,200 performan ich will req hris McCar ay, but forc	A/S ce were uire im un sloppy.	AOA 11 11 11 e attain provem high. Slow,	Turb None None None ed howevent.	Wind 240/8 230/12 230/13 ver the workle	VSS Trip and reason
Cooper-Harper Ratin Workload Ratin Recommendatio 7,4 Mission Setup: Feel system: Handling qualities: Landing:	Appr 1 2 3 ng: 7 ng: 1 ns: Nor n date: None. Stick fe Sloppy First la before Normal requirir	Landing zone Desired Desired Adequate Notes on C-H PIO Rating: ne 17-Sep-95 eels stiff, not too s ence caused large and imprecise. nding got a VSS t tripping off. AOA I, drug-in approac ng fewer pitch inpr	TD Firm Soft Medium Soft H: Adeqa a majo 2 Eval pilot ensitive. E e, quick AO rip due to p excursions h required uts in flare.	Criteria met Desired Adequate Adequate adequate ute and desired or defficiency wh : (#1) Capt. Cl Displacement oka A excursions, ai pitch rate monito is went from 11 to lots of pitch inpu Set a/c up on g	Fuel 6,000 5,700 5,200 performan ich will req mris McCar ay, but forco rplane felt r. Incipien 5 13 to 8, ti ts approac lidepath, d	A/S ce were uire im uire im sloppy. t stage: hen VS hing to rove it	AOA 11 11 11 e attain provem high. Slow, s of pito S trippe uchdow down to	Turb None None ed howevent. deadbeat ch PIO in ed. Ran of m. Comp the touc	Wind 240/8 230/12 230/13 ver the workle t pitch respon the flare, were but of pitch c pensated by of thdown point	VSS Trip and reason
Cooper-Harper Ratin Workload Ratin Recommendatio 7,4 Mission Setup: Feel system: Handling qualities: Landing:	Appr 1 2 3 ag: 7 ng: 1 ns: Nor ndate: None. Stick fe Turbule sloppy First la before Normai requirir Appr	Landing zone Desired Desired Adequate Notes on C-H PIO Rating: ne 17-Sep-95 eels stiff, not too s ence caused large and imprecise. nding got a VSS t tripping off. AOA I, drug-in approac ng fewer pitch inpi Landing zone	TD Firm Soft Medium Soft H: Adeqa a majo 2 Eval pilot ensitive. I e, quick AO rip due to p excursions h required uts in flare. TD Firm	Criteria met Desired Adequate Adequate aute and desired or defficiency wh : (#1) Capt. Cl Displacement oka A excursions, ai bitch rate monito is went from 11 to lots of pitch inpu Set a/c up on g Criteria met	Fuel 6,000 5,700 5,200 performan ich will req mis McCar ay, but forco rplane felt r. Incipien b 13 to 8, tt ts approac lidepath, d Fuel	A/S ce wenuire im uire im es too sloppy. t stage: hen VS hing to rove it A/S	AOA 11 11 11 11 e attain provem high. Slow, s of pito S trippe uchdow down to AOA	deadbeat ch PIO in composite to	Wind 240/8 230/12 230/13 ver the worklo the flare, were but of pitch cr bensated by of the down point Wind	VSS Trip and reason
Cooper-Harper Ratin Workload Ratin Recommendatio 7.4 Mission Setup: Feel system: Handling qualities: Landing:	Appr 1 2 3 ng: 7 ng: 1 ns: Nor n date: None. Stick fe Turbule sloppy First la before Normal requirir Appr 1	Landing zone Desired Desired Adequate Notes on C-F PIO Rating: ne 17-Sep-95 eels stiff, not too s ence caused large and imprecise. nding got a VSS t tripping off. AOA l, drug-in approac ng fewer pitch inpr Landing zone Adequate	TD Firm Soft Medium Soft I: Adeqa a majo 2 Eval pilot ensitive. I e, quick AO rrip due to p excursions h required uts in flare. TD Firm Medium	Criteria met Desired Adequate Adequate aute and desired or defficiency wh : (#1) Capt. Cl Displacement oka A excursions, ai whent from 11 to lots of pitch inpu Set a/c up on g Criteria met Adequate	Fuel 6,000 5,700 5,200 performan ich will req mris McCar ay, but forc rplane felt r. Incipien b 13 to 8, ti ts approac lidepath, d Fuel 4,300	A/S ce wenuire im uire im es too sloppy. t stage: hen VS hing to rove it A/S 157	AOA 11 11 11 11 e attain provem high. Slow, s of pito S trippe down to AOA 13	deadbear the PIO in the touc Turb	Wind 240/8 230/12 230/13 ver the workle the the workle the flare, we but of pitch ca bensated by of the flare, we bensated by of the	VSS Trip and reason
Cooper-Harper Ratin Workload Ratin Recommendatio 7.4 Mission Setup: Feel system: Handling qualities: Landing:	Appr 1 2 3 ng: 7 ng: 1 ns: Nor n date: None. Stick fe Stick fe Stoppy First la before Norma requirir 1 2	Landing zone Desired Desired Adequate Notes on C-H PIO Rating: ne 17-Sep-95 eels stiff, not too s ence caused large and imprecise. nding got a VSS t tripping off. AOA I, drug-in approac ng fewer pitch inpu Landing zone Adequate Desired	TD Firm Soft Medium Soft H: Adeqa a majo 2 Eval pilot ensitive. E e, quick AO rip due to p excursions h required uts in flare. TD Firm Medium Soft	Criteria met Desired Adequate Adequate aute and desired or defficiency wh : (#1) Capt. Cl Displacement oka A excursions, ai bitch rate monito is went from 11 to lots of pitch inpu Set a/c up on g Criteria met Adequate Desired	Fuel 6,000 5,700 5,200 performan ich will req mris McCar ay, but force rplane felt r. Incipien > 13 to 8, ti ts approac lidepath, d Fuel 4,300 4,000	A/S ce wern uire im uire im ees too sloppy. t stage: hen VS hing to rove it A/S 157 157	AOA 11 11 11 11 e attain provem high. Slow, s of pito S trippe uchdow down to AOA 13 12	todu. Turb None None None ed howevent. deadbeat the PIO in rd. Ran of m. Composite touc Turb Light None	Wind 240/8 230/12 230/13 ver the workled the flare, we but of pitch cross but of pitch cross bensated by d thdown point Wind 250/10 250/8	VSS Trip and reason
Cooper-Harper Ratin Workload Ratin Recommendatio 7.4 Mission Setup: Feel system: Handling qualities: Landing:	Appr 1 2 3 ng: 7 ng: 1 ns: Nore. Stick fe Turbule sloppy First la before Norma requirir Appr 1 2 3	Landing zone Desired Desired Adequate Notes on C-H PIO Rating: ne 17-Sep-95 eels stiff, not too s ence caused large and imprecise. nding got a VSS t tripping off. AOA I, drug-in approac ng fewer pitch inpr Landing zone Adequate Desired Desired	TD Firm Soft Medium Soft H: Adeqa a majo 2 Eval pilot ensitive. I e, quick AO rip due to p excursions h required uts in flare. TD Firm Medium Soft Soft	Criteria met Desired Adequate Adequate adequate Desired Desired Desired Displacement oka A excursions, ai bitch rate monito s went from 11 to lots of pitch inpu Set a/c up on g Criteria met Adequate Desired Desired	Fuel 6,000 5,700 5,200 performan ich will req mris McCar ay, but forco rplane felt r. Incipien 5 13 to 8, th ts approac lidepath, d Fuel 4,300 4,000 3,700	A/S ce were uire im uire im ees too sloppy. t stage: hen VS hing to rove it A/S 157 157 163	AOA 11 11 11 11 e attain provem high. Slow, s of pito S trippe uchdow down to AOA 13 12 11	totau. Turb None None None ed howevent. deadbear the PIO in ed. Ran of m. Comp the touc Turb Light None	Wind 240/8 230/12 230/13 ver the workled the flare, were but of pitch cro- but of pitch cro- bensated by of the flare, were but of the flare	VSS Trip and reason
Cooper-Harper Ratin Workload Ratin Recommendatio 7.4 Mission Setup: Feel system: Handling qualities: Landing:	Appr 1 2 3 ag: 7 ng: 1 ns: Nore. Stick fe Turbule sloppy First la before Norma requirir Appr 1 2 3 	Landing zone Desired Desired Adequate Notes on C-H PIO Rating: ne 17-Sep-95 eels stiff, not too s ence caused large and imprecise. nding got a VSS t tripping off. AOA d, drug-in approac ng fewer pitch inpu Landing zone Adequate Desired Desired Notes on C-H	TD Firm Soft Medium Soft H: Adeqa a majo 2 Eval pilot ensitive. I e, quick AO rip due to p excursions h required uts in flare. TD Firm Medium Soft Soft	Criteria met Desired Adequate Adequate aute and desired or defficiency wh : (#1) Capt. Cl Displacement oka A excursions, ai sitch rate monito is went from 11 to lots of pitch inpu Set a/c up on g Criteria met Adequate Desired Desired	Fuel 6,000 5,700 5,200 performan ich will req mris McCar ay, but forc rplane felt r. Incipien b 13 to 8, th ts approac lidepath, d Fuel 4,300 4,000 3,700 b high.	A/S ce wenuire im uire im es too sloppy. t stage then VS hing to rove it A/S 157 157 163	AOA 11 11 11 11 11 11 11 e attain provem high. Slow, s of pitc S trippe uchdown tr AOA 13 12 11	deadbeat th PIO in the touc Turb	Wind 240/8 230/12 230/13 ver the workle the flare, wei but of pitch ca bensated by of the flare, wei but of pitch ca bensated by of the flare, wei but of pitch ca bensated by of the flare, weil but of the flare, weil but of the flare, weil but of the flare, weil but of th	VSS Trip and reason
Cooper-Harper Ratin Workload Ratin Recommendatio 7.4 Mission Setup: Feel system: Handling qualities: Landing: Cooper-Harper Ratin Workload Ratin	Appr 1 2 3 ng: 7 ng: 1 ns: Nor n date: None. Stick fe Stick fe Turbule sloppy First la before Normal requirir 1 2 3 ng: 6 ng: 5	Landing zone Desired Desired Adequate Notes on C-H PIO Rating: ne 17-Sep-95 eels stiff, not too s ence caused large and imprecise. nding got a VSS t tripping off. AOA d, drug-in approac ng fewer pitch inpr Landing zone Adequate Desired Desired Notes on C-H PIO Rating:	TD Firm Soft Medium Soft H: Adeqa a majo 2 Eval pilot ensitive. E e, quick AO rip due to p excursions h required uts in flare. TD Firm Medium Soft Soft H: Pilot o 3	Criteria met Desired Adequate Adequate aute and desired or defficiency wh : (#1) Capt. Cl Displacement oka A excursions, ai bitch rate monito is went from 11 to lots of pitch inpu Set a/c up on g Criteria met Adequate Desired Desired	Fuel 6,000 5,700 5,200 performan ich will req mris McCar ay, but force rplane felt r. Incipien b 13 to 8, ti ts approac lidepath, do Fuel 4,300 4,000 3,700 b high.	A/S ce wern uire im uire im ees too sloppy. t stage: ten VS hing to rove it A/S 157 157 163	AOA 11 11 11 11 e attain provem high. Slow, s of pito Strippe uchdow down to AOA 13 12 11	todu. Turb None None ed howevent. deadbeat th PIO in rd. Ran of m. Comp the touc Turb Light None None	Wind 240/8 230/12 230/13 ver the workled the flare, were but of pitch crossed by of pi	VSS Trip and reason

*

.

-

×

Have CAP Flying Qualities Level Prediction Correlation

06-Dec-95

									Flying Qu	alities Predictio	ons		
Config	Test Pl	Pilot	С-Н	PIO	HQ Level	CAP	Match	BW	Match	BW w/Drb	Match		
A	3.4	1 McCann	7	4	3	2	No	2	No	3	Yes		
	4.4	2 Paines	7	4	3	2	No	2	No	3	Yes		
	5.5	3 Schaible	6	4	2	2	Yes	2	Yes	3	No		
	6.4	4 Larson	8	4	3	2	No	2	No	3	Yes		
	83	2 Paines	7	4	3	2	No	2	No	3	Yes		
C-H:)	(= 7	$\sigma = 0.71 \text{ Xm}$	10 = 7	Xmd	= 7 PIO: X =	4 σ=	0	Xmo=4	Xmd =4	HQ LvI: X = 2.	8 σ= 0.45	Xmo = 3 Xmd	= 3
<u>C2</u>	36	1 McCann	6	4	2	2	Yes	2	Yes	2	Yes		
UL.	54	3 Schaible	6	3	2	2	Yes	2	Yes	2	Yes		
	10.7	3 Schaible	4	3	2	2	Yes	2	Yes	2	Yes		
C-H: >	(= 5.33	$\sigma = 1.15$ Xn	10 = io	Xmd	=6 PIO: X =		0.58	Xmo=3	Xmd = 3	HQ Lvi: X = 2	σ= 0	Xmo = Z Xmd	=2
D	4.3	2 Paines	8	4	3	2	No	2	No	2	No		
-	7.2	1 McCann	7	4	3	2	No	2	No	2	No		
	84	2 Paines	7	4	3	2	No	2	No	2	No		
	0.4 Q 3	4 Larson	7	4	3	2	No	2	No	2	No		
C-H+)	r = 7.25	$\sigma = 0.5$ Xm	$\frac{1}{10 = 7}$	Xmd	= 7 PIO: X =	4 σ=	: 0	$\frac{-}{Xmo} = 4$	Xmd =4	HQ LvI: X = 3	σ= 0	Xmo = 3 Xmd	= 3
<u> </u>	(= 1.25		2	2	1	- 1	Vac	1	Vec	2	No		
E	4.1	2 Paines	2	2	1	1	Vee	4	Vec	2	No		
	5.6	3 Schaible	2			1	Vee	1	Vec	2	No		
	10.3	3 Schalble	1		- 2 PIO: Y -	1 22 0-	1059	Ymo = /	Ymd = /		<u>a</u> = 0	Xmo = / Xmd	=/
	C= 1.0/	6 = 0.50 Al	2	1	1	1.00 0 -	Vec	1	Yes	1	Yes		
G	0.1 7.4	4 Laison	3	4	1	1	Vec	1	Vec	1	Yes		
	7.1	2 Deines		4	2	4	No	1	No	•	No		
	0.0 40.4	2 Pairies	-	4	2	1	Voc	1	Voc	1	Ves		
	10.1	3 Schalble	2	1	1 	· 1	165	Ymo = /	Ymd - /		$\frac{103}{25 \sigma = 0.5}$	Xmo = L Xmd	= 1
<u> </u>	(= 2.5	$\sigma = 1.29$ Xr	no = N)	/4.Xma	= 2.5 PIU: X =	- 0=	= 0				.20 0 - 0.0		
н	3.3	1 McCann	2	1	1	1	Yes	1	Yes	1	Yes		
	5.1	3 Schaible	1	1	1	1	Yes	1	Yes	1	Yes		
	6.5	4 Larson	3	1	1	1	Yes	1	Yes	1	Tes	Yme - 4 Ymd	=7
C-H:)	(=2	$\sigma = 1 Xr$		A Xmd	=Z PIO: X =	÷1 σ=	= 0	Xmo = /	Xmd = /		σ= U	Xmo = 7 Xma	-/
1	3.1	1 McCann	4	1	2	1	No	1	No	2	Yes		
	7.5	1 McCann	5	2	2	1	No	1	No	2	Yes		
	8.1	2 Paines	4	1	2	1	No	1	No	2	Yes		
	9.1	4 Larson	5	2	2	1	No	1	No	2	Yes		
С-Н: 3	K = 4.5	$\sigma = 0.58 \text{ Xr}$	no = 1,9	5 Xmd	= 4,5 PlO: X =	=1.5 σ=	= 0.58	Xmo = 1,2	2. Xmd = 1.4	= HQ LVI: X = 2	$\sigma = 0$	Xmo = 2 Xma	= 2
J	3.2	1 McCann	6	1	2	1	No	2	Yes	3	No		
	6.3	4 Larson	5	1	2	1	No	2	Yes	3	No		
	8.2	2 Paines	4.5	3	2	1	No	2	Yes	3	No		
	9.4	4 Larson	5	1	2	1	No	2	Yes	3	No		
C-H: 3	X = 5.13	σ=0.63 Xm	no =5	Xmd	=5 PIO: X =	=1.5 σ=	= 1	Xmo =	Xmd = I	HQ LvI: X = 2	$\sigma = 0$	Xmo = 2 Xmd	=2
ĸ	4.2	2 Paines	4	1	2	1	No	2	Yes	2	Yes		
	5.2	3 Schaible	3	1	1	1	Yes	2	No	2	No		
	6.6	4 Larson	3	1	1	1	Yes	2	No	2	No		
	7.3	1 McCann	5	3	2	1	No	2	Yes	2	Yes		
	9.2	4 Larson	2	1	1	1	Yes	2	No	2	No		
	9.5	4 Larson	6	1	2	1	No	2	Yes	2	Yes		
C-H: 2	X = 3.83	σ= 1.47 XI	no =3	Xmd	=3.5 PIO: X =	= 1.33 σ=	= 0.82	Xmo = 1	Xmd =1	HQ LvI: $X = 1$	$.5 \sigma = 0.55$	Xmo = 1,2 Xmd	=i.5
P	3.5	1 McCann	8	5	3	1	No	2	No	2	No		
	4.5	2 Paines	8	4	3	1	No	2	No	2	No		
	5.3	3 Schaible	5	4	2	1	No	2	Yes	2	Yes		
	6.2	4 Larson	7	2	3	1	No	2	No	2	No	•	
	7.4	1 McCann	6	3	2	1	No	2	Yes	2	Yes		
С-Н: 2	X = 6.8	σ= 1.30 XI	no = 8	Xmc	I=7 PIO: X=	=3.6 σ	= 1.14	Xmo =4	Xmd = 4	HQ LvI: X = 2	$c.6 \sigma = 0.55$	5 Xmo = 3 Xmd	=3

CAP Prediction Correlation

Config ID	Pre Ma	dictic atches	on ;	Accuracy	
A		1		20%	
C 2		3		100%	
D		0		0%	
E		3		100%	
G		3		75%	
н		3		100%	
1	-	0		0%	
J		0		0%	
к		3	-	50%	
P		0		0%	
Total Matches	; =	16		39%	(16/41)

BW with Dropback Prediction Correlation

Config ID	Prediction Matches	Accuracy	,
A	4	80%	
C2	3	100%	
D	0	0%	
E	0	0%	
G	3	75%	
н	3	100%	
I.	4	100%	
J	0	0%	
к	3	50%	
P	2	40%	
Total Matches	= 22	54%	(22/41)

.

Bandwidth Prediction Correlation

Config ID	Prediction Matches	Accuracy	
A	1	20%	
C2	3	100%	
D	0	0%	
Е	3	100%	
G	3	75%	
н	3	100%	
I	0	0%	
J	4	100%	
к	3	50%	
Р	2	40%	
Total Matche	s = 22	54%	(22/41)

APPENDIX C

PILOT COMMENT CARD, COOPER-HARPER RATING SCALE, AND PILOT-INDUCED OSCILLATION RATING SCALE

•

PILOT COMMI	ENT CARD		Card #							
TEST POINT #:	LANDING #:	TURBULENCE:								
EVAL PILOT:	.	WINDS:	<u> </u>							
TOUCHDOWN FIRM	INESS (EVAL): SOFT	MEDIUM FI	RM							
TOUCHDOWN FIRMNESS (SAFETY): SOFT MEDIUM FIRM										
LANDING ZONE PO	LANDING ZONE POSITION: DESIRED ADEQUATE NEITHER									
COOPER-HARPER	RATING									
INPUTS REQUIRED 1. Undesirable Motion 2. Predictable? (Linea 3. Initial Response? 4. Pitch Sensitivity? (5. Aggressiveness At 6. Compensation Teo 7. PIO Rating: 8. Problems with App	: ns? (Axis? Amplitude?) arity?) (Too Quick / Too Slow) Higher in flare? Touchy?) ffects Handling Qualities? chniques? (Smoothing, ba _ (use PIO scale) proach, Line Up, Flare, To	ick out of loop?) buchdown, Tendency	to Float?							
FEEL SYSTEM:										
1. Forces - Too High	/ Too Low?									
2. Control Displacen	nent - Too Much / Too Litt	le?								
3. Harmony (DId It)	anect the task?)									
 4. Nonlinearities? GENERAL: 1. Did Turbulence / Wind effect the task? How? 2. Consistency of performance? 3. Other comments? 										
	LIGHT	HEAVY								
Workload										
COOPER-HARPER	RATING									

Figure C1 Pilot Comment Card

ш
4
\overline{G}
ŭ
G
Z
Ξ
5
2
Щ
S
ш
F
ب
4
ð
C
Z
ñ
7
2
\geq
┙

Figure C2 Cooper-Harper Rating Scale

Figure C3 Pilot-Induced Oscillation Rating Scale

APPENDIX D

CAP, BANDWIDTH, AND DROPBACK DEFINITIONS AND MAPPINGS

CAP, BANDWIDTH, AND DROPBACK DEFINITIONS AND MAPPINGS

CONTROL ANTICIPATION PARAMETER

The control anticipation parameter (CAP) was defined as the ratio of an aircraft's initial pitching acceleration, $\ddot{\Theta}_0$, to its steady-state normal acceleration, $\Delta n_{Z_{SS}}$, where all accelerations were measured about the instantaneous center of gravity. For aircraft with classical longitudinal second order responses, this can mathematically be represented as:

$$CAP = \frac{\ddot{\Theta}_0}{\Delta n_{Z_{SS}}} = \frac{W\overline{c}C_{m_{C_L}} + \frac{1}{4}S\overline{c}^2\rho gC_{m_{O_L}}}{-I_Y \left[1 + \frac{C_{m_{C_L}}}{l_t \frac{l_t}{c_c}}\right]}$$

$$\approx \frac{\omega_{sp}^2}{n/\alpha} \approx \frac{\omega_{sp}^2}{\frac{V}{g} \frac{1}{T_{\Theta_2}}} \quad \left(\frac{rad / \sec}{g}\right),$$
(D1)

where:

W	\equiv aircraft's total weight
$\overline{\mathbf{c}}$	≡ mean aerodynamic chord
C _{mCL}	\equiv change in pitching moment
2	coefficient due to a change
	in lift coefficient
S	\equiv wing reference area
ρ	\equiv air density
g	\equiv acceleration due to gravity
$\mathrm{C}_{\mathrm{m}_{\dot{\Theta}}}$	\equiv change in pitching moment
	due to a change in pitch attitude rate
Iy	≡ moment of inertia about the aircraft's y-body axis
l _t	\equiv tail arm, 0.25 \overline{C} of tail to
	$0.25 \overline{C}$ of wing

ω _{sp}	\equiv undamped short period
•	natural frequency
n/α	\equiv the steady-state normal
	acceleration change per unit
	change in angle of attack for
	an incremental pitch control
	deflection at constant
	airspeed and Mach number
v	\equiv true airspeed
$1/T_{\Theta_2}$	\equiv high frequency pitch attitude
-	zero.

The approximations in Equation D1 can be derived using the longitudinal short period approximation and the above definition.

The CAP criterion required aircraft with higher order longitudinal modes of motion, i.e., aircraft which had more modes than the classical short period and phugoid modes, be reduced to a lower order equivalent system (LOES) as outlined in MIL-STD-1797A, page 179. The LOES match resulted in a classical pitch attitude transfer function of the form:

$$\frac{\Theta(s)}{\delta(s)} = \frac{M_{\delta}\left(s+1/T_{\Theta_{1}}\right)\left(s+1/T_{\Theta_{2}}\right)e^{-\tau}\Theta^{s}}{\left(s^{2}+2\zeta_{ph}^{\omega}{}_{ph}^{s}+\omega_{ph}^{2}\right)\left(s^{2}+2\zeta_{sp}^{\omega}{}_{sp}^{s}+\omega_{sp}^{2}\right)},$$

or using the short period approximation,

$$\frac{\Theta(s)}{\delta(s)} \approx \frac{K_{\Theta}\left(s+1/T_{\Theta_2}\right)e^{-\tau_{\Theta}s}}{s\left(s^2+2\zeta_{sp}\omega_{sp}s+\omega_{sp}^2\right)}$$
(D2)

where:

- $\delta \equiv$ deflection of pitch manipulator (commonly the elevator or canard)
- $K_{\Theta} \equiv$ gain associated with the short period transfer function

M_{δ}	\equiv pitching moment due to
	deflection of the pitch
	manipulator
$1/T_{\Theta_1}$	\equiv low frequency zero
e ^{-τ⊖s 1}	\equiv higher order time delay
ω _{ph}	≡ undamped phugoid natural
-	frequency
$\zeta_{\rm oh}$	\equiv phugoid damping ratio
ζ_{sp}	\equiv short period damping ratio.

The magnitude of CAP gave the pilot an indication of the final steady-state normal acceleration from the aircraft's initial pitching acceleration. This was essential because of the time lag between the pilot's input and the final steadystate normal acceleration. For example, aircraft with the desired flightpath and tend to rate the aircraft as being fast, abrupt, and sensitive.

On the other hand, a low CAP meant the initial pitching acceleration was low compared to the final steady-state normal load factor. Longitudinal control inputs changing the pitch attitude caused pilots to sense low initial pitching accelerations. Thus, pilots would increase control inputs to achieve the desired pitching acceleration. However, due to the lag between the initial pitching acceleration and the steady-state normal acceleration, a large steady-state normal acceleration would result and the desired flightpath would be over-shot. Pilot comments would typically classify the aircraft as being sluggish. Therefore, the magnitude of CAP was used as an indirect measure of pilot opinion as the aircraft was flown on the glideslope (Reference 1, page 6).

The CAP boundaries for the landing phases of flight, as presented in MIL-STD-1797A, are shown in Figure D1. Levels 1, 2, and 3 correspond to the Cooper-Harper Pilot Rating Scale. The CAP in the figure was defined from Equation D1 using the LOES match. In addition to Figure D1, MIL-STD-1797A restricted ω_{sp} , n/ α , and τ_{Θ} in the landing task as specified in Tables D1 and D2.

In summary, CAP was be used to predict pilot opinion of an aircraft's longitudinal mode of motion. To make precise flightpath adjustments, a pilot must be able to anticipate the ultimate response from the instantaneous motion of the aircraft. Longitudinally, the instantaneous motion is sensed through pitching accelerations. Thus, "the amount of instantaneous angular pitching acceleration per unit of steady state normal acceleration is.an index of the strength of the anticipation signal received by the pilot." (Reference 1, page 5)

BANDWIDTH CRITERION

In the field of aircraft handling qualities, "bandwidth," defined by the highest open-loop cross over frequency attainable with good closed-loop dynamics, is typically used to measure the speed of response a pilot can expect when tracking with rapid control inputs. Bandwidth indicates how tightly the pilot can close the loop without threatening the stability of the pilot/vehicle system; it is a measure of tracking precision and disturbance rejection. (Reference 2, page 45)

Classical control theory defines the bandwidth frequency, ω_{BW} , as that frequency where the closed loop magnitude is 3 dB down from the low frequency value—typically 0 dB when the closed loop system is low pass. When the system is first order, ω_{BW} is the open loop's crossover frequency. Thus, ω_{BW} can be a good measure of the closed-loop system's time response (Reference 2, page 45).

Figure D1 Landing Phase CAP Criterion

	Level 1		Level 1 Level 2	
Class	$\omega_{sp} _{min}$ (rad/sec)	n/α _{min} (g/rad)	$\omega_{\rm sp} _{\rm min}$ (rad/sec)	$\frac{n}{\alpha} \lim_{min} (g/rad)$
IV	0.87	2.7	0.6	1.8

Table D1 CAP REQUIREMENTS ON ω_{en} AND n/α (LANDING TASK)

Note: For Level 3, the time to double amplitude, based on the unstable root, shall be no less than 6 seconds. In the presence of any other Level 3 flying qualities, ζ_{sp} shall be at least 0.05 unless flight safety is otherwise demonstrated to the satisfaction of the procuring agency.

CAP REQUIREMENT ON TIME DELAY (LANDING TASK)			
Allowable Delay			
(sec)			
0.10			
0.20			
0.25			

Table D2

The bandwidth criterion, as defined in MIL-STD-1797A, was specifically developed for highly augmented aircraft which do not have traditional modes of motion. This criterion was derived from flight test results of the YF-16 Fighter Control Configured Vehicle. The YF-16 evaluated the effectiveness of independent control of ventral canards for side force generation and existing wing flaps for direct lift generation. Benefits of the bandwidth criterion were that it did not require a LOES match, nor did it rely on a pilot model.

The longitudinal bandwidth handling quality metric, ω_{BW} was defined as the highest frequency where the open-loop system had at least a 45-degree phase margin and a 6 dB gain margin. This essentially judged the pilot's ability to double the gain or add a time delay without causing longitudinal instability. Note the gain and phase margins were not defined in the classical way. The gain margin was not defined from encirclements of the -1 point on the system's Nyquist plot (i.e., the gain required to cause instability at a phase angle of -180 degrees) because of the difficulty in defining the nominal gain. Therefore, a gain of 6 dB from the -180-degree frequency, ω_{180} , was chosen to indicate a doubling of the pilot's gain. The phase margin definition was derived from

"...the relationship between closed-loop damping and open-loop phase margin for an ideal open-loop plant (G = Ke^{-ts}/s where τ was the pilot's time delay).as shown in Figure D2. A study of simulation data using pilot/vehicle analysis techniques showed a closed-loop damping ratio of 0.35 set the approximate boundary between undesirable and desirable flying qualities" (Reference 2, page 45).

As illustrated in Figure D2, this corresponded to an approximate phase margin of 45 degrees. Again because of the difficulty in defining the nominal gain, the phase margin was defined as the frequency where the open-loop Bode plot had a phase angle of -135 degrees (i.e., -180 degrees + 45 degrees). Using Figure D2 for higher order systems was justified since this criterion assumed the pilot would supply the needed leads or lags to make the system's response look like the response of K/s (Reference 2, page 48).

Application of the bandwidth criterion is illustrated by a typical Bode plot shown in Figure D3. As defined, the phase margin bandwidth, $\omega_{BW_{p}}$, was that frequency where the phase was 45 degrees more than -180, or -135 degrees. The gain margin bandwidth, $\omega_{BW_{G}}$, was defined as that frequency where the gain was 6 dB more than the gain at a phase of -180 degrees. Therefore, ω_{BW} for this example was equal to $\omega_{BW_{G}}$.

As illustrated in Figure D3, the line defining ω_{BW_G} could either intersect the magnitude curve at one, two, or three locations depending on the location of ω_{180} . The bandwidth with the lowest frequency would be the most conservative choice and would be the frequency reached first as the pilot's gain ramped up. On the other hand, one bandwidth will have the smallest phase margin and thus, will be the least stable. MIL-STD-1797A also states bandwidth "is the highest frequency at which the phase margin is at least 45 degrees and the gain margin is at least 6 dB; both criteria must be met." (Reference 3, page 226) It is this former bandwidth which was identified as the ω_{BW_C} .

The bandwidth criterion also required the calculation of the system's high frequency phase delay. This phase delay could accurately be modeled by a pure time delay of the form $e^{-\tau_{\Theta}s}$, where τ_{Θ} was the system's high frequency time delay. By approximating the phase curve of the open-loop Bode plot as having a constant slope beyond ω_{180} it is easily shown the time delay can be approximated by:

$$\tau_{\Theta} \approx \tau_P = \frac{\phi 1 - 180^{\circ}}{57.3\omega 1} \tag{D3}$$

where ω_{180} is the frequency where the phase angle is 180° , $\omega_1 = 2\omega_{180}$, and ϕ_1 is the phase at this frequency (Reference 3, page 228).

Figure D2 Relationship of Phase Margin to Closed-Loop Damping for $G(s) = Ke^{-ts}/s$

Frequency

Figure D3 Definition of ω_{BW} from the Open-Loop Frequency Response

The longitudinal bandwidth criterion is shown in Figure D4 for aircraft in the landing phase of flight. This figure shows boundaries which are currently in MIL-STD-1797A (solid lines) and new bandwidth boundaries which are recommended for inclusion in the next revision of MIL-STD-1797 (dashed lines). The proposed bandwidth boundaries are valid only when applied along with the dropback criterion. Again, handling qualities levels correspond to the Cooper-Harper Pilot Rating scale.

From a pilot's point of view, aircraft with high bandwidths tend to have crisp, rapid, and well while aircraft with damped responses low bandwidths tend to wallow and have sluggish responses (Reference 2, page 49). In contrast to the proposed boundaries, historical flight test results indicate there is an upper limit on bandwidth. As ω_{BW} is increased beyond 4 to 5 radians/second, pilots have difficulty controlling the aircraft along the desired flightpath in the presence of disturbances. If the aircraft does not attenuate frequencies above this range, pilots may rate the aircraft's handling qualities as being poor. As will be shown in the next section, application of the dropback criterion indirectly sets an upper limit on ω_{BW} .

DROPBACK CRITERION

The dropback criterion, as defined in References 4 through 7, has been recommended for inclusion in MIL-STD-1797A augmenting the proposed boundaries of the bandwidth criterion (see dashed boundaries on Figure D4). This new dropback criterion

"...was a measure of the mid-frequency response to attitude changes.... Excessive dropback results in pilot complaints of abruptness and lack of precision in pitch control—complaints common also to aircraft with excessive values of pitch attitude bandwidth." (Reference 5, page 22)

As seen in Figure D5, the dropback criterion was based upon the time response of an aircraft due to a pitch manipulator input. The criterion required a step pitch manipulator input be applied until a steady-state pitch rate, q_{ss} , was reached; then the input was taken out. The maximum pitch rate, q_{peak} , was defined to be the maximum pitch rate attained during the input phase. Dropback, (Drb), was defined to be the difference between the maximum

pitch attitude and the steady state pitch attitude once the input was taken out. Both Drb and q_{peak} were normalized by q_{ss} so there was no dependency on the length of input. Note that dropback was independent of the system's time delay, τ_{θ} .

Historical flight test results show that when the normalized values, q_{peak}/q_{ss} and Drb/ q_{ss} , are plotted onto Figure D5b a correlation in pilot opinion exists. If the data point lied above the line, excessive dropback existed indicating an abruptness or lack of pitch attitude precision. In the areas of excessive dropback, the criterion required adding one to the level predicted by the bandwidth criterion using the proposed boundaries. Correlation of pilot opinion was not strong enough to warrant usage of the dropback criterion alone, however when coupled with the bandwidth criterion, historical data show correlation of pilot opinion increases.

Studies show the dropback criterion accounts for poor handling qualities due to high ω_{BW} 's. As stated before, pilots have difficulties controlling aircraft with high ω_{BW} 's in the presence of disturbances since high frequencies are not attenuated. This was the justification for removing the "Abruptness Limit" in MIL-STD-1797A's bandwidth definition as shown in Figure D4.

In conclusion, the CAP and bandwidth criteria can be used to help predict pilot opinion of an aircraft in the landing phase of flight. CAP was based upon the aircraft's true airspeed, high frequency zero, short period natural frequency, and short period damping ratio. The bandwidth criterion, when coupled with the dropback criterion, was based upon the aircraft's open loop frequency and time responses. When applied separately, each criterion had reasonable correlation to historical pilot opinion, however, they did not predict the same pilot opinion over all possible aircraft responses.

RESULTS OF MAPPING THE CAP DOMAIN ONTO THE BANDWIDTH DOMAIN

To determine those areas where the CAP, bandwidth, and bandwidth with dropback agreed, the CAP domain was mapped onto the bandwidth domains. Mapping in the other direction, or mapping the bandwidth domains onto the CAP domain, would result in five equations and four unknowns—resulting in zero, one, or many solutions.

Figure D5 Dropback Criterion Definition

Because of this non-uniqueness, mapping of the bandwidth domains onto the CAP domain was not accomplished.

To map the CAP domain onto the bandwidth domains, K_{Θ} , $1/T_{\Theta_{\gamma}}$, and τ_{Θ} must be specified making Equation D2 unique— ω_{sp} and ζ_{sp} are specified due to the location in the CAP domain using Equation D1. Due to the definition of bandwidth, K_{Θ} is independent of bandwidth and does not influence the solution. The variables $1/T_{\Theta_2}$ and τ_Θ were selected as nominal values for VISTA in the approach and landing configuration (Landing Gear -DOWN, Speed Brakes - OUT), 2,300 feet pressure altitude (PA), and 170 Knots True Airspeed (KTAS) and are shown in Table D3. With these nominal values the pitch attitude transfer function, Equation D2, was unique for each point in the CAP domain. Thus, each specific point in CAP defined a point in the bandwidth and dropback domains.

Table D3 NOMINAL VALUES OF $1/T_{\theta_2}$ AND to FOR VISTA

1/T ₀₂	τ _θ (sec)
0.51	0.100

The CAP Level 1, as specified by points A, B, C, and D in Figure D6, mapped onto the bandwidth domain as shown in Figure D7 and the bandwidth domain augmented by the dropback criterion as shown in Figure D8. Note the $\omega_{sp}|_{min}$ area in Figure D6 for both Level 1 and 2 was defined from Table D1. If an aircraft fell within the shaded region of Figure D6, the predicted level automatically increased to the next higher level—Level 2 or 3, respectively.

Note the scale in Figure D7 was magnified to show the area of interest as related to Figure D4. The vertical lines are those lines which delineate bandwidth Level 1, 2, and 3. The shaded region shows the area where CAP Level 1 agreed with bandwidth Level 1.

Figure D8 shows the same magnification as Figure D7. However, in this figure, the new dropback boundaries are used along with application of the dropback criterion. Comparing Figure D7 to Figure D8 reveals that application of the dropback definition significantly decreased the area where CAP Level 1 agreed with the bandwidth domain. Note that in both Figures D7 and D8, all CAP Level 1 points are phase limited as defined by the bandwidth criterion.

Mapping CAP Level 2 onto the bandwidth domain was not as straight forward as that for CAP Level 1. Due to the definition of bandwidth, a nonlinear "Jump Line" existed as shown in Figure D6. This line resulted from ω_{BW_G} on the Bode plot, see Figure D3, jumping from the local peak near ω_{sp} to a lower ω_{BW_G} as a result of where the 6 dB gain line Two conditions must be met for this fell. discontinuity to exist. First, the bandwidth must be gain margin limited. Secondly, the pitch attitude to pitch manipulator magnitude Bode plot must be nonmonotonic-as shown in Figure D3. In other words, the slope of the Bode magnitude with respect to frequency must change signs resulting in a "shelf" type Bode magnitude plot shown in Figure D3. The dashed region in Figure D9 shows those areas where conditions allow the Jump Line to exist. Using Newton's non-linear solution technique, it can be shown there was one jump line for the CAP Level 2 region as shown in Figure D9.

As a result of the Jump Line, the closed CAP region EFJKLE shown in Figure D6 mapped onto the respective closed region in bandwidth shown in Figure D10. Similarly, the closed CAP region GHIG mapped onto the respective closed region in bandwidth shown in Figure D11. However, mapping across the Jump Line resulted in an open region in the bandwidth domains. For instance, the closed CAP region FHJF mapped onto an open in bandwidth which contained region а discontinuous jump.

Mapping CAP Level 2 onto the bandwidth domain using the dropback criterion resulted in Figures D12 and D13. Once again, including the dropback criterion changed those areas where the criteria agreed with one another. As shown in Figure D12, application of the dropback criterion resulted in the same areas of agreement as the bandwidth criterion for high bandwidths. Above approximately a bandwidth of 5 radians/second, the dropback criterion increased the bandwidth to a Level 2 while the "Abruptness Limit" did the same resulting in agreement with CAP.

Figure D7 CAP Level 1 Mapped onto the Bandwidth Domain

Figure D8 CAP Level 1 Mapped onto the Bandwidth Domain With Dropback

Figure D9 Potential Areas of Discontinuity in CAP

CAP Level 2 VISTA, 170 KTAS, %+ 0.1 second

Figure D13 CAP Level 2 Mapped onto the Bandwidth Domain With Dropback

Above a bandwidth of 2.2 radians/second, the dropback criterion increased the area of agreement between the CAP and bandwidth domains. As shown in Figure D10, for aircraft which lied above the CAP Level 1 region in the bandwidth domain and between a bandwidth of 2.5 and 4.5 radians/second, the bandwidth criterion alone predicted a Level 1 aircraft while CAP predicted a Level 2 aircraft. Applying the dropback criterion to the bandwidth domain, as shown in Figure D12, resulted in both criteria predicting a Level 2 aircraft. Both bandwidth and bandwidth with dropback predicted aircraft which lied below the CAP Level 1 region with a bandwidth above the Level 1 boundary bandwidth and below 4.5 radians/second to have Level 1 handling qualities while CAP predicted Level 2 handling qualities. The dropback criterion decreased the area of agreement below a bandwidth of 2.2 radians/second as shown in Figure D12.

The region bounded by points GHIG mapped onto the closed area shown in Figures D11 and D13. Using bandwidth alone resulted in both CAP and bandwidth predicting a Level 2 aircraft shown in Figure D11. Using bandwidth with dropback resulted in a bandwidth Level 3 aircraft and a CAP Level 2 aircraft shown in Figure D13. Note points G, H, and I have excessive dropback even though they lie to the left of the excessive dropback line in the bandwidth domain. This was a result of the nonanalyticity of the bandwidth domain.

APPENDIX E

FLIGHT TEST BUILDUP PROCEDURES

HANDLING QUALITIES DURING TRACKING

The test aircraft was flown in the same configuration used on final approach during the landing tasks, gear - DOWN and speed brake -OUT. The standby reticle in the test aircraft was set so the flight path marker (FPM) was approximately coincident with the aircraft's roll axis, or 187 milliradians of depression at 11 degrees angle of attack. The target aircraft executed a 30 degree bank level turn at constant airspeed. The test aircraft gained cutoff to begin a slow closure on the target. The safety pilot assisted the evaluation pilot by helping maintain the airspeed with the throttle. The evaluation pilot chose a point on the target (i.e., tailpipe) and aggressively tracked that point to zero error with the 2 milliradian center pipper in the standby reticle. Tracking by the test aircraft was accomplished without the use of rudder. The tracking test was discontinued when the slant range reached 1,000 feet or when the evaluation pilot felt that sufficient handling qualities during tracking (HQDT) had been performed. When unacceptable handling qualities were encountered, separation was increased and the test point was terminated.

PITCH CAPTURE TASK

The pitch capture task was only flown if a predicted Level 3 variable stability system (VSS) configuration failed the HQDT test, but had been determined to be landable by CALSPAN, as shown in the decision tree in Appendix F, Figure F1. The aircraft was configured at the same flight conditions and the VSS set as described above in the HODT setup. The evaluation pilot attempted to capture and hold a pitch angle of five degrees below level flight using the pipper in the standby reticle and then recaptured the level flight pitch attitude. This task consisted of aggressively trying to keep the pitch attitude within ± 0.5 degrees of desired pitch attitude. The evaluation pilot noted any problems with gross acquisition of the pitch attitude. If the pilot noted any undesirable characteristics that would make the aircraft questionable in the landing task (such as a pilot induced oscillation (PIO) rating of 5 or 6, using the scale in Appendix C), the test point was not flown in the landing task, as depicted by the Decision Tree in Appendix F, Figure F1.

*

APPENDIX F

FLIGHT TEST DECISION TREE
.

.

Figure F1 Flight Test Decision Tree

APPENDIX G

RECORDED PARAMETERS

٠

*

Table G1 DATA AQUISITION SYSTEM PARAMETERS RECORDED DURING TESTING

Parameter
Longitudinal stick displacement
Longitudinal stick force
Lateral stick displacement
Lateral stick force
Stabilator position (Left & Right)
Flaperon position (Left & Right)
Barometric Altitude
Barometric Altitude rate
True Airspeed
Calibrated Airspeed
Angle of attack, α
Pitch angle, θ
Pitch rate, q
Normal Load Factor at Center of Gravity, n _z
Fuel weight

Table G2 FLIGHT TEST DATA PARAMETERS DERIVED FROM POSTFLIGHT ANALYSIS

Parameter
load factor per angle of attack, n/α
high frequency zero, T _{O2}
Short Period Frequency, ω _{sp}
Short Period Damping, ζ_{sp}
Lower Order Equivalent Time Delay, τ_{Θ}
Gain Bandwidth, ω_{BW}
Phase Bandwidth, ω_{PH}
Estimation of Lower Order Equivalent Time Delay, τ_p
Dropback, Drb

APPENDIX H

VISTA MODEL DEFINITIONS

VISTA MODEL DEFINITIONS

VISTA MODEL DEFINITIONS

The following aircraft dynamic models were used during all flight tests. They were provided by the CALSPAN Corporation and were not validated by the HAVE CAP test team. These dynamic characteristics were optimized by CALSPAN to provide good flight control harmony over the wide range of short period dynamics. These models were held constant to facilitate consistency and repeatability for the full range of short period dynamics evaluated. It was recognized that these characteristics may not have provided the optimum control harmony for every variable stability system (VSS) configuration tested.

AIRCRAFT PHUGOID MODEL

The Variable-Stability In-Flight Simulator Test Aircraft's (VISTA) phugoid characteristics had a natural frequency of 0.023 radians per second, damping ratio of 0.2 and $1/T_{\theta_1}$ of 40 radians per second.

LATERAL-DIRECTIONAL AIRCRAFT MODEL

The VISTAs lateral-directional characteristics were a Dutch roll natural frequency of 1.94 radians per second and damping ratio of 0.24, and a roll mode time constant of 0.55 second with time delay of 0.14 second. This time delay was determined from the "maximum roll acceleration to half the input time history" method. The steady-state roll rate to roll controller force was 6.5 degrees per second per pound.

STICK DYNAMICS

The longitudinal center stick force gradient was 15 pounds per inch, while the lateral stick force gradient was set 10 pounds per inch. The longitudinal stick deflection to stick force transfer function was:

$$\frac{\delta_{es}}{F_{es}} = \frac{30^2}{15(s^2 + 2(0.7)(30)s + 30^2)}$$
(H1)

The lateral stick deflection to stick force transfer function was:

$$\frac{\delta_{as}}{F_{as}} = \frac{30^2}{10(s^2 + 2(0.7)(30)s + 30^2)}$$
(H2)

As seen from Equations H1 and H2, the center stick's damping ratio was 0.7 while the natural frequency was 30 radians per second.

ACTUATOR DYNAMICS

The VISTAs longitudinal actuator transfer function was, in degrees:

$$\frac{\delta e_{pos}}{\delta e_{cmd}} = \frac{1.8862 x 10^7 \cdot (s^2 + 2(0.03)(97)s + 97^2)}{(s^2 + 2(1.18)(63.3)s + 63.3^2)(s^2 + 2(0.57)(70.7)s + 70.7^2)(s^2 + 2(0.03)(94.2)s + 94.2^2)}$$
(H3)

SIGN CONVENTION

Longitudinally, a positive pitch rate was defined by the rotation vector out the right wing resulting from a positive aft stick deflection and a negative horizontal stabilator deflection. Laterally, a positive roll rate was defined by the rotation vector out the nose resulting from a positive right stick deflection and positive aileron deflection. Directionally, a positive yaw rate was defined by the rotation vector through the bottom of the aircraft resulting from a positive rudder pedal deflection and a negative rudder deflection.

GROUND BASED SIMULATOR DEFINITIONS

The CALSPANs ground based simulation of the VISTA showed the aircraft's load factor per angle of attack (n/ α) varied with fuel weight. Table H1 below shows $1/T_{\theta_2}$ and n/ α for several fuel weights at 11 degrees angle of attack in the approach and landing configuration (Gear - DOWN, Speedbrakes - OUT). The high frequency zero, $1/T_{\theta_2}$, was calculated from:

$$\frac{1}{T_{\theta_{9}}} \approx \frac{n}{\alpha} \cdot \frac{g}{V}$$
(H4)

Table H1 GROUND BASED SIMULATOR LOAD FACTOR PER ANGLE OF ATTACK AT DIFFERENT FUEL WEIGHTS

Fuel Weight (pounds)	True Airspeed (knots)	Calibrated Airspeed (knots)	n/α	1/T _{e2}
8,092	180	167	4.0821	0.4370
6,050	173	161	4.2427	0.4550
4,522	169	157	4.3360	0.4650
3,570	166	154	4.4350	0.4757
2,000	161	149	4.5540	0.4880
952	159	147	4.7600	0.5100

Notes:

1. n/α : load factor per angle of attack

2. $1/T_{\theta_2}$: zero associated with short period approximation

.

.

APPENDIX I

FLIGHT TEST DATA PLOTS

Figure 11 Longitudinal Stick Deflection Time Trace During PIO, Test Point 6.4

Longitudinal Stick Deflection (inches)

Figure 12 Stabilator Position Time Trace During PIO, Test Point 6.4

Figure 13 Stabilator Rate Time Trace Prior to PIO, Test Point 6.4

APPENDIX J

SUPPLEMENTAL FLIGHT TEST DATA PLOTS

.

.

PITCH ATTITUDE

Figure J2 VSS Configuration A Phase Bode Plot

PITCH ATTITUDE

Test Aircraft: VISTA - NF-16D Date: 14 Sep 95 Configuration: Gear - DOWN, Speed Brake - OUT Data Source: Data Acquisition System (20 Hertz)

Maneuver: Programmed Step Input VSS Configuration: A - 172 Aircraft Weight: 28,200 pounds Pressure Altitude: 10,500 feet

Figure J4 VSS Configuration A Pitch Rate Dropback

•

Figure J5 VSS Configuration A Pitch Angle Dropback

Figure J7 VSS Configuration A Time History of Theta and Longitudinal Stick Deflection

30 25 Aircraft Weight: 25,500 pounds VSS Configuration: A - 172 ₹ Test Point: 6.4 20 Pilot: 4 Time (seconds) 5 15 5 = Configuration: Gear - DOWN, Speed Brake - OUT Data Source: Data Acquisition System (20 Hertz) - Right Horizontal Stabilator Position - Left Horizontal Stabilator Position 10 Test Aircraft: VISTA - NF-16D Outside Air Temperature: 83°F Pressure Altitude: 2,211 feet 3 ž. Ś Date: 17 Sep 95 1 0 -15 15 10 ŝ 0 Ŷ -10 Stabilator Position (degrees)

Maneuver: Lateral Offset Landing Task

Figure J8 VSS Configuration A Time History of Stabilator Movement

.

6 Maneuver: Lateral Offset Landing Task Aircraft Weight: 25,500 pounds VSS Configuration: A - 172 ø Test Point: 6.4 5 Pilot: 4 Time (seconds) 9 Configuration: Gear - DOWN, Speed Brake - OUT Data Source: Data Acquisition System (20 Hertz) ŝ - Right Horizontal Stabilator Rate - Left Horizontal Stabilator Rate Test Aircraft: VISTA - NF-16D Outside Air Temperature: 83°F Pressure Altitude: 2,211 feet ____ Date: 17 Sep 95 m 2 6 -20 40 99 9 -80 80 60 20 0

Figure J9 VSS Configuration A Time History of Stabilator Rate (Plot 1)

10

Stabilator Rate (degrees/second)

.

Maneuver: Lateral Offset Landing Task VSS Configuration: A - 172 Aircraft Weight: 25,500 pounds Test Point: 6.4 Pilot: 4 Configuration: Gear - DOWN, Speed Brake - OUT Data Source: Data Acquisition System (20 Hertz)

Test Aircraft: VISTA - NF-16D

Date: 17 Sep 95

Figure J11 VSS Configuration A Time History of Pitch Rate

Figure J12 VSS Configuration A Time History of Altitude and Descent Rate

.

Figure J13 VSS Configuration A Time History of Calibrated Airspeed

Figure J14 VSS Configuration C2 Magnitude Bode Plot

PITCH ATTITUDE

125

Figure J16 VSS Configuration C2 Bode Squared Coherency Plot

Figure J17 VSS Configuration C2 Pitch Rate Dropback

Figure J18 VSS Configuration C2 Pitch Angle Dropback

Figure J19 VSS Configuration C2 Pitch Input Dropback

Maneuver: Lateral Offset Landing Task VSS Configuration: C2 - 175 Pilot: 3 Test Point: 5.4 Aircraft Weight: 25,300 pounds

Figure J20 VSS Configuration C2 Time History of Theta and Longitudinal Stick Deflection

Longitudinal Stick Deflection (inches)

Angle (degrees)

Maneuver: Lateral Offset Landing Task VSS Configuration: C2 - 175 Pilot: 3 Test Point: 5.4 Aircraft Weight: 25,300 pounds

Figure J21 VSS Configuration C2 Time History of Stabilator Movement

									-		-		-		~			-	_1										٦	25
					-		_	+	+	+	-	_	-							_										
anding Task 5 inds		\top			-	-	=	=	=	-	7	-	-		N							Τ							-	
								_	-	\$	=	=	_												_			<u>e</u>		
								•		+	4			_	۷			-	-							late	¢	Ka		
		+		_			_	-			~						-	-	-		-				+	- L	utor	ğ	-{	
				_								L P	5	=	>			_								ilato	:	Stabila		
					-		-	-		7		_	-				_		4							Stab	ć			
					_		-	-	_	=		_														al		ntal		0
								+	-	4		-	=	10												2001		Horizoi		2
				-			_	_	+	_		4	ÅÅ	N.						_	=	-		+	-	ori:			-	
			┝╼┿	+	-		=	-	+	_	-								_							ftΗ	-	ght	1	
		+	┝━┝	+	+				_			_			-					=	-	+	+	+	+	Le:	ļ	Ri	-	
t Lá pou																	M													
ffse 300										-	4										_	_	_	_		11		; [
u O n: (25,3									_		Z	I NI						_		-	_			_		Ľ		_		
teuver: Latera Configuration t: 3 Point: 5.4 raft Weight: 2										1								1	-	~										
		+			+		-	4			-			-	-							+	+	=	_			+	-	15
					-		_	=	<		_									_										
	\vdash	+-	$\left \right $	+	+					_				-			_			=				-	-+-	+				
Man /SS /Io ?ilo Pilo												_	V					h		>										spu
- OUT - F														N	H		=	-		-										ieco
											ΙA	V						╞			-	_	_	+						le (s
									4	3	1			È																Tim
		+	$\left \right $						-	-				L			-	F					-	+	+-		-		10	•
												_	-		E			-			~	=								0
		1	\square		1					-	1			2																Ξ
0 H		_		=				_	_	_	_											_		\downarrow		_			_	
Bra n (2								_			_	L			-	-		-	A											
eed	\vdash		$\left - \right $	1		-				_		•		E	F			-	3	λ.	-	+	+	_			-		-	
Sp. O									4		\leq		-							-	_									
-16] VN, ion 18°I		+-				\square		-	2		_			F							_	-	-+	+	1					
ISTA - NF- Jear - DOW ta Acquisit perature: 5						-			=																					
								-	-2	Y				Ĺ				Γ									ļ ·			
	\vdash													E	-		-		-			_	-	-			-		4	S
295 Jan 195 Ja													-		Ē		1													
aft: Sep ttior trior ir T		+						-	_	\$		-	-	F	E	13	2	=		-		-	+	+	+	+-		$\left - \right $		
ircr 16 gura our our									-	_			1-	1-	F	1-	Þ	F	-	 -		-	+	-	-					
st A te: nfig ta S tsid		T			Τ						-			-	E		-	-												
Da Da Da Ou	\square												z	R		-	-	<u> </u>						_				┝╍┤	4	
												-			12		1													
	┣+-	+	$\left \right $		+-	+	╞					-	+	R	Ē	-	╞	╞	\vdash	┢		+	+		+	+-	+	$\left \right $		
													5	P	t	L	L													~
c		_1_	ـــــــــــــــــــــــــــــــــــــ	 >	_		 >	i	<u></u>	~	<u> </u>		<u>.</u>	 0	0			 -	5	1	·	0	>			0	4		0	0
č	x		9	5			Ť			ĉ	Ń				-			č	7-			4-	F			ę			Ŷ	
								(p	uo	000	os/s	səa	ng	ləp);	əte	R	10]	eli	qe	ıS									

Figure J22 VSS Configuration C2 Time History of Stabilator Rate

n

Maneuver: Lateral Offset Landing Task VSS Configuration: C2 - 175 JT Pilot: 3) Test Point: 5.4 Aircraft Weight: 25,300 pounds

Figure J23 VSS Configuration C2 Time History of Pitch Rate

Maneuver: Lateral Offset Landing Task VSS Configuration: C2 - 175 Pilot: 3 Test Point: 5.4 Aircraft Weight: 25,300 pounds

Figure J24 VSS Configuration C2 Time History of Altitude and Descent Rate

Maneuver: Lateral Offset Landing Task VSS Configuration: C2 - 175 Pilot: 3 Test Point: 5.4 Aircraft Weight: 25,300 pounds

PITCH ATTITUDE

Figure J28 VSS Configuration D Bode Squared Coherency Plot

o

Figure J29 VSS Configuration D Pitch Rate Dropback

ý

40 3 39 $\Theta = 13.14 \text{ degrees}$ ζ Dropback = 1.05 degrees 38 Maneuver: Programmed Step Input VSS Configuration: D - 177 K Aircraft Weight: 27,600 pounds 37 Pressure Altitude: 10,800 feet 5 36 $\Theta = 14.19$ degrees ß 35 Time (seconds) **₽** 34 Configuration: Gear - DOWN, Speed Brake - OUT Data Source: Data Acquisition System (20 Hertz) 33 32 y Test Aircraft: VISTA - NF-16D 2 31 Date: 14 Sep 95 30 ł 29 3 3 28 15 12 11 14 13 Pitch Attitude (degrees)

Figure J30 VSS Configuration D Pitch Angle Dropback

-

r

140

Figure J31 VSS Configuration D Pitch Input Dropback

Figure J32 VSS Configuration D Time History of Theta and Longitudinal Stick Deflection

Longitudinal Stick Deflection (inches)

Angle (degrees)

142

Maneuver: Lateral Offset Landing Task VSS Configuration: D - 177 Pilot: 1 Test Point: 8.4 Aircraft Weight: 25,800 pounds

Stabilator Position (degrees)

25 20 Test Point: 8.4 Aircraft Weight: 25,800 pounds 15 Pilot: 1 Configuration: Gear - DOWN, Speed Brake - OUT Data Source: Data Acquisition System (20 Hertz) 10 -- Right Horizontal Stabilator Rate - Left Horizontal Stabilator Rate Outside Air Temperature: 85°F Pressure Altitude: 2,247 feet 35 Ś E I 0 -80 -20 -40 -60 80 60 40 20 0

Maneuver: Lateral Offset Landing Task

Test Aircraft: VISTA - NF-16D

Date: 18 Sep 95

VSS Configuration: D - 177

Figure J34 VSS Configuration D Time History of Stabilator Rate

Time (seconds)

144

Stabilator Rate (degrees/second)

Maneuver: Lateral Offset Landing Task VSS Configuration: D - 177 Pilot: 1 Test Point: 8.4 Aircraft Weight: 25,800 pounds

Figure J35 VSS Configuration D Time History of Pitch Rate

Pitch Rate (degrees/second)

ဓို -15 -25 19 -20 ဟု S 0 25 1 1111 È + 4 20 Aircraft Weight: 25,800 pounds VSS Configuration: D - 177 2 Radar Altitude - Height Above Ground F Test Point: 8.4 15 Pilot: 1 Time (seconds) ŀ ŧ Radar Altitude Rate Configuration: Gear - DOWN, Speed Brake - OUT Data Source: Data Acquisition System (20 Hertz) E 9 Outside Air Temperature: 85°F ł Pressure Altitude: 2,247 feet -S Date: 18 Sep 95 Ŧ 0 0 200 50 350 300 250 150 100

Maneuver: Lateral Offset Landing Task

Test Aircraft: VISTA - NF-16D

Radar Altitude Rate (feet/second)

Figure J36 VSS Configuration D Time History of Altitude and Descent Rate

•

146

Radar Altitude (feet)

Maneuver: Lateral Offset Landing Task VSS Configuration: D - 177 Pilot: 1 Test Point: 8.4 Aircraft Weight: 25,800 pounds

Calibrated Airspeed (knots)

Figure J37 VSS Configuration D Time History of Calibrated Airspeed

PITCH ATTITUDE

Figure J39 VSS Configuration E Phase Bode Plot

Figure J41 VSS Configuration E Pitch Rate Dropback

Test Aircraft: VISTA - NF-16D Date: 19 Sep 95 Configuration: Gear - DOWN, Speed Brake - OUT Data Source: Data Acquisition System (20 Hertz)

Maneuver: Programmed Step Input VSS Configuration: E - 178 Aircraft Weight: 26,100 pounds Pressure Altitude: 11,700 feet

Figure J42 VSS Configuration E Pitch Angle Dropback

.

Figure J43 VSS Configuration E Pitch Input Dropback

-1.0 -0.5 1.0 0.5 0.0 25 -4.5 Maneuver: Lateral Offset Landing Task Aircraft Weight: 24,000 pounds 20 VSS Configuration: E - 178 Š Test Point: 5.6 15 Pilot: 3 Time (seconds) Ş - Longitudinal Stick Deflection 2 Configuration: Gear - DOWN, Speed Brake - OUT Data Source: Data Acquisition System (20 Hertz) Angle of Attack 10 Ę ---- Theta Test Aircraft: VISTA - NF-16D Outside Air Temperature: 98°F 2 1 \leq Ś Date: 16 Sep 95 4 0 10 9 12 ∞ 4 2 0 14

Figure J44 VSS Configuration E Time History of Theta and Longitudinal Stick Deflection

Longitudinal Stick Deflection (inches)

Angle (degrees)

Maneuver: Lateral Offset Landing Task VSS Configuration: E - 178 Pilot: 3 Test Point: 5.6 Aircraft Weight: 24,000 pounds

Figure J45 VSS Configuration E Time History of Stabilator Movement

Maneuver: Lateral Offset Landing Task VSS Configuration: E - 178 Pilot: 3 Test Point: 5.6 Aircraft Weight: 24,000 pounds

Figure J46 VSS Configuration E Time History of Stabilator Rate

Maneuver: Lateral Offset Landing Task VSS Configuration: E - 178 Pilot: 3 Test Point: 5.6 Aircraft Weight: 24,000 pounds

Figure J47 VSS Configuration E Time History of Pitch Rate

Maneuver: Lateral Offset Landing Task VSS Configuration: E - 178 Pilot: 3 Test Point: 5.6 Aircraft Weight: 24,000 pounds

Figure J48 VSS Configuration E Time History of Altitude and Descent Rate

Maneuver: Lateral Offset Landing Task VSS Configuration: E - 178 Pilot: 3 Test Point: 5.6 Aircraft Weight: 24,000 pounds

Figure J49 VSS Configuration E Time History of Calibrated Airspeed

Figure J50 VSS Configuration G Magnitude Bode Plot

Figure J52 VSS Configuration G Bode Squared Coherency Plot

Figure J53 VSS Configuration G Pitch Rate Dropback

Figure J54 VSS Configuration G Pitch Angle Dropback

v

Figure J55 VSS Configuration G Pitch Input Dropback

Maneuver: Lateral Offset Landing Task

VSS Configuration: G - 180

Aircraft Weight: 24,400 pounds

Pilot: 1 Test Point: 8.5

Configuration: Gear - DOWN, Speed Brake - OUT Data Source: Data Acquisition System (20 Hertz)

Outside Air Temperature: 88°F

Test Aircraft: VISTA - NF-16D

Date: 18 Sep 95

Figure J56 VSS Configuration G Time History of Theta and Longitudinal Stick Deflection

Longitudinal Stick Deflection (inches)

Test Aircraft: VISTA - NF-16D Date: 18 Sep 95 Configuration: Gear - DOWN, Speed Brake - OUT Data Source: Data Acquisition System (20 Hertz) Outside Air Temperature: 88°F Pressure Altitude: 2,257 feet

Maneuver: Lateral Offset Landing Task VSS Configuration: G - 180 Pilot: 1 Test Point: 8.5 Aircraft Weight: 24,400 pounds

Figure J57 VSS Configuration G Time History of Stabilator Movement

Test Aircraft: VISTA - NF-16D Date: 18 Sep 95 Configuration: Gear - DOWN, Speed Brake - OUT Data Source: Data Acquisition System (20 Hertz)

Outside Air Temperature: 88°F Pressure Altitude: 2,257 feet

Maneuver: Lateral Offset Landing Task VSS Configuration: G - 180 Pilot: 1 Test Point: 8.5 Aircraft Weight: 24,400 pounds

Stabilator Rate (degrees/second)

Figure J58 VSS Configuration G Time History of Stabilator Rate

Test Aircraft: VISTA - NF-16D Date: 18 Sep 95 Configuration: Gear - DOWN, Speed Brake - OUT Data Source: Data Acquisition System (20 Hertz) Outside Air Temperature: 88°F Pressure Altitude: 2,257 feet

Maneuver: Lateral Offset Landing Task VSS Configuration: G - 180 Pilot: 1 Test Point: 8.5 Aircraft Weight: 24,400 pounds

Figure J59 VSS Configuration G Time History of Pitch Rate

Pitch Rate (degrees/second)

Test Point: 8.5 Pilot: 1 Configuration: Gear - DOWN, Speed Brake - OUT Data Source: Data Acquisition System (20 Hertz) Test Aircraft: VISTA - NF-16D Outside Air Temperature: 88°F Pressure Altitude: 2,257 feet Date: 18 Sep 95

Maneuver: Lateral Offset Landing Task Aircraft Weight: 24,400 pounds VSS Configuration: G - 180

Figure J60 VSS Configuration G Time History of Altitude and Descent Rate

Test Aircraft: VISTA - NF-16D Date: 18 Sep 95 Configuration: Gear - DOWN, Speed Brake - OUT Data Source: Data Acquisition System (20 Hertz) Outside Air Temperature: 88°F Pressure Altitude: 2,257 feet

Maneuver: Lateral Offset Landing Task VSS Configuration: G - 180 Pilot: 1 Test Point: 8.5 Aircraft Weight: 24,400 pounds

.

Figure J61 VSS Configuration G Time History of Calibrated Airspeed

Calibrated Airspeed (knots)

Figure J62 VSS Configuration H Magnitude Bode Plot

Figure J64 VSS Configuration H Bode Squared Coherency Plot

Figure J65 VSS Configuration H Pitch Rate Dropback

40 ξ $\Theta = 16.08 \text{ degrees}$ P Maneuver: Programmed Step Input Aircraft Weight: 27,800 pounds Dropback = 1.67 degrees Pressure Altitude: 10,800 feet VSS Configuration: H - 181 $\Theta = 17.75$ degrees Ę 35 Time (seconds) 3 Configuration: Gear - DOWN, Speed Brake - OUT Data Source: Data Acquisition System (20 Hertz) 30 Test Aircraft: VISTA - NF-16D Date: 22 Sep 95 2 <u>}</u> 25 10 18 12 16 15 14 13 11 17 Pitch Attitude (degrees)

Figure J66 VSS Configuration H Pitch Angle Dropback

Figure J67 VSS Configuration H Pitch Input Dropback

.

Test Aircraft: VISTA - NF-16DManeuveDate: 15 Sep 95VSS ConConfiguration: Gear - DOWN, Speed Brake - OUTPilot: 2Data Source: Data Acquisition System (20 Hertz)Test PoinOutside Air Temperature: 100°FAircraft V

Maneuver: Lateral Offset Landing Task VSS Configuration: H - 181 Pilot: 2 Test Point: 3.3 Aircraft Weight: 26,300 pounds

Longitudinal Stick Deflection (inches)

Figure J68 VSS Configuration H Time History of Theta and Longitudinal Stick Deflection

Angle (degrees)

Maneuver: Lateral Offset Landing Task VSS Configuration: H - 181 Pilot: 2 Test Point: 3.3 Aircraft Weight: 26,300 pounds

Figure J69 VSS Configuration H Time History of Stabilator Movement

Stabilator Position (degrees)

Maneuver: Lateral Offset Landing Task VSS Configuration: H - 181 Pilot: 2 Test Point: 3.3 Aircraft Weight: 26,300 pounds

Figure J70 VSS Configuration H Time History of Stabilator Rate

Maneuver: Lateral Offset Landing Task VSS Configuration: H - 181

Aircraft Weight: 26,300 pounds

Test Point: 3.3

Pilot: 2

Pitch Rate (degrees/second)

Figure J71 VSS Configuration H Time History of Pitch Rate

Maneuver: Lateral Offset Landing Task VSS Configuration: H - 181 Pilot: 2 Test Point: 3.3 Aircraft Weight: 26,300 pounds

Figure J72 VSS Configuration H Time History of Altitude and Descent Rate

Maneuver: Lateral Offset Landing Task VSS Configuration: H - 181 Pilot: 2 Test Point: 3.3 Aircraft Weight: 26,300 pounds

Figure J73 VSS Configuration H Time History of Calibrated Airspeed

PITCH ATTITUDE

د

Figure J75 VSS Configuration I Phase Bode Plot

Figure J76 VSS Configuration I Bode Squared Coherency Plot

5 Maneuver: Programmed Step Input 28 Aircraft Weight: 27,700 pounds Pressure Altitude: 10,700 feet VSS Configuration: I - 167 26 Time (seconds) q_{ss} = 0.64 degrees/second himport Configuration: Gear - DOWN, Speed Brake - OUT 24 Data Source: Data Acquisition System (20 Hertz) q_{peak} = 2.15 degrees/second Test Aircraft: VISTA - NF-16D 3 22 Date: 22 Sep 95 5 5 20 -2.0 3.0 2.0 1.0 0.0 -1.0 Pitch Rate (degrees/second)

Figure J77 VSS Configuration I Pitch Rate Dropback

30

187

Figure J78 VSS Configuration I Pitch Angle Dropback

Figure J79 VSS Configuration I Pitch Input Dropback

189

-1.0 -0.5 1.0 0.5 0.0 25 Maneuver: Lateral Offset Landing Task Æ 5 Aircraft Weight: 25,100 pounds ξ - Longitudinal Stick Deflection VSS Configuration: I - 167 20 Angle of Attack Š Test Point: 7.5 Pilot: 2 - Theta 15 -Time (seconds) I Configuration: Gear - DOWN, Speed Brake - OUT ß Data Source: Data Acquisition System (20 Hertz) 10) Test Aircraft: VISTA - NF-16D ŝ Outside Air Temperature: 94°F Pressure Altitude: 2,275 feet 2 Ś Date: 17 Sep 95 0 6 0 10 00 4 2 14 12

Figure J80 VSS Configuration I Time History of Theta and Longitudinal Stick Deflection

Longitudinal Stick Deflection (inches)

Angle (degrees)

Configuration: Gear - DOWN, Speed Brake - OUT Data Source: Data Acquisition System (20 Hertz) Test Aircraft: VISTA - NF-16D Date: 17 Sep 95

Outside Air Temperature: 94°F

Maneuver: Lateral Offset Landing Task Test Point: 7.5 Aircraft Weight: 25,100 pounds VSS Configuration: I - 167 Pilot: 2

Figure J81 VSS Configuration I Time History of Stabilator Movement

Stabilator Position (degrees)

Maneuver: Lateral Offset Landing Task VSS Configuration: I - 167 Pilot: 2 Test Point: 7.5 Aircraft Weight: 25,100 pounds

Figure J82 VSS Configuration I Time History of Stabilator Rate

Test Aircraft: VISTA - NF-16D Date: 17 Sep 95 Configuration: Gear - DOWN, Speed Brake - OUT Data Source: Data Acquisition System (20 Hertz) Outside Air Temperature: 94°F Pressure Altitude: 2,275 feet

Figure J83 VSS Configuration I Time History of Pitch Rate

Maneuver: Lateral Offset Landing Task

Test Aircraft: VISTA - NF-16D

Figure J84 VSS Configuration I Time History of Altitude and Descent Rate

Test Point: 7.5 Configuration: Gear - DOWN, Speed Brake - OUT Pilot: 2 Data Source: Data Acquisition System (20 Hertz) Test Aircraft: VISTA - NF-16D Outside Air Temperature: 94°F Pressure Altitude: 2,275 feet Date: 17 Sep 95

Maneuver: Lateral Offset Landing Task VSS Configuration: I - 167

Aircraft Weight: 25,100 pounds

Figure J85 VSS Configuration I Time History of Calibrated Airspeed

Figure J86 VSS Configuration J Magnitude Bode Plot

Figure J87 VSS Configuration J Phase Bode Plot

197

Figure J88 VSS Configuration J Bode Squared Coherency Plot

Figure J89 VSS Configuration J Pitch Rate Dropback

Figure J90 VSS Configuration J Pitch Angle Dropback

Figure J91 VSS Configuration J Pitch Input Dropback

Maneuver: Lateral Offset Landing Task Test Point: 3.2 Aircraft Weight: 27,400 pounds VSS Configuration: J - 184 Pilot: 2 Configuration: Gear - DOWN, Speed Brake - OUT Data Source: Data Acquisition System (20 Hertz) Outside Air Temperature: 100°F Test Aircraft: VISTA - NF-16D Date: 15 Sep 95

Figure J92 VSS Configuration J Time History of Theta and Longitudinal Stick Deflection

Longitudinal Stick Deflection (inches)

Angle (degrees)

Maneuver: Lateral Offset Landing Task VSS Configuration: J - 184 Pilot: 2 Test Point: 3.2 Aircraft Weight: 27,400 pounds

Aircraft Weight: 27,400 pounds VSS Configuration: J - 184 Test Point: 3.2 Pilot: 2

Figure J94 VSS Configuration J Time History of Stabilator Rate

Stabilator Rate (degrees/second)

Configuration: Gear - DOWN, Speed Brake - OUT Data Source: Data Acquisition System (20 Hertz) Outside Air Temperature: 100°F Test Aircraft: VISTA - NF-16D Date: 15 Sep 95

Maneuver: Lateral Offset Landing Task VSS Configuration: J - 184 Aircraft Weight: 27,400 pounds

Figure J95 VSS Configuration J Time History of Pitch Rate

Maneuver: Lateral Offset Landing Task 5 Aircraft Weight: 27,400 pounds VSS Configuration: J - 184 2 ۰ŧ Radar Altitude - Height Above Ground Test Point: 3.2 -± 4 Pilot: 2 Radar Altitude Rate Configuration: Gear - DOWN, Speed Brake - OUT Data Source: Data Acquisition System (20 Hertz) ×.... L Outside Air Temperature: 100°F Test Aircraft: VISTA - NF-16D Date: 15 Sep 95 250 200 150 100

15

9

ß

Radar Altitude (feet)

Figure J96 VSS Configuration J Time History of Altitude and Descent Rate

À,

Radar Altitude Rate (feet/second)

0

ဟု

-15

19

₽ ₽

7,

Ę

10 21 10

=

50

2

-20

25

20

15

Time (seconds)

9

S

0 L 0

3

1

Maneuver: Lateral Offset Landing Task VSS Configuration: J - 184 Pilot: 2 Test Point: 3.2 Aircraft Weight: 27,400 pounds

Calibrated Airspeed (knots)

Figure J97 VSS Configuration J Time History of Calibrated Airspeed

SQUARED COHERENCY

Figure J100 VSS Configuration K Bode Squared Coherency Plot

Test Aircraft: VISTA - NF-16D Date: 19 Sep 95 Configuration: Gear - DOWN, Speed Brake - OUT Data Source: Data Acquisition System (20 Hertz)

~

Maneuver: Programmed Step Input VSS Configuration: K - 171 Aircraft Weight: 26,700 pounds Pressure Altitude: 11,900 feet

۰.

Figure J102 VSS Configuration K Pitch Angle Dropback

Figure J103 VSS Configuration K Pitch Input Dropback

Maneuver: Lateral Offset Landing Task Test Point: 9.5 Aircraft Weight: 24,300 pounds VSS Configuration: K - 171 Pilot: 4 Configuration: Gear - DOWN, Speed Brake - OUT Data Source: Data Acquisition System (20 Hertz) Test Aircraft: VISTA - NF-16D Outside Air Temperature: 97°F Date: 18 Sep 95

Figure J104 VSS Configuration K Time History of Theta and Longitudinal Stick Deflection

Longitudinal Stick Deflection (inches)

Angle (degrees)

_,**4**

Maneuver: Lateral Offset Landing Task VSS Configuration: K - 171 Pilot: 4 Test Point: 9.5 Aircraft Weight: 24,300 pounds

Figure J105 VSS Configuration K Time History of Stabilator Movement

Maneuver: Lateral Offset Landing Task VSS Configuration: K - 171 Pilot: 4 Test Point: 9.5 Aircraft Weight: 24,300 pounds

Figure J106 VSS Configuration K Time History of Stabilator Rate

٠.

Stabilator Rate (degrees/second)

.,A

Maneuver: Lateral Offset Landing Task VSS Configuration: K - 171 Pilot: 4 Test Point: 9.5 Aircraft Weight: 24,300 pounds

Figure J107 VSS Configuration K Time History of Pitch Rate

Maneuver: Lateral Offset Landing Task VSS Configuration: K - 171 Pilot: 4 Test Point: 9.5 Aircraft Weight: 24,300 pounds

Radar Altitude (feet)

Figure J108 VSS Configuration K Time History of Altitude and Descent Rate

۶.,

, **/**1

Maneuver: Lateral Offset Landing Task VSS Configuration: K - 171 Pilot: 4 Test Point: 9.5 Aircraft Weight: 24,300 pounds

Figure J109 VSS Configuration K Time History of Calibrated Airspeed

Calibrated Airspeed (knots)

ħ.

Figure J112 VSS Configuration P Bode Squared Coherency Plot

۰.

Test Aircraft: VISTA - NF-16D Date: 22 Sep 95 Configuration: Gear - DOWN, Speed Brake - OUT Data Source: Data Acquisition System (20 Hertz)

Maneuver: Programmed Step Input VSS Configuration: P Aircraft Weight: 28,000 pounds Pressure Altitude: 11,000 feet

Figure J113 VSS Configuration P Pitch Rate Dropback

Pitch Rate (degrees/second)

55 Σ $\Theta = 14.00 \text{ degrees}$ ş Maneuver: Programmed Step Input VSS Configuration: P Aircraft Weight: 28,000 pounds 50 Pressure Altitude: 11,000 feet $\Theta = 15.29$ degrees Į ال م Time (seconds) 45 Configuration: Gear - DOWN, Speed Brake - OUT \geq Data Source: Data Acquisition System (20 Hertz) 5 Test Aircraft: VISTA - NF-16D 5 40 Dropback = 1.29 degrees Date: 22 Sep 95 ~ JU 35 12 16 15 14 13 18 17 Pitch Attitude (degrees)

Figure J114 VSS Configuration P Pitch Angle Dropback

•

Figure J115 VSS Configuration P Pitch Input Dropback

Maneuver: Lateral Offset Landing Task VSS Configuration: P Pilot: 2 Test Point: 3.5 Aircraft Weight: 24,500 pounds

Figure J116 VSS Configuration P Time History of Theta and Longitudinal Stick Deflection

>

Longitudinal Stick Deflection (inches)

Angle (degrees)

4

Maneuver: Lateral Offset Landing Task VSS Configuration: P Pilot: 2 Test Point: 3.5 Aircraft Weight: 24,500 pounds

Stabilator Position (degrees)

Figure J117 VSS Configuration P Time History of Stabilator Movement

Maneuver: Lateral Offset Landing Task VSS Configuration: P Pilot: 2 Test Point: 3.5 Aircraft Weight: 24,500 pounds

Figure J118 VSS Configuration P Time History of Stabilator Rate

∢

Maneuver: Lateral Offset Landing Task VSS Configuration: P Pilot: 2 Test Point: 3.5 Aircraft Weight: 24,500 pounds

Figure J119 VSS Configuration P Time History of Pitch Rate

Figure J120 VSS Configuration P Time History of Altitude and Descent Rate

A

J

{

Maneuver: Lateral Offset Landing Task VSS Configuration: P Pilot: 2 Test Point: 3.5 Aircraft Weight: 24,500 pounds

Figure J121 VSS Configuration P Time History of Calibrated Airspeed

This page intentionally left blank.

÷

1

LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS

)

Ę

Abbreviation	Definition	<u>Units</u>
AFB	Air Force Base	
AFFTC	Air Force Flight Test Center	
AFIT	Air Force Institute of Technology	
AFMC	Air Force Materiel Command	
AGL	above ground level	***
AMRAAM	advanced medium-range air-to-air missile	
AOA	angle of attack	
AOS	angle of sideslip	
ASCII	American Standard Code for Information Interchange	
CAP	control anticipation parameter	1/g*sec ²
C-H	Cooper-Harper	
$C_{l_{\alpha}}$	lift curve slope	
DAS	data acquisition system	
DFLCS	digital flight control system	
Drb	dropback	****
ELIC	engage logic and interface chassis	
FPM	flightpath marker	
FRA	frequency response analysis	
FIT	flight test technique	
g	acceleration due to gravity	32.2 fps ²
HQDT	handling qualities during tracking	
HUD	head-up display	
Hz	hertz	
ILS	instrument landing system	
KIAS	knots indicated airspeed	
KTAS	knots true airspeed	
kts	knots	
LOES	lower order equivalent system	
MFD	multifunction display	
MIL-STD	military standard	
MSL	mean sea level	
max	maximum	
min	minimum	
LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS (Concluded)

Abbreviation	Definition	<u>Units</u>
n/a	change in normal load factor due to a change in angle of attack	g/radian
OAT	outside air temperature	deg
PIO	pilot induced oscillation	
PTI	programmed test input	
q	dynamic pressure	lbs/ft ²
REC	recorder	
S	reference area	
SCC	signal conditioning chassis	
T_{Θ_2}	high frequency zero	
TMP	Test Management Project	
TPS	USAF Test Pilot School	
UHF	ultra high frequency	
USAF	United States Air Force	
V	true velocity	
VHF	very high frequency	
VHS	video home system	
VISTA	Variable-Stability In-Flight Simulator Test Aircraft	
VSS	variable stability system	
Vz	z-axis component of aircraft velocity	
W	aircraft weight	lb
WL/FIGC	Flight Dynamics Laboratory, Wright Laboratory	
$ au_{ heta}$	lower order equivalent system time delay	sec
$ au_{ m p}$	estimated phase delay	sec
ω _{sp}	short period natural frequency	
ω _{BŴ}	bandwidth frequency	
ω _{BWg}	bandwidth defined by gain	
$\omega_{\rm BWp}$	bandwidth defined by phase	
ζsp	short period damping ratio	

١,

DISTRIBUTION LIST

3

1

K

•	Offsite Distribution	Number of Copies
	WL/FIGC Mr. Dave Leggett Wright-Patterson AFB OH 45433	1
	Defense Technical Information Center DTIC/OCC 8725 John J Kingman Rd, Suite 0944 Ft. Belvoir VA 22060-6218	2
	HQ USAF/TEP 1530 Air Force Pentagon Washington DC 20330-1530	3
	Captain Jim McEachen 2616 Woodfern Ct Woodbridge VA 22192	1
	Flt Lt Justin Paines, RAF A Sqn DTEO Boscombe Down Salisbury Wiltshire SP3 United Kingdom	1
	HOH AERONAUTICS INC Attn: David Mitchell 2075 Palos Verdes Dr North Lomita CA 90717	1
	SYSTEMS TECHNOLOGY INC Attn: David Klyde 13766 S Hawthorne Boulevard Hawthorne CA 90250-7083	1
	McDonnell Douglas Aerospace Attn: Kevin D Citurs New Aircraft & Missile Products Mailcode 1067126 P.O. Box 516 St. Louis MO 63166-0516	1
	FASTC/TAA 4115 Hebble Creek Rd, Ste Wright-Patterson AFB OH 45433	1 .

DISTRIBUTION LIST (Concluded)

ć

1

3

λ

Onsite Distribution	Nu	mber of Copies
AFFTC/HO 1A S Rosamond Blvd, Bldg 0001A Edwards AFB CA 93524		1
412 TW/TSTL 307 E Popson Ave, Bldg 1400 Edwards AFB CA 93524-6485		3
Captain Dave Kivioja 36 Sharon Dr Edwards CA 93523		1
DV 29-5 Captain Chris McCann Edwards AFB CA 93523		1
Captain Mark Schaible 5322 Candlewood Drive Edwards AFB CA 93523		1
420 FLTS/ENF Kirk Harwood & Brian Hobbs Edwards AFB CA 93524		1
411 FLTS/DOEF John Manke 385 N Flightline Rd Edwards AFB CA 93524		1
USAF TPS/EDT Attn: Dave Lazerson 220 S Wolfe Ave Edwards AFB CA 93524-6485		8
412 TW/TS 195 E Popson Ave, Bldg 2750 Edwards AFB CA 93524		3
	Total	32