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Abstract

This research applies statistical and artificial neural network analysis to data obtained

from measurement of organic compounds in the breath of a Fisher-344 rat. The Research

Triangle Institute (RTI) developed a breath collection system for use with rats in order to

collect and determine volatile organic compounds (VOCs) exhaled. The RTI study tested the

hypothesis that VOCs, including endogenous compounds, in breath can serve as markers to

exposure to various chemical compounds such as drugs, pesticides, or carcinogens normally

foreign to living organisms. From a comparative analysis of chromatograms, it was concluded

that the administration of carbon tetrachloride dramatically altered the VOCs measured in

breath; both the compounds detected and their amounts were greatly impacted using the data

supplied by RTI. This research will show that neural network analysis and classification can

be used to discriminate between exposure to carbon tetrachloride versus no exposure and

find the chemical compounds in rat breath that best discriminate between a dosage of carbon

tetrachloride and either a vehicle control or no dose at all. For the data set analyzed, 100

percent classification accuracy was achieved in classifying two cases of exposure versus no

exposure. The top three marker compounds were identified for each of three classification

cases. The results obtained show that neural networks can be effectively used to analyze

complex chromatographic data.
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Neural Network Analysis of Chemical Compounds in Nonrebreathing

Fisher-344 Rat Breath

L Introduction

1.1 Background

Pattern recognition principles/techniques can be used to analyze a multitude of environ-

mental problems. Applications include classifying bacterial species from mass spectrometry

(8), identifying phytoplankton from flow cytometry (5), and identifying different classes of jet

fuel from gas chromatography (11). The specific environmental problem to addressed in this

thesis has been posed and studied by Dr. James H. Raymer of the Research Triangle Institute

(RTI) (16).

RTI developed a breath collection system for use with rats in order to collect volatile

organic compounds (VOCs) in their breath (16). The VOCs were analyzed by RTI using

thermal desorption/gas chromatography with flame ionization or mass spectrometric detection

for three cases: after a specific dosage level of carbon tetrachloride had been injected, after

a vehicle control (VC) dose had been injected, and after no dosage had been administered.

RTI's study tested the hypothesis that VOCs in breath can serve as markers to exposure to

various chemical compounds normally foreign to living organisms such as drugs, pesticides,

or carcinogens. From a qualitative analysis of the chromatograms for each of the three cases

discussed above, RTI concluded that the administration of carbon tetrachloride dramatically

altered the VOCs measured in breath and the concentration of a large variety of compounds

was elevated.

From the data supplied by RTI, this thesis will show that neural network analysis and

classification can be used to find the compounds in breath that best discriminate between a

1



dosage of carbon tetrachloride and either a VC dose or no dose at all. Figure 1 provides an

illustrative overview of the research performed in this thesis.

Rats Injected with either:5 c
- carbon tetrachloride Rat breath collected

VCVno dose

Measurements madero
gas chromatographs

Rat breath analyzed by
gas chromatography

Oats supplied to AFIT from RTI

Neural network analysis to find
best marker compounds

Figure 1. Overview of Research

1.2 Problem Statement

Investigate the statistical and neural network processing of rat breath data to determine

the Bayes accuracy for classification of a particular dosage condition and feature saliency of

chemical compounds in discriminating a dosage condition. Find the compounds in breath that

best discriminate between a dosage of carbon tetrachloride and either a VC dose or no dose at

all.

1.3 Research Objectives

Determine how difficult it is to classify a specific dosage condition using the rat breath

data, i.e. what is the estimated Bayes error rate? Determine which chemical compounds in the

rat breath provided the best discrimination between dosage conditions (none, VC, and carbon

tetrachloride).

2



1.4 Scope

This research first investigates the techniques used to bound the Bayes error rate for

a specific data set. Statistical techniques are employed to bound the Bayes error rate for rat

breath for each type of classification. Once the Bayes error bound is found, it is used to get

insight into the bounds that an artificial neural network (ANN) should reach and whether the

current feature set is acceptable. The ANN classification is performed on the dosage condition

and is analyzed in a pairwise fashion for three cases. The three cases of classification are

1) a carbon tetrachloride dose is classified with a VC dose, 2) a carbon tetrachloride dose is

classified versus a no dose and 3) a VC dose is classified with a no dose. Forward sequential

selection techniques and a feature saliency metric will be used to provide insight into which

chemical compounds found in rat breath best contribute to the discrimination between dosage

conditions.

1.5 Approach

The approach taken in this thesis is composed of four steps. The first step is to implement

the techniques of bounding the Bayes error rate presented by Fukunaga and Hummels (7)

and Martin (12). The second step of the approach is to train and test a neural network in

classification of dosage levels based on the obtained Bayes error bound. The third step is

to use forward sequential selection techniques and neural network classification to determine

which chemical compounds best discriminate between dosage levels. The fourth step is to

utilize a feature saliency metric to validate the results obtained using the forward sequential

selection techniques.

1.6 Overview of Thesis

Chapter II provides a background of the artificial neural network used and the techniques

associated with bounding the Bayes error and feature saliency. Chapter III describes the

rat breath data, the methodology of the experimentation, and presents the results as each

individual method is presented. Chapter IV provides a summary of the results and presents

3



the conclusions of this research. Appendix A presents derivations of learning laws for the

Multilayer Perceptron and Appendix B presents techniques to increase the convergence of the

gradient descent search of the MLP. Appendix C provides a derivation of the Ruck saliency

metric using the notation presented in Chapter II. Appendix D provides a legend of the chemical

compounds abbreviated in Chapter III. Appendix E provides the code to compute the Ruck

saliency metric.
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II. Theory

2.1 Chapter Overview

In this chapter, the relevant theory utilized in this thesis will be presented. Specifically,

the topics to be presented include the multilayer perceptron, Bayes decision theory, Bayes

error rate bounding, and feature selection.

2.2 Introduction to the Multilayer Perceptron

There are several options to be considered when faced with a pattern recognition

problem. One option to be considered is whether to use a statistical pattern recognition

scheme or an artificial neural network. An artificial neural network, specifically the Multilayer

Perceptron (MLP), is considered because of its diversity and ability to classify data that is not

linearly separable (17). To illustrate example data that are not linearly separable, consider data

in the form of the binary logic operator, exclusive OR (XOR). The XOR data can be viewed

from a geometric point of view as in Figure 2. Assume that data would fall into either class 0

or class 1 and that the two input features are labeled X1 and X 2.

X 2

2.5

2

1.5 5
o

0.5 oo

-0.5 - 0 0

-1 x 0 0 0
0000X 0~4' X 00

-2

- 2 - -15- -0!5 0 0!5 1 !6 2 26X

Figure 2. XOR Data

It is obvious from analyzing the plot of the XOR data that there is not a line that will

separate class 0 from class 1. Hence, the XOR data are not linearly separable. The MLP has

5



no problem classifying the XOR data (4). The architecture and function of the MLP covered

in the next section provides insight into why an MLP can easily classify XOR data.

2.3 Architecture and Function of the MLP

The architecture of the multilayer perceptron (MLP) is shown in Figure 3 (18).

Yl Yk o  YK

Output Layer

Weights, W 2j
Hidden Layer

Input Layer . •

xI Xio X I X 1+1-1

Figure 3. Multilayer Perceptron

As can be seen in Figure 3, each input is weighted and then the weighted inputs are

summed at the nodes in the hidden layer and bias term X 1 +1 is added. The advantage of

adding the bias term is that the hyperplanes constructing the decision surface are not restricted

to pass through the origin. The resulting sum is then run through a nonlinear transformation.

See Figure 4 to analyze a hidden layer single node. Note that X = [X0 , X 1, ..., XN-1, 1] and

W = [Wo, W1, ... , WN]. The transformation is usually either linear or sigmoidal. An example

of a sigmoidal transformation is shown in Figure 5.

6



x w

fi -y4 (XW W)

WNWl

+1

Figure 4. Node Structure

0.8-

0.6

0.4

0.2-

-10 -8 -6 -4 -2 0 2 4 6 8 10

Figure 5. Sigmoid Function

7



The procedure at the hidden layer is then repeated at the output layer with a different

set of weights. For the MLP to be trained to classify, a learning law for each set of weights

must be found that is dependent on the nonlinear transformation. The error is defined below:

1K
E =- Z(dk - Yk)'

2 k=1

Where, dk is the desired output, k is the number of outputs, and Yk is the actual output.

The weights must be updated using one of many existing training rules. A popular technique

is the backward error propagation technique, or backprop (17). The generalized learning law

for backprop is shown below:

W + = W- -7 OE

Where, W + is the updated weight, W- is the old weight, and 77 is a constant. Notice

that this technique is based on gradient descent in the weight space over an error surface that

is created by a sum of the squared error at each output node (19).

Several different combinations of transformations at both the hidden and output layer

can be made. For instance, a MLP could have a linear transformation at the output layer and a

sigmoid transformation at the hidden layer (1). Depending on the combination, the derivation

of the learning laws for each layer will differ. Four combinations of transformations at both

layers are considered and derived in Appendix A.

2.4 Introduction to Bounding the Bayes Error Rate

In real-world problems of pattern recognition, accuracy of classification is generally

used as a measuring stick to determine how well a particular system performs. An element of

error always exists in classification unless the problem is trivial and 100 percent classification

accuracy is always achieved. To achieve a minimum probability of error, a classifier must be

designed to have an error rate that matches the minimum achievable average error which is

8



the Bayes error, or Bayes error rate. This chapter focuses on the necessary theory to explain

Bayes error rate and bounding it using a multilayer perceptron.

2.5 Bayes Decision Theory

"Bayes decision theory is a fundamental statistical approach to the problem of pattern

classification (3)." A rigorous presentation of Bayes decision theory is presented by Duda and

Hart and the reader is encouraged to explore their presentation (3). To give the reader a clear

overview of Bayes decision theory, a two-class problem will be considered (3).

Suppose that a fish packing plant wanted to automate its operations of packing sea bass

and salmon. The two types of fish will be sorted on a conveyor belt by an optical scanner.

After processing the images, the information (or features) that discriminate between a sea bass

and salmon will be extracted. Assume that the salmon is lighter in color than the sea bass.

Therefore, brightness is used as a feature and the classification of the two types of fish will be

based solely on brightness. Further assume that the brightness data points for the sea bass and

salmon are as shown in Figure 6.

0.4 , Salmon

* 0.35 Se Bs

0.3

0.25

0.2

0.15

0.1

0.05

20 40 50 100 120 140 160 180 200

Brightness
Decision
Threshold

Figure 6. Lightness Distributions of the Sea Bass and Salmon

From Figure 6, it can be seen that most of the salmon are indeed lighter than the sea bass.

Also note that there is no way to partition the feature space into two absolutely distinct regions

9



(one corresponding to a sea bass and the other to a salmon). This plot suggest the following

rule for classifying the fish based on the lightness feature: Classify the fish as salmon if its

feature vector falls above the decision threshold, and as a sea bass otherwise. From Figure 6,

when brightness measurement equals 100, a great percentage of salmon will be classified as

salmon, but some sea bass could also be classified as salmon at this brightness level. So, some

probability of error exists with every decision. The Bayes error is the shaded area under the

curve on either side of the decision threshold. The probability of error is further discussed in

Section 2.5.2 and by Duda and Hart (3).

2.5.1 Bayes Rule. To understand Bayes Rule, Table 1 shows the variables used and

provides a brief description of each (3).

Table 1. Bayes Rule Variables
Variable Description
w~i state of nature or class (it is a random variable); i = 1,2....
P(wi) a priori probability of class wi
x a measurement or feature (random variable whose distribution depends on wj)
p(x) probability density function (pdf) for x
p(x I wi) state-conditional probability density function for x
P(wi I x) a posteriori probability

The goal is to find P(wi I x) or, in a pattern recognition sense, to make a class decision

based on a measurement, x. Bayes Rule provides a way to find P(wj I x) as shown below.

Ppwi Ix) = p(XIWi)P(Wi)
p(x)

Observation of the a posteriori probabilities provided by Bayes Rule provides the basis

for calculating the probability of error associated with choosing a particular state of nature.

2.5.2 Probability of Error. For a two-class problem as presented in Section 2.5,

if the a posteriori probability for the salmon was greater than that of the sea bass for a given

measurement, we would be inclined to choose the salmon as the true state of nature. With this

decision as in all pattern recognition classification, some probability of error is associated with

10



the choice. For a particular measurement, x, the probability of error associated with choosing

the wrong state of nature is illustrated by the following rule:

{ P(w1 x), if w2 is chosen;
P(error P(w2 x), if w, is chosen.

Define an optimal classifier as one that minimizes the probability of classification error.

In order to achieve this minimum, the classifier must choose w, if P(w1 I x) is greater than

P(W2 I x). Since all values of x must be considered, the average probability of error can be

computed from the following math.

P(error) = fj_ P(error I x)p(x)dx

Note that if for every value of x, P(error I x) is as small as possible, the integral will

be as small as possible and the average probability of error will be minimized. From this

analysis, Bayes decision rule is born for minimizing the probability of error.

Decide w, if P(w1 Ix) > P(w2 Ix): otherwise decide w2.

Bayes decision rule can be rewritten as:

Decide w, if p(x I wl)P(wl) > p(x I w2)P(w2): otherwise decide w2

(if p(x) is treated as a scale factor and just eliminated from the math).

Since the Bayes error rate minimizes the probability of error, a classifier that approaches

or matches the Bayes error rate is highly desirable to achieve maximum classification accuracy.

In most real-world problems, neither the a priori probability nor conditional pdf for each class

is known, so it is impossible to analytically determine the Bayes error rate. There are several

techniques to place a bound around the Bayes error for a given set of data. The Bayes error

bound can be used to gauge how well a particular classifier performs. If a classifier's error

rate falls within the computed Bayes error bound, then the classifier should be considered to

have performed well because achieving the Bayes error rate is the best any classifier can be

expected to achieve on average.

11



2.6 Bounding the Bayes Error Rate

There are several techniques to bound the Bayes error rate. The method considered here

uses two different types of data manipulation, namely the resubstitution and leave-one-out

methods. In most pattern recognition problems, only a finite set of data exists and that finite

set must be used to not only design a classifier, but also test the classifier. By using both the

resubstitution and leave-one-out methods a bound on the Bayes error rate can be found.

2.6.1 Resubstitution Method. In the resubstitution method, the entire finite set of

data is used to design the classifier. If N is the complete set of data, ND the design set of data,

and NT the test set of data, then the following math represents how the data are utilized in the

resubstitution method.

N=ND =NT

The estimate of the probability of error is found by finding the proportion of samples

that are misclassified in the test set.

2.6.2 Leave-One-Out Method. In the leave-one-out method, every sample of the

finite set of data is used to design a classifier except one which is held out to test the classifier.

This procedure of leaving one sample of the data set out for testing is repeated until all samples

of the data set have been used for testing. Using the notation in Section 2.6.1, the following

equations represent how the data is utilized in the leave-one-out method.

ND=N-1 & NT=1

The estimate of the probability of error is found by finding the proportion of samples

that are misclassified in all of the test sets. Lachenbruch first published the leave-one-out

method in 1967 (9).

2.6.3 Resubstitution and Leave-One-Out Bounds. Each method returns an estimate

of the probability of error as a function of the number of neighbors in a k-nearest neighbor

12



density estimator, the size of the window of a parzen window density estimator, or the number

of hidden nodes in a multilayer perceptron (12) (13). For both the resubstitution and leave-

one-out methods, an estimate of the probability of error is found over a range of parameters

to produce a curve for each method as seen in Figure 7.

Error

Leave-One-Out Method

Bayes Error Bound

------------------- -------------------- Bayes Error Rate

# of neighbors, or
size of window, or

Resubstitution Method # of hidden nodes

Figure 7. Bayes Error Bound

Using the resubstitution and leave-one-out methods on the same set of data provides

upper and lower bounds on the Bayes error rate (6) as illustrated in Figure 7. The bound is

actually found by first finding the minimum of the leave-one-out curve and then finding the

corresponding value of the resubstitution curve. Since generating even one curve for either

method is a random process, a curve for each method should be found several times and then

the average curve for each method should ultimately be used. The resubstitution method

returns an estimate of the error rate which is generally optimistic. It is considered optimistic

because the error rate is usually lower than the Bayes error rate, but cannot be achieved by a

classifier when it is presented with new samples outside of the finite set of data used (6). On

the other hand, the leave-one-out method returns an estimate of the error rate which could be

considered pessimistic because the error rate is usually higher than the Bayes error rate.
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2.7 Introduction to Feature Selection

When analyzing the classification results of an MLP, the following question may arise,

"which features presented as input were most important in determining the outcome?" For

example, in the business world neural networks have been used to classify individuals as

good or bad loan risks based on hundreds of factors (or features) such as age, income, debts,

etc (18). The neural network may perform superbly in classifying these loan applicants but

the financial institution is required by law to inform all those denied a loan the reason for

denial. For this purpose the financial institution must know which input features were most

important in classifying the loan applicant as a bad loan risk. Feature selection techniques can

be applied to this problem in order to determine the most important features that contributed

to classifying the individual as a bad loan risk.

Feature selection is the process by which a large set of candidate features is reduced to a

smaller set while the techniques used in feature selection are aimed at partitioning the feature

set into the important or salient features and the unimportant features (22). Although there are

several approaches to neural network feature selection, all techniques fall into three general

categories (22). The first class of techniques involves a search for relevant feature subsets, the

second class uses saliency metrics to rank individual features, and the third class is concerned

with screening irrelevant features. An excellent presentation of these techniques is presented

by Steppe and the reader is encouraged to explore her presentation (21).

In this thesis, the first and second classes of techniques will be explored and used.

Before any analysis of the data is performed, Fisher's discriminant is used to initially screen

the data (14). Section 2.7.1 will present Fisher's discriminant. Section 2.7.2 will present the

first class of feature selection techniques, forward sequential selection, and Section 2.7.3 will

present the second class of techniques, saliency metrics.

14



2.7.1 Fisher's Discriminant. As stated in the last section, Fisher's discriminant is

initially employed to screen the data. For each of the three two-class problems analyzed in

this thesis, Fisher's discriminant is used to compare the data of one class versus the other.

Fisher's discriminant, f, is defined in Equation 1 (14).

f =(11 - t 2) 2

2 + (0 1 + 2

Note that IL is the mean and a 2 is the variance.

2.7.2 Forward Sequential Selection. Steppe labels this technique as forward

sequential selection (21) while it is also referred to as an add-on procedure (14). Each

feature under consideration is analyzed individually and the feature which produces the best

classification accuracy is used as the nucleus for the next set. Then, all pairs of features

comprising the nucleus and one other feature are analyzed. The feature whose addition to the

nucleus results in the best classification accuracy is incorporated into the nucleus. This process

is repeated each time adding the one feature whose addition results in the best classification

accuracy until all features have been considered or until the desired level of performance has

been achieved.

2.7.3 Saliency Metrics. Although saliency metrics have been proposed by Ruck,

Priddy, and Tarr (19) (15) (23), Steppe demonstrated the equivalence of these metrics (21). In

this thesis, only the Ruck saliency metric will be presented and used (19). The Ruck saliency

metric derives an expression for the derivative of an output with respect to a given input and

then uses this expression to measure the sensitivity of an MLP to each input feature. The

derivation using the notation presented in Section 2.3 for the MLP is shown in Appendix C

and only the highlights are shown here. Note again that superscripts always represent a layer

index and not a quantity raised to a power.
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The definition of activation is the weighted sum of the input values plus the threshold

as shown below for the kth node of the output layer, a.

J+1

ak=E WjkXJ

j=1

(Note: The output of the hidden nodes is defined as xj and Wjk is the weight from the

jth node on the hidden layer to the kth output node.)

The output of the MLP is Yk and using a sigmoidal transformation it is shown below.

Yk = fH(a1)

To compute the Ruck saliency metric, the derivative of the output with respect to the

input must be found as shown below.

-a 9fH(a% _ )a

Oxi - _(i = Yk(1 - Yk)oaok

The resulting saliency metric, Ai, measures the usefulness of each input feature for

determination of the correct output class.

K 1yk K J+1
Ai-- I 1 = 1: 160 1: '6-'j l11'i

k=1 k=1 j=1

2.8 Summary

This review has detailed the necessary theory to analyze the Fisher-344 rat breath data

with neural networks. The next chapter describes how the data were processed and presents

the results of each individual method as each method is presented.
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III. Methods & Results

3.1 Introduction

In this chapter, the methods used to analyze the Fisher-344 rat breath data are outlined.

First, the initial analysis and manipulation of the data are discussed. An overview of the

methods employed in this thesis is shown in figure 8. As each individual method is presented

throughout this chapter, the results obtained using that method will be shown directly after.

RTI Data
(89 Detected Chemicals)

Fisher's Discriminant Analysis
(Prune to 10 Chemicals)

Bayes Error Analysis on Single Feature Data Configuration

B Bayes Error Analysis on Multiple Feature Data ConfigurationI

Forward Sequential Selection Feature Saliency

Classify each two-class problem Classify each two-class problem
using each of 10 chemicals individually using all 10 chemicals
(1 Feature at a time) (10 Features)

Find the most salient features/chemicals]

Rank order features based on Rank order features based on
Classification Error Ruck saliency metric

C" Compare Results

Figure 8. Methods Overview
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3.2 Data Manipulation

3.2.1 Correlation Analysis. The data provided by RTI were obtained through

gas chromatography/mass spectrometry (GC/MS) (16). The actual chromatographs of the rat

breath were not analyzed in this research. Two measurements were provided for each dose as

shown in the sample data entry line in Table 2.

Table 2. Sample Data Entry Line

Observation Compound Peak Number Drug Level Rat Wt. M1 M2
428 1,2-Dichloroethane 20.4 CC14, 96-98h Hi 1 0.728 2.66321E-05 $.05602E-07

The observation column provides the tracking number of the specific measurements,

M1 and M2. For an observation, the varying input factors are drug, level, and rat weight

and the varying output factors are compound, peak number, Ml, and M2. The compound

column identifies the chemical compound detected using GC/MS and denotes a specific pattern

classification feature for the purposes of this research. The peak number identifies the specific

peak associated with the chemical compound on the gas chromatograph. The peak number is

not used in this research since the actual chromatographs were not analyzed. The drug column

identifies one of three doses: 1) carbon tetrachloride, 2) vehicle control (VC), or 3) no dose

which are denoted as dosage conditions in this thesis. VC is simply a saline solution. Also,

the drug column denotes the time of the measurements with respect to the injection time which

was ignored in this research. The level column refers to the level of the carbon tetrachloride

dose. A carbon tetrachloride dose has three dosage levels 1) low 2) medium and 3) high, but

only the high dose level was used in this research. The rat weight column provided the mass

of the rat used for each specific observation but was not pertinent for this research.

In a pattern recognition sense, each dosage condition represented a separate class. For

instance, using this data a two-class problem can be created by assigning no dose as one class

and assigning another dosage condition, such as a carbon tetrachloride dose, as the other class.

M1 and M2 are naturally chosen as features since they are the only relevant measurements

provided. Ml is the measurement of a A mole of compound per 100 grams of rat mass
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per minute and M2 is a /t mole of compound per p mole of carbon dioxide produced. The

relationship of M 1 to M2 was tested by computing the sample correlation coefficient as defined

below (2).

Let Sv be the sample covariance. Then, given n pairs of observations (xl, Yi), (x2,

Y2), ... , (Xn, Yn),

1nS.y -_ E"(xi - -x)(yi -Y
ni1

T and y are the sample means. Let r be defined as the sample correlation coefficient.

Then, r SX

A reasonable rule of thumb to say that two variables are correlated is if 0.8 < r < 1.0

denotes a strong correlation (2). A scatter plot of the data plotting one variable against another

can also provide insight into the correlation as shown in Figure 9 (2). The computed sample

correlation coefficient for M1 and M2 was r = 0.9932. A scatter plot of the data is shown in

Figure 10. It is obvious that M1 and M2 are strongly correlated and, therefore, only one of

the variables, Ml, need be used as a feature since using both would be redundant.
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(a) r near +1 (b) r near -i

(cn) r near 0, no apparent (d) r near 0, nonlinear
relationship relationship

Figure 9. Scatter Plots for Different Values of r

to, Measurement #1 vs. Measurement #2

1a

0.8

~0.6

0.4a

0 0.2 0.4 0.6 0.8 1
Ml nXoe

Figure 10. Scatter Plots for M1 and M2, r = 0.9932
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3.2.2 Data Configuration. In the rat breath data, over 80 different chemical

compounds were detected over the range of dosage conditions. Considering if only M1 is

used, the question arises as to how to configure the data in order to be able to tell which

chemical compounds provide the best discrimination between any two of the three dosage

conditions. Two possible ways to configure the data are 1) have a single entry feature vector

irrespective of the detected chemical compound as shown in Equation 2 or 2) treat M 1 and each

corresponding chemical compound as a separate feature as shown in Equation 3. Remember

from Section 3.2.1 that for a two-class problem, class 0 could be assigned to all measurements

from observations of no doses and class 1 could be assigned to all measurements from

observations of carbon tetrachloride doses.

Class Feature

0 Ml

0 Ml
X1= (2)

1 Ml

1 Ml

Class Feature 1 Feature 2 • Feature N

0 Ml(Acetone) Ml(Benzene) ... Ml(Nth Compound)

0 Ml(Acetone) Ml(Benzene) ... Ml(Nth Compound)

X2 = (3)

1 Ml(Acetone) Ml(Benzene) ... Ml(Nth Compound)

1 Mt(Acetone) Ml(Benzene) ... Ml(Nth Compound)

Hereafter, the data configuration in Equation 2 is labeled the single feature configuration

and the data configuration in Equation 3 is labeled the multiple feature configuration. Note that

for the multiple feature configuration the number of chemical compounds used as features can
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be varied from 1 to N where N is the total number of chemical compounds detected. Further

note in the multiple feature configuration that each row represents multiple Ml measurements

incorporating several observations. The effectiveness of each configuration is analyzed in

Section 3.4.

3.3 Fisher's Discriminant

Although 89 chemical compounds were detected in the rat breath, M1 of just 10 com-

pounds were considered in the two different data configurations for three two-class classifica-

tion problems 1) a VC dose versus a carbon tetrachloride dose 2) a no dose versus a carbon

tetrachloride dose and 3) a no dose versus a VC dose. In an effort to parse the original 89

chemicals down to 10 chemicals for each of the 3 dosage conditions, Fisher's discriminant

was employed (14).

For example, in classification Case 1 Fisher's discriminant is calculated for each of the

89 compounds comparing only carbon tetrachloride dose data points to no dose data points.

Then, the ten compounds with the highest f are considered for the parsed feature set. This

process is then repeated for the other two classification cases.

Fisher's discriminant was computed for all 89 chemical compounds for each of the three

cases of classification. The results of computing Fisher's discriminant for each classification

case are shown in Tables 3, 4, and 5. Only the top ten chemicals and chloroacetone are shown.

Chloroacetone was added in the analysis in the first two classification cases because it was

specifically singled out in the RTI study (16) but did not make the top ten list. A key is

provided in Appendix D which shows the full name of the chemical compounds abbreviated

throughout this section. Chemicals are ranked in descending order of Fisher's discriminant

values in Tables 3, 4, and 5.
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Table 3. Fisher's Discriminant for VC vs. Carbon Tetrachloride

Compound chlorobenz unkflo tetra 2butanal c7h12 sat2 2pent npent 1butanol 2hex chloroace
f 5.2847 3.7934 2.9975 2.7402 2.2843 1.8227 1.7428 1.5299 1.4946 1.4913 1.2032

Table 4. Fisher's Discriminant for No Dose vs. Carbon Tetrachloride

Compound chlorobenz unkflo 12di 2butanal tetra 2pent 2hex npent methmeth lbutanol chloroace
f 7.3392 5.3348 4.1911 3.9360 2.9261 2.7052 1.8232 1.5827 1.5706 1.4747 1.3810

Table 5. Fisher's Discriminant for No Dose vs. VC

Compound pchloro ethace I odi I 2hex chloroace phenol 2methprop 2methfur benzonitrile 2octbenz
f 3.9378 2.9223 2.8823 1.6534 1.5715 1.5329 1.4299 1.3303 1.1898 1.0508

Note that nine of the eleven compounds in the VC versus carbon tetrachloride classifica-

tion case are found in the no dose versus carbon tetrachloride case. This result is not surprising

given the fact that the only difference between a VC and no dose is that a VC consists of a

saline solution. From the top ten Fisher discriminant chemical compounds, the Bayes error

analysis and feature selection techniques can now be employed for all three classification cases

(refer to Figure 8).
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3.4 Bayes Error Estimation

The Bayes error estimation using Parzen/k-nn techniques was employed using MATLAB®

code (12). The reader is encouraged to explore Martin's programs to gain insight into this

methodology. The Bayes error estimation using MLP techniques was accomplished using the

software LNKnet (10). When the data manipulation technique of resubstitution was employed,

500 epochs were used to train the MLP. With the leave-one-out method, 50 training epochs

were employed in each experiment. The number of hidden nodes was varied for both data

manipulation methods as discussed in Chapter II.

3.4.1 Bayes Error Estimation of Single Feature Data Configuration. The data were

initially put into the single feature configuration and the Bayes error was estimated. Figure

11 shows the computed bounds using a Parzen window density estimator. Analysis of Figure

11 shows that the estimated Bayes error bound is [22,60]. After realizing that the best error

that could be achieved was between 22 and 60 percent, the single feature data configuration

was abandoned and the multiple feature data configuration was adopted. Sections 3.4.2.1 to

3.4.2.3 will show that the multiple feature configuration can achieve much lower error.

70

2O • Rernubnttulon

10

, 1.5 2 2.5 3

Figure 11. Bayes Error Bounds for VC vs. Carbon Tetrachloride (Single Feature)

3.4.2 Bayes Error Estimation of Multiple Feature Data Configuration. For each

of the three dosage conditions, the Bayes error is bounded using a Parzen window density

estimator and an MLP.
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3.4.2.1 VC vs. Carbon Tetrachloride. With the data in the multiple feature

configuration, an estimate of the Bayes error was computed. Figure 12 shows the computed

bounds using a Parzen window density estimator. Figure 13 shows the computed bounds using

an MLP. Analysis of Figure 12 and 13 shows that the estimated Bayes error bound is (0,6).

Note the consistencies of the computed bounds between the Parzen window density estimator

and MLP.

- Leave One Out

20- Resubst~ution

iO

1 2 0 4 5 6 7
. 10r,

Figure 12. Bayes Error Bounds for VC vs. Carbon Tetrachloride (Parzen)

30- LeaveOneOut

Resubstution

25

320

10

o 5 10 15 20 25 30
#O hidenrnoces

Figure 13. Bayes Error Bounds for VC vs. Carbon Tetrachloride (MLP)
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3.4.2.2 No Dose vs. Carbon Tetrachloride. With the data in the multiple

feature configuration, an estimate of the Bayes error was computed. Figure 14 shows the

computed bounds using a Parzen window density estimator. Figure 15 shows the computed

bounds using an MLP. Analysis of Figure 14 shows that the estimated Bayes error bound is

(0,3.5) and Figure 15 illustrates a consistent bound shown on the last step before the MLP

memorizes.

25- - Leave One Out

- Resubstution

20-

<10

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
h x 16'

Figure 14. Bayes Error Bounds for No Dose vs. Carbon Tetrachloride (Parzen)

- Leave One Out

Resubsthion

4

0 10 2 25 40 50 60 70 80
# of hidden nodes

Figure 15. Bayes Error Bounds for No Dose vs. Carbon Tetrachloride (MLP)
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3.4.2.3 No Dose vs. VC. With the data in the multiple feature configuration,

an estimate of the Bayes error was computed. Figure 16 shows the computed bounds using

a Parzen window density estimator. Figure 17 shows the computed bounds using an MLP.

Analysis of Figure 16 and 17 consistently shows that the estimated Bayes error bound is (0,14).

45- LeaveOneOut

40 -- Reststrtulon

35-
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Figure 16. Bayes Error Bounds for No Dose vs. VC (Parzen)
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Figure 17. Bayes Error Bounds for No Dose vs. VC (MLP)
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3.5 Feature Selection

Two methods are employed to find which chemical compounds found in the rat breath

best contribute to the discrimination between dosage conditions. The first method is a forward

sequential selection technique (14) (21) and the second method involves computing a saliency

metric (19).

3.5.1 Forward Sequential Selection. For each dosage condition, the forward

sequential technique is employed by classifying each two-class problem using each of the 10

chemical compounds individually. Each compound can be viewed as an individual feature

as is done in the multiple feature configuration. Each feature/compound is classified in the

initial step of the forward sequential selection technique. If conditions warrant a second or

subsequent steps as explained in Section 2.7.2, then that step is performed.

3.5.1.1 VC vs. Carbon Tetrachloride. Table 6 shows the first step results in

the forward sequential selection technique. Analysis of Table 6 shows that 2hex achieved the

lowest classification error and is, therefore, used as the first feature of the nucleus.

Table 6. First Step Classification Error for VC vs. Carbon Tetrachloride

Compound chlorobenz unkflo tetra 2butanal c7h12 sat2 2pent npent lbutanol 2hex chloroace
% Error 6.25 6.67 12.5 7.69 10.0 61.54 7.41 11.11 6.25 0.00 20.0

To illustrate the effectiveness of the 2hex feature, Table 7 shows the second step results

in the forward sequential selection technique where the compounds listed are classified with

2hex in the multiple feature configuration.

Table 7. Second Step Classification Error for VC vs. Carbon Tetrachloride

Compound and2hex chlorobenz unkflo tetra 2butanal c7h12 sat2 2pent npent lbutanol chloroace
% Error 0.00 6.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Analysis of Tables 6 and 7 shows that when 2hex is used in conjunction with all other

compounds except unkflo, the classification error is decreased.

3.5.1.2 No Dose vs. Carbon Tetrachloride. Table 8 shows the first step

results in the forward sequential selection technique. Analysis of Table 8 shows that 2hex

achieved the lowest classification error and is, therefore, used as the first feature of the nucleus.

Table 8. First Step Classification Error for No Dose vs. Carbon Tetrachloride

Compound chlorobenz unkflo l2di 2butanal tetra 2pent 2hex npent methmeth ibutanol chioroae
c Error 8.33 15.38 14.29 14.29 7.69 16.67 0.00 15.38 15.38 10.00 36.36

To illustrate the effectiveness of the 2hex feature, Table 9 shows the second step results

in the forward sequential selection technique where the compounds listed are classified with

2hex in the multiple feature configuration.

Table 9. Second Step Classification Error for No Dose vs. Carbon Tetrachloride

Compound chlorobenz unkflo 12di 2butanal tetra 2pent npent methmeth 1butanol chloroace
% Error 8.33 15.38 7.69 0.00 0.00 5.56 0.00 0.00 7.69 0.00

Analysis of Tables 8 and 9 shows that 2hex is used again as the first feature of the

nucleus as it was used for the VC versus carbon tetrachloride classification case. Again,

when 2hex is used in conjunction with all other compounds except chlorobenz and unkflo, the

classification error is decreased.
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3.5.1.3 No Dose vs. VC. Table 10 shows the first step results in the forward

sequential selection technique. Analysis of Table 10 shows that ethace achieved the lowest

classification error and is, therefore, used as the first feature of the nucleus.

Table 10. First Step Classification Error for No Dose vs. VC

Compound pchloro ethace odi 2hex chloroace phenol 2methprop 2methfur benzonitrile 2octbenz
% Error 30.00 11.11 40.00 22.22 60.00 20.00 20.00 57.14 33.33 57.14

Analysis of Table 11 reveals that no feature/compound achieves zero classification error

as happened in the first two classification cases. So, a second step in the forward sequential

selection technique is necessary to further analyze the features. Table 11 shows the second

step results in the forward sequential selection technique where the compounds listed are

classified with ethace in the multiple feature configuration.

Table 11. Second Step Classification Error for No Dose vs. VC

Compound pchloro odi 2hex chloroace phenol 2methprop 2methfur benzonitrile 2octbenz
% Error 9.09 9.09 10.00 11.11 8.33 10.00 0.00 0.00 0.00

Analysis of Tables 10 and 11 shows that when ethace is used in conjunction with all

other compounds, the classification error is decreased.
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3.5.2 Saliency Metrics. The Ruck saliency metric must be computed when the

data is in the multiple feature data configuration. For each dosage condition, each two-

class problem is classified using an MLP. Then, the "usefulness" of each input feature for

determination of the correct output class (found by the MLP) is measured by the saliency

metric. MATLAB® code was employed and is provided in Appendix E. Once the saliency

metric is computed for each feature, they are rank ordered and then compared to the results

obtained in the forward sequential selection technique in Section 3.6. Classification results

will first be shown and then the saliency of the features which provided those classification

results will be presented for each dosage condition.

3.5.2.1 VC vs. Carbon Tetrachloride. With the data in the multiple feature

configuration using all of the compounds in the Fisher's discriminant results shown in Section

3.3, the VC versus carbon tetrachloride data was classified using an MLP. The results are

shown in Table 12.

Table 12. Confusion Matrix for VC vs. Carbon Tetrachloride

Actual Assigned
- VC CC14

VC 9
CC14 - 9

Analysis of Table 12 shows that the MLP classified all data points perfectly. That is, all

VC data points were classified as VC and all carbon tetrachloride data points were classified

as carbon tetrachloride. Table 13 shows the saliency of the features used in the classification

shown in Table 12.

Table 13. Feature Saliency for VC vs. Carbon Tetrachloride

Cmond chlorobenz unkflo tetra 2butanal c7h12 sat2 2pent npent lbutanol 2hex chloroace
Saliency 0.9032 1.0000 0.8335 0.7747 0.3818 0.5104 0.8070 0.7736 0.8694 0.8882 0.7552
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Analysis of Table 13 shows the most salient feature/compound is unkflo while the least

salient is c7h12. Therefore, the feature that was most useful in perfectly classifying the dosage

condition, VC versus carbon tetrachloride, is unkflo according to the Ruck saliency metric.

3.5.2.2 No Dose vs. Carbon Tetrachloride. With the data in the multiple

feature configuration using all of the compounds in the Fisher's discriminant results shown in

Section 3.3, the carbon tetrachloride versus no dose data was classified using an MLP. The

results are shown in Table 14.

Table 14. Confusion Matrix for No Dose vs. Carbon Tetrachloride

Actual Assigned
No CC14

No 18 -

CC14 [ 9

Analysis of Table 14 shows that the MLP classified all data points perfectly. That is,

all no dose data points were classified as no dose and all carbon tetrachloride data points were

classified as carbon tetrachloride. Table 15 shows the saliency of the features used in the

classification shown in Table 14.

Table 15. Feature Saliency for No Dose vs. Carbon Tetrachloride

Compound chlorobenz unkflo 12di 2butanal tetra 2pent 2hex npent methmeth lbutanol chloroace
Saliency 1.0000 0.8858 0.2324 0.7257 0.7009 0.6266 0.8972 0.5792 0.6522 0.9714 0.6701

Analysis of Table 15 shows the most salient feature/compound is chlorobenz while the

least salient is 12di. Therefore, the feature that was most useful in perfectly classifying the

dosage condition, no dose versus carbon tetrachloride, is chlorobenz according to the Ruck

saliency metric.
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3.5.2.3 No Dose vs. VC. With the data in the multiple feature configuration

using all of the compounds in the Fisher's discriminant results shown in Section 4.3, the no

dose versus VC data was classified using an MLP. The results are shown in Table 16.

Table 16. Confusion Matrix for No Dose vs. VC

Actual Assigned
- No VC

No 8

Analysis of Table 16 shows that the MLP classified all data points perfectly. That is, all

no dose data points were classified as no dose and all VC data points were classified as VC.

Table 17 shows the saliency of the features used in the classification shown in Table 16.

Table 17. Feature Saliency for No Dose vs. VC

F Compound pchloro ethace I odi I 2hex I chloroace phenol 2methprop 2methfur benzonitrile 2octbenz
Saliency 0.6465 1.0000 0.6789 0.8008 0.8826 0.5460 0.9665 0.9593 0.9726 0.8084

Analysis of Table 17 shows the most salient feature/compound is ethace while the least

salient is phenol. Therefore, the feature that was most useful in perfectly classifying the

dosage condition, no dose versus VC, is ethace according to the Ruck saliency metric.
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3.6 Results Comparison

3.6.1 VC vs. Carbon Tetrachloride. Table 18 compares the results of the tests

performed to compute Fisher's discriminant (f), forward sequential selection classification

error, and feature saliency.

Table 18. Results Comparison for VC vs. Carbon Tetrachloride

Compound chlorobenz unkflo tetra 2butanal c7h12 sat2 2pent npent lbutanol 2hex chloroace
fRank 1 2 3 4 5 6 7 8 9 10 14

1st Step Fwd SeqRank 2 4 9 6 7 11 5 8 2 1 10
Saliency Rank 2 1 5 7 11 10 6 8 4 3 9

Analysis of Table 18 shows that both feature selection techniques, forward sequential

selection and feature saliency, have very comparable results for all features while Fisher's

discriminant results are not consistent with results of either technique.

3.6.2 No Dose vs. Carbon Tetrachloride. Table 19 compares the results of the tests

performed to compute Fisher's discriminant (f), forward sequential selection classification

error, and feature saliency.

Table 19. Results Comparison for No Dose vs. Carbon Tetrachloride

Compound chlorobenz unkflo 12di 2butanal tetra 2pent 2hex npent methmeth lbutanol chloroace

fRank 1 2 3 4 5 6 7 1 81 9 10 12
1st Step Fwd Seq Rank 3 7 5 5 2 10 1 7 7 4 11

Saliency Rank 1 4 11 5 6 9 3 10 8 2 7

Analysis of Table 19 shows that both feature selection techniques, forward sequential

selection and feature saliency, have very comparable results for all features while Fisher's

discriminant results are not consistent with results of either technique.
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3.6.3 No Dose vs. VC. Table 20 compares the results of the tests performed

to compute Fisher's discriminant (f), forward sequential selection classification error, and

feature saliency.

Table 20. Results Comparison for No Dose vs. VC

Compound pchloro ethace odi 2hex chloroace phenol 2methprop 2methfur benzonitrile 2octbenz
fRank 1 2 3 4 5 6 7 8 9 10

Ist Step Fwd Seq Rank 5 1 7 4 10 2 2 8 6 8
Saliency Rank 9 1 8 7 5 10 3 4 2 6

Analysis of Table 20 shows that both feature selection techniques, forward sequential

selection and feature saliency, have very comparable results for all features while Fisher's

discriminant results are not consistent with results of either technique.

Figure 18 shows a scatter plot of M1 for 2hex for the carbon tetrachloride versus VC

classification case. Note the wide variance of the class one data points as compared to the

variance of the class zero data points. This plot provides an excellent example of how Fisher's

discriminant may be relatively small but there is still separability between class one and class

zero data points.
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Figure 18. Scatter Plot of the Two-Class Data for 2hex
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Figure 19 shows a scatter plot of M1 for lbutanol for the carbon tetrachloride versus

VC classification case. Note that the separability of the class zero and class one data points is

not as large as in the 2hex data although their Fisher's discriminants are similar (f is 1.4913

and 1.4946 for 2hex and lbutanol, respectively).
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Figure 19. Scatter Plot of the Two-Class Data for lbutanol

Figure 20 shows 2hex in conjunction with ibutanol in the multiple feature configuration.

Note the separability between class zero and class one data points. Figure 20 shows how 2hex

decreases the classification error by increasing the separability of the class zero and class one

data points.
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Figure 20. Scatter Plot of the Two-Class Data for 2hex and lbutanol
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3.7 Summary

This chapter has presented the methods used to analyze the Fisher-344 rat breath data

and the corresponding results. Conclusions about each of the three classification cases and an

overall summary of the research will be provided in the next chapter.
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IV Conclusions

4.1 Introduction

In this chapter, conclusions will be drawn from the results presented in Chapter III.

The results will be summarized for each dosage condition, recommendations for follow-on

research are provided, and an overall summary of the research performed in this thesis is

provided.

4.2 Discussion of Results

4.2.1 Overall Results. In this section, results for each of the three classification

cases will be discussed. For each classification case, the data were in the multiple feature

configuration since the single feature configuration could not achieve desired classification

results. Using the techniques presented in this thesis, this research was very successful in

showing that the marker chemical compounds for each of the 3 dosage conditions could be

found from the rat breath data.

4.2.2 Carbon Tetrachloride vs. VC. The Bayes error bounding results show that

the Bayes error can be estimated to be between 0 and 6 percent. The classification error was

shown to be 0 percent for this data set. The feature selection results showed that Fisher's

discriminant provides an initial analysis to eliminate chemical compounds with very poor

separability. Although Fisher's discriminant provides an analysis starting point, it was shown

that it cannot be relied upon to provide analogous separability. For instance, 2hex had a

Fisher's discriminant rank of ten, but achieved 0 percent classification error in the first step of

the forward sequential selection. The feature saliency results validated the forward sequential

selection results for all but two chemical compounds (tetra and c7h12). The top three chemical

compounds which provide the best discrimination between VC and a carbon tetrachloride dose

are 2hex, chlorobenz, and unkflo.
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4.2.3 Carbon Tetrachloride vs. No Dose. The Bayes error bounding results show

that the Bayes error can be estimated to be between 0 and 3.5 percent. The classification error

was shown to be 0 percent for this data set. The feature saliency results validated the forward

sequential selection results for all but three chemical compounds (tetra, 12di, and chloroace).

The top three chemical compounds which provide the best discrimination between VC and a

carbon tetrachloride dose are 2hex, chlorobenz, and ibutanol.

4.2.4 No Dose vs. VC. The Bayes error bounding results show that the Bayes error

can be estimated to be between 0 and 14 percent. The classification error was shown to be 0

percent for this data set. The feature saliency results validated the forward sequential selection

results for all but four chemical compounds (phenol, pchloro, 2methfur, and chloroace). The

top three chemical compounds which provide the best discrimination between VC and a carbon

tetrachloride dose are ethace, 2methprop, and benzonitrile.

4.3 Recommendations for Follow-on Research

Several techniques may be employed in follow-on research of this type of data. For

instance, time dependency can be factored into the analysis. The time after injection of a

carbon tetrachloride dose or VC can be studied because the chromatograms of the rat breath

will vary as the injected chemicals dissipate. Secondly, these results could be validated

by analyzing the actual chromatograms of the rat breath using principal components analysis

(PCA). Performing PCA and then employing an MLP to classify the data will verify any results

obtained using the techniques of this research. Lastly, dosage levels of carbon tetrachloride

could be analyzed to determine if there is a threshold below which no carbon tetrachloride can

be effectively classified versus a VC or no dose.

4.4 Overall Summary of Research

This research was very successful in demonstrating that neural networks can be ef-

fectively used to analyze chromatographic data. The complexity of each classification case

was estimated by bounding the Bayes error. From the estimation of the Bayes error, a mini-
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mum performance level was expected and achieved by the MLP during classification of each

two-class problem. The classification results are very important because they demonstrate a

no-exposure versus exposure condition can be detected as was seen for the VC versus carbon

tetrachloride and no dose versus carbon tetrachloride cases. An interesting result was seen

in the classification results of the no dose versus VC case because the neural network was

even able to distinguish between two different no-exposure conditions (no dose and VC). The

feature selection results show that neural networks can not only be used to classify between

exposure conditions but also to demonstrate which chemical compounds provided the best

discrimination between each of the dosage conditions. In summary, this research can be

deemed highly successful because all research objectives have been met and the techniques

presented in this thesis have been demonstrated to be certainly effective in analyzing complex

chromatographic data.
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Appendix A. Learning Law Derivations

A.1 Introduction

Four combinations of transformations are considered: Sigmoid-Sigmoid, Sigmoid-

Linear, Tanh-Tanh, and Tanh-Linear.

A.1.1 Case I: Sigmoid-Sigmoid. For the output layer,

w2 
- OE

Now, just analyzing the partial derivative term in the expression above yields the following.

OE _ I K )21

OWo OW2 { =)
joko k=1

OE _ 1=_ {(d _ y)2 +..+ (do-Yko )2+..+ (d - A )21
OWoko 2

OF a 1 K 2 OYko
OWVoo OWOko0 {T 1 2(dk -Yk} (dk° -Yko) 0 aow2

oE a J+l Wjko0 )_l

O-, = -(dko - Yko)oW2 (1 + e-j=J 3

aE EJ+
1 
W2 "? _ ")

w  
,2 J+l

OfE - _(dko Yko)(1)(1+e-3 ko )(e j= i3o )-- -2 ko

JOWko Woko j=1

k" EJ+l W2 2

OE (dko - Yko) koXj (

Jo ko (1 + 6_ Ej+IlkoX3)2

OE
= -(dko - Yko)(Yko)(1 - Yko)(Xo)

O fko

Therefore:

Woko Woko + (do - Yko)(Yko)(1 -Yko)(X )
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Now, the hidden layer weights must be updated.

W.'t W1 . nOE2030~ = 03 W4030

The partial derivative term of the above expression will be analyzed as before.

OF 1 K K .OYk
owio -w 2 {1 (dk - yk)} =- (dk - Yk)O

o30 '0 k= k=1 iojo

I K

Wioo k=1 0

OK J+- -- -- W2k X

=w'. Z(dk yk)(Yk)(1 Yk)- -(- iZWkX
2030 k=1 i0jo j=1

Og 2 a X
= - Z(dk Yk)(Yk)(I - Yk)(-Wio4k)OW 30

2Wio3o k=1 (jo
OF K

OE - (dk - Yk)(Yk)(1 - Yk)(-Wok)(Xo)(1 - X 0 )(- X)(9Wioio k= l

Therefore:

K
Wilo~jo = Wioo + n Z(dk - Yk)(Yk)(1 - yk)(Wjok)(Xio)(1 - Xo)(X o)

k=l

A.1.2 Case H: Sigmoid-Linear. For the output layer,

Okwvv°+t°= wg° 'OF~~

Now, just analyzing the partial derivative term in the expression above yields the following.

O 2K OYko

OWoko - O]oko J k ko

OE a J+1 ?
S= -(dko Y 0o) E

9W2 -- ojko j
JOko joko j=1
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oW_ - (dko - Yko)(Xjo)JWoko

Therefore:

wj2o = Wjo;o+ 'r(dko - Yko)(XJo)

The hidden layer weights must be updated as shown below.

aEWilo'i = Kiojo - 7j -

The partial derivative term of the above expression will be analyzed as before.

O 0 1 K K .Oiyk

So - {- E(dk - Yk)=-E(d-k) 
O Wjo 2 k=l k=l iojo

OE K ( J+1

-Z d _ - k)ow jWkoX joW o E (dk Yk) 5-W---k )
t030 k=1 iojo j=l

OE KWloJo - (dk Yk)(W o)(Xoj)(1X-

awi~io k=l

Therefore:

K

WijoK = Wilo- + Z (dk - yk) (lWok) (Xio) (1 -Xjo) (Xlo)
k=l

A.1.3 Case III: Tanh-Tanh. For, the output layer,

Woo = o- O
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Now, Just analyzing the partial derivative term in the expression above yield the fol-

lowing.
OE 1 K 2 Yko

OT'Y~~kQ -: '9 jk (dk - Yk)} (dko - Yko) 1oW2

ow2  Yo 5 2 {tanh E W2kX
ko jo ko =

=OF -k yko) (cosh EW &i2 EW4X2

Ojo ko j=1 a 30ko j=1

_____ - _do- yko)(cosh 1: Wik 0XJ)X

J+1
+2 2 )dk Yko)(cosh 1: W2kX)(X? 0

j=j

Therefore:

j Vko - ±j ko (dko - Yk) (1 - (Yko))X 0

The hidden layer weights must be updated as shown below.

The partial derivative term of the above expression will be analyzed as before.

OF_ K K kOw1.J ow 1  :(dk -Yk) 2 }Z(dk -Yk) a3Yk
a~iojo Wtojo 2k=1 k=1 atollo

OF K J+1 22 X - + 2
Ow~= -(dk Yk) (coshZ E ik 22 ~kow 3 WikoiWiloj k=1 ~ jO iojo j=1

OF K J+1 a) 29J+ 2
Ow~ ~ (dk Yk) (cosh Ew'kox ) 2 W1 1: 2

Wi'oo k= j~ji~joj=1

O FK J+1 W2a)2 2 X 2
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OE K J+1 1+1 O 1+1

____ _- (dk -Yk) (cosh 1: WJk XD) 30Jk)c~ Z30jx- 2
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Therefore:

K

Wi,+o= W__-+ (dk - Yk) (1 - (Yko) 2) (WVVk) (1 - (X' )') (Xil)
k1

A.1.4 Case IV. Tanh-Linear. For the output layer, the learning law is the same as

the learning law derived earlier in Case IL.

W3ok0=Wjo; + n, (d k. - Y k o)(Xj0 )

For the hidden layer weights the derivation is provided.

The partial derivative term of the expression above is analyzed below.

OF9E 0 1 K 2} K ) yk
(-~J E _ -Y=- (dk - k)

OW1  - ,~d 2 Yk(Ek Zwd 4
Ow o3o 0 k=1 koQ =1 wlj

OFE K 2 a1+1 1= -1.EZ(dk - Yk) (WVk)(COW- fhWilji)X
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Therefore:
K

1'V = W.1- + 77 E (dk - Yk) (W?~)1-(~))X~

k=l
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Appendix B. Gradient Descent Search Algorithms

B.1 Introduction

In this appendix the concepts of momentum and the conjugate gradient method as means

of accelerating the convergence of the gradient descent search of the MLP are introduced.

B.2 Momentum

The backward error propagation technique discussed in Chapter 2 performs a gradient

descent search. Although this technique is very useful, it converges slowly at times. In an

effort to speed up the convergence, a momentum term can be added to the learning law. The

generalized learning law introduced in Chapter 2 is shown below.

W +  W- - 7 OE

Momentum is defined below.

AW=W- -W--

Adding momentum to the learning law yields the following equation.

W + = W- - n -OE + aAW

a is similar to 97 in that it is simply a constant. Once a is selected, the size of 77 is

critical to optimize the performance of the gradient descent. If q is too large for a given a,

wide oscillations will occur in the gradient descent search. If 71 is too small for a given a, the

result will be a very slow learning rate. Figure 21 illustrates momentum in a vector sense.

47



AAW

Figure 21. Momentum in a Vector Sense

For further study into acceleration methods of the MLP using momentum, the reader is

encouraged to explore the presentation by Rumelhart (20).

B.3 Conjugate Gradient Algorithm

The conjugate gradient method is analogous to momentum in that it attempts to ac-

celerate the convergence of the gradient descent search. The variables used to describe the

conjugate gradient method are shown in Table 21.

Table 21. Conjugate Gradient Algorithm Variables
Variable Description
E mean squared error over an epoch (objective function)
W MLP weights
G gradient vector of objective function
D search direction vector
a search distance coefficient

0l deflection coefficient

The conjugate gradient algorithm is shown below.
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Step 1: Set the initial weights (W) randomly.

Step 2: Calculate the initial gradient for one epoch.

G 
-
aw

Step 3: Set the initial search direction vector to be the negative of the gradient.

D=-G

Step 4: Conduct a Fibonacci line search for a to minimize the error, E(W+aD).

Step 5: Calculate the weights using the learning law below.

W + = W-+aD

Step 6: Calculate the new gradient while saving the old gradient.

G+ - a

aw

Step 7: Calculate the deflection term.

-(G+ - G T(+

(G-)T (G-)

Step 8: Calculate a new search direction which should be nearly orthogonal to last

search direction.
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D + = -G + + OD-

Step 9: Go to step 4 as long as E is greater than some specified arbitrary constant or for

some specified number of iterations.

The results of an experiment using XOR data are shown in Figure 22. The experiment

was set up to continue as long as E was greater than 0.02 and as can be seen in Figure 22,

only 10 epochs were required to reach this goal. In contrast to these results, an MLP without

conjugate gradient search required 100 epochs to achieve the same results on the same data.
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Figure 22. Results of the Conjugate Gradient Experiment on XOR Data
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Appendix C. Derivation of the Ruck Saliency Metric

C.1 Introduction

In this appendix the Ruck Saliency metric is derived. Refer to Section 2.3 for the

notation presented here.

C.2 Derivation

The definition of activation is the weighted sum of the input values plus the threshold

as shown below for the output layer.

J+1

j=1

(Note: The output of the hidden nodes is defined as x?)

The output of the MLP is Yk and using a sigmoidal transformation it is shown below.

yfH(ak) = T
1+e-k

The first step in deriving the Ruck saliency metric involves finding the derivative of the

output with respect to the input as shown below.

a, .fii(a~k)- _Oxi - Oxi A I= Yk ) -- Ok

OYk J+ 2

Let Yk(1 - Yk)
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9Yk J+ Dx2y 1-: w 2  3J

-6kZWjk -Dxi j=1

1+1

Since x =fH(Z Wx ,
i=1

Jyk 5+1 Da1

Dx8 k WJ - U x -(1 X-) jxa j=l 9X

Let 6J =x2(1-x?)

J+ Z w 1 1
--Y __ 2 V 1: W ij .1D k 2Z W 3  S3

CaXi j=1

If Ai represents the saliency of input i, saliency is now defined as shown below.

K 1Yk K J+1Ai:E I :E 162 E WI/2"ik6 Wl./l.j

k=1 D k=1 j=1

The resulting saliency metric measures the usefulness of each input feature for deter-

mination of the correct output class.
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Appendix D. Chemical Compound Legend

D.1 Introduction

In this appendix the legend of chemical compounds is provided in table 22. The

abbreviated chemical compounds are used in Section 4.

D.2 Chemical Compound Legend

Chemical Compound Abbreviation
Benzonitrile benzonitrile
C7H12 Isomer c7h12
Carbontetrachloride tetra
Chloroacetone chloroace
Chlorobenzene chlorobenz
Ethyl Acetate ethace
Methylmethacrylate methmeth
Phenolln-Propylbenzene phenol
Saturated Hydrocarbon # 2 sat2
Unknown Flourmnate unkflo
1 -Butanol ibutanol
1 ,2-Dichloroethane 1 2di
2-Butanal 2butanal
2-Hexanone 2hex
2-Methylfuran 2methfur
2-Methylpropenal 2methprop
2-Octanone/Benzofuran 2octbenz
2-Pentanone 2pent
n-Pentanal npent
o-Dichlorobenzene odi
p-Chlorotoluene pchloro

Table 22. Chemical Compound Key
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Appendix E. Feature Saliency Code

E. 1 Introduction

In this appendix the MATLAB® code created by William Polakowski is presented for

the reader. This code will compute the Ruck feature saliency metric in an output labelled

dz/dx. The data must be in LNKnet format to use this code.

E.2 Master Code (neural.m)
% Top level neural net and feature saliency script

fprintf(l, '\n');

fprintf(1, ' The next inputs allow you to specify the neural net.\n');

fprintf(l, '\n');

fprintf(l, ' This assumes your data file is already loaded in Matlab with the name "data" .\n');

fprintf(l, '\n');

k - input('Specify the number of middle nodes (default - 3) '

if k--[

k - 3;

end

fprintf(l, '\n');

maxerr - input('Specify the maximum epoch error (default - 0.01 for 1% error);

if maxerr -- []

maxerr - 0.01;

end

fprintf(l, '\n');

maxepochs - input('Specify the maximum number of epochs per iteration (default - 25):

if maxepochs --

maxepochs - 25;

end

fprintf(l, '\n');

fprintf(l, 'Specify the number of folds:');

fprintf(l, '\n');

fprintf(l, ' input "# of samples" for leave one out method \n');

fprintf(l, ' input "2" for half and half Cross Validation \n');

fprintf(l, ' input "2 to # of samples" for other data partitioning \n');

fprintf(l, '\n');
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fold - input('Number of folds (default - 2):

if fold -- []

fold - 2;

end

fprintf(l, '\n');

h - input('Specify the initial learning parameter step size (default - 1):

ifh-- []

h - 1;

end

fprintf(l, '\n');

fprintf(l, 'Specify the nonlinear operators for the input and output layers:,);

fprintf(l, 'I\n');

fprintf(l, 1 for Sigmoid-Sigmoid \n');

fprintf(l, 2 for Sigmoid-Linear \n');

fprintf(l, 3 for Tanh-Tanh \n');

fprintf(l, 4 for Tanh-Linear \n');

fprintf(l, '\n');

nonlinear - input('Nonlinear operator (default -1): ' ;

if nonlinear -- (]

nonlinear - 1;

end

fprintf(l, '\n');

[confusion,classify,dzdx,epoch-err,misfits,wl,w2] - saliency(data,k,maxerr,maxepochs,fold,nonlinear,h)

E.3 Slave Code (saliency.m)
% SALIENCY: A neural net with one hidden layer using various operators.
% It computes feature saliency using Dr Ruck's derivative-based method.

% This uses the number of folds for determining training and testing sets.

[CONFUSION,CLASSIFY,DZDX, EPOCHERR,MISFITS,Wl,W2] - SALIENCY(DATA,K, MAXERR,MAXEPOCS, FOLD,NONLINEAR,H)

Iputs: DATA: Training vectors (one sample per column)

K: Number of hidden nodes

MAXERR: Max average MSE allowed

MAXEPOCHS: Max number of epochs allowed

FOLD: Specifies number of samples to train and test on.

% 2 - cross validation, # of samples - leave-one-out

% H: Initial learning parameter

% Outputs: CONFUSION: Confusion matrix

CLASSIFY: Classification accuracy

% DZDX: Lists the derivative-based feature saliencies

EPOCHERR: Average mse for each epoch of the last iteration
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% MISFITS: Lists the misclassified samples

% Wl, W2: First, second layer weights of trained net

function [confusion,classify,dzdx,epoch-err,misfits,wl,w2 - saliency(data,k,maxerr,maxepochs,fold,nonlinear,h)

Determine the characteristics of the data and randomize the order

1 - max(data(:,l))+l; % Class id starts with 0,1,2,...

[nsamples, nfeatures] - size(data); % Determine number of features & samples

nfeatures-nfeatures-1;

index2 - randperm(nsamples);

for i - l:nsamples,

x(i,:) - data(index2(i),:);

end % (for i - 1 : nsamples)

data -x;

% Initialize variables

d - zeros(l,l);

confusion - zeros(l);

test.position - [;

count - 1;

misfits - H;

dzdxl - H;

dzdx - zeros(fold,nfeatures);

deltafprimel - zeros(k,l);

deltafprime2 - zeros(l);

reseth - h;

etal - h;

missed - zeros(l,nsamples);

if nonlinear -- 2 I nonlinear -- 4

eta2 - h/2;

else

eta2 - h;

end

0 Start the netil

for foldnumber - l:fold

% Split the data into equal training and test sets.

% The classes are equally represented in each set.

% The size of the split is determined by the number of folds specified.

datatrain - ];

datatest - (];

for m - 0 , 1 - 1 % Determines the minimum samples in a class

class-position - find(data(:,l)--m);

maxsamples(l,m+l) - size(class-position,l);
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end

max-toid - min(mam~samples);

if fold <- najold % Goes to leave one out method if false

for m - 0 1 - 1

class-position - find(data( :,l)--m);

class-samples - size (class-.position, 1);

split - eeii (olasa..samples/foid);

for p-li elaaa-samples

if p >- ( (foldnasmher - 1) - split + 1) &p <- foidnamber 5split

datatest - [datatest; data (olass..positios(p), (1;
test position - [teatposition classposition(p)]

else

datatrain-(datatrsin; data (oiass-position(p), ;

end I(if p)

end% (forp -

end% (form -

else

if foidnamher-=i

datstrain-data(2:usamples, :);

datatest -data(i, 0;

for a - 1 nuamples

test-positios(m) - m;

end

elseif fotdnamher--ssamples

datatrais-data(l~nsamples-l,:)

dststest-data(nsamples,:)

else

datatrain-([data (1: fsdnumber-l1, );data (foidnumher+l: nsampiesfl;

datatest-data(foldnamher,:)

end % if

end % (if fold -- nsamples)

traissamples -size(dsiatrais,l);

testssmples -size (datstest,l1)

%Normalize the features

%Calculate the means and standard deviations of each feature in the training data.

ave-mean(datatrain(:,2:nfeatsres+l((;

dev-std(duiuirain(:,2:nfeatares+l((;

%Normalize the training features

average - ones (trainsamples,l1) -aye;

sigma - ones (traissanpies,l 1) dev;

dstatrain(; ,2;nfeatares+l(-(datatrain(:;,2;nfeatares+i)-average( ./uigma;
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Normalize the test features with the training mean and standard deviation

average - ones (testsanples, 1) * eve;

sigma - ones (testssmples,l1) -dev;

datatest(:,2:nfeatsres+l)-(datutest(: ,2:nfeatsres+l)-average) ./uigma;

datutrain-datatrain';

datatest-datutest';

%Initialize weights and variahles

wi - rand(h, nfeaiares+l) - 0.5;

.2 - rand(l, k+1) - 0.5;

err - H1;

nepoohs - 0;

epochterr - 1;

h - reseth;

fprinif (1, 'Training networh;\n');

while nepochs < nmepoohe & epoch-err > nazerr,

% fprinif(i,' Epoch %d . .. ',nepochuvi);

%Clear the use vector and get random presentation order

index - randperm(irainsamples);

for i - l:trainnamplea,

id - datatrain(l,index(i))+l;

x - [datstrain(2;nfeatores+l,inden(i)); 1];

%Compute activations and their derivatives

if nonlinear--i % igmoid - Signoid operators

zl - 1 (1 + enp(-wl x))

z2 - 1 (1 + enp(-w2 [ol; 1]));

fprinel - cl 5(1-cl) ;

fprime2 - z2 *0(1-z2);

end

if nonlinear==2 % Oignoid - Linear operators

ci - 1 ./ (I + enp(-wl enx));

z2 - w2 [ol; 1];

fprimel - zl .- (i-cl);

fprime2 - oneu~l,l);

end

if nonlinear--3 % Tanh - Tush operators

ci - iunh~wl * )
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n2 - tanh(w2 - [ci; 1]);

fpriisei - i-(z12^2);

fprime2 - 1-(z2.^2);

end

if noniinear--4 % Dash - Linear operators

zi tanh(wl - )

z2 w2 * (zi; 1);

fprimel - i-(zl.fO);

fprimeO - ones(1,i1);

end

%Do the hacipropagation weight correction

Compute desired ostput d and the actual output's difference

d(id) - 1.0;

delta-out - fprimeO .* (d-zO);

sigma - wO' deiia out;

delta-hid -fprimei .- sigma(l:h);

%Update the weights

wi - wi + etal * (delta-.hid - x';

w2 - w2 + etaO * (delta-out - [nl;l)');

%Compute mean square error for input, and reset desired output

mse(i) - sum((d-sO(.'O) / 1;

d(id) - 0;

end % (for i - i:trainsamples)

%Compute the epoch error

epoch-err - mean(mse);

err - [err epocherrl;

nepochs - sepocha + 1;

fprintf (1, 'Average mse - %f\n' , epocherr);

% Vary the learning parameter

if nepseha > 1

if 0.9 - err(nepochs-l) < err(nepochs) & err(nepochs( < err(nepochs-l) &h < 2

h - 1.5 * h;

end

if err(nepochs) > err(sepochs-l(

h -0.5 *h;-

esd
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end

etal - h * epoch_err;

if nonlinear -- 2 I nonlinear -- 4

eta2 - etal / 2;

else

eta2 - etal;

end % (if nonlinear ...

end % (while)

% Compute the feature saliency

fprintf(l, 'Computing feature saliency:\n');

for i - l:trainsamples,

x - [datatrain(2:nfeatures+l,i); 1];

% Compute activations and their derivatives

if nonlinear--i % Sigmoid - Sigmoid operators

zl - 1 ./ (I + exp(-wl *x) )

z2 - 1 / (I + exp(-w2 * [zl; 1]));

fprimel - zl * (l-zl);

fprime2 - z2 * (1-z2);

end

if nonlinear--2 % Sigmoid - Linear operators

zl - 1 ./ (I + exp(-wl * x));

z2 - w2 * [zl; 1];

fprimel - zl .* (i-zl);

fprime2 - ones(1,1);

end

if nonlinear--3 % Tanh - Tanh operators

zl - tanh(wl * 5);

z2 - tanh(w2 0 [zl; 1]);

fprimel - l-(zl.^2);

fprime2 - 1-(z2.-2);

end

if nonlinear--4 % Tanh - Linear operators

zl - tanh(wl * x);
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z2 - w2 * [zl; 1);

fprimel - l-(zl.'2);

fprime2 - ones(l,l);

end

% Compute the feature saliencies

% Expand both vectors to matrices (k x 1) and (1 x 1)

for a-l:i

deltafprimel(:,a) - fprimel;

end

deltafprime2-diag(fprime2);

% dzdx is a matrix containing each feature's saliency for all training samples

dzdxl - sum(abs((wl(:,t:nfeatures)' * (((w2(:,l:k)' a deltafprime2) a deltafprimel)))'));

dzdx(foldnumber, - dzdx(foldnumber, + dzdxl;

end % (for i-l:trainsamples)

% Test the remaining samples

fprintf(l, 'Testing network:\n');

for i - l:testsamples,

x - [datatest(2:nfeatures+l,i); 1];

% Apply non-linearity to activations

if nonlinear--l % Sigmoid - Sigmoid operators

zl- 1 (1 + exp(-wl X x));

2- 1 . (1 + exp(-w2 * [zl; 1]));

end

if nonlinear--2 % Sigmoid - Linear operators

zl - 1 ./ (1 + exp(-wl * x));

z2 - w2 [zl; 1];

end

if nonlinear--3 % Tanh - Tanh operators

zl - tanh(wl x);

z2 - tanh(w2 * [zl; 1]);

end

if nonlinear--4 % Tanh - Linear operators

zl - tanh(wl * x);

z2 - w2 a [zl; 1];
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end

Compile output data

[macpost, guess) - max~u2);

if guess -- datatest)1,i)+1

misfits - [misfits; tndex2)(testpositios (count)) guess];

end % (if)

count - count + 1;

confusion (datatest(1) +1, guess) -confusion (datatest(1,i1)+1, guess) + 1;

end % (for i - l:testsampies)

end % )foidnsnber-1:f old)

%Outputs

dodm-sum~dndu)/mau~sumdd));

epunherr-err;

classify-trace~coufusion)/nsampes;
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