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Abstract 

Detecting and characterizing signals arriving at a sensor array is a problem of practical impor- 
tance in aerospace, biomedical, geological, and sonar signal processing. If the simplifying 
assumption of narrowband distinct signal sources can be made, the so-called high-resolution 
techniques, which are also known as eigenvalue methods or signal subspace methods, may be 
applied and offer a promise of complete and unambiguous assessment of the environment. 

One of the impediments to practical application of these concepts has been an implicit require- 
ment for well-known noise structures and precise array calibration. Herein we introduce a 
class of techniques termed subspace stability methods which relax those restrictions by 
exploiting the temporal stability of the signal subspace. These are demonstrated to effectively 
process sonar array data against which conventional subspace processing fails. The most prom- 
ising variation is the Subspace Stability Exploitation Tracker (SSET) which couples signal 
subspace DOA estimation algorithms with multiple target tracking techniques for accurate 
signal enumeration and characterization. 

A novel proof of the validity of spatial smoothing to permit processing of coherent wavefronts 
is offered using a vector subspace perspective. This viewpoint then suggests new algorithms 
for coherent signal processing. 

Finally, in addition to developing an array calibration algorithm amenable to on-line 
processing, prominent array signal processing techniques are described in a tutorial fashion 
and practical aspects of their performance and implementation discussed. 
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1. Introduction 

Sensor arrays are generally used for DCL—Detection, Classification, and Localization—of 

signals arriving at the array. This capability is important in a variety of disciplines: including 

aerospace, biomedical, geophysical, and sonar signal processing. If the signal sources satisfy 

some simple assumptions, it is possible to identify and characterize signals from the sampled 

sensor array covariance matrix. Since the covariance matrix is a summary statistic, detecting 

and characterizing the signals from this summary is often far more tractable from a computa- 

tional perspective than working with the entire time history of the data—assuming that a 

valid signal and noise model is used by the DCL processing. 

This document is motivated by an interest in practical real-time algorithms for array signal 

processing. As such, prominent signal enumeration and direction-of-arrival (DOA) estimation 

algorithms are reviewed and practical aspects of their performance and implementation 

discussed. Unfortunately, the fundamental assumptions of much of the published literature 

are often invalid for real-world signal and array environments. To address this problem, we 

introduce a new class of techniques termed subspace stability methods which exploit the 

temporal stability of the source-array geometry. These are demonstrated to effectively process 

sonar array data against which conventional array processing techniques fail. 

Other original contributions include a new proof of the validity of spatial smoothing to permit 

processing of coherent signal waveforms. The perspective adopted in the proof suggests new 

algorithms for array processing in a coherent signal environment. Additionally, a novel on-line 

array calibration algorithm is proposed which complements the subspace stability methods. 

The sequence of this chapter introduces the array signal processing framework and explains 

the structure of the rest of the document. 

We should also note the duality between the spatial frequency processing of array signal 

processing and the spectral frequency processing of a time series. As a result, the techniques 

discussed herein may be directly applied to time-series analysis and frequency estimation. 

l- Typical simplifying assumptions which are often violated include: uncorrelated signals, known sensor array 
noise covariance structure, cisoid ("narrowband") signals, perfectly known array geometries, and sensors 
which do not introduce any errors during the sampling. 
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Taxonomy and Overview Section 1.1 

1.1 Taxonomy and Overview 

The majority of the recently developed DOA (Direction of Arrival) estimation algorithms 

belong to a class of techniques known variously as "eigenvalue methods", "high-resolution 

direction finding", "signal subspace fitting", or permutations, thereof and are geared towards 

the problem of detecting and locating multiple simultaneously impinging signals. In the liter- 

ature, specific variations on these techniques are also identified by the acronyms: MUSIC 

(Multiple Signal Characterization), MD-MUSIC (Multiple Dimensional MUSIC), root- 

MUSIC, ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques), 

TLS-ESPRIT (Total Least Squares ESPRIT), PRO-ESPRIT (Procrustes Rotations based 

ESPRIT), GEESE (GEneralized Eigenvalues utilizing Signal Subspace Eigenvectors), etc. This 

monograph is intended as a tutorial summary of some of the algorithms as well as some of the 

supporting techniques for signal detection and enumeration or processing of coherent signals. 

Additionally, some novel techniques and perspectives are introduced. To illustrate the subtlety 

involved—as well as the academic penchant for unique acronyms and algorithms—consider 

the (incomplete) list of DOA estimation in the taxonomy2 of Table 1-1 

Obviously, a synopsis of all of the possible variations on a theme would be infeasible. Instead, 

we will examine the DOA estimation problem and provide a framework within which the above 

techniques may be described. Additionally, we shall try to develop a heuristic perspective on 

these techniques as well as their strengths, deficiencies, limitations, and implementation 

issues. We will also explore the basic assumptions with respect to signal characteristics, noise 

characteristics, and array geometries. 

The direct mapping approaches (Chapter 3) are geared towards detecting and localizing a 

single dominant signal. Although sometimes implemented in the time domain, the same 

results may be derived directly from the (complex-valued) array covariance matrix using only 

Schur products and summations. Their computational efficiency makes these methods 

attractive despite their being biased estimators and not very resistant to multiple signal 

sources. 

The inverse mapping methods (also discussed in Chapter 3) typified by the maximum 

entropy (ME) and minimum variance (MV) methods presume that the impinging signals have 

a consistent behavior as they propagate across the array—so that a propagation model is 

2- We could alternately group these algorithms by numerical approach (using Li's [55] categories): extrema- 
searching (e.g., MUSIC and Min-Norm), polynomial rooting (e.g., Pisarenko, Min-Norm, and Root-MU- 
SIC), and matrix-shifting (e.g., state-space realization, ESPRIT, GEESE, and matrix-pencil methods). These 
terms as well as those of the listed taxonomy will be addressed as part of the subsequent discussions. 

Chapter 1: Introduction 



Section 1.1 Taxonomy and Overview 

Table 1-1: DOA Processing Taxonomy 

Direct-Mapping 
Methods 

• Beamforming 
• Split-Aperture 
• Full-Aperture 

Inverse-Mapping 
Methods 

• Maximum Entropy (Burg) 
• Minimum Variance (Capon, Borgiotti & Kaplan) 

Orthogonal Subspace 

• Pisarenko's method 
• MUSIC 
• root-MUSIC 
• min-norm MUSIC, 
• sequential MUSIC 
• IES-MUSIC (ImprovEd Sequential MUSIC) 
• beam-space MUSIC 

Signal Subspace 

• ESPRIT 
• TLS-ESPRIT 
• PRO-ESPRIT 
• GEESE 
• Matrix-Pencil 
• State Space Realization—TAM (Toeplitz 

Approximation Method) 
• WSF (Weighted Subspace Fitting) 
• ML (Maximum Likelihood) 
• SMOR (Stochastic Model Order Reduction) 
• beamspace ESPRIT 
• MODE 

Signal Detection and 
Enumeration 

• Bartlett-Lawley 
• Akaike Information Criterion (AIC) 
• Minimum Description Length (MDL) 

Subspace Stability 
Methods 

• Burkhardt's Method 
• root-Tracker 
• SSET (Subspace Stability Exploitation Tracker) 

Related Topics 

• Spatial Smoothing (Coherent Signals) 
• Noise Modelling 
• Array Calibration 
• Broadband Signals 
• Dynamical Systems Approach 

Chapter 1: Introduction 



Taxonomy and Overview Section 1.1 

appropriate. Since the model fitting's extrema search uses the inverse of the covariance matrix 

to determine the DOAs, they are computationally more demanding than the direct mapping 

approaches. While they do provide more resolution than the classical beamforming, they are 

still not unbiased estimators of the DOA nor do they fully exploit the structure of the problem. 

Schmidt [1] is generally credited as the father of "subspace processing" as well as the MUSIC 

algorithm; however, Pisarenko [56], Berni [40], and Bienvenu and Kopp [56] did related and 

supporting work. The basic idea is that a (narrowband) signal at each element of an array may 

be viewed as a phase-shifted replica of that available at the other array elements so that a 

wavefront contribution to a the receiving array elements at any instant may be constructed as 

x(t) = d(Q)s(t). (1-1) 

where s(t) is the waveform at a reference element, x{t) is a vector of the wavefront contribution 

at the array elements, and d(Q) is a geometry-dependent vector which maps the reference 

signal onto the array elements. Note that the ability to separate the geometric and temporal 

terms in Eqn (1-1) is due to the narrowband (cisoid) signal approximation. In this case, the 

array covariance matrix, R, 

R = xx\ (1-2) 

is simply a projection matrix multiplied by a scalar. Denoting the projection due to a signal 

arriving from a direction 9 as 

Pe = €f(0)d(8)t , (1-3) 

we see that Pe has a rank of 1 since each row (or column) is just a scaled (by a complex-value) 

replica of the other columns. Thus, just as a straight line in Cartesian space only has one 

dimension4, the signal subspace is of lower rank than the array size. 

Of course, in a real system the sampled covariance matrix, JR will be corrupted by noise so that 

R *R and the covariance matrix will be of full rank—i.e., corresponding to the number of 

sensors rather than the number of signals. Schmidt realized that an eigendecomposition of R 

3- A general assumption in the DOA estimation problem is to assume that the signals are analytic—i.e., com- 
plex-valued. Since any real-valued time series may be expressed in analytic components via Euler's identity, 
this does not impose any practical implementation restrictions—other than computational loading. 
4- We could chose a coordinate system "aligned" with the line so that one axis was the "line subspace" and 
all the other coordinates would be the "non-line subspace". 
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Section 1.1 Taxonomy and Overview 

could be used to identify the signal subspace since "large" (high power) eigenvalues and vectors 

would correspond to the signal subspace. Since the non-signal eigenvectors constituted an 

orthogonal subspace, hypothesized DOAs [i.e., d(Q)] could be projected onto the noise 

subspace, with the signal direction(s) identified by minima in the projection. Algorithms 

exploiting the orthogonality of the signal and noise subspaces are discussed in Chapter 5. 

One problem with the orthogonal subspace approach is that a search for the minima of the 

projection of the hypothesized directions onto the noise subspace tends to be computationally 

expensive—especially if there are few signals relative to the size of the array—as well as the 

normal problems associated with searching for a global maxima and resolving adjacent 

maxima. Roy and Kailath [9] suggested an approach (ESPRIT) for working directly with the 

signal subspace—which was a path soon followed by many others. These algorithms 

generally require a linear, uniformly spaced array as opposed to the arbitrary topologies 

possible with MUSIC. However, this additional covariance matrix structure permits much 

more efficient implementations. Although the ESPRIT algorithm is sensitive to noise-induced 

perturbations, subsequent algorithms (e.g., GEESE, TLS-ESPRIT, etc.) are much more robust. 

Chapter 6 addresses the signal subspace algorithms in more detail. 

The optimal5 array processor integrates the signal detection and DOA estimation process [1]; 

however, to avoid the computational load associated with this implicitly multi-dimensional 

optimization problem, the subspace array processing is typically implemented as a two stage 

process with the DOA estimation following an initial determination of the number of signals 

derived from an analysis of the sampled array covariance matrix eigenvalues6. The DOA 

algorithms are typically sensitive to an accurate estimate of the number of signals—so that the 

real limitation of subspace methods is imposed by the signal enumeration problem rather 

than the ability to estimate the source directions; in essence, if the number of signals can be 

accurately determined, the associated directions can also be accurately determined. To avoid 

the problems of ad hoc threshold definition by experts based upon data analysis, information 

theoretic criterion were developed which attempt to enumerate the signals based upon the 

sampled covariance matrix in conjunction with knowledge of sampling intervals and noise 

bandwidths. Although a variety of detectors have been developed using these concepts (see 

5- "Optimal" here is defined in the scientific sense as opposed to the engineering sense which incorporates the 
somewhat nebulous aspects of feasibility and implementation difficulty as part of the cost function used to 
define "optimal." 
6- Such an eigenvalue analysis does not exploit a priori knowledge of the array topology and is, therefore, 
suboptimal in the scientific sense. 
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Taxonomy and Overview Section 1.1 

Chapter 4), they are very sensitive to the underlying assumptions of perfect sensors and perfect 

noise and, as a result, generally do not work very well when applied to acoustic data. 

Motivated by a desire for subspace processing techniques which were suitable for on-line real- 

time data processing and recognizing the fundamental limitations of the existing signal 

enumeration approaches, we have identified a novel class of algorithms which exploit the 

temporal stability of the source-array geometry. These Subspace Stability Methods 

(Chapter 7) build upon concepts developed by Burkhardt [59] who realized that averaging the 

spatial spectra resulting from Pisarenko's method eventually suppressed spurious noise- 

induced spectral peaks; this is analogous to spectral averaging of time-series data. Several 

algorithms are proposed and explored in addition to Burkhardt's Method. One of the most 

promising is to combine the GEESE signal subspace DOA estimation algorithm with multiple 

hypothesis enumeration and multiple target tracking (MTT) techniques; the resulting 

Subspace Stability Exploitation Tracker (SSET) is demonstrated to accurately enumerate, 

identify, and locate signal sources contained within acoustic data. Other algorithms include the 

root-Tracker which uses a constant enumeration hypothesis coupled with MTT concepts. A 

root-Tracker implementation is developed based upon an AR implementation of Pisarenko's 

method 

The subspace processing approach contains implicit assumptions about the signals, noise, and 

sensors. While techniques are available to mitigate the effects of violating some of these 

assumptions, these techniques add algorithmic complexity as well as computational load to the 

signal processing. Chapter 8 reviews the implications of mobile sources transmitting non- 

cisoid7 signals to non-ideal sensor arrays in the presence of non-ideal noise while Chapter 9 

addresses the use of spatial smoothing to preprocess sampled covariance matrices to facilitate 

detection and DOA estimation of coherent and correlated signals. A new proof of the validity 

of spatial smoothing is presented which adopts a vector subspace perspective rather than the 

conventional matrix algebra approach. This viewpoint facilitates some new approaches for 

coherent signal processing which are also discussed. 

Even assuming the idealized assumptions of the signal, noise, and sensor hold, the sampled 

covariance matrix will differ from the asymptotic form due to the non-infinite sampling 

interval. Appendix A presents the statistics of the sampled covariance matrix elements as a 

function of signal and noise bandwidth and sampling interval. 

'• A cisoid is a complex sinusoid, i.e., Ae 
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Section 1.2 Basic Assumptions and Constraints 

1.2 Basic Assumptions and Constraints 

There are some basic assumptions about the signals and array geometry which are used in the 

discussed techniques: 

• fewer signals than array elements; 

• linear, uniformly spaced array; 

• narrowband signals; 

• far-field sources (impinging plane waves); 

• less than half-wavelength element spacing; 

• accurate and calibrated sensors; 

• known sensor noise covariance structure; and, 

• accurate signal enumeration. 

Although some algorithms (e.g., MUSIC) can handle arbitrary array topologies, linear 

uniformly spaced array should be presumed as required unless otherwise stated. Reviewing 

the above list, note that a number of real-life situations which could potentially violate these 

basic ground rules; for example, towed arrays could possible not be linear (due to "snaking" or 

sensor misplacement) or a phase or gain bias might be introduced by the sensors. Furthermore, 

if the array was 'large" the narrowband assumption might start to break down such that the 

time delay at the extreme elements cannot be modelled by just a simple phase shift of the 

impinging signals. Additionally, there are some conditions which simplify the algorithms: 

• spatially independent equi-powered Gaussian noise 

• uncorrelated signals 

Even though coherent signals and correlated noise can be handled through spatial smoothing 

and estimation of the noise covariance structure, additional complexity—and computational 

loading—is required. Spatially correlated noise might be derived from flow noise or common 

electronic circuitry while correlated signals could arise either unintentionally through 

multipath effects or be due to similar signals from other sources. 
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Definition of Variables Section 1.3 

1.3 Definition of Variables 

This section summarizes the various variables and notations used in this paper for the conve- 

nience of the reader. In general, lower-case boldface (e.g., v) represents vectors, boldfaced 

upper-case (e.g., B) indicate matrices, upper-case italic (K) indicates constants, and lower-case 

italic (n) indicates scalars. The operator (-)t indicates the Hermitian (complex-conjugate 

transpose) while (•)* is used to denote the conjugate and (-)T the transpose. The variables are 

summarized in Table 1-2. 

K 

N 

R 

R 

R, 

8(f) 

D 

0 

M 

Table 1-2: Definition of Variables and Notation 

the number of impinging wavefronts/signals, 

the'number of staves/elements in the receive array, 

the number of samples taken at a sampling rate of fs 

•th the j    signal arriving at the array. 

the expected covariance matrix (including both noise and signal contributions). 

the sampled covariance matrix (including both noise and signal contributions). 

the signal covariance matrix. (Rank < J where the equality holds if the signals 
are at most partially coherent.) 

•th the stave-to-stave propagation time of the j    signal wavefront. 

vector of the J arriving waveforms 

a "steering matrix" which maps the J wavefronts onto the K receive elements, 

-•th the "steering vector" mapping the jm signal onto the K receive elements. 

the noise covariance matrix (equal to o2I for i.i.d. spatially uncorrelated noise), 

the k     eigenvalue of the sampled covariance matrix, 

the eigenvector associated with Xk, 

stave transition matrix characterizing adjacent element phase shifts for the 
incoming signals, 

the number of staves/elements in the spatial smoothing subarrays, 
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Table 1-2: Definition of Variables and Notation (Continued) 

L the number of forward subarrays of M elements/staves in spatial smoothing 

8 inter-element array spacing 

e. 
J the DOA of the jth signal 

% 
th          ,     2nf ■  „ the inter-element phase shift of the j    signal = — sin0. 

c           J 
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2. The Sampled Covariance Matrix 

This chapter explores the assumed structure of the sampled signal covariance matrix which is 

exploited by all of the subsequent techniques. In the discussion, some of the notation and 

assumptions implicit in the subsequent detection and localization algorithms are established. 

The chapter concludes with a discussion of the signal and noise subspaces of the covariance 

matrix and provides an intuitive perspective of the distinguishing characteristics of each 

subspace and how those characteristics may be exploited in the signal detection and local- 

ization problems. 

2.1 Introduction 

The approaches discussed in the ensuing chapters presume J narrowband planar wavefronts 

impinging upon a Ä"-element array so that the received signal vector, x(t), may be modelled as 

x(t) = D(Q)s(t) + n(t), (2-1) 

where n(t) is additive noise, s(t) is a the vector of impinging wavefronts at some reference 

location, and D(9) is the steering matrix which maps the wavefronts onto the elements of the 

array—where the steering matrix is a function only of the array-signal geometry. Our problem 

is to detect signals in the received signal and to extract the associated geometry. It is often 

possible—and computationally expedient—to extract the desired information from the 

"summary statistic" known as the sampled covariance matrix, 

(t0 + T) 

R = »art = (Ds + n) (D* + n)t = 4     j    **td* (2-2) 

h 

where the final form presumes that the covariance matrix has been derived from the signal 

received during an interval of T and the «t denotes the Hermitian transpose (complex- 

conjugate transpose). In the following sections we will explore this data model in more detail 

as well as the structure of the resulting covariance. Appendix A addresses the statistics of the 

covariance matrix due to varying signal and noise models; for the purposes of this chapter, we 

will presume sufficient integration times so that the sampled covariance matrix has effectively 

converged to that of the idealized matrix—i.e., subspace processing is appropriate. 
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2.2 Basic Assumptions and Constraints 

Although the MUSIC algorithm does not require a uniform linear array or far-field sources, 

most of the other DOA estimation algorithms require such a configuration; hence, herein we 

shall assume that the arrays have a common axis and have a constant inter-element spacing. 

To reiterate Section 1.2, the fundamental as well as the simplifying assumptions of subspace 

processing are listed in Table 2-1. 

Table 2-1: Fundamental and Simplifying Assumptions 

Fundamental Assumptions 

Simplifying Assumptions 

• fewer signals than array elements 

• linear, uniformly spaced array 

• narrowband signals 

• constant source-array geometries 

• far-field sources (impinging plane waves) 

• less than half-wavelength element spacing 

• an accurate estimate of the number of signals 

• accurate and calibrated sensors 

• spatially independent equi-powered Gaussian noise 

• uncorrelated signals 

An additional constraint—which is also a motivation for the subspace algorithms, in general- 

is the need for computational efficiency and accurate and reliable detection, classification, and 

localization (DCL). These concerns are addressed as part of the algorithmic development and 

analysis. 

2.3 The Impinging Signal Model 

Assume a if-sensor array having a constant (center-to-center) sensor spacing of 5. 

Furthermore, assume that impinging on those sensors are J narrowband plane waves such 

that the propagation time across the array is small relative to the temporal variability of the 

signal amplitude and phase modulation (i.e., the signal variability is "slow" relative to the 

propagation across the array); this permits us to view the signal at any sensor at a given 
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Section 2.3 The Impinging Signal Model 

"0" indicates 
either the left or 
top sensor. 

Figure 2-1: Signal and Array Geometry 

sampling epoch as a phase-shifted version ofthat received at the other sensors. The wavefront 

from the ;'th signal arriving at the kth sensor may be expressed as 

sjk(t) =Aj(t-kxj)e 
iyXt-kx) iWfl-W 1       J =Ap:)e    J J .. (2-3) 

where x. is the signal geometry-dependent propagation time from one sensor to an adjacent 

sensor, 

SsinG. 
x. = 
j 

(2-4) 

The geometry and sensor numbering are defined as shown in Figure 2-1 and c is the wavefront 

propagation speed. The sensor-to-sensor phase shift, (p., in Eqn (2-3) is a signal geometry and 

frequency dependent term defined as, 

*JS$?PXJ = °J®XJ' 
(2-5) 

where the approximation is valid due to our previous assumption about a slowly varying signal 

(in this case, signal frequency) relative to the propagation across the array. Obviously, if the 

impinging signal is cisoidal, the frequency <a.(t) could be treated as (approximately) a constant. 

In general, the expected phase shift is, 

£(cp.) = (p. 
8cosin8. 

j       J (2-6) 

where cö. is the mean signal frequency. Expressing the sensor spacing in terms of wavelengths, 

since X = c/f, leads to 

2?((p.) = 9. = 2TIO\ sin6.. 
j        j j      J 
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In the following discussion, we generally assume that the signal may either be treated as 

cisoidal or that we will be averaging over a sufficient duration so that the expectation of 

Eqn (2-6) may be used. As an aside, note that satisfying the narrowband assumption may be 

accomplished for wideband signals by applying an FFT to the data and treating each resulting 

frequency bin as a separate signal—with the caveat that the data set be long relative to the 

propagation time across the array. 

We can view the ;'th signal's contribution at the kth sensor as a geometry-dependent modifi- 

cation of the signal received at some reference location. Thus, Eqn (2-3) could be viewed as, 

sjk(t) = (Aj(t)e V )e    Vj = Sj(t)e     
J = dk(ßj)sß), ■(2-8) 

where s(t) is the signal received at the reference point (i.e., sensor 0) and dk(Q) is the phase 

shift implicitly denned by Eqn (2-8). In general, the sampled signal xk will contain contribu- 

tions from a number of signals as well as sensor-specific noise; hence, the signal at any element 

may be expressed as, 

J J 

**(*) =   X *jk® + ak =   X dk(ßßs/f) + nk(t). 
.7 = 1 7 = 1 

(2-9) 

Extending this argument and notation, the sampled signal vector may be represented as 

x = Ds + n, (2-10) 

where x is the vector of the signal received at each sensor, 

x 

x0(t) 

Xj(t) 

*ff-l(*) 

(2-11) 

D is the steering matrix, 
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D = [d, d2 ... dj ... dj = 

d0(ei)   <Ve
2)      - ...   doCe^) 

di(ei)   rfi(e2)      - w 
djjOj) d2(ßj) 

d if-l(6l)    -     ^-l(e
7)-^-l(0j) 

(2-12) 

where the steering vector, d-, in Eqn (2-12) maps the s{t) signal onto the receive array. This 

vector is implicitly denned for a uniform linear array as, 

d0(6ß 

d2m 

^-iC6,) 

1 
-icp 

e    J 1 
-i2(p. 

e      J 
v. 
j 
2 

— V 

VK-1 
.j      _ 

K^-IXP, 

where we recall that the sensor-to-sensor phase shift increment, (p., is 

(2-13) 

5sin8. 

<P,- ^.(t). (2-14) 

Exploiting the narrowband assumption so that inter-element spacing may be expressed in 

units of wavelengths, 5^, leads to the sensor-to-sensor phase shift increment of, 

m. = 27:8, sin9.. 

Furthermore, the impinging signal vector is denned as, 

(2-15) 

s = s(t) = 
s2(t) 

s3(t) (2-16) 

with n being the additive noise vector, 
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n = n(t) 

nQ(t) 

(2-17) 

Rather than working directly with the Kx N sampled data matrix (where N is the number of 

sampling epochs), for computational efficiency, the subspace processing algorithms generally 

use the KxK array covariance matrix. 

2.4 The Sampled Signal Covariance Matrix 

The array covariance matrix, R of the K sensor array is the K x K matrix of the expected value 

of the outer product of the received signal with its complex-conjugate, 

R = E{xxt}, (2-18) 

where E {•} is the statistical expectation. Obviously, information loss occurs if the represen- 

tation of Eqn (2-18) which contains K(K- l)/2 independent elements is used instead of the 

much larger KN samples in the sampled data set. The use of a received energy rather than 

waveform representation limits the array resolution to a maximum of K-1 signals1 as well as 

increasing the required dynamic range2. Using the definition for x of Eqn (2-10) in Eqn (2-18) 

yields, 

R = E{(Ds + n) (Ds + n)t} (2-19) 

or, equivalently, 

R = E{DsstDt +Dsti\ +nstDt +nn\} (2-20) 

The convergence of Eqn (2-20) is discussed in more detail in Appendix A; however, the following 

sections briefly review the asymptotic limits. 

1 However, to resolve more than K-l using the raw data implies a valid waveform model so 
this is not generally a concern. 
2- Using the signal power rather than amplitude may pose implementation concerns. 
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2.4.1 Noise-Signal Covariance Contribution 

Assuming that the signals and noise are uncorrelated and the noise has zero mean, then the 

cross-product matrices converge to zero, i.e., 

E[snt] = 0        E[nst] = 0. (2-21) 

2.4.2 Noise Covariance Contribution 

Assuming the noise has zero mean and is uncorrelated from element to element while having 

identical statistics (i.e., power levels and spectra) leads to the noise covariance matrix, X^, 

representation as 

2  =E[nn\] = 

32   0 ...   0   0 

0 c2 0    :    0 
:    0 

0  ... 0 a2 0 

0   0 ...  0 a2] 

a2/*, (2-22) 

where IR is the K x K identity matrix and a2 is the expected noise power. Some array environ- 

ments (e.g., acoustical arrays dominated by flow noise) will not have the idealized noise 

covariance structure indicated by Eqn (2-22); if the general structure is known, the sampled 

covariance matrix may be whitened so that the noise covariance contribution has this idealized 

structure. The diagonal noise structure of Eqn (2-22) as two significant consequences: 

• eigendecomposition naturally partitions the sampled 
covariance into signal and orthogonal subspaces; and, 

• the information-theoretic enumeration criteria of 
Chapter 4 are applicable. 

Although an accurate partitioning is essential for application of subspace processing 

techniques, the eigendecomposition-based partitioning may still be valid given "strong" 

signals. If the information-theoretic criteria are not valid, accurate enumeration and DOA 

estimation may be achieved through alternate approaches such as the SSET algorithm 

proposed in Section 7.6. In general, some assumption concerning the noise structure must be 

made—otherwise, any sampled covariance matrix could be rationalized as due to additive 

noise. 
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2.4.3 Signal Covariance Contribution 

Turning our attention to the signal contribution to the covariance matrix, note that for time 

spans such that D is approximately constant (thereby implicitly imposing a restriction on the 

source-array relative motion during the averaging interval) and continuing with the 

assumption of narrowband signals, the expectation becomes 

E[DssfDU =DE[ssUDt (2-23) 

If the signals are uncorrelated, then the signal covariance matrix has the very simple form, 

A{  0   0  ...   0 

OAjO   ...   0 

R   =E[s(t)sUt)] = 0   0 Ai 

0    0 0 A' 

(2-24) 

where A ■ is the signal amplitude implicitly defined by Eqn (2-3). In either case, the signal 

contribution to the sampled covariance matrix may be represented as, 

R = DRIJ\ , (2-25) 

Consistent with our assumptions, Rs is a JxJ matrix and is, in general, smaller than the 

rank of R—i.e., there are fewer signals than there are sensors in the array. 

Note that the form of Eqn (2-24) will be invalid if the incoming signals are correlated—which 

implies that Rg is not of full (J) rank. Such a situation could occur due to multipath propa- 

gation of signals or signal repeaters. However, if the multipath introduces a significantly 

different Doppler shift, the signals might be decorrelated. The signals will also effectively be 

decorrelated if the signals are random and sufficient propagation delay offset is present so that 

the covariance calculation perceives them as being different signals. 

If the waveforms are correlated, preprocessing the array via spatial smoothing will increase 

the rank of the signal covariance contribution to correspond to the number of wavefronts rather 

than the number of signals. Spatial smoothing is discussed in detail in Chapter 9 wherein it is 

shown that the array processing may be applied transparent to whether spatial smoothing was 

or was not used. 
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2.4.4 The Sampled Covariance Matrix 

Since the sampled data stream contains both signals and noise, a method is required to 

determine the number of signal sources and their directions. If we view the sampled signal 

vector as 

J 
x(t)=  ^dpjlSjW + nit), (2-26) 

then, in principle, we seek the non-orthogonal basis set, D, of rank J which best fits the 

sampled covariance matrix, R, i.e., to determine the coefficients, 9, Rg, and o which 

minimizes, 

Q( J, 6, c2, Rs) = I DRsDt + a2/ - R \\. (2-27) 

Of course, the basis set is constrained by the array topology. Such a multi-dimensional optimi- 

zation approach is computationally intensive and generally impractical—albeit optimal from 

an accuracy perspective. Thus, the conventional approach is to adopt a two-stage process: the 

first stage involves signal detection based upon an eigenvalue analysis while the second stage 

uses the detection results along with the eigenvectors to determine the DOAs which best fit the 

sampled data. 

The conventional enumeration and DOA processing algorithms implicitly assume the idealized 

covariance matrix structure of Eqn (2-25). Reality, however, is that due to finite sampling 

intervals and violations of the underlying assumptions, the sampled covariance matrix will not 

achieve the ideal form—with an associated penalty in enumeration performance and DOA 

accuracy Much of the subspace processing literature is devoted to deriving asymptotic expres- 

sions of algorithmic performance under very limited scenarios. Although these analyses are 

mathematically aesthetic, from a practical perspective the sampled covariance matrix will be 

derived from data sampled over an interval and the detection and performance will have to be 

acceptable since other options either do not exist or are too computationally demanding. To 

illustrate, the choice of averaging interval must trade-off selection of a long interval, which 

increases the effective signal contribution, versus the selection of a short interval which 

reduces the potential for errors due to dynamic source-array geometries. 
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3. Classical DOA Methods 

As discussed in Chapter 2, the sampled covariance matrix contains sufficient information to 

detect and locate impinging signals. The subspace-based techniques discussed in the following 

chapters represent an advance in the sense that multiple signals may be simultaneously 

detected and located. This advantage is achieved at a cost of increased algorithmic 

complexity—which implies correspondingly, increased computational demands. If computa- 

tional loading is a design issue or if a priori knowledge indicates that only a single dominant 

signal source is of interest, the "classical" methods discussed in this chapter may be an appro- 

priate choice. 

3.1 Introduction and Taxonomy 

Classical DOA estimation—although not employing a subspace decomposition—also utilizes 

the sampled covariance matrix. As illustrated in the table below, the classical methods may be 

divided into the direct-mapping methods which operate directly on the sampled covariance 

matrix and the inverse-mapping methods which utilize the inverse of the sampled covariance 

matrix. 

One Signal Multiple Signals 

Direct-Mapping 

Inverse-Mapping 

Split-Aperture 
Full-Aperture 
Beamforming 

Beamforming 

Maximum Entropy (Burg) 
Minimum Variance (Capon and Borgiotti & Kaplan) 

The primary advantage of these methods is one of implementation efficiency. If a single 

dominate signal source is present, the split-aperture or full-aperture methods can provide an 

accurate estimate of the source direction while demanding relatively little in the way of compu- 

tational resources. If multiple signals are present, the beamforming, maximum entropy, or 

minimum variance methods can estimate the signal directions in a computationally simple 

manner. Due to making fewer assumptions about the signals, noise, and array, these methods 

tend to be more robust than the subspace methods—at the expense of sacrificing accuracy and 

performance when the subspace processing assumptions hold. 
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The direct-mapping methods operate directly on the covariance matrix—although simple, this 

works well in the case of a single strong wavefront impinging on the array. In more complex 

scenarios, the inverse-mapping methods may be employed; these utilize the inverse of the 

sampled covariance matrix and are capable of resolving multiple signals—albeit without the 

angular resolution of the subspace approaches. 

Issues such as detection thresholds, accuracy, or implementation architectures1 are only 

addressed heuristically. Books have been devoted to the array processing problem (e.g., [68] 

and [69]) so this chapter is oriented towards the intuitive rather than the mathematically 

rigorous. Additionally, for many applications the simplistic assumptions concerning sensor 

performance and noise distributions are invalid; in this case, algorithm thresholds must be 

derived from sample data sets rather than inaccurate mathematical models. 

3.2 Single-Source Direct-Mapping Methods 

In this section we explore the structure of the sampled covariance matrix in the event of a 

single impinging signal as well as the full-aperture and split-aperture DOA estimation 

methods. Although the beamforming, minimum variance, and maximum entropy methods can 

also be used in the single source case, their discussion is deferred to subsequent sections. 

The direct mapping methods utilize the sampled covariance matrix without the need to 

perform matrix inversions or decompositions.2 For this reason, they are relatively efficient 

computationally—although, not as resilient to noise and multiple sources as other methods. 

Contrary to the normal sequencing, we will discuss the DOA estimation methods prior to 

addressing the direct-mapping signal detection problem. The rationale is that, for many 

practical applications, the signal detection is more properly viewed as a "quality indicator" 

issue since—due to the low computational loading—a DOA estimate is always generated. The 

three direct mapping DOA estimation approaches are: 

•   Beamforming 

r As an aside, it should be noted that in a strong SNR environment, the sampled covariance matrix will be 
close to singular. This could cause numerical problems for the inverse-mapping approaches; however, if an- 
ticipated, numerical instabilities may be easily avoided. 
2- Although the split-aperture and full-aperture methods are often implemented in the time domain on the sam- 
pled data stream, such implementations are functionally and mathematically equivalent to implementations 
operating on the sampled covariance matrix. 
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• Full-Aperture 

• Split-Aperture 

The beamforming approach may be viewed as a search technique wherein a source DOA is 

hypothesized and the hypothesis correspondence with the sampled data determined. The split- 

aperture approach may be viewed as a root-finding technique wherein the relative sampled 

signal phase between two spatially separated points (phase centers) is used to determine the 

DOA. Unfortunately, DOA ambiguities are introduced when the phase centers are separated 

by more than one-half wavelength. As an alternative, Rubano [36] proposed the full-aperture 

method which—upon appropriate choice of weights—does not have a phase ambiguity. As will 

be shown, the split-aperture method may be viewed as a special case of the full-aperture 

approach. 

3.2.1 The Structure of the Single-Source Covariance Matrix 

Continuing the notation developed in Chapter 2, any given narrowband analytic3 signal, s(t), 

impinging upon the if-element array at an angle 0 from the array may be mapped into the 

signal received at each array element by 

x(t) = d(Q)s(t) (3-D 

where d(6) is the steering vector; this vector corresponds to the propagation-induced phase 

shift relative to signal at some reference location. Note that the decomposition of Eqn (3-1) into 

separable geometric and temporal components requires a narrowband signal so that the effect 

of propagation across the array may be legitimately modelled as a phase shift! Eqn (3-1) 

applies for arbitrary array topologies; if we presume that the array is a one-dimensional array 

with uniformly spaced elements, then if the inter-element phase shift may be expressed as 

9 = ^8sin9, (3-2) 
c 

where 8 is the inter-element spacing, / is the nominal signal frequency, and c is the wavefront 

propagation speed. The steering vector is simply 

3- Since a real-valued signal may be relatively easily converted to its analytic equivalent, this restriction to 
complex-valued signals does not pose any mathematical obstacles. 
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d = 

d0(9) 

<*l(6) 

d2(9) 

-19 

-i2(p 

-iß 9 

-1 (if-1)9 

(3-3) 

As discussed in Chapter 2, the covariance matrix resulting from an impinging narrowband 

signal, s(t) = A(£)ew(f) = Aemt, in a noise-free environment can be expressed as 

R = E[xx\] = E[ds(t)(ds(t))U = dE [\s(t)\2] dt = dR$df . (3-4) 

For this single signal case, the signal covariance is a scalar corresponding to the average signal 

power, R =E [\A\2] . Therefore, the array covariance matrix is the outer product, 

R = (E[\A\2])ddt = U 
-l2<p 

B 

-i3<p 

-iqKJT-1) 

,    icp   i2(p   i3a> up(K-l) lee     e      ... e (3-5) 

or, equivalently, 

R = W 

1 

-l2(D e 
-i3cp 

1 

-i2cp 

129 

„l(P 

-19 

2i39 

129 

„l(P 

... c 

.. e 

-i(p(K-l)    -i9(üT-2)    -i9(üT-3) e-i9(if-4) 

I9(if-1) 

19 (i?-2) 

19 (Ä--3) 

19(^-4) 
(3-6) 

Under these assumptions R is Toeplitz4 (the same value along diagonals of the matrix) as well 

as being Hermitian (complex-conjugate symmetric). Due to sensor errors, noise, source 

movement, sampling effects, etc., this idealized structure will not be achieved by the sampled 

covariance matrix; however, it is assumed that the perturbation from the ideal structure is 
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negligible. If the sampled covariance matrix is not Toeplitz, this implies either the absence of 

a signal (assuming spatially uncorrelated noise, the covariance matrix would converge to a 

diagonal structure) or the presence of correlated sources. Appendix A provides a discussion of 

the statistics associated with the elements of the sampled covariance matrix. 

The rank of the array covariance matrix (neglecting noise contributions and other perturba- 

tions) will correspond to the number of impinging wavefronts since each signal contribution to 

a given sensor is simply a (complex) scalar multiple of the contribution to the other sensors. In 

the event of a_single signal and the absence of noise, the eigenvalues of the covariance matrix 

would be [KA , 0, ..., 0}—so the largest eigenvalue is an estimator of the signal power. In the 

event of multiple signals, this simple interpretation of the eigenvalues breaks down. 

3.2.2 Split-Aperture DOA Estimation 

Unlike beamforming (discussed in Section 3.3.1) which does a search to determine the 

direction with the maximum signal power, the split-aperture assumes that a single signal is 

present and determines the phase shift—which directly maps into the geometric angle— 

between the phase centers of two subarrays. Partitioning a üT-element array into two M- 

element subarrays, as is illustrated in Figure 3-1 for a uniform linear array, allows us to 

calculate a phasor5 via, 

^=j[  1 ">A       1 wmx ) dt (3-7) 

where wm is an element-specific weighting which also incorporates a phase shift, dm{Q), to 

electrically align the array elements as well as providing array directivity characteristics and 

xk denotes the signal received at the k array element. Interchanging the order of integration 

and summation permits Eqn (3-7) to be expressed in matrix notation in terms of the covariance 

matrix, 

In fact, the expected covariance matrix will have a Toeplitz structure for multiple impinging wavefronts— 
providing the impinging signals are uncorrelated (so that the signal covariance matrix is diagonal). If multiple 
signals are present, the diagonals will be more complicated functions of the scenario geometry than illustrated 
in Eqn (3-6) with different amplitudes along the diagonals. Additive noise and sampling effects will perturb 
this idealized Toeplitz structure; however, by construction, the sampled covariance matrix will always be 
Hermitian. 

A phasor is a complex-valued number of the form <xe where a and 9 are real-valued and a is non-neg- 
ative. 
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i¥ ße     = i»Lt fiwig (3-8) 

where, H>L and u>R are if-element vectors with the element weights in the first M slots of wL 

and the last M slots of wR with the non-weight slots being filled by zeros. Eqn (3-8) could 

equivalently be expressed as the (weighted) sum of selected elements of the covariance matrix, 

iV 
K   K 

ße1"1" =   X   X W®R (3"9) 

i = lj = 1 

where A®B denotes Schur (element-wise) multiplication and the weighting mask W is 

W = (3-10) 

0 0    itfj    w^w^ w1w3 w-^w^ 

o 
0 0 W2W1    W2     ^2^3 ^2^4 

2 
0   0   ZügWj   lügW2        W3        ^3^4 

2 
0 0 w4w1 w4w2 w4w3    w4 

0 0     0 0 0 0 
0 0     0 0 0 0 

This notation permits viewing the split-aperture approach as being a phasor derived from the 

covariance matrix—as is illustrated in Figure 3-2. From this perspective, we see that the split- 

aperture approach involves elements of the covariance matrix which do not contain any direc- 

tional information (elements along the main diagonal) as well as elements which contain 

counterproductive information (elements below the main diagonal which cancel contributions 

Figure 3-1: Array Geometry and Subarrays 
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from superdiagonal elements). However, the split-aperture approach is efficient and effective 

since the composite phase *P may be directly mapped into the corresponding geometric angle, 

9, via 

9 = asin ( 
2TI/A 

40 (3-11) 

where A is the distance between the phase centers of the subarrays, / is the signal frequency, 

and c is the signal propagation speed. Although fast and easily implemented, the split- 

aperture approach has a phase ambiguity if the phase centers of the subarrays are offset by 

more than a half-wavelength; this is illustrated in Figure 3-3 for a one wavelength offset in 

phase centers. Although increasing the phase center offset (i.e., sensor baseline) increases the 

DOA estimation accuracy for sources near the beam boresight, it can also result in erroneous 

and undetectable errors in the determination of the source direction. 

3.2.3 Full-Aperture DOA Estimation 

Rubano [36] proposed an alternative to the split-aperture approach which avoids the phase 

ambiguity. This is accomplished by summing the upper triangle of the covariance matrix as 

illustrated in Figure 3-4. The resulting map from the phasor angle to geometric angle is illus- 

trated in Figure 3-5 for a six-element array having half-wavelength element spacing and 

compared to the corresponding split-aperture mapping using one-wavelength offset phase 
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Split-Aperture Phase vs. Signal DOA 

-75 -50 -25 0 25 50 75 

Geometric Angle (deg) 

Figure 3-3: Split-Aperture DOA Mapping Ambiguity 
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centers. If we permit the use of an arbitrary weighting matrix, W, then the Rubano vector, 

ße    , calculated via, 

ße i¥ 
K    K 

(3-12) 

may be seen to be quite general. In fact, the split-aperture algorithm is a special form of the 

full-aperture approach wherein the element weighting facilitates an easily calculated mapping 

from the Rubano phase, T, to the associated geometric angle. In general, the mapping function 

does not have a closed-form representation; however, an implementation involving a lookup 

table is relatively straight-forward. 

Although the maximal use of the covariance matrix information leads to the full-aperture 

approach having slightly better accuracy than the classical split-aperture approach, the 

advantage is not overwhelming. The real advantage of the full-aperture approach is the 

unambiguous mapping which avoids incorrect interpretations of the received data. Such situa- 

tions might arise in multi-path scenarios involving surface or other signal reflections. 

Additionally, it should be noted that—as for the split-aperture case—for maximum accuracy 

the covariance matrix should be electrically steered towards the source direction. Because this 
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steering can be easily achieved by modifying the sampled covariance matrix, the loss of sensi- 

tivity away from boresight can be mitigated. 

Finally, although full-aperture and split-aperture processing assume the presence of a single 

source and, therefore, are not suitable for multi-source scenarios, the weight matrix can be 

chosen to provide more directivity in a hypothesized direction—at the expense of introducing 

inverse mapping ambiguities. 

3.2.4 Direct-Mapping Signal Detection 

Since the possibility exists that no signals are present in the sampled covariance matrix, the 

signal processing must ascertain whether a signal is present as well as determining a DOA. To 

support this, a detection criteria is required. From the physical model, there are three possible 

approaches to the detection problem which utilize the structure of the sampled covariance 

matrix: 

• received power 

• covariance power 

• covariance directivity 

The received power may be determined from the trace of the sampled covariance matrix since 

the main diagonal corresponds to the power received by the individual array elements. If a 

baseline (reference) power can be established either by a priori knowledge of the background 

noise level or via temporal analysis, signals may be detected by a comparison to this 

threshold—i.e., classical statistical inference. This approach requires either the array be 

calibrated or a "learning set" be available to determine the no-signal power levels. 

If we assume that the sensor noise is spatially uncorrelated, the non-diagonal elements will 

converge to zero while the main diagonal elements will reflect the received signal power. 

Hence, the ratio of the sum of the magnitudes of the non-diagonal elements relative to the 

diagonal elements is an indicator of the presence of an impinging signal. 

Alternately, we could steer the covariance matrix (i.e., electrically steer the array) towards a 

direction and examine the directivity of the covariance matrix since the covariance matrix 

elements resulting from a source at the array normal would be (nearly) real-valued. This 

detection criterion is closely aligned with the full-aperture method of DOA estimation. 
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In the event of a pulsed signal—i.e., active sonar or radar—the non-signal baseline level may 

be determined from a range-Doppler map analysis and this result used to direct the target 

angle determination; however, in the passive signal case, the selection of appropriate detection 

criteria involves ad hoc detectors derived from analysis of test data. 

3.3 Multi-Source DOA Estimation Methods 

If multiple signals are present, the split-aperture and full-aperture approaches return a single 

DOA estimate which is a composite of the sources. To determine the DOAs of multiple sources, 

the classical methods of beamforming, maximum entropy, or minimum variance estimation 

may be used. In the subsequent sections, we explore each of these as well as their relative 

performance against a simple, low-noise multi-source scenario. The assumed array topology in 

this scenario has 6-elements at half-wavelength phase-center separations. Increasing the 

number of elements will improve the performance of each method; however, the relative perfor- 

mance will remain consistent. 

To reiterate earlier statements, these classical methods may be optimal from an engineering 

perspective despite being suboptimal from a mathematical perspective due to the reduced 

computational load relative to the subspace methods. Because the subspace methods exploit 

additional information about the array topology and signal environment, they will generally 

provide better accuracies; however, these classical methods may provide results which are 

"good enough". 

3.3.1 Beamforming 

Given our knowledge of the array topology, the beamforming method seeks the geometric 

angle(s), G which maximizes the received signal power, 

PBF(0) = w(9)tÄw(G) (3-13) 

where w is defined as the Schur product (element-by-element product) of a weight vector, a, 

and the steering vector, d(0), defined in Eqn (3-3); thus, 

w(0) = a®d(0). (3-14) 

The weighting vector is chosen to reduce the contributions which are known a priori to have 

larger sensor errors (e.g., the outer elements of a sonar array which are subject to increased 

flow noise) and may be complex-valued to compensate for known phase or amplitude errors in 
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the array elements. The beamforming response behavior, PBF(0), is illustrated in Figure 3-6 

for a six-element array. For a single signal source (and ideal elements and noise), beamforming 

is an unbiased estimator of the source direction; however, as is illustrated in Figure 3-6, this is 

not true if multiple sources are present. Furthermore, due to the "low resolution" of the 

beamforming response function, it may be difficult to distinguish/detect multiple sources using 

beamforming if those sources have similar DOAs or have greatly differing signal levels. 

3.3.2 Maximum Entropy (Burg's Method) 

Burg [56] was the first to improve on the beamforming approach; he realized that the 

resolution was limited by the finite number of elements—analogous to a DFT resolution being 

determined by the number of samples. To improve the resolution, he proposed extrapolating 

the covariance function beyond the nominal array size limitations. Although there are, in 

principle, an infinite number of possible extrapolations, Burg contended that the extrapolation 

should be selected which maximized the signal entropy. In formalizing this concept, Burg 

showed that the maximum entropy is achieved by fitting an auto-regressive (AR) model to the 

data. Thus, we seek the AR coefficients, ak, which minimize the expected prediction error, 

min argE 
k = l 

(3-15) 
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Figure 3-6: Beamforming Response Behavior for a Multi-Source Scenario 
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where r is the order of the AR model. Setting r = K, where K is the size of the sensor array, 

Eqn (3-15) may be represented as, 

a = arg min (at Ra) (3-16) 

subject to the constraint that the first element of the AR coefficients be "1", i.e., 

at ex = 1 (3-17) 

where 

a = [ai ... oJT (3-18) 

and 

«l=[lO... 0]T- (3-19) 

The AR coefficients resulting from this minimization problem may be found via Lagrange 

multiplier techniques to be 

a = — -i-. (3-20) 
e\R~xel 

The DOAs then can be found from the peaks of the spatial spectrum given by 

|«f(8)t a\ 

The spatial spectrum is illustrated in Figure 3-7 for the same situation as for beamforming in 

Figure 3-6. Note that even though the two adjacent sources are not distinguishable, the source 

at -10 degrees has been localized more accurately. Furthermore, the signal sources are more 

easily distinguished from the non-signal peaks in the spatial response. However, this increased 

performance relative to beamforming is achieved at a cost of considerable increase in compu- 

tational complexity and loading—especially as the size of the sensor array increases. 
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3.3.3 Minimum Variance (Capon's Method) 

The beamforming approach has relatively poor resolution because the delay-and-sum implicit 

in the beamforming for a signal DOA also contains contributions from the other signals. 

Capon's [37] approach was to modify the delay-and-sum at a given DOA angle to minimize the 

contribution from interfering sources. Therefore, he proposed to estimate the ;' signal 

waveform, s (t), by a linear estimator using the samples at the array elements, x(t), i.e., 

«,<*) w t x(t). (3-22) 

where w ■ is a üT-element complex-valued vector. Since the array element signals are related to 

the J impinging wavefronts by 

x(t) =   %djSj(t) + n(t) 
7 = 1 

(3-23) 

the estimated signal may be expressed as a scaled version of the desired signal, sj(t) which is 

corrupted by contributions from the other signals and the noise, 

sß) = wß dj8/t) + X w/ disfi) + wf n® ■ (3-24) 
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Figure 3-7: Maximum Entropy Method Response for a Multi-Source Scenario 
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Capon contended that minimizing the power of the estimated waveform subject to the 

constraint that the desired waveform be undistorted (in the sense that the array gain in the 

desired signal's direction be equal to unity) should improve on the beamforming resolution. 

Thus, we seek the solution to the minimization problem, 

w- = argminiüt Rw-, (3-25) 

subject to the constraint 

H)td(6.) = 1. (3-26) 

The solution to this minimization problem may be found via Lagrange multiplier techniques to 

be 

fi_1d(e.) 
ibj =  1  = a2U_1d(e.) (3-27) 

d(9.)tß_1d(8.) J 

where a  is denned as 

a2 =  = wtRw (3-28) 
d(e.)ti2_1d(9.) 

and is the residual power at the processor output. Since this should be maximized if a source 

is truly arriving from a direction 8, Capon contended that the DOAs should correspond to 

peaks of Eqn (3-28). This angular power spectrum behavior is illustrated in Figure 3-8. 

Capon's approach has a problem with correlated signals—due to situations like multipath 

propagation—since, even though the selection of the weight vectors guarantees the wß d-stt) 

term in Eqn (3-24) will have a unity coefficient, the auxiliary terms which are minimized may 

effectively cancel the signal. 

Borgiotti and Kaplan [41] proposed a variant of the minimum variance estimator which used 

a weight vector of the form 

Wj = Ui2-1d(e.) (3-29) 

subject to the constraint, 
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wßwj (3-30) 

This modification means that the contributions of the noise to the delay-and-sum processing is 

(on average) the same for every direction. The resulting power output when steered to a 

direction 8 is 

PBK(6) = 
d(e)ffi_1d(e) 

d(9)tß~2d(6) 
(3-31) 

The DOAs correspond to peaks in this power spectra—as is illustrated in Figure 3-9. For this 

particular scenario, the three signals are clearly distinguishable—although, not as well as the 

subspace methods when operating with an accurate estimate of the number of impinging 

signals. 

3.4 Summary 

Figure 3-10 shows the normalized spatial spectral response of the methods discussed in this 

chapter relative to that of the MUSIC algorithm presented in Chapter 5. By exploiting the 

subspace decomposition and the associated estimate of the number of signals, the MUSIC 

algorithm is better able to resolve the adjacent signals; however, it should be noted that 

classical methods discussed in this chapter attempt to estimate the signal power whereas the 

null-depth of the MUSIC algorithm corresponds to subspace stability—which is an indicator of 
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Borgiotti and Kaplan's MV Spatial Response 
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Figure 3-9: Borgiotti & Kaplan's Minimum Variance Spatial Spectra Illustration 

signal strength but does not directly correspond to the levels generated using Burg's, Capon's, 

or Borgiotti & Kaplan's methods. 

The greater resolution of the subspace methods is predicated upon an accurate estimate of the 

number of impinging signals whereas the classical methods do not require an a priori 

detection. Thus, at the price of decreased performance, the classical methods offer computa- 

tional simplicity and efficiency; hence, given a limited number of strong equi-powered signals, 

the classical methods may be preferable. However, in general, the increased performance of the 

subspace methods offset the additional computational load. This increased performance is 

illustrated by Figure 5-1 (page 60) which shows the spatial response due to wider dynamic 

range signals. 
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Spatial Response Comparison 
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Figure 3-10: Comparison Plot of MUSIC and Classical Multi-Source Methods 
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4. Detection and Enumeration 

Since the subspace-based methods of DOA estimation require identifying a signal subspace 

and a noise subspace, a central problem to these methods is the determination of the number 

of impinging signals from the covariance matrix—i.e., the number of dimensions associated 

with each subspace. Although the signal detection and DOA estimation processing should be 

combined for optimal performance (see, for example, Wax [14]), such an approach is computa- 

tionally prohibitive; hence, the detection and DOA processing are generally performed sequen- 

tially rather than simultaneously. The intent of this chapter is to address the problems 

associated with the signal detection and outline some of the candidate algorithms to accom- 

plish the detection. 

The discussion in this chapter presumes that equi-powered band-limited Gaussian noise 

corrupts the received signal at each sensor in the array. Furthermore, we assume that this 

noise is spatially uncorrelated—i.e., the noise is neither spatially or temporally colored. (Signal 

detection in colored noise fields is discussed in Chapter 8.) Although numerous detection 

schemes have been proposed (e.g., [14]-[28]) which exploit this presumption, in many applica- 

tions the assumption of uncolored noise fields is often dangerously erroneous—as demon- 

strated by LeCadre's data [51] from real towed sonar arrays as well as the in-water data sets 

used herein. As a result, although the enumeration criteria discussed in this chapter are 

important from a pedagogical perspective and valid for some scenarios, their practical appli- 

cation in sonar signal processing is suspect. 

The subspace stability methods of Chapter 7 adopt a different paradigm for the signal enumer- 

ation—using subspace stability coupled with a priori knowledge of the array manifold rather 

than the energy-based methods of this chapter. 

4.1 Introduction and Background 

Without any noise or other error sources, the sampled covariance matrix with J uncorrelated 

cisoid signals impinging on a .ST-element array would have J non-zero eigenvalues and K-J 

zero eigenvalues—which would make determining the number of incoming signals fairly easy. 

Unfortunately, the sampled covariance matrix will be corrupted so that distinguishing 

between the eigenvalues associated with the signal and those associated with the noise will be 

non-trivial. 
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The general premise of the signal detection processing is that the sampled covariance matrix 

may be represented as in Eqn (2-25) by, 

R = DRDt +E   = DRqDt + c2/, (4-1) s n s 

where R   has a rank of J and the noise covariance matrix, Z , is assumed to be a scaled 
S "• 

identity matrix—which is equivalent to assuming that the noise at each sensor is spatially and 

temporally independent with equal statistics (power). Some noise structure must be assumed 

to permit signal detection; as discussed in Chapter 8, if the noise structure can be accurately 

modelled, the sampled covariance may be whitened to permit applications of these techniques. 

Under this assumption, the K eigenvalues of R are 

k = 1,2,3,...,J (42) 

k = J+l,...,K 

The signal eigenvalues, \i., represent a composite effect of the impinging signals so we cannot 

make simple inferences about any single signal based upon these eigenvalues (except in the 

single signal case). 

Since the sampled covariance matrix only approximates the "true" covariance, i.e., R ±R, the 

sampled eigenvalues will be perturbed from the nominal values of Eqn (4-2) due to the effects 

of noise and finite sampling (averaging) intervals; therefore, with a probability of one, none of 

the K eigenvalues will be equal. For our purposes, let us order the eigenvalues from largest to 

smallest so that 

X1>X2>...>XJ>\J+1>...>\jr (4-3) 

Presumably, the K-J smallest eigenvalues will be almost equal and the J eigenvalues 

associated with the signals will be "significantly" larger than the noise eigenvalues—the only 

problem is to define an algorithm which understands the distinction. 

The initial approach to the recognition problem was a sequence of hypothesis tests based upon 

the work of Bartlett and Lawley in the 1950s. The problem with this approach is the selection 

of a threshold is somewhat arbitrary and requires a subjective decision by the designer of the 

test. To avoid this subjective threshold setting, information theoretic criteria were developed by 

Akaike, Rissanen, Schwartz, Hannan, and others; these are known as the Akaike Information 

Criteria (AIC) and the Minimum Description Length (MDL) criteria. Wax [14] and Kailath [15] 
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derived the eigenvalue forms of these criteria. The AIC is not a consistent estimator so even at 

high SNRs it will tend to over-estimate the number of signals while the MDL tends to under- 

estimate the number of signals at low SNRs. Recently, Chen, Wong, and Reilly [24] have 

proposed a consistent estimator (the Eigen-Threshold Approach) which attempts to avoid the 

deficiencies of the MDL via a controllable detection parameters. These methods are discussed 

in more detail in the following sections. 

4.1.1 Detection Assumptions 

The Bartlett-Lawley, AIC, MDL, and MIC approaches make assumptions which are often 

invalid in real-world applications. These assumptions include: 

• Spatially uncorrelated noise; 

• Equal noise power at each sensor; 

• Uncorrelated signals. 

If correlated signals are suspected or likely, spatial smoothing (Chapter 9) may be employed to 

remove that concern from the detection processing. However, the assumption of uncorrelated 

sensor noise with equal power is a fundamental modelling assumption exploited by these 

algorithms. LeCadre [51], Wax [52], Fuchs [53], and Zhang and Wong [54] have done some work 

on detection in spatially correlated noise. 

4.1.2 Terms and Definitions 

The detection theory literature is sprinkled with terms which are not very intuitive—at least 

to this author. The intent of this section is to collect some of the notation and terms which are 

used in the referenced papers and books. These are presented in Table 4-1. 

4.2 The Maximum Likelihood Statistic 

The likelihood statistic is very important in the estimation of the number of impinging signals. 

As derived by Wax [14], if we assume that the complex-valued samples are independent, zero- 

mean Gaussian, then the probability density associated with a sequence of N samples at our 

if-element array, x[tt), is the multi-variate Gaussian, 

m eU)) = MD. -MtN)\ ew) = ft -rrw^ ^'^ (4"4) 
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Table 4-1: Detection Theory Terms and Definitions 

Term Notation Definition 

null 
hypothesis H0 

the hypothesis that one of the two possible (in a 
binary decision) states is in effect. Although the 
definition of this null hypothesis is arbitrary, it is 
customary to define it as the absence of the 
condition or signal of interest. 

event 
hypothesis #1 

the complement to the null hypothesis—i.e., the 
hypothesis that the signal or condition of interest is 
in effect. 

observations X 
the set of N observations made at each of the K 
sensors in the array. 

model 
parameters 

e. 
i 

the model parameter states associated with the Ht 

hypothesis. 

size a or PFA 
the probability of false alarm in testing a binary 
hypothesis—also known as a type I error. 

power ßorPD the probability of detection in a binary decision. 

miss ^M^-PD 
the probability of missing a detection in a binary 
decision. 

density 
function 

/•e(X)=/pqe.) 
i                             v 

probability density function conditioned on the 
hypothesis Hi—in other words, the density 

function presuming the hypothesis is correct. 

maximum 
likelihood 
estimate 

e = max(f6(X)) 
the maximum likelihood (most probable) estimate 
of the model parameters given the sampled data 
set, x. 

log 
likelihood 
statistic 

L. = ln(f W(X)) 
J          e 

Likelihood of hypothesis H- given the sampled 

data. 

consistency 
the characteristic that a detector is asymptotically 
correct. 

where 9 0) denotes the parameter vector describing the ;' impinging signals' eigenvalues and 

eigenvectors as well as the noise power , 

1 • We have adopted the notation that"/' represents a hypothesized number of signals as opposed to "7" which 
is the true number of impinging wavefronts. 
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B® = A,,    ...    X,.   (7      6-,      ...    6; 
1       J        1        •/- 

T 
(4-5) 

and R ^ is the irwe covariance matrix (vice the sampled covariance matrix, R). Wax noted that 

of the ;' +1 + 2jK parameters in 9 0), we only have ; (2K-j) + 1 degrees of freedom due to the 

constraints that the eigenvectors have a unit norm and be mutually orthogonal. The number 

of degrees of freedom will be important in the following detection criteria. Using matrix 

notation, Eqn (4-4) may be equivalently presented as, 

The maximum likelihood estimator of QU) is achieved by maximizing the likelihood function 

with respect to 6 0); i.e., choosing the parameter set, 6, such that the actual observation distri- 

bution matches the predicted distribution based on a priori assumptions about the probability 

density functions. Following the derivation of Wax [14] leads us to conclude that 

bk = uk k = l,2,...,j (4-7) 

lk = lk        k = l,2,...,j (4-8) 

and 

.2 1 
G    = I    h- (4"9) 

K-j.    .   , 

where I- are the eigenvalues derived from the sampled covariance matrix, R, and u- are the 

eigenvectors associated with the j largest eigenvalues. In other words, assuming a zero-mean 

Gaussian distribution, the best estimate of the signal eigenvalues and eigenvectors are those 

derived from the sampled covariance matrix and the estimate of the noise power is simply the 

average of the remaining K-j sampled covariance matrix eigenvalues. 

Substituting the maximum likelihood estimates of Eqn (4-7)-Eqn (4-9) into the probability 

density of Eqn (4-6) and taking the log yields the log likelihood statistic, 
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Figure 4-1: Example Eigenvalues and Associated Likelihood Ratios 

Lj = ln( 

i        (K-j)N 
K       —  ^ 

n *f-■' 
i=j + l 

K 

K-j ;    1    h 
i=j+l 

) (4-10) 

where N is the number of independent samples (approximately the time-bandwidth product if 

we assume band-limited Gaussian noise) and we have adopted the notation that Xi = li. 

L- actually tests whether the non-signal eigenvalues are unique—i.e., it is a measure of the 

size of the orthogonal subspace; thus, L- is a monotonically increasing function which checks 

the (log of the) likelihood that the K-j smallest eigenvalues are equal. This likelihood is the 

ratio of the geometric-mean to the arithmetic-mean of the K-j smallest eigenvalues; if these 

eigenvalues were equal, the ratio would be identically "1". Since additive noise will ensure that 

each eigenvalue is unique, we must define some criteria to declare that the K-J eigenvalues 

are "effectively equal"; this is the topic of the following sections. 

Figure 4-1 illustrates the ML behavior as well as the eigenvalues associated with three signals 

arriving at a six-element array. Note that the log likelihood achieves "zero" by hypothesizing 
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K- 1 signals—thereby concluding that all of the eigenvalues are unique. Also note that the 

probability that there are no signals represented in the sampled covariance matrix is fairly low. 

4.3 The Bartlett-Lawley Sequential Testing Approach 

The Bartlett-Lawley approach involves sequentially testing the hypothesis, Hj, that the eigen- 

values represent /' signals and K-j equal-valued noise eigenvalues until some pre-specified 

threshold is exceeded. A difficulty with this approach is that the threshold selection involves 

an ad hoc decision by the designer of the test. If the samples follow a Gaussian distribution, as 

the number of samples increases the statistic -21n(L-) will asymptotically approach a Chi- 

squared distribution with M degrees-of-freedom, y?M, where M is the "difference in the 

dimension of the subspaces spanned by the parameter vector under the two hypotheses" [14]. 

Here this dimension is (K-j)2- 1. Under these assumptions, for large numbers of samples, 

an appropriate test which has a size (probability of false alarm) a = PFA is to reject the Hj 

hypothesis if 

-2(ln(L.)) >c(a; ((K-j)2-1)) (4-11) 

where c(a;M) is the upper 100a percent point of the %^ distribution. 

The detection process initially assumes that no signals are present and sequentially tests the 

hypothesis that there are j signals until the threshold is passed. Note that the selection of an 

appropriate false alarm probability is left to the subjective assessment of the test designer. This 

problem is obviated by the information theoretic criteria approach first introduced by Akaike— 

providing the assumed probability distributions are in effect. 

4.4 Information Theoretic Criteria 

Because the log-likelihood statistic is monotonic, the "best" conclusion would be that the 

sampled covariance represents K- 1 signal sources plus noise. Therefore; we need to modify 

the log-likelihood statistic with a penalty function to yield a more reasonable signal enumer- 

ation. This penalty function should consider the number of samples, N, used to form the 

sampled covariance (i.e., our confidence in the sampled structure) as well as the number of 

hypothesized signals, j, and their relative amplitudes. Thus, in general, information theoretic 

criteria have the form, 

criterion = -\n(f(X\QU)))+p(n,N) (4-12) 
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where n is the number of free adjusted parameters—i.e., degrees of freedom—in the model, 0. 

Minimizing the number of free parameters essentially corresponds to choosing the simplest 

valid model. As discussed in Section 4.2, this is related to the number of signals, ;', and array 

size, K by 

n =j(2K-j)+l. (4-13) 

Eqn (4-12) employs the negative of the log-likelihood statistic so our problem is to find the 

minimum of the criterion. In sum, we have converted the detection problem into one of model 

selection given a set of N (independent) observations and a family of models—characterized by 

a parameterized family of probability densities, f{X\ 6). The best fitting model is determined by 

the log-likelihood statistic and the penalty function. 

4.4.1 Consistency 

Wax [14] showed that for a penalty function to be consistent, it should be of the form, 

p(n,N) = na(N) (4-14) 

where 

lim a(N) -> °° (4-15) 

and 

hm^Uo. (4-16) 

Zhao, et al. [16] subsequently showed that consistency could be obtained if the penalty function 

satisfied Eqn (4-16) as well as, 

lim,   a(iVL->~. (4-17) 
n —»°° ln(ln(iV)) 

Consistency implies that the detector is asymptotically accurate. Note that the AIC criterion 

discussed later is not consistent in that it tends to overestimate the number of signals. 

Conversely, for smaller sample sets, it tends to perform better than the MDL which—despite 

being consistent—tends to miss signals at low SNRs. As a result, much of the literature is 

geared towards surpassing the AIC limited-sample performance while maintaining the asymp- 
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totic consistency. Although the asymptotic behavior may not be achievable for sonar applica- 

tions, it may be achievable for sensors having higher information rates. 

4.4.2 AIC—Akaike Information Criterion 

Akaike's information theoretic criterion was to select the model (number of signals) which 

minimized the AIC2, 

AIC = - )n(f(X\ 0)) + n (4-18) 

where 9 is the maximum likelihood estimate of the parameter vector and n is the number of 

free adjusted parameters in 6. Akaike viewed the penalty term, n, as a bias correction term 

which made "the AIC an unbiased estimate of the mean Kulback-Liebler distance between the 

modelled density f(X\ 0) and the estimated density f(X\ 0)" [15]. Making the appropriate substi- 

tutions and dropping constant terms leads to the AIC in terms of a hypothesized number of 

signals,;', 

(      K       J_^)iV 

n %-j 
AIC(T) = -hi( i=j+l 

1        K    « 

v      Ji=j+l 

)+j(2K-j)+l. (4-19) 

Despite not being consistent, the AIC is a reasonably effective detection criterion. This is illus- 

trated in Figure 4-2 where the correct number of signals (3) are estimated from a simulated 

covariance matrix. 

4.4.3 MDL—Minimum Description Length 

After Akaike's pioneering work, the MDL criterion was independently developed by Schwartz 

and Rissanen—via different viewpoints. Schwartz approached the problem from a Bayesian 

perspective—arguing that if each model is assigned an a priori probability, the selected model 

should be the one with the maximum a posteriori probability. Alternately, Rissanen used infor- 

mation theoretic arguments—contending that since each model can be used to encode the 

observed data, the selected model should be the one that yields the minimum code length. In 

the large sample limit, the two approaches produce the same criterion, 

2- Akaike originally termed this "An Information Criterion"; however, subsequently, "AIC" has become an 
acronym for "Akaike's Information Criterion". 

Chapter 4: Detection and Enumeration 47 



Information Theoretic Criteria Section 4.4 

MDL = -\n(f(X\Q)) + n 
ln(N) 

(4-20) 

which differs from the AIC criterion by a factor of ln(N)/2 in the penalty term. Making the 

appropriate substitutions leads to an expression of the MDL in terms of the hypothesized 

number of signals, 

MDL(/') = -ln( 

K 

n 
t=j+i 

(K-j)N 

**-' 

K~j;. 

K 

■j+l 

) + ±\j(2K-j)+l]ln(N). (4-21) 

The behavior of the MDL criterion is illustrated in Figure 4-2. Due to the ln(iV) term in the 

penalty function, for reasonably large sampling intervals the MDL will tend to prefer smaller 

estimates of the number of signals than the AIC criterion and, therefore, may not detect 

marginal SNR signals. Conversely, the AIC does not adjust to reflect increased confidence in 

the eigenvalue estimates due to increased averaging intervals and, hence, tends to over- 

estimate the number of signals in the high SNR scenarios. 

MDL and AIC Criterion Behavior 
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Figure 4-2: MDL and AIC Criterion Behavior—against Simulated Data 
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4.4.4 MIC—Modified Information Criterion 

Wong, et al. [23] attempted to meld the low-SNR performance of the AIC with the high-SNR 

performance of the MDL criterion. To do this, they realized that Wax viewed the eigenvectors 

of the sampled covariance matrix as an estimation parameter—which implied that the array 

orientation should affect the probability of detection; therefore, the covariance matrix eigen- 

vectors should be viewed as nuisance parameters. In fact, this observation turns out to be 

correct—which reduces the parameter space of the detection problem from the j + 1 + 2jK of 

Wax down to the Jj + 1 parameters associated with the signal eigenvalues as well as that of 

the noise, 

e(/) X1 \ ... X a2 (4-22) 

Assuming zero-mean Gaussian distributions and following some intricate manipulations, 

given the eigenvalues of the sampled covariance matrix, lk, for j hypothesized signals the 

maximum-likelihood estimates of the signal eigenvalues and noise eigenvalue may be found by 

solving the set of nonlinear simultaneous equations, 

X     J 
5L   = I   -— X m        m     N 

i = 1 

( h 
X„ - X; 

K-j 
„2 

Xma m 

V   m       i J 'vm 
N   %„-f 

m = l,...J (4-23) 

and 

K T   j    L&2 

6
2 = J_  y  Z. + Iy_^_. (4-24) 

Ji=j + 1 I = 1AJ-0 

These equations may be solved via Newton's method [70]. For large values of N (N> 100), the 

computational loading may be reduced by adopting a gradient approach. In this case, estimates 

of the eigenvalues may be achieved by iterating on the difference equation, 

l(i + 1) =%ii)-yD(lU)) (4-25) 

where j is a damping coefficient (typically, 1/4 < y< 1) which controls the convergence of the 

iteration and D is the difference between the left and right sides of Eqn (4-23) and Eqn (4-24), 

i.e., 
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and 

*.-   J        h K-j A.„c 

N 
i = lkm-h 

N   * .2     lm 
A.„ — C 

m = 1, ...,./' (4-26) 

i&m 

m 
1      * 1  j'    ^i 

tf-; JV. A2 
i =7 + 1       "' i = 1 A,j — & , 

m =j'+l. (4-27) 

Under the new parameter set, the log likelihood function will differ from the one discussed in 

Section 4.2; thus, the cost function to be minimized will have the form, 

MlCa) = -ln(f(lv-,lg\h-'h'd ))+^>">iV)- (4-28) 

Ignoring terms for the log-likelihood which do not involve the estimates of the eigenvalues or 

degrees of freedom leads to the equivalent criterion, 

MIC(T) = A +A +pa+pc+P (4-29) 

where, 

j   L K     I 
K=N(H-+    £   41+ W-K+ 1) X ln(^) + (K-j) (N-j) ln(&2), 

Vj = lA-     j=y+lcj  / i = l 
(4-30) 

J K 
A

c=     I   ln(W+ I (/f-j)ln(^-&)-      I     ln(Z.-Zm), 
j, m = l i = l i,m =7 + 1 

i <m t<m 

(4-31) 

pa = ±j(2K-j-l)\n(N), (4-32) 

and, 

K 

Pc = -     I      m(r(i)), 
i = ÜT-7+l 

(4-33) 

50 

r  j AIC Criterion 

P = \-j]n(N) MDL Criterion 
(4-34) 
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0.2 seconds, are used to derive the sequence of covariance matrices used in the trajectory. As 

the array approaches the signal sources, the signal levels increase (due to propagation effects) 

and, therefore, the signal eigenvalues also increase. However, propagation-based wavefront 

scattering results in the "noise eigenvalues" being coupled to the signal eigenvalues! As a 

result, the non-signal eigenvalues grow with increasing signal strength rather than being 

independent (and approximately constant) as would be the case if the classical detection 

criteria were in effect. Under this situation, the information theoretic criteria conclude that all 

of the eigenvalues are unique and, therefore, five signals are identified rather than the correct 

value of two. However, two signals sources are clearly discernible—and, therefore, detectable 

given the appropriate detection criterion. The considerable jitter in the derived eigenvalue 

trajectory may be reduced by increasing the averaging interval by a factor of five—producing 

the eigenvalue trajectory of Figure 4-3. The increased averaging interval mitigates inter- 

ference effects of the sampled real-valued signal. 

4.6 Signal Detection—Summary and Conclusion 

In this chapter, we have summarized several hypothesis testing and information theoretic 

approaches to the problem of recognizing impinging signals by their influence on the eigen- 

values of the sampled covariance matrix. These approaches are attractive because they 

partition the detection and DOA estimation problem into computationally feasible segments; 

however, they also presume Gaussian background noise which is uncorrelated between sensors 

Eigenvalue Evolution 

25 50 75 100 

Segment 

125 150 175 

Figure 4-4: Eigenvalue Trajectories with an Increased Averaging Interval 
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as well as uncorrelated signals. If these assumptions are seriously violated, additional 

processing is required for accurate detection. 

Under an alternate assumption of static source-array geometries, enumeration criteria 

exploiting the subspace stability may be used. Approaches based on this concept are developed 

in Chapter 7 wherein characteristics and performance relative to the classical information 

theoretic techniques are also discussed. 

The DOA estimation algorithms presented in the following chapters use the estimated number 

of signals to partition the covariance matrix space into subspaces (represented by sets of eigen- 

vectors) associated with the impinging signals as well as the background noise. Their perfor- 

mance is typically very sensitive to accurate estimates of the number of impinging wavefronts. 

As a result, the signal detection problem appears to be the limiting factor in the performance 

of subspace processing in operational systems. 

The partitioning of the detection and estimation problem into distinct entities will be—almost 

by definition—suboptimal in the mathematical sense. However, from the engineering sense 

which considers the additional constraints of processing load, memory demands, and real-time 

processing requirements within the context of a "good enough" accuracy criterion, such an 

approach may be viewed as optimal! 
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5. Orthogonal Subspace Methods 

The subspace-based Direction-of-Arrival (DOA) estimation algorithms maybe characterized as 

either looking for signals orthogonal to the noise subspace (e.g., MUSIC) or operating directly 

on the signal subspace (ESPRIT, GEESE, etc.). In this chapter we address those techniques 

which exploit the orthogonality to the noise subspace. The algorithms to be explored are: 

• MUSIC, 

• Root-MUSIC, 

• Pisarenko's Method, and 

• Min-Norm. 

Most of these algorithms can be implemented as an extremal-search and are, therefore, 

suitable for arbitrary array geometries. For uniform linear arrays root-MUSIC and Min-Norm 

can be implemented via polynomial rooting techniques for increased resolution and computa- 

tional efficiency; however, for such array geometries, it appears that some of the signal 

subspace techniques (most notably, GEESE) are more robust. 

Although Pisarenko's method could be viewed as one of the "classical techniques" discussed in 

Chapter 3, it is discussed here since it may be viewed as non-optimal implementation of the 

MUSIC algorithm which attempts to avoid the signal enumeration problem. 

5.1 Assumptions 

Under the traditional subspace processing assumptions, the sampled array covariance matrix 

may be modelled as 

R =DRsDt +a2I. (5-1) 

As discussed in Chapter 2, D is a matrix which maps J wavefronts received from the directions 

9 at a reference location onto the elements of the array, i.e., 
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x(t) = D(G)s(t) + n(t), (5-2) 

with n(t) being additive noise. Rs is the wavefront covariance matrix; assuming the 

wavefronts are uncorrelated, this corresponds to the signal covariance matrix and is of rank J. 

The representation of Eqn (5-1) implies 

• narrowband signals—so that the geometric and temporal 
contribution of the impinging wavefronts can be separated; 

• spatially independent, equi-powered additive white Gaussian noise. 

An eigendecomposition of R yields, 

K 

R = BABt =   X hbkbJ ' 
k = \ 

where A is the ordered diagonal eigenvalue matrix, 

(5-3) 

A = 
^2 ° 

0       X K-l 

K 

(5-4) 

\>x2>...>xK (5-5) 

and B is the matrix of eigenvectors, 

B = \b1b2b3 ... &J. (5-6) 

The noise assumption implies that the additive noise is a "ball" in the ÜT-dimensional space— 

and therefore has no preferred orientation. On top of this ball, a lower-dimensional signal 
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contribution is added which provides a preferred orientation for the eigendecomposition. 

Thus, the eigenvalues are 

|>,+c2 k = 1,2,3,. ..,J 

h = 1 • (5_7) 
I    a2 k = J+l,...,K 

Since the steering vectors, d(0), which map a signal wavefront onto the receive array need not 

be orthogonal, the magnitude of the |i. will generally not map directly into the signal power. 

Eqn (5-7) implies that the eigenvectors may be partitioned into a signal subspace and an 

orthogonal subspace2 

B   =   [*. *o] (5-8) 

where B corresponds to the first J eigenvectors and BQ contains the remaining eigenvectors. 

To see that the subspace defined by the steering matrix, D is orthogonal to B0, recall that due 

to the mutually orthogonal nature of the eigenvectors, 

Rh = hh = °2h' k>J- (5"9) 

However, from the definition of R in Eqn (5-1), we see, 

Rbk = (DRsDt + a2I) bk = a2bk, k>J. (5-10) 

For both of these equations to be satisfied, the implication is, 

DRsD\bk = 0        k = J+1,...,K (5-11) 

and, since D and R are of full rank, 

Dtbk = 0        J<k<K. (5-12) 

1- Recall that eigendecomposition is sometimes referred to as principle component analysis and for a Hermi- 
tian (i.e., positive semi-definite) matrix, the decomposition determines the principle moments of inertia and 
associated axes of the matrix. 
2- This terminology is derived from the fact that the eigenvectors of a Hermitian matrix are mutually orthog- 
onal. The orthogonal subspace is sometime referred to as the "noise subspace". Since the noise, in fact, spans 
the entire space, such is a somewhat misleading and inaccurate terminology. The terms "orthogonal sub- 
space" and orthogonal eigenvectors" are intended to refer to BQ and bk, k>J, respectively. 
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Equivalently, with d = d(B.) being the steering vector associated with the / wavefront (i.e., 

the / column of D) which maps the wavefront received at the reference location onto the 

array elements, 

*/*.-°     i^'r (5"13) 

the "orthogonal eigenvectors" are also orthogonal to the steering vectors. This orthogonality is 

exploited by the methods of this chapter. 

The noise covariance structure of a2I assumed to this point is more restrictive than required; 

in fact, the requirement is 

•   the sampled covariance matrix may be partitioned into 
signal and orthogonal subspaces via eigendecomposition. 

This partitioning requirement implies that the signal plus noise energy is higher than the 

energy from noise alone—so that the J largest eigenvectors corresponds to the subspace 

containing the J impinging wavefronts. 

In addition to permitting signal enumeration using the information-theoretic techniques of 

Chapter 4, the idealized noise structure results in the identified eigenvectors corresponding to 

an unbiased estimate of the signal subspace. Given sufficient signal strengths, the bias errors 

due to structured noise may be operationally negligible. If covariance whitening is applied and 

special array topologies are assumed (e.g., uniform linear), then the identified eigenvectors 

should be "de-whitened" to permit application of those algorithms. 

As a final note, in the algorithms which will be described in the ensuing sections we have 

implicitly assumed 

•   the sensor array is comprised of K identical sensors, 

or, equivalently, that the array is calibrated so that sensor variations may be removed. In 

addition to introducing errors into the signal enumeration and subspace partitioning, sensor 

response errors will result in DOA estimation errors. This is especially an issue for the 

polynomial-rooting implementations of MUSIC and min-Norm which assume a uniform linear 

array structure to permit an AR model of the wavefront propagation across the array. As the 

size of the array increases, relatively small perturbations in the sensor response functions can 
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result in relatively large root (i.e. DOA) estimation errors. The importance and implications of 

array calibration is discussed in more detail in Section 8.4. 

5.2 The MUSIC Algorithm 

The MUSIC—Multiple Signal Characterization3—algorithm was proposed by Ralph Otto 

Schmidt [1] in an attempt to determine whether "the notational convenience of linear algebra 

with its vectors and matrices and the intuitional and analytic power afforded by vector spaces 

[can] be used to solve the practical and pressing multiple signal direction-finding problem?" 

Judging by the number of papers on the MUSIC and the subsequent variations like ESPRIT, 

GEESE, Weighted Subspace Fitting (WSF), etc., the answer appears to be an unqualified affir- 

mative. 

Schmidt identified the orthogonality of the steering vectors demonstrated in Eqn (5-12) and 

proposed exploiting the orthogonality to determine the directions of arrival. The zeros of the 

function, 

K 2 -,   J  | ,2 

'Q(®=    I   |&Me)|   = i-fl l6Me)| ■ (5"14) 

k=J+l k=l 

correspond to the directions of arrival—where the 1/K scale factor is required due to our 

definition of an unnormalized <%) in Eqn (2-13). Alternately, the directions of arrival may be 

found from the peaks of the function, 

PM(6) = ;4 = "  (5-15) 
y(U)

      rfT(9)BoBotd(0) 

which corresponds to the spatial response of the MUSIC algorithm. The normalized spatial 

response of the MUSIC algorithm relative to the classical methods is illustrated in Figure 3-10 

for strong signals in a low-noise environment and in Figure 5-1 for the same scenario with 

different signal amplitudes and noise levels impinging upon a six-element array. In this set of 

simulated data, the information theoretic detection criteria of Chapter 4 yield the correct 

estimate of the number of signals and the MUSIC spatial response identifies the source direc- 

tions. 

3- The MUSIC acronym is sometimes referred to as Multiple Signal Classification; however, Schmidt's orig- 
inal definition is more accurate. 

Chapter 5: Orthogonal Subspace Methods 59 



The MUSIC Algorithm Section 5.2 

MUSIC can only tolerate less than K sources—otherwise, we don't have a noise subspace to 

which all the impinging wavefronts must be orthogonal. The MUSIC algorithm may be summa- 

rized as: 

1) Build the sampled array covariance matrix, R, from the array data; 

2) Calculate the eigenvalues and eigenvectors of R; 

3) Estimate the number of impinging wavefronts, J (see Chapter 4); and 

4) Search the spatial response function, PM(6), for the extremals. 

Due to the effects of finite sampling intervals as well as the other sampled covariance pertur- 

bations discussed in Chapter 8, the steering vectors, d (9), will not be exactly orthogonal to the 

eigenvectors of the identified orthogonal subspace—thus, we must, in general, search for the 

minima of the projection of the steering vectors onto the orthogonal subspace rather than the 

zeros. As illustrated by Figure 5-1, the depth of the null may be viewed as an indicator of the 

signal subspace strength and stability—which loosely corresponds to signal strength. 
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Figure 5-1: MUSIC vs. Classical Methods for Disparate Signal Strengths 
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The extremal search for the signal DOAs can be a computationally intensive process; to illus- 

trate, for a six-element array approximately an order-of-magnitude more computations are 

required for a MATLAB implementation of the MUSIC algorithm relative to that of the GEESE 

algorithm (Chapter 6, page 80). However, the MUSIC algorithm is general—permitting 

arbitrary array topologies—as opposed to the more computationally efficient algorithms which 

typically require a uniform linear array structure. 

5.3 Root-MUSIC 

Barabell [7] recognized that if the receive array is uniform linear, the extremal search of the 

general MUSIC algorithm may be converted to a root-finding problem. Adopting the notation, 

z = e 
-i27c8xsin0 

(5-16) 

for a uniform linear array, the steering vector, d(Q), becomes 

cf(9) = 

K-\ 

= d(z). (5-17) 

In this case, the spatial response of Eqn (5-14) may be expressed in terms of matrix notation 

and the orthogonal subspace as [55], 

K-l 
Q(z) = <fi(z)BoBjd(z) =A2H (1 

k = l 
■r.z   ) (1-r.  z) . (5-18) 

Q(z) is a 2 (K- 1) th-order polynomial which, therefore, has 2 {K- 1) roots which occur in 

conjugate pairs. The roots corresponding to impinging wavefronts will—in the absence of 

noise-induced perturbations—lie on the unit circle since they fit the assumed propagation 

model. The spurious roots due to the additive noise will, in general, be dispersed away from the 

unit circle. Since sampled covariance perturbations will ensure that no roots lie exactly on the 

unit circle, normal procedure is to assume that the J root-pairs closest to the unit circle corre- 

spond to the wavefronts. Thus, the root-MUSIC algorithm may be summarized as 

1) Build the sampled array covariance matrix, R 
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2) Perform an eigendecomposition on R 

3) Estimate the number of impinging signals, J 

4) Construct the polynomial Q(z) 

5) Select the J largest roots inside the unit circle (since roots outside 
the unit circle replicate the information of the roots inside the 
unit circle). 

6) Map the selected roots into their corresponding geometric angles 

Avoiding the extremal search leads to root-MUSIC being computationally more efficient than 

the general MUSIC algorithm. Additionally, it has a "higher resolution" since geometrically 

adjacent signals may be located which may not be identified during the extremal search. The 

root-MUSIC performance is illustrated in Figure 5-2 with the two roots closest to the unit circle 

corresponding to the true signal DOAs. 

5.4 Pisarenko's Method 

Prior to Schmidt, Pisarenko [39] proposed an algorithm for the estimation of signal frequencies 

which also applies to the dual problem of spatial DOA estimation. This algorithm is essentially 

equivalent to MUSIC algorithm under the assumption that K-l signals are present. The 
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Figure 5-2: Example Root-MUSIC Root Locations 
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effect on the spatial spectrum response is illustrated in Figure 5-3 for simulated data. For 

uniform linear arrays, a root-finding approach could be adopted which solves for the roots of 

K-l 
-1 Q(z) = d(z)nK = AY\ l-rkz 

x = 0 
k = l 

(5-19) 

which is equivalent to the MUSIC algorithm under the assumption of K- 1 impinging signals. 

Expressing the roots, rk, as 

the DOAs may be computed as 

A        ^k 
rk=Ake > 

¥ 

(5-20) 

e* = aSinl2*5 
(5-21) 

where 8, is the inter-element spacing in units of wavelengths. Unlike the root-MUSIC 

approach, the roots of the (K- l)th-order polynomial of Eqn (5-19) are not restricted to lie 

within the unit circle—as is illustrated in Figure 5-4. Although the roots corresponding to 

impinging wavefronts will lie near the unit circle, the problem of determining the number of 

signals as well as which root corresponds to the impinging wavefronts remains—a problem 
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which is made more difficult since the spurious roots may occasionally be located near the unit 

circle and, therefore, may appear to correspond to valid signals. Although the signal eigen- 

vectors are constrained by the impinging wavefronts, the orthogonal eigenvectors will be 

randomly oriented (assuming the ideal sensors and noise model applies); hence, there is a 

reasonably high probability that the subspace spanned by the if- 1 largest eigenvectors will 

"fit" more of the array manifold (which is derived from all possible DOAs) than required by the 

actually arriving signals. Unfortunately, because Pisarenko's method only exploits the 

smallest eigenvector, the potential of spurious roots lying near the unit circle will be 

independent of the SNR. 

Although Pisarenko's method yields an unbiased estimate of the signal DOAs for high SNR 

scenarios [55], the variance of the DOA estimates will be larger than with the true subspace 

methods. Given the difficulty of signal detection based upon the roots of any given sampled 

covariance matrix, it appears that deferring the signal detection until after the DOA 

estimation does not yield any detection performance gains. This is consistent with Scharf's 

observation [66] that Pisarenko's method generally does not work very well compared to other 

techniques. 

From an operational perspective, the algorithmic simplicity and computational efficiency of 

finding the smallest eigenvector and, thereby, detecting and locating impinging signals is 

attractive. Since the roots associated with the signals are fixed by the array geometry whereas 

signal #1 = 0 dB @ 43.2 deg 
signal #2 = 10 dB @ 25.3 deg 
noise = 0 dB 
Time-Bandwidth = 1000 
6-element Array 

Noise Roots 

Signal Roots 

Figure 5-4: Example Root Locations using Pisarenko's Method 
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the spurious roots are randomly placed on the complex plane, sources may be detected and 

located by analyzing a (temporal) sequence of sampled covariance matrices—assuming a 

constant source-array geometry and continuously transmitting sources—without requiring a 

priori determination of the number of sources via the techniques of Chapter 4. This feature was 

recognized by Burkhardt [59] and was the genesis for the subspace stability exploitation 

methods developed in Chapter 7. 

5.5 Minimum-Norm 

Reddi [4] and Kumaresan and Tufts [5] proposed that the entire noise subspace be used as a 

reference for the polynomial rooting rather than only the smallest eigenvector as proposed by 

Pisarenko—the same concept used by the other subspace processing algorithms discussed in 

this and the following chapter. Their approach was to form a minimum norm vector spanning 

the identified noise subspace and to use this vector to form a polynomial—of which the roots 

corresponding to impinging signals would lie near the unit circle whereas the spurious roots 

would be uniformly distributed inside the unit circle in sectors not containing signals. This is 

illustrated in Figure 5-5. (The uniform distribution is in the complex plane, the distribution in 

the figure is warped by the mapping from phasor angles to geometric angles.) 

Partitioning the sampled covariance eigenvectors into signal and orthogonal sets, i.e., 

signal #1 = 0 dB @ 43.2 deg 
signal #2 = 10 dB @ 25.3 deg 
noise = 0 dB 
Time-Bandwidth = 1000 
6-element Array 

Noise Roots 
Signal Roots 

Figure 5-5: Illustration of Min-Norm Roots 
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=  [BsBl> (5-22) 

we recognize that the orthogonal eigenvectors, BQ, are orthogonal to the steering vectors, 

d(0.) which map the impinging signals onto the array. The min-Norm algorithm proposes 

building a vector from the noise eigenvectors which, by definition, must also be orthogonal to 

the steering vectors associated with the impinging wavefronts. Define this vector, v, as 

B0ct 
(5-23) 

where the vector, c, is comprised of the first element of each of the orthogonal eigenvectors. 

This linear combination of the orthogonal eigenvectors results in a vector, v, which is 

orthogonal to the signal subspace and is constrained to have an initial element of "1", 

v1 = l. (5-24) 

For arbitrary array geometries, the min-Norm algorithm may be implemented as an extremal 

search for the zeros of the function, 

QMN(
0

) = IIut d(Q) II   = <# (e W <*(9), (5-25) 

or as the maxima of the spatial response, 

■PMNC
0

) 
ÖMN(e)     |ct«*(e)||2    <tf(6Wd(6) 

(5-26) 

For the uniform linear array, the steering vector may expressed as the auto-regressive 

sequence, 

d(ß) = z = 

K-l 

(5-27) 

where 

66 

-i 9(9) -i2:t8sm8 
z = z(Q) = e   Y     = e (5-28) 
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is the element-to-element phasor shifting the signal phase due to propagation across and array 

having an inter-el 

order polynomial, 

having an inter-element spacing of 8 wavelengths. In this case, the J roots of the {K- 1) 

ptz = 0 (5-29) 

which are on the unit circle correspond to signal roots. The spurious K-J-l roots will be 

uniformly distributed inside the unit circle. 

The root-finding implementation of the min-Norm algorithm may be summarized as: 

1) build the sampled array covariance matrix, R, from the data stream; 

2) calculate the eigenvalues and eigenvectors of R; 

3) estimate the number of impinging wavefronts, J; 

4) build the coefficient vector, v; 

5) solve the polynomial v\ z = 0; 

6) select the J roots of the polynomial closest to the unit circle; and 

7) map the selected roots into their corresponding geometric angles. 

Although min-Norm is slightly less accurate than either MUSIC [55],min-Norm is less compu- 

tationally demanding MUSIC and may, therefore, be preferable from an implementation 

perspective. 

5.6 Orthogonal Subspace Methods Summary 

The advantages and disadvantages of the orthogonal subspace methods discussed in this 

chapter are summarized in Table 5-1. 

For applications such as conformal arrays, the orthogonal subspace methods may be the only 

viable subspace processing approach. However, since the computational load is proportional to 

the number of elements in the sensor array, the signal subspace algorithms discussed in 

Chapter 6 may be preferable for uniform linear array topologies. 

Additionally, the polynomial-rooting implementations of the orthogonal subspace methods 

assume an AR propagation model applies and, as a result, require that the sensors be identical. 
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Table 5-1: Advantages and Disadvantages of Orthogonal Subspace Methods 

Advantages 
• suitable for arbitrary array topologies 
• extremal search implementations are relatively 

robust to perturbations in the array manifold 

Disadvantages 

• require an accurate signal enumeration and 
subspace partitioning 

• computational load proportional to array size 
• polynomial-rooting implementations require 

accurate array calibration 

Since the roots of high-order polynomials-are very sensitive to perturbations in the polynomial 

coefficients, array calibration errors can translate into significant DOA estimation errors. This 

sensitivity increases as the size of the array (i.e., polynomial) increases. Array calibration is 

discussed in further detail in Section 8.4. 
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The subspace-based Direction-of-Arrival (DOA) estimation algorithms maybe characterized as 

either looking for signals orthogonal to the noise subspace (e.g., MUSIC) or operating directly 

on the signal subspace (ESPRIT, GEESE, etc.). In this chapter we explore the latter approach. 

The algorithms to be explored are: 

• ESPRIT, 

• TLS-ESPRIT, and 

• GEESE. 

Although there are a number of other signal subspace algorithms (e.g., PRO-ESPRIT, TAM, 

matrix-Pencil, etc.) all exploit the matrix-shifting nature of sensor doublets—which is the 

array topology common to the signals subspace methods. Since our intent in this chapter is 

pedagogical, we will focus on the original signal subspace algorithm, ESPRIT, and two of the 

subsequent variations, TLS-ESPRIT and GEESE. 

Due to the array topology restrictions, the signal subspace approaches are typically much more 

computationally efficient than their orthogonal subspace cousins. Additionally, they relax some 

of the array calibration and noise covariance structure constraints associated with the 

orthogonal subspace algorithms. 

6.1 Assumptions 

The signal subspace methods assume the array is composed of sensor doublets—as is illus- 

trated in Figure 6-1. Although each sensor in a doublet is assumed to have the same response, 

the various doublets in the array are permitted to have differing response behaviors. In this 

chapter we will assume the most common array topology which satisfies the doublet configu- 

ration—the uniform linear array. As illustrated in Figure 6-2, a Ä"-element uniform sensor 

array may be partitioned into offset M-element subarrays which are identical except for a 

spatial translation, 5. In general, the subarray size should be maximized so M - K-l. 

The signal subspace methods rely upon the assumptions that 
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• narrowband, uncorrelated wavefronts are impinging on the array, 

• the number of wavefronts, J, is known, and 

• the sampled covariance matrix may be partitioned into signal and 
orthogonal subspaces via eigendecomposition. 

Given these assumptions, the signal received at the total array, x(t), may be expressed as 

x(t) = Ds{t) + n(t) (6-1) 

where D is the steering matrix which maps the J waveforms, s(t) onto the array and n(t) 

represents additive sensor noise. The signal at the two subarrays may be represented as 

Figure 6-1: Signal Subspace Geometry Requirement of Sensor Doublets. 

y(t)' 

K^ z(t) 

Figure 6-2: The Subarrays of a Uniform Linear Array 
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y(t) =Ds(t) + ny(t), (6-2) 

and, 

z(t) =D<i>s(t) + nz(t), (6-3) 

where D is the steering matrix mapping signals at a reference element in the subarray onto 

the subarray and $ is the J x J phase (time) shift matrix—or (in control systems terminology) 

the state transition matrix, 

<& = 

0 

(6-4) 

where v. is the phase shift corresponding to the propagation time from the sensor element in 

y to the corresponding element in z, i.e., 

v. = <£.. = e 
j        JJ 

-19, -i27t8sin0. 
(6-5) 

Here 8 is the doublet spacing in units of wavelengths—which is equivalent to the inter-element 

spacing in this case. 

The goal of the signal subspace algorithms is to determine the set of phasors, v., and, thereby, 

determine the directions-of-arrival. The first algorithm to attempt DOA estimation by 

exploiting the behavior of sensor doublets was the ESPRIT algorithm. 

6.2 The ESPRIT Algorithm 

In their seminal paper [8], Roy, Paulraj, and Kailath recognized the implications of the trans- 

lational invariance of sensor doublets and proposed the ESPRIT (Estimation of Signal Param- 

eters via Rotational Invariance Techniques) algorithm. Therein, they proposed that the auto- 

and cross-covariance matrices of the two subarrays be constructed. Under an idealized (uncor- 

related) noise assumption, the result is 
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Rvv = E[y(t)yt(t)] = DRSD\ +G2IM, 
yy 

(6-6) 

and, 

RV7 = E[y(t)zt(t)) = DRs<tfDt +o2JM, 
yz 

(6-7) 

where IM is a MxM identity matrix and JM is a M x M matrix with ones along the first lower 

diagonal off the major diagonal and zeros elsewhere, i.e., 

JM = 

0 0 0... 0 0 

10:   ... ... 0 
0 1      ... :   0 
: 0       0 
:  :        1 0 0 
0 0...  0 1 0 

(6-8) 

Notice that the assumed form for the noise contribution to the covariance matrices requires 

that the noise at each sensor be uncorrelated with that present at its doublet "partner" (i.e., 

spatially white). 

As an aside, also note that the auto-covariance matrix, R , and cross-covariance matrix, Ryz, 

may be extracted from the array sampled covariance matrix, R, 

R = DRB\ +Z   = DRVD\ +c2I, 
S 71 o 

(6-9) 

with R comprising the MxM matrix ranging from the Rn element to the RMM element 

and JR corresponding to the MxM matrix ranging from the i?12 element to the RMK 

element. 

Assuming we have uncorrelated signals and uncorrelated noise, by analyzing the eigenvalues 
2 

of Eqn (6-6) we can estimate a as the average of the smallest K-J eigenvalues of R; this is 

consistent with our arguments leading to Eqn (5-7). Using this estimate, we can attempt to 

remove the noise covariances from the sampled data covariances to get the covariances 

associated with the signals, i.e., 

C    =R    -bIM = DReDt yy        yy M s 
(6-10) 

and 
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Cyt=Ry,-b
2JM-DRa<ltm (6-11) 

where C    and C   —assuming we used aperfectly accurate noise model—are not of full rank. 

Using these approximations, we find that 

Cyy-yCyg~DR8(Ij-ytf)Bt. (6-12) 

Since both D and R    are of rank J, the singular values of this "matrix pencil" correspond to 

the roots of 

|l-Y«Dt| =0. (6-13) 

The desired singular values may also be found as the generalized eigenvalues of the equation, 

\C    -vC   1 = 0. (6-14) \   yy    '   yz\ 

In the absence of noise-induced errors, the singular values are equal to the complex-conjugate 

of the phase shift from the sensor of y to its doublet partner in z, i.e., 

y. = <D.. = v* = eVj        j = l,2,...,J. (6-15) 

From Eqn (6-15) we see that the directions of arrival can be found without resorting to the 

search required by the MUSIC algorithm (other than the search to find the roots of the matrix 

pencil)—with possibly significant savings in computation and storage requirements. 

To summarize the ESPRIT algorithm, the steps involved in estimating the source directions 

are: 

1) Define the subarrays and build the auto- and cross-covariance matrices, 

Ä„andfi„; 

2 
2) Estimate the noise covariance matrix Z  = 6 IK via an eigenvalue 

decomposition of JR; 

3) Subtract the appropriate noise auto- and cross-covariance matrices 
from the auto- and cross-covariance matrices to produce the matrices, 
C    and C   ; 
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4) Find the singular values, y., of Cyy-yCyz, i.e., find the generalized 

eigenvalues. 

5) Translate the complex-valued singular values into a corresponding 

direction of arrival (simple). 

Unfortunately, in practice errors due to subtracting an estimated noise covariance1 from the 

auto- and cross-covariance matrices can lead to poor results. To alleviate these errors, the TLS- 

ESPRIT algorithm was developed by Roy and Kailath [9] which processes y and z simulta- 

neously—albeit, at a cost of greater computational complexity and loading. 

An additional implementation problem is that computing the generalized eigenvalues of 

C    -yC    will result in M singular values rather than the desired J which correspond to the 
yy    '   yz ° 

impinging signals.In the noise free environment the singular values of interest will be located 

on the unit circle; hence, the J singular values closest to the unit circle should correspond to 

the signals and the spurious singular values should be near the origin. Unfortunately, when 

operating with marginal signal-to-noise ratios this criterion will sometimes fail—and produce 

erroneous DOA estimates. The merits and demerits of the ESPRIT algorithm are summarized 

in Table 6-1. 

'• If we have a priori knowledge of the noise covariance or can make a reasonable estimate (see Le Cadre 
[51]), we could handle the structured noise case. Thus if we have the estimate of the noise covariance, 

n        i 

then, the estimates of the sampled signal covariance matrix without the noise contribution, Cyy and Cyz 

could be expressed as, 

Cyy=Ryy-K~DRJ* 

and 

CyZ=Ryz-K = DRs<tfDt 

where the estimates of the subarray noise covariances are the appropriate submatrices of the modeled noise 
covariance matrix. This approach represent a generalization of the "standard" ESPRIT algorithm suitable 
when a reasonably accurate model of the noise covariance is available. In practice, we would generally prefer 
to use the GEESE algorithm discussed in Section 6.4 and avoid the need for a noise covariance model. 
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Table 6-1: Advantages and Disadvantages of ESPRIT 

Advantages 
• simple algorithm 
• computationally efficient 
• more accurate than Pisarenko's method 

Disadvantages 

• does not exploit the subspace partitioning 
• requires a high SNR 
• requires an accurate noise covariance model 
• requires a singular value selection criteria 

The most serious deficiency of the ESPRIT algorithm is that it does not exploit the subspace 

partitioning which was implicitly used to estimate the noise covariance. As a result, practical 

use requires a high SNR and accurate noise covariance model. To address some of these perfor- 

mance concerns, Roy and Kailath extended the ESPRIT concept and developed the TLS- 

ESPRIT algorithm discussed in the following section. 

6.3 TLS-ESPRIT 

The TLS-ESPRIT (Total Least-Squares ESPRIT) algorithm was developed by Roy and Kailath 

[9] to alleviate some of the problems with the ESPRIT algorithm. Use the definitions of y and 

z and build the supervector, 

x = D s(t) + 
n. 

n. 
= Ds + n, (6-16) 

where D is a 2M x J matrix as implicitly defined by Eqn (6-16). If we compute the covariance 

of this supervector, we see that 

R- = E[X3] =DRSD
[ +R (6-17) 

where, as with our ESPRIT development, if we assume we have a uniform linear array (illus- 

trated by Figure 6-2) so that our two subarrays are overlapping. Assuming the noise is 

spatially uncorrelated, the noise covariance matrix has the form, 

R- = cTI- = <r 
n n 

IM   JM (6-18) 

Chapter 6: Signal Subspace Methods 75 



TLS-ESPRIT Section 6.3 

where o2 is the sensor noise power. Here M = K- 1 is the size of the subarrays used to 

generate y and z, and IM is the M x M identity matrix. Since Rg is of rank J then the product 

DRJtf is also of rank J; this implies that the generalized eigenvalues2 of Rz can be repre- 

sented as an ordered set 

X1>X2>...>XJ>lJ+1 = ... = X2M = J. (6-19) 

Similar to the MUSIC algorithm logic [see Eqn (5-ll)-Eqn (5-14)], the eigenvalues and eigen- 

vectors associated with the noise don't have a contribution from the signals, hence, 

Re- = XR-e;        i = J+1,J+2,...,2M, (6-20) 
x  l in1 

where e • represents the 2M element eigenvector corresponding to the eigenvalue X.. 

Therefore, the noise eigenvectors are orthogonal to the (super-) steering vectors which map the 

signal phase onto the receive array, i.e., 

d}ei = 0        j=l,2,...,J; k = J+l,...,2M. (6-21) 

This, in turn, implies that the signal eigenvectors span the same subspace spanned by the 

column vectors of D. Hence, there is some nonsingular JxJ matrix C which relates the 

signals' eigenvectors to the steering vectors, i.e., 

[exe2...el=bc. (6-22) 

Partition this 2Mx J eigenvector matrix into two MxJ submatrices Ey and Ez so that, 

[e 1 e2 - e2 = 
E

y 

Ez 

(6-23) 

Upon appropriate substitution, this leads to, 

E   = DC        and        E= DOC. (6-24) 
y z 

Using these two matrices to construct a matrix wherein they are placed side-by-side rather 

than stacked, i.e., 

2 Generalized eigenvalues are similar to the standard eigenvalue problem of Ax = Xx except that the appli- 
cable equation is of the form Ax = XBx. In this case, the equation is Rxe = XR^e. 
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\EyE} =D\CQ>C\, (6-25) 

then we can define yet another matrix which is the "square" (and of size 2 J x 2 J) of this matrix, 

E    = 
EJ 

[Ey E2 = ctot 
2>tZ>[c*c]. (6-26) 

Since E    is nonnegative-definite Hermitian (due to the complex-conjugate multiplication used 
yz 

in its definition and it not being of full rank) and is of rank J (since Dl D is of rank J), it may 

be expressed as, 

E    =V 
yz 

h ° 
V\ (6-27) 

where / • > 0 and Wt  = IM
3. For later use, we partition V into JxJ submatrices, i.e., 

V = ^11 ^12 

^21 V22 

(6-28) 

The next step is to find a 2 J x J full rank matrix W such that 

Substituting in from Eqn (6-25) leads to the equivalent expression, 

(6-29) 

D[C4>C\W = 0. (6-30) 

3- The V is an orthonormal matrix so this equation essentially amounts to a similarity transformation on the 
matrix E   . The task of finding the values I • and the matrix V corresponds to determining the eigenvalues 
and eigenvectors of E yz~ 
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Since DisaMxJ matrix and is of rank J, for the above equation to be satisfied, we must 

have, 

[coc]w = o. 

Partition W into two J x J matrices so that, 

(6-31) 

W = (6-32) 

and substitute this into Eqn (6-31) to produce 

[C<DC] 
Wr 

= CW1 + 0CW2 = 0. 

For Eqn (6-33) to be satisfied, we must have, 

-W^1 = CT^C. 

(6-33) 

(6-34) 

From Eqn (6-34) we see that the eigenvalues of the matrix -W1W7L are equal to the eigen- 

values of O4—i.e., e J for j = 1,2,..., J—so that the angles-of-arrival of the incoming signals 

are, once again, determined directly without a search over the possible mapping vectors. To 

find a matrix W which satisfies the requirements of Eqn (6-29), inspect Eqn (6-27) to see that 

E   v   = lv- = 0 yz   i it J<i<2J, (6-35) 

where vt represents the ith column vector of V. Since E    is of rank J, this implies that 

fjE  E~\ is also of rank J. To achieve the form of Eqn (6-27), we must have the equivalent repre- 

sentation, 

\E  E}vi = 0 J<i<2J. (6-36) 

Thus, the desired matrix W is given by 

4- The eigenvalues are the same since eigenvalues are not changed by a similarity transform—i.e., O has the 
same eigenvalues as C~ <£>C. 
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W \?J+1VJ+2VJ+S -D2«3 = 
'12 

'22 

(6-37) 

so that the eigenvalues of -V^V^ yield the actual directions-of-arrival! It should be noted 

that the TLS-ESPRIT has better performance than that of the ESPRIT algorithm; however, 

this improvement is garnered at a cost of greater computational complexity. To see this, 

contrast the ESPRIT algorithm with the sequence of operations required by the TLS-ESPRIT 

algorithm: 

1) Estimate the super-covariance matrix, B-, from the sampled data. 

2) Estimate the noise covariance matrix structure, JR-. 

3) Compute the generalized eigenvalues and eigenvectors of the 
matrix pencil {R-, R -} . (Note that this is a 2M x IM matrix.) 

4) Estimate the number of sources, J. 

5) Build the 1J x 2 J matrix E    and compute the associated general- 
yz 

ized eigenvectors, V. 

6) Invert V22 and form the J x J matrix *P = -V12V~22. 

7) Determine the eigenvalues of x¥—these map directly into the direc- 

tions-of-arrival of the incoming signals. 

In contrast to the ESPRIT algorithm which required one eigenvalue and one generalized eigen- 

value decomposition of M x M matrices, the TLS-ESPRIT approach requires a IM x 2M gener- 

alized eigenvector decomposition, a 2Jx2J eigenvector decomposition, a Jx J matrix 

inversion, and a Jx J eigenvalue decomposition. In sum, the more robust TLS-ESPRIT 

algorithm is much more computationally demanding than the simple ESPRIT approach— 

although, for small arrays and fast processors, this may not be a significant concern. The 

merits of the TLS-ESPRIT algorithm are summarized in Table 6-2. 

While the TLS-ESPRIT algorithm alleviates the ESPRIT need for a singular value selection 

criteria due to producing the same number of DOAs as hypothesized signals, it shares the 

ESPRIT deficiency of requiring an accurate noise covariance model. Neither ESPRIT 

algorithm exploits the subspace partitioning which was implicitly used to estimate the number 

of impinging wavefronts. Furthermore, the TLS-ESPRIT performance is garnered at the cost 
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Table 6-2: Advantages and Disadvantages of TLS-ESPRIT 

Advantages 
• eliminates the need for a singular value 

selection criteria 
• more accurate than ESPRIT 

Disadvantages 

• computationally demanding 
• requires an accurate noise covariance model 
• requires an accurate estimate of the number 

of impinging wavefronts 

of increased algorithmic complexity and computational loading. These deficiencies are 

addressed by the GEESE algorithm which is the topic of the following section. 

6.4 GEESE 

The GEESE (GEneralized Eigenvalues utilizing Signal Subspace Eigenvectors) algorithm 

developed by Kwon [3] has performance comparable to the TLS-ESPRIT while also featuring 

computational simplicity. This is done by noting that since the signal direction vectors, d-, are 

orthogonal to the orthogonal subspace eigenvectors, the subspace spanned by the true direction 

vectors is the same as the one spanned by the eigenvectors corresponding to signals. Hence, 

the signal eigenvectors can be expressed as a linear combination of the direction vectors, i.e., 

7 = 1 

i = 1.2.....J. (6-38) 

If we form a Kx J matrix from the signals' eigenvectors (recall that there are K sensors in the 

array and there are assumed to be J signal sources being received), then we can define 

B-[61ft268...6j. 

Using Eqn (6-38) leads to the representation, 

(6-39) 

B =DC (6-40) 

where D is the steering matrix defined by Eqn (2-12) which maps the signal onto the array and 

C is a Jx J nonsingular matrix. Now define two matrices B± and B2 using the first M rows 

and the 2nd through (M+ 1)th rows of B, respectively, where J < M < K- 1 (i.e., M is at least 

equal to the number of signal sources but less than the number of sensors in the array). Thus, 
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B 1     \JM °M,K-M] B (6-41) 

and 

**=\?M.l*M°M.K-M-i*> (6-42) 

where 0M p denotes a MxP matrix of zeros. If we recall our definition of the element-to- 
element phase shift for the jth signal as 

-icp 
v. = e    J 

J (6-43) 

then, the steering matrix for a uniform linear array is, 

D = 

1  1 . .   1 
V! V2- VJ 

vfvf . -J 
(6-44) 

Furthermore, if we define two submatrices of D analogous to Bi and B2, i.e., 

Dl = 

M-l    M-l M-\ 
. 1 2 ■••  V 

(6-45) 

and 

D2 = 

vl V2   • •  VJ 

v? v2 v2   ' ■v} 

M 
_ 1 

M 
v2   ' ■*£ 

= OB, (6-46) 

where, as in Eqn (6-4), $ is 
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V2° (6-47) 

then we see that 

Bi = DXC and Bo = D~C. (6-48) 

Finally, let us note that 

Bt-yB2 = DjC-yD^C = D^Ij-y^C. (6-49) 

Thus, similar to the ESPRIT algorithm, the generalized singular values, y., associated with 

this matrix pencil map directly into the ;th signal direction. To verify this, note that since the 

J columns of B are independent and the number of signals is less than the number of elements 

in the array (i.e., J<K), then B is of rank J. From the definitions of B1 and B2 they must 

also be of rank J. This in turn implies that Dy and C are also of rank J since M> J, by 

definition. Thus, the singular values of the matrix pencil B1-yB2 are given by the roots of 

17,-7*1 = 0. (6-50) 

which leads us to conclude that these generalized singular values are the complex conjugate of 

the diagonal elements of 4>, i.e., 

* _ 3 O.. = Y     = e 
JJ      'J 

j = 1,2,...,J. (6-51) 

Note that M can be any integer between J (the number of sources) and if- 1 (where K is the 

number of sensors). Using a larger M will generally give a better estimate of the source 

direction since more information is used in the estimation in that case. In general, using 

M = K-1 leads to the GEESE algorithmgiving better performance than the MUSIC 

algorithm. We should also note that Bx and B2 are not square matrices. 

To summarize 

DOAs are: 

the GEESE algorithm, the steps involved in the detection and estimation of the 
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1) Build the covariance matrix of all the sensors, R; 

K 

2) Do an eigendecomposition of R, i.e., B =   X ^k^k^k^ > 
k = l 

3) Estimate the number of sources, J; 

4) Build the KxJ matrix B from the signal subspace eigenvectors; 

5) Select the M x J submatrices B\ and B2 from JB; 

6) Find the generalized singular values of the matrix pencil B\ - yB2, JA and 

7) Map these singular values directly into estimates of the directions of 
arrival. 

In examining the above sequence, we see that it is quite simple since the primary computa- 

tional demands are a single eigendecomposition plus the determination of the singular values 

of the matrix pencil. 

As an aside, we should note that the generalized singular values of the non-square system 

\B1- yB2\ = 0 may be found by finding the generalized eigenvalues of the equivalent system, 

\Bi-yB2\ t t«_,»t B{ (Bi-yB2)   = Bi'Bi-YBi' B2   = 0 (6.52) 

The two matrices, Bi Bi and Bj B2, are JxJ and so are readily handled by available 

algorithms for calculating the generalized eigenvalues (e.g., MATLAB). Alternately, at some 

numerical instability risk, the roots may be found as the eigenvalues of, 

|BI-YB2| = 
-1- -1-1- 

/-Y(BiTBi)    BiTB2 |/-YBJB2| = 0 (6-53) 

where Bi = (B{ B{) B\ is the pseudo-inverse of B\. Note that the computational load 

required to determine the singular values is a function of the number of estimated wavefronts, 

J, rather than the size of the array—this results in a significant computational advantages 

relative to the root-MUSIC and min-Norm algorithms as well as ESPRIT and TLS-ESPRIT. 

The GEESE algorithm results in exactly J singular values—so that the selection criterion used 

by the ESPRIT algorithm to choose singular values may be avoided. The advantages and disad- 

vantages of the GEESE algorithm are summarized in Table 6-3. 
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Table 6-3: Advantages and Disadvantages of GEESE 

Advantages 

• computationally very efficient 
• exploits the identified signal subspace 
• better accuracy than MUSIC, ESPRIT, or TLS-ESPRIT 
• resistant to perturbations in the array manifold 
• does not require a noise covariance model 

Disadvantages 
• requires an accurate subspace partitioning 
• requires an accurate signal enumeration 

Whereas the ESPRIT algorithms exploit the translational invariance of the sampled signal 

covariance matrix, the GEESE algorithm exploits the invariance and the subspace parti- 

tioning of the sampled covariance. This exploitation results in the GEESE algorithm being 

more accurate and robust than ESPRIT or TLS-ESPRIT. Furthermore, using the identified 

signal subspace eliminates the vulnerability to noise covariance modelling errors. Of course, 

an accurate signal enumeration and subspace partitioning is required. 

The GEESE algorithm may be viewed as finding the set of complex numbers (phasors) which 

best map the signal subspace received at one subarray into that of the translated subarray. As 

a result, the GEESE algorithm is more resilient to array manifold perturbations and 

calibration errors than the root-finding implementations of the orthogonal subspace methods. 

This feature coupled with the computational efficiency makes GEESE a excellent choice for 

real-time implementation of subspace processing. 

A feature which has not been noted in the published literature is that while roots corre- 

sponding to impinging signals will reside on the unit circle, if the number of signals is overes- 

timated the spurious roots will tend to be randomly located inside the unit circle and away from 

the signal root locations. This behavior illustrated in Figure 6-3 for a variety of array sizes and 

simulated data under a signal enumeration hypothesis one greater than the actual number of 

signals. Note that the spurious root offset from the unit circle tends to increase as the array 

size increases—which is reasonable since as the array size increases the GEESE algorithm has 

greater difficulty finding a singular value which will align the two identified subspaces. 

Although not exploited in previous applications, the SSET subspace stability method (intro- 

duced in Section 7.6) uses this GEESE characteristic in its processing. The spurious root 

behavior is illustrated in Figure 7-17 for in-water data in conjunction with the SSET devel- 

opment. 
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GEESE Root Locations (J = 3) 
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Figure 6-3: GEESE Roots vs. Enumeration Accuracy and Array Size 
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7. Subspace Stability Methods 

Determining the number of impinging wavefronts is the most critical and difficult task 

associated with subspace processing since the fundamental assumptions of perfect noise, 

perfect sensors,2 and perfect signals3 are frequently violated—as is discussed in Chapter 8. 

Given an accurate estimate of the number of signals and an accurate partitioning of the 

sampled covariance matrix into signal and orthogonal subspaces, the subspace-based DOA 

estimation algorithms yield functionally equivalent performance for most practical applica- 

tions. Since the information-theoretic enumeration techniques fail in many real-world environ- 

ments, we seek enumeration (and DOA estimation) algorithms which are less restrictive in 

their operational applicability. In this chapter we explore three techniques which exploit the 

subspace stability of continuously transmitting signal sources: Burkhardt's Method, the root- 

Tracker method, and the Subspace Stability Exploitation Tracker (SSET). 

7.1 Subspace Stability Methods Overview 

If signal sources transmit continuously over a "long" period of time and the source-array 

geometry is stable over that interval, there will be a temporal stability in the signal subspace; 

under the traditional assumptions of i.i.d. additive Gaussian noise and narrowband (near- 

cisoid) signals and matched sensors, there will be a corresponding instability of the eigen- 

vectors within the orthogonal (noise) subspace. This chapter explores algorithms which exploit 

these characteristics of the two subspaces to improve the detection performance of the 

subspace algorithms. 

Burkhardt [59] proposed to avoid the signal detection difficulties associated with traditional 

subspace processing by applying the spectral response form of Pisarenko's method (Section 5.4) 

to sequences of sampled covariance matrices. Given continuously transmitting signal sources, 

1 Recall that the noise is typically assumed to be equi-powered spatially-independent additive. 
This assumption can be violated by flow noise or multipath effects—i.e., colored noise. 
2 The sensor array elements are generally assumed to have identical gain and phase behaviors 
as well as precisely known placement—i.e., matched sensors. 
3- A fundamental assumption is that the impinging wavefronts are uncorrelated narrowband (cisoid) signals 
so the effect of wavefront propagation across the array can be modelled as a phase shift. Furthermore, the 
sources are assumed to be stationary point-sources over the averaging interval. 
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the peaks (nulls) in the spatial spectrum response derived from the signals would be stable 

whereas the spurious peaks due to the noise would vary randomly; eventually, sources could 

be identified due to their persistence with closely spaced sources recognized (albeit, not 

resolved) using the width of the averaged response function. 

Although Burkhardt's method avoids the requirement for an a priori determination of the 

number of signals, it is computationally intensive since the spatial response for each hypothe- 

sized DOA must be determined for each covariance matrix in the sequence; furthermore, the 

spatial resolution was limited to that of the hypothesized DOA grid. The root-Tracker and 

SSET approaches extend Burkhardt's concepts and offer improved computational efficiency 

and accuracy performance. 

The root-finding version of Pisarenko's method produces a set of roots—possibly some of which 

correspond to arriving wavefronts. To identify roots corresponding to signals, the root- 

Tracker applies multi-target tracking techniques to the sequence of complex-valued roots 

derived from a series of sampled covariance matrices; the identification assumes signal roots 

are stable and reside on the unit circle—features which are not associated with the spurious 

roots derived from the additive noise. 

The SSET is similar to the root-Tracker except that by melding multiple-hypothesis tracking 

techniques and the GEESE signal subspace algorithm improved computational and accuracy 

performance may be achieved. The SSET is a computationally efficient algorithm with a 

demonstrable ability to process acoustical array data against which conventional subspace 

methods fail—as is shown in Section 7.6.3. 

7.2 Introduction 

The span and orientation of the hyperplane representing the signal subspace is a function of 

the array topology and the source-array geometry; if the geometry is static, the hyperplane will 

be constant across a sequence of covariance matrices. Consequently, the orthogonal subspace 

will—by definition—also be constant. Figure 7-1 illustrates the signal hyperplane and the 

additive noise "ball". The classical subspace processing assumption is that the noise is spheri- 

cally symmetric so that there is no preferred orientation—in such a case, the noise eigenvalues 

would be equal. In practice, sampling effects will guarantee that the noise "ball" is perturbed 

from this ideal structure so that there is a preferred—albeit random between sampled 

covariance matrices—orientation. Note that the additive noise spans the entire space so that 

the common designation of the orthogonal (non-signal) subspace as the unoise" subspace is, in 

fact, a misnomer. However, we shall use the two terms interchangeably. 
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Ideally, we would like to detect and estimate impinging signals using all of the available infor- 

mation concerning the array manifold (i.e., how the signal wavefront maps onto the array 

elements), signal strengths, noise structure, propagation effects, etc.; unfortunately, the 

computational implications of such a multi-dimensional optimization problem generally makes 

such an approach impractical. A more tractable (suboptimal) approach is to sequence the 

signal enumeration and characterization by making the fundamental assumptions: 

• the array response is perfectly known, 

• the additive noise covariance structure is perfectly known, 

• the signals are narrowband, and 

• the signals and noise are uncorrelated. 

Under the last two assumptions, the received signal vector, x(t), may be modelled as 

x(t) = D(B)s(t) + n(t) (7-1) 

where JD(6) is the "steering matrix" which maps the set of signal waveforms, s(t) onto the array 

and n(t) is additive noise. If the noise structure is known, the resulting covariance matrix, 

R = E(*:rt) = DE(sst)Dt +E(nnt) = Di?sD + En, (7-2) 

Noise "ball" 

Signal Plane 

Signals 

Figure 7-1: Illustration of Signal Hyperplane and Additive Noise "Ball" 
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may be whitened to convert Eqn (7-2) into the form, 

R = IT^RYT^ = YrV2DRD17v^ +a2I = DRD^ +o2I. (7-3) n n n s       n n s n 

R has the structure illustrated in Figure 7-1—a noise "ball" (hypersphere) spanning the array 

space upon which "spikes" are inserted where the length of the spike is a function of the signal 

power and the orientation a function of the signal direction (or, equivalently, frequency in the 

event of tapped delay line rather than spatial array). The hyperplane containing the "spikes" 

is the signal subspace. The information-theoretic enumeration approaches (see Chapter 4) 

analyze the eigenvalues of R under assumptions of i.i.d. Gaussian noise to determine the 

multiplicity of the smallest eigenvalue; this corresponds to the dimension of the orthogonal 

subspace. Unfortunately, in the event of imperfect knowledge of the noise covariance structure 

or non-identical sensor elements, the representation of Eqn (7-2) will not be achieved and the 

"noise ball" will be misshapen. As a result, the information-theoretic approaches will tend to 

overestimate the number of arriving wavefronts. In such a case, increasing averaging spans 

will not serve to improve the signal enumeration; in fact, the opposite will occur since the infor- 

mation-theoretic criterion will become more confident in the uniqueness of the small eigen- 

values. As a result, the information-theoretic assumptions are rarely valid for applications 

such as sonar signal processing; this forces a reliance on ad hoc enumeration techniques and 

detection thresholds which are subject to engineering judgement and debate. 

To some extent, the inapplicability of the classical techniques is due to decoupling the enumer- 

ation from knowledge of the array manifold. Burkhardt [59] recognized that continuously 

transmitting sources would produce a temporally stable signal subspace. Conversely, while the 

orthogonal subspace would be stable, the eigenvectors spanning the orthogonal subspace 

would not have a preferred orientation under the classical (perfection) assumptions due to 

sampling effects. The validity of this observation is proved by Stewart [60] under the additive 

Gaussian additive noise assumption. 

As will be shown in the subsequent sections, even in the event of structured noise—which 

causes the orientation of the noise eigenvectors to be stationary—the signal subspace stability 

may be exploited for effective identification and characterization of impinging wavefronts. 

7.2.1 Assumptions 

The methods of this chapter are not a panacea; as with previous approaches there are implicit 

assumptions and constraints for their application. Thus, while the subspace stability methods 

are valid for some situations which cannot be handled by the conventional subspace processing, 
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they do not span the entire set of scenarios which are the domain of subspace processing. The 

restrictions and assumptions may be summarized as in Table 7-1. 

Table 7-1: Subspace Stability Methods' Assumptions 

Technique Restrictions & Assumptions 

All Subspace 
Stability Methods 

• Continuously transmitting sources 
• Slowly varying source-array geometries 

Burkhardt's Method 
• Arbitrary array topology 
• Benefits from noise whitening 

root-Tracker 
• Restricted topology (Uniform Linear Array) 
• Noise whitening invalidates topology 
• Accurate array calibration is required 

SSET 
• Restricted topology (Uniform Linear Array) 
• Noise whitening invalidates topology 

For the single-snapshot subspace processing, increasing the size of the data set results in 

increased accuracy of sampled covariance matrix; if the processing assumptions hold, more 

accurate signal enumeration and characterization result. However, if the assumptions do not 

hold, the misplaced confidence in the assumed covariance model results in enumeration errors 

and corresponding characterization errors. Conversely, the subspace stability methods view 

additional data as increasing the number of data segments—the ensemble producing a more 

accurate enumeration and characterization. 

7.3 Burkhardt's Method 

In his work with acoustic signals, Burkhardt [59] recognized that while MUSIC provided 

excellent DOA estimates when provided with an accurate signal enumeration, the character- 

istics of the propagation environment, additive noise, and receive array invalidated enumer- 

ation derived from information-theoretic techniques. The perturbing effects include: 

structured 
noise 

• flow noise and near-field sources 
• structure coupling 

distributed 
sources 

• wavefront scattering during propagation 
• changing source-array geometries 
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To defer the signal enumeration, Burkhardt proposed averaging the MUSIC spatial response 

derived from the assumption that given a üT-element array, no more than K-l signals are 

present. Under the assumption of K- 1 possible signals, the MUSIC corresponds to 

Pisarenko's method; thus, Burkhardt's method may be viewed as the average spatial spectrum 

derived from sequential application of Pisarenko's method. This processing may also be viewed 

as analogous to the frequency spectral averaging used to suppress spurious peaks in FFT-based 

spectral analysis. 

Defining Rn to be the covariance matrix derived from the n sampling interval and bn to be 

the smallest eigenvector associated with Rn, the spatial spectrum may be computed (see page 

59) as 

p
nW = " = ü——rr (7"4) 

rfr(e)6„6„td(0)      ||&ntd(9)|| 

where d(9) is the steering vector mapping a hypothesized signal arriving from the DOA, 0, onto 

the elements of the array. Peaks in the spatial spectrum correspond to the smallest eigenvector 

being orthogonal to the hypothesized DOA. (The set of all possible steering vectors defines the 

array manifold.) Unfortunately, while the signal subspace constrains the smallest eigenvector 

to be orthogonal to the steering vector corresponding to an arriving wavefront, it does not 

preclude it also being orthogonal to other portions of the array manifold—which causes 

spurious peaks in the spatial spectrum response. This behavior is illustrated in Figure 5-3 for 

a single snapshot and in Figure 7-2 for a series of simulated data snapshots. In Figure 7-2 note 

the persistence of the peaks associated with the true signals whereas the spurious peaks occur 

randomly. 

Averaging the spatial spectra may be accomplished either arithmetically, 

h = 2Pn (7-5) 
n 

or geometrically, 

PB = IPV (7"6) 

n 

The geometric average result is illustrated in Figure 7-3 and was achieved by summing the log 

of the response of each of the data segments. The geometric approach is attractive since it 

favors peak persistence rather than the strength of a individual peak. Because the peaks 
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actually correspond to nulls in the projections rather than physically corresponding to a signal 

strength as would be the case with frequency spectral averaging, it may be possible for a 

spurious peak to appear to be very strong. Hence, we would generally prefer the geometric 

formulation. 
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Figure 7-2: Sequential Spatial Spectrum Response of Pisarenko's Method 
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Figure 7-3: Burkhardt Method Spatial Spectrum Response 
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As illustrated in Figure 7-3, although separated signal sources are easily distinguished, 

Burkhardt's method tends to "merge" adjacent signal sources. To some extent, this is also a 

characteristic of all of the search-based DOA estimators (e.g., MUSIC and Min-Norm). 

Burkhardt proposed detecting multiple sources via analysis of the width of the spectral 

response. Although such an approach does not permit signal enumeration, the mere knowledge 

of multiple adjacent sources can be useful information. 

The problems of signal enumeration are illustrated in Figure 7-4 for acoustic data collected 

from two signal sources by a mobile array. Under the classical assumptions, two eigenvalues 

should be "large" with the remaining eigenvalues approximately equal; since this is not true, 

the AIC and MDL criteria perceive that all eigenvalues are unique and, therefore, five signals 

are arriving at this six-element array. Given an accurate signal enumeration, the subspace 

methods can yield accurate DOA estimates—as is illustrated in Figure 7-5 using the GEESE 

algorithm and the assumption of two signal sources. The Pisarenko response for a sequence of 

covariance matrices is illustrated in Figure 7-6 and the associated Burkhardt Method 

spectrum in Figure 7-7. Note that the two sources are clearly visible. 

Although promising, Burkhardt's method has several disadvantages: 

•   the enumeration of closely-spaced sources is difficult. Due to their 
similarity, distinguishing between multiple adjacent sources or a moving 
source also remains difficult; 
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Figure 7-4: Acoustic Data Eigenvalue Trajectories 
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Figure 7-5: DOA Estimates Derived from Acoustic Data Assuming Two Sources 
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Figure 7-6: Pisarenko Response for Acoustic Data Segments {240,260} 
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• the computational load can be intensive since the array response must 
be calculated for each of the hypothesized DOAs; however, this may not 
be a significant constraint given the computational capacity and 
available RAM of modern DSPs; and 

• ad hoc detection criteria continue to be required for realistic operational 
environments since attempts to identify adjacent sources via peak width 
requires a definition of a "wide" peak relative to a "narrow" peak. 

The other approaches discussed in this chapter are conceptual children of Burkhardt's method 

and seek to mitigate its implementation and operational restrictions while continuing to 

exploit the fundamental concept of subspace stability. 

7.4 Multiple-Target Tracking Concepts 

The root-Tracker and SSET algorithms are defined and explored in Section 7.5 and Section 7.6, 

respectively. These algorithms exploit the signal subspace stability by applying multiple target 

tracking (MTT) and multiple hypothesis tracking (MHT) concepts to the enumeration and 

characterization of signal sources impinging upon a sensor array. In this section we briefly 

explore the physical analogue to our processing in an attempt to provide insight and intuition 

into the proposed subspace processing algorithms.4 As will be shown, the melding of these 

aerospace-based tracking concepts with classical subspace signal processing results in robust, 

yet practical, high-resolution array signal processing. 
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Figure 7-7: Burkhardt's Method Spatial Spectrum from Acoustic Data Segments 
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Multiple target tracking has its roots in radar signal processing wherein it attempted to map 

events (i.e., "detections" derived from sensor measurements and subsequent signal processing) 

to physical entities—i.e., planes, ships, missiles, etc. Thus, the MTT techniques were 

motivated by a need to assess: 

• number of targets (enumeration), 

• target type (characterization), 

• target trajectory (history and trends) 

• target intent, and 

• target maneuvers. 

Classically, a track will initially be identified as "tentative" with the status upgraded to 

"confirmed" if subsequent data validates the initial detection. Of course, quality indicators 

must be maintained so that unsupported hypothesized tracks may be deleted. The event-to- 

entity mapping—which is commonly termed "data association"—is complicated by a variety of 

factors which include: 

• spurious detections (false alarms), 

• missed detections (dropouts), 

• multiple detections from a single target, 

• "crossing" trajectories (indistinguishable targets), and 

• maneuvering targets. 

To permit a computationally feasible data association, detections from a given radar pulse are 

commonly gated so that only tracks which may be "reasonably" associated with the detection 

are considered in the data association. Since some detections may potentially be associated 

with multiple tracks, a variety of association criteria have been developed for the association. 

These include the nearest-neighbor filter,5 track-splitting filter, probabilistic data association 

filter (PDAF), joint probabilistic data filter (JPDF), etc. 

4 Although a continuing area of research, the books by Blackman [62] and Bar-Shalom and 
Fortmann [63] provide a review of these concepts beyond that permissible in the relatively little space 
available here. 
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Given the difficulty of the data association problem, it was natural that multiple hypothesis 

tracking be explored. In essence, this involves adopting a probabilistic rather than determin- 

istic perspective of the data association—deferring a definitive data association until subse- 

quent data has corroborated that assignment; at some point, hypothesized tracks which have 

not been corroborated and, therefore, have a low probability must be pruned from the 

hypothesis tree. Obviously, MHT can explode into a combinatorial nightmare unless the 

algorithm is carefully constructed. 

Fortunately, the nature of the root-Tracker and SSET problem facilitates relatively simple 

MTT and MHT processing. Under the classical assumptions of a calibrated array, i.i.d. additive 

Gaussian sensor noise, and narrowband signals, the features which are exploited are: 

• signal roots will reside on the unit circle and 
be stationary between sampling intervals. 

• spurious roots will be randomly distributed 
both temporally and on the complex-plane, 

We are implicitly assuming constant source-array geometries. Slowly moving sources may be 

handled by introducing "forgetting" filters which weight recent data more heavily. Alternately, 

the angular velocity of the root along the unit circle may be included as one of the tracked 

parameters. 

7.5 Root-Tracker Method 

Assume a subspace method (e.g., ESPRIT, root-MUSIC, GEESE, min-Norm, etc.) is applied to 

a sequence of sampled covariance matrices to produce a sequence of complex-valued root sets. 

Furthermore, assume the root sets are generated under a constant hypothesis of M signals 

where M is the maximum number of anticiptated signals, i.e., M>J. The root-Tracker has the 

responsibility to assess the root set sequence and identify root trajectories having signal 

characteristics. 

5- For the nearest-neighbor data association, the minimum Mahalanobis distance detection- 
track pair is identified and the track and detection removed from further association consider- 
ation as the potential associations (determined by the gating) are analyzed for association. This 
process is continued until no valid pairs remain. It appears that the relatively simple nearest- 
neighbor filter is sufficient for the root-Tracker and SSET algorithms; however, more sophisticated 
association algorithms would probably be preferable if the additional complexity is not an issue. 
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The assumption of a constant hypothesized number of signals distinguishes the root-Tracker 

from the SSET algorithm discussed in Section 7.6 which uses an adaptive signal hypothesis 

approach at a price of greater algorithmic complexity and computational load. In the ensuing 

development, we will presume the use of Pisarenko's method to generate the root sets for 

consistency with Burkhardt's method. However, other algorithms are also valid and may be 

preferable. 

As discussed in Section 5.4, if the Ä"-element sensor array is linear with uniform sensor 

spacing Pisarenko's method may be implemented as a root-finding method which is less compu- 

tationally demanding than the search procedure used by Burkhardt's method. Unfortunately, 

such an approach results in a {K - 1)th -order polynomial with J roots mapping into the DOAs 

of the impinging signals and K-J-l spurious roots. To distinguish between true and 

spurious roots, Pisarenko proposed selecting the roots closest to the unit circle; unfortunately, 

such a strategy can fail since—although they are randomly distributed—the spurious roots 

have a maximum-likelihood location on the unit circle. As a result, Scharf [66] noted that 

"...the technique does not work very well in practice" [for snapshot processing]. 

Given our assumption of continuously transmitting and slowly moving sources, we can exploit 

the signal subspace stability and note that the complex-valued roots associated with signals 

will reside on the unit-circle and remain stable. Conversely, given i.i.d. additive sensor noise 

the spurious roots will be randomly located on the complex-plane with the locations 

independent between data segments. This is illustrated in Figure 7-8 and Figure 7-8 for the 

same simulated scenario as Burkhardt's method's Figure 7-2 and Figure 7-3. The problem now 

is to determine the root association from segment to segment. Although pattern recognition or 

image processing could be applied, the "tracks" illustrated in Figure 7-8 and Figure 7-8 also 

suggest a multiple target tracking (MTT) approach be adopted for on-line data processing. The 

goal is to track targets (roots) from data segment-to-segment. Confirmation of the track 

validity is based upon the persistence and stability of the root. Ideally, this processing should 

be expressible in a recursive algorithm to facilitate real-time, on-line signal detection and 

characterization. A very simple algorithm satisfying these objectives is proposed in the 

following section. 

Pisarenko's method is very sensitive to the accuracy of the array manifold—i.e., the sensor 

elements must be accurately placed and the sensor amplitude and phase gains matched. 

Sensor gain errors will result in signal roots being perturbed on the complex-plane—resulting 

in erroneous DOA estimates. This behavior is illustrated in Figure 8-11 for an in-water data 

segment before and after array calibration. This sensitivity may be viewed as a result of fitting 

a high-order polynomial to the available data. Conversely, the GEESE algorithm may be 
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root-Tracker Root Locations 

• signal #1 = 10 dB @-20 deg 
• signal #2 = 10 dB @ 22 deg 
• signal #3 = 10 dB @ 25.3 deg 
• noise = 0 dB 
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Figure 7-8: Illustration of Pisarenko Complex-Plane Root Stability 
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Figure 7-9: Temporal View of Pisarenko Roots 
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viewed as fitting a lower-order model to the sampled data—which results in more accurate and 

stable DOA estimates and SSET having more accurate and robust performance. 

7.5.1 A Simple Root-Tracker Algorithm 

The processing structure of the recursive root-Tracker implementation is illustrated in 

Figure 7-10. For each data segment,6 n, the smallest eigenvector,7 bn, of the sampled KxK 

covariance matrix, R , is found. The root-finding implementation of Pisarenko's method is 

applied to the smallest eigenvector and the resulting K-l roots, zn, processed by the root- 

Tracker with confirmed and tentative roots stored in a track list and confirmed tracks and their 

DOAs, T , output for further processing. As alluded to in Section 7.4, there are a plethora of 

possible variations for a multiple-target tracker; one of the simplest possible is presented in 

this section. The driving assumptions in this algorithm are: 

• sources are potentially moving—albeit slowly; 

• nearest-neighbor data association is sufficient; 

• the track mean and standard deviation should be based upon the most 
recent N0 observations—this finite observation span minimizes the 

inclusion of invalid observations in the event of moving sources; 

R. 
Eigen- 

decomposition 

Figure 7-10: On-Line Root-Tracker Functional Architecture 

6- Under ideal noise assumptions, Stewart [60] showed that the smallest eigenvector will be very unstable. 
Thus, in principle we should be able to use overlapping data segments in the subspace stability processing 
and increase the effective size and quality of the data length. However, since the root-Tracker algorithm is 
predicated upon independent bases (smallest eigenvector), in practice we should opt for the safety of non- 
overlapping segments. 
7- Recall that the smallest eigenvector is defined as the eigenvector associated with the smallest eigenvalue. 
It is, of course of unit norm. 

Chapter 7: Subspace Stability Methods 101 



Root-Tracker Method Section 7.5 

• track gate size, Gt, should adjust to reflect the stability of the roots 

contained in the track, Gt > GmiQ; 

• the initial gate size, Gv should reflect the array size (root density) and 

operational SNRs to minimize the false alarm rate; 

• track promotion from tentative to confirmed shall be based upon 
associated roots occurring in Np consecutive segments; and 

• confirmed track deletion shall occur if no root associations occur in ND 

consecutive segments. 

The Mathematica functions implementing these rules which were used for the root-Tracker 

processing in this chapter are listed in Appendix B. The implementation uses the associated 

roots (up to a maximum of the NQ most recent observations) to calculate the sample mean and 

standard deviation8 of the sample set. The track association gate size is track-specific and 

ideally will correspond to the 3 a point of the track observations. To prevent the gate size errors 

due to insufficient observations, the gate size is adjusted via a first-order averaging filter, 

Gn = aGn_1+(l-a)(3cn), Gn>Gmia; (7-7) 

where, 

-VT a = e (7-8) 

T is the time constant of the filter in units of sampling epochs, and a^, is the sample standard 

deviation estimated from the available observations. Although the gate will eventually 

converge to the 3 a radius, the first-order filter effectively heavily weights the initial gate size, 

Gj, to preclude premature gate size convergence. 

During processing the most recent associated roots are maintained with the track as well as 

the observation mean, standard deviation, gate size, state, and the number of consecutive 

observations or lack thereof. Although very simple, track validation or deletion based upon 

consecutive hits or misses has been widely adopted in MTT systems. As discussed by Blackman 

[62], if the detection statistics are known, a Markov-chain analysis will yield the number of 

8- The variance of a list of N complex numbers, z, which has a complex-valued mean of z is defined as 
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consecutive detections, Np, required for track promotion or number of consecutive misses, ND, 

for track deletion which yield a specified false track or false deletion rates. In a similar fashion, 

the other operational parameters (T, NQ, Gv and Gmin) must reflect the physics of the array 

environment and the anticipated array-source dynamics. Thus—consistent with physical 

entity MTT—operational parameters must reflect the anticipated operating environment. 

7.5.2 Root-Tracker Performance 

The confirmed tracks identified by the root-Tracker from the simulated data set of Figure 7-8 

and Figure 7-8 is illustrated in Figure 7-11. The operational parameters were T = 20, 

N0 = 20, Np = 3, ND = 2, Gx = 0.2, and Gmin = 0.05; unless otherwise noted, these 

values were used for all of the processing used in this section. Note the root-Tracker delay in 

confirming the two adjacent sources; a more sophisticated data association algorithm than 

nearest-neighbor would have improved the source detection performance. Although the root- 

Tracker works well with simulated data from this relatively small (six element) array, 

increasing the number of array elements to 16 sensors results in the root sequence illustrated 

in Figure 7-12. As might be expected, the very simple root-Tracker algorithm generates false 

tracks—as illustrated in Figure 7-13. However, judicious choices for initial gate sizes and track 

promotion criteria can reduce or eliminate the number of false tracks—as is illustrated in 

Figure 7-14 which shows confirmed tracks resulting from the same data set using a lengthened 
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Figure 7-11: Root-Tracker Algorithm Performance 
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track promotion criteria (from three to four consecutive detections) and reduced initial gate 

size (from 0.2 to 0.1). Of course, the penalty associated with reducing the false alarm rate is an 

increase probability of missed detections. 

Due to the high-order polynomial root finding implicit in Pisarenko's method, the root-Tracker 

requires an accurate estimate of the array manifold for accurate DOA estimates; thus, arrays 

must be calibrated. (See Section 8.4 for a discussion of calibration issues and exploitable 

features.). Additionally, the root-Tracker implicitly exploits the instability of the noise 

subspace to prevent false tracks; unfortunately, in many practical operational environments, 

both of these requirements are often violated. To illustrate this point, consider the root cloud 

root-Tracker Root Locations 
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Figure 7-12: Simulated Pisarenko Root Sequence—16-Element Array 

75 
50 

1?   25 
■n 

<     ° 
0.25 

-50 
-75 

root-Tracker DOA Estimates .—^_ 

— . __•«.         •••' j==~*~^.  

   ... . 
A» — -  ... 

; 

... —   .    - ., 
mm—   ,*••"     «•                       •' .......... 

—       "" III 
 isn                              , -.—....«._...... —— >•*•- ..... -  : 

— » .—-  
m       •« 

—  "" -•• 

1               ,          ■ 

n                             O n                      4 0                      6 0                     8 0 100 

Covariance Matrix 

Figure 7-13: Root-Tracker Performance with 16-Element Array 

104 
Chapter 7: Subspace Stability Methods 



Section 7.5 Root-Tracker Method 

evolution shown in Figure 7-15 resulting from a mobile array and two stationary sources. Here 

the presence of structured array noise as well as wavefront scattering during propagation 

result in the spurious (noise) roots being clustered. In principle, this should not pose a problem 

since signal roots should reside near the unit circle and, thereby, be distinguishable from the 

noise-induced roots which would generally be distributed away from the unit circle. This 

behavior is illustrated in Figure 7-15 for an actual data set featuring two sources. The 

resulting confirmed root-Tracker trajectories within +0.2 of the unit circle are shown in 

Figure 7-16. Contrast this result with that obtained via the GEESE algorithm and our a priori 

knowledge of two signal sources which is also shown in Figure 7-16. While the root-Tracker 
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Figure 7-14: Root-Tracker Performance with Adjusted Tracking Parameters 
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accurately enumerates the signals, the DOA accuracy is marginal and the processing relies 

upon both the array calibration accuracy and appropriate selection of processing thresholds 

and track selection criteria. 

7.5.3 Root-Tracker Summary 

The root-Tracker merits and demerits are summarized inTable 7-2. Although the root-Tracker 

does not produce exceptionally accurate DOA estimates from the in-water data sets, it should 

be stressed that, in general, the signal enumeration performance exceeds that of the infor- 

mation-theoretic criteria and that these enumerations could be used in more classical subspace 

algorithms to achieve higher DOA accuracies. Additionally, as witnessed by the performance 

against simulated data, given an accurate array manifold and appropriate processing param- 

eters, the root-Tracker can generate accurate DOA estimates. 

Although the root-Tracker algorithm proposed in this section implements a recursive 

algorithm with a goal of on-line processing, the root evolutions illustrated in Figure 7-8 and 

Figure 7-12 reveal that the root-Tracker is only one possible algorithm of a wide class of 

processing approaches which 

• exploit the stability of the signal subspace roots, and 

• exploit the instability of the orthogonal subspace roots. 

root-Tracker DOA Estimates GEESE DOA Estimate Evolution 

75 

50 

1?   25 

< 
O 
Q 

0 

-25 

-50 

-75 

50   100  150 200 250 300 

Covariance Matrix 

75 

50 

1?  25 

<       ° 
§-25 

-50 

-75 

•* 

» , 

— 
0     50   100  150 200 250 300 

Covariance Matrix 

Figure 7-16: Data Set Root-Tracker and GEESE Trajectories 

106 Chapter 7: Subspace Stability Methods 



Section 7.6 SSET: Subspace Stability Exploitation Tracker 

Table 7-2: Root-Tracker Advantages and Disadvantages 

Advantages 

• conceptually simple 
• effective given i.i.d. sensor noise and accurate 

array manifold 
• simple track initialization 

Disadvantages 

• requires an accurate array manifold 
• assumes a stable signal subspace and an 

unstable noise subspace 
• computationally demanding due to requiring 

roots of normally large-order polynomial 
• increasing array size causes computation 

problems as well as increasing potential for 
false alarms and invalidating the narrowband 
signal model 

Natural implementations of these concepts involve applying pattern recognition and image 

processing techniques such as the Hough transform. However, given our interest in on-line 

processing techniques, we now turn our attentions to a slightly different paradigm which 

avoids the reliance on the noise subspace instability and, thereby, achieves improved perfor- 

mance against real-world data. This approach—the SSET—also has computational advan- 

tages relative to the root-Tracker and is the topic of the following section. 

7.6 SSET: Subspace Stability Exploitation Tracker 

Although promising, the root-Tracker has some fundamental problems due to its use of the 

orthogonal subspace Pisarenko's method: 

• the AR signal model is easily violated by sensor errors 
and non-cisoid signals; 

• the computational demands and model sensitivity 
increase with increasing array size; and, 

• the assumed instability of the noise manifold may not be 
achieved due to structured (albeit unknown) noise. 

In contrast to Pisarenko's method, the signal subspace algorithms offer computational 

efficiencies and DOA accuracies as well as being more robust to array manifold perturbations— 

providing an accurate signal enumeration is available. As a result, we seek an approach which 

exploits the signal subspace algorithms without relying upon the dubious accuracy of the infor- 

mation-theoretic enumeration criteria when applied to realistic data or relying on ad hoc 
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techniques. The approach which we present in this section continues the root-Tracker 

paradigm but relaxes the restriction on the instability of the noise subspace. The Subspace 

Stability Exploitation Tracker (SSET) exploits the stability of the signal subspace and the 

array topology and assumes 

• the signal subspace associated with J impinging wavefronts is 
contained within the J largest eigenvectors of the sampled 
covariance matrix, and 

• the signal subspace DOA algorithm requirements are satisfied. 

Thus, the SSET is indifferent to the noise covariance structure—providing the signals are of 

sufficient strength to ensure the covariance partitioning into a signal subspace and noise 

subspace using the sampled covariance eigendecomposition is feasible. The cost of relaxing this 

restriction is an algorithmically more complicated processing—although the computational 

efficiencies of the signal subspace algorithms generally result in lower computational demands 

than the root-Tracker approach. 

Whereas the root-Tracker implicitly hypothesizes K -1 signals for each of the sequence of 

sampled covariance matrices, the SSET hypothesizes J wavefronts and seeks the hypothesis 

which maximizes a cost function which considers the location of the roots resulting from 

applying the GEESE algorithm to the J largest eigenvectors of the sampled covariance matrix 

considering both the local and global viability of the hypothesis. 

To illustrate the viability of such an approach, consider the GEESE trajectories derived from a 

sequence of in-water covariance matrices shown in Figure 7-17 for a single signal hypothesis, 

Figure 7-17 for (the correct) two hypothesized signals, and in Figure 7-17 under the three 

signal hypothesis. (The shift at the 90the covariance matrix is due to a heading change in the 

mobile array.) In all three figures, the complex-plane root locations are plotted for the 100- 

200th covariance matrices. Note that under the correct hypothesis, the roots are very stable 

and consistent across the covariance sequence and reside on the unit circle whereas spurious 

roots tend to be distributed away from the unit circle if the number of signals is overestimated. 

Because of the computational efficiency of the GEESE algorithm as well as its robustness and 

demonstrated effectiveness, the sequel will presume GEESE as the applicable subspace 

processing algorithm. 

The characteristics of the GEESE roots which we will exploit are: 
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• roots associated with signals will reside on the unit circle and be 
temporally stable; 

• if the number of signals is over-estimated, the roots will be randomly 
located and tend to be offset from the unit-circle; and 

• if the number of signals is under-estimated, the roots will reside on the 
unit-circle. 
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As with the root-Tracker a variety of implementations are possible which exploit these charac- 

teristics—e.g., algorithms featuring pattern recognition and image processing techniques. 

However, given our implicit goal of on-line sequential processing, we again pursue a recursive 

implementation based upon multiple target tracking concepts. 

Thus, for each covariance matrix in the sequence, the SSET processing guiding principles in 

estimating the number of signals from that data segment are 

• maximize the number of roots on the unit circle, and 

• maximize the root location consistency across covariances. 

In the following section, we present a relatively simple SSET algorithm implementing these 

principles which is effective against both simulated and available in-water data sets. However, 

it should be noted that a variety of algorithms (i.e., optimization cost functions) are possible 

with the choice dependent upon engineering judgement trading off computational consider- 

ations, anticipated signal environment, and operational demands. 

7.6.1 SSET Implementation Architectures and Issues 

A plethora of MHT and MTT algorithms are possible to exploit the signal subspace stability; 

in principle, we desire the simplest algorithm which will accurately process the data from the 

anticipated operational environment. The generic structure of a SSET implementation is 

shown in Figure 7-20 and the processing components briefly described in Table 7-3. 
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7.6.2 A Simple SSET Algorithm 

In this section we identify a relatively simple SSET algorithm which has been proven to be 

effective against actual as well as simulated data. Mathematica implementations of these 

algorithms are presented and discussed in Appendix B. In the following paragraphs we discuss 

some of the implementation issues associated with each of the processing components and the 

algorithmic approach chosen to demonstrate the effectiveness of the SSET concept against the 

in-water data. 

Sample Covariance Matrix Generation and Eigendecomposition 

The sampling interval used to estimate the array covariance matrix can be longer for the SSET 

algorithms than the root-Tracker since, unlike the root-Tracker which requires noise subspace 

instability as well as signal subspace stability for track confirmation, the SSET approach only 

requires signal subspace stability. The upper limit for the sampling interval must reflect the 

anticipated geometry dynamics as well as the model used in the track state estimation—i.e., 

the sampling interval must be consistent with the subspace processing assumption of distinct 

point-sources These issues are discussed in more detail in Chapter 8. In practice, the segment 

averaging span should be as long as possible to provide an accurate signal subspace parti- 

tioning and reduce the computational load. 

Rr 

Figure 7-20: SSET Processing Flow 
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Table 7-3: SSET Processing Components 

Multiple Hypothesis 
Root Estimation 

Track Initialization 

Track Association 

Track Update 

Covariance Matrix 
Estimation 

Calculates the complex-valued roots derived from a 

sampled covariance matrix, Rn, under various 
numbers of hypothesized signals. 

Only those hypotheses which produce viable roots (e.g., 
near the unit-circle) should be output for further 
processing. 

Establishes the baseline signal subspace and the 
"preferred" root locations in the track update 
processing. 

Processing attempts to find consistent root locations 
across the sequence of sampled covariance matrices 
and identify the number and location of impinging 
wavefronts. 

Given existing tracks and a new set of roots, make an 
"optimal" assignment of the roots to the tracks. This 
includes selecting the optimal hypothesized number of 
signals if required. 

The association criterion must reflect the anticipated 
operating environment. The resulting algorithmic 
complexity can range widely. 

• Given the identified root-to-track data associations, 
update the existing tracks and create/delete tracks as 
appropriate. 

• The estimated track state may be a constant (for static 
or near-static geometries) or involve higher dimensions 
(e.g., location and velocity) if more dynamic 
environments are anticipated. 

The interval used to generate the sampled covariance 
matrix is limited at the upper end by the anticipated 
dynamics as well as the need to establish confirmed 
tracks. 

The lower limit is controlled by the desire to increase 
the effective SNR—thereby establishing the signal 
subspace. 
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If number of array elements, K, is much larger than the anticipated maximum number of 

signals, J , then it may be computationally preferable to use a power method and compute 

only the signal subspace eigenvectors rather than entirely decomposing the matrix. The break- 

even point is in the range of «/max = K/4. 

Multiple Hypothesis Root Estimation 

Although the hypothesis generation could be incorporated into the tracking algorithms to avoid 

unnecessary computations, for algorithmic simplicity the roots are calculated starting from a 

hypothesis J = 1 and incrementing the hypothesis until the radius of a generated root 

deviates greater than some threshold, A , from the unit circle. Thus, a valid hypothesis 

satisfies, 

\\rj\-l\<Ar        j = l,...,J. (7-9) 

Due to array calibration and sampling errors, the hypothesized roots will not lie exactly on the 

unit circle. Thus, the threshold must reflect the uncertainty in the array manifold. For the 

examples in this chapter, a value of A^ = 0.1 was used. This valid hypothesis criteria implicitly 

assumes that an AR propagation model is appropriate. 

Track Initialization 

Since it is possible for spurious roots (due to over-estimating the number of signals) to lie near 

the unit circle, a track initialization scheme is desirable which confirms the presence and 

stability of signals over a sequence of sampling intervals. The implemented algorithm requires 

that a common hypothesis hold for the covariance span; that is, a hypothesis J, applied to each 

covariance matrix results in a consistent roots which are in each interval. Such an approach 

makes an implicit assumption that the number of signals remains constant during the track 

initialization phase. 

Track initialization is required when there are no confirmed tracks; thus, the potential exists 

for no signals being confirmed. The track confirmation requirement is that the common 

hypothesis be valid for Np consecutive segments with the choice of the promotion criteria, Np, 

based upon anticipated dynamics and false alarm rates. In general, the threshold can be lower 

for the SSET approach than the root-Tracker due to the much lower false alarm rates. 

However, since the initialized tracks provide a reference against which subsequent data is 

compared, it is important that the initialized tracks accurately reflect the signal environment. 
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If short-term signals are anticipated, it may be desirable to implement a more sophisticated 

initialization algorithm wherein segment-independent hypotheses are permitted. However, 

this multiple-hypothesis approach increases the algorithmic complexity significantly—which 

is consistent with the behavior of MHT algorithms relative to MTT. 

Track Association 

Track association has two aspects: mapping roots from each valid hypothesized number of 

signals to existing tracks and, subsequently, selecting the hypothesis which provides an 

"optimal" association. For the mapping portion, we have adopted a simple nearest-neighbor 

criterion wherein the gated roots are matched to the closest available track with each root and 

track permitted only one association. This 1-1 mapping is consistent with the "physics" of 

subspace processing—the only exception being signal sources whose DOAs cross during the 

tracking. 

The hypothesis selection aspect of track association requires a criterion to determine the "best" 

choice. The implemented algorithm is to: 

1) associate the roots to tracks for each hypothesis, 

2) determine the cumulative miss distance for each hypothesis, and 

3) for those hypotheses having the maximum number of root to track asso- 
ciations, select the hypothesis with the minimum cumulative error. 

This approach uses the established tracks as a reference to reject spurious roots due to over- 

estimating the number of signals. Conversely, if the best fit involves more hypothesized roots 

than available tracks, new "probable" tracks are established. 

Using the closeness-of-fit criterion implies that an accurate model of the signal source 

dynamics is being used. In addition to potentially allowing for source motion, changes of array 

orientation should be incorporated into the processing. 

Track Updating 

The track model used in the proposed algorithm assumes slowly-varying source-array geome- 

tries so that the DOA may be viewed as constant over the last N0 observations. If a "potential" 

track is validated by Np consecutive root associations, it is promoted to "confirmed" status. 

Alternately, if a confirmed track has no root associations for ND consecutive segments, it is 

114 Chapter 7: Subspace Stability Methods 



Section 7.6 SSET: Subspace Stability Exploitation Tracker 

deleted from the track list. As illustrated in Section 7.5.2, this very simple track model can 

effectively process in-water data. 

A more sophisticated state model incorporating estimated source dynamics—e.g., angular 

velocity as well as the angular position (i.e., the root location on the complex plane) can yield 

improved DOA estimates as well as improving the track association accuracy—providing the 

more sophisticated model is appropriate. Thus, analogous to differential game theory, 

assuming a target behavior may result in reduced time-to-capture; however, making the 

minimum assumption is preferable if the target adopts optimal evasion techniques. 

7.6.3 SSET Performance 

The SSET performance is illustrated in Figure 7-21 for the same data set used in Figure 7-17, 

Figure 7-17, and Figure 7-17. This data set reflects a mobile array and two stationary signal 

sources. The SSET clearly identifies and accurately locates the two signal sources. Figure 7-22 

illustrates the SSET performance in a scenario involving two sources plus an intermittent 

offset signal source transmitting during the course of the data collection. Because of the estab- 

lished reference signals, the SSET algorithm was able to identify and locate the intermittent 

signal source. To illustrate the effect of a sampling interval and model error, Figure 7-23 shows 

the behavior of the SSET when the mobile array initiated an uncompensated turn near the 

105th covariance matrix. The maneuver causes the SSET to lose tracks; however, because the 

SSET algorithm used assumed stationary geometries, it was unable to establish a new track 

due to the effective rapid motion of the signal sources. Additionally, because of the FIR filter 

(five GEESE DOA roots are averaged) used for the location estimation and the presumption of 
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stationary geometries, there is a "group delay" in the state estimation which translates into a 

DOA estimation error. For reference, the GEESE trajectories under the two-signal assumption 

are shown in Figure 7-5. To some extent, the dynamical mismatch may be mitigated by 

choosing a shorter segment averaging span. This behavior is illustrated in Figure 7-24 if the 

averaging interval is reduced by a factor of four relative to that of Figure 7-23. As indicated, 

the shortened sampling interval reduces the effective dynamics of the signal sources as well as 

reducing the DOA estimation error introduced by the tracking filter group delay. 

For the data processing, the SSET operational parameters involved an initial gate of 0.2, 

minimum gate of 0.05, and required valid roots to be within ±0.1 of the unit circle. Two consec- 
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utive associations were required for track promotion and two consecutive misses qualified for 

track deletion. The five most recent associated roots were used to estimate the signal DOA and 

the time constant for the gate adjustment was 20 observations. 

As might be expected, the SSET also works against simulated data. The implementations of 

the SSET used to process the data are listed in Appendix B; note that many variations of the 

SSET are possible—with the choice of data association, track initialization, promotion, 

deletion, etc. dependent upon anticipated operating environments and the available computa- 

tional resources. 

7.6.4 SSET Summary 

A common criticism of subspace-based algorithms has been that reduction to practice has been 

difficult due to the lack of an accurate yet computationally viable enumeration algorithm. To 

some extent, this concern has been alleviated by the SSET approach. The primary reason for 

the demonstrated effectiveness of SSET is the paradigm shift which couples the DOA 

estimation, tracking, and signal enumeration efforts without requiring multi-dimensional 

optimization techniques. The SSET advantages and disadvantages are summarized in 

Table 7-4. 

As with the root-Tracker, it should be stressed that the SSET represents only one of a broad 

class of processing algorithms exploiting the signal subspace stability. Alternate formulations 

based upon image processing and pattern recognition techniques may be more appropriate for 

off-line processing and are topics for further research. 
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Table 7-4: SSET Advantages and Disadvantages 

Advantages 

Disadvantages 

effective and accurate against real data 
appropriate for many physical problems 
requires no assumptions concerning noise structure—other than 
that an eigendecomposition-based subspace partitioning is valid 
relatively robust to perturbations in the assumed array manifold 
real-time on-line implementation is computationally feasible 

• operational parameters dependent upon anticipated signal 
environment 

• restricted array topology (e.g., uniform linear) 

The selection of optimal processing components for segment processing, data association, track 

models, etc. remains an application-specific issue with the trade-off being computational load 

and algorithmic complexity versus accuracy and robustness. As demonstrated, even a very 

simple implementation can be quite effective in an signal environment against which classical 

subspace processing techniques fail. 

The SSET is restricted to array topologies which are amenable to the AR model implicit in 

signal subspace algorithms. Fortunately, this encompasses a wide number of practical arrays 

and applications. It is possible to apply subspace stability exploitation concepts to more general 

array topologies. Unfortunately, the penalty for removing the topology restriction is to 

introduce restrictions on the noise subspace behavior. 

7.7 Conclusions and Suggestions for Further Research 

Subspace-based array signal processing is predicated upon an accurate partitioning of the 

sampled array covariance into signal and orthogonal subspaces. In the presence of structured 

sensor noise or array calibration errors, signal enumeration and subsequent partitioning based 

upon eigenvalue analysis requires ad hoc criteria since information-theoretic approaches fail. 

The subspace stability methods introduced in this chapter address those concerns in scenarios 

featuring near-static source-array geometries and continuously transmitting sources. The 

three variations of subspace stability methods which have been examined in this chapter are 

presented in Table 7-5 along with some of the salient features and restrictions. 

The most attractive subspace stability method appears to be the SSET approach. SSET has 

been demonstrated to effectively process in-water data sets against which conventional single- 

snapshot subspace processing fails and, as such, represents a significant advance in practical 

real-time implementation of subspace methods to in-water sonar array processing. 
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Table 7-5: Subspace Stability Exploitation Methods Summary 

Burkhardt's Method 

• averages spatial response of Pisarenko's method 
• requires signal subspace stability and 

orthogonal subspace instability 
• computationally demanding 
• arbitrary array topology 
• low resolution for signal enumeration 

root-Tracker 

• assumes a fixed number of hypothesized signals 
• requires signal subspace stability and 

orthogonal subspace instability 
• identifies signals using MTT techniques 
• limited to uniform linear arrays 
• computationally efficient 
• vulnerability to model errors increases with 

increasing array size 

SSET 

• combines multiple-hypothesis enumeration 
with MTT techniques 

• requires some signal subspace stability 
• limited to uniform linear arrays 
• computationally efficient 
• model error sensitivity decreases with 

increasing array size 

Although the relatively simple SSET algorithm proposed in this chapter has been demon- 

strated against in-water data, further research remains with respect to track initialization, 

data association, and track promotion/deletion criteria. The implemented SSET algorithm 

used the GEESE signal subspace algorithm; other signal subspace algorithms should be 

evaluated with respect to their suitability and practicality for incorporation into the SSET 

concept. 

In this chapter, we have focussed on multiple-target tracking techniques as a mechanism to 

exploit the signal subspace stability; other approaches which may be viable include applying 

pattern recognition and image processing techniques to the sequence of SSET roots. 

Finally, the identification of a computationally viable subspace stability method applicable to 

arbitrary array topologies and robust with respect to assumptions concerning the sensor 

characteristics, noise environment, and scenario dynamics remains an open research topic. 
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8. Sensor and Model Errors 

In the preceding chapters, an implicit assumption of perfect sensors, signals, and noise was 

made: 

Narrowband Signals 

The assumption of narrowband signals implies 
that a cisoid model is appropriate—so that a wave- 
front's contribution at any element at any given 
instant in time is simply a phase-shifted version of 
that contributed to the other elements. 

Equal Power and 
Sensor-Independent 

Noise 

This implies that the additive noise at the array 
elements is equi-powered and independent and due 
to independent noise processes. This permits the 

n 
noise to be modelled as a diagonal matrix, o /. 

Perfect Sensors 

The array elements are assumed to have unity gain 
as well as sample the signal at exactly the same 
epoch—thus, neither amplitude or phase errors are 
introduced by the array. 

Point Sources and 
Static Geometry 

If the signal sources move during the signal aver- 
aging interval used to develop the sampled covari- 
ance matrix, the signal subspace will be 
"blurred"—essentially corresponding to a distrib- 
uted source. This makes the signal detection prob- 
lem more difficult as well as precluding using 
long" sampling intervals to improve the effective 
signal-to-noise ratio. 

These assumptions are, to some extent, required to make the signal detection and location 

estimation tractable. In this chapter we will briefly review the characteristics, sources, and 

significance of deviations from these assumptions and methods to mitigate their influence on 

the subspace processing accuracy. 

8.1 Narrowband Signals 

A central assumption of the subspace methods is that at any sampling epoch the impinging 

(complex-valued) wavefront at each array element may be modelled as a phase-shifted replica 

of the wavefront value at any other array element/sensor at that same sampling epoch .Viewing 
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the wavefront waveform as a baseband band-limited signal, sB(t), translated to a higher 

frequency, 

■s(t) = e    '°sB(f), (8-1) 

the narrowband assumption implies that the nominal center frequency, f0, is much greater 

than the signal bandwidth, ß, 

/•0»ß- <8-2> 

Under this assumption, the array covariance matrix given a single impinging wavefront is 

Hermitian and Toeplitz with a constant magnitude for each matrix element and constant 

phases along the diagonals (assuming negligible noise contributions). While this approxi- 

mation is generally appropriate for radar applications, it is often violated for sonar. As the 

signal bandwidth increases relative to the nominal center frequency, the magnitude of the 

autocorrelation of the signal will drop off so that the sampled covariance matrix will not have 

constant magnitude. Although the expected phase shifts will still be correct, the phase 

standard deviation will increase as the sensor separation increases. In essence, the mapping 

of the signal onto the array can no longer be separated into geometric and temporal compo- 

nents, i.e., x(t) * d(Q)s(t). 

To illustrate this point, assume that we have a band-limited analytic signal which has the 

spectrum, 

S(f) 

2it ß 

P l , (8-3) 

0 \f~fo\>l 

where the constant in-band amplitude of 27t/ß is chosen to normalize the expression for the 

autocorrelation function so that fl(0) = 1. This spectrum is illustrated in Figure 8-1 for a ten 

percent bandwidth signal; ten percent bandwidth is a commonly accepted threshold for 

defining a signal as being narrowband—however, as will be illustrated, the definition of 

narrowband in the subspace processing sense must consider the array size as well as the signal 

detection criteria. The autocorrelation of a signal is the Fourier transform of the power spectral 

density, i.e., 
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KM ijsw iwt , 
e      aco (8-4) 

where, by definition, i?(x) = -if (-1) since the power spectrum, S(co), must be real-valued. 

Applying Eqn (8-3) to Eqn (8-4) and integrating leads to the expression, 

i2it/"nxsin7cßx "2 "/n^ = e suic(7ipx). (8-5) 

This equation tells us that samples separated by a time 1/ß will be uncorrelated—which is 

consistent with standard sampling theory. Furthermore, the expected} phase shift between 

samples will depend upon the time delay and the band-center frequency—which validates the 

concept of using the nominal frequency to calculate the steering vectors used in the array 

processing. Finally, note that the amplitude of the autocorrelation will vary as a function of the 

signal bandwidth as well as the time delay. It is this last effect which poses problems for the 

array processing. 

The autocorrelation may also be expressed in terms of the fractional bandwidth, ß, relative to 

the carrier frequency and the spatial separation, x, expressed in units of cycles at the nominal 

frequency. Thus, with, 

Signal Spectrum (10 percent bandwidth) 

-10 1 

normalized frequency 

Figure 8-1: Illustration of Idealized 10 Percent Bandwidth Signal Spectrum 

!- Since the power spectral density of Eqn (8-3) corresponds to the expected spectrum of the band-limited sig- 
nal, Eqn (8-5) is the expected autocorrelation behavior. The actual sampled signal spectrum will, in general, 
be perturbed from this idealized assumption. 
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'0 

(8-6) 

and, 

t = frf, (8-7) 

the autocorrelation function of Eqn (8-5) may be expressed as, 

R(x) = e l ,"sinc(7rßx). (8-8) 

Eqn (8-8) implies that for "large" fractional signal bandwidths the assumption that the signal 

vector received at the array elements, x(t), may not be decomposed into a geometry dependent 

term and a waveform dependent term, i.e., 

x(t) = x(s(t),Q)*D(Q)s(t) (8-9) 

The autocorrelation amplitude behavior is illustrated in Figure 8-2 for a ten percent fractional 

bandwidth and as a function of both time delay and fractional bandwidth in Figure 8-3. Hence, 

the term "narrowband" depends upon the array aperture as well as the signal bandwidth and 

center frequency; with typical half-wavelength element spacings, the fundamental 

1 

0.8 

o    0.6 

I 0.4 
0.2 

0 

-0.2 

Amplitude Behavior with 10% Fractional Bandwidth 

5 10 15 

Time (wavelengths at carrier frequency) 

20 

Figure 8-2: Auto-Correlation Amplitude Behavior Illustration 
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narrowband assumption can be violated with array sizes and fractional bandwidths encoun- 

tered in acoustic signal processing. 

Figure 8-4 and Figure 8-5 show the effect of increasing fractional bandwidth on the eigen- 

values of the sampled covariance matrix for a single signal in the absence of noise—under the 

classical assumptions, there should be one non-zero eigenvalue. Since the signal detection 

algorithms typically analyze the covariance matrix eigenvalues (see Chapter 4), such behavior 

r 7   ;—f-T—f~f— /. r-r~f-/_i    /    /    / 
■l.  I    I    !      ~'l 

15       ß (%) 
x (wavelengths) 

Figure 8-3: Autocorrelation Amplitude vs. Delay and Fractional Bandwidth 
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will, in general, result in overestimating the number of impinging signals. The eigenvalues of 

Figure 8-5 are plotted on a log scale in Figure 8-7; note that for fractional signal bandwidths of 

only five percent approximately 20 dB of eigenvalue "coupling" will be introduced by the this 

geometry and bandwidth-dependent effect—in general, this results in a reduced dynamic 

range as well as invalidating the fundamental assumptions of the information-theoretic 

Eigenvalues vs. Fractional Bandwidth for 6-Element Array 
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Figure 8-5: Eigenvalue Behavior as a Function of Bandwidth for a Six-Element Array 
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detection criteria. Figure 8-7 illustrates the spatial response of a ten percent bandwidth signal 

impinging on a 6-element array with the (incorrect) MDL-based estimate of two signals. 

The effect of the signal bandwidth on the sampled covariance matrix cannot be removed 

without knowledge of the source directions and fractional bandwidths. Note, however, that 

even with cisoid signals the magnitude of the (nominally Toeplitz structured) array covariance 

matrix elements will vary as a function of source geometry if multiple sources are impinging 

on the array. In practice, we can avoid the problems associated with a wideband signal by 

applying a Fourier decomposition to the signal and processing each frequency band indepen- 

dently—thereby generating a situation where the narrowband approximation is valid—albeit 

at a cost of greater computational load and complexity. 

In summary, the narrowband signal model is essential to subspace-based array processing 

because it permits decoupling the geometric and temporal components of the signal, i.e., 

modelling the received signal as 

x(t) = D(Q)s(t) + n(t). (8-10) 

This, in turn, permits a subspace partitioning into a J-dimensional signal subspace and a 

K- J-dimensional orthogonal subspace. Violating the narrowband assumption results in 

eigenvalue coupling—which violates information-theoretic signal enumeration assumptions. 

Violating the narrowband assumption also perturbs the subspace partitioning so that the DOA 

estimation algorithms are also affected. The matrix-shifting algorithms (e.g., GEESE or 
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Figure 8-7: MUSIC Sweep showing Effect of Fractional Bandwidth 
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ESPRIT) are less vulnerable to the narrowband violation since they only require the 

narrowband assumption to be valid over the translational shift between subarrays. In fact, 

since the ESPRIT algorithm does not employ a subspace partitioning, it should be relatively 

resistant to narrowband assumption violations—providing an accurate estimate of the noise 

covariance matrix is achievable. This would appear to make ESPRIT or GEESE the preferred 

subspace processing algorithm for the root-Tracker algorithm presented in Section 7.5. 

8.2 Distributed and Moving Sources 

Just as violating the narrowband assumption will disturb the perturb the idealized structure 

of the sampled covariance matrix, distributed or moving sources perturb the covariance 

structure. Subspace methods implicitly presume a signal environment featuring stationary (in 

the physical sense) point sources.2 If the sampled covariance matrix is derived from a moving 

source—or, equivalently, a distributed source—fundamental assumptions about the signal 

characteristics will be violated and result in spurious detections and DOA estimates. This is 

illustrated in Figure 8-8 which shows the spatial (MUSIC) response due to 31 sources 

uniformly distributed from -40 to -70 degrees impinging upon a 6-element array. 

Spatial Response of Moving/Distributed Signal Source 
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Figure 8-8: Spatial Response Derived from a Distributed Source 

2 Generally, a far-field signal source is presumed; however, MD-MUSIC permits a near-field as- 
sumption—with a commensurate increase in computational complexity and loading. 

128 Chapter 8: Sensor and Model Errors 



Section 8.3 Colored Noise Processing 

Multi-path or reflections from physical structures such as boundaries or wakes can approx- 

imate the presence of a distributed source. If the signal sources are in motion, integration 

intervals must be chosen such that the stationary point-source geometries is valid. Although 

this may not be a problem for many applications, for underwater acoustics, the combination of 

low data rates and high speed relative to sound speed may preclude long integration in 

intervals. In such cases, the subspace stability methods of Chapter 7 may be useful. 

In summary, if scenario geometries are dynamic, the sampled covariance matrix integration 

interval must be chosen to avoid seriously violating the static geometry assumption. 

8.3 Colored Noise Processing 

Although many of the subspace detection and DOA algorithms may be criticized for the 

presumption of "perfect noise"—i.e., a diagonal covariance matrix, o2I—some assumptions 

about the noise structure are required; otherwise, any sampled covariance matrix could be 

rationalized as due to noise contributions. If the noise structure were known, it could be 

removed from the sampled covariance matrix; however, such information is not available for 

many applications. 

In the event of a high SNR scenario, deviating from the "perfect noise" assumption will not 

affect the DOA estimates; however, since the noise eigenvalues will not be derived from a "ball" 

in the if-dimensional pace of the sampled covariance matrix, the assumption that all noise 

eigenvalues will be equal will be violated—which can confuse the information theoretic 

approaches to signal detection. If the noise structure were known or adequately estimated, 

such effects could be removed by "whitening" the sampled covariance matrix—essentially 

warping the subspace so that the noise is a ball. Thus, given a (full-rank) noise covariance 

matrix of the form, c2£ , where a2 is an unknown real-valued scalar corresponding to the noise 
n 

level, so that'the sampled covariance matrix is, 

R =DRB\ + c2Z . (8-11) 
a ft 

Decomposing the (Hermitian) model of the noise covariance structure matrix, E^, into 

J.   = UA Uj (8-12) n n   n    n 

leads to the representation for the inverse as, 
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Z-l = UA-iUj = (UA-1/2) (A-1/2J7 t) = z-1/2tl-1/2 = SfS (8-13) 

where we have implicitly defined, 

S = 2T1/2 = A~1/2t/t (8-14) n n n 

and exploited the fact that the eigenvalue matrix, A is real-valued and diagonal due to the 

sampled covariance matrix being Hermitian. Applying this similarity transform to the 

sampled covariance matrix yields, 

R = SRSf = SDRDlSt +a2SX St = DFltf +a2I. (8-15) s n s 

After application of the similarity transform, detection algorithms based upon equal noise 

eigenvalues will again be valid. However, this procedure will also warp the array manifold such 

that 

d(9) = Sd(Q) (8-16) 

should be used in the DOA search algorithms. In general, the application of the similarity 

transform implies that algorithms which exploit specific array topologies—e.g., ESPRIT, 

GEESE, etc.—will no longer be valid. In such a case, the identified signal or noise subspace 

would need to be warped back to the correct array topology prior to DOA processing. 

8.4 Perfect Sensors and Array Calibration 

As noted by Fuhrman [47], "high-resolution direction finding methods ... require precise 

knowledge of the array manifold"—or, equivalently, they require sensors which do not 

introduce sensor-specific gains and phase shifts to the collected data or introduce channel 

coupling. Although sensor arrays are typically aligned to some extent during construction, over 

time the component drifts or physical perturbations of the array cause the array to deviate 

from the idealized behavior. Thus, it is desirable to calibrate the array in its operational 

environment and estimate parameters which can be used to mitigate these effects. Although a 

number of researchers [42]-[49] have addressed the issue of auto-calibration, these approaches 

impose requirements for either calibration signals from known locations, limitations on the 

array topology, ideal noise covariance structures, or knowledge of the number of impinging 

signals which either make the methods computationally demanding or impractical for on-line 

operations. In this section we introduce an apparently novel calibration algorithm which 
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exploits the Toeplitz array structure resulting from plane waves impinging upon a uniform 

linear array. The intent is a computationally efficient algorithm which is complementary to the 

root-Burkhardt subspace stability exploitation method discussed in Section 7.5. 

8.4.1 Assumptions and Notation 

The auto-calibration approach presented in the sequence relies upon a number of assumptions: 

• the array is linear with a constant sensor spacing; 

• at least one signal is impinging on the array; 

• the signals are narrowband; 

• there is negligible cross-channel coupling; 

• the additive sensor noise covariance may either be modelled 

as a2I or is small relative to the impinging signals; 

• the impinging wavefronts are planar and uncorrelated; and 

• the signals and additive noise are uncorrelated. 

The net effect of these assumptions is that the expected array covariance matrix in the absence 

of sensor gain and phase errors will be Toeplitz—i.e., constant along the diagonals. The signals 

arriving at the K elements of the array may be modelled as 

x{t) = D{Q)s{t) + n(t) (8-17) 

where s(t) is a vector of the signals, D is the geometry-dependent mapping of the signals onto 

the array elements and n(t) is the sensor additive noise (as discussed in detail in Chapter 2). 

If the received signals are then perturbed by a sensor-specific complex gain, the sampled signal 

from the array, y(t), is 

y(t) = Gx(t) = G[D(Q)s(t) + n(t)] (8-18) 

where G is a complex-valued diagonal gain matrix, 

G = 

So 

Si ° 
0 ... 

SK-1 

= Diag(£). (8-19) 
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The elements of the complex-valued gain vector, g, are denned as 

Sk = \e k = 0,l,...,K-l (8-20) 

where y, is a positive scalar representing the amplitude gain and -n < y < n is a scalar repre- 

senting the introduced phase shift. Employing the Schur (Hadamard) product, Eqn (8-18) may 

be represented in the equivalent form, 

y(t) = g®x(t) = g® (Ds + n), (8-21) 

where "C = A<8>U" denotes the Schur (element-by-element) multiplication such that 

c- ■ = a ••&••. 
y        y y 

The perceived covariance matrix, JR, is related to the covariance matrix in the absence of gain 

perturbations, R, by 

R = GRGt = GE((Ds + n) (D« + n)t)Gl" (8-22) 

where, if we assume that the signals and noise are uncorrelated, Eqn (8-22) reduces to 

R = G(DRsDt +\)G\ = gg\ ® (DRsDt +\) (8-23) 

Under the classical assumption of i.i.d additive noise, the noise contribution to the covariance 

will converge to the form cr2J so that R will be Toeplitz (constant along the matrix diagonals) 

as well as being Hermitian. Even if the noise is spatially colored, if the impinging signals are 

"strong", the expected covariance matrix will be approximately Toeplitz. Under the Toeplitz 

assumption, the expected covariance matrix may be represented as 

R = 

°0 
l(Pi a2e aK-le 

-«Pi a0 

-1<P2 a2e 
-i<p 

aQ 
up, a2e 
l(Pi 

-KP*. 
aK-le 

l -i<P2 
a2e a^e 

-i(?1 

°0 

K-l 

(8-24) 
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Recall that implicit in the representation of Eqn (8-24) is the assumption that at least one 

signal is impinging on the array and that the effects of the noise-induced perturbations is 

negligible. 

8.4.2 Amplitude Gain Estimation 

Paulraj and Kailath [42] noted that the estimation of the amplitude gains may be mapped into 

a linear equation representation by taking the logarithm of Eqn (8-23) under the Toeplitz 

assumption. Using only the upper triangle of the KxK covariance matrix (since the lower 

portion is redundant) we have K (K+ 1) /2 equations and IK unknowns—the gains associated 

with the K elements, y,, and the K amplitudes of the diagonals, ak_v of the assumed 

covariance matrix which is illustrated in Eqn (8-24). To illustrate, consider the equations 

resulting from a three-element array, 

\ \Ru\ 

\ |-R22I 

log \ = log I-&33I 
a0 |#12| 
al 1-^231 
_a2 ]Äis[ 

2 0 0 10 0 
0 2 0 10 0 

0 0 2 1 0 0 loff  '2   = log 1^331 t (8_25) 
110 0 10 
0 110 10 
10 10 0 1 

where the structure of Eqn (8-25) is achieved by moving along successive diagonals of the 

perturbed sampled covariance matrix, R. Let us adopt the notation that 

T = [log(70) logtyp ... log(yK_1) (8-26) 

a = [loga0 loga1 ... loga^j]   , (8-27) 

and 

r = log 

diag(fi, 0) 

diag(Ä, 1) 

diag(R,K-l) 
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with diag(A, n) representing a vector derived from the n* diagonal of the matrix, A, and the 

understanding that the |-| and log (•) in Eqn (8-28) apply to the elements of the resulting 

vector. Using this notation, Eqn (8-25) may be expressed in the general form, 

B (8-29) 

where the structure of the coefficient matrix, B, is implicitly defined by the ordering of the 

measurement vector, r and the number of array elements. Note that we cannot use Eqn (8-29) 

to solve for the sensor amplitude gains and estimated diagonals via the classical least-squares 

use of the pseudo-inverse, i.e., 

*(Jtfll)  1Btr, (8-30) 

since the coefficient matrix, B, is singular—thus, the gains can only be determined to within 

a scale factor. Paulraj and Kailath [42] proposed handling this problem by eliminating the 

diagonal level terms, a, from Eqn (8-29); using all possible combinations of the equations 

produces a set of K(K2 - 1) /2 equations in K unknowns—which is still singular. Using a 

pseudo-inverse defined using the K-l non-zero values and vectors resulting from a SVD 

enables a minimum-norm solution of the gain amplitude estimation—within an arbitrary scale 

factor. The disadvantage of this approach is that it involves considerable manipulation of the 

measurement vector with a commensurate increase in the algorithmic complexity. 

As an alternative, note that if we make an arbitrary assignment concerning the received power 

level or assign an element as the reference having a gain of "one", then the singularity is 

removed and the sensor gains may be estimated without resorting to a singular value decom- 

position. Thus, using the definition that the "true" power received at an element is the average 

of the main diagonal of the received covariance matrix, i.e., 

a0^o4l% (8"31) 

k = l 

we achieve a non-singular system of equations. Realizing that the equation involving the RIK 

term does not contribute to the estimate of the gains, we can define a new system of equations 

of the form, 
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B = r, (8-32) 

with the definitions, 

a = [logaj ... loga^i]   , (8-33) 

and 

r = log 

diag(B, 0) - a0 

diag(fi, 1) 

diag(fl,tf-l) 

(8-34) 

and B is similar in form to B with the deletion of the column associated with aQ and the elimi- 

nation of the last row. Under these assumptions, the system of equations for a three-element 

array becomes, 

2 0 0 0 0 
0 2 0 0 0 
0 0200 
110 10 
0 1110 

log = log 

|i?n| -a0 

I-R22I _ao 

I-&33I -°o 

|B12l 

■R23I 

(8-35) 

Using the pseudo-inverse, 

B* = (JBtB)    Bt 

the sensor amplitude gains may be estimated as 

(8-36) 

= B*r. (8-37) 

From an implementation perspective, the pseudo-inverse would be calculated initially and re- 

used for each gain estimation since it is a constant dependent only upon the number of sensors 

the array—thus, the least-squares estimation of the amplitude gains may be accomplished in 
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via a rearrangement of the sampled covariance matrix into a vector followed by a matrix-vector 

multiply. Furthermore, note that if the diagonal level estimates are not if interest, the rows of 

B# associated with the unused parameters may be deleted and the computational load further 

reduced. Figure 8-9 illustrates the effect of the amplitude gain adjustment on a covariance 

matrix derived from in-water data and a 6-element ceramic array. 

8.4.3 Phase Gain Estimation 

The estimation of the sensor phase error is similar to that used for the amplitude estimation 

since the phase along the covariance diagonals in the presence of strong uncorrelated signals 

will also be constant as illustrated in Eqn (8-24). Since only the super diagonals of the 

covariance matrix above the main diagonal provide non-redundant phase gain information, we 

have K(K- 1) /2 equations for 2K- 1 unknowns—the phases associated with the K elements 

and the K-l phases along each of the super diagonals. Using the definition, 

arg(z) = atan(Re(z)/Im(z)), permits expressing those equations as a linear system. The 

equations may be illustrated for a 5-element array: 

Uncalibrated Covariance Amplitude 
6 

Calibrated Covariance Amplitude 
6, 

6^ 6 

Figure 8-9: Illustration of the Effect of Amplitude Gain Adjustment 
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(8-38) 

As with the amplitude gain equations, the phase gain equations are also singular since the 

phase gains can only be determined to within a rotation factor. From a practical perspective, 

the use of the "arg(-)" poses problems due to the mapping discontinuity between -n and n. To 

resolve these problems, we can arbitrarily define a reference phasor for the first super diagonal 

as the composite phasor resulting from summing the normalized phasors along the first super 

diagonal, 

iq>. 19. 
e      = e 

k-1  Rk(k + 1) 

x-1 Rk(k + p 

If» I 
k-i\Rk(k + i)\ 

(8-39) 

If an amplitude gain adjustment has been applied to the sampled covariance matrix so that the 

magnitudes are approximately equal along any given super-diagonal, Eqn (8-39) may be 

approximated as, 

Pi" 

K-l 

X Rk(k+D 
k-l 
K-l 

X Rk(k+i) 
k-l 

(8-40) 

In a similar fashion, we can define average phasors along each of the super diagonals such that 
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K-m 

k-1 
K-m 

X  Rk(k + m) 
k-1 

m = 1,2,...,K-1. (8-41) 

Recognizing that—as with the amplitude gain estimation—that the Rix element of the 

covariance matrix does not provide any information with respect to estimating the sensor 

phase gains, and using the specification for the reference phase along the first super diagonal, 

the a non-singular system of equations which avoids the problem of modulo arithmetic under 

the assumption that the sensor phase errors are small may be represented as 

= P (8-42) 

where 

T 
9= [<P0<Pi- <P*_i]   > (8-43) 

¥ = [v V|/2 Va ... yK -1 (8-44) 

and 

p = arg( 

diag(JJ, l)Pl* 

diag(iJ,2)p* 

diag(Ä,2T-l)p K-1 

(8-45) 

where the now estimated quantity yk indicates the phase shift of the k super-diagonal 

relative to the nominal average of the sampled covariance and its associated sensor gain errors. 

The matrix, C, in Eqn (8-42) is the coefficient matrix resulting from deleting the column 

associated with the (now specified) first super-diagonal phase and the row associated with the 

R1K element of the covariance. To illustrate, for the 5-element array case of Eqn (8-25), the 

structure of Eqn (8-42) becomes, 
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A) 

The least-squares solution to Eqn (8-42) is achieved via the pseudo-inverse of C, 

-l 
(CtC)    Ctp = C*p. 

(8-46) 

(8-47) 

The effect of phase calibration on an actual (as opposed to simulated) sampled covariance 

matrix is illustrated in Figure 8-10 for two strong broadband sources at DOAs of approxi- 

mately ±7.5 degrees. As with the amplitude gain estimation, this approach is computationally 

efficient since the pseudo-inverse is a constant matrix dependent only upon the number of 

Uncalibrated Covariance Phase 
6 

Calibrated Covariance Phase 
6, 

6-J/ 6^ 

Figure 8-10: Illustration of the Effect of Phase Gain Adjustment 
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elements in the sensor array; however, some complexity is involved in the arrangement of the 

measurement vector due to the need to avoid problems with modulo arithmetic. 

8.4.4 Summary and Comments 

Although conceptually simple and computationally efficient, the array calibration approach 

presented in this section only applies to the case wherein at least one uncorrelated strong 

source impinges on the sensor array. If the dominant sources are correlated, then the funda- 

mental assumption of a Toeplitz structure will be violated; similarly, if only noise (or noise and 

a weak signal) is arriving at the array, the idealized Toeplitz structure will not be achieved. 

In general, array calibration will not improve the detection performance since dyad multipli- 

cation corresponds to a subspace rotation as opposed to warping produced by a matrix multi- 

plication (e.g., the colored noise whitening discussed in Section 8.3). The benefit of array 

calibration is to align the actual array topology (and associated manifold) with the assumed 

model—which improves the DOA estimation accuracy. This effect is demonstrated in 

Figure 8-11 which shows the Pisarenko root locations for a sequence of data set covariance 

matrices before and after calibration. In principle, true signal DOAs should be stable and 

reside on the unit circle with roots resulting from additive noise dispersed randomly over the 

complex-plane. In reality, the structure imposed by structured noise and propagation-related 

scattering results in stable roots which—although they do not reside on the unit circle— 

Data Segments {190, 210} without Calibration Data Segments {190, 210} with Calibration 
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Figure 8-11: Array Calibration Effect on Pisarenko's Method Roots 
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preclude the use of information-theoretic eigenvalue analysis criteria for signal enumeration. 

Following calibration, the root-Tracker method is able to identify the roots associated with 

valid signals and accurately determine their DOAs. For the data set illustrated, the true roots 

should map into DOAs of ±7.5 degrees—which corresponds to the two roots nearest the unit 

circle. 

8.4.5 Calibration and the Subspace Stability Techniques 

Since the subspace stability methods (discussed in Chapter 7) exploit a sequence of sampled 

covariance matrices, it is natural to use this same sequence to estimate the sensor gains— 

thereby improving the gain estimation accuracy and confidence and providing some resilience 

against situations wherein the Toeplitz assumption is violated. Assuming he sensor gains are 

constant—albeit unknown—over the processing span leads to a measurement model of the 

form, 

gn=g + wn, (8-48) 

where gn indicates the gain estimates derived from the n% sampled covariance matrix and 

tv is the perturbations in the estimate due to sensor noise and sampling effects. Assuming the 

perturbations are temporally and spatially white and inversely proportional to the received 

signal-to-noise ratio, and making the additional assumption that the additive noise power, a , 

is constant and "small" permits the approximation, 

c2iv a2w iv ... 
w   = « .  = _ (8-49) 

n , J N , J >. A 
jfii«/*)i2V jfxis/oi2Wc; 

where An = aQ is the estimated signal power derived from the n covariance matrix and w 

is the complex-valued random variable normalized such that it has constant distribution 

across sampling epochs. We could adopt a weighted least squares estimation approach, 

N 

g(N) = n-^l  (8-50) 

71 = 1 

which may also be expressed in the equivalent recursive form as, 
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1 + dN 

where, 

5„=-^_. (8-52) N       IK 
N-l 

Alternately, a Kaiman filtering approach could be adopted; however, it should be noted that due 

to the approximation of the perturbation covariance matrix as, 

A  =AI (8-53) 
n        n 

there will be an artificial lower limit on the SNR (i.e., an upper limit on the assumed noise 

contributions) which will come into play in the event of low SNRs or the absence of a signal. In 

this unforced, constant gain system, the Kaiman filtering equations are: 

gin) = g{n - 1) + K(n) [gin) - gin - 1)] (8-54) 

P(n) = [I - K(n)] P(n - 1) (8-55) 

Kin) = P(n - 1) [ An +P(n - 1)] -1 (8-56) 

with the initial estimates of the gain and covariance being, 

go=ko ' (8"57) 

and 

P(0) = A0 = A0I. (8-58) 

Although the Kaiman filtering equations have a simple form for this constant gain estimation 

scenario, they represent a considerable increase in processing relative to the recursive update 

equation of Eqn (8-51) and for some applications the benefits of Kaiman filtering will not offset 

the increased computational burden or algorithmic complexity. In either case, care must be 

taken to avoid numerical round-off errors in the generation of the update gains, 5^ or K{n) 

during long duration processing. 
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9. Spatial Smoothing 

The algorithms to this point presumed incoherent wavefronts arrive at the sensor array. If this 

assumption is violated so that coherent wavefronts are impinging upon the array, the subspace- 

based detection algorithms will underestimate the number of impinging wavefronts—instead 

returning the number of impinging signals.1 Furthermore, for the coherent signals, the 

subspace DOA algorithms will either produce erroneous DOAs or fail to estimate the DOAs. 

Since coherent wavefronts may be generated via physical effects like multipath propagation 

from a common source or via similar waveforms from distinct sources, robust methods to 

determine the number of wavefronts and their associated directions is important to many 

applications. 

For special array geometries—the most common being a uniform linear array—pre-processing 

the sampled array covariance matrix can obviate the problems of coherency and permit trans- 

parent application of the subspace algorithms. This technique, termed spatial smoothing, was 

first proposed in 1981 by Evans [29]. As with Schmidt's MUSIC, over the subsequent years 

variants were developed and the accuracy performance analyzed under a variety of scenarios. 

In this chapter we explore the spatial smoothing from a significantly different viewpoint than 

used in the published literature in that we return to the vector subspace perspective implicit 

in Schmidt's seminal work. This powerful vantage point facilitates a new, intuitive, and 

aesthetic proof of the validity of spatial smoothing and its variants. Furthermore, it leads us 

to propose an new algorithm for the estimation of the directions of the impinging wavefronts. 

In the following sections we review the problem coherent signals pose to the signal subspace 

algorithms. We then validate the spatial smoothing concept from the vector subspace 

perspective and show how the "classical" spatial smoothing techniques may be expressed in 

terms of the subspaces. Finally, we outline the proposed scheme to process a coherent scene 

which may have computational and performance advantages. 

'• Previously, we used the terms "wavefront" and "signal" interchangeably due to the assumption that all 
wavefronts represented different signal waveforms; however, for the purposes of this chapter, we must now 
draw the distinction that a given signal may arrive at the array via multiple wavefronts. In this case, the wave- 
fronts are coherent. Thus, we draw the distinction that W wavefronts arrive at the array from J distinct wave- 
forms/signals where, by definition, J<:W. 
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9.1 Spatial Smoothing Assumptions 

Much like the signal subspace algorithms discussed in Chapter 6, the spatial smoothing 

approach assumes an array topology such that sensor doublets (triplets, etc.) may be derived 

from the array. Furthermore, if forward-backward smoothing is to be used, the array must 

have a symmetric element spacing. Thus, for most practical purposes, we are restricted to a 

uniform, linear array structure. In this chapter we will assume a uniform linear array; 

however, the development and conclusions remain valid providing the array may be decom- 

posed into similar, spatially distinct subarrays. 

Consistent with general subspace processing, spatial smoothing also requires that the 

impinging wavefronts be narrowband. Note that even though several wavefronts may be 

arriving at an array via multipath from a single source, these wavefronts may not be coherent 

if the differential propagation delay is large enough. That said, correlated (partially coherent) 

wavefronts still pose a detection difficulty since the signal eigenvalues may not be much larger 

than those of the background noise. In this case, spatial smoothing helps to "spread" the 

vectors which define the signal subspace—thereby improving the detection of correlated 

signals. 

9.2 The Problem with Coherent Wavefronts 

To illustrate the effects of coherency, assume W distinct wavefronts from a single source signal, 

s(t), arrive at a if-element array. In a slight variation of the development of Section 2.3, the 

signal received at the array elements may be expressed as, 

x{t) = Das(t) (9-D 

where D is the steering matrix which maps the wavefront impinging from the W DOAs onto 

the sensors of the array, 

D = 

1   . .      1 
vl VW 

K-\ K-l 

(9-2) 

with v    being the element-to-element phase shift of the wt   waveform, 

v    = e~^ = e-
l2*5sinV (9-3) 

w 
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8 is the inter-element spacing (in units of wavelengths) and G is the wavefront DOA. Since 

the waveforms are assumed to be coherent, the w waveform at the reference ("first") element 

is simply an attenuated and phase-shifted replica of the reference waveform, i.e., 

sw(t) = aws(t). Therefore, a may be viewed as the set of complex attenuations mapping the 

reference waveform onto the reference element, 

lW 

(9-4) 

Denoting the columns of D by d—which corresponds to the mapping of the wavefront from the 

w direction onto the array elements and is commonly termed a steering vector—we see that 

a composite mapping vector, d, may be defined as 

d = Da = a-yd^ + a2d2 + . + CLyyd W (9-5) 

Because of the Vandermonde structure of the steering vectors, the mapping vector cannot 

correspond to a valid steering vector—unless only one wavefront is present. In other words, a 

valid steering vector has a Vandermonde structure and a coherent mapping vector cannot have 

a Vandermonde structure; to illustrate, consider the two wavefront case, 

°1 + a2 

alVl + °2V2 

alVl + a2Vl 

a1v1      +a2v2 

# (aj + ag) 

-K-l 

o,, a2 ^ 0. (9-6) 

This absence of a Vandermonde structure is exploited by the spatial smoothing algorithms to 

isolate the contributions of the coherent wavefronts while not affecting the contributions from 

incoherent wavefronts. 

If we generalize the notation of Eqn (9-1) to permit a vector of J independent signals, s(t), and 

an array, A, which maps these signals to the W distinct wavefronts, the signal received at the 

array elements, x(t), may be represented as, 

x(t) = DAs(t) = Ds(t). (9-7) 
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iL "" J_l_ 

In this general case, the j    column (mapping vector) of the mapping matrix D maps the j 

signal onto the array elements. If a signal corresponds to a unique wavefront, the column has 

the structure of a steering vector; otherwise, this structure will be absent. The covariance 

matrix associated with the signal is therefore, 

R = ^jxxtdt = ^JDAs(t)st(t)AiD\dt = DA(^,js(t)st (t)dt)A^iDt = DARgAiD\  (9- 8) 

where Rg is the signal covariance matrix. Note that the rank of JR in Eqn (9-8) is determined 

by the rank of JRS—i.e., the number of independent signals vice the number of impinging 

wavefronts. Assuming additive noise independent of the signals leads to a sampled covariance 

matrix of 

R = DARM Dt + Z   = DAR At D\ + a2I (9-9) 

where the latter relationship holds if the sensor noise is equi-powered, spatially independent, 

and zero-mean. Of course, this expression for the covariance matrix is idealized; however, it is 

sufficient for our current purposes. (Appendix A addresses the convergence behavior of the 

sampled covariance matrix as a function of the noise statistics and averaging interval.) 

Figure 9-1 illustrates the effects of coherent wavefronts on the subspace-based DOA methods. 

Here two coherent wavefronts and one independent wavefront impinge on the array in a noise- 

200 

150 
ö o 

■J3 u a> 
•<? 

&1 100 
ho 
o 

HJ 
o 
IM 50 

MUSIC Sweep of Unsmoothed Covariance Matrix 

• 3 equi-powered wavefronts 
• coherent wavefronts @ {5, 45} degrees 
• independent wavefront @ -37 degrees 
• two non-zero eigenvalues 
• GEESE DOAs = {-37, 23.4} degrees 
• SNR = 100dB 

v_ 
-75 -50 -25 0 25 50 

Hypothesized DOA (deg) 

75 

Figure 9-1: Spatial Response without Smoothing 
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free environment. Note that an eigenvalue analysis indicates that only two signals are present 

(rather than three wavefronts) and that the spatial spectrum indicates that only one valid 

signal is present—that of the independent wavefront; due to the coupling the coherent 

wavefronts, the coherent eigenvector does not correspond to a valid steering vector! However, 

given an appropriate array topology, it is possible to correctly isolate and identify the signal 

subspace. 

9.3 The Validity of Spatial Smoothing 

Evans [29] proposed partitioning the sensor array into N Kg -element similar subarrays and 

averaging the resulting covariance matrices to produce a "smoothed" covariance matrix. This 

is functionally equivalent to averaging principal subarrays along the main diagonal of the total 

array covariance matrix, i.e., 

R = 

ru r12 r13 r14 r16 r16 
r21 

r41 

r22 r23 r24 r25 r26 

r32 

r42 

r33 r34 

r43 r44 

r35 

r45 

r36 

r46 

r56 r51 r52 r53 r54 r55 

r61 r62 r63 r64 r65 r66 

(9-10) 

The validity of this subarray averaging has been proved in the literature via sequences of 

matrix algebra operations. In this section, we will adopt an apparently novel vector subspace 

perspective which, hopefully, provides additional insight into the spatial smoothing process. 

For notational simplicity, the following sections will, in turn, address the structure of a single 

coherent and incoherent signal's mapping vector onto the subarray in the absence of additive 

noise. 

9.3.1 Incoherent Wavefront and Spatial Smoothing 

For an incoherent wavefront, the signal received at each of the N subarray's is related to signal 

at the reference element by, 

xn(t) = ands(t) = dns{t) (9-11) 
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where d is the K -element steering vector and a is a complex-valued phasor (unit magnitude) 

resulting from the propagation—or, equivalently, phase shift assuming negligible attenuation 

during the propagation across the array—from the reference element to the first element of the 

subarray. If the array is uniform linear, the steering vector will have the structure, 

d = 

1 
v 

K-\ 

(9-12) 

where v is the element-to-element phase shift of the signal due to the wavefront propagation. 

yK Since multiplication by a complex scalar does not change the orientation of a vector in C , from 

Eqn (9-11) we see that each of the subarray's mapping vector, dn, are aligned. Therefore, 

averaging of the subarray's covariance matrices results in the same covariance matrix as any 

single covariance matrix, 

N N 

n = 1 n = 1 n = 1 

N 
(9-13) 

In summary, other than reducing the number of array elements, spatial smoothing does not 

have an effect on the covariance matrix contributions of independent wavefronts. 

9.3.2 Coherent Wavefronts and Spatial Smoothing 

For W coherent wavefronts arriving at the array, the signal received at each of the N 

subarrays is related to the signal at the reference element, s(t), by, 

( w ^        ( w 

\ü = 1      " } ^w = 1 

(9-14) 

where a is the phase shift due to array propagation to the first element of the subarray. As 

discussed earlier, the mapping vector, dn cannot correspond to a valid steering vector. 

However, since the mapping vector is a linear combination of valid steering vectors, it must lie 

within the subspace defined by those steering vectors. Furthermore, since the propagation 

delay of each wavefront is a function of the wavefront DOA, each mapping vector must corre- 
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spond to a different linear combination of the steering vectors. As a result, averaging N 

subarray covariance matrices, 

*S = TT I Rn = TT I *„*„t = »[* I i„i»t W|«(0|2 - DÄÄ tf \s(t)\2.      (9-15) 
N     , v-      i J n = 1 n = l v7i = l ' 

By definition, Z> is a ÜTS x W matrix of full rank. A is a WxN matrix, 

A=\a1... aj, (9-16) 

and is of full rank since each an is unique due to the different wavefront propagations to the 

reference elements of the subarrays. As a result, the rank of the smoothed covariance matrix 

will be the minimum of the rank of A or D. Hence, spatial smoothing will identify the 

wavefront subspace—providing at least W subarrays are averaged. If more subarrays are 

averaged, the additional covariance matrices are redundant and, therefore, do not change the 

rank of the smoothed covariance. 

Examining Eqn (9-15) from a computational perspective, we see that we would like to "spread" 

the wavefront subspace as much as possible to improve the signal detection performance. Since 

the DOAs are defined by the scenario geometry, the only aspect of the formation of the 

smoothed covariance matrix under our control is the selection of the subarrays. A technique 

discussed later—forward-backward smoothing—accomplishes this objective. 

Finally, we should note that the total energy contained within the smoothed covariance matrix 

(determined by either the trace or Frobenius norm) remains equal to that of any of the 

subarrays; however, this energy is now distributed over a subspace rather than a line in C . 

Thus, we see the result of decreased large eigenvalues and increased small eigenvalues. 

9.3.3 Additive Noise and Spatial Smoothing 

By definition, the additive noise does not correspond to a DOA. Hence, the contribution of the 

noise to the smoothed covariance will simply be, 

1   N 

Rs = i- T S . (9-17) 
n = 1 

If the noise is spatially uncorrelated, spatial smoothing serves to increase the effective number 

of noise samples averaged—thereby improving the convergence of the sampled noise 
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covariance towards the asymptotic limit. Counteracting this, the effective reduction of array 

aperture leads to the steering vectors being less discernible from the noise. Typically, the net 

effect of classical spatial smoothing is to reduce the sensitivity of the subspace processing if all 

of the wavefronts are independent. 

9.3.4 Forward-Backward Smoothing 

To this point we have addressed averaging subarrays along the main diagonal of the sampled 

covariance matrix; this approach is commonly termed forward smoothing. To mitigate the 

reduction in array aperture associated with spatial smoothing, Pillai and Kwon [32] and Kwon 

[3] proposed a technique known as forward-backward smoothing. Basically, they realized that 

if the reference element of the sensor array is shifted from the "first" to the "last" element, the 

reverse-ordered vector of received signal values may be expressed as, 

xb = Dbabs® (9-18) 

where for a uniform linear array the backwards steering matrix, Db is 

*>b = 
vl 

-(.K--1) ■(K-l) 
W 

= D* (9-19) 

and ab is the complex-valued attentuation associated with each wavefront at the reference 

("last") element. Noting that Db = D* , we see that upon complex-conjugation the received 

signal is, 

x* = Dhb s(t) = Dbs(t) . (9-20) 

Due to the assumption of a narrowband signal, we have incorporated the (approximately) 180 

degree phase shift associated with conjugating the reference waveform, s(t) into the attenu- 

ation and shifting coefficient, ab . Consistent with our earlier discussion on the effects of 

wavefront propagation, the xb* is a different linear combination of steering vectors than is the 

forward array's mapping vector—providing multiple coherent wavefronts are present. If an 

independent wavefront impinges on the array, the mapping vector of the "flipped" array, Db 

will be aligned with the forward array's mapping vector, D. 
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While it is possible to perform backwards smoothing on x£ analogous to the forward 

smoothing approach, the merger of the two viewpoints into forward-backward smoothing 

mitigates the array aperture reduction effects since for any given subarray size, the number of 

independent linear combinations of the steering vectors is doubled. Thus, for a given number 

of coherent wavefronts, the required subarray size is generally larger if forward-backward 

smoothing is employed. 

Since the backwards sampled covariance matrix is equal to the conjugate of the forward 

covariance matrix which has been flipped over its anti-diagonal, i.e., 

Rb = JRTJ = JR*J (9-21) 

where J is the permutation matrix, 

J = 

0 • • • 0 0 1 
0 1 0 

0 
0 1 0 
1 0 0 0 

(9-22) 

The forward-backward smoothed covariance matrix may calculated by averaging appropriate 

sets of subarrays along the main diagonal of the forward covariance, R', and the backwards 

covariance, R . Thus, 

N 
R ,fb _ _£_  ^   (jff , r>b 

2N 

N 

1   (<+0   =^ZRn 
n = 1 n = 1 

(9-23) 

where R is the forward-backward smoothed array covariance matrix, 

R = Rf+Rb (9-24) 

As with the forward-smoothed case, forward-backward smoothing the sampled covariance will 

expand the rank of the covariance matrix—eventually producing a signal subspace which 

contains the includes the space of the steering vectors of the wavefronts. 

9.3.5 Summary Comments 

As discussed to date, spatial smoothing of the covariance matrix is a true pre-processing 

scheme since the resulting covariance may be used by the standard subspace detection and 

Chapter 9: Spatial Smoothing 151 



The Validity of Spatial Smoothing Section 9.3 

DOA algorithms—providing W"max subarrays have been averaged where Wmax is the 

maximum number of coherent wavefronts from a single source (as opposed to the total number 

of coherent wavefronts). Although any set of subarrays will satisfy the requirement to spread 

the coherent mapping vector(s), we intuitively expect that maximizing the difference between 

the linear combinations of steering vectors implicit in the array smoothing will improve the 

signal detection performance in the presence of noise. This is one of the reasons forward- 

backward smoothing tends to outperform either forward or backward smoothing. 

To illustrate the effectiveness of spatial smoothing, consider Figure 9-2 which shows the 

spatial response after forward-backward spatial smoothing of the covariance matrix resulting 

from two coherent and one incoherent wavefronts. Unlike the results of processing the 

unsmoothed matrix demonstrated in Figure 9-1, the three wavefronts are both detectable and 

locatable. 

Due to the generally better spreading as well as less aperture reduction, forward-backward 

smoothing should be used rather than either forward or backward smoothing. However, using 

the vector space concepts with which we proved the validity of spatial smoothing, the following 

section presents an apparently novel approach to the detection and DOA estimation which 

appears to offer improved accuracy and detection performance while being computationally 

efficient. 

MUSIC Sweep on F-B Smoothed Covariance Matrix 

3 equi-powered wavefronts 
coherent wavefronts @ {5, 45} degrees 
independent wavefront @ -37 degrees 
three non-zero eigenvalues 
GEESE DOAs = {-37, 5, 45} degrees 
SNR = 100 dB 

-75 -50 -25 0 25 50 

Hypothesized DOA (deg) 

75 
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Figure 9-2: Spatial Response of a Coherent Scene after Smoothing 
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9.4 Proposed Improved Spatial Smoothing Algorithm 

Although the classical spatial smoothing approach is effective, there are several undesirable 

aspects related to using submatrices of the sampled covariance matrix: 

• Coherent signals are more easily detected when using the unsmoothed 
covariance matrix due to the consolidated energy of the wavefronts. As 
discussed in Chapter 4, determination of the number of signals is 
difficult since the typical assumptions are generally violated. 

• There is no obvious way to determine when "enough" spatial smoothing 
has been applied other than examining the changes in the smoothed 
covariance eigenvalues following successive layers of smoothing. Thus, 
signal detection again becomes an issue. 

• While spatial smoothing does not cause the noise level to increase, the 
aperture reduction effectively decreases the signal information—thus, 
decreasing the effective SNR and decreasing the accuracy of the 
determination of the number of signals as well as the DOA estimates. 

In this section we briefly outline two recently proposed approaches to resolving coherent 

signals: the signal eigenvector method (SEM) and postsmoothing as well as a new approach 

which builds on the vector subspace concepts. This steering vector subspace (SVS) approach 

appears to offer computational advantages relative to the prior methods 

9.4.1 Notation 

If we denote the eigendecomposition of the sampled covariance matrix, R, as 

R = BAB\ , (9-25) 

where the columns of the KxK matrix B are the eigenvectors associated with the diagonal 

matrix of ordered (largest-to-smallest) eigenvalues, A. Analyzing the (real-valued) eigenvalues 

permits estimating the number of impinging signals (vice wavefronts), J. Using this estimate, 

the eigenvectors may be partitioned into those associated with the signals, Bg, and noise (i.e., 

orthogonal subspace), B0, 

B=[BsBl 0-26) 

Similarly, we can partition the eigenvalues into a JxJ matrix of signal eigenvalues, As, and 

a (K-J) x (K- J) matrix of noise eigenvalues, AQ, so that, 
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A = 
A    0 s 

0 A o 

(9-27) 

As noted in Chapter 4, the signal eigenvectors will be "large" relative to the noise eigenvalues. 

The partitioning of the sampled covariance matrix into a signal subspace and a noise subspace 

is fraught with peril; however, for the sequence of this chapter we will presume that the 

number of signals has been accurately estimated. 

9.4.2 Signal Eigenvector Method (SEM) 

Cadzow, et al [31] recognized that the signal eigenvectors are a linear combination of the 

steering vectors. Essentially, he proposed that a matrix be formed from the signal eigenvectors, 

r = ßsßst (9-28) 

fh 
and that this approximation to the covariance matrix be smoothed and the result, S' , be used 

in the subspace processing 

9.4.3 Postsmoothing (Krim & Proakis) 

Krim and Proakis [35] proposed to develop a reduced rank approximation to the sampled 

covariance matrix, R, 

R = B A Bt, (9-29) 
o      S      o 

which would be spatially smoothed and the result processed using standard subspace detection 

and DOA estimation methods. This techniques was named postsmoothing because the 

smoothing is applied after an initial eigendecomposition as opposed to the "classical" approach 

(which they termed presmoothing) wherein the smoothing is done directly on the sampled 

covariance matrix. 

Krim and Proakis contended that postsmoothing outperformed both SEM and presmoothing 

for most situations and that presmoothing generally outperformed SEM. This result is 

intuitively agreeable from a vector subspace perspective; working with the reduced rank 

approximation should provide improved performance from a vector subspace perspective due 

to the elimination of the identified noise subspace. The subsequent spatial smoothing will 

spread the noise energy attached to the over an expanded subspace—thereby improving the 

DOA estimation accuracy of the subsequent processing. The relative performance of the SEM 
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approach may be an artifact of the specific simulation cases chosen by Krim and Proakis since 

using the eigenvectors rather than a reduced rank approximation should improve the DOA 

estimation performance in a mixed signal strength environment. 

9.4.4 Spatial Smoothing using the Eigenvectors 

Although Krim and Proakis formed the reduced rank approximation to the sampled covariance 

matrix and then performed the spatial smoothing, it should be noted that the smoothed 

covariance matrix may be achieved directly from the eigenvectors. If the array is partitioned 

into N similar subarrays then the corresponding eigenvectors ofthat subarray are simply the 

corresponding elements of the corresponding elements of the sampled covariance matrix' 

eigenvectors. Thus, if we adopt the notation, 

B = 
bn ... b1K 

bK1 ... bKK 

(9-30) 

where K is the size of the overall array and the columns of B correspond to the eigenvectors of 
th the array, for if -element subarrays the n    subarra/s signal eigenvectors are 

Bs    = 

'nl 'nJ 

b(n+K)l ■■■ b(n + K)J 

(9-31) 

In this case, reduced rank forward smoothing could be achieved by, 

N 
Rf = 1 Y B   A B  t 

n = 1 

(9-32) 

or the reduced rank forward-backward smoothing via, 

A* = 4l<*.AV+VAX.>- 2N 
n = \ 

(9-33) 

Although smoothing using the reduced rank approximation of Eqn (9-29) would be preferred 

for computational reasons over the approach represented by either Eqn (9-32) or Eqn (9-33), 

this formulation provides a little more insight into the traditional subarray averaging 

approach since we see how the signal eigenvectors—which must be linear combinations of the 

Chapter 9: Spatial Smoothing 155 



Proposed Improved Spatial Smoothing Algorithm Section 9.4 

steering vectors—are used to define a subspace which spans the wavefront subspace. From our 

earlier discussions, we realize that if coherent wavefronts are present, the effect will be to 

expand the dimension of the signal subspace to the number of wavefronts. 

9.4.5 Steering Vector Subspace Method (SVS) 

Although neither Cadzow or Krim and Proakis addressed the improved detection performance 

resulting from using the unsmoothed covariance matrix, using the reduced rank approxi- 

mation effectively lowers the noise floor which makes determining the number of wavefronts 

from the smoothed covariance matrix easier. On the negative side, both approaches implicitly 

require two eigendecompositions—an initial one to determine the signal subspace and another 

following the spatial smoothing to determine the desired wavefront subspace. Thus, there is a 

potentially significant computational burden imposed by these methods. 

From our vector subspace perspective, we see that spatial smoothing may be employed to 

expand the spatial subspace to that of the wavefront subspace—therefore, the intermediate 

step of forming a smoothed covariance matrix is unnecessary. Let us define a Kg x JN matrix, 

U, formed from selected elements of the signal eigenvectors, 

U = [jBi ...A*]' (9-34) 

where En is comprised of the rows of the signal eigenvectors, Bg, corresponding to the Kg- 

element subarray, J is the number of detected signals, and JV is the number of subarrays. Of 

course, for optimal spread of the wavefront subspace and maximum resolving power, we should 

implement forward-backward smoothing—i.e., some of the subarrays should be the "flipped" 

conjugate of a forward subarray. 

In the absence of noise, U will be a rank min(ifs, W, JN) matrix where W is the total number 

of wavefronts impinging upon the array. With additive noise perturbing the subspace, with a 

probability of one (w. p. 1) U will be of full rank. Just as with the original signal detection, the 

energy contained within the "noise subspace" should be "small" and distinguishable from the 

contributions of the wavefronts. Using a Gram-Schmidt orthogonalization, we can efficiently 

construct an orthogonal basis. In the absence of noise, we could use this basis directly in the 

DOA estimation; however, in general, we seek an ordered (by power) orthogonal basis set to 

facilitate the distinction between the signal and noise subspaces—which is note normally 

provided by Gram-Schmidt. However, due to the computational efficiency of the Gram-Schmidt 

procedure, we need to explore formulations which extract the desired basis set. 
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The singular value decomposition of U can provide this ordered basis set at the cost of some 

overhead since we would not use the "short space" of the decomposition. 

We should also note that the definition of U in Eqn (9-34) is similar to that used by Cadzow in 

the SEM. An alternate formulation weighting the subarray eigenvectors by their associated 

signal strength may be preferable if the relative performance of the reduced rank approxi- 

mation and SEM of Krim and Proakis holds. 

Finally, we should recognize that our goal in the DOA estimation problem is to find the non- 

orthogonal basis set defined by the steering vectors. Computational efficiency and repeatability 

has mandated techniques based upon orthogonal decompositions; however, there may be 

conceptual as well as detectability benefits in adopting the non-orthogonal perspective. 

In summary, the vector subspace perspective has identified some algorithmic and analysis 

issues which should be explored: 

• Identify an efficient algorithm to extract the wavefront subspace from U 
or V based upon a Gram-Schmidt orthogonalization; 

• Define an algorithm which exploits the SVD to identify the wavefront 
subspace and compare its performance to those derived from the Gram- 
Schmidt orthogonalizations; 

• Determine the relative merits of using the subarray eigenvectors (U) 
vice weighted eigenvectors (V) in the DOA estimation. By extension, 
this will assess the performance claims of Krim and Proakis. 

• Consider the implications of a non-orthogonal representation of the 
wavefront subspace and the associated signal detection and DOA 
estimation accuracy performance. 
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10. Concluding Remarks 

10.1 Overview and Summary 

Herein we have reviewed a variety of array covariance matrix-based approaches for detecting 

and estimating the directions-of-arrival (DOAs) of impinging wavefronts; those addressed 

include: 

Signal Enumeration 

• sequential testing 
• information-theoretic criteria 

- AIC 
- MDL 
- MIC 

BOA Estimation 

• direct-mapping techniques 
- split-aperture 
- full-aperture 

• inverse-mapping techniques 
- maximum entropy 
- minimum variance 

• orthogonal subspace methods 
- MUSIC 
- root-MUSIC 
- Pisarenko's method 
- minimum-Norm 

• signal subspace (matrix-shifting) methods 
- ESPRIT 
- TLS-ESPRIT 
- GEESE 

The subspace methods have the attractive ability to simultaneously locate multiple impinging 

signals—providing an accurate signal enumeration and associated partitioning of the sampled 

covariance matrix into signal and noise subspaces is possible. Unfortunately, applications such 

as sonar array processing frequently violate the subspace processing assumptions of: 

•   narrowband signals, 

Chapter 10: Concluding Remarks 159 



Overview and Summary Section 10.1 

• identical and accurately calibrated sensors, 

• known noise covariance structure, 

• stationary source-array geometries, and 

• no wavefront dispersion during wavefront 
propagation—i.e., point sources. 

The primary implication of violating these assumptions is that signal enumeration via infor- 

mation-theoretic criteria is invalidated. These criteria examine the eigenvalues resulting from 

an eigendecomposition of the sampled covariance matrix under the assumption of i.i.d. 

additive Gaussian sensor noise and calibrated array elements. An accurate signal enumeration 

is essential to the subspace partitioning required by the subspace DOA estimation algorithms. 

Since this effort was motivated by a desire to apply subspace processing techniques to real-time 

in-water sonar signal processing, a paradigm was identified which relaxed the restrictions 

imposed by the signal enumeration processing—the subspace stability methods presented in 

Chapter 7..These approaches exploit the a priori knowledge of the array manifold and an 

assumption of continuously transmitting sources. 

Under the assumption of continuously transmitting sources, the signal subspace will be tempo- 

rally stable. Two computationally viable algorithms which are applicable for uniform linear 

arrays were identified and their performance against in-water data demonstrated. Both the 

root-Tracker and Subspace Stability Exploitation Tracker (SSET) techniques use multiple- 

target tracking (MTT) techniques coupled with traditional subspace-based DOA estimation 

approaches to enumerate and characterize signals. As was noted, the subspace stability 

paradigm may be exploited by other techniques such as pattern recognition; the target tracking 

approach was adopted because of its suitability to on-line, real-time, sequential data 

processing. 

An adaptive array calibration algorithm was also developed (and presented in Section 8.4) 

which is suitable for on-line processing. This computationally efficient approach complements 

the root-Tracker and SSET approaches and increases their accuracy under the assumption of 

uncorrelated wavefronts 

Correlated wavefronts pose a problem to subspace algorithms since the size of the signal 

subspace will correspond to the number of impinging signals rather than wavefronts. Fortu- 

nately, a pre-processing technique known as "spatial smoothing" can expand the signal 

subspace to the desired dimension. In Section 9.3, a novel proof of the validity of spatial 

smoothing is presented using a vector space perspective. This viewpoint suggests new 

approaches for coherent signal processing. 
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10.2 General Comments and Open Issues 

Accurate signal enumeration is the most difficult aspect associated with applying subspace 

methods to in-water sonar array processing due to the low data rates and frequently violated 

processing assumptions. Sonar processing is often further complicated by dynamic source- 

array geometries. As a result, the root-Tracker and SSET represent a significant advance since 

they permit source identification and tracking while demanding relatively few computational 

resources. While these approaches can incorporate a variety of the subspace-based DOA 

estimation algorithms (e.g., ESPRIT, GEESE, root-MUSIC, etc.), the matrix-shifting 

algorithms appear to be most suited for practical implementation due to their computational 

efficiency and resistance to array calibration errors. 

Since this research was motivated by the in-applicability of the classical assumptions to some 

realistic signal processing environments, perturbation analyses and extensive simulation 

analyses have not been included. Such analyses would be useful in conjunction with devel- 

opment of appropriate perturbation models to facilitate the optimization of the signal 

processing and data association aspects of the subspace stability methods. An obvious area for 

such an effort would be the GEESE algorithm under varying enumeration hypotheses. 

Additional recommendations for further research on the subspace stability methods and 

coherent signal processing are presented in Section 7.7 and Section 9.4, respectively. 
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Appendix A. 
Covariance Matrix Statistics 

Due to finite sampling intervals, the reality is that we will not obtain the idealized matrix of 

Eqn (2-24); however, we can hopefully integrate over enough samples to make a reasonable 

convergence on this form and we shall hope that we can eat the introduced error. Thus, in 

general, 

R*R = E {xxt } = E {Dsst D\ +Dsrit + ns\ Dt + nnt } , (A-l) 

where R is the estimated covariance matrix derived from the sampled signal stream. Previ- 

ously, we made the argument that zero-mean noise which was independent of the signal 

resulted in E {Dsrit +nst D\ } -» 0, i.e., the cross-product terms eventually drop out and, 

furthermore, if we assume that the noise is spatially independent—a mathematically atheistic 

assumption albeit suspect in the presence of flow noise—then the noise covariance eventually 

converges to a diagonal matrix. In this section, we examine the statistics of that convergence 

as well as the covariance matrix. 

A.1 Assumptions 

The key assumptions in the derivations of this chapter are: 

• Narrowband signals impinge upon the array; 

• The signals are band-limited white Gaussian with a bandwidth of Bg; 

• The sensor noise is spatially uncorrelated; 

• The noise is band-limited white Gaussian with a bandwidth B; and, 

• The sampled covariance matrix is derived by averaging over a time span 
of T which comprises N samples. 

• Signals and noise are analytic with power spectral densities of Gg and 

a , respectively. 
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If the signals cannot be treated as narrowband, then the modelling of the signal contribution 

to the covariance matrix as Dsst D\ in Eqn (A-l) is invalid as are the algorithms and analyses 

presented in this document. If the signal is deterministic, then the structure of Dsst Df is also 

deterministic; however, the statistics of the cross-product terms will remain the same as in the 

random signal case. 

The spatially uncorrelated noise is assumed to be band-limited white Gaussian. Although the 

derivation here permits differing ambient sensor noise variances, most of the detection and 

DOA estimation algorithms discussed in this document presume similar statistics at each 

sensor. 

Finally, it is presumed that the sampled covariance matrix is the result of averaging the 

instantaneous covariances over a time span of T. Thus, 

R = ±\Rt(t)dt (A-2) 
T 

or, if we are operating in the discrete domain with N samples, the normalized sampled 

covariance matrix is given by 

R = ft 1 K CA-3) 
n = 1 

where R   is the epoch covariance matrix. n 

A.2 General Probability Background and Comments 

This section presents some of the background material common to the following sections. These 

include the probability density functions of the band-limited Gaussian noise, the effective 

correlation time and number of independent samples during the averaging span, and the 

simplifying contributions of the central limit theorem for modelling the statistics of the 

ensemble average. 

A.2.1 Probability Density Functions 

The random waveforms are assumed to be complex-valued Gaussian; hence, at any sampling 

epoch the probability density function (pdf) of the sample is the product of the real and 

imaginary components of the density function which are each assumed to have a real-valued 

Gaussian distribution, 
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Real 

Imaginary 

Figure A-l: Plot of the Complex-valued Gaussian Density Function 

f        -f- J_e-(*-^>2/ff2 

ijn 
(A-4) 

and, 

flm(z)    fy     oji 
1    -{y-tf/<? (A-5) 

Defining the complex-valued variable z as z = x + iy and assuming that x and y are 

independent and zero-mean (|i = 0), leads to a joint density distribution of 

f = ff  =    1    -(x2+y2)/di 

'z      Ix'y 2 
no 

(A-6) 

This distribution is illustrated in Figure A-l. In the following sections, we will use this pdf 

definition to derive the mean and standard deviations of the components of the covariance 

matrix described by Eqn (A-l). Note that the pdf is rotationally invariant so that it could equiv- 

alents be described in (r, 0) coordinates with the radius, r, having a Rayleigh distribution 

and the angle, 6, uniformly distributed from 0 to 2n. Thus, the pdf for r is 

fr=~2e (A-7) 

Note that the definitions of the density functions in Eqn (A-3)-Eqn (A-4) use a definition of a 

derived from the noise power. The standard deviation of the Gaussian distributions for x and 

y are related to the noise power by, 
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*       y      72 

Because the Rayleigh distribution is denned based upon the characteristics of the underlying 

Gaussians, in the subsequent developments we will use, 

o   = -?=. (A-9) r     ß 

A.2.2 Correlation Time and the Number of Independent Samples 

Assuming an ideal band-limited Gaussian signal is equivalent to assuming that white noise is 

processed by a rectangular filter of bandwidth ß prior to entering the system. In this case, it 

can be shown [65], that the autocorrelation function is simply a sine function, i.e., 

i?(x) = a2sinc(xß), (A-10) 

where a2 is the noise power within the bandwidth ß. Under these assumptions, samples 

separated by exactly 1/ß are uncorrelated and, therefore, independent. For a general signal 

distribution, the process correlation time is denned as the inverse of the effective bandwidth, 

i.e., 

cor      ß. R2 

J |i?(T)|2dx 

i?2(0) 
T     = 1 = =ü—  (A-ll) 

where here the effective bandwidth is equal to the actual bandwidth. Samples closer than Tcor 

will probably be correlated while those further away will be uncorrelated. Using this criterion, 

and assuming the data is averaged over a time span of T leads us to conclude that during that 

time span there will be approximately BT independent samples. Thus, we can define an 

effective (fractional) data set size of 

Ne{{ = BT+l (A-12) 

where the "1" allows for the initial sample. If the raw data set of N samples is derived by 

sampling at a data rate of fs, the effective data set size is related to the raw data size via, 

fs 
NeS = =-(N-l)+l. (A-13) 
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A.2.3 The Central Limit Theorem 

Although the density function of the elements of the averaged covariance matrix will not be 

Gaussian due to the processing, by virtue of the central limit theorem, the ensemble distri- 

bution will approach that of a Gaussian. Thus, for reasonably large averaging intervals—or, 

more precisely, a large time-bandwidth product—assuming a normal distribution is appro- 

priate. Of course, the caveat applies that the "tails" of the distribution will approach a 

Gaussian model slower than will the region near the mean. 

A.3 The Auto-Correlation Statistics 

The main diagonal elements of the sst and nnt components of Eqn (A-l) are the averaged 

auto-correlation of the random variables. In this section we will examine the instantaneous 

statistics associated with a given sampling epoch as well as the statistics of the ensemble 

average which contributes to the sampled covariance matrix used by the detection and DOA- 

estimation algorithms. Note that—by construction—these diagonal terms are real-valued. 

A.3.1 The Autocorrelation Statistics at a Given Epoch 

Defining z as a generic random variable (r.v.) representing either the / signal or the noise 

appearing at the kth array element and assuming it has the pdf of Eqn (A-4), the expected 

value for any single epoch (sample) would be 

E(zz\) = E(r2) =  J r2frdr = o2. (A-14) 
—OO 

Equivalently, we could use, 

oo 

E(zz1) = E(x2+y2) =   j (x2+y2)fxfydxdy = c2 + c2 = c2, (A-15) 

which is consistent with our knowledge that the power spectral density of a zero-mean 

Gaussian random variable is equal to its variance. Similarly, the second moment of the sample 

value at a given epoch is, 

oo 

E{zz\ (zzt )f) = E(r4) =  J r%dr = 2a4, (A-16) 
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or, in Cartesian coordinates, 

E(zzt (zzt)f) = E((x2+y2) (x2+y2)) = E(x4 + 2x2y2 +/) = E(x4) + E(x2y2) + E(y4)   (A-17) 

which simplifies to the same result, 

E(zz\ (zzt )t) = 3a4 + 2aV + 3c4 = 2a2 (A-18) x x   y y 

so that the standard deviation of the sample power at a given epoch is 

a   „ = a' 
lz 

j2. (A-19) 

A.3.2 The Statistics of the Ensemble Average of the Autocorrelation 

The average of the sum of the squares of M i.i.d. Gaussian random variables has the form1 of 

a chi-squared density function with M degrees of freedom, %^-If we define c to be the sum of 

the squares of x which is a Gaussian r.v. with a standard deviation of cx, i.e., 

M 
c =    Y  x2. (A-20) 

m = 1 

Alternately, we could define our random variable as the average (normalized) sum of the 

squares, i.e., 

i    M 

a = r,X^ (A"21) 
M   Z,     m 

m = \ 

The density function of the average, a, has the form [65], 

0           M/2-1 
(O/ft^iQ) e.„/2(oVM, (A.22) 

*M ^^ (a2/M) T(M/2) 

where T(-) is the gamma function, 

'• Note that the density function and the associated moments are not quite the Chi-squared distribution. The 
X2 distribution is usually defined as the sum of the squares of a Gaussian with a unitary standard deviation. 
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Figure A-2: Behavior of the Normalized %L Density vs. Sample Size (a   = 5) 

r(Y) = ju 
0 

e   du (A-23) 

The behavior of this density function is plotted in Figure A-2. Note the transition from a 

Rayleigh distribution for M = 2 (corresponding to a single complex-valued sample) towards 

the Gaussian distribution predicted by the central limit theorem as the number of samples 

increases. 

The mean and variance of the %^ distribution is 

E(X2
M) = Mc2

x 
(A-24) 

and, 

2- As an aside, recall that for half-integer values of y, the gamma function reduces to [67], 

2m + l   = _(2m)! 2_2m^ m = 0> ^ 2> 

2 m! 
(0-1) 

while for integer values it is simply related to the factorial, 

T(m + 1) = m\ m = 0,1, 2, (0-2) 
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Var(x^) = 2Ma4 (A-25) 

while the mean and variance of the average is simply, 

E(a) = a2 (A-26) 
X 

and, 

Var(cc) = ^a4. (A-27) 

As we can see upon appropriate substitution, the distribution for the single epoch sample of the 

covariance matrix in Eqn (A-14) follows a two degree of freedom chi-squared distribution due 

to the independence of the real and imaginary components of the sample. As a result, the 

number of samples is twice the effective data size iVeff, derived in Section A.2.2. If we view the 

sampled N data points as being composed of N/Nef[ duplicate sets of iVeff complex-valued 

samples, then the averaged autocorrelation expected value is 

E(a) = ^-E(X
2

N) = J- (2iVeff) a
2 = a2 (A-28) 

iVeff iVeff 

where we recall that a   = a/72. Similarly, the variance of the ensemble average is 

Var(cc2) = Var(x^) = (^-) 2(2ATeff)a
4 = ^-a4. (A-29) 

Using the definition of JVeff allows the standard deviation of the ensemble autocorrelation to 

be expressed in terms of the time-bandwidth product, 

~2 Jl „2 
a   -    ,g      -      °        - ° (A-30) K      Ä      jBT^l       JB(N-l)  ^ 

Finally, to illustrate the convergence of the %^ distribution to a Gaussian, consider the plot 

shown in Figure A-3 for the situation wherein 150 complex-valued samples are averaged. Note 

the close convergence even with this relatively moderate sample size. 
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Figure A-3: Convergence of the %?, Distribution to the Gaussian (M = 150) 

A.4 The Cross-Correlation Statistics 

The off-diagonal terms in sst and rent as well as all of the terms of sret and rest will be the 

product of two complex-valued random variables—which, for the purposes of this analysis, are 

assumed to be independent band-limited Gaussian. In this section we examine the statistics 

associated with a single sampling epoch as well as the ensemble statistics generated by 

averaging over the sampling interval. Note that while the autocorrelation is real valued, these 

terms are, in general, complex-valued. 

A.4.1 The Cross-Correlation Statistics at a Given Epoch 

Let us denote z- and z- as the two complex-valued data channels. The expected value of their 

cross-product is, 

E(ziZß) = EUXi + iyt) (Xj-iyß) = Edx^j+y^j) +i(xjyi-xiyj)) = 0. 

More insight may be garnered by adopting a polar notations, thus, 

(A-31) 

i(6.-e.) iA e 
E(ztzp = E(rirje    •    J>) = E{rtrf    ö) = 0 (A-32) 
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where since G. is uniformly distributed from 0 to 2JI, the difference öj-ög must also be 

uniformly distributed—leading to the expected value of zero. Note, however, that this is 

actually an ensemble average since, at any given sampling epoch, the sampled value will not 

be zero! In this case, we would have a phasor with an expected radius of 

na.G. 
EW = J' foWrf&j = Ä(rW= ~r (A_33) 

00 

which is simply the product of the expected values of r1 and r2 using the assumption of 

independent random variables. This phasor would be uniformly distributed from 0 to 2n. The 

variance of the product radius about this expected value can be shown to be 

EUr-r.)2) = JJ (A-34) 

so that the standard deviation is, 

(A-35) 

As we add more samples in building the sampled covariance matrix, we will create a 

"drunkard's walk" in the complex-plane which—upon averaging—will converge to the expected 

value of Eqn (A-31). The characteristics of the ensemble average is the topic of the following 

section. 

A.4.2 The Statistics of the Ensemble Average of the Cross-Correlation 
Terms 

At any given sampling epoch, we will have a phasor characterized by a radius with an expected 

value of Eqn (A-33) and a standard deviation given in Eqn (A-35). This phasor is uniformly 

distributed over the range from 0 to 2rc; thus, each epoch represents two independent samples. 

Expressing this in Cartesian (x,y) coordinates leads to representing the sample at the n 

epoch as, 

x„ = i? cos(A9 ) (A-36) n n v       n 

v   = R sin (A 6 ) (A-37) 

where, 
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Rn = rirr (A-38) 

Assuming we average over the N complex-sample data set which contains iVeff effective 

samples, then the expected value of the ensemble average is zero. 

N     x ,       N 
y —> = — y 

„ = 1
iVeff        iVeffB = i 

E(x) = E(Y ^P-) = J- T £(i? cosA 0J = E(£)£(cosA0) = 0 (A-39) 
.AT ,, AT   -  *-> * n 

Neff      , -,      ^eff en      i -I en n 

ß(y) = E( X TF-^„) = ur- S £(finsin (A e )) = £(i?)£(sinA 0B) = 0 (A-40) 
n = l^eff iVeff„ = i 

Note that just as the real and imaginary portions of the epoch values are independent, the 

ensemble average components are independent. Continuing to assume that the data set is 

composed of replicas of Neif independent samples leads to the variance of the components 

being 

9           2            Ü   (xn\          1    ^                            2     E(R2)E(cos2A 0)     tftf 4 = E(x2) = E( £    -2-    )=    1    X £((i?recosA0n)2) = -^A- U^L (A-41) 

and 

„Ti^-rr   A&.ti       n        n N*« 2Areff 

o 9    9 

o 9 i[   fy„V l    ^ 2       £(ß2)£(sin2A 0)       aia7'      „„, 

^ ■m) - «.?,(£) >=ä.V«*»^' >-   *«,   = ^A"42) 

where we should recall that a2 ando2 are the power spectral densities associated with the two 

band-limited Gaussian noise sources. In examining Eqn (A-41) and Eqn (A-42), note that the 

real and imaginary variances are equal—which is to be expected due to the initial assumption 

of independence. Finally, adopting a polar notation, and assuming enough samples so that the 

distributions may be modelled as Gaussian (i.e., the central limit theorem applies), the 

averaged cross-correlation may be modelled as a radial term, R having a Rayleigh distribution 

with a standard deviation of 

G,a_ 
a- = 

R     j2Nt 

1 J (A-43) 

eff 
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with this radius uniformly distributed from 0 to 2TC. The factor of J2 in Eqn (A-44) is due to 

the Rayleigh distribution being defined in terms of the standard deviation of the x and y 

Gaussians. 

A.4.3 Cross-Correlation with a Deterministic Signal 

If we are interested in the statistical behavior of the interaction of the noise with a determin- 

istic waveform (e.g., a cisoid), the analysis of the previous section holds with the expected value 

being zero and the standard deviation being 

c2 = J_02£(s|s) (A-44) 
lJ      NeS   ' 

where E(st s) is the power of the deterministic waveform. We can view this as a projection of 

the iVeff-dimensional noise signal onto the 1-dimensional space of the waveform. Thus, equiv- 

alent to the operations of a discrete Fourier transform, (l/iV"eff)
th of the energy of the random 

and uniformly distributed noise would be expected to be aligned with the reference waveform. 

Note that this is the same result achieved in Eqn (A-43)! Hence, we see that the deterministic 

signal may be any waveform and not restricted to any mathematically aesthetic form such as 

a cisoid. In general, if two processes (signals) are interacting, the number of independent 

random samples is determined by the random variable with the maximum bandwidth. 

A.5 Covariance Matrix Modelling and Data Simulation 

Using the results from the previous section, we can simulate sampled covariance matrices by 

melding the deterministic effects of the array geometry with the statistical characterization of 

the signal and noise interactions. Hence, the sampled covariance matrix may be modelled as 

R = DRsDt +DRsn + RSJ D\ +Rn (A-45) 

where the elements of Rs, Rsn, and, Rn are random variables characterized by the results of 

the previous sections and D is the steering matrix denned by the source-array geometry. 

In conclusion, note that the derivations in this chapter presumed narrowband signals 

impinging on the array. If this assumption is seriously violated, the steering matrix and 

covariance matrix decomposition of Eqn (A-l) will be erroneous. Under such a scenario, a 

spectral decomposition of the model such that the narrowband assumption holds would be 

appropriate. 
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Appendix B. Subspace Stability 
Implementation 

This chapter contains software written in the Mathematica programming language which 

illustrate the implementation of the subspace stability tracking concepts. In many respects, 

the subspace stability methods are unique due to their algorithmic rather than mathematical 

nature. This algorithmic nature yields the robust enumeration and DOA estimation perfor- 

mance displayed by the SSET against actual data. The function listings in this section are 

intended to complement the algorithmic descriptions of the root-Tracker described in 

Section 7.5.1 and the SSET described in Section 7.6.2. 

B.l Track Structure 

During the course of data processing, the algorithms create and delete tracks; each track repre- 

sents a potential signal source. The structure of a track contains the following fields: 

avg complex-valued estimated root location 

stdDev real-valued sampled standard deviation of the 
roots. 

gateSize circular gate size used for data association 

state track status: either "confirmed", "probable", or 
"tentative" depending upon confirming evidence 

consHits consecutive epochs in which data has been associ- 
ated to the track 

consMiss consecutive epochs during which no roots have 
been associated to the track 

startTime initial epoch resulting in a track 

duration span during which the track has existed 

obsList list of the roots which are used in the calculation 
of the avg and stdDev 
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This track structure implicitly assumes a stationary geometry—i.e., a constant spatial (or 

spectral) frequency. 

B.2 Nearest-Neighbor Data Association 

The nearest-neighbor data association algorithm assumes a monotonic mapping so that each 

root can be associated with one-and-only-one track and each track can be associated with only 

one root from a given epoch. The association is accomplished by gating the roots and assigning 

unique associations sequentially from closest association to furthest. 

NearestNeighborMap[roots_List,   trackSet_List]   := Module[ 

{rootMap,   assocMap,   B,   obs,   trk,   distance, 

avg=l,   stdDev=2,   gateSize=3}, 

rootMap = {}; 

Do[ (* for each root in the set, check the existing track association *) 

Do[ (* check the root distance from existing tracks for this root *) 

distance = Abs[roots[[obs]] - trackSet[[trk,avg]]]; 

If[ distance <= trackSet[[trk,gateSize]], 

AppendTo[rootMap, {obs, trk, distance}]]; 

,{trk,1,Length[trackSet]}]; 

,{obs,1,Length[roots]}]; 

rootMap = Sort[rootMap,(#1[[3]] < #2[[3]]&)]; (* sort by distance *) 

assocMap = {};  (* select unique maps having shortest distance *) 

While[Length[rootMap] > 0, 

AppendTo[assocMap, B = rootMap[[1]]]; 

rootMap = Select[rootMap, (#[[1]] !=B[[1]]) && (#[[2]] ! = B[[2]])&]; 

]; 

assocMap 

]; 

B.3 Root-Tracker Function 

The root-Tracker algorithm is conceptual sister of Burkhardt's method. Thus, for a if-element 

array, each sampling interval will result in if- 1 complex-valued roots and the root-Tracker 

sequentially processes the roots looking for root stability. Under the classical assumptions, the 

signal roots will be stable and reside on the unit-circle whereas the spurious noise-induced 

roots will be temporally uncorrelated. As noted in Section 7.5, these assumptions are 

frequently violated in practice; as a result, the SSET algorithms should generally be preferred. 
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Section B.3 Root-Tracker Function 

This implementation operational parameters (Options [rootTracker) are: 

initialGate initial gateSize to be used for root-to-track association 

minimumGate minimum allowable gateSize 

num2promote number of sequential associations required for track 
promotion to "confirmed" status 

num2delete number of sequential association misses required for 
track deletion 

filterSpan the number of observations which should be main- 
tained and used in the parameter estimation 

gateTimeConstant the first-order filter time constant used in adjusting 
the gateSize to prevent premature gate closure 

This implementation implicitly assumes a stationary geometry. Geometry dynamics are 

primarily reflected in the choice of the filterSpan which defines the amount of data used to 

establish the estimated DOA. 

rootTracker[{epoch_,   newRoots_List},   initTrack_List,   opts Rule]    :=Module[ 
{numRoots  = Length[newRoots],   track,   trk,   obs,   distance,   maxPoints, 
decay,   bO,   al,   initGate,   minGate,   B, 
rootMap,   assocMap,   deletedTracks,   promoteThreshold,   deleteThreshold, 
associatedRoots,   associatedTracks,   freeRoots,   freeTracks, 
avg=l,   stdDev=2,   gateSize=3,   state=4,    (*   track indices  *) 
consHits=5,   consMiss=6,   startTime=7,   duration=8,   obsList=9), 

maxPoints  =  filterSpan  /.   {opts}   /.   Options[rootTracker]; 
decay =  gateTimeConstant  /.   {opts}   /.   Options[rootTracker]; 
minGate = minimumGate  /.   {opts}   /.   Options [rootTracker] ,- 
initGate =  initialGate  /.   {opts}   /.   Options[rootTracker]; 
promoteThreshold = num2promote  /.   {opts}   /.   Options[rootTracker]; 
deleteThreshold = num2delete  /.   {opts}   /.   Options [rootTracker] ,- 

al  = Exp[-1.0/decay]; 
bO  =  1.0  -  al; 

track = initTrack; 

assocMap = NearestNeighborMap[newRoots,track]; 

(* the roots and tracks and their associations or lack thereof *) 
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associatedRoots  = Sort[Map[#[[1]]&, assocMap]]; 

associatedTracks = Sort[Map[#[[2]]&, assocMap]]; 

freeRoots  = Complement[Range[numRoots],associatedRoots]; 

freeTracks = Complement[Range[Length[track]],associatedTracks]; 

(* update the tracks *) 

Do[  (* work through the association map and update the tracks *) 

obs = assocMap[[m,1]]; 

trk = assocMap[[m,2]]; 

If[Length[track[[trk,obsList]]] >= maxPoints, 

track![trk,obsList]] = Rest[track[[trk,obsList]]]]; 

AppendTo[track[[trk,obsList]], newRoots[[obs]]]; 

track[[trk,avg]] = Mean[track[[trk,obsList]]]; 

track[[trk,stdDev]] = Sqrt[ComplexVariance[track[[trk,obsList]]]]; 

track[[trk,gateSize]] = Max[ minGate, 

b0*(3 track[[trk,stdDev]]) + al*track[[trk,gateSize]]]; 

track[[trk, consHits]] += 1; 

track[[trk, consMiss]] = 0; 

track[[trk, duration]] = epoch - track[[trk, startTime]]; 

If[ (track[[trk, state]] == "tentative") && 

(track![trk, consHits]] >= promoteThreshold), 

track[[trk, state]] = "confirmed"; 

]; 
,{m,1,Length[assocMap]}]; 

deletedTracks = {}; 

Do[  (* update and delete, if necessary, undetected tracks *) 

trk = freeTracks[[m]]; 

track[[trk, consHits]] = 0; 

track[[trk, consMiss]] += 1; 

Switchftrack![trk, state]], 

"confirmed", 

If[track[[trk, consMiss]] >= deleteThreshold, 

track[[trk, state]] = "deleted"; 

AppendTo[deletedTracks, track[[trk]]]; 

track = Delete[track,trk]; 

], 

"tentative", 

track = Delete[track,trk] ; 

]; 
,{m,Length[freeTracks],1,-1}];      (* work  from end to beginning  *) 

Do[      (*  update  the  track list with new tentative  tracks  *) 
obs   =   freeRoots[[m]]; 
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newTrack = Range[obsList]; (* initialize list *) 

(* initialize the new addition to the track set *) 

newTrack[[avg]] = newRoots[[obs]]; 

newTrack[[stdDev]] = 0; 

newTrack[[gateSize]] = initialGate /.{opts} /. Options[rootTracker]; 

newTrack[[state]] = "tentative"; 

newTrack[[consHits]] = 1; 

newTrack[[consMiss]] = 0; 

newTrackf[startTime]] = epoch; 

newTrack[[duration]] = 0; 

newTrack[[obsList]] = {newRoots[[obs]]}; 

AppendTo[track,newTrack]; (* append to the track list *) 

, {m,1,Length[freeRoots]}]; 

track  (* return the confirmed and tentative tracks *) 

] 

B.4 SSET Function 

This implementation of the SSET (Subspace Stability Exploitation Tracker) algorithm uses the 

MultHypGEESEroots function to generate sets of roots from a given covariance matrix; each 

root set corresponds to a hypothesized number of signals, J, under the constraint that 

hypotheses must result in all roots residing near the unit-circle. If existing tracks are 

available, the new roots are processed with the hypothesis selected whose roots best correspond 

to existing tracks. If no tracks are available, the root history is compiled and processed via the 

SSETrackerlnit function until a stable signal source is identified. 

This implementation operational parameters (Options[SSET]) are: 

initialGate initial gateSize to be used for root-to-track association 

minimumGate minimum allowable gateSize 

num2promote number of sequential associations required for track 
promotion to "confirmed" status 

num2delete number of sequential association misses required for 
track deletion 

filterSpan the number of observations which should be main- 
tained and used in the parameter estimation 
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gateTimeConstant the first-order filter time constant used in adjusting 
the gateSize to prevent premature gate closure 

validRadiusOffset valid hypothesized roots must lie within ±validRadiu- 
sOffset of the unit-circle 

As with the root-Tracker, a static source-array geometry is implicitly assumed. If the 

hypothesis which best fits established tracks results in unassociated roots, the new tracks 

derived from these roots are designated "probable" since there is a reasonable likelihood that 

they represent short-term events. 

SSET[epoch_,   vecs_List,   currentTracks_,   oldRoots_,   opts Rule]    := Module! 
{tracks,   rootSets,   hypSet,   hyplndex,   promoteThreshold,   trk,   obs,   m, 
costSet,   roots,   assocMap,   cumDistance,   nuniMatches,   maxMatch,   bestMatch, 
newTrack, 
avg=l, stdDev=2, gateSize=3, state=4, (* track indices *) 

consHits=5, consMiss=6, startTime=7, duration=8, obsList=9}, 

(* track processing parameters *) 

maxPoints = filterSpan /. {opts} /. Options[SSET]; 

decay = gateTimeConstant /. {opts} /. Options[SSET]; 

minGate = minimumGate /. {opts} /. Options[SSET]; 

initGate = initialGate /. {opts} /. Options [SSET] ,- 

promoteThreshold = num2promote /. {opts} /. Options[SSET]; 

deleteThreshold = num2delete /. {opts} /. Options[SSET]; 

al = Exp[-1.0/decay]; 

bO = 1.0 - al; 

tracks = currentTracks;(* existing tracks — all categories *) 

rootSets = oldRoots;(* root history — used for track init *) 

hypSet = MultHypGEESEroots[vecs]; (* possible root sets *) 

If[Length[tracks] ==0, (* no tracks => attempt initialization *) 

(* note that the empty hypothesis set is implicitly handled *) 

AppendTo[rootSets, hypSet]; (* update the history *) 

If[Length[rootSets] >= promoteThreshold, 

rootSets = Take[rootSets,-promoteThreshold]; 

tracks = SSETrackerlnit[rootSets]; 

If[Length[tracks] > 0, 

Do[  (* set track start times to current epoch *) 

tracks[[trk, startTime]] = epoch; 
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,{trk,1,Length[tracks]}]; 

rootSets = {}; (* empty the history buffer *) 

]; 

]; 
* we have existing confirmed tracks so check for best fit *) 

If[Length[hypSet] > 0, (* we have roots to analyze *) 

costSet = {}; 

Do[ (* compare the roots to the existing tracks *) 

roots = hypSet[[hyplndex]]; 

assocMap = NearestNeighborMap[roots, tracks]; 

If[Length[assocMap] > 0, 

cumDistance = Plus@@Map[#[[3]]&,assocMap]; 

numMatches = Length[assocMap]; 

AppendTo[costSet, 
{hyplndex,numMatches,cumDistance,assocMap}]; 

]; 
,{hyplndex,1,Length[hypSet]}]; 

If[Length[costSet] > 0, (* we have viable associations *) 

maxMatch = Max[Map[#[[2]]&,costSet]]; (* max associations *) 

costSet = Select[costSet,#[[2]] == maxMatch&]; 

(* given the identified best fit, update the track *) 

bestMatch = SortfcostSet, #1[[3]] < #2[[3] ] &] [[1] ] ; 

roots = hypSet[[bestMatch[[1]]]] ; 

assocMap = bestMatch[[4]]; 

(* roots & tracks and their associations or lack thereof *) 

associatedRoots  = Sort[Map[#[[1]]&, assocMap]]; 

associatedTracks = Sort[Map[#[[2]]&, assocMap]]; 

freeRoots  = 
Complement[Range[Length[roots]],associatedRoots]; 

freeTracks = 
Complement[Range[Length[tracks]],associatedTracks]; 

,(* we have viable roots but no associations *) 

assocMap = {}; 

associatedRoots = {}; 

associatedTracks = {}; 

roots = Last[hypSet]; (* select maximum hypothesis *) 

freeRoots  = Range[Length[roots]]; 

freeTracks = Range[Length[tracks]]; 

]; 

,(* the hypSet is empty so we don't have roots to process *) 

assocMap = {}; 
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associatedRoots = {}; 

associatedTracks = {}; 

freeRoots = {}; 

freeTracks = Range[Length[tracks]]; 

]; (* end hypothesis processing *) 

(* having considered the possible associations, update the tracks *) 

Do[  (* work through the association map and update the tracks *) 

obs = assocMap[[m,1]]; 

trk = assocMap[[m,2]]; 

If[Length[tracks[[trk,obsList]]] >= maxPoints, 

tracks[[trk,obsList]] = Rest[tracks[[trk,obsList]]]]; 

AppendTo[tracks[[trk,obsList]], roots[[obs]]]; 

tracks[[trk,avg]] = Mean[tracks[[trk,obsList]]]; 

tracks[[trk,stdDev]] = 

Sqrt[ComplexVariance[tracks[[trk,obsList]]]]; 

tracks[[trk,gateSize]] = Max[ minGate, 

b0*(3 tracks[[trk,stdDev]]) + al*tracks[[trk,gateSize]]]; 

tracks[[trk, consHits]] += 1; 

tracks![trk, consMiss]] = 0; 

tracks[[trk, duration]] = epoch - tracks[[trk, startTime]]; 

If[ (tracks[[trk, state]] == "probable") && 

(tracks[[trk, consHits]] >= promoteThreshold), 

tracks[[trk, state]] = "confirmed"; 

]; 

,{m,1,Length[assocMap]}]; 

Do[  (* update and delete, if necessary, undetected tracks *) 

trk = freeTracks[[m]]; 

tracks[[trk, consHits]] = 0; 

tracks[[trk, consMiss]] += 1; 

Switch[tracks[[trk, state]], 

"confirmed", 

If[tracks[[trk, consMiss]] >= deleteThreshold, 

tracks = Delete[tracks,trk]; 

]. 

"probable", 

tracks = Delete[tracks,trk], 

"tentative", 

tracks = Delete[tracks,trk] ,• 

]; 
,{m,Length[freeTracks],1,-1}];  (* work from end to beginning *) 

Do[  (* update the track list with new probable tracks *) 
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obs = freeRoots[[m]]; 

newTrack = Range[obsList]; (* initialize list *) 

(* initialize the new addition to the track set *) 

newTrack[[avg]] = roots[[obs]]; 

newTrack[[stdDev]] = 0; 

newTrack![gateSize]] = initialGate /.{opts} /. Options[SSET]; 

newTrack[[state]] = "probable"; 

newTrack[[consHits]] = 1; 

newTrack[[consMiss]] = 0; 

newTrack[[startTime]] = epoch; 

newTrack[[duration]] = 0; 

newTrack[[obsList]] = {roots[[obs]]}; 

AppendTo[tracks,newTrack]; (* append to the track list *) 

,{m,1,Length[freeRoots]}] ; 

]; 

{tracks, rootSets} 

]; 

B.5 MultHypGEESEroots Function 

Given a set of eigenvectors, vecs, derived from a sampled array covariance matrix, this function 

applies the GEESE DOA estimation algorithm under a sequence of hypothesized number of 

signals. The sets of roots associated with valid hypotheses are returned. A valid hypothesis is 

denned as one in which all resulting roots are within ±validRadiusOffset of the unit-circle. 

MultHypGEESEroots[vecs_?MatrixQ, opts   Rule] := Module[ 

{rootSet, validHypothesis, hypRoots, j, threshold}, 

threshold = validRadiusOffset /. {opts} /. Options[SSET]; 

rootSet = {};(* sets associated with valid roots *) 

validHypothesis = True;(* valid hypothesis flag *) 

j = 1; (* current hypothesis *) 

While! validHypothesis && j < Length[vecs],(* i.e., reasonable "j' 

hypRoots = GEESE[vecs, j, rootForm->"complex"]; 

If[Max[Abs[Abs[#]-l]& /@ hypRoots] <= threshold, 

rootSet = Append[rootSet,hypRoots]; 

j += 1; 

, (* otherwise, stop processing *) 
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validHypothesis  = False 

] 

]; 
rootSet 

]; 

B.6 SSETrackerlnit 

This function is used by the SSET algorithm for track initialization if no existing tracks are 

available for use as a reference subspace. Given a sequence of potential root sets derived by the 

MultHypGEESEroots function, the common enumeration hypotheses for each data segment 

are identified The associated data sets are then analyzed for track consistency under a common 

hypothesis—that is, the same hypothesized number of signals for each segment. If the number 

of confirmed tracks equals the number of hypothesized signals, "confirmed" tracks are 

returned. In the event that multiple hypotheses satisfy the hypothesis confirmation, the 

largest hypothesis is used to generate the returned tracks. 

SSETrackerlnit[rootSets_List,   opts Rule]    := Module[ 
{promoteThreshold,   epochs,   minHyp,   maxHyp,   hyp,   hyplndex, 
balancedSets,   n,   roots,   ,trk,   obs,   m,   preferredTrackSet, 
assocMap,   associatedTracks,   freeTracks,   tracks,   epochHyps, 

candidateHyps,   trackSet, 
decay,   minGate,   initGate,   numTracksMatchHypothesis, 
avg=l,   stdDev=2,   gateSize=3,   state=4,    (*  track indices  *) 
consHits=5,   consMiss=6,   startTime=7,   duration=8,   obsList=9}, 

promoteThreshold = nura2promote  /.   {opts}   /.   Options[SSET]; 
decay =  gateTimeConstant  /.   {opts}   /.   Options[SSET]; 
minGate  =  minimumGate   /.    {opts}   /.   Options[SSET]; 
initGate  =  initialGate  /.   {opts}   /.   Options[SSET]; 

al  =  Exp[-1.0/decay]; 

bO   =   1.0   -   al; 

epochs  = Length[rootSets]; 

epochHyps   =   {}; 
Do[ 

If[Length[rootSets[[n]]]   >  0, 
AppendTo[epochHyps,Map[Length[#]&,rootSets[[n] ] ] ] ; 

,(*   else we have a null  set  *) 
AppendTo[epochHyps,{0}]; 
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,{n,1,Length[rootSets]}]; 

candidateHyps = Intersection[Sequence@@epochHyps]; 

If[Length[candidateHyps] > 0 && Min[candidateHyps] > 0, 

(* we have hypotheses to check *) 

minHyp = Min[candidateHyps]; (* minimum "J" *) 

maxHyp = Max[candidateHyps]; (* maximum "J" *) 

balancedSets = 

Map[Select[#,minHyp <= Length[#] <= maxHypSc] &, rootSets] ; 

trackSet = Range[Sequence@@candidateHyps]; 

Do[(* iteratively process the common hypotheses *) 

(* initialize the tracker *) 

roots = balancedSets[[l,hyplndex]]; 

tracks = tracklnit[roots]; 

Do[(* process the epochs for consistency *) 

roots = balancedSets[[n,hyplndex]]; 

assocMap = NearestNeighborMap[roots, tracks]; 

(* associated and unmapped tracks *) 

associatedTracks = Sort[Map[#[[2]]&, assocMap]]; 

freeTracks = 

Complement[Range[Length[tracks]],associatedTracks]; 

Do[  (* work through association map and update tracks *) 

obs = assocMap[[m,1]]; 

trk = assocMap[[m,2]]; 

AppendTo[tracks[[trk,obsList]], roots[[obs]]]; 

tracks[[trk,avg]] = Mean[tracks[[trk,obsList]]]; 

tracks[[trk,stdDev]] = 

Sgrt[ComplexVariance[tracks[[trk,obsList]]]]; 

tracks[[trk,gateSize]] = Max[ minGate, 

b0*(3 tracks![trk,stdDev]]) + 

al*tracks[[trk,gateSize]]]; 

tracks[[trk, consHits]] += 1; 

tracks[[trk, consMiss]3 = 0; 

tracks[[trk, duration]] += 1; 

If[ (tracks[[trk, state]] == "tentative") && 

(tracks[[trk, consHits]] >= promoteThreshold), 

tracks[[trk, state]] = "confirmed"; 

]; 

,{m,1,Length[assocMap]}]; 

Appendix B: Subspace Stability Implementation 185 



tracklnit Function Section B.7 

Do[  (* delete unassociated tracks *) 

trk = freeTracks[[m]]; 

tracks = Delete[tracks,trk] ; 

,{m,Length[freeTracks],1,-1}];  (* work end to beginning *) 

,{n,2,epochs}]; 

trackSet[[hyplndex]] = tracks; (* persistent tracks *) 

,{hyplndex, Length[trackSet]}]; 

numTracksMatchHypothesis = False; 

preferredTrackSet = {}; 

hyp = maxHyp; 

While[ (!numTracksMatchHypothesis) && (hyp >= minHyp), 

hyplndex = hyp - minHyp + 1; 

If[Length[trackSet[[hyplndex]]] == hyp, 

preferredTrackSet = trackSet[[hyplndex]]; 

numTracksMatchHypothesis = True; 

,(* else *) 

hyp -= 1; 

]; 

]; 

Select[preferredTrackSet,#[[state]] == "confirmed"&] 

, (* otherwise,  we don't have a confirmed track *) 

{} 

] 

] 

B.7 tracklnit Function 

The tracklnit utility function is used by the SSET and SSETrackerlnit functions to initialize 

tracks based upon validated roots. 

tracklnit[rootSet_List]    := Module[ 
{rootNum,   tracks,   newTrack, 
avg=l,   stdDev=2,   gateSize=3,   state=4,    (*   track indices   *) 
consHits=5,   consMiss=6,   startTime=7,   duration=8,   obsList=9}, 

tracks  =   {}; 
Do[ (* for each root in the rootSet *) 

newTrack = Range[obsList]; (* initialize list *) 

(* initialize the new addition to the track set *) 

newTrack[[avg]] = rootSet[[rootNum]]; 
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newTrack[[stdDev]] = 0; 

newTrack[[gateSize]] = initialGate /. Options[SSET]; 

newTrack[[state]] = "tentative"; 

newTrack[[consHits]] = 1; 

newTrack[[consMiss]] = 0; 

newTrack[[startTime]] = 0; 

newTrackf[duration]] = 0; 

newTrack[[obsList]] = {rootSet[[rootNum]]}; 

AppendTo[tracks,newTrack]; (* append to the track list *) 

,{rootNum, 1, Length[rootSet]}]; 

tracks 

]; 
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