
Transforming Algebraically-Based Object Models

Into a Canonical Form for Design Refinement

THESIS
Charles G. Beem
Captain, USAF

AFIT/GCS/ENG/95D-01

fiPiovec iw PU0» release
Unlimited

«4? DTIC QUALITY ffiSi'teui'M) 1

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

AFIT/GCS/ENG/95D-01

Transforming Algebraically-Based Object Models

Into a Canonical Form for Design Refinement

THESIS
Charles G. Beem
Captain, USAF

AFIT/GCS/ENG/95D-01

19960207 033
Approved for public release; distribution unlimited

AFIT/GCS/ENG/95D-01

Transforming Algebraically-Based Object Models

Into a Canonical Form for Design Refinement

THESIS

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Charles G. Beem, B.S.C.S.

Captain, USAF

December 6, 1995

Approved for public release; distribution unlimited

Acknowledgements

I would like to thank my advisor, Lieutenant Colonel Paul Bailor, for his guidance

and assistance during this research effort. I also wish to thank my committee members,

Dr. Thomas Hartrum, Dr. Eugene Santos, and Dr. Bob Shock, for their help and advice.

I would also like to thank some of my fellow classmates for helping me navigate

through the AFIT minefield. Special thanks to Vince Hibdon for helping me keep my

football/class-work priorities straight; go Big Eight! I also want to thank Shawn Hannan

for his sage advice on my presentation; I look forward to working together over the next

three years.

I also wish to thank Major Scott DeLoach for his help and advice with O-SLANG and

theory-based object models. His contributions were vital to the successful results achieved

during this effort.

One of the most important parts of this effort was my family. I would like to thank

my wife, Gina, and my children Chuck, Andrew, Kristen, and Sarah, for their support, love,

and prayers. Without their help and sacrifices, this would have been an unsurmountable

task. I love you guys!

Finally, and most importantly, I wish to thank my Lord and Savior, Jesus Christ,

for giving me the strength, courage, and wisdom to get through the last eighteen months.

I know that "I can do everything through him who gives me strength."

Charles G. Beem

Table of Contents

Page

Acknowledgements ii

List of Figures viii

List of Tables xi

Abstract xii

I. Introduction 1-1

1.1 Background 1-1

1.2 Problem Statement 1-3

1.3 Scope 1-5

1.4 Sequence of Presentation 1-5

II. Literature Review 2-1

2.1 Introduction 2-1

2.2 Theory-based Object Models 2-1

2.2.1 Algebraic Specifications and Theories 2-2

2.2.2 Rumbaugh's Object Modeling Technique 2-4

2.2.3 Theory-based Representation of Object Model ... 2-6

2.2.4 Theory-based Representation of Dynamic Model . . 2-10

2.2.5 Theory-based Representation of Functional Model . 2-12

2.2.6 O-SLANG 2-13

2.3 Term Rewriting 2-14

2.3.1 Term Rewriting Systems 2-14

2.3.2 Basic Definitions in Term Rewriting 2-16

2.3.3 Types of Rewrite Systems 2-18

iii

Page

2.3.4 Properties of Rewrite Systems 2-20

2.3.5 Example Rewrite System 2-22

2.3.6 Graph Rewriting 2-24

2.4 Summary 2-25

III. Designing a Formal Object Transformation Process 3-1

3.1 Introduction 3-1

3.2 Creating the Unified Framework 3-2

3.3 The Canonical Algebraic Framework Phase 3-5

3.4 Validation Criteria and Domains 3-7

3.4.1 Validation Process 3-7

3.4.2 Bank Domain 3-9

3.4.3 Pump Domain 3-11

3.5 Summary 3-15

rV. Extensions to the Unified Model 4-1

4.1 Introduction 4-1

4.2 Changes to ULARCH 4-1

4.2.1 Changing the Dynamic Theory 4-1

4.2.2 Addition of Link and Association Theories 4-2

4.2.3 Addition of Boolean Attribute 4-3

4.3 Changes to OMT-to-ULARCH Mappings 4-4

4.3.1 Addition of Link and Association Theories 4-4

4.3.2 Representing Aggregation and Attributes 4-7

4.3.3 Representing Single and Multiple Inheritance 4-7

4.4 Changes to State Transition Table Model 4-9

4.5 Summary 4-10

IV

Page

V. Definition of Unified Model to Canonical Model Transformations 5-1

5.1 Introduction 5-1

5.2 LARCH to O-SLANG Transformations 5-2

5.2.1 ObjectTheory Mapping 5-2

5.2.2 StateTheory Mapping 5-2

5.2.3 EventTheory Mapping 5-4

5.2.4 FunctionalTheory Mapping 5-5

5.2.5 LinkTheory Mapping 5-6

5.2.6 AssociationTheory Mapping 5-7

5.2.7 Tuple Mapping 5-9

5.3 State Transition Table to O-SLANG Transformations 5-11

5.3.1 Single and Multiple Event Specifications 5-11

5.3.2 Receive Event and Transition Event Axioms 5-12

5.4 Additional Transformations 5-14

5.4.1 Object Class Specifications 5-15

5.4.2 New Events and Create Methods 5-16

5.4.3 attr-equal Operation 5-17

5.4.4 Additional Axioms 5-18

5.4.5 Aggregate Specification Nodes and Arcs 5-18

5.5 Summary 5-20

VI. Design and Implementation of ULARCH to O-SLANG Transformations . . 6-1

6.1 Introduction 6-1

6.2 Overview of Implementation 6-2

6.2.1 REFINE Language Constructs 6-2

6.2.2 Control Structure 6-3

6.2.3 ULARCH to O-SLANG 6-5

6.2.4 State Transition Table to O-SLANG 6-8

Page

6.2.5 Extra Data Structures 6-8

6.2.6 Post Processing 6-9

6.3 Analysis of Implementation . . . 6-10

6.3.1 Results of the Validation Process 6-10

6.3.2 Rewrite System Properties 6-11

6.4 Summary 6-14

VII. Conclusion and Recommendations 7-1

7.1 Summary of Accomplishments 7-1

7.2 Conclusions 7-2

7.3 Recommendations for Future Research 7-4

7.4 Final Comments 7-7

Appendix A. O-SLANG Domain Model A-l

Appendix B. Tree Manipulations for Rewrite Example B-l

Appendix C. ULARCH for Bank Domain Example C-l

Appendix D. O-SLANG for Bank Domain Example D-l

Appendix E. ULARCH for Pump Domain Example E-l

Appendix F. O-SLANG for Pump Domain Example F-l

Appendix G. User Manual for Formal Object Transformation System . . . G-l

G.l Introduction G-l

G.2 Refine Files G-l

G.3 User Files G-2

G.4 Sample Session G-3

Bibliography BIB-1

vi

Page

Vita VITA-1

Vll

List of Figures

Figure Page

1.1. Target Transformation Process 1-4

2.1. Object Model for Rocket 2-5

2.2. Dynamic Model for FuelTank 2-6

2.3. Functional Model for FuelTank 2-7

2.4. Cust-Acct Association 2-9

2.5. Communication Theory * 2-11

2.6. Communicating Bank Aggregate Class 2-12

2.7. Bank Aggregate Morphisms for Withdrawal Event 2-12

2.8. Confluence/Church-Rosser Properties 2-21

3.1. Analysis Synthesis Model 3-1

3.2. Bank Object Model 3-10

3.3. Account Dynamic Model 3-11

3.4. Console Dynamic Model 3-12

3.5. Bank Functional Model 3-12

3.6. Pump Object Model 3-13

3.7. Pump Dynamic Model 3-14

3.8. Pump Functional Model 3-15

4.1. Traits in original ÜLARCH 4-2

4.2. Traits in modified ÜLARCH 4-2

4.3. Changes to ÜLARCH Domain Model 4-3

4.4. Association and Link in modified ÜLARCH 4-6

5.1. Conceptual View of Mappings 5-1

5.2. ObjectTheory Mappings 5-3

vin

Figure Page

5.3. ObjectTheory Transformation for Sophisticated Pump 5-3

5.4. StateTheory Mappings 5-4

5.5. StateTheory Transformation for Overdrawn 5-4

5.6. EventTheory Mappings 5-5

5.7. EventTheory Transformation for StartPumpMotor 5-5

5.8. FunctionalTheory Mappings 5-6

5.9. FunctionalTheory Transformation for Credit-Acct 5-6

5.10. LinkTheory Mappings 5-7

5.11. LinkTheory Transformation for Own 5-7

5.12. AssociationTheory Mappings 5-8

5.13. AssociationTheory Transformation for Owns 5-8

5.14. Tuple Mappings 5-9

5.15. Tuple Transformation for Pump ObjectTheory 5-10

5.16. Single Event Mappings 5-12

5.17. Multiple Event Mappings 5-12

5.18. Send Event Transformation for OverHeat 5-13

5.19. ObjectTheory Mappings 5-15

5.20. EventTheory Mappings 5-16

5.21. Object Class Transformation for Pump-Class 5-16

5.22. User Defined "new" Event 5-17

5.23. Default "new" Event 5-17

5.24. Object Communication Mappings - Single Event 5-19

5.25. Object Communication Mappings - Multiple Event 5-19

5.26. Association Mappings 5-19

5.27. Inheritance Mappings 5-20

5.28. Aggregate Transformation for Bank 5-21

6.1. State Theory Transformation 6-5

IX

Figure Page

6.2. EventTheory Transformation 6-6

6.3. FunctionalTheory Transformation 6-6

6.4. LinkTheory Transformation 6-6

6.5. AssociationTheory Transformation 6-6

6.6. Tuple Transformation 6-6

7.1. Projected Transformation Process 7-6

A.l. Top Level of O-SLANG Domain Model A-l

A.2. Second Level of O-SLANG Domain Model A-2

A.3. Domain Model for Axioms A-2

B.l. Tree Rewrite Example (Step 1) B-l

B.2. Tree Rewrite Example (Step 2) B-2

B.3. Tree Rewrite Example (Step 3) B-3

B.4. Tree Rewrite Example (Step 4) B-4

B.5. Tree Rewrite Example (Step 5) B-5

B.6. Tree Rewrite Example (Step 6) B-6

List of Tables

Table Page

2.1. Rumbaugh to Theory-based Object Model Translation 2-13

3.1. OMT Mappings to Algebraic and Object-based Frameworks 3-4

3.2. Rumbaugh to O-SLANG Translation 3-6

3.3. OMT Coverage of Validation Domains 3-8

4.1. Original Pump State Transition Table 4-9

4.2. Modified State Transition Table 4-10

C.l. Account State Transition Table C-12

C.2. Checking State Transition Table C-12

C.3. Savings State Transition Table C-12

C.4. Console State Transition Table C-13

E.l. Clutch State Transition Table E-8

E.2. Display State Transition Table E-8

E.3. Gun State Transition Table E-9

E.4. Holster State Transition Table E-9

E.5. Motor State Transition Table E-9

E.6. Pump State Transition Table E-9

XI

AFIT/GCS/ENG/95D-01

Abstract

The understandability of object-oriented design techniques and the rigor of formal

methods have improved the state of software development; however, both ideas have lim-

itations. Object-oriented techniques, which are semi-formal, can still result in incorrect

designs, while formal methods are complex and require an extensive mathematical back-

ground. The two approaches can be coupled, however, to produce designs that are both

understandable and verifiable, and to produce executable code. This research proposes

an approach where object-oriented models are first represented algebraically in a formal

specification language such as LARCH and then transformed into a canonical form suitable

for design refinement.

In the canonical form presented in this work, object-oriented models are represented

as domain theories consisting of multiple class specifications. Each class specification has

sorts, operations (attributes, methods, events, states, state attributes, and operations),

and axioms which describe its structure and behavior. The ability to reason about rela-

tionships between specifications is handled through the use of category theory operations.

Although the canonical form is methodology independent, this work demonstrates the pro-

posed approach on object-oriented models developed using Rumbaugh's Object Modeling

Technique. The models are first mapped to LARCH and then translated into the canonical

form by a set of rewrite rules. The rewrite rules are shown to produce unique normal forms.

The final product is a transformation system which converts object-oriented designs into

a canonical form that can be used with a design refinement tool.

xn

Transforming Algebraically-Based Object Models

Into a Canonical Form for Design Refinement

/. Introduction

1.1 Background

As industry continues to push existing computer technology to the limit, the software

systems required to support the evolving sophisticated applications become more and more

complex. This increasing complexity places an even greater emphasis on the need to accu-

rately specify the desired behavior for a system. Traditionally, a natural language such as

English is used to describe the requirements, but this technique is imprecise, error-prone,

and often results in the software developer building the wrong product. Object-oriented

analysis and design methodologies have become the software development technique of

choice in many places throughout industry. Because object-oriented analysis and design

techniques model problems in terms of real-world concepts, they greatly improve under-

standing of the system requirements on the part of both the customer and the implementer

(RBP+91). Unfortunately, this method is also informal and subject to errors.

To introduce more rigor into the software development process, formal methods and

formal specification languages are being explored as a way to ensure that software spec-

ifications are both unambiguous and correct. Because formal specification languages are

based on mathematical constructs like predicate logic and set theory (NS91), they provide

software engineers with a means for reasoning about designs and, if they are executable,

1-1

for testing them before they are implemented; this is the way of the traditional engineer.

It is this formal methods approach, coupled with object-oriented analysis and design tech-

niques, that forms the path that the Knowledge-Based Software Engineering (KBSE) group

at the Air Force Institute of Technology (AFIT) is exploring.

AFIT's KBSE group is researching the development of a composition system that

builds domain-specific applications from new and existing domain models. For a specific

problem domain, object-oriented models are created using Rumbaugh's Object Modeling

Technique (OMT), translated into a formal specification language (Z or Larch), and then

transformed into a common representation model in the REFINE x object base. These

object-based models can then be used to produce executable specifications. (Bai94)

In 1994, Lin and Wabiszewski developed a formalized object transformation process.

Lin employed a theory-based approach using Larch (Lin94), while Wabiszewski pursued

a model-based approach using Z (Wab94). First, they created and validated mappings

from the OMT models to Larch and Z. Once these mappings were validated using ex-

isting problem domain OMT models, they developed parsers for their respective formal

specification languages. An analysis of the abstract syntax trees produced by the parsers

revealed some commonalities between the two languages' representations of OMT. Capi-

talizing on these commonalities, Lin and Wabiszewski then created a unified model which

unified the languages at a high level. Although they concluded that theory-based and

model-based specification languages have a common set of constructs that can be used to

build a canonical framework for formalizing object models, they stopped short of creating

a true canonical model which captures the essence of object-oriented models in a language

'REFINE is a wide-spectrum language that is part of the SOFTWARE REFINERY™ environment.

1-2

independent form. There is a limit to the degree of unification which their unified frame-

work provides. The common constructs are limited to a few shared object classes. Objects

below the signature declaration, external reference, and axiom objects, are depicted as

specialized object classes due to the differences in the syntax of the two languages. To

eliminate the language specific portions, transformations can be used to manipulate the

unified model into a canonical form, i.e. a more general model which represents the same

information. Before these transformations can be built, however, the canonical model itself

must be defined.

One of the benefits of having a unified model is that it creates a layer of abstraction

between the front-end and back-end of the composition system. In order to incorporate

new specification languages into the composition system, just create new front-end trans-

formations with the unified model as the target representation. To use a different theo-

rem prover, design refinement mechanism, or different application, simply create back-end

transformations with the unified model as the source representation. The key is that the

unified model must be independent of the source specification languages and the target

applications.

1.2 Problem Statement

An abstract framework that unifies the theory-based and model-based approaches

should be a common base language with few, if any, dialects. The framework provided by

Lin and Wabiszewski does not have this characteristic, as the languages were not reduced to

their most significant form. Also, the framework should be independent of object-oriented

methodology. This would provide more flexibility in the selection of modeling methodology,

1-3

and would open up the composition system for use by a larger group of potential users. Lin

and Wabiszewski's unified model does not provide this methodology independence, since

it is heavily influenced by Rumbaugh's OMT methodology. Figure 1.1 shows the language

specific portions of the unified model, UZed and [/LARCH, being transformed to the chosen

canonical model, O-SLANG. AS will be discussed in Chapter II and Chapter III, O-SLANG

is an algebraic specification language which captures the notions of object-oriented models

in a methodology-independent way. This language will also be a product of DeLoach's

translation system (DeL95a), which translates the semi-formal object-oriented Rumbaugh

OMT diagrams of a system into formal O-SLANG system specifications.

OBJECT-ORIENTED
DOMAIN ANALYSIS

OBJECT MODEL

Z SPECIFICATION

UZED TRANSFORMATIONS

THEOREM PROVING ANALYSIS TOOLS

OSLANQ TO SLANQ
TRANSFORMATION

DESIGN REFINEMENT

Figure 1.1 Target Transformation Process

1-4

Problem Statement:

Define a formal object transformation process by creating a canonical algebraic model

to represent general object-oriented models and by using term rewriting techniques to de-

velop transformations from ZARCH specifications to the canonical model.

1.3 Scope

This work focused on extending the unified model for both ULARCH and UZED;

however, time constraints prevented the implementation of transformations from both lan-

guages to the canonical model. As such, transformations are only defined and implemented

from ULARCH. This corresponds to the portion of Figure 1.1 that is enclosed in the dashed

box.

1.4 Sequence of Presentation

The remainder of this thesis is organized as follows:

Chapter II contains a review of theory-based object models followed by a discussion

of Rumbaugh's OMT. Also, a review of current literature on term rewrite systems and

term rewriting techniques is presented.

Chapter III outlines the specific design for a unified model to canonical model com-

piler which is based on Lin's ULARCH to REFINE compiler. Also included is a more detailed

discussion of Lin and Wabiszewski's work on the formalized object-based composition sys-

tem. Next, the canonical model (O-SLANG) is presented, thus completing the first phase in

1-5

extending the formal object transformation process. Finally, the design validation criteria

and example problem domains are identified.

Chapter IV presents a discussion of the second phase of extending the formal object

transformation process: making changes to Lin and Wabiszewski's unified model.

Chapter V defines the transformations from ÜLARCH to O-SLANG.

Chapter VI contains a design and implementation of the transformations from ULARCH

to O-SLANG, as well as an analysis of the implementation.

Chapter VII presents general conclusions and recommendations for future research.

Several appendices are also included in order to provide additional information about

the extended formal object transformation process. Appendix A contains the domain

model for the object-oriented specification language, O-SLANG. Appendix B contains fig-

ures relating to a term rewriting example presented in Chapter II. Appendix C and

Appendix E contain the ULARCH traits and state transition tables for the Bank and Pump

examples, respectively, while Appendix D and Appendix F contain the O-SLANG produced

by the compiler for the two examples. Finally, Appendix G contains a User's Manual for

executing the unified model to canonical model compiler.

1-6

II. Literature Review

2.1 Introduction

In order to help reach the research goals outlined in Chapter I, this literature review

explores research and information needed to extend Lin and Wabiszewski's formal object

transformation process. First, Section 2.2 provides a discussion of theory-based object

models, and introduces O-SLANG. A brief review of Rumbaugh's Object Modeling Tech-

nique(OMT) is also included since it is the object-oriented methodology on which Lin and

Wabiszewski's unified model is based. Finally, Section 2.3 explores term rewriting and the

feasibility of using term rewriting techniques to create a canonical model.

2.2 Theory-based Object Models

An area that is fast gaining attention in the software development world is the use of

algebraic theories to represent software engineering knowledge. Most notably, the Kestrel

Interactive Development System (KIDS) uses theory-based specifications as a foundation

for software synthesis (Smi90). The strength of such an approach is that it provides a

formal foundation for software development that is based on well-founded algorithm the-

ories such as divide-and-conquer and global search. It also serves as a solid framework

for reuse of specifications and designs and for the establishment of software engineer-

ing technology bases. However, their is one drawback to the theory-based approach. It

represents a significant change in the way software is specified and the corresponding exe-

cutable programs are produced; thus, there is a large learning curve to overcome (Bai95).

To help overcome this drawback, transformations can be defined to create theory-based

2-1

algebraic specifications from object-oriented models. These transformations can be au-

tomated, allowing domain and system designers to build systems using the conceptually

simpler object-oriented representation (DeL95a). This section provides background infor-

mation on theories and Rumbaugh's OMT methodology, and then outlines the creation

of theory-based object models from object-oriented models represented using OMT. A de-

scription of O-SLANG, an object-oriented extension of the algebraic specification language

SLANG, is also presented.

2.2.1 Algebraic Specifications and Theories. An algebraic specification consists

of sorts, operations over those sorts, and a set of axioms which describe the behavior of the

operations (GH93). Sorts are collections of values. Along with the associated operations,

they make up the signature, which defines the structure of the algebraic specification; the

semantics are defined by the axioms. An algebraic specification is a theory presentation

(Bai95), and a theory is the set of all assertions that can be derived from the axioms of the

specification (GH93). It is important to note that a specification is merely a description

of many possible valid implementations. An implementation which ensures that all of the

axioms are satisfied is called a model (GH93).

The idea of creating theory-based algebraic specifications has two goals: modeling

system behavior using signatures and axioms, and composition of larger specifications from

smaller specifications (DBH95). As described above, the signature of a specification and

its axioms describe its structure and semantics, i.e. they describe the internal behavior.

In order to create larger specifications from smaller ones, it is necessary to be able to

reason about relationships between the specifications; category theory is the mathematical

2-2

theory that can be used to describe these relationships. In category theory, a category is

made up of a collection of C-objects and C-arrows between objects. Each object has a C-

arrow to itself (i.e. reflexive). Also, arrows are composable and the composition operation

is associative. In a category of algebraic specifications, the C-arrows are specification

morphisms. Basically, a specification morphism consists of two functions which map sorts

and operations in one specification to sorts and operations in another. These functions

must ensure that all of the axioms in the first specification are theorems in the second.

Another operation that is important to creating large specifications from small ones is the

colimit operation. From an existing set of specifications, the colimit operation creates a

new specification consisting of the shared union of all of the sorts and operations in the

original specifications. This new specification, called the colimit specification, is defined

by specification morphisms from each original specification to the colimit specification

(DBH95).

Together, specification morphisms and the colimit operation make up a basic toolset

for building specifications. Using these tools, there are several ways to build specifications

(DBH95):

1. Create a specification by defining a signature and a set of axioms

2. Create a colimit specification using the colimit operation

3. Use a specification morphism to translate a specification

4. Parameterize a specification

5. Build a specification from features in other specifications

2-3

2.2.2 Rumbaugh's Object Modeling Technique. OMT describes an application

domain by using three different models: the object model, dynamic model, and functional

model. Usually, a complete description of an application domain requires the creation of

all three models. While the object model is the foundation, the models are "orthogonal

parts of the description of a complete system and are cross-linked." (RBP+91)

The object model captures the structure of an application domain by depicting the

objects in the domain, attributes and operations which characterize the objects, and the

relationships between the objects. The model consists of object diagrams which are graphs

whose nodes represent classes of objects and whose arcs represent the relationships among

the classes (RBP+91). Three important relationships between classes are association,

inheritance, and aggregation. Associations are templates that define what classes of objects

may be connected. Essentially, they are a group of links that have a common structure

and meaning. A link is a physical or conceptual connection between instances of objects.

An association may also define association attributes, which are attributes that do not

belong to any of the objects involved in a link, but exist only because of the link between

objects. Inheritance represents the "is a" relationship between a class of objects and some

subclass. This is a generalization-specialization relationship in which a subclass inherits

all of the attributes and operations of some parent class. The subclass may add additional

attributes and operations of its own; this is specialization. Aggregation represents the "is

composed of" relationship between a class of objects and its components. Aggregation is

essential for modeling systems that are formed by combining subsystems (DBH95). Figure

2.1 shows an example of a simple object model for a rocket. Aggregation is represented by

the diamond shape on the arcs. In the example, a rocket is composed of an airframe, two

2-4

2

feeds

2

Fuel Tank Jet Engine /\in] rame

Figure 2.1 Object Model for Rocket

fuel tanks, and two jet engines. Feeds is a simple association between fuel tank objects

and jet engine objects; a fuel tank feeds a jet engine.

The dynamic model describes the reactive, or event driven, aspects of the application

domain. It consists of state diagrams, which are graphs whose nodes represent states and

whose arcs represent transitions between states. The transitions are caused by events,

which are represented as labels on the arcs. An object's state is an abstraction of the

current values of its attributes. An event is an external stimulus that causes an object to

react in a certain way. Figure 2.2 shows an example of a dynamic model for a fuel tank.

States are shown in boldface and events are in italics.

The functional model captures the data transformations in the application domain.

These data transformations may be operations defined in the object model or actions

defined in the dynamic model. The functional model describes how an object's output

values are derived from its input values. The model consists of data flow diagrams, which

are graphs whose nodes represent processes and whose arcs represent data flow (RBP+91).

Figure 2.3 shows a partial example of a functional model for a fuel tank object.

2-5

StartFill(flow_rate)ISchedule(TankFull) StopFill[fuel_level=capacity]ICancel(TankFull);update_level

Empty

StartUse(flow_rate)l
Cancel(TankFull); update level

Filling TankFulllOverflow.
updatelevel

StopUselupdateJevel
SchedulefTankFull)

StopFill[fitel level < capacity]!
Cancel(TankFull); updatelevel

Fill And Use

Full

StartFill(flow_rate)l Overflow

Partially Filled

StopFilll
updatejevel;

Schedule(TankEmpty)

J StartFill(flow_rate)/Schedule(TankFutl) v-

\StartFill(flow_rate)/CanceI(TankEmpty);
updatejevel

StopUselCancel(TankEmpty)
updatejevel

TankEmptylChangeFuelFlow(O); updatejevel

Using

StartUse(flow_rate)/
Schedule(TankEmpty)

StartUse(flow_rate)l
Schedule(TankEmpty)

Figure 2.2 Dynamic Model for FuelTank

2.2.3 Theory-based Representation of Object Model. The first step in describing

a theory-based representation of an object model is to define an object class. An object

class is a theory presentation which represents five parts : class-sort, other sorts referenced

in the theory, attributes, methods, and events. More formally (DeL95b):

Definition 2.2.1 Object Class - A class, C, is a signature, S =< S, 0 > and a set of
axioms, $, over S (i.e., a theory presentation, or specification) where

S = a set of sorts including the class sort
0 = a set of operations over S representing attributes, methods, and events
$ = o set of axioms over E

2-6

Sim Clock

net_flow_rate

tarik_sim_time
output_flow_rate

input_flow_rate
Fuel Tank

Figure 2.3 Functional Model for FuelTank

A class-sort is a distinguished sort which is a set that contains all of the possible names for

objects in the object class. An object class can have many instances, each of which has a

unique name from the class-sort. Another distinguished sort is the state sort, which is the

set of all possible class states. Attributes are operations that take in an object in the class

and return the value of a state component. Attributes can only return information, they

can never modify an object. A distinguished set of attributes are the state attributes, that

are used to obtain the current value in a state sort. To modify attributes, methods are used.

Methods are operations which modify none, some, or all of an object's attribute values.

State attributes can only be modified by events (See Section 2.2.4). Axioms are used to

define the semantics of an object class. The axioms are usually defined by describing the

effect of applying the object's methods on the object's attributes (DeL95b).

2-7

The next step in describing a theory-based representation of an object model is to

define an object instance.

Definition 2.2.2 Object Instance - An object, o, is a tuple, o =< i, CT, -K > where i is
a unique name from the class-sort, CT is the class type, and n is a set of variables indexed

on attributes in CT {ai,a2,...an} representing the state of the object.

The unique name, i, is assigned when the object instance is created and does not change

over the life of the object. The only part of the object instance that can be modified is its

state, represented by the set of variables n (DeL95b).

The final step in describing a theory-based representation of an object model is to

define association, inheritance, and aggregation. As mentioned in Section 2.2.2, association

is an important relationship between object classes. An association is formally defined as

(DBH95):

Definition 2.2.3 Association - An association is defined as a tuple A = < a, A >, where
a is an object class whose class sort is a set of the class sort of X, and A is a class with
two or more object-valued attributes 1.

Figure 2.4 (DBH95) shows the object classes which represent the Cust-Acct association.

The class CA-Link represents A in the association. It has two object-valued attributes,

customer and account, as well as a method for creating new instances of the association.

The class Cust-Acct defines a set of CA-Link objects, and the sorts Accts and Custs are

sets of Acct and Cust objects. The axioms in Cust-Acct define the multiplicity relationship

between customers and accounts. Each customer can have one or more accounts, while each

account belongs to only one customer. If an association involves more than two classes,

the relationship can be captured by adding additional object-valued attributes (DBH95).

Object-valued attributes are attributes that return references to other objects.

2-8

link CA-Link is
class-sort CA-Link
sorts Cust, Acct

operations
attr-equal: CA-Link, CA-Link -$>$ Boolean

attributes

customer: CA-Link -$>$ Cust

account: CA-Link -$>$ Acct

methods

create-ca-link: Cust, Acct -$>$ CA-Link

events

new-ca-link: Cust, Acct -$>$ CA-Link

axioms

attr-equal(ci, c2) =>

customer(cl) = customer(c2) &
account(cl) = account(c2);

customer(create-ca-link(c, a)) = c;

account(create-ca-link(c, a)) = a;

attr-equal(new-ca-link(c, a), create-ca-link(c, a))

end-link

association Cust-Acct is
link-class CA-Link
import Custs, Accts
class-sort Cust-Acct

methods
create-cust-acct: -$>$ Cust-Acct

image: Cust-Acct, Cust -$>$ Accts

image: Cust-Acct, Acct -$>$ Custs

events

new-cust-acct: -$>$ Cust-Acct
axioms
new-cust-acct() = create-cust-acct();

create-cust-acct() = empty-set;
size(image(ca, c)) >= 1;
size(image(ca, a)) = 1;

. (definition of image operations) ...
end-link

Figure 2.4 Cust-Acct Association

2-9

Another important relationship between object classes is inheritance. Stated formally

(DeL95b):

Definition 2.2.4 Inheritance - A class D is said to inherit from a class C if there exists
a specification morphism from C to D such that the class-sort of D is a subsort of the
class-sort of C.

In other words, all of the sorts and operations from class C are embedded in class D, and

the class-sort of D is denned as a subsort of the class-sort of C. The subsort relationship

among sorts is analogous to the subset relationship between sets. The subsort operator <

defines a subset relationship so that for any two sorts A and B,A<B=>ACB (DBH95).

The final important relationship between object classes mentioned in Section 2.2.2

is aggregation. Aggregation is defined formally as (DeL95b):

Definition 2.2.5 Aggregation - A class C is an aggregate of a collection of component
classes, (Di..Dn), if there exists a specification morphism from the colimit of (D\..Dn) to
C such that C has at least one corresponding object-valued attribute referencing each class
in (Dx..Dn).

The colimit operation provides the capability to unify sorts and operations that are denned

in different classes and associations. Taking the colimit of a number of class specifications

creates an aggregate class that specifies system or subsystem level functionality (DBH95).

2.2-4 Theory-based Representation of Dynamic Model. In defining a theory-based

representation of a dynamic model, it is necessary to express the concepts of events and

state transitions algebraically. This amounts to describing how objects communicate with

each other. Each object is only aware of certain events that it must send. In essence, the

events are broadcast to the entire system. For each send event, an operation signature

must be defined that maps to a method in some anonymous object class. The anonymous

2-10

class-sort and its associated operations are defined in a separate specification called a

communication theory (DBH95, DeL95b).

Definition 2.2.6 Communication Theory - A communication theory consists of a
class-sort, parameter sorts, and an event signature which are mapped via signature mor-
phisms to sorts and events in the generating and receiving classes.

The class-sort represents the class-sort of the objects being communicated with. The

parameter sorts must be mapped to compatible sorts in the sending and receiving classes.

The event signature maps to an event in the receiving class which has the same number

of parameters as defined in the communication theory. Once the sorts and events have

been mapped under signature morphisms, it is necessary to unify them so that invoking

an event in the sending class causes a corresponding invocation in the receiving class.

This unification is accomplished via the colimit of the sending and receiving classes, the

communication theory, and the signature morphisms (DeL95b). Consider the example

where a Console in a Bank sends a Withdrawal event (shown in Figure 2.5) to an Account.

Figure 2.7 shows the morphisms required for the send event, and Figure 2.6 shows the Bank

aggregate which defines the colimit operation for the bank which is made up of Console

and Account objects. Recall from section 2.2.1 that a category is made up of C-objects and

C-arrows. The nodes in Figure 2.6 represent C-objects, while the arcs are C-arrows.

event Withdrawal is
class-sort Withdrawal
sorts Account, Amnt
events

Withdrawal: Withdrawal, Account, Amnt -> Withdrawal
end-event

Figure 2.5 Communication Theory

2-11

aggregate Bank is
nodes Integer, Set-1: Set, Set-2: Set, Account-Class,

Console-Class, Withdrawal
arcs Set-1 -> Account-Class: {Set -> Account-Class, E -> Account},

Set-2 -> Console-Class: {Set -> Console-Class, E -> Console},
Integer -> Set-1: {},
Integer -> Set-2: {},
Withdrawal -> Console-Class: {},
Withdrawal -> Account-Class: {}

end-aggregate

Figure 2.6 Communicating Bank Aggregate Class

Withdrawal

Account-Class Console-Class

\ /
Bank

Figure 2.7 Bank Aggregate Morphisms for Withdrawal Event

2.2.5 Theory-based Representation of Functional Model. To define a theory-based

representation of the functional model, three things need to be addressed: processes, data

flow, and data stores. The processes, or functions, in the functional model correspond to

the actions described in the dynamic model. These processes are defined as operations,

i.e. methods, in an object class. The behavior of the processes is described axiomatically.

Data flow in the functional model is described by the values returned by operations. Data

stores are portrayed by separate object classes (DeL95b).

Table 2.1 provides a summary of the mappings from Rumbaugh's OMT to a theory-

based model.

2-12

Table 2.1 Rumbaugh to Theory-based Object Model Translation

Rumbaugh Model OO Concept Theory-based Model
classes theory presentation

attributes operation on class sort
operations operation on class sort
constraints axioms

object Instances logical variables
simple inheritance morphism and subsort
multiple inheritance colimit and subsort

Object aggregation colimit and object-valued-attributes
Model multiplicity axioms

associations container of link objects
link theory presentation
multiplicity axioms
qualifier attribute and axioms
link attributes operations
link operations operations
ordering sequence of link objects
constraints aggregate axioms

transition Events operations
parameters operation parameters

Dynamic actions operations and axioms
Model output Events event theories

state actions/activity methods
parameters method parameters

control flow event theories
processes operations

Functional operation definition axioms
Model data flow operations return values

data store object classes

2.2.6 O-SLANG. O-SLANG is an object-oriented extension of the algebraic spec-

ification language SLANG. SLANG is used by Specware™ to perform software refinement

(BFG+94). Based on category theory and first-order predicate logic, SLANG supports the

specification morphism and colimit operations described in Section 2.2.1. An SLANG spec-

ification is made up of sorts, operations, and axioms (BGG+94). O-SLANG takes these

fundamental concepts of SLANG and uses them to capture object-oriented system specifi-

cations (DeL95c).

2-13

Sections 2.2.3 through 2.2.5 outlined a theory-based representation of an object-

oriented model of a system. O-SLANG uses the same ideas to describe object class features

and relationships between object classes. Appendix A shows an OMT domain model for

O-SLANG.

2.3 Term Rewriting

This section presents a basic definition of a general term rewriting system as well as

some definitions for the related concepts that are necessary to understand term rewriting.

It wraps up with a discussion of some of the many types of term rewriting systems.

2.3.1 Term Rewriting Systems. Formally speaking, a term rewriting system is

a pair C-R), where X) is an alphabet or signature and R is a set of rewrite rules. The

syntax and vocabulary for a term rewriting system is (Klo92):

1. ^2 consists of a countably infinite set of variables Xi,x2,x3,... and a non-empty set

£0 of function symbols or operator symbols, each with an "arity", i.e. the number

of arguments the function or operator is supposed to have.

2. The set of terms over £}, T(J2) is defined inductively:

(l)x,y,z,...eT(E).

(2) If / G Eo and tu...,tn G T(£) (n > 0), then /(ti,...,<„) G T(£).

3. Terms not containing a variable are ground terms.

4. A rewrite rule G R is a pair (l,r) of terms G T(£), written as I —»• r. Rewrite rules

can be named, (e.g. rewrite rule n is written as rn : I —> r, and the application of

r„ to some term a which produces some term ß is written a —>>„ ß).

2-14

Formalisms aside, term rewriting uses directed equations to iteratively replace subterms

in a given expression with equal terms until the simplest form of the expression is reached.

This is the same idea as simplifying expressions in algebra (Der93). The form could be

some standard (canonical) form or some intermediate form needed to perform a manip-

ulation of the symbols in the expression at a later time. For example, putting equations

in disjunctive normal form for use with a mechanical theorem prover is term rewriting.

Moving all quantification symbols to the left in a first order predicate logic equation is

another example. Both of these manipulations produce equivalent terms since they are

based on theorems in formal logic.

2.3.1.1 Simple Example. Klop (Klo92) provides the following simple exam-

ple of a rewrite system:

• Let 2 = {A,M,S,0}, with arities 2, 2, 1, and 0, respectively.
• Let R be defined by:

ri : A(x,0) —* x
r2:A(x,S(y))-*S(A(x,y))
r3 : M(x,0)^0
r4: M(x,S(y))^A(M(x,y),x)

Consider the expression: M(5(5(0)), 5(5(0)))

Using the rewrite rules in R, the expression can be simplified to: 5(5(5(5(0))))

One possible sequence of rewrite rule applications is as follows (underlined terms are rewrit-

ten in each step):

M(5(5(0)),5(5(0))) ^r4 A(M(S(S(0)),5(0)),5(5(0)))
^(M(5(5(0)), 5(0)),5(5(0))) -+r2 5(^(M(5(5(0)),5(0)),5(0)))
5(^(M(5(5(0)),5(0)),5(0))) -+r2 5(5(A(M(5(5(0)),5(0)),0)))
5(5(^(M(5(5(0)),5(0)),0))) -+ri 5(5(M(5(5(0)),5(0))))
5(5(M(5(5(0)),5(0)))) -r, 5(5(^(M(5(5(0)),0), 5(5(0)))))

2-15

5(5Q4(M(5(5(0)),0), 5(5(0))))) -^ 5(5(^(0,5(5(0)))))
5(5(^(0,5(5(0))))) -^ 5(5(504(0,5(0)))))
5(5(5(^(0,5(0))))) -^ 5(5(5(5(^(0,0)))))
5(5(5(5(^(0,0))))) -*,, 5(5(5(5(0))))

2.3.2 Basic Definitions in Term Rewriting. In addition to the basic notions

of signature and rewrite rules, there are several concepts that are foundational to an

understanding of term rewriting. These concepts can be lumped into two categories: those

concerning the structure of terms, and those concerning rewriting operations. This section

defines some of the more important concepts in these two categories.

2.3.2.1 Structural Term Definitions. Given a set F of function symbols,

each function symbol / € F has a unique natural number associated with it called the

arity, as described in Section 2.3.1. Any function with arity 0 is called a constant (Mit94).

For a given set of variables, X, a term t € T(F,X) can be viewed as a finite ordered-tree

where the leaves are variables in X or constants and the internal nodes are labeled with

function symbols (Mit94). In the example in Section 2.3.1.1, M(5(5(0)),5(5(0))) is a

term. Terms are made up of subterms, which are substrings of symbols. The denotation

of a subterm is t \p, which represents the subterm of t which is rooted at position p in t

(Der93). A position in a term can be represented by a sequence of positive integers that

describes the path from the root symbol of the term to the head of the subterm that is

rooted at that position. For example, if t = push(0,pop(push(y, z))), then t |2.i is the first

subterm of t's second subterm, i.e. push(y,z) (Der93). A term is said to be monadic if it

is made up only of unary functions, constants, and variables, and ends in either a constant

or variable (Der93).

2-16

2.3.2.2 Rewriting Definitions. The rewriting of terms involves replacement

of subterms with other terms. A term t with subterm t \p replaced by term s is denoted by

t[s]p (Der93). When a term is replaced with a variable, it is referred to as substitution. A

substitution is a function that uniquely maps variables to terms, and is written as {xi i->

Si,... ,xm i-> sm}. For a substitution a, it is true that /(<i,... ,tn)a = /(ti<7,... ,tna)

(Mit94). A key operation in rewriting is determining when two terms match. A term t

matches another term s if for some substitution <r, sa = t. For two terms s and t and

some substitution a, if sa = t, i.e. if t matches s, then s is said to subsume t (Der93).

The selection of a rewrite rule may be context dependent. A context is some term u with

a distinguished position p (Der93). Sometimes it is necessary to put together multiple

substitutions. This process is called composition. The composition of two substitutions a

and 6 is a composition of the two functions. For example, if xa = s for some variable x,

then xa0 = s6 (Mit94).

The basic component of a rewrite system is a rewrite relation, which is defined as

a binary relation —* over a set of terms T that is closed with respect to replacement

and substitution. If a rewrite relation is transitive and irreflexive, it is called a rewrite

ordering. Finite or infinite sequences of applications of rewrite rules are called derivations.

Derivations are denoted by t0 —>R ti —>R ■■■ti —>R •■■. A sequence of derivations from

some term t0 to another term tn can be more compactly denoted by t0 —>* tn. For a given

rewrite system R, a term s £T is said to rewrite to a term t € T if s \p= la and t = s[ra]p

for some rule I —► r in R, position p in s, and substitution a. The rewrite is denoted by

s —*R t. The subterm s \p at which a rewrite can take place is called a redex (Der93).

2-17

When there is no term t such that s —> t, then s is said to be in normal form, denoted by

s i (Mit94).

2.3.3 Types of Rewrite Systems. The idea of a term rewriting system is very

important to the study of computational procedures. One of the most well-known term

rewriting systems, the A-calculus, played a vital role in mathematical logic by helping

formalize the concept of computability (Klo92). In the area of programming languages,

the A-calculus led to an important breakthrough in denotational semantics. Another term

rewriting system, combinatory logic, has proven very helpful in implementing functional

languages (Klo92). What makes term rewriting systems so desirable, at least those that

involve terms in a first-order language, is their simple syntax and semantics (Klo92). This

section briefly outlines some different types of term rewriting systems, while Section 2.3.6

describes another important type called graph rewriting systems.

One of the most basic types of term rewriting systems is called a string-rewriting

system, or semi-Thue system. A string-rewriting system has monadic words that end in

the same variable as left-hand and right-hand side terms (B093). Consider the following

example of a string-rewriting system (Klo92):

• Let T = {(aba,bab)} be a string rewriting system with only one rule.

• T has unary function symbols a and b and a constant 0.

• T has one rule: a(b(a(x))) —> b(a(b(x))).

• For the string bbabaaa, a reduction step might be bbabaaa —> bbbabaa.

Another type of term rewriting system is known as applicative term rewriting systems.

With these systems, there is a very special binary operator called application, or Ap.

2-18

Applicative term rewriting systems are very useful for Combinatory Logic. Consider the

following example (vBSB93):

• Combinatory Logic can be represented as follows:
Sxyz = xz(yz)
Kxy = x
Ix = x

• Combinatory Logic can be expressed as an applicative term rewriting system
as follows:

Ap(Ap(Ap(S,x),y),z) -> Ap{Ap{x,z), Ap(y,z))
Ap(Ap(K,x),y) ->x
Ap(I,x) —»■ x

A special case of applicative term rewriting systems is where all of the rewrite rules are

left-linear. Left-linear means that no variable occurs more than once on the left-hand side

of any rewrite rule. Using a tree representation for terms and rewrite rules, the concept

of type assignment can be defined by assigning types to nodes and edges in a consistent

manner. Van Bakel, et. al., developed a necessary and sufficient condition for preservation

of types in left-linear applicative systems (vBSB93).

Term rewriting systems can be extended by allowing rewrite rules to have conditions

attached to them. This is known as conditional rewriting. These conditions are really

enabling conditions, i.e. the conjunction of all of the conditions must be true before the

rewrite rule can be applied (for generalized systems (Klo92)). Consider the following set

of rewrite rules for a stack (Der93):

top(push(x,y)) —► x

pop(push(x,y)) -*y

empty? (A) —> yes

empty? (push(x,y)) —> no

2-19

emptyt(x) = no \ push(top(x),pop(x)) —> x

The last rule is a conditional, while the others are not. If the stack is not empty (i.e.

empty?(x) = no), then the rule push(top(x) ,pop(x)) —»• x can be applied.

In priority rewriting systems, the choice of which rewrite rule is to be applied is con-

strained to meet, a priori, some given priorities on the rules. In other words, priorities are

merely a partial ordering of the rewrite rules. For example, the original Markov algorithms

were a priority rewrite system in which the order in which the rules were written down

determined their priority. Generally, priority rewrite systems can't be expressed as term

rewriting systems (Der93).

There are different types of term rewriting systems, only a few of which have been

presented in this section. Other examples are graph rewriting systems, class rewriting

systems, and ordered rewriting systems. The latter two are extensions of general term

rewriting systems that are designed to deal with problems of non-termination, such as

commutativity (Der93). See Section 2.3.6 for a discussion of graph rewriting.

2.3-4 Properties of Rewrite Systems. Term rewriting systems can have many

properties. This section describes some of them, particularly those properties that make a

term rewriting system "nice". Included are discussions on confluence, termination, unique

normalization, and convergence.

2.3.4-1 Confluence. Figure 2.8 provides a graphical view of confluence, also

referred to as the Church-Rosser property. The basic idea is that no matter what order

the rewrites are applied, the result is the same. There are two forms of confluence: local

2-20

confluence and confluence. Locally confluent systems are said to be weakly Church-Rosser,

while confluent systems are said to be Church-Rosser.

Locally Confluent, or
Weakly Church-Rosser

Confluent, or
Church-Rosser

Figure 2.8 Confluence/Church-Rosser Properties

The formal definitions of these properties are as follows (Klo92):

• The binary relation —*■ is locally confluent (weakly Church-Rosser) if

Va, b, c e T 3d G T (a -> b and a -* c =» b -»* d and c ->* d).

• The binary relation —> is confluent (Church-Rosser) if

Va, 6, c G T 3d G T (a -»* 6 and a ->* c =► 6 -»* d and c -»* d).

2.3.4-2 Termination. Another important property for term rewriting sys-

tems is termination, also called strong normalization. Simply put, a system is terminating

(strongly normalizing) if there are no infinite derivations ij —*R t2 —►« • • • of terms in

T (Der93). Termination is a very useful property. If a system is known to be locally

confluent, proving that it is also terminating will show that the system is confluent, since

by Newman's lemma locally confluent and terminating =>■ confluent (Klo92). The catch

2-21

is that for term rewriting systems in general, the question of termination is undecidable

(Klo92). Fortunately, there are many cases in which termination can be proved. Klop

demonstrates a very powerful proof technique based on recursive path orderings (Klo92),

and Dershowitz provides a survey of termination techniques in (Der87). Termination can

also be guaranteed by creating a well-founded ordering in which the rewritten form of a

term is always smaller than its original form (Der94).

2.3.4-3 Unique Normalization and Convergence. According to Dershowitz,

one of the most essential properties for a rewriting system is unique normalization. If a

term rewriting system has this property, then every term t G T has exactly one normal

form. If all possible sequences of rewrites lead to a unique normal form, then the system

is said to be convergent. Dershowitz states that if a rewrite system can be shown to be

terminating and confluent, then that system is convergent and defines unique normal forms

(Der93). Both Klop and Dershowitz also refer to this property as canonical] however, Klop

prefers to call terminating, confluent rewrite systems complete (Klo92).

2.3.5 Example Rewrite System. Up to this point, the basic notions of term

rewriting systems have been presented. This section will present a practical example of

a term rewriting system which converts first-order predicate logic equations in typical

infix notation to equivalent equations in a prefix notation that is similar to the syntax of

SLANG, an algebraic specification language. For example, let (£, R) be defined by the

following rewrite rules:

1. opl A op2 —> (And opl op2)
2. (opl A op2) -> (And opl op2)
3. opl V opl -► (Or opl op2)

2-22

4. (opl V op2) -* (Or opl op2)
5. opl =» op2 —> (Implies opl op2)
6. (opl =$■ op2) —*■ (Implies opl op2)
7. opl & op2 -► (Iff opl op2)
8. (opl & op2) -> (Iff opl op2)
9. \op -> (Not op)
10. \(op) -> (Not (op))
11. oop —» (o op)
12. o(0p) -► (o (op))

13. (oplDop2) -> (D opl op2)
14. A (ops) -»• (A ops)
15. opl = op2 —*• (Equal opl op2)
16. (opl = op2) -»• (Equal opl op2)
17. opl + op2 —> (Iplus opl op2)
18. (opl + op2) -> (Iplus opl op2)
19. opl — op2 —> (Minus opl op2)
20. (opl - op2) —*■ (Minus opl op2)
21. opl * op2 —* (Times opl op2)
22. (opl * op2) -» (Times opl op2)
23. (opl U op2) -+ (Union opl op2)
24. (opl n op2) —»■ (Intersect opl op2)
24. (opl G op2) -► (In opl op2)

In these rules, the operators have the standard first-order predicate logic precedence. The

symbols o, D, and A represent user-defined unary relations, user-defined binary relations,

and user-defined functions, respectively. For this example, consider the following first-order

predicate logic equation:

(x G u u v) <& ((x e U) v (x e V))

This equation can be rewritten using the following sequence of rewrites:

(xeuuv)«((xGU)v(xe v)) -*14
(x G (Union U V)) & ((x G U) V (x G V))

(x G (Union U V)) «■ ((x G U) V (x G V)) ^24

(In x (Union U V)) «*■ ((x G U) V (x G V))
(In x (Union U V)) & ((x G U) V (x G V)) -*7

(Iff (In x (Union U V)) ((x G U) V (x G V)))
(Iff (In x (Union U V)) ((x G U) V (x G V))) -+24

(Iff (In x (Union U V)) ((In x U) V (x G V)))
(Iff (In x (Union U V)) ((In x U) V (x G V))) -+24

(Iff (In x (Union U V)) ((In x U) V (In x V)))

2-23

(Iff (In x (Union U V)) ((In x U) V (In x V))) ^4

(Iff (In x (Union U V)) (Or (In x U) (In x V)))

The order of application of the rules was chosen based on knowledge of the precedence

of the operations in the system. This idea of precedence can be captured in an LALR(l)

grammar. If the example expression had been parsed into tree form, it would have looked

like figure B.l. Figures B.l through B.6 each portray a rewrite of the example expression.

In step 1, there are five different rewrite choices, each enclosed in a box. Going from step

1 to step 2, the subtree corresponding to choice 2 is rewritten. Looking at the steps, it

is easily seen that the choice of which rewrite to apply at each step does not affect the

final form. This is confluence. Also, in looking at the rewrite rules for the system, it can

be seen that each rewrite produces a term that is "smaller". In other words, there is less

to rewrite since no terms that match the left-hand side of any rule are produced. This

is termination. Termination was achieved because the rules are a well-founded ordering,

as mentioned in Section 2.3.4. Since the example term rewriting system is confluent and

terminating it is also convergent and defines unique normal forms (Der93). Another way

to describe the system is to say it is canonical

2.3.6 Graph Rewriting. The example in Section 2.3.5 demonstrated rewriting on

a tree representation of a first-order predicate logic expression. Rewriting can be general-

ized to apply to graphs as well as simple trees. In graph rewriting, subgraphs are replaced

according to rewrite rules which contain variables. The variables themselves refer to sub-

graphs (Der93). Because graphs do not have simple structures, like trees, graph rewriting

has a more global flavor. Graph rewriting systems are more powerful, but as is usually the

2-24

case, are more complicated. Where LALR grammars can be used in conjunction with tree

rewriting, graph grammars are required for graph rewriting.

2.4 Summary

This literature review provided the knowledge base needed to extend AFIT's object-

based composition system towards the capability to perform design refinement. First,

before defining a canonical model which represents object-oriented models algebraically, it

is necessary to understand how object-oriented constructs such as inheritance, aggregation,

and associations can be described in terms of theories. It is also necessary to understand

how these constructs are represented in Rumbaugh's OMT, which is the starting point for

the object-based composition system. Knowing the source and target of the composition

system provides the background necessary to design the extension to the formal object

transformation system. Finally, understanding the concepts of term rewriting provides

some insight into showing that the transformations from the unified model to the target

canonical model produce unique normal forms.

2-25

III. Designing a Formal Object Transformation Process

3.1 Introduction

In Chapter I, the notion of producing domain-specific applications from object-

oriented domain models was presented. The foundation for such a system is Lin and

Wabiszewski's formalized object transformation process. By following the general compiler

model, they developed compilers which take in a formal specification language representa-

tion of an object-oriented domain model (ULARCH or UZed) and produce portions of an

executable REFINE program. Looking at the portion of Figure 3.1 above the top dotted

line, it can be seen that their ULARCH and UZed parsers correspond to the analysis block,

while their transformations to REFINE correspond to the synthesis block. Both compilers

have the unified AST as an intermediate representation and REFINE as a target language.

In this research effort, Lin's compiler was modified by changing the target language to the

COMPILER

ULareh j

UZed ;

ULarch Parser

UZed Parser
Unified AST Transformations to

Refine
j Refine

INTERMEDIATE ^^ SOURCE «^^ !
ANALYSIS SYNTHESIS

; TARGET ^^

LANGUAGE *"""~ j REPRESENTATION "^"^ 1 LANGUAGE *"""

[_

ULareh \ i Modified ULareh Par ser Modified Unified AST Transformations tc

O-SIang
! O-Slang

Figure 3.1 Analysis Synthesis Model

canonical model and by developing new transformations to replace the existing synthesis

block. Also, the ULARCH parser was modified to account for changes made to the unified

model. This is shown in the portion of Figure 3.1 that appears below the dotted line.

3-1

This compiler model identifies the required functional components of the extended formal

object transformation process:

• A source language, ULARCH, which is a Larch representation of an OMT domain

model

• The analysis portion of the compiler, which is a modified version of Lin's ÜLARCH

parser

• An intermediate representation, which is a modified version of the unified AST

• The synthesis portion of the compiler, which is the transformations from the modified

version of the unified AST to the canonical AST

• A target language, which is the canonical AST

To implement these components, an evolutionary approach was adopted which consisted

of three phases with the following associated products:

1. A canonical algebraic framework

2. A modified version of Lin's unified model

3. A set of transformations from the unified model to the canonical model

Chapter IV provides a description of the changes made to the unified model, while Chapters

V and VI present the design and implementation of the transformations from the modified

version of the unified model to the canonical model. This chapter outlines the definition

of the canonical model and the design validation criteria in Sections 3.3 and 3.4 after an

overview of Lin and Wabiszewski's object transformation process.

3.2 Creating the Unified Framework

As stated in Chapter I, Lin and Wabiszewski developed a formalized object trans-

formation process. Lin employed a theory-based approach using Larch, while Wabiszewski

pursued a model-based approach using Z. This formalized transformation was developed

in three main steps. Initially, they created and validated mappings from the OMT models

3-2

to Larch and Z. Once these mappings were validated using existing problem domain OMT

models, they developed parsers for Larch and Z that created abstract syntax tree (AST)

representations. These representations served as a basis for the next step, in which they

analyzed the similarities and differences between the two resulting representations and

created a unified model (Lin94).

The first step in developing the formalized transformation process was to map Rum-

baugh's OMT models to the algebraic and model-based constructs of Larch and Z, respec-

tively. In OMT, the object model captures the important objects and associated attributes

and relationships between objects in the system. Also, object-oriented concepts such as

inheritance, aggregation, and attribute invariance are present. The dynamic model embod-

ies the reactive behavior of an object in terms of states and events. The functional model

relates an object's data transformations, encapsulating a collection of data and operations

on the data in much the same way as an abstract data type (RBP+91).1 Creating verifi-

able frameworks for the object-oriented models required the preservation of the constructs

present in the each of these models. Lin and Wabiszewski satisfied this requirement by

addressing each model individually. Table 3.1 briefly summarizes the mappings from the

OMT models to the algebraic and object-based frameworks (Lin94, HB94).

The second step in developing the formalized transformation process was to create

parsers to translate algebraic specifications written in Larch and model-based specifications

written in Z into AST representations. To accomplish this task, an object model was

built for each language. These models were then used to build a formal language syntax

in an extended Backus Naur Form (BNF) notation. The parsing toolset in SOFTWARE

'See Section 2.2.2 for a more in-depth description of Rumbaugh's OMT.

3-3

Table 3.1 OMT Mappings to Algebraic and Object-based Frameworks

Model OMT Component Algebraic Framework Model-based Framework

Object Class Trait Schema
Attributes Operators, Sorts Schema Attributes

Object Relations Axioms Schemas, Axioms
Model Inheritance Includes, Renames Schema Inclusion

Aggregation Includes, Renames Schema Attributes
State Trait Schema

Dynamic Event Trait Schema
Model State Transition

Table (STT)
STT STT

Functional Data Transform Traits, Operators Schema
Model Behavior Axioms Axioms

REFINERY™ was then used to parse Larch and Z programs based on these BNF notations

(Lin94).

Once the AST representations for each language were developed, Lin and Wabiszewski

used them to evaluate the structures of Larch and Z as used to describe OMT models. Their

evaluation revealed that the two languages have strong similarities in the way they rep-

resent specifications. Both languages require signatures, axioms, and external references

to describe a problem domain. These requirements are fulfilled in each language using

different syntax, but the semantics, i.e. mathematical foundations, are similar. These

similarities make up a set of common core objects in the unified model. Evaluation of

the ASTs also showed the differences between the two languages. For example, Z has the

capability to explicitly declare input and output variables, while Larch does not. These

types of differences make up a set of language specific objects in the unified model.

Lin and Wabiszewski concluded that Larch and Z have a common set of constructs

that can be used to build a canonical framework for formalizing object models. These

constructs can be put together to create one unified model that serves as a front-end

3-4

for formal system composition, and which supports theorem-proving, code generation, and

design refinement. They noted, however, that because of the significant differences between

the syntax of Larch and the syntax of Z, their unified framework contains language specific

extensions, and so is not completely unified (Wab94, Lin94).

3.3 The Canonical Algebraic Framework Phase

Section 3.1 outlined the phases required to extend Lin and Wabiszewski's formal

object transformation process. The starting point was identified as the selection of the

canonical framework to serve as the target language for the compiler. The object-oriented

specification language O-SLANG, introduced in Section 2.2.6, was chosen as the target

canonical framework. This selection was based on two criteria: completeness of coverage

of OMT, and compatibility with the design refinement process. This section provides a

discussion of these criteria.

The goal of each transformation step in a transformation system is to produce an

output that is equivalent to the input, i.e. no loss of information. If the target repre-

sentation, or framework, is not capable of capturing all of the information portrayed in

the source, then some information will be lost in the transformation. This is incomplete

coverage. The first criterion for creating the canonical algebraic framework, then, was to

analyze the unified model and to identify the parts which were necessary for preservation

of the original object-oriented model. Since the model was based on Rumbaugh's OMT,

it was possible to analyze it in light of the three distinct views that OMT provides of a

system: the object model, the dynamic model, and the functional model. O-SLANG cap-

3-5

tures all of the object-oriented concepts in OMT, and as will be discussed in Chapter IV,

captures more than the original unified model created by Lin and Wabiszewski.

Table 3.2 Rumbaugh to O-SLANG Translation

OMT Model OO Concept O-SLANG Feature

classes class specs
object Instances class specs
attributes attributes
operations operations

- constraints - axioms
simple inheritance subsort, import
multiple inheritance subsort, import

Object aggregation aggregate spec
Model - multiplicity - axioms

links link spec
associations association specs

- multiplicity - axioms
- qualifier - axioms

transition Events event specs
- parameters - parameters

Dynamic - actions - methods
Model output Events event specs

state actions/activity - methods
- parameters - parameters

control flow axioms
processes methods

Functional operation definition axioms
Model data flow operations return values

data store class specs

Table 3.2 provides a summary of the object-oriented concepts which need to be captured in

the canonical framework along with the features of O-SLANG which cover them. Chapter

V provides a more detailed discussion of the mappings from the unified model to O-SLANG.

The second reason for selecting O-SLANG as the algebraic framework was its ca-

pability to represent the operations needed for design refinement, such as specification

morphisms and colimits. As discussed in Section 2.2.6, O-SLANG is an extension of SLANG

which is the language used by SpecWare™ in performing design refinement. It is based on

3-6

category theory concepts such as morphisms, colimits, and diagrams. For example, with

inheritance in O-SLANG, the class-sort of the inheriting object is a subsort of the class-sort

of the object it is inheriting from. This corresponds to a morphism in SLANG. Aggregates

in O-SLANG correspond to a colimit in SLANG.

3-4 Validation Criteria and Domains

In order to validate the canonical framework and the transformations from the unified

model to the framework, two criteria were chosen, coverage and consistency. These criteria

can be defined as follows:

1. Coverage: The entire OMT model is captured in the canonical model

2. Consistency: The behavioral constraints of the system do not contain any contradic-

tions, that is any instances where true = false

To demonstrate that these criteria were met, two examples were developed, a gasoline

pump and a bank. Their main purpose was to provide example coverage of OMT so that

transformations from the unified model to the canonical model could be analyzed and

validated with respect to the coverage criterion. The emphasis in building the examples

was on exercising each facet of OMT rather than on developing complete domain models.

Table 3.3 shows the examples' coverage of OMT. The following sections outline the process

used to apply the chosen validation criteria and describe each example in detail.

3.4-1 Validation Process. In order to determine compliance with the validation

criteria introduced in Section 3.4, the compiler had to be checked at three points: before

the input to the parser, after the run of the parser and before the execution of the trans-

3-7

Table 3.3 OMT Coverage of Validation Domains

OMT Bank Pump

classes
object Instances
attributes
operations

- constraints
simple inheritance
multiple inheritance
aggregation

- multiplicity
links
associations

- multiplicity
- qualifier

transition Events
- parameters
- actions

output Events
state actions/activity

- parameters
control flow
processes
operation definition
data flow
data store

formations, and finally after the execution of the transformations. At each of these three

points, compliance with the coverage and consistency criteria was evaluated.

The first step in the validation process was to evaluate the traits created for the bank

and pump examples against the original domain models. This evaluation ensured that the

traits were consistent with the models' structure, operations, and invariants, demonstrated

that complete coverage of the models was achieved, and provided validated input for the

compiler.

Once the input to the compiler was validated, the ULARCH parser could be run and

the abstract syntax tree produced could be checked to see if all objects in the source

3-8

program were created as expected. To check the abstract syntax tree, a graphical tool

called Inspector was used to visually inspect the objects, attributes, and overall structure

of the tree 2. This ensured that the synthesis portion of the compiler had validated input.

The final step in the validation process involved checking the O-SLANG produced

by the transformations. Each O-SLANG file created was checked to ensure that all of the

aspects in the original OMT domain model were present in the O-SLANG domain theory.

Also, all axioms in the domain theory were checked to ensure that no inconsistencies were

present.

3.4-2 Bank Domain. The bank domain example is a fairly complex system

which covers all of the OMT concepts being validated. This section describes the object,

dynamic, and functional models for the bank domain. Appendix C contains the ÜLARCH

representation of the bank domain model.

3-4-2.1 Bank Object Model. The object model contains 14 different object

classes: bank, person, console, account, archive, customer, employee, checking account,

savings account, customer-employee, executive, teller, combined checking and savings ac-

count, and date. Aggregation is covered by the bank object, which is the top-level system

aggregate. Inheritance and multiple inheritance are both covered by classes inheriting from

the account object class and person object class. Several associations are also modeled.

For example, the owns association models the relationship where a bank customer can own

zero or more accounts. Figure 3.2 depicts the bank domain object model.

2 Inspector is provided by a package called Intervista which is part of the Software Refinery environ-
ment (int91).

3-9

Bank

Person

name
address

Customer Employee

number
operates

manipulates

Cust-Employee

Teller Executive

Account

int-date
balance
acct-num

credit

debit

close

archives

Checking Savings

rate
date-int-computed write-check

set-rate
compute-interest

Archive

arch-credit

arch-debit

arch-rate

arch-close

Date

current-date

I

Figure 3.2 Bank Object Model

3-10

3.4-2.2 Bank Dynamic Model. The dynamic model used for the bank

domain consists of state diagrams and state transition tables for the account and console

object classes. The dynamic model covers simple state transitions, actions, and single

receiver send events. The account dynamic model is portrayed in Figure 3.3, while the

console dynamic model is shown in 3.4.

Ciedit(aect, anmt) / ArchCredit(acct, anmt) Credit(acct, amiit) / ArchCrecKt(acct, amnt)

Debitfacct, atmt)[anmt > Mans] /
ArciDekii(aKtamnt)

Figure 3.3 Account Dynamic Model

3.4.2.3 Bank Functional Model. The functional model for the bank domain

consists of several data transformations; the account class has credit-acct, debit-acct, and

close-acct, the archive class has arch-credit, arch-debit, arch-close, and arch-rate, and the

checking account class has write-check, set-rate, compute-interest. The functional model

is shown in Figure 3.5.

3.4-3 Pump Domain. The pump domain example is not as complex as the bank

domain. It does not cover multiple inheritance, parameterized events, or data stores. It

does, however, cover events sent to multiple receivers. This section describes the object,

dynamic, and functional models for the pump domain. Appendix E contains the ULARCH

representation of the pump domain model.

3-11

Loggedln

\SelectAcct(acct)

NewConsole
• SI Disabled

DebitAcct(acct, amnt) /
Debit(acct, amnt)

ShowBalance(acct) / balance(acct)

__CreditAcct(acct, amnt) /
Credit(acct, amnt)

GoseAcct(acct)
Closefacct)

ExecLogin

CashCheck(acct, amnt) /
WriteCheck(acct, amnt)

Executive

IT
D UpdateAccts / Computelnterest

ChangeRate<rate) / SetRate(rate)

Figure 3.4 Console Dynamic Model

Checking

Figure 3.5 Bank Functional Model

3-12

3.4-3A Pump Object Model The object model contains 10 different ob-

ject classes: pump, display, pump-controller, gun, holster, gun-holster assembly, clutch,

motor, clutch-motor assembly, and sophisticated pump. Aggregation is covered by the

pump object, which is the top-level system aggregate. The gun-holster assembly object

and clutch-motor assembly object also cover aggregation. Inheritance is covered by the

sophisticated pump class which inherits from the pump object class. One association is

modeled. The kept-in association models the relationship where a particular gun is kept

in a particular holster. Figure 3.6 depicts the pump domain object model.

Pump Sophisticated

volume-select

amounl-sdect

GunHolsterAssembly ClutchMotorAssembly PumpControlIer

pump-id

Gun Holster Clutch Motor

Display

update-cost
Dpdate-volome

Figure 3.6 Pump Object Model

3.4-3.2 Pump Dynamic Model. The dynamic model used for the pump

domain consists of state diagrams and state transition tables for the clutch, display, gun,

holster, motor, and pump object classes. The dynamic model covers simple state transi-

tions, actions, and single and multiple receiver send events. The pump dynamic model is

portrayed in Figure 3.7.

3-13

NewGun

gun-initial-slate
^utOfBupply/FreeChitcii

faseKto/FreeCltttcli

EreeCluteh EngageClutch/start-fuel

NewClutch /
9 T(clutch-disabled

clutch-initial-state

StartPumpMotor/FreeClutch
NewMotor

9 ^(motor-dii
motor-initial-state

motor-nmmng
NewHolster

Mster-initial-state

SteyMotor /DisableClutch

KeteaseHolsterSwiteh

NewPump /
9 51 pump-disabled

pump-initial-state

NewDisplay
pump-enabled) • ^ **>*&

di spl ay-inifi al-state

Pulse

increment-display

Figure 3.7 Pump Dynamic Model

3-14

3.4-3.3 Pump Functional Model. The functional model for the pump do-

main consists of two data transformations; the display class has update-cost and update-

volume. The functional model is shown in Figure 3.8.

Display

Figure 3.8 Pump Functional Model

3.5 Summary

This chapter outlined the compiler design model on which the extension of Lin and

Wabiszewski's formal object transformation process was based. To implement the design,

three phases were identified: defining a canonical algebraic framework, extending the uni-

fied model, and creating transformations from the unified model to the canonical model.

The first of these phases was described in Section 3.3, where O-SLANG was identified as the

chosen canonical algebraic framework 3. The identification of the target canonical model,

along with the analysis of Lin and Wabiszewski's unified framework, set the stage for

the second phase which was analyzing the unified model to determine what changes were

required. These changes are discussed in Chapter IV. The final phase, defining and imple-

menting the transformations from the unified model to O-SLANG, is described in Chapters

3The canonical algebraic framework, or canonical model, will henceforth be referred to as O-SLANG.

3-15

V and VI. Also presented in this chapter were the validation criteria and domains used to

analyze the extended formal object transformation process. This analysis is presented in

Chapter VI.

3-16

IV. Extensions to the Unified Model

4-1 Introduction

Section 3.3 presented the first phase in extending the formal object transformation

process: the selection of O-SLANG as a canonical framework for algebraic models. This

selection established a target representation for transformations from the unified model.

Before these transformations could be developed, however, it was necessary to evaluate

the existing unified model to determine if it could capture all of the information needed

to represent object-oriented domain models in O-SLANG. An analysis of the unified model

showed that four changes were needed in ULARCH and one change was needed in the state

transition tables. Also, changes had to be made in Lin's mappings from OMT to ULARCH.

This chapter outlines the changes made to the original unified model.

4-2 Changes to E/LARCH

Three of the four changes made to ULARCH were required in order to add information

to the unified model, while the remaining change was made to facilitate the implementation

of transformations to O-SLANG. This section describes the changes made to the ULARCH

domain model and grammar.

4-2.1 Changing the Dynamic Theory. In Lin's domain model for ULARCH, the

top level object is a DomainTheory, which consists of three other objects: an ObjectThe-

ory, a DynamicTheory, and a FunctionalTheory. These three theory objects correspond

to the Object, Dynamic, and Functional Models in OMT, respectively. In the ULARCH

grammar, the objects are differentiated by the presence of a comment, as seen in Figure

4-1

4.1. Unfortunately, there is no way to distinguish between states and events from the

\begin{spec} %ObjectTheory
FuelTank: trait

includes...
introduces...
asserts...

Nend{spec}'>\

\begin{spec} %DynamicTheory \begin{spec} %DynamicTheory \begin{spee} %FunctionalTheory
UsingState: trait StartFill: trait CalculateFilledLevel: trait

includes ... includes ... includes ...
introduces ... introduces ... introduces ...
asserts ... asserts ... asserts ...

XendfspecPX ^endfspecJVv ^endfspec}^

Figure 4.1 Traits in original "ÜLARCH

dynamic model. For example, in Figure 4.1 both UsingState and StartFill are Dynamic-

Theory objects. When building transformations, states and events must be distinguishable,

as they really are different objects with different semantics. To capture this difference in

semantics, the domain model for ULARCH was changed by breaking the DynamicTheory

object into two separate objects, a StateTheory and an EventTheory. Also, the ULARCH

grammar was changed by adding the syntax for the two new theories. After the changes,

the traits in Figure 4.1 appear as in Figure 4.2.

Mjegin{spec} %ObjectTheory \begin{spec} %StateTheory \begin{spec} %EventTheory Vjegin{spec} %FunctionalTheory
FuelTank: trait UsingState: trait StartFill: trait CalculateFilledLevel: trait

includes... includes... includes... includes...
introduces... introduces... introduces... introduces...
asserts... asserts... asserts ... asserts...

\end{specP\ Vmd{spec}Vi Nendtspec}^ ^endfspec}^

Figure 4.2 Traits in modified ULARCH

4-2.2 Addition of Link and Association Theories. Lin and Wabiszewski's unified

model does not capture the concept of associations between objects. Associations are a

vital part of object-oriented models. Without them, the only relationships between objects

that can be represented are aggregation and inheritance. In order to be able to represent

associations in O-SLANG, the ULARCH domain model was modified by adding two new

types of trait objects, LinkTheory and AssociationTheory. In OMT, a link represents a

4-2

relationship between two (or more) objects, while an association represents a group of

links with common structure and meaning (RBP+91). A LinkTheory, then, is a trait

which represents a link in OMT. An AssociationTheory is a trait which represents a set

of individual links. This relationship between the AssociationTheory and LinkTheory is

analogous to the relationship between classes and objects (DBH95). In addition, the

ULARCH grammar was modified to include the syntax for the two new theories. This was

done using comments, as with the other theory types. Figure 4.3 shows the top levels of

the unified model before and after modification.

Before After

DomainTheory DomairiTheory

0 0
4 4 4 ^ A * 4

ObjectTheory DynamicTheoiy FunctionalTbeory ObjectTbewy StateTheory EventTheoty FunctionalTheory

« > it

LinkTheory
AssociationTheory

Figure 4.3 Changes to ULARCH Domain Model

4-2.3 Addition of Boolean Attribute. The remaining change made to the unified

model was to add a boolean attribute, done-Transform, to certain objects in the ULARCH

domain model. As will be discussed in Chapter VI, the ULARCH-to-O-SLANG transforma-

tions are a series of rules which are applied to the abstract syntax tree representation of a

ULARCH domain theory. A top-down control structure is used for applying those rules, via

a pre-order traversal of the tree. When a rule is successfully applied, the traversal starts

over with the object that results from the application of the rule. This could lead to an

infinite loop of rule applications. To prevent this, the rules must be defined in a way that

4-3

ensures that something changes to indicate that the rule has been applied and should not

be reapplied. This can be achieved in several ways (Ref90):

• Have the rule transform the target object into some other object to which the rule

cannot be applied.

• Have the rule annotate the object to indicate that the rule has been applied. The

left-hand side of the rule should check for the annotation.

• Have the rule modify some global data structure to indicate that the rule has been

applied. Again, the left-hand side of the rule should check the data structure.

Using a boolean attribute falls into the second category. The done- Transform attribute is

initialized to false when an object is created in the abstract syntax tree, and when a rule

is successfully applied to it, the attribute is set to true. Each rule has the precondition not

done-Transform, which ensures that a rule can be applied to an object only once.

4.3 Changes to OMT-to-UhARCE Mappings

In addition to changes to the ÜLARCH domain model and grammar, several changes

were also needed in Lin's mappings from OMT to ULARCH. Some of these changes were

necessitated by additions to the ULARCH domain model, and some were needed to add

information required for mapping ULARCH to O-SLANG. This section provides a description

of the changes made to the mappings from OMT to ULARCH.

4.3.1 Addition of Link and Association Theories. Once the syntax and the

domain model were defined for LinkTheory and AssociationTheory objects, mappings had

4-4

to be defined from OMT links and associations to the respective ULARCH representation.

To derive ULARCH traits for associations, the following steps are needed:

1. Create a ULARCH LinkTheory trait for each association which includes the traits for

each object participating in the association.

2. Define an LSL * operator for each participant in the relationship using the form:

attr-name: link-sort —»• attr-sort.

3. Create an LSL sort for the LINKTHEORY trait, and for each link-attribute define an

attribute.

4. Define an LSL "new" operator which constructs a link.

5. Use axiomatic equations to describe the behavior of the "new" operator.

6. Create a ULARCH AssociationTheory trait for each association which includes a set

of LinkTheory objects.

7. Define an LSL "new" operator which constructs an association.

8. Define LSL "image" operators which return the members of the association.

9. Use axiomatic equations to describe the behavior of the "new" operator.

10. Use axiomatic equations to describe the behavior of the "image" operators.

11. Use axiomatic equations to describe the multiplicity of the association.

Figure 4.4 shows the ULARCH for the Owns association between a Customer class and an

Account class in the Bank example. In the example, a customer can own zero or more

accounts, while an account can only be owned by one customer.

LSL stands for Larch Shared Language, which is used to write specifications in a form that is independent
of any specific programming language (GH93).

4-5

\begin{spec} %LinkTheory
Own: trait
includes Customer, Account
introduces

a-customer: Own-Link -> Cust
an-account: Own-Link -> Acct
new-Own-Link: Cust, Acct -> Own-Link

asserts \forall c: Cust, a: Acct
a-customer(new-Own-Link(c, a)) = c;
an-account(new-Own-Link(c, a)) = a

Nendfspec}^

\begin{spec} %AssociationTheory

Owns: trait
includes

Set(Owns for C, Own for E)
introduces

new-Owns: O, Cust, Acct -> O
image: O, Cust -> Accounts
image: O, Acct -> Customers
does-own: O, Cust, Acct -> Bool

asserts \forall o: O, c: Cust, a: Acct, x: Own-Link

size(image(o, c)) >= 0;
size(image(o, a)) =1;
(in(x, o)\and (a-customer(x) = c)) ==

in(an-account(x), image(o, c));
(in(x, o)\and (an-account(x) = a)) ==

in(a-customer(x), image(o, a));
new-Owns = empty-set;
does-own(new-Owns, c, a) = false;
does-own(0, c, a) == (in(c, image(o, a))\and

in(a, image(o, c)))
\end{spec}Vv

Figure 4.4 Association and Link in modified ULARCH

4-6

4-3.2 Representing Aggregation and Attributes. In Lin's mappings from OMT

to ULARCH, the aggregation property is captured using the LSL includes clause; each

component object's trait is included in the aggregate's trait (Lin94). Unfortunately, the

inheritance property is also captured the same way. In order to properly model aggregation

in O-SLANG, it was necessary to distinguish between aggregation and inheritance. To do

this, the aggregation mappings were changed to the following steps:

• Create an LSL sort representing the trait using tuple notation.

• For each component, add a field in the tuple, and include the component object's

trait. If the component object is a set, create an LSL sort for the set and include the

Set trait, renaming the container sort, C, to the set sort and the element sort, E, to

the component object's trait.

This change to the OMT mappings still could cause ambiguity, since Lin's mappings al-

lowed the tuple notation to be used for attributes. To prevent this conflict, the attribute

mappings were changed so that attributes are modeled in ULARCH using LSL operators

only.

4-3.3 Representing Single and Multiple Inheritance. As stated in Section 4.3.2,

both inheritance and aggregation require the use of the LSL includes clause. Even after

the changes were made to the OMT mappings for aggregation, it was still necessary to

distinguish between an includes clause for inheritance and for aggregation. This was ac-

complished by changing the mapping for inheritance to include the LSL renames notation.

The presence of the renames notation indicates inheritance. To extend Lin's mappings

to cover multiple inheritance, simply include, with the renames clause, the trait for each

4-7

object being inherited. Also, axioms must be built to describe the behavior of operators

in the inheriting trait on attributes in the inherited trait, and visa versa. Similarly, if any

event associated with the inheriting trait affects a state from the inherited trait, a state

table entry must be defined to describe the new state and what actions or send events to

send. The reverse also holds true: events from the inherited trait which affect the state of

the inheriting trait must also be described with a state table entry. After the changes, the

steps for transforming inheritance to ULARCH are:

• For each object that inherits from a parent(s), include the associated parent trait(s)

in the LSL includes clause, using rename notation to indicate inheritance.

• For each LSL operator in the inheriting object, if the operator affects the value of an

attribute in the parent trait, describe the behavior using an axiomatic equation.

• For each LSL operator in the parent trait, if the operator affects the value of an

attribute in the inheriting object, describe the behavior using an axiomatic equation.

• For each EventTheory object associated with an inheriting object, if the event affects

a state inherited from the parent trait (s), define a state table entry for the inheriting

object which describes the effects.

• For each EventTheory object associated with a parent trait(s), if the event affects

a state in the inheriting object, define a state table entry for the inheriting object

which describes the effects.

4-8

4-4 Changes to State Transition Table Model

Evaluation of Lin and Wabiszewski's state transition table model revealed that two

changes were required. First, the grammar for the state transition table did not allow for

entries without receive events. In OMT, state transitions can occur when certain guard

conditions are met. To capture this concept, the state transition table grammar was

modified so that a receive event is optional in an entry in the table. The second change

was made to distinguish between actions and send events in OMT. In O-SLANG, actions

are methods, while send events are calls to events. As with states and events, actions and

send events are different entities with different semantics. To capture this difference, the

state action column was broken up into two separate columns, one for actions and one for

send events. This required the addition of two new objects in the state transition table

domain model and changes to the grammar to reflect the new column in the table. Tables

4.1 and 4.2 show the state transition table for the pump in the pump domain example

before and after the changes to the state transition table model.

Table 4.1 Original Pump State Transition Table

Current
State

Receive
Event Parameters Guard

Next
State Action

PumpInitialState NewPump PumpDisabled
PumpDisabled

PumpDisabled
PumpDisabled

EnablePump

DisablePump
OverHeat

PumpEnabled

PumpDisabled
PumpDisabled

updatePump,
StartPump Motor,
Re8etDisplay

PumpEnabled
PumpEnabled
PumpEnabled

DisablePump
EnablePump
OverHeat

PumpDisabled
PumpEnabled
PumpDisabled

4-9

Table 4.2 Modified State Transition Table

Current
State

Receive
Event Parameters Guard

Next
State Action

Send
Event

PumpInitialState NewPump PumpDisabled
PumpDisabled

PumpDisabled
PumpDisabled

EnablePump

DisablePump
OverHeat

PumpEnabled

PumpDisabled
PumpDisabled

updatePump StartPumpMotor;
ResetDisplay

PumpEnabled
PumpEnabled
PumpEnabled

DisablePump
EnablePump
OverHeat

PumpDisabled
PumpEnabled
PumpDisabled

4' 5 Summary

Once the target language was identified, Lin and Wabiszewski's unified model had to

be carefully evaluated to determine if it contained all of the information needed to build

O-SLANG specifications. This evaluation highlighted several areas that required change.

Modifications were made to add information to the unified model and to eliminate ambigui-

ties. Adding the boolean annotated attribute was necessary to ensure that transformations

do not loop infinitely. Once implemented, these changes set the stage for the next phase

of extending the formal object transformation process: defining the transformations from

ULARCH to O-SLANG.

4-10

V. Definition of Unified Model to Canonical Model Transformations

5.1 Introduction

In Chapter III, O-SLANG was established as the canonical model. Based on this choice

of representation, Chapter IV described modifications to ULARCH. These changes were

needed to ensure that the information required to capture the object-oriented semantics

of OMT in O-SLANG were available in ULARCH. This concept is demonstrated in Figure

5.1. The modified version of ULARCH, which includes the state transition table and LARCH

portions of the unified model, appears on the left-hand side of the figure. The canonical

model, O-SLANG, appears on the right. The next step in extending the formal object

transformation process was to define the actual transformations from ULARCH to O-SLANG

so that the OMT semantics of ULARCH are properly transformed into equivalent O-SLANG

representations. These transformations are the mappings shown in Figure 5.1.

MODIFIED
ULARCH O-SLANG

LARCH

Figure 5.1 Conceptual View of Mappings

The mappings have the form A —» B, where A represents objects in ULARCH abstract

syntax trees and B represents objects in an O-SLANG abstract syntax tree. This chapter

presents these mappings by showing how each object in ULARCH is used to create the

corresponding object(s) in O-SLANG. The mappings are covered by first looking at trans-

5-1

formations from the LARCH portion of ULARCH to O-SLANG, then at transformations from

the state transition table portion of ULARCH to O-SLANG, and then finally at some addi-

tional transformations which require information from various parts of the unified model.

5.2 £ARCH to 0-ÄLANG Transformations

In ULARCH, the top level objects are theory presentations, which are described as

LSL traits. Each theory presentation is composed of a theory-id and a body. Each body is

composed of an includes clause, an introduces clause, and an asserts clause. This section

outlines the mappings from ULARCH objects to O-SLANG objects in terms of LARCH traits,

as well as in terms of tuple objects, which represent aggregation in the unified model.

5.2.1 ObjectTheory Mapping. In the unified model, the ObjectTheory trait rep-

resents an object instance. The O-SLANG counterpart is a Class Specification; however,

there is more information contained in an O-SLANG Class than a ULARCH ObjectTheory.

For example, a Class has state and object communication information while an Object-

Theory does not. There is a complete mapping from an ObjectTheory to a Class, but an

ObjectTheory is not sufficient for building a complete Class. The mappings from an Object-

Theory and its subcomponents to a Class are shown in Figure 5.2, while Figure 5.3 shows

the O-SLANG Class Specification created from the ObjectTheory for a SophisticatedPump

object.

5.2.2 StateTheory Mapping. A ULARCH StateTheory trait defines a state of the

object which appears in its includes clause. Axioms in the asserts clause describe the valid

attribute ranges for the state (Lin94). The StateTheory and its subcomponents map di-

5-2

• theory-id —» class-id

• theory-id —> class-sort

• trait-ref and renames —► inherited sorts

• trait-ref and no renames —► import in imports block

• trait-parameter —> sort-axiom

• operator —» attribute in attributes block

• operator domain —> attribute domain

• operator domain —♦ sort in sorts block

• operator range —> attribute range

• operator range —+ sort in sorts block

• axioms —* axioms in axiom block

Figure 5.2 ObjectTheory Mappings

\begin{spec} '/.ObjectTheory
SophisticatedPump: trait

includes Pump(P for P), Integer

introduces

volumeSelect: SP -> Int

amountSelect: SP -> Int
\end{spec}

class SophisticatedPump is

class-sort SophisticatedPump < Pump

import Pump

sort SP

sort-axioms SophisticatedPump = SP
attributes

volumeSelect: SP -> Integer

amountSelect: SP -> Integer
end-class

Figure 5.3 ObjectTheory Transformation for Sophisticated Pump

5-3

rectly to state and axiom subcomponents of the Class Specification which corresponds to

its included trait. Mappings from the StateTheory components to their O-SLANG counter-

parts are provided in Figure 5.4. Figure 5.5 shows the mapping from the ULARCH trait

Overdrawn to a state in the Account Class Specification.

• theory-id —> operation-id of state operation in states block

• operator domain —► state operation domain in states block

• operator range —► state operation range in states block

• axioms —► state invariant axioms in axioms block

Figure 5.4 StateTheory Mappings

\begin{spec} '/.StateTheory class Account is

Overdrawn: trait
includes Account

introduces state-attributes

OverdrawnState: Acct -> Bool AccountState: Account -> Account-State

asserts \forall a:Acct

balance(a) < 0

\end{spec}\\ states

Overdrawn: -> Account-State

axioms

AccountState(a) = Overdrawn => (balance(a) < 0)

end-class

Figure 5.5 StateTheory Transformation for Overdrawn

5.2.3 EventTheory Mapping. EventTheory traits define receive events for the

object which appears in its includes clause. The trait name, contained in the theory-id,

becomes the name of the event operation, while any parameters which appear in the do-

main of the EventTheory become part of the domain of the event operation and part of

the sorts block of the corresponding Class Specification. Since events in O-SLANG operate

on objects, the domain of the event operation includes the class-sort of the corresponding

5-4

Class Specification. The range of the event operation is also the class-sort of the Class

Specification, indicating that events return the object which they operate on. The map-

pings are outlined in Figure 5.6, while Figure 5.7 demonstrates the transformations on the

StartPumpMotor event.

• theory-id —* operation-id of event operation in events block

• operator domain —* domain of event operation in events block

• operator domain —*• sort in sorts block

• axioms —► axioms in axioms block

Figure 5.6 EventTheory Mappings

\begin{spec} '/.EventTheory class Pump is

StartPumpMotor: trait

includes Motor

introduces events

start-pump-motor : -> Bool StartPumpMotor: Motor -> Motor

\end-Cspec}\\

end-class

Figure 5.7 EventTheory Transformation for StartPumpMotor

5.2-4 FunctionalTheory Mapping. In the unified model, the FunctionalTheory

depicts data transformations in the OMT Functional Model. An operator models the

transform process, while axioms in the asserts clause define the behavioral constraints of

the operator. This maps directly to a method and axioms in O-SLANG. The method

and axioms become part of the Class Specification which corresponds to the Function-

alTheory^ included trait. The operator name becomes the name of the method operation,

while parameters appearing in the domain of the operator become part of the domain

of the method operation and are declared in the sorts block of the corresponding Class

Specification. As with event operations, methods operate on objects. Again, this means

5-5

that the class-sort of the corresponding Class Specification is in the domain of, and is the

range of, the method operation. Figure 5.8 describes the FunctionalTheory mappings. The

mappings are demonstrated in Figure 5.9 on the Credit-Acct FunctionalTheory.

• theory-id —► operation-id of method operation in methods block

• operator domain —> domain of method operation in methods block

• operator domain —► sort in sorts block

• axioms —* axioms in axioms block

Figure 5.8 FunctionalTheory Mappings

\begin-Cspec} '/.FunctionalTheory class Account is

Credit-Acct: trait
includes Account

introduces methods

credit-acct: Acct, Amnt -> Acct credit-acct: Acct, Amnt -> Acct
asserts \forall ac: Acct, am: Amnt

balance(credit-acct(ac, am)) =

(balance(ac) + am) axioms

\end-Cspec}\\ balance (credit-acct (ac, am)) =

(balance(ac) + am);

end-class

Figure 5.9 FunctionalTheory Transformation for Credit-Acct

5.2.5 LinkTheory Mapping. The LinkTheory object was modeled directly after

the O-SLANG Link Specification. With a few exceptions, the mapping is essentially one-

to-one. One exception is the sort names for the objects in the LinkTheory; the sort names

are replaced with the corresponding O-SLANG class-sort names. Another exception is the

"new" operator which becomes an event operation versus an attribute. Also, any references

to the "new" operator in the trait axioms are replaced with the name of the "create"

method. This is because events do not affect the values of attributes in O-SLANG, only

5-6

methods do. The mappings are presented in Figure 5.10, while Figure 5.11 demonstrates

the effect of the mappings on the Own trait.

• theory-id concatenated with "-Link" —► link-id

• theory-id concatenated with "-Link" —* class-sort

• operator —» attribute in attributes block

• operator domain —* attribute domain

• operator domain —► sort in sorts block

• operator range —► attribute range

• operator range —► sort in sorts block

• "new" operator —► method in methods block

• axioms —► axioms in axiom block

• "new" operator reference in axiom —> "create" method reference in axiom

Figure 5.10 LinkTheory Mappings

\begin{spec} '/.LinkTheory link Own-Link is

Own: trait class-sort Own-Link
includes Customer, Account sort Account, Customer

introduces attributes

a-customer: Own-Link -> Cust a-customer: Own-Link -> Customer
an-account: Own-Link -> Acct an-account: Own-Link -> Account

new-Own-Link: Cust, Acct -> Own-Link events

asserts \forall c: Cust, a: Acct new-Own-Link: Customer, Account -> Own-Link

a-customer(new-0wn-Link(c, a)) = c; axioms

an-account(new-Own-Link(c, a)) = a a-customer(create-Own-Link(a, c)) = c;

an-account(create-Own-Link(a, c)) = a
end-link

\end{spec}\\

Figure 5.11 LinkTheory Transformation for Own

5.2.6 AssociationTheory Mapping. As with the LinkTheory object, the Associ-

ationTheory object was modeled directly after its O-SLANG counterpart, the Association

Specification. Again the mappings are essentially one-to-one, as can be seen in Figures

5.12 and 5.13.

5-7

• theory-id —► assoc-id

• theory-id —»• class-sort

• included set of links —* link-class

• operator —► method in methods block

• operator domain —► method domain

• operator domain —► sort in sorts block

• operator range —► method range

• operator range —► sort in sorts block

• "new" operator —> method in methods block

• axioms —► axioms in axiom block

Figure 5.12 AssociationTheory Mappings

\begin{spec} '/.AssociationTheory
Owns: trait

includes

Set(0wns for C, Own for E), Own
introduces

new-Owns: 0, Cust, Acct -> 0

image: 0, Cust -> Accounts

image: 0, Acct -> Customers

does-own: 0, Cust, Acct -> Bool

asserts \forall o: 0, c: Cust,

a: Acct, x: Own-Link

Size(image(o, c)) >= 0;

Size(image(o, a)) = 1;

(in(x, o) \and (a-customer(x) = c)) ==

in(an-account(x), image(o, c));

(in(x, o) \and (an-account(x) = a)) ==

in(a-customer(x), image(o, a));

new-Owns = empty-set;

does-own(new-0wns, c, a) = false;

does-own(o, c, a) ==

(in(c, image(o, a)) \and

in(a, image(o, c)))

\end{spec}\\

association Owns is

class-sort Owns

link-class Own-Link

sort Customer, Account, Bool,

0, Customers, Accounts
sort-axioms Owns = 0

methods

does-own: 0, Customer, Account

image: 0, Account -> Customers

image: 0, Customer -> Accounts

events

new-Owns

axioms

Size(image(o, c)) >= 0;

Size(image(o, a)) = 1;

does-own(new-0wns(o, c,
does-own(o, c, a) <=>

(in(c, image(o, a)) &

in(a, image(o, c)));

end-association

■> Bool

Customer, Account -> Owns

O) false;

Figure 5.13 AssociationTheory Transformation for Owns

5-8

5.2.7 Tuple Mapping. As discussed in Section 4.3.2, tuples are used in the unified

model to represent aggregation. This concept is captured in an Aggregate Specification in

O-SLANG. An Aggregate allows multiple classes to be combined to specify system or sub-

system functionality. This is done through the use of the colimit operation (DBH95). While

the colimit operation does not exist in ULARCH, it is still possible to build portions of an

Aggregate from a tuple and the ObjectTheory of which it is a part. The remaining parts

of the Aggregate deal with object communication and inheritance, and they are created

from state transition table information and inheritance information. There are also some

additional nodes and arcs that must be generated in certain cases. For each set component,

a node must be created for a new copy of the Set Class Specification. An arc must then be

created which maps the class-sort Set to the class-sort of the set component, and the sort

E, which is a sort in the Set Class Specification, to the class-sort of the members of the

set component. A node must also be included for the Integer Class Specification. When

multiple set components exist, arcs must be added to ensure that each Set Specification

uses the same copy of Integer. The mappings in Figure 5.14 represent the portions of an

Aggregate Specification which can be built from a ÜLARCH tuple. An example of these

mappings appears in Figure 5.15.

• theory-id of parent theory concatenated with "-aggregate" —* agg-id

• single object field in tuple —*• object node in Aggregate

• single object field in tuple —> object-valued attribute in corresponding Class Specification

• set object field in tuple —► Set node in Aggregate

• set object field in tuple —► object node in Aggregate

• set object field in tuple —> class object-valued attribute in corresponding Class Specification

Figure 5.14 Tuple Mappings

5-9

\begin{spec} '/ObjectTheory

Pump(P): trait

includes

Set(DisplaySet for C, Display for E),

Set(GHASet for C, GunHolsterAssembly for E),

Set(CMASet for C, ClutchMotorAssembly for E),

PumpController, Kept-In

P tuple of gun-holster-assembly : GHASet,
clutch-ntotor-assembly : CMASet,
pump-controller : PC,

display : DisplaySet,
kept-in: Kpt-In

\end{spec}\\

aggregate Pump-aggregate is

nodes

GunHolsterAssembly-Class, ClutchMotorAssembly-Class,

PumpController, Display-Class, Kept-In, Integer,

SET-1: Set, SET-2: Set, SET-3: Set, SET-4: Set

arcs

SET-1 -> GunHolsterAssembly-Class:

{Set -> GunHolsterAssembly-Class, E -> GunHolsterAssembly},

SET-2 -> ClutchMotorAssembly-Class:

{Set -> ClutchMotorAssembly-Class, E -> ClutchMotorAssembly}

SET-3 -> Display-Class: {Set -> Display-Class, E -> Display},

SET-4 -> Kept-In: {Set -> Kept-In, E -> KI-Link},

Integer -> SET-1: {},

Integer -> SET-2: {},

Integer -> SET-3: {},

Integer -> SET-4: {}

end-aggregate

Figure 5.15 Tuple Transformation for Pump ObjectTheory

5-10

5.3 State Transition Table to O-SLANG Transformations

The state transition table defines the state and communication behavior of an object.

Each row in the table is a StateEntry object in the state transition table domain model

which represents the behavior of an object in response to a particular receive event, set

of guard conditions, or a combination of both. In O-SLANG, this information is captured

in Event Specifications', axioms in Class Specifications, and nodes and arcs in Aggregate

Specifications. This section describes the mappings from entries in a state transition table

to various objects in O-SLANG. Since the same information in the state transition table is

used to make multiple O-SLANG objects, the discussion of the mappings is organized by

the O-SLANG objects produced in the transformations.

5.3.1 Single and Multiple Event Specifications. If an entry in a state transition

table has a send event, then an O-SLANG Event Specification must be created. The Event

Specification, along with the colimit operations specified by an Aggregate Specification,

provides a line of communication between objects. For each send event, a separate Event

Specification is built. Also, an object-valued attribute is added to the sender's Class

Specification for each receiving object. The mappings from send events to single Event

Specifications is shown in figure 5.16.

When a send event is received by multiple objects, then a multiple Event Specification

must also be built. An event operation must be created in the Event Specification for the

send event and for each object which will receive the send event. For example, if some

event Eventl is sent to two different objects, then there will be three event operations in

the multiple Event Specification, one for the send event and two for the receiving objects.

5-11

• name of send event —► event-id

• name of send event —» event class-sort

• name of send event —► operation-id of event operation

• parameters of send event —* domain of event operation

• parameters of send event —► sorts in sort block

• name of receiver concatenated with "-obj" —► object-valued attribute

Figure 5.16 Single Event Mappings

The event operations for the receivers need different sorts from the class-sort of the Event

Specification. These sorts are eventually unified with the class-sorts of the receivers to

enable communication. Also, axioms must be created in the Event Specification to connect

the send event to each of the event operations. The mappings from send events to multiple

Event Specifications can be seen in Figure 5.17. Figure 5.18 demonstrates an example

where the event OverHeat is sent to three different objects.

• name of send event —* event-id

• name of send event —► event class-sort

• name of send event —♦ operation-id of event operations

• parameters of send event —> domain of event operations

• parameters of send event —> sorts in sort block

Figure 5.17 Multiple Event Mappings

5.3.2 Receive Event and Transition Event Axioms. An entry in a state transition

table indicates that some action must be taken due to the receipt of an event, the satis-

faction of guard conditions, or both. That action could be a change of state, invocation

of a method or operation, or the sending of an event(s). In order to define the behavior

depicted in the state transition table entry, axioms must be created in the Class Specifica-

5-12

Current
State

Receive
Event Parameters Guard

Next
State Action

Send
Event

\

MotorRunning temp > 300 MotorDisabled OverHeat
; ;

event OverHeat is

class-sort OverHeat

events

OverHeat: OverHeat -> OverHeat

end-event

event OverHeat-mult is

class-sort OverHeat

sort OBJ-1, OBJ-2, 0BJ-3

attributes

OBJ-1-obj: OverHeat -> OBJ-1

0BJ-2-obj: OverHeat -> OBJ-2

OBJ-3-obj: OverHeat -> OBJ-3

events

OverHeat: OverHeat -> OverHeat

OverHeat: OBJ-1 -> OBJ-1

OverHeat: OBJ-2 -> OBJ-2

OverHeat: OBJ-3 -> OBJ-3

axioms

OBJ-1-obj(OverHeat(o)) = OverHeat(OBJ-1-obj(o))j

OBJ-2-obj(OverHeat(o)) = OverHeat(0BJ-2-obj(o));

OBJ-3-obj(OverHeat(o)) = OverHeat(0BJ-3-obj(o))

end-event

Figure 5.18 Send Event Transformation for OverHeat

tion which corresponds to the object described by the state transition table. For an entry

with no receive event, the axiom built has the form:

(object-state(x) = current-state & guard-conditions) =$■
(object-state(x) = next-state &

receive-obj-l(x) = send-event-l(receive-obj-l(x), send-params-1) &

receive-obj-n(x) = send-event-n(receive-obj-n(x), send-params-n) &
action-l(action-params-l) &:

action-n(action-params-n))

For an entry with a receive event, the axiom built has the form:

(object-state(x) = current-state & guard-conditions & receive-event(x, params)) =>■
(object-state(x) = next-state &

receive-obj-l(x) = send-event-l(receive-obj-l(x), send-params-1) &

receive-obj-n(x) = send-event-n(receive-obj-n(x), send-params-n) &
attr-equal(receive-event(params), action-l(action-params-l)) &

5-13

attr-equal(receive-event(params), action-n(action-params-n)))

In these axioms, object-state is a state attribute which contains the value of the current state

of the object, while receive-obj is an object-valued attribute which points to the receiver

of the send-event. The terms current-state, guard-conditions, receive-event, params, next-

state, send-event, send-params, action and action-params all come from the state transition

table entry.

5.4 Additional Transformations

The information in the unified model is organized differently than in the canonical

model. Because of this difference, the transformations from ULARCH to O-SLANG are

not entirely straight forward. In some instances, previous information captured in one

portion of the unified model must be known in order to transform another portion. A

good example of this is in building axioms to describe the effects of methods and operations

on attributes, and events on state attributes. In a Class, the effect of each method and

operation must be described over each attribute. The same holds true for events and

state attributes. Additionally, if the Class is a subclass, then its operations, methods,

and events must be described over its superclass's attributes and states, and visa versa.

In order to build all of these axioms, all ObjectTheory traits must first be processed so

that the entire system structure is known and inheritance relationships can be determined.

In other instances, information to transform part of the unified model is obtained from

part of the canonical model that has already been built. These types of situations require

information to be stored in separate data structures, as will be discussed in Chapter VI.

5-14

This section describes those mappings from ULARCH to O-SLANG which require information

from different portions of the unified model and the canonical model.

5.4.1 Object Class Specifications. ObjectTheory traits in ULARCH depict object

instances. Section 5.2.1 showed how an ObjectTheory maps to a Class Specification. To

capture the concept of a class of objects, a Class Specification for an object class must

also be created. The object class is a set of the Class Specification objects created from

the ObjectTheory. It has the same events as the instance Class Specification; however, the

events are of the form:

Event: object-Class —* object-Class

Each event takes in an object class and returns the object class. Axioms connect the object

class events to the class events as follows:

in(x, y) <=> in(event(x), event(y))

In this example, x is of an instance type, while y is of the corresponding object class type.

When an event is sent to an object class, it has the same effect as sending the event to

each object instance in the object class. The mappings for building an object class Class

Specification are presented in Figure 5.20. An example of an O-SLANG object instance and

its corresponding object class are shown in Figure 5.21.

• theory-id concatenated with "-Class" —► class-id

• theory-id concatenated with "-Class"—► class-sort

• theory-id —► contained-class

Figure 5.19 ObjectTheory Mappings

5-15

• theory-id —> operation-id of event operation in events block

Figure 5.20 EventTheory Mappings

class Pump is class Pump-Class is

class-sort Pump class-sort Pump-Class
contained-class Pump

events

events new-Pump-Class: -> Pump-Class

DverHeat: Pump-Class -> Pump-Class

EnablePump: Pump-Class -> Pump-Class

OverHeat: Pump -> Pump DisablePump: Pump-Class -> Pump-Class
EnablePump: -> Pump axioms

DisablePump: -> Pump create-Pump-Class = empty-set;

new-Pump-Class = create-Pump-Class;

in(p, pc) <=>

end-class in(OverHeat(p), OverHeat(pc));

in(p, pc) <=>

in(EnablePump(Pump-207), EnablePump(pc));
in(p, pc) <=>

in(DisablePump(p), DisablePump(pc))
end-class

Figure 5.21 Object Class Transformation for Pump-Class

5-4-2 New Events and Create Methods. For each Class Specification, there must

be a way to create an instance of the Class. This is modeled using "new" events which

invoke "create" methods. The "new" event can be constructed in two different ways. First,

the user (domain modeler), can describe it in the state transition table for the domain

model *. This allows the user to initialize components of an aggregate by passing them as

parameters to the "new" event. Alternatively, the user can omit the definition of a "new"

event, and one will be created automatically. The default event will have no domain. For

each "new" event, a "create" method is automatically created with a signature that is

identical to the event. Since object class Class Specifications are created automatically,

their "new" event and "create" method are also generated automatically. The mappings

to "new" events and "create" methods are shown in Figures 5.22 and 5.23.

If an object in the unified model has states, the "new" event behavior must be described in a state
transition table entry.

5-16

• "new-" concatenated with class-id —> operation-id "new" event operation

• parameters of "new" event —► domain of "new" event operation

• "create-" concatenated with class-id —► operation-id of "create" method operation

• parameters of "new" event —> domain of "create" method operation

Figure 5.22 User Defined "new" Event

• "new-" concatenated with class-id —► operation-id "new" event operation

• "create-" concatenated with class-id —► operation-id of "create" method operation

Figure 5.23 Default "new" Event

5.4-3 attr-equal Operation. For a receive event to invoke a method, its behavior

must be linked to the behavior of the method. This is done by stating the equivalence of

the receiving object's attributes before the arrival of the receive event with the attributes

after the invocation of the method. Unfortunately, this cannot be done directly since by

definition events can only affect state attributes, not regular attributes. To get around

this problem, an operation called "attr-equal" is defined with the signature and behavior

described as follows:

attr-equal: object-sort, object-sort —> object-sort

attr-equal(x, y) =>• (attr-l(x) = attr-l(y) &

attr-n(x) = attr-n(y))

This operation must be created for any Class Specification with attributes. Because some

attributes are added due to object communication, the operation must be built after all

state transition tables have been processed.

5-17

5.4-4 Additional Axioms. There are some axioms which can only be built after the

entire structure of the domain model has been transformed into O-SLANG. These axioms

fall into two categories: axioms describing the behavior of the "attr-equal" operation,

and axioms describing an object's functional inheritance. The first case was described in

Section 5.4.3. For the second case, axioms describing the effect of each of the subclass's

methods on the superclass's attributes can be included in the asserts clause of the subclass's

FunctionalTheory trait. Axioms describing the effect of the superclass's methods on the

subclass's attributes can be included in the asserts clause of the subclass's ObjectTheory

trait. For any method and any attribute, if there is no effect to be described then the

axioms can be omitted from the ULARCH and they will automatically be generated. These

axioms can only be built after the entire structure of the domain model is known. The

default axioms will have the following form:

attr-n(method-m(x)) = attr-n(x)

5.4-5 Aggregate Specification Nodes and Arcs. As discussed in Section 5.2.7,

Aggregate Specifications are created from tuple objects, but the Aggregate is not complete

at that point. It also must capture information regarding 1) communication between

objects, 2) information regarding associations, and 3) information regarding inheritance.

This information is depicted in nodes and arcs. They define morphisms between different

sorts and different operations which will be unified in the colimit operation. In each of

these three cases, nodes and arcs must be added after all state transition table entries

and ULARCH traits are processed. The mappings for object communication, associations,

5-18

and inheritance are shown in Figures 5.24 through 5.27. Figure 5.28 shows an aggregate

specification for the bank object in the bank domain example.

• name of send event —► node

• name of sender —> node

• name of receiver —» node

• name of sender and send event —* arc

• name of receiver and send event —► arc

Figure 5.24 Object Communication Mappings - Single Event

• name of send event —> nodes

• name of send event concatenated with "-mult" —> node

• name of sender —► node

• name of receivers —► nodes

• name of sender and send event —» arc

• name of receivers and send event —> arcs

• name of send event concatenated with "-mult" and name of send event—» arcs

• sorts in multiple event Event Specification —> sort-axioms

Figure 5.25 Object Communication Mappings - Multiple Event

• association name —* node

• sorts in association —+ nodes

• association name —+ arc

• sorts in association —* arcs

Figure 5.26 Association Mappings

5-19

• superclasses —*■ nodes

• subclasses —* nodes

• superclasses, subclasses —► arcs

Figure 5.27 Inheritance Mappings

5.5 Summary

This chapter outlined the second phase of extending Lin's formal object transfor-

mation process. Mappings were defined from the unified model objects to the O-SLANG

objects in the canonical model representation, thus demonstrating that the canonical model

can capture all of the OMT concepts embodied in the unified model. Because the infor-

mation in the unified model is organized differently than in the canonical model, some

transformations require input from different portions of the unified model in order to cre-

ate canonical model objects. This had a definite impact on the design and implementation

of the transformations, as will be seen in Chapter VI.

5-20

aggregate Bank-aggregate is

nodes

Person-Class, Customer-Class, Employee-Class,

Cust-Employee-Class, Teller-Class, Executive-Class,

Console-Class, Account-Class, Checking-Class, Savings-Class,

Combined-Class, Archive-Class, Owns, Integer, SET-1: Set,

SET-2: Set, SET-3: Set, SET-4: Set, SET-5: Set, SET-6: Set,

SET-7: Set, SET-8: Set, SET-9: Set, SET-10: Set,

SET-11: Set, SET-12: Set, SET-13: Set, Credit, Debit, Close,

WriteCheck, SetRate, Computelnterest, ArchCredit, ArchDebit, ArchClose

arcs

SET-1 -> Person-Class: {Set -> Person-Class, E -> Person},

SET-2 -> Customer-Class: {Set -> Customer-Class, E -> Customer},

SET-3 -> Employee-Class: {Set -> Employee-Class, E -> Employee},

SET-4 -> Cust-Employee-Class: {Set -> Cust-Employee-Class, E -> Cust-Employee},

SET-5 -> Teller-Class: {Set -> Teller-Class, E -> Teller},

SET-6 -> Executive-Class: {Set -> Executive-Class, E -> Executive},

SET-7 -> Console-Class: {Set -> Console-Class, E -> Console},

SET-8 -> Account-Class: {Set -> Account-Class, E -> Account},

SET-9 -> Checking-Class: {Set -> Checking-Class, E -> Checking},

SET-10 -> Savings-Class: {Set -> Savings-Class, E -> Savings},
SET-11 -> Combined-Class: {Set -> Combined-Class, E -> Combined},
SET-12 -> Archive-Class: {Set -> Archive-Class, E -> Archive},

Integer -> SET-1: {}, Integer -> SET-2: {},

Integer -> SET-3: {}, Integer -> SET-4: {},

Integer -> SET-5: {}, Integer -> SET-6: {},

Integer -> SET-7: {}, Integer -> SET-8: {},

Integer -> SET-9: {}, Integer -> SET-10: {},

Integer -> SET-11: {}, Integer -> SET-12: {},

Integer -> SET-13: {},

SET-13 -> Owns: {Set -> Owns, E -> Own-Link},

SET-2 -> Owns: {Set -> Customers, E -> Customer},

SET-8 -> Owns: {Set -> Accounts, E -> Account},

Credit -> Console-Class: {},

Credit -> Account-Class: {Credit -> Account-Class},

Debit -> Console-Class: {},

Debit -> Account-Class: {Debit -> Account-Class},

Close -> Console-Class: {},

Close -> Account-Class: {Close -> Account-Class},

WriteCheck -> Console-Class: {},

WriteCheck -> Checking-Class: {WriteCheck -> Checking-Class},

SetRate -> Console-Class: {},

SetRate -> Savings-Class: {SetRate -> Savings-Class},

Computelnterest -> Console-Class: {},

Computelnterest -> Savings-Class: {Computelnterest -> Savings-Class},
ArchCredit -> Account-Class: {},

ArchCredit -> Archive-Class: {ArchCredit -> Archive-Class},
ArchDebit -> Account-Class: {},

ArchDebit -> Archive-Class: {ArchDebit -> Archive-Class},

ArchClose -> Account-Class: {},

ArchClose -> Archive-Class: {ArchClose -> Archive-Class},

Acct -> Acct-Class: {}, Acct -> Checking: {}, Acct -> Savings: {},

Checking -> Checking-Class: {}, Checking -> Combined: {},

Savings -> Savings-Class: {}, Savings -> Combined: {},

Combined -> Combined-Class: {},

Person -> Person-Class: {}, Person -> Customer: {}, Person -> Employee: {},

Employee -> Employee-Class: {}, Employee -> Exec: {},

Employee -> Teller: {}, Employee -> Cust-Employee: {},

Exec -> Exec-Class: {},

Customer -> Customer-Class: {}, Customer -> Cust-Employee: {},

Cust-Employee -> Cust-Employee-Class: {},

Teller -> Teller-Class: {}

end-aggregate

Figure 5.28 Aggregate Transformation for Bank

5-21

VI. Design and Implementation of [/LARCH to O-SLANG Transformations

6.1 Introduction

Chapter V defined a set of mappings from objects in the modified version of ULARCH

to objects in O-SLANG. These mappings provided a description of how to build specific

O-SLANG objects in a way which preserves the object-oriented semantics of the original

OMT domain model. The next step in extending the formal object transformation process

was to implement each of these rules in REFINE so that O-SLANG domain theories can

be automatically generated from ULARCH representations of domain models. Before this

implementation could begin, however, two tasks had to be accomplished. First, the map-

pings from Chapter V had to be correlated with specific language constructs in REFINE

which match the precondition —> postcondition semantics of transformations. Second, a

mechanism for implementing the control structure of the transformation process had to

be identified. Once the transformations were implemented, it was necessary to answer

the question, "Do the transformations produce unique normal forms?" This concept of

unique normalization 1 is key in rewrite systems. It guarantees that every term output by

a rewrite system has exactly one normal form.

This chapter first outlines a detailed design and implementation of the ULARCH to

O-SLANG mappings presented in Chapter IV, and then presents an analysis of the imple-

mented transformations. The analysis includes a discussion of the results of applying the

validation process defined in Section 3.4.1 along with a presentation of how rewrite system

properties can be shown to hold for the transformations. By first showing that the individ-

1See Section 2.3.4.3 for a definition of unique normalization

6-1

ual transformations are semantically correct and then applying the rewrite properties of

termination and confluence, the transformations as a whole are shown to be semantically

correct.

6.2 Overview of Implementation

Recall from Chapter V that because of the organization of the information in the

unified model, the ULARCH to O-SLANG mappings were grouped into three categories:

1. ULARCH traits to O-SLANG transformations

2. State transition table to O-SLANG transformations

3. Additional transformations

This grouping heavily influenced the design of the transformations: each category became

a step in the overall transformation process. This section describes the REFINE language

constructs and control structure used to implement the mappings provided in Chapter V,

along with detailed presentations of the implementation of each mapping.

6.2.1 EEFINE Language Constructs. REFINE provides two different constructs

for implementing the semantics of transformations: transforms and rules. Transforms have

the form P —> Q, where P and Q are predicates and —> is a special "transform arrow."

In short, some initial state described by P is transformed into a final state described by Q.

Consider the example where some variable v is assigned the value 100 whenever v < 100.

Using a transform, this can be implemented as v < 100 —> v = 100. Rules provide a

way of encapsulating transforms in the same way as a function body. Essentially, rules are

named transforms which can be parameterized (Ref90). Consider the following example

rule:

6-2

rule RuleA(a-parameter: parameter-type)
P(a-parameter) —> Q(a-parameter)

In this example, P is some property which a - parameter might possess, and Q is a

function which performs processing based on a — parameter. When RuleA is applied, if

P is true, then the function Q is called. This is precisely the type of construct needed for

implementing the ULARCH to O-SLANG mappings.

In the implementation of the mappings from Chapter V, each of the ULARCH map-

pings in Sections 5.2.1 through 5.2.7 became a rule, as well as the state transition table

entry mapping. For example, the mapping for ObjectTheory traits defined in Section 5.2.1

was implemented by the following rule:

rule Trans-ULarch-ObjectTheory(Input-Object:user-object)
ObjectTheory(Input-Object) & "StateTheory(Input-Object) &
"LinkTheory(Input-Object) & "Association(Input-Object) &
"EventTheory(Input-Object) & "FunctionalTheory(Input-Object) &
"done-Transform(Input-Object) —> Make-Class-(Input-Object)

In Trans-Ularch-ObjectTheory, if Input-Object is an ObjectTheory trait, then the function

Make-Class- is called to build an O-SLANG Class- object. Each of the rules created has a

similar format.

6.2.2 Control Structure. The remaining issue that needed to be resolved for

the implementation of the transforms was how to traverse the tree of ULARCH objects

being transformed. REFINE provides a couple of ways to do this. In the first way, REFINE

traversal functions can be used to apply rules to objects in an abstract syntax tree in either

a bottom-up 2 or top-down 3 fashion. As each object in the tree is visited, the rules passed

2POSTORDER-TRANSFORM function
3PREORDER-TRANSFORM function

6-3

to the traversal function are applied to the object one at a time. The main difference in

these functions is the order in which the objects are visited (Ref90). The second way to

traverse abstract syntax trees is through the use of the enumerate ... over ... construct

and the DESCENDANTS-OF-CLASS function. Consider the following transformation

function:

function Update-Aggregates() =
(enumerate Temp-Class over DESCENDANTS-OF-CLASS(Domain-Theory, 'Class-) do

Update-AggCommunication(Temp-Class);
Update-AggAssociation(Temp-Class))

In Update-Aggregates, the enumerate construct builds a set containing all objects in the

tree rooted at Domain-Theory which are of type Class-. The variable Temp-Class then

takes on the value of each member of the created set, one at a time, and is passed to

the functions Update-AggCommunication and AggAssociation which, update any associated

Aggregate- objects to account for object communication and associations as described in

Section 5.4.5.

Each of the above control structures was used in the implementation of the ULARCH

to O-SLANG mappings. The PREORDER-TRANSFORM function was used to transform

ULARCH objects and state transition table objects. This control structure is depicted in

the following two rules:

rule Trans-ULarch(Input-Object:user-object)
DomainTheory(Input-Object) —>

Input-Object = preorder-transform(Input-Object,
['Trans-ULarch-Obj ectTheory,
'Trans-ULarch-StateTheory,
'Trans-ULarch-EventTheory,
'Trans-ULarch-FunctionalTheory,
'Trans-ULarch-LinkThe ory,
'Trans-ULarch-AssociationTheory,
'Trans-Ularch-TupleObj])

6-4

rule Trans-STT(Input-Object:user-object)
StateTable(Input-Object) —>

Input-Object = preorder-transform(Input-Object,
['Trans-STT-StateEntry])

The enumerates construct was used to perform the additional processing transformations

described in Section 5.4.

6.2.3 {/LARCH to O-SLANG. AS stated in Section 6.2.1, each of the high-level

mappings in Sections 5.2.1 through 5.2.7 became a rule. The remaining mappings pro-

vided guidance on how to build O-SLANG objects. Each rule calls a function whose

purpose is to build the equivalent high-level object in O-SLANG. For example, Trans-

ULarch-State Theory calls the function Make-State, which builds a state operation in the

appropriate O-SLANG Class-. Those objects which become specifications in O-SLANG, i.e.

ObjectTheory, LinkTheory, AssociationTheory, and tuples, follow the same basic sequence

of events. First, the specification name and class-sort are created, followed by a call to a

function which builds the specification body. This function then builds the body subcom-

ponents based on the mappings in Chapter V. The remaining rules are described below in

Figures 6.1 through 6.6.

rule Trans-ULarch-StateTheory(Input-Object:user-object)
StateTheory(Input-Object) & "ObjectTheory(Input-Object) &
~LinkTheory(Input-Object) & "Association(Input-Object) &
"EventTheory(Input-Object) & "FunctionalTheory(Input-Object) &
"done-Transform(Input-Object) —> Make-State(Input-Object)

Figure 6.1 State Theory Transformation

6-5

rule Trans-ULarch-EventTheory(Input-Object:user-object)
EventTheory(Input-Object) & "ObjectTheory(Input-Object) &
"LinkTheory(Input-Object) & "Association(Input-Object) &
"StateTheory(Input-Object) & "FunctionalTheory(Input-Object) &
'done-Transform(Input-Object) —> Make-RecvEvent(Input-Object)

Figure 6.2 EventTheory Transformation

rule Trans-ULarch-FunctionalTheory(Input-Object:user-object)
FunctionalTheory(Input-Object) & "ObjectTheory(Input-Object) &
"LinkTheory(Input-Object) & "Association(Input-Object) k
"StateTheory(Input-Object) & "EventTheory(Input-Object) &
"done-Transform(Input-Object) —> Make-Funct(Input-Object)

Figure 6.3 FunctionalTheory Transformation

rule Trans-ULarch-LinkTheory(Input-Object:user-object)
LinkTheory(Input-Object) & "ObjectTheory(Input-Object) &
"Association(Input-Object) & "StateTheory(Input-Object) &
"EventTheory(Input-Object) & "FunctionalTheory(Input-Object) &
"done-Transform(Input-Object) —> Make-Link(Input-Object)

Figure 6.4 LinkTheory Transformation

rule Trans-ULarch-AssociationTheorydnput-Object:user-object)
AssociationTheory(Input-Object) & "ObjectTheory(Input-Object) &
"Link(Input-Object) & "StateTheory(Input-Object) &
"EventTheory(Input-Object) & "FunctionalTheory(Input-Object) &
"done-Transform(Input-Object) —> Make-Association(Input-Object)

Figure 6.5 AssociationTheory Transformation

rule Trans-ULarch-TupleObj(Input-Object:user-object)
Tuple-Obj(Input-Object) &
"done-Transform(Input-Object) —> Make-Aggregate-(Input-Object)

Figure 6.6 Tuple Transformation

6-6

6.2.3.1 Axioms Transformation. O-SLANG axioms were created in one of

two possible ways. First, some axioms were automatically built. An example of this is

the axioms for describing state transitions. Strings were built according to the formats

presented in Section 5.3, and then those strings were parsed using the O-SLANG parser

and the PARSE-FROM-STRING function. Another example of automatically generated

axioms are those which describe the attr-equal operation.

The second way axioms are created is from axioms in the ULARCH traits, such as

those describing state invariants, guard conditions, or the behavior of LSL operators. To

build these axioms, advantage was taken of the similarity of the syntax between LSL ax-

ioms and O-SLANG axioms. By restricting the user to writing axioms in the O-SLANG

syntax, the ULARCH axioms could be pretty printed to a string, and then that string could

be parsed by the O-SLANG parser with PARSE-FROM-STRING. To build axioms in this

manner, the following two functions were used:

function Make-OslangAxiom(Temp-AxString: string): Axiom-Def =
let(Temp-AxDef: Axiom-Def = nil,

Temp-AxiomsBlock: AxiomsBlock = nil)
Temp-AxiomsBlock <- parse-from-string(Temp-AxString, 'oslang);

(enumerate Temp-Axiom over axiom-or-def(Temp-AxiomsBlock) do
Temp-AxDef <- Temp-Axiom);

Temp-AxDef

function Make-String-From-Object(Input-Object: user-object): string =
let(Temp-String: string = "")
Temp-String <- format(false, ""WppW", Input-Object);
Temp-String

Make-OslangAxiom returns an Axiom-Def object that is created by parsing the string

Temp-AxString using the O-SLANG grammar. Make-String-From-Object creates a string

from the output of the printing of an AST rooted at Input-Object, and returns it.

6-7

6.2.4 State Transition Table to 0-SLANG. AS described in Section 5.3, each entry

in a state transition table is represented by a StateEntry object. It is used to create O-

SLANG Event specifications and to build axioms describing state transition behavior. The

state transition table rule is:

rule Trans-STT-StateEntry(Input-Object:user-object)
StateEntry(Input-Object) & "StateTable(Input-Object)&
"Ident-(Input-Object) & "SendEvent(Input-Object) &
done-Transform(Input-Object) —> Make-StateEntry(Input-Object)

If the StateEntry object dictates that an event must be sent, then the function Make-

SendEvent is called to create an 0-SLANG Event. If there are multiple objects which will

receive the send event, then Make-MultSendEvent is called to create another 0-SLANG

Event, this time for the multiple event. The behavior defined by the StateEntry object is

captured by calling either Make-RecvEventAxiom or Make-Trans Axiom to build an axiom,

depending on whether there is a receive event or not.

6.2.5 Extra Data Structures. To facilitate the building of O-SLANG objects, some

data structures were needed above and beyond the ULARCH, state transition table, and

O-SLANG ASTS. These data structures were tables, represented as sets or sequences, and

maps. The extra data structures were as follows:

1. AggTable : Sequence containing tuples consisting of a class name and an Aggregate-
specification where the object named by the .class name is a component of the
Aggregate-

2. ClassSorts : Set containing all of the declared class-sorts

3. ClassSortMap : Map from a class-sort to a sequence of equivalent sorts

4. MultSendEventMap : Map from a multiple send event name to a sequence of state
table entrys

5. AddedAttributes : Set containing the names of all classes which attributes have been
added to.

6-8

6. DescribedAttrs : A sequence of tuples which contain a Class- Spec, a method, and a
sequence of attributes where the effects of the method on the attributes have already

been described in an axiom.

7. DescribedlnheritedAttrs: A sequence of tuples which contain a Class- Spec, a method,
and a sequence of inherited attributes where the effects of the method on the at-
tributes have already been described in an axiom.

8. InitialStateMap : Map from a class name to the name of the initial state

9. NewEventMap : Map from a class name to the state table entry which describes the

receiving of a "new" event

10. EventMap : Map from an event name to a set of receiver names

11. InheritsMap : Map from a subclass name to a set of superclass names

12. ObjValAttrTable : Set containing tuples consisting of an object name and a class
name where the object has been added to the Class- specification named by the class

name as an object-valued attribute

6.2.6 Post Processing. Section 5.4 described how some transformations were

required to be performed after all of the ULARCH traits and state transition tables were

parsed and transformed. These additional transforms are performed by several functions.

The top-level function is called PostProcess. It makes five different calls to functions to

complete the ULARCH to O-SLANG transformations. Update-Aggregates is called to add

nodes and arcs to Aggregate- specifications due to object communication, associations, or

inheritance. Add-ObjValAttributes is invoked to add new object-valued attributes to Class-

specifications as dictated by the data structure ObjValAttrTable. Next, Add-NewEvents-

and-CreateMethods is called to build default "new" events and "create" methods for any

Class- specifications in which they are not already declared. The remaining axioms needed

to describe the behavior of the domain theory are built by the function FinishAxioms.

Finally, the function Replacelnt is called to replace any occurrences of the sort Int with

Integer, since the latter is the class-sort of the Integer class specification which is built into

O-SLANG.

6-9

6.3 Analysis of Implementation

Once the transformations were implemented, two tasks remained. First, the vali-

dation process described in Section 3.4.1 had to be applied to show that the individual

transformations from ULARCH to O-SLANG were each semantically correct. Second, the

issue of unique normalization, or completeness, needed to be addressed in order to show

that the transformations as a whole produce semantically correct O-SLANG representations

of object-oriented domain models. This section provides a summary of the results of the

validation process followed by a discussion of how the term rewriting techniques introduced

in Section 2.3 apply to the transformations.

6.3.1 Results of the Validation Process. In Section 3.4 two criteria were identified

for validation: coverage and consistency. In order to determine if these criteria were met

or not, checks needed to be applied at three different points in the transformation process.

The first point was prior to input to the ULARCH parser. For both example domains, the

traits and state transition tables were visually examined to make sure that the manual

transformations from OMT were done correctly. Particular attention was paid to the

portions relating to the modifications described in Section 4.3. This check validated that

the input to the modified ULARCH parser was correct.

The next check point in the validation process was to check the output from the

ULARCH parser. After changing the ULARCH grammar, it was compiled using Dialect. The

compilation reported one reduce/reduce error which, upon inspection of the parse table,

was determined to be the same reduce/reduce error reported by Lin (Lin94). A visual

inspection of the ASTs produced by the modified parser, done using the graphical tool In-

6-10

spector, revealed that the changed ULARCH and state transition table parsers performed as

desired. The parser was not adversely affected by any of the changes or the reduce/reduce

error. Since the modified ULARCH parser is unambiguous, parsing a ULARCH file produces

an abstract syntax tree that is unique to that file. This set the stage for the final checkpoint

of the design, validating the output from the transformations.

To finish validating the OMT to O-SLANG transformation process, the O-SLANG

domain theories produced for the bank and pump examples had to be examined. Each

of the mappings defined in Chapter V was checked to ensure that the proper O-SLANG

objects were created from ULARCH objects. Also, each object in the OMT domain model,

along with its associated attributes, relationships, and operations, was checked to see that

it was represented in the O-SLANG domain theory. The behavioral aspects of the OMT

model, i.e. state and function, were also checked. All aspects of the original OMT domain

model were covered, and no inconsistencies were found.

6.3.2 Rewrite System Properties. The final step in the analysis of the ULARCH

to O-SLANG transformations was to determine if the transformations as a whole were

semantically correct. To do this, term rewriting system properties were explored. In

particular, if a term rewriting system is uniquely normalizing, then it is guaranteed to

produce a unique output for each input. This is analogous to showing that a compiler is

unambiguous. Recall from Section 2.3 the formal definition for a rewrite system:

... a pair (%2,R), where ^ ls an alphabet or signature and R is a set of rewrite rules.
The syntax and vocabulary for a term rewriting system is (Klo92):

1. X) consists of a countably infinite set of variables x1,x2,x3,... and a non-empty set X)o °*
function symbols or operator symbols, each with an "arity", i.e. the number of arguments
the function or operator is supposed to have.

6-11

2. The set of terms over E> T(E) is defined inductively:
(l)x,y,z,...eT(E).
(2) If / e Eo and tu...,tn e T(D) (" > 0), then /(*i,...,*„) € T(£).

3. Terms not containing a variable are ground terms.

4. A rewrite rule € i? is a pair (l,r) of terms € T(E); written as I —> r. Rewrite rules can be
named, (e.g. rewrite rule n is written as rn : !->r, and the application of rn to some term
a which produces some term ß is written a —>r„ ß)-

In the context of this research, the transformations from ULARCH and state transition table

ASTs to O-SLANG ASTS can be viewed as a rewrite system where:

1. X) is a set containing the objects in the ÜLARCH, state transition table, and O-SLANG

grammars.

2. R is a set containing the REFINE rules defined in Section 6.2.3.

3. Eo 1S a set containing all of the functions in the REFINE implementation of the transforma-
tions. .

4. A term t € T is a ULARCH, state transition table, or O-SLANG object.

In order to determine if the ULARCH to O-SLANG transformations produce unique normal

forms, it must be shown that the transformations have two properties, termination and

confluence, as described in Section 2.3.4.3.

Termination involves showing that no infinite derivations of terms exist in the rewrite

system. For the unified model to canonical model transformations, this required showing

that termination was guaranteed for each of the three categories of mappings outlined

in Chapter V. For ULARCH and state transition table transformations this amounted to

demonstrating two things: objects are transformed only once, and no infinite loops of rule

applications can occur. For the additional transformations which are performed as post

processing, it must be shown that the functions are guaranteed to terminate.

The rules described in 6.2.3 do not produce ULARCH or state transition table objects.

Since the preconditions for each of those rules only check for ULARCH or state transition

6-12

table objects and there is a finite number of objects in the ULARCH and state transition

table ASTs, each object in the source AST will only be transformed once. When a REFINE

rule is successfully applied to an object, the traversal restarts with the object to which

the rule was successfully applied. As described in Section 4.2.3, this could result in an

infinite loop of rule applications. By setting the boolean attribute of the ULARCH or

state transition table object to false and checking the value of the attribute in the rule

preconditions, the possibility of an infinite loop is eliminated. These two conditions ensure

that no infinite derivations exist for O-SLANG objects.

As described in Section 6.2.2, the enumerate construct and the DESCENDANTS-

OF-CLASS function in REFINE were used to traverse the ULARCH, state transition table,

and O-SLANG ASTS to perform the additional processing transformations presented in

Section 5.4. The enumerates construct builds sets of objects from an AST subtree. Since

the ASTs are finite, the sets must be finite, and so the post processing functions must

terminate.

Confluence says that for any two sequences of rewrites on a term, no matter how they

diverge initially, their paths are guaranteed to rejoin at some common descendent term.

This implies the impossibility of the existence of more than one normal form (DJ90).

For the transformations from ULARCH to O-SLANG there is no possibility of divergence

since each transformation rule uniquely maps ULARCH objects to O-SLANG objects. Since

there is only one rewrite sequence for each ULARCH term, then there is only one possible

O-SLANG form. Thus, the transformations can be said to be confluent.

6-13

6.4 Summary

Implementing the mappings presented in Chapter V proved to be a fairly straight

forward task. Each mapping in Sections 5.2.1 through 5.2.7, as well as the mapping for

state transition table entries, became a REFINE rule. The remaining mappings were used to

guide the construction of O-SLANG objects. The overall control structure of the transfor-

mations was provided by the REFINE function PREORDER-TRAVERSAL which applies

rules to subtrees of an object in a top-down fashion, moving from the root towards the

leaves (Ref90). Because of the way the rules were defined and applied and the way ob-

jects were built, it was possible to show that the transformations were both terminating

and confluent. This was important because it guarantees that the objects produced have

exactly one normal form, and since the individual transformations were shown to be se-

mantically correct, the overall transformation process will therefore produce semantically

correct specifications.

6-14

VII. Conclusion and Recommendations

This chapter summarizes the accomplishments of this thesis effort, along with con-

clusions which can be drawn from the work. Finally, recommendations for the direction of

future research are outlined.

7.1 Summary of Accomplishments

Recall from Chapter I that the overall objective of this research effort was to design a

formalized object transformation process which produces canonical form algebraic models

from object-oriented designs for use in design refinement. Specifically, the stated objective

was:

Define a formal object transformation process by creating a canonical algebraic
model to represent general object-oriented models and by using term rewriting
techniques to develop transformations from iARCH specifications to the
canonical model.

To accomplish the objective, a literature review of theory-based object models and term

rewriting systems was done, resulting in the knowledge base needed to identify the canoni-

cal model and to extend the formal object transformation process. This extension amounted

to modifying Lin's ULARCH to Refine compiler so that it produces O-SLANG, the selected

canonical model. The modification process was broken up into three phases:

1. Identifying a canonical algebraic framework

2. Defining a modified version of Lin's unified model

3. Implementing a set of transformations from the unified model to the canonical model

The transformations in phase three were implemented within the predefined constraints of

coverage and consistency. Furthermore, they were shown to produce unique normal forms.

7-1

A solid foundation for transforming object-oriented domain models into a canonical model

for use with design refinement was demonstrated. This supports the feasibility of a next

generation application composition system.

7.2 Conclusions

This following conclusions can be drawn from this research:

1. The object-oriented algebraic specification language O-SLANG is a generalization of

Rumbaugh's OMT. As can be seen in Figure 4.3, the structure of the unified model is

heavily influenced by OMT. Each of the models in OMT has a corresponding theory

object in the unified model. O-SLANG, on the other hand, is not dependent on any

particular object-oriented methodology. As can be seen in Appendix A, O-SLANG

seems to capture the essence of object-oriented designs.

2. O-SLANG can represent object-oriented constructs. This effort showed that object-

oriented concepts as represented by Rumbaugh's OMT are completely captured in

O-SLANG, but it did not demonstrate that the language captures object-oriented

concepts in general. This issue is addressed in Section 7.3.

3. The evolutionary approach taken to extend the formal object transformation process

facilitated the implementation of the transformations. Since this effort was broken up

into three phases, each phase could build upon the validated product of the previous

phase. This ensured that the updated version of the unified model could represent

all of the information needed in the canonical model, and that the canonical model

could represent all of the object-oriented concepts present in OMT.

7-2

4. The Software Refinery™ environment is ideal for developing transformation systems.

The DIALECT tool, along with OBJECT ISPECTOR, provides the means to create a

formal language parser and to view the abstract syntax trees produced. Using Refine

language constructs such as predefined abstract syntax tree traversal functions, the

enumerates clause, and rules, allows the parser output to be transformed into the

abstract syntax tree representation of an alternate language.

5. The ÜLARCH to O-SLANG compiler completed in this effort successfully parses ULARCH

traits and state transition tables and produces an O-SLANG domain theory which rep-

resents the initial OMT domain model. Appendix G contains the user's manual for

the compiler.

6. Performing design refinement on algebraic specifications produced from object-oriented

models is feasible. This effort showed that O-SLANG can be produced from OMT

domain models. SpecWare, which is Kestrel's design refinement tool, uses the speci-

fication langauage SLANG. The O-SLANG domain theories produced by the ULARCH

to O-SLANG compiler can be captured in SLANG, since O-SLANG was designed as an

extension to SLANG. AS will be discussed in Section 7.3, the only thing needed is to

implement the transformations from O-SLANG to SLANG.

7. Term rewriting techniques can be applied to transformation systems. In this effort,

the Refine function PREORDER-TRAVERSAL was used to traverse the tree, and

the mappings from ULARCH to O-SLANG were applied as Refine rules to each object

in the tree. Defining the mappings as rules and functions, along with using the tree

representation, allowed for the transformations to be viewed as a rewrite system and

7-3

made it possible for the properties of termination and confluence to be applied to

the transformations. Showing that these two properties hold guarantees that the

transformations produce unique forms.

7.3 Recommendations for Future Research

This section outlines some issues that should be addressed in future research efforts.

Those issues are:

1. Extend the UZed Portion of the Formal Object Transformation Process - This re-

search focused on extending the Larch portion of Lin and Wabiszewski's formal ob-

ject transformation process. Because of time constraints, the transformations from

OMT to UZed to O-SLANG were not addressed. Implementation of this portion of

the transformation process should be completed to show that O-SLANG does unify

the LARCH-based and abased approaches to writing formal specifications.

2. Define Transformations from O-ShANG to SLANG - One of the main goals of a next

generation composition system is to produce executable code from object-oriented

domain models; this can be done through design refinement. To make code produc-

tion a reality, the transformations from O-SLANG to SLANG should be defined and

implemented. This would allow OMT models to be transformed into a form that is

used by Spec Ware.

3. Combine J/LARCH and State Transition Table Parsers - Currently, the ULARCH do-

main model and grammar is separate from those of the state transition table. To

simplify the transformation process, the domain models and grammars should be

7-4

merged to produce a single grammar and domain model, and thus a single parser.

Complete domain models could then be captured in single ULARCH files. Using one

parser would mean that transformations would be applied to a single AST versus

multiple ASTs.

4. Eliminate the Unified Model - In future versions of the formal object transformation

process, it may be possible to eliminate the unified model. Using the surface syntax

of Larch, Z, and the state transition tables, semantic processing routines can be

triggered to build equivalent O-SLANG domain theories. In essence, Larch traits,

Z Schemas, and the associated state transition tables could be parsed directly into

O-SLANG ASTS. This is shown in Figure 7.1, where the unified AST and the UZed

and ULARCH transformations to O-SLANG have been removed.

5. Incorporate Alternate Object-oriented Methodologies - The current formal object

transformation process is based solely on Rumbaugh's OMT. If O-SLANG is indeed

a canonical formal model for capturing object-oriented designs, then it should be

possible to develop transformations which produce O-SLANG domain theories from

other object-oriented methodologies.

6. Develop Theorem Prover Interface - Lin and Wabiszewski pointed out that during

specification refinement it is necessary to be able to demonstrate consistency and

completeness (Lin94, Wab94). The use of an automated theorem prover facilitates

this task. Rather than develop theorem prover interfaces for multiple specification

languages, a single interface should be developed for use with O-SLANG.

7-5

OBJECT-ORIENTED
DOMAIN ANALYSIS

RUMBAUGH'S OMT • • • OTHER 00
METHODOLOGY

TRANSLATION
SYSTEM

TRANSFORMATION
TOZ

TRANSFORMATION
TO LARCH

• • • TRANSFORMATION
TO OTHER SPEC LANG

Z SPECIFICATION LARCH SPECIFICATION
OTHER LANGUAGE A

SPECIFICATION V

O-Slang PARSER
LARCH PARSER • • • OTHER SPEC

LANG PARSER

^^ CANONICAL AST
(O-SLANQ)

OSLANG TO SLANG
TRANSFORMATION

SLANG

V

THEOREM PROVING ANALYSIS TOOLS DESIGN REFINEMENT

Figure 7.1 Projected Transformation Process

Implementation of the recommendations would result in a "flatter" system which

does not contain the unified AST to canonical AST transformation step. The system

would also be able to handle the transformation of domain models captured using other

object-oriented methodologies and other formal specification languages. Finally, the system

would be fully bidirectional; object-oriented domain models could be built from O-SLANG

domain theories. This projected transformation process is reflected in Figure 7.1.

7-6

7.4 Final Comments

Perhaps the most critical point in the software development process is the transition

from a user-provided system description to a software system specification. Object-oriented

techniques facilitate the transition by providing a more naturally understandable represen-

tation of the system through the use of diagrams. Formal methods and formal specification

languages enhance the transition by providing a means to reason about the object-oriented

model in terms of completeness and consistency, thus ensuring that the system specification

is correct before the development process continues. The extended formal object trans-

formation process developed during this effort provides the basis for being able to check

the correctness of specifications. Furthermore, this research demonstrates the feasibility

of transforming object-oriented domain models into a form suitable for design refinement.

This is a significant step towards the capability to produce executable code from object-

oriented models.

7-7

Appendix A. O-SLANG Domain Model

This appendix contains the object model diagram for the language O-SLANG. The

creation of O-SLANG abstract syntax trees is based on the syntax of the language as well

as this domain model.

O-SUng
Object

^

h

T IdentNamc T \

T IdenlName T

1
F Parameters T I

n^JL
T IdentName T I

r Parameters f Id«

1

E

v i r f Parameters f fPin

L=

W Operation W Operation
I Declaralion I Declaration

JT Like named objects
represent same class.

Figure A.l Top Level of O-SLANG Domain Model

A-l

Hü-

ir

Stalo
Attributes

Block

Theorem« Axioms Corutruclor
Block Block

IUPLA-, n- | -3 I a Definiüon

IM ^^
Aliom t

t"a-DefinitioT" I

Y Like named objects

represent same class.

Figure A.2 Second Level of O-SLANG Domain Model

simp-id

Identifier

Primary

JL

SimpleAxiom

3:

op-eration

IdentName

op-params

Relation

MathTerm

-C
Axiom

£
LogicTerm

Figure A.3 Domain Model for Axioms

A-2

Appendix B. Tree Manipulations for Rewrite Example

This appendix contains the steps described in the rewrite example presented in Sec-

tion 2.3.5. Each tree represents a step in the rewriting process. In Figure B.l there are five

possible terms that can be rewritten. Figure B.2 shows the tree that results from applying

choice 2. Figure B.6 shows the final tree that results from applying all rewrites.

e.g. (X IN UNION(U, V)) <=> «X IN U) I (X IN V))

Figure B.l Tree Rewrite Example (Step 1)

B-l

e.g. (X IN UNION(U, V» <-> ((X IN U) I (X IN V))

Figure B.2 Tree Rewrite Example (Step 2)

B-2

e.g. (X IN UNIONCU, V)) <-> ((X IN U) I (X IN V))

0 ® ©

Figure B.3 Tree Rewrite Example (Step 3)

B-3

e.g. (X IN UNION(U, V)) <-> «X IN U) I (X IN V))

Rewrite choice

1

2

3

0
Figure B.4 Tree Rewrite Example (Step 4)

B-4

e.g. (X IN UNIONOJ, V)) <-> ((X IN U) I (X IN V))

© ©

Figure B.5 Tree Rewrite Example (Step 5)

B-5

e.g. (X IN UNION(U, V)) <-> ((X IN U) I (X IN V»

0 G
Figure B.6 Tree Rewrite Example (Step 6)

B-6

Appendix C. [/LARCH for Bank Domain Example

This appendix contains the ULARCH traits and state transition tables for the Bank

example. The traits are based on the Bank object model described in Section 3.4.2.

\documentstyle[fullpage,larch]{article}

\begin{document>

\begin{spec> '/.ObjectTheory

Date(D): trait
includes String

\end{spec}\\

\begin{spec> 7,FunctionalTheory

Current-Date: trait
includes Date

introduces current-date: D -> String

\end{spec}\\

\begin{spec} '/.ObjectTheory

Account(Acct): trait

includes Date, Integer

introduces

int-date: Acct -> D
balance: Acct -> Amnt

acct-num: Acct -> Int

\end{spec}\\

\begin{spec} '/.StateTheory

OK: trait

includes Account

introduces OKState: Acct -> Bool
asserts \forall a:Acct

balance(a) >= 0
\end{spec}\\

\begin{spec} °/,StateTheory

Overdrawn: trait

includes Account

introduces OverdrawnState: Acct -> Bool

asserts \forall a:Acct

balance(a) < 0

\end-[spec}\\

\begin{spec} '/.EventTheory

NewAccount: trait

includes Account

C-l

introduces new-account: -> Bool

asserts \forall a:Acct

balance(new-account) = 0;

acct-num(new-account) = 0

\end{spec}\\

\begin{spec} '/.EventTheory

Credit: trait
includes Account

introduces credit: Amnt -> Bool

\end{spec}\\

\begin{spec> '/.EventTheory

Debit: trait

includes Account
introduces debit: Amnt -> Bool

\end{spec}\\

\begin{spec} '/.EventTheory

Close: trait
includes Account
introduces close: -> Bool

\end{spec}\\

\begin{spec> '/.FunctionalTheory

Credit-Acct: trait

includes Account
introduces credit-acct: Acct, Amnt -> Acct

asserts \forall ac: Acct, am: Amnt
balance(credit-acct(ac, am)) = (balance(ac) + am)

\end{spec}\\

\begin{spec> '/.FunctionalTheory

Debit-Acct: trait

includes Account
introduces debit-acct: Acct, Amnt -> Acct
asserts \forall ac: Acct, am: Amnt
balance(debit-acct(ac, am)) = (balance(ac) - am)

\end{spec>\\

\begin{spec} '/.FunctionalTheory

Close-Acct: trait

includes Account
introduces close-acct: Acct -> Acct

\end{spec}\\

\begin{spec} '/.ObjectTheory

Archive(Arch): trait

includes Date

\end{spec}\\

C-2

\begin{spec} '/.EventTheory

ArchCredit: trait

includes Archive

introduces archcredit: Acct, Amnt, D -> Bool

\end{spec}\\

\begin{spec} '/.EventTheory

ArchDebit: trait

includes Archive

introduces archdebit: Acct, Amnt, D -> Bool

\end{spec>\\

\begin{spec} '/.EventTheory

ArchRate: trait
includes Archive'
introduces archdebit: Acct, Rate, D -> Bool

\end{spec}\\

\begin{spec} '/.EventTheory

ArchClose: trait
includes Archive

introduces archclose: Acct, D -> Bool

\end{spec}\\

\begin{spec} '/,FunctionalTheory

Arch-Credit: trait

includes Archive, Account, D

introduces arch-credit: Arch, Acct, Amnt, D -> Arch

\end{spec>\\

\begin{spec> '/.FunctionalTheory

Arch-Debit: trait
includes Archive, Account, D

introduces arch-debit: Arch, Acct, Amnt, D -> Arch

\end-[spec}\\

\begin{spec} '/.FunctionalTheory

Arch-Rate: trait

includes Archive, Account, D

introduces arch-rate: Arch, Acct, Rate, D -> Arch

\end{spec}\\

\begin{spec} '/.FunctionalTheory

Arch-Close: trait

includes Archive, Account, D

introduces arch-close: Arch, Acct, D -> Arch

\end{spec}\\

\begin{spec} 7,0bjectTheory
Person(P): trait

includes String

C-3

introduces

name: P -> String

address: P -> String

\end{spec}\\

\begin{spec> '/.ObjectTheory

Customer(Cust): trait

includes Person(P for P)

\end{spec}\\

\begin{spec} '/.ObjectTheory

Employee(Empl): trait

includes Person(P for P), Integer, String

introduces number: Empl -> int

passwd: Empl -> String

\end{spec}\\

\begin{spec> '/.ObjectTheory
Cust-Employee(Cust-Empl): trait

includes Customer(Cust for Cust), Employee(Empl for Empl)

\end{spec}\\

\begin{spec} '/.ObjectTheory

Teller(Tell): trait
includes Employee(Empl for Empl)

\end{spec}\\

\begin-[spec} '/.ObjectTheory

Executive(Exec): trait
includes Employee(Empl for Empl)

\end{spec}\\

\begin{spec} '/.ObjectTheory

Checking(CAcct): trait
includes Account(CAcct for Acct)

\end{spec}\\

\begin{spec} '/.EventTheory

WriteCheck: trait

includes Checking

introduces writecheck: Amnt -> Bool
\end{spec>\\

\begin{spec} '/.FunctionalTheory

Write-Check: trait

includes Checking
introduces write-check: CAcct, Amnt -> CAcct

asserts \forall c: CAcct, a: Amnt

balance(write-check(c, a)) = balance(debit-acct(c, a));

int-date(write-check(c, a)) = int-date(c);

acct-num(write-check(c, a)) = acct-num(c)

C-4

\end{spec}\\

\begin{spec} '/.ObjectTheory

Savings(SAcct): trait
includes Account(SAcct for Acct), Date

introduces rate: SAcct -> Rate
date-int-computed: SAcct -> D

\end{spec}\\

\begin{spec} '/.EventTheory

SetRate: trait

includes Savings
introduces setrate: Rate -> Bool

\end{spec}\\

\begin{spec} '/.EventTheory

Computelnterest: trait

includes Savings
introduces computeinterest: -> Bool

\end{spec}\\

\begin{spec> '/.FunctionalTheory

Set-Rate: trait

includes Savings
introduces set-rate: SAcct, Rate -> SAcct

asserts \forall sa: SAcct, r: Rate

rate(set-rate(sa, r)) = r;
date-int-computed(set-rate(sa, r)) = current-date;

int-date(set-rate(sa, r)) = int-date(sa);

balance(set-rate(sa, r)) = balance(sa);

Acct-num(set-rate(sa, r)) = Acct-num(sa)

\end{spec}\\

\begin{spec} '/.FunctionalTheory

Compute-Interest: trait

includes Savings
introduces compute-interest: SAcct -> Amnt

asserts \forall sa: SAcct
compute-interest(sa) = (balance(sa) * rate(sa));

rate(set-rate(sa, r)) = rate(sa);
date-int-computed(compute-interest(sa, r)) = date-int-computed(sa);

int-date(compute-interest(sa, r)) = int-date(sa);

balance(compute-interest(sa, r)) = balance(sa);

Acct-num(compute-interest(sa, r)) = Acct-num(sa)

\end{spec}\\

\begin{spec} '/00bjectTheory

Combined: trait
includes Checking(CAcct for CAcct), Savings(SAcct for SAcct)

\end{spec}\\

C-5

\begin{spec} '/.ObjectTheory

Console(Cons): trait

includes Integer
introduces id: Cons -> int

\end{spec}\\

\begin{spec} '/,StateTheory

Loggedln: trait

includes Console
introduces LoggedlnState: -> Bool

\end{spec}\\

\begin{spec} '/.StateTheory

Disabled: trait

includes Console
introduces DisabledState: -> Bool

\end{spec}\\

\begin{spec} '/.StateTheory

Enabled: trait

includes Console

introduces EnabledState: -> Bool

\end{spec}\\

\begin{spec} '/.StateTheory

Executive: trait

includes Console
introduces ExecutiveState: -> Bool

\end{spec}\\

\begin{spec} '/.EventTheory

NewConsole: trait
includes Console

introduces new-console: -> Bool

asserts \forall c: Cons

id(new-console) = 0

\end{spec}\\

\begin{spec} '/.EventTheory
Login: trait

includes Console
introduces login: -> Bool

\end{spec>\\

\begin{spec} '/.EventTheory

Logout: trait

includes Console

introduces logout: -> Bool

\end{spec>\\

\begin{spec} '/.EventTheory

C-6

ExecLogin: trait

includes Console

introduces execlogin: -> Bool
\end{spec}\\

\begin{spec> '/.EventTheory
ChangeRate: trait

includes Console
introduces changerate: Rate -> Bool

\end{spec}\\

\begin{spec> '/.EventTheory

UpdateAccts: trait
includes Console

introduces updateaccts: -> Bool

\end{spec}\\

\begin{spec} '/.EventTheory
SelectAcct: trait

includes Console

introduces selectacct: Acct -> Bool

\end{spec>\\

\begin{spec} '/.EventTheory
ShowBalance: trait

includes Console

introduces showbalance: Acct -> Bool

\end{spec>\\

\begin{spec} '/.EventTheory

CreditAcct: trait
includes Console

introduces creditacct: Acct, Amnt -> Bool

\end{spec}\\

\begin{spec} '/.EventTheory
DebitAcct: trait

includes Console

introduces debitacct: Acct, Amnt -> Bool
\end{spec}\\

\begin{spec} '/.EventTheory

CloseAcct: trait

includes Console

introduces closeacct: Acct -> Bool

\end{spec}\\

\begin{spec} '/.EventTheory
CashCheck: trait

includes Console

introduces cashcheck: Acct, Amnt -> Bool

C-7

\end{spec}\\

\begin{spec} '/.LinkTheory

Op: trait

includes Employee, Console

introduces an-employee: Op-Link -> Employee

a-console: Op-Link -> Console

new-Op-Link: Employee, Console -> Op-Link

asserts \forall e: Empl, c: Cons

an-employee(new-Op-Link(e, c)) = e;

a-console(new-Op-Link(e, c)) = c

\end{spec>\\

\begin{spec} V.AssociationTheory

Operates: trait
includes Set(Operates for C, Op for E), Op

introduces

new-Operates: -> Opers
image: Opers, Empl -> Consoles

image: Opers, Cons -> Employees

does-operate: Opers, Empl, Cons -> Bool

asserts \forall o: Opers, e: Empl, c: Cons, x:Op-Link
(in(x, o) \and (a-console(x) = c)) == in(an-employee(x), image(o, c));

(in(x, o) \and (an-employee(x) = e)) == in(a-console(x), image(o, e));

Size(image(o, e)) = 1;
Size(image(o, c)) >= 0;

new-Operates = empty-set;
does-operate(new-Operates, e, c) = false;

does-operate(o, e, c) == (in(e, image(o, c)) \and
in(c, image(o, e)))

\end{spec}\\

\begin{spec} °/0LinkTheory

Own: trait
includes Customer, Account

introduces a-customer: Own-Link -> Cust
an-account: Own-Link -> Acct

new-Own-Link: Cust, Acct -> Own-Link

asserts \forall c: Cust, a: Acct

a-customer(new-0wn-Link(c, a)) = c;

an-account(new-0wn-Link(c, a)) = a

\end{spec}\\

\begin{spec} '/.AssociationTheory

Owns: trait

includes Set(Owns for C, Own for E), Own
introduces

new-Owns: 0, Cust, Acct -> 0

image: 0, Cust -> Accounts
image: 0, Acct -> Customers

does-own: 0, Cust, Acct -> Bool

C-8

asserts \forall o: 0, c: Cust, a: Acct, x: Own-Link

Size(image(o, c)) >= 0;

Size(image(o, a)) = 1;
(in(x, o) \and (a-customer(x) = c)) == in(an-account(x), image(o, c));

(in(x, o) \and (an-account(x) = a)) == in(a-customer(x), image(o, a));

new-Owns = empty-set;

does-own(new-Owns, c, a) = false;

does-own(o, c, a) == (in(c, image(o, a)) \and
in(a, image(o, c)))

\end{spec}\\

\begin{spec} '/.LinkTheory

Manipulate: trait
includes Console, Account

introduces a-console: Manipulate-Link -> Cons
an-account: Manipulate-Link -> Acct

new-Manipulate-Link: Cons, Acct -> Manipulate-Link

asserts \forall c: Cons, a: Acct
a-console(new-Manipulate-Link(c, a)) = c;

an-account(new-Manipulate-Link(c, a)) = a

\end{spec}\\

\begin-[spec} '/.AssociationTheory

Manipulates: trait
includes Set(Manipulates for C, Manipulate for E), Manipulate

introduces

new-Manipulates: Manips, Cons, Acct -> Manips

image: Manips, Cons -> Accounts

image: Manips, Acct -> Consoles

does-manipulate: Manips, Cons, Acct -> Bool

asserts \forall m: Manips, c: Cons, a: Acct, x: Manipulate-Link

Size(image(m, c)) >= 0;

Size(image(m, a)) >= 0;
(in(x, m) \and (a-console(x) = c)) == in(an-account(x), image(m, c));

(in(x, m) \and (an-account(x) = a)) == in(a-console(x), image(m, a));

new-Manipulates = empty-set;
does-manipulate(new-Manipulates, c, a) = false;

does-manipulate(m, c, a) == (in(c, image(m, a)) \and

in(a, image(m, c)))

\end{spec}\\

\begin{spec> 7,LinkTheory

Ar: trait

includes Account, Archive

introduces an-account: Ar-Link -> Acct

an-archive: Ar-Link -> Arch

new-Ar-Link: Acct, Arch -> Ar-Link

asserts \forall ac: Acct, ar: Arch

an-account(new-Ar-Link(ac, ar)) = ac;
an-archive(new-Ar-Link(ac, ar)) = ar

\end{spec>\\

C-9

\begin{spec} '/.AssociationTheory

Archives: trait
includes Set(Archives for C, Ar for E), Ar

introduces
new-Archives: Archs, Acct, Arch -> Archs

image: Archs, Acct -> ArchiveSet

image: Archs, Arch -> Accounts

does-archive: Archs, Acct, Arch -> Bool

asserts \forall ars: Archs, ac: Acct, ar: Arch, x: Ar-Link

Size(image(ars, ac)) = 1;

Size(image(ars, ar)) >= 0;
(in(x, ars) \and (an-account(x) = ac)) == in(an-archive(x), image(ars, ac));

(in(x, ars) \and (an-archive(x) = ar)) == in(an-account(x), image(ars, ar));

new-Archives = empty-set;

does-archive(new-Archives, ac, ar) = false;

does-archive(ars, ac, ar) == (in(ac, image(ars, ar)) \and

in(ar, image(ars, ac)))

\end{spec}\\

\begin{spec> '/.LinkTheory

Access: trait
includes Account, Date

introduces an-account: Access-Link -> Acct

a-date: Access-Link -> Acct
new-Access-Link: Acct, D -> Access-Link

asserts \forall a: Acct, d: D
an-account(new-Access-Link(a, d)) = a;

a-date(new-Access-Link(a, d)) = d

\end{spec>\\

\begin{spec} '/.AssociationTheory

Accesses: trait

includes Set(Accesses for C,Access for E), Access

introduces

new-Accesses: Aces, Acct, D -> Aces
image: Aces, Acct -> Dates

image: Aces, D -> Accounts

does-access: Aces, Acct, D -> Bool

asserts \forall acs: Aces, ac: Acct, d: D, x: Access-Link

Size(image(acs, ac)) = 1;

Size(image(acs, d)) >= 0;

(in(x, acs) \and (an-account(x) = ac)) == in(a-date(x), image(acs, ac));

(in(x, acs) \and (a-date(x) = d)) == in(an-account(x), image(acs, d));

new-Accesses = empty-set;

does-access(new-Accesses, ac, d) = false;

does-access(acs, ac, d) == (in(ac, image(acs, d)) \and

in(d, image(acs, ac)))
\end{spec}\\

\begin{spec} °/,0bjectTheory

C-10

Bank: trait

includes

Set(PersonSet for C, Person for E),

Set(CustomerSet for C, Customer for E),

Set(EmployeeSet for C, Employee for E),

Set(Cust-EmployeeSet for C, Cust-Employee for E),

Set(TellerSet for C, Teller for E),

Set(ExecutiveSet for C, Executive for E),

Set(ConsoleSet for C, Console for E),

Set(AccountSet for C, Account for E),

Set(CheckingSet for C, Checking for E),

Set(SavingsSet for C, Savings for E),

Set(CombinedSet for C, Combined for E),
Set(ArchiveSet for C, Archive for E),

Owns
PersonSet,

CustomerSet,

EmployeeSet,
Cust-EmployeeSet,

TellerSet,

ExecutiveSet,

ConsoleSet,

AccountSet,

CheckingSet,

SavingsSet,
CombinedSet,

ArchiveSet,

0

B tuple of P

CU
EM

CE

T

E

CS

ACS

CK
SV

C

ARS

owns-obj

asserts \forall b:B

Size(P(b)) >= 0;

Size(CU(b)) >= 0

Size(EM(b)) >= 0
Size(CE(b)) >= 0

Size(T(b)) >= 0;
Size(E(b)) >= 0;

Size(CS(b)) >= 0;
Size(ACS(b)) >= 0;

Size(CKOO) >= 0;

Size(SVCb)) >= 0;
Size(C(b)) >= 0;

Size(ARS(b)) >= 0;

P(b) = Union(CU(b), EM(b));

EM(b) = Union(T(b), E(b));

Subset(CE(b), CU(b));
Subset(CE(b), EM(b));"

ACS(b) = Union(CK(b), SV(b));
Subset(C(b), CK(b));

Subset(C(b), SV(b))
\end{spec}

\end{document>

C-ll

Table C.l Account State Transition Table

Current
State

Receive
Event Parameters Guard

Next
State Action

Send
Event

AccountlnitialState NewAccount OK
OK

OK

OK

OK

Credit

Debit

Debit

Close

acct amnt

acct amnt

acct amnt

acct

amnt > balance

amnt <= balance

OK

Overdrawn

OK

AccountEndState

credit-acct

debit-acct

close-acct

ArchCredit(Archive-obj,
acct, amnt, date)

ArchDebit(Archive-obj,
acct, amnt, date)

ArchDebit(Archive-obj,
acct, amnt, date)

ArchClose(Archive-obj,
acct, date)

OverDrawn
OverDrawn
Overdrawn

Overdrawn

Debit
Close
Credit

Credit

acct amnt
acct
acct amnt

acct amnt

amnt + balance >= 0

amnt + balance < 0

OverDrawn
OverDrawn
OK

Overdrawn

credit-acct

credit-acct

ArchCredit(Archive-obj,
acct, amnt, date)

ArchCredit(Archive-obj,
acct, amnt, date)

Table C.2 Checking State Transition Table

Current
State

Receive
Event Parameters Guard

Next
State Action

Send
Event

CheckinglnitialState NewChecking OK
OK
OK

Write Check
WriteCheck

cacct amnt
cacct amnt

amnt > balance
amnt <= balance

Overdrawn
OK write-check

ArchDebit(Archive-obj, acct, amnt, date)
ArchDebit(Archive-obj, acct, amnt, date)

OverDrawn WriteCheck cacct amnt OverDrawn

Table C.3 Savings State Transition Table

Current
State

Receive
Event Parameters Guard

Next
State Action

Send
Event

SavingsInitialState NewSavings OK
OK
OK

SetRate
Computelnterest

sacct rate
sacct

OK
OK

set-rate
compute-interest

OverDrawn
OverDrawn

SetRate
Computelnterest

sacct amnt
sacct

OverDrawn
OverDrawn

set-rate
compute-interest

C-12

Table C.4 Console State Transition Table

Current Receive Next Send
State Event Parameters Guard State Action Event

ConsolelnitialState New Console Disabled
Disabled Login Loggedln
Disabled ExecLogin Executive
Disabled Logout Disabled
Disabled SelectAcct acct Disabled
Disabled ShowBalance acct Disabled
Disabled CreditAcct acct amnt Disabled
Disabled DebitAcct acct amnt Disabled
Disabled CloseAcct acct Disabled
Disabled CashCheck acct amnt Disabled
Disabled ChangeRate rate Disabled
Disabled UpdateAccts Disabled
Loggedln Logout Disabled
Loggedln SelectAcct acct Enabled
Loggedln Login Loggedln
Loggedln ExecLogin Loggedln
Loggedln ShowBalance acct Loggedln
Loggedln CreditAcct acct amnt Loggedln
Loggedln DebitAcct acct amnt Loggedln
Loggedln CloseAcct acct Loggedln
Loggedln CashCheck acct amnt Loggedln
Loggedln ChangeRate rate Loggedln
Loggedln UpdateAccts Loggedln
Enabled ShowBalance acct Enabled
Enabled CreditAcct acct amnt Enabled Credit(acct, amnt)
Enabled DebitAcct acct amnt Enabled Debitfacct, amnt)
Enabled CloseAcct acct Enabled Close(acct)
Enabled CashCheck acct amnt Enabled WriteCheck(acct, amnt)
Enabled Login Enabled
Enabled ExecLogin Enabled
Enabled Logout Disabled
Enabled SelectAcct acct Enabled
Enabled ChangeRate rate Enabled
Enabled UpdateAccts Enabled
Executive Logout Disabled
Executive ChangeRate rate Executive SetRate(acct, rate)
Executive UpdateAccts Executive Computelnterest(acct)
Executive Login Executive
Executive ExecLogin Executive
Executive SelectAcct acct Executive
Executive ShowBalance acct Executive
Executive CreditAcct acct amnt Executive
Executive DebitAcct acct amnt Executive
Executive CloseAcct acct Executive
Executive CashCheck acct amnt Executive

C-13

Appendix D. O-SLANG for Bank Domain Example

This appendix contains the O-SLANG specifications for the Bank example that were

automatically generated from the ULARCH traits and state transition tables in Appendix

C.

class Account is

class-sort Account

import

Date

sort

Amnt, D, Account-State, Acct, Archive

sort-axioms

Account = Acct

ops
attr-equal: Account, Account -> boolean

attributes
acct-num: Account -> Integer

balance: Account -> Amnt

int-date: Account -> D

Archive-obj: Account -> Archive

state-attributes

AccountState: Account -> Account-State

methods

create-Account: -> Account

credit-acct: Acct, Amnt -> Acct

debit-acct: Acct, Amnt -> Acct

close-acct: Acct -> Acct

states

OK: -> Account-State

Overdrawn: -> Account-State

events

new-Account: -> Account

Credit: Account, Amnt -> Account

Debit: Account, Amnt -> Account

Close: Account -> Account

ArchCredit: Archive, acct, amnt, date -> Archive

ArchDebit: Archive, acct, amnt, date -> Archive

ArchClose: Archive, acct, date -> Archive

axioms

AccountState (a) = OK => (balance (a) >= 0);
AccountState (a) = Overdrawn => (balance (a) < 0);

balance (create-Account) = 0;

acct-num (create-Account) = 0;

balance (credit-acct (ac, am)) = (balance (ac) + am);

balance (debit-acct (ac, am)) = (balance (ac) - am);

(AccountState (Account-80) = OK) =>

(AccountState (Credit (Account-80, amnt)) = OK &

attr-equal (Credit (Account-80), credit-acct (Account-80)) ft

(Archive-obj (Credit (Account-80, amnt)) = ArchCredit (Archive-obj (Account-80))));

(AccountState (Account-8i) = OK £ amnt > balance) =>

(AccountState (Debit (Account-81, amnt)) = Overdrawn &

(Archive-obj (Debit (Account-81, amnt)) = ArchDebit (Archive-obj (Account-81))));

(AccountState (Account-82) = OK ft amnt <= balance) =>

(AccountState (Debit (Account-82, amnt)) = OK ft

attr-equal (Debit (Account-82), debit-acct (Account-82)) ft

D-l

(Archive-obj (Debit (Account-82, amnt)) = ArchDebit (Archive-obj (Account-82))));

(AccountState (Account-83) = OK) =>

(AccountState (Close (Account-83)) = AccountEndState &

attr-equal (Close (Account-83), close-acct (Account-83)) &
(Archive-obj (Close (Account-83)) = ArchClose (Archive-obj (Account-83))));

(AccountState (Account-84) = OverDrawn) =>

(AccountState (Debit (Account-84, amnt)) = OverDrawn);

(AccountState (Account-85) = OverDrawn) =>

(AccountState (Close (Account-85)) = OverDrawn);

(AccountState (Account-86) = Overdrawn & amnt + balance >= 0) =>

(AccountState (Credit (Account-86, amnt)) = OK &

attr-equal (Credit (Account-86), credit-acct (Account-86)) &

(Archive-obj (Credit (Account-86, amnt)) = ArchCredit (Archive-obj (Account-86))));

(AccountState (Account-87) = Overdrawn & amnt + balance < 0) =>

(AccountState (Credit (Account-87, amnt)) = Overdrawn &
attr-equal (Credit (Account-87), credit-acct (Account-87)) &
(Archive-obj (Credit (Account-87, amnt)) = ArchCredit (Archive-obj (Account-87))));

AccountState (new-Account) = OK & attr-equal (new-Account, create-Account);

attr-equal (Account-89, Account-90) =>

(acct-num (Account-89) = acct-num (Account-90) &

balance (Account-89) = balance (Account-90) &

int-date (Account-89) = int-date (Account-90) &

Archive-obj (Account-89) = Archive-obj (Account-90));

OK <> Overdrawn;

int-date (create-Account) = default-value;

Archive-obj (create-Account) = UNDEFINED;

acct-num (credit-acct (Account-91, Amnt-20)) = acct-num (Account-91);

int-date (credit-acct (Account-92, Amnt-21)) = int-date (Account-92);
Archive-obj (credit-acct (Account-93, Amnt-22)) = Archive-obj (Account-93);

acct-num (debit-acct (Account-94, Amnt-23)) = acct-num (Account-94);

int-date (debit-acct (Account-95, Amnt-24)) = int-date (Account-95);

Archive-obj (debit-acct (Account-96, Amnt-25)) = Archive-obj (Account-96);

acct-num (close-acct (Account-97)) = acct-num (Account-97);

balance (close-acct (Account-98)) = balance (Account-98);

int-date (close-acct (Account-99)) = int-date (Account-99);

Archive-obj (close-acct (Account-100)) = Archive-obj (Account-100)

end-class

class Account-Class is

class-sort Account-Class

contained-class Account

methods

create-Account-Class: -> Account-Class

events

new-Account-Class: -> Account-Class

Credit; Account-Class, Amnt -> Account-Class

Debit: Account-Class, Amnt -> Account-Class

Close: Account-Class -> Account-Class

axioms

create-Account-Class = empty-set;

new-Account-Class = create-Account-Class;

in (Account-76, Account-Class-10) <=>

in (Credit (Account-76, Amnt), Credit (Account-Class-10, Amnt));

in (Account-77, Account-Class-11) <=>

in (Debit (Account-77, Amnt), Debit (Account-Class-11, Amnt));

in (Account-78, Account-Class-12) <=>

in (Close (Account-78), Close (Account-Class-12))

end-class

class Archive is

class-sort Archive

import

Date

sort

Arch, Acct, Amnt, D, Rate

D-2

sort-axioms

Archive = Arch

methods

arch-credit: Arch, Acct, Amnt, D -> Arch

arch-debit: Arch, Acct, Amnt, D -> Arch

arch-rate: Arch, Acct, Rate, D -> Arch

arch-close: Arch, Acct, D -> Arch

create-Archive: -> Archive

events

ArchCredit: Archive, Account, Amnt, D -> Archive

ArchDebit: Archive, Account, Amnt, D -> Archive

ArchRate: Archive, Account, Rate, D -> Archive

ArchClose: Archive, Account, D -> Archive

new-Archive: -> Archive

axioms new-Archive = create-Archive

end-class

class Archive-Class is

class-sort Archive-Class

contained-class Archive

methods

create-Archive-Class: -> Archive-Class

events

new-Archive-Class: -> Archive-Class

ArchCredit: Archive-Class, Account, Amnt, D -> Archive-Class

ArchDebit: Archive-Class, Account, Amnt, D -> Archive-Class

ArchRate: Archive-Class, Account, Rate, D -> Archive-Class

ArchClose: Archive-Class, Account, D -> Archive-Class

axioms

create-Archive-Class = empty-set;

new-Archive-Class = create-Archive-Class;

in (Archive-13, Archive-Class-13) <=>

in (ArchCredit (Archive-13, Account, Amnt, D),

ArchCredit (Archive-Class-13, Account, Amnt, D));

in (Archive-14, Archive-Class-14) <=>

in (ArchDebit (Archive-14, Account, Amnt, D),

ArchDebit (Archive-Class-14, Account, Amnt, D));

in (Archive-15, Archive-Class-15) <=>

in (ArchRate (Archive-15, Account, Rate, D),

ArchRate (Archive-Class-15, Account, Rate, D));

in (Archive-16, Archive-Class-16) <=>

in (ArchClose (Archive-16, Account, D),
ArchClose (Archive-Class-16, Account, D))

end-class

class Person is

class-sort Person

sort

String

sort-axioms

Person = P

ops

attr-equal: Person, Person -> boolean

attributes

address: Person -> String

name: Person -> String

methods

create-Person: -> Person

events

new-Person: -> Person

axioms

attr-equal (new-Person, create-Person);

attr-equal (Person-7, Person-8) =>

(address (Person-7) = address (Person-8) &
name (Person-7) = name (Person-8));

D-3

address (create-Person) = EmptyString;

name (create-Person) = EmptyString

end-class

class Person-Class is

class-sort Person-Class

contained-class Person

methods

create-Person-Class: -> Person-Class

events

new-Person-Class: -> Person-Class

axioms

create-Person-Class = empty-set;

new-Person-Class = create-Person-Class

end-class

class Customer is

class-sort Customer < Person

import

Person

sort-axioms

Customer = Cust

methods
create-Customer: -> Customer

events
new-Customer: -> Customer

axioms
new-Customer = create-Customer

end-class

class Customer-Class is

class-sort Customer-Class

contained-class Customer

methods
create-Customer-Class: -> Customer-Class

events

new-Customer-Class: -> Customer-Class

axioms

create-Customer-Class = empty-set;

new-Customer-Class = create-Customer-Class

end-class

class Employee is

class-sort Employee < Person

import

String, Person

sort

String, int

sort-axioms

Employee = Empl

ops

attr-equal: Employee, Employee -> boolean

attributes

passwd: Employee -> String

number: Employee -> Integer

methods

create-Employee: -> Employee

events

new-Employee: -> Employee

axioms

attr-equal (new-Employee, create-Employee);

attr-equal (Employee-7, Employee-8) =>

(passwd (Employee-7) = passwd (Employee-8) 8

number (Employee-7) = number (Employee-8));

passwd (create-Employee) = EmptyString;

D-4

number (create-Employee) = 0

end-class

class Employee-Class is

class-sort Employee-Class

contained-class Employee

methods

create-Employee-Class: -> Employee-Class

events

new-Employee-Class: -> Employee-Class

axioms
create-Employee-Class = empty-set;

new-Employee-Class = create-Employee-Class

end-class

class Cust-Employee is

class-sort Cust-Employee < Employee, Customer

import

Employee, Customer

sort-axioms

Cust-Employee = Cust-Empl

methods

create-Cust-Employee: -> Cust-Employee

events
new-Cust-Employee: -> Cust-Employee

axioms

new-Cust-Employee = create-Cust-Employee

end-class

class Cust-Employee-Class is

class-sort Cust-Employee-Class

contained-class Cust-Employee

methods
create-Cust-Employee-Class: -> Cust-Employee-Class

events
new-Cust-Employee-Class: -> Cust-Employee-Class

axioms
create-Cust-Employee-Class = empty-set;
new-Cust-Employee-Class = create-Cust-Employee-Class

end-class

class Teller is

class-sort Teller < Employee

import

Employee

sort-axioms

Teller = Tell

methods

create-Teller: -> Teller

events

new-Telier: -> Teller

axioms
new-Teller = create-Teller

end-class

class Teller-Class is

class-sort Teller-Class

contained-class Teller

methods

create-Teller-Class: -> Teller-Class

events

new-Teller-Class: -> Teller-Class

axioms

create-Teller-Class = empty-set;

new-Teller-Class = create-Teller-Class

D-5

end-class

class Executive is
class-sort Executive < Employee

import

Employee

sort-axioms

Executive = Exec

methods

create-Executive: -> Executive

events

new-Executive: -> Executive

axioms
new-Executive = create-Executive

end-class

class Executive-Class is

class-sort Executive-Class

contained-class Executive

methods

create-Executive-Class: -> Executive-Class

events

new-Executive-Class: -> Executive-Class

axioms
create-Executive-Class = empty-set;

new-Executive-Class = create-Executive-Class

end-class

class Checking is

class-sort Checking < Account

import

Account

sort

CAcct, Amnt, Archive

sort-axioms

Checking = CAcct

ops

attr-equal: Checking, Checking -> boolean

attributes

Archive-obj: Checking -> Archive

methods

write-check: CAcct, Amnt -> CAcct

create-Checking: -> Checking

events

WriteCheck: Checking, Amnt -> Checking

ArchDebit: Archive, acct, amnt, date -> Archive

new-Checking: -> Checking

axioms

(CheckingState (Checking-6) = OK & amnt > balance) =>

(CheckingState (WriteCheck (Checking-6, amnt)) = Overdrawn &

(Archive-obj (WriteCheck (Checking-6, amnt)) = ArchDebit (Archive-obj (Checking-6))));

(CheckingState (Checking-7) = OK & amnt <= balance) =>

(CheckingState (WriteCheck (Checking-7, amnt)) = OK &

attr-equal (WriteCheck (Checking-7), write-check (Checking-7)) &

(Archive-obj (WriteCheck (Checking-7, amnt)) = ArchDebit (Archive-obj (Checking-7))));

(CheckingState (Checking-8) = OverDrawn) =>

(CheckingState (WriteCheck (Checking-8, amnt)) = OverDrawn);

attr-equal (new-Checking, create-Checking);

CheckingState (new-Checking) = OK & attr-equal (new-Checking, create-Checking);

attr-equal (Checking-10, Checking-11) =>

(Archive-obj (Checking-10) = Archive-obj (Checking-11));

balance (write-check (c, a)) = balance (debit-acct (c, a));

int-date (write-check (c, a)) = int-date (c);

acct-num (write-check (c, a)) = acct-num (c);

Archive-obj (write-check (Checking-12, Amnt-19)) = Archive-obj (Checking-12);

D-6

Archive-obj (create-Checking) = UNDEFINED

end-class

class Checking-Class is

class-sort Checking-Class

contained-class Checking

methods

create-Checking-Class: -> Checking-Class

events

new-Checking-Class: -> Checking-Class

WriteCheck: Checking-Class, Amnt -> Checking-Class

axioms

create-Checking-Class = empty-set;

new-Checking-Class = create-Checking-Class;

in (Checking-4, Checking-Class-4) <=>
in (WriteCheck (Checking-4, Amnt), WriteCheck (Checking-Class-4, Amnt))

end-class

class Savings is

class-sort Savings < Account

import

Date, Account

sort

D, Rate, SAcct, Amnt

sort-axioms

Savings = SAcct

ops

attr-equal: Savings, Savings -> boolean

attributes

date-int-computed: Savings -> D rate: Savings -> Rate

methods

set-rate: SAcct, Rate -> SAcct

compute-interest: SAcct -> Amnt

create-Savings: -> Savings

events

SetRate: Savings, Rate -> Savings

Computelnterest: Savings -> Savings

new-Savings: -> Savings

axioms

(SavingsState (Savings-24) = OK) =>

(SavingsState (SetRate (Savings-24, rate)) = OK &

attr-equal (SetRate (Savings-24), set.rate (Savings-24)));

(SavingsState (Savings-26) = OK) =>

(SavingsState (Computelnterest (Savings-25)) = OK &
attr-equal (Computelnterest (Savings-25), compute-interest (Savings-25)));

(SavingsState (Savings-26) = OverDrawn) =>

(SavingsState (SetRate (Savings-26, amnt)) = OverDrawn &

attr-equal (SetRate (Savings-26), set.rate (Savings-26)));

(SavingsState (Savings-27) = OverDrawn) =>

(SavingsState (Computelnterest (Savings-27)) = OverDrawn &

attr-equal (Computelnterest (Savings-27), compute-interest (Savings-27)));

attr-equal (new-Savings, create-Savings);

SavingsState (new-Savings) = OK & attr-equal (new-Savings, create-Savings);

attr-equal (Savings-29, Savings-30) =>

(date-int-computed (Savings-29) = date-int-computed (Savings-30) &

rate (Savings-29) = rate (Savings-30));

compute-interest (sa, r) = (balance (sa) * rate (sa));

rate (set-rate (sa, r)) = r;

int-date (set-rate (sa, r)) = current-date;

balance (set-rate (sa, r)) = balance (sa);

Acct-num (set-rate (sa, r)) = Acct-num (sa);

date-int-computed (set-rate (Savings-31, Rate-4)) = date-int-computed (Savings-31);

int-date (compute-interest (sa, r)) = int-date (sa);

balance (compute-interest (sa, r)) = balance (sa);

Acct-num (compute-interest (sa, r)) = Acct-num (sa);

D-7

date-int-computed (compute-interest (Savings-32)) = date-int-computed (Savings-32);

rate (compute-interest (Savings-33)) = rate (Savings-33);

date-int-computed (create-Savings) = default-value;

rate (create-Savings) = default-value

end-class

class Savings-Class is
class-sort Savings-Class

contained-class Savings

methods
create-Savings-Class: -> Savings-Class

events
new-Savings-Class: -> Savings-Class

SetRate: Savings-Class, Rate -> Savings-Class

Computelnterest: Savings-Class -> Savings-Class

axioms
create-Savings-Class = empty-set;

new-Savings-Class = create-Savings-Class;

in (Savings-21, Savings-Class-7) <=>

in (SetRate (Savings-21, Rate), SetRate (Savings-Class-7, Rate));

in (Savings-22, Savings-Class-8) <=>
in (Computelnterest (Savings-22), Computelnterest (Savings-Class-8))

end-class

class Combined is
class-sort Combined < Savings, Checking

import

Savings, Checking

methods

create-Combined: -> Combined

events
new-Combined: -> Combined

axioms
new-Combined = create-Combined

end-class

class Combined-Class is
class-sort Combined-Class

contained-class Combined

methods
create-Combined-Class: -> Combined-Class

events
new-Combined-Class: -> Combined-Class

axioms

create-Combined-Class = empty-set;
new-Combined-Class = create-Combined-Class

end-class

class Console is

class-sort Console

sort
int, Console-State, Savings, Checking, Account

sort-axioms

Console = Cons

ops

attr-equal: Console, Console -> boolean

attributes

id: Console -> Integer

Savings-obj: Console -> Savings

Checking-obj: Console -> Checking

Account-obj: Console -> Account

state-attributes

ConsoleState: Console -> Console-State

methods

create-Console: -> Console

D-8

states

Loggedln: -> Console-State

Disabled: -> Console-State

Enabled: -> Console-State

Executive: -> Console-State

events
new-Console: -> Console

Login: Console -> Console

Logout: Console -> Console

ExecLogin: Console -> Console

ChangeRate: Console, Rate -> Console

UpdateAccts: Console -> Console

SelectAcct: Console, Account -> Console

ShowBalance: Console, Account -> Console

CreditAcct: Console, Account, Amnt -> Console

DebitAcct: Console, Account, Amnt -> Console

CloseAcct: Console, Account -> Console

CashCheck: Console, Account, Amnt -> Console

Credit: Account, acct, amnt -> Account

Debit: Account, acct, amnt -> Account

Close: Account, acct -> Account
WriteCheck: Checking, acct, amnt -> Checking

SetRate: Savings, acct, rate -> Savings

Computelnterest: Savings, acct -> Savings

axioms
id (create-Console) = 0;

(ConsoleState (Console-190) = Disabled) =>

(ConsoleState (Login (Console-190)) = Loggedln);

(ConsoleState (Console-191) = Disabled) =>

(ConsoleState (ExecLogin (Console-191)) = Executive);

(ConsoleState (Console-192) = Disabled) =>

(ConsoleState (Logout (Console-192)) = Disabled);

(ConsoleState (Console-193) = Disabled) =>
(ConsoleState (SelectAcct (Console-193, acct)) = Disabled);

(ConsoleState (Console-194) = Disabled) =>
(ConsoleState (ShowBalance (Console-194, acct)) = Disabled);

(ConsoleState (Console-195) = Disabled) =>
(ConsoleState (CreditAcct (Console-195, acct, amnt)) = Disabled);

(ConsoleState (Console-196) = Disabled) =>

(ConsoleState (DebitAcct (Console-196, acct, amnt)) = Disabled);

(ConsoleState (Console-197) = Disabled) =>

(ConsoleState (CloseAcct (Console-197, acct)) = Disabled);

(ConsoleState (Console-198) = Disabled) =>

(ConsoleState (CashCheck (Console-198, acct, amnt)) = Disabled);

(ConsoleState (Console-199) = Disabled) =>
(ConsoleState (ChangeRate (Console-199, rate)) = Disabled);

(ConsoleState (Console-200) = Disabled) =>

(ConsoleState (UpdateAccts (Console-200)) = Disabled);

(ConsoleState (Console-201) = Loggedln) =>

(ConsoleState (Logout (Console-201)) = Disabled);

(ConsoleState (Console-202) = Loggedln) =>

(ConsoleState (SelectAcct (Console-202, acct)) = Enabled);

(ConsoleState (Console-203) = Loggedln) =>

(ConsoleState (Login (Console-203)) = Loggedln);

(ConsoleState (Console-204) = Loggedln) =>

(ConsoleState (ExecLogin (Console-204)) = Loggedln);

(ConsoleState (Console-205) = Loggedln) =>

(ConsoleState (ShowBalance (Console-205, acct)) = Loggedln);

(ConsoleState (Console-206) = Loggedln) =>
(ConsoleState (CreditAcct (Console-206, acct, amnt)) = Loggedln);

(ConsoleState (Console-207) = Loggedln) =>

(ConsoleState (DebitAcct (Console-207, acct, amnt)) = Loggedln);

(ConsoleState (Console-208) = Loggedln) =>

(ConsoleState (CloseAcct (Console-208, acct)) = Loggedln);

(ConsoleState (Console-209) = Loggedln) =>

D-9

(ConsoleState (CashCheck (Consola-209, acct, amnt)) = Loggedln);

(ConsoleState (Console-210) = Loggedln) =>

(ConsoleState (ChangeRate (Console-210, rate)) = Loggedln);

(ConsoleState (Console-211) = Loggedln) =>

(ConsoleState (UpdateAccts (Console-211)) = Loggedln);

(ConsoleState (Console-212) = Enabled) =>

(ConsoleState (ShowBalance (Console-212, acct)) = Enabled);

(ConsoleState (Console-213) = Enabled) =>

(ConsoleState (CreditAcct (Console-213, acct, amnt)) = Enabled &
(Account-obj (CreditAcct (Console-213, acct, amnt)) = Credit (Acconnt-obj (Console-213))));

(ConsoleState (Console-214) = Enabled) =>

(ConsoleState (DebitAcct (Console-214, acct, amnt)) = Enabled &

(Account-obj (DebitAcct (Console-214, acct, amnt)) = Debit (Account-obj (Console-214))));

(ConsoleState (Console-215) = Enabled) =>

(ConsoleState (CloseAcct (Console-215, acct)) = Enabled ft

(Account-obj (CloseAcct (Console-215, acct)) = Close (Account-obj (Console-215))));

(ConsoleState (Console-216) = Enabled) =>

(ConsoleState (CashCheck (Console-216, acct, amnt)) = Enabled &

(Checking-obj (CashCheck (Console-216, acct, amnt)) = WriteCheck (Checking-obj (Console-216))));

(ConsoleState (Console-217) = Enabled) =>

(ConsoleState (Login (Console-217)) = Enabled);

(ConsoleState (Console-218) = Enabled) =>

(ConsoleState (ExecLogin (Console-218)) = Enabled);

(ConsoleState (Console-219) = Enabled) =>

(ConsoleState (Logout (Console-219)) = Disabled);

(ConsoleState (Console-220) = Enabled) =>

(ConsoleState (SelectAcct (Console-220, acct)) = Enabled);

(ConsoleState (Console-221) = Enabled) =>
(ConsoleState (ChangeRate (Console-221, rate)) = Enabled);

(ConsoleState (Console-222) = Enabled) =>
(ConsoleState (UpdateAccts (Console-222)) = Enabled);

(ConsoleState (Console-223) = Executive) =>

(ConsoleState (Logout (Console-223)) = Disabled);

(ConsoleState (Console-224) = Executive) =>

(ConsoleState (ChangeRate (Console-224, rate)) = Executive &
(Savings-obj (ChangeRate (Console-224, rate)) = SetRate (Savings-obj (Console-224))));

(ConsoleState (Console-225) = Executive) =>
(ConsoleState (UpdateAccts (Console-225)) = Executive &
(Savings-obj (UpdateAccts (Console-225)) = Computelnterest (Savings-obj (Console-225))));

(ConsoleState (Console-226) = Executive) =>

(ConsoleState (Login (Console-226)) = Executive);

(ConsoleState (Console-227) = Executive) =>

(ConsoleState (ExecLogin (Console-227)) = Executive);

(ConsoleState (Console-228) = Executive) =>

(ConsoleState (SelectAcct (Console-228, acct)) = Executive);

(ConsoleState (Console-229) = Executive) =>

(ConsoleState (ShowBalance (Console-229, acct)) = Executive);

(ConsoleState (Console-230) = Executive) =>

(ConsoleState (CreditAcct (Console-230, acct, amnt)) = Executive);

(ConsoleState (Console-231) = Executive) =>

(ConsoleState (DebitAcct (Console-231, acct, amnt)) = Executive);

(ConsoleState (Console-232) = Executive) =>

(ConsoleState (CloseAcct (Console-232, acct)) = Executive);

(ConsoleState (Console-233) = Executive) =>

(ConsoleState (CashCheck (Console-233, acct, amnt)) = Executive);

ConsoleState (new-Console) = Disabled & attr-equal (new-Console, create-Console);

attr-equal (Console-235, Console-236) =>

(id (Console-235) = id (Console-236) 4

Savings-obj (Console-235) = Savings-obj (Console-236) &

Checking-obj (Console-235) = Checking-obj (Console-236) St

Account-obj (Console-235) = Account-obj (Console-236));

Loggedln <> Disabled;

Loggedln <> Enabled;

Loggedln <> Executive;

Disabled <> Enabled;

D-10

Disabled <> Executive;

Enabled <> Executive;

Savings-obj (create-Console) = UNDEFINED;

Checking-obj < create-Console) = UNDEFINED;

Account-obj (create-Console) = UNDEFINED

end-class

class Console-Class is

class-sort Console-Class

contained-class Console

methods
create-Console-Class: -> Console-Class

events
new-Console-Class: -> Console-Class

Login: Console-Class -> Console-Class

Logout: Console-Class -> Console-Class

ExecLogin: Console-Class -> Console-Class

ChangeRate: Console-Class -> Console-Class

UpdateAccts: Console-Class -> Console-Class

SelectAcct: Console-Class -> Console-Class

ShowBalance: Console-Class -> Console-Class

CreditAcct: Console-Class, Amnt -> Console-Class

DebitAcct: Console-Class, Amnt -> Console-Class

CloseAcct: Console-Class -> Console-Class

CashCheck: Console-Class, Amnt -> Console-Class

axioms

create-Console-Class = empty-set;

new-Console-Class = create-Console-Class;

in (Console-178, Console-Class-34) <=>

in (Login (Console-178), Login (Console-Class-34));

in (Console-179, Console-Class-35) <=>
in (Logout (Console-179), Logout (Console-Class-35));

in (Console-180, Console-Class-36) <=>
in (ExecLogin (Console-180), ExecLogin (Console-Class-36));

in (Console-181, Console-Class-37) <=>
in (ChangeRate (Console-181), ChangeRate (Console-Class-37));

in (Console-182, Console-Class-38) <=>
in (UpdateAccts (Console-182), UpdateAccts (Console-Class-38));

in (Console-183, Console-Class-39) <=>

in (SelectAcct (Console-183), SelectAcct (Console-Class-39));

in (Console-184, Console-Class-40) <=>
in (ShowBalance (Console-184), ShowBalance (Console-Class-40));

in (Console-186, Console-Class-41) <=>

in (CreditAcct (Console-185, Amnt), CreditAcct (Console-Class-41, Amnt));

in (Console-186, Console-Class-42) <=>
in (DebitAcct (Console-186, Amnt), DebitAcct (Console-Class-42, Amnt));

in (Console-187, Console-Class-43) <=>

in (CloseAcct (Console-187), CloseAcct (Console-Class-43));

in (Console-188, Console-Class-44) <=>
in (CashCheck < Console-188, Amnt), CashCheck (Console-Class-44, Amnt))

end-class

link Op-Link is

class-sort Op-Link

sort

Console, Employee

ops

attr-equal: Op-Link, Op-Link -> boolean

attributes

a-console: Op-Link -> Console

an-employee: Op-Link -> Employee

methods

create-Op-Link: Employee, Console -> Op-Link

events

new-Op-Link: Employee, Console -> Op-Link

D-ll

axioms
attr-equal (new-Op-Link (a-console-7, an-employee-4),

create-Op-Link (a-console-7, an-employee-4));

a-console (create-Op-Link (a-console-7, an-employee-4)) = a-console-7;

an-employee (create-Op-Link (a-console-7, an-employee-4)) = an-employee-4;

attr-equal (Op-Link-7, Op-Link-8) =>

(a-console (Op-Link-7) = a-console (Op-Link-8) &

an-employee (Op-Link-7) = an-employee (Op-Link-8))

end-link

association Operates is
class-sort Operates link-class Op-Link

sort
Bool, Opers, Employee, Console, Employees, Consoles

sort-axioms

Operates = Opers

methods
does-operate: Opers, Employee, Console -> Bool

image: Opers, Console -> Employees

image: Opers, Employee -> Consoles

create-Operates: -> Operates

events
new-Operates: -> Operates

axioms
(in (x, o) & (a-console (x) = c)) <=> in (an-employee (x), image (o, c));

(in (x, o) & (an-employee (x) = e)) <=> in (a-console (x), image (o, e));

Size (image (o, e)) = 1;

Size (image (o, c)) >= 0;

new-Operates = empty-set;

does-operate (new-Operates, e, c) = false;
does-operate (o, e, c) <=> (in (e, image (o, c)) & in (c, image (o, e)))

end-association

link Own-Link is

class-sort Own-Link

sort

Account, Customer

ops
attr-equal: Own-Link, Own-Link -> boolean

attributes
an-account: Own-Link -> Account

a-customer: Own-Link -> Customer

methods
create-Own-Link: Customer, Account -> Own-Link

events
new-Own-Link: Customer, Account -> Own-Link

axioms
attr-equal (new-Own-Link (an-account-13, a-customer-4),

create-Own-Link (an-account-13, a-customer-4));

an-account (create-Own-Link (an-account-13, a-customer-4)) = an-account-13;

a-customer (create-Own-Link (an-account-13, a-customer-4)) = a-customer-4;

attr-equal (Own-Link-7, Own-Link-8) =>

(an-account (Own-Link-7) = an-account (Own-Link-8) &

a-customer (Own-Link-7) = a-customer (Own-Link-8))

end-link

association Owns is

class-sort Owns link-class Own-Link

sort
Customer, Account, Bool, 0, Customers, Accounts

sort-axioms

Owns = 0

methods

does-own: 0, Customer, Account -> Bool

image: 0, Account -> Customers

D-12

image: 0, Customer -> Accounts

create-Owns: Customer, Account -> Owns

events
new-Owns: Customer, Account -> Owns

axioms

Size (image (o, c)) >= 0;

Size (image (o, a)) = 1;
(in (x, o) 6 (a-customer (x) = c)) <=> in (an-account (x), image (o, c));

(in (x, o) 4 (an-account (x) = a)) <=> in (a-customer (x), image (o, a));

new-Owns = empty-set;

does-own (new-Owns, c, a) = false;
does-own (o, c, a) <=> (in (c, image (o, a)) ft in (a, image (o, c)))

end-association

link Manipulate-Link is

class-sort Manipulate-Link

sort

Account, Console

ops
attr-equal: Manipulate-Link, Manipulate-Link -> boolean

attributes
an-account: Manipulate-Link -> Account

a-console: Manipulate-Link -> Console

methods
create-Manipulate-Link: Console, Account -> Manipulate-Link

events
new-Manipulate-Link: Console, Account -> Manipulate-Link

axioms
attr-equal (new-Manipulate-Link (an-account-14, a-console-8),

create-Manipulate-Link (an-account-14, a-console-8));

an-account (create-Manipulate-Link (an-account-14, a-console-8)) = an-account-14;

a-console (create-Manipulate-Link (an-account-14, a-console-8)) = a-console-8;

attr-equal (Manipulate-Link-7, Manipulate-Link-8) =>

(an-account (Manipulate-Link-7) = an-account (Manipulate-Link-8) ft

a-console (Manipulate-Link-7) = a-console (Manipulate-Link-8))

end-link

association Manipulates is

class-sort Manipulates link-class Manipulate-Link

sort
Console, Account, Bool, Manips, Consoles, Accounts

sort-axioms

Manipulates = Manips

methods
does-manipulate: Manips, Console, Account -> Bool

image: Manips, Account -> Consoles

image: Manips, Console -> Accounts

create-Manipulates: Console, Account -> Manipulates

events
new-Manipulates: Console, Account -> Manipulates

axioms

Size (image (m, c)) >= 0;

Size (image (m, a)) >= 0;

(in (x, m) ft (a-console (x) = c)) <=> in (an-account (x), image (m, c));

(in (x, m) ft (an-account (x) = a)) <=> in (a-console (x), image (m, a));

new-Manipulates = empty-set;

does-manipulate (new-Manipulates, c, a) = false;

does-manipulate (m, c, a) <=> (in (c, image (m, a)) ft in (a, image (m, c)))

end-association

link Ar-Link is

class-sort Ar-Link

sort

Archive, Account

ops

D-13

attr-equal: Ar-Link, Ar-Link -> boolean

attributes

an-archive: Ar-Link -> Archive

an-account: Ar-Link -> Account

methods
create-Ar-Link: Account, Archive -> Ar-Link

events
new-Ar-Link: Account, Archive -> Ar-Link

axioms
attr-equal (new-Ar-Link (an-archive-4, an-account-15),

create-Ar-Link (an-archive-4, an-account-16));
an-archive (create-Ar-Link (an-archive-4, an-account-15)) = an-archive-4;

an-account (create-Ar-Link (an-archive-4, an-account-15)) = an-account-15;

attr-equal (Ar-Link-7, Ar-Link-8) =>

(an-archive (Ar-Link-7) = an-archive (Ar-Link-8) &

an-account (Ar-Link-7) = an-account (Ar-Link-8))

end-link

association Archives is

class-sort Archives link-class Ar-Link

sort
Account, Archive, Bool, Archs, Accounts, ArchiveSet

sort-axioms

Archives = Archs

methods
does-archive: Archs, Account, Archive -> Bool

image: Archs, Archive -> Accounts

image: Archs, Account -> ArchiveSet

create-Archives: Account, Archive -> Archives

events
new-Archives: Account, Archive -> Archives

axioms

Size (image (ars, ac)) = 1;
Size (image (ars, ar)) >= 0;
(in (x, ars) & (an-account (x) = ac)) <=> in (an-archive (x), image (ars, ac));

(in (x, ars) & (an-archive (x) = ar)) <=> in (an-account (x), image (ars, ar));

new-Archives = empty-set;
does-archive (new-Archives, ac, ar) = false;
does-archive (ars, ac, ar) <=> (in (ac, image (ars, ar)) & in (ar, image (ars, ac)))

end-association

link Access-Link is

class-sort Access-Link

sort

Account, D

ops

attr-equal: Access-Link, Access-Link -> boolean

attributes

a-date: Access-Link -> Account

an-account: Access-Link -> Account

methods

create-Access-Link: Account, D -> Access-Link

events

new-Access-Link: Account, D -> Access-Link

axioms
attr-equal (new-Access-Link (a-date-4, an-account-16),

create-Access-Link (a-date-4, an-account-16));

a-date (create-Access-Link (a-date-4, an-account-16)) = a-date-4;

an-account (create-Access-Link (a-date-4, an-account-16)) = an-account-16;

attr-equal (Access-Link-7, Access-Link-8) =>

(a-date (Access-Link-7) = a-date (Access-Link-8) &

an-account (Access-Link-7) = an-account (Access-Link-8))

end-link

association Accesses is

D-14

class-sort Accesses link-class Access-Link

sort
Account, D, Bool, Aces, Accounts, Dates

sort-axioms

Accesses = Aces

methods
does-access: Aces, Account, D -> Bool

image: Aces, D -> Accounts

image: Aces, Account -> Dates

create-Accesses: Account, D -> Accesses

events

new-Accesses: Account, D -> Accesses

axioms

Size (image (acs, ac)) = 1;

Size (image (acs, d)) >= 0;
(in (x, acs) & (an-account (x) = ac)) <=> in (a-date (x), image (acs, ac));

(in (x, acs) & (a-date (x) = d)) <=> in (an-account (x), image (acs, d));

new-Accesses = empty-set;
does-access (new-Accesses, ac, d) = false;

does-access (acs, ac, d) <=> (in (ac, image (acs, d)) S in (d, image (acs, ac)))

end-association

class Bank is

class-sort Bank

import
Owns, Bank-aggregate

ops
attr-equal: Bank, Bank -> boolean

attributes

Person-Class-obj: Bank -> Person-Class

Customer-Class-obj: Bank -> Customer-Class

Employee-Class-obj: Bank -> Employee-Class

Cust-Employee-Class-obj: Bank -> Cust-Employee-Class

Teller-Class-obj: Bank -> Teller-Class

Executive-Class-obj: Bank -> Executive-Class

Console-Class-obj: Bank -> Console-Class

Account-Class-obj: Bank -> Account-Class
Checking-Class-obj: Bank -> Checking-Class

Savings-Class-obj: Bank -> Savings-Class

Combined-Class-obj: Bank -> Combined-Class

Archive-Class-obj: Bank -> Archive-Class

Owns-obj: Bank -> Owns

methods

create-Bank: -> Bank events new-Bank: -> Bank

axioms
size (Person-Class-obj (Bank-64)) >= 0;

size (Customer-Class-obj (Bank-65)) >= 0;

size (Employee-Class-obj (Bank-66)) >= 0;

size (Cust-Employee-Class-obj (Bank-67)) >= 0;

size (Teller-Class-obj (Bank-68)) >= 0;

size (Executive-Class-obj (Bank-69)) >= 0;

size (Console-Class-obj (Bank-70)) >= 0;

size (Account-Class-obj (Bank-7D) >= 0;

size (Checking-Class-obj (Bank-72)) >= 0;

size (Savings-Class-obj (Bank-73)) >= 0;

size (Combined-Class-obj (Bank-74)) >= 0;

size (Archive-Class-obj (Bank-75)) >= 0;

Person-Class-obj (Bank-76) =

Union (Customer-Class-obj (Bank-76), Employee-Class-obj (Bank-76));

Employee-Class-obj (Bank-77) =

Union (Teller-Class-obj (Bank-77), Executive-Class-obj (Bank-77));

SubSet (Cust-Employee-Class-obj (Bank-78), Customer-Class-obj (Bank-78));

SubSet (Cust-Employee-Class-obj (Bank-79), Employee-Class-obj (Bank-79));

Account-Class-obj (Bank-80) =

Union (Checking-Class-obj (Bank-80), Savings-Class-obj (Bank-80));

D-15

SubSet (Combined-Class-obj (Bank-81), Checking-Class-obj (Bank-81));

SubSet (Combined-Class-obj (Bank-82), Savings-Class-obj (Bank-82));

attr-equal (new-Bank, create-Bank);

attr-equal (Bank-83, Bank-84) =>
(Person-Class-obj (Bank-83) = Person-Class-obj (Bank-84) ft

Customer-Class-obj (Bank-83) = Customer-Class-obj (Bank-84) ft

Employee-Class-obj (Bank-83) = Employee-Class-obj (Bank-84) ft

Cust-Employee-Class-obj (Bank-83) = Cust-Employee-Class-obj (Bank-84) ft

Teller-Class-obj (Bank-83) = Teller-Class-obj (Bank-84) ft

Executive-Class-obj (Bank-83) = Executive-Class-obj (Bank-84) ft

Console-Class-obj (Bank-83) = Console-Class-obj (Bank-84) ft

Account-Class-obj (Bank-83) = Account-Class-obj (Bank-84) ft

Checking-Class-obj (Bank-83) = Checking-Class-obj (Bank-84) ft

Savings-Class-obj (Bank-83) = Savings-Class-obj (Bank-84) ft

Combined-Class-obj (Bank-83) = Combined-Class-obj (Bank-84) ft

Archive-Class-obj (Bank-83) = Archive-Class-obj (Bank-84) 6

Qwns-obj (Bank-83) = Owns-obj (Bank-84));

Person-Class-obj (create-Bank) = new-Person-Class;

Customer-Class-obj (create-Bank) = new-Customer-Class;

Employee-Class-obj (create-Bank) = new-Employee-Class;

Cust-Employee-Class-obj (create-Bank) = new-Cust-Employee-Class;

Teller-Class-obj (create-Bank) = new-Teller-Class;

Executive-Class-obj (create-Bank) = new-Executive-Class;

Console-Class-obj (create-Bank) = new-Console-Class;

Account-Class-obj (create-Bank) = new-Account-Class;

Checking-Class-obj (create-Bank) = new-Checking-Class;

Savings-Class-obj (create-Bank) = new-Savings-Class;

Combined-Class-obj (create-Bank) = new-Combined-Class;

Archive-Class-obj (create-Bank) = new-Archive-Class;

Owns-obj (create-Bank) = UNDEFINED

end-class

class Bank-Class is

class-sort Bank-Class

contained-class Bank

methods

create-Bank-Class: -> Bank-Class

events

new-Bank-Class: -> Bank-Class

axioms
create-Bank-Class = empty-set;

new-Bank-Class = create-Bank-Class

end-class

aggregate Bank-aggregate is

nodes

Person-Class, Customer-Class, Employee-Class,

Cust-Employee-Class, Teller-Class, Executive-Class,

Console-Class, Account-Class, Checking-Class, Savings-Class,

Combined-Class, Archive-Class, Owns, Integer, SET-58: Set,

SET-59: Set, SET-60: Set, SET-61: Set, SET-62: Set,

SET-63: Set, SET-64: Set, SET-65: Set, SET-66: Set,

SET-67: Set, SET-68: Set, SET-69: Set, SET-70: Set, Credit,

Debit, Close, WriteCheck, SetRate, Computelnterest,

ArchDebit, ArchCredit, ArchClose

arcs

SET-58 -> Person-Class: { Set -> Person-Class, E -> Person},

SET-59 -> Customer-Class: { Set -> Customer-Class, E -> Customer},

SET-60 -> Employee-Class: { Set -> Employee-Class, E -> Employee},

SET-61 -> Cust-Employee-Class: { Set -> Cust-Employee-Class, E -> Cust-Employee},

SET-62 -> Teller-Class: { Set -> Teller-Class, E -> Teller},

SET-63 -> Executive-Class: { Set -> Executive-Class, E -> Executive},

SET-64 -> Console-Class: i Set -> Console-Class, E -> Console},
SET-65 -> Account-Class: { Set -> Account-Class, E -> Account},

SET-66 -> Checking-Class: { Set -> Checking-Class, E -> Checking},

D-16

SET-67 -> Savings-Class: { Set -> Savings-Class, E -> Savings},

SET-68 -> Combined-Class: { Set -> Combined-Class, E -> Combined},

SET-69 -> Archive-Class: { Set -> Archive-Class, E -> Archive},

Integer -> SET-58: {},

Integer -> SET-59: {},

Integer -> SET-60: {},

Integer -> SET-61: {},

Integer -> SET-62: {},

Integer -> SET-63: {},

Integer -> SET-64: <},

Integer -> SET-65: O,
Integer -> SET-66: {},

Integer -> SET-67: O,

Integer -> SET-68: {},

Integer -> SET-69: {},

Integer -> SET-70: {},

SET-70 -> Owns: { Set -> Owns, E -> Own-Link},

SET-59 -> Owns: •{ Set -> Customers, E -> Customer},

SET-65 -> Owns: { Set -> Accounts, E -> Account},

Credit -> Console-Class: {},

Credit -> Account-Class: { Credit -> Account-Class},

Debit -> Console-Class: {},
Debit -> Account-Class: {. Debit -> Account-Class},

Close -> Console-Class: -Q,
Close -> Account-Class: { Close -> Account-Class},

WriteCheck -> Console-Class: {},
WriteCheck -> Checking-Class: {. WriteCheck -> Checking-Class},

SetRate -> Console-Class: {},
SetRate -> Savings-Class: {. SetRate -> Savings-Class},

Computelnterest -> Console-Class: O,
Computelnterest -> Savings-Class: { Computelnterest -> Savings-Class},

ArchDebit -> Checking-Class: {},

ArchDebit -> Archive-Class: { ArchDebit -> Archive-Class},

ArchCredit -> Account-Class: {},

ArchCredit -> Archive-Class: { ArchCredit -> Archive-Class},

ArchDebit -> Account-Class: -[},
ArchDebit -> Archive-Class: { ArchDebit -> Archive-Class},

ArchClose -> Account-Class: <},
ArchClose -> Archive-Class: •(ArchClose -> Archive-Class},

Acct -> Acct-Class: {},

Acct -> Checking: {},

Acct -> Savings: {},
Checking -> Checking-Class: {},

Checking -> Combined: {},

Savings -> Savings-Class: {},

Savings -> Combined: {},

Combined -> Combined-Class: {},

Person -> Person-Class: {},

Person -> Customer: {},

Person -> Employee: {},

Employee -> Employee-Class: {},

Employee -> Exec: {},

Employee -> Teller: {},

Employee -> Cust-Employee: {},

Exec -> Exec-Class: {},

Customer -> Customer-Class: {},

Customer -> Cust-Employee: {},

Cust-Employee -> Cust-Employee-Class: {},

Teller -> Teller-Class: ■{}
end-aggregate

class Date is

class-sort Date

import

String

D-17

sort-axioms

Date = D

methods

create-Date: -> Date

current-date: D -> String

events

new-Date: -> Date

axioms

new-Date = create-Date

end-class

class Date-Class is

class-sort Date-Class

contained-class Date

methods

create-Date-Class: -> Date-Class

events
new-Date-Class: -> Date-Class

axioms

create-Date-Class = empty-set;

new-Date-Class = create-Date-Class

end-class

event Credit is

class-sort Credit

sort

acct, amnt

events
Credit: Credit, acct, amnt -> Credit

end-event

event Debit is

class-sort Debit

sort

acct, amnt
events

Debit: Debit, acct, amnt -> Debit

end-event

event Close is

class-sort Close

sort

acct

events

Close: Close, acct -> Close

end-event

event WriteCheck is

class-sort WriteCheck

sort

acct, amnt

events
WriteCheck: WriteCheck, acct, amnt -> WriteCheck

end-event

event SetRate is

class-sort SetRate

sort

acct, rate

events

SetRate: SetRate, acct, rate -> SetRate

end-event

event Computelnterest is

class-sort Computelnterest

D-18

sort

acct

events
Computelnterest: Computelnterest, acct -> Computelnterest

end-event

event ArchCredit is

class-sort ArchCredit

sort
Archive-obj, acct, amnt, date

events
ArchCredit: ArchCredit, Archive-obj, acct, amnt, date -> ArchCredit

end-event

event ArchDebit is

class-sort ArchDebit

sort
Archive-obj, acct, amnt, date

events
ArchDebit: ArchDebit, Archive-obj, acct, amnt, date -> ArchDebit

end-event

event ArchClose is
class-sort ArchClose

sort
Archive-obj, acct, date

events
ArchClose: ArchClose, Archive-obj, acct, date -> ArchClose

end-event

D-19

Appendix E. [/LARCH for Pump Domain Example

This appendix contains the ULARCH traits and state transition tables for the Pump

example. The traits are based on the Pump object model described in Section 3.4.3.

\documentstyle[fullpage,larch]{article}

\begin{document}

\begin{spec> '/.ObjectTheory

PumpController: trait

includes Integer

introduces

pumpld: PC -> Int

\end{spec}\\

\begin{spec} '/.ObjectTheory

Display: trait
includes Integer

introduces

cost: D -> Int

volume: D -> Int

grade: D -> Int

vol-inc: D -> Int

\end{spec}\\

\begin{spec} '/.StateTheory

ZeroDisplay: trait

includes Display
introduces ZeroDisplayState: D -> Boolean

asserts \forall d: D

cost(d) = 0;

volume(d) = 0;
grade(d) = 0

\end{spec}\\

\begin{spec} '/.StateTheory

IncrementDisplay: trait

includes Display
introduces IncrementDisplayState: D -> Boolean

asserts \forall d: D

cost(d) >= 0;
volume(d) >= 0;

grade(d) >= 0

\end{spec>\\

\begin{spec} '/.EventTheory

NewDisplay: trait

E-l

includes Display-
introduces new-display : -> Bool

asserts \forall d: D

cost(new-display) = 0;

volume(new-display) = 0;

grade(new-display) = 0;

vol-inc(new-display) = 0

\end{spec}\\

\begin{spec> '/.EventTheory

Pulse: trait

includes Display
introduces pulse : -> Bool

\end{spec}\\

\begin{spec} '/.EventTheory

ResetDisplay: trait

includes Display
introduces reset-display : -> Bool

\end{spec}\\

\begin{spec} '/.FunctionalTheory

UpdateCost: trait

includes Display
introduces update-cost: D, Int, Int -> D

asserts \forall d:D, p, c: Int

cost(update-cost(d, c, p)) = (c + p)
\end{spec}\\

\begin{spec> '/.FunctionalTheory

UpdateVolume: trait

includes Display
introduces update-volume: D, Int -> D

asserts \forall d: D, v: Int
volume(update-volume(d, v)) = (v + vol-inc(d))

\end{spec}\\

\begin{spec} '/.ObjectTheory

Gun(G): trait

includes Integer

\end{spec}\\

\begin{spec} '/.StateTheory

GunDisabled: trait

includes Gun

introduces GunDisabledState: G -> Boolean
\end{spec}\\

\begin{spec} '/.StateTheory

GunEnabled: trait

includes Gun

E-2

introduces GunEnabledState: G -> Boolean

\end{spec>\\

\begin{spec} '/.StateTheory

GunOn: trait

includes Gun
introduces GunOnState: G -> Boolean

\end{spec}\\

\begin{spec} '/.EventTheory

NewGun: trait

includes Gun
introduces new-gun : -> Bool

\end{spec}\\

\begin{spec} 7,EventTheory

OverHeat: trait
includes Gun
introduces over-heat: -> Boolean

\end{spec}\\

\begin{spec} '/.EventTheory

RemoveGun: trait

includes Gun
introduces remove-gun : -> Bool

\end{spec}\\

\begin{spec> '/.EventTheory

ReplaceGun: trait
includes Gun
introduces replace-gun : -> Bool

\end{spec>\\

\begin{spec} '/.EventTheory

DepressTrigger: trait

includes Gun
introduces depress-trigger : -> Bool

\end{spec}\\

\begin{spec} '/.EventTheory

ReleaseTrigger: trait

includes Gun

introduces release-trigger : -> Bool

\end{spec}\\

\begin{spec} '/.EventTheory

CutOffSupply: trait

includes Gun

introduces cutOff-supply : -> Bool

\end{spec}\\

E-3

\begin{spec> '/.ObjectTheory

Holster(H): trait

includes Integer

\end{spec}\\

\begin{spec} '/.StateTheory

HolsterWait: trait

includes Holster
introduces HolsterWaitState: H -> Boolean

\end{spec}\\

\begin{spec} '/.StateTheory

HolsterWorking: trait

includes Holster
introduces HolsterWorkingState: H -> Boolean

\end{spec}\\

\begin{spec} '/.EventTheory

NewHolster: trait

includes Holster
introduces new-holster : -> Bool

\end{spec}\\

\begin{spec> '/.EventTheory

ReleaseHolsterSwitch: trait

includes Holster

introduces release-holster-switch : -> Bool

\end{spec}\\

\begin{spec} '/.EventTheory

CloseHolsterSwitch: trait

includes Holster
introduces close-holster-switch : -> Bool

\end{spec}\\

\begin{spec> '/,ObjectTheory

Motor: trait
\end{spec}\\

\begin{spec> '/.StateTheory

MotorDisabled: trait
includes Motor

introduces MotorDisabledState: M -> Boolean

\end{spec}\\

\begin{spec} °/,StateTheory

MotorRunning: trait

includes Motor

introduces MotorRunningState: M -> Boolean

\end{spec}\\

E-4

\begin{spec> '/.EventTheory

NewMotor: trait

includes Motor
introduces new-motor : -> Bool

\end{spec}\\

\begin{spec} '/.EventTheory

StartPumpMotor: trait
includes Motor
introduces start-pump-motor : -> Bool

\end{spec>\\

\begin{spec> '/.EventTheory

StopMotor: trait

includes Motor
introduces stop-motor : -> Bool

\end{spec}\\

\begin{spec> '/.ObjectTheory

Clutch: trait
includes Integer

\end{spec}\\

\begin{spec} '/.StateTheory
ClutchDisabled: trait

includes Clutch
introduces ClutchDisabledState: C -> Boolean

\end{spec}\\

\begin{spec} '/.StateTheory

ClutchFree: trait
includes Clutch
introduces ClutchFreeState: C -> Boolean

\end{spec>\\

\begin{spec} '/.StateTheory
ClutchEngaged: trait

includes Clutch
introduces ClutchEngagedState: C -> Boolean

\end{spec}\\

\begin{spec> '/.EventTheory

NewClutch: trait
includes Clutch
introduces new-clutch : -> Bool

\end{spec}\\

\begin{spec} '/,EventTheory

OverHeat: trait
includes Clutch
introduces over-heat: -> Boolean

E-5

\end{spec}\\

\begin{spec} '/.EventTheory

FreeClutch: trait

includes Clutch

introduces free-clutch : -> Bool

\end{spec}\\

\begin{spec> '/.EventTheory

DisableClutch: trait

includes Clutch
introduces disable-clutch : -> Bool

\end{spec}\\

\begin{spec} '/.EventTheory

EngageClutch: trait

includes Clutch
introduces engage-clutch : -> Bool

\end{spec}\\

\begin{spec} '/.ObjectTheory

ClutchMotorAssembly(CMA): trait

includes Motor, Clutch

ClutchMotorAssem tuple of motor : M,
clutch : C

\end{spec}\\

\begin{spec} '/.LinkTheory

KI: trait
includes Gun, Holster

introduces
a-gun: KI-Link -> G

a-holster: KI-Link -> H

new-KI-link: G, H -> KI-Link
asserts \forall g: G, h: H

gun-obj(new-KI-link(g, h)) = g;

holster-obj(new-KI-link(g, h)) = h

\end{spec}\\

\begin{spec} '/.AssociationTheory

Kept-In: trait
includes Set(Kept-In for C, KI for E), KI

introduces

new-Kept-In: Kpt-In, G, H -> Kpt-In

image: Kpt-In, G -> HolsterSet

image: Kpt-In, H -> GunSet

is-kept-in: Kpt-In, G, H -> boolean

asserts \forall k: Kpt-In, g: G, h: H, x: KI-Link

size(image(k, g)) = 1;

size(image(k, h)) = 1;
(in(x, k) \and (a-gun(x) = g)) == in(a-holster(x), image(k, g));

E-6

(in(x, k) \and (a-holster(x) = h)) == in(a-gun(x), image(k, h));

new-kept-in = empty-set;

is-kept-in(new-kept-in, g, h) = false;
is-kept-in(k, g, h) == (in (g, image(k, h)) \and in (h, image(k, g)))

\end{spec}\\

\begin{spec} V.ObjectTheory

GunHolsterAssembly(GHA): trait

includes Gun, Holster

GunHolstAssem tuple of gun : G,

holster : H

\end{spec}\\

\begin{spec} '/.ObjectTheory

SophisticatedPump: trait

includes Pump(SP for P), Integer

introduces

volumeSelect: SP -> Int
amountSelect: SP -> Int

\end{spec}\\

\begin{spec> 7,0bjectTheory

Pump(P): trait
includes

Set(DisplaySet for C, Display for E),
Set(GHASet for C, GunHolsterAssembly for E),

Set(CMASet for C, ClutchMotorAssembly for E),

PumpController, Kept-In
P tuple of gun-holster-assembly : GHASet,

clutch-motor-assembly : CMASet,

pump-controller : PC,
display : DisplaySet,

kept-in: Kpt-In

asserts \forall p: P
size(display(p)) >= 1;

size(gun-holster-assembly(p)) >= 1;
size(clutch-motor-assembly(p)) >= 1

\end{spec}\\

\begin{spec> '/.StateTheory

PumpDisabled: trait

includes Pump
introduces PumpDisabledState: P -> Bool

\end{spec}\\

\begin{spec} '/.StateTheory

PumpEnabled: trait

includes Pump

introduces PumpEnabledState: P -> Bool

\end{spec}\\

E-7

\begin{spec> '/.EventTheory
NewPump: trait

includes Pump
introduces new-pump : -> Bool

\end{spec}\\

\begin{spec} '/.EventTheory
OverHeat: trait

includes Pump
introduces over-heat: -> Bool

\end{spec}\\

\begin{spec} '/.EventTheory
EnablePump: trait

includes Pump
introduces enable-pump: -> Bool

\end{spec}\\

\begin-[spec} '/.EventTheory
DisablePump: trait

includes Pump
introduces disable-pump:

\end{spec}
-> Bool

\end{document}

Table E.l Clutch State Transition Table

Current
State

Receive
Event Parameters Guard

Next
State Action

Send
Event

ClutchlnitialState
ClutchlnitialState
ClutchlnitialState
ClutchlnitialState
ClutchlnitialState

DisableClutch
EngageClutch
FreeClutch
NewClutch
OverHeat

ClutchlnitialState
ClutchlnitialState
ClutchlnitialState
ClutchDisabled
ClutchlnitialState

ClutchDisabled
ClutchDisabled
ClutchDisabled
ClutchDisabled

DisableClutch
EngageClutch
FreeClutch
OverHeat

ClutchDisabled
ClutchDisabled
ClutchFree
ClutchFree

ClutchFree
ClutchFree
ClutchFree
ClutchFree

DisableClutch
EngageClutch
FreeClutch
OverHeat

ClutchDisabled
ClutchDisabled
ClutchFree
ClutchFree

start-fuel

ClutchEngaged
ClutchEngaged
ClutchEngaged
ClutchEngaged

DisableClutch
EngageClutch
FreeClutch
OverHeat

ClutchEngaged
ClutchEngaged
ClutchFree
ClutchFree

Table E.2 Display State Transition Table

Current
State

Receive
Event Parameters Guard

Next
State Action

Send
Event

DisplaylnitialState
Display Initials täte
DisplaylnitialState

NewDisplay
Pulse
ResetDisplay

ZeroDisplay
Display Initials täte
Display Initials täte

ZeroDisplay
ZeroDisplay

Pulse
ResetDisplay

IncrementDisplay
ZeroDisplay

updateCost, updateVolume

IncrementDisplay
IncrementDisplay

Pulse
ResetDisplay

IncrementDisplay
ZeroDisplay

updateCost, updateVolume

E-8

Table E.3 Gun State Transition Table

Current Receive Next Send

State Event Parameters Guard State Action Event

GunlnitialState NewGun GunDisabled
GunlnitialState RemoveGun GunlnitialState
GunlnitialState ReplaceGun GunlnitialState
GunlnitialState DepressTrigger GunlnitialState
GunlnitialState ReleaseTrigger GunlnitialState
GunlnitialState CutOffSupply GunlnitialState
GunlnitialState OverHeat GunlnitialState

GunDisabled RemoveGun GunEnabled ReleaseHolsterS witch

GunDisabled ReplaceGun GunDisabled
GunDisabled DepressTrigger GunDisabled
GunDisabled ReleaseTrigger GunDisabled
GunDisabled CutOffSupply GunDisabled
GunDisabled OverHeat GunDisabled

GunEnabled RemoveGun GunEnabled
GunEnabled ReplaceGun GunDisabled start-timer CloseHolsterS witch

GunEnabled DepressTrigger GunOn EngageClutch

GunEnabled ReleaseTrigger GunEnabled
GunEnabled CutOffSupply GunEnabled
GunEnabled OverHeat Disabled

GunOn RemoveGun GunOn
GunOn ReplaceGun GunOn
GunOn DepressTrigger GunOn
GunOn ReleaseTrigger GunEnabled FreeClutch

GunOn CutOffSupply GunEnabled FreeClutch

GunOn OverHeat GunDisabled 1 1

Table E.4 Holster State Transition Table

Current
State

Receive
Event Parameters Guard

Next
State Action

Send
Event

HolsterlnitialState
HolsterlnitialState
HolsterlnitialState

NewHolster
ReleaseHolsterS witch
CloseHolsterS witch

HolsterWait
HolsterlnitialState
HolsterlnitialState

Holster Wait
Holster Wait

ReleaseHolsterS witch
CloseHolsterS witch

Holster Working
HolsterWait

Hoi s t e r World n g
Holst er Working

CloseHolsterS witch
ReleaseHolsterS witch

HolsterWait
Holst er Working

Table E.5 Motor State Transition Table

Current
State

Receive
Event Parameters Guard

Next
State Action

Send
Event

MotorlnitialState
MotorlnitialState
MotorlnitialState

NewMotor
StartPumpMotor
StopMotor

MotorDisabled
MotorlnitialState
MotorlnitialState

MotorDisabled
MotorDisabled

StartPumpMotor
StopMotor

MotorRunning
MotorDisabled

FreeClutch

MotorRunning
MotorRunning
MotorRunning

StopMotor
StartPumpMotor

temp > 300

MotorDisabled
MotorRunning
MotorDisabled

DisableClutch

OverHeat

Table E.6 Pump State Transition Table

Current
State

Receive
Event Parameters Guard

Next
State Action

Send
Event

PumpInitialState
PumpInitialState
PumpInitialState
PumpInitialState

NewPump
EnablePump
DisablePump
OverHeat

PumpDisabled
PumpInitialState
PumpInitialState
PumpInitialState

PumpDisabled
PumpDisabled
PumpDisabled

EnablePump
DisablePump
OverHeat

PumpEnabled
PumpDisabled
PumpDisabled

updatePump StartPumpMotor; ResetDisplay

PumpEnabled
PumpEnabled
PumpEnabled

DisablePump
EnablePump
OverHeat

PumpDisabled
PumpEnabled
PumpDisabled

E-9

Appendix F. O-SLANG for Pump Domain Example

This appendix contains the O-SLANG specifications for the Pump example that were

automatically generated from the ULARCH traits and statetransition tables in Appendix

E.

class PumpController is

class-sort PumpController

sort

PC
sort-axioms

PumpController = PC

ops
attr-equal: PumpController, PumpController -> boolean

attributes
pumpld: PC -> Integer

methods
create-PumpController: -> PumpController

events
new-PumpController: -> PumpController

axioms
attr-equal (new-PumpController, create-PumpController);

attr-equal (PumpController-1, PumpController-2) =>

(pumpld (PumpController-1) = pumpld (PumpController-2));

pumpld (create-PumpController) = 0

end-class

class PumpController-Class is

class-sort PumpController-Class

contained-class PumpController

methods
create-PumpController-Class: -> PumpController-Class

events
new-PumpController-Class: -> PumpController-Class

axioms
create-PumpController-Class = empty-set;
new-PumpController-Class = create-PumpController-Class

end-class

class Display is

class-sort Display

sort

D, Display-State

sort-axioms

Display = D

ops
attr-equal: Display, Display -> boolean

attributes

vol-inc: D -> Integer

grade: D -> Integer

volume: D -> Integer

cost: D -> Integer

state-attributes

DisplayState: Display -> Display-State

methods
create-Display: -> Display

F-l

update-cost: D, Integer, Integer -> D

update-volume: D, Integer -> D

states
ZeroDisplay: -> Display-State
IncrementDisplay: -> Display-State

events
new-Display: -> Display

Pulse: Display -> Display

ResetDisplay: Display -> Display

axioms
DisplayState (d) = ZeroDisplay => (cost (d) = 0 6 volume (d) = 0 & grade (d) = 0);

Displaystate (d) = IncrementDisplay => (cost (d) >= 0 & volume (d) >= 0 & grade (d) >= 0):

(DisplayState (Display-31) = ZeroDisplay) =>

(DisplayState (Pulse (Display-31)) = IncrementDisplay &
attr-equal (Pulse (Display-31), updateCost (Display-31)) &
attr-equal (Pulse (Display-31), updateVolume (Display-31)));

(DisplayState (Display-32) = ZeroDisplay) =>

(DisplayState (ResetDisplay (Display-32)) = ZeroDisplay);

(DisplayState (Display-33) = IncrementDisplay) =>

(DisplayState (Pulse (Display-33)) = IncrementDisplay 4

attr-equal (Pulse (Display-33), updateCost (Display-33)) &

attr-equal (Pulse (Display-33), updateVolume (Display-33)));

(DisplayState (Display-34) = IncrementDisplay) =>

(DisplayState (ResetDisplay (Display-34)) = ZeroDisplay);
DisplayState (new-Display) = ZeroDisplay 6 attr-equal (new-Display, create-Display);

attr-equal (Display-36, Display-37) =>

(vol-inc (Display-36) = vol-inc (Display-37) &
grade (Display-36) = grade (Display-37) &

volume (Display-36) = volume (Display-37) &

cost (Display-36) = cost (Display-37));

ZeroDisplay <> IncrementDisplay;

vol-inc (create-Display) = 0;

grade (create-Display) = 0;

volume (create-Display) = 0;

cost (create-Display) = 0;
vol-inc (update-cost (Display-38, Int-1, Int-2)) = vol-inc (Display-38);

grade (update-cost (Display-39, Int-3, Int-4)) = grade (Display-39);

volume (update-cost (Display-40, Int-5, Int-6)) = volume (Display-40);

cost (update-cost (d, c, p)) = (c + p);

vol-inc (update-volume (Display-41, Int-7)) = vol-inc (Display-41);

grade (update-volume (Display-42, Int-8)) = grade (Display-42);

volume (update-volume (d, v)) = (v + vol-inc (d));

cost (update-volume (Display-43, Int-9)) = cost (Display-43)

end-class

class Display-Class is

class-sort Display-Class

contained-class Display

methods
create-Display-Class: -> Display-Class

events
new-Display-Class: -> Display-Class

Pulse: Display-Class -> Display-Class

ResetDisplay: Display-Class -> Display-Class

axioms

create-Display-Class = empty-set;

new-Display-Class = create-Display-Class;

in (Display-28, Display-Class-7) <=>

in (Pulse (Display-28), Pulse (Display-Class-7));

in (Display-29, Display-Class-8) <=>

in (ResetDisplay (Display-29), ResetDisplay (Display-Class-8))

end-class

class Gun is

class-sort Gun

F-2

sort
Gun-State, Clutch, Holster

sort-axioms
Gun = G

ops
attr-equal: Gun, Gun -> boolean

attributes
Clutch-obj: Gun -> Clutch
Holster-obj: Gun -> Holster

state-attributes
GunState: Gun -> Gun-State

methods
create-Gun: -> Gun

states
GunDisabled: -> Gun-State
GunEnabled: -> Gun-State
GunOn: -> Gun-State

events
new-Gun: -> Gun
OverHeat: Gun -> Gun
RemoveGun: Gun -> Gun
ReplaceGun: Gun -> Gun
DepressTrigger: Gun -> Gun
ReleaseTrigger: Gun -> Gun
CutOfiSupply: Gun -> Gun
ReleaseHolsterSwitch: Holster -> Holster
CloseHolsterSwitch: Holster -> Holster
EngageClutch: Clutch -> Clutch
FreeClutch: Clutch -> Clutch

axioms
(GunState (Gun-89) = GunDisabled) =>

(GunState (RemoveGun (Gun-89)) = GunEnabled &
(Holster-obj (RemoveGun (Gun-89)) = ReleaseHolsterSwitch (Holster-obj (Gun-89))));

(GunState (Gun-90) = GunDisabled) => (GunState (ReplaceGun (Gun-90)) = GunDisabled);
(GunState (Gun-91) = GunDisabled) => (GunState (DepressTrigger (Gun-91)) = GunDisabled);
(GunState (Gun-92) = GunDisabled) => (GunState (ReleaseTrigger (Gun-92)) = GunDisabled);
(GunState (Gun-93) = GunDisabled) => (GunState (CutOffSupply (Gun-93)) = GunDisabled);
(GunState (Gun-94) = GunDisabled) => (GunState (OverHeat (Gun-94)) = GunDisabled);
(GunState (Gun-95) = GunEnabled) => (GunState (RemoveGun (Gun-95)) = GunEnabled);
(GunState (Gun-96) = GunEnabled) =>
(GunState (ReplaceGun (Gun-96)) = GunDisabled &
attr-equal (ReplaceGun (Gun-96), start-timer (Gun-96)) &
(Holster-obj (ReplaceGun (Gun-96)) = CloseHolsterSwitch (Holster-obj (Gun-96))));

(GunState (Gun-97) = GunEnabled) =>
(GunState (DepressTrigger (Gun-97)) = GunOn &
(Clutch-obj (DepressTrigger (Gun-97)) = EngageClutch (Clutch-obj (Gun-97))));

(GunState (Gun-98) = GunEnabled) => (GunState (ReleaseTrigger (Gun-98)) = GunEnabled);
(GunState (Gun-99) = GunEnabled) => (GunState (CutOffSupply (Gun-99)) = GunEnabled);
(GunState (Gun-100) = GunEnabled) => (GunState (OverHeat (Gun-100)) = Disabled);
(GunState (Gun-101) = GunOn) => (GunState (RemoveGun (Gun-101)) = GunOn);
(GunState (Gun-102) = GunOn) => (GunState (ReplaceGun (Gun-102)) = GunOn);
(GunState (Gun-103) = GunOn) => (GunState (DepressTrigger (Gun-103)) = GunOn);
(GunState (Gun-104) = GunOn) =>

(GunState (ReleaseTrigger (Gun-104)) = GunEnabled &
(Clutch-obj (ReleaseTrigger (Gun-104)) = FreeClutch (Clutch-obj (Gun-104))));

(GunState (Gun-105) = GunOn) =>
(GunState (CutOfiSupply (Gun-105)) = GunEnabled &

(Clutch-obj (CutOffSupply (Gun-105)) = FreeClutch (Clutch-obj (Gun-105))));
(GunState (Gun-106) = GunOn) => (GunState (OverHeat (Gun-106)) = GunDisabled);
GunState (new-Gun) = GunDisabled & attr-equal (new-Gun, create-Gun);
attr-equal (Gun-108, Gun-109) =>

(Clutch-obj (Gun-108) = Clutch-obj (Gun-109) &
Holster-obj (Gun-108) = Holster-obj (Gun-109));

GunDisabled <> GunEnabled;
GunDisabled <> GunOn;

F-3

GunEnabled <> GunOn;

Clutch-obj (create-Gun) = UNDEFINED;

Holster-obj (create-Gun) = UNDEFINED

end-class

class Gun-Class is

class-sort Gun-Class

contained-class Gun

methods
create-Gun-Class: -> Gun-Class

events
new-Gun-Class: -> Gun-Class

OverHeat: Gun-Class -> Gun-Class

RemoveGun: Gun-Class -> Gun-Class

ReplaceGun: Gun-Class -> Gun-Class

DepressTrigger: Gun-Class -> Gun-Class

ReleaseTrigger: Gun-Class -> Gun-Class

CutOffSupply: Gun-Class -> Gun-Class

axioms

create-Gun-Class = empty-set;

new-Gun-Class = create-Gun-Class;

in (Gun-82, Gun-Class-19) <=>

in (OverHeat (Gun-82), OverHeat (Gun-Class-19));

in (Gun-83, Gun-Class-20) <=>
in (RemoveGun (Gun-83), RemoveGun (Gun-Class-20));

in (Gun-84, Gun-Class-21) <=>

in (ReplaceGun (Gun-84), ReplaceGun (Gun-Class-21));

in (Gun-85, Gun-Class-22) <=>
in (DepressTrigger (Gun-85), DepressTrigger (Gun-Class-22));

in (Gun-86, Gun-Class-23) <=>
in (ReleaseTrigger (Gun-86), ReleaseTrigger (Gun-Class-23));

in (Gun-87, Gun-Class-24) <=>
in (CutOffSupply (Gun-87), CutOffSupply (Gun-Class-24))

end-class

class Holster is

class-sort Holster

sort

Holster-State

sort-axioms

Holster = H

state-attributes
HolsterState: Holster -> Holster-State

methods
create-Holster: -> Holster

states
HolsterWait: -> Holster-State

HolsterWorking: -> Holster-State

events
new-Holster: -> Holster

ReleaseHolsterSwitch: Holster -> Holster

CloseHolsterSwitch; Holster -> Holster

axioms

(HolsterState (Holster-31) = HolsterWait) =>
(HolsterState (ReleaseHolsterSwitch (Holster-31)) = HolsterWorking);

(HolsterState (Holster-32) = HolsterWait) =>

(HolsterState (CloseHolsterSwitch (Holster-32)) = HolsterWait);

(HolsterState (Holster-33) = HolsterWorking) =>

(HolsterState (CloseHolsterSwitch (Holster-33)) = HolsterWait);

(HolsterState (Holster-34) = HolsterWorking) =>

(HolsterState (ReleaseHolsterSwitch (Holster-34)) = HolsterWorking);

HolsterState (new-Holster) = HolsterWait & (new-Holster = create-Holster);

HolsterWait <> HolsterWorking

end-class

F-4

class Holster-Class is

class-sort Holster-Class

contained-class Holster

methods
create-Holster-Class: -> Holster-Class

events
new-Holster-Class: -> Holster-Class

ReleaseHolsterSwitch: Holster-Class -> Holster-Class

CloseHolsterSwitch: Holster-Class -> Holster-Class

axioms

create-Holster-Class = empty-set;

new-Holster-Class = create-Holster-Class;

in (Holster-28, Holster-Class-7) <=>

in (ReleaseHolsterSwitch (Holster-28),

ReleaseHolsterSwitch (Holster-Class-7));

in (Holster-29, Holster-Class-8) <=>

in (CloseHolsterSwitch (Holster-29),

CloseHolsterSwitch (Holster-Class-8))

end-class

class Motor is
class-sort Motor

sort
Motor-State, OverHeat, Clutch

sort-axioms

Motor = M

ops
attr-equal: Motor, Motor -> boolean

attributes

OverHeat-obj: Motor -> OverHeat Clutch-obj: Motor -> Clutch

state-attributes

MotorState: Motor -> Motor-State

methods

create-Motor: -> Motor

states
MotorDisabled: -> Motor-State

MotorRunning: -> Motor-State

events

new-Motor: -> Motor

StartPumpMotor: Motor -> Motor

StopMotor: Motor -> Motor

FreeClutch: Clutch -> Clutch

DisableClutch: Clutch -> Clutch

OverHeat: OverHeat -> OverHeat

axioms
(MotorState (Motor-64) = MotorDisabled) =>

(MotorState (StartPumpMotor (Motor-64)) = MotorRunning &

(Clutch-obj (StartPumpMotor (Motor-64)) = FreeClutch (Clutch-obj (Motor-64))));

(MotorState (Motor-65) = MotorDisabled) =>
(MotorState (StopMotor (Motor-65)) = MotorDisabled);

(MotorState (Motor-66) = MotorRunning) =>

(MotorState (StopMotor (Motor-66)) = MotorDisabled &
(Clutch-obj (StopMotor (Motor-66)) = DisableClutch (Clutch-obj (Motor-66))));

(MotorState (Motor-67) = MotorRunning) =>
(MotorState (StartPumpMotor (Motor-67)) = MotorRunning);

(MotorState (Motor-68) = MotorRunning & temp > 300) =>

(MotorState (Motor-68) = MotorDisabled &

(OverHeat-obj (Motor-68) = OverHeat (OverHeat-obj (Motor-68))));

MotorState (new-Motor) = MotorDisabled & attr-equal (new-Motor, create-Motor);

attr-equal (Motor-70, Motor-71) =>

(OverHeat-obj (Motor-70) = OverHeat-obj (Motor-71) &

Clutch-obj (Motor-70) = Clutch-obj (Motor-71));

MotorDisabled <> MotorRunning;

Clutch-obj (create-Motor) = UNDEFINED

end-class

F-5

class Motor-Class is
class-sort Motor-Class

contained-class Motor

methods
create-Motor-Class: -> Motor-Class

events

new-Motor-Class: -> Motor-Class

StartPumpMotor: Motor-Class -> Motor-Class

StopMotor: Motor-Class -> Motor-Class

axioms
create-Motor-Class = empty-set;

new-Motor-Class = create-Motor-Class;

in (Motor-61, Motor-Class-7) <=>
in (StartPumpMotor (Motor-61), StartPumpMotor (Motor-Class-7));

in (Motor-62, Motor-Class-8) <=>
in (StopMotor (Motor-62), StopMotor (Motor-Class-8))

end-class

class Clutch is

class-sort Clutch

sort

Clutch-State

sort-axioms

Clutch = C
state-attributes

ClutchState: Clutch -> Clutch-State

methods

create-Clutch: -> Clutch

states
ClutchDisabled: -> Clutch-State

ClutchFree: -> Clutch-State

ClutchEngaged: -> Clutch-State

events

new-Clutch: -> Clutch
OverHeat: Clutch -> Clutch

FreeClutch: Clutch -> Clutch

DisableClutch: Clutch -> Clutch

EngageClutch: Clutch -> Clutch

axioms
(ClutchState (Clutch-63) = ClutchDisabled) =>

(ClutchState (DisableClutch (Clutch-63)) = ClutchDisabled);

(ClutchState (Clutch-64) = ClutchDisabled) =>

(ClutchState (EngageClutch (Clutch-64)) = ClutchDisabled);

(ClutchState (Clutch-65) = ClutchDisabled) =>

(ClutchState (FreeClutch (Clutch-65)) = ClutchFree);

(ClutchState (Clutch-66) = ClutchDisabled) =>

(ClutchState (OverHeat (Clutch-66)) = ClutchFree);

(ClutchState (Clutch-67) = ClutchFree) =>
(ClutchState (DisableClutch (Clutch-67)) = ClutchDisabled);

(ClutchState (Clutch-68) = ClutchFree) =>

(ClutchState (EngageClutch (Clutch-68)) = ClutchDisabled &
attr-equal (EngageClutch (Clutch-68), start-fuel (Clutch-68)));

(ClutchState (Clutch-69) = ClutchFree) =>

(ClutchState (FreeClutch (Clutch-69)) = ClutchFree);

(ClutchState (Clutch-70) = ClutchFree) =>

(ClutchState (OverHeat (Clutch-70)) = ClutchFree);

(ClutchState (Clutch-71) = ClutchEngaged) =>

(ClutchState (DisableClutch (Clutch-71)) = ClutchEngaged);

(ClutchState (Clutch-72) = ClutchEngaged) =>

(ClutchState (EngageClutch (Clutch-72)) = ClutchEngaged);

(ClutchState (Clutch-73) = ClutchEngaged) =>

(ClutchState (FreeClutch (Clutch-73)) = ClutchFree);

(ClutchState (Clutch-74) = ClutchEngaged) =>

(ClutchState (OverHeat (Clutch-74)) = ClutchFree);

F-6

ClutchState (new-Clutch) = ClutchDisabled & (new-Clutch = create-Clutch);

ClutchDisabled <> ClutchFree;

ClutchDisabled <> ClutchEngaged;

ClutchFree <> ClutchEngaged

end-class

class Clutch-Class is

class-sort Clutch-Class

contained-class Clutch

methods
create-Clutch-Class: -> Clutch-Class

events

new-Clutch-Class: -> Clutch-Class

OverHeat: Clutch-Class -> Clutch-Class

FreeClutch: Clutch-Class -> Clutch-Class

DisableClutch: Clutch-Class -> Clutch-Class

EngageClutch: Clutch-Class -> Clutch-Class

axioms

create-Clutch-Class = empty-set;

new-Clutch-Class = create-Clutch-Class;

in (Clutch-58, Clutch-Class-13) <=>
in (OverHeat (Clutch-58), OverHeat (Clutch-Class-13));

in (Clutch-69, Clutch-Class-14) <=>
in (FreeClutch (Clutch-59), FreeClutch (Clutch-Class-14));

in (Clutch-60, Clutch-Class-15) <=>
in (DisableClutch (Clutch-60), DisableClutch (Clutch-Class-15));

in (Clutch-61, Clutch-Class-16) <=>

in (EngageClutch (Clutch-61), EngageClutch (Clutch-Class-16))

end-class

class ClutchMotorAssembly is

class-sort ClutchMotorAssembly

import
Clutch, Motor, ClutchMotorAssembly-aggregate

sort-axioms

ClutchMotorAssembly = CMA

ops
attr-equal: ClutchMotorAssembly, ClutchMotorAssembly -> boolean

attributes

Motor-obj: ClutchMotorAssembly -> Motor

Clutch-obj: ClutchMotorAssembly -> Clutch

methods

create-ClutchMotorAssembly: -> ClutchMotorAssembly

events

new-ClutchMotorAssembly: -> ClutchMotorAssembly

axioms

attr-equal (new-ClutchMotorAssembly, create-ClutchMotorAssembly);

attr-equal (ClutchMotorAssembly-1, ClutchMotorAssembly-2) =>

(Motor-obj (ClutchMotorAssembly-1) = Motor-obj (ClutchMotorAssembly-2) &

Clutch-obj (ClutchMotorAssembly-1) = Clutch-obj (ClutchMotorAssembly-2));

Motor-obj (create-ClutchMotorAssembly) = new-Motor;

Clutch-obj (create-ClutchMotorAssembly) = new-Clutch

end-class

class ClutchMotorAssembly-Class is

class-sort ClutchMotorAssembly-Class

contained-class ClutchMotorAssembly

methods

create-ClutchMotorAssembly-Class: -> ClutchMotorAssembly-Class

events

new-ClutchMotorAssembly-Class: -> ClutchMotorAssembly-Class

axioms

create-ClutchMotorAssembly-Class = empty-set;

new-ClutchMotorAssembly-Class = create-ClutchMotorAssembly-Class

end-class

F-7

aggregate ClutchMotorAssembly-aggregate is

nodes
Motor, Clutch, FreeClutch, DisableClutch, OverHeat-mult,

OverHeat-mult: OverHeat-17, OverHeat-19: OverHeat-mult

arcs

FreeClutch -> Motor: <},
FreeClutch -> Clutch: { FreeClutch -> Clutch},

DisableClutch -> Motor: {},
DisableClutch -> Clutch: { DisableClutch -> Clutch},

OverHeat-17 -> Motor: {}, OverHeat-17 -> OverHeat-mult: {},

OverHeat-19 -> Clutch: { OverHeat -> Clutch},

OverHeat-19 -> OverHeat-mult: { OverHeat -> OBJ-11}

end-aggregate

link KI-Link is

class-sort KI-Link

sort

Holster, Gun

ops
attr-equal: KI-Link, KI-Link -> boolean

attributes

a-holster: KI-Link -> Holster

a-gun: KI-Link -> Gun

methods
create-KI-link: Gun, Holster -> KI-Link

events
new-KI-link: Gun, Holster -> KI-Link

axioms
attr-equal (new-KI-Link (a-holster-4, a-gun-4), create-KI-Link (a-holster-4, a-gun-4));

a-holster (create-KI-Link (a-holster-4, a-gun-4)) = a-holster-4;

a-gun (create-KI-Link (a-holster-4, a-gun-4)) = a-gun-4;

attr-equal (KI-Link-7, KI-Link-8) =>

(a-holster (KI-Link-7) = a-holster (KI-Link-8) &

a-gun (KI-Link-7) = a-gun (KI-Link-8))

end-link

association Kept-In is
class-sort Kept-In link-class KI-Link

sort
Gun, Holster, boolean, Kpt-In, GunSet, HolsterSet

sort-axioms

Kept-In = Kpt-In

methods
is-kept-in: Kpt-In, Gun, Holster -> boolean

image: Kpt-In, Holster -> GunSet

image: Kpt-In, Gun -> HolsterSet

create-Kept-In: Gun, Holster -> Kept-In

events
new-Kept-In: Gun, Holster -> Kept-In

axioms

size (image (k, g)) = 1;

size (image (k, h)) = 1;

(in (x, k) & (a-gun (x) = g)) <=>

in (a-holster (x), image (k, g));

(in (x, k) & (a-holster (x) = h)) <=>

in (a-gun (x), image (k, h));

new-kept-in = empty-set;

is-kept-in (new-kept-in, g, h) = false;

is-kept-in (k, g, h) <=>

(in (g, image (k, h)) & in (h, image (k, g)))

end-association

class GunHolsterAssembly is

class-sort GunHolsterAssembly

F-8

import
Holster, Gun, GunHolsterAssembly-aggregate

sort-axioms

GunHolsterAssembly = GHA

ops

attr-equal:
GunHolsterAssembly, GunHolsterAssembly -> boolean

attributes

Gun-obj: GunHolsterAssembly -> Gun

Holster-obj: GunHolsterAssembly -> Holster

methods
create-GunHolsterAssembly: -> GunHolsterAssembly

events
new-GunHolsterAssembly: -> GunHolsterAssembly

axioms

attr-equal
(new-GunHolsterAssembly, create-GunHolsterAssembly);

attr-equal (GunHolsterAssembly-1, GunHolsterAssembly-2)

=> (Gun-obj (GunHolsterAssembly-1) =

Gun-obj (GunHolsterAssembly-2)

& Holster-obj (GunHolsterAssembly-1) =

Holster-obj (GunHolsterAssembly-2));

Gun-obj (create-GunHolsterAssembly) = new-Gun;

Holster-obj (create-GunHolsterAssembly) = new-Holster

end-class

class GunHolsterAssembly-Class is

class-sort GunHolsterAssembly-Class

contained-class GunHolsterAssembly

methods
create-GunHolsterAssembly-Class: -> GunHolsterAssembly-Class

events
new-GunHolsterAssembly-Class: -> GunHolsterAssembly-Class

axioms
create-GunHolsterAssembly-Class = empty-set;

new-GunHolsterAssembly-Class =

create-GunHolsterAssembly-Class

end-class

aggregate GunHolsterAssembly-aggregate is

nodes
Gun, Holster, OverHeat-mult, OverHeat-20: OverHeat-mult,

ReleaseHolsterSwitch, CloseHolsterSwitch

arcs
OverHeat-20 -> Gun: { OverHeat -> Gun},

OverHeat-20 -> OverHeat-mult: { OverHeat -> OBJ-12},

ReleaseHolsterSwitch -> Gun: {},
ReleaseHolsterSwitch -> Holster: { ReleaseHolsterSwitch -> Holster},

CloseHolsterSwitch -> Gun: {},
CloseHolsterSwitch -> Holster: { CloseHolsterSwitch -> Holster}

end-aggregate

class SophisticatedPump is

class-sort SophisticatedPump < Pump

import

Pump

sort

SP

sort-axioms

SophisticatedPump = SP

ops
attr-equal: SophisticatedPump, SophisticatedPump -> boolean

attributes

amountSelect: SP -> Integer volumeSelect: SP -> Integer

axioms

F-9

attr-equal (SophisticatedPump-33, SophisticatedPump-34) =>
(amountSelect (SophisticatedPump-33) = amountSelect (SophisticatedPump-34) ft

volumeSelect (SophisticatedPump-33) = volumeSelect (SophisticatedPump-34))

end-class

class SophisticatedPump-Class is

class-sort SophisticatedPump-Class

contained-class SophisticatedPump

methods
create-SophisticatedPump-Class: -> SophisticatedPump-Class

events
new-SophisticatedPump-Class: -> SophisticatedPump-Class

axioms

create-SophisticatedPump-Class = empty-set;
new-SophisticatedPump-Class = create-SophisticatedPump-Class

end-class

class Pump is

class-sort Pump

import
Kept-In, PumpController, Pump-aggregate

sort
Pump-State, GunHolsterAssembly-Class,
ClutchMotorAssembly-Class, PumpController, Display-Class,

Kept-In, Display, Motor

sort-axioms

Pump = P = OverHeat-18.0BJ-10;

Motor = Motor-obj-sort;

Display-Class = Display-obj-sort

ops

attr-equal: Pump, Pump -> boolean

attributes
GunHolsterAssembly-Class-obj: Pump -> GunHolsterAssembly-Class

ClutchMotorAssembly-Class-obj: Pump -> ClutchMotorAssembly-Class

PumpController-obj: Pump -> PumpController
Display-Class-obj: Pump -> Display-Class

Kept-In-obj: Pump -> Kept-In

Display-obj: Pump -> Display

Motor-obj: Pump -> Motor

state-attributes

PumpState: Pump -> Pump-State

methods
create-Pump: -> Pump

states
PumpDisabled: -> Pump-State PumpEnabled: -> Pump-State

events

new-Pump: -> Pump

OverHeat: Pump -> Pump

EnablePump: Pump -> Pump
DisablePump: Pump -> Pump

StartPumpMotor: Motor -> Motor

ResetDisplay: Display -> Display

axioms

size (Display-Class-obj (Pump-58)) >= 1;
size (GunHolsterAssembly-Class-obj (Pump-59)) >= 1;

size (ClutchMotorAssembly-Class-obj (Pump-60)) >= 1;

(PumpState (Pump-65) = PumpDisabled) =>

(PumpState (EnablePump (Pump-65)) = PumpEnabled £

attr-equal (EnablePump (Pump-65), updatePump (Pump-65)) ft

(Motor-obj (EnablePump (Pump-65)) = StartPumpMotor (Motor-obj (Pump-65))) ft

(Display-obj (EnablePump (Pump-65)) = ResetDisplay (Display-obj (Pump-65))));

(PumpState (Pump-66) = PumpDisabled) => (PumpState (DisablePump (Pump-66)) = PumpDisabled);

(PumpState (Pump-67) = PumpDisabled) => (PumpState (OverHeat (Pump-67)) = PumpDisabled);

(PumpState (Pump-68) = PumpEnabled) => (PumpState (DisablePump (Pump-68)) = PumpDisabled);

(PumpState (Pump-69) = PumpEnabled) => (PumpState (EnablePump (Pump-69)) = PumpEnabled);

F-10

(PumpState (Pump-70) = PumpEnabled) => (PumpState (OverHeat (Pump-70)) = PumpDisabled);

PumpState (new-Pump) = PumpDisabled & attr-equal (new-Pump, create-Pump);

attr-equal (Pump-72, Pump-73) =>
(GunHolsterAssembly-Class-obj (Pump-72) = GunHolsterAssembly-Class-obj (Pump-73) &

ClutchMotorAssembly-Class-obj (Pump-72) = ClutchMotorAssembly-Class-obj (Pump-73) 4

PumpController-obj (Pump-72) = PumpController-obj (Pump-73) fc

Display-Class-obj (Pump-72) = Display-Class-obj (Pump-73) &
Kept-In-obj (Pump-72) = Kept-In-obj (Pump-73) &

Display-obj (Pump-72) = Display-obj (Pump-73) £

Hotor-obj (Pump-72) = Motor-obj (Pump-73));

PumpDisabled <> PumpEnabled;
GunHolsterAssembly-Class-obj (create-Pump) = new-GunHolsterAssembly-Class;

ClutchMotorAssembly-Class-obj (create-Pump) = new-ClutchMotorAssembly-Class;

PumpController-obj (create-Pump) = new-PumpController;

Display-Class-obj (create-Pump) = new-Display-Class;

Kept-In-obj (create-Pump) = UNDEFINED;

Display-obj (create-Pump) = UNDEFINED;

Motor-obj (create-Pump) = UNDEFINED

end-class

class Pump-Class is
class-sort Pump-Class

contained-class Pump

methods
create-Pump-Class: -> Pump-Class

events
new-Pump-Class: -> Pump-Class

OverHeat: Pump-Class -> Pump-Class

EnablePump: Pump-Class -> Pump-Class

DisablePump: Pump-Class -> Pump-Class

axioms
create-Pump-Class = empty-set;

new-Pump-Class = create-Pump-Class;

in (Pump-61, Pump-Class-10) <=>
in (OverHeat (Pump-61), OverHeat (Pump-Class-10));

in (Pump-62, Pump-Class-11) <=>
in (EnablePump (Pump-62), EnablePump (Pump-Class-11));

in (Pump-63, Pump-Class-12) <=>
in (DisablePump (Pump-63), DisablePump (Pump-Class-12))

end-class

aggregate Pump-aggregate is

nodes
GunHolsterAssembly-Class, ClutchMotorAssembly-Class,

PumpController, Display-Class, Kept-In, Integer,

SET-19: Set, SET-20: Set, SET-21: Set, SET-22: Set,

Gun-Class, SET-23: Set, Holster-Class, SET-24: Set,
OverHeat-mult, OverHeat-18: OverHeat-mult, EngageClutch,

FreeClutch

arcs
SET-19 -> GunHolsterAssembly-Class: { Set -> GunHolsterAssembly-Class, E -> GunHolsterAssembly},
SET-20 -> ClutchMotorAssembly-Class: { Set -> ClutchMotorAssembly-Class, E -> ClutchMotorAssembly},

SET-21 -> Display-Class: { Set -> Display-Class, E -> Display},

Integer -> SET-19: O,

Integer -> SET-20: {},

Integer -> SET-21: <},

Integer -> SET-22: {},

SET-22 -> Kept-In: { Set -> Kept-In, E -> KI-Link},

Integer -> SET-23: O,
SET-23 -> Gun-Class: < Set -> Gun-Class, E -> Gun},

SET-23 -> Kept-In: { Set -> GunSet, E -> Gun},

Integer -> SET-24: {},
SET-24 -> Holster-Class: { Set -> Holster-Class, E -> Holster},

SET-24 -> Kept-In: {. Set -> HolsterSet, E -> Holster},
OverHeat-18 -> OverHeat-mult: { OverHeat -> OBJ-10},

F-ll

EngageClutch -> Gun: -Q,
EngageClutch -> Clutch: { EngageClutch -> Clutch},

FreeClutch -> Gun: O,
FreeClutch -> Clutch: { FreeClutch -> Clutch}

end-aggregate

event ReleaseHolsterSwitch is

class-sort ReleaseHolsterSwitch

events
ReleaseHolsterSwitch: ReleaseHolsterSwitch -> ReleaseHolsterSwitch

end-event

event CloseHolsterSwitch is

class-sort CloseHolsterSwitch

events
CloseHolsterSwitch: CloseHolsterSwitch -> CloseHolsterSwitch

end-event

event EngageClutch is

class-sort EngageClutch

events
EngageClutch: EngageClutch -> EngageClutch

end-event

event FreeClutch is

class-sort FreeClutch

events
FreeClutch: FreeClutch -> FreeClutch

end-event

event DisableClutch is
class-sort DisableClutch

events
DisableClutch: DisableClutch -> DisableClutch

end-event

event QverHeat is

class-sort OverHeat

events

OverHeat: OverHeat -> OverHeat

end-event

event OverHeat-mult is

class-sort OverHeat

sort OBJ-10, OBJ-il, OBJ-12

attributes

OBJ-10-obj: OverHeat -> OBJ-10

OBJ-11-obj: OverHeat -> OBJ-11

OBJ-12-obj: OverHeat -> OBJ-12

events

OverHeat: OverHeat -> OverHeat

OverHeat: OBJ-10 -> OBJ-10

OverHeat: OBJ-11 -> OBJ-11

OverHeat: OBJ-12 -> OBJ-12

axioms
OBJ-10-obj (OverHeat (OverHeat-16)) = OverHeat (OBJ-10-obj (OverHeat-16));

OBJ-11-obj (OverHeat (OverHeat-16)) = OverHeat (OBJ-11-obj (OverHeat-16));

OBJ-12-obj (OverHeat (OverHeat-16)) = OverHeat (OBJ-12-obj (OverHeat-16))

end-event

event StartPumpMotor is

class-sort StartPumpMotor

events

StartPumpMotor: StartPumpMotor -> StartPumpMotor

end-event

F-12

event ResetDisplay is

class-sort ResetDisplay

events
ResetDisplay: ResetDisplay -> ResetDisplay

end-event

F-13

Appendix G. User Manual for Formal Object Transformation System

G. 1 Introduction

This appendix outlines the procedures used to transform ULARCH traits and state

transition tables into O-SLANG. First, the Refine files which are needed for the transfor-

mation process are presented, along with their compilation and loading order. Next, the

user files required to run the transformations are described. Finally, a sample run using

the Pump domain example is presented.

G.2 Refine Files

This section outlines the procedures needed to initialize the transformation system.

1. Load system files for Dialect and Object Inspector.

• (load-system "Dialect")

• (load-system "Intervista")

2. Compile the domain model and grammar files for ULARCH, state transition tables,

and O-SLANG if necessary.

• M-x refine-compile-file ularch-dm.re

• M-x refine-compile-file ularch-gram.re

• M-x refine-compile-file stt-dm.re

• M-x refine-compile-file stt-gram.re

• M-x refine-compile-file oslang-dm.re

• M-x refine-compile-file oslang-gram.re

3. Load the domain model and grammar files for ULARCH, state transition tables, and

O-SLANG.

• M-x refine-load-file ularch-dm.lfaslsl

• M-x refine-load-file ularch-gram.lfaslsl

G-l

• M-x refine-load-file stt-dm.lfaslsl

• M-x refine-load-file stt-gram.lfaslsl

• M-x refine-load-file oslang-dm.lfaslsl

• M-x refine-load-file oslang-gram.lfaslsl

4. Compile the lisp utilities file if necessary, and then load it.

• M-x refine-compile-file lisp-utilities.lisp

• M-x refine-load-file lisp-utilities.faslsl

5. Compile the transformations file if necessary, and then load it.

• M-x refine-compile-file uo-trans.re

• M-x refine-load-file uo-trans.lfaslsl

G.3 User Files

In order to transform a ULARCH domain theory into an O-SLANG domain theory,

several files are needed. These files are:

• A JsZfile containing the ULARCH traits

• A . stt file for each state transition table

• A .dm file containing the names of the Asl file and all of the .stt files

When the .dm file is constructed, the first line should contain the name of the .hi file, and

each line thereafter should contain the name of a .stt file. To run the transformations, the

function Transform-DomainModel is invoked from the command line in Refine as follows:

.> (Transform-DomainModel "filename.dm")

When the transformations complete, a .oslang file will be created in the same directory as

the .dm file.

G-2

G-4 Sample Session

This section shows a sample run using the Pump domain example. To transform the

ULARCH and state transition table files for pump, the Refine files needed were first loaded

using the steps outlined in Section G.2. Next, the user files were set up as described in

Section G.3. The M and .stt files appear in appendix E. The file pump.dm is shown below.

pump/pump.lsl

pump/clutch.stt

pump/display. stt
pump/gun.stt

pump/holster.stt

pump/motor. stt

pump/pump.stt

Once the necessary files were set up the transformations were run as follows:

.> (Transform-DomainModel "pump/pump.dm")

Parsing "pump/pump.lsl"...Succeeded!
Transforming Ularch to O-Slang...Rule successfully applied.

Parsing "pump/clutch.stt"...Succeeded!
Transforming "pump/clutch.stt" to O-Slang...Rule successfully applied.

Parsing "pump/display.stt"...Succeeded!
Transforming "pump/display.stt" to O-Slang...Rule successfully applied.

Parsing "pump/gun.stt"...Succeeded!
Transforming "pump/gun.stt" to O-Slang...Rule successfully applied.

Parsing "pump/holster.stt"...Succeeded!
Transforming "pump/holster.stt" to O-Slang...Rule successfully applied.

Parsing "pump/motor.stt"...Succeeded!

Transforming "pump/motor.stt" to O-Slang...Rule successfully applied.

Parsing "pump/pump.stt"...Succeeded!
Transforming "pump/pump.stt" to O-Slang...Rule successfully applied.

Transforming "" to O-Slang...Rule successfully applied.

Performing post processing...
Updating aggregates for communication and associations...Succeeded!

Adding object-valued attributes where needed...Succeeded!

Adding 'new-' events and 'create-' events where needed...Succeeded!

Updating axioms where needed...Succeeded!

Replacing Int with Integer...Succeeded!Succeeded!

Writing "pump/pump.oslang"...

Succeeded, transformation complete!

G-3

Bibliography

Bai94. Paul D. Bailor. 1994 reasearch summary. Unpublished Research Summary:
Knowledge-Based Software Engineering Group, Air Force Institute of Technol-

ogy, 1994.

Bai95. Paul D. Bailor. Theories and Software Engineering. Class Notes: CSCE 793,
Winter 1995, Air Force Institute of Technology, 1995.

BFG+94. Lee Blaine, Rafael Fürst, Li-Mei Gilham, Allen Goldberg, Richard Jiillig,
Jim McDonald, and Y.V. Srinivas. Specware™ User Manual, October 1994.

Spec ware™ Version Core4.

BGG+94. Lee Blaine, Li-Mei Gilham, Allen Goldberg, Richard Jiillig, Jim McDonald, and
Y.V. Srinivas. SLANG Language Manual, October 1994. Specware™ Version

Core4.

B093. Ronald V. Book and Friedrich Otto. String-Rewriting Systems. Springer-
Verlag, 1993.

DBH95. Maj Scott DeLoach, LtCol Paul Bailor, and Thomas Hartrum. Representing
object models as theories. In Proceedings KBSE '95: The Tenth Knowledge-
Based Software Engineering Conference, Boston, Massachusetts, November
1995. IEEE Computer Society Press Los Alamitos, California.

DeL95a. Maj Scott DeLoach. An object-oriented, theory-based, parallel successive re-
finement specification acquisition system. Dissertation Prospectus, Graduate
School of Engineering, Air Force Institute of Technology (AU), February 1995.

DeL95b. Maj Scott DeLoach. A theory-based object model. Unpublished, July 1995.

DeL95c. Maj Scott DeLoach. Transformations from omt to a theory-based object model.
Unpublished, July 1995.

Der87. Nachum Dershowitz. Termination of rewriting. In J.P. Jouannaud, editor,
Rewriting Techniques and Applications, pages 69-115. Academic Press, 1987.

Der93. Nachum Dershowitz. A taste of rewrite systems. In Peter E. Lauer, editor,
Functional Programming, Concurrency, Simulation and Automated Reasoning,
International Lecture Series 1991-1992, pages 199-228. Springer-Verlag, Mc-
Master University, Hamilton, Ontario, Canada, 1993.

Der94. Nachum Dershowitz. Hierarchical termination. Technical report, Department
of Computer Science, University of Illinois at Urbana-Champaign, 1994.

DJ90. Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In Formal
Methods and Semantics. Handbook of Theoretical Computer Science, volume B,
chapter 6, pages 243-320. Elsevier - The MIT Press, North Holland, Amster-
dam, 1990.

GH93. John V. Guttag and James J. Horning. Larch: Languages and Tools for Formal
Specification. Springer-Verlag, 1993.

BIB-1

HB94. Thomas C. Hartrum and LtCol Paul D. Bailor. Teaching formal extensions
of informal-based object-oriented analysis methodologies. In Software Engi-

neering Education Proceedings. Software Engineering Institute (SEI), January

1994.

int91. Reasoning Systems Inc., 3260 Hillview Avenue, Palo Alto, CA. INTERVISTA

User's Guide, March 1991. Version 1.0.

Klo92. J.W. Klop. Handbook of Logic in Computer Science, volume 2, chapter 2, pages
1-116. Clarendon Press, 1992.

Lin94. Captain Catherine J. Lin. Unification of larch and z-based object models to
support algebraically-based design refinement: The larch perspective. Master's
thesis, Graduate School of Engineering, Air Force Institute of Technology (AU),

1994.

Mit94. Subrata Mitra. Semantic Unification for Convergent Systems. PhD thesis,
University of Illinois at Urbana-Champaign, 1994.

NS91. Allan Norcliffe and Gil Slater. Mathematics of Software Construction. Ellis
Horwood Limited, Market Cross House, Cooper Street, Chichester, England,

1991.

RBP+91. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-
Oriented Modeling and Design. Prentice-Hall, Inc., 1991.

Ref90. Reasoning Systems Inc., 3260 Hillview Avenue, Palo Alto, CA. Refine User's

Guide, May 1990. Version 3.0.

Smi90. Douglas R. Smith. Kids: A semiautomatic program development system. IEEE
Transactions on Software Engineering, 16(9):1024-1043, September 1990.

vBSB93. S. van Bakel, S. Smetsers, and S. Brock. Partial type assignment in left lin-
ear applicative term rewriting systems. In Ronan Sleep, Rinus Plasmeijer,
and Marko van Eekelen, editors, Term Graph Rewriting: Theory and Practice,
chapter 2, pages 15-29. John Wiley and Sons Ltd, 1993.

Wab94. Captain Kathleen May Wabiszewski. Unification of larch and z-based object
models to support algebraically-based design refinement: The z perspective.
Master's thesis, Graduate School of Engineering, Air Force Institute of Tech-
nology (AU), 1994. AD-A289234.

BIB-2

Vita

Captain Charles G. Beem was born on January 29, 1963 in Bainbridge, Maryland and

graduated from Roxana High School in Roxana, Illinois in 1981. He earned an Associates

Degree in Applied Science in Data Processing at Lewis and Clark Community College in

Godfrey, Illinois, in 1985 before enlisting in the Air Force as a programmer. He developed

tactical communication software to support ground-based tactical communication. In De-

cember, 1988, he entered the Airman Education and Commissioning Program at Wright

State University in Dayton, Ohio, and was awarded a Bachelor's Degree in Computer Sci-

ence in June 1990. He received his commission through Officer Training School in October

1990 before being assigned as a programming team chief on Strategic Air Command's in-

telligence data handling system. He also served as section chief for his division's software

engineering review board before leaving in May, 1994, to pursue a Master of Science degree

in Computer Science at the Air Force Institute of Technology at Wright-Patterson AFB,

Ohio. Upon graduation, Captain Beem will be assigned to the Air Force C4 Agency at

Scott AFB, Illinois, where he will work software engineering policy issues for the Air Force.

Permanent address: 216 Sheraton Dr
Belleville, II 62223

VITA-1

IWT DOCUM ire 'ATIOW PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

December 1995
3. REPORT TYPE AMD DATES COVEREE

Master's Thesis

4. TITLE AMD SUBTITLE

Transforming Algebraically-Based Object Models
Into a Canonical Form for Design Refinement

6. AUTHOR(S)

Charles G. Beem, Captain, USAF

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION MAME(S) AMD AODRESS(ES)

Air Force Institute of Technology, WPAFB OH 45433-6583

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GCS/ENG/95D-01

9. SPONSORING/MONITORING AGENCY WAS

Mr. Glenn Durbin
NSA/Y23
9800 Savage Road
Fort Meade, MD 20755-6000

UE(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited :
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The understandability of object-oriented design techniques and the rigor of formal methods have improved the
state of software development; however, both ideas have limitations. Object-oriented techniques, which are
semi-formal, can still result in incorrect designs, while formal methods are complex and require an extensive
mathematical background. The two approaches can be coupled, however, to produce designs that are both
understandable and verifiable, and to produce executable code. This research proposes an approach where
object-oriented models are first represented algebraically in a formal specification language such as LARCH and
then transformed into a canonical form suitable for design refinement.
In the canonical form presented in this work, object-oriented models are represented as domain theories consisting
of multiple class specifications. Each class specification has sorts, operations (attributes, methods, events, states,
state attributes, and operations), and axioms which describe its structure and behavior. The ability to reason
about relationships between specifications is handled through the use of category theory operations. Although the
canonical form is methodology independent, this work demonstrates the proposed approach on object-oriented
models developed using Rumbaugh's Object Modeling Technique. The models are first mapped to LARCH and
then translated into the canonical form by a set of rewrite rules. The rewrite rules are shown to produce
unique normal forms. The final product is a transformation system which converts object-oriented designs into
a canonical form that can be used with a design refinement tool. ____
14. SUBJECT TERMS

software engineering, specifications, formal specification languages,
Larch specification language, algebraic specification languages,

jabJ£cJfcHLUJeiit.e.dj]iPiLds.tJarm_r£.wjiting..
17. SECURITY CLASSIFICATION I 16. SFXURi

OF REPORT l OF Tl-iS
Cli

UNCLASSIFIED UNCLASSIFIED

IS. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

181
16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

GENERAL IMSTRUCTIOMS FOR COMPLETIMG SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. Full publication date
including day, month, and year, if available (e.g. 1
Jan 88). Must cite at least the year.

Blocks. Type of Report and Dates Covered.
State whether report is interim, final, etc. If
applicable, enter inclusive report dates (e.g. 10
Jun87-30Jun88).

Blocks. Title and Subtitle. A title is taken from
the part of the report that provides the most
meaningful and complete information. When a
report is prepared in more than one volume,
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification
in parentheses.

Blocks. Funding Numbers. To include contract
and grant numbers; may include program
element number(s), project number(s), task
number(s), and work unit number(s). Use the
following labels:

C - Contract PR
G - Grant TA
PE - Program WU

Element

Project
Task
Work Unit
Accession No.

Blocks. Author(s). Name(s) of person(s)
responsible for writing the report, performing
the research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s).

Block?. Performing Organization Name(s) and
Address(es). Self-explanatory.

Block 8. Performing Organization Report
Number. Enter the unique alphanumeric report
number(s) assigned by the organization
performing the report.

Blocks. Sponsoring/Monitoring Agency Name(s)
and Address(es). Self-explanatory.

Block 10. Sponsoring/Monitoring Agency
Report Number. (If known)

Block 11. Supplementary Notes. Enter
information not included elsewhere such as:
Prepared in cooperation with...; Trans, of...; To be
published in.... When a report is revised, include
a statement whether the new report supersedes
©r supplements the older report.

Block 12s. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any
availability to the public. Enter additional
limitations or special markings in all capitals (e.g.
NOFORN, REL, ITAR).

DOD - See DoDD 5230.24, "Distribution
Statements on Technical
Documents."

DOE - See authorities.
NASA - See Handbook NHB 2200.2.
fJTIS - Leave blank.

Block 12b. Distribution Code.

DOD
DOE

NASA-

Leave blank.
Enter DOE distribution categories
from the Standard Distribution for
Unclassified Scientific and Technical
Reports.
Leave blank.
Leave blank.

Block 13. Abstract. Include a brief (Maximum
200 words) factual summary of the most
significant information contained in the report.

Block M. Subject Terms. Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages. Enter the total
number of pages.

Block 16. Price Code. Enter appropriate price
code (NTIS only).

Blocks 17.-19. Security Classifications. Self-
explanatory. Enter U.S. Security Classification in
accordance with U.S. Security Regulations (i.e.,
UNCLASSIFIED). If form contains classified
information, stamp classification on the top and
bottom of the page.

Block 20. Limitation of Abstract. This block must
be completed to assign a limitation to the
abstract. Enter either UL (unlimited) or SAR (same
as report). An entry in this block is necessary if
the abstract is to be limited. If blank, the abstract
is assumed tobe unlimited.

* U.S.GPO: 1993-0-336-043
Standard Form 298 Back (Rev. 2-89)

