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Abstract 

The understandability of object-oriented design techniques and the rigor of formal 

methods have improved the state of software development; however, both ideas have lim- 

itations. Object-oriented techniques, which are semi-formal, can still result in incorrect 

designs, while formal methods are complex and require an extensive mathematical back- 

ground. The two approaches can be coupled, however, to produce designs that are both 

understandable and verifiable, and to produce executable code. This research proposes 

an approach where object-oriented models are first represented algebraically in a formal 

specification language such as LARCH and then transformed into a canonical form suitable 

for design refinement. 

In the canonical form presented in this work, object-oriented models are represented 

as domain theories consisting of multiple class specifications. Each class specification has 

sorts, operations (attributes, methods, events, states, state attributes, and operations), 

and axioms which describe its structure and behavior. The ability to reason about rela- 

tionships between specifications is handled through the use of category theory operations. 

Although the canonical form is methodology independent, this work demonstrates the pro- 

posed approach on object-oriented models developed using Rumbaugh's Object Modeling 

Technique. The models are first mapped to LARCH and then translated into the canonical 

form by a set of rewrite rules. The rewrite rules are shown to produce unique normal forms. 

The final product is a transformation system which converts object-oriented designs into 

a canonical form that can be used with a design refinement tool. 

xn 



Transforming Algebraically-Based Object Models 

Into a Canonical Form for Design Refinement 

/.   Introduction 

1.1    Background 

As industry continues to push existing computer technology to the limit, the software 

systems required to support the evolving sophisticated applications become more and more 

complex. This increasing complexity places an even greater emphasis on the need to accu- 

rately specify the desired behavior for a system. Traditionally, a natural language such as 

English is used to describe the requirements, but this technique is imprecise, error-prone, 

and often results in the software developer building the wrong product. Object-oriented 

analysis and design methodologies have become the software development technique of 

choice in many places throughout industry. Because object-oriented analysis and design 

techniques model problems in terms of real-world concepts, they greatly improve under- 

standing of the system requirements on the part of both the customer and the implementer 

(RBP+91). Unfortunately, this method is also informal and subject to errors. 

To introduce more rigor into the software development process, formal methods and 

formal specification languages are being explored as a way to ensure that software spec- 

ifications are both unambiguous and correct. Because formal specification languages are 

based on mathematical constructs like predicate logic and set theory (NS91), they provide 

software engineers with a means for reasoning about designs and, if they are executable, 
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for testing them before they are implemented; this is the way of the traditional engineer. 

It is this formal methods approach, coupled with object-oriented analysis and design tech- 

niques, that forms the path that the Knowledge-Based Software Engineering (KBSE) group 

at the Air Force Institute of Technology (AFIT) is exploring. 

AFIT's KBSE group is researching the development of a composition system that 

builds domain-specific applications from new and existing domain models. For a specific 

problem domain, object-oriented models are created using Rumbaugh's Object Modeling 

Technique (OMT), translated into a formal specification language (Z or Larch), and then 

transformed into a common representation model in the REFINE x object base. These 

object-based models can then be used to produce executable specifications. (Bai94) 

In 1994, Lin and Wabiszewski developed a formalized object transformation process. 

Lin employed a theory-based approach using Larch (Lin94), while Wabiszewski pursued 

a model-based approach using Z (Wab94). First, they created and validated mappings 

from the OMT models to Larch and Z. Once these mappings were validated using ex- 

isting problem domain OMT models, they developed parsers for their respective formal 

specification languages. An analysis of the abstract syntax trees produced by the parsers 

revealed some commonalities between the two languages' representations of OMT. Capi- 

talizing on these commonalities, Lin and Wabiszewski then created a unified model which 

unified the languages at a high level. Although they concluded that theory-based and 

model-based specification languages have a common set of constructs that can be used to 

build a canonical framework for formalizing object models, they stopped short of creating 

a true canonical model which captures the essence of object-oriented models in a language 

'REFINE is a wide-spectrum language that is part of the SOFTWARE REFINERY™ environment. 
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independent form. There is a limit to the degree of unification which their unified frame- 

work provides. The common constructs are limited to a few shared object classes. Objects 

below the signature declaration, external reference, and axiom objects, are depicted as 

specialized object classes due to the differences in the syntax of the two languages. To 

eliminate the language specific portions, transformations can be used to manipulate the 

unified model into a canonical form, i.e. a more general model which represents the same 

information. Before these transformations can be built, however, the canonical model itself 

must be defined. 

One of the benefits of having a unified model is that it creates a layer of abstraction 

between the front-end and back-end of the composition system. In order to incorporate 

new specification languages into the composition system, just create new front-end trans- 

formations with the unified model as the target representation. To use a different theo- 

rem prover, design refinement mechanism, or different application, simply create back-end 

transformations with the unified model as the source representation. The key is that the 

unified model must be independent of the source specification languages and the target 

applications. 

1.2   Problem Statement 

An abstract framework that unifies the theory-based and model-based approaches 

should be a common base language with few, if any, dialects. The framework provided by 

Lin and Wabiszewski does not have this characteristic, as the languages were not reduced to 

their most significant form. Also, the framework should be independent of object-oriented 

methodology. This would provide more flexibility in the selection of modeling methodology, 
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and would open up the composition system for use by a larger group of potential users. Lin 

and Wabiszewski's unified model does not provide this methodology independence, since 

it is heavily influenced by Rumbaugh's OMT methodology. Figure 1.1 shows the language 

specific portions of the unified model, UZed and [/LARCH, being transformed to the chosen 

canonical model, O-SLANG. AS will be discussed in Chapter II and Chapter III, O-SLANG 

is an algebraic specification language which captures the notions of object-oriented models 

in a methodology-independent way. This language will also be a product of DeLoach's 

translation system (DeL95a), which translates the semi-formal object-oriented Rumbaugh 

OMT diagrams of a system into formal O-SLANG system specifications. 

OBJECT-ORIENTED 
DOMAIN ANALYSIS 

OBJECT MODEL 

Z SPECIFICATION 

UZED TRANSFORMATIONS 

THEOREM PROVING ANALYSIS TOOLS 

OSLANQ TO SLANQ 
TRANSFORMATION 

DESIGN REFINEMENT 

Figure 1.1    Target Transformation Process 
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Problem Statement: 

Define a formal object transformation process by creating a canonical algebraic model 

to represent general object-oriented models and by using term rewriting techniques to de- 

velop transformations from ZARCH specifications to the canonical model. 

1.3 Scope 

This work focused on extending the unified model for both ULARCH and UZED; 

however, time constraints prevented the implementation of transformations from both lan- 

guages to the canonical model. As such, transformations are only defined and implemented 

from ULARCH. This corresponds to the portion of Figure 1.1 that is enclosed in the dashed 

box. 

1.4 Sequence of Presentation 

The remainder of this thesis is organized as follows: 

Chapter II contains a review of theory-based object models followed by a discussion 

of Rumbaugh's OMT. Also, a review of current literature on term rewrite systems and 

term rewriting techniques is presented. 

Chapter III outlines the specific design for a unified model to canonical model com- 

piler which is based on Lin's ULARCH to REFINE compiler. Also included is a more detailed 

discussion of Lin and Wabiszewski's work on the formalized object-based composition sys- 

tem. Next, the canonical model (O-SLANG) is presented, thus completing the first phase in 
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extending the formal object transformation process. Finally, the design validation criteria 

and example problem domains are identified. 

Chapter IV presents a discussion of the second phase of extending the formal object 

transformation process: making changes to Lin and Wabiszewski's unified model. 

Chapter V defines the transformations from ÜLARCH to O-SLANG. 

Chapter VI contains a design and implementation of the transformations from ULARCH 

to O-SLANG, as well as an analysis of the implementation. 

Chapter VII presents general conclusions and recommendations for future research. 

Several appendices are also included in order to provide additional information about 

the extended formal object transformation process. Appendix A contains the domain 

model for the object-oriented specification language, O-SLANG. Appendix B contains fig- 

ures relating to a term rewriting example presented in Chapter II. Appendix C and 

Appendix E contain the ULARCH traits and state transition tables for the Bank and Pump 

examples, respectively, while Appendix D and Appendix F contain the O-SLANG produced 

by the compiler for the two examples. Finally, Appendix G contains a User's Manual for 

executing the unified model to canonical model compiler. 
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II.   Literature Review 

2.1 Introduction 

In order to help reach the research goals outlined in Chapter I, this literature review 

explores research and information needed to extend Lin and Wabiszewski's formal object 

transformation process. First, Section 2.2 provides a discussion of theory-based object 

models, and introduces O-SLANG. A brief review of Rumbaugh's Object Modeling Tech- 

nique(OMT) is also included since it is the object-oriented methodology on which Lin and 

Wabiszewski's unified model is based. Finally, Section 2.3 explores term rewriting and the 

feasibility of using term rewriting techniques to create a canonical model. 

2.2 Theory-based Object Models 

An area that is fast gaining attention in the software development world is the use of 

algebraic theories to represent software engineering knowledge. Most notably, the Kestrel 

Interactive Development System (KIDS) uses theory-based specifications as a foundation 

for software synthesis (Smi90). The strength of such an approach is that it provides a 

formal foundation for software development that is based on well-founded algorithm the- 

ories such as divide-and-conquer and global search. It also serves as a solid framework 

for reuse of specifications and designs and for the establishment of software engineer- 

ing technology bases. However, their is one drawback to the theory-based approach. It 

represents a significant change in the way software is specified and the corresponding exe- 

cutable programs are produced; thus, there is a large learning curve to overcome (Bai95). 

To help overcome this drawback, transformations can be defined to create theory-based 
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algebraic specifications from object-oriented models. These transformations can be au- 

tomated, allowing domain and system designers to build systems using the conceptually 

simpler object-oriented representation (DeL95a). This section provides background infor- 

mation on theories and Rumbaugh's OMT methodology, and then outlines the creation 

of theory-based object models from object-oriented models represented using OMT. A de- 

scription of O-SLANG, an object-oriented extension of the algebraic specification language 

SLANG, is also presented. 

2.2.1 Algebraic Specifications and Theories. An algebraic specification consists 

of sorts, operations over those sorts, and a set of axioms which describe the behavior of the 

operations (GH93). Sorts are collections of values. Along with the associated operations, 

they make up the signature, which defines the structure of the algebraic specification; the 

semantics are defined by the axioms. An algebraic specification is a theory presentation 

(Bai95), and a theory is the set of all assertions that can be derived from the axioms of the 

specification (GH93). It is important to note that a specification is merely a description 

of many possible valid implementations. An implementation which ensures that all of the 

axioms are satisfied is called a model (GH93). 

The idea of creating theory-based algebraic specifications has two goals: modeling 

system behavior using signatures and axioms, and composition of larger specifications from 

smaller specifications (DBH95). As described above, the signature of a specification and 

its axioms describe its structure and semantics, i.e. they describe the internal behavior. 

In order to create larger specifications from smaller ones, it is necessary to be able to 

reason about relationships between the specifications; category theory is the mathematical 
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theory that can be used to describe these relationships. In category theory, a category is 

made up of a collection of C-objects and C-arrows between objects. Each object has a C- 

arrow to itself (i.e. reflexive). Also, arrows are composable and the composition operation 

is associative. In a category of algebraic specifications, the C-arrows are specification 

morphisms. Basically, a specification morphism consists of two functions which map sorts 

and operations in one specification to sorts and operations in another. These functions 

must ensure that all of the axioms in the first specification are theorems in the second. 

Another operation that is important to creating large specifications from small ones is the 

colimit operation. From an existing set of specifications, the colimit operation creates a 

new specification consisting of the shared union of all of the sorts and operations in the 

original specifications. This new specification, called the colimit specification, is defined 

by specification morphisms from each original specification to the colimit specification 

(DBH95). 

Together, specification morphisms and the colimit operation make up a basic toolset 

for building specifications. Using these tools, there are several ways to build specifications 

(DBH95): 

1. Create a specification by defining a signature and a set of axioms 

2. Create a colimit specification using the colimit operation 

3. Use a specification morphism to translate a specification 

4. Parameterize a specification 

5. Build a specification from features in other specifications 
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2.2.2 Rumbaugh's Object Modeling Technique. OMT describes an application 

domain by using three different models: the object model, dynamic model, and functional 

model. Usually, a complete description of an application domain requires the creation of 

all three models. While the object model is the foundation, the models are "orthogonal 

parts of the description of a complete system and are cross-linked." (RBP+91) 

The object model captures the structure of an application domain by depicting the 

objects in the domain, attributes and operations which characterize the objects, and the 

relationships between the objects. The model consists of object diagrams which are graphs 

whose nodes represent classes of objects and whose arcs represent the relationships among 

the classes (RBP+91). Three important relationships between classes are association, 

inheritance, and aggregation. Associations are templates that define what classes of objects 

may be connected. Essentially, they are a group of links that have a common structure 

and meaning. A link is a physical or conceptual connection between instances of objects. 

An association may also define association attributes, which are attributes that do not 

belong to any of the objects involved in a link, but exist only because of the link between 

objects. Inheritance represents the "is a" relationship between a class of objects and some 

subclass. This is a generalization-specialization relationship in which a subclass inherits 

all of the attributes and operations of some parent class. The subclass may add additional 

attributes and operations of its own; this is specialization. Aggregation represents the "is 

composed of" relationship between a class of objects and its components. Aggregation is 

essential for modeling systems that are formed by combining subsystems (DBH95). Figure 

2.1 shows an example of a simple object model for a rocket. Aggregation is represented by 

the diamond shape on the arcs. In the example, a rocket is composed of an airframe, two 
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2 

feeds 

2 

Fuel Tank Jet Engine /\in] rame 

Figure 2.1    Object Model for Rocket 

fuel tanks, and two jet engines.  Feeds is a simple association between fuel tank objects 

and jet engine objects; a fuel tank feeds a jet engine. 

The dynamic model describes the reactive, or event driven, aspects of the application 

domain. It consists of state diagrams, which are graphs whose nodes represent states and 

whose arcs represent transitions between states. The transitions are caused by events, 

which are represented as labels on the arcs. An object's state is an abstraction of the 

current values of its attributes. An event is an external stimulus that causes an object to 

react in a certain way. Figure 2.2 shows an example of a dynamic model for a fuel tank. 

States are shown in boldface and events are in italics. 

The functional model captures the data transformations in the application domain. 

These data transformations may be operations defined in the object model or actions 

defined in the dynamic model. The functional model describes how an object's output 

values are derived from its input values. The model consists of data flow diagrams, which 

are graphs whose nodes represent processes and whose arcs represent data flow (RBP+91). 

Figure 2.3 shows a partial example of a functional model for a fuel tank object. 
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StartFill(flow_rate)ISchedule(TankFull) StopFill[fuel_level=capacity]ICancel(TankFull);update_level 
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SchedulefTankFull) 
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Schedule(TankEmpty) 

J StartFill(flow_rate)/Schedule(TankFutl) v- 

\StartFill(flow_rate)/CanceI(TankEmpty); 
updatejevel 

StopUselCancel(TankEmpty) 
updatejevel 

TankEmptylChangeFuelFlow(O); updatejevel 

Using 

StartUse(flow_rate)/ 
Schedule(TankEmpty) 

StartUse(flow_rate)l 
Schedule(TankEmpty) 

Figure 2.2    Dynamic Model for FuelTank 

2.2.3 Theory-based Representation of Object Model. The first step in describing 

a theory-based representation of an object model is to define an object class. An object 

class is a theory presentation which represents five parts : class-sort, other sorts referenced 

in the theory, attributes, methods, and events. More formally (DeL95b): 

Definition 2.2.1 Object Class - A class, C, is a signature, S =< S, 0 > and a set of 
axioms, $, over S (i.e., a theory presentation, or specification) where 

S   =  a set of sorts including the class sort 
0   =  a set of operations over S representing attributes, methods, and events 
$   =  o set of axioms over E 
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Sim Clock 

net_flow_rate 

tarik_sim_time 
output_flow_rate 

input_flow_rate 
Fuel Tank 

Figure 2.3    Functional Model for FuelTank 

A class-sort is a distinguished sort which is a set that contains all of the possible names for 

objects in the object class. An object class can have many instances, each of which has a 

unique name from the class-sort. Another distinguished sort is the state sort, which is the 

set of all possible class states. Attributes are operations that take in an object in the class 

and return the value of a state component. Attributes can only return information, they 

can never modify an object. A distinguished set of attributes are the state attributes, that 

are used to obtain the current value in a state sort. To modify attributes, methods are used. 

Methods are operations which modify none, some, or all of an object's attribute values. 

State attributes can only be modified by events (See Section 2.2.4). Axioms are used to 

define the semantics of an object class. The axioms are usually defined by describing the 

effect of applying the object's methods on the object's attributes (DeL95b). 
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The next step in describing a theory-based representation of an object model is to 

define an object instance. 

Definition 2.2.2 Object Instance - An object, o, is a tuple, o =< i, CT, -K > where i is 
a unique name from the class-sort, CT is the class type, and n is a set of variables indexed 

on attributes in CT {ai,a2,...an} representing the state of the object. 

The unique name, i, is assigned when the object instance is created and does not change 

over the life of the object. The only part of the object instance that can be modified is its 

state, represented by the set of variables n (DeL95b). 

The final step in describing a theory-based representation of an object model is to 

define association, inheritance, and aggregation. As mentioned in Section 2.2.2, association 

is an important relationship between object classes. An association is formally defined as 

(DBH95): 

Definition 2.2.3 Association - An association is defined as a tuple A = < a, A >, where 
a is an object class whose class sort is a set of the class sort of X, and A is a class with 
two or more object-valued attributes 1. 

Figure 2.4 (DBH95) shows the object classes which represent the Cust-Acct association. 

The class CA-Link represents A in the association. It has two object-valued attributes, 

customer and account, as well as a method for creating new instances of the association. 

The class Cust-Acct defines a set of CA-Link objects, and the sorts Accts and Custs are 

sets of Acct and Cust objects. The axioms in Cust-Acct define the multiplicity relationship 

between customers and accounts. Each customer can have one or more accounts, while each 

account belongs to only one customer. If an association involves more than two classes, 

the relationship can be captured by adding additional object-valued attributes (DBH95). 

Object-valued attributes are attributes that return references to other objects. 
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link CA-Link is 
class-sort CA-Link 
sorts Cust, Acct 

operations 
attr-equal: CA-Link, CA-Link -$>$ Boolean 

attributes 

customer: CA-Link -$>$ Cust 

account: CA-Link -$>$ Acct 

methods 

create-ca-link: Cust, Acct -$>$ CA-Link 

events 

new-ca-link: Cust, Acct -$>$ CA-Link 

axioms 

attr-equal(ci, c2) => 

customer(cl) = customer(c2) & 
account(cl) = account(c2); 

customer(create-ca-link(c, a)) = c; 

account(create-ca-link(c, a)) = a; 

attr-equal(new-ca-link(c, a), create-ca-link(c, a)) 

end-link 

association Cust-Acct is 
link-class CA-Link 
import Custs, Accts 
class-sort Cust-Acct 

methods 
create-cust-acct: -$>$ Cust-Acct 

image: Cust-Acct, Cust -$>$ Accts 

image: Cust-Acct, Acct -$>$ Custs 

events 

new-cust-acct: -$>$ Cust-Acct 
axioms 
new-cust-acct() = create-cust-acct(); 

create-cust-acct() = empty-set; 
size(image(ca, c)) >= 1; 
size(image(ca,   a))  = 1; 

.   (definition of image operations)   ... 
end-link 

Figure 2.4    Cust-Acct Association 
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Another important relationship between object classes is inheritance. Stated formally 

(DeL95b): 

Definition 2.2.4 Inheritance - A class D is said to inherit from a class C if there exists 
a specification morphism from C to D such that the class-sort of D is a subsort of the 
class-sort of C. 

In other words, all of the sorts and operations from class C are embedded in class D, and 

the class-sort of D is denned as a subsort of the class-sort of C. The subsort relationship 

among sorts is analogous to the subset relationship between sets. The subsort operator < 

defines a subset relationship so that for any two sorts A and B,A<B=>ACB (DBH95). 

The final important relationship between object classes mentioned in Section 2.2.2 

is aggregation. Aggregation is defined formally as (DeL95b): 

Definition 2.2.5 Aggregation - A class C is an aggregate of a collection of component 
classes, (Di..Dn), if there exists a specification morphism from the colimit of (D\..Dn) to 
C such that C has at least one corresponding object-valued attribute referencing each class 
in (Dx..Dn). 

The colimit operation provides the capability to unify sorts and operations that are denned 

in different classes and associations. Taking the colimit of a number of class specifications 

creates an aggregate class that specifies system or subsystem level functionality (DBH95). 

2.2-4 Theory-based Representation of Dynamic Model. In defining a theory-based 

representation of a dynamic model, it is necessary to express the concepts of events and 

state transitions algebraically. This amounts to describing how objects communicate with 

each other. Each object is only aware of certain events that it must send. In essence, the 

events are broadcast to the entire system. For each send event, an operation signature 

must be defined that maps to a method in some anonymous object class. The anonymous 
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class-sort and its associated operations are defined in a separate specification called a 

communication theory (DBH95, DeL95b). 

Definition 2.2.6 Communication Theory - A communication theory consists of a 
class-sort, parameter sorts, and an event signature which are mapped via signature mor- 
phisms to sorts and events in the generating and receiving classes. 

The class-sort represents the class-sort of the objects being communicated with. The 

parameter sorts must be mapped to compatible sorts in the sending and receiving classes. 

The event signature maps to an event in the receiving class which has the same number 

of parameters as defined in the communication theory. Once the sorts and events have 

been mapped under signature morphisms, it is necessary to unify them so that invoking 

an event in the sending class causes a corresponding invocation in the receiving class. 

This unification is accomplished via the colimit of the sending and receiving classes, the 

communication theory, and the signature morphisms (DeL95b). Consider the example 

where a Console in a Bank sends a Withdrawal event (shown in Figure 2.5) to an Account. 

Figure 2.7 shows the morphisms required for the send event, and Figure 2.6 shows the Bank 

aggregate which defines the colimit operation for the bank which is made up of Console 

and Account objects. Recall from section 2.2.1 that a category is made up of C-objects and 

C-arrows. The nodes in Figure 2.6 represent C-objects, while the arcs are C-arrows. 

event Withdrawal is 
class-sort Withdrawal 
sorts Account,  Amnt 
events 

Withdrawal:   Withdrawal,  Account,  Amnt -> Withdrawal 
end-event 

Figure 2.5    Communication Theory 
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aggregate Bank is 
nodes Integer,  Set-1:  Set,  Set-2:  Set, Account-Class, 

Console-Class, Withdrawal 
arcs    Set-1 -> Account-Class:  {Set -> Account-Class, E -> Account}, 

Set-2 -> Console-Class:  {Set -> Console-Class, E -> Console}, 
Integer -> Set-1:  {}, 
Integer -> Set-2:  {}, 
Withdrawal -> Console-Class:   {}, 
Withdrawal -> Account-Class:   {} 

end-aggregate 

Figure 2.6    Communicating Bank Aggregate Class 

Withdrawal 

Account-Class Console-Class 

\      / 
Bank 

Figure 2.7    Bank Aggregate Morphisms for Withdrawal Event 

2.2.5 Theory-based Representation of Functional Model. To define a theory-based 

representation of the functional model, three things need to be addressed: processes, data 

flow, and data stores. The processes, or functions, in the functional model correspond to 

the actions described in the dynamic model. These processes are defined as operations, 

i.e. methods, in an object class. The behavior of the processes is described axiomatically. 

Data flow in the functional model is described by the values returned by operations. Data 

stores are portrayed by separate object classes (DeL95b). 

Table 2.1 provides a summary of the mappings from Rumbaugh's OMT to a theory- 

based model. 
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Table 2.1    Rumbaugh to Theory-based Object Model Translation 

Rumbaugh Model OO Concept Theory-based Model 
classes theory presentation 

attributes operation on class sort 
operations operation on class sort 
constraints axioms 

object Instances logical variables 
simple inheritance morphism and subsort 
multiple inheritance colimit and subsort 

Object aggregation colimit and object-valued-attributes 
Model multiplicity axioms 

associations container of link objects 
link theory presentation 
multiplicity axioms 
qualifier attribute and axioms 
link attributes operations 
link operations operations 
ordering sequence of link objects 
constraints aggregate axioms 

transition Events operations 
parameters operation parameters 

Dynamic actions operations and axioms 
Model output Events event theories 

state actions/activity methods 
parameters method parameters 

control flow event theories 
processes operations 

Functional operation definition axioms 
Model data flow operations return values 

data store object classes 

2.2.6 O-SLANG. O-SLANG is an object-oriented extension of the algebraic spec- 

ification language SLANG. SLANG is used by Specware™ to perform software refinement 

(BFG+94). Based on category theory and first-order predicate logic, SLANG supports the 

specification morphism and colimit operations described in Section 2.2.1. An SLANG spec- 

ification is made up of sorts, operations, and axioms (BGG+94). O-SLANG takes these 

fundamental concepts of SLANG and uses them to capture object-oriented system specifi- 

cations (DeL95c). 
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Sections 2.2.3 through 2.2.5 outlined a theory-based representation of an object- 

oriented model of a system. O-SLANG uses the same ideas to describe object class features 

and relationships between object classes. Appendix A shows an OMT domain model for 

O-SLANG. 

2.3    Term Rewriting 

This section presents a basic definition of a general term rewriting system as well as 

some definitions for the related concepts that are necessary to understand term rewriting. 

It wraps up with a discussion of some of the many types of term rewriting systems. 

2.3.1 Term Rewriting Systems. Formally speaking, a term rewriting system is 

a pair C-R), where X) is an alphabet or signature and R is a set of rewrite rules. The 

syntax and vocabulary for a term rewriting system is (Klo92): 

1. ^2 consists of a countably infinite set of variables Xi,x2,x3,... and a non-empty set 

£0 of function symbols or operator symbols, each with an "arity", i.e. the number 

of arguments the function or operator is supposed to have. 

2. The set of terms over £}, T(J2) is defined inductively: 

(l)x,y,z,...eT(E). 

(2) If / G Eo and tu...,tn G T(£) (n > 0), then /(ti,...,<„) G T(£). 

3. Terms not containing a variable are ground terms. 

4. A rewrite rule G R is a pair (l,r) of terms G T(£), written as I —»• r. Rewrite rules 

can be named, (e.g. rewrite rule n is written as rn : I —> r, and the application of 

r„ to some term a which produces some term ß is written a —>>„ ß). 
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Formalisms aside, term rewriting uses directed equations to iteratively replace subterms 

in a given expression with equal terms until the simplest form of the expression is reached. 

This is the same idea as simplifying expressions in algebra (Der93). The form could be 

some standard (canonical) form or some intermediate form needed to perform a manip- 

ulation of the symbols in the expression at a later time. For example, putting equations 

in disjunctive normal form for use with a mechanical theorem prover is term rewriting. 

Moving all quantification symbols to the left in a first order predicate logic equation is 

another example. Both of these manipulations produce equivalent terms since they are 

based on theorems in formal logic. 

2.3.1.1    Simple Example.      Klop (Klo92) provides the following simple exam- 

ple of a rewrite system: 

• Let 2 = {A,M,S,0}, with arities 2, 2, 1, and 0, respectively. 
• Let R be defined by: 

ri : A(x,0) —* x 
r2:A(x,S(y))-*S(A(x,y)) 
r3 : M(x,0)^0 
r4: M(x,S(y))^A(M(x,y),x) 

Consider the expression:        M(5(5(0)), 5(5(0))) 

Using the rewrite rules in R, the expression can be simplified to:        5(5(5(5(0)))) 

One possible sequence of rewrite rule applications is as follows (underlined terms are rewrit- 

ten in each step): 

M(5(5(0)),5(5(0))) ^r4 A(M(S(S(0)),5(0)),5(5(0))) 
^(M(5(5(0)), 5(0)),5(5(0))) -+r2 5(^(M(5(5(0)),5(0)),5(0))) 
5(^(M(5(5(0)),5(0)),5(0))) -+r2 5(5(A(M(5(5(0)),5(0)),0))) 
5(5(^(M(5(5(0)),5(0)),0))) -+ri 5(5(M(5(5(0)),5(0)))) 
5(5(M(5(5(0)),5(0)))) -r, 5(5(^(M(5(5(0)),0), 5(5(0))))) 

2-15 



5(5Q4(M(5(5(0)),0), 5(5(0))))) -^ 5(5(^(0,5(5(0))))) 
5(5(^(0,5(5(0))))) -^ 5(5(504(0,5(0))))) 
5(5(5(^(0,5(0))))) -^ 5(5(5(5(^(0,0))))) 
5(5(5(5(^(0,0))))) -*,, 5(5(5(5(0)))) 

2.3.2   Basic Definitions in Term Rewriting. In addition to the basic notions 

of signature and rewrite rules, there are several concepts that are foundational to an 

understanding of term rewriting. These concepts can be lumped into two categories: those 

concerning the structure of terms, and those concerning rewriting operations. This section 

defines some of the more important concepts in these two categories. 

2.3.2.1 Structural Term Definitions. Given a set F of function symbols, 

each function symbol / € F has a unique natural number associated with it called the 

arity, as described in Section 2.3.1. Any function with arity 0 is called a constant (Mit94). 

For a given set of variables, X, a term t € T(F,X) can be viewed as a finite ordered-tree 

where the leaves are variables in X or constants and the internal nodes are labeled with 

function symbols (Mit94). In the example in Section 2.3.1.1, M(5(5(0)),5(5(0))) is a 

term. Terms are made up of subterms, which are substrings of symbols. The denotation 

of a subterm is t \p, which represents the subterm of t which is rooted at position p in t 

(Der93). A position in a term can be represented by a sequence of positive integers that 

describes the path from the root symbol of the term to the head of the subterm that is 

rooted at that position. For example, if t = push(0,pop(push(y, z))), then t |2.i is the first 

subterm of t's second subterm, i.e. push(y,z) (Der93). A term is said to be monadic if it 

is made up only of unary functions, constants, and variables, and ends in either a constant 

or variable (Der93). 

2-16 



2.3.2.2 Rewriting Definitions. The rewriting of terms involves replacement 

of subterms with other terms. A term t with subterm t \p replaced by term s is denoted by 

t[s]p (Der93). When a term is replaced with a variable, it is referred to as substitution. A 

substitution is a function that uniquely maps variables to terms, and is written as {xi i-> 

Si,... ,xm i-> sm}. For a substitution a, it is true that /(<i,... ,tn)a = /(ti<7,... ,tna) 

(Mit94). A key operation in rewriting is determining when two terms match. A term t 

matches another term s if for some substitution <r, sa = t. For two terms s and t and 

some substitution a, if sa = t, i.e. if t matches s, then s is said to subsume t (Der93). 

The selection of a rewrite rule may be context dependent. A context is some term u with 

a distinguished position p (Der93). Sometimes it is necessary to put together multiple 

substitutions. This process is called composition. The composition of two substitutions a 

and 6 is a composition of the two functions. For example, if xa = s for some variable x, 

then xa0 = s6 (Mit94). 

The basic component of a rewrite system is a rewrite relation, which is defined as 

a binary relation —* over a set of terms T that is closed with respect to replacement 

and substitution. If a rewrite relation is transitive and irreflexive, it is called a rewrite 

ordering. Finite or infinite sequences of applications of rewrite rules are called derivations. 

Derivations are denoted by t0 —>R ti —>R ■■■ti —>R •■■. A sequence of derivations from 

some term t0 to another term tn can be more compactly denoted by t0 —>* tn. For a given 

rewrite system R, a term s £T is said to rewrite to a term t € T if s \p= la and t = s[ra]p 

for some rule I —► r in R, position p in s, and substitution a. The rewrite is denoted by 

s —*R t.   The subterm s \p at which a rewrite can take place is called a redex (Der93). 
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When there is no term t such that s —> t, then s is said to be in normal form, denoted by 

s i (Mit94). 

2.3.3 Types of Rewrite Systems. The idea of a term rewriting system is very 

important to the study of computational procedures. One of the most well-known term 

rewriting systems, the A-calculus, played a vital role in mathematical logic by helping 

formalize the concept of computability (Klo92). In the area of programming languages, 

the A-calculus led to an important breakthrough in denotational semantics. Another term 

rewriting system, combinatory logic, has proven very helpful in implementing functional 

languages (Klo92). What makes term rewriting systems so desirable, at least those that 

involve terms in a first-order language, is their simple syntax and semantics (Klo92). This 

section briefly outlines some different types of term rewriting systems, while Section 2.3.6 

describes another important type called graph rewriting systems. 

One of the most basic types of term rewriting systems is called a string-rewriting 

system, or semi-Thue system. A string-rewriting system has monadic words that end in 

the same variable as left-hand and right-hand side terms (B093). Consider the following 

example of a string-rewriting system (Klo92): 

• Let T = {(aba,bab)} be a string rewriting system with only one rule. 

• T has unary function symbols a and b and a constant 0. 

• T has one rule: a(b(a(x))) —> b(a(b(x))). 

• For the string bbabaaa, a reduction step might be bbabaaa —> bbbabaa. 

Another type of term rewriting system is known as applicative term rewriting systems. 

With these systems, there is a very special binary operator called application, or Ap. 
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Applicative term rewriting systems are very useful for Combinatory Logic. Consider the 

following example (vBSB93): 

• Combinatory Logic can be represented as follows: 
Sxyz = xz(yz) 
Kxy = x 
Ix = x 

• Combinatory Logic can be expressed as an applicative term rewriting system 
as follows: 

Ap(Ap(Ap(S,x),y),z) -> Ap{Ap{x,z), Ap(y,z)) 
Ap(Ap(K,x),y) ->x 
Ap(I,x) —»■ x 

A special case of applicative term rewriting systems is where all of the rewrite rules are 

left-linear. Left-linear means that no variable occurs more than once on the left-hand side 

of any rewrite rule. Using a tree representation for terms and rewrite rules, the concept 

of type assignment can be defined by assigning types to nodes and edges in a consistent 

manner. Van Bakel, et. al., developed a necessary and sufficient condition for preservation 

of types in left-linear applicative systems (vBSB93). 

Term rewriting systems can be extended by allowing rewrite rules to have conditions 

attached to them. This is known as conditional rewriting. These conditions are really 

enabling conditions, i.e. the conjunction of all of the conditions must be true before the 

rewrite rule can be applied (for generalized systems (Klo92)). Consider the following set 

of rewrite rules for a stack (Der93): 

top(push(x,y)) —► x 

pop(push(x,y)) -*y 

empty? (A) —> yes 

empty? (push(x,y)) —> no 
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emptyt(x) = no     \     push(top(x),pop(x)) —> x 

The last rule is a conditional, while the others are not.   If the stack is not empty (i.e. 

empty?(x) = no), then the rule push(top(x) ,pop(x)) —»• x can be applied. 

In priority rewriting systems, the choice of which rewrite rule is to be applied is con- 

strained to meet, a priori, some given priorities on the rules. In other words, priorities are 

merely a partial ordering of the rewrite rules. For example, the original Markov algorithms 

were a priority rewrite system in which the order in which the rules were written down 

determined their priority. Generally, priority rewrite systems can't be expressed as term 

rewriting systems (Der93). 

There are different types of term rewriting systems, only a few of which have been 

presented in this section. Other examples are graph rewriting systems, class rewriting 

systems, and ordered rewriting systems. The latter two are extensions of general term 

rewriting systems that are designed to deal with problems of non-termination, such as 

commutativity (Der93). See Section 2.3.6 for a discussion of graph rewriting. 

2.3-4 Properties of Rewrite Systems. Term rewriting systems can have many 

properties. This section describes some of them, particularly those properties that make a 

term rewriting system "nice". Included are discussions on confluence, termination, unique 

normalization, and convergence. 

2.3.4-1 Confluence. Figure 2.8 provides a graphical view of confluence, also 

referred to as the Church-Rosser property. The basic idea is that no matter what order 

the rewrites are applied, the result is the same. There are two forms of confluence: local 
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confluence and confluence. Locally confluent systems are said to be weakly Church-Rosser, 

while confluent systems are said to be Church-Rosser. 

Locally Confluent, or 
Weakly Church-Rosser 

Confluent, or 
Church-Rosser 

Figure 2.8    Confluence/Church-Rosser Properties 

The formal definitions of these properties are as follows (Klo92): 

• The binary relation —*■ is locally confluent (weakly Church-Rosser) if 

Va, b, c e T 3d G T (a -> b and a -* c =» b -»* d and c ->* d). 

• The binary relation —> is confluent (Church-Rosser) if 

Va, 6, c G T 3d G T (a -»* 6 and a ->* c =► 6 -»* d and c -»* d). 

2.3.4-2 Termination. Another important property for term rewriting sys- 

tems is termination, also called strong normalization. Simply put, a system is terminating 

(strongly normalizing) if there are no infinite derivations ij —*R t2 —►« • • • of terms in 

T (Der93). Termination is a very useful property. If a system is known to be locally 

confluent, proving that it is also terminating will show that the system is confluent, since 

by Newman's lemma locally confluent and terminating =>■ confluent (Klo92).  The catch 
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is that for term rewriting systems in general, the question of termination is undecidable 

(Klo92). Fortunately, there are many cases in which termination can be proved. Klop 

demonstrates a very powerful proof technique based on recursive path orderings (Klo92), 

and Dershowitz provides a survey of termination techniques in (Der87). Termination can 

also be guaranteed by creating a well-founded ordering in which the rewritten form of a 

term is always smaller than its original form (Der94). 

2.3.4-3 Unique Normalization and Convergence. According to Dershowitz, 

one of the most essential properties for a rewriting system is unique normalization. If a 

term rewriting system has this property, then every term t G T has exactly one normal 

form. If all possible sequences of rewrites lead to a unique normal form, then the system 

is said to be convergent. Dershowitz states that if a rewrite system can be shown to be 

terminating and confluent, then that system is convergent and defines unique normal forms 

(Der93). Both Klop and Dershowitz also refer to this property as canonical] however, Klop 

prefers to call terminating, confluent rewrite systems complete (Klo92). 

2.3.5   Example Rewrite System. Up to this point, the basic notions of term 

rewriting systems have been presented. This section will present a practical example of 

a term rewriting system which converts first-order predicate logic equations in typical 

infix notation to equivalent equations in a prefix notation that is similar to the syntax of 

SLANG, an algebraic specification language. For example, let (£, R) be defined by the 

following rewrite rules: 

1. opl A op2 —> (And opl op2) 
2. (opl A op2) -> (And opl op2) 
3. opl V opl -► (Or opl op2) 
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4. (opl V op2) -* (Or opl op2) 
5. opl =» op2 —> (Implies opl op2) 
6. (opl =$■ op2) —*■ (Implies opl op2) 
7. opl & op2 -► (Iff opl op2) 
8. (opl & op2) -> (Iff opl op2) 
9. \op -> (Not op) 
10. \(op) -> (Not (op)) 
11. oop —» (o op) 
12. o(0p) -► (o (op)) 

13. (oplDop2) -> (D opl op2) 
14. A (ops) -»• (A ops) 
15. opl = op2 —*• (Equal opl op2) 
16. (opl = op2) -»• (Equal opl op2) 
17. opl + op2 —> (Iplus opl op2) 
18. (opl + op2) -> (Iplus opl op2) 
19. opl — op2 —> (Minus opl op2) 
20. (opl - op2) —*■ (Minus opl op2) 
21. opl * op2 —* (Times opl op2) 
22. (opl * op2) -» (Times opl op2) 
23. (opl U op2) -+ (Union opl op2) 
24. (opl n op2) —»■ (Intersect opl op2) 
24. (opl G op2) -► (In opl op2) 

In these rules, the operators have the standard first-order predicate logic precedence. The 

symbols o, D, and A represent user-defined unary relations, user-defined binary relations, 

and user-defined functions, respectively. For this example, consider the following first-order 

predicate logic equation: 

(x G u u v) <& ((x e U) v (x e V)) 

This equation can be rewritten using the following sequence of rewrites: 

(xeuuv)«((xGU)v(xe v)) -*14 
(x G (Union U V)) & ((x G U) V (x G V)) 

(x G (Union U V)) «■ ((x G U) V (x G V)) ^24 

(In x (Union U V)) «*■ ((x G U) V (x G V)) 
(In x (Union U V)) & ((x G U) V (x G V)) -*7 

(Iff (In x (Union U V)) ((x G U) V (x G V))) 
(Iff (In x (Union U V)) ((x G U) V (x G V))) -+24 

(Iff (In x (Union U V)) ((In x U) V (x G V))) 
(Iff (In x (Union U V)) ((In x U) V (x G V))) -+24 

(Iff (In x (Union U V)) ((In x U) V (In x V))) 
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(Iff (In x (Union U V)) ((In x U) V (In x V))) ^4 

(Iff (In x (Union U V)) (Or (In x U) (In x V))) 

The order of application of the rules was chosen based on knowledge of the precedence 

of the operations in the system. This idea of precedence can be captured in an LALR(l) 

grammar. If the example expression had been parsed into tree form, it would have looked 

like figure B.l. Figures B.l through B.6 each portray a rewrite of the example expression. 

In step 1, there are five different rewrite choices, each enclosed in a box. Going from step 

1 to step 2, the subtree corresponding to choice 2 is rewritten. Looking at the steps, it 

is easily seen that the choice of which rewrite to apply at each step does not affect the 

final form. This is confluence. Also, in looking at the rewrite rules for the system, it can 

be seen that each rewrite produces a term that is "smaller". In other words, there is less 

to rewrite since no terms that match the left-hand side of any rule are produced. This 

is termination. Termination was achieved because the rules are a well-founded ordering, 

as mentioned in Section 2.3.4. Since the example term rewriting system is confluent and 

terminating it is also convergent and defines unique normal forms (Der93). Another way 

to describe the system is to say it is canonical 

2.3.6 Graph Rewriting. The example in Section 2.3.5 demonstrated rewriting on 

a tree representation of a first-order predicate logic expression. Rewriting can be general- 

ized to apply to graphs as well as simple trees. In graph rewriting, subgraphs are replaced 

according to rewrite rules which contain variables. The variables themselves refer to sub- 

graphs (Der93). Because graphs do not have simple structures, like trees, graph rewriting 

has a more global flavor. Graph rewriting systems are more powerful, but as is usually the 
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case, are more complicated. Where LALR grammars can be used in conjunction with tree 

rewriting, graph grammars are required for graph rewriting. 

2.4    Summary 

This literature review provided the knowledge base needed to extend AFIT's object- 

based composition system towards the capability to perform design refinement. First, 

before defining a canonical model which represents object-oriented models algebraically, it 

is necessary to understand how object-oriented constructs such as inheritance, aggregation, 

and associations can be described in terms of theories. It is also necessary to understand 

how these constructs are represented in Rumbaugh's OMT, which is the starting point for 

the object-based composition system. Knowing the source and target of the composition 

system provides the background necessary to design the extension to the formal object 

transformation system. Finally, understanding the concepts of term rewriting provides 

some insight into showing that the transformations from the unified model to the target 

canonical model produce unique normal forms. 
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III.   Designing a Formal Object Transformation Process 

3.1    Introduction 

In Chapter I, the notion of producing domain-specific applications from object- 

oriented domain models was presented. The foundation for such a system is Lin and 

Wabiszewski's formalized object transformation process. By following the general compiler 

model, they developed compilers which take in a formal specification language representa- 

tion of an object-oriented domain model (ULARCH or UZed) and produce portions of an 

executable REFINE program. Looking at the portion of Figure 3.1 above the top dotted 

line, it can be seen that their ULARCH and UZed parsers correspond to the analysis block, 

while their transformations to REFINE correspond to the synthesis block. Both compilers 

have the unified AST as an intermediate representation and REFINE as a target language. 

In this research effort, Lin's compiler was modified by changing the target language to the 

COMPILER 

ULareh              j 

UZed                  ; 

ULarch Parser 

UZed Parser 
Unified AST Transformations to 

Refine 
j          Refine 

INTERMEDIATE    ^^ SOURCE   «^^    ! 
ANALYSIS SYNTHESIS 

;    TARGET     ^^ 

LANGUAGE *"""~    j REPRESENTATION "^"^ 1   LANGUAGE *""" 

[_ 

ULareh              \    i Modified ULareh Par ser                      Modified Unified AST Transformations tc 

O-SIang 
!           O-Slang 

Figure 3.1    Analysis Synthesis Model 

canonical model and by developing new transformations to replace the existing synthesis 

block. Also, the ULARCH parser was modified to account for changes made to the unified 

model.   This is shown in the portion of Figure 3.1 that appears below the dotted line. 
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This compiler model identifies the required functional components of the extended formal 

object transformation process: 

• A source language, ULARCH, which is a Larch representation of an OMT domain 

model 

• The analysis portion of the compiler, which is a modified version of Lin's ÜLARCH 

parser 

• An intermediate representation, which is a modified version of the unified AST 

• The synthesis portion of the compiler, which is the transformations from the modified 

version of the unified AST to the canonical AST 

• A target language, which is the canonical AST 

To implement these components, an evolutionary approach was adopted which consisted 

of three phases with the following associated products: 

1. A canonical algebraic framework 

2. A modified version of Lin's unified model 

3. A set of transformations from the unified model to the canonical model 

Chapter IV provides a description of the changes made to the unified model, while Chapters 

V and VI present the design and implementation of the transformations from the modified 

version of the unified model to the canonical model. This chapter outlines the definition 

of the canonical model and the design validation criteria in Sections 3.3 and 3.4 after an 

overview of Lin and Wabiszewski's object transformation process. 

3.2    Creating the Unified Framework 

As stated in Chapter I, Lin and Wabiszewski developed a formalized object trans- 

formation process. Lin employed a theory-based approach using Larch, while Wabiszewski 

pursued a model-based approach using Z. This formalized transformation was developed 

in three main steps. Initially, they created and validated mappings from the OMT models 
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to Larch and Z. Once these mappings were validated using existing problem domain OMT 

models, they developed parsers for Larch and Z that created abstract syntax tree (AST) 

representations. These representations served as a basis for the next step, in which they 

analyzed the similarities and differences between the two resulting representations and 

created a unified model (Lin94). 

The first step in developing the formalized transformation process was to map Rum- 

baugh's OMT models to the algebraic and model-based constructs of Larch and Z, respec- 

tively. In OMT, the object model captures the important objects and associated attributes 

and relationships between objects in the system. Also, object-oriented concepts such as 

inheritance, aggregation, and attribute invariance are present. The dynamic model embod- 

ies the reactive behavior of an object in terms of states and events. The functional model 

relates an object's data transformations, encapsulating a collection of data and operations 

on the data in much the same way as an abstract data type (RBP+91).1 Creating verifi- 

able frameworks for the object-oriented models required the preservation of the constructs 

present in the each of these models. Lin and Wabiszewski satisfied this requirement by 

addressing each model individually. Table 3.1 briefly summarizes the mappings from the 

OMT models to the algebraic and object-based frameworks (Lin94, HB94). 

The second step in developing the formalized transformation process was to create 

parsers to translate algebraic specifications written in Larch and model-based specifications 

written in Z into AST representations. To accomplish this task, an object model was 

built for each language. These models were then used to build a formal language syntax 

in an extended Backus Naur Form (BNF) notation. The parsing toolset in SOFTWARE 

'See Section 2.2.2 for a more in-depth description of Rumbaugh's OMT. 
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Table 3.1    OMT Mappings to Algebraic and Object-based Frameworks 

Model OMT Component Algebraic Framework Model-based Framework 

Object Class Trait Schema 
Attributes Operators, Sorts Schema Attributes 

Object Relations Axioms Schemas, Axioms 
Model Inheritance Includes, Renames Schema Inclusion 

Aggregation Includes, Renames Schema Attributes 
State Trait Schema 

Dynamic Event Trait Schema 
Model State Transition 

Table (STT) 
STT STT 

Functional Data Transform Traits, Operators Schema 
Model Behavior Axioms Axioms 

REFINERY™ was then used to parse Larch and Z programs based on these BNF notations 

(Lin94). 

Once the AST representations for each language were developed, Lin and Wabiszewski 

used them to evaluate the structures of Larch and Z as used to describe OMT models. Their 

evaluation revealed that the two languages have strong similarities in the way they rep- 

resent specifications. Both languages require signatures, axioms, and external references 

to describe a problem domain. These requirements are fulfilled in each language using 

different syntax, but the semantics, i.e. mathematical foundations, are similar. These 

similarities make up a set of common core objects in the unified model. Evaluation of 

the ASTs also showed the differences between the two languages. For example, Z has the 

capability to explicitly declare input and output variables, while Larch does not. These 

types of differences make up a set of language specific objects in the unified model. 

Lin and Wabiszewski concluded that Larch and Z have a common set of constructs 

that can be used to build a canonical framework for formalizing object models. These 

constructs can be put together to create one unified model that serves as a front-end 
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for formal system composition, and which supports theorem-proving, code generation, and 

design refinement. They noted, however, that because of the significant differences between 

the syntax of Larch and the syntax of Z, their unified framework contains language specific 

extensions, and so is not completely unified (Wab94, Lin94). 

3.3    The Canonical Algebraic Framework Phase 

Section 3.1 outlined the phases required to extend Lin and Wabiszewski's formal 

object transformation process. The starting point was identified as the selection of the 

canonical framework to serve as the target language for the compiler. The object-oriented 

specification language O-SLANG, introduced in Section 2.2.6, was chosen as the target 

canonical framework. This selection was based on two criteria: completeness of coverage 

of OMT, and compatibility with the design refinement process. This section provides a 

discussion of these criteria. 

The goal of each transformation step in a transformation system is to produce an 

output that is equivalent to the input, i.e. no loss of information. If the target repre- 

sentation, or framework, is not capable of capturing all of the information portrayed in 

the source, then some information will be lost in the transformation. This is incomplete 

coverage. The first criterion for creating the canonical algebraic framework, then, was to 

analyze the unified model and to identify the parts which were necessary for preservation 

of the original object-oriented model. Since the model was based on Rumbaugh's OMT, 

it was possible to analyze it in light of the three distinct views that OMT provides of a 

system: the object model, the dynamic model, and the functional model. O-SLANG cap- 

3-5 



tures all of the object-oriented concepts in OMT, and as will be discussed in Chapter IV, 

captures more than the original unified model created by Lin and Wabiszewski. 

Table 3.2    Rumbaugh to O-SLANG Translation 

OMT Model OO Concept O-SLANG Feature 

classes class specs 
object Instances class specs 
attributes attributes 
operations operations 

- constraints - axioms 
simple inheritance subsort, import 
multiple inheritance subsort, import 

Object aggregation aggregate spec 
Model - multiplicity - axioms 

links link spec 
associations association specs 

- multiplicity - axioms 
- qualifier - axioms 

transition Events event specs 
- parameters - parameters 

Dynamic - actions - methods 
Model output Events event specs 

state actions/activity - methods 
- parameters - parameters 

control flow axioms 
processes methods 

Functional operation definition axioms 
Model data flow operations return values 

data store class specs 

Table 3.2 provides a summary of the object-oriented concepts which need to be captured in 

the canonical framework along with the features of O-SLANG which cover them. Chapter 

V provides a more detailed discussion of the mappings from the unified model to O-SLANG. 

The second reason for selecting O-SLANG as the algebraic framework was its ca- 

pability to represent the operations needed for design refinement, such as specification 

morphisms and colimits. As discussed in Section 2.2.6, O-SLANG is an extension of SLANG 

which is the language used by SpecWare™ in performing design refinement. It is based on 
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category theory concepts such as morphisms, colimits, and diagrams. For example, with 

inheritance in O-SLANG, the class-sort of the inheriting object is a subsort of the class-sort 

of the object it is inheriting from. This corresponds to a morphism in SLANG. Aggregates 

in O-SLANG correspond to a colimit in SLANG. 

3-4    Validation Criteria and Domains 

In order to validate the canonical framework and the transformations from the unified 

model to the framework, two criteria were chosen, coverage and consistency. These criteria 

can be defined as follows: 

1. Coverage: The entire OMT model is captured in the canonical model 

2. Consistency: The behavioral constraints of the system do not contain any contradic- 

tions, that is any instances where true = false 

To demonstrate that these criteria were met, two examples were developed, a gasoline 

pump and a bank. Their main purpose was to provide example coverage of OMT so that 

transformations from the unified model to the canonical model could be analyzed and 

validated with respect to the coverage criterion. The emphasis in building the examples 

was on exercising each facet of OMT rather than on developing complete domain models. 

Table 3.3 shows the examples' coverage of OMT. The following sections outline the process 

used to apply the chosen validation criteria and describe each example in detail. 

3.4-1 Validation Process. In order to determine compliance with the validation 

criteria introduced in Section 3.4, the compiler had to be checked at three points: before 

the input to the parser, after the run of the parser and before the execution of the trans- 
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Table 3.3    OMT Coverage of Validation Domains 

OMT Bank Pump 

classes 
object Instances 
attributes 
operations 

- constraints 
simple inheritance 
multiple inheritance 
aggregation 

- multiplicity 
links 
associations 

- multiplicity 
- qualifier 

transition Events 
- parameters 
- actions 

output Events 
state actions/activity 

- parameters 
control flow 
processes 
operation definition 
data flow 
data store 

formations, and finally after the execution of the transformations. At each of these three 

points, compliance with the coverage and consistency criteria was evaluated. 

The first step in the validation process was to evaluate the traits created for the bank 

and pump examples against the original domain models. This evaluation ensured that the 

traits were consistent with the models' structure, operations, and invariants, demonstrated 

that complete coverage of the models was achieved, and provided validated input for the 

compiler. 

Once the input to the compiler was validated, the ULARCH parser could be run and 

the abstract syntax tree produced could be checked to see if all objects in the source 
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program were created as expected. To check the abstract syntax tree, a graphical tool 

called Inspector was used to visually inspect the objects, attributes, and overall structure 

of the tree 2. This ensured that the synthesis portion of the compiler had validated input. 

The final step in the validation process involved checking the O-SLANG produced 

by the transformations. Each O-SLANG file created was checked to ensure that all of the 

aspects in the original OMT domain model were present in the O-SLANG domain theory. 

Also, all axioms in the domain theory were checked to ensure that no inconsistencies were 

present. 

3.4-2    Bank Domain. The bank domain example is a fairly complex system 

which covers all of the OMT concepts being validated. This section describes the object, 

dynamic, and functional models for the bank domain. Appendix C contains the ÜLARCH 

representation of the bank domain model. 

3-4-2.1 Bank Object Model. The object model contains 14 different object 

classes: bank, person, console, account, archive, customer, employee, checking account, 

savings account, customer-employee, executive, teller, combined checking and savings ac- 

count, and date. Aggregation is covered by the bank object, which is the top-level system 

aggregate. Inheritance and multiple inheritance are both covered by classes inheriting from 

the account object class and person object class. Several associations are also modeled. 

For example, the owns association models the relationship where a bank customer can own 

zero or more accounts. Figure 3.2 depicts the bank domain object model. 

2 Inspector is provided by a package called Intervista which is part of the Software Refinery       environ- 
ment (int91). 
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operates 

manipulates 

Cust-Employee 

Teller Executive 

Account 

int-date 
balance 
acct-num 

credit 
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arch-rate 

arch-close 

Date 

current-date 

I 

Figure 3.2    Bank Object Model 
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3.4-2.2   Bank Dynamic Model. The dynamic model used for the bank 

domain consists of state diagrams and state transition tables for the account and console 

object classes. The dynamic model covers simple state transitions, actions, and single 

receiver send events. The account dynamic model is portrayed in Figure 3.3, while the 

console dynamic model is shown in 3.4. 

Ciedit(aect, anmt) / ArchCredit(acct, anmt) Credit(acct, amiit) / ArchCrecKt(acct, amnt) 

Debitfacct, atmt)[anmt > Mans] / 
ArciDekii(aKtamnt) 

Figure 3.3    Account Dynamic Model 

3.4.2.3 Bank Functional Model. The functional model for the bank domain 

consists of several data transformations; the account class has credit-acct, debit-acct, and 

close-acct, the archive class has arch-credit, arch-debit, arch-close, and arch-rate, and the 

checking account class has write-check, set-rate, compute-interest. The functional model 

is shown in Figure 3.5. 

3.4-3 Pump Domain. The pump domain example is not as complex as the bank 

domain. It does not cover multiple inheritance, parameterized events, or data stores. It 

does, however, cover events sent to multiple receivers. This section describes the object, 

dynamic, and functional models for the pump domain. Appendix E contains the ULARCH 

representation of the pump domain model. 
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NewConsole 
• SI Disabled 

DebitAcct(acct, amnt) / 
Debit(acct, amnt) 

ShowBalance(acct) / balance(acct) 

__CreditAcct(acct, amnt) / 
Credit(acct, amnt) 

GoseAcct(acct) 
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ExecLogin 

CashCheck(acct, amnt) / 
WriteCheck(acct, amnt) 

Executive 

IT 
D UpdateAccts / Computelnterest 

ChangeRate<rate) / SetRate(rate) 

Figure 3.4    Console Dynamic Model 

Checking 

Figure 3.5    Bank Functional Model 
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3.4-3A Pump Object Model The object model contains 10 different ob- 

ject classes: pump, display, pump-controller, gun, holster, gun-holster assembly, clutch, 

motor, clutch-motor assembly, and sophisticated pump. Aggregation is covered by the 

pump object, which is the top-level system aggregate. The gun-holster assembly object 

and clutch-motor assembly object also cover aggregation. Inheritance is covered by the 

sophisticated pump class which inherits from the pump object class. One association is 

modeled. The kept-in association models the relationship where a particular gun is kept 

in a particular holster. Figure 3.6 depicts the pump domain object model. 

Pump Sophisticated 

volume-select 

amounl-sdect 

GunHolsterAssembly ClutchMotorAssembly PumpControlIer 

pump-id 

Gun Holster Clutch Motor 

Display 

update-cost 
Dpdate-volome 

Figure 3.6    Pump Object Model 

3.4-3.2 Pump Dynamic Model. The dynamic model used for the pump 

domain consists of state diagrams and state transition tables for the clutch, display, gun, 

holster, motor, and pump object classes. The dynamic model covers simple state transi- 

tions, actions, and single and multiple receiver send events. The pump dynamic model is 

portrayed in Figure 3.7. 
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Figure 3.7    Pump Dynamic Model 
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3.4-3.3 Pump Functional Model. The functional model for the pump do- 

main consists of two data transformations; the display class has update-cost and update- 

volume. The functional model is shown in Figure 3.8. 

Display 

Figure 3.8    Pump Functional Model 

3.5   Summary 

This chapter outlined the compiler design model on which the extension of Lin and 

Wabiszewski's formal object transformation process was based. To implement the design, 

three phases were identified: defining a canonical algebraic framework, extending the uni- 

fied model, and creating transformations from the unified model to the canonical model. 

The first of these phases was described in Section 3.3, where O-SLANG was identified as the 

chosen canonical algebraic framework 3. The identification of the target canonical model, 

along with the analysis of Lin and Wabiszewski's unified framework, set the stage for 

the second phase which was analyzing the unified model to determine what changes were 

required. These changes are discussed in Chapter IV. The final phase, defining and imple- 

menting the transformations from the unified model to O-SLANG, is described in Chapters 

3The canonical algebraic framework, or canonical model, will henceforth be referred to as O-SLANG. 
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V and VI. Also presented in this chapter were the validation criteria and domains used to 

analyze the extended formal object transformation process. This analysis is presented in 

Chapter VI. 
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IV.   Extensions to the Unified Model 

4-1    Introduction 

Section 3.3 presented the first phase in extending the formal object transformation 

process: the selection of O-SLANG as a canonical framework for algebraic models. This 

selection established a target representation for transformations from the unified model. 

Before these transformations could be developed, however, it was necessary to evaluate 

the existing unified model to determine if it could capture all of the information needed 

to represent object-oriented domain models in O-SLANG. An analysis of the unified model 

showed that four changes were needed in ULARCH and one change was needed in the state 

transition tables. Also, changes had to be made in Lin's mappings from OMT to ULARCH. 

This chapter outlines the changes made to the original unified model. 

4-2    Changes to E/LARCH 

Three of the four changes made to ULARCH were required in order to add information 

to the unified model, while the remaining change was made to facilitate the implementation 

of transformations to O-SLANG. This section describes the changes made to the ULARCH 

domain model and grammar. 

4-2.1 Changing the Dynamic Theory. In Lin's domain model for ULARCH, the 

top level object is a DomainTheory, which consists of three other objects: an ObjectThe- 

ory, a DynamicTheory, and a FunctionalTheory. These three theory objects correspond 

to the Object, Dynamic, and Functional Models in OMT, respectively. In the ULARCH 

grammar, the objects are differentiated by the presence of a comment, as seen in Figure 
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4.1.   Unfortunately, there is no way to distinguish between states and events from the 

\begin{spec} %ObjectTheory 
FuelTank: trait 

includes... 
introduces... 
asserts... 

Nend{spec}'>\ 

\begin{spec} %DynamicTheory \begin{spec} %DynamicTheory \begin{spee} %FunctionalTheory 
UsingState: trait StartFill: trait CalculateFilledLevel: trait 

includes ... includes ... includes ... 
introduces ... introduces ... introduces ... 
asserts ... asserts ... asserts ... 

XendfspecPX ^endfspecJVv ^endfspec}^ 

Figure 4.1    Traits in original "ÜLARCH 

dynamic model. For example, in Figure 4.1 both UsingState and StartFill are Dynamic- 

Theory objects. When building transformations, states and events must be distinguishable, 

as they really are different objects with different semantics. To capture this difference in 

semantics, the domain model for ULARCH was changed by breaking the DynamicTheory 

object into two separate objects, a StateTheory and an EventTheory. Also, the ULARCH 

grammar was changed by adding the syntax for the two new theories. After the changes, 

the traits in Figure 4.1 appear as in Figure 4.2. 

Mjegin{spec} %ObjectTheory \begin{spec} %StateTheory \begin{spec} %EventTheory Vjegin{spec} %FunctionalTheory 
FuelTank: trait UsingState: trait StartFill: trait CalculateFilledLevel: trait 

includes... includes... includes... includes... 
introduces... introduces... introduces... introduces... 
asserts... asserts... asserts ... asserts... 

\end{specP\ Vmd{spec}Vi Nendtspec}^ ^endfspec}^ 

Figure 4.2    Traits in modified ULARCH 

4-2.2 Addition of Link and Association Theories. Lin and Wabiszewski's unified 

model does not capture the concept of associations between objects. Associations are a 

vital part of object-oriented models. Without them, the only relationships between objects 

that can be represented are aggregation and inheritance. In order to be able to represent 

associations in O-SLANG, the ULARCH domain model was modified by adding two new 

types of trait objects, LinkTheory and AssociationTheory.  In OMT, a link represents a 
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relationship between two (or more) objects, while an association represents a group of 

links with common structure and meaning (RBP+91). A LinkTheory, then, is a trait 

which represents a link in OMT. An AssociationTheory is a trait which represents a set 

of individual links. This relationship between the AssociationTheory and LinkTheory is 

analogous to the relationship between classes and objects (DBH95). In addition, the 

ULARCH grammar was modified to include the syntax for the two new theories. This was 

done using comments, as with the other theory types. Figure 4.3 shows the top levels of 

the unified model before and after modification. 

Before After 

DomainTheory DomairiTheory 

0 0 
4 4 4 ^ A * 4 

ObjectTheory DynamicTheoiy FunctionalTbeory ObjectTbewy StateTheory EventTheoty FunctionalTheory 

« > it 

LinkTheory 
AssociationTheory 

Figure 4.3    Changes to ULARCH Domain Model 

4-2.3 Addition of Boolean Attribute. The remaining change made to the unified 

model was to add a boolean attribute, done-Transform, to certain objects in the ULARCH 

domain model. As will be discussed in Chapter VI, the ULARCH-to-O-SLANG transforma- 

tions are a series of rules which are applied to the abstract syntax tree representation of a 

ULARCH domain theory. A top-down control structure is used for applying those rules, via 

a pre-order traversal of the tree. When a rule is successfully applied, the traversal starts 

over with the object that results from the application of the rule. This could lead to an 

infinite loop of rule applications. To prevent this, the rules must be defined in a way that 
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ensures that something changes to indicate that the rule has been applied and should not 

be reapplied. This can be achieved in several ways (Ref90): 

• Have the rule transform the target object into some other object to which the rule 

cannot be applied. 

• Have the rule annotate the object to indicate that the rule has been applied.  The 

left-hand side of the rule should check for the annotation. 

• Have the rule modify some global data structure to indicate that the rule has been 

applied. Again, the left-hand side of the rule should check the data structure. 

Using a boolean attribute falls into the second category. The done- Transform attribute is 

initialized to false when an object is created in the abstract syntax tree, and when a rule 

is successfully applied to it, the attribute is set to true. Each rule has the precondition not 

done-Transform, which ensures that a rule can be applied to an object only once. 

4.3    Changes to OMT-to-UhARCE Mappings 

In addition to changes to the ÜLARCH domain model and grammar, several changes 

were also needed in Lin's mappings from OMT to ULARCH. Some of these changes were 

necessitated by additions to the ULARCH domain model, and some were needed to add 

information required for mapping ULARCH to O-SLANG. This section provides a description 

of the changes made to the mappings from OMT to ULARCH. 

4.3.1    Addition of Link and Association Theories. Once the syntax and the 

domain model were defined for LinkTheory and AssociationTheory objects, mappings had 
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to be defined from OMT links and associations to the respective ULARCH representation. 

To derive ULARCH traits for associations, the following steps are needed: 

1. Create a ULARCH LinkTheory trait for each association which includes the traits for 

each object participating in the association. 

2. Define an LSL * operator for each participant in the relationship using the form: 

attr-name: link-sort —»• attr-sort. 

3. Create an LSL sort for the LINKTHEORY trait, and for each link-attribute define an 

attribute. 

4. Define an LSL "new" operator which constructs a link. 

5. Use axiomatic equations to describe the behavior of the "new" operator. 

6. Create a ULARCH AssociationTheory trait for each association which includes a set 

of LinkTheory objects. 

7. Define an LSL "new" operator which constructs an association. 

8. Define LSL "image" operators which return the members of the association. 

9. Use axiomatic equations to describe the behavior of the "new" operator. 

10. Use axiomatic equations to describe the behavior of the "image" operators. 

11. Use axiomatic equations to describe the multiplicity of the association. 

Figure 4.4 shows the ULARCH for the Owns association between a Customer class and an 

Account class in the Bank example. In the example, a customer can own zero or more 

accounts, while an account can only be owned by one customer. 

LSL stands for Larch Shared Language, which is used to write specifications in a form that is independent 
of any specific programming language (GH93). 
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\begin{spec} %LinkTheory 
Own: trait 
includes Customer, Account 
introduces 

a-customer: Own-Link -> Cust 
an-account: Own-Link -> Acct 
new-Own-Link: Cust, Acct -> Own-Link 

asserts \forall c: Cust, a: Acct 
a-customer(new-Own-Link(c, a)) = c; 
an-account(new-Own-Link(c, a)) = a 

Nendfspec}^ 

\begin{spec} %AssociationTheory 

Owns: trait 
includes 

Set(Owns for C, Own for E) 
introduces 

new-Owns: O, Cust, Acct -> O 
image: O, Cust -> Accounts 
image: O, Acct -> Customers 
does-own: O, Cust, Acct -> Bool 

asserts \forall o: O, c: Cust, a: Acct, x: Own-Link 

size(image(o, c)) >= 0; 
size(image(o, a)) =1; 
(in(x, o)\and (a-customer(x) = c)) == 

in(an-account(x), image(o, c)); 
(in(x, o)\and (an-account(x) = a)) == 

in(a-customer(x), image(o, a)); 
new-Owns = empty-set; 
does-own(new-Owns, c, a) = false; 
does-own(0, c, a) == (in(c, image(o, a))\and 

in(a, image(o, c))) 
\end{spec}Vv 

Figure 4.4   Association and Link in modified ULARCH 
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4-3.2 Representing Aggregation and Attributes. In Lin's mappings from OMT 

to ULARCH, the aggregation property is captured using the LSL includes clause; each 

component object's trait is included in the aggregate's trait (Lin94). Unfortunately, the 

inheritance property is also captured the same way. In order to properly model aggregation 

in O-SLANG, it was necessary to distinguish between aggregation and inheritance. To do 

this, the aggregation mappings were changed to the following steps: 

• Create an LSL sort representing the trait using tuple notation. 

• For each component, add a field in the tuple, and include the component object's 

trait. If the component object is a set, create an LSL sort for the set and include the 

Set trait, renaming the container sort, C, to the set sort and the element sort, E, to 

the component object's trait. 

This change to the OMT mappings still could cause ambiguity, since Lin's mappings al- 

lowed the tuple notation to be used for attributes. To prevent this conflict, the attribute 

mappings were changed so that attributes are modeled in ULARCH using LSL operators 

only. 

4-3.3 Representing Single and Multiple Inheritance. As stated in Section 4.3.2, 

both inheritance and aggregation require the use of the LSL includes clause. Even after 

the changes were made to the OMT mappings for aggregation, it was still necessary to 

distinguish between an includes clause for inheritance and for aggregation. This was ac- 

complished by changing the mapping for inheritance to include the LSL renames notation. 

The presence of the renames notation indicates inheritance. To extend Lin's mappings 

to cover multiple inheritance, simply include, with the renames clause, the trait for each 
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object being inherited. Also, axioms must be built to describe the behavior of operators 

in the inheriting trait on attributes in the inherited trait, and visa versa. Similarly, if any 

event associated with the inheriting trait affects a state from the inherited trait, a state 

table entry must be defined to describe the new state and what actions or send events to 

send. The reverse also holds true: events from the inherited trait which affect the state of 

the inheriting trait must also be described with a state table entry. After the changes, the 

steps for transforming inheritance to ULARCH are: 

• For each object that inherits from a parent(s), include the associated parent trait(s) 

in the LSL includes clause, using rename notation to indicate inheritance. 

• For each LSL operator in the inheriting object, if the operator affects the value of an 

attribute in the parent trait, describe the behavior using an axiomatic equation. 

• For each LSL operator in the parent trait, if the operator affects the value of an 

attribute in the inheriting object, describe the behavior using an axiomatic equation. 

• For each EventTheory object associated with an inheriting object, if the event affects 

a state inherited from the parent trait (s), define a state table entry for the inheriting 

object which describes the effects. 

• For each EventTheory object associated with a parent trait(s), if the event affects 

a state in the inheriting object, define a state table entry for the inheriting object 

which describes the effects. 
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4-4    Changes to State Transition Table Model 

Evaluation of Lin and Wabiszewski's state transition table model revealed that two 

changes were required. First, the grammar for the state transition table did not allow for 

entries without receive events. In OMT, state transitions can occur when certain guard 

conditions are met. To capture this concept, the state transition table grammar was 

modified so that a receive event is optional in an entry in the table. The second change 

was made to distinguish between actions and send events in OMT. In O-SLANG, actions 

are methods, while send events are calls to events. As with states and events, actions and 

send events are different entities with different semantics. To capture this difference, the 

state action column was broken up into two separate columns, one for actions and one for 

send events. This required the addition of two new objects in the state transition table 

domain model and changes to the grammar to reflect the new column in the table. Tables 

4.1 and 4.2 show the state transition table for the pump in the pump domain example 

before and after the changes to the state transition table model. 

Table 4.1    Original Pump State Transition Table 

Current 
State 

Receive 
Event Parameters Guard 

Next 
State Action 

PumpInitialState NewPump PumpDisabled 
PumpDisabled 

PumpDisabled 
PumpDisabled 

EnablePump 

DisablePump 
OverHeat 

PumpEnabled 

PumpDisabled 
PumpDisabled 

updatePump, 
StartPump Motor, 
Re8etDisplay 

PumpEnabled 
PumpEnabled 
PumpEnabled 

DisablePump 
EnablePump 
OverHeat 

PumpDisabled 
PumpEnabled 
PumpDisabled 
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Table 4.2    Modified State Transition Table 

Current 
State 

Receive 
Event Parameters Guard 

Next 
State Action 

Send 
Event 

PumpInitialState NewPump PumpDisabled 
PumpDisabled 

PumpDisabled 
PumpDisabled 

EnablePump 

DisablePump 
OverHeat 

PumpEnabled 

PumpDisabled 
PumpDisabled 

updatePump StartPumpMotor; 
ResetDisplay 

PumpEnabled 
PumpEnabled 
PumpEnabled 

DisablePump 
EnablePump 
OverHeat 

PumpDisabled 
PumpEnabled 
PumpDisabled 

4' 5   Summary 

Once the target language was identified, Lin and Wabiszewski's unified model had to 

be carefully evaluated to determine if it contained all of the information needed to build 

O-SLANG specifications. This evaluation highlighted several areas that required change. 

Modifications were made to add information to the unified model and to eliminate ambigui- 

ties. Adding the boolean annotated attribute was necessary to ensure that transformations 

do not loop infinitely. Once implemented, these changes set the stage for the next phase 

of extending the formal object transformation process: defining the transformations from 

ULARCH to O-SLANG. 
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V.   Definition of Unified Model to Canonical Model Transformations 

5.1    Introduction 

In Chapter III, O-SLANG was established as the canonical model. Based on this choice 

of representation, Chapter IV described modifications to ULARCH. These changes were 

needed to ensure that the information required to capture the object-oriented semantics 

of OMT in O-SLANG were available in ULARCH. This concept is demonstrated in Figure 

5.1. The modified version of ULARCH, which includes the state transition table and LARCH 

portions of the unified model, appears on the left-hand side of the figure. The canonical 

model, O-SLANG, appears on the right. The next step in extending the formal object 

transformation process was to define the actual transformations from ULARCH to O-SLANG 

so that the OMT semantics of ULARCH are properly transformed into equivalent O-SLANG 

representations. These transformations are the mappings shown in Figure 5.1. 

MODIFIED 
ULARCH O-SLANG 

LARCH 

Figure 5.1    Conceptual View of Mappings 

The mappings have the form A —» B, where A represents objects in ULARCH abstract 

syntax trees and B represents objects in an O-SLANG abstract syntax tree. This chapter 

presents these mappings by showing how each object in ULARCH is used to create the 

corresponding object(s) in O-SLANG. The mappings are covered by first looking at trans- 
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formations from the LARCH portion of ULARCH to O-SLANG, then at transformations from 

the state transition table portion of ULARCH to O-SLANG, and then finally at some addi- 

tional transformations which require information from various parts of the unified model. 

5.2   £ARCH to 0-ÄLANG Transformations 

In ULARCH, the top level objects are theory presentations, which are described as 

LSL traits. Each theory presentation is composed of a theory-id and a body. Each body is 

composed of an includes clause, an introduces clause, and an asserts clause. This section 

outlines the mappings from ULARCH objects to O-SLANG objects in terms of LARCH traits, 

as well as in terms of tuple objects, which represent aggregation in the unified model. 

5.2.1 ObjectTheory Mapping. In the unified model, the ObjectTheory trait rep- 

resents an object instance. The O-SLANG counterpart is a Class Specification; however, 

there is more information contained in an O-SLANG Class than a ULARCH ObjectTheory. 

For example, a Class has state and object communication information while an Object- 

Theory does not. There is a complete mapping from an ObjectTheory to a Class, but an 

ObjectTheory is not sufficient for building a complete Class. The mappings from an Object- 

Theory and its subcomponents to a Class are shown in Figure 5.2, while Figure 5.3 shows 

the O-SLANG Class Specification created from the ObjectTheory for a SophisticatedPump 

object. 

5.2.2 StateTheory Mapping. A ULARCH StateTheory trait defines a state of the 

object which appears in its includes clause. Axioms in the asserts clause describe the valid 

attribute ranges for the state (Lin94). The StateTheory and its subcomponents map di- 
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• theory-id —» class-id 

• theory-id —> class-sort 

• trait-ref and renames —► inherited sorts 

• trait-ref and no renames —► import in imports block 

• trait-parameter —> sort-axiom 

• operator —» attribute in attributes block 

• operator domain —> attribute domain 

• operator domain —♦ sort in sorts block 

• operator range —> attribute range 

• operator range —+ sort in sorts block 

• axioms —* axioms in axiom block 

Figure 5.2    ObjectTheory Mappings 

\begin{spec} '/.ObjectTheory 
SophisticatedPump: trait 

includes Pump(P for P), Integer 

introduces 

volumeSelect: SP -> Int 

amountSelect: SP -> Int 
\end{spec} 

class SophisticatedPump is 

class-sort SophisticatedPump < Pump 

import Pump 

sort SP 

sort-axioms SophisticatedPump = SP 
attributes 

volumeSelect: SP -> Integer 

amountSelect: SP -> Integer 
end-class 

Figure 5.3    ObjectTheory Transformation for Sophisticated Pump 
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rectly to state and axiom subcomponents of the Class Specification which corresponds to 

its included trait. Mappings from the StateTheory components to their O-SLANG counter- 

parts are provided in Figure 5.4. Figure 5.5 shows the mapping from the ULARCH trait 

Overdrawn to a state in the Account Class Specification. 

• theory-id —> operation-id of state operation in states block 

• operator domain —► state operation domain in states block 

• operator range —► state operation range in states block 

• axioms —► state invariant axioms in axioms block 

Figure 5.4    StateTheory Mappings 

\begin{spec} '/.StateTheory class Account is 

Overdrawn: trait 
includes Account 

introduces state-attributes 

OverdrawnState: Acct -> Bool       AccountState: Account -> Account-State 

asserts \forall a:Acct 

balance(a) < 0 

\end{spec}\\ states 

Overdrawn: -> Account-State 

axioms 

AccountState(a) = Overdrawn => (balance(a) < 0) 

end-class 

Figure 5.5    StateTheory Transformation for Overdrawn 

5.2.3 EventTheory Mapping. EventTheory traits define receive events for the 

object which appears in its includes clause. The trait name, contained in the theory-id, 

becomes the name of the event operation, while any parameters which appear in the do- 

main of the EventTheory become part of the domain of the event operation and part of 

the sorts block of the corresponding Class Specification. Since events in O-SLANG operate 

on objects, the domain of the event operation includes the class-sort of the corresponding 
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Class Specification. The range of the event operation is also the class-sort of the Class 

Specification, indicating that events return the object which they operate on. The map- 

pings are outlined in Figure 5.6, while Figure 5.7 demonstrates the transformations on the 

StartPumpMotor event. 

• theory-id —* operation-id of event operation in events block 

• operator domain —* domain of event operation in events block 

• operator domain —*• sort in sorts block 

• axioms —► axioms in axioms block 

Figure 5.6    EventTheory Mappings 

\begin{spec} '/.EventTheory        class Pump is 

StartPumpMotor: trait 

includes Motor 

introduces events 

start-pump-motor : -> Bool       StartPumpMotor: Motor -> Motor 

\end-Cspec}\\ 

end-class 

Figure 5.7    EventTheory Transformation for StartPumpMotor 

5.2-4 FunctionalTheory Mapping. In the unified model, the FunctionalTheory 

depicts data transformations in the OMT Functional Model. An operator models the 

transform process, while axioms in the asserts clause define the behavioral constraints of 

the operator. This maps directly to a method and axioms in O-SLANG. The method 

and axioms become part of the Class Specification which corresponds to the Function- 

alTheory^ included trait. The operator name becomes the name of the method operation, 

while parameters appearing in the domain of the operator become part of the domain 

of the method operation and are declared in the sorts block of the corresponding Class 

Specification. As with event operations, methods operate on objects. Again, this means 
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that the class-sort of the corresponding Class Specification is in the domain of, and is the 

range of, the method operation. Figure 5.8 describes the FunctionalTheory mappings. The 

mappings are demonstrated in Figure 5.9 on the Credit-Acct FunctionalTheory. 

• theory-id —► operation-id of method operation in methods block 

• operator domain —> domain of method operation in methods block 

• operator domain —► sort in sorts block 

• axioms —* axioms in axioms block 

Figure 5.8    FunctionalTheory Mappings 

\begin-Cspec} '/.FunctionalTheory        class Account is 

Credit-Acct: trait 
includes Account 

introduces methods 

credit-acct: Acct, Amnt -> Acct       credit-acct: Acct, Amnt -> Acct 
asserts \forall ac: Acct, am: Amnt 

balance(credit-acct(ac, am)) = 

(balance(ac) + am) axioms 

\end-Cspec}\\ balance (credit-acct (ac, am)) = 

(balance(ac) + am); 

end-class 

Figure 5.9    FunctionalTheory Transformation for Credit-Acct 

5.2.5 LinkTheory Mapping. The LinkTheory object was modeled directly after 

the O-SLANG Link Specification. With a few exceptions, the mapping is essentially one- 

to-one. One exception is the sort names for the objects in the LinkTheory; the sort names 

are replaced with the corresponding O-SLANG class-sort names. Another exception is the 

"new" operator which becomes an event operation versus an attribute. Also, any references 

to the "new" operator in the trait axioms are replaced with the name of the "create" 

method.  This is because events do not affect the values of attributes in O-SLANG, only 
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methods do. The mappings are presented in Figure 5.10, while Figure 5.11 demonstrates 

the effect of the mappings on the Own trait. 

• theory-id concatenated with "-Link" —► link-id 

• theory-id concatenated with "-Link" —* class-sort 

• operator —» attribute in attributes block 

• operator domain —* attribute domain 

• operator domain —► sort in sorts block 

• operator range —► attribute range 

• operator range —► sort in sorts block 

• "new" operator —► method in methods block 

• axioms —► axioms in axiom block 

• "new" operator reference in axiom —> "create" method reference in axiom 

Figure 5.10    LinkTheory Mappings 

\begin{spec} '/.LinkTheory link Own-Link is 

Own: trait class-sort Own-Link 
includes Customer, Account sort Account, Customer 

introduces attributes 

a-customer: Own-Link -> Cust a-customer: Own-Link -> Customer 
an-account: Own-Link -> Acct an-account: Own-Link -> Account 

new-Own-Link: Cust, Acct -> Own-Link events 

asserts \forall c: Cust, a: Acct new-Own-Link: Customer, Account -> Own-Link 

a-customer(new-0wn-Link(c, a)) = c; axioms 

an-account(new-Own-Link(c, a)) = a a-customer(create-Own-Link(a, c)) = c; 

an-account(create-Own-Link(a, c))  = a 
end-link 

\end{spec}\\ 

Figure 5.11    LinkTheory Transformation for Own 

5.2.6 AssociationTheory Mapping. As with the LinkTheory object, the Associ- 

ationTheory object was modeled directly after its O-SLANG counterpart, the Association 

Specification. Again the mappings are essentially one-to-one, as can be seen in Figures 

5.12 and 5.13. 
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• theory-id —► assoc-id 

• theory-id —»• class-sort 

• included set of links —* link-class 

• operator —► method in methods block 

• operator domain —► method domain 

• operator domain —► sort in sorts block 

• operator range —► method range 

• operator range —► sort in sorts block 

• "new" operator —> method in methods block 

• axioms —► axioms in axiom block 

Figure 5.12    AssociationTheory Mappings 

\begin{spec} '/.AssociationTheory 
Owns: trait 

includes 

Set(0wns for C, Own for E), Own 
introduces 

new-Owns: 0, Cust, Acct -> 0 

image: 0, Cust -> Accounts 

image: 0, Acct -> Customers 

does-own: 0, Cust, Acct -> Bool 

asserts \forall o: 0, c: Cust, 

a: Acct, x: Own-Link 

Size(image(o, c)) >= 0; 

Size(image(o, a)) = 1; 

(in(x, o) \and (a-customer(x) = c)) == 

in(an-account(x), image(o, c)); 

(in(x, o) \and (an-account(x) = a)) == 

in(a-customer(x), image(o, a)); 

new-Owns = empty-set; 

does-own(new-0wns, c, a) = false; 

does-own(o, c, a) == 

(in(c, image(o, a)) \and 

in(a, image(o, c))) 

\end{spec}\\ 

association Owns is 

class-sort Owns 

link-class Own-Link 

sort Customer, Account, Bool, 

0, Customers, Accounts 
sort-axioms Owns = 0 

methods 

does-own: 0, Customer, Account 

image: 0, Account -> Customers 

image: 0, Customer -> Accounts 

events 

new-Owns 

axioms 

Size(image(o, c)) >= 0; 

Size(image(o, a)) = 1; 

does-own(new-0wns(o, c, 
does-own(o, c, a) <=> 

(in(c, image(o, a)) & 

in(a, image(o, c))); 

end-association 

■> Bool 

Customer, Account -> Owns 

O) false; 

Figure 5.13    AssociationTheory Transformation for Owns 
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5.2.7 Tuple Mapping. As discussed in Section 4.3.2, tuples are used in the unified 

model to represent aggregation. This concept is captured in an Aggregate Specification in 

O-SLANG. An Aggregate allows multiple classes to be combined to specify system or sub- 

system functionality. This is done through the use of the colimit operation (DBH95). While 

the colimit operation does not exist in ULARCH, it is still possible to build portions of an 

Aggregate from a tuple and the ObjectTheory of which it is a part. The remaining parts 

of the Aggregate deal with object communication and inheritance, and they are created 

from state transition table information and inheritance information. There are also some 

additional nodes and arcs that must be generated in certain cases. For each set component, 

a node must be created for a new copy of the Set Class Specification. An arc must then be 

created which maps the class-sort Set to the class-sort of the set component, and the sort 

E, which is a sort in the Set Class Specification, to the class-sort of the members of the 

set component. A node must also be included for the Integer Class Specification. When 

multiple set components exist, arcs must be added to ensure that each Set Specification 

uses the same copy of Integer. The mappings in Figure 5.14 represent the portions of an 

Aggregate Specification which can be built from a ÜLARCH tuple. An example of these 

mappings appears in Figure 5.15. 

• theory-id of parent theory concatenated with "-aggregate" —* agg-id 

• single object field in tuple —*• object node in Aggregate 

• single object field in tuple —> object-valued attribute in corresponding Class Specification 

• set object field in tuple —► Set node in Aggregate 

• set object field in tuple —► object node in Aggregate 

• set object field in tuple —> class object-valued attribute in corresponding Class Specification 

Figure 5.14    Tuple Mappings 

5-9 



\begin{spec} '/ObjectTheory 

Pump(P): trait 

includes 

Set(DisplaySet for C, Display for E), 

Set(GHASet for C, GunHolsterAssembly for E), 

Set(CMASet for C, ClutchMotorAssembly for E), 

PumpController, Kept-In 

P tuple of gun-holster-assembly : GHASet, 
clutch-ntotor-assembly : CMASet, 
pump-controller : PC, 

display  : DisplaySet, 
kept-in: Kpt-In 

\end{spec}\\ 

aggregate Pump-aggregate is 

nodes 

GunHolsterAssembly-Class, ClutchMotorAssembly-Class, 

PumpController, Display-Class, Kept-In, Integer, 

SET-1: Set, SET-2: Set, SET-3: Set, SET-4: Set 

arcs 

SET-1 -> GunHolsterAssembly-Class: 

{Set -> GunHolsterAssembly-Class, E -> GunHolsterAssembly}, 

SET-2 -> ClutchMotorAssembly-Class: 

{Set -> ClutchMotorAssembly-Class, E -> ClutchMotorAssembly} 

SET-3 -> Display-Class: {Set -> Display-Class, E -> Display}, 

SET-4 -> Kept-In: {Set -> Kept-In, E -> KI-Link}, 

Integer -> SET-1: {}, 

Integer -> SET-2: {}, 

Integer -> SET-3: {}, 

Integer -> SET-4: {} 

end-aggregate 

Figure 5.15    Tuple Transformation for Pump ObjectTheory 
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5.3   State Transition Table to O-SLANG Transformations 

The state transition table defines the state and communication behavior of an object. 

Each row in the table is a StateEntry object in the state transition table domain model 

which represents the behavior of an object in response to a particular receive event, set 

of guard conditions, or a combination of both. In O-SLANG, this information is captured 

in Event Specifications', axioms in Class Specifications, and nodes and arcs in Aggregate 

Specifications. This section describes the mappings from entries in a state transition table 

to various objects in O-SLANG. Since the same information in the state transition table is 

used to make multiple O-SLANG objects, the discussion of the mappings is organized by 

the O-SLANG objects produced in the transformations. 

5.3.1 Single and Multiple Event Specifications. If an entry in a state transition 

table has a send event, then an O-SLANG Event Specification must be created. The Event 

Specification, along with the colimit operations specified by an Aggregate Specification, 

provides a line of communication between objects. For each send event, a separate Event 

Specification is built. Also, an object-valued attribute is added to the sender's Class 

Specification for each receiving object. The mappings from send events to single Event 

Specifications is shown in figure 5.16. 

When a send event is received by multiple objects, then a multiple Event Specification 

must also be built. An event operation must be created in the Event Specification for the 

send event and for each object which will receive the send event. For example, if some 

event Eventl is sent to two different objects, then there will be three event operations in 

the multiple Event Specification, one for the send event and two for the receiving objects. 
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• name of send event —► event-id 

• name of send event —» event class-sort 

• name of send event —► operation-id of event operation 

• parameters of send event —* domain of event operation 

• parameters of send event —► sorts in sort block 

• name of receiver concatenated with "-obj" —► object-valued attribute 

Figure 5.16    Single Event Mappings 

The event operations for the receivers need different sorts from the class-sort of the Event 

Specification. These sorts are eventually unified with the class-sorts of the receivers to 

enable communication. Also, axioms must be created in the Event Specification to connect 

the send event to each of the event operations. The mappings from send events to multiple 

Event Specifications can be seen in Figure 5.17. Figure 5.18 demonstrates an example 

where the event OverHeat is sent to three different objects. 

• name of send event —* event-id 

• name of send event —► event class-sort 

• name of send event —♦ operation-id of event operations 

• parameters of send event —> domain of event operations 

• parameters of send event —> sorts in sort block 

Figure 5.17    Multiple Event Mappings 

5.3.2 Receive Event and Transition Event Axioms. An entry in a state transition 

table indicates that some action must be taken due to the receipt of an event, the satis- 

faction of guard conditions, or both. That action could be a change of state, invocation 

of a method or operation, or the sending of an event(s). In order to define the behavior 

depicted in the state transition table entry, axioms must be created in the Class Specifica- 
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Current 
State 

Receive 
Event Parameters Guard 

Next 
State Action 

Send 
Event 

\ 

MotorRunning temp > 300 MotorDisabled OverHeat 
; ; 

event OverHeat is 

class-sort OverHeat 

events 

OverHeat: OverHeat -> OverHeat 

end-event 

event OverHeat-mult is 

class-sort OverHeat 

sort OBJ-1, OBJ-2, 0BJ-3 

attributes 

OBJ-1-obj: OverHeat -> OBJ-1 

0BJ-2-obj: OverHeat -> OBJ-2 

OBJ-3-obj: OverHeat -> OBJ-3 

events 

OverHeat: OverHeat -> OverHeat 

OverHeat: OBJ-1 -> OBJ-1 

OverHeat: OBJ-2 -> OBJ-2 

OverHeat: OBJ-3 -> OBJ-3 

axioms 

OBJ-1-obj(OverHeat(o)) = OverHeat(OBJ-1-obj(o))j 

OBJ-2-obj(OverHeat(o)) = OverHeat(0BJ-2-obj(o)); 

OBJ-3-obj(OverHeat(o)) = OverHeat(0BJ-3-obj(o)) 

end-event 

Figure 5.18    Send Event Transformation for OverHeat 

tion which corresponds to the object described by the state transition table. For an entry 

with no receive event, the axiom built has the form: 

(object-state(x) = current-state & guard-conditions) =$■ 
(object-state(x) = next-state & 

receive-obj-l(x) = send-event-l(receive-obj-l(x), send-params-1) & 

receive-obj-n(x) = send-event-n(receive-obj-n(x), send-params-n) & 
action-l(action-params-l) &: 

action-n(action-params-n)) 

For an entry with a receive event, the axiom built has the form: 

(object-state(x) = current-state & guard-conditions & receive-event(x, params)) =>■ 
(object-state(x) = next-state & 

receive-obj-l(x) = send-event-l(receive-obj-l(x), send-params-1) & 

receive-obj-n(x) = send-event-n(receive-obj-n(x), send-params-n) & 
attr-equal(receive-event(params), action-l(action-params-l)) & 
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attr-equal(receive-event(params), action-n(action-params-n))) 

In these axioms, object-state is a state attribute which contains the value of the current state 

of the object, while receive-obj is an object-valued attribute which points to the receiver 

of the send-event. The terms current-state, guard-conditions, receive-event, params, next- 

state, send-event, send-params, action and action-params all come from the state transition 

table entry. 

5.4    Additional Transformations 

The information in the unified model is organized differently than in the canonical 

model. Because of this difference, the transformations from ULARCH to O-SLANG are 

not entirely straight forward. In some instances, previous information captured in one 

portion of the unified model must be known in order to transform another portion. A 

good example of this is in building axioms to describe the effects of methods and operations 

on attributes, and events on state attributes. In a Class, the effect of each method and 

operation must be described over each attribute. The same holds true for events and 

state attributes. Additionally, if the Class is a subclass, then its operations, methods, 

and events must be described over its superclass's attributes and states, and visa versa. 

In order to build all of these axioms, all ObjectTheory traits must first be processed so 

that the entire system structure is known and inheritance relationships can be determined. 

In other instances, information to transform part of the unified model is obtained from 

part of the canonical model that has already been built. These types of situations require 

information to be stored in separate data structures, as will be discussed in Chapter VI. 
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This section describes those mappings from ULARCH to O-SLANG which require information 

from different portions of the unified model and the canonical model. 

5.4.1 Object Class Specifications. ObjectTheory traits in ULARCH depict object 

instances. Section 5.2.1 showed how an ObjectTheory maps to a Class Specification. To 

capture the concept of a class of objects, a Class Specification for an object class must 

also be created. The object class is a set of the Class Specification objects created from 

the ObjectTheory. It has the same events as the instance Class Specification; however, the 

events are of the form: 

Event: object-Class —* object-Class 

Each event takes in an object class and returns the object class. Axioms connect the object 

class events to the class events as follows: 

in(x, y) <=> in(event(x), event(y)) 

In this example, x is of an instance type, while y is of the corresponding object class type. 

When an event is sent to an object class, it has the same effect as sending the event to 

each object instance in the object class. The mappings for building an object class Class 

Specification are presented in Figure 5.20. An example of an O-SLANG object instance and 

its corresponding object class are shown in Figure 5.21. 

• theory-id concatenated with "-Class" —► class-id 

• theory-id concatenated with "-Class"—► class-sort 

• theory-id —► contained-class 

Figure 5.19    ObjectTheory Mappings 
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• theory-id —> operation-id of event operation in events block 

Figure 5.20    EventTheory Mappings 

class Pump is class Pump-Class is 

class-sort Pump class-sort Pump-Class 
contained-class Pump 

events 

events new-Pump-Class: -> Pump-Class 

DverHeat: Pump-Class -> Pump-Class 

EnablePump: Pump-Class -> Pump-Class 

OverHeat: Pump -> Pump     DisablePump: Pump-Class -> Pump-Class 
EnablePump: -> Pump      axioms 

DisablePump: -> Pump       create-Pump-Class = empty-set; 

new-Pump-Class = create-Pump-Class; 

in(p, pc) <=> 

end-class in(OverHeat(p), OverHeat(pc)); 

in(p, pc) <=> 

in(EnablePump(Pump-207), EnablePump(pc)); 
in(p, pc) <=> 

in(DisablePump(p), DisablePump(pc)) 
end-class 

Figure 5.21    Object Class Transformation for Pump-Class 

5-4-2 New Events and Create Methods. For each Class Specification, there must 

be a way to create an instance of the Class. This is modeled using "new" events which 

invoke "create" methods. The "new" event can be constructed in two different ways. First, 

the user (domain modeler), can describe it in the state transition table for the domain 

model *. This allows the user to initialize components of an aggregate by passing them as 

parameters to the "new" event. Alternatively, the user can omit the definition of a "new" 

event, and one will be created automatically. The default event will have no domain. For 

each "new" event, a "create" method is automatically created with a signature that is 

identical to the event. Since object class Class Specifications are created automatically, 

their "new" event and "create" method are also generated automatically. The mappings 

to "new" events and "create" methods are shown in Figures 5.22 and 5.23. 

If an object in the unified model has states, the "new" event behavior must be described in a state 
transition table entry. 

5-16 



• "new-" concatenated with class-id —> operation-id "new" event operation 

• parameters of "new" event —► domain of "new" event operation 

• "create-" concatenated with class-id —► operation-id of "create" method operation 

• parameters of "new" event —> domain of "create" method operation 

Figure 5.22    User Defined "new" Event 

• "new-" concatenated with class-id —► operation-id "new" event operation 

• "create-" concatenated with class-id —► operation-id of "create" method operation 

Figure 5.23    Default "new" Event 

5.4-3 attr-equal Operation. For a receive event to invoke a method, its behavior 

must be linked to the behavior of the method. This is done by stating the equivalence of 

the receiving object's attributes before the arrival of the receive event with the attributes 

after the invocation of the method. Unfortunately, this cannot be done directly since by 

definition events can only affect state attributes, not regular attributes. To get around 

this problem, an operation called "attr-equal" is defined with the signature and behavior 

described as follows: 

attr-equal: object-sort, object-sort —> object-sort 

attr-equal(x, y) =>• (attr-l(x) = attr-l(y) & 

attr-n(x) = attr-n(y)) 

This operation must be created for any Class Specification with attributes. Because some 

attributes are added due to object communication, the operation must be built after all 

state transition tables have been processed. 
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5.4-4 Additional Axioms. There are some axioms which can only be built after the 

entire structure of the domain model has been transformed into O-SLANG. These axioms 

fall into two categories: axioms describing the behavior of the "attr-equal" operation, 

and axioms describing an object's functional inheritance. The first case was described in 

Section 5.4.3. For the second case, axioms describing the effect of each of the subclass's 

methods on the superclass's attributes can be included in the asserts clause of the subclass's 

FunctionalTheory trait. Axioms describing the effect of the superclass's methods on the 

subclass's attributes can be included in the asserts clause of the subclass's ObjectTheory 

trait. For any method and any attribute, if there is no effect to be described then the 

axioms can be omitted from the ULARCH and they will automatically be generated. These 

axioms can only be built after the entire structure of the domain model is known. The 

default axioms will have the following form: 

attr-n(method-m(x)) = attr-n(x) 

5.4-5   Aggregate Specification Nodes and Arcs. As discussed in Section 5.2.7, 

Aggregate Specifications are created from tuple objects, but the Aggregate is not complete 

at that point. It also must capture information regarding 1) communication between 

objects, 2) information regarding associations, and 3) information regarding inheritance. 

This information is depicted in nodes and arcs. They define morphisms between different 

sorts and different operations which will be unified in the colimit operation. In each of 

these three cases, nodes and arcs must be added after all state transition table entries 

and ULARCH traits are processed. The mappings for object communication, associations, 
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and inheritance are shown in Figures 5.24 through 5.27. Figure 5.28 shows an aggregate 

specification for the bank object in the bank domain example. 

• name of send event —► node 

• name of sender —> node 

• name of receiver —» node 

• name of sender and send event —* arc 

• name of receiver and send event —► arc 

Figure 5.24    Object Communication Mappings - Single Event 

• name of send event —> nodes 

• name of send event concatenated with "-mult" —> node 

• name of sender —► node 

• name of receivers —► nodes 

• name of sender and send event —» arc 

• name of receivers and send event —> arcs 

• name of send event concatenated with "-mult" and name of send event—» arcs 

• sorts in multiple event Event Specification —> sort-axioms 

Figure 5.25    Object Communication Mappings - Multiple Event 

• association name —* node 

• sorts in association —+ nodes 

• association name —+ arc 

• sorts in association —* arcs 

Figure 5.26    Association Mappings 
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• superclasses —*■ nodes 

• subclasses —* nodes 

• superclasses, subclasses —► arcs 

Figure 5.27    Inheritance Mappings 

5.5   Summary 

This chapter outlined the second phase of extending Lin's formal object transfor- 

mation process. Mappings were defined from the unified model objects to the O-SLANG 

objects in the canonical model representation, thus demonstrating that the canonical model 

can capture all of the OMT concepts embodied in the unified model. Because the infor- 

mation in the unified model is organized differently than in the canonical model, some 

transformations require input from different portions of the unified model in order to cre- 

ate canonical model objects. This had a definite impact on the design and implementation 

of the transformations, as will be seen in Chapter VI. 
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aggregate Bank-aggregate is 

nodes 

Person-Class, Customer-Class, Employee-Class, 

Cust-Employee-Class, Teller-Class, Executive-Class, 

Console-Class, Account-Class, Checking-Class, Savings-Class, 

Combined-Class, Archive-Class, Owns, Integer, SET-1: Set, 

SET-2: Set, SET-3: Set, SET-4: Set, SET-5: Set, SET-6: Set, 

SET-7: Set, SET-8: Set, SET-9: Set, SET-10: Set, 

SET-11: Set, SET-12: Set, SET-13: Set, Credit, Debit, Close, 

WriteCheck, SetRate, Computelnterest, ArchCredit, ArchDebit, ArchClose 

arcs 

SET-1 -> Person-Class: {Set -> Person-Class, E -> Person}, 

SET-2 -> Customer-Class: {Set -> Customer-Class, E -> Customer}, 

SET-3 -> Employee-Class: {Set -> Employee-Class, E -> Employee}, 

SET-4 -> Cust-Employee-Class: {Set -> Cust-Employee-Class, E -> Cust-Employee}, 

SET-5 -> Teller-Class: {Set -> Teller-Class, E -> Teller}, 

SET-6 -> Executive-Class: {Set -> Executive-Class, E -> Executive}, 

SET-7 -> Console-Class: {Set -> Console-Class, E -> Console}, 

SET-8 -> Account-Class: {Set -> Account-Class, E -> Account}, 

SET-9 -> Checking-Class: {Set -> Checking-Class, E -> Checking}, 

SET-10 -> Savings-Class: {Set -> Savings-Class, E -> Savings}, 
SET-11 -> Combined-Class: {Set -> Combined-Class, E -> Combined}, 
SET-12 -> Archive-Class: {Set -> Archive-Class, E -> Archive}, 

Integer -> SET-1: {}, Integer -> SET-2: {}, 

Integer -> SET-3: {}, Integer -> SET-4: {}, 

Integer -> SET-5: {}, Integer -> SET-6: {}, 

Integer -> SET-7: {}, Integer -> SET-8: {}, 

Integer -> SET-9: {}, Integer -> SET-10: {}, 

Integer -> SET-11: {}, Integer -> SET-12: {}, 

Integer -> SET-13: {}, 

SET-13 -> Owns: {Set -> Owns, E -> Own-Link}, 

SET-2 -> Owns: {Set -> Customers, E -> Customer}, 

SET-8 -> Owns: {Set -> Accounts, E -> Account}, 

Credit -> Console-Class: {}, 

Credit -> Account-Class: {Credit -> Account-Class}, 

Debit -> Console-Class: {}, 

Debit -> Account-Class: {Debit -> Account-Class}, 

Close -> Console-Class: {}, 

Close -> Account-Class: {Close -> Account-Class}, 

WriteCheck -> Console-Class: {}, 

WriteCheck -> Checking-Class: {WriteCheck -> Checking-Class}, 

SetRate -> Console-Class: {}, 

SetRate -> Savings-Class: {SetRate -> Savings-Class}, 

Computelnterest -> Console-Class: {}, 

Computelnterest -> Savings-Class: {Computelnterest -> Savings-Class}, 
ArchCredit -> Account-Class: {}, 

ArchCredit -> Archive-Class: {ArchCredit -> Archive-Class}, 
ArchDebit -> Account-Class: {}, 

ArchDebit -> Archive-Class: {ArchDebit -> Archive-Class}, 

ArchClose -> Account-Class: {}, 

ArchClose -> Archive-Class: {ArchClose -> Archive-Class}, 

Acct -> Acct-Class: {}, Acct -> Checking: {}, Acct -> Savings: {}, 

Checking -> Checking-Class: {}, Checking -> Combined: {}, 

Savings -> Savings-Class: {}, Savings -> Combined: {}, 

Combined -> Combined-Class: {}, 

Person -> Person-Class: {}, Person -> Customer: {}, Person -> Employee: {}, 

Employee -> Employee-Class: {}, Employee -> Exec: {}, 

Employee -> Teller: {}, Employee -> Cust-Employee: {}, 

Exec -> Exec-Class: {}, 

Customer -> Customer-Class: {}, Customer -> Cust-Employee: {}, 

Cust-Employee -> Cust-Employee-Class: {}, 

Teller -> Teller-Class: {} 

end-aggregate 

Figure 5.28    Aggregate Transformation for Bank 
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VI.   Design and Implementation of [/LARCH to O-SLANG Transformations 

6.1    Introduction 

Chapter V defined a set of mappings from objects in the modified version of ULARCH 

to objects in O-SLANG. These mappings provided a description of how to build specific 

O-SLANG objects in a way which preserves the object-oriented semantics of the original 

OMT domain model. The next step in extending the formal object transformation process 

was to implement each of these rules in REFINE so that O-SLANG domain theories can 

be automatically generated from ULARCH representations of domain models. Before this 

implementation could begin, however, two tasks had to be accomplished. First, the map- 

pings from Chapter V had to be correlated with specific language constructs in REFINE 

which match the precondition —> postcondition semantics of transformations. Second, a 

mechanism for implementing the control structure of the transformation process had to 

be identified. Once the transformations were implemented, it was necessary to answer 

the question, "Do the transformations produce unique normal forms?" This concept of 

unique normalization 1 is key in rewrite systems. It guarantees that every term output by 

a rewrite system has exactly one normal form. 

This chapter first outlines a detailed design and implementation of the ULARCH to 

O-SLANG mappings presented in Chapter IV, and then presents an analysis of the imple- 

mented transformations. The analysis includes a discussion of the results of applying the 

validation process defined in Section 3.4.1 along with a presentation of how rewrite system 

properties can be shown to hold for the transformations. By first showing that the individ- 

1See Section 2.3.4.3 for a definition of unique normalization 
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ual transformations are semantically correct and then applying the rewrite properties of 

termination and confluence, the transformations as a whole are shown to be semantically 

correct. 

6.2    Overview of Implementation 

Recall from Chapter V that because of the organization of the information in the 

unified model, the ULARCH to O-SLANG mappings were grouped into three categories: 

1. ULARCH traits to O-SLANG transformations 

2. State transition table to O-SLANG transformations 

3. Additional transformations 

This grouping heavily influenced the design of the transformations: each category became 

a step in the overall transformation process. This section describes the REFINE language 

constructs and control structure used to implement the mappings provided in Chapter V, 

along with detailed presentations of the implementation of each mapping. 

6.2.1 EEFINE Language Constructs. REFINE provides two different constructs 

for implementing the semantics of transformations: transforms and rules. Transforms have 

the form P —> Q, where P and Q are predicates and —> is a special "transform arrow." 

In short, some initial state described by P is transformed into a final state described by Q. 

Consider the example where some variable v is assigned the value 100 whenever v < 100. 

Using a transform, this can be implemented as v < 100 —> v = 100. Rules provide a 

way of encapsulating transforms in the same way as a function body. Essentially, rules are 

named transforms which can be parameterized (Ref90). Consider the following example 

rule: 
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rule RuleA(a-parameter: parameter-type) 
P(a-parameter)  —> Q(a-parameter) 

In this example, P is some property which a - parameter might possess, and Q is a 

function which performs processing based on a — parameter. When RuleA is applied, if 

P is true, then the function Q is called. This is precisely the type of construct needed for 

implementing the ULARCH to O-SLANG mappings. 

In the implementation of the mappings from Chapter V, each of the ULARCH map- 

pings in Sections 5.2.1 through 5.2.7 became a rule, as well as the state transition table 

entry mapping. For example, the mapping for ObjectTheory traits defined in Section 5.2.1 

was implemented by the following rule: 

rule Trans-ULarch-ObjectTheory(Input-Object:user-object) 
ObjectTheory(Input-Object) & "StateTheory(Input-Object) & 
"LinkTheory(Input-Object) & "Association(Input-Object) & 
"EventTheory(Input-Object) & "FunctionalTheory(Input-Object) & 
"done-Transform(Input-Object)  —> Make-Class-(Input-Object) 

In Trans-Ularch-ObjectTheory, if Input-Object is an ObjectTheory trait, then the function 

Make-Class- is called to build an O-SLANG Class- object. Each of the rules created has a 

similar format. 

6.2.2    Control Structure. The remaining issue that needed to be resolved for 

the implementation of the transforms was how to traverse the tree of ULARCH objects 

being transformed. REFINE provides a couple of ways to do this. In the first way, REFINE 

traversal functions can be used to apply rules to objects in an abstract syntax tree in either 

a bottom-up 2 or top-down 3 fashion. As each object in the tree is visited, the rules passed 

2POSTORDER-TRANSFORM function 
3PREORDER-TRANSFORM function 
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to the traversal function are applied to the object one at a time. The main difference in 

these functions is the order in which the objects are visited (Ref90). The second way to 

traverse abstract syntax trees is through the use of the enumerate ... over ... construct 

and the DESCENDANTS-OF-CLASS function. Consider the following transformation 

function: 

function Update-Aggregates() = 
(enumerate Temp-Class over DESCENDANTS-OF-CLASS(Domain-Theory,   'Class-)  do 

Update-AggCommunication(Temp-Class); 
Update-AggAssociation(Temp-Class)) 

In Update-Aggregates, the enumerate construct builds a set containing all objects in the 

tree rooted at Domain-Theory which are of type Class-. The variable Temp-Class then 

takes on the value of each member of the created set, one at a time, and is passed to 

the functions Update-AggCommunication and AggAssociation which, update any associated 

Aggregate- objects to account for object communication and associations as described in 

Section 5.4.5. 

Each of the above control structures was used in the implementation of the ULARCH 

to O-SLANG mappings. The PREORDER-TRANSFORM function was used to transform 

ULARCH objects and state transition table objects. This control structure is depicted in 

the following two rules: 

rule Trans-ULarch(Input-Object:user-object) 
DomainTheory(Input-Object)  —> 

Input-Object = preorder-transform(Input-Object, 
['Trans-ULarch-Obj ectTheory, 
'Trans-ULarch-StateTheory, 
'Trans-ULarch-EventTheory, 
'Trans-ULarch-FunctionalTheory, 
'Trans-ULarch-LinkThe ory, 
'Trans-ULarch-AssociationTheory, 
'Trans-Ularch-TupleObj]) 
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rule Trans-STT(Input-Object:user-object) 
StateTable(Input-Object)  —> 

Input-Object = preorder-transform(Input-Object, 
['Trans-STT-StateEntry]) 

The enumerates construct was used to perform the additional processing transformations 

described in Section 5.4. 

6.2.3 {/LARCH to O-SLANG. AS stated in Section 6.2.1, each of the high-level 

mappings in Sections 5.2.1 through 5.2.7 became a rule. The remaining mappings pro- 

vided guidance on how to build O-SLANG objects. Each rule calls a function whose 

purpose is to build the equivalent high-level object in O-SLANG. For example, Trans- 

ULarch-State Theory calls the function Make-State, which builds a state operation in the 

appropriate O-SLANG Class-. Those objects which become specifications in O-SLANG, i.e. 

ObjectTheory, LinkTheory, AssociationTheory, and tuples, follow the same basic sequence 

of events. First, the specification name and class-sort are created, followed by a call to a 

function which builds the specification body. This function then builds the body subcom- 

ponents based on the mappings in Chapter V. The remaining rules are described below in 

Figures 6.1 through 6.6. 

rule Trans-ULarch-StateTheory(Input-Object:user-object) 
StateTheory(Input-Object)   & "ObjectTheory(Input-Object)  & 
~LinkTheory(Input-Object)   & "Association(Input-Object)  & 
"EventTheory(Input-Object)  &  "FunctionalTheory(Input-Object)  & 
"done-Transform(Input-Object)   —> Make-State(Input-Object) 

Figure 6.1    State Theory Transformation 
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rule Trans-ULarch-EventTheory(Input-Object:user-object) 
EventTheory(Input-Object)   & "ObjectTheory(Input-Object)  & 
"LinkTheory(Input-Object)   & "Association(Input-Object)  & 
"StateTheory(Input-Object)  & "FunctionalTheory(Input-Object)  & 
'done-Transform(Input-Object)   —> Make-RecvEvent(Input-Object) 

Figure 6.2    EventTheory Transformation 

rule Trans-ULarch-FunctionalTheory(Input-Object:user-object) 
FunctionalTheory(Input-Object)  & "ObjectTheory(Input-Object)  & 
"LinkTheory(Input-Object)   & "Association(Input-Object)  k 
"StateTheory(Input-Object)  &  "EventTheory(Input-Object)  & 
"done-Transform(Input-Object)   —> Make-Funct(Input-Object) 

Figure 6.3    FunctionalTheory Transformation 

rule Trans-ULarch-LinkTheory(Input-Object:user-object) 
LinkTheory(Input-Object)  & "ObjectTheory(Input-Object)  & 
"Association(Input-Object)   & "StateTheory(Input-Object)  & 
"EventTheory(Input-Object)   &  "FunctionalTheory(Input-Object)  & 
"done-Transform(Input-Object)   —> Make-Link(Input-Object) 

Figure 6.4    LinkTheory Transformation 

rule Trans-ULarch-AssociationTheorydnput-Object:user-object) 
AssociationTheory(Input-Object)  & "ObjectTheory(Input-Object)  & 
"Link(Input-Object)  &  "StateTheory(Input-Object)  & 
"EventTheory(Input-Object)  & "FunctionalTheory(Input-Object)  & 
"done-Transform(Input-Object)   —> Make-Association(Input-Object) 

Figure 6.5    AssociationTheory Transformation 

rule Trans-ULarch-TupleObj(Input-Object:user-object) 
Tuple-Obj(Input-Object)   & 
"done-Transform(Input-Object)   —> Make-Aggregate-(Input-Object) 

Figure 6.6    Tuple Transformation 
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6.2.3.1 Axioms Transformation. O-SLANG axioms were created in one of 

two possible ways. First, some axioms were automatically built. An example of this is 

the axioms for describing state transitions. Strings were built according to the formats 

presented in Section 5.3, and then those strings were parsed using the O-SLANG parser 

and the PARSE-FROM-STRING function. Another example of automatically generated 

axioms are those which describe the attr-equal operation. 

The second way axioms are created is from axioms in the ULARCH traits, such as 

those describing state invariants, guard conditions, or the behavior of LSL operators. To 

build these axioms, advantage was taken of the similarity of the syntax between LSL ax- 

ioms and O-SLANG axioms. By restricting the user to writing axioms in the O-SLANG 

syntax, the ULARCH axioms could be pretty printed to a string, and then that string could 

be parsed by the O-SLANG parser with PARSE-FROM-STRING. To build axioms in this 

manner, the following two functions were used: 

function Make-OslangAxiom(Temp-AxString:   string):  Axiom-Def = 
let(Temp-AxDef:   Axiom-Def = nil, 

Temp-AxiomsBlock:   AxiomsBlock = nil) 
Temp-AxiomsBlock <- parse-from-string(Temp-AxString,   'oslang); 

(enumerate Temp-Axiom over axiom-or-def(Temp-AxiomsBlock)  do 
Temp-AxDef <- Temp-Axiom); 

Temp-AxDef 

function Make-String-From-Object(Input-Object:   user-object):   string = 
let(Temp-String:   string =  "") 
Temp-String <- format(false,   ""WppW",  Input-Object); 
Temp-String 

Make-OslangAxiom returns an Axiom-Def object that is created by parsing the string 

Temp-AxString using the O-SLANG grammar. Make-String-From-Object creates a string 

from the output of the printing of an AST rooted at Input-Object, and returns it. 
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6.2.4 State Transition Table to 0-SLANG. AS described in Section 5.3, each entry 

in a state transition table is represented by a StateEntry object. It is used to create O- 

SLANG Event specifications and to build axioms describing state transition behavior. The 

state transition table rule is: 

rule Trans-STT-StateEntry(Input-Object:user-object) 
StateEntry(Input-Object)  & "StateTable(Input-Object)& 
"Ident-(Input-Object)  & "SendEvent(Input-Object)  & 
done-Transform(Input-Object)   —> Make-StateEntry(Input-Object) 

If the StateEntry object dictates that an event must be sent, then the function Make- 

SendEvent is called to create an 0-SLANG Event. If there are multiple objects which will 

receive the send event, then Make-MultSendEvent is called to create another 0-SLANG 

Event, this time for the multiple event. The behavior defined by the StateEntry object is 

captured by calling either Make-RecvEventAxiom or Make-Trans Axiom to build an axiom, 

depending on whether there is a receive event or not. 

6.2.5 Extra Data Structures. To facilitate the building of O-SLANG objects, some 

data structures were needed above and beyond the ULARCH, state transition table, and 

O-SLANG ASTS. These data structures were tables, represented as sets or sequences, and 

maps. The extra data structures were as follows: 

1. AggTable : Sequence containing tuples consisting of a class name and an Aggregate- 
specification where the object named by the .class name is a component of the 
Aggregate- 

2. ClassSorts : Set containing all of the declared class-sorts 

3. ClassSortMap : Map from a class-sort to a sequence of equivalent sorts 

4. MultSendEventMap : Map from a multiple send event name to a sequence of state 
table entrys 

5. AddedAttributes : Set containing the names of all classes which attributes have been 
added to. 
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6. DescribedAttrs : A sequence of tuples which contain a Class- Spec, a method, and a 
sequence of attributes where the effects of the method on the attributes have already 

been described in an axiom. 

7. DescribedlnheritedAttrs: A sequence of tuples which contain a Class- Spec, a method, 
and a sequence of inherited attributes where the effects of the method on the at- 
tributes have already been described in an axiom. 

8. InitialStateMap : Map from a class name to the name of the initial state 

9. NewEventMap : Map from a class name to the state table entry which describes the 

receiving of a "new" event 

10. EventMap : Map from an event name to a set of receiver names 

11. InheritsMap : Map from a subclass name to a set of superclass names 

12. ObjValAttrTable : Set containing tuples consisting of an object name and a class 
name where the object has been added to the Class- specification named by the class 

name as an object-valued attribute 

6.2.6   Post Processing. Section 5.4 described how some transformations were 

required to be performed after all of the ULARCH traits and state transition tables were 

parsed and transformed. These additional transforms are performed by several functions. 

The top-level function is called PostProcess. It makes five different calls to functions to 

complete the ULARCH to O-SLANG transformations. Update-Aggregates is called to add 

nodes and arcs to Aggregate- specifications due to object communication, associations, or 

inheritance. Add-ObjValAttributes is invoked to add new object-valued attributes to Class- 

specifications as dictated by the data structure ObjValAttrTable. Next, Add-NewEvents- 

and-CreateMethods is called to build default "new" events and "create" methods for any 

Class- specifications in which they are not already declared. The remaining axioms needed 

to describe the behavior of the domain theory are built by the function FinishAxioms. 

Finally, the function Replacelnt is called to replace any occurrences of the sort Int with 

Integer, since the latter is the class-sort of the Integer class specification which is built into 

O-SLANG. 
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6.3   Analysis of Implementation 

Once the transformations were implemented, two tasks remained. First, the vali- 

dation process described in Section 3.4.1 had to be applied to show that the individual 

transformations from ULARCH to O-SLANG were each semantically correct. Second, the 

issue of unique normalization, or completeness, needed to be addressed in order to show 

that the transformations as a whole produce semantically correct O-SLANG representations 

of object-oriented domain models. This section provides a summary of the results of the 

validation process followed by a discussion of how the term rewriting techniques introduced 

in Section 2.3 apply to the transformations. 

6.3.1 Results of the Validation Process. In Section 3.4 two criteria were identified 

for validation: coverage and consistency. In order to determine if these criteria were met 

or not, checks needed to be applied at three different points in the transformation process. 

The first point was prior to input to the ULARCH parser. For both example domains, the 

traits and state transition tables were visually examined to make sure that the manual 

transformations from OMT were done correctly. Particular attention was paid to the 

portions relating to the modifications described in Section 4.3. This check validated that 

the input to the modified ULARCH parser was correct. 

The next check point in the validation process was to check the output from the 

ULARCH parser. After changing the ULARCH grammar, it was compiled using Dialect. The 

compilation reported one reduce/reduce error which, upon inspection of the parse table, 

was determined to be the same reduce/reduce error reported by Lin (Lin94). A visual 

inspection of the ASTs produced by the modified parser, done using the graphical tool In- 
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spector, revealed that the changed ULARCH and state transition table parsers performed as 

desired. The parser was not adversely affected by any of the changes or the reduce/reduce 

error. Since the modified ULARCH parser is unambiguous, parsing a ULARCH file produces 

an abstract syntax tree that is unique to that file. This set the stage for the final checkpoint 

of the design, validating the output from the transformations. 

To finish validating the OMT to O-SLANG transformation process, the O-SLANG 

domain theories produced for the bank and pump examples had to be examined. Each 

of the mappings defined in Chapter V was checked to ensure that the proper O-SLANG 

objects were created from ULARCH objects. Also, each object in the OMT domain model, 

along with its associated attributes, relationships, and operations, was checked to see that 

it was represented in the O-SLANG domain theory. The behavioral aspects of the OMT 

model, i.e. state and function, were also checked. All aspects of the original OMT domain 

model were covered, and no inconsistencies were found. 

6.3.2   Rewrite System Properties.       The final step in the analysis of the ULARCH 

to O-SLANG transformations was to determine if the transformations as a whole were 

semantically correct.   To do this, term rewriting system properties were explored.   In 

particular, if a term rewriting system is uniquely normalizing, then it is guaranteed to 

produce a unique output for each input. This is analogous to showing that a compiler is 

unambiguous. Recall from Section 2.3 the formal definition for a rewrite system: 

... a pair (%2,R), where ^ ls an alphabet or signature and R is a set of rewrite rules. 
The syntax and vocabulary for a term rewriting system is (Klo92): 

1. X) consists of a countably infinite set of variables x1,x2,x3,... and a non-empty set X)o °* 
function symbols or operator symbols, each with an "arity", i.e. the number of arguments 
the function or operator is supposed to have. 
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2. The set of terms over E> T(E) is defined inductively: 
(l)x,y,z,...eT(E). 
(2) If / e Eo and tu...,tn e T(D) (" > 0), then /(*i,...,*„) € T(£). 

3. Terms not containing a variable are ground terms. 

4. A rewrite rule € i? is a pair (l,r) of terms € T(E); written as I —> r. Rewrite rules can be 
named, (e.g. rewrite rule n is written as rn : !->r, and the application of rn to some term 
a which produces some term ß is written a —>r„ ß)- 

In the context of this research, the transformations from ULARCH and state transition table 

ASTs to O-SLANG ASTS can be viewed as a rewrite system where: 

1. X) is a set containing the objects in the ÜLARCH, state transition table, and O-SLANG 

grammars. 

2. R is a set containing the REFINE rules defined in Section 6.2.3. 

3. Eo 1S a set containing all of the functions in the REFINE implementation of the transforma- 
tions.   . 

4. A term t € T is a ULARCH, state transition table, or O-SLANG object. 

In order to determine if the ULARCH to O-SLANG transformations produce unique normal 

forms, it must be shown that the transformations have two properties, termination and 

confluence, as described in Section 2.3.4.3. 

Termination involves showing that no infinite derivations of terms exist in the rewrite 

system. For the unified model to canonical model transformations, this required showing 

that termination was guaranteed for each of the three categories of mappings outlined 

in Chapter V. For ULARCH and state transition table transformations this amounted to 

demonstrating two things: objects are transformed only once, and no infinite loops of rule 

applications can occur. For the additional transformations which are performed as post 

processing, it must be shown that the functions are guaranteed to terminate. 

The rules described in 6.2.3 do not produce ULARCH or state transition table objects. 

Since the preconditions for each of those rules only check for ULARCH or state transition 
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table objects and there is a finite number of objects in the ULARCH and state transition 

table ASTs, each object in the source AST will only be transformed once. When a REFINE 

rule is successfully applied to an object, the traversal restarts with the object to which 

the rule was successfully applied. As described in Section 4.2.3, this could result in an 

infinite loop of rule applications. By setting the boolean attribute of the ULARCH or 

state transition table object to false and checking the value of the attribute in the rule 

preconditions, the possibility of an infinite loop is eliminated. These two conditions ensure 

that no infinite derivations exist for O-SLANG objects. 

As described in Section 6.2.2, the enumerate construct and the DESCENDANTS- 

OF-CLASS function in REFINE were used to traverse the ULARCH, state transition table, 

and O-SLANG ASTS to perform the additional processing transformations presented in 

Section 5.4. The enumerates construct builds sets of objects from an AST subtree. Since 

the ASTs are finite, the sets must be finite, and so the post processing functions must 

terminate. 

Confluence says that for any two sequences of rewrites on a term, no matter how they 

diverge initially, their paths are guaranteed to rejoin at some common descendent term. 

This implies the impossibility of the existence of more than one normal form (DJ90). 

For the transformations from ULARCH to O-SLANG there is no possibility of divergence 

since each transformation rule uniquely maps ULARCH objects to O-SLANG objects. Since 

there is only one rewrite sequence for each ULARCH term, then there is only one possible 

O-SLANG form. Thus, the transformations can be said to be confluent. 
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6.4    Summary 

Implementing the mappings presented in Chapter V proved to be a fairly straight 

forward task. Each mapping in Sections 5.2.1 through 5.2.7, as well as the mapping for 

state transition table entries, became a REFINE rule. The remaining mappings were used to 

guide the construction of O-SLANG objects. The overall control structure of the transfor- 

mations was provided by the REFINE function PREORDER-TRAVERSAL which applies 

rules to subtrees of an object in a top-down fashion, moving from the root towards the 

leaves (Ref90). Because of the way the rules were defined and applied and the way ob- 

jects were built, it was possible to show that the transformations were both terminating 

and confluent. This was important because it guarantees that the objects produced have 

exactly one normal form, and since the individual transformations were shown to be se- 

mantically correct, the overall transformation process will therefore produce semantically 

correct specifications. 
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VII.   Conclusion and Recommendations 

This chapter summarizes the accomplishments of this thesis effort, along with con- 

clusions which can be drawn from the work. Finally, recommendations for the direction of 

future research are outlined. 

7.1    Summary of Accomplishments 

Recall from Chapter I that the overall objective of this research effort was to design a 

formalized object transformation process which produces canonical form algebraic models 

from object-oriented designs for use in design refinement. Specifically, the stated objective 

was: 

Define a formal object transformation process by creating a canonical algebraic 
model to represent general object-oriented models and by using term rewriting 
techniques to develop transformations from iARCH specifications to the 
canonical model. 

To accomplish the objective, a literature review of theory-based object models and term 

rewriting systems was done, resulting in the knowledge base needed to identify the canoni- 

cal model and to extend the formal object transformation process. This extension amounted 

to modifying Lin's ULARCH to Refine compiler so that it produces O-SLANG, the selected 

canonical model. The modification process was broken up into three phases: 

1. Identifying a canonical algebraic framework 

2. Defining a modified version of Lin's unified model 

3. Implementing a set of transformations from the unified model to the canonical model 

The transformations in phase three were implemented within the predefined constraints of 

coverage and consistency. Furthermore, they were shown to produce unique normal forms. 
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A solid foundation for transforming object-oriented domain models into a canonical model 

for use with design refinement was demonstrated. This supports the feasibility of a next 

generation application composition system. 

7.2    Conclusions 

This following conclusions can be drawn from this research: 

1. The object-oriented algebraic specification language O-SLANG is a generalization of 

Rumbaugh's OMT. As can be seen in Figure 4.3, the structure of the unified model is 

heavily influenced by OMT. Each of the models in OMT has a corresponding theory 

object in the unified model. O-SLANG, on the other hand, is not dependent on any 

particular object-oriented methodology. As can be seen in Appendix A, O-SLANG 

seems to capture the essence of object-oriented designs. 

2. O-SLANG can represent object-oriented constructs. This effort showed that object- 

oriented concepts as represented by Rumbaugh's OMT are completely captured in 

O-SLANG, but it did not demonstrate that the language captures object-oriented 

concepts in general. This issue is addressed in Section 7.3. 

3. The evolutionary approach taken to extend the formal object transformation process 

facilitated the implementation of the transformations. Since this effort was broken up 

into three phases, each phase could build upon the validated product of the previous 

phase. This ensured that the updated version of the unified model could represent 

all of the information needed in the canonical model, and that the canonical model 

could represent all of the object-oriented concepts present in OMT. 
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4. The Software Refinery™ environment is ideal for developing transformation systems. 

The DIALECT tool, along with OBJECT ISPECTOR, provides the means to create a 

formal language parser and to view the abstract syntax trees produced. Using Refine 

language constructs such as predefined abstract syntax tree traversal functions, the 

enumerates clause, and rules, allows the parser output to be transformed into the 

abstract syntax tree representation of an alternate language. 

5. The ÜLARCH to O-SLANG compiler completed in this effort successfully parses ULARCH 

traits and state transition tables and produces an O-SLANG domain theory which rep- 

resents the initial OMT domain model. Appendix G contains the user's manual for 

the compiler. 

6. Performing design refinement on algebraic specifications produced from object-oriented 

models is feasible. This effort showed that O-SLANG can be produced from OMT 

domain models. SpecWare, which is Kestrel's design refinement tool, uses the speci- 

fication langauage SLANG. The O-SLANG domain theories produced by the ULARCH 

to O-SLANG compiler can be captured in SLANG, since O-SLANG was designed as an 

extension to SLANG. AS will be discussed in Section 7.3, the only thing needed is to 

implement the transformations from O-SLANG to SLANG. 

7. Term rewriting techniques can be applied to transformation systems. In this effort, 

the Refine function PREORDER-TRAVERSAL was used to traverse the tree, and 

the mappings from ULARCH to O-SLANG were applied as Refine rules to each object 

in the tree. Defining the mappings as rules and functions, along with using the tree 

representation, allowed for the transformations to be viewed as a rewrite system and 
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made it possible for the properties of termination and confluence to be applied to 

the transformations. Showing that these two properties hold guarantees that the 

transformations produce unique forms. 

7.3   Recommendations for Future Research 

This section outlines some issues that should be addressed in future research efforts. 

Those issues are: 

1. Extend the UZed Portion of the Formal Object Transformation Process - This re- 

search focused on extending the Larch portion of Lin and Wabiszewski's formal ob- 

ject transformation process. Because of time constraints, the transformations from 

OMT to UZed to O-SLANG were not addressed. Implementation of this portion of 

the transformation process should be completed to show that O-SLANG does unify 

the LARCH-based and abased approaches to writing formal specifications. 

2. Define Transformations from O-ShANG to SLANG - One of the main goals of a next 

generation composition system is to produce executable code from object-oriented 

domain models; this can be done through design refinement. To make code produc- 

tion a reality, the transformations from O-SLANG to SLANG should be defined and 

implemented. This would allow OMT models to be transformed into a form that is 

used by Spec Ware. 

3. Combine J/LARCH and State Transition Table Parsers - Currently, the ULARCH do- 

main model and grammar is separate from those of the state transition table. To 

simplify the transformation process, the domain models and grammars should be 
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merged to produce a single grammar and domain model, and thus a single parser. 

Complete domain models could then be captured in single ULARCH files. Using one 

parser would mean that transformations would be applied to a single AST versus 

multiple ASTs. 

4. Eliminate the Unified Model - In future versions of the formal object transformation 

process, it may be possible to eliminate the unified model. Using the surface syntax 

of Larch, Z, and the state transition tables, semantic processing routines can be 

triggered to build equivalent O-SLANG domain theories. In essence, Larch traits, 

Z Schemas, and the associated state transition tables could be parsed directly into 

O-SLANG ASTS. This is shown in Figure 7.1, where the unified AST and the UZed 

and ULARCH transformations to O-SLANG have been removed. 

5. Incorporate Alternate Object-oriented Methodologies - The current formal object 

transformation process is based solely on Rumbaugh's OMT. If O-SLANG is indeed 

a canonical formal model for capturing object-oriented designs, then it should be 

possible to develop transformations which produce O-SLANG domain theories from 

other object-oriented methodologies. 

6. Develop Theorem Prover Interface - Lin and Wabiszewski pointed out that during 

specification refinement it is necessary to be able to demonstrate consistency and 

completeness (Lin94, Wab94). The use of an automated theorem prover facilitates 

this task. Rather than develop theorem prover interfaces for multiple specification 

languages, a single interface should be developed for use with O-SLANG. 
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Figure 7.1    Projected Transformation Process 

Implementation of the recommendations would result in a "flatter" system which 

does not contain the unified AST to canonical AST transformation step. The system 

would also be able to handle the transformation of domain models captured using other 

object-oriented methodologies and other formal specification languages. Finally, the system 

would be fully bidirectional; object-oriented domain models could be built from O-SLANG 

domain theories. This projected transformation process is reflected in Figure 7.1. 
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7.4    Final Comments 

Perhaps the most critical point in the software development process is the transition 

from a user-provided system description to a software system specification. Object-oriented 

techniques facilitate the transition by providing a more naturally understandable represen- 

tation of the system through the use of diagrams. Formal methods and formal specification 

languages enhance the transition by providing a means to reason about the object-oriented 

model in terms of completeness and consistency, thus ensuring that the system specification 

is correct before the development process continues. The extended formal object trans- 

formation process developed during this effort provides the basis for being able to check 

the correctness of specifications. Furthermore, this research demonstrates the feasibility 

of transforming object-oriented domain models into a form suitable for design refinement. 

This is a significant step towards the capability to produce executable code from object- 

oriented models. 
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Appendix A.   O-SLANG Domain Model 

This appendix contains the object model diagram for the language O-SLANG. The 

creation of O-SLANG abstract syntax trees is based on the syntax of the language as well 

as this domain model. 
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Appendix B.   Tree Manipulations for Rewrite Example 

This appendix contains the steps described in the rewrite example presented in Sec- 

tion 2.3.5. Each tree represents a step in the rewriting process. In Figure B.l there are five 

possible terms that can be rewritten. Figure B.2 shows the tree that results from applying 

choice 2. Figure B.6 shows the final tree that results from applying all rewrites. 

e.g. (X IN UNION(U, V)) <=> «X IN U) I (X IN V)) 

Figure B.l    Tree Rewrite Example (Step 1) 
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e.g. (X IN UNION(U, V» <-> ((X IN U) I (X IN V)) 

Figure B.2    Tree Rewrite Example (Step 2) 
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e.g. (X IN UNIONCU, V)) <-> ((X IN U) I (X IN V)) 

0    ®        © 

Figure B.3    Tree Rewrite Example (Step 3) 
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e.g. (X IN UNION(U, V)) <-> «X IN U) I (X IN V)) 

Rewrite choice 

1 

2 

3 

0 
Figure B.4    Tree Rewrite Example (Step 4) 
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e.g. (X IN UNIONOJ, V)) <-> ((X IN U) I (X IN V)) 

©    © 

Figure B.5    Tree Rewrite Example (Step 5) 
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e.g. (X IN UNION(U, V)) <-> ((X IN U) I (X IN V» 

0 G 
Figure B.6    Tree Rewrite Example (Step 6) 
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Appendix C.   [/LARCH for Bank Domain Example 

This appendix contains the ULARCH traits and state transition tables for the Bank 

example. The traits are based on the Bank object model described in Section 3.4.2. 

\documentstyle[fullpage,larch]{article} 

\begin{document> 

\begin{spec> '/.ObjectTheory 

Date(D): trait 
includes String 

\end{spec}\\ 

\begin{spec> 7,FunctionalTheory 

Current-Date: trait 
includes Date 

introduces current-date: D -> String 

\end{spec}\\ 

\begin{spec} '/.ObjectTheory 

Account(Acct): trait 

includes Date, Integer 

introduces 

int-date: Acct -> D 
balance: Acct -> Amnt 

acct-num: Acct -> Int 

\end{spec}\\ 

\begin{spec} '/.StateTheory 

OK: trait 

includes Account 

introduces OKState: Acct -> Bool 
asserts \forall a:Acct 

balance(a) >= 0 
\end{spec}\\ 

\begin{spec} °/,StateTheory 

Overdrawn: trait 

includes Account 

introduces OverdrawnState: Acct -> Bool 

asserts \forall a:Acct 

balance(a) < 0 

\end-[spec}\\ 

\begin{spec} '/.EventTheory 

NewAccount: trait 

includes Account 
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introduces new-account: -> Bool 

asserts \forall a:Acct 

balance(new-account) = 0; 

acct-num(new-account) = 0 

\end{spec}\\ 

\begin{spec} '/.EventTheory 

Credit: trait 
includes Account 

introduces credit: Amnt -> Bool 

\end{spec}\\ 

\begin{spec> '/.EventTheory 

Debit: trait 

includes Account 
introduces debit: Amnt -> Bool 

\end{spec}\\ 

\begin{spec} '/.EventTheory 

Close: trait 
includes Account 
introduces close: -> Bool 

\end{spec}\\ 

\begin{spec> '/.FunctionalTheory 

Credit-Acct: trait 

includes Account 
introduces credit-acct: Acct, Amnt -> Acct 

asserts \forall ac: Acct, am: Amnt 
balance(credit-acct(ac, am)) = (balance(ac) + am) 

\end{spec}\\ 

\begin{spec> '/.FunctionalTheory 

Debit-Acct: trait 

includes Account 
introduces debit-acct: Acct, Amnt -> Acct 
asserts \forall ac: Acct, am: Amnt 
balance(debit-acct(ac, am)) = (balance(ac) - am) 

\end{spec>\\ 

\begin{spec} '/.FunctionalTheory 

Close-Acct: trait 

includes Account 
introduces close-acct: Acct -> Acct 

\end{spec}\\ 

\begin{spec} '/.ObjectTheory 

Archive(Arch): trait 

includes Date 

\end{spec}\\ 
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\begin{spec} '/.EventTheory 

ArchCredit: trait 

includes Archive 

introduces archcredit: Acct, Amnt, D -> Bool 

\end{spec}\\ 

\begin{spec} '/.EventTheory 

ArchDebit: trait 

includes Archive 

introduces archdebit: Acct, Amnt, D -> Bool 

\end{spec>\\ 

\begin{spec} '/.EventTheory 

ArchRate: trait 
includes Archive' 
introduces archdebit: Acct, Rate, D -> Bool 

\end{spec}\\ 

\begin{spec} '/.EventTheory 

ArchClose: trait 
includes Archive 

introduces archclose: Acct, D -> Bool 

\end{spec}\\ 

\begin{spec} '/,FunctionalTheory 

Arch-Credit: trait 

includes Archive, Account, D 

introduces arch-credit: Arch, Acct, Amnt, D -> Arch 

\end{spec>\\ 

\begin{spec> '/.FunctionalTheory 

Arch-Debit: trait 
includes Archive, Account, D 

introduces arch-debit: Arch, Acct, Amnt, D -> Arch 

\end-[spec}\\ 

\begin{spec} '/.FunctionalTheory 

Arch-Rate: trait 

includes Archive, Account, D 

introduces arch-rate: Arch, Acct, Rate, D -> Arch 

\end{spec}\\ 

\begin{spec} '/.FunctionalTheory 

Arch-Close: trait 

includes Archive, Account, D 

introduces arch-close: Arch, Acct, D -> Arch 

\end{spec}\\ 

\begin{spec} 7,0bjectTheory 
Person(P): trait 

includes String 
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introduces 

name: P -> String 

address: P -> String 

\end{spec}\\ 

\begin{spec> '/.ObjectTheory 

Customer(Cust): trait 

includes Person(P for P) 

\end{spec}\\ 

\begin{spec} '/.ObjectTheory 

Employee(Empl): trait 

includes Person(P for P), Integer, String 

introduces number: Empl -> int 

passwd: Empl -> String 

\end{spec}\\ 

\begin{spec> '/.ObjectTheory 
Cust-Employee(Cust-Empl): trait 

includes Customer(Cust for Cust), Employee(Empl for Empl) 

\end{spec}\\ 

\begin{spec} '/.ObjectTheory 

Teller(Tell): trait 
includes Employee(Empl for Empl) 

\end{spec}\\ 

\begin-[spec} '/.ObjectTheory 

Executive(Exec): trait 
includes Employee(Empl for Empl) 

\end{spec}\\ 

\begin{spec} '/.ObjectTheory 

Checking(CAcct): trait 
includes Account(CAcct for Acct) 

\end{spec}\\ 

\begin{spec} '/.EventTheory 

WriteCheck: trait 

includes Checking 

introduces writecheck: Amnt -> Bool 
\end{spec>\\ 

\begin{spec} '/.FunctionalTheory 

Write-Check: trait 

includes Checking 
introduces write-check: CAcct, Amnt -> CAcct 

asserts \forall c: CAcct, a: Amnt 

balance(write-check(c, a)) = balance(debit-acct(c, a)); 

int-date(write-check(c, a)) = int-date(c); 

acct-num(write-check(c, a)) = acct-num(c) 
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\end{spec}\\ 

\begin{spec} '/.ObjectTheory 

Savings(SAcct): trait 
includes Account(SAcct for Acct), Date 

introduces rate: SAcct -> Rate 
date-int-computed: SAcct -> D 

\end{spec}\\ 

\begin{spec} '/.EventTheory 

SetRate: trait 

includes Savings 
introduces setrate: Rate -> Bool 

\end{spec}\\ 

\begin{spec} '/.EventTheory 

Computelnterest: trait 

includes Savings 
introduces computeinterest: -> Bool 

\end{spec}\\ 

\begin{spec> '/.FunctionalTheory 

Set-Rate: trait 

includes Savings 
introduces set-rate: SAcct, Rate -> SAcct 

asserts \forall sa: SAcct, r: Rate 

rate(set-rate(sa, r)) = r; 
date-int-computed(set-rate(sa, r)) = current-date; 

int-date(set-rate(sa, r)) = int-date(sa); 

balance(set-rate(sa, r)) = balance(sa); 

Acct-num(set-rate(sa, r)) = Acct-num(sa) 

\end{spec}\\ 

\begin{spec} '/.FunctionalTheory 

Compute-Interest: trait 

includes Savings 
introduces compute-interest: SAcct -> Amnt 

asserts \forall sa: SAcct 
compute-interest(sa) = (balance(sa) * rate(sa)); 

rate(set-rate(sa, r)) = rate(sa); 
date-int-computed(compute-interest(sa, r)) = date-int-computed(sa); 

int-date(compute-interest(sa, r)) = int-date(sa); 

balance(compute-interest(sa, r)) = balance(sa); 

Acct-num(compute-interest(sa, r)) = Acct-num(sa) 

\end{spec}\\ 

\begin{spec} '/00bjectTheory 

Combined: trait 
includes Checking(CAcct for CAcct), Savings(SAcct for SAcct) 

\end{spec}\\ 
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\begin{spec} '/.ObjectTheory 

Console(Cons): trait 

includes Integer 
introduces id: Cons -> int 

\end{spec}\\ 

\begin{spec} '/,StateTheory 

Loggedln: trait 

includes Console 
introduces LoggedlnState: -> Bool 

\end{spec}\\ 

\begin{spec} '/.StateTheory 

Disabled: trait 

includes Console 
introduces DisabledState: -> Bool 

\end{spec}\\ 

\begin{spec} '/.StateTheory 

Enabled: trait 

includes Console 

introduces EnabledState: -> Bool 

\end{spec}\\ 

\begin{spec} '/.StateTheory 

Executive: trait 

includes Console 
introduces ExecutiveState: -> Bool 

\end{spec}\\ 

\begin{spec} '/.EventTheory 

NewConsole: trait 
includes Console 

introduces new-console: -> Bool 

asserts \forall c: Cons 

id(new-console) = 0 

\end{spec}\\ 

\begin{spec} '/.EventTheory 
Login: trait 

includes Console 
introduces login: -> Bool 

\end{spec>\\ 

\begin{spec} '/.EventTheory 

Logout: trait 

includes Console 

introduces logout: -> Bool 

\end{spec>\\ 

\begin{spec} '/.EventTheory 
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ExecLogin: trait 

includes Console 

introduces execlogin: -> Bool 
\end{spec}\\ 

\begin{spec> '/.EventTheory 
ChangeRate: trait 

includes Console 
introduces changerate: Rate -> Bool 

\end{spec}\\ 

\begin{spec> '/.EventTheory 

UpdateAccts: trait 
includes Console 

introduces updateaccts: -> Bool 

\end{spec}\\ 

\begin{spec} '/.EventTheory 
SelectAcct: trait 

includes Console 

introduces selectacct: Acct -> Bool 

\end{spec>\\ 

\begin{spec} '/.EventTheory 
ShowBalance: trait 

includes Console 

introduces showbalance: Acct -> Bool 

\end{spec>\\ 

\begin{spec} '/.EventTheory 

CreditAcct: trait 
includes Console 

introduces creditacct: Acct, Amnt -> Bool 

\end{spec}\\ 

\begin{spec} '/.EventTheory 
DebitAcct: trait 

includes Console 

introduces debitacct: Acct, Amnt -> Bool 
\end{spec}\\ 

\begin{spec} '/.EventTheory 

CloseAcct: trait 

includes Console 

introduces closeacct: Acct -> Bool 

\end{spec}\\ 

\begin{spec} '/.EventTheory 
CashCheck: trait 

includes Console 

introduces cashcheck: Acct, Amnt -> Bool 
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\end{spec}\\ 

\begin{spec} '/.LinkTheory 

Op: trait 

includes Employee, Console 

introduces an-employee: Op-Link -> Employee 

a-console: Op-Link -> Console 

new-Op-Link: Employee, Console -> Op-Link 

asserts \forall e: Empl, c: Cons 

an-employee(new-Op-Link(e, c)) = e; 

a-console(new-Op-Link(e, c)) = c 

\end{spec>\\ 

\begin{spec} V.AssociationTheory 

Operates: trait 
includes Set(Operates for C, Op for E), Op 

introduces 

new-Operates: -> Opers 
image: Opers, Empl -> Consoles 

image: Opers, Cons -> Employees 

does-operate: Opers, Empl, Cons -> Bool 

asserts \forall o: Opers, e: Empl, c: Cons, x:Op-Link 
(in(x, o) \and (a-console(x) = c)) == in(an-employee(x), image(o, c)); 

(in(x, o) \and (an-employee(x) = e)) == in(a-console(x), image(o, e)); 

Size(image(o, e)) = 1; 
Size(image(o, c)) >= 0; 

new-Operates = empty-set; 
does-operate(new-Operates, e, c) = false; 

does-operate(o, e, c) == (in(e, image(o, c)) \and 
in(c, image(o, e))) 

\end{spec}\\ 

\begin{spec} °/0LinkTheory 

Own: trait 
includes Customer, Account 

introduces a-customer: Own-Link -> Cust 
an-account: Own-Link -> Acct 

new-Own-Link: Cust, Acct -> Own-Link 

asserts \forall c: Cust, a: Acct 

a-customer(new-0wn-Link(c, a)) = c; 

an-account(new-0wn-Link(c, a)) = a 

\end{spec}\\ 

\begin{spec} '/.AssociationTheory 

Owns: trait 

includes Set(Owns for C, Own for E), Own 
introduces 

new-Owns: 0, Cust, Acct -> 0 

image: 0, Cust -> Accounts 
image: 0, Acct -> Customers 

does-own: 0, Cust, Acct -> Bool 
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asserts \forall o: 0, c: Cust, a: Acct, x: Own-Link 

Size(image(o, c)) >= 0; 

Size(image(o, a)) = 1; 
(in(x, o) \and (a-customer(x) = c)) == in(an-account(x), image(o, c)); 

(in(x, o) \and (an-account(x) = a)) == in(a-customer(x), image(o, a)); 

new-Owns = empty-set; 

does-own(new-Owns, c, a) = false; 

does-own(o, c, a) == (in(c, image(o, a)) \and 
in(a, image(o, c))) 

\end{spec}\\ 

\begin{spec} '/.LinkTheory 

Manipulate: trait 
includes Console, Account 

introduces a-console: Manipulate-Link -> Cons 
an-account: Manipulate-Link -> Acct 

new-Manipulate-Link: Cons, Acct -> Manipulate-Link 

asserts \forall c: Cons, a: Acct 
a-console(new-Manipulate-Link(c, a)) = c; 

an-account(new-Manipulate-Link(c, a)) = a 

\end{spec}\\ 

\begin-[spec} '/.AssociationTheory 

Manipulates: trait 
includes Set(Manipulates for C, Manipulate for E), Manipulate 

introduces 

new-Manipulates: Manips, Cons, Acct -> Manips 

image: Manips, Cons -> Accounts 

image: Manips, Acct -> Consoles 

does-manipulate: Manips, Cons, Acct -> Bool 

asserts \forall m: Manips, c: Cons, a: Acct, x: Manipulate-Link 

Size(image(m, c)) >= 0; 

Size(image(m, a)) >= 0; 
(in(x, m) \and (a-console(x) = c)) == in(an-account(x), image(m, c)); 

(in(x, m) \and (an-account(x) = a)) == in(a-console(x), image(m, a)); 

new-Manipulates = empty-set; 
does-manipulate(new-Manipulates, c, a) = false; 

does-manipulate(m, c, a) == (in(c, image(m, a)) \and 

in(a, image(m, c))) 

\end{spec}\\ 

\begin{spec> 7,LinkTheory 

Ar: trait 

includes Account, Archive 

introduces an-account: Ar-Link -> Acct 

an-archive: Ar-Link -> Arch 

new-Ar-Link: Acct, Arch -> Ar-Link 

asserts \forall ac: Acct, ar: Arch 

an-account(new-Ar-Link(ac, ar)) = ac; 
an-archive(new-Ar-Link(ac, ar)) = ar 

\end{spec>\\ 
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\begin{spec} '/.AssociationTheory 

Archives: trait 
includes Set(Archives for C, Ar for E), Ar 

introduces 
new-Archives: Archs, Acct, Arch -> Archs 

image: Archs, Acct -> ArchiveSet 

image: Archs, Arch -> Accounts 

does-archive: Archs, Acct, Arch -> Bool 

asserts \forall ars: Archs, ac: Acct, ar: Arch, x: Ar-Link 

Size(image(ars, ac)) = 1; 

Size(image(ars, ar)) >= 0; 
(in(x, ars) \and (an-account(x) = ac)) == in(an-archive(x), image(ars, ac)); 

(in(x, ars) \and (an-archive(x) = ar)) == in(an-account(x), image(ars, ar)); 

new-Archives = empty-set; 

does-archive(new-Archives, ac, ar) = false; 

does-archive(ars, ac, ar) == (in(ac, image(ars, ar)) \and 

in(ar, image(ars, ac))) 

\end{spec}\\ 

\begin{spec> '/.LinkTheory 

Access: trait 
includes Account, Date 

introduces an-account: Access-Link -> Acct 

a-date: Access-Link -> Acct 
new-Access-Link: Acct, D -> Access-Link 

asserts \forall a: Acct, d: D 
an-account(new-Access-Link(a, d)) = a; 

a-date(new-Access-Link(a, d)) = d 

\end{spec>\\ 

\begin{spec} '/.AssociationTheory 

Accesses: trait 

includes Set(Accesses for C,Access for E), Access 

introduces 

new-Accesses: Aces, Acct, D -> Aces 
image: Aces, Acct -> Dates 

image: Aces, D -> Accounts 

does-access: Aces, Acct, D -> Bool 

asserts \forall acs: Aces, ac: Acct, d: D, x: Access-Link 

Size(image(acs, ac)) = 1; 

Size(image(acs, d)) >= 0; 

(in(x, acs) \and (an-account(x) = ac)) == in(a-date(x), image(acs, ac)); 

(in(x, acs) \and (a-date(x) = d)) == in(an-account(x), image(acs, d)); 

new-Accesses = empty-set; 

does-access(new-Accesses, ac, d) = false; 

does-access(acs, ac, d) == (in(ac, image(acs, d)) \and 

in(d, image(acs, ac))) 
\end{spec}\\ 

\begin{spec} °/,0bjectTheory 
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Bank: trait 

includes 

Set(PersonSet for C, Person for E), 

Set(CustomerSet for C, Customer for E), 

Set(EmployeeSet for C, Employee for E), 

Set(Cust-EmployeeSet for C, Cust-Employee for E), 

Set(TellerSet for C, Teller for E), 

Set(ExecutiveSet for C, Executive for E), 

Set(ConsoleSet for C, Console for E), 

Set(AccountSet for C, Account for E), 

Set(CheckingSet for C, Checking for E), 

Set(SavingsSet for C, Savings for E), 

Set(CombinedSet for C, Combined for E), 
Set(ArchiveSet for C, Archive for E), 

Owns 
PersonSet, 

CustomerSet, 

EmployeeSet, 
Cust-EmployeeSet, 

TellerSet, 

ExecutiveSet, 

ConsoleSet, 

AccountSet, 

CheckingSet, 

SavingsSet, 
CombinedSet, 

ArchiveSet, 

0 

B tuple of  P 

CU 
EM 

CE 

T 

E 

CS 

ACS 

CK 
SV 

C 

ARS 

owns-obj 

asserts \forall b:B 

Size(P(b)) >= 0; 

Size(CU(b)) >= 0 

Size(EM(b)) >= 0 
Size(CE(b)) >= 0 

Size(T(b)) >= 0; 
Size(E(b)) >= 0; 

Size(CS(b)) >= 0; 
Size(ACS(b)) >= 0; 

Size(CKOO) >= 0; 

Size(SVCb)) >= 0; 
Size(C(b)) >= 0; 

Size(ARS(b)) >= 0; 

P(b) = Union(CU(b), EM(b)); 

EM(b) = Union(T(b), E(b)); 

Subset(CE(b), CU(b)); 
Subset(CE(b), EM(b));" 

ACS(b) = Union(CK(b), SV(b)); 
Subset(C(b), CK(b)); 

Subset(C(b), SV(b)) 
\end{spec} 

\end{document> 
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Table C.l    Account State Transition Table 

Current 
State 

Receive 
Event Parameters Guard 

Next 
State Action 

Send 
Event 

AccountlnitialState NewAccount OK 
OK 

OK 

OK 

OK 

Credit 

Debit 

Debit 

Close 

acct amnt 

acct amnt 

acct amnt 

acct 

amnt > balance 

amnt <= balance 

OK 

Overdrawn 

OK 

AccountEndState 

credit-acct 

debit-acct 

close-acct 

ArchCredit(Archive-obj, 
acct, amnt, date) 

ArchDebit(Archive-obj, 
acct, amnt, date) 

ArchDebit(Archive-obj, 
acct, amnt, date) 

ArchClose(Archive-obj, 
acct, date) 

OverDrawn 
OverDrawn 
Overdrawn 

Overdrawn 

Debit 
Close 
Credit 

Credit 

acct amnt 
acct 
acct amnt 

acct amnt 

amnt + balance >= 0 

amnt + balance < 0 

OverDrawn 
OverDrawn 
OK 

Overdrawn 

credit-acct 

credit-acct 

ArchCredit(Archive-obj, 
acct, amnt, date) 

ArchCredit(Archive-obj, 
acct, amnt, date) 

Table C.2    Checking State Transition Table 

Current 
State 

Receive 
Event Parameters Guard 

Next 
State Action 

Send 
Event 

CheckinglnitialState NewChecking OK 
OK 
OK 

Write Check 
WriteCheck 

cacct amnt 
cacct amnt 

amnt > balance 
amnt <= balance 

Overdrawn 
OK write-check 

ArchDebit(Archive-obj, acct, amnt, date) 
ArchDebit(Archive-obj, acct, amnt, date) 

OverDrawn WriteCheck cacct amnt OverDrawn 

Table C.3    Savings State Transition Table 

Current 
State 

Receive 
Event Parameters Guard 

Next 
State Action 

Send 
Event 

SavingsInitialState NewSavings OK 
OK 
OK 

SetRate 
Computelnterest 

sacct rate 
sacct 

OK 
OK 

set-rate 
compute-interest 

OverDrawn 
OverDrawn 

SetRate 
Computelnterest 

sacct amnt 
sacct 

OverDrawn 
OverDrawn 

set-rate 
compute-interest 
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Table C.4    Console State Transition Table 

Current Receive Next Send 
State Event Parameters Guard State Action Event 

ConsolelnitialState New Console Disabled 
Disabled Login Loggedln 
Disabled ExecLogin Executive 
Disabled Logout Disabled 
Disabled SelectAcct acct Disabled 
Disabled ShowBalance acct Disabled 
Disabled CreditAcct acct amnt Disabled 
Disabled DebitAcct acct amnt Disabled 
Disabled CloseAcct acct Disabled 
Disabled CashCheck acct amnt Disabled 
Disabled ChangeRate rate Disabled 
Disabled UpdateAccts Disabled 
Loggedln Logout Disabled 
Loggedln SelectAcct acct Enabled 
Loggedln Login Loggedln 
Loggedln ExecLogin Loggedln 
Loggedln ShowBalance acct Loggedln 
Loggedln CreditAcct acct amnt Loggedln 
Loggedln DebitAcct acct amnt Loggedln 
Loggedln CloseAcct acct Loggedln 
Loggedln CashCheck acct amnt Loggedln 
Loggedln ChangeRate rate Loggedln 
Loggedln UpdateAccts Loggedln 
Enabled ShowBalance acct Enabled 
Enabled CreditAcct acct amnt Enabled Credit(acct, amnt) 
Enabled DebitAcct acct amnt Enabled Debitfacct, amnt) 
Enabled CloseAcct acct Enabled Close(acct) 
Enabled CashCheck acct amnt Enabled WriteCheck(acct, amnt) 
Enabled Login Enabled 
Enabled ExecLogin Enabled 
Enabled Logout Disabled 
Enabled SelectAcct acct Enabled 
Enabled ChangeRate rate Enabled 
Enabled UpdateAccts Enabled 
Executive Logout Disabled 
Executive ChangeRate rate Executive SetRate(acct, rate) 
Executive UpdateAccts Executive Computelnterest(acct) 
Executive Login Executive 
Executive ExecLogin Executive 
Executive SelectAcct acct Executive 
Executive ShowBalance acct Executive 
Executive CreditAcct acct amnt Executive 
Executive DebitAcct acct amnt Executive 
Executive CloseAcct acct Executive 
Executive CashCheck acct amnt Executive 
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Appendix D.   O-SLANG for Bank Domain Example 

This appendix contains the O-SLANG specifications for the Bank example that were 

automatically generated from the ULARCH traits and state transition tables in Appendix 

C. 

class Account is 

class-sort Account 

import 

Date 

sort 

Amnt, D, Account-State, Acct, Archive 

sort-axioms 

Account = Acct 

ops 
attr-equal: Account, Account -> boolean 

attributes 
acct-num: Account -> Integer 

balance: Account -> Amnt 

int-date: Account -> D 

Archive-obj: Account -> Archive 

state-attributes 

AccountState: Account -> Account-State 

methods 

create-Account: -> Account 

credit-acct: Acct, Amnt -> Acct 

debit-acct: Acct, Amnt -> Acct 

close-acct: Acct -> Acct 

states 

OK: -> Account-State 

Overdrawn: -> Account-State 

events 

new-Account: -> Account 

Credit: Account, Amnt -> Account 

Debit: Account, Amnt -> Account 

Close: Account -> Account 

ArchCredit: Archive, acct, amnt, date -> Archive 

ArchDebit: Archive, acct, amnt, date -> Archive 

ArchClose: Archive, acct, date -> Archive 

axioms 

AccountState ( a) = OK => (balance ( a) >= 0); 
AccountState ( a) = Overdrawn => (balance (a) < 0); 

balance ( create-Account) = 0; 

acct-num ( create-Account) = 0; 

balance ( credit-acct ( ac, am)) = (balance ( ac) + am); 

balance ( debit-acct ( ac, am)) = (balance ( ac) - am); 

(AccountState ( Account-80) = OK) => 

(AccountState ( Credit ( Account-80, amnt)) = OK & 

attr-equal ( Credit ( Account-80), credit-acct ( Account-80)) ft 

(Archive-obj ( Credit ( Account-80, amnt)) = ArchCredit ( Archive-obj ( Account-80)))); 

(AccountState ( Account-8i) = OK £ amnt > balance) => 

(AccountState ( Debit ( Account-81, amnt)) = Overdrawn & 

(Archive-obj ( Debit ( Account-81, amnt)) = ArchDebit ( Archive-obj ( Account-81)))); 

(AccountState ( Account-82) = OK ft amnt <= balance) => 

(AccountState ( Debit ( Account-82, amnt)) = OK ft 

attr-equal ( Debit ( Account-82), debit-acct ( Account-82)) ft 
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(Archive-obj ( Debit ( Account-82, amnt)) = ArchDebit ( Archive-obj ( Account-82)))); 

(AccountState ( Account-83) = OK) => 

(AccountState ( Close ( Account-83)) = AccountEndState & 

attr-equal ( Close ( Account-83), close-acct ( Account-83)) & 
(Archive-obj ( Close ( Account-83)) = ArchClose ( Archive-obj ( Account-83)))); 

(AccountState ( Account-84) = OverDrawn) => 

(AccountState ( Debit ( Account-84, amnt)) = OverDrawn); 

(AccountState ( Account-85) = OverDrawn) => 

(AccountState ( Close ( Account-85)) = OverDrawn); 

(AccountState ( Account-86) = Overdrawn &  amnt + balance >= 0) => 

(AccountState ( Credit ( Account-86, amnt)) = OK & 

attr-equal ( Credit ( Account-86), credit-acct ( Account-86)) & 

(Archive-obj ( Credit ( Account-86, amnt)) = ArchCredit ( Archive-obj ( Account-86)))); 

(AccountState ( Account-87) = Overdrawn & amnt + balance < 0) => 

(AccountState ( Credit ( Account-87, amnt)) = Overdrawn & 
attr-equal ( Credit ( Account-87), credit-acct ( Account-87)) & 
(Archive-obj ( Credit ( Account-87, amnt)) = ArchCredit ( Archive-obj ( Account-87)))); 

AccountState ( new-Account) = OK & attr-equal ( new-Account, create-Account); 

attr-equal ( Account-89, Account-90) => 

(acct-num ( Account-89) = acct-num ( Account-90) & 

balance ( Account-89) = balance ( Account-90) & 

int-date ( Account-89) = int-date ( Account-90) & 

Archive-obj ( Account-89) = Archive-obj ( Account-90)); 

OK <> Overdrawn; 

int-date ( create-Account) = default-value; 

Archive-obj ( create-Account) = UNDEFINED; 

acct-num ( credit-acct ( Account-91, Amnt-20)) = acct-num ( Account-91); 

int-date ( credit-acct ( Account-92, Amnt-21)) = int-date ( Account-92); 
Archive-obj ( credit-acct ( Account-93, Amnt-22)) = Archive-obj ( Account-93); 

acct-num ( debit-acct ( Account-94, Amnt-23)) = acct-num ( Account-94); 

int-date ( debit-acct ( Account-95, Amnt-24)) = int-date ( Account-95); 

Archive-obj ( debit-acct ( Account-96, Amnt-25)) = Archive-obj ( Account-96); 

acct-num ( close-acct ( Account-97)) = acct-num ( Account-97); 

balance ( close-acct ( Account-98)) = balance ( Account-98); 

int-date ( close-acct ( Account-99)) = int-date ( Account-99); 

Archive-obj ( close-acct ( Account-100)) = Archive-obj ( Account-100) 

end-class 

class Account-Class is 

class-sort Account-Class 

contained-class Account 

methods 

create-Account-Class: -> Account-Class 

events 

new-Account-Class: -> Account-Class 

Credit; Account-Class, Amnt -> Account-Class 

Debit: Account-Class, Amnt -> Account-Class 

Close: Account-Class -> Account-Class 

axioms 

create-Account-Class = empty-set; 

new-Account-Class = create-Account-Class; 

in ( Account-76, Account-Class-10) <=> 

in ( Credit ( Account-76, Amnt), Credit ( Account-Class-10, Amnt)); 

in ( Account-77, Account-Class-11) <=> 

in ( Debit ( Account-77, Amnt), Debit ( Account-Class-11, Amnt)); 

in ( Account-78, Account-Class-12) <=> 

in ( Close ( Account-78), Close ( Account-Class-12)) 

end-class 

class Archive is 

class-sort Archive 

import 

Date 

sort 

Arch, Acct, Amnt, D, Rate 
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sort-axioms 

Archive = Arch 

methods 

arch-credit: Arch, Acct, Amnt, D -> Arch 

arch-debit: Arch, Acct, Amnt, D -> Arch 

arch-rate: Arch, Acct, Rate, D -> Arch 

arch-close: Arch, Acct, D -> Arch 

create-Archive: -> Archive 

events 

ArchCredit: Archive, Account, Amnt, D -> Archive 

ArchDebit: Archive, Account, Amnt, D -> Archive 

ArchRate: Archive, Account, Rate, D -> Archive 

ArchClose: Archive, Account, D -> Archive 

new-Archive: -> Archive 

axioms new-Archive = create-Archive 

end-class 

class Archive-Class is 

class-sort Archive-Class 

contained-class Archive 

methods 

create-Archive-Class: -> Archive-Class 

events 

new-Archive-Class: -> Archive-Class 

ArchCredit: Archive-Class, Account, Amnt, D -> Archive-Class 

ArchDebit: Archive-Class, Account, Amnt, D -> Archive-Class 

ArchRate: Archive-Class, Account, Rate, D -> Archive-Class 

ArchClose: Archive-Class, Account, D -> Archive-Class 

axioms 

create-Archive-Class = empty-set; 

new-Archive-Class = create-Archive-Class; 

in ( Archive-13, Archive-Class-13) <=> 

in ( ArchCredit ( Archive-13, Account, Amnt, D), 

ArchCredit ( Archive-Class-13, Account, Amnt, D)); 

in ( Archive-14, Archive-Class-14) <=> 

in ( ArchDebit ( Archive-14, Account, Amnt, D), 

ArchDebit ( Archive-Class-14, Account, Amnt, D)); 

in ( Archive-15, Archive-Class-15) <=> 

in ( ArchRate ( Archive-15, Account, Rate, D), 

ArchRate ( Archive-Class-15, Account, Rate, D)); 

in ( Archive-16, Archive-Class-16) <=> 

in ( ArchClose ( Archive-16, Account, D), 
ArchClose ( Archive-Class-16, Account, D)) 

end-class 

class Person is 

class-sort Person 

sort 

String 

sort-axioms 

Person = P 

ops 

attr-equal: Person, Person -> boolean 

attributes 

address: Person -> String 

name: Person -> String 

methods 

create-Person: -> Person 

events 

new-Person: -> Person 

axioms 

attr-equal ( new-Person, create-Person); 

attr-equal ( Person-7, Person-8) => 

(address ( Person-7) = address ( Person-8) & 
name ( Person-7) = name ( Person-8)); 
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address ( create-Person) = EmptyString; 

name ( create-Person) = EmptyString 

end-class 

class Person-Class is 

class-sort Person-Class 

contained-class Person 

methods 

create-Person-Class: -> Person-Class 

events 

new-Person-Class: -> Person-Class 

axioms 

create-Person-Class = empty-set; 

new-Person-Class = create-Person-Class 

end-class 

class Customer is 

class-sort Customer < Person 

import 

Person 

sort-axioms 

Customer = Cust 

methods 
create-Customer: -> Customer 

events 
new-Customer: -> Customer 

axioms 
new-Customer = create-Customer 

end-class 

class Customer-Class is 

class-sort Customer-Class 

contained-class Customer 

methods 
create-Customer-Class: -> Customer-Class 

events 

new-Customer-Class: -> Customer-Class 

axioms 

create-Customer-Class = empty-set; 

new-Customer-Class = create-Customer-Class 

end-class 

class Employee is 

class-sort Employee < Person 

import 

String, Person 

sort 

String, int 

sort-axioms 

Employee = Empl 

ops 

attr-equal: Employee, Employee -> boolean 

attributes 

passwd: Employee -> String 

number: Employee -> Integer 

methods 

create-Employee: -> Employee 

events 

new-Employee: -> Employee 

axioms 

attr-equal ( new-Employee, create-Employee); 

attr-equal ( Employee-7, Employee-8) => 

(passwd ( Employee-7) = passwd ( Employee-8) 8 

number ( Employee-7) = number ( Employee-8)); 

passwd ( create-Employee) = EmptyString; 

D-4 



number ( create-Employee) = 0 

end-class 

class Employee-Class is 

class-sort Employee-Class 

contained-class Employee 

methods 

create-Employee-Class: -> Employee-Class 

events 

new-Employee-Class: -> Employee-Class 

axioms 
create-Employee-Class = empty-set; 

new-Employee-Class = create-Employee-Class 

end-class 

class Cust-Employee is 

class-sort Cust-Employee < Employee, Customer 

import 

Employee, Customer 

sort-axioms 

Cust-Employee = Cust-Empl 

methods 

create-Cust-Employee: -> Cust-Employee 

events 
new-Cust-Employee: -> Cust-Employee 

axioms 

new-Cust-Employee = create-Cust-Employee 

end-class 

class Cust-Employee-Class is 

class-sort Cust-Employee-Class 

contained-class Cust-Employee 

methods 
create-Cust-Employee-Class: -> Cust-Employee-Class 

events 
new-Cust-Employee-Class: -> Cust-Employee-Class 

axioms 
create-Cust-Employee-Class = empty-set; 
new-Cust-Employee-Class = create-Cust-Employee-Class 

end-class 

class Teller is 

class-sort Teller < Employee 

import 

Employee 

sort-axioms 

Teller = Tell 

methods 

create-Teller: -> Teller 

events 

new-Telier: -> Teller 

axioms 
new-Teller = create-Teller 

end-class 

class Teller-Class is 

class-sort Teller-Class 

contained-class Teller 

methods 

create-Teller-Class: -> Teller-Class 

events 

new-Teller-Class: -> Teller-Class 

axioms 

create-Teller-Class = empty-set; 

new-Teller-Class = create-Teller-Class 

D-5 



end-class 

class Executive is 
class-sort Executive < Employee 

import 

Employee 

sort-axioms 

Executive = Exec 

methods 

create-Executive: -> Executive 

events 

new-Executive: -> Executive 

axioms 
new-Executive = create-Executive 

end-class 

class Executive-Class is 

class-sort Executive-Class 

contained-class Executive 

methods 

create-Executive-Class: -> Executive-Class 

events 

new-Executive-Class: -> Executive-Class 

axioms 
create-Executive-Class = empty-set; 

new-Executive-Class = create-Executive-Class 

end-class 

class Checking is 

class-sort Checking < Account 

import 

Account 

sort 

CAcct, Amnt, Archive 

sort-axioms 

Checking = CAcct 

ops 

attr-equal: Checking, Checking -> boolean 

attributes 

Archive-obj: Checking -> Archive 

methods 

write-check: CAcct, Amnt -> CAcct 

create-Checking: -> Checking 

events 

WriteCheck: Checking, Amnt -> Checking 

ArchDebit: Archive, acct, amnt, date -> Archive 

new-Checking: -> Checking 

axioms 

(CheckingState ( Checking-6) = OK & amnt > balance) => 

(CheckingState ( WriteCheck ( Checking-6, amnt)) = Overdrawn & 

(Archive-obj ( WriteCheck ( Checking-6, amnt)) = ArchDebit ( Archive-obj ( Checking-6)))); 

(CheckingState ( Checking-7) = OK & amnt <= balance) => 

(CheckingState ( WriteCheck ( Checking-7, amnt)) = OK & 

attr-equal ( WriteCheck ( Checking-7), write-check ( Checking-7)) & 

(Archive-obj ( WriteCheck ( Checking-7, amnt)) = ArchDebit ( Archive-obj ( Checking-7)))); 

(CheckingState ( Checking-8) = OverDrawn) => 

(CheckingState ( WriteCheck ( Checking-8, amnt)) = OverDrawn); 

attr-equal ( new-Checking, create-Checking); 

CheckingState ( new-Checking) = OK & attr-equal ( new-Checking, create-Checking); 

attr-equal ( Checking-10, Checking-11) => 

(Archive-obj ( Checking-10) = Archive-obj ( Checking-11)); 

balance ( write-check ( c, a)) = balance ( debit-acct ( c, a)); 

int-date ( write-check ( c, a)) = int-date ( c); 

acct-num ( write-check ( c, a)) = acct-num ( c); 

Archive-obj ( write-check ( Checking-12, Amnt-19)) = Archive-obj ( Checking-12); 

D-6 



Archive-obj ( create-Checking) = UNDEFINED 

end-class 

class Checking-Class is 

class-sort Checking-Class 

contained-class Checking 

methods 

create-Checking-Class: -> Checking-Class 

events 

new-Checking-Class: -> Checking-Class 

WriteCheck: Checking-Class, Amnt -> Checking-Class 

axioms 

create-Checking-Class = empty-set; 

new-Checking-Class = create-Checking-Class; 

in ( Checking-4, Checking-Class-4) <=> 
in ( WriteCheck ( Checking-4, Amnt), WriteCheck ( Checking-Class-4, Amnt)) 

end-class 

class Savings is 

class-sort Savings < Account 

import 

Date, Account 

sort 

D, Rate, SAcct, Amnt 

sort-axioms 

Savings = SAcct 

ops 

attr-equal: Savings, Savings -> boolean 

attributes 

date-int-computed: Savings -> D rate: Savings -> Rate 

methods 

set-rate: SAcct, Rate -> SAcct 

compute-interest: SAcct -> Amnt 

create-Savings: -> Savings 

events 

SetRate: Savings, Rate -> Savings 

Computelnterest: Savings -> Savings 

new-Savings: -> Savings 

axioms 

(SavingsState ( Savings-24) = OK) => 

(SavingsState ( SetRate ( Savings-24, rate)) = OK & 

attr-equal ( SetRate ( Savings-24), set.rate ( Savings-24))); 

(SavingsState ( Savings-26) = OK) => 

(SavingsState ( Computelnterest ( Savings-25)) = OK & 
attr-equal ( Computelnterest ( Savings-25), compute-interest ( Savings-25))); 

(SavingsState ( Savings-26) = OverDrawn) => 

(SavingsState ( SetRate ( Savings-26, amnt)) = OverDrawn & 

attr-equal ( SetRate ( Savings-26), set.rate ( Savings-26))); 

(SavingsState ( Savings-27) = OverDrawn) => 

(SavingsState ( Computelnterest ( Savings-27)) = OverDrawn & 

attr-equal ( Computelnterest ( Savings-27), compute-interest ( Savings-27))); 

attr-equal ( new-Savings, create-Savings); 

SavingsState ( new-Savings) = OK & attr-equal ( new-Savings, create-Savings); 

attr-equal ( Savings-29, Savings-30) => 

(date-int-computed ( Savings-29) = date-int-computed ( Savings-30) & 

rate ( Savings-29) = rate ( Savings-30)); 

compute-interest ( sa, r) = (balance ( sa) * rate ( sa)); 

rate ( set-rate ( sa, r)) = r; 

int-date ( set-rate ( sa, r)) = current-date; 

balance ( set-rate ( sa, r)) = balance ( sa); 

Acct-num ( set-rate ( sa, r)) = Acct-num ( sa); 

date-int-computed ( set-rate ( Savings-31, Rate-4)) = date-int-computed ( Savings-31); 

int-date ( compute-interest ( sa, r)) = int-date ( sa); 

balance ( compute-interest ( sa, r)) = balance ( sa); 

Acct-num ( compute-interest ( sa, r)) = Acct-num ( sa); 
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date-int-computed ( compute-interest ( Savings-32)) = date-int-computed ( Savings-32); 

rate ( compute-interest ( Savings-33)) = rate ( Savings-33); 

date-int-computed ( create-Savings) = default-value; 

rate ( create-Savings) = default-value 

end-class 

class Savings-Class is 
class-sort Savings-Class 

contained-class Savings 

methods 
create-Savings-Class: -> Savings-Class 

events 
new-Savings-Class: -> Savings-Class 

SetRate: Savings-Class, Rate -> Savings-Class 

Computelnterest: Savings-Class -> Savings-Class 

axioms 
create-Savings-Class = empty-set; 

new-Savings-Class = create-Savings-Class; 

in ( Savings-21, Savings-Class-7) <=> 

in ( SetRate ( Savings-21, Rate), SetRate ( Savings-Class-7, Rate)); 

in ( Savings-22, Savings-Class-8) <=> 
in ( Computelnterest ( Savings-22), Computelnterest ( Savings-Class-8)) 

end-class 

class Combined is 
class-sort Combined < Savings, Checking 

import 

Savings, Checking 

methods 

create-Combined: -> Combined 

events 
new-Combined: -> Combined 

axioms 
new-Combined = create-Combined 

end-class 

class Combined-Class is 
class-sort Combined-Class 

contained-class Combined 

methods 
create-Combined-Class: -> Combined-Class 

events 
new-Combined-Class: -> Combined-Class 

axioms 

create-Combined-Class = empty-set; 
new-Combined-Class = create-Combined-Class 

end-class 

class Console is 

class-sort Console 

sort 
int, Console-State, Savings, Checking, Account 

sort-axioms 

Console = Cons 

ops 

attr-equal: Console, Console -> boolean 

attributes 

id: Console -> Integer 

Savings-obj: Console -> Savings 

Checking-obj: Console -> Checking 

Account-obj: Console -> Account 

state-attributes 

ConsoleState: Console -> Console-State 

methods 

create-Console: -> Console 
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states 

Loggedln: -> Console-State 

Disabled: -> Console-State 

Enabled: -> Console-State 

Executive: -> Console-State 

events 
new-Console: -> Console 

Login: Console -> Console 

Logout: Console -> Console 

ExecLogin: Console -> Console 

ChangeRate: Console, Rate -> Console 

UpdateAccts: Console -> Console 

SelectAcct: Console, Account -> Console 

ShowBalance: Console, Account -> Console 

CreditAcct: Console, Account, Amnt -> Console 

DebitAcct: Console, Account, Amnt -> Console 

CloseAcct: Console, Account -> Console 

CashCheck: Console, Account, Amnt -> Console 

Credit: Account, acct, amnt -> Account 

Debit: Account, acct, amnt -> Account 

Close: Account, acct -> Account 
WriteCheck: Checking, acct, amnt -> Checking 

SetRate: Savings, acct, rate -> Savings 

Computelnterest: Savings, acct -> Savings 

axioms 
id ( create-Console) = 0; 

(ConsoleState ( Console-190) = Disabled) => 

(ConsoleState ( Login ( Console-190)) = Loggedln); 

(ConsoleState ( Console-191) = Disabled) => 

(ConsoleState ( ExecLogin ( Console-191)) = Executive); 

(ConsoleState ( Console-192) = Disabled) => 

(ConsoleState ( Logout ( Console-192)) = Disabled); 

(ConsoleState ( Console-193) = Disabled) => 
(ConsoleState ( SelectAcct ( Console-193, acct)) = Disabled); 

(ConsoleState ( Console-194) = Disabled) => 
(ConsoleState ( ShowBalance ( Console-194, acct)) = Disabled); 

(ConsoleState ( Console-195) = Disabled) => 
(ConsoleState ( CreditAcct ( Console-195, acct, amnt)) = Disabled); 

(ConsoleState ( Console-196) = Disabled) => 

(ConsoleState ( DebitAcct ( Console-196, acct, amnt)) = Disabled); 

(ConsoleState ( Console-197) = Disabled) => 

(ConsoleState ( CloseAcct ( Console-197, acct)) = Disabled); 

(ConsoleState ( Console-198) = Disabled) => 

(ConsoleState ( CashCheck ( Console-198, acct, amnt)) = Disabled); 

(ConsoleState ( Console-199) = Disabled) => 
(ConsoleState ( ChangeRate ( Console-199, rate)) = Disabled); 

(ConsoleState ( Console-200) = Disabled) => 

(ConsoleState ( UpdateAccts ( Console-200)) = Disabled); 

(ConsoleState ( Console-201) = Loggedln) => 

(ConsoleState ( Logout ( Console-201)) = Disabled); 

(ConsoleState ( Console-202) = Loggedln) => 

(ConsoleState ( SelectAcct ( Console-202, acct)) = Enabled); 

(ConsoleState ( Console-203) = Loggedln) => 

(ConsoleState ( Login ( Console-203)) = Loggedln); 

(ConsoleState ( Console-204) = Loggedln) => 

(ConsoleState ( ExecLogin ( Console-204)) = Loggedln); 

(ConsoleState ( Console-205) = Loggedln) => 

(ConsoleState ( ShowBalance ( Console-205, acct)) = Loggedln); 

(ConsoleState ( Console-206) = Loggedln) => 
(ConsoleState ( CreditAcct ( Console-206, acct, amnt)) = Loggedln); 

(ConsoleState ( Console-207) = Loggedln) => 

(ConsoleState ( DebitAcct ( Console-207, acct, amnt)) = Loggedln); 

(ConsoleState ( Console-208) = Loggedln) => 

(ConsoleState ( CloseAcct ( Console-208, acct)) = Loggedln); 

(ConsoleState ( Console-209) = Loggedln) => 
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(ConsoleState ( CashCheck ( Consola-209, acct, amnt)) = Loggedln); 

(ConsoleState ( Console-210) = Loggedln) => 

(ConsoleState ( ChangeRate ( Console-210, rate)) = Loggedln); 

(ConsoleState ( Console-211) = Loggedln) => 

(ConsoleState ( UpdateAccts ( Console-211)) = Loggedln); 

(ConsoleState ( Console-212) = Enabled) => 

(ConsoleState ( ShowBalance ( Console-212, acct)) = Enabled); 

(ConsoleState ( Console-213) = Enabled) => 

(ConsoleState ( CreditAcct ( Console-213, acct, amnt)) = Enabled & 
(Account-obj ( CreditAcct ( Console-213, acct, amnt)) = Credit ( Acconnt-obj ( Console-213)))); 

(ConsoleState ( Console-214) = Enabled) => 

(ConsoleState ( DebitAcct ( Console-214, acct, amnt)) = Enabled & 

(Account-obj ( DebitAcct ( Console-214, acct, amnt)) = Debit ( Account-obj ( Console-214)))); 

(ConsoleState ( Console-215) = Enabled) => 

(ConsoleState ( CloseAcct ( Console-215, acct)) = Enabled ft 

(Account-obj ( CloseAcct ( Console-215, acct)) = Close ( Account-obj ( Console-215)))); 

(ConsoleState ( Console-216) = Enabled) => 

(ConsoleState ( CashCheck ( Console-216, acct, amnt)) = Enabled & 

(Checking-obj ( CashCheck ( Console-216, acct, amnt)) = WriteCheck ( Checking-obj ( Console-216)))); 

(ConsoleState ( Console-217) = Enabled) => 

(ConsoleState ( Login ( Console-217)) = Enabled); 

(ConsoleState ( Console-218) = Enabled) => 

(ConsoleState ( ExecLogin ( Console-218)) = Enabled); 

(ConsoleState ( Console-219) = Enabled) => 

(ConsoleState ( Logout ( Console-219)) = Disabled); 

(ConsoleState ( Console-220) = Enabled) => 

(ConsoleState ( SelectAcct ( Console-220, acct)) = Enabled); 

(ConsoleState ( Console-221) = Enabled) => 
(ConsoleState ( ChangeRate ( Console-221, rate)) = Enabled); 

(ConsoleState ( Console-222) = Enabled) => 
(ConsoleState ( UpdateAccts ( Console-222)) = Enabled); 

(ConsoleState ( Console-223) = Executive) => 

(ConsoleState ( Logout ( Console-223)) = Disabled); 

(ConsoleState ( Console-224) = Executive) => 

(ConsoleState ( ChangeRate ( Console-224, rate)) = Executive & 
(Savings-obj ( ChangeRate ( Console-224, rate)) = SetRate ( Savings-obj ( Console-224)))); 

(ConsoleState ( Console-225) = Executive) => 
(ConsoleState ( UpdateAccts ( Console-225)) = Executive & 
(Savings-obj ( UpdateAccts ( Console-225)) = Computelnterest ( Savings-obj ( Console-225)))); 

(ConsoleState ( Console-226) = Executive) => 

(ConsoleState ( Login ( Console-226)) = Executive); 

(ConsoleState ( Console-227) = Executive) => 

(ConsoleState ( ExecLogin ( Console-227)) = Executive); 

(ConsoleState ( Console-228) = Executive) => 

(ConsoleState ( SelectAcct ( Console-228, acct)) = Executive); 

(ConsoleState ( Console-229) = Executive) => 

(ConsoleState ( ShowBalance ( Console-229, acct)) = Executive); 

(ConsoleState ( Console-230) = Executive) => 

(ConsoleState ( CreditAcct ( Console-230, acct, amnt)) = Executive); 

(ConsoleState ( Console-231) = Executive) => 

(ConsoleState ( DebitAcct ( Console-231, acct, amnt)) = Executive); 

(ConsoleState ( Console-232) = Executive) => 

(ConsoleState ( CloseAcct ( Console-232, acct)) = Executive); 

(ConsoleState ( Console-233) = Executive) => 

(ConsoleState ( CashCheck ( Console-233, acct, amnt)) = Executive); 

ConsoleState ( new-Console) = Disabled & attr-equal ( new-Console, create-Console); 

attr-equal ( Console-235, Console-236) => 

(id ( Console-235) = id ( Console-236) 4 

Savings-obj ( Console-235) = Savings-obj ( Console-236) & 

Checking-obj ( Console-235) = Checking-obj ( Console-236) St 

Account-obj ( Console-235) = Account-obj ( Console-236)); 

Loggedln <> Disabled; 

Loggedln <> Enabled; 

Loggedln <> Executive; 

Disabled <> Enabled; 

D-10 



Disabled <> Executive; 

Enabled <> Executive; 

Savings-obj ( create-Console) = UNDEFINED; 

Checking-obj < create-Console) = UNDEFINED; 

Account-obj ( create-Console) = UNDEFINED 

end-class 

class Console-Class is 

class-sort Console-Class 

contained-class Console 

methods 
create-Console-Class: -> Console-Class 

events 
new-Console-Class: -> Console-Class 

Login: Console-Class -> Console-Class 

Logout: Console-Class -> Console-Class 

ExecLogin: Console-Class -> Console-Class 

ChangeRate: Console-Class -> Console-Class 

UpdateAccts: Console-Class -> Console-Class 

SelectAcct: Console-Class -> Console-Class 

ShowBalance: Console-Class -> Console-Class 

CreditAcct: Console-Class, Amnt -> Console-Class 

DebitAcct: Console-Class, Amnt -> Console-Class 

CloseAcct: Console-Class -> Console-Class 

CashCheck: Console-Class, Amnt -> Console-Class 

axioms 

create-Console-Class = empty-set; 

new-Console-Class = create-Console-Class; 

in ( Console-178, Console-Class-34) <=> 

in ( Login ( Console-178), Login ( Console-Class-34)); 

in ( Console-179, Console-Class-35) <=> 
in ( Logout ( Console-179), Logout ( Console-Class-35)); 

in ( Console-180, Console-Class-36) <=> 
in ( ExecLogin ( Console-180), ExecLogin ( Console-Class-36)); 

in ( Console-181, Console-Class-37) <=> 
in ( ChangeRate ( Console-181), ChangeRate ( Console-Class-37)); 

in ( Console-182, Console-Class-38) <=> 
in ( UpdateAccts ( Console-182), UpdateAccts ( Console-Class-38)); 

in ( Console-183, Console-Class-39) <=> 

in ( SelectAcct ( Console-183), SelectAcct ( Console-Class-39)); 

in ( Console-184, Console-Class-40) <=> 
in ( ShowBalance ( Console-184), ShowBalance ( Console-Class-40)); 

in ( Console-186, Console-Class-41) <=> 

in ( CreditAcct ( Console-185, Amnt), CreditAcct ( Console-Class-41, Amnt)); 

in ( Console-186, Console-Class-42) <=> 
in ( DebitAcct ( Console-186, Amnt), DebitAcct ( Console-Class-42, Amnt)); 

in ( Console-187, Console-Class-43) <=> 

in ( CloseAcct ( Console-187), CloseAcct ( Console-Class-43)); 

in ( Console-188, Console-Class-44) <=> 
in ( CashCheck < Console-188, Amnt), CashCheck ( Console-Class-44, Amnt)) 

end-class 

link Op-Link is 

class-sort Op-Link 

sort 

Console, Employee 

ops 

attr-equal: Op-Link, Op-Link -> boolean 

attributes 

a-console: Op-Link -> Console 

an-employee: Op-Link -> Employee 

methods 

create-Op-Link: Employee, Console -> Op-Link 

events 

new-Op-Link: Employee, Console -> Op-Link 
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axioms 
attr-equal ( new-Op-Link ( a-console-7, an-employee-4), 

create-Op-Link ( a-console-7, an-employee-4)); 

a-console ( create-Op-Link ( a-console-7, an-employee-4)) = a-console-7; 

an-employee ( create-Op-Link ( a-console-7, an-employee-4)) = an-employee-4; 

attr-equal ( Op-Link-7, Op-Link-8) => 

(a-console ( Op-Link-7) = a-console ( Op-Link-8) & 

an-employee ( Op-Link-7) = an-employee ( Op-Link-8)) 

end-link 

association Operates is 
class-sort Operates link-class Op-Link 

sort 
Bool, Opers, Employee, Console, Employees, Consoles 

sort-axioms 

Operates = Opers 

methods 
does-operate: Opers, Employee, Console -> Bool 

image: Opers, Console -> Employees 

image: Opers, Employee -> Consoles 

create-Operates: -> Operates 

events 
new-Operates: -> Operates 

axioms 
(in ( x, o) & (a-console ( x) = c)) <=> in ( an-employee ( x), image ( o, c)); 

(in ( x, o) &  (an-employee ( x) = e)) <=> in ( a-console ( x), image ( o, e)); 

Size ( image ( o, e)) = 1; 

Size ( image ( o, c)) >= 0; 

new-Operates = empty-set; 

does-operate ( new-Operates, e, c) = false; 
does-operate ( o, e, c) <=> (in ( e, image ( o, c)) & in ( c, image ( o, e))) 

end-association 

link Own-Link is 

class-sort Own-Link 

sort 

Account, Customer 

ops 
attr-equal: Own-Link, Own-Link -> boolean 

attributes 
an-account: Own-Link -> Account 

a-customer: Own-Link -> Customer 

methods 
create-Own-Link: Customer, Account -> Own-Link 

events 
new-Own-Link: Customer, Account -> Own-Link 

axioms 
attr-equal ( new-Own-Link ( an-account-13, a-customer-4), 

create-Own-Link ( an-account-13, a-customer-4)); 

an-account ( create-Own-Link ( an-account-13, a-customer-4)) = an-account-13; 

a-customer ( create-Own-Link ( an-account-13, a-customer-4)) = a-customer-4; 

attr-equal ( Own-Link-7, Own-Link-8) => 

(an-account ( Own-Link-7) = an-account ( Own-Link-8) & 

a-customer ( Own-Link-7) = a-customer ( Own-Link-8)) 

end-link 

association Owns is 

class-sort Owns link-class Own-Link 

sort 
Customer, Account, Bool, 0, Customers, Accounts 

sort-axioms 

Owns = 0 

methods 

does-own: 0, Customer, Account -> Bool 

image: 0, Account -> Customers 
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image: 0, Customer -> Accounts 

create-Owns: Customer, Account -> Owns 

events 
new-Owns: Customer, Account -> Owns 

axioms 

Size ( image ( o, c)) >= 0; 

Size ( image ( o, a)) = 1; 
(in ( x, o) 6 (a-customer ( x) = c)) <=> in ( an-account ( x), image ( o, c)); 

(in ( x, o) 4 (an-account ( x) = a)) <=> in ( a-customer ( x), image ( o, a)); 

new-Owns = empty-set; 

does-own ( new-Owns, c, a) = false; 
does-own ( o, c, a) <=> (in ( c, image ( o, a)) ft in ( a, image ( o, c))) 

end-association 

link Manipulate-Link is 

class-sort Manipulate-Link 

sort 

Account, Console 

ops 
attr-equal: Manipulate-Link, Manipulate-Link -> boolean 

attributes 
an-account: Manipulate-Link -> Account 

a-console: Manipulate-Link -> Console 

methods 
create-Manipulate-Link: Console, Account -> Manipulate-Link 

events 
new-Manipulate-Link: Console, Account -> Manipulate-Link 

axioms 
attr-equal ( new-Manipulate-Link ( an-account-14, a-console-8), 

create-Manipulate-Link ( an-account-14, a-console-8)); 

an-account ( create-Manipulate-Link ( an-account-14, a-console-8)) = an-account-14; 

a-console ( create-Manipulate-Link ( an-account-14, a-console-8)) = a-console-8; 

attr-equal ( Manipulate-Link-7, Manipulate-Link-8) => 

(an-account ( Manipulate-Link-7) = an-account ( Manipulate-Link-8) ft 

a-console ( Manipulate-Link-7) = a-console ( Manipulate-Link-8)) 

end-link 

association Manipulates is 

class-sort Manipulates link-class Manipulate-Link 

sort 
Console, Account, Bool, Manips, Consoles, Accounts 

sort-axioms 

Manipulates = Manips 

methods 
does-manipulate: Manips, Console, Account -> Bool 

image: Manips, Account -> Consoles 

image: Manips, Console -> Accounts 

create-Manipulates: Console, Account -> Manipulates 

events 
new-Manipulates: Console, Account -> Manipulates 

axioms 

Size ( image ( m, c)) >= 0; 

Size ( image ( m, a)) >= 0; 

(in ( x, m) ft (a-console ( x) = c)) <=> in ( an-account ( x), image ( m, c)); 

(in ( x, m) ft (an-account ( x) = a)) <=> in ( a-console ( x), image ( m, a)); 

new-Manipulates = empty-set; 

does-manipulate ( new-Manipulates, c, a) = false; 

does-manipulate ( m, c, a) <=> (in ( c, image ( m, a)) ft in ( a, image ( m, c))) 

end-association 

link Ar-Link is 

class-sort Ar-Link 

sort 

Archive, Account 

ops 

D-13 



attr-equal: Ar-Link, Ar-Link -> boolean 

attributes 

an-archive: Ar-Link -> Archive 

an-account: Ar-Link -> Account 

methods 
create-Ar-Link: Account, Archive -> Ar-Link 

events 
new-Ar-Link: Account, Archive -> Ar-Link 

axioms 
attr-equal ( new-Ar-Link ( an-archive-4, an-account-15), 

create-Ar-Link ( an-archive-4, an-account-16)); 
an-archive ( create-Ar-Link ( an-archive-4, an-account-15)) = an-archive-4; 

an-account ( create-Ar-Link ( an-archive-4, an-account-15)) = an-account-15; 

attr-equal ( Ar-Link-7, Ar-Link-8) => 

(an-archive ( Ar-Link-7) = an-archive ( Ar-Link-8) & 

an-account ( Ar-Link-7) = an-account ( Ar-Link-8)) 

end-link 

association Archives is 

class-sort Archives link-class Ar-Link 

sort 
Account, Archive, Bool, Archs, Accounts, ArchiveSet 

sort-axioms 

Archives = Archs 

methods 
does-archive: Archs, Account, Archive -> Bool 

image: Archs, Archive -> Accounts 

image: Archs, Account -> ArchiveSet 

create-Archives: Account, Archive -> Archives 

events 
new-Archives: Account, Archive -> Archives 

axioms 

Size ( image ( ars, ac)) = 1; 
Size ( image ( ars, ar)) >= 0; 
(in ( x, ars) & (an-account ( x) = ac)) <=> in ( an-archive ( x), image ( ars, ac)); 

(in ( x, ars) &  (an-archive ( x) = ar)) <=> in ( an-account ( x), image ( ars, ar)); 

new-Archives = empty-set; 
does-archive ( new-Archives, ac, ar) = false; 
does-archive ( ars, ac, ar) <=> (in ( ac, image ( ars, ar)) &  in ( ar, image ( ars, ac))) 

end-association 

link Access-Link is 

class-sort Access-Link 

sort 

Account, D 

ops 

attr-equal: Access-Link, Access-Link -> boolean 

attributes 

a-date: Access-Link -> Account 

an-account: Access-Link -> Account 

methods 

create-Access-Link: Account, D -> Access-Link 

events 

new-Access-Link: Account, D -> Access-Link 

axioms 
attr-equal ( new-Access-Link ( a-date-4, an-account-16), 

create-Access-Link ( a-date-4, an-account-16)); 

a-date ( create-Access-Link ( a-date-4, an-account-16)) = a-date-4; 

an-account ( create-Access-Link ( a-date-4, an-account-16)) = an-account-16; 

attr-equal ( Access-Link-7, Access-Link-8) => 

(a-date ( Access-Link-7) = a-date ( Access-Link-8) & 

an-account ( Access-Link-7) = an-account ( Access-Link-8)) 

end-link 

association Accesses is 
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class-sort Accesses link-class Access-Link 

sort 
Account, D, Bool, Aces, Accounts, Dates 

sort-axioms 

Accesses = Aces 

methods 
does-access: Aces, Account, D -> Bool 

image: Aces, D -> Accounts 

image: Aces, Account -> Dates 

create-Accesses: Account, D -> Accesses 

events 

new-Accesses: Account, D -> Accesses 

axioms 

Size ( image ( acs, ac)) = 1; 

Size ( image ( acs, d)) >= 0; 
(in ( x, acs) & (an-account ( x) = ac)) <=> in ( a-date ( x), image ( acs, ac)); 

(in ( x, acs) & (a-date ( x) = d)) <=> in ( an-account ( x), image ( acs, d)); 

new-Accesses = empty-set; 
does-access ( new-Accesses, ac, d) = false; 

does-access ( acs, ac, d) <=> (in ( ac, image ( acs, d)) S in ( d, image ( acs, ac))) 

end-association 

class Bank is 

class-sort Bank 

import 
Owns, Bank-aggregate 

ops 
attr-equal: Bank, Bank -> boolean 

attributes 

Person-Class-obj: Bank -> Person-Class 

Customer-Class-obj: Bank -> Customer-Class 

Employee-Class-obj: Bank -> Employee-Class 

Cust-Employee-Class-obj: Bank -> Cust-Employee-Class 

Teller-Class-obj: Bank -> Teller-Class 

Executive-Class-obj: Bank -> Executive-Class 

Console-Class-obj: Bank -> Console-Class 

Account-Class-obj: Bank -> Account-Class 
Checking-Class-obj: Bank -> Checking-Class 

Savings-Class-obj: Bank -> Savings-Class 

Combined-Class-obj: Bank -> Combined-Class 

Archive-Class-obj: Bank -> Archive-Class 

Owns-obj: Bank -> Owns 

methods 

create-Bank: -> Bank events new-Bank: -> Bank 

axioms 
size ( Person-Class-obj ( Bank-64)) >= 0; 

size ( Customer-Class-obj ( Bank-65)) >= 0; 

size ( Employee-Class-obj ( Bank-66)) >= 0; 

size ( Cust-Employee-Class-obj ( Bank-67)) >= 0; 

size ( Teller-Class-obj ( Bank-68)) >= 0; 

size ( Executive-Class-obj ( Bank-69)) >= 0; 

size ( Console-Class-obj ( Bank-70)) >= 0; 

size ( Account-Class-obj ( Bank-7D) >= 0; 

size ( Checking-Class-obj ( Bank-72)) >= 0; 

size ( Savings-Class-obj ( Bank-73)) >= 0; 

size ( Combined-Class-obj ( Bank-74)) >= 0; 

size ( Archive-Class-obj ( Bank-75)) >= 0; 

Person-Class-obj ( Bank-76) = 

Union ( Customer-Class-obj ( Bank-76), Employee-Class-obj ( Bank-76)); 

Employee-Class-obj ( Bank-77) = 

Union ( Teller-Class-obj ( Bank-77), Executive-Class-obj ( Bank-77)); 

SubSet ( Cust-Employee-Class-obj ( Bank-78), Customer-Class-obj ( Bank-78)); 

SubSet ( Cust-Employee-Class-obj ( Bank-79), Employee-Class-obj ( Bank-79)); 

Account-Class-obj ( Bank-80) = 

Union ( Checking-Class-obj ( Bank-80), Savings-Class-obj ( Bank-80)); 
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SubSet ( Combined-Class-obj ( Bank-81), Checking-Class-obj ( Bank-81)); 

SubSet ( Combined-Class-obj ( Bank-82), Savings-Class-obj ( Bank-82)); 

attr-equal ( new-Bank, create-Bank); 

attr-equal ( Bank-83, Bank-84) => 
(Person-Class-obj ( Bank-83) = Person-Class-obj ( Bank-84) ft 

Customer-Class-obj ( Bank-83) = Customer-Class-obj ( Bank-84) ft 

Employee-Class-obj ( Bank-83) = Employee-Class-obj ( Bank-84) ft 

Cust-Employee-Class-obj ( Bank-83) = Cust-Employee-Class-obj ( Bank-84) ft 

Teller-Class-obj ( Bank-83) = Teller-Class-obj ( Bank-84) ft 

Executive-Class-obj ( Bank-83) = Executive-Class-obj ( Bank-84) ft 

Console-Class-obj ( Bank-83) = Console-Class-obj ( Bank-84) ft 

Account-Class-obj ( Bank-83) = Account-Class-obj ( Bank-84) ft 

Checking-Class-obj ( Bank-83) = Checking-Class-obj ( Bank-84) ft 

Savings-Class-obj ( Bank-83) = Savings-Class-obj ( Bank-84) ft 

Combined-Class-obj ( Bank-83) = Combined-Class-obj ( Bank-84) ft 

Archive-Class-obj ( Bank-83) = Archive-Class-obj ( Bank-84) 6 

Qwns-obj ( Bank-83) = Owns-obj ( Bank-84)); 

Person-Class-obj ( create-Bank) = new-Person-Class; 

Customer-Class-obj ( create-Bank) = new-Customer-Class; 

Employee-Class-obj ( create-Bank) = new-Employee-Class; 

Cust-Employee-Class-obj ( create-Bank) = new-Cust-Employee-Class; 

Teller-Class-obj ( create-Bank) = new-Teller-Class; 

Executive-Class-obj ( create-Bank) = new-Executive-Class; 

Console-Class-obj ( create-Bank) = new-Console-Class; 

Account-Class-obj ( create-Bank) = new-Account-Class; 

Checking-Class-obj ( create-Bank) = new-Checking-Class; 

Savings-Class-obj ( create-Bank) = new-Savings-Class; 

Combined-Class-obj ( create-Bank) = new-Combined-Class; 

Archive-Class-obj ( create-Bank) = new-Archive-Class; 

Owns-obj ( create-Bank) = UNDEFINED 

end-class 

class Bank-Class is 

class-sort Bank-Class 

contained-class Bank 

methods 

create-Bank-Class: -> Bank-Class 

events 

new-Bank-Class: -> Bank-Class 

axioms 
create-Bank-Class = empty-set; 

new-Bank-Class = create-Bank-Class 

end-class 

aggregate Bank-aggregate is 

nodes 

Person-Class, Customer-Class, Employee-Class, 

Cust-Employee-Class, Teller-Class, Executive-Class, 

Console-Class, Account-Class, Checking-Class, Savings-Class, 

Combined-Class, Archive-Class, Owns, Integer, SET-58: Set, 

SET-59: Set, SET-60: Set, SET-61: Set, SET-62: Set, 

SET-63: Set, SET-64: Set, SET-65: Set, SET-66: Set, 

SET-67: Set, SET-68: Set, SET-69: Set, SET-70: Set, Credit, 

Debit, Close, WriteCheck, SetRate, Computelnterest, 

ArchDebit, ArchCredit, ArchClose 

arcs 

SET-58 -> Person-Class: { Set -> Person-Class, E -> Person}, 

SET-59 -> Customer-Class: { Set -> Customer-Class, E -> Customer}, 

SET-60 -> Employee-Class: { Set -> Employee-Class, E -> Employee}, 

SET-61 -> Cust-Employee-Class: { Set -> Cust-Employee-Class, E -> Cust-Employee}, 

SET-62 -> Teller-Class: { Set -> Teller-Class, E -> Teller}, 

SET-63 -> Executive-Class: { Set -> Executive-Class, E -> Executive}, 

SET-64 -> Console-Class: i  Set -> Console-Class, E -> Console}, 
SET-65 -> Account-Class: { Set -> Account-Class, E -> Account}, 

SET-66 -> Checking-Class: {  Set -> Checking-Class, E -> Checking}, 
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SET-67 -> Savings-Class: { Set -> Savings-Class, E -> Savings}, 

SET-68 -> Combined-Class: { Set -> Combined-Class, E -> Combined}, 

SET-69 -> Archive-Class: { Set -> Archive-Class, E -> Archive}, 

Integer -> SET-58: {}, 

Integer -> SET-59: {}, 

Integer -> SET-60: {}, 

Integer -> SET-61: {}, 

Integer -> SET-62: {}, 

Integer -> SET-63: {}, 

Integer -> SET-64: <}, 

Integer -> SET-65: O, 
Integer -> SET-66: {}, 

Integer -> SET-67: O, 

Integer -> SET-68: {}, 

Integer -> SET-69: {}, 

Integer -> SET-70: {}, 

SET-70 -> Owns: { Set -> Owns, E -> Own-Link}, 

SET-59 -> Owns: •{ Set -> Customers, E -> Customer}, 

SET-65 -> Owns: { Set -> Accounts, E -> Account}, 

Credit -> Console-Class: {}, 

Credit -> Account-Class: { Credit -> Account-Class}, 

Debit -> Console-Class: {}, 
Debit -> Account-Class: {.  Debit -> Account-Class}, 

Close -> Console-Class: -Q, 
Close -> Account-Class: { Close -> Account-Class}, 

WriteCheck -> Console-Class: {}, 
WriteCheck -> Checking-Class: {.  WriteCheck -> Checking-Class}, 

SetRate -> Console-Class: {}, 
SetRate -> Savings-Class: {.  SetRate -> Savings-Class}, 

Computelnterest -> Console-Class: O, 
Computelnterest -> Savings-Class: { Computelnterest -> Savings-Class}, 

ArchDebit -> Checking-Class: {}, 

ArchDebit -> Archive-Class: { ArchDebit -> Archive-Class}, 

ArchCredit -> Account-Class: {}, 

ArchCredit -> Archive-Class: { ArchCredit -> Archive-Class}, 

ArchDebit -> Account-Class: -[}, 
ArchDebit -> Archive-Class: { ArchDebit -> Archive-Class}, 

ArchClose -> Account-Class: <}, 
ArchClose -> Archive-Class: •( ArchClose -> Archive-Class}, 

Acct -> Acct-Class: {}, 

Acct -> Checking: {}, 

Acct -> Savings: {}, 
Checking -> Checking-Class: {}, 

Checking -> Combined: {}, 

Savings -> Savings-Class: {}, 

Savings -> Combined: {}, 

Combined -> Combined-Class: {}, 

Person -> Person-Class: {}, 

Person -> Customer: {}, 

Person -> Employee: {}, 

Employee -> Employee-Class: {}, 

Employee -> Exec: {}, 

Employee -> Teller: {}, 

Employee -> Cust-Employee: {}, 

Exec -> Exec-Class: {}, 

Customer -> Customer-Class: {}, 

Customer -> Cust-Employee: {}, 

Cust-Employee -> Cust-Employee-Class: {}, 

Teller -> Teller-Class: ■{} 
end-aggregate 

class Date is 

class-sort Date 

import 

String 
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sort-axioms 

Date = D 

methods 

create-Date: -> Date 

current-date: D -> String 

events 

new-Date: -> Date 

axioms 

new-Date = create-Date 

end-class 

class Date-Class is 

class-sort Date-Class 

contained-class Date 

methods 

create-Date-Class: -> Date-Class 

events 
new-Date-Class: -> Date-Class 

axioms 

create-Date-Class = empty-set; 

new-Date-Class = create-Date-Class 

end-class 

event Credit is 

class-sort Credit 

sort 

acct, amnt 

events 
Credit: Credit, acct, amnt -> Credit 

end-event 

event Debit is 

class-sort Debit 

sort 

acct, amnt 
events 

Debit: Debit, acct, amnt -> Debit 

end-event 

event Close is 

class-sort Close 

sort 

acct 

events 

Close: Close, acct -> Close 

end-event 

event WriteCheck is 

class-sort WriteCheck 

sort 

acct, amnt 

events 
WriteCheck: WriteCheck, acct, amnt -> WriteCheck 

end-event 

event SetRate is 

class-sort SetRate 

sort 

acct, rate 

events 

SetRate: SetRate, acct, rate -> SetRate 

end-event 

event Computelnterest is 

class-sort Computelnterest 

D-18 



sort 

acct 

events 
Computelnterest: Computelnterest, acct -> Computelnterest 

end-event 

event ArchCredit is 

class-sort ArchCredit 

sort 
Archive-obj, acct, amnt, date 

events 
ArchCredit: ArchCredit, Archive-obj, acct, amnt, date -> ArchCredit 

end-event 

event ArchDebit is 

class-sort ArchDebit 

sort 
Archive-obj, acct, amnt, date 

events 
ArchDebit: ArchDebit, Archive-obj, acct, amnt, date -> ArchDebit 

end-event 

event ArchClose is 
class-sort ArchClose 

sort 
Archive-obj, acct, date 

events 
ArchClose: ArchClose, Archive-obj, acct, date -> ArchClose 

end-event 
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Appendix E.   [/LARCH for Pump Domain Example 

This appendix contains the ULARCH traits and state transition tables for the Pump 

example. The traits are based on the Pump object model described in Section 3.4.3. 

\documentstyle[fullpage,larch]{article} 

\begin{document} 

\begin{spec> '/.ObjectTheory 

PumpController: trait 

includes Integer 

introduces 

pumpld: PC -> Int 

\end{spec}\\ 

\begin{spec} '/.ObjectTheory 

Display: trait 
includes Integer 

introduces 

cost: D -> Int 

volume: D -> Int 

grade: D -> Int 

vol-inc: D -> Int 

\end{spec}\\ 

\begin{spec} '/.StateTheory 

ZeroDisplay: trait 

includes Display 
introduces ZeroDisplayState: D -> Boolean 

asserts \forall d: D 

cost(d) = 0; 

volume(d) = 0; 
grade(d) = 0 

\end{spec}\\ 

\begin{spec} '/.StateTheory 

IncrementDisplay: trait 

includes Display 
introduces IncrementDisplayState: D -> Boolean 

asserts \forall d: D 

cost(d) >= 0; 
volume(d) >= 0; 

grade(d) >= 0 

\end{spec>\\ 

\begin{spec} '/.EventTheory 

NewDisplay: trait 
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includes Display- 
introduces new-display : -> Bool 

asserts \forall d: D 

cost(new-display) = 0; 

volume(new-display) = 0; 

grade(new-display) = 0; 

vol-inc(new-display) = 0 

\end{spec}\\ 

\begin{spec> '/.EventTheory 

Pulse: trait 

includes Display 
introduces pulse : -> Bool 

\end{spec}\\ 

\begin{spec} '/.EventTheory 

ResetDisplay: trait 

includes Display 
introduces reset-display : -> Bool 

\end{spec}\\ 

\begin{spec} '/.FunctionalTheory 

UpdateCost: trait 

includes Display 
introduces update-cost: D, Int, Int -> D 

asserts \forall d:D, p, c: Int 

cost(update-cost(d, c, p)) = (c + p) 
\end{spec}\\ 

\begin{spec> '/.FunctionalTheory 

UpdateVolume: trait 

includes Display 
introduces update-volume: D, Int -> D 

asserts \forall d: D, v: Int 
volume(update-volume(d, v)) = (v + vol-inc(d)) 

\end{spec}\\ 

\begin{spec} '/.ObjectTheory 

Gun(G): trait 

includes Integer 

\end{spec}\\ 

\begin{spec} '/.StateTheory 

GunDisabled: trait 

includes Gun 

introduces GunDisabledState: G -> Boolean 
\end{spec}\\ 

\begin{spec} '/.StateTheory 

GunEnabled: trait 

includes Gun 
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introduces GunEnabledState: G -> Boolean 

\end{spec>\\ 

\begin{spec} '/.StateTheory 

GunOn: trait 

includes Gun 
introduces GunOnState: G -> Boolean 

\end{spec}\\ 

\begin{spec} '/.EventTheory 

NewGun: trait 

includes Gun 
introduces new-gun : -> Bool 

\end{spec}\\ 

\begin{spec} 7,EventTheory 

OverHeat: trait 
includes Gun 
introduces over-heat: -> Boolean 

\end{spec}\\ 

\begin{spec} '/.EventTheory 

RemoveGun: trait 

includes Gun 
introduces remove-gun : -> Bool 

\end{spec}\\ 

\begin{spec> '/.EventTheory 

ReplaceGun: trait 
includes Gun 
introduces replace-gun : -> Bool 

\end{spec>\\ 

\begin{spec} '/.EventTheory 

DepressTrigger: trait 

includes Gun 
introduces depress-trigger : -> Bool 

\end{spec}\\ 

\begin{spec} '/.EventTheory 

ReleaseTrigger: trait 

includes Gun 

introduces release-trigger : -> Bool 

\end{spec}\\ 

\begin{spec} '/.EventTheory 

CutOffSupply: trait 

includes Gun 

introduces cutOff-supply : -> Bool 

\end{spec}\\ 
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\begin{spec> '/.ObjectTheory 

Holster(H): trait 

includes Integer 

\end{spec}\\ 

\begin{spec} '/.StateTheory 

HolsterWait: trait 

includes Holster 
introduces HolsterWaitState: H -> Boolean 

\end{spec}\\ 

\begin{spec} '/.StateTheory 

HolsterWorking: trait 

includes Holster 
introduces HolsterWorkingState: H -> Boolean 

\end{spec}\\ 

\begin{spec} '/.EventTheory 

NewHolster: trait 

includes Holster 
introduces new-holster : -> Bool 

\end{spec}\\ 

\begin{spec> '/.EventTheory 

ReleaseHolsterSwitch: trait 

includes Holster 

introduces release-holster-switch : -> Bool 

\end{spec}\\ 

\begin{spec} '/.EventTheory 

CloseHolsterSwitch: trait 

includes Holster 
introduces close-holster-switch : -> Bool 

\end{spec}\\ 

\begin{spec> '/,ObjectTheory 

Motor: trait 
\end{spec}\\ 

\begin{spec> '/.StateTheory 

MotorDisabled: trait 
includes Motor 

introduces MotorDisabledState: M -> Boolean 

\end{spec}\\ 

\begin{spec} °/,StateTheory 

MotorRunning: trait 

includes Motor 

introduces MotorRunningState: M -> Boolean 

\end{spec}\\ 
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\begin{spec> '/.EventTheory 

NewMotor: trait 

includes Motor 
introduces new-motor : -> Bool 

\end{spec}\\ 

\begin{spec} '/.EventTheory 

StartPumpMotor: trait 
includes Motor 
introduces start-pump-motor : -> Bool 

\end{spec>\\ 

\begin{spec> '/.EventTheory 

StopMotor: trait 

includes Motor 
introduces stop-motor : -> Bool 

\end{spec}\\ 

\begin{spec> '/.ObjectTheory 

Clutch: trait 
includes Integer 

\end{spec}\\ 

\begin{spec} '/.StateTheory 
ClutchDisabled: trait 

includes Clutch 
introduces ClutchDisabledState: C -> Boolean 

\end{spec}\\ 

\begin{spec} '/.StateTheory 

ClutchFree: trait 
includes Clutch 
introduces ClutchFreeState: C -> Boolean 

\end{spec>\\ 

\begin{spec} '/.StateTheory 
ClutchEngaged: trait 

includes Clutch 
introduces ClutchEngagedState: C -> Boolean 

\end{spec}\\ 

\begin{spec> '/.EventTheory 

NewClutch: trait 
includes Clutch 
introduces new-clutch : -> Bool 

\end{spec}\\ 

\begin{spec} '/,EventTheory 

OverHeat: trait 
includes Clutch 
introduces over-heat: -> Boolean 
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\end{spec}\\ 

\begin{spec} '/.EventTheory 

FreeClutch: trait 

includes Clutch 

introduces free-clutch : -> Bool 

\end{spec}\\ 

\begin{spec> '/.EventTheory 

DisableClutch: trait 

includes Clutch 
introduces disable-clutch : -> Bool 

\end{spec}\\ 

\begin{spec} '/.EventTheory 

EngageClutch: trait 

includes Clutch 
introduces engage-clutch : -> Bool 

\end{spec}\\ 

\begin{spec} '/.ObjectTheory 

ClutchMotorAssembly(CMA): trait 

includes Motor, Clutch 

ClutchMotorAssem tuple of motor : M, 
clutch : C 

\end{spec}\\ 

\begin{spec} '/.LinkTheory 

KI: trait 
includes Gun, Holster 

introduces 
a-gun: KI-Link -> G 

a-holster: KI-Link -> H 

new-KI-link: G, H -> KI-Link 
asserts \forall g: G, h: H 

gun-obj(new-KI-link(g, h)) = g; 

holster-obj(new-KI-link(g, h)) = h 

\end{spec}\\ 

\begin{spec} '/.AssociationTheory 

Kept-In: trait 
includes Set(Kept-In for C, KI for E), KI 

introduces 

new-Kept-In: Kpt-In, G, H -> Kpt-In 

image: Kpt-In, G -> HolsterSet 

image: Kpt-In, H -> GunSet 

is-kept-in: Kpt-In, G, H -> boolean 

asserts \forall k: Kpt-In, g: G, h: H, x: KI-Link 

size(image(k, g)) = 1; 

size(image(k, h)) = 1; 
(in(x, k) \and (a-gun(x) = g)) == in(a-holster(x), image(k, g)); 
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(in(x, k) \and (a-holster(x) = h)) == in(a-gun(x), image(k, h)); 

new-kept-in = empty-set; 

is-kept-in(new-kept-in, g, h) = false; 
is-kept-in(k, g, h) == (in (g, image(k, h)) \and in (h, image(k, g))) 

\end{spec}\\ 

\begin{spec} V.ObjectTheory 

GunHolsterAssembly(GHA): trait 

includes Gun, Holster 

GunHolstAssem tuple of gun : G, 

holster : H 

\end{spec}\\ 

\begin{spec} '/.ObjectTheory 

SophisticatedPump: trait 

includes Pump(SP for P), Integer 

introduces 

volumeSelect: SP -> Int 
amountSelect: SP -> Int 

\end{spec}\\ 

\begin{spec> 7,0bjectTheory 

Pump(P): trait 
includes 

Set(DisplaySet for C, Display for E), 
Set(GHASet for C, GunHolsterAssembly for E), 

Set(CMASet for C, ClutchMotorAssembly for E), 

PumpController, Kept-In 
P tuple of gun-holster-assembly : GHASet, 

clutch-motor-assembly : CMASet, 

pump-controller  : PC, 
display  : DisplaySet, 

kept-in: Kpt-In 

asserts \forall p: P 
size(display(p)) >= 1; 

size(gun-holster-assembly(p)) >= 1; 
size(clutch-motor-assembly(p)) >= 1 

\end{spec}\\ 

\begin{spec> '/.StateTheory 

PumpDisabled: trait 

includes Pump 
introduces PumpDisabledState: P -> Bool 

\end{spec}\\ 

\begin{spec} '/.StateTheory 

PumpEnabled: trait 

includes Pump 

introduces PumpEnabledState: P -> Bool 

\end{spec}\\ 
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\begin{spec> '/.EventTheory 
NewPump:  trait 

includes Pump 
introduces new-pump   :   -> Bool 

\end{spec}\\ 

\begin{spec} '/.EventTheory 
OverHeat:   trait 

includes Pump 
introduces  over-heat:   -> Bool 

\end{spec}\\ 

\begin{spec} '/.EventTheory 
EnablePump:   trait 

includes Pump 
introduces enable-pump:  -> Bool 

\end{spec}\\ 

\begin-[spec} '/.EventTheory 
DisablePump:   trait 

includes Pump 
introduces disable-pump: 

\end{spec} 
-> Bool 

\end{document} 

Table E.l    Clutch State Transition Table 

Current 
State 

Receive 
Event Parameters Guard 

Next 
State Action 

Send 
Event 

ClutchlnitialState 
ClutchlnitialState 
ClutchlnitialState 
ClutchlnitialState 
ClutchlnitialState 

DisableClutch 
EngageClutch 
FreeClutch 
NewClutch 
OverHeat 

ClutchlnitialState 
ClutchlnitialState 
ClutchlnitialState 
ClutchDisabled 
ClutchlnitialState 

ClutchDisabled 
ClutchDisabled 
ClutchDisabled 
ClutchDisabled 

DisableClutch 
EngageClutch 
FreeClutch 
OverHeat 

ClutchDisabled 
ClutchDisabled 
ClutchFree 
ClutchFree 

ClutchFree 
ClutchFree 
ClutchFree 
ClutchFree 

DisableClutch 
EngageClutch 
FreeClutch 
OverHeat 

ClutchDisabled 
ClutchDisabled 
ClutchFree 
ClutchFree 

start-fuel 

ClutchEngaged 
ClutchEngaged 
ClutchEngaged 
ClutchEngaged 

DisableClutch 
EngageClutch 
FreeClutch 
OverHeat 

ClutchEngaged 
ClutchEngaged 
ClutchFree 
ClutchFree 

Table E.2    Display State Transition Table 

Current 
State 

Receive 
Event Parameters Guard 

Next 
State Action 

Send 
Event 

DisplaylnitialState 
Display Initials täte 
DisplaylnitialState 

NewDisplay 
Pulse 
ResetDisplay 

ZeroDisplay 
Display Initials täte 
Display Initials täte 

ZeroDisplay 
ZeroDisplay 

Pulse 
ResetDisplay 

IncrementDisplay 
ZeroDisplay 

updateCost, updateVolume 

IncrementDisplay 
IncrementDisplay 

Pulse 
ResetDisplay 

IncrementDisplay 
ZeroDisplay 

updateCost, updateVolume 
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Table E.3    Gun State Transition Table 

Current Receive Next Send 

State Event Parameters Guard State Action Event 

GunlnitialState NewGun GunDisabled 
GunlnitialState RemoveGun GunlnitialState 
GunlnitialState ReplaceGun GunlnitialState 
GunlnitialState DepressTrigger GunlnitialState 
GunlnitialState ReleaseTrigger GunlnitialState 
GunlnitialState CutOffSupply GunlnitialState 
GunlnitialState OverHeat GunlnitialState 

GunDisabled RemoveGun GunEnabled ReleaseHolsterS witch 

GunDisabled ReplaceGun GunDisabled 
GunDisabled DepressTrigger GunDisabled 
GunDisabled ReleaseTrigger GunDisabled 
GunDisabled CutOffSupply GunDisabled 
GunDisabled OverHeat GunDisabled 

GunEnabled RemoveGun GunEnabled 
GunEnabled ReplaceGun GunDisabled start-timer CloseHolsterS witch 

GunEnabled DepressTrigger GunOn EngageClutch 

GunEnabled ReleaseTrigger GunEnabled 
GunEnabled CutOffSupply GunEnabled 
GunEnabled OverHeat Disabled 

GunOn RemoveGun GunOn 
GunOn ReplaceGun GunOn 
GunOn DepressTrigger GunOn 
GunOn ReleaseTrigger GunEnabled FreeClutch 

GunOn CutOffSupply GunEnabled FreeClutch 

GunOn OverHeat GunDisabled 1 1 

Table E.4    Holster State Transition Table 

Current 
State 

Receive 
Event Parameters Guard 

Next 
State Action 

Send 
Event 

HolsterlnitialState 
HolsterlnitialState 
HolsterlnitialState 

NewHolster 
ReleaseHolsterS witch 
CloseHolsterS witch 

HolsterWait 
HolsterlnitialState 
HolsterlnitialState 

Holster Wait 
Holster Wait 

ReleaseHolsterS witch 
CloseHolsterS witch 

Holster Working 
HolsterWait 

Hoi s t e r World n g 
Holst er Working 

CloseHolsterS witch 
ReleaseHolsterS witch 

HolsterWait 
Holst er Working 

Table E.5    Motor State Transition Table 

Current 
State 

Receive 
Event Parameters Guard 

Next 
State Action 

Send 
Event 

MotorlnitialState 
MotorlnitialState 
MotorlnitialState 

NewMotor 
StartPumpMotor 
StopMotor 

MotorDisabled 
MotorlnitialState 
MotorlnitialState 

MotorDisabled 
MotorDisabled 

StartPumpMotor 
StopMotor 

MotorRunning 
MotorDisabled 

FreeClutch 

MotorRunning 
MotorRunning 
MotorRunning 

StopMotor 
StartPumpMotor 

temp > 300 

MotorDisabled 
MotorRunning 
MotorDisabled 

DisableClutch 

OverHeat 

Table E.6    Pump State Transition Table 

Current 
State 

Receive 
Event Parameters Guard 

Next 
State Action 

Send 
Event 

PumpInitialState 
PumpInitialState 
PumpInitialState 
PumpInitialState 

NewPump 
EnablePump 
DisablePump 
OverHeat 

PumpDisabled 
PumpInitialState 
PumpInitialState 
PumpInitialState 

PumpDisabled 
PumpDisabled 
PumpDisabled 

EnablePump 
DisablePump 
OverHeat 

PumpEnabled 
PumpDisabled 
PumpDisabled 

updatePump StartPumpMotor; ResetDisplay 

PumpEnabled 
PumpEnabled 
PumpEnabled 

DisablePump 
EnablePump 
OverHeat 

PumpDisabled 
PumpEnabled 
PumpDisabled 
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Appendix F.   O-SLANG for Pump Domain Example 

This appendix contains the O-SLANG specifications for the Pump example that were 

automatically generated from the ULARCH traits and statetransition tables in Appendix 

E. 

class PumpController is 

class-sort PumpController 

sort 

PC 
sort-axioms 

PumpController = PC 

ops 
attr-equal: PumpController, PumpController -> boolean 

attributes 
pumpld: PC -> Integer 

methods 
create-PumpController: -> PumpController 

events 
new-PumpController: -> PumpController 

axioms 
attr-equal ( new-PumpController, create-PumpController); 

attr-equal ( PumpController-1, PumpController-2) => 

(pumpld ( PumpController-1) = pumpld ( PumpController-2)); 

pumpld ( create-PumpController) = 0 

end-class 

class PumpController-Class is 

class-sort PumpController-Class 

contained-class PumpController 

methods 
create-PumpController-Class: -> PumpController-Class 

events 
new-PumpController-Class: -> PumpController-Class 

axioms 
create-PumpController-Class = empty-set; 
new-PumpController-Class = create-PumpController-Class 

end-class 

class Display is 

class-sort Display 

sort 

D, Display-State 

sort-axioms 

Display = D 

ops 
attr-equal: Display, Display -> boolean 

attributes 

vol-inc: D -> Integer 

grade: D -> Integer 

volume: D -> Integer 

cost: D -> Integer 

state-attributes 

DisplayState: Display -> Display-State 

methods 
create-Display: -> Display 
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update-cost: D, Integer, Integer -> D 

update-volume: D, Integer -> D 

states 
ZeroDisplay: -> Display-State 
IncrementDisplay: -> Display-State 

events 
new-Display: -> Display 

Pulse: Display -> Display 

ResetDisplay: Display -> Display 

axioms 
DisplayState ( d) = ZeroDisplay => (cost ( d) = 0 6 volume ( d) = 0 &  grade ( d) = 0); 

Displaystate ( d) = IncrementDisplay => (cost ( d) >= 0 & volume ( d) >= 0 & grade ( d) >= 0): 

(DisplayState ( Display-31) = ZeroDisplay) => 

(DisplayState ( Pulse ( Display-31)) = IncrementDisplay & 
attr-equal ( Pulse ( Display-31), updateCost ( Display-31)) & 
attr-equal ( Pulse ( Display-31), updateVolume ( Display-31))); 

(DisplayState ( Display-32) = ZeroDisplay) => 

(DisplayState ( ResetDisplay ( Display-32)) = ZeroDisplay); 

(DisplayState ( Display-33) = IncrementDisplay) => 

(DisplayState ( Pulse ( Display-33)) = IncrementDisplay 4 

attr-equal ( Pulse ( Display-33), updateCost ( Display-33)) & 

attr-equal ( Pulse ( Display-33), updateVolume ( Display-33))); 

(DisplayState ( Display-34) = IncrementDisplay) => 

(DisplayState ( ResetDisplay ( Display-34)) = ZeroDisplay); 
DisplayState ( new-Display) = ZeroDisplay 6 attr-equal ( new-Display, create-Display); 

attr-equal ( Display-36, Display-37) => 

(vol-inc ( Display-36) = vol-inc ( Display-37) & 
grade ( Display-36) = grade ( Display-37) & 

volume ( Display-36) = volume ( Display-37) & 

cost ( Display-36) = cost ( Display-37)); 

ZeroDisplay <> IncrementDisplay; 

vol-inc ( create-Display) = 0; 

grade ( create-Display) = 0; 

volume ( create-Display) = 0; 

cost ( create-Display) = 0; 
vol-inc ( update-cost ( Display-38, Int-1, Int-2)) = vol-inc ( Display-38); 

grade ( update-cost ( Display-39, Int-3, Int-4)) = grade ( Display-39); 

volume ( update-cost ( Display-40, Int-5, Int-6)) = volume ( Display-40); 

cost ( update-cost ( d, c, p)) = (c + p); 

vol-inc ( update-volume ( Display-41, Int-7)) = vol-inc ( Display-41); 

grade ( update-volume ( Display-42, Int-8)) = grade ( Display-42); 

volume ( update-volume ( d, v)) = (v + vol-inc ( d)); 

cost ( update-volume ( Display-43, Int-9)) = cost ( Display-43) 

end-class 

class Display-Class is 

class-sort Display-Class 

contained-class Display 

methods 
create-Display-Class: -> Display-Class 

events 
new-Display-Class: -> Display-Class 

Pulse: Display-Class -> Display-Class 

ResetDisplay: Display-Class -> Display-Class 

axioms 

create-Display-Class = empty-set; 

new-Display-Class = create-Display-Class; 

in ( Display-28, Display-Class-7) <=> 

in ( Pulse ( Display-28), Pulse ( Display-Class-7)); 

in ( Display-29, Display-Class-8) <=> 

in ( ResetDisplay ( Display-29), ResetDisplay ( Display-Class-8)) 

end-class 

class Gun is 

class-sort Gun 
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sort 
Gun-State, Clutch, Holster 

sort-axioms 
Gun = G 

ops 
attr-equal: Gun, Gun -> boolean 

attributes 
Clutch-obj: Gun -> Clutch 
Holster-obj: Gun -> Holster 

state-attributes 
GunState: Gun -> Gun-State 

methods 
create-Gun: -> Gun 

states 
GunDisabled: -> Gun-State 
GunEnabled: -> Gun-State 
GunOn: -> Gun-State 

events 
new-Gun: -> Gun 
OverHeat: Gun -> Gun 
RemoveGun: Gun -> Gun 
ReplaceGun: Gun -> Gun 
DepressTrigger: Gun -> Gun 
ReleaseTrigger: Gun -> Gun 
CutOfiSupply: Gun -> Gun 
ReleaseHolsterSwitch: Holster -> Holster 
CloseHolsterSwitch: Holster -> Holster 
EngageClutch: Clutch -> Clutch 
FreeClutch: Clutch -> Clutch 

axioms 
(GunState ( Gun-89) = GunDisabled) => 

(GunState ( RemoveGun ( Gun-89)) = GunEnabled & 
(Holster-obj ( RemoveGun ( Gun-89)) = ReleaseHolsterSwitch ( Holster-obj ( Gun-89)))); 

(GunState ( Gun-90) = GunDisabled) => (GunState ( ReplaceGun ( Gun-90)) = GunDisabled); 
(GunState ( Gun-91) = GunDisabled) => (GunState ( DepressTrigger ( Gun-91)) = GunDisabled); 
(GunState ( Gun-92) = GunDisabled) => (GunState ( ReleaseTrigger ( Gun-92)) = GunDisabled); 
(GunState ( Gun-93) = GunDisabled) => (GunState ( CutOffSupply ( Gun-93)) = GunDisabled); 
(GunState ( Gun-94) = GunDisabled) => (GunState ( OverHeat ( Gun-94)) = GunDisabled); 
(GunState ( Gun-95) = GunEnabled) => (GunState ( RemoveGun ( Gun-95)) = GunEnabled); 
(GunState ( Gun-96) = GunEnabled) => 
(GunState ( ReplaceGun ( Gun-96)) = GunDisabled & 
attr-equal ( ReplaceGun ( Gun-96), start-timer ( Gun-96)) & 
(Holster-obj ( ReplaceGun ( Gun-96)) = CloseHolsterSwitch ( Holster-obj ( Gun-96)))); 

(GunState ( Gun-97) = GunEnabled) => 
(GunState ( DepressTrigger ( Gun-97)) = GunOn & 
(Clutch-obj ( DepressTrigger ( Gun-97)) = EngageClutch ( Clutch-obj ( Gun-97)))); 

(GunState ( Gun-98) = GunEnabled) => (GunState ( ReleaseTrigger ( Gun-98)) = GunEnabled); 
(GunState ( Gun-99) = GunEnabled) => (GunState ( CutOffSupply ( Gun-99)) = GunEnabled); 
(GunState ( Gun-100) = GunEnabled) => (GunState ( OverHeat ( Gun-100)) = Disabled); 
(GunState ( Gun-101) = GunOn) => (GunState ( RemoveGun ( Gun-101)) = GunOn); 
(GunState ( Gun-102) = GunOn) => (GunState ( ReplaceGun ( Gun-102)) = GunOn); 
(GunState ( Gun-103) = GunOn) => (GunState ( DepressTrigger ( Gun-103)) = GunOn); 
(GunState ( Gun-104) = GunOn) => 

(GunState ( ReleaseTrigger ( Gun-104)) = GunEnabled & 
(Clutch-obj ( ReleaseTrigger ( Gun-104)) = FreeClutch ( Clutch-obj ( Gun-104)))); 

(GunState ( Gun-105) = GunOn) => 
(GunState ( CutOfiSupply ( Gun-105)) = GunEnabled & 

(Clutch-obj ( CutOffSupply ( Gun-105)) = FreeClutch ( Clutch-obj ( Gun-105)))); 
(GunState ( Gun-106) = GunOn) => (GunState ( OverHeat ( Gun-106)) = GunDisabled); 
GunState ( new-Gun) = GunDisabled & attr-equal ( new-Gun, create-Gun); 
attr-equal ( Gun-108, Gun-109) => 

(Clutch-obj ( Gun-108) = Clutch-obj ( Gun-109) & 
Holster-obj ( Gun-108) = Holster-obj ( Gun-109)); 

GunDisabled <> GunEnabled; 
GunDisabled <> GunOn; 
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GunEnabled <> GunOn; 

Clutch-obj ( create-Gun) = UNDEFINED; 

Holster-obj ( create-Gun) = UNDEFINED 

end-class 

class Gun-Class is 

class-sort Gun-Class 

contained-class Gun 

methods 
create-Gun-Class: -> Gun-Class 

events 
new-Gun-Class: -> Gun-Class 

OverHeat: Gun-Class -> Gun-Class 

RemoveGun: Gun-Class -> Gun-Class 

ReplaceGun: Gun-Class -> Gun-Class 

DepressTrigger: Gun-Class -> Gun-Class 

ReleaseTrigger: Gun-Class -> Gun-Class 

CutOffSupply: Gun-Class -> Gun-Class 

axioms 

create-Gun-Class = empty-set; 

new-Gun-Class = create-Gun-Class; 

in ( Gun-82, Gun-Class-19) <=> 

in ( OverHeat ( Gun-82), OverHeat ( Gun-Class-19)); 

in ( Gun-83, Gun-Class-20) <=> 
in ( RemoveGun ( Gun-83), RemoveGun ( Gun-Class-20)); 

in ( Gun-84, Gun-Class-21) <=> 

in ( ReplaceGun ( Gun-84), ReplaceGun ( Gun-Class-21)); 

in ( Gun-85, Gun-Class-22) <=> 
in ( DepressTrigger ( Gun-85), DepressTrigger ( Gun-Class-22)); 

in ( Gun-86, Gun-Class-23) <=> 
in ( ReleaseTrigger ( Gun-86), ReleaseTrigger ( Gun-Class-23)); 

in ( Gun-87, Gun-Class-24) <=> 
in ( CutOffSupply ( Gun-87), CutOffSupply ( Gun-Class-24)) 

end-class 

class Holster is 

class-sort Holster 

sort 

Holster-State 

sort-axioms 

Holster = H 

state-attributes 
HolsterState: Holster -> Holster-State 

methods 
create-Holster: -> Holster 

states 
HolsterWait: -> Holster-State 

HolsterWorking: -> Holster-State 

events 
new-Holster: -> Holster 

ReleaseHolsterSwitch: Holster -> Holster 

CloseHolsterSwitch; Holster -> Holster 

axioms 

(HolsterState ( Holster-31) = HolsterWait) => 
(HolsterState ( ReleaseHolsterSwitch ( Holster-31)) = HolsterWorking); 

(HolsterState ( Holster-32) = HolsterWait) => 

(HolsterState ( CloseHolsterSwitch ( Holster-32)) = HolsterWait); 

(HolsterState ( Holster-33) = HolsterWorking) => 

(HolsterState ( CloseHolsterSwitch ( Holster-33)) = HolsterWait); 

(HolsterState ( Holster-34) = HolsterWorking) => 

(HolsterState ( ReleaseHolsterSwitch ( Holster-34)) = HolsterWorking); 

HolsterState ( new-Holster) = HolsterWait & (new-Holster = create-Holster); 

HolsterWait <> HolsterWorking 

end-class 
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class Holster-Class is 

class-sort Holster-Class 

contained-class Holster 

methods 
create-Holster-Class: -> Holster-Class 

events 
new-Holster-Class: -> Holster-Class 

ReleaseHolsterSwitch: Holster-Class -> Holster-Class 

CloseHolsterSwitch: Holster-Class -> Holster-Class 

axioms 

create-Holster-Class = empty-set; 

new-Holster-Class = create-Holster-Class; 

in ( Holster-28, Holster-Class-7) <=> 

in ( ReleaseHolsterSwitch ( Holster-28), 

ReleaseHolsterSwitch ( Holster-Class-7)); 

in ( Holster-29, Holster-Class-8) <=> 

in ( CloseHolsterSwitch ( Holster-29), 

CloseHolsterSwitch ( Holster-Class-8)) 

end-class 

class Motor is 
class-sort Motor 

sort 
Motor-State, OverHeat, Clutch 

sort-axioms 

Motor = M 

ops 
attr-equal: Motor, Motor -> boolean 

attributes 

OverHeat-obj: Motor -> OverHeat Clutch-obj: Motor -> Clutch 

state-attributes 

MotorState: Motor -> Motor-State 

methods 

create-Motor: -> Motor 

states 
MotorDisabled: -> Motor-State 

MotorRunning: -> Motor-State 

events 

new-Motor: -> Motor 

StartPumpMotor: Motor -> Motor 

StopMotor: Motor -> Motor 

FreeClutch: Clutch -> Clutch 

DisableClutch: Clutch -> Clutch 

OverHeat: OverHeat -> OverHeat 

axioms 
(MotorState ( Motor-64) = MotorDisabled) => 

(MotorState ( StartPumpMotor ( Motor-64)) = MotorRunning & 

(Clutch-obj ( StartPumpMotor ( Motor-64)) = FreeClutch ( Clutch-obj ( Motor-64)))); 

(MotorState ( Motor-65) = MotorDisabled) => 
(MotorState ( StopMotor ( Motor-65)) = MotorDisabled); 

(MotorState ( Motor-66) = MotorRunning) => 

(MotorState ( StopMotor ( Motor-66)) = MotorDisabled & 
(Clutch-obj ( StopMotor ( Motor-66)) = DisableClutch ( Clutch-obj ( Motor-66)))); 

(MotorState ( Motor-67) = MotorRunning) => 
(MotorState ( StartPumpMotor ( Motor-67)) = MotorRunning); 

(MotorState ( Motor-68) = MotorRunning & temp > 300) => 

(MotorState ( Motor-68) = MotorDisabled & 

(OverHeat-obj ( Motor-68) = OverHeat ( OverHeat-obj ( Motor-68)))); 

MotorState ( new-Motor) = MotorDisabled & attr-equal ( new-Motor, create-Motor); 

attr-equal ( Motor-70, Motor-71) => 

(OverHeat-obj ( Motor-70) = OverHeat-obj ( Motor-71) & 

Clutch-obj ( Motor-70) = Clutch-obj ( Motor-71)); 

MotorDisabled <> MotorRunning; 

Clutch-obj ( create-Motor) = UNDEFINED 

end-class 
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class Motor-Class is 
class-sort Motor-Class 

contained-class Motor 

methods 
create-Motor-Class: -> Motor-Class 

events 

new-Motor-Class: -> Motor-Class 

StartPumpMotor: Motor-Class -> Motor-Class 

StopMotor: Motor-Class -> Motor-Class 

axioms 
create-Motor-Class = empty-set; 

new-Motor-Class = create-Motor-Class; 

in ( Motor-61, Motor-Class-7) <=> 
in ( StartPumpMotor ( Motor-61), StartPumpMotor ( Motor-Class-7)); 

in ( Motor-62, Motor-Class-8) <=> 
in ( StopMotor ( Motor-62), StopMotor ( Motor-Class-8)) 

end-class 

class Clutch is 

class-sort Clutch 

sort 

Clutch-State 

sort-axioms 

Clutch = C 
state-attributes 

ClutchState: Clutch -> Clutch-State 

methods 

create-Clutch: -> Clutch 

states 
ClutchDisabled: -> Clutch-State 

ClutchFree: -> Clutch-State 

ClutchEngaged: -> Clutch-State 

events 

new-Clutch: -> Clutch 
OverHeat: Clutch -> Clutch 

FreeClutch: Clutch -> Clutch 

DisableClutch: Clutch -> Clutch 

EngageClutch: Clutch -> Clutch 

axioms 
(ClutchState ( Clutch-63) = ClutchDisabled) => 

(ClutchState ( DisableClutch ( Clutch-63)) = ClutchDisabled); 

(ClutchState ( Clutch-64) = ClutchDisabled) => 

(ClutchState ( EngageClutch ( Clutch-64)) = ClutchDisabled); 

(ClutchState ( Clutch-65) = ClutchDisabled) => 

(ClutchState ( FreeClutch ( Clutch-65)) = ClutchFree); 

(ClutchState ( Clutch-66) = ClutchDisabled) => 

(ClutchState ( OverHeat ( Clutch-66)) = ClutchFree); 

(ClutchState ( Clutch-67) = ClutchFree) => 
(ClutchState ( DisableClutch ( Clutch-67)) = ClutchDisabled); 

(ClutchState ( Clutch-68) = ClutchFree) => 

(ClutchState ( EngageClutch ( Clutch-68)) = ClutchDisabled & 
attr-equal ( EngageClutch ( Clutch-68), start-fuel ( Clutch-68))); 

(ClutchState ( Clutch-69) = ClutchFree) => 

(ClutchState ( FreeClutch ( Clutch-69)) = ClutchFree); 

(ClutchState ( Clutch-70) = ClutchFree) => 

(ClutchState ( OverHeat ( Clutch-70)) = ClutchFree); 

(ClutchState ( Clutch-71) = ClutchEngaged) => 

(ClutchState ( DisableClutch ( Clutch-71)) = ClutchEngaged); 

(ClutchState ( Clutch-72) = ClutchEngaged) => 

(ClutchState ( EngageClutch ( Clutch-72)) = ClutchEngaged); 

(ClutchState ( Clutch-73) = ClutchEngaged) => 

(ClutchState ( FreeClutch ( Clutch-73)) = ClutchFree); 

(ClutchState ( Clutch-74) = ClutchEngaged) => 

(ClutchState ( OverHeat ( Clutch-74)) = ClutchFree); 
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ClutchState ( new-Clutch) = ClutchDisabled & (new-Clutch = create-Clutch); 

ClutchDisabled <> ClutchFree; 

ClutchDisabled <> ClutchEngaged; 

ClutchFree <> ClutchEngaged 

end-class 

class Clutch-Class is 

class-sort Clutch-Class 

contained-class Clutch 

methods 
create-Clutch-Class: -> Clutch-Class 

events 

new-Clutch-Class: -> Clutch-Class 

OverHeat: Clutch-Class -> Clutch-Class 

FreeClutch: Clutch-Class -> Clutch-Class 

DisableClutch: Clutch-Class -> Clutch-Class 

EngageClutch: Clutch-Class -> Clutch-Class 

axioms 

create-Clutch-Class = empty-set; 

new-Clutch-Class = create-Clutch-Class; 

in ( Clutch-58, Clutch-Class-13) <=> 
in ( OverHeat ( Clutch-58), OverHeat ( Clutch-Class-13)); 

in ( Clutch-69, Clutch-Class-14) <=> 
in ( FreeClutch ( Clutch-59), FreeClutch ( Clutch-Class-14)); 

in ( Clutch-60, Clutch-Class-15) <=> 
in ( DisableClutch ( Clutch-60), DisableClutch ( Clutch-Class-15)); 

in ( Clutch-61, Clutch-Class-16) <=> 

in ( EngageClutch ( Clutch-61), EngageClutch ( Clutch-Class-16)) 

end-class 

class ClutchMotorAssembly is 

class-sort ClutchMotorAssembly 

import 
Clutch, Motor, ClutchMotorAssembly-aggregate 

sort-axioms 

ClutchMotorAssembly = CMA 

ops 
attr-equal: ClutchMotorAssembly, ClutchMotorAssembly -> boolean 

attributes 

Motor-obj: ClutchMotorAssembly -> Motor 

Clutch-obj: ClutchMotorAssembly -> Clutch 

methods 

create-ClutchMotorAssembly: -> ClutchMotorAssembly 

events 

new-ClutchMotorAssembly: -> ClutchMotorAssembly 

axioms 

attr-equal ( new-ClutchMotorAssembly, create-ClutchMotorAssembly); 

attr-equal ( ClutchMotorAssembly-1, ClutchMotorAssembly-2) => 

(Motor-obj ( ClutchMotorAssembly-1) = Motor-obj ( ClutchMotorAssembly-2) & 

Clutch-obj ( ClutchMotorAssembly-1) = Clutch-obj ( ClutchMotorAssembly-2)); 

Motor-obj ( create-ClutchMotorAssembly) = new-Motor; 

Clutch-obj ( create-ClutchMotorAssembly) = new-Clutch 

end-class 

class ClutchMotorAssembly-Class is 

class-sort ClutchMotorAssembly-Class 

contained-class ClutchMotorAssembly 

methods 

create-ClutchMotorAssembly-Class: -> ClutchMotorAssembly-Class 

events 

new-ClutchMotorAssembly-Class: -> ClutchMotorAssembly-Class 

axioms 

create-ClutchMotorAssembly-Class = empty-set; 

new-ClutchMotorAssembly-Class = create-ClutchMotorAssembly-Class 

end-class 
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aggregate ClutchMotorAssembly-aggregate is 

nodes 
Motor, Clutch, FreeClutch, DisableClutch, OverHeat-mult, 

OverHeat-mult: OverHeat-17, OverHeat-19: OverHeat-mult 

arcs 

FreeClutch -> Motor: <}, 
FreeClutch -> Clutch: { FreeClutch -> Clutch}, 

DisableClutch -> Motor: {}, 
DisableClutch -> Clutch: { DisableClutch -> Clutch}, 

OverHeat-17 -> Motor: {}, OverHeat-17 -> OverHeat-mult: {}, 

OverHeat-19 -> Clutch: { OverHeat -> Clutch}, 

OverHeat-19 -> OverHeat-mult: { OverHeat -> OBJ-11} 

end-aggregate 

link KI-Link is 

class-sort KI-Link 

sort 

Holster, Gun 

ops 
attr-equal: KI-Link, KI-Link -> boolean 

attributes 

a-holster: KI-Link -> Holster 

a-gun: KI-Link -> Gun 

methods 
create-KI-link: Gun, Holster -> KI-Link 

events 
new-KI-link: Gun, Holster -> KI-Link 

axioms 
attr-equal ( new-KI-Link ( a-holster-4, a-gun-4), create-KI-Link ( a-holster-4, a-gun-4)); 

a-holster ( create-KI-Link ( a-holster-4, a-gun-4)) = a-holster-4; 

a-gun ( create-KI-Link ( a-holster-4, a-gun-4)) = a-gun-4; 

attr-equal ( KI-Link-7, KI-Link-8) => 

(a-holster ( KI-Link-7) = a-holster ( KI-Link-8) & 

a-gun ( KI-Link-7) = a-gun ( KI-Link-8)) 

end-link 

association Kept-In is 
class-sort Kept-In link-class KI-Link 

sort 
Gun, Holster, boolean, Kpt-In, GunSet, HolsterSet 

sort-axioms 

Kept-In = Kpt-In 

methods 
is-kept-in: Kpt-In, Gun, Holster -> boolean 

image: Kpt-In, Holster -> GunSet 

image: Kpt-In, Gun -> HolsterSet 

create-Kept-In: Gun, Holster -> Kept-In 

events 
new-Kept-In: Gun, Holster -> Kept-In 

axioms 

size ( image ( k, g)) = 1; 

size ( image ( k, h)) = 1; 

(in ( x, k) & (a-gun ( x) = g)) <=> 

in ( a-holster ( x), image ( k, g)); 

(in ( x, k) &  (a-holster ( x) = h)) <=> 

in ( a-gun ( x), image ( k, h)); 

new-kept-in = empty-set; 

is-kept-in ( new-kept-in, g, h) = false; 

is-kept-in ( k, g, h) <=> 

(in ( g, image ( k, h)) &  in ( h, image ( k, g))) 

end-association 

class GunHolsterAssembly is 

class-sort GunHolsterAssembly 
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import 
Holster, Gun, GunHolsterAssembly-aggregate 

sort-axioms 

GunHolsterAssembly = GHA 

ops 

attr-equal: 
GunHolsterAssembly, GunHolsterAssembly -> boolean 

attributes 

Gun-obj: GunHolsterAssembly -> Gun 

Holster-obj: GunHolsterAssembly -> Holster 

methods 
create-GunHolsterAssembly: -> GunHolsterAssembly 

events 
new-GunHolsterAssembly: -> GunHolsterAssembly 

axioms 

attr-equal 
( new-GunHolsterAssembly, create-GunHolsterAssembly); 

attr-equal ( GunHolsterAssembly-1, GunHolsterAssembly-2) 

=> (Gun-obj ( GunHolsterAssembly-1) = 

Gun-obj ( GunHolsterAssembly-2) 

& Holster-obj ( GunHolsterAssembly-1) = 

Holster-obj ( GunHolsterAssembly-2)); 

Gun-obj ( create-GunHolsterAssembly) = new-Gun; 

Holster-obj ( create-GunHolsterAssembly) = new-Holster 

end-class 

class GunHolsterAssembly-Class is 

class-sort GunHolsterAssembly-Class 

contained-class GunHolsterAssembly 

methods 
create-GunHolsterAssembly-Class: -> GunHolsterAssembly-Class 

events 
new-GunHolsterAssembly-Class: -> GunHolsterAssembly-Class 

axioms 
create-GunHolsterAssembly-Class = empty-set; 

new-GunHolsterAssembly-Class = 

create-GunHolsterAssembly-Class 

end-class 

aggregate GunHolsterAssembly-aggregate is 

nodes 
Gun, Holster, OverHeat-mult, OverHeat-20: OverHeat-mult, 

ReleaseHolsterSwitch, CloseHolsterSwitch 

arcs 
OverHeat-20 -> Gun: { OverHeat -> Gun}, 

OverHeat-20 -> OverHeat-mult: { OverHeat -> OBJ-12}, 

ReleaseHolsterSwitch -> Gun: {}, 
ReleaseHolsterSwitch -> Holster: { ReleaseHolsterSwitch -> Holster}, 

CloseHolsterSwitch -> Gun: {}, 
CloseHolsterSwitch -> Holster: { CloseHolsterSwitch -> Holster} 

end-aggregate 

class SophisticatedPump is 

class-sort SophisticatedPump < Pump 

import 

Pump 

sort 

SP 

sort-axioms 

SophisticatedPump = SP 

ops 
attr-equal: SophisticatedPump, SophisticatedPump -> boolean 

attributes 

amountSelect: SP -> Integer volumeSelect: SP -> Integer 

axioms 
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attr-equal ( SophisticatedPump-33, SophisticatedPump-34) => 
(amountSelect ( SophisticatedPump-33) = amountSelect ( SophisticatedPump-34) ft 

volumeSelect ( SophisticatedPump-33) = volumeSelect ( SophisticatedPump-34)) 

end-class 

class SophisticatedPump-Class is 

class-sort SophisticatedPump-Class 

contained-class SophisticatedPump 

methods 
create-SophisticatedPump-Class: -> SophisticatedPump-Class 

events 
new-SophisticatedPump-Class: -> SophisticatedPump-Class 

axioms 

create-SophisticatedPump-Class = empty-set; 
new-SophisticatedPump-Class = create-SophisticatedPump-Class 

end-class 

class Pump is 

class-sort Pump 

import 
Kept-In, PumpController, Pump-aggregate 

sort 
Pump-State, GunHolsterAssembly-Class, 
ClutchMotorAssembly-Class, PumpController, Display-Class, 

Kept-In, Display, Motor 

sort-axioms 

Pump = P = OverHeat-18.0BJ-10; 

Motor = Motor-obj-sort; 

Display-Class = Display-obj-sort 

ops 

attr-equal: Pump, Pump -> boolean 

attributes 
GunHolsterAssembly-Class-obj: Pump -> GunHolsterAssembly-Class 

ClutchMotorAssembly-Class-obj: Pump -> ClutchMotorAssembly-Class 

PumpController-obj: Pump -> PumpController 
Display-Class-obj: Pump -> Display-Class 

Kept-In-obj: Pump -> Kept-In 

Display-obj: Pump -> Display 

Motor-obj: Pump -> Motor 

state-attributes 

PumpState: Pump -> Pump-State 

methods 
create-Pump: -> Pump 

states 
PumpDisabled: -> Pump-State PumpEnabled: -> Pump-State 

events 

new-Pump: -> Pump 

OverHeat: Pump -> Pump 

EnablePump: Pump -> Pump 
DisablePump: Pump -> Pump 

StartPumpMotor: Motor -> Motor 

ResetDisplay: Display -> Display 

axioms 

size ( Display-Class-obj ( Pump-58)) >= 1; 
size ( GunHolsterAssembly-Class-obj ( Pump-59)) >= 1; 

size ( ClutchMotorAssembly-Class-obj ( Pump-60)) >= 1; 

(PumpState ( Pump-65) = PumpDisabled) => 

(PumpState ( EnablePump ( Pump-65)) = PumpEnabled £ 

attr-equal ( EnablePump ( Pump-65), updatePump ( Pump-65)) ft 

(Motor-obj ( EnablePump ( Pump-65)) = StartPumpMotor ( Motor-obj ( Pump-65))) ft 

(Display-obj ( EnablePump ( Pump-65)) = ResetDisplay ( Display-obj ( Pump-65)))); 

(PumpState ( Pump-66) = PumpDisabled) => (PumpState ( DisablePump ( Pump-66)) = PumpDisabled); 

(PumpState ( Pump-67) = PumpDisabled) => (PumpState ( OverHeat ( Pump-67)) = PumpDisabled); 

(PumpState ( Pump-68) = PumpEnabled) => (PumpState ( DisablePump ( Pump-68)) = PumpDisabled); 

(PumpState ( Pump-69) = PumpEnabled) => (PumpState ( EnablePump ( Pump-69)) = PumpEnabled); 
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(PumpState ( Pump-70) = PumpEnabled) => (PumpState ( OverHeat ( Pump-70)) = PumpDisabled); 

PumpState ( new-Pump) = PumpDisabled & attr-equal ( new-Pump, create-Pump); 

attr-equal ( Pump-72, Pump-73) => 
(GunHolsterAssembly-Class-obj ( Pump-72) = GunHolsterAssembly-Class-obj ( Pump-73) & 

ClutchMotorAssembly-Class-obj ( Pump-72) = ClutchMotorAssembly-Class-obj ( Pump-73) 4 

PumpController-obj ( Pump-72) = PumpController-obj ( Pump-73) fc 

Display-Class-obj ( Pump-72) = Display-Class-obj ( Pump-73) & 
Kept-In-obj ( Pump-72) = Kept-In-obj ( Pump-73) & 

Display-obj ( Pump-72) = Display-obj ( Pump-73) £ 

Hotor-obj ( Pump-72) = Motor-obj ( Pump-73)); 

PumpDisabled <> PumpEnabled; 
GunHolsterAssembly-Class-obj ( create-Pump) = new-GunHolsterAssembly-Class; 

ClutchMotorAssembly-Class-obj ( create-Pump) = new-ClutchMotorAssembly-Class; 

PumpController-obj ( create-Pump) = new-PumpController; 

Display-Class-obj ( create-Pump) = new-Display-Class; 

Kept-In-obj ( create-Pump) = UNDEFINED; 

Display-obj ( create-Pump) = UNDEFINED; 

Motor-obj ( create-Pump) = UNDEFINED 

end-class 

class Pump-Class is 
class-sort Pump-Class 

contained-class Pump 

methods 
create-Pump-Class: -> Pump-Class 

events 
new-Pump-Class: -> Pump-Class 

OverHeat: Pump-Class -> Pump-Class 

EnablePump: Pump-Class -> Pump-Class 

DisablePump: Pump-Class -> Pump-Class 

axioms 
create-Pump-Class = empty-set; 

new-Pump-Class = create-Pump-Class; 

in ( Pump-61, Pump-Class-10) <=> 
in ( OverHeat ( Pump-61), OverHeat ( Pump-Class-10)); 

in ( Pump-62, Pump-Class-11) <=> 
in ( EnablePump ( Pump-62), EnablePump ( Pump-Class-11)); 

in ( Pump-63, Pump-Class-12) <=> 
in ( DisablePump ( Pump-63), DisablePump ( Pump-Class-12)) 

end-class 

aggregate Pump-aggregate is 

nodes 
GunHolsterAssembly-Class, ClutchMotorAssembly-Class, 

PumpController, Display-Class, Kept-In, Integer, 

SET-19: Set, SET-20: Set, SET-21: Set, SET-22: Set, 

Gun-Class, SET-23: Set, Holster-Class, SET-24: Set, 
OverHeat-mult, OverHeat-18: OverHeat-mult, EngageClutch, 

FreeClutch 

arcs 
SET-19 -> GunHolsterAssembly-Class: {  Set -> GunHolsterAssembly-Class, E -> GunHolsterAssembly}, 
SET-20 -> ClutchMotorAssembly-Class: { Set -> ClutchMotorAssembly-Class, E -> ClutchMotorAssembly}, 

SET-21 -> Display-Class: { Set -> Display-Class, E -> Display}, 

Integer -> SET-19: O, 

Integer -> SET-20: {}, 

Integer -> SET-21: <}, 

Integer -> SET-22: {}, 

SET-22 -> Kept-In: { Set -> Kept-In, E -> KI-Link}, 

Integer -> SET-23: O, 
SET-23 -> Gun-Class: < Set -> Gun-Class, E -> Gun}, 

SET-23 -> Kept-In: { Set -> GunSet, E -> Gun}, 

Integer -> SET-24: {}, 
SET-24 -> Holster-Class: { Set -> Holster-Class, E -> Holster}, 

SET-24 -> Kept-In: {.  Set -> HolsterSet, E -> Holster}, 
OverHeat-18 -> OverHeat-mult: { OverHeat -> OBJ-10}, 
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EngageClutch -> Gun: -Q, 
EngageClutch -> Clutch: { EngageClutch -> Clutch}, 

FreeClutch -> Gun: O, 
FreeClutch -> Clutch: { FreeClutch -> Clutch} 

end-aggregate 

event ReleaseHolsterSwitch is 

class-sort ReleaseHolsterSwitch 

events 
ReleaseHolsterSwitch: ReleaseHolsterSwitch -> ReleaseHolsterSwitch 

end-event 

event CloseHolsterSwitch is 

class-sort CloseHolsterSwitch 

events 
CloseHolsterSwitch: CloseHolsterSwitch -> CloseHolsterSwitch 

end-event 

event EngageClutch is 

class-sort EngageClutch 

events 
EngageClutch: EngageClutch -> EngageClutch 

end-event 

event FreeClutch is 

class-sort FreeClutch 

events 
FreeClutch: FreeClutch -> FreeClutch 

end-event 

event DisableClutch is 
class-sort DisableClutch 

events 
DisableClutch: DisableClutch -> DisableClutch 

end-event 

event QverHeat is 

class-sort OverHeat 

events 

OverHeat: OverHeat -> OverHeat 

end-event 

event OverHeat-mult is 

class-sort OverHeat 

sort OBJ-10, OBJ-il, OBJ-12 

attributes 

OBJ-10-obj: OverHeat -> OBJ-10 

OBJ-11-obj: OverHeat -> OBJ-11 

OBJ-12-obj: OverHeat -> OBJ-12 

events 

OverHeat: OverHeat -> OverHeat 

OverHeat: OBJ-10 -> OBJ-10 

OverHeat: OBJ-11 -> OBJ-11 

OverHeat: OBJ-12 -> OBJ-12 

axioms 
OBJ-10-obj ( OverHeat ( OverHeat-16)) = OverHeat ( OBJ-10-obj ( OverHeat-16)); 

OBJ-11-obj ( OverHeat ( OverHeat-16)) = OverHeat ( OBJ-11-obj ( OverHeat-16)); 

OBJ-12-obj ( OverHeat ( OverHeat-16)) = OverHeat ( OBJ-12-obj ( OverHeat-16)) 

end-event 

event StartPumpMotor is 

class-sort StartPumpMotor 

events 

StartPumpMotor: StartPumpMotor -> StartPumpMotor 

end-event 
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event ResetDisplay is 

class-sort ResetDisplay 

events 
ResetDisplay: ResetDisplay -> ResetDisplay 

end-event 
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Appendix G.   User Manual for Formal Object Transformation System 

G. 1    Introduction 

This appendix outlines the procedures used to transform ULARCH traits and state 

transition tables into O-SLANG. First, the Refine files which are needed for the transfor- 

mation process are presented, along with their compilation and loading order. Next, the 

user files required to run the transformations are described. Finally, a sample run using 

the Pump domain example is presented. 

G.2    Refine Files 

This section outlines the procedures needed to initialize the transformation system. 

1. Load system files for Dialect and Object Inspector. 

• (load-system "Dialect") 

• (load-system "Intervista") 

2. Compile the domain model and grammar files for ULARCH, state transition tables, 

and O-SLANG if necessary. 

• M-x refine-compile-file ularch-dm.re 

• M-x refine-compile-file ularch-gram.re 

• M-x refine-compile-file stt-dm.re 

• M-x refine-compile-file stt-gram.re 

• M-x refine-compile-file oslang-dm.re 

• M-x refine-compile-file oslang-gram.re 

3. Load the domain model and grammar files for ULARCH, state transition tables, and 

O-SLANG. 

• M-x refine-load-file ularch-dm.lfaslsl 

• M-x refine-load-file ularch-gram.lfaslsl 
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• M-x refine-load-file stt-dm.lfaslsl 

• M-x refine-load-file stt-gram.lfaslsl 

• M-x refine-load-file oslang-dm.lfaslsl 

• M-x refine-load-file oslang-gram.lfaslsl 

4. Compile the lisp utilities file if necessary, and then load it. 

• M-x refine-compile-file lisp-utilities.lisp 

• M-x refine-load-file lisp-utilities.faslsl 

5. Compile the transformations file if necessary, and then load it. 

• M-x refine-compile-file uo-trans.re 

• M-x refine-load-file uo-trans.lfaslsl 

G.3    User Files 

In order to transform a ULARCH domain theory into an O-SLANG domain theory, 

several files are needed. These files are: 

• A JsZfile containing the ULARCH traits 

• A . stt file for each state transition table 

• A .dm file containing the names of the Asl file and all of the .stt files 

When the .dm file is constructed, the first line should contain the name of the .hi file, and 

each line thereafter should contain the name of a .stt file. To run the transformations, the 

function Transform-DomainModel is invoked from the command line in Refine as follows: 

.> (Transform-DomainModel "filename.dm") 

When the transformations complete, a .oslang file will be created in the same directory as 

the .dm file. 
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G-4    Sample Session 

This section shows a sample run using the Pump domain example. To transform the 

ULARCH and state transition table files for pump, the Refine files needed were first loaded 

using the steps outlined in Section G.2. Next, the user files were set up as described in 

Section G.3. The M and .stt files appear in appendix E. The file pump.dm is shown below. 

pump/pump.lsl 

pump/clutch.stt 

pump/display. stt 
pump/gun.stt 

pump/holster.stt 

pump/motor. stt 

pump/pump.stt 

Once the necessary files were set up the transformations were run as follows: 

.> (Transform-DomainModel "pump/pump.dm") 

Parsing "pump/pump.lsl"...Succeeded! 
Transforming Ularch to O-Slang...Rule successfully applied. 

Parsing "pump/clutch.stt"...Succeeded! 
Transforming "pump/clutch.stt" to O-Slang...Rule successfully applied. 

Parsing "pump/display.stt"...Succeeded! 
Transforming "pump/display.stt" to O-Slang...Rule successfully applied. 

Parsing "pump/gun.stt"...Succeeded! 
Transforming "pump/gun.stt" to O-Slang...Rule successfully applied. 

Parsing "pump/holster.stt"...Succeeded! 
Transforming "pump/holster.stt" to O-Slang...Rule successfully applied. 

Parsing "pump/motor.stt"...Succeeded! 

Transforming "pump/motor.stt" to O-Slang...Rule successfully applied. 

Parsing "pump/pump.stt"...Succeeded! 
Transforming "pump/pump.stt" to O-Slang...Rule successfully applied. 

Transforming "" to O-Slang...Rule successfully applied. 

Performing post processing... 
Updating aggregates for communication and associations...Succeeded! 

Adding object-valued attributes where needed...Succeeded! 

Adding 'new-' events and 'create-' events where needed...Succeeded! 

Updating axioms where needed...Succeeded! 

Replacing Int with Integer...Succeeded!Succeeded! 

Writing "pump/pump.oslang"... 

Succeeded, transformation complete! 
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