
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

THE DESIGN AND IMPLEMENTATION OF A COMPILER
FOR THE OBJECT-ORIENTED DATA DEFINITION

LANGUAGE

by

Luis M. Ramirez and Recep Tan
September 1995

Thesis Co-Advisors: David K. Hsiao
C. Thomas Wu

Approved for public release; distribution is unlimited.

19960207 020 #R£ QCMlJ^f IBBPECHÜD *

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) I 2. REPORT DATE
Sept 1995

13. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE
THE DESIGN AND IMPLEMENTATION OF A COMPILER FOR
THE OBJECT-ORIENTED DATA DEFINITION LANGUAGE

6. AUTHOR(S)

Ramirez, Luis M.,
Tan, Recep.

S. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

B. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position
of the Department of Defense or the United States Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
Classic data models such as the Relational and Hierarchical do not have capabilities to handle both of the object-oriented

relationships, inheritance and covering. Therefore, the problem addressed by this work is to design and implement a completely
new data model that embodies the object-oriented paradigm. With such an object-oriented data model (O-ODM), the direct
modelling of a variety of database applications becomes possible.

Database research at the Naval Postgraduate School has produced a Multimodeland Multilingual Database System called
M2DBS. M2DBS currently supports all the classic database data models as well as a newly developed O-ODM. The approach
taken is to first develop and build an entirely self-sufficient O-ODDL Compiler. Then, incorporate this compiler into the Kernel
Mapping System (KMS) of the M2DBS.

The results of this thesis is a compiler for the object-oriented data definition language (O-ODDL) of the O-ODM. This O-
ODDL compiler takes an O-ODM database specification as input and does an automatic translation into the data format
recognized by the M2DBS.

14. SUBJECT TERMS
Object-Oriented data model, Object-Oriented data definition language
compiler, Multimodel/Multilingual Database Management System

15. NUMBER OF PAGES

115
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

Approved for public release; distribution is unlimited

THE DESIGN AND IMPLEMENTATION OF A COMPILER FOR THE
OBJECT-ORIENTED DATA DEFINITION LANGUAGE

Luis M. Ramirez
Lieutenant, United States Navy

B.S., University Of California at Los Angeles, 1986

and

Recep Tan
Lieutenant Junior Grade, Turkish Navy

B.S., Turkish Naval Academy at Istanbul, 1989

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

Authors:

September 1995

(^(k>w^\

Approved by:
David K. Hsiao, Thesis Co-Advisor

Ted Lewis, Chairman,
Department of Computer Science

HI

IV

ABSTRACT

Classic data models such as the Relational and Hierarchical do not have capabilities

to handle both of the object-oriented relationships, inheritance and covering. Therefore, the

problem addressed by this work is to design and implement a completely new data model

that embodies the object-oriented paradigm. With such an object-oriented data model (O-

ODM), the direct modelling of a variety of database applications becomes possible.

Database research at the Naval Postgraduate School has produced a Multimodel and

Multilingual Database System called M2DBS. M2DBS currently supports all the classic

database data models as well as a newly developed O-ODM. The approach taken is to first

develop and build an entirely self-sufficient O-ODDL Compiler. Then, incorporate this

compiler into the Kernel Mapping System (KMS) of the M2DBS.

The results of this thesis is a compiler for the object-oriented data definition language

(O-ODDL) of the O-ODM. This O-ODDL compiler takes an O-ODM database

specification as input and does an automatic translation into the data format recognized by

the M2DBS.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. THE BACKGROUND 1

B. THE MOTIVATION 2

C. THE ORGANIZATION OF THIS THESIS 4

II. THE IMPLEMENTATION PROCESS 7

A. CONSTRUCTS FOR THE IMPLEMENTATION 7

1. Object-Oriented Constructs 7

a. Objects 7

b. Object Identifiers 7

c. Classes 8

d. Inheritance 8

e. Covering 8

B. THE IMPLEMENTATION STRATEGY 9

III. THE COMPILER SOURCE AND TARGET DATA LANGUAGES 11

A. FORMATS AND SPECIFICATIONS OF THE SOURCE 11

1. The Specification of an Object Class 11

2. The Specification of Object-Oriented Constructs in a Sample Data-

base 12

3. The Role of an Object-Oriented Schema 14

4. The Object-Oriented Data Language 16

B. THE TARGET DATA LANGUAGE FORMAT AND SPECIFICATION... 16

1. The Attribute-Based Data Model (ABDM) 16

2. The Attribute-Based Data Language (ABDL) 18

IV. OVERALL COMPILER DESIGN CONCEPTS 21

A. COMPILER COMPONENTS 21

1. The Scanner 21

Vll

a. Token Identification 22

2. The Parser 23

a. Grammar and Production Rules 24

3. The Code Generator 26

B. LEX AND YACC 26

1. Key Features 26

2. Decision To Use 27

V. OBJECT-ORIENTED DDL SCANNER 29

A. IMPLEMENTATION OVERVIEW 29

B. SCANNER SPECIFICATION 29

1. Tokens Recognized in the O-ODDL 29

2. Valid Token Patterns 31

3. Lex Implementation 32

VI. OBJECT-ORIENTED DDL PARSER 35

A. IMPLEMENTATION OVERVIEW 35

B. PARSER SPECIFICATION 36

1. YACC Implementation 37

VII. OBJECT-ORIENTED DDL CODE GENERATION 39

A. IMPLEMENTATION OVERVIEW 39

B. THE O-ODDL COMPILER DATA STRUCTURES 39

1. Target Language Data Structures 40

2. Data Dictionary Data Structures 42

C. INTENDED OUTPUT 45

1. Template File 45

2. Descriptor File 47

3. Data Dictionary File 49

D. C CODE IN YACC 51

VIII. INCORPATION OF O-ODDL COMPILER INTO EXISTING SYSTEM.. 53

via

A. M2DBMS EXISTING OVERALL DESIGN AND LOGIC 53

B. CONFIGURING DDL COMPILER TO EXISTING DESIGN 57

1. Problems Encountered 57

2. Problem Solutions 58

IX. SUMMARY AND CONCLUSIONS 63

A. LIMITATIONS 64

B. FUTURE RESEARCH 65

APPENDIX A - SAMPLE OBJECT-ORIENTED (FACSTU) DATABASE SOURCE

CODE 67

APPENDIX B - THE O-ODDL SCANNER (LEX) PROGRAM LISTING 69

APPENDIX C - THE BASIC O-ODDL PARSER (YACC) PROGRAM LISTING 71

APPENDIX D - THE OODDL COMPILER DATA STRUCTURES 75

APPENDIX E - THE FACSTU DATA DICTIONARY TABULAR LISTING 79

APPENDIX F - THE FINAL O-ODDL PARSER (YACC) PROGRAM LIST 81

APPENDIX G - SAMPLE DDL COMPILER OUTPUT FILES 87

1. FACSTU.d File: 87

2. FACSTU.tFile: 88

3. FACSTU.dictFile: 89

APPENDIX H - THE COMPILER MANUAL FOR THE OB JECT-ORIENTED

DATA DEFINITION LANGUAGE 93

1. An Introduction: 93

2. The Compiler Files: 93

3. Description of the Files: 94

4. How the User Compile and Use the Compiler: 97

LIST OF REFERENCES 99

INITIAL DISTRIBUTION LIST 101

IX

LIST OF FIGURES

1. The Multimodel and Multilingual Database Management System (M2DBMS) 3

2. The definition structure of a generic O-ODDL class 11

3. The FACSTU Database 13

4. The Generic Object-Oriented Schema format 15

5. An example of an ABDM Record 17

6. An example of a Query for ABDM data 18

7. An example INSERT Request 18

8. Basic compiler flow diagram 21

9. Interaction of scanner with parser 22

10. Examples of Tokens 23

11. Position of the parser in the compiler model 24

12. An example parse tree excerpt 25

13. Overall compiler flow diagram 27

14. A Listing of Valid O-ODDL Compiler Scanner Tokens 30

15. A Listing of Token Patterns 31

16. The general Lex program format 32

17. The O-ODDL Grammar and Production Rules 36

18. The general YACC program format 37

19. The dbid_node Data Structure 40

20. The obj_dbid_node Data Structure 41

21. The ocls_node Data Structure 42

22. The oattr_node Data Structure 42

23. The dict_ocls_node Data Structure 43

24. The dict_attr_node Data Structure 44

25. The Template File Format 45

26. A Typical Template Description 46

27. Algorithm for Creating the Template File 47

28. The Descriptor File Format 48

XI

29. Algorithm for Creating the Descriptor File 49

30. The Data Dictionary File Format 50

31. The Multi-model/Multi-lingual Database System 54

32. O-ODDL Compiler Component Placement 56

33. The Kms subdirectory Makefile 59

Xll

I. INTRODUCTION

A. THE BACKGROUND

The conventional design approach of database systems has been to produce a

mono-model and mono-lingual system. Such a system is one where the user sees and

utilizes the database system with a specific data model and its model-based data

language. Some examples of these database systems are:

• IBM's SQL/Data System which supports the relational model and IBM's

Structured English Query Language (SGL)

• IBM's Information Management System (IMS) which supports the hierarchical

model and IBM's Data language I (DL/I)

• Univac's CODASYL-DML/Data System which supports the network model and

Univac's CODASYL Data Manipulation Language (CODASYL-DML)

• CCA's Daplex/Data System which supports the functional model and CCA's

Daplex Language.

These mono-model and mono-lingual database systems are all designed to meet

specific application requirements. For example, the relational database system is

designed for keeping records, the hierarchical database system is designed for tracking

the product assembly; the network database system is designed for controlling

inventories, and the functional database system is designed for making inferences. In

order to accommodate varied applications, an organization is forced to support multiple

database systems, i.e., all these mono-model and mono-lingual type database systems.

But, all these application-specific database systems have one severe drawback. They lack

the ability to share data among themselves. Our research effort to overcome this

limitation has been to introduce a new and unconventional approach to the design and

implementation of a database system, known as the multi-model and multi-lingual

database system for sharing data among heterogeneous databases [Ref. 1].

The Multi-model and Multi-lingual Database Management Systems (M2DBMS),

at the Naval Postgraduate School's Laboratory for Database Systems Research, is a

single database system that can execute many transactions written in different data

languages and support many databases structured on different data models. M2DBMS

supports the aforementioned data models with a single data model, the Attribute-Based

Data Model (ABDM), and the aforementioned data languages with a single data

language, the Attribute-Based Data Language (ABDL) [Ref. 2]. We have developed an

attribute-based database system which supports hierarchical, relational, network, and

functional databases, and runs transactions in DL/I, SQL, CODASYL-DML, and Daplex

on their respective databases. However, in order to accommodate new application

requirements of the future, an additional goal is to support a new pair of data model and

data language, known as Object-Oriented Data Model, and Object-Oriented Data

Language.

B. THE MOTIVATION

The work completed for this thesis is part of a large research effort to design and

build a new data-model-and-data-language support in M2DBMS, i.e., Object-Oriented-

Model-and-Object-Oriented-Language Interface. This thesis is focused on the object-

oriented-Data-Model Interface. See Figure 1 of the interface in the context with other

interfaces. This new interface supports a database with Object-Oriented constructs such

as objects, classes, inheritances, and coverings. For a detailed description of these

constructs and other related constructs, see references [Ref. 3]. In this thesis, the design

and implementation of a compiler which converts a database specified in the Object-

Oriented Data Definition Language (O-ODDL) into an equivalent database in the

attribute-based data model (ABDM) are elaborated. The attribute-based database is

supported in the attribute-based database system (ABDBMS).

A kernal
database user

A hierarchical
database user

A relational
database user

The kernal data
model and kernal
data language
interface

The hierarchical data |
model and DL/I
interface

The relational data
model and SQL
interface

A kernal
database schema

A hierarchical
database schema

A relational
database schema

A
kernal

database

A
functional
database in
the kernal

form

A
hierarchical
database in
the kernal

form

A
network

database in
the kernal

form

A functional
database schema A network

database schema

The functional data
model and Daplex
language interface

A functional
database user

The network data
model and the
CODASYL
language interface

A network
database user

A
relational

database in the
kernal form

N
I

An i
object- |
oriented i

database in
the kernal '

form I
I

y

rAn object-oriented"1

Ldatabase_schema _j

■ The object-oriented
' data model and
| language interface

An object-oriented
database user

(1) The term "kernal" means "attribute-based" in this figure.
(2) Solid lines characterize existing software and data. Dashed lines characterize

present research efforts.

Figure 1. The Multimodel and Multilingual Database
Management System (M2DBMS).

We utilize compiler-writing tools such as Lex and YACC for the implementation of the

O-ODDL Compiler. First, the O-ODDL Compiler scans tokens of an O-ODDL

specification of an Object-Oriented database, and rejects unacceptable ones. Next, the

parser of the O-ODDL Compiler uses the scanned and accepted tokens to verify the

syntactic and semantic correctness of O-ODDL statements. Concurrent to the parsing,

dynamic storage structures are filled with data for the Object-Oriented database that will

be used in the production of equivalent ABDM (called kernal informally) constructs and

the attribute-based (kernal) database. The final step is to incorporate the compiler into

the existing M2DBMS.

C. THE ORGANIZATION OF THIS THESIS

The remainder of this thesis is organized into eight chapters and eight

appendices. In Chapter II, we present a summary of project goals and how the work for

this thesis fits into the other project efforts. In Chapter III, we present the background

material: an overview of the source data model and language, i.e., the O-ODM and O-

ODDL, and the target data model and language, ABDM and ABDL. In Chapter IV, we

present the design of three compiler components: the scanner, the parser, and the code

generator. Along with an overview of the UNIX compiler tools, Lex and YACC. In

Chapter V, we present the O-ODDL and its subsequent lexical analysis using Lex. In

Chapter VI, we present the grammar and production rules of the O-ODDL and their

syntactical analysis (i.e., parsing) and productions using YACC. In Chapter VII, we

describe the compiler output: the descriptor file, the template file, and the data

dictionary, which constitute the ABDM equivalent of an O-ODDL specification. In

Chapter VIII, we present a summary of the logic of the M DBMS, and the incorporation

of the newly completed O-ODDL Compiler into M2DBMS. Finally, in Chapter DC, we

make concluding remarks on accomplishments and limitations.

Of the appendices, Appendix A contains a sample Object-Oriented database

specification. We reference to this specification throughout the thesis; Appendix B has

the listing of the O-ODDL scanner program written in the Lex format; Appendix C has

the listing of the basic O-ODDL parser program in the YACC format; Appendix D

contains the data structures used for the object-oriented-data-model interface; Appendix

E contains a complete tabular listing of the Data Dictionary that corresponds to the

sample database given in Appendix A; Appendix F has the listing of the final O-ODDL

parser program in the YACC format, which includes a generator for the target language

code; Appendix G contains sample output files produced by the compiler; Finally,

Appendix H is the user manual for the O-ODDL Compiler.

II. THE IMPLEMENTATION PROCESS

The overall goal of the project, in which this thesis research is a part, is to design,

implement, and add an entirely new object-oriented-data-model-and-language-interface to

the M2DBMS. Since there is an entirely new data model in the interface, there exists no

specification for the object-oriented data-modeled database given. So, the features and

requirements for such a database are defined first.

A. CONSTRUCTS FOR THE IMPLEMENTATION

The specifications for our object-oriented database are based on features and

constructs borrowed mostly from object-oriented programming languages. The following

is brief overview of concepts associated with the object-oriented paradigm. Refer to [Ref.

3] for a more detailed discussion.

1. Object-Oriented Constructs

The object-oriented constructs, for a data model must incorporate at the minimum:

attributes, methods, objects, object identifiers, object classes, inheritance, and covering.

a. Objects

An object is the most fundamental or basic construct in the object-oriented

data model. Objects are simply collections of data. More specifically, each collection, i.e.,

an object, consists of the values of certain attributes and names of known methods. An

object is said to be an instance of a class which is defined in paragraph c.

b. Object Identifiers

Each object is assigned a system-defined object identifier (OID). All OIDs

are distinguishable and unique. With these OIDs, the sharing of objects is possible. This

sharing of objects has two primary benefits. The first benefit is that the actual physical

storage requirements of the database is reduced. Second, the updating and integrity

problem of traditional databases is reduced due to the absence of redundant data.

c. Classes

A class is a grouping of objects which share common attributes, methods,

or both. A class is defined by one or two parts, a set of attributes and a, possibly empty, set

of methods. The set of attributes defines the data that can be stored in a class and the data

are termed objects. The set of methods defines the operations permitted on objects of the

class. A class contains no data, but rather, all data held in a class are in its instances, i.e.,

objects. In short, a class merely serves as a template with which an instance of a class may

be created.

d. Inheritance

Inheritance establishes a relationship of two or more classes. We say that of

two classes, A and B, where B inherit A, if class B has all the properties of class A. In this

case, class A is said to be the superclass of the subclass B. A superclass can also be referred

to as a generalization of all its subclasses, because all the properties of the superclass form

a common subset of the properties in all the subclasses. Conversely, a subclass can be

referred to as a specialization, because it not only contains the common properties of a

superclass, but it also possess properties which are unique to it alone. In short, the

Inheritance class relationship is where a subclass has all the attributes and methods of its

superclass. And such a subclass can also have additional attributes and methods that are not

found in the superclass.

e. Covering

Covering is another relationship of two classes in the object-oriented data

model. Two classes are said to have the covering relationship, if every object of one class,

A, is mapped to, or corresponds to, a subset of objects of the second class, B. In this

instance, class A is said to cover class B. Class A is referred to as the cover class and class

B is referred to as the member class [Ref. 4].

B. THE IMPLEMENTATION STRATEGY

The Object-Oriented Data Model (O-ODM) is the foundation of a new object-

oriented data language. The design and specification of this new language are the first step

in the research project which can be found in [Ref. 3]. After the data requirements and

construct representations for the object-oriented data language have been defined, the

actual design and implementation of the new O-ODM-based data language compiler can

begin.

The design and implementation of this research project is divided into two areas:

the design and implementation of a compiler for the Object-Oriented Data Definition

Language (O-ODDL), and another compiler for the Object-Oriented Data Manipulation

Language (O-ODML). Together, the O-ODDL and O-ODML form the object-oriented data

language of the object-oriented data model. In this thesis, we focus on the design and

implementation of the O-ODDL Compiler. The design and the implementation of the O-

ODML Compiler can be found in [Ref. 5] and [Ref 6].

10

III. THE COMPILER SOURCE AND TARGET DATA LANGUAGES

The utility of the Object-Oriented database model is measured by its ability to

conceptually define and represent real-world objects. These objects must then have certain

constraints on them and their relationship to other objects. It is these conceptual

representations that are specifically defined by the Object-Oriented Data Language (O-

ODL). Refer to [Ref. 3] for a thorough discussion of the O-ODL design and development.

A. FORMATS AND SPECIFICATIONS OF THE SOURCE

The underlying constructs used to define an object-oriented database have been

discussed in the previous chapter, and they included the following: objects, classes,

inheritances, and coverings. The most basic of these is the object. An object can be any

entity in an application. Once the application's objects are identified, they may be

combined into classes of similar objects.

1. The Specification of an Object Class

In Figure 2, we depict the generic structure used for a definition of an object-

oriented class.

Class Classname {
attributeJype attributejiamei;

attributejype attribute namex;
return Jype methodnamej;

return Jype methodjiamey;

};

Figure 2. The definition structure of a generic O-ODDL class.

11

The rudimentary structure for the definition of an O-ODDL class is modeled after

class structures in the C++ programming language [Ref. 7]. The Class name is the name

assigned to a particular class of similar objects. The attribute type is the declared type for

the corresponding attribute_name. Valid attribute types are: char for character, int for

integer, char_string for a character string, and, lastly, class_name for another class. The

attribute name are the names given to the variables which make up the specific values of

a class. The concept of class methods and corresponding structures, are not implemented

in this research project. But are only depicted to demonstrate where such structures could

be added in future research efforts.

2. The Specification of Object-Oriented Constructs in a Sample Database

A sample object-oriented database, FACSTU, is used as an example throughout this

thesis. We use it to illustrate how class relationships are implemented. The O-ODDL

handles four class relationships: inheritance, covering, set_of, and inverse_of. All of these

relationships can be illustrated in a class hierarchy which is a collection of similar objects

with these relationships. In Figure 3, the FACSTU database diagram represents a class

hierarchy. Classes of similar objects are formed into the class hierarchy to represent their

class relationships and respective constraints. The features in which the class hierarchy

embodies are class generalizations and class specializations, and their inheritances, and

other specific relationships such as the covering, the set_of, and the inverse_of.

The respective generalizations and specializations of various class objects are used

to construct the class hierarchy. Referring to Figure 3, the generalized class, which can also

be thought of as the superclass, is the Person class. This superclass is then a generalization

of the two subclasses, Faculty and Student. And the two subclasses are in turn

specializations of the superclass. All common properties of the subclasses are maintained

by the superclass. In this case, the common attributes, such &s,fname, street, and zipcode,

are stored in the superclass Person.

12

(fname) (mi) (lname)

C dept J f teaches} ^r

Faculty

\g=^
Student

N
u

N

N
Course

M
ToiffseX Xtiidenr

k student/ \ team

Mil fac Civ fac

rank

M N

M

Team

title) (advises rprjname y advisor

LEGEND

total participation

partial participation

Class superclass

inherit

subclass

represents set_of

class relationship

covering
cover
class c

relationship

member

class

Figure 3. The FACSTU Database.

13

Class inheritance, or simply inheritance, is the linking element that more

specifically define the class hierarchical composition. Inheritance is a further refinement of

generalizations and specializations, because a specialized subclass inherits the properties,

i.e., the attributes and methods, of its superclass. In our sample in Figure 3, the Student

subclass inherits all the attributes and methods from superclass Person, and is therefore

pointed by an arrow.

As stated in the previous chapter, the covering relationship is a property that allows

every object of a specific class, the cover class, to map to a corresponding subset of objects

of another class, the member class. In Figure 3, the class Team is a cover class, the class

Student is a member class, and the covering relationship is delineated by a line with a circle,

where the circle is at the member class of the covering. With this example of the covering

relationship, we can say that every student belongs to one or more teams.

The set_of relationship is used to build 1:N and M:N class relationships among

objects. More precisely, the set_of relationship establishes a set relationship between

classes. In Figure 3, we depict graphically this relationship. But in reality, a user would not

actually draw these structures, because its specification is done by the database designer

and its implementation is done automatically by the O-ODDL Compiler. We add graphical

depictions to illustrate how the set_of relationship ties in with a class hierarchy.

The last relationship, inverse_of, is the compliment of the set_of relationship. The

class hierarchy with all the aforementioned constructs are required in the implementation

of the O-ODM. In the M2DBMS, these constructs are supported by means of an object-

oriented schema.

3. The Role of an Object-Oriented Schema

The object-oriented schema is the specification of object-oriented data in a

database. Additionally, the schema is the means with which all proposed object-oriented

constructs in the database can be realized in the M2DBMS. In Figure 4, there is an example

14

of an object-oriented schema. Refer to Appendix A for a complete listing of the object-

oriented schema of the FACSTU database depicted in Figure 3.

Class Class_name {
attribute type

•
•

attribute name 1;

attributeJype

};

•

•
•

attributejiamex;

•

Class Subclass_name : Inherit Superclass_name {
attribute type

•
•

attributejiame i;

attributejype

•

attribute namex;
set of Class name

>; •

attribute name; *

Class cover class

•

name : Cover member class name{
attributejype

•
attribute namej;

attributejype attribute_namex;
inverse_of Class name attribute name; *

};

(*) set_of and inverse_of can be placed into any Class structure

Figure 4. The Generic Object-Oriented Schema format.

15

4. The Object-Oriented Data Language

In the design and development of our O-ODDL, we focused on two primary

considerations. First, the object-oriented data definition language must be easy to

understand and use. That is why it is modelled after the very popular C++ language.

Second, the object-oriented data definition language must efficiently map into the attribute-

based data language that creates the database. We believe that our O-ODDL and its

compiler have met these two considerations.

B. THE TARGET DATA LANGUAGE FORMAT AND SPECIFICATION

As stated previously, M2DBMS supports many databases based on different data

models, and their respective data languages. In order to support these different data models

and data languages, M2DBMS has a single pair of data model and data language which

serve as the kernal of all data models and data languages. The kernal data model and kernal

data language used in M2DBMS is the attribute-based data model and attribute-based data

language (ABDM and ABDL) [Ref. 8]. Therefore, ABDM is the target data model in which

our compiler ultimately produces the database specification. More precisely, our O-ODDL

Compiler produces an ABDM specification from an O-ODL specification which is written

in O-ODDL.

1. The Attribute-Based Data Model (ABDM)

The foundation of ABDM is the attribute-value pair. The attribute defines the

specific quality or the certain characteristics of the value. An example would look like the

following, <fname, John>. Where this attribute-value pair defines fname (an acronym for

first name) as the attribute, and the name John as the value for that attribute. A record body

is the textual information pertanent to a specific record.

16

We combine many attribute-value pairs and a record body into a set, called a record.

And a database can be thought of as simply a collection of records. But in order for these

records to form a database under ABDM, the attribute-value pairs that comprise each

record are subject to three constraints: (1) No attribute can be repeated in a record. (2) An

attribute can not have more than one value in the record. (3) Every record must have at least

one keyword, or key for short. Figure 5 consists of an example of a record.

(<TEMP, Name>, <OID, Nl>, {<FNAME, John>, <MI, J>, <LNAME, Doe>})

Figure 5. An example of an ABDM Record.

The words enclosed in the angled brackets, <, >, represent attribute-value pairs, for

short keywords. Certain attribute-value pairs of a record are called directory keywords since

their attribute values or attribute-value ranges are kept in a directory for identifying records

(files). <TEMP, Name> and <OID, Nl> in Figure 5 are examples of directory keywords.

The directory keyword <OJD, Nl> represents object identifier, and is implemented

because according to the object-oriented construct that every object must be unique and

distinguishable from all other objects. In this case, an object is a record, which is assigned

a unique object identifier, OID. The curly brackets {,}, enclose the record body. The entire

record is enclosed within the paratheses.

The records of a database may be identified by keyword predicates. A keyword

predicate is a 3-tuple consisting of a directory attribute, a relational operator, an attribute

value, e.g., (LNAME = Doe). These keyword predicates are used to write queries. A query

combines keyword predicates in a disjunctive normal form. An example of a query is given

in Figure 6. The query will be satisfied by all records of the Name template (TEMP) where

the attribute value of FNAME is "John" or the attribute value of LNAME is "Doe". We use

parentheses for bracketing conjunctions in a query.

17

((TEMP = Name) and (FNAME = John)) or

((TEMP = Name) and (LNAME = DOE))

Figure 6. An example of a Query for ABDM data.

2. The Attribute-Based Data Language (ABDL)

The ABDL supports five primary database operations: INSERT, DELETE,

UPDATE, RETRIEVE, and RETRIEVE-COMMON. A request in the ABDL is specified

with a primary operation that has a qualification. A qualification specifies the part of the

database that a particular operation applies. Two or more requests may be grouped together

to form a transaction. Since we need only one primary operation as our target operation, we

forgo any discussion of the other four.

The INSERT request inserts a new record into the database. The quantification of

an INSERT request is a list of keywords with or without a record body. In Figure 7, there

is an example of an INSERT request. This is the only ABDL used by the O-ODDL

compiler to generate a database based on ABDM. We do not discuss the other four primary

operations here, which can be found in [Ref. 9].

INSERT (<TEMP, Name>, <OJX>, N2>, <FNAME, Jane>,

<MI, C>, <LNAME, Doe>)

Figure 7. An example INSERT Request.

Our O-ODDL Compiler produces a descriptor file, a template file, and a data

dictionary. To create an object-oriented database in M2DBMS, the descriptor file and

template files are used in which INSERTS are embedded. In the following Chapters, we

18

thoroughly discuss the descriptor file, the template file, the data dictionary, and their

relationship with attribute-value pairs and INSERT operations.

19

20

IV. OVERALL COMPILER DESIGN CONCEPTS

A. COMPILER COMPONENTS

A compiler is simply a program that reads a program written in one language, the

source language, and translates it into an equivalent program in another language, the target

language. In our case, the source language is the O-ODDL, and the target language is the

ABDL.

The compilation process is composed of two components: analysis and synthesis.

The analysis part breaks up the source program into constituent pieces and creates an

intermediate representation of the source program. The synthesis component constructs the

desired target program from the intermediate representation [Ref. 10]. In actuality, the

analysis component is composed of two other sub-components: the scanner for lexical

analysis, and the parser for syntactic analysis. Figure 8 shows the flow of a language

translation through these compiler components. In the following three respective sections,

we will elaborate on each of these three major components that comprise our compiler

model.

source
program Scanner Parser j—►Tcode Generator target

program

Figure 8. Basic compiler flow diagram.

1. The Scanner

The scanner, or lexical analyzer, is the first phase of a compiler. Its main task is to

read the input characters and produce as output a sequence of tokens that the parser uses

for syntax analysis. A token is a sequence of characters having a collective meaning.

21

The interaction of the scanner with the parser is summarized in Figure 9. What this

figure shows is that the scanner is implemented as a subroutine or a coroutine of the parser.

Upon receiving a "get next token" command from the parser, the scanner reads input

characters until it can identify the next token. Examples of valid input tokens are: reserved

words, symbols, numerical expressions, and identifiers. And these tokens are typically

stored in a reference symbol table.

source
program scanner

token

parser

get next
token

symbol
table

Figure 9. Interaction of scanner with parser.

Since the scanner is the part of the compiler that reads the source text, it is usually

tasked with certain secondary duties at the user interface. One such task is stripping out

from the source program comments and white space in the form of blank, tab, and newline

characters. Another is correlating error messages from the compiler with the source

program. For example, the scanner may keep track of the number of newline characters it

has seen, so that a line number can be associated with an error message.

a. Token Identification

When talking about lexical analysis, the terms token, pattern, and lexeme

are used with specific meanings. Examples of their use are shown in Figure 10. In general,

22

there is a set of strings in the input for which the same token is produced as output. This set

of strings is described by a rule called a pattern associated with the token. The pattern is said

to match each string in the set. The actual notation used to specify a pattern is called a regular

expression. A regular expression is a simple notation that precisely defines a specified set of

character sequences or combinations. A lexeme is a sequence of characters in the source

program that is matched by the pattern for a token. For example, in the O-ODDL statement

Class Faculty : Inherit Person {

the substrings Faculty and Person are lexemes for the token "identifier."

Token Sample Lexemes Regular Expression Pattern Description

resrv_word class, inherit class, inherit,... - all reserved words

colon : - only this character

open_brace { { - only this character

id Faculty, Person letter+((_(letter 1 digit))l(letter 1 digit))* - all
non-reserve words that begin with a letter
followed by one or more letters or digits

Figure 10. Examples of Tokens

2. The Parser

The parser is the second phase of a compiler. It has two primary tasks. The first, is to

obtain a string of tokens from the scanner, as shown in Figure 11, and verify that the string

can be generated by the context-free grammar of the source language. A context-free

grammar describes the precise syntax of a programming language. The second parser task is

to simply report any syntax errors in an intelligible fashion.

There are three general types of parsers for grammars: universal parsing methods, top-

down, and bottom-up parsing methods. A universal parser is the most powerful, but top-down

23

and bottom-up parser are more efficient. As indicated by their names, top-down build parse

trees from the top (root) to the bottom (leaves), while bottom-up parsers start from the

leaves and work up to the root. A parse tree is a hierarchical structure used in the analysis

of the grammatical phrases of a source program, and will be further defined in the section

a. In both top-down and bottom-up parsers, the input is scanned from left to right, one

symbol at a time. We are using a top-down parsing approach for our O-ODDL Compiler.

source
program

token

scanner I parser code
generator

symbol
table

t
target

program

(*) sparse tree is a structured graphical representation of a token string.

Figure 11. Position of the parser in the compiler model.

a. Grammar and Production Rules

As stated earlier, a context-free grammar describes the precise syntax of a

programming language. And, that syntax allowed in a programming language is

specifically delineated by what is called production rules. So, production rules are used in

describing a context-free grammar. All context-free grammars have the following four

components: 1) A set of tokens, known as terminal symbols, e.g., identifiers,

reserve_words, and symbols. 2) A set of nonterminals, e.g., statements and expressions. 3)

A set of productions where each production consists of a nonterminal, called the left side

of the production, an arrow, and a sequence of tokens and/or terminals, called the right side

of the production. 4) A designation of one of the nonterminals as the start symbol.

24

A context-free grammar naturally describes the hierarchical structure of

many programming constructs. For example, an if-else statement in the C language has the

following form.

if(expression) statement else statement

That is, this statement is the concatenation of the reserve_word if, an opening parenthesis,

an expression, a closing parenthesis, a statement, the reserve_word else, and another

statement. Using the variable expr to denote an expression and the variable stmt to denote

a statement, this structuring rule can be expressed as

stmt —*if(expr) stmt else stmt

in which the arrow may be read as "can have the form." Such a statement is

an example of a production rule.

Only after the context-free grammar and production rules of a program

language have been defined, can a syntactic analysis of all feasible language statements be

possible. This syntactic analysis of a prospective grammatical phrase is accomplished by

using a language's production rules to derive and verify the syntax of that statement. One

method to verify syntax is to use parse trees. A parse tree is graphical representation of a

particular grammatical phrase is derived in a language, where interior nodes correspond to

a production rules, and exterior nodes (leaves) correspond to terminal symbols. Figure 12

is an excerpt of a possible parse tree for the if-else statement from above.

stmt

reserve_word:
if

symbol:
(

expr" symbol:
)

stmt* reserve_word:
else

stmt*

(*) expr and Stmt are nonterminals, therefore, they must have
corresponding structures that lead to terminals below them.

Figure 12. An example parse tree excerpt.

25

3. The Code Generator

The final phase of our compiler model is the code generator. It takes as input a parse

table representation of the source program produced during the parsing phase, and produces

as output an equivalent target program.

The design of a code generator is influenced by several factors. Those factors would

normally include issues such as memory management, instruction selection, register

allocation, and evaluation orders. But, these issues are only important to a compiler that is

intended to produce elaborate programming code. For our compiler model, the only

important design issue was the structure of intended output. The structure of the intended

output required of our O-ODDL Compiler will be discussed in Chapter VII.

B. LEX AND YACC

Lex and YACC are compiler writing tools. More specifically, Lex is a tool for

building lexical analyzers (scanners), hence the name Lex [Ref. 11]. And YACC, which

stands for Yet Another Compiler Compiler, is a tool for generating a parser from a list of

production rules [Ref. 12].

1. Key Features

Lex takes a set of descriptions of possible tokens generates a C routine. This

routine, called yylex(), partitions the input stream into specified tokens and communicates

these tokens to the parser. The token descriptions that Lex uses are regular expressions,

which were discussed earlier in section l.a.

YACC is a program generator for the syntactic processing of token input streams.

The program generated is called yyparse(). What YACC requires is a specification of the

input language structure (a set of production rules), and the user's code (for target program

generation). Once given a set of production rules and user's code, YACC can then generate

a program, the parser, that syntactically recognizes the input language and allows

invocation of user's code throughout this recognition process. The parser produced by

YACC consists of a finite-state automaton with a stack that performs a top-down parse,

26

with left-to-right scan and a one token look-ahead. Figure 13 show how Lex and YACC tie

in with the compiler model. In this figure, lex.yy.c is the C code produced by Lex, and

yylex() is the compiled sub-routine program result. Similarly, y.tab.c is the C code produced

by YACC, and yyparse() is compiled program result [Ref. 13].

token
descriptions

source
program

Lex

I
lex.yy.c

Scanner
yylex()

YACC

I
production
rules and

user's code

/

y.tab.c

■N

Parser Code Generator target
program

\ yyparse()

Figure 13. Overall compiler flow diagram.

2. Decision To Use

Our initial foray into production of the O-ODDL Compiler was to write a scanner

and parser entirely by hand in the C++ programming language. We had elected to use the

C++ language because of its object-oriented properties. But, we later realized that the

utilization of this language would inevitably present implementation problems with the

existing M2DBMS.

Our decision to use Lex and YACC was imposed by two project constraints. The

first constraints was that the scanner we wrote would be the same scanner that the O-

ODML Compiler writing team would ultimately use. But, for reasons discussed in [Ref. 5],

they were forced to utilize YACC to write their parser. And YACC, will not accept or use

a scanner routine written in the C++ language. The second constraint was that our O-ODDL

27

Compiler would have to be incorporated into an existing system and interface, the

M2DBMS, that was entirely written in the C language. Some cross language

communications between C and C++ are not possible nor allowed.

The next three Chapters will discuss the specific implementation issues involved in

producing each of the three respective major compiler components of our O-ODDL

Compiler.

28

V. OBJECT-ORIENTED DDL SCANNER

A. IMPLEMENTATION OVERVIEW

In this Chapter, we will discuss the details involved in building a scanner with Lex,

the compiler writing tool. As stated previously, a scanner is the first phase of the

compilation process. A scanner takes an arbitrary input stream of characters and tokenizes

them, i.e., divide up the input stream into lexical tokens. This tokenized output is then used

as input for the next phase of the compilation process, the parsing.

The implementation of the scanner in the compilation process is as a subroutine of

the parser. Such an executable subroutine is not actually produced by Lex. What Lex

actually does produce is a file, named (lex.yy.c). It is this file that produces a C routine

called yylex(), the actual scanner routine, after compilation with a regular C compiler. It

should be noted that we changed the names of lex.yy.c and yylex() to lex.ddl.c and ddllex(),

respectively, in order to alleviated potential naming conflicts with created files and

functions produced by the O-ODML Compiler. So, in order to produce an executable

scanner, we used a regular C compiler to compile the lex.ddl.c file. The executable scanner

routine was the result of the compilation.

B. SCANNER SPECIFICATION

There were three steps in writing the Lex specification for the scanner component

of our O-ODDL compiler. In the first step, we identified the tokens and lexemes that would

be recognized in our object-oriented language. In the second step, we specified the patterns

in which these tokens could assume with regular expressions. The third and last step was

to write the Lex specification in the correct format recognized by Lex.

1. Tokens Recognized in the O-ODDL

We were tasked to produce a scanner that could be jointly used by the O-ODDL

and O-ODML Compilers. So, after the data requirements and construct representations of

the new O-ODDL and O-ODML Compilers were completed, a complete appreciation of

29

the token requirements could be formed. These tokens included: all the required reserved

words, all the character symbols used, including special characters with certain meanings

like EOF, which means end_of_file, and all the language variables, i.e., identifier names

and numerical strings. The primary task of any scanner is to recognize a specified set of

tokens. If a scanner encounters an unspecified token, it should gracefully terminate because

this would be considered an error condition. Figure 14 is a complete listing of all the valid

Reserve Word Tokens

ADD END MAX

AND ENDJF MIN

AVG ENDJLOOP MOD

BEGIN FDMD_MANY NOT

CHAR FTND_ONE NULL

CHARJSTRING FLOAT OR

CLASS FOR PROJECT

CONTAINS IF QUERY

COUNT IN READJNPUT

COVER INHERIT SET_OF

DELETE INSERT STRING

DISPLAY INTEGER THEN

EACH INVERSE_OF WHERE

ELSE IS

Symbol Tokens

EOF » > [»

EOL + >= 1 <

SPACE - = * <=

TAB / (// {

: /=) := }

Variable Tokens

identifiers

float constants

integer_constants

string_constants

Figure 14. A Listing of Valid O-ODDL Compiler Scanner Tokens.

30

tokens that our scanner was designed to recognize. Any and all other token are then to be

considered invalid, and therefore, an error.

2. Valid Token Patterns

The pattern of a token is a precise specification of the set of character strings in

which describe a particular token. The only pattern which will describe a reserve_word or

symbol token is an accurate copy of the reserve_word or symbol token in question. For

example, the only pattern for the reserve_word ADD is exactly the word add. But, note that

an accurate copy of a reserve word need not be case specific, because we have designed the

scanner to be insensitive to letter case.

The only tokens in which there are numerous character strings would apply are the

four variable tokens. Figure 15 is a listing of the variable tokens with their corresponding

pattern description using the notation of regular expression.

Variable Tokens Regular Expression Description

identifier (id)
letter+((_ (letter 1 digit)) l(letterldigit))* 1
letter+((_ (letter 1 digit)) l(letterldigit)). letter+
((_ (letter 1 digit)) 1 (letter Idigit))

float_constant (digit+ (digit+)* . digit+(digit+)*

integer_constant digit+((digit+)*

string_constant "printable chars, ASCII 32-126, and TAB"

Key: * Means 0 or more
+ Means 1 or more
0 Groups of options, select one.

Note: Language is case insensitive.

I Separates options
digit 0..9
letter Means A-Z or a-z

Figure 15. A Listing of Token Patterns.

31

3. Lex Implementation

The following is a discussion of the proper format required of a Lex program.

Please refer to [Ref. 11] and [Ref. 13] for complete discussions of all the intricacies of this

language and its corresponding format. A Lex program consists of three parts as shown in

Figure 16: the definition section, the rules section, and the user subroutines. The parts are

definition section

... rules section...

%%

... user subroutines...

Figure 16. The general Lex program format.

separated by lines consisting of two percent signs, the first two parts are required, although

a part may be empty. The third part and the proceeding %% line may be omitted [Ref. 13].

The definition section can include definitions, internal table declarations, start

conditions, and translations required of the scanner. Lines that start with whitespace are

copied verbatim to lex.yy.c, the lex generated C file. The only entries we had in this section

were C include declarations for required C library header files.

The rules section contains pattern lines and C code. A line that starts with

whitespace, or material enclosed in "%{" and "%}" is C code and is copied verbatim to the

generated C file. A line that start with anything else is a pattern line. Pattern lines contain

a pattern, i.e. a regular expression if applicable, followed by some whitespace and C code

when the input matches the pattern. If the C code spans multiple lines in length, it must be

enclosed in braces {}. The final pattern in this section handles the case in which input

characters match no specified pattern. In this case, an error condition is raised and outputted

32

to the user somehow. An example of our rules section specification would be

add { return (ADD);}

where the word add is the pattern to be matched, and the statement enclosed within the

braces is the corresponding C code to be executed upon a successful match.

The contents of the user subroutine section is copied verbatim by Lex to the

generated C file. This section typically includes routines called from the rules section.

Since this section is completely optional and the fact that our scanner implementation did

not require any subroutines, we had no input for this section in our Lex program. A

complete listing of the Lex program specification that produced our O-ODDL Compiler

scanner is given in Appendix B.

The parser component of the compiler uses the scanner subroutine produced by

Lex, called yylex(), to obtain the individual tokens that form grammatically valid token

strings. The next Chapter contains a complete discussion of the parser implementation.

33

34

VI. OBJECT-ORIENTED DDL PARSER

A. IMPLEMENTATION OVERVIEW

The previous Chapter discussed how Lex is used to produce a scanner. In this

Chapter, we turn our attention to producing a parser with YACC. A parser takes the

individual tokens produced by the scanner and groups them together logically. These token

grouping or relationships must therefore have a certain meanings according the language

being parsed. The meaning of these relationships for a particular language is precisely

defined by some grammar with corresponding production rules. In short, what a parser

ultimately does is, verify that an input program is written to conform to the grammar and

production rules of the reference language being used. If the input program does not

conform to the specified grammar and production rules, the parser terminates and reports

the error.

The implementation of the parser in compilation process is as a subroutine that is

called by some controlling program. The actual controlling program and its interface with

the M2DBMS will be discussed in Chapter Vffl. The parser subroutine, yyparse(), is

produced as a result of using a regular C compiler on the YACC generated C files, (y.tab.c

and y.tab.h). Simlilar to the Lex file and function, both yyparse() and y.tab.c were also

changed to ddlparse() and ddl.tab.c to prevent naming conflicts with the OODML

Compiler.

A direct result of using YACC to produce our parser was that, the parsing and code

generating components of our O-ODDL Compiler were produced in unison, i.e., their

functionality was implemented in the resulting ddlparse() subroutine. We treated the parser

and code generator as two separate components, and therefore implemented them in two

separate stages. The first stage was to produce a functionally correct parser with YACC.

The second stage was to add the user code, that was introduced in Chapter IV, to the YACC

specification in order to produce an appropriate source code. A thorough description of the

code generator and its implementation can be found in Chapter VII.

35

B. PARSER SPECIFICATION

There were two steps in writing the YACC specification for the parser component

of our O-ODDL Compiler. The first step was the formal specification of the O-ODDL by

means of specifiying complete grammar and corresponding set of production rules. The

second step was to put these grammmar and production rules in to a properly formatted

YACC specification. This YACC specification produces a functionally correct O-ODDL

Compiler parser.

A complete listing of the grammar and production rules that we used to describe the

start

createJablejist

createJable list PRIME

createjable

create table PRIME

modifier

modifier_PRIME

attributeJist

attribute listPRIME

attribute declaration

type

attributejiame

attribute name PRIME

class name

create table list EOF
createjable create table list PRIME

create table list \ e
CLASS classname create table PRIME

{attribute Jist}; I
modifier class jiame { attribute list};

: modifier PRIME

INHERIT | COVER
attributejleclaration attribute list PRIME

attributejleclaration attribute list PRIME I e

type attribute jiame;

CHAR I CHAR_STRING I class jiame I
SET_OF class jiame I INVERSE_OF classname I

FLOAT I INTEGER
id attribute jiame PRIME

[integer_constant] I e

id

Key: (1) Nonterminals are in italics
(2) RESERVED WORDS ARE IN BOLD UPPERCASE
(3) token types are in bold lowercase, e.g., id and integerconstant
(4) e - stands for the empty case
(5) I - separates possibilities for the same symbol

Figure 17. The O-ODDL Grammar and Production Rules.

36

O-ODDL is given in Figure 17. Their format is in accordance with requirements outlined

in the Grammar and Production Rules section of Chapter IV.

1. YACC Implementation

The following is a discussion of the proper format required of a YACC program

specification. Please refer to [Ref. 12] and [Ref. 13] for a more detailed discussion of all

the nuances of a YACC specification. A YACC program has the same three-part structure

as a lex specification as shown if Figure 18. This is because Lex copied its structure from

... definition section...

%%

... rules section ...

%%

... user subroutines...

Figure 18. The general YACC program format.

YACC. The first section, the definition section, handles control information for the parser.

It also generally sets up the execution environment in which the parser will operate. In our

YACC specification, we declared all the symbolic tokens that would be used during the O-

ODDL Compiler parsing process. The second section contains the rules for the parser, i.e.,

the reference languages' grammar and production rules. For this section, a complete logical

equivalent of all the production rules given in Figure 17 was added. The third and final

section is where C code is placed to be copied verbatim into the y.tab.c file, the generated

C program. In our specification, this is where we placed a subroutine that was invoked

anytime an error condition encountered, called yyerrorQ. What this subroutine does is

output the item and corresponding line number of an input program when any parsing error

is discovered. A parsing error might include syntax or sematic inconsistencies as per the

language specification. In Appendix C, a basic listing of the YACC program specification

37

that produced our basic O-ODDL Compiler parser is given. The only functionality that this

basic O-ODDL Compiler parser had was to verify the semantic syntactic correctness of an

input program. That is, insure that an input program was written in accordance with the O-

ODDL grammar and production rules requirements.

38

VII. OBJECT-ORIENTED DDL CODE GENERATION

A. IMPLEMENTATION OVERVIEW

The last component of our O-ODDL Compiler is the code generator for producing

the target language. The logic behind the code generator is to take the input language, an

object-oriented schema specification, and produce the target language, an ABDL schema

specification.

The code generator simply stores applicable data from the input language,

reformats or reconfigure this data, and produces the target language. The method in which

we chose to store the data from the input language was to use linked list data storage

structures. The benefit of using linked list data structures are two fold. First, link list data

structures are dynamic in that they can vary in size and length depending on the input

stream. Having a dynamic memory allocation data structure was a specific requirement for

our code generator, because object-oriented database schema specifications can be of

varying lengths, therefore requiring storage structures of varying lengths. The second

benefit of using a linked list data structure was evident in producing the target program in

the proper format, because this task then became a problem of just reading the contents of

the linked list structure in the appropriate sequence. A complete discussion of all the linked

list component structures we created and used can be found in the next section.

B. THE O-ODDL COMPILER DATA STRUCTURES

The object-oriented data model and language interface was developed for a single

user system. However, realizing future system requirements would probably require a

multi-user system, we designed our interface with this capability already incorporated. Or

more specifically, we modeled our interface after exiting M2DBMS interfaces which

already had this capability. Additionally, our object-oriented database interface utilized

appropriate existing generic data structures in the existing M DBMS interface, i.e., they

39

already existed as part of the overall M2DBMS interface. These generic data structures

support our interface, as well as all others supported by the system.

The new O-ODDL Compiler data structures that we developed to tie into the

existing overall M2DBMS interface had two distinct roles, and therefore were of two

distinct types. The first type were used primarily used to store information that would be

needed in producing the target data language. The second type were used to in producing

the Data Dictionary required of the O-ODML Compiler. A full discussion of the Data

Dictionary follows in part 2 of this section. The following data structures and their

repective connections are provided in schematic format in Appendix D.

1. Target Language Data Structures

The data structures used to generate the target language originate from the object-

oriented database Schemas. These Schemas consist of data regarding the classes and

attributes of an object-oriented database. The first data structure used to maintain data is

depicted in Figure 19. This structure represents a union. Hence, it is generic because a user

can utilize this structure to support our object-oriented interface as well as the other

interfaces. The last field of the dbid_node data structure points to a record that contains

information about an object-oriented database.

union dbid_node {
struct rel dbid node *dn_rel;
struct hie_dbid_node *dn_hie;
struct net dbid node *dn_net;
struct dap_db_id_node *dn_dap;
struct obj dbid node

};
*dn_obj;

Figure 19. The dbid_node Data Structure.

40

A record of the obj_dbid_node type is the structure that contains specific

information about a particular object-oriented database. The definition of the

obj_dbid_node data structure is depicted in Figure 20. The first field is a character array

containing the name of the object-oriented database. The next field contains an integer

value representing the number of classes in the database. The third, forth and fifth fields

excluding the final field are pointers to other records containing information about each

class in the database. The rest of the fields excluding the final field are pointers to records

containing data dictionary information. The data dictionary data structures will be

discussed in the next section. The final field is a pointer to the next object-oriented database

schema.

struct obj_dbid_node {
char odn_name[DBNLength + 1];
int odn_num_cls;
struct ocls_node *odn_first_cls;
struct ocls_node *odn_curr_cls;
struct ocls_node * odn_hidden_cls;
struct dict_ocls_node *odn_first_dict_cls;
struct dict_ocls_node * odn_curr_dict_cls;
struct dict_ocls_node *odn_hidden_dict_cls;
struct obj dbid_node

};

Figure 20. The obj_

*odn_next_db;

dbid_node Data Structure.

The record ocls_node contains information about each class in the database and is

depicted in Figure 21. This structure is organized similar to the obj_dbid_node structure.

The first field of the record holds the name of the class. The second field holds an integer

value for the number of attributes in the class. The third and forth fields are pointers to other

records containing information about each attribute contained in a class. The last field

contains a pointer to the next class in the database.

41

struct ocls_node {
char ocn_name[ANLength +1];
int ocn_num_attr;
struct oattr_node *ocn_first_attr;
struct oattr_node *ocn_curr_attr;
struct ocls_node *ocn_next_cls;

Figure 21. The ocls_node Data Structure.

The final structure used to support the definition of the object-oriented database

schema is the oatt_node data structure, and it is depicted in Figure 22. The first field is an

array which holds the name of the attribute. The second field determines the type. An O-

ODDL attribute type can either be a class name (representing a composite attribute),

integer, float or character. But, due to an ABDL constraint, the only currently recognized

attribute types are integer and string types. The last field contains a pointer to the next

attribute in the current class being defined.

struct oattr_node {
char oan_name[ANLength +1];
char oan_type[RNLength +1];
struct

};
oattrjtiode *oan_next_attr;

Figure 22. The oattr_node Data Structure.

2. Data Dictionary Data Structures

The reasoning behind having to create a data dictionary for an object-oriented

database is simple. Our object-oriented database language is robust in its ability to portray

database information. There is more information contained in an object-oriented schema

than can be properly and completely conveyed in the ABDL target language translation.

42

That is, the hierarchical structural information embedded within an object-oriented schema

representation can not be represented in the ABDL. Two examples of information that can

not be conveyed in an ABDL translation are inheritance and covering property reference

information. It is this type of information that the O-ODML Compiler needs to properly

format data queries. In short, a data dictionary is persistent record of all the information

contained within an object-oriented schema representation.

The data structures used to produce a data dictionary are very similar to those used

to produce the target data language. The only differences being the addition or deletion of

a few fields to each data structure. As stated above, the data dictionary data structures are

"connected" to a particular object-oriented database via the obj_dbid_node record for that

database. In Figure 20, the sixth, seventh, and eighth fields are pointers to records with data

dictionary information.

The first data structure used to maintain data dictionary data is depicted in Figure

23. The dict_ocls_node contains information about each class in the database. The first

field of the record holds the name of the class. The second and third fields are pointers to

other records containing about each attribute in the class, the last field points to the next

class in the database.

struct dict_ocls_node {
char ocn_name[ANLength + i];
struct dict_attr_node *dict_first_attr;
struct dict_attr_node *dict_curr_attr;
struct

};
dict_ocls_node *next_dict_cls;

Figure 23. The dict_ocls_node Data Structure.

The only other structure used to support the data dictionary is the dict_attr_node

data structure, and it is depicted in Figure 24. This data structure contains four pieces of

43

information about every attribute: (1) the attribute name, (2) the attribute type, (3) reference

class information, and (4) reference relationship type, if applicable.

The first field of a dict_attr_node record is an array which holds the name of the

attribute. The second field is an array that contains the attribute type. The two acceptable

type that are a result of limitations imposed by what is currently accepted by the ABDL,

are: s which stands for character string; and i which stands for integer. The third field is an

array that contains the name of a Class in which the current attribute must reference in order

to derive some information. The fourth field is an array that contains information on the

type of relationship an attribute has with respect to the class named in the third field. Valid

relationship are: inherit, cover, store, which short for storage where some specific data item

is stored in an alternate more appropriate location, and finally, asc, which is short for

association. Both the store and asc relationship type are the direct result of the fact that in

order to convey the precise meaning of an object-oriented schema specification, hidden

"class" data structures had to be created. The two instances in which such a hidden structure

were required were in the implementation of the Cover and set_of relationships. For any

instance of either of these two relationships, a hidden class must be created that contains

relative information on the participating classes, i.e., class OIDs. In Appendix E, a tabular

listing of the entire data dictionary that corresponds to the sample FACSTU database can

be found. The last field in a dict_attr_node record contains a pointer to the next attribute of

the class currently being defined.

struct dict_attr_node {
char dict_attr_name[ANLength +1];
char dict_attr_type[RNLength + 1];
char dict_ref_table[RTLength + 1];
char dict_ref_type[RNLength +1];
struct dict_attr_node *oan_next_attr;

};

Figure 24. The dict_attr_node Data Structure.

44

C. INTENDED OUTPUT

The output in which the O-ODDL Compiler must generate consists of three items:

a template file; a descriptor file; and the data dictionary corresponding to a specific

database. All three of these items are automatically generated by the O-ODDL Compiler.

The following subsections have complete discussions covering each item.

1. Template File

A template file is a specification of the record structure that characterizes the

organization of records in a file as recognized in the ABDL, i.e., the record structure format

for an attribute-based kernal database. A record is defined to be a collection of attributes.

We can describe the structure of a record in terms of the number of attributes, the names of

the attributes, and the associated data types and values. In doing so, we can separate the

description of the record away from the actual records and keep the record description in a

template. The template can later be used for determining and specifying the characteristics

of an attribute and its relation with other attributes in a record. When the records are

collected to form a file, the file structure would have the same attributes and similar

relations among records in the same file. Because the structural information is maintained

in a single template, a file structure can be organized by simply changing the template.

Database-name
Number-of-templates
Template-description-1
Template-description-2

Template-description-n

Figure 25. The Template File Format.

45

The template files in the interfaces have a specific structure. The format of a

template file for a database with n classes, hence n templates, is shown in Figure 25. A

typical template description for a record with m attributes is given in Figure 26. The first

field gives the number of attributes in the template. Note that this number are always two

more than the number of attributes in the record, i.e., m + 2. This is because the constant

attributes, TEMP and OID, are always added before the actual attributes of the record. The

data type in the template description is a single character field which can be s, or i

representing string, or integer type as per the ABDL restriction stated earlier.

Number-of-attributes
template-name
TEMP s
OID s
attribute-1 data-type-1
attribute-2 data-type-2

attribute-m data-type-m

Figure 26. A Typical Template Description.

The template file for the Object-Oriented M DBMS interface is created by

transforming the object-oriented data structure into the template file structure. First, the

data structure obj_dbid_node, in Figure 20, is read to get the database name and the number

of templates in the database. The number of templates is obtained by totaling the number

of class type nodes, ocls_node, that are in the database. The number of attributes

corresponding to each class node is obtained by totaling the number of attributes,

oattr_node, that are attached to each class node. All these numbers and subsequent class

node and attribute node information is obtained by traversing the two linked list structures

built with ocls_node and oattr_node data structures. An algorithm for this transformation

is presented in Figure 27.

46

Assertions:
1. The Object-Oriented database 0 has n class-type nodes {Cj, C2,..., Cn}.
2. The Object-Oriented database 0 has m attribute-type node {Sj, S2,..., Sm}.
3. Each class-type node Q, i = 1,..., n, has the class-type name Q-name.
4. Each attribute-type node 5,-, i = 1,..., m, has the attribute-type name 5,-name.
5. Each Q, i = 1,... ,n, has TSi attributes.
6. Each attribute &,-,./' = 1,..., Ty,- has the attribute name 5,-,-name.
7. Each attribute 5,-,-, j = 1,..., 7$,- has the attribute type 5,-,-type

Algorithm:
write Database-name
write Number-of-templates /* i.e., the total number of classes, including internally

generated hidden classes */
/* Repeat for each class-type node in database */
for each class-type node Q in database 0 do {

write (T$i + 1) /* Number of attributes */
write Q-name /* Class name */
write "TEMP s"
write "TEMP s"
/* Repeat for each attribute in the class-type node */
for each attribute Siyj in the class-type node Q do {

write Si ,-name 5,-,-type /* Attribute name, type */

}
}

Figure 27. Algorithm for Creating the Template File.

1

2. Descriptor File

While the template file is used to define the record structure of the database, th<

descriptor file is used to reflect the semantic meanings and intended use of the data. Th<

descriptor file specifies the attributes (or fields) to be regarded as "key" or "indexing'

attributes (fields). With the O-ODDL, every attribute in the database can potentially b<

used as an index. Therefore, all attributes, including internally generated OID attribuu

fields, are included in the descriptor file.

47

3

Database-name
TEMP b s
! Name-of-first-class
! Name-of-second-class

! Name-of-last-class
@
Descriptor-definition-1
Descriptor-definition-2

optional
section

Descriptor-definition-n
$

Figure 28. The Descriptor File Format.

Similar to the template file, the descriptor file also has a specific structure. The

format of a descriptor file that has n descriptors is shown in Figure 28. The first entry in the

format gives the name of the database. The "TEMP b s" on the second line is a constant that

must always be there. Subsequently, for each class in the Object-Oriented database, a line

is added with an exclamation mark "!" and a blank space, followed by the classjype name.

At the end of the list, an at-sign "@" is added to indicate the end of the basic set of

descriptors for a given database. It is then followed by a sequence of optional descriptor

definitions. The $ sign at the last line of the format indicates the end of the descriptor file.

The purpose of a descriptor definition is to precisely define the range or equality statements

that pertain to specific class-types in a database. Since, descriptor definition section of the

descriptor file is optional, we elected not implement any for our object-oriented database

during this research project.

The algorithm for creating the descriptor file for the implementation of our object-

oriented database is given in Figure 29. It is important to note that this algorithm and that

of the template file are similar to those for the other interfaces supported by the M2DBMS.

48

Assertions:
1. The Object-Oriented database O has n class-type nodes {Cj, C2, ■ ■. ,Cn]
2. Each class-type node C,-, i = 1,..., n, has the class-type name Q-name.

Algorithm:
write Database-name
write "TEMP b s"
/* Repeat for each class-type node in database */
for each class-type node Q in database O do

write "! " Q-name
write "@"
write "$"

Figure 29. Algorithm for Creating the Descriptor File.

3. Data Dictionary File

As stated previously, the data dictionary provides a persistent record of all the

information contained within an object-oriented schema representation. Therefore the data

dictionary file contains all the pertinent information described by the object-oriented

schema description.

The format of a data dictionary file is shown in Figure 30. It has such a structure so

that a sub-routine of the O-ODML Compiler can utilize a reader-subroutine that reads the

contents of the file into a linked list data storage structure similar to ours. The first entry in

the format gives the name of the database. Next is an at-sign "@". This symbol is at the

beginning of every class definition and indicates to the reader-subroutine that another

complete class definition follows. The next entry gives the name of the current class being

described. A pound-sign "#" immediately follows the class name entry, and this is an

indicator for reader-subroutine that four data dictionary attribute elements follow: attribute

name, attribute type, reference table, and relation type. Note, for a class name and even

some attributes, certain data dictionary attribute elements do not apply, and therefore they

remain blank or empty. A sequence of a pound-sign "#" followed by entries for each of

49

Database-name
@
Name-of-class-1

class-1 -attribute-name
class-1 -attribute-type
class-1 -reference-table
class-1 -relationship-type

attribute-name-of-class-1 -attribute-1
attribute-type-of-class-1 -attribute-1
attribute-reference-table-of-class-l-attribute-1
attribute-relationship-type-of-class-1 -attribute-1

attribute-name-of-class-1 -attribute-m
attribute-type-of-class-1 -attribute-m
attribute-reference-table-of-class-1 -attribute-m
attribute-relationship-type-of-class-1 -attribute-m

@
Name-of-class-n

class-n-attribute-name
class-n-attribute-type
class-n-reference-table
class-n-relationship-type

attribute-name-of-class-n-attribute-1
attribute-type-of-class-n-attribute-1
attribute-reference-table-of-class-n-attribute-1
attribute-relationship-type-of-class-1 -attribute-1

attribute-name-of-class-n-attribute-m
attribute-type-of-class-n-attribute-m
attribute-reference-table-of-class-n-attribute-m
attribute-relationship-type-of-class-n-attribute-m

Figure 30. The Data Dictionary File Format.

50

the four attribute elements is entered for every attribute in a class. This entire sequence

starting with an at-sign "@" is repeated for every class in an object-oriented schema

specification.

D. C CODE IN YACC

As outlined in Chapter VI, the code generating component of our O-ODDL

Compiler is created as a result of using YACC to produce our parser. The method by which

YACC knows how to implement the code generator is by inserting action C code

descriptions for the generation of each of the three required output files. An action C code

description is placed in the rules section of a YACC program description immediately

following relevant production rules. A complete YACC program listing with code

generating capability is given in Appendix F. Additionally, a complete listing of the

generated output files for our sample database is given in Appendix G.

51

52

VIII. INCORPATION OF O-ODDL COMPILER INTO EXISTING
SYSTEM

Before describing how we incorporated the O-ODDL Compiler into the M2DBMS,

it is important to become familiar with the organization of the M DBMS. This overall

system organization is utilized by every data language supported by the M DBMS. More

specifically, the organization and utilization of any supported data model is through

virtually identical user interfaces. A pictorial representation of the M2DBMS with the

various user interface modules and their respective control flows is depicted in Figure 31.

A. M2DBMS EXISTING OVERALL DESIGN AND LOGIC

An original design feature of the M2DBMS is that it be able to support many data

languages. In order to support these data languages, the M2DBMS requires a separate user

interface for each language. All of the user interfaces have identical control flows and

structures. The structures that make up every interface are composed of four main modules.

As depicted in Figure 31, these modules are the language interface layer (LIL), the kernal

mapping system (KMS), the kernal controller (KC) and the kernal formatting system.

These four modules comprise the core system for each separate user interface. The kernal

database system (KDS) represents the transition system of the kernal data Model/language

(KDM/L) and the user data model/language (UDM/L). These components make up the

multimodel portion of the multimodel/multiüngual database interface and are described

individually below.

The LIL routes the user's transaction written UDM/L to the KMS. KMS has two

functions. The first identifies whether or not the user is creating a new database. If the user

is creating a new database, it transforms the UDM-database definition to the KDM-

database definition. This is known as the data-model transformation. Once the KDM-

database definition has been established, KMS sends it to KC which in turn routes the

KDM-database definition to KDS. The KDS then issues the appropriate commands to the

53

UDM - User Data Model
UDL - User Data Language
LIL - Language Interface Layer
KMS - Kernal Mapping System
KC - Kernal Controller
KDS - Kernal Database System
KDM - Kernal Data Model
KDL - Kernal Data Language
KFS - Kernal Formatting System

System Module

Data Model

Data Language

Figure 31. The Multi-model/Multi-lingual Database System.

54

back-end database supercomputer controller where a new database is created in the KDM

form.

The second function of the KMS is the processing of the UDL transaction. In the

processing, the KMS translates the UDL transaction into an equivalent KDL transaction.

This is known as the data-language translation. The KMS routes the KDL transaction to the

KC which then sends the KDL transaction to the KDS for execution. The KC's primary

role, in this case, is to oversee the KDL transaction execution.

The KDL transaction is executed in the KDS. Any answer or response is sent to the

KC which routes them to the KFS for the KDM-to-UDM transformation. Once the

transformation is complete, the KFS routes it to the LIL for the final relay to the user in the

user's data model/language form.

Again, the overall language-interface structure consists of the LIL, KMS, KC, and

KFS modules, allowing the multimodel/multilingual database system to incorporate

different data models and languages. So, each user may create/access a database using his

or her data model/language. But, the system stores only one set of data which is in the

kernal-data-model form, i.e., in the attribute-based data model.

The actual placement of all O-ODDL components in such a user interface is within

the KMS module. The entire contents of the KMS module is pictorially represented in

Figure 32. The implementation of all the subcomponents of the KMS module is by means

of making each subcomponent a program subroutine. Therefore, the O-ODDL Compiler in

essence consists of four subroutines: a scanner subroutine, a parser subroutine, a subroutine

that produces the Descriptor and Template Files as a output, and finally, a subroutine that

produces a persistent Data Dictionary that can be used by other user interface

subcomponents.

55

returns the result of a query User selects Object Oriented Interface

Language Interface Layer (Lil)

t
DML

Parser

Scanner DDL
Parser

Intermediate
Language

Table

Data

Dictionary

Query
Constructor

Kernel Mapping System (Kms)

Descriptor .d &
Template .t
Files

Kernel
Formatting

V System (Kfs)

▲
LanglF

Real Time
Monitor Kernel Controller (Kc)

t Kernel f \
Attribute Based

Interface
Storage

(AB Format)

Figure 32.0-ODDL Compiler Component Placement.

56

B. CONFIGURING DDL COMPILER TO EXISTING DESIGN

The actual merging of the O-ODDL Compiler into the M2DBMS was just a matter

of getting the pertinent subroutines to interface properly within an appropriate M DBMS

user interface. But, during this incorporation process, we encountered three problems.

1. Problems Encountered

The first problem was encountered during the compilation of the system. The

system makes use of the UNIX Makefile tool. With this tool, a single executable file is

produced for the execution of the entire system. The problem was that we had initially

designed the O-ODDL Compiler to be an entirely self sufficient executable program. But

in order to incorporate the O-ODDL Compiler into the system, it must be accessed via

program subroutine calls. Not as the execution of an individual program, in which was

initially designed.

The second problem also stemmed form the fact that we had initially designed an

independent compiler program. The problem was to automatically pass a source file name

to the O-ODDL Compiler program subroutine. During the O-ODDL Compiler

development, we were simply able to "pipe" a source program name because we had a

executable program to reference. But, accessing the O-ODDL Compiler via program

subroutine calls do not allow this feature.

The third problem did not present itself until the O-ODML Compiler (see Ref. 5)

was incorporated into the system. The designers of the O-ODML Compiler also used the

UMX tools Lex and YACC to produce their compiler. In doing so, the automatic YACC

program file naming produced a conflict with our O-ODDL Compiler. That is, Lex and

YACC always create program functions and files with the same default name. Examples of

such names would include lex.yy.c and yyparse().

57

2. Problem Solutions

In order to solve the first problem of the O-ODDL Compiler compilation in

conjunction with normal system compilation, we had to investigate and learn how the

M2DBMS' compile procedure functions. What we determined was that in order to compile

the system, the user first changes to the controlling directory, which in our case was greg/

CNTRL/TI. Once in this directory, the user need only execute the %mk command, which

initiates a chain reaction compilation of the entire system. This chain reaction is

accomplished by successive calls to Makefiles which are contained in every subdirectory

that make up the system. A Makefile is simply a programmed set of instructions that are

executed one at a time in sequential order. These instructions can include instructions to

change to different subdirectories, as well as specific compilations procedures for files

contained with that subdirectory. For example, the first instruction in the Makefile

contained in the greg/CNTRL/TI/LangIF directory is "cd src/Obj: make". An interpretation

of this instruction is to change to the greg/CNTRL/TI/LangIF/src/Obj subdirectory, and

then execute the Makefile which resides within the new subdirectory. Therefore, an entire

system compilation involves the successive calls to the Makefiles contained within every

system subdirectory. The end result of such a compilation in our case is the production of

a single executable file, ti.exe, which is located in the greg/CNTRL subdirectory.

So, in order to add the O-ODDL Compiler source files to the system's Kms

subdirectory, we followed the same logic as outlined above. First, we copied all the O-

ODDL Compiler files into the Kms subdirectory. We then modified the Kms subdirectory

Makefile with additional commands to create the requisite object files for the O-ODDL

Compiler. Refer to Figure 33 for complete listing of the Kms subdirectory Makefile.

58

file: Makefile (Obj/Lil)
path: db3 /usr/work/rndbs/rich/CNTTIUL/TI/LanglF/src/Obj/Lil/Makefile
Insert names of sources here
SRCS= kms.c ddl_compiler.c ddl.tab.c lex.ddl.c $(ALC)alloc.c variable.c dict_functions.c
Insert names of object files here
OBJECTS= kms.o ddl_compiler.o ddl.tab.o lex.ddl.o $(ALC)alloc.o variable.o dict_functions.o
Insert names of include files here
INCLUDE= ../../../include
INCLUDES= $(rNCLUDE)/licommdata.h $(INCLUDE)/ool.h $(INCLUDE)/ool_lildcl.h
$(INCLUDE)/ooldcl.h
$(INCLUDE)/ddl_functions.h flags.def
ALC= ../Alloc/
CC=cc
#CFLAGS= -g -DEnExFlag -I$(INCLUDE)
CFLAGS= -O -I$(INCLUDE)
LPR= lpr
LPRFLAGS= -p
LIBS= -11

all: $(INCLUDES) $(OBJECTS)
archive: $(SRCS)

ci -u $(SRCS)
clean:

-ci -q $(SRCS)
-rm-f$(OBJECTS)

print: $(SRCS)
$(LPR) $(LPRFLAGS) $(SRCS)

lex.ddl.o: ddl_lex.l
lex ddl_lex.l
sed -f yy-lsed lex.yy.c > lex.ddl.c
-rm lex.yy.c
cc $(CFLAGS) -c lex.ddl.c

ddl.tab.o: ddl_yacc.y
yacc -d ddPyacc.y
sed -f yy-sed y.tab.c > ddl.tab.c
sed -f yy-sed y.tab.h > ddl.tab.h
-rm y.tab.c
-rm y.tab.h
cc $(CFLAGS) -c ddl.tab.c

variable.o:
cp $(INCLUDE)/licommdata.h.
cp $(INCLUDE)/ddl_functions.h.
cp $(INCLUDE)/ool_lildcl.h.
cc $(CFLAGS) -c variable.c

HFILES= ddl_functions.h ooljildcl.h licommdata.h
dict_functions.o:

cc $(CFLAGS) -c dict_functions.c
-rm $(HFILES)

$(OBJECTS): $(INCLUDES)

Figure 33. The Kms subdirectory Makefile.

59

The second problem of passing a source files name to the O-ODDL Compiler was

solved by the creation of a new function, ddl_compiler(), which resides in the

ddl_compiler.c file. In ddl_compiler.c file, we made the following declaration: extern FILE

*ddlin. (In reality, Lex produces a default name of yyin, which we changed to ddlin because

of the third problem.) By making this declaration, we were then able to assign the source

input file name to ddlin. This input file name is entered by the user via the user interface.

The user interface prompts the user to enter the source data file name after an appropriate

menu selection. Refer to [Ref. 9] for a detailed discussion of the relevant user interface

menu selections. The actual compilation of the input file stored in ddlin occurs when the

ddl_compiler() function calls yet another function, namely, ddlparse(). The original default

name of the ddlparse() function was yyparse(), but it was also changed because of the third

problem. In short, the ddl_compiler() function contains all the functionality of the O-

ODDL Compiler.

The third and final problem of naming conflicts with other system compilers was

solved by using SED, which is yet another UNIX tool. SED is a tool which allows the

changing of file names and strings to something more desirable. New names are defined in

a SED specification file. For our implementation, we required the following two SED

specification files within the Kms subdirectory: yy-lsed and yy-sed.

Before we actually used the SED tool, we created the Lex and YACC files which

contained all default names. In the Makefile under the Kms subdirectory (see Figure 33),

the line "lex ddl_lex.l" executes the ddl_lex.l file with the Lex tool and produces the

lex.yy.c scanner program file. Similarly, the line "yacc -d ddl_yacc.y" executes the

ddl_yacc.y file with YACC tool and produces the y.tab.c and y.tab.h parser program files.

After all the O-ODDL program files were created with their default names, we were

then able to use the SED tool. The SED specification file yy-lsed was used to change the

default names generated by Lex. For example, the program line "sed -f yy-lsed lex.y.c >

lex.ddl.c" uses the lex.yy.c file as input and changes every string of this file as specified in

the yy-lsed file. The reasoning we used in renaming file and function names was to replace

60

any "yy" prefix with "ddl". For example, the Lex generated yylook() function was renamed

ddllook(). Similarly, the program line "sed -f yy-sed y.tab.c > ddl.tab.c and sed -f yy-sed

y.tab.h > ddl.tab.h" rename the YACC generated files and functions. As a result of all this

renaming of files and functions, any potential conflict between any other compiler is

alleviated. For more information regarding the use of multiple Lex and YACC generated

compilers on the same system, refer to [Ref. 13].

61

62

IX. SUMMARY AND CONCLUSIONS

The work done for this thesis was part of a larger research effort. That larger

research effort was to produce an entirely new demonstrable O-ODM and interface for the

M2DBMS. This demonstrable system also included the loading of a sample object-oriented

database. It would be this database in which our new O-ODM and O-ODL would subjected

to testing in the form of realistic queries, that exercise all system features and capabilities.

Our tasking in this research effort was to build the Object-Oriented Data Definition

Language Compiler for the system.

In this thesis, we have presented the complete specification and implementation of

our Object-Oriented Data Definition Language Compiler. There were three distinct phases

in the preparation of this thesis. The first phase was the O-ODM and O-ODL conceptual

design. It was in this phase that we defined the specific requirements and capabilities of our

new database language. The next phase was the actual building of the O-ODDL Compiler

that embodied all the requirements of the first phase. Initially, we wrote our O-ODDL

Compiler in the C++ programming language, but were later forced into rewriting the

compiler in the C programming language due to constraints imposed by the M DBMS. The

last phase of our thesis was to incorporate our O-ODDL Compiler into the existing

M2DBMS. Once our O-ODDL Compiler were added the M2DBMS, we then had to insure

that it properly interfaced with all the other components of the object-oriented interface of

the M2DBMS.

We successfully accomplished our task of building an O-ODDL Compiler which

properly interfaced with corresponding components of the new object-oriented interface of

the M2DBMS. Our new O-ODDL Compiler implements all the important object-oriented

data model's features and constructs. These features and constructs include, but are not

limited to, inheritance, class encapsulation, and object reusability.

63

However, we discovered three limitations during our design process. First, any new

interface added to the existing M2DBMS would have to written in the C programming

language, because the kernal language, ABDL, and its corresponding interface were

written in C. Second, the ABDL as it is currently implemented does not recognize the float

attribute type, i.e., floating point numbers. Finally, our design and utilization of dynamic

memory storage structures may be subject to main memory limitations of the computer

system being utilized. Each of these limitations is discussed below.

We conclude our thesis with prospects for future research.

A. LIMITATIONS

The three limitations we encountered, the requirement of added programming code

to the M2DBMS must be in the C programming language, lack of recognition of the float

attribute type by the ABDL, and a potential main memory limitation, did not hinder our

implementation. The requirement of having to implement object-oriented features whilst

using a non-object-oriented language (i.e., C vice C++) did force us to change our

implementation strategy. Our initial strategy was to use the inherent object-oriented

features of the C++ object-oriented programming language. The M2DBMS could not

compile, and therefore was not compatible with C++. Thus, we were forced to the system

compatible programming language, C. In fact, using the C programming language proved

to be advantageous because of our utilization of the compiler-writing tools, Lex and

YACC, which only generate C programming code as output.

The second limitation, non-recognition of the float attribute type by the ABDL, was

due to incomplete or erroneous ABDL programming code. However, our overall goal of

producing a demonstrable object-oriented interface for the M2DBMS, was not impeded by

this fact. We simply made any O-ODL defined float to be converted into a character string,

which could than be recognized by the ABDL.

The third limitation was that of potential system main memory limitations. This

limitation arises from the fact that we used dynamic storage structure, i.e., linked lists, in

64

the implementation of our O-ODDL Compiler. The size of main memory occupied by

dynamic storage structures is only really limited by the actual size of the main memory.

This potential limitation did not manifest itself during the implementation of O-ODDL

Compiler, but rather, proved to be a concern during the implementation of the O-ODML

Compiler. For additional discussions of this limitation, refer to [Ref. 5]. Our proposed

solution to this potential problem was to incorporate a "cleaning" subroutine. This

subroutine simply frees allocated memory immediately after a storage structure outlives its

usefulness. This solution proved to be adequate for our demonstrable system.

B. FUTURE RESEARCH

There are several issues for future research and they include, but are not limited to,

the following: convert the entire M2DBMS into a more robust object-oriented

programming language such as C++; modify the ABDL programming code so that it will

recognize the float attribute type; modify the O-ODM and O-ODL to accept multi-class

inheritance; modify the object-oriented interface system of the M2DBMS to accommodate

multiple concurrent system users; and finally, build the cross-model links between the

object-oriented data model and all other models supported by the M2DBMS.

The conversion of the entire M2DBMS into a another programming language

would be a major endeavour. But, if the new language chosen were C++, most, if not all,

of the code written for the data model interfaces already supported by the M2DBMS need

not change. This is because most C programming code is recognized by C++ program

compilers. Another benefit of such a conversion would be that any new future data model

interfaces added to the M2DBMS could be written in C++.

A severe drawback of the ABDL was that it only recognized integer and character

string attribute types. The ABDL and its interface was not designed to recognize any other

attribute type, including the float attribute type. If anything more than merely a

65

demonstrable system were desired, the ABDL must be modified to recognize floating point

numbers.

We designed our O-ODM to handle only single class inheritance. If our O-ODL

were required to have the robustness of an object-oriented language like C++, it would most

certainly handle multi-class inheritance. But this begs the question, if a database

application requires multi-class inheritance, then possibly a data model other than the

object-oriented data model might be more appropriate. Multi-class inheritance may

certainly be a future possibility, but the issue of an appropriate data model for a particular

database application must be explored further.

Our O-ODM interface for the M2DBMS was designed for a single user in order to

expedite the project development. But, the M2DBMS was initially designed to be a multi-

user environment. So, expanding our O-ODM interface to accommodate multiple users

would be a natural extension to the system. This would just be the application of an inherent

ability of the M2DBMS and its kernal, the ABDL.

Another inherent ability of the M2DBMS is the potential for a cross-model

capability among all system supported data models. Adding the cross-model links between

the functional, hierarchical, network, and relational data models supported by the

M2DBMS, again would be a natural extension of the overall system capabilities. Once

these cross-model links were completed, then the object-oriented interface for M DBMS

system would be complete.

66

APPENDIX A - SAMPLE OBJECT-ORIENTED (FACSTU)

DATABASE SOURCE CODE

class Name{
char_string fname;
char mi;
char_string lname;

};

class Address {
char_string street;
char_string city;
char state[2];
char_string zipcode;

};

class Person {
Name pname;
Address paddress;
char sex;

};

class Faculty : inherit Person {
char_string dept;
set_of Course teaches;

};

//list courses a faculty member teaches,
//maps to Course_fac

class Course{
char_string cname;
char_string cse_no;
char_string sec_no;
Faculty instructor; // assigns a faculty member to teach a course
inverse_of Studentschedule roster;

};

// list students enrolled in
// a course, maps to Studentschule

67

class Student: inherit Person{
char_string student_no;
char_string major;
set_of Course schedule; // list classes a student enrolled

}; // in, maps to Course_stu

class Mil_fac : inherit Faculty!
char_string rank;

};

class Civ_Fac : inherit Faculty {
char_string title;
inverse_of Team.advisor advises; /Alist Teams a faculty member advises,

}; //maps toTeam.advisor

class Team: cover Student{
char_string prjname;
set_of Civ_Fac advisor; // list Civ_fac who are advisors of a team,

}; // maps to Team_fac

68

APPENDIX B - THE O-ODDL SCANNER (LEX) PROGRAM

LISTING

%{
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include "ddl.tab.h"

/*To make the compiler case-insensitive, lex gets each character as lower case */
#define input() (((yytchar=yysptr>yysbuf?U(*~yysptr): tolower(getc(yyin)))==

10?(yylineno++,yytchar):yytchar)==EOF?0:yytchar)
%}
%%
[\t\n]* { /* skip whitespace */}
"//".* ; /* comment to the end of a line */
add { return(ADD);}
and \ return(AND);}
avg 1 return(AVG);}
begin I return(BEGIN_Q);}
char i return(CHAR);}
char_string return(CHAR_STRING);}
class return(CLASS);}
contains return(CONTAINS);}
count return(COUNT);}
cover return(COVER);}
delete return(DELETE);}
display return(DISPLAY);}
each return(EACH);}
else return(ELSE);}
end return(END_Q);}
end_if return(END_IF);}
end_loop return(END_LOOP);}
find_many ; return(FIND_MANY);}
find_one ; return(nND_ONE);}
float ; return(FLOAT);}
for ; return(FOR);}
if [return(IF);}
in [return(IN);}

69

inherit \ return(INHERIT);}
insert return(INSERT);}
integer return(INTEGER);}
inverse_of return(INVERSE_OF);}
is return(IS);}
max return(MAX);}
min return(MIN);}
mod return(MOD);}
not return(NOT);}
null return(NULL);}
or return(OR);}
project return(PROJECT);}
read_input return(READ_INPUT);}
set_of return(SET_OF);}
string return(STRING);}
then return(THEN);}
query [return(QUERY);}
where [return(WHERE);}
v= \ [return(ASSIGNMENT_OPERATOR);}
[7='V<='V>=V='V<'\ :>'] { return(RELATION_OPERATOR);}
\[[return(OPEN_BRACKET);}
\] return(CLOSE_BRACKET);}
M return(OPENBRACE);}

M return(CLOSE_BRACE);}
X [return(OPEN_PARENTHESIS);}
\) return(CLOSE_PARENTHESIS);}
\ return(SEMICOLON);}
\ return(COMMA);}
\: return(COLON);}
[*/] [return(MULTIPLICATION_OPERATOR);}
[+-] ; return(ADDITION_OPERATOR);}
\"[A\"]*\" [yylval.symval = strdup(yytext);

return(STRING_CONSTANT);}
[-\+]?[0-9]+[0-9]* [yylvaLsymval = strdup(yytext); return

(INTEGER_CONSTANT);}
[-\+]?[0-9]+V?[0-9]* [yylval.symval = strdup(yytext); return

(FLOAT_CONSTANT);}
[A-Za-z][A-Za-zO-9]*([_][A-Za-zO-9]+)*^[A-Za-z][A-Za-zO-9]*
([_][A-Za-zO-9]+)*)? [yylval.symval = strdup(yytext); return(ID);}
\n ; yylineno++; '

])rintf("invalid character or token encountered at: %s\n",
yytext);

%%

70

APPENDIX C - THE BASIC O-ODDL PARSER (YACC)

PROGRAM LISTING

%union {
char t_str[80];
int t_int;
}

%token <t_int> ADDITION_OPERATOR
%token <t_int> ASSIGNMENT_OPERATOR
%token <t_int> CLOSE_PARENTHESIS
%token <t_int> COLON
%token <t_int> COMMA
%token <t_int> COMMENT
%token <t_int> DELIMITER
%token <t_int> ILLEGAL
%token <t_int> FLOAT_CONSTANT
%token <t_int> ID
%token <t_int> INTEGER_CONSTANT
%token <t_int> LOGICAL_OPERATOR
%token <t_int> MULTIPLICATIONOPERATOR
%token <t_int> OPEN_PARENTHESIS
%token <t_int> RELATION_OPERATOR
%token <t_int> SEMICOLON
%token <t_int> STRING_CONSTANT
%token <t_int> OPEN_BRACKET
%token <t_int> CLOSE_BRACKET
%token <t_int> OPEN_BRACE
%token <t_int> CLOSE_BRACE
%token <t_int> ADD
%token <t_int> AND
%token <t_int> AVG
%token <t_int> CHAR_STRING
%token <t_int> CHAR
%token <t_int> CLASS
%token <t_int> CONTAINS
%token <t_int> COUNT
%token <t_int> COVER
%token <t_int> DELETE
%token <t_int> DISPLAY
%token<t int>EACH

71

%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
% start start 1
%%
start 1

create table list

create_table_list_prime

create_table

create_table_prime

ELSE
END_Q
END_IF
END_LOOP
FIND_MANY
FIND_ONE
FLOAT
FOR
IF
IN
INHERIT
INSERT
INTEGER
INVERSE_OF
IS
MAX
MIN
MOD
OR
PROJECT
READJNPUT
SET_OF
STRING
THEN
QUERY
BEGIN_Q
NOT
WHERE

: create_table_list;

: create_table create_table_list_prime;

: create_table_list I ;

: CLASS class_name create_table_prime ;

: OPEN_BRACE attributejist CLOSE_BRACE
SEMICOLON I modifier class_name
OPEN_BRACE attributejist CLOSE_BRACE
SEMICOLON;

72

modifier

modifier_prime

attribute_list

attribute_list_prime

attribute_declaration

type

attribute_name

attribute_name_prime

class_name
%%
#include <stdio.h>
extern int yylineno;
void yyerror(s)
char* s;
{
fflush(stdout);
fflush(stderr);
fprintf(stderr, "%s at line %d\n",s,yylineno);

}
main()
{
if (yyparse() == 0)

{
fprintf(stderr, "Successfully parsed! !\n");
exit(l);

}
else

{
printf("Unsuccessfully parsed! !\n");
exit(0);

}
}

: COLON modifier_prime

: INHERIT I COVER ;

: attribute_declaration attribute_list_prime;

: attribute_declaration attribute_list_prime I ;

: type attribute_name SEMICOLON;

: CHAR I CHAR_STRING I class_name I SET_OF
class_name INVERSE_OF class_name I FLOAT
I INTEGER;

: ID attribute_name_prime;

: OPEN_BRACKET INTEGER_CONSTANT
CLOSE_BRACKET I ;

:ID;

73

74

APPENDIX D - THE OODDL COMPILER DATA
STRUCTURES

DATA STRUCTURES USED FOR .t AND .d FILE CONSTRUCTION
dbidnode obj_dbid_node

*dn_rel

*dn_rel

*dn_net

*dn_fun

*dn_obj

odn name

odn num els

*odn first els

*odn curr els

*odn hidden els

*odn first diet els

*odn curr diet els

*odn hidden diet els

*odn next db

odn_name

odn_num_cls

*odn_first_cls

*odn curr els

*odn hidden els $

*odn_first_dict_cls

*odn_curr_dict_cls

*odn_hidden_dict_cls

*odn_next_db 1
(■&) *odn_curr_cls pointer points to ocls_node during the implementation of

code generation, i.e., used for "House Keeping" purposes only.

75

ocls node oattr node

*odn first els ocn name

ocn num attr

*ocn first attr

*ocn curr attr

*ocn next els

ocn name

ocn num attr

*ocn first attr

*ocn curr attr

*ocn next els

*odn curr els
ocn_name

ocn_num_attr

*ocn_first_attr

*ocn_curr_attr

*ocn_next_cls

] NULL

oan name

oanjype

*oan next attr

oan name

oan_type

*oan next attr

oan_name

oan_type

*oan_next_attr

NULL

76

DATA STRUCTURE USED FOR .diet FILE CONSTRUCTION

dbid node obj_dbid_node

*dn_rel

*dn_rel

*dn_net

*dn_fun

*dn_obj

odn name

odn num els

*odn first els

*odn curr els

*odn hidden els

*odn first diet els

*odn curr diet els

*odn hidden diet els

*odn next db

odn_name

odn_num_cls

*odn_first_cls

*odn_curr_cls

*odn_hidden_cls

*odn first diet els

*odn_curr_dict_cls

*odn hidden diet els ♦

*odn_next_db 1
(♦) *odn_hidden_dict_cls pointer points to ocls_node during the implementation !

of code generation, i.e., used for "House Keeping" purposes only.

77

diet ocls node diet attr node

*odn first_dict els
ocn name

*dict first attr

*odn curr diet els

*dict curr attr

*next diet els

ocn name

*dict first attr

*dict curr attr

*next diet els

NULL

ocn_name

*dict_first_attr

*dict_curr_attr

*next diet els

diet attr name

dict_attr_type

diet ref table

dict_ref_type

*next diet attr

diet attr name

dict_attr_type

diet ref table

dict_ref_type

*next diet attr

dict_attr_name

dict_attr_type

dict_ref_table

dict_ref_type

*next_dict_attr

NULL

78

APPENDIX E - THE FACSTU DATA DICTIONARY TABULAR LISTING

CLASS: Name CLASS: Faculty

Name Attr Type Ref Table Rel Type

OID s

FNAME s

MI s

LNAME s

NULL

Attr Name Attr Type Ref Table Rel Type

OID s

OID.PERSON s Person inherit

DEFT s

TEACHES set_of Course_
faculty

store

NULL

CLASS: Course
CLASS: Address

Name AttrType Ref Table Rel Type

OID s

STREET s

CITY s

STATE s

ZIPCODE s

NULL

Attr Name AttrType Ref Table Rel Type

OID s

CNAME s

CSE_NO s

SEC.NO s

INSTRUC
TOR

s Faculty ref

ROSTER inverse_of Studentschedule store

NULL

CLASS: Person
CLASS: Student

Name AttrType Ref Table Rel Type

OID

PNAME Name ref

PADDRESS Address ref

SEX

NULL

Attr Name Attr Type Ref Table Rel Type

OID

OID.PERSON Person inherit

STUDENT#

MAJOR

SCHEDULE set_of Course_
student

store

NULL

79

CLASS: Mil fac CLASS: Coursejaculty

Attr Name Attr Type Ref Table Rel Type

OID s

OID_
FACULTY

s Faculty inherit

RANK s

NULL

Attr Name Attr Type Ref Table Rel
Type

OID s

OH>_COURSE s Course asc

OIDFACULTY s Faculty asc

NULL

CLASS: Course student

CLASS: Civ fac

Attr Name Attr Type Ref Table Rel Type

OID s

OID_
FACULTY

s Faculty inherit

TITLE s

ADVISES inverse_of Team.advisor store

NULL

CLASS: Team

Attr Name Attr Type Ref Table Rel Type

OID s

PRJNAME s

COVER_
ATTRIBUTE

Student_team cover

ADVISOR set_of Civ_fac_team store

NULL

Attr Name Attr Type Ref Table Rel Type

OID s

OID_COURSE s Course asc

OID_STUDENT s Student asc.

NULL

CLASS: Civ fac team

Attr Name Attr Type Ref Table Rel Type

OID s

OID_CIV_FAC s Civ_fac asc

OID_TEAM s Team asc

NULL

CLASS: Student team

Attr Name Attr Type Ref Table Rel Type

OID s

OID_STUDENT s Student asc

OIDJTEAM s Team asc

NULL

80

APPENDIX F - THE FINAL O-ODDL PARSER (YACC)

PROGRAM LIST

%union {
char t_str[80];
int t_int;
}

%token <t_int> ADDITION_OPERATOR
%token <t_int> ASSIGNMENT_OPERATOR
%token <t_int> CLOSE_PARENTHESIS
%token <t_int> COLON
%token <t_int> COMMA
%token <t_int> COMMENT
%token <t_int> DELIMITER
%token <t_int> ILLEGAL
%token <t_int> FLOAT_CONSTANT
%token <t_int> ID
%token <t_int> INTEGER_CONSTANT
%token <t_int> LOGICAL_OPERATOR
%token <t_int> MULTIPLICATION.OPERATOR
%token <t_int> OPEN_PARENTHESIS
%token <t_int> RELATION_OPERATOR
%token <t_int> SEMICOLON
%token <t_int> STRING_CONSTANT
%token <t_int> OPEN_BRACKET
%token <t_int> CLOSE_BRACKET
%token <t_int> OPEN_BRACE
%token <t_int> CLOSE_BRACE
%token <t_int> ADD
%token <t_int> AND
%token <t_int> AVG
%token <t_int> CHAR_STRING
%token <t_int> CHAR
%token <t_int> CLASS
%token <t_int> CONTAINS
%token <t_int> COUNT
%token <t_int> COVER
%token <t_int> DELETE
%token <t_int> DISPLAY
%token <t_int> EACH
%token<t int>ELSE

81

%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%token <t_int>
%start startl

END_Q
END_IF
END_LOOP
FIND.MANY
FIND_ONE
FLOAT
FOR
IF
IN
INHERIT
INSERT
INTEGER
INVERSE_OF
IS
MAX
MIN
MOD
OR
PROJECT
READJNPUT
SET_OF
STRING
THEN
QUERY
BEGIN_Q
NOT
WHERE

i-

%%
startl : { getGlobalPtr(); }

create_table_list ;

create table list create_table
create_table_list_prime;

create_table_list_prime : create_table_list I ;

82

create table CLASS {class_flag = 0;
createOclsNode();
createDictClsNode();

class_name
create_table_prime;

create_table_prime OPENJBRACE
attribute_list
CLOSE_BRACE
SEMICOLON { class_flag = 0;

connectTempCls();
}

I modifier
class_name
OPEN_BRACE
attribute_list
CLOSE_BRACE
SEMICOLON { class_flag = 0;

connectTempClsO;
connectTempDictCls();

};

modifier COLON
modifier_prime

modifier_prime INHERIT
{inherit_flag = 0;

createAttrNode(); takeAttrType();
createDictAttrNode();takeDictStringAttrType();

}

I COVER
{ cover_flag = 0;

createHiddenClass();
createHiddenDictClass();

};

83

attribute list attribute_declaration
attribute_list_prime;

attribute_list_prime attribute_declaration
attribute_list_prime

attribute declaration type
attribute_name
SEMICOLON { attr_name_flag = 1;} ;

type CHAR
{createAttrNodeO; takeAttrType();

createDictAttrNode();takeDictStringAttrType();
}

I CHAR_STRING
{ createAttrNodeO; takeAttrType();

createDictAttrNode();takeDictStringAttrType();
}

I { ref_cls_flag = 0;
createAttrNodeO; takeAttrType();
createDictAttrNode();takeDictStringAttrType();

}
class_name

I SET_OF
{ set_of_flag = 0; attr_name_flag = 0;

createHiddenClassO;
createHiddenDictClass(); createDictAttrNode();

}
class_name

I INVERSE_OF
{ attr_name_flag = 0; inverse_of_flag = 0;

createDict AttrNodeO;
}
class name

84

attribute name

I FLOAT
{ createAttrNode(); takeAttrType();

createDictAttrNodeO; takeDictStringAttrType();
}

I INTEGER
{ createAttrNodeO; takeIntegerAttrType();

createDictAttrNodeO; takeDictIntegerAttrType();
} ;

ID
{if (attr_name_flag == 1) {

takeAttrName($ 1);
takeDictAttrName($l);

} /*end of if */

if (set_of_flag == 0) {
takeDictSeofAttrName($ 1);
set_of_flag = 1;

} /*end of if */

if (inverse_of_flag == 0) {
takeDictSeofAttrName($ 1);
inverse_of_flag = 1;

} /*end of if */
}
attribute_name_prime;

attribute_name_prime OPEN_BRACKET
INTEGER_CONSTANT
CLOSE_BRACKET

I ;

class name ID
{if (class_flag == 0){

takeClsName($l);
takeDictClsName($l);
class_flag = 1;

} /*end of if */

85

if (set_of_flag == 0){
hiddenClsName($l);
hiddenDictClsName($ 1);
dictSetofInfo($l);

} /*end of if */

if (cover_flag == 0){
hiddenClsName($l);
hiddenDictClsName($ 1);
createDictAttrNode();
takeDictCoverlnfo($ 1);
cover_flag = 1;

} /*end of if */

if (inherit_flag == 0){
takeInheritAttrName($l);
takeInheritDictAttrName($ 1);
inherit_flag = 1;

} /*end of if */

if (inverse_of_flag == 0){
dictlnverseoflnfo($ 1);

} /*end of if */

if(ref_cls_flag==0){
takeDictClsAttrName($ 1);
ref_cls_flag = 1;

} /*end of if */
};

#include <stdio.h>
#include <stdlib.h>
extern int ddllineno;

void ddlerror(s)
char* s;

{
fflush(stdout);
fflush(stderr);
fprintf(stderr, "%s at line %d\n", s, ddllineno);

86

APPENDIX G - SAMPLE DDL COMPILER OUTPUT FILES

1. FACSTU.d File:

FACSTU
TEMP b s
! Name
! Address
! Person
! Faculty
! Course_faculty
! Course
! Student
! Course_student
! Mil_fac
! Civ_fac
! Team
! Student_team
! Civ_fac_team
@
$

87

2. FACSTU.t File:

FACSTU
13

5 6
Name Course
TEMPs TEMPs
OIDs OIDs
FNAME s CNAME s
Mis CSE_NO s
LNAMEs SEC_NO s

6
INSTRUCTOR s

Address 5
TEMPs Student
OIDs TEMPs
STREET s OIDs
CITYs OID_PERSON s
STATE s STUDENT_NO s
ZIPCODE s MAJOR s

5 4
Person Course_student
TEMPs TEMPs
OIDs OIDs
PNAME s OID_COURSE s
PADDRESS s OID_STUDENT s
SEXs

A
4

4 Mil_fac
Faculty TEMPs
TEMPs OIDs
OIDs OID_FACULTY s
OID_PERSON s RANKs
DEPTs

4
4 Civ_fac
Course_faculty TEMPs
TEMPs OIDs
OIDs OID_FACULTY s
OID_COURSE s TITLES
OID_FACULTY s

3
Team
TEMPs
OIDs
PRJNAME s

Student_team
TEMPs
OIDs
OID_STUDENT s
OID TEAMs

Civ_fac_team
TEMPs
OIDs
OID_CIV_FAC s
OID TEAM s

3. FACSTU.dict File:

FACSTU

@
Name

OID
s
<space>
<space>

FNAME
s
<space>
<space>

MI
s
<space>
<space>

LNAME
s
<space>
<space>

@
Address

OID
s
<space>
<space>

STREET
s
<space>
<space>

CITY SEX
s s
<space> <space>
<space> <space>

@
STATE Faculty
s #
<space> OID
<space> s

<space>
<space>
ZIPCODE
s #
<space> OID_PERSON
<space> s

Person
@ inherit
Person

OID DEPT
s s
<space> <space>
<space> <space>

PNAME TEACHES
s set_of
Name Course_faculty
ref store

@
PADDRESS Course_faculty
s #
Address OID
ref s

<space>
<space>

89

OID_COURSE ROSTER OID
s inverse_of s
Course student, schedule <space>
asc store <space>

@ #
OID_FACULTY Student OID_COURSE
s # s
Faculty OID Course
asc s

<space>
asc

@ <space> #
Course OID_STUDENT
s
OID OKLPERSON Student
s s asc
<space> Person
<space> inherit @

Mil_fac

CNAME STUDENT_NO OID
s s s
<space> <space> <space>
<space> <space> <space>

CSE_NO MAJOR OID_FACULTY
s s s
<space> <space> Faculty
<space> <space> inherit

SEC_NO SCHEDULE RANK
s set_of s
<space> Course_student <space>
<space> store <space>

@ @
INSTRUCTOR Course_student Civ_fac
s
Faculty
ref

90

OID ADVISOR OID_TEAM
s set_of s
<space> Civ_fac_team Team
<space> store asc

$
@
OID_FACULTY Student_team
s #
Faculty OID
inherit s

<space>
<space>
TITLE
s #
<space> OID_STUDENT
<space> s

Student
asc
ADVISES
inverse_of #
team, advisor OID_TEAM
store s

Team
@ asc
Team
@
OID Civ_fac_team
s #
<space> OID
<space> s

<space>
<space>
COVER_ATTRIBUTE
<space> #
Student_team OID_CIV_FAC
cover s

Civ_fac
asc
PRJNAME
IS

<space>
<space>

91

92

APPENDIX H - THE COMPILER MANUAL FOR THE

OBJECT-ORIENTED DATA DEFINITION LANGUAGE

1. An Introduction:

The OODDL Compiler uses UNIX tools: LEX and YACC. LEX is a scanner tool;

YACC is a parser tool. LEX scans the input file which is described in Appendix A. When

LEX recognizes a token from the input file, it returns the token to YACC. The OODDL

Compiler is a parser-driven compiler; i.e., as the parser, it requests tokens from the scanner

one at a time. So, YACC takes all the tokens from LEX and parses them. It checks the

sequence of tokens against grammatical rules. If the input satisfies the grammar, YACC

gives to the user the message: "Successfully parsed!!". Otherwise, it gives the line number

of the line where the error occurs. It also gives the message: "Unsuccessfully parsed!!".

The OODDL Compiler creates the following three files, which are put

automatically under the mdbs/UserFiles/ directory. The first file is <database_name>.d file.

See Appendix G about it. The second file is <database_name>.t file in Appendix G. The

third file is the data dictionary which is <database_name>.dict and can be found also in

Appendix G.

2. The Compiler Files:

Unlike before mentioned three files created by the OODDL Compiler, there are

files about the compiler itself. Right now, the majority of compiler files are under the mdbs/

greg/CNTRL/n/LanglF/src/Obj/Kms/ directory (See Figure 1 for their display). There are

93

two compiler files which are under the mdbs/greg/CNTRL/TI/Lang/IF/include/ directory

(See Figure 2 for their display). There is one file under the mdbs/greg/CNTRL/TI/LangIF/

src/Obj/Alloc/ directory, whose file name is alloc.c. There is another file under the mdbs/

greg/CNTRL/TI/LangIF/src/Obj/Lil/ directory, whose file name is buildddl.c.

ddl_compiler.c ddl.tab.h yy-lsed

ddljex.l dict_functions.c yy-sed

ddl_yacc.y lex.ddl.c

ddl.tab.c template_functions .c

Figure 1. Files under the Kms directory.

ddl_functions.h licommdata.h

Figure 2. Files are under the include directory.

3. Description of the Files:

In Figure 1, the file ddljex.l is the LEX specification file. It has token definitions.

When we run through this file with LEX (i.e.,%lex ddljex.l), LEX creates a c file which

is the lex.yy.c file. The file lex.yy.c is not in the figure 1, because we changed its name to

lex.ddl.c. The reason for this is LEX gives lex.yy.c name as default. There are other

implementations in the system, which use LEX and YACC. For example, DML compiler

94

uses LEX and YACC. So, DML compiler's LEX creates lex.yy.c file too. To eliminate

confusion, we renamed lex.yy.c file as lex.ddl.c (DML Compiler designers did similar

change and renamed their lex.yy.c file as lex.dml.c).

The file ddl_yacc.y is the YACC specification file. It has the grammar rules and

function calls from template_fuctions.c and dict_functions.c files. When we run through

this file with YACC (i.e.,%yaac -d ddl_yacc.y), YACC creates two files, which are y.tab.c

and y.tab.h. Again these file's names are given as default by YACC. With the same reason,

which is explained above for lex.yy.c file, we changed these file's names. We renamed

y.tab.h as ddl.tab.h and y.tab.c as ddl.tab.c.

The template_functions.c file has functions to create a data structure for .t and .d

files. The data structure is a linked list. See Appendix D for the linked list. These functions

of the template_functions.c file are called by the ddl_yacc.y file. When YACC matches

with a certain grammar rule, it calls the proper function from the template_functions.c file.

The file dict_functions.c has functions to create a data structure for the .diet file.

Like template_functions.c functions, these functions create a linked list too. See Appendix

D for the linked list. The functions of the diet _functions.c file are called by the ddl_yacc.y

file. When YACC matches with a certain grammar rule, it calls the proper function from

the dict_functions.c file to create a linked list for the data dictionary.

The file ddl_compiler.c has the main function of the compiler. The function's name

is ddl_compiler(). The function ddl_compiler() is invoked from lil.c file. This call activates

the OODDL Compiler. Lil.c file is under the mdbs/greg/CNTRL/TI/LangIF/src/Obj/Lil/

directory. The function ddl_compiler() calls ddlparse() function. The ddlparse() is a

95

function which is created by YACC (In fact, YACC creates yyparse() function, but we

renamed this function as ddlparse()). When ddlparse() function is invoked compile

procedure starts.

The file yy-lsed is SED specification file. It is used to rename the lex.yy.c file and

its functions. For more information look Chapter VIII.

The file yy-sed is again SED specification file. It is used to rename the y.tab.c,

y.tab.h files and their functions. For more information look Chapter VIII.

In Figure 2, the file ddl_functions.h is a header file. The global variable "dp_ptr" is

declared in this file.

The file licommdata.h has data structures for dynamic memory allocation. We took

this file from our system. We made some modification in the licommdata.h file.

The file alloc.c has the functions for dynamic memory allocation. These functions

allocate dynamically memory for structs, that are declared in the licommdata.h file.

The file buildddl.c has three functions. The first one is o_build_template_file().

This function creates the <database_name>.t file under the mdbs/UserFiles/ directory. The

function reads the linked list, that is created during compile time by the

template_functions.c functions and writes the requested information into

<database_name>.t file.

The second function is o_build_descriptor_file(). This function creates the

<database_name>.d under the mdbs/UserFiles/ directory. Like function

o_build_template_file(), this function reads the linked list, that is created during compile

96

time by the template_functions.c functions and writes the requested information into

<database_name>.d file.

The last function is o_build_dictionary_file(). This function creates the

<database_name>.dict file under the mdbs/UserFiles/ directory. This function reads the

linked list, that is created during compile time by the dict_functions.c functions and writes

the requested information into <database_name>.dict file.

4. How the User Compile and Use the Compiler:

OODDL compiler components are combined with entire system. If the user

modifies any OODDL Compiler file, whole system has to be compiled. System uses the

UMX tool Makefile for compile procedure. For more information about compile procedure

look Chapter VIII.

To compile the system, the user has to execute the following steps:

a. Login mdbs account.

b. Change the directory to the mdbs/greg/CNTRL/.

c. Execute the line (%rm ti.exe).

d. Change the directory to the mdbs/greg/CNTRL/TI/.

h. Execute the line (%mk). It takes time and does not show anything on the screen,

i. Execute the line (%more make_result). It shows the result of compile. If there is

an error, the user has to fix this error and execute the line (%mk) again.

1. Now, system is ready to run. Execute the line (%start).

97

A note on the use of "<" and ">": the name between them is the name of the data

base that is given by the user, and it can be changed. In our example, the data base name is

FACSTU. So, output files are FACSTU.t, FACSTU.d, and FACSTU.dict.

98

LIST OF REFERENCES

1. Hsiao, David K. and Kamel, M.N., "The Multimodel and Multilingual Approach to
Interoperability of Multidatabase Systems," International Conference on
Interoperability of Multidatabase Systems, Kyoto, Japan, April 1991.

2. Hsiao, David K., Federated Databases and systems - Part I: A Tutorial on its Data
Sharing," VLDB Journal, 1,1992, pp. 127-179.

3. Badge«, Bruce, "The Design and Specification of an Object-Oriented Data
Definition Language (O-ODDL)", Master's Thesis, Naval Postgraduate School,
Monterey, California, September 1995.

4. Hsiao, David K., "The Object-Oriented Database Management - A Tutorial on its
Fundamentals," Proceedings of the Second Far-East Workshop on Future Database
Systems, Kyoto, Japan, April 1992.

5. Barbosa, Carlos, M. and Kutlusan, Aykut, "The Design and Implementation of a
Compiler for the Object-Oriented Data Manipulation Language (O-ODML
Compiler)," Master's Thesis, Naval Postgraduate School, Monterey, California,
September 1995.

6. Senocak, Erhan, "The Design and Implementation of a Real-Time Monitor for the
Execution of Compiler Object-Oriented Transactions (O-ODDL and O-ODML
Monitor)", Master's Thesis, Naval Postgraduate School, Monterey, California,
December 1995.

7. Deitel, Harvey M., Deitel, Paul J., C++: How To Program, Prentice Hall, 1994.

8. Hsiao, David K., "Interoperable and Multidatabase Solutions for Heterogeneous
Databases and Transactions", a speech delivered at ACM CSC'95, Nashville,
Tennessee, March 1995.

9. Clark, Robert and Yildirim, Necmi, "The Instrumentation of a Kernel DBMS for the
Execution of Kernel Transactions Equivalent to their Object-Oriented Transactions,"
Master's Thesis, Naval Postgraduate School, Monterey, California, September 1995.

10. Aho, Alfred V., Sethi, Ravi, and Ullman, Jeffrey D., Compilers: Principles,
Techniques, and Tools, Addison-Wesley, 1986.

11. Lesk, M. E. and Schmidt, E., Lex - A Lexical Analyzer Generator, Bell Laboratories,
Murray Hill, New Jersey, July 1978.

12. Johnson, S. C, Yacc: Yet Another Compiler-Compiler, Bell Laboratories, Murray
Hill, New Jersey, July 1978.

99

13. Levine, John R., Mason, Tony, and Brown, Doug, lex & yacc, 2nd Edition, O'Reilly
& Associates, Inc., October 1992.

100

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5101

3. Chairman, Code CS 1
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

4. Professor David K. Hsiao, Code CS/Hs 4
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Instructor Thomas Wu, Code CS/Wq
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Ms. Doris Mlecsko
Code P22305
Weapons Division
Naval Air Warefare Center
Pt. Mugu, CA 93042-5001

7. Sharon Cain
NAIC/SCDD
4115 Hebble Creek Road
Wright Patterson AFB, OH. 45433-5622

8. Deniz Kuvvetteri Komutanligi.
Bakanliklar-ANKARA 06600
Turkey

LT Luis M. Ramirez...
1091-A Alta Mira Drive
Santa Clara, CA 95051

101

10. LTjg Recep Tan
Bagarasi Beldesi No:12/B
FOCA-IZMIR 35680
Turkey

102

