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ABSTRACT 

The problem addressed by this thesis is the inability of traditional data models to 

efficiently support the new database applications of today, such as Computer-Aided 

Design and multimedia. Traditional data models were designed for specific business type 

applications, i.e., record keeping (relational) and product assembly (hierarchical). Because 

of this, their permitted data types, structures, and query languages are specific and there- 

fore limited. New applications require more complex and varied data structures and data 

types. The flat representation of data by traditional data models results in complex objects 

being scattered over many relations losing the correspondence between the user's view 

and database representation. 

The approach taken was to develope a new object-oriented data model (O-ODM). 

The object-oriented approach permits both the structure of complex objects and their oper- 

ations to be specified by the designer, providing a flexibility not available in traditional 

data models. As a result an object may be modelled closer to the user's view, permitting 

the application programmer to easily capture its complexity. 

The result of this thesis is the specification of an object-oriented data definition 

language (O-ODDL) for the O-ODM. The O-ODDL incorporates the features of a unique 

object, object classes, inheritance, the covering, and encapsulation. The covering, unique 

to this O-ODM, is important in that it maps an object in one class to a subset of objects in 

another, providing the ability to manipulate an object as either a singleton or set. This O- 

ODM and its O-ODDL provide the constructs necessary to represent the new database 

applications of today. 
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I. INTRODUCTION 

The objective of my thesis is to define the specification of a Data Definition Lan- 

guage (DDL) for a new Object-Oriented Data Model (O-ODM). With respect to the O- 

ODM, I propose two questions which must be answered before any design of the DDL. 

The first question is as follows: Why is a new data model required and not the modifica- 

tion of an existing data model? The second question then becomes: Why is the object-ori- 

ented model chosen as the new in lieu of the modification of an existing model? In this 

introduction, I address both of these questions and demonstrate the need for a new data 

model, i.e., the O-ODM. 

In answering the first question one only has to look at the applications and require- 

ments placed on databases over the last decade. Initially databases and their corresponding 

data models were implemented mainly for business type applications. I will refer to these 

as traditional data models. Traditional models include the relational, network, hierarchical, 

and functional models. Today this is no longer true, there are many new applications 

which are significantly different than the previous traditional or business applications. 

These applications include areas such as Computer-Aided Design (CAD), Computer- 

Aided Manufacturing (CAM), Computer-Aided Software Engineering (CASE), Artificial 

Intelligence (AI), and multimedia. These newer applications are complex (a discussion of 

which is contained in the next paragraph) when compared to traditional applications. Their 

complexity requires a new and more powerful data model to characterize their data and to 

create their databases. 

The complexity refers to the various data types in a data aggregate and various 

relationships among aggregated data in order to provide powerful data abstractions.With 

these abstractions the user can view the complex data readily in the context of the new 

application [1,2]. 

On the other hand, a traditional database model is designed for a specific type of 

application, which is referred to as application specifity [1]. For example, the relational 

data model is designed to model records, the hierarchial data model for product assembly, 

the network data model for inventory controls, and the functional data model, for infer- 



ences. Here four distinct applications require four distinct data models to represent their 

data, i.e., a result of application specifity. These traditional data models do not adequately 

support new applications. The complexity of the new applications makes it impossible for 

a traditional data model to organize related data for the efficient access, retrieve and/or 

update of data. Therefore, for new applications, a new model is needed. 

Now that I have established a new data model is required I answer the second 

question: Why the object-oriented data model? New programming languages and data 

structures have been created to support the advanced computing and software require- 

ments. The object-oriented paradigm is rooted in the earliest object oriented programming 

language, Smalltalk. It was not until the past decade, however, that object-oriented pro- 

gramming languages have come into their own. This was due, in a large part, to the devel- 

opment of the C++ programming language in the early 1980's [3]. Object-oriented 

programming has become the premier programming method of the 1990's, solving many 

of the challenges of software engineering this decade. This popularity is, in part, a result 

of the object-oriented programming language's ability to model the essence of a real world 

problem without the need to model all its non-essential details. 

Instead of creating a new data model from scratch, the database researcher has 

adapted some features and constructs of the existing object-oriented programming lan- 

guages to create an object-oriented data model. The object-oriented approach allows a 

more direct modeling of real-world database applications, a more natural view of the 

application to the user. The object-oriented data model encapsulates the structure of 

objects with their permitted operations while, at the same time, hiding the details of how 

the structure and operations are implemented in the database system [4]. Additionally, this 

approach allows objects to be shared by multiple applications and reduces both the code 

and storage requirements for the database. Complex objects can be represented directly by 

the object-oriented data model without having to distort into tuples, as in the relational 

model. These object-oriented constructs provide the features we desire for our new data- 

base applications, allowing the easy construction and maintenance of complex (applica- 

tion) databases. 



As an example of an object-oriented approach for Computer-Aided Design, let us 

look at the application of designing computer chips. The basic design of a chip, although 

complex, has been established and does not change. This structure of a chip may be 

described as a class in object-oriented terminology. There are then additional chips which 

perform specific functions, such as floating-point operations, and are variations of the 

basic chip design. Again, in object-oriented terminology this may be thought of as a spe- 

cialization of the basic chip design. These different chips, i.e., object classes, form a hier- 

archy where one class inherits the design from another, again a feature of object-oriented 

database construct. Finally, the varied ways in which the chips may be interconnected can 

be modeled by another object-oriented concept, i.e., the covering. As it can be seen, the 

object-oriented features provide the necessary structures and constructs for this type of 

application. 

From the above paragraphs, we learn that the O-ODM is needed to support the 

new and complex database applications. This data model provides the user the means to 

specify, create, and interact with an object-oriented database for a new complex applica- 

tion. To be able to specify for the application a new data definition language, i.e., the new 

object-oriented data definition language or O-ODDL, is required. The design and specifi- 

cation of the O-ODDL to support this new O-ODM is the thrust of my thesis. 

This thesis consist of five chapters. Chapter I consist of this introduction. In Chap- 

ter II, I introduce and explain the object-oriented features and constructs which make up 

the new data model. Once the features and constructs have been established, I develope 

the actual specification for the O-ODDL in Chapter III. In Chapter IV, I utilize the newly 

designed O-ODDL and specify an example database application. In Chapter V, I summa- 

rize the result of my thesis along with some follow-on research topics. 





n. OBJECT-ORIENTED FEATURES AND CONSTRUCTS 

In this chapter, I define and examine the features and constructs that form the basis 

of the object-oriented data model. Unlike the traditional database models mentioned in 

Chapter I, there is no agreed specification defining an object-oriented data model. I borrow 

those features and constructs which define object-oriented programming languages and 

incorporate them into the object-oriented data model. The features and constructs [1, 5] of 

this object-oriented data model are as follows: 

• Every entity is represented by an object. Each object is assigned a unique identi- 
fier. 

• An object is represented by a set of attributes and methods. This set represents 
the structure and behavior of an object. 

• Classes consist of like objects, i.e., objects having common attributes and meth- 
ods. 

• Inheritance. Relationships among object classes in a hierarchy. 

• Covering. Relationships among object classes in different hierarchies. 

A. ATTRIBUTES AND METHODS 

An attribute is a variable which is defined by a name and a type. The type of an 

attribute may be either simple or complex. A simple attribute is atomic, or not divisible, 

such as an integer or character. A complex attribute consist of a set of attributes and can be 

divided into smaller parts, such as another class. The values of the attribute are limited to 

their designated domain and, in turn, are defined by the attribute type. An attribute is 

defined for either a single object (i.e., singleton) or a set of objects. A singleton forms a 

one-to-one (1:1) relationship from the attribute to the object whereas a set forms a one-to- 

many (1:N) relationship from attributes to objects of the set. 

A method may be defined as an operation that manipulates an object. The defined 

methods for a class provides the user the means to interface with an object of the class. A 

method consist of two parts. The first is the signature. The signature contains the name of 

the method, the name and type of parameters, and the return type. The second part of the 



method is the implementation. The implementation is the code which executes the 

method. This code is written in a programming language and is not visible to the user. [6] 

B. OBJECTS AND OBJECT CLASSES 

An object is the most basic and fundamental construct in the object-oriented data 

model. Objects are collections of specific attributes and the methods allowed on them. An 

object must be persistent, i.e., permanently stored in the object-oriented database, when 

used in a database application. However, in an object-oriented programming language, an 

object exists only during the program execution. 

There are two types of objects, simple and complex. A simple object consist of 

only a basic data type such as a character, a character string, an integer, or a number. These 

simple objects are sometimes referred to as primitive objects [1]. These primitive objects 

are provided by the object-oriented database system. The second type of objects are com- 

plex, or composite. A complex object simply consist of more than one object, simple or 

complex. 

A class is created by grouping together objects, all of which share the same 

attributes and methods. A class serves as the template, or schema, from which an instance, 

i.e., an object, may be identified. However, the class contains no data except its instances. 

As an example, consider characters. Each character is a primitive object of character type 

which is the name of the class itself. A class is therefore defined by two parts, a set of 

attributes and a set of methods. The set of attributes define the structure of the data to be 

stored in the database for each instance of the class, or in other words for each object. The 

set of methods define the operations permitted on an object of the class. The definition of a 

class forms an abstract data and operational type. An abstract data or operational type 

hides the details of their implementation from the user and allows the user to access either 

the attribute values or methods by their names. A set of classes define the schema for the 

object-oriented database. 



Encapsulation, a feature used extensively in object-oriented programming lan- 

guages, is related to an abstract data and operational type. It is important in that it provides 

a means to separate the specification of an object from its implementation [6]. Although 

not implemented in the traditional database models, the feature of encapsulation is now 

part of the object-oriented data model. 

An object consist of a data part and an interface part. The data part is the data 

structure along with the implementation of the methods. The interface part consist of the 

name and arguments of each method. The object is accessible only through this interface. 

The user of an object is aware only of the interface for the object. The internal details are 

hidden from the user via the encapsulation which provides the ability to modify the inter- 

nal structure and/or the implementation details of the methods without affecting the exter- 

nal applications which reference the objects. 

In object-oriented programming languages, an object is totally encapsulated. 

Totally encapsulated means that all operations are defined as part of the class and unavail- 

able to other classes. This total encapsulation would be too restrictive in the object-ori- 

ented data model. Flexibility is provided through the object-oriented data definition 

language to allow the user to construct queries which may apply to all the classes. 

C. OBJECT IDENTIFIERS 

Objects in the object-oriented data model are unique and distinguishable from each 

other, since each object is assigned a system-defined object identifier or OID. The OH) 

represents a unique object. The OID performs an important function in the object-oriented 

data model, allowing the sharing of objects. This sharing of objects accomplishes two 

things. First, data sharing reduces the physical storage requirements of the database, since 

shared objects are not duplicated in storage. Secondly, data sharing simplifies the update 

problem, requiring one update on an object which may be shared by many objects. Data 

sharing therefore contributes in maintaining the integrity of the database. 

Consider the following: An object of the Student class consist of a name, major 



and a description of a course the student is taking. Another object of the Faculty class con- 

sist of a name, rank, and a description of a course the faculty member is teaching. These 

objects may be represented as follows: 

{student_x, CS, (CS4001, databasel, S429)} 
{student_y, CS, (CS4001, databasel, S429)} 
{faculty_z, professor, (CS4001, databasel, S429)} 

The information on the course is duplicated for each object. Let another object of 

the Course class be defined consisting of the course number, course name, and room num- 

ber with a unique OID. Now the same information as before may be represented as: 

{CS4001, databasel, S429} 
{student_x, CS, (OID_course)} 
{student_y, CS, (OID_course)} 
{faculty_z, professor, (OID_course)} 

Any modification to the course object will be reflected in objects for the student 

and faculty. A modification of the course now requires one update of an object versus 

many updates of three objects. The physical storage requirements are also reduced, since 

ODDs are shorter than course information. This is critical in applications such as multime- 

dia where objects may occupy pages versus bytes of data. 

D. INHERITANCE 

Inheritance establishes relationships between two or more classes. These class 

relationships are critical to our data model. Inheritance as defined in [1] has the following 

definition: 

Class B is defined as a subclass of class A if class B inherits all the attributes and 

methods of class A. In this definition, class B contains all the attributes and methods of 

class A. Class A, however, need not contain all the attributes and methods of class B. If 

otherwise, A and B should be the same class. The difference is class B contains additional 

attributes and/or methods in addition to those defined for class A. This inheritance relation 

forms a hierarchy of classes A and B. 



Because class B inherits all the attributes and methods of class A, class B can be 

thought of as inheriting class A. Class B contains additional attributes and/or methods not 

contained in class A. Thus class B is a specialization of class A. Conversely, class A may 

be considered a generalization of class B. 

Two types of inheritance results from this hierarchical relationship among classes, 

data and operational inheritance [1]. Data inheritance results in the strong typing of 

objects in the hierarchial relationship. Strong typing results from the objects in the hierar- 

chy being created from the same set of attributes. Operational inheritance results from the 

sharing of the same methods by all objects in the hierarchy. The combination of data and 

operational inheritance contributes to the integrity of the database, a must in any database 

design. 

The following example illustrates the inheritance feature of the object-oriented 

data model for a University database containing both the Student and the Faculty classes: 

Each Student is defined by a name, address, major, and a set of courses taking. 

Methods applied to a Student include add_course and change_address. 

Class: Student 
Attributes: name 

address 
major 
courses_taking 

Methods: add_course 
change_address 

Each Faculty is defined by a name, address, department, and a set of courses teach- 

ing. Methods applied to a Faculty include assign_course and change_address. 

Class: Faculty 
Attributes: name 

address 
department 
courses_teaching 

Methods: assign_course 
change_address 



Both Student and Faculty share common attributes (i.e., name and address) and 

the same method (change_address). Using the inheritance principle, we are able to group 

the shared attributes and methods into a common superclass named Person. Person will be 

defined by the common attributes (name and address) and the common method 

(change_address). Both Student and Faculty then become a specialization or subclass of 

Person. Specialization refers to inheriting all of Person's attributes and methods in addi- 

tion to specific attributes and/or methods of its own. Student is said to inherit Person with 

two additional attributes (courses_taking and major) and an additional method 

(add_course). Faculty also inherits Person with two additional attributes 

(courses_teaching and department) and an additional method (assign_course). Figure 1 

demonstrates the inheritance property graphically. 

Class: Person 
Attributes: name 

address 
Methods: change_address 

Class: Student 
Attributes: courses_taking 

major 

Methods: add_course 

Class: Faculty 
Attributes:department 

courses_teaching 

Methods: assign_course 

Figure 1. Inheritance Hierarchy of Three Classes 

As a result of the inheritance only one definition of the common attributes and 

shared methods is written and maintained, thereby maintaining the database integrity. 

10 



E. COVERING 

Covering is a relationship defined on objects of different classes in the object-ori- 

ented data model. The following definition of covering is taken from [1]. Two classes are 

said to have a covering relationship if every object of one class, A, maps to, or corre- 

sponds to, a subset of objects, b's, from a second class, B. In this instance class A is said to 

cover class B. Class A is referred to as the covering class and class B is referred to as the 

member class. Covering may further be defined mathematically. All the subsets of objects, 

b's, form the power set of class B or P(B). There exist a mapping function or correspon- 

dence, f, which determines for an object, a, from class A all the objects, b's, of the subset 

f(a) from class B such that f(a) = b. This can be expressed as f: A -> P(B). 

As an example of covering consider the following example consisting of the fol- 

lowing two classes, Project and Student: 

Class: Project 
Attributes: project_name 

advisor 

Class: Student 
Attributes: student_name 

student_address 
major 

A student may be part of a project, such as the student's thesis. The student may be 

working on the project individually or as a member of a group or team. Each project in 

turn has a project name and an advisor. Here the project_name is the correspondence f that 

maps an object from Project to a subset of the set of objects from Student, i.e., f: Project 

-> P(Student). A project may map to the set of students who are members of that project, 

if several students are working on various theses in the same project. In Figure 2,1 demon- 

strate the covering feature. 

11 
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Figure 2. The Covering Relationship 

As illustrated in Figure 2 the covering does not have to partition the member class. 

Specifically, s4 is not in any covering and s3 participates in two coverings. An object in 

the member class is not restricted in the number of covering relationships it may partici- 

pate in. The number of relationships may be one, many, or none. We note that si, s2, and 

s5 participate in one, s3 in two and s4 in none. 

Covering therefore forms a relationship of an object in one class and a subset of 

objects of another class, instead of directly forming an inheritance hierarchy of classes. 

Covering permits an object of the cover class to be operated on either as a set of member 

classes or as a singleton (member class). 

12 



III. THE DATA-DEFINITION-LANGUAGE SPECIFICATION 

The features and constructs described in Chapter II are the basis for the object-ori- 

ented data model. The object-oriented-data-modelled database is specified, in turn, in an 

object-oriented data definition language (O-ODDL). The O-ODDL provides the syntax 

necessary to specify the object-oriented-data-modelled database. 

Prior to an understanding of the O-ODDL, it is necessary for the reader to have a 

basic understanding of the system on which it is intended to be implemented. This under- 

standing is essential to the design of the O-ODDL. 

A. THE BACKGROUND 

The system used in the Laboratory for Database Research at the Naval Postgradu- 

ate School is the Multimodel and Multilingual Database System (M2DBS). See Figure 3 

for an organization of its databases and model/languages interfaces. It is not my intention 

to give a complete description of M2DBS here, but only to describe its effect on the design 

of the O-ODDL. A more complete explanation of M2DBS is contained in [7]. The 

M2DBS is designed to support heterogeneous databases of various models. Each database 

is stored in the system in the format of the kernel data model in lieu of its own data model. 

Currently MDBS supports databases in the relational, hierarchial, network, and func- 

tional data models. In order to support a database in the new data model, the O-ODM, it is 

necessary to provide an object-oriented-data-model interface for M2DBS. 

The kernel data model for the M DBS is the attribute based data model (ABDM). 

Because the ABDM serves as the kernel, our new database in the O-ODM must be 

mapped to its ABDM equivalent. It is this mapping to the ABDM equivalent that 

impacted the design of the specification of the O-ODDL. The impact on the design is dis- 

cussed in the following sections of this chapter. 

13 
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Figure 3. The Multimodel and Multilingual Database System. 
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The ABDM's basic construct is the attribute-value pair. An attribute-value pair is 

represented as <attribute, value>. Attribute, in this instance, represents the domain for the 

corresponding value. A record consist of a set of attribute value pairs such that: (1) no 

attribute is repeated, (2) an attribute can only have one value in a record, and (3) every 

record must have at least one key. [7] 

B. THE DATA DEFINITION LANGUAGE 

Now that the M2DBS and attribute-based data model have been mentioned, I 

present the specification for the O-ODDL. From this specification we are able to create a 

schema for an object-oriented database. The schema is a template describing the attributes 

and the relations in the database. From Chapter II, the relations which must be specified 

are the class, inheritance, covering, attributes, and value types representing a set. A 

description of these specifications is contained in the following subsections. The conven- 

tions used in defining the specifications are: 

• reserved words in bold-faced, 

• class names begin with an uppercase letter followed by lower-case letters, 

• attribute names and types in lower case, 

• words in italics being provided by the user, 

• attributes being either simple, i.e., single-valued or composite, i.e., a set of val- 
ues. 

1. The Class Specification 

From Chapter II, the definition of a class is the grouping of objects which share 

common attributes and methods. Therefore, the specification of a class must contain the 

ability to specify these attributes and methods. Figure 4 contains the specification of a 

class for our O-ODM. 
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Class Class_name{ 
attribute_typej    attribute_namef, 

attribute_typem   attribute_namem; 
return_typej method_name j; 

return_typec 

}; 

methodjfiame- 

Figure 4. Specification of a Class. 

Here attribute_type, represents the domain of the attribute. The domain may be of 

a simple type, such as an integer or character, or a complex type, such as another class. 

The attribute_name is the name assigned to the attribute and is the placeholder for its 

value. This value may represent either a singleton or a set. 

2. The Inheritance Specification 

Inheritance is the second feature of our O-ODM for which a specification is to be 

provide. From Chapter II, we learn that the inheritance is described as a hierarchy. In this 

hierarchy, a class assumes, or inherits, all the attributes and methods from another class. 

Figure 5 is the specification for the inheritance feature of our O-ODM. 

Class Class_namel :Inherit Class_name2{ 
attribute_typen   attribute_namen; 

attribute _typex 

returnjype^ 
attribute_namex; 
meihod_name^, 

returnjtypei 

}; 

method_namef, 

Figure 5. Specification for Inheritance. 
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Here, Class_namel refers to the subclass, or specialization, of Class_name2 which 

is the superclass, or generalization. The attributes and methods contained in this specifica- 

tion are those which are unique to Class_namel, but not part of Class_name2. 

3. The Cover Specification 

The third specification to be defined is that for the covering. From Chapter II, we 

recall that the covering defines a mapping, or relationship, between an object in a class, the 

cover class, to a set of objects in a second class, the member class. This covering specifi- 

cation is provided in Figure 6. 

Class Class_namel : Cover Class_name2{ 
attribute _type j    attribute _namej; 

attribute_typem   attribute _namem; 
return_typej method_name j; 

return_typec 

}; 

method_namec; 

Figure 6. Specification for the Covering 

In this instance Classjwmel represents the cover class and Class_name2 repre- 

sents the member class. This means that an object of class Class_namel maps to a subset 

of objects from class Class_name2. 

4. Set Relationships 

First in order for an attribute to assume the values of a set, a scheme is devised. 

Recall that in the ABDM, an attribute-value pair can only contain a singleton value, not a 

set. Therefore, a way must be devised to represent this set. I elect to create a new 

attributejype to represent a set relation. This new attributejype, called set_of, is imple- 

mented in the kernel. The kernel creates a template in ABDM format containing the OID's 

of the objects in the participating classes. An example is the best way to illustrate this fea- 

ture. This creation also shows that the introduction of O-ODM constructs require some 
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modifications and enhancements of ABDM constructs. 

Consider a simplified definition of the class Student. In this example, Student con- 

sist of two attributes, name and schedule. Name is a character string and schedule refers to 

the set of courses of class Course which a student is taking. 

Class Student{ 
char*   name; 
set_of Course   schedule; 
}; 

The user would logically expect the record to appear similar to the following: 

{<TEMP, Student>, <name, John Doe>, <schedule, {cl, c2, c3}>} 

As mentioned previously, the ABDM cannot store a set such as {c 1, c2, c3}. In this 

case, the values of the set will be stored in a separate table containing the OID for the Stu- 

dent object and the OID for the Course object. The new template for this table would look 

like: 

{<TEMP, Student_course>, <char*, OID_Student>, <char*, OJX>_Course>} 

Each record contains only one student and one course. For the above example three 

records are created. Each record with the same student OID, but different course OID's. To 

retrieve the student's schedule the table would be searched with the entering argument of 

the students OID. None of this is visible to the user however. Entries in the data dictionary 

directs the system to the correct number of course records. 

The second attribute_type created for a set relationship is inverse_of. Inverse_of is 

the complement of set_of. In this case, two classes each have a set relationship referring to 

the other. If only set_of is used, two identical tables will be generated by the system. Using 

inverse_of, results in only one table to be generated. In this way we prevent duplicate 

tables, save the storage space, and maintain the integrity of the database. 
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In addition to class Student, there is a second class Course. Course consists of two 

attributes: course_name and roster. Course_name is a character string and roster refers to 

the set of students, of the class Student, who are taking the course. 

Class   Course { 
char* course_name; 
inverse_of Student.schedule   roster; 

}; 

Here, roster is the inverse set relationship of a student's schedule (i.e., Stu- 

dent.schedule). In other words, for every course that a student is taking the course is in the 

student's schedule; conversely, the student should be on the course's roster. Schedule 

refers to a set of objects in Course, while roster refers to a (an inverse) set of objects of 

class Student. 

The specifications for set_of and inverse_of appears in Figure 7. 

set_of Class_name   attribute _name\ 

inverse_of Class_name. attribute_name    attribute_name; 

Figure 7. Specification for Set_of and Inverse_of. 

This specification of the set_of and inverse_of constructs allows this O-ODM to 

represent 1:N and M:N relationships of two object classes. 

19 



20 



IV. THE FACULTY-STUDENT DATABASE 

In order to illustrate the O-ODDL provided in Chapter III, I create an object-ori- 

ented database from a real world application. This database is named the Faculty-Student 

database and represents a database found at a University. For this application of the O- 

ODDL, only attributes will be considered, i.e., no methods. First a description of the data- 

base to be constructed is given. Secondly, from the description of the database, the con- 

ceptual database design is accomplished. Finally the conceptual database design is 

translated to its object-oriented specification in the O-ODDL. This translation, or map- 

ping, corresponds to the logical database design. 

A. THE DATABASE DESCRIPTION 

Prior to specifying the conceptual database design I first establish the requirements 

of the Faculty-Student database. These requirements define the objects to be represented 

and the relationships between objects. The Faculty-Student database contains faculty 

members, students, courses, and teams (i.e., projects) described as: 

• Either a faculty member or a student is defined by a name (fname, mi, lname), an 
address (street, city, state and zipcode), and a sex. 

• A faculty member is further defined by a department (dept), a rank or a title (i.e., 
military or civilian faculty), the teams he or she advises, and the courses he or she 
teaches. 

• Students are further defined by the courses the student takes (student's schedule), 
a major, and a student number (student_no). 

• A course is defined by a course name (cname), a course number (cse_no), a sec- 
tion number (sec_no), an instructor, and a set of students enrolled in the course 
(course's roster). 

• A team is defined by a project name (prjname) and the faculty advisors. 

Based on this description, the Faculty-Student database initially consist of four 

classes. The four classes are Faculty, Student, Course, and Team. The constraints and rela- 
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tionships imposed on the four classes of the Faculty-Student database are now defined as: 

• Every course can have one and only one instructor and at least one student. 

• A faculty member may teach more than one course. 

• Every student is enrolled in at least one course. 

• Every team has an advisor and at least one student. 

• Faculty members are of two types, either military or civilian. However, only the 
civilian faculty member may be the advisor of a team. 

B. THE CONCEPTUAL DATABASE DESIGN 

The goal of the conceptual database design phase is to produce a conceptual 

schema for the Faculty-Student database using a high level (i.e., close to the user's view) 

data model. The conceptual schema is a concise description of the user's requirements (i.e, 

database description) capturing the aspects of the real world similar to the users percep- 

tion. To meet this end the conceptual schema must be simple to understand, have a small 

number of basic concepts, and represent the database in a diagrammatic manner [8]. There 

are a number of approaches in developing the conceptual database design, i.e., the entity 

relationship (ER) approach, the enhanced ER (EER) approach and the object-oriented 

approach. I choose the object-oriented approach as this is the data model of the database. 

In the conceptual schema, Figure 8,1 identify the classes, the attributes, and the 

relationships. Applying the object-oriented features and constructs introduced in Chapter 

n, I represent the Faculty-Student database in object-oriented terms. The attributes may be 

either simple or complex. The relationships include inheritance, the covering, a singleton, 

i.e., 1:1, or a set, i.e., 1 :N or M:N. 
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Figure 8. Conceptual View of the Faculty-Student Database 
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Before continuing further I define the symbols and notations used to represent the 

conceptual schema in diagrammatic form. 

I | Represents a class. 

(^^)  Represents a singleton type attribute, i.e., 1:1 

Represents a set type attribute, i.e., 1:N. 

—az □ The covering. The double box represents the cover class and 
the single box represents the member class. 

Inheritance. The arrow points from the superclass to the 
subclass 

Links an attribute whose attribute type is another class to 
that class 

Since both the Faculty and the Student classes contain name, address, and sex, 

their common attributes are combined into a single superclass named Person. Thus, the 

Faculty and Student classes inherit these attributes from the Person class. Two types of 

Faculty are also defined, civilian (Civ_fac) and military (Mil_fac). The Faculty class now 

becomes the superclass for the Civjfac and the Mil_fac classes, containing the common 

attributes dept and teaches. I have created two levels of inheritance in this example, Per- 

son -> Faculty -> Civ_fac or Mil_fac, as depicted in Figure 8. 

Within the superclass Person, the attributes for fname, mi, and lname may be 

defined as a single attribute, pname, of attribute type class Name. The attribute type, i.e., 

Name, in this case is another class. Similarly, the individual attributes comprising a per- 

son's address can be combined into a single attribute, paddress, of attribute type class 

Address. See Figure 8 for the Name and Address classes. 

The relationship between Team and the students making up a team can be repre- 

sented using the covering. Here, Team is the cover class and Student is the member class. 

From the definition of the covering in Chapter II, this means that an object of class Team 

maps to a subset of objects of the class Student. This mapping says that a team may have 
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one or more students as team members. This is depicted in Figure 8. 

C. LOGICAL DATABASE DESIGN 

The purpose of the logical database design is to create the database in the data 

model of the chosen DBMS [8]. The high level data model will be mapped to the data 

model of the implementation. The result of the mapping is the DDL statements in the O- 

ODM. In this case, I take the conceptual schema, Figure 8, and specify it in the O-ODDL. 

The description then becomes a specification of classes, inheritances, and covering in the 

O-ODDL. 

For detailed specifications of individual classes and their built in relationships, I 

translated the conceptual database schema to a schema in the O-ODDL, depicted in Figure 

9. In class Faculty, teaches represents an attribute defined by a set, i.e., 1:N, and its type is 

therefore set_of. Another set_of attribute type is found in Student, the schedule attribute. 

A third set_of type attribute is found in class Course, the roster attribute. Recall from 

Chapter II that roster has an inverse relationship with the schedule attribute in class Stu- 

dent. In other words, the set of students (i.e., objects) of class Student, which take the 

same course, (i.e., have as a member of the attribute schedule of a unique object) of class 

Course, is identical to the roster for the course (i.e., for an object of class Course). Roster's 

attribute type therefore is inverse_of Student.schedule. Class Team contains the final 

set_of type attribute, the advisor attribute. Advisor further has an inverse relationship with 

the advises attribute in class Civ_fac. Advises attribute type is therefore the inverse_of 

Team, advisor. 

I have now completed the logical database design. The result of this design, Figure 

9, is a complete object-oriented specification of the Faculty-Student database in the O- 

ODDL. This object-oriented schema in the O-ODDL is now ready to be compiled and the 

physical database created. 
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Class Name{ 
char* fname; 
char* mi; 
char* lname; 
} 

Class Person { 
char*     sex; 
Name    pname; 
Address paddress; 

} 

Class Address { 
char* street; 
char* city; 
char* state; 
char* zipcode; 
} 

Class Faculty : Inherit Person { 
char*     dept; 
set_of Course teaches; 
} 

Class Student :Inherit Person { 
char*   studentjno; 
char*   major; 
set_of Course schedule; 

Class Mil_fac :Inherit Faculty! 
char*     rank; 
} 

Class Civ_fac :Inherit Faculty! 
char*   title; 
inverse_of Team.advisor advises; 

Class Course { 
char*     cname; 
char*     cse_num; 
char*     secjno; 
Faculty instructor; 
inverse_of Student, schedule roster; 

Class Team : Cover Student { 
char*     prjname; 
set of Civ fac advisor; 
} 

Figure 9. Faculty-Student Database Schema 
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V. CONCLUSION 

In this thesis I provided the specification for an object-oriented data definition lan- 

guage. This object-oriented data definition language permits the specification of an object- 

oriented database utilizing the object-oriented data model. The object-oriented data 

model, in turn, borrowed many of the features and constructs of object-oriented program- 

ming languages. These features and constructs include the concept of a unique object, 

object classes, inheritance, encapsulation and the covering. Because of these features, this 

object-oriented data model is capable of efficiently representing and managing the com- 

plex database applications of today. This object-oriented data model further supports con- 

version to the attribute-based format, the kernel data model of M DBS in the Laboratory 

for Database Research at the Naval Postgraduate School. This conversion will now allow 

the development of an object-oriented interface to the M2DBS. 

A. WORK IN PROGRESS 

The specification of the object-oriented data definition language is the first step of 

a larger project involving a total of eleven thesis students and seven Master's Theses. The 

project's goal is the development of the Object-Oriented Interface for the M2DBS. Current 

work on the object-oriented interface involves incorporating the object-oriented data 

model and the corresponding data languages as model/language compilers. The data lan- 

guages for this object-oriented interface include both a data definition language and a data 

manipulation language. A generalized diagram of the object-oriented interface is provided 

as Figure 10. 

This thesis provides the design criteria and the specification of the O-ODM and O- 

ODDL. To facilitate writing object-oriented transactions, or queries, an object-oriented 

data manipulation language (O-ODML) is required. The design and specification of the O- 

ODML is contained in [9]. 
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Figure 10. Data Flow of the Object-Oriented Interface 
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Two compilers are required to support the O-ODDL (O-ODDL Compiler) [10] and 

O-ODML (O-ODML Compiler) [11]. The O-ODDL Compiler takes as input an object- 

oriented specification in the form of the O-ODDL. Using this input the O-ODDL Com- 

piler outputs the equivalent ABDM specification and the Data Dictionary. The O-ODML 

Compiler takes as input an O-ODML statement and produces the equivalent attribute- 

based data manipulation language (ABDML) statements. Multiple ABDML statements 

are produced for a single O-ODML statement. 

The Real-Time Monitor [12] supervises the execution of the ABDML statements 

created by the O-ODML compiler. These ABDML statements are executed individually 

and the final result returned to the user via a Kernel Formatting System. 

The final two theses [13, 14] fine-tune the five primary ABDM operations 

(INSERT, UPDATE, DELETE, RETRIEVE, and RETREIVE-COMMON). These basic 

operations permit the creation and manipulation of the object-oriented database as an 

attribute-based database. 

B. FUTURE RESEARCH 

In the design stage of developing the object-oriented interface for M2DBS it was 

decided not to implement methods. The first phase of development was directed towards 

establishing a working data definition language and data manipulation language. In keep- 

ing with the object-oriented paradigm it is recommended future thesis students implement 

methods. This implementation will provide the user a true external interface, encapsulat- 

ing the objects. The result is a true object-oriented database. 
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