
AVF Control Number: AVF-VSR-611.1095
15 December 1995

95-06-02-INT

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 951017W2.0-001
Intermetrics Inc.

AdaMagic, Version 2.0
SPARCstation 5 under SUNOS, 4.1.4 =>

Raytheon Extended Weapons Control Computer (EWCC) (Bare Machine]

VSR Status: (Final)

Prepared By:
ADA VALIDATION FACILITY

88 CG/SCTL
Wright-Patterson AFB OH 45433-5707

19960207 003

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and reviewing the collection of information. Send comments regading this burden, to Washington Headquarters Service,
Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Information and Regulatory
Affairs, Office of Management and Budget, Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
15 December 1995

3. REPORT TYPE AND DATES COVERED
Final

4. TITLE AND SUBTITLE:
Ada Compiler Validation Summary Report: Intermetrics, Inc., VC#
951017W2.0-001 - AdaMagic, Version 2.0

5. FUNDING NUMBERS

6. AUTHOR(S)

19960207
003

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Ada Validation Facility
88 CG/SCTL
Wright-Patterson AFB, OH 45433-5707

8. PERFORMING ORGANIZATION
REPORT NUMBER

AVF-VSR-611.1095

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Ada Joint Program Office, Department of Defense
Code JEXSV, 701 S. Courthouse Rd.
Arlington, VA 22204-2199

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
Host: SPARCstation 5 (under SunOS 4.1.4)
Target: Raytheon Extended Weapons Control Computer (EWCC) (bare machine)

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; Distribution is unlimited.

12b. DISTRIBUTION • ~"c

13. ABSTRACT (Maximum 200 words)
This report documents the validation testing of an Ada 95 implementation. This testing was conducted according to the
Ada Compiler Validation Procedures, Version 4.0, using Ada Compiler Validation Capability test suite version 2.0, and
completed 17 October 1995.

14. SUBJECT TERMS
Ada programming language, Ada Compiler Validation Capability, Ada Compiler
Validation Summary Report, Ada Joint Program Office, Ada Validation Organization,
Ada Validation Facility, testing, ISO/IEC 8652:1995

15. NUMBER OF PAGES
42

16. PRICE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UNCLASSIFIED

NSN 7540-01-280-5500

TABLE OF CONTENTS

Preface

Validation Certificate

Declaration of Conformance

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 REFERENCES 1-2
1.3 ACVC TEST CLASSES 1-2
1.4 SPECIAL CONDITIONS FOR ACVC 2.0 1-3
1.5 DEFINITION OF TERMS 1-3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS 2-1
2.2 INAPPLICABLE TESTS 2-1
2.3 MODIFICATIONS 2-3
2.4 UNSUPPORTED ADA 95 FEATURES 2-6
2.4.1 Real-Time 2-7
2.4.2 OOP 2-7
2.4.3 Type Extensions in Child Units 2-7
2.4.4 Child Library Units 2-7
2.4.5 Pre-Defined Language Environments 2-7
2.4.6 Mixed Features 2-7

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT 3-1
3.2 TEST EXECUTION 3-1

APPENDIX A MACRO PARAMETERS AND IMPLEMENTATION-SPECIFIC VALUES

A.l MACRO PARAMETERS A-l
A.2 VALUES FROM PACKAGE IMPDEF A-3

APPENDIX B COMPILATION SYSTEM OPTIONS AND LINKER OPTIONS

APPENDIX C WITHDRAWN TESTS LIST

PREFACE

This report documents the validation testing of an Ada 95 implementation.
This testing was conducted according to the Ada Compiler Validation
Procedures version 4.0, using the Ada Compiler Validation Capability test
suite version 2.0, and completed 17 October 1995.

The successful completion of validation testing is the basis for the Ada
certification body's issuance of a validation certificate and for subsequent
registration of derived implementations. A copy of the validation
certificate and its attachment that were awarded for this validation are
presented in the following two pages. Validation testing does not ensure
that an implementation has no nonconformities to the Ada 95 standard other
than those, if any, documented in this report. The compiler vendor declares
that the tested implementation contains no deliberate deviation from the Ada
95 standard other than the omission of features; a copy of this Declaration
of Conformance is presented immediately after the certificate pages.

This report has been reviewed and approved by the signatories below. These
organizations attest that, to the best of their knowledge, this report is
accurate and complete; however, they make no warrant, expressed or implied,
that omissions or errors have not occurred.

Ada Val a Validation Facility
Brian P. Andrews
AVF Manager
88 CG/SCTL
Wright-Patterson AFB OH 45433-5707

Organization
'Computer and Software Engineering Division

Institute for Defense Analyses
Alexandria VA 22311 USA

Joint Program flffice
Dr. Charles B. Enc
Center for Inform^on MaW^ement
Defense Information Systems Agency
Alexandria VA 22041 USA

The Ada Joint Program Office awards this

Ada Validation Certificate
No. 951017W2.0-001

to Intermetrics, Inc.
for successfully validating the following Ada implementation:

Compiler: AdaMagic, Version 2.0
Host Computer: SPARCstation 5 (under SunOS 4.1.4)
Target Computer: Raytheon Extended Weapons Control Computer (EWCC)

(bare machine)

Conformity testing to ANSI/ISO/IEC-8652:1995 was conducted by Wright-
Patterson Air Force Base, USA, using ACVC Version 2.0. This testing is
documented in the AVF's Validation Summary Report #AVF-VSR-611.

The validated status conveyed by this certificate is in effect jtom the validation date

listed below.

Validation Date: 17 October 1995
Expiration Date: 31 March 1998

UNHEDSQfflBMPiHMNroFwnwE, Dr.ChadesB.Eü^CMfirMdiciJPO
AfejooffraoouHoma _^___„

Core Ada-95 Test Categories andSpedalizedUeeds Annexes
For Intermetrics; AdaMagic, Version 2.0; VC#951017W2;0-001; ACVC2.U

Con Ada 95 Test Cataforko

• Asla9XBask: Thkh the subset of tes*fn»nACVC 1.11 afu*r*nwMofte«tsn*api>tab»»Ada95. These test» fccus on
support expected from Ada for featores of Ada 13 mat luve been updated to be compstiMawfch revised rules.

Not* T^fbQowingsabe«aofteetivilidetefeaweetbatii«DewtsAdt95. Each test has
teaeub«ati,b«a^upoa*|eo8(«i«st880(^ik>Def Ad»fB*u»«^intbeteit These
pfcgrgnmer»eretikrfytoi»»e»a«ohre>pfogrM>mii^proMem.

allocated tab) exactly cot of »vend
BIO designed to reflect tin I

Baal-Time: Thb subset is eenuj»sed of te» for the new Ad^ Tests end Synrhmttf nrim, These
fesMres »etude preist object mo^
OOP: m subset eftesmtocusw en sotneneeessaryfls^^ Feamres
validated include tagsed types, class sflributes, sad sbstttÄ types sodstibpregtan». Other Ada 95 ftcilUes conmoniy used m
o^cctrOfkatedproymasretedud^mtobiaqgeatiQbisw
T>pe Extensions in Child Units: Tesun^stfoeusontnentemtifloofthetwonew Ada feamres of type examsiaM of tagged
types end child Übnar units. Tlibiwlixka the related seinsiaxa of vis^^

CMd library Units: Tests that focus en the support for the new Ada capability to provide a hierarchical organization of me
conipuaüoa units of sa Ada pioyaawiA the assciriatedcapao^
of hiding selected uns» within subsystems.
Pro-defined Language Environment: This subset of tests include some Ada 13 facilities and some new features defined m
Annex A. Annex A ixovidesspecnlcsüens for root Hbra^
and input/output.
Mixed Featnites Thfarebatverybage subset of tests focuses en the interaction ofAdafeeaa» to are a mixture
t3 and new Ada 95 features.

Ada 94 Test Categories • Passed Not
Appiksbk

Not
Supported

With-
drawn

TOTALS

Ada 9X Basic 2472 216 0 197 29S5
Reel-Time 4t 0 0 3 91
OOP 40 0 0 15 55
Type Extensions in Child Units 27 0 0 S 35
Child Library Units 29 0 0 1 37
Pre-defined f angnage
Environments 10 0 0 17 27
Mixed Features 123 24 0 42 199

-JJIlIwfc—i^wr*T-* :lü^*wfci»*"«»r*_tr?.*.* ~.Z. J:»« ■■—■■■ ^-PUSESS aMasSKs» a-S^s^^MHans«: 3MMKS»

Specialized Needs Annexen

Voss? Tests allocated to these annexes an processed only when vendor claims support

Specinlixed Needs Annexes Passed Not
AopUcable

Not
Supported

With.
drawn

TOTALS

Annex C System Piogiiuining 4 0 0
Annex D Real-Time Systems 19 1 0 11 31
Annex E Distributed Systems 0 0 7
Annex F fafbrmatkm Systems 0 0 2
Annex G Numerics 0 0 1
Annex H Safety sad Security

äÄTT"-öd
0 0 0

TOTflL P.04

Declaration of Conformance

Customer: Intermetrics

Ada Validation Facility: 88 CG/SCTL
Wright-Patterson AFB OH 45433-5707

ACVC Version: 2.0

Ada Implementation:

Ada Compiler Name and Version: AdaMagic, Version 2.0

Host Computer System: SPARCstation f
SUNOS, 4.1.4

Target Computer System: Raytheon Extended Weapons Control
Computer (EWCC) (Bare Machine)

Declaration:

I, the undersigned, declare that I have no knowledge
of deliberate deviations from the Ada Language Standard
(ANSI/ISO/IEC 8652:1995, FIPS PUB 119-1) other that the
ommission of features as documented in the Validation Summary Report.

/OZI&A35-
stomer Signature Date

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro95] against the Ada Standard [Ada95] using the Ada
Compiler Validation Capability (ACVC) Version 2.0. This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation. For
any technical terms used in this report, the reader is referred to [Pro95].
A detailed description of the ACVC may be found in the current ACVC User's
Guide [UG95].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. 552). The results of this validation apply only
to the computers, operating systems, and compiler versions identified in this
report.

While the organizations represented on the signature page of this report have
exercised diligent care to make this report accurate and complete, they
cannot warrant that all statements set forth in this report are accurate and
complete, or that the subject implementation has no nonconformities to the
Ada Standard other than those presented. Copies of this report are available
to the public from the AVF that performed this validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161, USA

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311-1772, USA

1-1

INTRODUCTION

1.2 REFERENCES

[Ada95] Reference Manual for the Ada Programming Language, ANSI/ISO/IEC
6652:1995.

[Pro95] Ada Compiler Validation Procedures, Version 4.0, Ada Joint Program
Office, January 1995.

[UG95] The Ada Compiler Validation Capability User's Guide, Version 2.0,
SAIC, 6 February 1995.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes: A,
B, C, D, E, and L. The first letter of a test name identifies the class to
which it belongs. Class A, C, D, and E tests are executable. Class B and
class L tests are expected to produce errors at compile time and link time,
respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they are
executed. Three Ada library units, the packages REPORT and SPPRTl3,and the
procedure CHECK_FILE are used for this purpose. The package REPORT also
provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 contains constants of type SYSTEM.ADDRESS.
These constants are used by selected chapter 13 tests and by isolated tests
for other chapters. The procedure CHECK_FILE is used to check the contents
of text files written by some of the Class C tests for the Input-Output
features of the Ada Standard, defined in Annex A of [Ada 95]. The operation
of REPORT and CHECK_FILE is checked by a set of executable tests. If these
units are not operating correctly, validation testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class B
tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation of
the Ada Standard involving multiple, separately compiled units. Errors are
expected at link time, and execution is attempted.

For some tests of the ACVC, certain implmentation-specific values must be
supplied. The insertion method for the implementation specific values can
either be a macro substitution on the source file level of the test or
linking a package that contains the implementation specific values. Details
are described in [UG95]. A list of the values used for this implementation

1-2

INTRODUCTION

is provided in Appendix A. In addition to these anticipated test
modifications, additional changes may be required to remove unforeseen
conflicts between the tests and implementation-dependent characteristics.
The modifications required for this implementation are described in section
2.3.

For each Ada implementation, a customized test suite is produced by the AVF.
This customization consists of making the modifications described in the
preceding paragraph, removing withdrawn tests (see section 2.1), and possibly
removing some inapplicable tests (see section 2.2 and [UG95]).

1.4 SPECIAL CONDITIONS FOR ACVC 2.0

ACVC 2.0 is designated to cover the transition period from Ada 83 to Ada 95.
For details see [Pro95]. ACVC 2.0 is composed of two sets of tests. The
first set is commonly called Ada 9x Basic. It consists of tests that were
taken from ACVC 1.12 with possibly minor modifications to remove
incompatibilities with Ada 95. The second set of tests was developed in
order to test truly new features of Ada 95. A consequence of this approach
is that the naming conventions for tests are not uniform. The test name of a
test from ACVC 9X Basic always refers to the Ada 83 Standard, even if the
feature covered by the test was moved to a different chapter in [Ada95].

[Pro95] determines
pass ACVC 9X Basic.

that the minimum requirement for passing ACVC 2.0 is to

1.5 DEFINITION OF TERMS

Acceptable A result that is explicitly allowed by the grading criteria
result of the test program for a grading of passed or inapplicable.

Ada compiler The software and any needed hardware that have to be added to
a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler
Validation
Capability
(ACVC)

Ada
Implementation

Ada Joint
Program Office
(AJPO)

The means for testing compliance of Ada implementations,
consisting of the test suite, the support programs, the ACVC
user's guide and the template for the validation summary
report.

An Ada compilation system, including any required runtime
support software, together with its host computer system and
its target computer system.

The part of the certification body which provides policy and
guidance for the Ada certification system.

1-3

INTRODUCTION

Ada Validation
Facility (AVF)

Ada Validation
Organization
(AVO)

ARM 83

Certification
Body

Compliance of
an Ada
Implementation

Computer
System

The part of the certification body which carries out the
procedures required to establish the compliance of an Ada
implementation.

The part of the certification body that provides technical
guidance for operations of the Ada certification system.

The Ada Reference Manual, published as
ANSI/MIL-STD-1815A-1983 and ISO 8652-1987. Citations from
the ARM take the form <section>.<subsection>:<paragraph>.

The organizations (AJPO, AVO, AVFs), collectively responsible
for defining and implementing Ada validation policy, includ-
ing production and maintenance of the ACVC tests, and
awarding of Ada validation certificates.

The ability of the implementation to pass an ACVC version.

A functional unit, consisting of one or more computers and
associated software, that uses common storage for all or part
of a program and also for all or part of the data necessary
for the execution of the program; executes user-written or
user-designated programs; performs user-designated data
manipulation, including arithmetic operations and logic
operations; and that can execute programs that modify
themselves during execution. A computer system may be a
stand-alone unit or may consist of several inter-connected
units.

Conformity

Customer

Declaration
of Conformance

Fulfillment by a product, process or service of all
requirements specified.

An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

A formal statement from a customer assuring that conformity
is realized or is attainable on the Ada implementation for
which validation status is realized.

Foundation An Ada package used by multiple tests. Foundation units are
Unit designed to be reusable. A valid foundation unit must be in

Ada library for those tests that are dependent on the
foundation unit.

Host Computer
System

A computer system where Ada source programs are transformed
into executable form.

1-4

INTRODUCTION

Inapplicable
Test

ISO

Operating
System

Special Needs
Annex

Target
Computer
System

Validated Ada
Compiler

Validated Ada
Implementation

Validation

Withdrawn Test

A test that contains one or more test objectives found to
be irrelevant for the given Ada implementation.

International Organization for Standardization.

Software that controls the execution of programs and that
provides services such as resource allocation, scheduling,
input/output control, and data management.

One of annexes C through H of [Ada95J. Validation against
one or more special needs annexes is optional. For each
annex, there is a test set that applies to it. In addition
to all core language tests, the appropriate set of tests must
be processed according to the Ada language for an
implementation to be validated for a special needs annex.

A computer system where the executable form of Ada programs
are executed.

The compiler of a validated Ada implementation.

An Ada implementation that has been validated successfully
either by AVF testing or by registration [Pro95].

The process of checking the conformity of an Ada compiler
to the Ada programming language and of issuing a certificate
for this implementation.

A test found to be incorrect and not used in conformity
testing. A test may be incorrect because it has an invalid
test objective, fails to meet its test objective, or contains
erroneous or illegal use of the Ada programming language.

1-5

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

At the time of this validation testing, 313 tests were withdrawn from the
ACVC 2.0 test suite; these tests were not processed. Appendix C contains the
withdrawn tests list, which identifies each withdrawn test and the reason(s)
for its withdrawal.

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may be
supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

The following 17 tests check for the predefined type SHORT_INTEGER; for
this implementation, there is no such type:

B36105C C45231B C45304B C45411B C45502B
C45503B C45504B C45504E C45611B C45613B
C45614B C45631B C45632B B52004E C55B07B
B55B09D CD7101E

The following 16 tests check for the predefined type LONG_INTEGER; for
this implementation, there is no such type:

C45231C C45304C C45411C C45502C C45503C
C45504C C45504F C45611C C45613C C45614C
C45631C C45632C B52004D C55B07A B55B09C
CD7101F

2-1

IMPLEMENTATION DEPENDENCIES

B23003F checks that maximum line length and maximum identifier length
are the same. For this implementation, there is no maximum (other than
storage limits) and no errors are detected. (See section 2.3.)

C45231D and CD7101G check for a predefined integer type with a name
other than INTEGER, LONG_INTEGER, or SHORT_INTEGER; for this
implementation, there is no such type.

C45322A and C45622A check that the proper exception is raised if
MACHINE_OVERFLOWS is TRUE and the results of various floating-point
operations lie outside the range of the base type; for this
implementation, MACHINEjOVERFLCWS is FALSE.

C45531I..P (8 tests), C45532I..P (8 tests), and CE3804J check
fixed-point operations for types that require a SYSTEM.MAX_MANTISSA of
25 or greater; for this implementation, MAX_MANTISSA is less than 25.
(See section 2.3.)

C96005B uses values of type DURATION'S base type that are outside the
range of type DURATION; for this implementation, the ranges are the
same.

CE2103A, CE2103B, and CE3107A use an illegal file name in an attempt to
create a file and expect NAME_ERROR to be raised; this implementation
does not support external files and so raises USE ERROR. (See section
2.3.)

The following 241 tests check operations on sequential, text, direct
access, wide_text, and stream files; this implementation does not
support external files:

CE2102A.
CE2103C.
CE2109A.
CE2111E.
CE2203A
CE2208B
CE2403A
CE2407A..B
CE2411A
CE3103A
CE3108A.
CE3115A
CE3207A
CE3305A
CE3402C.
CE3405A
CE3408A..C (3)
CE3410A
CE3411C
CE3414A
CE3605A..E (5)

.C (3)
• D (2)
• C (3)
• G (3)

:2)

.B (2)

.D (2)

.H

.D
CE2102G.
CE2104A.
CE2110A
CE2111I
CE2204A..D
CE2401A..C
CE2404A. .B
CE2408A. .B
CE3102A. .B
CE3104A..C
CE3110A
CE3119A
CE3301A
CE3401A
CE3403A. .B
CE3405C..D
CE3409A
CE3410C
CE3412A
CE3602A..D
CE3606A..B

(2)
(4)

(4)
(3)
(2)
(2)
(2)
(3)

(2)
(2)

(4)
(2)

CE2102K
CE2106A.
CE2110C
CE2120A.
CE2205A
CE2401E.
CE2405B
CE2409A.
CE3102F.
CE3106A.
CE3112C.
EE3203A
CE3302A
CE3402A
CE3403E.
CE3406A.
CE3409C.
CE3410E
EE3412C
CE3603A
CE3704A.

.B (2)

.B (2)

.F (2)

.B

.H

.B
• D

.F

.D

.E

(2)
(3)
(2)
(2)

(2)
(4)
(3)

.B (2)

CE2102N.
CE2108E.
CE2111A.
CE2201A.
CE2206A
CE2401H.
CE2406A
CE2410A.
CE3102J.
CE3107B
CE3114A
EE3204A
CE3304A
EE3402B
CE3404B.
CE3407A.
EE3409F
CE3411A
CE3413A.
CE3604A.
CE3704D.

(12)
(4)
(3)
(14)

■ L (5)

(2)
(2)

(3)
(3)

.C (3)
■ B (2)
.F (3)

2-2

IMPLEMENTATION DEPENDENCIES

CE3704M..O
CE3804A..E
CE3805A. .B
CE3902B
CE3906A..C
CXAA011..5
CXACB01

(3) CE3705A..E
(5) CE3804G..I
(2) CE3806A..B (2)

CE3904A..B (2)
(3) CE3906E..F
(5) CXABOOl

(5)
(3)

(2)

CE3706F..G (2)
CE3804O

CE3706D
CE3804M
CE3806D..E (2) CE3806G..H (2)
CE3905A..C (3) CE3905L
CXA8001.
CXAC003

.3 (3) CXAAOOl.
CXACAOl

.9 (9)

CE3704C, CE3706C, CE3804F, CE3804P, CE3806C, CE3806F, and CE3906D contain the
expression "FIELD'LAST + 1". This expression is rejected at compile time by
this implementation because it is a static expression whose value exceeds the
base range of the type. (See section 2.3.)

CXB3002, CXB3003, and CXB5001 check if packages Interfaces.C.Strings,
Interfaces.C.Pointers, and Interfaces.Fortran are available for use. This
implementation does not support C of Fortran interfaces. (See section 2.3.)

CXD2003 checks that when Task_Dispatching_Policy is FIFO_Within_Priorities
and a blocked task becomes ready, it is added to the tail of the ready queue
for its priority. This system is a multiprocessor system and can not ensure
that the low priority tasks could be started in parallel.

2.3 MODIFICATIONS

In order to comply with the test objective it may be required to modify the
test source code, the test processing method, or the test evaluation method.
Modifications are allowable because at the time of test writing not all
possible execution environments of the test and the capabilities of the
compiler could be foreseen. Possible kinds of modification are

. Test Modification: The source code of the test is changed.
Examples for test modifications are the insertion of a pragma, the
insertion of a representation clause, or the splitting of a B-test into
several individual tests, if the compiler does not detect all intended
errors in the original test.

. Processing Modification: The processing of the test by the Ada
implementation for validation is changed.
Examples for processing modification is the change of the compilation
order for a test that consists of multiple compilations or the
additional compilation of a specific support unit in the library.

. Evaluation modification: The evaluation of a test result is changed.
An example for evaluation modification is the grading of a test other
than the output from REPORT.RESULT indicates. This may be required if
the test makes assumptions about implementation features that are not
supported by the implementation (e.g. the implementation of a file
system on a bare target machine).

Modifications were required for 64 tests.

2-3

IMPLEMENTATION DEPENDENCIES

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the
way expected by the original tests.

b23004a b24204d b38003c b38009d b44004c
b55a01a b83e01c b83e01d b83e01e ballOlc
bcll09a bcll09b bcll09c bc!109d bc2001d
bc51017

B23003F was graded inapplicable by Evaluation Modification as directed
by the AVO. This test nominally checks that the maximum line &
identifier lengths are equal. But there is no such requirement in [Ada
95]; rather, [Ada 95] 2.2(15) requires implementations to support
identifiers and lines of at least 200 characters. Thus, this test is
retained to check that a maximum identifier length is enforced.
However, for this implementation there is no fixed maximum line or
identifier length; the implementation ensures that identifiers of 200
characters are always accepted, but varies the maximum length according
to remaining room in the lexer's buffer. The AVO ruled that this was
acceptable for validation under ACVC 2.0 pending a ruling from the ABG.

B38105A, B45601A, B54A05B, B87B48C were graded passed by Test
Modification as directed by the AVO. These tests include the
assignments of fixed-point values that lie outside of the range of the
fixed-point base type because this implementation uses all extra bits
for precision. These tests were modified to use values that were within
range, as follows:

for B38105A at line 80 '1.0' was changed to '2.0' (widening the range);
for B45601A at line 33, B54A05B at line 33, and B87B48C at line 38
1.0 was changed to 0.0

C3A2001, C954A01..3, CA11004/5/9/16/19, & CC54001..4 (13 tests) were
graded passed by Test Modification as directed by the AVO. These tests
depend on an elaboration order that is not required by [Ada 95], so in
order to avoid the raising of Program_Error, an Elaborate or
Elaborate_Body pragma was inserted at the following places:

for (Report, TCTouch, C3A2001 1, C3A2001 2,
C3A2001_3, C3A2001 4);

for (F954A00)
for (F954A00),
for (F954A00)
with Elaborate_Body;
with Elaborate_Body;
with Elaborate_Body;
for (CA11016_0.CA11016 1);
for (CA11019_O.CA11019_1);
for (CC54001J))
for (CC54002_0)
for (CC54003 0)
for (CC54004 2)

C3A2001 after line 366

C954A01 at line 90
C954A02 at line 90
C954A03 at line 98
CA11004 at line f0-58
CA11005 at line f0-49
CA11009 at line 51
CA11016 at line 195
CA11019 at line 192
CC54001 after line 98
CC54002 after line 101
CC54003 after line 162
CC54004 at line 208

2-4

IMPLEMENTATION DEPENDENCIES

C43003A was graded passed by Test Modification as directed by the AVD.
This test includes a fixed-point subtype declaration with an upper bound
that is outside of the range of this implementation's base type because
all extra bits are used for precision. The upper bound was modified, as
follows:

at line 224 change '8.0' to '7.75'

C45531I..L, C45532I..L, & CE3804J (9 tests) were graded inapplicable as
directed by the AVO. These tests use fixed-point types that require
more than 24 bits, which exceeds this implementation's capacity.
(CE3804J would be inapplicable in any case for this implementation,
since it requires support of external files.)

C95040D was graded passed by Evaluation Modification as directed by the
AVO. This test attempts I/O from separate tasks to the same file
object, which results in interleaved output text.

EA3004G was graded passed by Evaluation Modification as directed by the
AVO. This test expects the reference to an obsolete unit to be detected
at compile time; this implementation makes the detection at link time.

CA1020D was graded passed by Processing Modification as directed by the
AVO. This test checks that certain previously compiled library units in
a compil- ation are made obsolete by a later compilation. This
implementation makes all units of a compilation obsolete if any one is,
as allowed by [Ada 95] 10.1(4), and so the needed units in file CA1020D0
are not available as expected by the test. This test was split into 10
separate compilations as shown below by duplicating files CA1020D0 & -Dl
and commenting out various lines so as to isolate the units expected to
be made obsolete), and then all 10 files (including -D2 and -D3M) were
processed:

for CA1020D0
(a) comment lines 51..65
(b) comment lines 32..49,
(c) comment lines 32..53,
(d) comment lines 32..57,
(e) comment lines 32..61

(leaves generic units)
55..65 (leaves CAl020D_Procl)
59..65 (leaves CAl020D_Func2)
63..65 (leaves CAl020D_Proc3)

(leaves CA1020D Func3)

for CA1020D1
(a) comment lines 45..56 (leaves CAl020D_Procl & CAl020D_Func2)
(b) comment lines 33..42, 53..56 (leaves CAl020D_Proc3)
(c) comment lines 33..53 (leaves CAl020D_Func3)

CA5004B was graded passed by Processing Modification as directed by the
AVO. This test checks that an Elaborate pragma is obeyed when it is
given for a unit whose body has yet to be compiled or is replaced.
However, this implementation doesn't permit a compilation to contain
units with the same name. The test was split into 3 separate
compilations as follows:

(a) lines 1..59; (b) lines 60..80; & (c) lines 81..175

2-5

IMPLEMENTATION DEPENDENCIES

BC1002A was graded passed by Evaluation Modification as directed by the
AVO. This test includes a fixed-point type declaration that requires
more than 24 bits, which exceeds this implementation's capacity and is
rejected by the compiler. This additional error citation was ignored.

CE2103A, CE2103B, and CE3107A were graded inapplicable by Evaluation
Modification as directed by the AVO. The tests abort with an unhandled
exception when USEJ5RROR is raised on the attempt to create an external
file. This is acceptable behavior because this implementation does not
support external files (cf. AI-00332).

CE3704C, CE3706C, CE3804F/P, CE3806C/F, & CE3906D (7 tests) were graded
inapplicable by Evaluation Modification as directed by the AVO. Thest
tests use the static expression "FIELD'LAST + 1" which is rejected at
compile time because it exceeds the range of the base type. (These
tests would otherwise execute and report "not applicable" because this
implementation doesn't support external files.)

CE3810B was graded passed by Test Modification as directed by the AVO.
This test checks Fixed_IO and uses a fixed-point type that requires more
than 24 bits which exceeds this implementation's capacity. The type
declaration at line 44 was changed to use '250.0' vice '1000.0' as the
range's upper bound.

CXB3002, CXB3003, & CXB5001 were graded inapplicable by Evaluation
Modification as directed by the AVO. These tests check the support of
interfaces to (foreign) languages C and Fortran. This implementation
doesn't support such interfaces, as allowed by [Ada 95] B.2(11,13).

CXD1002 was graded passed by Processing Modification as directed by the
AVO. This test checks that the base priority of the main subprogram can
be set by a Priority pragma. This implementation requires a special
option to designate a user-defined library unit as the main subprogram;
this test was processed with the linker option "-pru" designating this
test.

2.4 UNSUPPORTED ADA 95 FEATURES

As allowed by [Pro95], not all tests for Ada 95 features need be passed for
validation under ACVC 2.0; this allowance is intended to facilitate the
development of quality implementations during the transition period.
Furthermore, support of the [Ada95] Special Needs Annexes is always an
implementation option, and partial support might be appropriate for some
application domains. The relevant tests have been categorized as described
by the attachment to the validation certificate, shown at the front of this
report; the identification of the complete set of tests for each category and
each Annex is given in [UG95]. For this implementation, the following tests
were graded as "not supported".

2-6

IMPLEMENTATION DEPENDENCIES

2.4.1 Real-Time

No REAL-TIME tests were graded "not supported".

2.4.2 OOP

No OOP tests were graded "not supported".

2.4.3 Type Extensions in Child Units

No tests with type extensions in child units were graded "not supported".

2.4.4 Child Library Units

No child library unit tests were graded "not supported".

2.4.5 Pre-Defined Language Environments

No tests of pre-defined language environments were graded "not supported".

2.4.6 Mixed Features

No tests of mixed features were graded "not supported".

2-7

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For technical and sales information about this Ada implementation, contact:

Mike Ryer
Intemetrics Inc.
733 Concord Ave
Cambridge MA 02138
(617) 661-1840

Testing of this Ada implementation was conducted at the {customer's | AVF's}
site by a validation team from the AVF.

3.2 TEST EXECUTION

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded onto the host computer.

The tests were compiled and linked on the host computer system, as
appropriate. The executable images were transferred to a DECStation 5000/200
system by a magnetic tape and loaded onto the target computer via Adaview,
and run.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

3-1

PROCESSING INFORMATION

compilation option

-nz

-lc or -lp

meaning

The nz flag non-zeros the heap for detecting
errors more easily.

When listings are required, the -lc flag creates
a continuous (non-paginated) source (and error)
listing. The -lp flag creates a paginated source
(and error) listing.

linker option

-nc

-alt

-11

-ol

meaning

("no recompile"). This disables an automatic
recompilation feature; use of this feature is
sometimes not consistent with the expected testing
results.

Use "alternate" elaboration routine. The release
of the compiler that we checkpointed assumes a
Raytheon usage. The elaboration order is
different if we run stand alone or on top of the
TD/DSK.

The linker options are passed from adabuild. What
gets passed is -c acvc.lc. The acvc.lc contains
the locating segment information for the hardware.

Passes the hardware version of the time_support
to the linker. The load file from the compiler
has a dummy ewcc time support body which needs to
be replaced at link time either with the simulator
version or the harware one. We replace it with
the hardware version.

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by the
validation team were also archived.

3-2

APPENDIX A

MACRO PARAMETERS AND IMPLEMENTATION-SPECIFIC VALUES

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG95]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX_IN LEN, also listed here. These values are expressed in a
symbolic notation, using placeholders as appropriate.

A.l MACRO PARAMETERS
Macro Parameter Macro Value

$MAX_IN_LEN

$BIG_ID1

$BIG_ID2

$BIG_ID3

$BIG_ID4

$BIG_STRING1

$BIG_STRING2

$BLANKS

$MAX STRING LITERAL

200

AAA .

AAA .

AAA .

AAA .

"AAA

"AAA

ii

"AAA

. Al (<$MAX_IN_LEN> characters)

. A2 (<$MAX_IN_LEN> characters)

. A3A ... A (<$MAX_IN_LEN> characters)

. A4A ... A (<$MAX_IN_LEN> characters)

.. A" (<$MAX_IN_LEN>/2 characters)

..Al" ((<$MAX_lN_LEN>/2)-l characters)

" (<$MAX_IN_LEN>-20 blanks)

.. A" (<$MAX IN LEN> characters)

$ACC_SIZE

$ALIGNMENT

$COUNT LAST

24

1

8388607

A-l

MACRO PARAMETERS AND IMPLEMENTATION-SPECIFIC VALUES

$ENTRY_ADDRESS

$ENTRY_ADDRESSl

$ENTRY_ADDRESS2

$FIELD_LAST

$FORM_STRING

$FORM_STRING2

$GREATER_THAN_DURATION

$GREATER THAN DURATION BASE LAST

FCNDECL.To_Address (16#9700C#)

FCNDECL.To_Address (16#9700D#)

FCNDECL.To_Address (16#9700E#)

8388607

IMI

"CANNOT_RESTRICT_FILE_CAPACITY"

86 401.0

131_073.0

$GREATER_THAN_FLOAT_BASE_LAST 1.80141E+38

$GREATER THAN FLOAT SAFE LARGE 1.0E308

$ILLEGAL_EXTERNAL_FILE_NAME1

$ILLEGAL_EXTERNAL_FILE_NAME2

$ INAPPROPRIATE_LINE_LENGTH

$INAPPROPRIATE_PAGE_LENGTH

$INTEGER_FIRST

$INTEGER_LAST

$INTEGER_LAST_PLUS_1

$INTERFACE_LANGUAGE

$LESS THAN DURATION

\NODIRECTORY\FILENAME

THIS-FILE-NAME-IS-TOO-LONG-FOR-MY-SYSTEM

-1

-1

-8388608

8388607

8388608

NO_LANGUAGE_AVAILABLE

-90 000.0

$LESS THAN DURATION BASE FIRST -131 073.0

$MACHINE_CODE_STATEMENT

$MAX_INT

$MAX_INT_PLUS_1

$MIN_INT

$NAME

$NAME_SPECIFICATION1

$NAME SPECIFICATION2

RP'(OTHERS => 0);

8388607

8388608

-8388608

NO_SUCH_TYPE_AVAILABLE

X2120A

X2102B

A-2

MACRO PARAMETERS AND IMPLEMENTATION-SPECIFIC VALUES

$NAME_SPECIFICATION3 X2120C

$OPTIONAL_DISC (blank character)

$RECORD_DEFINITION RECORD DUMMY : INTEGER; END RECORD;

$RECORD_NAME RP

$TASK_SIZE 48

$TASK_STORAGE_SIZE 2048

$VARIABLE_ADDRESS FCNDECL. To_Address(16#97000#)

$VARIABLE_ADDRESS1 FCNDECL.To_Address(16#97001#)

$VARIABLE_ADDRESS2 FCNDECL.To_Address(16#97002#)

A.2 VALUES FROM PACKAGE IMPDEF

— IMPSPEC.ADA

Minimum Task Switch : constant duration := 0.1;
— "~ VALIDATION VALUE
— This is the minimum time required to allow another task to get
— control. It is expected that the task is on the Ready queue.
— A duration of 0.0 would normally be sufficient but some number
— greater than that is expected.

Switch_To_New_Task : constant duration := 0.5; — change for ewcc target
— ~~~ — VALIDATION VALUE
— This is the time required to activate another task and allow it
— to run to its first accept statement.

Clear_Ready_Queue : constant duration := 5.0;
— *** VALIDATION VALUE
— This is the time which will clear the queues of other tasks
— waiting to run. It is expected that this will be about five
— times greater than Switch_To_New_Task.

Delay_For_Time_Past : constant duration := 0.1;
— ~~~ VALIDATION VALUE
— Some implementations will boot with the time set to 1901/1/1/0.0
— This constant is such that when a delay of Delay_For_Time_Past is given,
— the implementation guarantees that a subsequent call to

v — Ada.Calendar.Time_Of(1901,1,1) will yeild a time that has already passed
— (for example, when used in a delay_until statement)

A-3

MACRO PARAMETERS AND IMPLEMENTATION-SPECIFIC VALUES

Procedure Exceed_Time_Slice;
— This is a procedure who's execution is guaranteed to be greater
— than the time slice unit on implementations which use time slicing
— For those which do not implement time slicing this could be
— null;

type Processor_Type is (Uniprocessor, Time_Slice, Multiprocessor);

Processor : constant ProcessorJType := Multi Processor; — changed for ewcc
— ^~~ VALIDATION VALUE
— Indicates the type of processor on which the tests are running.
— Time_Slice indicates a uni-processor with an operating system
— that simulates a multi-processor by using time slicing

Interrupt_To_Use_For_Testing : constant Ada.Interrupts.Interrupt_ID
:= Ada.Interrupts.Interrupt ID'First; — to allow trivial compilation

— * "*" VALIDATION VALUE
A Reasonable Amount Of_Time_To_Wait_For_An_Interrupt : constant := 10.0;
— VALIDATION VALUE
— These two constants are used for interrupt testing in the
— Systems Annex. If the Systems Annex tests are not going to be
— used, it is allowed to delete these two constants, along with the
— above reference to Ada.Interrupts.Names;

— lnterrupt_To_Use_For Testing should be set to the name of an
— interrupt ID that will ideally cause interrupts within the time
— interval specified by:
— A_Reasonable_Amount_Of_Time_To_Wait_For_An_Interrupt.

function Negative_Zero return Float;
— This function must return a "negative zero" value
— for implementations for which Float'Signed_Zeros is True.

A-4

APPENDIX B

COMPILATION SYSTEM OPTIONS AND LINKER OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted otherwise,
references in this appendix are to compiler documentation and not to this
report.
adacomp 1.694 (ALPHA):

Copyright (c) 1994, 1995, Intermetrics, Inc. All Rights Reserved.
Usage: adacomp [options —] [file ...]

file

Options Summary:

Listing Options

-lc
-lp
-lr

-le
-lx
-pi length
-pw width
-rl
-prl

Message Options

-m msg_kind

+m msg_kind

-mr msg_kind

+mr msg kind

A source file to be compiled,
multiple files specified.

There may be

Continuous source listing interspersed with messages.
Paginated source listing interspersed with messages.
Relevant-only source listing, (only source lines
for which there are error or warning messages).
Source listing only if there are errors.
Cross reference listing (turns on -xr).
Set page length of source listing file to length.
Set page width of source listing file to width.
Record layout listing for all record types.
Record layout listing for packed record types only.

Suppresses the display of any messages of msg_kind
for the current invocation of the compiler.
Enables the display of any messages of msg_kind
for the current invocation of the compiler.
Suppresses the display of any messages of msg_kind
for any recursive invocations of the compiler.
Enables the display of any messages of msg kind
for any recursive invocations of the compiler.

The valid values for msg kind:

B-l

COMPILATION SYSTEM OPTIONS AND LINKER OPTIONS

a - all messages
d - implementation-dependent warning messages
e - error messages
i - information messages
n - nyi messages
w - general warning messages
r - redundant messages

By default, all messages except information and redundant messages are
displayed. For recursive invocations, no messages are displayed by default.
For convenience, "-m a" will suppress all messages *except* errors.

Miscellaneous Options

-a

-asm
-c
-e count
-f
-g
-help or -h
-s
-N
-O level

-t

-nr

-nz

-xr

Analyzer only, don't run the emitter,
backend or optimizer.

Save the interleaved assembler listing.
Frontend only, don't run the backend or optimizer.
Stop reporting errors after the count but keep on going.
Force generation of il even if there are errors.
Generate information for symbolic debugger.
Display this help message.
Suppress all checks.
Suppress certain numeric checks.
Call the optimizer with optimizing level:

all, debug or none.
The default is to have optimization or all.
-g debug disables optimizations which substantially
interfere with debugging.
Trace each declaration and statement passed to

the emitter.
No "current heap" releases (just keep allocating,
never releasing).
Initialize all heap memory to a non-zero value.
(in hex, the non-zero value is BADlBADl so it
is easy to spot in the debugger, and causes a
Bus Error on the Sparc when dereferenced.)
Save xref info for the Browser.

Driver Options

-0 Identifies executable version numbers (default).
-of file Read options from specified file.
-ke Keep intermediate files.
-ki Keep the info file .
-ne Don't re-exec adacomp process on failure.
-nl Don't re-exec adacomp process on last file.
-pB "BE options"
-pO "Optimizer options"
-pL "Lister options"

Pass options to Back End, Optimizer or Lister.
(Multiple options must be enclosed in quotes.)
Debugging toggles for phases can also be passed here.

-q Quiet mode — suppress all inessential messages.

B-2

COMPILATION SYSTEM OPTIONS AND LINKER OPTIONS

-sr (Search and Register) Enable automatic registration of
source files

-T Print timing information on compiler phases,
-v Verbose mode — driver reports its every action.

Executable File Overrides

-xd dirjpath Override default ADA_MAGIC environment
variable if exists.

-xB exe_path Override default back end.
-xL exejpath Override default lister.
-xO exejpath Override default optimizer.

(See manual for more details.)

B-3

COMPILATION SYSTEM OPTIONS AND LINKER OPTIONS

Linker Options

The linker options of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this appendix are to linker documentation and not to this
report.
adabuild 1.694 (ALPHA):

Copyright (c) 1994, 1995, Intermetrics, Inc. All Rights Reserved.
Usage: adabuild [options ...] [unit ...]

unit The main unit to be linked. There may be
multiple units specified.

Options Summary:

-help or -h Display this help message.
-v Provide verbose output.
-td file For dual linker, pass "file" to llink from

import library.
-ol file Pass ol file "file" to llink.
-pru unit Use certain pragmas of "unit" to override

main unit pragmas.
-dh number Pass "-dh number" directly to llink.

"-dh" is a required llink option. If there is
no "-dh" specified to adabuild, a default
"-dh 262144" is passed to llink

-11 option Pass "option" to llink.
To pass multiword options, repeat "-11", i.e.,
to pass "-c foo" use "-11 -c -11 foo".

-g Build with debugging symbols.
-na No autoregistration.
-nc No recompilations.
-no No ".ol out of date" recompilations.
-nl No link (prelink, but do not call llink).
-nse No llink segment elimination (seg elim is the default).
-ke Keep intermediate files.
-f Force linking, despite any prelinker errors.
-alt Use "alternative" elaboration routine (at alt.ol)

B-4

APPENDIX C

WITHDRAWN TESTS LIST

B23003D + imposes line-/lexical_element-length rules not required by Ada95

B23003E + imposes line-/lexical_element-length rules not required by Ada95

B32104A : Ada95 3.3.1:9 permits unconstrained array definitions for objects

B32201A : §69-85 Ada95 allows non-universal initial values for named numbers

B34003B : §160,177 'Pred,'Succ are defined for floating-point in Ada95

B34004B : §116,120,158,162,179 the fixed-point operations are legal in Ada95

B34005N : §181 requires K to be universal_integer; Ada95 allows any integer

B34005T : §229 requires K to be universal_integer; Ada95 allows any integer

B34007H : §178 requires K to be universal_integer; Ada95 allows any integer

B34007K : §206 'STORAGE_SIZE is legal in Ada95 by implicit dereference

B34007Q : §151 'CONSTRAINED is legal in Ada95 by an implicit dereference

B34007T : §161 'CONSTRAINED is legal in Ada95 by an implicit dereference

B34008B : §143 applies 'Address to a derived task type, which isn't a prog.unit

B34014D : §81-2,130-1,174-5 is resp. illegal/ok by 3.2.3:7 & 3.4:17

B34014F : §81-2,130-1,174-5 is resp. illegal/ok by 3.2.3:7 & 3.4:17

B34014M : §77-8,112-3,151-2,187-8,228-9,266-7 are resp. illegal/ok by 3.4:17

B34014Q : §82/3,135/6,183/4,194/5,237/8,277/8 is resp. illegal/ok by 3.4:17

B34014S : §82/3,135/6,186/7 is resp. illegal/ok by 3.2.3:7 & 3.4:17

B34014Z : §78/9,115/6,156/7,196/7,237/8,277/8 is resp. illegal/ok by 3.4:17

C-l

WITHDRAWN TESTS LIST

B35401A : §40,41 is legal in Ada95 (array bounds can be static)

B35501A : @55,63 'SUCC'PRED are defined for fixed-point types in Ada95

B36101A : §79,110 'A'..'Z' is ambiguous in Ada95 (CHARACTER vs. WIDE_CHARACTER)

B3617LA : §120,128 declares an object w/unconstr.array def.—legal in Ada95

B36201A : @112,113 'First(N) only needs a static integer N—each is, in Ada95

B37004A : @76 is legal since this doesn't cause freezing (8.6:17 & 13.14:8)

B37401A : §178,179,182 'CONSTRAINED is allowed by Ada95 (func.call,impl.deref.)

B38103A : §175,184,212,248,257,261,268 checks Ada83 errors now legal by 6.3.1

B38103B : §179,188,216,252,261,265,272 checks Ada83 errors now legal by 6.3.1

B38103C : §f2-31,40,68,104,113,117,124 Ada83 errors are legal by Ada95 6.3.1

B38103D : @186,195,223,259,268,272,279 Ada83 errors are legal by Ada95 6.3.1

B38103E : §f1-31,40,68,104,113,117,124 Ada83 errors are legal by Ada95 6.3.1

B391001 : all but the last ERROR are illegal also by accessibility rules

B392002 : (§141,144 violates 3.9.2:12 (dispatching operation of two types)

B392004 : (§176,178,180 violates 3.9.2:9 as each call is dynamicly tagged

B392006 : §104,108,115 is legal, as the function calls are tag indeterminate
: §113 (comment re 112) is wrong, operand is controlling, like others

B392007 : @113 has a known disc.part but parent type is unconstrained (3.7:13)

B393001 : @145 inherits but doesn't override Return_Vis_Abstract (3.9.3:6)

B393003 : §197 is legal, the procedure overrides an inherited operation
: §214 the subprogram overrides no homograph, so is legal
: §242 is legal, the procedure overrides an inherited operation
: §248 the subprogram overrides no homograph, so is legal

B393004 : (§127,134,149 the functions must be declared abstract (3.9.3:8'last)
: §184,210,241 Process & Update aren't defined for New_Field (3.2.3:6)
: @78,79 the comment is wrong to imply inheritance of Process & Update

§108 violates accessibility rule 3.10.2:28
§243 is legal (the access, not designated, value is updated)

§204 is legal (3.10:9), an aliased view
§215,217 the attribute 'Access violates 3.10.2:27 [extra error §217!

B3A0001

B3A2002

B3A2003 : §220,221 'Access prefix must be variable, not constant (3.10.2:25)

C-2

WITHDRAWN TESTS LIST

B3A2007 : @ all but one instantiation violates accessibility rule 3.9.1:3

B48002F : @44 the allocator applies a constraint to an elementary type (4.8:4)

B54A08A : @42,47 a case expression may be of a generic formal type (5.4:4)

B54A10A : @57,62 are legal in Ada95, which uses any integer vs. Universal_Int

B55B14B : all checks are invalid, as 'Range is static in these cases in Ada95

B63009A : @165,174,202,240,251,255,262,274,277 are legal by Ada95 6.3.1

B63009B : @169,178,206,244,255,259,266,278,281 are legal by Ada95 6.3.1

B63009C : @f1-31,40,68,106,117,121,128,140,143 are legal by Ada95 6.3.1

B63102A : the test objective is invalid by Ada95 6.3.1

B66001D : @42 has a static value out of range of the base type (4.9:35)

B731A01 : @157 is legal (private operations are declared & visible here)
: @78 the comment is wrong re visibility & hence legality

B731A02 : @169 is legal (private operations are declared & visible here)

B74103B : the Ada83 errors are legal in Ada95 (private'SIZE parameter default)

B74103C : all of the intended Ada83 errors are legal in Ada95

B74103F : many of the intended Ada83 errors are legal in Ada95

B74103H : all intended Ada83 errors ERRORS are legal by 13.14:8 (no freezing)

B74104A : @174,183,211,247,256,260,267 Ada83 errors are legal by Ada95 6.3.1

B74105A : @51,55,78 Ada83 errors are legal in Ada95 (definite subtype)

B74205B : all intended errors are legal in Ada95 (implicit dereference)

B74207A : uses undefined numeric attributes & 'BASE for composite types

B74303A : §46,47 is too restrictive re deferred constants (7.4:6,4.9.1:2)

B74304B : @49,50,59,60 Ada83 errors are legal by Ada95 freezing rules

B74304C : @54 the Ada83 error is legal by Ada95 freezing rules

B74409A : @68 overloads "=" which is legal in Ada95

B83011A : @137-139 checks an Ada83 visibility rule changed in Ada95 (8.2:2)

B83041E : @86,88 "*" & "/" resolve to universal_fixed (4.5.5:18-20)

B85001F : @52 Ada83 error is legal in Ada95 (renaming function result object)

C-3

WITHDRAWN TESTS LIST

B85013C : §58,87 Ada95 allows an others choice

B95020A : @124,172,178,198,234,237,242,250,252 meets Ada95 conformance rules

B95020B : @f2-50,56,76,104,112,115,120,128,130 meets Ada95 conformance rules

B95074E : has an invalid objective for Ada95 (implicit dereference)

BA1010B : §f3-32 profile conforms in Ada95 (explicit/implicit mode "in";

BA1010F : §f2-32 profile conforms in Ada95 (explicit/implicit mode "in"!

BA1010G : @fl-32 profile conforms in Ada95 (explicit/implicit mode "in"]

BA1010H : §fl-32 profile conforms in Ada95 (explicit/implicit mode "in";

BA1010I : §f2-32 profile conforms in Ada95 (explicit/implicit mode "in";

BA1010J : §f3-36 profile conforms in Ada95 (explicit/implicit mode "in";

BA1010M : @f2-36 profile conforms in Ada95 (explicit/implicit mode "in";

BA1010N : §fl-36 profile conforms in Ada95 (explicit/implicit mode "in"]

BA1010P : §fl-36 profile conforms in Ada95 (explicit/implicit mode "in"]

BA1010Q : §f2-36 profile conforms in Ada95 (explicit/implicit mode "in";

BA11003 : §112 generic package BA11003_7 cannot have a body
: §129,142,148 renamed or instantiated units are not visible

BA11005 : @117 has an illegal (not required) package body

BA11006 : all ERRORS are legal, since BA11006_0._1._2 is a private descendent

BA11007 : §174 does not declare an overriding procedure, and is legal
: §234 the "/" visible is of the wrong type (no use type clause)

BA11008 : §132,150 has illegal (not required) package bodies
: @139 is legal, not an ERROR
: @187 the instantiation isn't in the parent's decl.region—10.1.1:18
: §231 has an unintended error—the pkg. name violates 6.1:8

BA11009 : §200 the body for BA11009_4.BA11001_6 is illegal (not required)

BA12003 : §158,160 the context clauses are illegal (10.1.2:8)

BA12005 : §134,136 violates 10.1.2:8, as _0._1._4 is considered a declaration
: §36ff (diagram) shows a unit BA12005_7 that's not in the test

BA12007 : §206 a package cannot rename a function
: §313 should have a context clause for BA12007_0._1. 3 (function)
: §318 obj.decl lacks subtype ind. before func.initialization express.

C-4

WITHDRAWN TESTS LIST

BA2011A : §f0-56,62,f2-56,70,f3-76,f4-33,51 conforms in Ada95 (6.3.1)

BA3001C : @28 the package body is illegal in Ada95 (there must be no body)

BC1226A : @61,63,78,79 is too restrictive re deferred constants (7.4:6,4.9.1:2)

BC3202A : §64,73 subtype NREC doesn't staticly match (12.5.1:14)

BC3202B : §63 subtype NREC doesn't staticly match (12.5.1:14)

BC3202D : §91,100 subtype REC7 doesn't staticly match (12.5.1:14)

BC3205C : all package bodies in this test must not be provided in Ada95

BC3220B : checks a restriction on use of "others" that Ada95 lacks (4.3.3:11)

BC3403A : @97,109,110,121 violates Ada95 generic parameter-matching rules

BC3403B : §90,102,107,108 violates Ada95 generic parameter-matching rules

BC3404C : @53 violates Ada95 generic parameter-matching rules

BC3404D : @77 violates Ada95 generic parameter-matching rules

BC3502A : §42 violates Ada95 generic parameter-matching rules

BC3502F : §57,64,65 violates Ada95 generic parameter-matching rules

BC3502G : §66 the instantiation requires a definite subtype

BC3502H : §103-111 R3,R8 subtypes don't staticly match (12.5.1:14)

BC51007 : §206,210,214,218 an extension's accessibility level exceeds parent's

BC51014 : §86 library package BC51014_0 is not visible (missing context clause)

BC51C01 : §88,384,404 instantiating w/Abstract_Child violates 3.9.3:9 re Proc

BC54003 : §269 has an indefinite actual where the formal is definite

BD1B05E : §254 is legal (non-static default expressions don't cause freezing)

BD2A11A : a 'SIZE clause for scalar types w/non-static bounds is legal in Ada95

BD2A13B : all expected errors may be legal in Ada95 (13.1:23)

BD4008B : checks an Ada83 (13.4:7) restriction that Ada95 does not impose

BD5002A : Ada95 does not require WITH SYSTEM in order to use an address clause

BD5002F : has an invalid objective for Ada95 ("with System;" isn't needed)

BD5101A : Ada95 (J.7.1:4) allows 'Address clauses for entries w/out" param.s

C-5

WITHDRAWN TESTS LIST

BD5101B : Ada95 (J.7.1:4) allows 'Address clauses for entries w/out" param.s

BD5101C : Ada95 (J.7.1:4) allows 'Address clauses for entries w/out" param.s

BD7302A : §43,44 'MACHINE_RADIX is defined for fixed-point types in Ada95

BD8003A : Ada95 allows code statements in functions as well as in procedures

BDD2001 : @66 needs 'tagged limited' for a limited completion §87 & 'Class §283
: @306/7 the attribute representation clauses are for non-local items
: §321,331,334 assignments are made to a limited object

BXAC004 : §172,173,177,178,181 Streams is not directly visible
: §307 the record extension is not accessible from its parent type
: §337,344 assigns to a limited type

C24203B : §106/110 uses Ada83 numeric attribute 'LARGE, undefined in Ada95

C34003A : §215-266,286-303,313-316 uses undefined Ada83 attributes

C34003C : §67-70 uses 'SAFE_LARGE which is undefined in Ada95

C34004A : §236,247-259,269-281,287 uses undefined Ada83 fixed-point attributes

C34004C : uses Ada83 numeric attributes that are undefined in Ada95

C34008A : applies 'ADDRESS to a derived (task) type, not a task unit

C34014C : Z is initialized by a different function by Ada95's inheritance rules

C34014E : Z is initialized by a different function by Ada95's inheritance rules

C34014P : Z is initialized by a different function by Ada95's inheritance rules

C34014R : Z is initialized by a different function by Ada95's inheritance rules

C35505D : <integer>'SUCC (<integer>'BASE'LAST) need not raise an exception

C35904A : §104,129 static values potentially are not in the base range

C35A03C : checks Ada83 fixed-point'MANTISSA which is undefined in Ada95

C35A07N : uses Ada83 numeric attribute 'LARGE which is undefined in Ada95

C35A07Q : §93,97,142 uses Ada83 fixed-point'LARGE which is undefined in Ada95

C36105B : uses static INTEGER expressions exceeding INTEGER'LAST (4.9:35)

C37211E : §196 an allocator cannot constrain an elementary type (4.8:4)

C37213A : requires Ada83-3.7.2:5 subtype compatibility checks not made in Ada95

C37213C : requires Ada83-3.7.2:5 subtype compatibility checks not made in Ada95

C-6

WITHDRAWN TESTS LIST

C37213E : requires Ada83-3.7.2:5 subtype compatibility checks not made in Ada95

C37213G : requires Ada83-3.7.2:5 subtype compatibility checks not made in Ada95

C37214A : requires Ada83-3.7.2:5 subtype compatibility checks not made in Ada95

C37215A : requires Ada83-3.7.2:5 subtype compatibility checks not made in Ada95

C37215C : requires Ada83-3.7.2:5 subtype compatibility checks not made in Ada95

C37215E : requires Ada83-3.7.2:5 subtype compatibility checks not made in Ada95

C37215G : requires Ada83-3.7.2:5 subtype compatibility checks not made in Ada95

C37216A : requires Ada83-3.7.2:5 subtype compatibility checks not made in Ada95

C38102E : @100 uses uninitialized variables

C390003 + @294 the 2nd parameter is set as "Veh", causing some failures
+ @331 the 2nd parameter should be "MC", not "Veh"
+ @377-382 the expected/passed tags are incorrect (3.9:25,4.6:42)

C391001 : @50 type Object requires a limited completion @61-63 (7.3:6)

C391002 : @176 "limited" is a syntax error

C392B04 : @fl-109 30.0 isn't exactly representable, thus checks @215,229 fail

C392C07 : @165 wrongly expects Switch.Create to set Toggle.On=FALSE

C393009 : @118,129 isn't mode conformant with inherited Handle @66 (out/in out)

C393010 : @71 violates 3.7:11 having a default for tagged type

C393A03 : @89 violates 3.9.3:8 by assigning to an abstract target

C393B12 : @96 violates accessibility rule 3.9.1:3

C393B13 : @52 violates 3.7:11 by having a default for tagged type

C3A0014 : @363 violates 12.5.1:9 by instantiating Gen with a constrained type

C42005A : @47 the null string literal violates 4.9:34—upper bound<'Base'First

C43004B : in Ada95, array bounds slide in a subtype conversion

C43103B : §123,142,162 expects CONSTRAINT_ERROR but in Ada95 it won't be raised

C432003 : @519 will raise Constraint_Error—array bounds 1..5 for 1..10

C43213A : in Ada95, array bounds slide in a subtype conversion

C44003E : uses user-defined fixed-point "*","/"—always ambiguous in Ada95

C-7

WITHDRAWN TESTS LIST

C452001 : @531,536 expects the wrong result for (in)equality checks
: @343 the comment is mistaken re what result to expect

C45232A : uses literals required to exceed 'BASE'LAST which is illegal in Ada95

C45242A : uses literals required to exceed 'BASE'LAST which is illegal in Ada95

C45331A : @many checks requires the Ada83 value for fixed-point 'SMALL

C45331D : @many checks requires the Ada83 value for fixed-point 'SMALL

C4541LA : uses -INTEGER'FIRST which exceeds INTEGER'LAST so is illegal in Ada95

C45411D : uses -DTl'FIRST which exceeds DTl'BASE'LAST so is illegal in Ada95

C45423A : has an obsolete objective relating to safe numbers

C45523A : @89 uses Ada83 numeric attribute 'SAFE_LARGE, undefined in Ada95

C45534A : @90 F:=1.0 exceeds FIX'BASE'LAST which is illegal in Ada95

C45651A : (§222,236,255 requires the Ada83 value for <fixed>'Small

C45652A : the test objective is not met (exception is raised outside of ABS)

C45701A : @82 uses Ada83 numeric attribute 'SAFE_LARGE, undefined in Ada95

C46023A : @76,78,83 uses 'MANTISSA & 'LARGE which are undefined in Ada95

C48005C : @59,84 an allocator cannot constrain an elementary type (4.8:4)

C48008B : @85,95,105 an allocator cannot constrain an elementary type (4.8:4)

C48008D : @64,74 an allocator cannot constrain an elementary type (4.8:4)

C48009D : in Ada95, array bounds slide in a subtype conversion

C48009E : in Ada95, array bounds slide in a subtype conversion

C52012A : objective re assignment targets on exception violates 11.6:6,13.9.1:5

C52012B : objective re assignment targets on exception violates 11.6:6,13.9.1:5

C52103S : in Ada95, the null arrays' non-null dimension lengths must match

C54A13D : @63 the choice is illegal; it should occur for the 2nd case stmnt

C55B08A : checks Ada83 CONSTRAINT_ERROR conditions that are illegal in Ada95

C64105E : in Ada95, the null arrays' non-null dimension lengths must match

C64105F : in Ada95, the null arrays' non-null dimension lengths must match

C-8

WITHDRAWN TESTS LIST

C74208B : §42 freezes type REC2 hence also REC before it's completely defined

C74305A : §82 C2'FIRST freeze C2 before its full declaration (13.14:18)

C760001 + §256,258,314,317 Adjust needn't be called (7.6:13-15,21,4.3:5)

C760007 + §200,201,204,205 expects too many Adjust calls (7.6:13-15,21,4.3:5)
+ §186-190 declares a procedure (Examine) that's never used

C761003 + §127 may have elaboration problems initializing Null Global (95-5234)
+ §167 has a context clause for Report which isn't used" in the package
+ §244 Subtest_l_Expected_Inits should be 4 (Item_4 has explicit init.)
+ §263 the check can fail because §126 evaluation may call Finalize
+ §354,357,360 Sup.Validate fails because it doesn't reset Inits_Called
+ §357,360 wrongly checks an order of components' finalization (7.6:12)

C761004 + §178 Subtest_l_Expected_Inits should be 4 (Item_4 has explicit init.)
+ §185 the check can fail because §183 evaluation may call Finalize
+ §234 wrongly checks an order of components' finalization (7.6:12)

C761.005 : §141 must be "limited" as the completion §153 is limited (7.3:6)

C85018B : §270 sliding occurs with no CONSTRAINT_ERROR (6.4.1:10/11 & 4.6:37)

C854001 : §250,255 parameters to "-" & Other_Name are uninitialized

C87B35B : §72-74 "*»,"/" are ambiguous—Ada95 allows the operand type REAL

C940A03 : §109 the declaration freezes Key_Type which isn't completely declared
: §109 initialization would require the package body to be elaborated

C95008A : §119 the range 'A'..'Y' is ambiguous in Ada95

C95086E : §165 a length check on a null array fails for a non-null dimension

C95086F : §165 a length check on a null array fails for a non-null dimension

C954020 : §290 task Credit_Computation wrongly blocks, causing failure

C954022 : §144 loops infinitely as there is no call to Sequencer.Input

C954024 : §202 the entry Start has no corresponding call, causing failure
: §295 the select guard will only be evaluated once, causing failure

C96005C : uses static values outside of DURATION'BASE'RANGE which is illegal

CA11003 : §260 an uninitialized IN parameter is used in a check

CA11006 : §194 an uninitialized IN parameter is used in a check

CA11013 : §186,187 operator /= isn't directly visible (missing use type clause)
: §126 type My_Float should have minimal precision (digits 6)

CA11014 : §140 operator = isn't directly visible (missing use type clause)

C-9

WITHDRAWN TESTS LIST

CA11018 : §181,186 might fail an elaboration check for the instantiation
: §321,347 raises C0NSTRAINT_ERROR in a call to Copy (strings mismatch)

CA13001 : §339 uses an uninitialized actual by-copy IN OUT parameter

CC1311B : §183, in Ada95, array bounds slide in a subtype conversion

CA3009A + requires an old unit to be used if a new one has errors (10.1.4:6)

CC30001 : §152,161 violates accessibility rule 3.9.1:3

CC3208A : §69,107 discriminant subtypes don't staticly match (12.5.1:14)

CC3208B : §74,112 discriminant subtypes don't staticly match (12.5.1:14)

CC3208C : §74,112 discriminant subtypes don't staticly match (12.5.1:14)

CC3406A : §56 array subtypes don't staticly match (12.5.3:6)

CC3406B : §60 array subtypes don't staticly match (12.5.3:6)

CC3406C : §65 array subtypes don't staticly match (12.5.3:6)

CC3406D : §55 array subtypes don't staticly match (12.5.3:6)

CC3407A : §68,86 the generic actual parameters don't staticly match formals

CC3407B : §68,84 generic actual parameters don't staticly match formals

CC3407C : §68,86 generic actual parameters don't staticly match formals

CC3407D : §76,95,116 generic actual parameters don't staticly match formals

CC3407E : §67 generic actual parameters don't staticly match formals

CC3407F : §56 generic actual parameters don't staticly match formals

CC3408A : §56 array subtypes don't staticly match (12.5.3:6)

CC3408B : §59 array subtypes don't staticly match (12.5.3:6)

CC3408C : §67 array subtypes don't staticly match (12.5.3:6)

CC3408D : §54 array subtypes don't staticly match (12.5.3:6)

CC3601A : instantiations §137,140,143,146,187,192,240 require definite subtypes

CC50001 : has an invalid objective—expecting the wrong "=" (3.9.2:14,15,20)

CC50A01 : §255,263 violates accessibility rule 3.9.1:3

CC51003 : §160 violates 12.5.1:9 by instantiating with a constrained type

C-10

WITHDRAWN TESTS LIST

CC51004 : §154 violates 12.5.1:9 by instantiating with a constrained type

CC51007 : §231 violates 3.9.1:3—extension declared at deeper accsblty. level

CC70001 : §176 should instantiate List_Mgr.CC70001_l (10.1.1:18/19)

CD1C04B : §47 has a type-related representation item in violation of 13.1:10

CD1D02A : has an invalid objective; in Ada95 pragma PACK §54 is illegal

CD1D03A : has an invalid objective; in Ada95 pragma PACK §57 is illegal

CDA101B + expects that a renamed entry can access a deallocated task—unclear

CDA201B : uses Ada83 floating-point attribute'LARGE which is undefined in Ada95

CE2401D : instantiates Direct_IO with an unconstrained type, illegal in Ada95

CE2401G : instantiates Direct_IO with an unconstrained type, illegal in Ada95

CE3208A : §145 violates Ada95 A. 10.3:23 (operating on a closed default file)

CE3306A : static COUNT'LAST+1 usually exceeds COUNT'BASE'LAST and is illegal

CE3402E : static COUNT'LAST+1 usually exceeds COUNT'BASE'LAST and is illegal

CE3403C : uses unqualified character literals that are ambiguous in Ada95

CE3403D : static COUNT'LAST+1 usually exceeds COUNT'BASE'LAST and is illegal

CE3409B : static COUNT'LAST+1 usually exceeds COUNT'BASE'LAST and is illegal

CE3410B : static COUNT'LAST+1 usually exceeds COUNT'BASE'LAST and is illegal

CE3410D : uses unqualified character literals that are ambiguous in Ada95

CXA3001 : §142 uses Ada.Characters.Handling.Is_Control vs. Is_Graphic

CXA3003 : §113,115,117,120 should have String upper bounds of 8,8,7,7, resp.
: §134 "is of the ISO_646" should read "is NOT of ... "
: §135 the check for non-ISO_646 characters should be " < 128 "
: §136 the Report.Failed comment should read "... IS an ISO_646 ..."

CXA4004 : the 2nd character of the string §148 should be 'b' not 'd'

CXA4005 : §116 raises CONSTRAINT_ERROR (Result String'First - 2)
: §200,287,325,543,589 has string-matching errors
: §544 should read 'Center' vice 'Left' for Report.Failed text

CXA4008 : §182 transposes "mn" in a string check (typo)

CXA4009 : §189 "Result_String" should be "Test_String"

CXA4011 : §70,73,78,81,84,87 Unbounded_String is not directly visible

C-ll

WITHDRAWN TESTS LIST

CXA4012 : §263 the 'Access prefix's accessibility level is too deep (3.10.2:32)

CXA4014 : §177 the 'Access prefix's accessibility level is too deep (3.10.2:32)

CXA4015 : @106 the 'Access prefix's accessibility level is too deep (3.10.2:32)
: §452 omitted parameter Map_Ptr and so obtains an unexpected count

CXA4016 : §120 raises CONSTRAINTJERROR (Result String'First - 2)
: §205,291,329,548,591 has string-matching errors
: §534 uses the undefined term 'ASW.Pad'
: §549 should read 'Center' vice 'Left' for Report.Failed text

CXA4017 : @91 an extra space in Linel makes the check §317,318 fail

CXA4018 : §277 the parameter '"ABCDEF1" should be 'TranslateC'ABCDEF")'

CXA4019 : @156 the 'Access prefix's accessibility level is too deep (3.10.2:32)

CXA4020 : §227,242 "Result_String" should be "Test_String"

CXA4022 : §103,104,107,... Unbounded_Wide_String is not directly visible
: §172 the 'Access prefix's accessibility level is too deep (3.10.1:32)
: §415 Total_Count = 4, not 2

CXA4023 : §103,104,107,... Unbounded_Wide_String is not directly visible
: §165 the 'Access prefix's accessibility level is too deep (3.10.1:32)

CXA9001 : §119,171 instantiates Storage_IO with an indefinite type (12.5.1:6)

CXA9002 : §230,233,235,239,242,372,378,384,390,396 'TAG has the wrong prefix

CXAA010 : uses "Text_IO" §114, which is not visible, vs. "Ada.Text_IO"

CXAC001 : §192,193,213,214 Product_Header_* has initial, unexpected values

CXAC002 : §105 wrongly expects Name to return exactly Report.Legal_File_Name
: §158,211,217,239 the relevant "/=" operators are not directly visible

CXACA02 : §141-145 defines 'Read,'Write as 'Input,'Output—infinite recursion

CXACB02 : §323 'Input raises End_Error because the stream isn't reset
: §358 'Customer2.Customer' should be 'Customer3.Customer'

CXACC01 : §86,89,92,95,210,216,222,228 'Tag has the wrong prefix 3.9(17)

CXACC02 : §101,104,107,110 Ada.Tags isn't visible
: §101,104,107,110 'Tag has the wrong prefix, violating 3.9(17)
: §167-170 representation items are given in the wrong decl. region

CXB3001 : §121 the 2nd & 3rd parameters are of the wrong type for To_C

CXB4001 : uses a "/=" operator §210 which isn't visible (no use-type clause)

C-12

WITHDRAWN TESTS LIST

CXC3001 : §183 operator "/-" isn't directly visible (missing use type clause)
: §192 CXC3001.The_Other_Handler.Count is undefined (no func.decl.)

CXC6001 : §186,190 wrongly expects Chlorine to be passed by reference (C.6:19)

CXC6002 : §202 wrongly expects CXC6002_1.Smog to be passed by reference—C.6:19

CXD1003 : §120 a Priority pragma has a value outside of Priority'Range

CXD1004 : §203 pragma priority has an out of range value
: assumes Priority'First is near 0 (e.g., 50..100 will fail)

CXD1005 : @205 pragma priority has an out of range value
: assumes Priority'First is near 0 (e.g., 50..100 will fail)

CXD2001 : §205 always reports FAILED for TC_Failed is never set to TRUE

CXD3001 : @76 Priority_Hi is too high—initial value exceeds subtype's range

CXD3002 : §141 pragma priority has an out of range value
: assumes Priority'First is near 0 (e.g., 50..100 will fail)

CXD4004 : §289ff loops infinitely—Distributor & main prog, are higher priority

CXD4006 : @126,131 tasks are given the wrong priorities (swap the values)

CXD8001 : §349 expects an equality after conversion that isn't required

CXE5001 : §122 has the wrong number of parameters, but should call Do_APC
: §119 the comment text should refer to Do_APC

CXF2001 + checks wrong values for cases 6,7,8,13,14,15,16,26,27,28,33,34,35,36

CXF3A01 : §80,131 raises Picture_Error as Valid_String(2) violates F.3.1:6

CXF3A02 : §89,141 raises Picture_Error as Valid_String(2) violates F.3.1:6

CXF3A03 : §170,etc. raises Picture_Error as Valid_String(2) violates F.3.1:6

CXG1001 : §84,166,177 operator "/=" isn't directly visible (missing use type)

CXG1003 : §172,189,287,355 "/=" isn't directly visible (missing use type)

CXG1004 : §142 generic formal parameter Real is not visible
: has assignments to dead variables that may be omitted (11.6:5)

CXG1005 : §102,119,135,274 generic formal parameter Real is not visible
: has assignments to dead variables that may be omitted (11.6:5)

FXF3A00 : §165 copies F.3.2:74's incorrect format string (cf. 95-5259.a)

LXD7001 : §fl-71 creates tasks dependent only on the environment task

LXD7003 : §40 misspells "No_Abort_Statements" in a Restrictions pragma

C-13

