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SUMMARY

The purpose of this work was to develop a process for preparing large-
diameter carbon monofilament., The process selected involved chemical vapor deposi-
tion using boron trichloride, methane and hydrogen gases and a conventional boron
type reaction in which the substrate is resistively heated.

Amorphous carbon-boron alloys were formed when gas mixtures containing
greater than 20 percent methane (80 percent BCl3) were used. The strongest
carbon-boron monofilament was achieved using a CHu/BCl3 gas ratio of O.44, This
gas ratio produced a monofilament in which the average composition of the deposit
was T5 w/o boron and 25 w/o carbon., When this high an amount of boron is attained,
it is suspected that the deposit reacts more readily with the impurities present
on the surface of the carbon substrate.

The carbon-substrate fiber was precleaned in chlorine and used as a sub-
strate. With the precleaned substrate, the strength of the carbon-boron alloy:
monofilament was considerably improved,

The experimentation showed that high strength, high modulus carbon-boron
alloy monofilament can be produced from a BCl3, CH), and Hp gas system. The
modulus of the monofilament appears to be linearly dependent upon the percent of
boron in the monofilament.

Neither the mechanical properties of the monofilament at elevated temperature
nor the mechanical properties of composites fabricated using this monofilament
were determined in this investigation.

In these investigations, the BCl3/H2 ratio was held constant while the
BCl3/CHh ratio was varied. It is felt that better process control could be
achieved by varying the CHM/H2 ratio while maintaining a constant BC1l3/CH) ratio.




INTRODUCTION

The object of this program was to optimize the UARL chemical vapor deposition
process to produce a large-diameter, high-strength, high-modulus carbon monofilament.
Parameters such as deposition temperature, substrate velocity, reactor geometry,
gas ratios and total reactant gas flows were studied. The effect of variations of
these parameters were noted from both property measurements such as diameter, tensile
strength, Young's Modulus and density, and from the optical and electron microprobe

analyses.

The program was divided into the four tasks listed:

Task I - Process Development and Optimization
Task II - Property Evaluation

Task III - Reports

Task IV - Monofilament Production and Delivery

BACKGROUND

There has been a great deal of interest recently in the development of carbon
reinforcement for metal matrix applications. Most of this effort has been directed
toward the use of carbon multifiber yarns and tows. Carbon yarns are becoming more
readily available with various strengths and moduli and the cost.of these yarns is
being reduced continuously. Initially attempts were made to produce these yarns
with high moduli, but recently attention has been given specifically to developing
a low cost carbon yarn with little scatter in strength and modulus. As the price of
these yarns has been lowered, the incentive for using carbon yarn in all types of
composites has increased. Adding to the impetus to use this yarn was the fact that
carbon researchers have even reported an increase in strength of carbon at elevated
temperatures. The low cost of carbon yarn made it attractive for use in aluminum and
its high temperature properties has induced researchers to consider it for use in
high temperature matrices such as nickel.

For the past several years there has been a great deal of effort directed toward

producing carbon-aluminum and carbon-nickel composites. With any metal matrix one

of the most difficult problems has been to impregnate the yarn with metal matrices

so that the individual fibers in the yarn would be evenly dispersed. There is also
an additional problem that the fibers are easily deteriorated by reactions with the
matrix material. If attempts are made to coat the fibers with barrier layers care
has to be taken that the small carbon fibers are not affected by diffusion of the
coating into the body of the fiber.




Although some success has been obtained in forming carbon yarn-aluminum com-
posites (Ref. 1), these composites still do not have properties competitive with
those of boron-aluminum composites containing relatively large boron filaments.

The relative advantages and disadvantages of using carbon multifiber yarns and
tows versus using carbon monofilaments have been discussed in Ref. 2. Fabrication
problems would be greatly reduced when large diameter carbon monofilaments are used.
Composite fabrication techniques currently used with boron filaments could be trans-
ferrable and the broad background of boron-aluminum composite experience could be
utilized, instead of being forced to develop a whole new technology based upon small
diameter carbon multifiber yarns and tows. In addition, protective coatings could
be applied much more easily on large diameter monofilaments. Also, the relative
fraction of coating material to filament area would be much less for the monofilaments,
thus increasing the effective volume fraction of usable reinforcement and lessening
the effect of the coating on the properties of the composite.

In an effort to obtain large diameter carbon monofilament for use as reinforce-
ment for metal matrix composites, NASA-Lewis awarded several contracts to develop
large diameter carbon monofilaments using different fabrication methods. The first
method involved the impregnation with resin of commercially available small-diameter
carbon yarns and tows. The resin impregnated bundles was then pyrolyzed to form a
carbon yarn-carbon matrix composite monofilament (Refs. 3 and 4). Although reason-
able strengths were obtained, difficulty was encountered in making these composite
filaments because of nonuniform impregnation and cracking due to thermal expansion
mismatches during pyrolysis.

The second approach consisted of using the chemical vapor deposition (cvD)
method. Contracts were awarded to Hough Laboratory (Refs. 5 and 6). Initial work
was done using a tungsten wire substrate, but it was found that better results were
obtained using a carbon fiber substrate. Initially, pure pyrolytic graphite was
deposited upon the substrate, but it was found that failure would occur by tele-
scoping of the carbon layers over each other. This problem was elimianted by the
addition of borane gas to the reactant hydrogen-hydrocarbon gases, which caused
boron to be deposited to pin the carbon slip planes. This material contained approxi-
mately 30-40 percent boron.

UARL also has done research in the area of large-diameter carbon-base monofila-
ments. Attempts have been made using resin pyrolysis, direct conversion of large
organic precursor fibers and the CVD process. Each technique had drawbacks, but the
CVD process was selected for further study because it was felt to have the most
potential for making the desired monofilament, even though the monofilaments produced
were initially weak. It was decided to employ a combination of methane and boron
trichloride as the reactant gases. The reactor used was similar to that used for
boron filament development, Fig. 1, where the substrate is heated resistively and is
drawn through mercury seals into a chamber where the reactant gases are introduced.
Carbon fiber produced by Great Lakes Carbon Company was chosen as the substrate
because of its low density and because of previous experience.




Previous to this contract, a cursory investigation was conducted to determine
what amounts of boron addition would be particularly suitable for producing high
quality carbon monofilament. Gases were used with compositions of 4%, 8%, 9%, 15%,
23%, 40%, 72%, 83%, 88% and 92% methane with BClg; hydrogen was also added. The
strengths of the monofilament produced are presented in Fig. 2. The higher strength
monofilaments appeared to be produced in two compositional regions, one produced
from a gas containing 8% CH), the other containing T72% CHY. X-ray investigations
indicated that the boron carbide (BLC) pattern was strongest in monofilament produced
from gases with 8% CH) while the monofilament produced from gases with higher per-
centages of CH), appeared to be amorphous. The monofilament thus produced was a
carbon-boron alloy. It was felt that it was in this compositional region that the
kind of monofilaments desired would be attained. At this point the best monofilament
had an overall composition of about 50% carbon and had a strength of nearly 206 kN/cme
(300 ksi) and a modulus of 28 kN/cm2 (L0 x 106 psi). Unfortunately monofilament of
even this quality eould not be produced consistently. As a consequence, & program
was outlined to explore various compositions further while also trying to optimize
the other processing parameters.

CONTRACT EXPERIMENTAL PROGRAM

In initial experiments, using the information attained in the preliminary study,
the parameters were set up for investigations. These are presented in Table I.
Temperatures from 1125°C to 1205°C, drawing rates of 0.338 to 0.507 cm/sec and methane
to boron trichloride ratios from 0.44 to 10.1 (Y1 to Y5) were employed in a 58 cm
reactor. The BCl3/H, ratio was held at 1.0 and the total flow rates of 380 ce/min,
760 cc/min and 1520 cc/min were used. At a total gas flow of 1520 ce/min monofila-
ment production could not be satisfactorily maintained, so this flow was not investi-
gated further.

Data from these initial experiments are presented in Table II. As can be seen,
the data are inconsistent. Diameters did not vary as would be expected by varying
substrate velocity, and, at a fixed gas ratio and process temperature, the scatter in
the average ultimate tensile strength is excessive. For these reasons, it was sus-
pected that there was some factor which was masking the effect of the processing
parameters on the monofilament strength. A prime suspect was the substrate fiber
which varied in diameter and resistance due to impurities and other factors.

Surface Observations

Further insight into this problem was obtained by examining the surfaces of
high quality carbon-boron monofilament, as well as some of the lower strength mono-
filaments by means of a light microscope. Figures 3 and 4 show photomicrographs of
the surfaces of monofilaments. Examination of these surfaces indicated that the
uniform small kernels were typical of the higher strength monofilaments and the




large kernels were commonly observed in low strength monofilaments with considerable
scatter in their strength. Since it can be assumed that the outgrowths observed are
caused by surface imperfections the approach taken of cleaning the substrate before
carbon alloy deposition appeared to be a logical one. In addition, the uniformity
of the kernels in higher strength fibers also indicates that good process controls
are essential for producing high quality fiber.

Cleaning of the Substrate

Sections of carbon-boron alloy monofilament containing flaws and a randomly
selected section of as-received carbon substrate fiber were chemically analyzed with
an electron microprobe. The impurities found in the flaws of the carbon-boron alloy
monofilament were Ca, K, Fe, S, Si, and Al. One flaw and the impurity associated
with it is shown in Figure 5.

The impurities found on the surface of the as-received carbon substrate were
Ca, K, Fe, S, Si, and Ni. Figure 6 shows a section of this fiber and the impurities
associated with it.

Many attempts were made to clean the carbon substrate fiber. It was separately
passed through ultrasonically agitated solutions of acids, commercial bleach, ace-
tone, carbon tetrachloride, alcohol, and water. Two hot filament experiments were
also conducted. They were: 1) passing the fiber through a reactor at a temperature
of 1400°C under H, and, 2) passing the fiber through a reactor at a temperature of
14500C under BCl3. None of these methods adequately cleaned the surface of the fiber.
Monofilament made from the "precleaned" substrate fiber was comparable in strength
and surface appearance to monofilament made previously.

Next, the carbon fiber substrate was given the following treatments. The
chlorine cleaning was done in an RF reactor.

Sample

1 Cleaned in chlorine at 1550°C

2 Cleaned in argon at 1800°C

3 Cleaned in chlorine at 1650°C with a further cleaning
in hydrogen at 1560°C

i Cleaned in chlorine at 1650°C and coated with carbon
at 1580°¢C

5 Cleaned in chlorine at 1650°C and coated with carbon
at 1600°C

6 Cleaned in chlorine at 1650°C




The results of the spectral scan analysis are given in Table III. These data
show that all of the samples contain sulfur even after treatment of the substrate.
The sulfur appears to be an integral part of the carbon substrate fiber which may
or may not affect the carbon-boron alloy monofilament properties. The other
impurities also could not be removed by heating the substrate in chlorine at 1550°C
or by heating it in argon at 1800°C as can be seen from the results from samples 1
and 2. However, by raising the chlorine treatment temperature to 1650°C the impuri-
ties, except for sulfur, were cleaned from the monofilament. In sample 3, a hydrogen
post treatment also was given to the fiber, but it is not clear that it is necessary.
Samples 4 and 5 were coated with carbon in an attempt to prevent sulfur from inter-
acting with the carbon-boron alloy during deposition, although it should be noted
that sulfur has not been detected at any flaw or fracture site in the carbon-boron
alloy monofilament. Fracture studies of carbon-boron alloy monofilament produced
from a carbon coated substrate showed that the coating carbon appeared to introduce
fracture sites either at the carbon-boron alloy-coating carbon interface or at the
coating carbon-carbon substrate fiber interface. All tensile fractures of monofila-
ment produced from carbon coated substrate fiber exhibited substrate fiber pullout
and since the average tensile strengths of all runs of monofilament produced with a
carbon coated substrate fiber centered around 104 kINi/em? (150 ksi), the coating was
no longer used. Sample 6 cleaned only in chlorine at 1650°C and data in Table III
and Figures 7 and 8 indicate that this was adequate to remove all the impurities
except sulfur for this shipment of carbon substrate fiber. The flaw shown on the
as-received substrate fiber in Fig. T, is similar to the flaw shown in Fig. 6 and
is an example of the worst flaw found on the fiber. The frequency of occurrence of
this type of flaw varies from shipment to shipment. When a substrate having 8 to 9
of these flaws per meter (approximately 3 per foot) is cleaned in chlorine and
examined, the flaws are no longer apparent. It is reasonable to assume that the
impurity or impurities associated with this type of flaw reacted with Cl, to form &
chloride and subsequently evaporated .

The photograph of the carbon substrate fiber cleaned in Cl, at 1650°C (Fig. 7)
shows some pitting. Chlorine cleaning experiments conducted after the cleaning of
the fiber shown in Fig. 7 and discussed below have shown that each lot number of
carbon substrate fiber and even separate spools from the same lot may require dif-
ferent cleaning parameters. In retrospect, it is felt that the Cl, cleaned fiber
shown in Fig. 7 was overcleaned and slightly etched.

The substrate fiber cleaned in chlorine at 1650°C was used to make carbon-boron
alloy monofilament and the data are presented in Table Iv.

The results of this study were quite promising, in that the strengths of the
fibers produced on a clean substrate were quite similar. Although they were not
as high as the best fiber produced, they did give some indication that consistency
can be obtained with better process controls.




Comparison of Monofilament Produced from Different Substrates and Monofilament
Composition Studies

Monofilament was then made using a new spool of as-received carbon substrate
fiber labeled by Great Lakes Carbon Company as Lot #1115. This spool was part of
a shipment received the latter part of August. Various parameters were run and the
parameters which yielded strong fibers were repeated. The data for these experi-
ments are given in Table V.

These monofilaments obtained using a gas ratio Y 1> were the highest strength
ones produced to this point and indicated the potentlal of this BCl /CH2 process
for forming high quality fiber. The best run produced monofilament w1th an average
strength of over 34l kN/cm? (500 ksi) and the individual strengths of over 462 kN/cm?
(670 ksi). It was easily handleable, could be bent in a small radius and compared
favorably with the best boron on tungsten fiber formed experimentally or in produc-
tion. Unfortunately, these studies also showed that the parameters had not been
well enough controlled to permit this type of high quality carbon alloy fiber to be
formed reproducibly.

Since the highest strength monofilaments were obtained with CHh/BCl3 gag ratio
of 0.4l ( l) with an uncleaned substrate, the next logical step was to clean the new
carbon substrate which yielded the high strength monofilament and repeat the experi-
ments. The cleaning process of 1650°C in chlorine was used because it had sufficiently
cleaned the previous substrates. Unfortunately, as can be seen from the data in
Table VI, monofilament with very poor properties were obtained. The appearance of
the monofilament indicated that the substrate had not been thoroughly cleaned. It was
at this point that it was realized that the time and temperature of the cleaning pro-
cess might be quite critical, differing for various substrates, and should be
investigated in detail. Because of time limitations, the cleaing temperature for the
substrate was simply raised to 1720°C and fortunately considerable improvement in the
properties of the carbon alloy monofilament was attained. ©See Table VII. The fact
that the strength of the fiber was not as high as had been obtained previously was
not too surprising as runs with this gas composition were difficult to control.

When gas ratio VY; was used, only short runs of carbon-boron alloy monofilament
were attained. The runs were usually terminated by monofilament breaks within the
reactor during disposition. These breaks were observed with a light microscope and
breaks from two separate runs are shown in Fig. 9. The breaks are apparently caused
by melted regions on the monofilaments. Assuming that these melts are low melting
temperature B-X eutectics, it would follow that the greater the percent of boron in
the deposit, the greater the chance of forming a eutectic. In many experiments,
carbon-boron monofilament could not be produced using gas ratio Y because breaks
occurred shortly after the substrate fiber had been heated to the dep031t10n tempera-
ture. Yet, when the gas ratio was changed to Y2, using the same substrate fiber,
long runs of average quality monofilament could be produced.




Also, it was felt that the amount of hydrogen used in the gas mixture was a
major factor in determining the percent of boron present in the deposit. From the
reactions given below

CH, ———— C + 2H,
2BCly + 3Hp ——= 2B+ 6HC1

it would be expected that increasing the hydrogen gas in the mixture would decrease
the carbon content of the fiber and increase the boron content, while decreasing the
hydrogen would have the opposite effect.

With these considerations in mind, a gas ratio was conceived that would yield
a carbon-boron alloy monofilament in which the percent of boron in the deposit would
be between that obtained from gas ratio'Yl and Yo. The gas ratios for this new
composition were CHM/BC13 = 1.77, CHy:H, = 1.8 and BClS/He = 1, and was designated
by the CHh/BCl3 gas ratio of 1.7T.

To investigate the effect of H, on the composition of the monofilament another
gas composition with the same CHh/BCl3 ratio, 1.7T7, but containing less hydrogen
was established. This composition was designated 1.77'and the gas ratios were
CHu/BCl3 = 1.77, CHu/H2 = 4.2 and BC]_3/H2 = 2.4,

Carbon-boron alloy monofilament was produced using these new gas ratios and Y2.
The substrate fiber used was Lot #1115 cleaned in 012 at 17200C. The data for the
monofilament produced using gas ratios 1.77 and Y2 are shown in Table VIII and the
data comparing monofilament produced using gas ratios 1.77 and 1.77' are shown in
Table IX.

Concurrent with the above experimentation, further experiments were conducted
ith gas ratio Yo. This ratio was chosen to produce fiber to satisfy Task IV of the
contract - shipment of monofilament to NASA, and the experiments were made to opti-
mize the strength of the monofilament while satisfying diameter requirements. Data
from the experiments are shown in Table X.

The final experimentation under the contract was a series of runs to investi-
gate the composition of the carbon-boron alloy monofilament and the modulus for that
composition. Monofilament, produced from CHh/BCl3 ratios of 0.4k (Yl), 1.77, and
2.34 (Y,) were chosen for study. The properties and compositions are given in
Table XI. The average weight percent boron in the deposit varied from 67 for Y2 to
75 for ¥, while the modulus varied from 26 x 106 kN/cm@ (37 x 106 psi) to 33 x 106
kN/cm? (49 x 106 psi). Unfortunately, time did not permit these studies to be done
with a chlorine cleaned substrate fiber.




A plot of the modulus of carbon-boron alloy monofilament as a function of w/o
boron of the monofilament is given in Fig. 10. The end points of the abscissa are
the average modulus of the carbon substrate fiber at O w/o boron and boron fiber at
100 w/o boron.

The density of monofilament from run numbers N232, 59 w/o B, N262, 65 w/o B
and N266, 75 w/o B was measured by Dynatech R/D Company of Cambridge, Massachusetis.
These data are shown in Table XIT.

DISCUSSION

The data in Table iX shows the influence of Hj, in the H,, BCl3, CH), system.
These data and the data in Table XI indicate the control of the monofilament compo-
sition available by varying the gas mixture. Data in Table XI show that the mono-
filament composition was not sensitive to deposition temperature over the range
studied. Note the datae from run N261 deposited at temperature Ty and run N263
deposited at temperature T3.

Gas ratio 1.77 did not producé monofilament that was radically different in
w/o boron from ratio Yg. The data in Table VIII (results of a series of experiments
investigating monofilament strength as a function of temperature for gas composition
1.77 and Yg) show a trend toward higher strength as the deposition temperature is
increased. Run N238, produced using a gas ratio of 1.77 and deposition temperature
of Ty, (12059C) is exceptionally strong. Chemical analysis of this monofilament was
not completed within the contract period and the reason for the anomalous diameter
is not known. Cross sections of high strength monofilament showed that a fairly
uniform coating of boron-carbon alloy was deposited. X-ray diffraction studies
indicated that they consisted of amorphous type material.

Cross sections of monofilament produced using higher CHh/BCl3 gas ratios were
somewhat different in that they tended to form zones of different composition during
the deposition process. In early experimentation, monofilament was produced using
a gas ratio Y3 or 83% methane. The ratio of CH), to Hp in gas composition Y3 is 5
to 1 as compared with 2.34 to 1 for gas composition Yo. As discussed, the higher
CHy to Hp ratios enhances the deposition of carbon. In these experiments, the
reactor clouded over and monofilament temperature could not be accurately measured.
Figure 11 shows a monofilament produced from gas composition Y3 with 246 watts applied.
Note that the monofilament is starting to form zones which become more pronounced as
the power to the monofilament is increased. See Fig. 12 with 264 watts applied and
Fig. 13 with 300 watts applied to the monofilament. Similar results were obtained
for monofilaments produced using other gas compositions with CHh:H2 ratios greater
than 2.34. In each case the amount of C in the fiber increases and the tendency to
form zones also increased. The reason for the multiple zones cannot be explained
at this time.




The data in Table VIII and X were used to select conditions for producing mono-
filament to ship to NASA. The parameters were gas ratio Y,, Draw Speed 0.253 cm/sec
(30 ft/hr) and a deposition temperature of 1185°C. Continuous lengths of T3 meters
(240 ft) and 89 meters (292 ft) with average tensile strengths of 25k KN/ cm?

(369 ksi) and 261 kN/cm? (379 ksi) were shipped.

CONCLUSIONS

High modulus carbon-boron alloy monofilament can be chemically vapor deposited
onto a carbon substrate fiber from a Hp, BCl3z and CHy gas system. Modulus is linearly
dependent on the w/o boron in the monofilament. Monofilaments with composition
59 w/o boron through 75 w/o boron were amorphous. The w/o boron on the monofilament
was controlled by the gas mixture and was relatively insensitive to deposition
temperature over the range studied.

Studies have shown that high strength monofilament can be produced. However,
as yet the parameters for forming this monofilament have not been defined. It is
known that the condition of the substrate fiber is important in determining the
strength of the monofilament, but the gas ratios, temperature and drawing rate must
be studied further to optimize the monofilament producing process.

SUGGESTIONS FOR FUTURE WORK

The object of any future work should be to optimize the strength of a monofila-
ment using a fixed gas ratio. Optimization of the strength would be accomplished
by continued experiments on cleaning the substrate fiber, experiments to determine
the best total gas flow and deposition temperature and experiments with reactor
geometry (from experience with boron fiber technology, it is known that improvements
in deposition can be achieved by control of gas flows and composition at various
points along the fiber in the reactor). In addition, it would be meaningful to
compare monofilaments produced in a direct current reactor (substrate is resistively
heated through mercury contacts) with that produced in a radio frequency reactor
(substrate is heated by electro-magnetic coupling to a radio frequency source) to
determine which method yields the best results.
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Table I

Parameter Designation

Temperature
1125 1150 1175

Substrate Velocity

By 8o

0.338 (40) 0.423 (50)

CHu/BCl3 Ratio

Y1 Y1a Yo Y3

0.4k 0.89 2.34 4,98

Total Gas Flow

Xy X2

380 760 1520

T,
1205

0.507 (60)

Yy
8.07

Y5

10.1k4
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Run No.
Parameter

Diameter
(M) (mils)

uTs (103)
(N/cmg) (psi)

Avg. UTS (10°)
(N/cmz) (psi)

Std. Dev. UTS (10°)
(N/cm?) (psi)

Coeff. of Var. (%)

Table IV

Individual Tensil

e Tests

(Substrate Precleaned in Cl, at 1650°C)

Gage Length = 2.54 em (1 in.)

N-152 N-153
Y% BT, Y1a 8,7,
63.5 (2.5) 59.7 (2.35)
106 (153) 143 (207)
135 (196) 151 (219)
141 (20k) 151 (219)
176 (255) 151 (219)
176 (255) 175 (253)
190 (275) 175 (253)
218 (316) 183 (265)
218 (316) 210 (305)
239 (346) 215 (311)
2L6 (356) 223 (323)
184 (267) 177 (257)

L7 (68) 30 (L43)

25 17

107
137
145
160
191
199
206
21k
229
2Ll

183

Lh

15
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Table IX

Strength and w/o Boron for Monofilament Produced
from Gas Ratios 1.77 and 1.77'
Substrate - GIRC Lot No. 1115 Cleaned in Cl1 _ at 1720°C
Gage Length for UTS Data is 2.54 cm (1 in.)

Run Nos. N 232 N 224
Parameters 1.77 By T2 1.77 Bl T2
Diameter (p)(mils) 55.9 2.2 63.5 2.5
UTS (103) 91 132 77 112
(N/en®) (psi) 109 158 112 163
127 184 141 204
145 211 176 255
163 237 218 316
172 250 218 316
172 250 218 316
178 258 225 327
181 263 232 336
199 289 239 3h7
Avg. YT (103)
(N/em™) (psi) 153 223 186 269
Std Dev. (10°)
N/cm® (psi) bo 51 62 75
Coeff of Var. (%) 23 26
Avg. w/o Boron 59 69
Avg. Modulus (106)
(W/en®) (psi) 20.7 30 No Data

Std. Dev. (106)
(N/cmz) (psi) 2 3 No Data
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Table XII

Density of Monofilament With Various W/O Boron

Run No. W/0 Boron in Deposit Density (g/cc)
N232 59 2.079
Neg2 . 65 2.188

N266 75 0.226
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FIG. |

CHEMICAL VAPOR DEPOSITION REACTOR
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FIG. 2
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PHOTOGRAPHS OF SURFACE OF WEAK CARBON—-BORON ALLOY
MONOFILAMENT

N 190 L 20

FiG. 4




ELECTRON IMAGE AND DISTRIBUTION PHOTOGRAPHS OF A PORTION
OF THE BORON—CARBON ALLOY MONOFILAMENT SURFACE

ELECTRON IMAGE 20y

CALCIUM X~RAY

FIG. b
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FIG. 6
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FIG. 7

PHOTOMICROGRAPH OF A SECTION OF THE “AS RECEIVED” CARBON SUBSTRATE
FIBER AND A SECTION OF THE “AS RECEIVED” CARBON SUBSTRATE FIBER CLEANED
UNDER Cl, AT 1650°C

AS RECEIVED L

|20pl

CLEANED UNDER Cl, AT 1650°C
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FIG.8
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PHOTOGRAPHS OF MONOFILAMENT BREAKS
THAT OCCUR WITHIN THE REACTOR

20 i
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MODULUS, N/cM2 (106)

MODULUS VS %% BORON

CARBON—BORON ALLOY MONOFILAMENT

40 50 60 70 80 90 100
% BORON

FIG. 10

MODULUS, PSI (108)




RESULTS OF POINT COUNT ANALYSES OF THREE FIBERS,
A REPRESENTATIVE FIBER BEING SHOWN IN THIS FIGURE

CHy/BCly RATIO = 5
POWER APPLIED = 246 WATTS

CARBON

AS POLISHED
CONCENTRATION w/o {a/o)
ZONE BORON CARBON
NO.1 OUTER ZONE 36.8 (39.3) 63.2 (60.7)
NO.2 INNER ZONE 32.5 (34.8) 67.5 (65.2)

FIG. 11
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NO. 1
NO. 2
NO. 3
NO. 4
NO. 5

RESULTS OF POINT COUNT ANALYSES OF THREE FIBERS,

A REPRESENTATIVE FIBER BEING SHOWN IN THIS FIGURE
CH,4/BCI3 RATIO =5
POWER APPLIED 264 WATTS

AS POLISHED

ZONE

THICK OUTER ZONE
DARK THIN ZONE
LIGHT THIN ZONE
DARK INNER ZONE
VERY THIN INNER ZONE

CORE

" CARBON

- i s Lyf

by

i

-
il
/

CONCENTRATION w/o (a/o)
BORON CARBON.
40.0 (42,6) 60.0 (57.4)
21.9 (23.7) 78.2 (76.3)
50.2 (52.8) 49.8 (47.2)
29.4 (31.6) 70.7 (68.4)
17.4 (19.0) 82.6 (81.0}

FIG. 12




FIG. 13

RESULTS OF POINT COUNT ANALYSES OF THREE FIBERS, A REPRESENTATIVE FIBER
BEING SHOWN IN THIS FIGURE

CHy/BCI3 RATIO =5
POWER APPLIED 300 WATTS

NiCKEL PLATE

R
s o,
i,

}(5:«"&7 4 5
k!
¢ 2\ \ Y
[ : CARBON
i CORE
‘jé
,/{;
AS POLISHED
CONCENTRATION w/o (a/o)
Zone BoRON CARBON
NO,1 OUTER ZONE 43,7 {46.3) 56.3 (563.7)
NO.2 WHITE INNER ZONE 60,0 (58.2) 44.1 {(41.5)
NO,3 DARKINNER ZONE 37.6 (40,1) 62.4 (59.9)
NO.4 VERY INNER ZONE 23.8 (25.8) 76.2 {74.3)
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