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ABSTRACT 

A methodology for the creation of decision support systems (DSS) from 

mathematical programming models is examined. This approach is demonstrated 

using a model for flight scheduling, integrating a formal data model, represented 

in a database management system (Paradox), and a mathematical programming 

model, represented in an executable mathematical modeling language (GAMS). 

The integration is completed by creating a database capable of supporting the 

GAMS model, creating a series of queries to extract the data required by the 

GAMS model, and finally by modifying the GAMS model to import the external 

data sets and write the results to a file that can be interpreted by the database. 

This process is first completed manually to support a specific GAMS model. In 

the second portion of this thesis, the process is generalized to provide a framework 

that can be used to design a front-end database for any GAMS model. 

Benefits of this integrated approach over using a stand alone mathematical 

model include: The assurance of model integrity, explicit data modeling, 

improved representation and manipulation of model inputs and outputs, greater 

integrity of input data, and easier interpretation and multiple views of model 

outputs. 
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I.  INTRODUCTION 

Decision support systems (DSS) support decision making by facilitating the use 

of data and models.  These systems typically have three components: a database, a 

model base, and a user interface[Ref. 1].  The critical and distinctive feature of a 

DSS is the use of mathematical or other models in the decision-making process.  Few 

available DSS generators[Ref. 1] have sufficient features for model representation, 

execution and management.  Serious modelers therefore use a variety of model- 

oriented approaches such as executable algebraic modeling languages.  One 

representative and popular language in this category is GAMS (General Algebraic 

Modeling Language)[Ref. 2].   GAMS not only provides an algebraic language for 

representing mathematical models, it also provides automatic translators to a number 

of solvers for optimization models. 

The purpose of this thesis is to:   (1) Integrate a GAMS model and a Paradox 

relational database to create a prototype DSS, and (2) generalize this approach into a 

set of rules that can be used to produce a computer program capable of generating a 

set of database relations (tables), and links required to integrate a GAMS model into a 

DSS.  GAMS and Paradox were selected for this thesis because they are widely used 

by students at the Naval Postgraduate School. 

The GAMS model used in this thesis is the USMC Trainee model written by 

Kawakami[Ref. 3].  It is a prototype mathematical optimization model written to 

support the flight scheduling process at a United States Marine Corps (USMC) fleet 

replacement squadron (FRS). This model was selected because it appears to provide 

good solutions to the FRS flight scheduling problem.  A second reason for selecting 

this model is that it is a real model developed for the flight scheduling process that 

represents the level of complexity that a flight scheduling DSS must be able to 

support. The DSS presented in this thesis is a prototype to show a method of linking 

GAMS models into a DSS.  If this specific DSS were implemented, it would be used 

by the flight scheduling officer at a FRS to assist in writing the daily flight schedule. 



In addition, the DSS generation techniques presented are appropriate for linking any 

GAMS model into a DSS. 

In model-oriented languages such as GAMS, the "model declaration" consists 

of a rudimentary "data definition,"  mathematical model, and control statements for 

presentation of the output.  Few guidelines or design principles -- well known and 

accepted in the database management literature -- for data definition are enforced in 

such languages.  This lack of a formal data model and management system for the 

data schema and the database, leads to several problems, including those concerned 

with model maintenance, data integrity, alternative views of the input data, 

management of multiple input and output data sets, and meaningful presentation of 

solutions. 

Model integrity within a GAMS model cannot be guaranteed because the data 

and mathematical model are contained in a single GAMS file.  A user attempting to 

modify a model's data may accidentally modify the mathematical model.  Data 

integrity and the input of data are both problematic because data stored in a GAMS 

file are polyinstantiated, i.e., attributes of an instance of an element are held in more 

than one table.  Alternative views of data is not possible because GAMS requires that 

input data be stored in a singularly prescribed format.  Management of multiple input 

and output data sets is difficult and resource intensive because the data and model are 

stored together.  GAMS output capabilities are limited and can be problematic for a 

user not familiar with the GAMS language. 

There has been a great deal of research on the use of executable modeling 

languages as the model base component of a DSS.  Bhargava, Krishnan and 

Mukherjee[Ref. 4] examine ways that data modeling features can enhance the 

capabilities of mathematical modeling languages.  They note that developers of 

mathematical models and modeling systems largely ignore data modeling features. 

This presents several problems for the user of mathematical models.   One problem is 

that the developers of mathematical models view data differently than the users. 

Krishnan noted that "potential users of mathematical modeling techniques find it 



easier to conceptualize a problem in terms of the data modeling relationships rather 

than mathematical relationships."[Ref. 5]  Another problem is that mathematical 

models that store data with the model have no way of accessing external data sources. 

It is usually preferable to access data for a mathematical model from an existing, up- 

to-date database rather than creating and maintaining a set of data solely for the model 

being used[Ref. 5]. 

To illustrate the process of integrating a mathematical model into a DSS, the 

USMC Trainee Model will be integrated with a Paradox relational database.  This 

integration is completed by developing a database to support the GAMS model, 

replacing the GAMS data with calls to external files created by the database, and 

exporting the results of the GAMS model to the database.  The control mechanisms 

for both the database and GAMS model are encapsulated in a user interface that 

controls the creation of data files, execution of the GAMS model and extraction of the 

solution from the solver's report.  This approach alleviates the problems referred to 

above and results in a complete, integrated DSS. 

In Chapter II, the flight schedule process and proposed solutions to the flight 

scheduling problem are presented.  In Chapter III, an integrated DSS solution using 

the USMC Trainee Model[Ref. 3] is presented.  The DSS solution presented in 

Chapter III is achieved with a tremendous amount of programming which would not 

be particularly useful if it were not generalizable.  Chapter IV presents a systematic, 

generalized version of the DSS approach.  While not fully implemented due to time 

constraints, in theory this approach can be used to create a computer automated tool 

to create the database and all linkages required to integrate a GAMS model into a 

DSS. This approach shows that the programs required to develop the integrated 

system can themselves be generated using a set of higher-level programs.  In theory, 

this can be accomplished requiring only the data definition portion of the "model" 

declaration. 

Kawakami noted that to be used in practice, the USMC Trainee model would 

require the implementation of an efficient database management system[Ref. 3]. 



Integrating Kawakami's model into a DSS fulfills this requirement and brings the 

model one step closer to being ready to use by an aviation squadron's flight 

scheduler.  The significance of developing an automated tool that generates an 

integrated database-GAMS DSS is that it will allow GAMS models to be more 

accessible to users who are not necessarily interested in the workings of the 

mathematical model, but rather in the inputs to the model and the model's results. 



n.  THE FLIGHT SCHEDULE PROCESS 

This chapter describes the flight scheduling process, inputs to and constraints 

on the flight schedule, and approaches taken to automate the flight scheduling process. 

This background is necessary to provide an understanding of the complexity of the 

task faced by the flight scheduler on a daily basis in writing the flight schedule. 

A. INTRODUCTION 

In a military aviation squadron, the flight schedule is used as the central 

planning document around which all daily activities are planned.  It lists missions to 

be conducted, the pilots who will fly the missions, and aircraft that will be used.   For 

an FRS, the inputs to the flight scheduling process are the training events to be 

accomplished, students available to fly, and instructors available to teach.  The output 

of the flight schedule process is the flight schedule, listing every event that the 

squadron will fly on a given day.  Every event listed on the flight schedule has an 

event number, launch time, recovery time, aircrew, aircraft to be flown, and other 

notes concerning the flight. 

B. PROBLEM DESCRIPTION 

In writing a flight schedule, the scheduler attempts to create a schedule that 

meets all of the squadron's assigned missions constrained by the number of pilots, 

aircraft and flight hours available for a given day.  The number of different flight 

schedules that can be written for even small sets of pilots can grow large quickly. 

As an example, assume a training squadron (FRS) has 15 instructors and 15 

students and that each instructor and student will fly exactly once on a given day. 

The scheduler can fly the first student, "student one" with any of the 15 instructors. 

Once "student one" has been assigned, "student two" can then be paired with any of 

the 14 remaining instructors, yielding 15 X 14 = 210 possible instructor-student 

pairings for the first two students.   Continuing this construction shows that the 

scheduler has 15! = 1.3 x 1012 different pairings of students and instructors that 



he/she can use on the flight schedule.  If the scheduler is constrained to flying say 12 

flights, he/she must select a set of 12 crews from this large set of possible crews, a 

task that is humanly infeasible on a daily basis.  A second problem that the scheduler 

faces when considering which crews to fly is that he/she has no objective way of 

deciding which sets of crews will make the best use of the aircraft, flight hours and 

crews for a given day. 

Given the large number of alternatives that the scheduler must consider and the 

fact that there is no objective criteria for determining the efficiency of a given 

schedule, the schedule is normally completed using satisficing rules, (settling for a 

less-than-optimal solution)[Ref. 8] rather than optimization rules.  Mathematical 

models provide the scheduler a tool to provide objective measures of schedule 

efficiency while simplifying and partially automating the daily scheduling process.  To 

illustrate the true complexity of the flight scheduling process, the inputs, constraints 

and process used to create a flight schedule will be discussed. 

1. Inputs to the flight schedule 

For an FRS, the squadron's mission is to train aviators to fly a specific model 

of aircraft.  The inputs to the flight scheduling process are the training events to be 

accomplished, students available to fly, and instructors available to teach. 

a. Events in the flight syllabus 

The specific requirements that a student must complete prior to being 

certified in a specific model of aircraft, i.e., H-53, H-60B, are defined in the FRS 

syllabus.  This certification requires that a pilot complete all prescribed syllabus 

flights (events).  Each event has attributes: The event name, event duration and 

required prerequisite events. 

b. Students available for training 

On a given day, not all students will be available for training.  A 

student may be on leave, have ground training scheduled for the day, or be medically 

excluded from flying.   Students have attributes that the scheduler must be aware of. 



These attributes are:  The student's name, events that the student has flown, and the 

number of days a student has been in the syllabus. 

c.  Instructors available for training 

For the same reasons that all students may not be available to fly, 

instructors are not always available to instruct. The attributes associated with an 

instructor are:  The instructor's name, events that the instructor is qualified to teach, 

and the number of hours that the instructor is available to fly. 

2.  Constraints on the flight schedule 

The flight schedule is constrained by regulations and the scarcity of resources. 

Regulations concerning the conduct of training come from many sources and exist to 

ensure that the training is conducted safely.  Other constraints are imposed by the 

limitation of resources, such as the number of flight hours allocated to the squadron, 

or the length of time that a student is assigned to the FRS. 

a.  Regulations 

There are many regulations that the scheduler must consider when 

writing the flight schedule. These regulations are contained in a myriad of 

instructions governing the operation of U.S. Navy aircraft.  Some of the primary 

instructions include the Naval Aviation Training and Operations Standardization 

(NATOPS) General Flight and Operating Instruction (OPNAV 3710.7), the NATOPS 

flight manual for the specific type aircraft, instructions from the squadron's wing, and 

the squadron's Standard Operating Procedures (SOP).  These regulations constrain the 

number of hours that a pilot, student or instructor, can fly and specify the 

qualifications that a pilot must hold before flying certain missions or maneuvers.  The 

flight scheduler must ensure the flight schedule does not violate any of these 

regulations. 



b. Maximum number of days a student has to complete the syllabus 

A student is ordered to an FRS for a specified time period, generally 

several months.   After completing training at the FRS the student is expected to 

transfer to an operational squadron.  The number of days that a student is assigned to 

the FRS is a constraint in that it is the maximum time available to complete the 

student's training without affecting his/her follow-on orders.  The flight scheduler 

must track each student's progress through the syllabus to ensure that he/she will 

complete the syllabus on time. 

c. Events required to be completed before an event is scheduled 

Each event has a set of requirements that must be completed before it 

can be flown.   Events in the syllabus build on one another, but are not strictly 

sequential.  Using the USMC Trainee Model[Ref. 3] as an example, a student is 

required to complete the first five "FAM" (familiarization) flights sequentially.  After 

this, the flight scheduler has the flexibility to schedule the student for the next FAM 

flight, or an "INS" (instrument) flight.  Keeping track of an event's prerequisite 

requirements is another task for the flight scheduler. 

d. Flight hours available for the day 

The number of flight hours available per day is constrained by the 

number of flight hours assigned to the squadron by the squadron's wing.  The 

squadron has the flexibility to determine the number of hours to fly on a given day, 

but the total number of flight hours for a month, or quarter cannot exceed the 

squadron's allocation.  The monthly or quarterly total allocation of flight hours is 

generally broken down into weekly or even daily flight hour goals that can constrain 

the daily flight schedule. 

e. Number of aircraft available for the day 

A squadron has a fixed number of aircraft.  On a given day, only a 

certain number of aircraft will be available for training flights.  When the number of 

syllabus flight hours exceeds the number of aircraft flight hours available, this 

constraint becomes binding. 



/.   Sunrise, sunset and other constraints 

Most of the flights in the FRS take place during daylight hours.  This 

presents a constraint in that the flights can only be conducted between sunrise and 

sunset.  Conversely, flights that require nighttime are constrained in that they can 

only be flown between sunset and sunrise.  Other constraints imposed by the 

operating environment are airport operating hours and the availability of limited 

resources such as weapons ranges and ships for deck landing qualifications. 

3.        Problem description summary 

The flight scheduler has a great deal of information in the form of inputs and 

constraints that must be maintained and updated on a daily basis prior to writing the 

flight schedule.  As an example, the scheduler must track and update each student's 

progress through the syllabus on a daily basis, recording the events that the student 

has completed as well as noting the events that the student is now qualified to fly. 

For instructors, the scheduler must track each instructor's total hours flown, 

qualifications held to teach events, and qualifications that have expired.   Maintaining 

this data is a tedious, but vital task for the flight scheduler.  Maintaining a list of the 

constraints on the flight schedule is also a requirement for the flight scheduler. 

Constraints on the schedule are more static than the inputs.  With the exception of 

flight hours available to fly on a given day, constraints can be considered to be fixed, 

and are often imposed as sets of rules. 

C.  STEPS IN THE FLIGHT SCHEDULE PROCESS 

1.  Determine mission requirements for the day 

The flight scheduler at a FRS determines the mission requirements for the 

flight schedule from a projection of weekly training requirements.  The weekly 

requirements come from a training matrix designed to ensure that students complete 

the syllabus in the prescribed time period.  The training matrix does not account for 

factors such as periods of aircraft unavailability or bad weather that might prevent the 

weekly training goals from being met. 

In the FRS, a mission is defined as a student and the event that he/she must 



complete.  In preparing the set of missions for a given day, the scheduler must first 

determine which students are available to fly and which events the students needs to 

complete.  Selecting students who are available for the flight schedule is a trivial 

process.  Deciding which events each student is qualified to fly is not so trivial.  For 

each student, the scheduler must first determine which events the student needs to 

complete.  Second, the scheduler must ensure that all pre-requisite flights for the 

student's needed events have been completed prior to pairing the student to the event. 

Third, the scheduler must ensure that the student meets all regulations to fly the 

assigned event.  An example of this type of regulation is the requirement that a 

student must have completed a night flight no more than seven days prior to flying a 

night deck landing qualification (DLQ) event. 

2. Flight hour availability 

Once a set of possible missions is selected, the flight scheduler must start 

adding constraints that may restrict the flight schedule.  The first constraint is the 

number of flight hours available.  The sum of the hours required to fly the proposed 

flight schedule must be less than or equal to the flight hours available on a given day. 

If the required hours is greater than available hours, missions must be cut. 

3. Number of aircraft available 

The number of aircraft available for a given day, which can be measured in 

available aircraft hours, varies due to aircraft maintenance requirements.  For the 

time horizon of a daily schedule, this can be considered to be fixed.  The sum of 

flight hours for the proposed missions must be less than or equal to the number of 

aircraft hours available.   As with flight hour availability, if the proposed flight 

schedule is greater than the number of available aircraft hours, the schedule must be 

cut. 

4. Assigning missions to aircraft 

Once the number of aircraft available is determined, missions are matched to 

aircraft.  Assigning missions to aircraft generally starts by determining sunset and 
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scheduling flights that require nighttime after sunset and flights that require daylight 

before sunset. 

5. Assignment of instructors to events 

The final step in the flight scheduling process for an FRS is to assign 

instructors to events and aircraft.  Instructors are assigned to flights based on several 

criteria. The primary criterion in assigning an instructor to a student/event pair is the 

instructor's qualification to instruct the event.  The secondary criterion used is based 

on the number of flight hours that the instructor has flown in the past.  In general, the 

scheduler tries to ensure that flight hours are distributed equally among all instructors. 

Other criterion, such as an instructor's teaching style may also be considered by the 

scheduler when pairing instructors to students. 

D. CURRENT TECHNOLOGY 

Flight schedules are currently written by hand with aids such as a magnetic 

white-board, magnets with each pilot's name embossed on them and a grease marker. 

With the exception of word processors to print the schedule and spreadsheets to track 

pilot flight hours and qualifications, computers have little impact on the flight 

scheduling process. 

Given the large amount of data that the scheduler must update and maintain on 

a daily basis, automation of the flight scheduling process at military squadrons is long 

overdue.  Next, several approaches to the automating the flight schedule process will 

be presented. 

E. ALTERNATIVE METHODS 

Many options have been explored to automate the flight scheduling process. 

Some companies in the commercial airline industry use mathematical models based on 

set partitioning to optimize their use of aircrews and aircraft[Ref. 6].  The Navy Test 

Pilot School has used a model based on heuristic logic to develop a "satisficing" flight 

schedule[Ref. 7].  Work at the Naval Postgraduate School in the field includes a 
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mathematical model for a Marine Corp helicopter fleet replacement squadron by 

Kawakami[Ref. 3]. 

These solutions have two common characteristics.  Each proposes to improve 

the flight scheduling process with an automated system.  Each also sees a need for a 

database to store the knowledge about the inputs to and constraints on the flight 

schedule process. 

F.  OPTIMIZATION APPROACH TO THE FLIGHT SCHEDULE PROCESS 

Kawakami models the FRS flight scheduling problem as an integer program. 

The objective of his model is to schedule students to ensure that they complete the 

syllabus within the time (in days) allowed.  A mathematical description of this model 

is provided in Appendix A.  The GAMS data model and output control statements are 

provided in Appendix B.  While this approach appears to provide a good solution to 

the flight scheduling process, it has several drawbacks stemming from GAMS' crude 

user interface and poor data modeling capabilities.  To correct for these deficiencies, 

the GAMS model will be embedded into a DSS and links created to a user interface 

and relational database.  The specific problems caused by the GAMS user interface 

and data model are listed below. 

1. Model integrity 

The General Algebraic Modeling System (GAMS) model integrates the data 

used in the model with the model itself.  Every time the data is modified, the 

scheduler runs the risk of accidentally modifying the model. This means that the 

model integrity cannot be guaranteed. 

2. Data integrity 

Data stored in a GAMS model is polyinstantiated, meaning that attributes of an 

instance of an element are spread over several tables.  In the GAMS data model, a 

table, or relation is created for each set, parameter and table.  This makes 

modification of GAMS data difficult, time-consuming and leads to the problem of 

"modification anomalies,"[Ref. 9] i.e., data inconsistencies. 
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3. Input of data 

Because of polyinstantiation, input of data into the GAMS model is also 

difficult.  To add an item to a set, first the item of the set must be created, followed 

by the creation of all associated parameters and tables.  Because data structures are 

only weakly enforced in the GAMS model, the user can not be sure that each 

parameter and table is correctly populated until the GAMS program is compiled. 

Because the input of data is so time-consuming, the number of modifications that can 

be made to a GAMS model on a given day is limited. 

4. Management of multiple input and output sets 

Using a given GAMS model, multiple solution sets cannot be stored without 

saving a copy of the integrated GAMS data and model.  In addition to the added 

overhead of storing multiple copies of the model, this problem prevents the automated 

comparison of solution sets. 

5. Friendly presentation of data 

While GAMS does have limited report-writing capabilities, the user should be 

able to quickly and easily change the format of the model output.  Using a stand-alone 

GAMS model, the user cannot change the view of the output without modifying the 

output control statements and re-compiling the model.  It is desirable for the user to 

be able to format the results of a GAMS model based on the users desires, not the 

capabilities built into the GAMS model. 
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III.  DECISION SUPPORT SYSTEM APPROACH 

This chapter describes the method used to integrate the GAMS flight 

scheduling model into a DSS and the advantages of doing this.  First, a comparison of 

the flight scheduling process using a stand-alone GAMS model will be made to the 

same process with that model embedded in a DSS.  This shows some of the 

advantages of the DSS approach.  Next, the four steps used to integrate a GAMS 

model into a DSS will be discussed.  The chapter concludes with a detailed discussion 

of the advantages of using a DSS to solve the flight scheduling problem. 

A.  A COMPARISON OF THE GAMS AND DSS APPROACH 

In Chapter II, two problems with the manual flight scheduling process were 

discussed, (1) lack of automated ways to store information (both input data and 

constraints) needed to write the flight schedule, and (2) a lack of objective criteria to 

help the scheduler determine if a flight schedule makes maximum use of the 

squadron's aircrew and aircraft.  The GAMS approach solves the second problem by 

placing the variables and constraints used in the flight scheduling process into a 

mathematical model and then solving for the optimal values of the variables.  What 

the stand-alone GAMS model lacks is a way to quickly capture the data required by 

the model.  To show how integrating the GAMS model into a DSS can simplify the 

flight scheduling process a comparison between the GAMS and DSS approach is 

provided. 

1. The GAMS approach 

Using the GAMS model a flight schedule is produced using the following 

methodology:   1) Determine what instructors and students are available for inclusion 

into the flight schedule.  2) Edit the model's sets, parameters and tables to reflect 

instructor and student availability.   Instructors and students who are added to, or 

deleted from a set must also be added to, or deleted from each parameter and table 

where they are represented.  Figure 1 demonstrates that to add a single student to the 

GAMS model, the student must be added to five different data fields.  3) Modify the 

15 



A.  Original data model 
SETS 

P student pilots (11) 
/ DARLING, SHEERIN, . . ., KANG / 

PARAMETERS 
IBAR(P) max training items per day for pilot P 

/ DARLING 2, SHEERIN 2, . . ., KANG 2  / 
DHAT(P) Number of days pilot P is assigned for training 

/ DARLING 42, SHEERIN 42, . . ., KANG 7  / 
NC(P) Number of finished items for pilot P 

/ DARLING 11, SHEERIN 12, . . ., KANG 1   / 
TABLE 

PROG(I,P) completed items I for student P 
DARLING SHEERIN . . . KANG 

FAM100    1 1 1 
FAM101    1 1 0 

CCX190   0        0 . . . 0 

B.  Modified data model to include the student "JONES" 
SETS 

P student pilots (12) 
/ DARLING, SHEERIN, . . ., KANG, JONES / 

PARAMETERS 
IBAR(P) max training items per day for pilot P 

/ DARLING 2, SHEERIN 2, . . ., KANG 2, JONES 2  / 
DHAT(P) Number of days pilot P is assigned for training 

/ DARLING 42, SHEERIN 42, . . ., KANG 7, JONES 0 / 
NC(P) Number of finished items for pilot P 

/ DARLING 11, SHEERIN 12, . . ., KANG 1, JONES 0  / 
TABLE 

PROG(I,P) completed items I for student P 
DARLING SHEERIN . . . KANG JONES 

FAM100    11 10 
FAM101    11 0      0 

CCX190   0        0 . . . 0      0 

Figure 1.  Modifications required to add a student to the GAMS model. 
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parameters to reflect current values.  Each parameter must be reviewed to determine 

if any changes in the parameter need to be made.  An example of this type of change 

in the USMC Trainee Model is the parameter DHAT(P) that represents the number of 

days that a pilot P has been assigned for training.  Each day, the scheduler must 

increment DHAT(P) for all students.  4) Run the GAMS model.  5) Read the 

GAMS solution.  The primary advantage of using a GAMS model over manual 

scheduling is that it provides the scheduler a method of objectively determining which 

instructor/student pairs should be assigned to the flight schedule. 

2. The DSS approach 

The primary advantage of embedding the GAMS model in a DSS is that the 

data needed by the model can be stored and maintained separately from the model. 

This allows the user to modify the model's data more quickly and easily than if it 

were stored in the GAMS model itself. 

Using a complete DSS the flight schedule can be produced using the following 

methodology:   1) Determine what set of instructors and students are available for 

inclusion into the flight schedule.  Instead of manually adding or deleting individuals 

from the GAMS data fields, a pull-down menu listing the instructors and students is 

provided to the user.  Each person (instructor or student) can be included to the 

schedule by marking them for inclusion in the schedule.  The design of the database, 

which will be discussed later in this chapter, eliminates the requirement to modify a 

set's associated parameters and tables (step two in the GAMS approach).  2)  Modify 

the parameters to reflect current values.  The scheduler may desire to change some 

parameters; this can be done through pull-down menus.  Other parameters such as 

DHAT(P) can be automated to increment on a daily basis.  This requirement in step 

three of the GAMS approach can be automated and thus eliminated.  4)  Invoke a 

DSS command that exports database data to the GAMS model, executes the GAMS 

model and imports the results of the GAMS model back into the database.  5) Read 

the results of the GAMS model on customized reports. 
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3.  Advantages of the DSS over the GAMS approach 

Using the DSS approach, the process of generating the flight schedule is 

significantly simplified.  Because all data required by the GAMS model is stored in a 

database, with its built-in capabilities to handle inclusion and exclusion of set 

members through Structured Query Language (SQL) queries, modifications of the data 

sets are significantly simplified.  Parameters, such as DHAT(P) that change on a daily 

basis, can be automated to self increment based on the current date and the student's 

start date.  The DSS also provides a method for the user to select the format of the 

solution presentation, making the interpretation of the GAMS results more user- 

friendly. 

There are four primary steps required to integrate a GAMS model into a DSS: 

1) Create an external database to store the data needed by the GAMS model.  2) 

Create a set of linkages from the database to the GAMS model.  3) Create a set of 

linkages from the GAMS model to the database.  4) Create a user interface that 

provides a seamless and user-friendly interface for the DSS. 

B.  DESIGN OF THE DATABASE 

An entity-relationship diagram depicting the data structures used in the USMC 

Trainee Model is provided in Appendix C.  This diagram depicts 11 entities.  Each of 

these entities represents a GAMS set, parameter or table.  The problem with this data 

structure is that the attributes of a single GAMS set are spread over several entities. 

This type of data dispersion is known as "polyinstantiation" and leads to the problem 

of "modification anomalies." To illustrate this problem, consider the set P, and 

parameters IBAR(P), DHAT(P), and NC(P).  If a member of the set P is deleted, this 

change is not reflected in the parameters IBAR(P), DHAT(P) and NC(P).  When 

designing a database to support a GAMS model the goal is to eliminate the problem 

of modification anomalies caused by polyinstantiation.  Before the database design is 

discussed, an overview of relevant relational database terms and concepts is 

presented. 
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1. An overview of relational database concepts 

A relational database organizes and represents data in the form of relations.  A 

relation is a two-dimensional table consisting of rows and columns.  Each row 

represents a record while each column represent an attribute of the relation.  Records 

in the relation are identified by a group of one or more unique attributes known as a 

"key."  A key that is "an attribute of one or more relations other than the one in 

which it appears"[Ref. 9] is known as a "foreign key." 

2. Selection of relations from GAMS sets 

When designing a database to support a GAMS model, each mathematical set 

becomes a relation.  The USMC Trainee Model (Appendix B), has three sets: I, items 

of the syllabus, P, student pilots, and Q, instructors.  These three sets become the 

relations I, P, and Q in the database.  The key for relation I is the event name, the 

key for relation P is the student's last name, the key for relation Q is the instructor's 

last name. 

3. Selection of attributes from GAMS parameters 

Attributes of each relation are obtained from the parameters of the 

mathematical model.  Each parameter becomes an attribute of the relation it 

describes.  Using the USMC Trainee Model as an example, set P has three 

parameters: IBAR(P), the maximum number of training items per day for pilot P, 

DHAT(P), the number of days that pilot P has been assigned for training, and NC(P), 

the number of finished items since assignment of pilot P to the squadron.  These three 

parameters are included in the relation P.  The relation P now consists of four fields, 

one key field and three attributes IBAR, DHAT and NC.  The composition of the 

relation P and its correspondence to the four GAMS tables it represents is shown in 

Figure 2. 

4. Selection of relations from GAMS tables 

A GAMS table defines an attribute that is dependent on two or more sets. 

While the structure of a GAMS table and a relation differ, they convey the same 

information.  The GAMS table QUAL(I,Q) denotes a single attribute, QUAL, that is 
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dependent on two GAMS sets, an instructor Q and event I.  This same information 

can be represented in a relation where the instructor Q and event I are represented as 

foreign keys with a single attribute QUAL.  The USMC Trainee Model has three 

tables that will become three relations in the relational database. 

Object P 

Attribute Name Tvpe 
Last Name        (Key Field) 
IBAR                (Attribute) 
DHAT               (Attribute) 
NC                   (Attribute) 

Mathematical Model 

Attribute Name 
P 
IBAR(P) 
DHAT(P) 
NC(P) 

Type 
Set 
Parameter 
Parameter 
Parameter 

Figure 2.  Relationship between object P and GAMS data. 

While only two-dimensional tables are addressed in this thesis, three or more 

dimensional tables can be represented by a relational database using the same logic 

presented above.  Suppose a modeler desired to track an aircraft's position over time. 

To do this, he/she would need a four-dimensional GAMS table that might have the 

format POSITION(LAT, LONG, ALT, TIME).  This information can be represented 

in a relation where LAT, LONG, ALT, and TIME all become foreign keys with an 

attribute POSITION, which is dependent on all four keys. 

5. USMC Trainee Model database design 

An entity-relationship diagram of the database designed to support the USMC 

Trainee Model is provided in Appendix D.  The eleven entities used to store data in 

the GAMS model are combined into six relations.  The six relations, depicted as 

entities in the diagram, represent the three GAMS sets and three GAMS tables used in 

the USMC Trainee Model. It should be noted that the five GAMS parameters were 

incorporated into the relation they describe.  The lines connecting the entities show 

the relationships between the entities.  These relationships are enforced through the 

use of keys and foreign keys. 
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The data model shown in Appendix D is in the "third normal form."[Ref. 9] 

Relations are considered in the third normal form if: 1) all non-key attributes are 

dependent on all of the key, and 2) no transitive dependencies exist[Ref. 9].  The 

significance of having a simple data model in the third normal form is that it is free 

of modification anomalies. 

C. LINKS FROM THE DATABASE TO THE MODEL 

In a stand-alone GAMS model, the data and the model are both contained in a 

single computer file.  This can lead to a model integrity problem as discussed in 

Chapter II.  A DSS solves this problem by physically separating the data from the 

model.  Because the data and model are now separate, a set of links must be created 

to import database data into the model at run time.  The process used to create the 

links between the database and GAMS model is described below. 

1. Determine the data requirements of the model 

Each link between the database and mathematical model consists of a database 

query and a conversion of the query data to a file that is readable by the GAMS 

model.  Each GAMS set, parameter and table will require a link.  The USMC 

Trainee Model has 11 sets, parameters and tables, leading to a requirement for 11 

links.  Scalars are single value inputs in a GAMS model and can be treated as an 

input requiring a link, entered by the user at model run time, or can be left in the 

model as fixed values.  In this thesis, scalars are treated as being entered at run time, 

and as fixed values requiring no links. 

2. Determine required database queries 

Queries are used to extract the required data from the database.  Queries for 

sets will extract only the key field from the database relation being queried.  Queries 

for parameters will extract the key field and the corresponding attribute of the relation 

being queried.  Queries for tables will extract the two foreign keys and the attribute 

of the relation being queried.  A complete listing of the USMC Trainee Model 

required inputs and supporting database query names is provided in Appendix E. 
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Appendix F displays the Structured Query Language (SQL) queries used to extract the 

required database data. 

3.  Conversion of database data to mathematical model inputs. 

The results of the queries are stored as database relations.  To export the 

query data, it must first be converted to a format readable by the GAMS model. 

Next, it must be placed in a file that is accessible by the mathematical model.  Using 

a Paradox to GAMS link, each query result is first converted into a separate ASCII 

file, given a name to reflect the GAMS input it contains, and stored in a location 

where it is accessible by the mathematical model. When the mathematical model is 

run, these files are imported into the model.  GAMS provides a $include statement 

that is used to import data into the model. The original USMC Trainee Model 

modified to import Paradox data is provided in Appendix G.  As can be seen, each of 

the model's sets, parameters and tables is replaced with a $include statement followed 

by a file name. 

D.  LINKS FROM THE MODELBASE TO THE DATABASE 

GAMS output capabilities are limited.  Using the DSS approach, this problem 

is overcome by importing the GAMS solution sets into the database.  This is done 

through a set of links from the mathematical model to the database.  A link is needed 

for each GAMS solution of interest to the user.  Each link consists of a GAMS script 

that stores the solution in a file accessible to the database and a database script to 

import the file into the database. 

The original USMC Trainee Model shown in Appendix A uses the 

"DISPLAY" function to produce the solution.  To send the solution set to an output 

file a script similar to the one shown in Figure 3 is used. 

Line (1) of the GAMS script creates an alias "TRN" for the path 

"C:\FLIGHT\TRAINING.TXT."  Line (2) is a command to send the model output to 

the alias.  Line (3) is a print control command to produce the solution set in a text 
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quoted, comma delimited format.  Line (4) converts the solution from a GAMS table 

format, to a format that lists each attribute of the output by column. 

FILE TRN /'C:\FLIGHT\TRAINING.TXT7; (1) 
PUT TRN; (2) 
TRN.PC=5; (3) 
LOOP (IP (I,P)$(X.L(I,P)), PUT P.TL, I.TL /;); (4) 

Figure 3. GAMS solution set export script. 

The GAMS script shown above will produce an ASCII file that is accessible 

by the database.  A script must be written in the database to convert the ASCII file 

into a relation that can be read by the database.  Figure 4 displays a Paradox-specific 

script used to import the results of the GAMS model.  The code presented in Figure 4 

is a command to convert the text-quoted, comma-delimited ASCII file "teacher.txt" 

into the database relation "teacher.db." 

importASCHvar("teacher.txt", "teacher.db", 
"," , "" , True, True) 

Figure 4.  Paradox importASCIIvar script. 

E.  DESIGN OF THE DIALOGUE GENERATOR 

The dialogue generator provides a user-friendly interface between the user and 

DSS while controlling the user's access to the components of the DSS.  For the 

prototype DSS developed for this thesis, the dialogue generator was created using the 

graphic user interface (GUI) features provided by Paradox.  The interface allows the 

user to have access to data and functions that are needed, but prevents the user from 

modifying data and functions that should not be changed by the user. 

The DSS for the USMC Trainee Model uses a hierarchical menu structure. 

The user is presented a main menu that can be traversed by the type of functionality 
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desired.  This type of interface allows the user to "drill-down" from a very general 

menu to more specific menus that offer increased functionality.  Because the user is 

only given access to functions that are presented on the menu, functions that should 

not be accessed by the user are hidden.  Appendix H provides an overview of the 

menu structure used in the USMC Trainee Model. The top diagram shows the 

functions provided by the main menu.  The three lower diagrams show the 

functionality provided at the second level of the hierarchy by the "Add Menu," 

"Modify Menu," and "Delete Menu" buttons. 

The main menu allows the user to add, modify, or delete an item in the 

database, run the GAMS model, or view the GAMS solution.  The user selects the 

desired functionality through a GUI button.  Selecting one of these buttons will take 

the user to the next level down on the menu structure.  As an example, the second 

level of the menu hierarchy for the "ADD" function allows the user to add an 

instructor, student or event, or to return to the main menu.  Using a hierarchical 

menu structure provides the user with several functional choices, grouped by 

functionality, without providing too many choices as to be confusing, or cluttering the 

screen.  This structure works well for a DSS with limited capabilities.  Larger 

decision support systems would probably need to employ a more dynamic user 

interface to prevent the hierarchy of menu from becoming too deep. 

1.  Data entry 

If the user desires to enter a new instance of a student, he/she traverses the 

menu hierarchy to the "Add a Student" menu.  A form is displayed on the screen that 

provides all of the fields that require data.  The new instance of the student will not 

be accepted by the database until each required field is filled in.  This requirement 

ensures that all of the data needed by the model resides in the database.  Once a 

complete set of data is entered, the dialogue generator is designed to ensure that the 

data is saved in the proper tables, thus avoiding the problem of modification 

anomalies. 
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2. Data modification 

Data modification is completed through the dialogue generator.  If a user 

desires to modify a parameter of a mathematical set, the user calls up the modify 

form.  The user identifies the instance of the set to be modified and is provided access 

to fields where modifications are allowed. The set identifier, i.e., an instructor, 

student, or event name can not be modified by the user.  These set identifiers are key 

fields in the database.  A change to one of these identifiers would be interpreted as 

the creation of a new element of the set. 

There are fields other than the key field where it might be desirable to restrict 

write access when a record is modified.  An example of this is a student's start date. 

By preventing write access to this field, the scheduler can never accidentally change 

this field. 

3. Data deletion 

The removal of data from the database is also done at the dialogue generator 

level.  This is preferable to having the user remove data directly from the database 

relations in that it ensures that when a set is removed, it is removed not only from its 

primary table, but also from any other tables where the element's key is used as a 

foreign key. 

4. Bounds checking 

An input to the database can be checked to ensure that it is within an 

acceptable range before it is entered into the database.  This is completed through the 

assignment of an upper and lower allowable limit that the data must pass before being 

forwarded to the database.  An example of such a bound check in the USMC Trainee 

Model is for the parameter HBAR(Q), the maximum flight time per day for an 

instructor Q.  The squadron might have a rule that states that no instructor will fly 

more than six hours a day. This rule can be enforced at the dialogue generator by 

preventing any instructor from having an HBAR(Q) value greater than 6.0 hours. 

Each time that a record for an instructor is added or modified, the bounds checker 
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will ensure that HBAR(Q) is within allowable limits or the change to the database will 

not be allowed. 

F.  ADVANTAGES 

Integrating a mathematical model into a DSS provides many advantages over 

the use of a stand-alone model.  Mathematical models are designed to facilitate model 

representation and execution but lack a formal data model and management system. 

To overcome this deficiency, the USMC Trainee Model was integrated into a DSS. 

Benefits of this approach include explicit data modeling, improved representation and 

manipulation of model inputs and outputs, greater integrity of input data, and easier 

interpretation of multiple views of model outputs. This section will discuss these 

benefits in detail and how they can make the life of the scheduler easier. 

1. Model integrity 

The interaction between the user and the mathematical model is through the 

dialogue generator.  The dialogue generator allows the user to modify the data used 

by the mathematical model, but not the model itself.  Because the user does not have 

access to the mathematical model, the possibility of accidentally modifying the 

mathematical model while modifying data is eliminated.  The integrity of the model 

can now be guaranteed because there is no direct user access to the model. 

2. Input of data 

Using a mathematical model, data is entered in a format that is recognizable to 

the program.  Using a DSS, data input screens can be created that take data from the 

user in formats that are recognizable to humans. 

Using a stand alone GAMS model, each time an element is added to a set, all 

associated parameters and tables must be modified to reflect this change.  Figure 1 

provided an example of this problem.  In the USMC Trainee Model, each time a 

student is added to a set, he must also be added to three parameters and one table, 

PROG(I,P).  Because the table PROG(I,P) denotes a student's progress through the 34 

events in the syllabus, each time a student is added to the GAMS model, 38 
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modifications must be made to the data portion of the model.  Using a DSS, a single 

screen can be created that prompts the user for all of the required information to enter 

a new student.  Once this data is entered, the new student is entered into all of the 

appropriate sets, parameters and tables with only a single data entry. 

3. Data integrity 

Use of a DSS also ensures that data integrity is maintained when a record is 

modified.  To delete a student directly from a mathematical model requires that the 

student be removed from all appropriate sets, parameters and tables. Using a DSS, 

the user traverses the menu hierarchy to the delete-student menu.  In the delete- 

student menu, the student's name is either entered or selected from a drop-down list 

of names and the instance of the student is automatically deleted from all database 

tables. 

Another type of data integrity problem encountered when using the 

mathematical model directly is the problem of using different spellings to represent 

the same index of a set, parameter or table.  Using a mathematical model directly, the 

scheduler might identify a student in the set students as "Smith," and then in a 

parameter or table accidentally label the same student as "Smyth."  With a 

mathematical model, this error will not be detected until the model refuses to run 

because of improper data. Using the relational database, the student's name is only 

entered once, so either Smith or Smyth would be acceptable, but the problem of using 

different spellings in the same model is eliminated. 

4. Automated modification of dynamic data 

Dynamic parameter and table values can be automatically generated through 

queries of the database.  In the USMC Trainee Model, the parameter DHAT(P), 

which represents the number of days that a student P has been available for training, 

needs to be manually updated daily.  Using the DSS, this parameter can now be 

automatically determined thought the expression DHAT(P) = TODAY - Start-Date. 

27 



5. Alternative views of data 

The use of a DSS supports multiple views of the mathematical model's results. 

Once the solution set is extracted from the mathematical model, it can be presented to 

the user as text, graphs, or charts, depending on the user's preferences. 

6. Management of multiple input and output data sets 

Using a stand-alone mathematical model, the input data, mathematical model 

and solution set are all stored in a single output file.  Using the DSS approach, output 

data is stored in the database where it can be readily accessed for comparison with 

other solution sets, or used as an input to other models. 

Another advantage of storing data separate from the model is that if the user is 

not happy with the solution set, he/she can make changes to the data and quickly re- 

run the model.  As an example, in the USMC Trainee Model DSS, drop-down menus 

are provided that allow the user to change HBAR(Q), an instructor's maximum flight 

hours per day and IBAR(P), a student's maximum training items per day.  If the 

scheduler is unhappy with a solution, he/she can change these parameters in the drop- 

down menu and re-run the model, all within a few minutes.  This time savings allows 

the user to run and store many scenarios.   Once the different solution sets have been 

stored, their inputs and outputs can be compared against one another. 

7. Friendly presentation of solutions 

A DSS provides the user with the ability to quickly and easily modify the 

output of the GAMS solutions.  Once a solution is imported into the database it can 

be modified to display what is important to the user.  Different users may have 

different needs for the results of a mathematical model.  A senior manager may only 

be interested in an executive summary, while the flight scheduler might be interested 

in a much finer level of detail.  Different reports can be created for the same data 

using the dialogue generator. 
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G.  SUMMARY 

This chapter has shown that the DSS approach to the flight scheduling problem 

has many advantages over the use of a stand-alone GAMS model.  The advantage 

most critical to the user is that the task of writing the flight schedule on a day-to-day 

basis is greatly simplified. Another advantage is that access to a formal data model 

and management system is provided when the mathematical model is linked with a 

database. 

The steps used to integrate a mathematical model into a DSS were also shown. 

The steps include (1) design of the database to support the mathematical model, (2) 

creation of a set of links from the database to the mathematical model,  (3) creation of 

a set of links from the mathematical model to the database, and (4) creation of a user 

interface that is user friendly while restricting access to components of the DSS that 

should not be manipulated by the user. 
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IV.  AUTOMATION OF THE DSS APPROACH 

In Chapter III the process used to integrate a GAMS model into a DSS was 

discussed.  In this chapter, a set of generalized procedures is presented that could be 

used to integrate any GAMS model with a database.  In theory, these generalized 

procedures can be built into a software package that will allow the GAMS model user 

to automatically generate a database capable of supporting a GAMS model.  While 

prototyping of some of the required modules has been done, a fully functioning 

software package has not been created due to time constraints. 

Creating the relations and linkages required to integrate Kawakami's GAMS 

model into a DSS was a time intensive process.  The use of a software package that 

automates this process will provide individuals with no knowledge of relational 

databases or mathematical optimization models access to GAMS models.   Using this 

approach, the model user can focus his/her attention on the data used by the model 

while the inner-workings of the GAMS model remain hidden. 

The process described in this chapter entails (1) the formal capture of all 

GAMS input and output data requirements, (2) the creation of a relational database to 

support the GAMS model, (3) the creation of queries to extract the proper data for all 

GAMS data sets, parameters and tables, (4) the transfer of data to the GAMS 

program, and (5) the transfer of GAMS solutions to the relational database. 

A.  CAPTURE OF THE GAMS MODEL METADATA 

Metadata is information about the structure of the GAMS data that will be 

stored in the database.  The first step in creating an automated process to create the 

database relations and links is to record every set, parameter, table and output used 

by the GAMS model.  For a specific GAMS model, the metadata information is 

obtained from the data definition portion of the model. The metadata table consists of 

four columns, GAMS-NAME, GAMS-TYPE, INDEX 1 and INDEX2.   GAMS- 

NAME describes the name of the data set.   GAMS-TYPE describes the type of data 
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held by the set, (SET, PARAMETER, TABLE, or OUTPUT).  INDEX1 identifies 

the GAMS set that a parameter, table or output describes.  INDEX2 also describes 

the GAMS set, but is only used with tables or output types.  Figure 5 provides a 

sample metadata table that represents a portion of the metadata for the USMC Trainee 

Model.  Once captured, the metadata is used to generate the relations, queries and 

linkages required to integrate a relational database and a GAMS model.  The meta- 

data table shown in Figure 5 is designed to support tables with a maximum of two- 

dimensions.  If the GAMS model required greater than two-dimensional tables, extra 

indices could be added. 

GAMS-NAME GAMS-TYPE INDEX1 INDEX2 

P SET 
I SET 

IBAR PARAMETER P 
PROG TABLE I P 

TEACHER OUTPUT I P 

Figure 5.  Portion of the metadata required for the USMC 
Trainee Model. 

B.  DATABASE DESIGN 

The relations and attributes contained in a database designed to support a 

GAMS model are found by examining the sets, parameters, and tables of the GAMS 

model.  General rules for determining the relations are (1) each GAMS set becomes a 

database relation, the set name becomes the relation name and the key field of the 

relation, (2) each GAMS parameter is made an attribute of the relation that it 

describes, and (3)  GAMS tables become relations comprised of two foreign keys and 

a single attribute.  The GAMS table name becomes the name of the relation.  The two 

foreign keys take on the name of the indices of the GAMS table.   The relation's 

attribute takes the name of the GAMS table. 
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An automated procedure to create the database is shown in Figure 6.  In the 

first portion of step 1, relations are constructed for GAMS sets.  In step 2, attributes 

are added to these relations.  In the second part of step 1, relations are created for 

GAMS tables. This process will create a set of database relations that support a 

GAMS model, and that are in the third normal form. 

C.       CREATION OF QUERIES 

Once the GAMS data model is modified into a relational database format, it is 

no longer directly usable by a GAMS model.  In a GAMS data model each set, 

parameter, and table constitute their own data table or relation.  In a relational 

database, sets and parameters are combined into a single relation.  To extract the data 

needed by the GAMS model, queries of the database must be performed to extract the 

data needed by the GAMS model. 

The extraction of data required by the GAMS model can be completed with 

SQL "select-from" queries. The data requirements for each GAMS set, parameter 

and table are summarized in the following rules. 

1. Each mathematical model set requires the key field from its corresponding 
database relation. 

2. Each mathematical model parameter requires the key field and an attribute 
from its corresponding database relation. 

3. Each mathematical table requires the two foreign keys and the single 
attribute from its corresponding database relation. 

The queries required to retrieve input data for the model can be generated 

from the metadata table.  Each GAMS-TYPE other than type "OUTPUT" will require 
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CREATE A RELATION FOR 
; EVERY SET 

CREATE A RELATION FOR 
EVERY TABLE 

Step 1 

OPEN TABLE METADATA 
WHILE NOT END-OF-TABLE 

READ RECORD 
IF GAMS-TYPE = "SET" THEN     ; 

CREATE TABLE GAMS-NAME 
(GAMS-NAME, CHAR(IO), 
PRIMARY KEY (GAMS-NAME)) 

ENDIF 
IF GAMS-TYPE = "TABLE" THEN 

CREATE TABLE GAMS-NAME 
(INDEX1, CHAR(IO), 
INDEX2, CHAR(IO), 
GAMS-NAME, FLOAT, 
FOREIGN KEY (INDEX 1), FOREIGN KEY (INDEX2)) 

ENDIF 
GET NEXT RECORD 

ENDWHILE 
CLOSE TABLE METADATA 

Step 2 

OPEN TABLE METADATA 
WHILE NOT END-OF-TABLE 

READ RECORD 
IF GAMS-TYPE = "PARAMETER" THEN     ; ALTER THE RELATION 

ALTER TABLE INDEX 1 ADD GAMS-NAME, FLOAT 
ENDIF 

GET NEXT RECORD 
ENDWHILE 
CLOSE TABLE METADATA 

Figure 6.  Database design procedure. 
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a query to extract data for the GAMS model.  Figure 7 describes the procedure that 

is used to generate the required queries.  Once generated, the queries can be placed in 

an export script that is run prior to the running of the GAMS model. 

OPEN TABLE METADATA 
WHILE NOT END-OF-TABLE 

READ RECORD 
IF GAMS-TYPE = "SET" 

SELECT DISTINCT GAMS-NAME 
FROM GAMS-NAME+.DB 
SAVE AS GAMS-NAME+Q.DB 

ENDIF 
IF GAMS-TYPE = "PARAMETER" 

SELECT DISTINCT INDEX 1, GAMS-NAME 
FROM INDEX l + .DB 
SAVE AS INDEX1+Q.DB 

ENDIF 
IF GAMS-TYPE = "TABLE" 

SELECT DISTINCT INDEX 1, INDEX2, GAMS-NAME 
FROM GAMS-NAME+.DB 
SAVE AS GAMS-NAME+Q.DB 

ENDIF 
ENDWHILE 
CLOSE TABLE METADATA 

Figure 7.   Query Generation. 

D.  LINKS FROM THE DATABASE TO THE MODELBASE 

Using the DSS approach, data is no longer stored in the mathematical model. 

This is beneficial in that the model can be validated and then stored so that it cannot 

be accessed by the user. The drawback is that a linkage must be created between the 

database and the mathematical model.  Two sets of links are needed.  One link 
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provides a path from the database to the mathematical model.  The second link 

provides a path from the model to the database. 

Creating the link from the database to the GAMS model entails (1) storing the 

query data in a format that is readable and accessible by the GAMS program, and (2) 

importing the data into the mathematical model.  Step one is completed by a script 

that resides in the relational database and can be automated through the use of the 

data held in the metadata table.  A generalized procedure that produces the required 

links between a Paradox database and a GAMS model is provided in Figure 8. 

OPEN TABLE METADATA 
WHILE NOT END-OF-TABLE 

READ RECORD 
WRITE "ExportASCIIvar("GAMS-NAME+Q.DB", 

"GAMS-NAME+Q.TXT", "QUERY-RESULT-STRUCT.DB", TRUE)" 
ENDWHILE 

Figure 8.  Paradox script required to create a Paradox to GAMS link. 

Step two is completed by replacing each GAMS set, parameter and table with 

the script shown in Figure 9. 

"$include "operating system path\GAMS-NAME+.TXT" 

Figure 9.  GAMS script required to create a Paradox to GAMS 
link. 

E.  LINKS FROM THE MODELBASE TO THE DATABASE 

For reasons described in Chapter III, it is desirable to store the results of the 

GAMS model solutions in the database.   Creation of links from the GAMS model to 

the database is a two-step process.  In step one, each GAMS "display" statement is 

replaced with a statement having the structure shown in Figure 10.   A description of 

the meaning of this code is provided in Chapter III. 
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After the GAMS model is run with the modifications shown in Figure 10, a 

file is created that contains the solution for each output set identified in the metadata 

table.  Step two is to import the file into the database and convert it into a format that 

FILE ALIAS-NAME/"OPERATING SYSTEM PATHAGAMS-NAME+.TXT/" 
PUT ALIAS-NAME 
ALIAS-NAME + PC=5 * 
LOOP(INDEXl INDEX2 (INDEX 1 INDEX2)$X.L(INDEX1 INDEX2)) 

PUT INDEX2+.TL INDEXl + .TL/;); 

Figure 10.  GAMS export command. 

is readable by the database. A procedure to produce the Paradox specific commands 

required to import an ASCII file and store it as a Paradox table is provided in Figure 

11.  A full explanation of the meaning of the Paradox code is provided in Chapter III. 

OPEN TABLE METADATA 
WHILE NOT END-OF-TABLE 

READ RECORD 
WRITE "importASCIIvar("GAMS-NAME+.TXT" , "GAMS-NAME+.DB", 

"," , " ", TRUE, TRUE);" 
ENDWHILE 

Figure 11.  ObjectPal importASCIIvar script. 

F. SUMMARY 

The procedure listed above uses the metadata table to create a relational 

database in the third normal form.  Conceptually, the software package will create the 

relations required to support the GAMS model, and an export and import script.  The 

export script will contain the code required to query the database relations and build 

the files that will be accessed by the GAMS model.  The import script will contain 

the code required to bring the GAMS solutions into the relational database. 
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A program will be required to control the execution of the import and export 

scripts as well as to execute the GAMS model.  While the details of this program will 

not be presented, in its simplest form it would contain three calls, (1) a call to execute 

the export script, (2) a call to execute the GAMS model, and  (3) a call to execute the 

import script. 
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V.  CONCLUSION AND RECOMMENDATIONS 

This paper has shown the advantages of using a DSS over both the manual 

scheduling of flights and the use of a stand-alone mathematical optimization model. 

The relationship between relational database models and GAMS data models has also 

been demonstrated.  This relationship can be exploited to integrate a GAMS model 

into the framework of a DSS. 

While the database created provides a linkage from the mathematical 

optimization model to both the database and the dialogue generator, to be a truly 

useful DSS more functionality needs to be included.  The model created in this thesis 

only tracks the data required for the USMC Trainee Model.   In addition to this data, 

a working version of this DSS should track data about the flights flown by both the 

students and instructors.  This can be easily accomplished through the creation of a 

relation that contains flight data and is linked to the pilot and instructor relations. 

Flight data is currently captured by the NALCOMIS database at the 

completion of each flight.   At the completion of a flight, the aircraft commander 

records the flight crew, aircraft launch time, aircraft land time, number of landings 

made by each pilot, number of approaches made by each pilot and comment codes for 

the flight.  Currently this data is not used by the squadron scheduler.  Instead, data 

required by the scheduler is taken from paper copies of the NALCOMIS reports. 

One way to greatly enhance a flight-scheduling DSS would be to create a set of SQL 

commands that would import the NALCOMIS data directly into the flight scheduler's 

DSS. 

Chapter IV discussed the generalized theory used to integrate a GAMS model 

and a relational database. These generalized procedures, based on the use of a 

metadata table to store information about the structure of a GAMS model's data can 

be used to create a software package that will automatically create the required 

database relations and linkages required to integrate a GAMS model into the 

framework of a DSS.  While this automated procedure was not implemented, its 
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development will allow individuals with no understanding of the GAMS language 

access to its powerful capabilities. 
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APPENDIX A.  MATHEMATICAL DESCRIPTION OF USMC TRAINEE 
MODEL 

Mathematical description from Ref. 3 

current date 

1. Index Sets 

t e T 

p £/>, 

q^Qt 

i^Q\ 

i G / 

i G I . pt 

I ei=i°Ui\ 
pf    pt    pt 

pilots (student pilots) available for training on day t 

instructors available for teaching on day t 

set of instructors who are qualified to teach item i 

training flights (items in syllabus) 

unfinished items with exactly one prerequisite remaining for 
pilot p 

set of unfinished and potentially allowable items 

(if) G //, = {(ij')\iel°, i/Gl^J<i/)      set of pairs of items that are allowable and 
P P such that one is a prerequisite of the other, 

i G Fp daytime formation items and 

i G ri nighttime formation items (actually only a single item). 
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2. Data 

Ht flight hours goal on a day t, 

h- flight hours needed for syllabus item i, 

I maximum number of training items per day for pilot p, 

H maximum number of flight hours per day for instructor q, 

fi t current goal for items to be completed by pilot p, 

N t number of items completed by pilot p, 

C' objective value for penalty variable Z+ and Z, 

CX  = (l+[ max{ 0, tipt-Npt}]2), pt 

~2 Cl = (l+[ max { 0, A^rCiV^+1)}]2) and 

c'* - tffCp1?- 

3. Decision Variables 

Xi 1 if a student pilot performs item i, 0 otherwise. 

Y 1 if an instructor q teaches student p item i, 0 otherwise. 
ipq ^ 

W 1 if a student pilot p flies two items on a given day, 0 
otherwise. 

underachievement for flight hours goal, 

46 



Z~ overacheivement for flight hours goal and 

V, V non-negative integer variables for pairing formation flights. 

4.  Formulation 

Maximze    ^ ,g   c£ ^-C'CZ^Z") = J^, 

Subject to    eßilW°   ielpt,\/pGPt (1) 

2^     2L,   hY-  <H    V oEO (2) 

|f   Z^</,   VpE/>, (3) 
»-* 

Z^-A^O dvOe//^ V^EP, (4) 

g   ^-W   < 1   VpEi*, (5) 
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v  y 
»       TDXiD-2V = 0 (6) 

E    E Jv^-2F' = 0 (7) 

;/c/> x^ + %< 1        Ui'&p,   V .pGP, (8) 

£pti>F
Y»*x yqGQ' (9) 

?p  .S   ha   + Z- -Z + = //,. (10) 

z+^- > 0 

F.F'Gl 0, 1, 2, 

z., e io.i} v ip 

Yipq E {0,1}   V ipq 

Explanation of constraints: 

Constraint (1) assigns exactly one instructor to each item flown. 

Constraint (2) limits the number of flight hours for each instructor pilot during the day. 
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Constraint (3) limits the maximum number of training flights for each pilot during the 
day. 

Constraint (4) ensures that prerequisite items are completed before items requiring 
prerequisites. 

Constraint (5) is used to modify the objective function value if two items are performed 
by a pilot instead of just one. 

Constraint (6) limits formation flights during the daytime to an event number. 

Constraint (7) limits formation flights during nighttime to an event number. 

Constraint (8) ensures that a student is not paired with himself in formation flights. 

Constraint (9) ensures that an instructor is not paired with himself in formation flights. 

Constraint (10) limits the number of flight hours of the squadron to the "goal" hours of 
the day. 
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APPENDIX B. USMC TRAINEE MODEL DATA SETS AND OUTPUT 
ROUTINES 

GAMS program listing of the Trainee model from Ref.  3 

$TITLE MODEL 3 (TRAINEES) - USMC 
$OFFUPPER OFFSYMXREF OFFSYMLIST 
OPTIONS SOLPRINT = OFF 
OPTIONS LIMCOL = 0, LIMROW = 0 

* An integer programming model for flight training scheduling in the USMC. 
* Daily flight schedule for trainees in combat capable training course will 

* The items*for tomorrow will be selected from the allowable set of items, 
* and qualified instructors will be paired, subject to both instructor and 
* flight hours ( aircraft ) availability. 
* MOE of the model is to keep the students on schedule. 
* Part of the data sets are obtained FRS HMT-303, USMC, Camp Pendleton, CA. 

* Data sets 
SETS 

I  items of syllabus (34) 
/ FAM100, FAM101, FAM102, FAM103, FAM104, FAM105 
FAM106, FAM107, FAM108, FAM109, FAM110, FAM111 
INS120, INS121, INS122, INS123, INS124, INS125 
FOM130, FOM131, FOM132, TEF140, NAV150, NAV151 
NAV152, ATG160, ATG161, ATG162, TAC170, TAC171 
NVG180, NVG181, NVG182, CCX190                 / 

P  student pilots (11) 
/ DARLING, SHEERIN, STEININGER, PANTEN, HENSEL, MILNE 
ADAMS,   ROSENTL, EAGLE,      READ,   KANG / 

Q instructors (15) „„,.„ 
/ GULMAN, CARPENTER, WEIGL, CASTEEL, HALL,     KOLB 
WEST, SCHLESINGR, FORD, JONES,   HENDRICK, OWENS 
GRACE, EMERY, ORNER / / 

PARAMETERS 
HBAR(Q)  maximum flight hours per day for instructor Q 

/ GULMAN   3, CARPENTER 0,  WEIGL    0, CASTEEL     2 
HALL     4, KOLB 0,  WEST   1.5, SCHLESINGR  3 
FORD     4, JONES 3,  HENDRICK 2, OWENS       3 
GRACE    4,  EMERY 1,  ORNER    2 / 

H(I)  training time allowed for each syllabus flight I 

/ FAM100 1.5, FAMI01 1.5, FAM102 1.5, FAM103 2.0, FAM104 2.0 

FAM105 2.0, FAM106 2.0, FAM107 2.0, FAM108 2.0, FAM109 l.b 

FAM110 1.5, FAMI11 2.0, INS120 1.5, INS121 1.5, INS122 l.b 

INS123 2.0, INS124 2.0, INS125 1.5, FOM130 1.0, FOM131 1.0 

FOM132 1.0, TEF140 1.5, NAV150 1.5, NAV151 1.5, NAV152 l.b 

ATG160 1.5, ATG161 1.5, ATG162 1.5, TAC170 1.5, TAC171 l.b 

NVG180 1.5, NVG181 1.5, NVG182 1.5, CCX190 2.0 

IBAR(P) maximum number of training items per day for pilot P 
/ DARLING 2, SHEERIN 2, STEININGER 2, PANTEN 2, HENSEL 2 
MILNE 2, ADAMS 2, ROSENTL 2, EAGLE 2, READ 2 
KANG     2    / 
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DHAT(P) number of days that pilot P has been assigned for training 
/ DARLING  42, SHEERIN  42, STEININGER  42, PANTEN  70 
HENSEL   42, MILNE    70, ADAMS       70, ROSENTL   7 
EAGLE     7, READ      7, KANG 7 / 

TABLE ^  ^   ._ 
QUAL(I,Q)  qualification of instructor to teach item I 

GULMAN CARPENTER WEIGL CASTEEL  HALL  KOLB   """"' WEST SCHLESINGR 

FAM100 
FAM101 
FAM102 
FAM103 
FAM104 
FAM105 
FAM106 
FAM107 
FAM108 
FAM109 
FAM110 
FAM111 
INS120 
INS121 
INS122 
INS123 
INS124 
INS125 
FOM130 
FOM131 
FOM132 
TEF140 
NAV150 
NAV151 
NAV152 
ATG160 
ATG161 
ATG162 
TAC170 
TAC171 
NVG180 
NVG181 
NVG182 
CCX190 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
0 
0 
0 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
0 
0 
0 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

+ 
FAM100 
FAM101 
FAM102 
FAM103 
FAM104 
FAM105 
FAM106 
FAM107 
FAM108 
FAM109 
FAM110 
FAM111 

FORD 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

JONES  HENDRICK OWENS 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

GRACE 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

EMERY 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

ORNER 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
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111111 
111111 
111111 
111111 
111111 
111111 
111111 
111111 
111111 
11110 1 
11110 1 
11110 1 
11110 1 
11110 1 
11110 1 
11110 1 
11110 1 
11110 1 
11110 1 
11110 1 
11110 1 
11110 1 

TABLE 
PROG(I,P)  completed items I for student pilot P 

DARLING SHEERIN STEININGER PANTEN HENSEL MILNE ADAMS 

INS120 1 
INS121 1 
INS122 1 
INS123 1 
INS124 1 
INS125 1 
FOM130 1 
FOM131 1 
FOM132 1 
TEF140 1 
NAV150 0 
NAV151 0 
NAV152 0 
ATG160 1 
ATG161 1 
ATG162 1 
TAC170 1 
TAC171 1 
NVG180 1 
NVG181 1 
NVG182 1 
CCX190 1 

FAM100 1 1 1 1 1 1 1 
FAM101 1 1 1 1 1 1 1 
FAM102 1 1 1 1 1 1 1 
FAM103 1 1 1 1 1 1 1 
FAM104 1 1 1 1 1 1 1 
FAM105 1 1 1 1 0 1 1 
FAM106 1 1 1 1 0 1 0 
FAM107 0 1 1 1 0 1 0 
FAM108 0 1 1 1 0 1 0 
FAM109 0 0 1 1 0 1 0 
FAM110 0 0 0 1 0 1 0 
FAM111 0 0 0 1 0 0 0 
INS120 1 1 1 1 1 1 0 
INS121 0 1 1 1 1 1 0 
INS122 1 0 1 0 1 1 0 
INS123 0 0 0 0 1 0 0 
INS124 0 0 0 1 0 0 0 
INS125 0 0 0 0 0 0 0 
FOM130 0 0 0 0 0 0 0 
FOM131 0 0 0 0 0 0 0 
FOM132 0 0 0 0 0 0 0 
TEF140 1 0 1 1 0 1 0 
NAV150 1 0 1 1 1 1 0 
NAV151 0 1 1 1 0 1 0 
NAV152 0 0 1 0 0 0 0 
ATG160 0 0 0 1 0 1 1 
ATG161 0 0 0 1 0 1 1 
ATG162 0 0 0 1 0 1 0 
TAC170 0 0 0 0 0 0 0 
TAC171 0 0 0 0 0 0 0 
NVG180 0 0 0 1 0 1 0 
NVG181 0 0 0 1 0 0 0 
NVG182 0 0 0 0 0 0 0 
CCX190 0 0 0 0 0 0 0 
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+ ROSENTL EAGLE READ KANG 
FAM100 1 1 0 1 
FAM101 0 1 0 0 
FAM102 0 0 0 0 
FAM103 0 0 0 0 
FAM104 0 0 0 0 
FAM105 0 0 0 0 
FÄM106 0 0 0 0 
FAM107 0 0 0 0 
FAM108 0 0 0 0 
FAM109 0 0 0 0 
FAM110 0 0 0 0 
FAM111 0 0 0 0 
INS120 0 0 0 0 
INS121 0 0 0 0 
INS122 0 0 0 0 
INS123 0 0 0 0 
INS124 0 0 0 0 
INS125 0 0 0 0 
FOM130 0 0 0 0 
FOM131 0 0 0 0 
FOM132 0 0 0 0 
TEF140 0 0 0 0 
NAV150 0 0 0 0 
NAV151 0 0 0 0 
NAV152 0 0 0 0 
ATG160 0 0 0 0 
ATG161 0 0 0 0 
ATG162 0 0 0 0 
TAC170 0 0 0 0 
TAC171 0 0 0 0 
NVG180 0 0 0 0 
NVG181 0 0 0 0 
NVG182 0 0 0 0 
CCX190 0 0 0 0 

ALIAS(I, J); 

TABLE 
PREREQ(I,J) item I is prerequisite for item J 

FAM100 FAM101 FAM102 FAM103 FAM104 FAM105 FAM106 FAM107 

FAM100 0 1 1 1 1 1 1 1 

FAM101 0 0 1 1 1 1 1 1 

FAM102 0 0 0 1 1 1 1 1 

FAM103 0 0 0 0 1 1 1 1 

FAM104 0 0 0 0 0 1 1 1 

FAM105 0 0 0 0 0 0 1 1 

FAM106 0 0 0 0 0 0 0 1 

FAM107 0 0 0 0 0 0 0 0 

FAM108 0 0 0 0 0 0 0 0 

FAM109 0 0 0 0 0 0 0 0 

FAMllO 0 0 0 0 0 0 0 0 

FAM111 0 0 0 0 0 0 0 0 

INS120 0 0 0 0 0 0 0 0 

INS121 0 0 0 0 0 0 0 0 

INS122 0 0 0 0 0 0 0 0 
INS123 0 0 0 0 0 0 0 0 

INS124 0 0 0 0 0 0 0 0 
INS125 0 0 0 0 0 0 0 0 
FOM130 0 0 0 0 0 0 0 0 
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F0M131 0 0 0 0 0 0 0 0 
FOM132 0 0 0 0 0 0 0 0 
TEF140 0 0 0 0 0 0 0 0 
NAV150 0 0 0 0 0 0 0 0 
NAV151 0 0 0 0 0 0 0 0 
NAV152 0 0 0 0 0 0 0 0 
ATG160 0 0 0 0 0 0 0 0 
ATG161 0 0 0 0 0 0 0 0 
ATG162 0 0 0 0 0 0 0 0 
TAC170 0 0 0 0 0 0 0 0 
TAC171 0 0 0 0 0 0 0 0 
NVG180 0 0 0 0 0 0 0 0 
NVG181 0 0 0 0 0 0 0 0 
NVG182 0 0 0 0 0 0 0 0 
CCX190 0 0 0 0 0 0 0 0 

+     ] FAM108 FAM109 FAM110 FAM111 INS120 INS121 INS122 INS123 
FAM100 1 1 1 1 1 1 1 1 
FAM101 1 1 1 1 1 1 1 1 
FAM102 1 1 1 1 1 1 1 1 
FAM103 1 1 1 1 1 1 1 1 
FAM104 1 1 1 1 1 1 1 1 
FAM105 1 1 1 1 0 0 0 0 
FAM106 1 1 1 1 0 0 0 0 
FAM107 1 1 1 1 0 0 0 0 
FAM108 0 1 1 1 0 0 0 0 
FAM109 0 0 1 1 0 0 0 0 
FAM110 0 0 0 1 0 0 0 0 
FAM111 0 0 0 0 0 0 0 0 
INS120 0 0 0 0 0 1 0 1 
INS121 0 0 0 0 0 0 0 0 
INS122 0 0 0 0 0 0 0 0 
INS123 0 0 0 0 0 0 0 0 
INS124 0 0 0 0 0 0 0 0 
INS125 0 0 0 0 0 0 0 0 
FOM130 0 0 0 0 0 0 0 0 
FOM131 0 0 0 0 0 0 0 0 
FOM132 0 0 0 0 0 0 0 0 
TEF140 0 0 0 0 0 0 0 0 
NAV150 0 0 0 0 0 0 0 0 
NAV151 0 0 0 0 0 0 0 0 
NAV152 0 0 0 0 0 0 0 0 
ATG160 0 0 0 0 0 0 0 0 
ATG161 0 0 0 0 0 0 0 0 
ATG162 0 0 0 0 0 0 0 0 
TAC170 0 0 0 0 0 0 0 0 
TAC171 0 0 0 0 0 0 0 0 
NVG180 0 0 0 0 0 0 0 0 
NVG181 0 0 0 0 0 0 0 0 
NVG182 0 0 0 0 0 0 0 0 
CCX190 0 0 0 0 0 0 0 0 

+ INS124 INS125 FOM130 FOM131 FOM132 TEF140 NAV150 NAV151 
FAMIOO 1 1 1 1 1 1 1 1 
FAM101 1 1 1 1 1 1 1 1 
FAM102 1 1 1 1 1 1 1 1 
FAM103 1 1 1 1 1 1 1 1 
FAM104 1 1 1 1 1 1 1 1 
FAM105 0 0 0 0 0 0 0 0 
FAM106 0 0 0 0 0 0 0 0 
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FAM107 0 0 0 0 0 0 0 0 

FAM108 0 0 0 0 0 0 0 0 

FAM109 0 0 0 0 0 0 0 0 

FAM110 0 0 0 0 0 0 0 0 

FAM111 0 0 0 0 0 0 0 0 

INS120 1 1 0 0 0 1 0 0 

INS121 0 1 0 0 0 0 0 0 

INS122 0 1 0 0 0 0 0 0 

INS123 0 1 0 0 0 0 0 0 

INS124 0 1 0 0 0 0 0 0 

INS125 0 0 0 0 0 0 0 0 

FOM130 0 0 0 1 1 1 0 0 

FOM131 0 0 0 0 1 1 0 0 

FOM132 0 0 0 0 0 1 0 0 

TEF140 0 0 0 0 0 0 0 0 

NAV150 0 0 0 0 0 0 0 0 

NAV151 0 0 0 0 0 0 0 0 

NAV152 0 0 0 0 0 0 0 0 

ATG160 0 0 0 0 0 0 0 0 

ATG161 0 0 0 0 0 0 0 0 

ATG162 0 0 0 0 0 0 0 0 

TAC170 0 0 0 0 0 0 0 0 

TAC171 0 0 0 0 0 0 0 0 

NVG180 0 0 0 0 0 0 0 0 

NVG181 0 0 0 0 0 0 0 0 

NVG182 0 0 0 0 0 0 0 0 

CCX190 0 0 0 0 0 0 0 0 

+ NAV152 ATG160 ATG161 ATG162 TAC170 TAC171 NVG180 NVG181 

FAMIOO 1 1 1 1 1 1 1 1 

FAM101 1 1 1 1 1 1 1 1 

FAM102 1 1 1 1 1 1 1 1 

FAM103 1 1 1 1 1 1 1 1 

FAM104 1 1 1 1 1 1 1 1 

FAM105 0 0 0 0 0 0 0 0 

FAM106 0 1 1 1 1 1 0 0 

FAM107 0 0 0 0 0 0 0 0 

FAM108 0 0 0 0 0 0 0 0 

FAM109 0 0 0 0 0 0 1 1 

FAM110 0 0 0 0 0 0 1 1 

FAM111 0 0 0 0 0 0 0 0 

INS120 0 0 0 0 0 0 0 0 

INS121 0 0 0 0 0 0 0 0 

INS122 0 0 0 0 0 0 0 0 

INS123 0 0 0 0 0 0 0 0 

INS124 0 0 0 0 0 0 0 0 

INS125 0 0 0 0 0 0 0 0 

FOM130 0 0 0 0 0 0 0 0 

FOM131 0 0 0 0 0 0 0 0 

FOM132 0 0 0 0 0 0 0 0 

TEF140 0 1 1 1 0 0 0 0 

NAV150 1 0 0 0 0 0 1 1 

NAV151 1 0 0 0 0 0 0 0 

NAV152 0 0 0 0 0 0 0 0 

ATG160 0 0 0 1 1 1 0 0 

ATG161 0 0 0 0 1 1 0 0 

ATG162 0 0 0 0 1 1 0 0 

TAC170 0 0 0 0 0 1 0 0 

TAC171 0 0 0 0 0 0 0 0 

NVG180 0 0 0 0 0 0 0 0 

NVG181 0 0 0 0 0 0 0 0 
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NVG182 
CCX190 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

FAM100 1 
FAM101 1 
FAM102 1 
FAM103 1 
FAM104 1 
FAM105 0 
FAM106 0 
FAM107 0 
FAM108 0 
FAM109 1 
FAMI10 0 
FAM111 0 
INS120 0 
INS121 0 
INS122 0 
INS123 0 
INS124 0 
INS125 0 
FOM130 0 
FOM131 0 
FOM132 0 
TEF140 0 
NAV150 1 
NAV151 0 
NAV152 0 
ATG160 0 
ATG161 0 
ATG162 0 
TAC170 0 
TAC171 0 
NVG180 0 
NVG181 0 
NVG182 0 
CCX190 0 

3CALAR 
NTOTAL 
DTOTAL 
CPRIME 
FTHR 

NVG182 CCX190 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 

total number of syllabus items in the course / 34 
total number of days pilot is allowed for training / 140 
weight for penalty variable Z /   1 
flight hour goal on a day T /  24 

* Mathematical model removed. Full GAMS USMC model provided in Ref 3. 

* Output procedures 
PARAMETER 

TRAINING(I,P) 
SECOND(I,P) 
TEACHER(I,P,Q) 

TRAINING(I,P) 
SECOND(I,P) 

Items and Students 
exclusive second item 
Items - Students and Instructors 
= X.L(I,P) $ IP(I,P) 
= X.L(I,P) $ IE(I,P) 

TEACHER(I,P,Q) = Y.L(I,P,Q) $ IQ(I,P,Q) 

♦print out the solution in a tabular format 
DISPLAY TRAINING ; 
DISPLAY SECOND ; 
DISPLAY TEACHER ; 
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DISPLAY ZP.L 
DISPLAY ZM.L 
DISPLAY W.L ; 
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APPENDIX C.  GAMS DATA ELEMENTS FOR THE USMC TRAINEE 
MODEL 

-Non-Key Data - 
EventName 

Non-Key Data - 
StudentName 

Q 
-Non-Key Data - 
InstructorName 

H(l) 
Non-Key Data - 

EventName 
JrainingTime 

IBAR(P) 
-Non-Key Data —:— 
StudentName 
JrainingltemsPerDay 

iHBAR(Q) 
-Non-Key Data — 
InstructorName 
iMaxFItHrsPerDay 

DHAT(P) 
Non-Key Data - 

StudentName 
PaysAssigned 

NC(P) 
-Non-Key Data- 
StudentName 
finished Items 

rQUAL(l,Q) 
-Non-Key Data - 
EventName 
InstructorName 
Qualficiation 

PROG(I.P) 
- Non-Key Data - 
EventName 
StudentName 
progress  

PREREQ(U) 
-Non-Key Data- 
EventName 
EventName 
Prerequisite 

Legend: 
Symbol Meaning 

An entity 
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APPENDIX D.  USMC TRAINEE MODEL IN THIRD NORMAL FORM 

Instructor 
■Key Data  
TastName"  [PK1] (FK] 
-Non-Key Data  
HBAR 

Legend: 
Symbol 

Holdsi_ 

() () 
Qualification 
Key Data  
T  [PK1] 
TastName"  (PK2) 
Non-Key Data  

QualDate 

T  [PK1] [FK] 
J   [PK21 

Event_PreReo, 
-Key Data  

() 

Event 
Key Data  

I   [PK1] 
■Non-Key Data - 
H 

~W 

ToTeach 

~W 

Meaning 

An entity 

Student 
-Key Data  
TastName- [PK1J |FK] 
Non-Key Data  

IBAR 
StartDate 
NC 

On 
Mfri 

Progress 
Key Data  
T  [PK1] 
TastName"  |PK2) 
-Non-Key Data  
ProgDate 

() 
A 

(T 

X= A weak entity 

_zl 

-e- 

4f 

A relationship with a cardinality of many 

An optional relationship 

A mandatory relationship 

A one and only one relationship 
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APPENDIX E.  USMC TRAINEE GAMS MODEL REQUIRED INPUTS 

A.  Sets 

GAMS Input Database File               Data Input Ouerv Name 

I EVENT.DB I I. SQL 

P STUDENT.DB P P.SQL 

Q INSTRUCTOR.DB Q Q.SQL 

B.  Parameters 

GAMS Input Database File           Data Input Ouerv Name 

HBAR(Q) INSTRUCTOR.DB   Q, HBAR HBAR. SQL 

H(I) EVENT.DB               I, H H.SQL 

IBAR(P) STUDENT.DB          P, IBAR IBAR. SQL 

DHAT(P) STUDENT.DB          P, DHAT DHAT.SQL 

NC(P) STUDENT.DB          P, NC NC.SQL 

C.  Tables 

GAMS Input Database File Data Input Ouerv Name 

QUAL(I,Q) QUALIFICATION.DB I, Q, QUAL QU ALT. SQL 

PROG(I,P) PROG.DB I, P, PROG PROGT.SQL 

PREREQ(I,J) EVENTPRE.DB 
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I, J, PREREQ PREREQT.SQL 
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APPENDIX F. REQUIRED QUERIES 

DHAT.SQL 

SELECT DISTINCT P, DHAT 
FROM "STUDENT.DB" 

H.SQL 

SELECT DISTINCT I, H 
FROM "EVENT.DB" 

HBAR.SQL 

SELECT DISTINCT Q, HBAR 
FROM "INSTRUCT.DB" 

I.SQL 

SELECT DISTINCT I 
FROM "EVENT.DB" 

IBAR.SQL 

SELECT DISTINCT P, IBAR 
FROM "STUDENT.DB" 

NC.SQL 

SELECT DISTINCT P, DHAT 
FROM "PROG.DB" 

P.SQL 

SELECT DISTINCT P 
FROM "STUDENT.DB" 
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PREQT.SQL 

SELECT DISTINCT I, J, PREREQ 
FROM "EVE PRE.DB" 

PROGT.SQL 

SELECT DISTINCT I, P, PROG 
FROM "PROG.DB" 

Q.SQL 

SELECT DISTINCT Q 
FROM "INSTRUCT.DB" 

QUALT.SQL 

SELECT DISTINCT I, Q, QUAL 
FROM "QUAL.DB" 
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APPENDIX G.  MODIFIED USMC GAMS TRAINEE MODEL DATA SETS 
AND OUTPUT ROUTINES 

STTTLE MODEL 3 (TRAINEES) - USMC 
$OFFUPPER OFFSYMXREF OFFSYMLIST 
OPTIONS SOLPRINT = OFF 
OPTIONS LIMCOL = 0, LIMROW = 0 

* Data sets 
SETS 

I items of syllabus 
/ 
$include -c:\flight\I.txt" 
/ 

P  student pilots 
/ 
$include "c:\flight\P.txt" 
/ 

Q instructors 
/ 
$include "c:\flight\Q.txt" 
/; 

PARAMETERS 
HBAR(Q) maximum flight hours per day for instructor Q 

/ 
$include "c:\flight\hbar.txt" 
/ 

H(I) training time that is needed for item I 
/ 
$include "c:\flight\h.txt" 
/ 

IBAR(P) maxnumber of training items per day for pilot P 
/ 
$include "c:\flight\ibar.txt" 
/ 
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DHAT(P) number of days pilot P is assigned for training 
/ 
$include "c:\flight\dhat.txt" 
/ 

NC(P) number of finished items for pilot P 
/ 
$include "c:\flight\nc.txt" 
/; 

PARAMETER 
QUAL(I,Q) qualification of instructor to teach item I 

/ 
$include "c:\flight\qualt.txt" 
/ ; 
PARAMETER 

PROG(I,P) completed items I for student pilot P 
/ 
$include "c:\flight\progt.txt" 
/ ; 

ALIAS(I,J); 

PARAMETER 
PREREQ(I,J) item I is prerequisite for item J 

/ 
$include "c:\flight\prereqt.txt" 
/ ; 

SCALAR 
NTOTAL   total number of syllabus items in the course 
/ 
$include "c:\flight\ntotal.txt" 
/; 

SCALAR 
DTOTAL   total number of days pilot is allowed for training 
/ 
$include "c:\flight\dtotal.txt" 
/; 
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SCALAR 
CPRIME   weight for penalty variable Z 
/ 
$include "c:\flight\cprime.txt" 

/; 

SCALAR 
FTHR      flight hour goal on a day T 
/ 
$include "c:\flight\fthr.txt" 
/; 

* Mathematical model removed.  Full GAMS USMC model provided in Ref 3. 

* Output proceudres 
PARAMETER 

TRAINING(I,P)   Items and Students 
SECOND(I,P)      exclusive second item 
TEACHER(I,P,Q)  Items - Students and Instructors ; 
TRAINING(I,P)   = X.L(I,P) $ IP(I,P)      I 
SECOND(I,P)     = X.L(I,P) $ IE(I,P)      > 
TEACHER(I,P,Q) = Y.L(I,P,Q) $ IQ(I,P,Q) 5 

* print out the solution in a tabular format 
* DISPLAY TRAINING ; 
FILE TRN /'c:\flight\TRAINING.TXT7; 
PUTTRN; 
TRN.PC=5; 
LOOP( IP(I,P)$(X.L(I,P)), PUT P.TL, I.TL /; ) ; 

* DISPLAY SECOND ; 
FILE SEC /'c:\flight\second.TXT7; 
PUT SEC; 
SEC.PC=5; 
LOOP( IE(I,P)$(X.L(I,P)), PUT P.TL, I.TL /; ) ; 
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* DISPLAY TEACHER 
FILE TEA /'c:\flight\TEACHER.TXT7; 
PUT TEA; 
TEA.PC=5; 
LOOP( IQ(I,P,Q)$(Y.L(I,P,Q)), PUT Q.TL, P.TL, LTL /; ) ; 

* DISPLAY ZP.L ; 
* DISPLAY ZM.L ; 
* DISPLAY W.L ; 

70 



APPENDIX H.  HIERARCHICAL MENU STRUCTURE 

Add Menu 
(See below) 

Modify Menu 
(See below) 

Main Menu 

Delete Menu 
(See below) 

I 
Run GAMS Model 

1 
View GAMS Results 

A Student 

Add Menu 

An Instructor An Event 
1 

Return to Main Menu 

X 
A Student 

Modify Menu 

I 
An Instructor 

I 
An Event Return to Main Menu 

JT 
A Student 

Delete Menu 

An Instructor 
T 

An Event Return to Main Menu 
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