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ABSTRACT 

Preliminary results are presented on the development of 
an adaptive neural network based control algorithm to 
enhance aircraft engine performance. This work builds 
upon a previous National Aeronautics and Space 
Administration (NASA) effort known as Performance 
Seeking Control (PSC). PSC is an adaptive control 
algorithm which contains a model of the aircraft's 
propulsion system which is updated on-line to match the 
operation of the aircraft's actual propulsion system. 
Information from the on-line model is used to adapt the 
control system during flight to allow optimal operation of 
the aircraft's propulsion system (inlet, engine, and nozzle) 
to improve aircraft engine performance without 
compromising reliability or operability. Performance 
Seeking Control has been shown to yield reductions in 
fuel flow, increases in thrust, and reductions in engine fan 
turbine inlet temperature. The neural network based 
adaptive control, like PSC, will contain a model of the 
propulsion system which will be used to calculate optimal 
control commands on-line. Hopes are that it will be able 
to provide some additional benefits above and beyond 
those of PSC. The PSC algorithm is computationally 
intensive, it is valid only at near steady-state flight 
conditions, and it has no way to adapt or learn on-line. 
These issues are being addressed in the development of 
the optimal neural controller. Specialized neural network 
processing hardware is being developed to run the soft- 
ware, the algorithm will be valid at steady-state and 
transient conditions, and will take advantage of the on- 
line learning capability of neural networks. Future plans 
include testing the neural network software and hardware 
prototype against an aircraft engine simulation. In this 
paper the proposed neural network software and 
hardware is described and preliminary neural network 
training results are presented. 

INTRODUCTION 

model-based control algorithm which optimizes aircraft 
propulsion system performance in flight. The adaptive 
nature of the control system enables it to account for 
engine to engine manufacturing variations, off nominal 
engine component performance, or deterioration which 
may occur to the engine over time. This technology was 
a joint NASA McDonnell Douglas, and Pratt & Whitney 
effort. The PSC algorithm has been flight tested on a 
NASA research aircraft at the NASA Ames/Dryden 
Flight Research Facility [1,2,3]. 

A NASA Small Business and Innovative Research 
(SBIR) contract which builds upon the previous NASA 
PSC effort has been established with NeuroDyne Inc. The 
objective of this effort is to investigate the use of neural 
networks for the implementation of a model-based 
adaptive control algorithm. Preliminary progress under 
this effort is presented. 

Neural networks are computational representations of 
biological neurons in the human brain. Consisting of 
several layers of nodes connected by weighted synaptical 
connections, neural networks can be trained to recognize 
a pattern of inputs and provide desired outputs. They lend 
themselves very well to pattern recognition problems, or 
for this application, estimation of system parameters. 

Neural networks have the promise of being faster and 
requiring less memory than traditional computer 
algorithms when implemented in specialized hardware. 
The original performance seeking control algorithm is 
only valid at near-steady-state conditions due to the 
computational burden of modeling transient maneuvers. 
A neural network implementation may be able to 
overcome this limitation. Neural networks also have the 
added benefit of being able to learn on line. Thus they 
may be able to adapt to new or unexpected conditions 
that the traditional PSC implementation could not account 
for. 

Performance Seeking Control (PSC) is an adaptive 



PERFORMANCE SEEKING CONTROL 

The objective of Performance Seeking Control is to 
adaptively optimize the near steady-state performance of 
an aircraft propulsion system in real-time by calculating 
engine control trims which are applied to the nominal 
engine schedules. Performance Seeking Control can 
select one of three modes for optimization. The modes are 
minimizing fuel consumption while maintaining nominal 
thrust, rnimmizing fan turbine inlet temperature (FTIT) 
while maintaining nominal thrust, or maximizing thrust 
while maintaining engine nominal FTIT. A block diagram 
of the PSC architecture is shown in Figure 1. It includes 
an estimator, a model of the propulsion system, and an 
optimizer. The estimator consists of a Kaiman Filter 
using flight measurements to estimate five component 
deviation parameters. These component deviation 
parameters are those of the low pressure turbine 
efficiency (DELPT), the high pressure turbine efficiency 
(DEHPT), the fan airflow (DWFAN), the high pressure 
compressor airflow (DWHPC), and the high pressure 
turbine area (AAHT). The propulsion system model 
consists of linear and nonlinear models used to estimate 
unmeasured engine parameter based on flight 
measurements and the five component deviation 
parameters estimated by the Kaiman filter. The model is 
continuously updated to adaptively model the dynamics 
of the actual propulsion system The optimizer uses linear 
programming techniques to optimize control trim settings 
based upon the present operating condition of the 

propulsion system and the optimization mode selected. 
The performance seeking control algorithm has been 
flight tested at the NASA Ames/Dryden Flight Research 
Facility on a NASA F-l 5 research vehicle. This aircraft 
is equipped with two Pratt & Whitney 1128 afterburning 
turbofan engines. The results from this testing has shown 
that Performance Seeking Control does indeed yield 
significant improvements over traditional control 
techniques. Thrust increases up to 15% at military power, 
turbine temperature decreases up to 120°F at military 
power, and Specific Fuel Consumption (SFC) 
improvements up to 2.0% at cruise have been achieved 

[4]- 

A limitation with the PSC algorithm is the speed at which 
it can be executed. The algorithm is rather 
computationally complex and is not able to achieve real- 
time performance when implemented in conventional 
computer processors where the calculations take place in 
a serial fashion. Therefore it is valid only at near steady 
state conditions. Also the accuracy of the algorithm is 
dependent on the accuracy of the adaptive model. Neural 
networks, because of their parallel nature and ability to 
learn on-line may help to overcome such limitations. 

OPTIMAL NEURAL CONTROLLER 

The proposed optimal neural controller is being 
developed to control a Pratt & Whitney 1128 engine 
simulation The proposed architecture is shown in Figure 
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Figure 1. Performance Seeking Control Architecture 
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2. It consists of a propulsion system model, a controller 
model, and a nonlinear optimizer. Plans call for 
implementing each of these components as neural 
networks. The propulsion system and controller models 
are used to generate trial control sequences n time steps 
into the future spanning the range of admissible control 
based on the present operating conditions and the 
scheduled thrust These trial control sequences along with 
the dynamics of the propulsion system model are used by 
the optimization algorithm to perform an iterative optimal 
gradient search. After convergence, the optimizer 
produces the optimal control according the desired cost 
function. Logic is included to insure that the control and 
dynamic constraints are not exceeded. Prior to on-line 
operation the propulsion system model and the controller 
model neural networks are trained using simulation data. 
The controller model is further refined off-line by training 
on the optimizer outputs. On-line, the error between the 
propulsion system model predicted outputs and the 
measured outputs of the actual engine are monitored. If 
the error exceeds a certain threshold, the propulsion 
system model will be updated to maintain an accurate 
representation of the engine dynamics. A change in the 
propulsion system model will of course impact the 
response of the controller model as it's outputs adjust to 
allow the propulsion system to continue to provide the 
scheduled thrust. The optimizer then calculates a new 
optimal control for this condition using knowledge 

of the updated propulsion system dynamics and the new 
trial control sequences. The new optimal control is fed 
back to the inner loop control to update control trims. It 
is also used to update the controller model neural net on- 
line. 

Preliminary neural network versions of the propulsion 
system model and the controller model have been 
developed. The optimization routine is currently being 
coded in a higher level language, however future plans 
call for implementing this routine in a neural network 
also. Special purpose neural processing hardware is 
being developed for future implementation of the entire 
algorithm. By doing so we hope to demonstrate real-time 
operation. The development of the elements of the 
optimal neural controller are further discussed in the 
following sections. 

The Propulsion System and the Controller Models 

Pratt & Whitney has provided NeuroDyne data from an 
1128 engine simulation for development of the 
propulsion system and controller neural network models. 
The data sets provided were collected from the engine 
simulation by perturbing the inputs around steady state 
operating points throughout the state space. This data 
consists of 8 measurable engine states and 6 control 
inputs. The engine state vector, x, is defined as 



x = [PS20 T20 PB T45 P60 Nl N2 PAM] 

PS20: Engine Inlet Pressure 
T20  : Engine Inlet Temperature 
PB    : Burner Pressure 
T45  : Low Pressure Turbine Inlet Temperature 
P60  : Nozzle Inlet Pressure 
Nl     : Low Rotor Speed 
N2    : High Rotor Speed 
PAM: Ambient Pressure 

The control vector, u, consists of 6 elements 

T 
u = [WF AJ FW CVV HPX BLD] 

WF   : Main Burner Fuel Flow 
AJ    : Exhaust Nozzle Area 
FVV: Fan Variable Vanes 
CVV: Compressor Variable Vanes 
HPX: Horsepower Extraction 
BLD: Bleed Flow 

The Propulsion System Model 

The propulsion system model (NN1) estimates the state 
at time k+1 from the states and control inputs at time k. 
There are 14 inputs to NN1 (8 states, 6 controls), and 8 
outputs from NN1 (8 states). An initial propulsion system 
model has been developed by training a 1-hidden layer 
feedforward neural net consisting of 50 hidden nodes. 
The performance of this neural network in matching the 
response of the Pratt & Whitney engine simulation is very 
good. The average generalization error is 1.00% where 
the average generalization error is defined as: 

«  = 

N 

E [*,*-*,] V-*,] 
i=l 

E [OW 
i-i 

where 

xf is the target output for the ith data point of the training 
or testing set. 

X; is the neural net estimate of the ith data point of the 
training or testing set. 

n is the total number of points in the training or testing 
set 

Table 1 shows the generalization error for each output of 
NN1 as a percentage of the outputs operating range. Also 
shown in the table is the approximate accuracy of each 

sensor as provided by Pratt & Whitney. On-line, the 
propulsion system model accuracy will be limited by the 
accuracy of the sensor measurements which are provided 
as inputs. 

Table 1 Propulsion System Model (NN1) 
Estimation Error 

state Estimation 
error (%) 

Sensor 
error (%) 

PS20 ±0.34 ±0.86 
T20 ±0.21 ±0.41 
PB ±0.61 ±0.56 
T45 ±1.5 ±1.59 
P60 ±0.55 ±0.45 
N1 ±0.13 ±0.13 
N2 ±0.10 ±0.10 

PAM ±0.20 ±2.00 

Figure 3 shows the P&W simulator output of T45 and 
NN1 estimated T45 for a steady state flight at mil 
power, 1.05 operating line, 60,000 ft altitude and Mach 
2.0. As expected the neural net closely tracked the 
response of the simulator. Although the neural net was 
trained on steady state data it was desirable to check the 
networks ability to handle transient conditions. Figure 4 
shows the simulator and NN1 estimated T45 for a 
transient condition of acceleration at 30,000 ft altitude 
and Mach 0.9. Once again the neural network was able 
to closely match the outputs of the simulation. 

The Controller Model 

The controller model (NN2) estimates the required 
control (%) based on the present state (xj.) and 
scheduled thrust (T).  NN2 has 9 inputs (8 states, and 
1 thrust), and 6 outputs (6 controls). Once again a 1- 
hidden layer neural net having 50 hidden nodes was 
selected for initial development. The controller model 
(NN2) will eventually be trained on the optimal control 
commands generated by the optimizer, but for an initial 
starting guess of the model weights the network was 
trained on the Pratt & Whitney engine simulation data. 
The average generalization error for this network is 
7.54%. It should be noted that the accuracy 
requirement for the initial controller model is not as 
stringent as the propulsion system model NN1 because 
the controller model weights will be further refined by 
the optimizer. Table 2 shows the generalization error 
for each output of NN2 as a percentage of the outputs 
operating range. Measurement accuracy information is 
unavailable. 
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Table 2 Controller Model (NN2) Estimation 
Error 

Measured 

Control 
Input 

Estimation 
error (%) 

WF 1.14 
AJ 1.22 
FW 6.19 
CW 3.51 
HPX 4.86 
BLD 8.00 

Figure 5 shows the P&W simulator output of WF (fuel 
flow rate) and NN2 estimated WF for a steady state 
flight at mil power, 1.05 operating line, 60,000 ft 
altitude and Mach 2.0. Figure 6 shows the simulator 
and NN2 estimated WF for the transient acceleration 
condition at 30,000 ft altitude and Mach 0.9. Both 
figures show that NN2 did a fair job of tracking the 
simulator output. 

On-Line Learning 

Figure 7 illustrates the on-line learning of these two 
neural networks. The propulsion system model will be 
updated based on the error between its output and the 
actual measured propulsion system output. This will 
allow it to adapt to account for any off nominal engine 
behavior or any deterioration which may occur over 
time. The controller model will be updated based on 
the error between its output and that of nonlinear 
optimizer allowing it to update to account for any 
changes in the optimal control. The one hidden layer 
feed forward neural network used to obtain the initial 
results is probably not the best neural net architecture 
for on-line learning. Later in the paper alternative 
neural network architectures which are undergoing 
evaluation will be discussed. 

Generating Trial Control and State Sequences 

The nonlinear optimization routine requires an initial 
starting guess for the sequence of states and control 
inputs to meet the required constraints. This can be 
accomplished by cascading together the propulsion 
system model (NN1) and the controller model (NN2) 
as shown in Figure 8. For illustration purposes a 
constant net thrust constraint is used. The constraint 
can be altered to be an acceleration or deceleration 
schedule for thrust. Figure 8 shows that at time stage k 
given a next stage scheduled thrust, T^,, and the 
current measured state, x^ the necessary control, uk, 
can be computed from the controller model. Therefore, 
having selected a constant thrust value T, and an 
acceptable variation for the thrust (A T), m increments 
of thrust between T-A T and T+A T can be created. 
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Figure 7. Neural Networks On-Une Update 

With each of the m thrusts, a starting value of uk can be 
computed using NN2. All the uk's are checked against 
constraints such as bounds and rate limit, and 
corrections are made to stay within the constraints. We 
will follow through the calculations for one of the m 
u's. The rest would be similar. At time stage k, given 
the starting value of uk (generated by NN2), the 
estimated next state xVi can be predicted using the 
propulsion system model (NN1). Moving onto time 
stage k+1 using the NN1 estimated xVi and the next 
stage scheduled thrust (T^ as the inputs, the next 
stage estimate control input uVi can be computed 
from NN2. This continues until the end of the horizon 
is reached, thus obtaining a sequence of states and 
control inputs as a starting guess. 

Nonlinear Optimizer 

The nonlinear optimization routine is currently being 
developed in the "C" language on a workstation 
computer. The calculations involved are highly parallel 
in nature and are dependent on the architecture of the 
propulsion system model (NN1) and the outputs of 
both the propulsion system model (NN1) and the 
controller model (NN1). NeuroDyne plans to 
investigate the implementation of the optimization 
routine in a neural network in the future. 

The optimization routine uses a receding horizon cost 
function which is a function of engine states, x, and 
control inputs, u, over a finite number of time stages, n, 
into the future. The cost function has the following form 
at the present time stage k 
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n+i-l 
(1) 

i-k 

where 

xj is the state at time i 
uj is the control input at time i 
n is the size of the look ahead horizon. 

One of the design issues of this optimization approach 
is selection of the horizon size used in the objective 
function. Theoretically, only an infinite horizon 
produces a global optimum. For a nonlinear system, it 
is necessary to use a receding (or limited) horizon. The 
size of the horizon depends heavily on the accuracy of 
the model. Therefore it is essential that the neural nets 
used for implementation provide good accuracy. 

After NN1 and NN2 have be used to obtain an estimate 
of the propulsion system dynamics and an initial 
estimated sequence of state and control over the 
horizon of n, the sequence of estimated control inputs is 
corrected iteratively according to 

UHEtrU-a. 
dJ_ 

dU 
(2) 

where 

U is a sequence of [u"k ,u"k+1,. 

8J/3U is dependent on the propulsion system model 
neural network architecture. 

a is a step scaling factor between 0 and 1 

Each time UNEW is computed it is applied to NN1 to 
generate a new estimated sequence of states. These 
estimated states and UNEW are then used as inputs to the 
thrust model. If the resulting net thrust at each time 
stage is still within T±A T, UNEW is saved as U, and the 
algorithm proceeds to the next iteration. Otherwise, the 
offending individual U; is corrected, or the step size a in 
equation (2) is reduced and UNEW is recomputed. 

After convergence, the final J is computed and saved 
for this sequence of U. We then proceed to the next 
initial U. At each time stage k, there will exist m 
sequences of U and m J's. The optimal control 
sequence will be the sequence which niinimizes the 
cost function J. The optimal control, u*k, at the current 
time stage is the first control vector ofthat optimal 
control sequence. This is analogous to playing chess. 
At each point of the game, the player has an optimal 
sequence computed but only plays the first move ofthat 
sequence. 

An example is provided below to illustrate operation of 
the optimization routine. 

Ufc^-l] 



Optimizer Example 

The optimization algorithm is set up so that various 
forms of the cost function can be used. For their 
preliminary work NeuroDyne has been working with a 
cost function suggested by Pratt & Whitney which 
penalizes high fuel usage and high low pressure turbine 
temperatures. 

Equation (3) shows the instantaneous (1 stage) cost 
function J^*,,,,. The receding horizon cost function of 
horizon n would be a sum of n of such functions. 

—=[1 0 0 0 0 Of+a 
9*JM 

T 1           \ 

\dX™\ {  *J 
( -,       \T 

d8k+2 dxk*2 

, dxk+h 

T 
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%i k*3 

^ dxk*3 

dx k*3 

V dXt*2 

dx k*2 

dx, k*l 

dx, k*\ 

3«! 
/  J 

■räumrcl"1**- [-CjCT^-r^]^ (3) 

where 
C], C2, and C3 are constants suggested by Pratt 
WF: fuel flow 
T45 : LPT inlet temperature 
Tref = Reference temperature provided by Pratt 

By dividing by Cj the coefficient of WF becomes one. 
Then by defining a = C2/C1, b = C3, and c = C3«T„f 

you obtain: 

dJ 

du 
—=[1 0 0 0 0 0]r + a 

k*\ 

dJ 

*i k*2 

L V dXk*2j 

dx 
\T 

k*2 

\ d«Mj 

dSk+3 

\ dxk*3 

dx, k*3 

V ***. 

dx k*2 

\ ^k*X) 

du 
k    [10 0 0 0 Of+a 

k*2 

( \T 
dSk*3 

dx k*3 

dxt k*3 

du k*2 

(7) 

(3a) 

Let us assume for multiple look ahead, a horizon size of 
3 is used so all the terms can be shown in expanded 
form. 

define 

**=- [-b.T4Sk*c\_l 
(4) 

where the index k indicates time stage k. 

The cost function at time stage k is: 

Jk=WFk+WFM+WFk.2+a(gM+gk.2+gk.3) (5) 

Since T45 is the fourth element of x, and WF is the first 
element of U we obtain the following: 

For a horizon of n, the number of multiplications for 
equation set (7) would be 0(n3) x (matrix 
multiplication for 1 time stage). The matrix 
multiplication for 1 time stage is a function of the size 
of the neural net, the state vector, and the control 
vector. But a simple approximation for 1 time stage 
cost for a 1 hidden layer net would be 0(L3), where L = 
max(N„, R, P), with 
Nn: size of the control vector u 
R: size of the state vector x 
P : # of hidden nodes for a 1 hidden layer net. 

Recursive calculation methods are being investigated to 
help reduce the computing cost of the gradients in 
equation set (7). 

The architecture of the propulsion system model (NN1) 
determines the calculation of the Jacobians used in 
dJ/dU. Assuming a 1 hidden layer net as shown in 
Figure 9 the Jacobians used in equation set (7) can be 
calculated as shown in equations (8) and (9). 

0g*  [0 o 0    *'?-.. OOOOf (6) 
dx 

(.1-»™V4-1)2 

dx ,dx 0) 
w-jpfflrLiri» 

dx, ds CD (8) 
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ds> 0) 
-w (0) 

(9) 
dxt 

(i) 

ds 0) 

for the jth hidden node is: 
(1 + |x;(1)(jth node)|)-2. They form the 
diagonal of a PxP matrix. 

where 

*<•>: 

!.(')• 

W>: 

W,(o): 

hidden layer output at time stage i 

input to the hidden layer at time stage i 

weight matrix coming out of the hidden 
layer nodes to the output layer nodes, but 
the weights from the bias node is not 
included, dim.RxP 

weight matrix coming out of the state input 
(xQ nodes to the hidden layer nodes, note 
that the weights from the bias node are not 
included, dim. P x R 
note also that R + Nu = N at the input 

weight matrix coming out of the control 
input (ujj) nodes to the hidden layer nodes, 
note that the weights from the bias node are 
not included, dim. P x Nu with Nu the 
dimension of the control u vector. 

The sigmoid nodes of the neural net used in this project 
will use an Elliott nodal function of the form x/(l + |x|). 
This implementation computes faster than the 
frequently used hyperbolic tangent, and achieves 
similar accuracy. Therefore, 

W«: 

NEURAL NETWORK ARCHITECTURES 

Three important considerations for the selection of the 
neural network architectures used for the 
implementation of the optimal neural controller are: 

1. 

2. 

3. 

Accuracy, specifically the generalization ability of 
the neural networks. 
Speed of Computation: This often means the size 
of the network should be as small as possible. 
Redundancy : The redundancy helps to increase the 
stability or memory retention of the neural network. 

The accuracy of the propulsion system model affects 
the accuracy of the control command, as well as the 
size of the look ahead horizon. As an example, if the 
network has a 98% accuracy in predicting the outcome 
at time stage k+1, based on information gathered up to 
time stage k (the current stage), then to predict the 
outcome at time stage k+10, we can repeat the same 
process 10 times, each time using the predicted 
outcome as the input for further forward prediction. 
The accuracy of the prediction at time stage k+10 
would be proportional to 0.9810, which is about 80% 
accuracy. On the other hand, if the one stage prediction 
accuracy is about 90% accurate then the 10th stage 
prediction is only about 35% accurate. So the accuracy 
of the neural network limits how far the controller can 
look ahead in selecting an optimal control policy. It 

10 
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should be emphasized that the controller of interest 
here is for a nonlinear system whose dynamics is 
approximated by the neural net, and there is no 
accurate analytical model to provide an infinite horizon. 

The computation speed of a neural net is an important 
factor in a neurocontroller which requires on-line 
learning and real-time optimization. The speed is very 
much related to the size of the network. It is necessary 
to choose a network as small as possible while 
achieving desirable accuracy. 

A network with some redundancy built in is generally 
more robust in the face of a changing environment. 
Redundancy helps to increase the stability or the 
memory retention of the network. During on-line 
learning it is essential the network be able to leam new 
dynamics in one region of the state space without 
compromising accuracy at another region. 

To address the issues of accuracy, speed, and 
redundancy NeuroDyne is considering alternative 
neural network architectures. Two of these 
architectures, a hierarchical mixture expert (HME) 
network [5] or competitive net, and the use of global 
and local neural network models in tandem are 
discussed below. 

Hierarchical Mixture Expert (HME) Network 

Figure 10 shows an HME network or a competitive 
network. It consists of a gating network and multiple 
expert networks. The input space is made up of several 
local regions separated by soft boundaries where data 
points may lie in multiple regions simultaneously. 
Individual expert nets provide accurate modeling at 
particular local regions throughout the input space. The 
gating net, whose output is a function of the input that 
goes into the individual expert nets, determines the 

contribution of each of the expert nets to the overall 
output. Initial evaluation by NeuroDyne has shown that 
this architecture exhibits increased accuracy and 
converges (learns) about an order of magnitude faster 
than a conventional feedforward net When undergoing 
on-line learning at a particular region in the state space, 
one of the expert networks can be trained while the 
other networks remain relatively unmodified. This will 
allow the network to maintain accuracy in a local 
region without compromising accuracy throughout the 
rest of the state space. Another advantage is the parallel 
nature of the architecture. Each of the expert nets and 
gating nets can be assigned to a separate processor and 
work in parallel. A disadvantage of this architecture is 
that it increases the complexity of the mathematics 
necessary in computing the Jacobians used by the 
optimization routine that were shown in equations (8) 
and (9). 

Global and Local Models 

Another approach being considered is mamtaining both 
global and local versions of the neural networks on- 
line. The use of a global model and a local model in 
tandem is designed to maintain both good 
generalization and model accuracy [6]. The global 
model and local model are identical in terms of 
architecture but are updated and maintained differently. 
The global model is valid throughout the state space 
while the local model can depict localized phenomena 
more accurately than the global model, but can not be 
used anywhere else except in a local region. Figure 11 
illustrates the difference between the general model and 
its many local models. 

The local models are used by the neural controller to 
produce accurate control commands on-line. Since the 
local models can not be applied to input-output pairs in 
different parts of the state space they must be able to 
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learn on-line very quickly to track the system dynamics 
through varying local regions. If a new trajectory is to 
be tracked, the localized model representing the end 
point of a previous trajectory is most likely a poor 
starting guess for the first point of the new trajectory. 
The search for the network weight parameters generally 
does not converge if we start with this local model. 
Therefore, when a task is changed or when a trajectory 
discontinuity occurs, the general model must be used to 
start the evolution of the local model. Because of the 
fast on-line learning and accuracy requirements, the 
local model neural networks have a faster learning rate 
and a lower generalization error threshold. 

The global models are initially trained off-line using 
simulation data collected from operating points 
throughout the state-space. On-line the global model 
will still be allowed to update but at a much slower 
learning rate and a higher generalization error threshold 
than that of the local model. 

NEURAL NETWORK HARDWARE 

To take full advantage of the inherently parallel nature 
of neural networks, they need to be implemented in 
hardware designed specifically for their 
implementation. Doing so will yield significant 
increases in execution speed over traditional sequential 
computing techniques. NeuroDyne has established a 
subcontract to develop the neural network hardware 
which will run the neural network algorithm. This task 
will be accomplished through the use of a commercially 
available digital neural network processor. Although 
both analog and digital neural network hardware is 
commercially available, it was determined that a digital 
solution would best meet the needs of this program. 
Analog implementations tend to be more susceptible to 
temperature variations and also tend to have lower 
resolution than digital implementations. Although 
analog neural network chips are faster than their digital 
counterparts, they suffer from the need to communicate 
with the digital world. Because of the additional delays 
induced by the D/A and A/D convenors required for 
I/O, an analog implementation only presents a speed 
advantage when a large network of 100 to 1000 nodes 
is used. A digital implementation also has the 
advantage of being similar to current approved flight 
hardware. Verification therefore would be more 
straightforward. The digital neural network chip which 
has been selected is the CNAPS chip from Adaptive 
Solutions. This hardware contains 64 nodes on a single 
chip and has 16 bit resolution. The developed 
architecture has been purposely designed with this limit 
in mind to insure implementation on a single chip 
would be possible. For a neural network with about 60 
nodes a feedforward pass requires approximately 1 
microsecond. The chip is provided on a processor 
board which is PC bus compatible. The development 

environment for the CNAPS processor is very similar 
to the C language which should allow for easy 
algorithm conversion. 

Future plans call for implementing the neural network 
algorithm in the CNAPS hardware housed in a PC 
chassis. This hardware/software prototype, running the 
optimal neural control algorithm, will be interfaced to a 
real time implementation of the PW 1128 state variable 
model. The performance of the neural network 
implementation in controlling the 1128 simulation will 
be evaluated. 

SUMMARY 

The Performance Seeking Control (PSC) program has 
demonstrated the benefits of model-based adaptive 
control algorithms. Implementing such an algorithm 
using neural networks offers the advantage of a faster 
implementation and the ability to learn on-line. 
Preliminary work has begun on the use of neural 
networks for adaptive optimization of aircraft engine 
performance. Future plans call for the refinement of the 
optimization algorithm and for the implementation of 
the software algorithm in a hardware prototype 
consisting of specialized neural network hardware. 
Capabilities which need to be demonstrated include the 
algorithm's ability to adaptively optimize the control for 
expected conditions of deterioration or off-nominal 
behavior. The speed at which the algorithm can 
accommodate these conditions also needs to be 
adequately demonstrated. 
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