
NASA
Technical Memorandum 107110

Army Research Laboratory
Technical Report ARL-TR-765

Adaptive Optimization of Aircraft Engine
Performance Using Neural Networks

Donald L. Simon
Vehicle Propulsion Directorate
U.S. Army Research Laboratory
Lewis Research Center
Cleveland, Ohio

and

Theresa W. Long
NeuroDyne, Inc.
Williamsburg, Virginia

Prepared for the
86th Symposium on Advanced Aero Engines Concepts and Controls
sponsored by the Advisory Group for Aerospace Research
and Development's Propulsion and Energetics Panel
Bellevue, Washington, September 25-29,1995

U.S. ARMY

National Aeronautics and
Space Administration

19960202 023
15

RESEARCH LABORATORY

-DU.'j.t, ^
•■*■ * ^-^j^uxiäD i

Adaptive Optimization of Aircraft Engine
Performance Using Neural Networks

Donald L. Simon
Vehicle Propulsion Directorate

U.S. Army Research Laboratory
NASA Lewis Research Center

Cleveland, Ohio 44135

Theresa W. Long
NeuroDyne, Inc.

123 Hunting Cove
Williamsburg, VA 23185

ABSTRACT

Preliminary results are presented on the development of
an adaptive neural network based control algorithm to
enhance aircraft engine performance. This work builds
upon a previous National Aeronautics and Space
Administration (NASA) effort known as Performance
Seeking Control (PSC). PSC is an adaptive control
algorithm which contains a model of the aircraft's
propulsion system which is updated on-line to match the
operation of the aircraft's actual propulsion system.
Information from the on-line model is used to adapt the
control system during flight to allow optimal operation of
the aircraft's propulsion system (inlet, engine, and nozzle)
to improve aircraft engine performance without
compromising reliability or operability. Performance
Seeking Control has been shown to yield reductions in
fuel flow, increases in thrust, and reductions in engine fan
turbine inlet temperature. The neural network based
adaptive control, like PSC, will contain a model of the
propulsion system which will be used to calculate optimal
control commands on-line. Hopes are that it will be able
to provide some additional benefits above and beyond
those of PSC. The PSC algorithm is computationally
intensive, it is valid only at near steady-state flight
conditions, and it has no way to adapt or learn on-line.
These issues are being addressed in the development of
the optimal neural controller. Specialized neural network
processing hardware is being developed to run the soft-
ware, the algorithm will be valid at steady-state and
transient conditions, and will take advantage of the on-
line learning capability of neural networks. Future plans
include testing the neural network software and hardware
prototype against an aircraft engine simulation. In this
paper the proposed neural network software and
hardware is described and preliminary neural network
training results are presented.

INTRODUCTION

model-based control algorithm which optimizes aircraft
propulsion system performance in flight. The adaptive
nature of the control system enables it to account for
engine to engine manufacturing variations, off nominal
engine component performance, or deterioration which
may occur to the engine over time. This technology was
a joint NASA McDonnell Douglas, and Pratt & Whitney
effort. The PSC algorithm has been flight tested on a
NASA research aircraft at the NASA Ames/Dryden
Flight Research Facility [1,2,3].

A NASA Small Business and Innovative Research
(SBIR) contract which builds upon the previous NASA
PSC effort has been established with NeuroDyne Inc. The
objective of this effort is to investigate the use of neural
networks for the implementation of a model-based
adaptive control algorithm. Preliminary progress under
this effort is presented.

Neural networks are computational representations of
biological neurons in the human brain. Consisting of
several layers of nodes connected by weighted synaptical
connections, neural networks can be trained to recognize
a pattern of inputs and provide desired outputs. They lend
themselves very well to pattern recognition problems, or
for this application, estimation of system parameters.

Neural networks have the promise of being faster and
requiring less memory than traditional computer
algorithms when implemented in specialized hardware.
The original performance seeking control algorithm is
only valid at near-steady-state conditions due to the
computational burden of modeling transient maneuvers.
A neural network implementation may be able to
overcome this limitation. Neural networks also have the
added benefit of being able to learn on line. Thus they
may be able to adapt to new or unexpected conditions
that the traditional PSC implementation could not account
for.

Performance Seeking Control (PSC) is an adaptive

PERFORMANCE SEEKING CONTROL

The objective of Performance Seeking Control is to
adaptively optimize the near steady-state performance of
an aircraft propulsion system in real-time by calculating
engine control trims which are applied to the nominal
engine schedules. Performance Seeking Control can
select one of three modes for optimization. The modes are
minimizing fuel consumption while maintaining nominal
thrust, rnimmizing fan turbine inlet temperature (FTIT)
while maintaining nominal thrust, or maximizing thrust
while maintaining engine nominal FTIT. A block diagram
of the PSC architecture is shown in Figure 1. It includes
an estimator, a model of the propulsion system, and an
optimizer. The estimator consists of a Kaiman Filter
using flight measurements to estimate five component
deviation parameters. These component deviation
parameters are those of the low pressure turbine
efficiency (DELPT), the high pressure turbine efficiency
(DEHPT), the fan airflow (DWFAN), the high pressure
compressor airflow (DWHPC), and the high pressure
turbine area (AAHT). The propulsion system model
consists of linear and nonlinear models used to estimate
unmeasured engine parameter based on flight
measurements and the five component deviation
parameters estimated by the Kaiman filter. The model is
continuously updated to adaptively model the dynamics
of the actual propulsion system The optimizer uses linear
programming techniques to optimize control trim settings
based upon the present operating condition of the

propulsion system and the optimization mode selected.
The performance seeking control algorithm has been
flight tested at the NASA Ames/Dryden Flight Research
Facility on a NASA F-l 5 research vehicle. This aircraft
is equipped with two Pratt & Whitney 1128 afterburning
turbofan engines. The results from this testing has shown
that Performance Seeking Control does indeed yield
significant improvements over traditional control
techniques. Thrust increases up to 15% at military power,
turbine temperature decreases up to 120°F at military
power, and Specific Fuel Consumption (SFC)
improvements up to 2.0% at cruise have been achieved

[4]-

A limitation with the PSC algorithm is the speed at which
it can be executed. The algorithm is rather
computationally complex and is not able to achieve real-
time performance when implemented in conventional
computer processors where the calculations take place in
a serial fashion. Therefore it is valid only at near steady
state conditions. Also the accuracy of the algorithm is
dependent on the accuracy of the adaptive model. Neural
networks, because of their parallel nature and ability to
learn on-line may help to overcome such limitations.

OPTIMAL NEURAL CONTROLLER

The proposed optimal neural controller is being
developed to control a Pratt & Whitney 1128 engine
simulation The proposed architecture is shown in Figure

Flight
Measurements

Optimal
Engine

Trims

Kaiman Filter

Estimator

Model Updates

Propulsion System

Model

Linear
Programming
Optimization

Estimated
Engine
Parameters

Figure 1. Performance Seeking Control Architecture

Scheduled Thrust

Xk

Propulsion
System
Model (NN1)

Xk*1

Tk+1
Controller
Model (NN2)

Trial Control Sequences and
Updated Propulsion Dynamics

Uk = Control Inputs at Time k

Xk = Measured Engine States at Time k

uk = Optimal ukCaculated By Optimizer

Tk+i - Scheduled Next State Thrust

Nonlinear
Optimizer

Figure 2. Optimal Neural Controller

2. It consists of a propulsion system model, a controller
model, and a nonlinear optimizer. Plans call for
implementing each of these components as neural
networks. The propulsion system and controller models
are used to generate trial control sequences n time steps
into the future spanning the range of admissible control
based on the present operating conditions and the
scheduled thrust These trial control sequences along with
the dynamics of the propulsion system model are used by
the optimization algorithm to perform an iterative optimal
gradient search. After convergence, the optimizer
produces the optimal control according the desired cost
function. Logic is included to insure that the control and
dynamic constraints are not exceeded. Prior to on-line
operation the propulsion system model and the controller
model neural networks are trained using simulation data.
The controller model is further refined off-line by training
on the optimizer outputs. On-line, the error between the
propulsion system model predicted outputs and the
measured outputs of the actual engine are monitored. If
the error exceeds a certain threshold, the propulsion
system model will be updated to maintain an accurate
representation of the engine dynamics. A change in the
propulsion system model will of course impact the
response of the controller model as it's outputs adjust to
allow the propulsion system to continue to provide the
scheduled thrust. The optimizer then calculates a new
optimal control for this condition using knowledge

of the updated propulsion system dynamics and the new
trial control sequences. The new optimal control is fed
back to the inner loop control to update control trims. It
is also used to update the controller model neural net on-
line.

Preliminary neural network versions of the propulsion
system model and the controller model have been
developed. The optimization routine is currently being
coded in a higher level language, however future plans
call for implementing this routine in a neural network
also. Special purpose neural processing hardware is
being developed for future implementation of the entire
algorithm. By doing so we hope to demonstrate real-time
operation. The development of the elements of the
optimal neural controller are further discussed in the
following sections.

The Propulsion System and the Controller Models

Pratt & Whitney has provided NeuroDyne data from an
1128 engine simulation for development of the
propulsion system and controller neural network models.
The data sets provided were collected from the engine
simulation by perturbing the inputs around steady state
operating points throughout the state space. This data
consists of 8 measurable engine states and 6 control
inputs. The engine state vector, x, is defined as

x = [PS20 T20 PB T45 P60 Nl N2 PAM]

PS20: Engine Inlet Pressure
T20 : Engine Inlet Temperature
PB : Burner Pressure
T45 : Low Pressure Turbine Inlet Temperature
P60 : Nozzle Inlet Pressure
Nl : Low Rotor Speed
N2 : High Rotor Speed
PAM: Ambient Pressure

The control vector, u, consists of 6 elements

T
u = [WF AJ FW CVV HPX BLD]

WF : Main Burner Fuel Flow
AJ : Exhaust Nozzle Area
FVV: Fan Variable Vanes
CVV: Compressor Variable Vanes
HPX: Horsepower Extraction
BLD: Bleed Flow

The Propulsion System Model

The propulsion system model (NN1) estimates the state
at time k+1 from the states and control inputs at time k.
There are 14 inputs to NN1 (8 states, 6 controls), and 8
outputs from NN1 (8 states). An initial propulsion system
model has been developed by training a 1-hidden layer
feedforward neural net consisting of 50 hidden nodes.
The performance of this neural network in matching the
response of the Pratt & Whitney engine simulation is very
good. The average generalization error is 1.00% where
the average generalization error is defined as:

« =

N

E [*,*-*,] V-*,]
i=l

E [OW
i-i

where

xf is the target output for the ith data point of the training
or testing set.

X; is the neural net estimate of the ith data point of the
training or testing set.

n is the total number of points in the training or testing
set

Table 1 shows the generalization error for each output of
NN1 as a percentage of the outputs operating range. Also
shown in the table is the approximate accuracy of each

sensor as provided by Pratt & Whitney. On-line, the
propulsion system model accuracy will be limited by the
accuracy of the sensor measurements which are provided
as inputs.

Table 1 Propulsion System Model (NN1)
Estimation Error

state Estimation
error (%)

Sensor
error (%)

PS20 ±0.34 ±0.86
T20 ±0.21 ±0.41
PB ±0.61 ±0.56
T45 ±1.5 ±1.59
P60 ±0.55 ±0.45
N1 ±0.13 ±0.13
N2 ±0.10 ±0.10

PAM ±0.20 ±2.00

Figure 3 shows the P&W simulator output of T45 and
NN1 estimated T45 for a steady state flight at mil
power, 1.05 operating line, 60,000 ft altitude and Mach
2.0. As expected the neural net closely tracked the
response of the simulator. Although the neural net was
trained on steady state data it was desirable to check the
networks ability to handle transient conditions. Figure 4
shows the simulator and NN1 estimated T45 for a
transient condition of acceleration at 30,000 ft altitude
and Mach 0.9. Once again the neural network was able
to closely match the outputs of the simulation.

The Controller Model

The controller model (NN2) estimates the required
control (%) based on the present state (xj.) and
scheduled thrust (T). NN2 has 9 inputs (8 states, and
1 thrust), and 6 outputs (6 controls). Once again a 1-
hidden layer neural net having 50 hidden nodes was
selected for initial development. The controller model
(NN2) will eventually be trained on the optimal control
commands generated by the optimizer, but for an initial
starting guess of the model weights the network was
trained on the Pratt & Whitney engine simulation data.
The average generalization error for this network is
7.54%. It should be noted that the accuracy
requirement for the initial controller model is not as
stringent as the propulsion system model NN1 because
the controller model weights will be further refined by
the optimizer. Table 2 shows the generalization error
for each output of NN2 as a percentage of the outputs
operating range. Measurement accuracy information is
unavailable.

■

100

i

r:frMMi*^^ Awfc»WmtW&t^^

* —
X
D
2 T45 (P&W)
o

T45(NN1)

50 i . i . i . i . i .

0 5 10 15 20 25 3()

Time (sec)

Figure 3. Simulator vs. NN1 Estimated T45

at Steady State Condition

100
■

■ /—""~~"

I
2
o
*

2

/ T45 (P&W)

| T45 (NN1)

50

i ,

0 2 4 6 8 10 12 14 16

Time (sec)

Figure 4. Simulator vs. NN1 Estimated T45

at Transient Condition

5

50

'S

WF (P&W) WF (NN2)

10 15

time (sec)

20 25 30

Figure 5. Simulator vs. NN2 Estimated
WF at Steady State Condition

D

'S

Time (sec)

Figure 6. Simulator vs. NN2 Estimated

WF at Transient Condition

Table 2 Controller Model (NN2) Estimation
Error

Measured

Control
Input

Estimation
error (%)

WF 1.14
AJ 1.22
FW 6.19
CW 3.51
HPX 4.86
BLD 8.00

Figure 5 shows the P&W simulator output of WF (fuel
flow rate) and NN2 estimated WF for a steady state
flight at mil power, 1.05 operating line, 60,000 ft
altitude and Mach 2.0. Figure 6 shows the simulator
and NN2 estimated WF for the transient acceleration
condition at 30,000 ft altitude and Mach 0.9. Both
figures show that NN2 did a fair job of tracking the
simulator output.

On-Line Learning

Figure 7 illustrates the on-line learning of these two
neural networks. The propulsion system model will be
updated based on the error between its output and the
actual measured propulsion system output. This will
allow it to adapt to account for any off nominal engine
behavior or any deterioration which may occur over
time. The controller model will be updated based on
the error between its output and that of nonlinear
optimizer allowing it to update to account for any
changes in the optimal control. The one hidden layer
feed forward neural network used to obtain the initial
results is probably not the best neural net architecture
for on-line learning. Later in the paper alternative
neural network architectures which are undergoing
evaluation will be discussed.

Generating Trial Control and State Sequences

The nonlinear optimization routine requires an initial
starting guess for the sequence of states and control
inputs to meet the required constraints. This can be
accomplished by cascading together the propulsion
system model (NN1) and the controller model (NN2)
as shown in Figure 8. For illustration purposes a
constant net thrust constraint is used. The constraint
can be altered to be an acceleration or deceleration
schedule for thrust. Figure 8 shows that at time stage k
given a next stage scheduled thrust, T^,, and the
current measured state, x^ the necessary control, uk,
can be computed from the controller model. Therefore,
having selected a constant thrust value T, and an
acceptable variation for the thrust (A T), m increments
of thrust between T-A T and T+A T can be created.

Xk

'S

Model (NN1)

 £C I*

From OpffrnzBr

/ A
u

ControBor
Model {>*a]

^~a
<r +

Figure 7. Neural Networks On-Une Update

With each of the m thrusts, a starting value of uk can be
computed using NN2. All the uk's are checked against
constraints such as bounds and rate limit, and
corrections are made to stay within the constraints. We
will follow through the calculations for one of the m
u's. The rest would be similar. At time stage k, given
the starting value of uk (generated by NN2), the
estimated next state xVi can be predicted using the
propulsion system model (NN1). Moving onto time
stage k+1 using the NN1 estimated xVi and the next
stage scheduled thrust (T^ as the inputs, the next
stage estimate control input uVi can be computed
from NN2. This continues until the end of the horizon
is reached, thus obtaining a sequence of states and
control inputs as a starting guess.

Nonlinear Optimizer

The nonlinear optimization routine is currently being
developed in the "C" language on a workstation
computer. The calculations involved are highly parallel
in nature and are dependent on the architecture of the
propulsion system model (NN1) and the outputs of
both the propulsion system model (NN1) and the
controller model (NN1). NeuroDyne plans to
investigate the implementation of the optimization
routine in a neural network in the future.

The optimization routine uses a receding horizon cost
function which is a function of engine states, x, and
control inputs, u, over a finite number of time stages, n,
into the future. The cost function has the following form
at the present time stage k

Time Stage k +1

Tk : Scheduled Thiust at time stage k

Tk : Estimated Thrust from Thrust Model at time stage k

Xk : Measured State at time «tage k

Xk : Estimated State from Propulsion SystBm Model at time stage k

uk : Estimated Control Input at «me stage k from Controller Model

Tk+n

Xk+n-1

ClMCk

Controller
Model
(NN2)

uk+n-1

/v.
Thrust
Model

Tk+n

Propulsion
Model
(NN1)

Xk+r

Time Stage k+n-1

Figure 8. Generating Trial Control Sequences

n+i-l
(1)

i-k

where

xj is the state at time i
uj is the control input at time i
n is the size of the look ahead horizon.

One of the design issues of this optimization approach
is selection of the horizon size used in the objective
function. Theoretically, only an infinite horizon
produces a global optimum. For a nonlinear system, it
is necessary to use a receding (or limited) horizon. The
size of the horizon depends heavily on the accuracy of
the model. Therefore it is essential that the neural nets
used for implementation provide good accuracy.

After NN1 and NN2 have be used to obtain an estimate
of the propulsion system dynamics and an initial
estimated sequence of state and control over the
horizon of n, the sequence of estimated control inputs is
corrected iteratively according to

UHEtrU-a.
dJ_

dU
(2)

where

U is a sequence of [u"k ,u"k+1,.

8J/3U is dependent on the propulsion system model
neural network architecture.

a is a step scaling factor between 0 and 1

Each time UNEW is computed it is applied to NN1 to
generate a new estimated sequence of states. These
estimated states and UNEW are then used as inputs to the
thrust model. If the resulting net thrust at each time
stage is still within T±A T, UNEW is saved as U, and the
algorithm proceeds to the next iteration. Otherwise, the
offending individual U; is corrected, or the step size a in
equation (2) is reduced and UNEW is recomputed.

After convergence, the final J is computed and saved
for this sequence of U. We then proceed to the next
initial U. At each time stage k, there will exist m
sequences of U and m J's. The optimal control
sequence will be the sequence which niinimizes the
cost function J. The optimal control, u*k, at the current
time stage is the first control vector ofthat optimal
control sequence. This is analogous to playing chess.
At each point of the game, the player has an optimal
sequence computed but only plays the first move ofthat
sequence.

An example is provided below to illustrate operation of
the optimization routine.

Ufc^-l]

Optimizer Example

The optimization algorithm is set up so that various
forms of the cost function can be used. For their
preliminary work NeuroDyne has been working with a
cost function suggested by Pratt & Whitney which
penalizes high fuel usage and high low pressure turbine
temperatures.

Equation (3) shows the instantaneous (1 stage) cost
function J^*,,,,. The receding horizon cost function of
horizon n would be a sum of n of such functions.

—=[1 0 0 0 0 Of+a
9*JM

T 1 \

\dX™\ { *J
(-, \T

d8k+2 dxk*2

, dxk+h

T
dxk*\

%i k*3

^ dxk*3

dx k*3

V dXt*2

dx k*2

dx, k*l

dx, k*\

3«!
/ J

■räumrcl"1**- [-CjCT^-r^]^ (3)

where
C], C2, and C3 are constants suggested by Pratt
WF: fuel flow
T45 : LPT inlet temperature
Tref = Reference temperature provided by Pratt

By dividing by Cj the coefficient of WF becomes one.
Then by defining a = C2/C1, b = C3, and c = C3«T„f

you obtain:

dJ

du
—=[1 0 0 0 0 0]r + a

k*\

dJ

*i k*2

L V dXk*2j

dx
\T

k*2

\ d«Mj

dSk+3

\ dxk*3

dx, k*3

V ***.

dx k*2

\ ^k*X)

du
k [10 0 0 0 Of+a

k*2

(\T
dSk*3

dx k*3

dxt k*3

du k*2

(7)

(3a)

Let us assume for multiple look ahead, a horizon size of
3 is used so all the terms can be shown in expanded
form.

define

**=- [-b.T4Sk*c_l
(4)

where the index k indicates time stage k.

The cost function at time stage k is:

Jk=WFk+WFM+WFk.2+a(gM+gk.2+gk.3) (5)

Since T45 is the fourth element of x, and WF is the first
element of U we obtain the following:

For a horizon of n, the number of multiplications for
equation set (7) would be 0(n3) x (matrix
multiplication for 1 time stage). The matrix
multiplication for 1 time stage is a function of the size
of the neural net, the state vector, and the control
vector. But a simple approximation for 1 time stage
cost for a 1 hidden layer net would be 0(L3), where L =
max(N„, R, P), with
Nn: size of the control vector u
R: size of the state vector x
P : # of hidden nodes for a 1 hidden layer net.

Recursive calculation methods are being investigated to
help reduce the computing cost of the gradients in
equation set (7).

The architecture of the propulsion system model (NN1)
determines the calculation of the Jacobians used in
dJ/dU. Assuming a 1 hidden layer net as shown in
Figure 9 the Jacobians used in equation set (7) can be
calculated as shown in equations (8) and (9).

0g* [0 o 0 *'?-.. OOOOf (6)
dx

(.1-»™V4-1)2

dx ,dx 0)
w-jpfflrLiri»

dx, ds CD (8)

Xk

UK

N: Number of input nodes

N'R*Nu
R: The dimension of the state x, and the number of ouput nodes

Nu: The dimension of the control u

P: Number of hidden nodes

b: Bias node y

s: Sigmokj node, which is a sigmoid variant ofthe form: 1+Ixl

Figure 9. One Hidden Layer Net

a*M-n,tr>"'i ,dx 0)

du,.
■■W-

ds> 0)
-w (0)

(9)
dxt

(i)

ds 0)

for the jth hidden node is:
(1 + |x;(1)(jth node)|)-2. They form the
diagonal of a PxP matrix.

where

*<•>:

!.(')•

W>:

W,(o):

hidden layer output at time stage i

input to the hidden layer at time stage i

weight matrix coming out of the hidden
layer nodes to the output layer nodes, but
the weights from the bias node is not
included, dim.RxP

weight matrix coming out of the state input
(xQ nodes to the hidden layer nodes, note
that the weights from the bias node are not
included, dim. P x R
note also that R + Nu = N at the input

weight matrix coming out of the control
input (ujj) nodes to the hidden layer nodes,
note that the weights from the bias node are
not included, dim. P x Nu with Nu the
dimension of the control u vector.

The sigmoid nodes of the neural net used in this project
will use an Elliott nodal function of the form x/(l + |x|).
This implementation computes faster than the
frequently used hyperbolic tangent, and achieves
similar accuracy. Therefore,

W«:

NEURAL NETWORK ARCHITECTURES

Three important considerations for the selection of the
neural network architectures used for the
implementation of the optimal neural controller are:

1.

2.

3.

Accuracy, specifically the generalization ability of
the neural networks.
Speed of Computation: This often means the size
of the network should be as small as possible.
Redundancy : The redundancy helps to increase the
stability or memory retention of the neural network.

The accuracy of the propulsion system model affects
the accuracy of the control command, as well as the
size of the look ahead horizon. As an example, if the
network has a 98% accuracy in predicting the outcome
at time stage k+1, based on information gathered up to
time stage k (the current stage), then to predict the
outcome at time stage k+10, we can repeat the same
process 10 times, each time using the predicted
outcome as the input for further forward prediction.
The accuracy of the prediction at time stage k+10
would be proportional to 0.9810, which is about 80%
accuracy. On the other hand, if the one stage prediction
accuracy is about 90% accurate then the 10th stage
prediction is only about 35% accurate. So the accuracy
of the neural network limits how far the controller can
look ahead in selecting an optimal control policy. It

10

Gating Net

Outputs

General
Model

local
Modeb

Figure 11. Global and local Models

Figure 10. Competitive Net Architecture

should be emphasized that the controller of interest
here is for a nonlinear system whose dynamics is
approximated by the neural net, and there is no
accurate analytical model to provide an infinite horizon.

The computation speed of a neural net is an important
factor in a neurocontroller which requires on-line
learning and real-time optimization. The speed is very
much related to the size of the network. It is necessary
to choose a network as small as possible while
achieving desirable accuracy.

A network with some redundancy built in is generally
more robust in the face of a changing environment.
Redundancy helps to increase the stability or the
memory retention of the network. During on-line
learning it is essential the network be able to leam new
dynamics in one region of the state space without
compromising accuracy at another region.

To address the issues of accuracy, speed, and
redundancy NeuroDyne is considering alternative
neural network architectures. Two of these
architectures, a hierarchical mixture expert (HME)
network [5] or competitive net, and the use of global
and local neural network models in tandem are
discussed below.

Hierarchical Mixture Expert (HME) Network

Figure 10 shows an HME network or a competitive
network. It consists of a gating network and multiple
expert networks. The input space is made up of several
local regions separated by soft boundaries where data
points may lie in multiple regions simultaneously.
Individual expert nets provide accurate modeling at
particular local regions throughout the input space. The
gating net, whose output is a function of the input that
goes into the individual expert nets, determines the

contribution of each of the expert nets to the overall
output. Initial evaluation by NeuroDyne has shown that
this architecture exhibits increased accuracy and
converges (learns) about an order of magnitude faster
than a conventional feedforward net When undergoing
on-line learning at a particular region in the state space,
one of the expert networks can be trained while the
other networks remain relatively unmodified. This will
allow the network to maintain accuracy in a local
region without compromising accuracy throughout the
rest of the state space. Another advantage is the parallel
nature of the architecture. Each of the expert nets and
gating nets can be assigned to a separate processor and
work in parallel. A disadvantage of this architecture is
that it increases the complexity of the mathematics
necessary in computing the Jacobians used by the
optimization routine that were shown in equations (8)
and (9).

Global and Local Models

Another approach being considered is mamtaining both
global and local versions of the neural networks on-
line. The use of a global model and a local model in
tandem is designed to maintain both good
generalization and model accuracy [6]. The global
model and local model are identical in terms of
architecture but are updated and maintained differently.
The global model is valid throughout the state space
while the local model can depict localized phenomena
more accurately than the global model, but can not be
used anywhere else except in a local region. Figure 11
illustrates the difference between the general model and
its many local models.

The local models are used by the neural controller to
produce accurate control commands on-line. Since the
local models can not be applied to input-output pairs in
different parts of the state space they must be able to

11

learn on-line very quickly to track the system dynamics
through varying local regions. If a new trajectory is to
be tracked, the localized model representing the end
point of a previous trajectory is most likely a poor
starting guess for the first point of the new trajectory.
The search for the network weight parameters generally
does not converge if we start with this local model.
Therefore, when a task is changed or when a trajectory
discontinuity occurs, the general model must be used to
start the evolution of the local model. Because of the
fast on-line learning and accuracy requirements, the
local model neural networks have a faster learning rate
and a lower generalization error threshold.

The global models are initially trained off-line using
simulation data collected from operating points
throughout the state-space. On-line the global model
will still be allowed to update but at a much slower
learning rate and a higher generalization error threshold
than that of the local model.

NEURAL NETWORK HARDWARE

To take full advantage of the inherently parallel nature
of neural networks, they need to be implemented in
hardware designed specifically for their
implementation. Doing so will yield significant
increases in execution speed over traditional sequential
computing techniques. NeuroDyne has established a
subcontract to develop the neural network hardware
which will run the neural network algorithm. This task
will be accomplished through the use of a commercially
available digital neural network processor. Although
both analog and digital neural network hardware is
commercially available, it was determined that a digital
solution would best meet the needs of this program.
Analog implementations tend to be more susceptible to
temperature variations and also tend to have lower
resolution than digital implementations. Although
analog neural network chips are faster than their digital
counterparts, they suffer from the need to communicate
with the digital world. Because of the additional delays
induced by the D/A and A/D convenors required for
I/O, an analog implementation only presents a speed
advantage when a large network of 100 to 1000 nodes
is used. A digital implementation also has the
advantage of being similar to current approved flight
hardware. Verification therefore would be more
straightforward. The digital neural network chip which
has been selected is the CNAPS chip from Adaptive
Solutions. This hardware contains 64 nodes on a single
chip and has 16 bit resolution. The developed
architecture has been purposely designed with this limit
in mind to insure implementation on a single chip
would be possible. For a neural network with about 60
nodes a feedforward pass requires approximately 1
microsecond. The chip is provided on a processor
board which is PC bus compatible. The development

environment for the CNAPS processor is very similar
to the C language which should allow for easy
algorithm conversion.

Future plans call for implementing the neural network
algorithm in the CNAPS hardware housed in a PC
chassis. This hardware/software prototype, running the
optimal neural control algorithm, will be interfaced to a
real time implementation of the PW 1128 state variable
model. The performance of the neural network
implementation in controlling the 1128 simulation will
be evaluated.

SUMMARY

The Performance Seeking Control (PSC) program has
demonstrated the benefits of model-based adaptive
control algorithms. Implementing such an algorithm
using neural networks offers the advantage of a faster
implementation and the ability to learn on-line.
Preliminary work has begun on the use of neural
networks for adaptive optimization of aircraft engine
performance. Future plans call for the refinement of the
optimization algorithm and for the implementation of
the software algorithm in a hardware prototype
consisting of specialized neural network hardware.
Capabilities which need to be demonstrated include the
algorithm's ability to adaptively optimize the control for
expected conditions of deterioration or off-nominal
behavior. The speed at which the algorithm can
accommodate these conditions also needs to be
adequately demonstrated.

REFERENCES

[1] Orme, J. and Gilyard, G.,"Subsonic Flight Test
Evaluation of a Propulsion System Parameter
Estimation Process for the F100 Engine", AIAA 92-
3745,1992.

[2] Nobbs, S.G., Jacobs, S.W., and Donahue, D.J.,
"Development of the Full-Envelope Performance
Seeking Control Algorithm", AIAA 92-3748,1992.

[3] Mueller, F.D., Nobbs, S.G., Stewart, J.F., "Dual
Engine Application of the Performance Seeking
Control Algorithm", AIAA 93-1822,1993.

[4] Chisholm, J.D., "In-Flight Optimization of the
Total Propulsion System," AIAA 93-3744,1992.

[5] Jordan, M.I., Jacobs, R.A., "Hierarchical
Mixtures of Experts and the EM Algorithm",
Neurocomputation, vol. 2, issue 2, March 1994.

[6] Long, T. W., "A Learning Controller for
Decentralized Nonlinear Systems", American Control
Conference, June 2-4,1993, San Francisco.

12

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

'm^s^^Bsmm^^w^mt^
1. AGENCY USE ONLY {Leave blank) REPORT DATE

November 1995
3. REPORT TYPE AND DATES COVERED

Technical Memorandum

4. TITLE AND SUBTTTLE

Adaptive Optimization of Aircraft Engine Performance Using Neural Networks

6. AUTHOR(S)

Donald L. Simon and Theresa W. Long

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
NASA Lewis Research Center
Cleveland, Ohio 44135-3191
and
Vehicle Propulsion Directorate
U.S. Anny Research Laboratory
Cleveland, Ohio 44135-3191

SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, D.C. 20546-0001
and
U.S. Army Research Laboratory
Adelphi, Maryland 20783-1145

5. FUNDING NUMBERS

WU-244-02-01

8. PERFORMING ORGANIZATION
REPORT NUMBER

E-10015

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA TM-107110
ARL-TR-765

' Prepared for the 86th Symposium on Advanced Aero Engines Concepts and Controls sponsored by the Advisory Group for Aerospace
Research and Development's Propulsion and Energetics Panel, Bellevue, Washington, September 25-29, 1995 Donald L. Srmon,
Vehicle Propulsion Directorate, U.S. Army Research Laboratory, and Theresa W. Long, NeuroDyne, Inc., 123 Hunting Cove,
Williamsburg, Virginia 23185 (work funded by NASA Contract NAS3-27250). Responsible person, Donald L. Simon, organization

code 2550, (216) 433-3740. . , — ———
12a. DISTRIBUTION/AVAILABILITY STATEMENT |l2b. D.STR.BUTION CODE

Unclassified -Unlimited
Subject Category 08

This publication is available from the NASA Center for Aerospace Information, (301) 621-0390.

13. ABSTRACT (Maximum 200 words)

Preliminary results are presented on the development of an adaptive neural network based control algorithm to enhance aircraft engme
performance. This work builds upon a previous National Aeronautics and Space Administration (NASA) effort known as Performance
Seeking Control (PSC). PSC is an adaptive control algorithm which contains a model of the aircraft's propulsion system which is
updated on-line to match the operation of the aircraft's actual propulsion system. Information from the on-line model is used to adapt
the control system during flight to allow optimal operation of the aircraft's propulsion system (inlet, engme, and nozzle) to improve
aircraft engine performance without compromising reliability or operability. Performance Seeking Control has been shown to yield
reductions in fuel flow, increases in thrust, and reductions in engine fan turbine inlet temperature. The neural network based adaptive
control, like PSC, will contain a model of the propulsion system which will be used to calculate optimal control commands on-line.
Hopes are that it will be able to provide some additional benefits above and beyond those of PSC. The PSC algorithm is
computationally intensive, it is valid only at near steady-state flight conditions, and it has no way to adapt or learn on-line. These issues
are being addressed in the development of the optimal neural controller. Specialized neural network processing hardware is being
developed to run the software, the algorithm will be valid at steady-state and transient conditions, and will take advantage of the on-line
learning capability of neural networks. Future plans include testing the neural network software and hardware prototype against an
aircraft engine simulation. In this paper the proposed neural network software and hardware is described and preliminary neural

network training results are presented.

14. SUBJECT TERMS

Adaptive control; Optimal control; Neural nets; Engine control; Aircraft engines

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

14
16. PRICE CODE

A03
20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500
Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

-n 3" o
O <n
H •P^ < s- "> > 2 =
u>, "0 D
H rn

a
c

c_ CD
D
Q. CO
(1) O

O <
(1)
SI
CT
(D

1 1
o
O

z
o
33
(D

OD2 ET
Is o £.
® O 0)
§ D3 30
•8» °f s
X» O

*- 3"
■£>
—L

CO
en

I
CO

CO

3? Q. (D
• 3

coz
X> 0)

O O
© 3
>s.
3 a>
IS
Ä g
5" o

03

a

