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1. INTRODUCTION: 

The purpose of this note is to propose calculation procedures 
for temperature when portions of a lubricating film are cavitated. 
These procedures are suggested for use in conjunction with the 
treatment of temperature as presented in a recent paper [Elrod, 
1991]. They are to be coupled with a cavitation algorithm [Elrod, 
1981]. The proposed relations implement the Jakobsson-Floberg- 
Olsson cavitation model [See Dowson & Taylor, 1979] . That model 
considers the cavitated zone to be one of constant pressure, 
partially occupied by striations of liquid that extend rotationwise 
across the gap in Couette flow. Although known to have deficien- 
cies, the JFO model represents a considerable improvement over ear- 
lier, more approximate models. Its accuracy will be tested to some 
extent by deviations in temperature found between experiment and 
the present analysis. 

Figure 1 shows a cross-section of the central portion of a 
submerged, liquid-lubricated journal bearing. This particular 
configuration was chosen because it involves all aspects of the 
proposed analytical modelling, not because it is proposed for its 
practicality. 
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Liquid-Lubricated Journal Bearing.      eating Film Showing Cavitated and 
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There are two separate problems to be considered here. First, 
we have to choose an appropriate differential equation for the 
temperature within the cavitated zone. Second, we have to establish 
the inter-relations across the loci of separation and reformation. 

2.   THE TKMPFRATURE EQUATION FOR THE CAVITATED ZONE: 

JFO theory presumes that the liquid in the cavitated zone is 
completely in the form of striations (e.g. Figure 2). Accordingly, 
the 1-p.mperature equation for this zone is the temperature equation 
for the striations. We begin by considering the relations for a 
single striation, and then generalize the results to a zone defined 
by separation and reformation loci. 

reformation separation 

Figure  3 Coordinates Used in Analysis 

Figure 3 defines the coordinates used in this analysis. The 
differential equation for the temperature of a full film is [Elrod, 
1990,   eq.   22] : 

dT/dt   +  Y*VT   +    (3T/3c)Dc/Dt   =    (4/h2) 02T/3c2)    +   cp/pCp [2.01] 
where: 

Dg/Dt  =   (-1/h) [(1+c) Oh/3t)   + V.h£vdc] [2.02] 

Here D/Dt is the Lagrangian time derivative, the vector g is 
formed from the x and y components of the fluid velocity, h(x,t) is 
the film thickness, c = 2z/h - 1 and cp = n[(du/dz)2 + (dv/dz)2] . The 
fluid density, p, and the specific heat, Cp, are taken as constant. 
The operator V represents e^O/dx) + £y(3/3y) , with both spatial 
derivatives taken at constant g. Thus the last term in [2.02] can 
equally well be written as: 
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becomes1: 

0/3y) [^Ph3Op/3y)]   = I2(3h/3t)   + 6U(3/3x) [h(i - Li/3L0) ] [2.04] 

Let us assume no transverse temperature variation, an assumption to 
be be verified a posteriori.   Then: 

SptfOVay2)   =  12(dh/dt)   +  6U(3hc/3x) [2.05] 

Now the striation is, itself, a segment of full film. We wish to 
evaluate Dg/Dt as determined by short-bearing theory. First we need 
3v/3y.   The transverse momentum equation gives: 

0/3g)u(dv/dg)   =   (h/2)23p/9y [2.06] 

The fluid viscosity,u, is temperature dependent. Then with E, = 1/u 
we have: 

9v/3c  =   (h/2)20p/3yKc +  ß^ [2.07] 

v =   (h/2)20p/3y)J^cdc  +  ß/^dc [2.08] 

At  the upper plate  the transverse velocity vanishes. Hence: 

0 = (h/2)20p/ay)/^cdc + ß/^clc [2.09] 

Therefore: 

v=   (h/2)20p/3y) [/^cdc -   i^/31,) [^dq] [2.10] 

Take the y-derivative of eq. [2.10], neglecting, as before, the 
temperature variation in that direction. Now substitute for 32p/3y2 

its  expression from   [2.05].   We  find: 

0/9y) (hv)   = 3[3h/3t +   (U/2) Ohc/3x) Hint/£p [2.11] 

where: 

5mt = /^dc - Ix/SIo/^dg [2.12] 

Note that if there is no transverse temperature variation within 
the striation, then there is no transverse variation of 3v/9y. 

For the shear-driven x-wise velocity component we have: 

u = (U/2I0)j^dc [2.13] 

1 £p is the mean fluidity for the local fluid layer, and is 
given by: £p = la + °-4l2 - Ii2/3I0. The I£ are the coefficients of 
an expansion for £(c) in Legendre Polynomials. 
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v =   (h/2)20p/dy) [f^qdq  -   Ua/3£o) J^dg] [2.10] 

Take the y-derivative of eq. [2.10], neglecting, as before, the 
temperature variation in that direction. Now substitute for 32p/3y2 

its  expression  from   [2.05].   We  find: 

(a/ay) (hv)   =  3 [oh/at  +   (U/2) Ohc/fcOHintAp [2.11] 

where: 

^int = /_^cdc - ia/Sio/^dg [2.12] 

Note that if there is no transverse temperature variation within 
the striation, then there is no transverse variation of dv/dy. 

For the shear-driven x-wise velocity component we have: 

u = (U/2£0)/_^dc [2.13] 

From eqs.    [2.11]   and   [2.13]   we  then obtain: 

V.hY =   O/ax) (hu)   +   (S/ay) (hv)   =   (U/2) 0/ax) [ (h/i0) |^dg] 

+ 3 [ah/at +  (u/2)ahc/ax] uintAP) [2.14] 

where hc = h(l - £.i/3£.0) • 

To determine the indefinite integral of [2.14] we make us of 

the formula: 

r?föf(6)dedü = l^ (1-6) f (6) de [2.15] 

We then obtain: 

V.J^hYdc   =   (U/2) O/&0 (h/I0) [g/_^dc   -   J^dc]    + 

3[ah/at +(u/2) (ahc/ax)]|_i
c(g-e) uint(e)Ap)de [2.is] 

To   check   on   this   formulation,   we   carry   out   the   designated 
integrations  from  -1 to +1.   The  result  is: 

pV.hYdc  =   -2 Oh/at) [2.17] 
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so that Dg/Dt from eq. [2.02] vanishes, as it should, at both the 

lower and upper film surfaces. 

In the case of constant viscosity, eq. [2.16] becomes 

Dc/Dt =  [(l-c2)/h] [(c/2) Oh/at) + UOh/ax) (c+l)/4] [2.18] 

Returning now to the differential equation [2.01] for 
temperature, we note that if dT/dy = 0, there are no terms in the 
equation to generate that component. Then identically the same 
differential equation applies across the striation width, and the 
magnitude of the terms is independent of the striation width. 
Although the above analysis was constructed for diminishing film 
thickness, this last fact encourages us to use the relations also 
for a diverging film thickness. The logic of such use lies in the 
facts that (a) films are known to support some tension and (b) 
rupture into a multiplicity of striations would not alter the 
applicable differential equation. We propose then to use [2.02] and 
[2.16] to trace the temperature throughout the cavitated zone, from 
locus of separation to locus of reformation. 

3.   TREATMENT OF THE INTERFACES: 

We turn now to treatment of the interfaces between the 
cavitated and full-film zones. Figure 4 shows a small section of a 
reformation front. The flow in the cavitated zone is entirely in 

the x-direction. Matching flows normal to the front, we get: 

fflcav    B    "    ffiful-    B   =   VntP'ful-P'cavl [3.01] 

Here m is the lineal mass 
flow per unit time, p' is 
the film mass content per 
unit area and Vn is the 
front velocity normal to 
itself. For simplicity, 
we now write this rela- 
tion for a constant-prop- 
erty fluid and no motion Figure 4. 

ir   *_!   JT   i. Front of the front. 

FULL FILM REGION 

Reformation Front 

CAVITATED REGION 

Schematic Diagram of Reformation 
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cos(a)e£1udz  = cos(a)[Uh/2   -   (h3/l2M) (dp/dx) ] 

-  sin (a) (h3/12/x) (dp/dy) [3.02] 

Here 9 is the fractional liquid content on the cavitation side of 

the front. 

Now the pressure is constant along the front. Therefore: 

cos (a) (dp/dy)   - sin (a) Op/ax) = 0 [3.03] 

Substitution of [3.03] in [3.02] gives: 

9U/2 = U/2 - (h2/12M) (3p/3x) [1+tan2 (a) ] [3.04] 

To second order in angle a, mass continuity is expressed by the x- 
component of mass flux. 

Figure 5 is a simplified cross-section of the streamlines in 
the neighborhood of the reformation front. On the cavitated side 
the flow is shear-driven until close to the front, at which 
location the striations rapidly spread transversely. On the full- 
film side there may be a region of reverse flow caused by the 
adverse pressure gradient. Complex though these phenomena may be, 
use of the cavitation algorithm has proved to give a satisfactory 
approximation. However, to 
treat the temperatures, as 
contrasted with the mass 
flows, a more detailed 
analysis must be attempted. 

In Figure 5 we show the 
flow from the cavitated 
region passing over the 
recirculating flow on the 
downstream side of the front. 
It is reasonable to suppose 
that over the small distances 
involved that the temperature 
associated with a fluid 
particle  will  not  change 

Figure 5.    Diagram of 
Near Reformation Locus 

the Streamlines 
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much. Thus across the front we hypothesize that: 

T = T(Q) [3.05] 

where: 

Q(g) = efcudc in the cavitated zone and [3.06] 

Q(g) = f1udg in the full-film zone. [3.07] 

Let us turn now to the recirculation zone. The velocities as 
shown in Fig. 5 are not precisely correct, for Reynolds Equation, 
as an asymptotic representation of Stokes Equation, does not yield 
the normal velocities, w, that would correspond to the bends in the 
depicted streamlines. Nevertheless, on the basis of the velocity 
distribution shown, we invoke again Eq. [3.05]. Progression upwards 
from the wall at g=-l yields negative values of Q. The maximum 
negative value of Q is reached where u=0. Beyond this value, the 
Q's repeat until they finally become positive. We write: 

If Q<0 then T(Q, u>0) = T(Q,u<0) [3.08] 

The point where the x-wise velocity, u, becomes zero is found from 
the following expression for velocity, taken from Elrod, 1990. 
Thus: 

u= [U-(2I1/3)BX] f^dq/(2l0)   + Bx|_^cdc [3.09] 

where Bx=   (h/2)2 (3p/dx) .   And this  velocity component  vanishes  when 

[J^cdg/J^dc   -  lx/(3l0] [(h/2)22l0Op/3x)   =   -U [3.10] 

In    the    case    of    a    constant-viscosity    liquid,     this    last 
expression reduces  to: 

[(h/2)2(5p/8x)/MU] (1-g)   =1 [3.11] 

In order for this equation to have a solution it is necessary for 

(h/2)2 Op/ax)//xU  >  1/2 [3.12] 
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4.   NUMERICAL EXAMPLES: 

The foregoing analysis has been implemented numerically. As an 
example involving all aspects considered, we treat a bearing with 
the following geometry and lubricant characteristics. 

Diameter = 0.25m; Length .2m 
hnean = .0001875m; Eccentricity =0.85 
Viscosity = .03 Ns/m2; Thermal Diffusivity = 8E-8 m2/s 
Volumetric Specific Heat = 1.75E6 J/(m3 °C) 
Surface velocity = 3 9.27 m/s 
All surface temperatures = 50 °C 
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-:l J A-»-* 

11 16 21 26 

CffiCUMFERENTIAL INDEX 

31 

Figure 6. Film Thickness Distrx- 
bution for Bearing Computations 

Figure 7. Fractional Film Content 
for Example Bearing 

In the computations, the periphery was divided into 30 even incre 
ments. Figure 6 shows the chosen film thickness distribution. 
Figure 7 shows the fractional film content obtained with the 
viscosity held constant at the listed value. Under the circumstan- 
ces, the film content and velocity distributions are independent of 
the'liquid temperature. Figure 8 shows the velocity distributions 
just before and after reformation. As can be seen from Fig. 8, the 
index 13 is for the position immediately before reformation, 
whereas 14 and 15 lie just after. Note that station 14 shows some 
reverse flow in the region -l<c<.5 The backward flow in this region 
must return in a layer of positive velocity located adjacent to 
c=0.5. In the case of constant liquid viscosity, these velocity 
profiles, as well as the fractional mass content, are independent 
of the number of internal Lobatto points, so long as that number is 
greater than or equal to 2. 
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Figure 9.  Temperature Profiles in 
the Neighborhood of Reformation 

Figure 8. Velocity Distributions in 
Neighborhood of Reformation 

Figure 9 shows the temperature profiles on the bearing 
centerplane in the neighborhood of reformation for the case of 9 
internal Lobatto points. Note the temperature reversal as c 
proceeds from the lower wall. This reversal is in line with the 
streamline formation schematically shown in Fig. 5. For less 
numbers of Lobatto points this behavior is represented with less 
and less fidelity. For three Lobatto points it is shown not at all. 
Nevertheless, for this case in some average sense the features are 
preserved, for at station 15 (Figure 10) there is little difference 
in the resulting temperature distributions from 3 and 9 points. 
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100 
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Figure 10. Comparison of Temperature Figure 11. Shifting Temperature Profiles 
Profiles at Station 15  for 3 and 9 within the Striations 
Internal Lobatto Points 

In Figure 11 we observe the shifting temperature patterns 
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within the striations of the cavitated region. For steady-state 
operation and constant-viscosity lubricant, we have from eq. [2.18] 

DC/Dt = UOh/ax) (1+0 (l-C2)/4h 

Hence if the film-thickness is increasing, the fluid tends to 
towards the upper plate, and vice versa. In the absence of film 
convergence or divergence, the temperature profile is symmetric 
between the walls, peaking at the middle. 
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Figure 12 Velocity Distributions with     Figure     13.      Temperature     Profiles     in 
Variable Viscosity Neighborhood        of        Reformation        with 

Variable Viscosity 

Figures    12-15    show   some    results    obtained   with   the    fluid 
viscosity varying according to the  formula: 

p  =   0.03   exp{-0. 01448 (T-50°C) }   Ns/m2 

The fluid viscosity diminishes with temperature, causing less 
overall temperature rise (See Figs. 13, 14 and 15) . The velocity 
gradient midfilm is greatest because there the viscosity is least 
See Fig. 12) . The reformation takes place slightly earlier (at 
index 13, instead of 14) . Again downstream there is little 
difference between the results for 3 and 9 internal Lobatto points 
(See  Fig.   14) . 
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Figure 14 Temperature Profiles at 
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Pts., Variable Viscosity 

Figure   15   Shifting  Temperature 
Profiles within the Striations 

5. CONCLUSIONS: 

Analysis and algorithms have been developed for the treatment 
of lubricating films involving cavitation and temperature effects. 
For purposes of illustration, the techniques have been applied to 
a simple, externally-flooded journal bearing. The work is 
considered to be a consistent extension of Jakobsson-Floberg-Olsson 
cavitation theory. Deviations between the present analysis and 
experiment may therefore lead to a better assessment of the 
validity of JFO theory2. Furthermore, the results presented here 
can be used as test cases for comparison by other investigators 
with other programs. 
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2 For example, it is anticipated that the temperatures in 
the cavitation region will be over-estimated because JFO theory 
neglects the liquid that may be attached to one surface alone, and 
therefore not subjected to shearing. 
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7. TJOMBNCTLATURE: 

C specific heat at constant pressure 
h film thickness 
hc "convective" film thickness = h(1-^/3^.0) 
p pressure 
Q defined in eq. [3.06] 
t time 
T temperature 
u x-component of velocity 
U rotational velocity of shaft 
v y-component of velocity 
Y total velocity vector, ^u +  e^v + e^w 
¥ surface velocity vector. In this case, e^U 

z-component of velocity w 
x   rotational direction coordinate 

y 
z 

axial direction coordinate 
direction normal to film, with value of 0 at half-way point 

a   angle between the downstream-pointing normal to the reforma- 
tion front and the unit vector in the x-direction 

ß   integration constant, eqs. [2.07] - [2.09] 
£   dimensionless cross-film location, ranging from -1 to 1 
0   fractional liquid content of the film $ dissipation 

function, also dummy variable in eq. [2.15] . 
0   /z[Ou/dz)2 + (dv/dz)2] 
jx liquid viscosity 
5    liquid fluidity, l//i 
l_ coefficient of nth Legendre polynomial in expansion for E, 
E, mean fluidity of film, defined in footnote of section 2. 
p   liquid density 
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