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Abstract 

Internal spur gear teeth are normally 
stronger than pinion teeth of the same pitch 
and face width since external teeth are 
smaller at the base. However, ring gears 
which are narrower, have an unequal 
addendum or are made of a material with a 
lower strength than that of the meshing pinion 
may be loaded more critically in bending. In 
this study, a model for the bending strength of 
an internal gear tooth as a function of the 
applied load pressure angle is presented 
which is based on the inscribed Lewis constant 
strength parabolic beam. The bending model 
includes a stress concentration factor and an 
axial compression term which are extensions of 
the model for an external gear tooth. The 
geometry of the Lewis factor determination is 
presented, the iteration to determine the 
factor is described and the bending strength J 
factor is compared to that of an external gear 
tooth. This strength model will assist optimal 
design efforts for unequal addendum gears 
and gears of mixed materials. 

Nomenclature 

Symbols 

B     gear dedendum (mm.in) 
c     center distance (mm,in) 
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face width (mm,in) 

height of Lewis parabola (mm,in) 
height, y distance (mm,in) or stress 
concentration constant 
AGMA bending strength factor 
stress concentration factor 
module (mm) 
number of teeth 
diametral pitch (1.0/inch) 
pitch radius (mm,in) 
radial distance to the parabola apex 
(mm,in) 
cutter tip radius (mm,in) 
radius to trochoid point (mn%in) 
cutter radius to center of cutter tip 
(mm,in) 

gear radius to the center of the cutter tip 
fillet (mm.in) 
distance from the cutting pitch point to 
the cut point (mm.in) 
distance from the cutting pitch point to 
the center of the cutter tip fillet (mrain) 
Lewis parabola tooth thickness (mm.in) 
pitch circle tooth thickness (mm.in) 
tangential load (kN,lbs) 
Lewis form factor distance (mm,in) 
abscissa coordinate (mm,in) 
ordinate coordinate (mm.in) or Lewis form 
factor 
angle between the tangent to the 
trochoid and the tooth centerline 
(radians) 

central gear angle (radians) 



Y     angle on the gear from the cutting pitch 

point to the trochoid cutting point 
(radians) 

5. angle on the cutter from the pitch point 
on the tooth surface to the center of the 

tip circle (radians) 
JL    angle on the gear from the pitch point on 

the tooth surface to the center of the tip 
circle (radians) 

A     internal tooth half bottom land angle 
(radians) 

n     angle at the cutting point between the 
line of centers and the normal through the 

tip fillet center (radians) 
8     roll angle (radians) 
6, central angle on the gear from the center 

of the tip of the trochoid to the trochoid 

point (radians) 
6,.    central angle on the gear from the center 

of the gear tooth to the trochoid point 
(radians) 

A      supplement of the angle a (radians) 
p     radius of curvature (mm,in) 
0 bending stress (Pa, psi) 
§     pressure angle (radians) 
qj     slope of the trochoid at the contact point 

Subscripts 

A point of contact 
b base circle 
C apex of parabola 
E involute point 
f    . fillet 
F trochoid point 
z of the involute at the cutter tip fillet center 

1 cutter 
2 internal gear 

Superscripts 

L     stress concentration equation constant 
M    stress concentration equation constant 

Introduction 

In the design of spur gear teeth, bending 
strength is a significant concern1-2-3. Gear 
teeth which break off at the root become free 
debris in a gear box to cause secondary 
failures. In a very short time, a tooth bending 
fatigue failure will cause a complete 
breakdown of the transmission in which it 
occurs. So tooth bending fatigue limits in a 
transmission are a primary concern in all stages 
of design. 

For equal addenda gears made of the 
same material and the same width, the pinion 
teeth have the lowest bending fatigue limit 
since their bases are smaller and the loads on 
the pinion and gear teeth are equal. Thus 
most of the gear tooth bending stress models 
are for external gear teeth*-4. However, there 
are situations in which an internal gear tooth 
may have a higher chance of failure than its 
meshing external pinion tooth. It may be 
made of a weaker material or its tooth 
thickness may be reduced to enlarge the 
pinion's tooth thickness and balance the 
bending strengths in the mesh. 

Present models for the bending strength 
of internal gear teeth4-7 use the straight line 
tangent model of Hofer with a slope relative to 
the tooth centerline of forty-two to fifty-nine 
degrees. Both studies recommend forty-five 
degrees for thick rimmed gears with larger 
angles for thin rimmed gears. The AGMA 
Aerospace Gearing Design Guideline Annex8, 
gives a procedure for finding the inscribed 
parabola which yields the highest stress 
estimate for a given tooth and loading. This 
procedure assumes a solid body gear and a 
circular fillet tangent to the tooth involute. 

In this work, the classic method of 
inscribing a constant strength parabola inside 
the tooth is used to estimate the tooth 
strength'. This is the method of Wilfred Lewis'0 

which has been used for many years by the 
AGMA as the basis of the external gear tooth 
strength model3. A stress concentration factor 
has been added to the calculation as an 
extension of the Dolan and Broghamer 



factor11. The model also includes axial 
compression to match the AGMA bending 
strength J factor5. Required information to 
specify the internal gear J factor are: 1) the 
dedendum ratio of the tooth, 2) the nominal 
pressure angle, 3) the pitch circle tooth 
thickness, 4) the number of teeth on the 
internal gear, 5) the number of teeth on the 
meshing pinion to find the highest point of 
single tooth loading, 6) the number of teeth on 
the pinion shaper cutter, and 7) the tip radius 
of the cutter. 

Tooth Strength Model 

Wilfred Lewis developed the basic model 
for bending stress in gear teeth in 189210. In his 
analysis, Lewis considered a gear tooth to be a 
loaded cantilever beam with a force applied 
to the tip of the gear. He made the following 
assumptions: 

1. the load is applied to the tip of a gear 
tooth; 

2. only the tangential component of the 
force will be a factor (the radial 
component is neglected); 

3. the load is distributed uniformly across the 
entire face width of the gean 

4. forces due to tooth sliding friction are 
negligible; and 

5. no stress concentration is present in the 
tooth fillet. 

Lewis took into account the geometry of the 
gear tooth by inscribing a constant strength 
parabola within the tooth form. The vertex of 
the parabola is located at the intersection of 
the tooth centerline and the applied load's 
line of action. At the location on the profile of 
the tooth where the inscribed parabola is 
tangent, the Lewis equation for the tooth 
bending stress is expressed as: 

a = 
W • P ™t    d 

(1) 
f-Y 

where W. is the tangential load on the tooth, 
P. is the diametral pitch, f is the gear face 
width, and Y is the Lewis form factor based on 
the geometry of the tooth. The point of 
application of the load is described by the 

pressure angle of the applied load at the 
tooth surface, $.. 

A 

For the stress analysis of internal gears, 
both involute and trochoid geometry are used 
in checking for the smallest inscribed parabola 
in the tooth. 

Involute Geometry 

The involute is the locus of a point on a 
line unrolling from its base circle. The involute 
profile is described in terms of a coordinate 
frame with its center at the gear center and 
the y axis through the center of the tooth. The 
coordinates of the profile are obtained as 
projections of the base radius, R. _, and the 
radius of curvature, p_, of the involute point 
onto this x,y coordinate frame. 

The involute function of a pressure angle, 
(J), depicted in Figure 1, is the difference 
between the roll angle and the pressure angle 
at that point. Mathematically, the involute of 
an angle is expressed as: 

1NV((J)) = e-4) = tan(c|))-(j> 

The pitch radius of the internal gear is 
expressed by the equation: 

(2) 

N„ 

R2 = (3) 
2-P. 

or 

m 
R2 = N2 (4) 

for metric units, where N_ is the number of 
internal gear teeth, P.isThe diametral pitch 
and m is the module.me base radius is: 

Rb2 = R2'COsM>) (5) 

Delta, A, is one half of the bottom land angle 
of the tooth involute. In Figure 1, A can be 
seen as the angle from the center of the tooth 
to the involute at the base circle, which is: 



A = 
2-R, 

INV(<j)) (6) 

where t   is the tooth thickness at the pitch 
circle. 

As shown in Figure 2, the radius to the 
loaded line of action at the centerline of the 
loaded tooth is R_. This is also the radial 
distance to the parabola apex. The pressure 
angle at R_ is equal to the sum of the tangent 
of <J>., the pressure angle at the tooth surface, 
ancfA. So R_ can be expressed as: 

RC = 
b2 R, b2 

(7) 
cos((J) )       cos(tan((|) ) + A) 

In Figure 3,0 is the roll angle to the point 
on the involute which is tangent to the 
inscribed parabola with its apex at R„. Since 
we must iterate to find 8, an initial estimate for 
6 can be expressed as: 

8 = 1.5-tan(4>.) (8) 

XF and Yp are the coordinates of the involute 
point which is cut at the roll angle 8. These 
coordinates are measured with respect to the 
center of the loaded tooth. From the 
geometry of Figure 3, X_ and Y£ are: 

XE = 
p  • cos(A + 8) b2 sin (A + 8) 

Y   = pE • sin(A + 8) + Rb2 ■ cos(A + 8) 

(9) 

(10) 

In Figure 3, H   is the y distance from the 
tangent point on the involute to the 
intersection of the involute's tangent with the 
tooth centerline. 

Hl = 
tan (A + 8) 

HD 

FL is the distance from that same point on the 
parabola to the intersection of the parabola's 

tangent with the tooth centerline. Since the y 
distance to the apex of a parabola is one half 
the distance to the intersection of the tangent 
with the centerline, FL can be expressed as: 

H2 = 2-(YE-RC) (12) 

An interval halving iterative process is 
used to find the location on the tooth surface 
at which the largest parabola is tangent to the 
involute. 8, X , Y„ Hr and H2 are calculated 
each time in This process. The angle 0 is 
increased by a fixed step, A8, in each iteration, 
with A8 set to 0.01 radians initially. When the 
difference in H  and FL changes sign, A6 is set 
to -A8/2 to close in on the solution. When the 
values of H. and FL are equal, the location on 
the tooth surface at which the largest 
parabola is tangent to the involute has been 
determined. 

Trochoid Geometry 

For an internal tooth, the largest inscribed 
parabola may be tangent to the involute or it 
may be tangent to the trochoid at the base of 
the tooth. Therefore, trochoid geomefry is also 
used to find the point of maximum stress. In 
the following analysis, the cutter is gear 1 and 
the internal gear is gear 2 with R] being the 
pitch radius of the cutter and R~ being the 
pitch radius of the internal gear. 

As shown in Figure 4, R_ is the cutter 
radius to the center of the cutter tip fillet: 

R0=R1+B. (13) 

where B is the dedendum of the internal gear 
and RF is the cutter tip radius. The pressure 
angle on the cutter to the involute of the 
cutter tip fillet center is denoted by $- and is: 

<j57 = cos 
•1 / Rbl (14) 

The radius of curvature of the involute at the 
cutter tip fillet center is p? which can be 
determined from RQ ana $_ by: 



pz = R0-sin(4>z) (15) 

5. is the angle on the cutter from the 
pitch point on the tooth surface to the center 
of the cutter tip fillet and 6_ is the conjugate 
rotation of the gear from the pitch point on the 
tooth surface to the center of the cutter tip 
fillet on the cutting trochoid. The angles 5] 

and 5_ can be calculated as: 

ö1 = 

PZ + RF 

bl 

4>z - INV{d>) (16) 

52 = Ö1 (17) 

Figure 5 shows the paths of the trochoids 
on the internal gear tooth and also displays 
the locations of point C on the trochoid of the 
tip center and its corresponding pitch point, D. 
The inner trochoid is for the point at the center 
of the cutter tip fillet. The outer trochoid is for 
the envelope of the cutter tip positions which 
is the cut shape on the tooth root. The line 
0<Z. locates the tooth centerline in these 
figures. 

In Figure 5, 6.. is the rotation of the cutter 
and 8„ is the corresponding rotation of the 
gear, while the cutter rotates the center of 
the tip fillet from point F to point C, the gear 
rotates the apex of the trochoid, which is a 
fillet radius above point F, to point G. The line 
O-G then is the centerline of the trochoid on 
the gear. The angular rotation of the gear can 
by expressed in terms of the rotation of the 
cutter as: 

R, 
62 = ei 

1 (18) 

RT is the radius from the gear center to the 
center of the cutter tip fillet. From triangle ABC 
in Figure 6 and the law of cosines, R_ can be 
defined as: 

F^ = [c2+R0
2 + 2-c-R0-cos(91)3

1/2       (19) 

where c is the gear to cutter center distance 
which is equal to R_ minus R1. The angle ß is 
the central angle on the gear from the cutting 
pitch point, D, to the center of the cutter tip 
fillet. In Figure 6, the perpendicular distance 
from point C to the gear-to-cutter line of 
centers is: 

RT-sin(ß) = R0-sin(61) 

therefore, 

ß = sin 
-!/    RQ'^V 

«r 

(20) 

(21) 

RD is the distance from the cutting pitch point 
to the center of the cutter tip fillet. Applying 
the law of cosines to triangle ADC, yields: 

RD = [ R2
2 + R^ - 2-R2-RT-cos(ß) ]1 f2        (22) 

The angle at the cutting pitch point between 
the line of centers and the cutting normal 
through the tip fillet center, n, is found from the 
law of cosines in triangle ADC: 

H = cos 
■'( 

2 2       2 
R2   + RD   - Rf 

2-R2-RD 
(23) 

RFF is the radius from the gear center to the 
actual trochoid point: 

RpF =- [ R2
2+ RA2-2-R2-RA-cos(n) ]1 'l      (24) 

where RA equals RD plus Rp. Gamma, y, is the 
angle on the gear from the cutting pitch point 
to the trochoid cutting point: 

y = cos 

2 2       2 
-1/    R2   +RFF   -RA 

[ 2-R2RFF 

(25) 

An expression for 8„ the central angle on the 
gear from the cenfer of the tip of the trochoid 
to the trochoid point, is: 

ef = Y-e2 (26) 



In Figure 6,9ft is the central angle on the gear 
from the center of the gear tooth to the 
trochoid point. It can be expressed as the arc 
from the tooth centerline to the pitch point on 
the involute plus the arc from the pitch point 
to the center of the tip trochoid minus the arc 
to the trochoid point: 

t 
6ft = 

2-Rr 
•+Vef 

The coordinates of the fillet developed on 
the internal gear are X_ and Y • 

Xp = RFF • sin(9ft) 

and 

Yp = RpF • cos(8ft) 

(28) 

(29) 

Psi, ip, is the slope of the trochoid at the 
contact point measured relative to a line 
perpendicular to the centerline of the tooth. 
The trochoid surface is normal to the line DE in 
Figure 5 since D is the instant center for the 
relative motion of the cutter with respect to 
the gear. In Figure 7, the angle at E between 
the tangent to the trochoid and the radial line 
to 02 is n/2 - (n-Y-n.) or y+n-n/2. This makes the 
angle between the tangent to the trochoid 
and the tooth centerline: 

a = n-eft-(Y + n-n/2) (30) 

In Figure 7, HL is the radial distance on the 
tooth centerline from the point of interest to 
where the trochoid tangent crosses the center 
of the tooth: 

H1 = XF-tan(ni) (35) 

l-L is defined as the radial distance on the 
tooth centerline from the point of interest to 

(27)      where the parabola tangent crosses the 
center of the tooth. Since one-half H2 equals 
Yp minus R   * 

H2 = 2-(Yp-Rc) (36) 

or 

A similar interval halving iterative process 
is used to find the location of the fillet 
developed on the internal gear which is 
tangent to a point on the inscribed parabola. 
When the values of l-L and l-L are equal, the 
location of the tangent point on the internal 
gear is determined. 

The results obtained from the involute and 
trochoid geometries are then compared. The 
smaller x coordinate identifies the weaker 
inscribed parabola for the internal tooth. This x 
coordinate and its corresponding y coordinate 
are used to calculate the Lewis form factor, 
and the AGMA bending strength J factor 
which includes a stress concentration factor 
and a term for axial compression in the tooth. 

Bendina Strength Factor 

The Lewis form factor, Y, originally defined 
for external teeth, is: 

a = 3n/2-ef.-Y-n 

its supplement is 

(31) 
Y = P . • x 

3       d 
(37) 

A = n-a = ef, + Y + n-n/2 (32)      where 

This angle is the complement of iy, therefore: 

Hi = n/2 - (-n/2 + 6ff + Y + n) 

or 

ip = n-n-Y-8, ft 

(33) 

(34) 

x = 
RCYE        4-(RC-YE) 

(38) 

One of the most important factors which 
Lewis overlooked in his analysis was the effect 
of stress concentrations. Large localized 



stresses occur in the fillets of gear teeth due to 
the sudden change in the cross-section of the 
tooth. By examining these factors and 
determining their exact effect on the bending 
stress in a gear tooth, Lewis' work was 
extended. 

In 1940, professors T.J. Dolan and E.L. 
Broghamer of the University of Illinois used the 
photoelastic method of stress analysis to do 
this". They examined various types of gear 
teeth and determined the location and the 
magnitude of the maximum stresses which 
occur in the tooth fillets. Their research 
showed that the maximum stress is located 
closer to the root circle than Lewis had 
predicted. However, the distance between 
Lewis' location and Dolan's and Broghamer's 
location of the maximum stress is relatively 
small. Thus, the use of Lewis' model to 
determine the bending stress location in gear 
teeth was confirmed by Dolan and 
Broghamer. They also determined that the 
primary factors affecting the stress 
concentration at the tooth fillet are the fillet 
radius, the tooth thickness, the height of the 
load position on the tooth, and the tooth 
pressure angle. They developed the following 
stress concentration factor curve fit relation2-11: 

Kf = H + 
t 

L M 

)-(f) (39) 

where, t   is the tooth thickness at the critical 
section, p. is the minimum radius of curvature 
of the fillet curve, and h is the height of the 
Lewis parabola. 

From a curve fit of the experimental data 
of Dolan and Broghamer, AGMA5 gives the 
following values for the constants H, L, and M 
in terms of the pitch circle pressure angle, <)>: 

H = 0.331 -0.436-<j> 

L = 0.324 - 0.492-(|> 

M = 0.261 + 0.545-4) 

(40) 

(41) 

(42) 

The modified Lewis model for determining the 
bending stress in gear teeth, which includes 
this stress concentration factor and a term for 
the axial compression in the tooth from the 
radial component of the tooth load, is: 

a = 
W -P 

trd 

f-J 
(43) 

where the AGMA J factor, in terms of <J> , the 
pressure angle at the apex of the paraBola on 
the tooth centerline, is: 

J = (44) 
cos((}> ) .    6 • h 

ZT-'     * 2 cos(<}>) t 

tan(4>c) 

Since the bending strength factor is a 
function of the tooth shape, it is dependent on 
the number of teeth on the gear. This is shown 
in Figure 8, which is a plot of the J factor versus 
the number of gear teeth for both an external 
gear and for an internal gear. As the number 
of external gear teeth increases, the Lewis 
form factor increases at a decreasing rate; 
while as the number of internal gear teeth 
increases, the Lewis form factor decreases at a 
decreasing rate. Since the tooth shape on the 
two gears approach each other as the 
number of teeth increase, the form factor 
values for the internal and external gears 
approach each other as well. 

Conclusions 

An estimate for the bending strength of 
an internal spur gear tooth has been 
developed. This model uses the inscribed 
parabola approach of Wilfred Lewis in 
combination with an extrapolation of the 
Dolan and Broghamer stress concentration 
factor and the addition of an axial 
compression term. 

The estimate is obtained considering both 
the involute surface of the tooth and the 
trochoid fillet at the base of the tooth as 
produced by a pinion shaper cutter. 



produced by a pinion shaper cutter. 
Generation equations are derived for both the 
involute and the trochoid. Due to the general 
nature of the model, the bending strength 
prediction is valid for a load applied at any 
point on the tooth. The load location is 
identified by the tooth surface pressure angle 
at the point of application of the load. 

A direct and stable iteration procedure is 
used to determine the size of the largest 
inscribed parabola in the internal gear tooth. 
Based on the size of this parabola, the Lewis 
form factor is established. 

To complement the base stress estimate, 
a stress concentration factor and an axial 
compression component are added to the 
strength model. This stress concentration 
factor is an extrapolation of the Dolan and 
Broghamer factor and is consistent with the 
AGMA J factor for external gears. A 
comparison of the bending strength model for 
an external gear and for an internal gear is 
given for gears of increasing size meshing with 
a twenty-five tooth pinion. Both gears have 
twenty-degree pressure angles and are cut 
with a twenty-tooth pinion shaper. 

By improving the estimate of the bending 
strength of an internal gear tooth, this model 
will allow designers to vary the material of a 
ring gear from that of its meshing external 
gear.   A long and short i addendum design 
system may also be evaluated to balance 
the bending strengths of the external and 
internal gears. 
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Figure 1   Involute and Top Land Angles for an 
Internal Gear Tooth 

Figure 3   Involute Coordinate Geometry for an 
Internal Gear Tooth 
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Figure 7  Trochoid Coordinate Angles on the 
Internal Gear Tooth 

Figure 5 Trochoid Location on the internal 
Gear Tooth 
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Figure 6  Internal Gear Tooth Trochoid Cutting 
Point Geometry 

Figure 8   Bending Strength J Factor Values for 
External and Internal Gears with the 
Load at the Highest Point of Single 
Tooth Contact 
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