
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

A DECISION SUPPORT SYSTEM FOR NAVAL
AVIATION MISHAP INVESTIGATION AND

REPORTING

by

Charles E. Emde

September 1995

Thesis Advisor: Hemant K. Bhargava

Approved for public release; distribution is unlimited.

19960206 131 vm dirj
' »gpicöBie i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
September 1995

3. REPORT TYPE AND DATES COVERED

Master's Thesis

TITLE AND SUBTITLE A DECISION SUPPORT SYSTEM FOR NAVAL AVIATION
MISHAP INVESTIGANTION AND REPORTING

6. AUTHOR(S) Emde, Charles E.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey CA 93943-5000

PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or
position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release;
distribution unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
This thesis discusses the implementation of a prototype of a decision support system (DSS)for aviation mishap reporting. The

Naval Aviation Safety Program, as defined by OPNA VINST 3 750.6Q is a complete reference for the reporting requirements for
naval aviation mishap reporting, and this thesis augments the reporting requirements by defining a mishap investigation heuristic
in the form of a logical model. This model directly addresses problems an investigator may encounter in the course of a mishap
investigation such as logical omissions and incomplete deduction or investigation. Typically, mishap investigators are faced with
numerous, unorganized pieces of evidence which develop into a complex web of interrelationships which recreate the events which
caused the mishap. Our model suggests a process which organizes evidence and cause factors, and then we automate the model in
a decision support prototype. The system also addresses the "administrative overhead" of a mishap by outlining the architecture
of a complete system providing facilities for initial and final mishap reporting in addition to the automation of the deliberation
model.

14. SUBJECT TERMS
Decision Support Systems, Aviation Safety Reporting, Causal Reasoning, Semantic Reasoning

15. NUMBER OF PAGES
126

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std 239-18

Approved for public release; distribution is unlimited.

A DECISION SUPPORT SYSTEM FOR NAVAL AVIATION MISHAP
INVESTIGATION AND REPORTING

Charles Emde
Lieutenant, United States Navy

B.A., University of Colorado, 1985

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCD2NCE IN INFORMATION TECHNOLOGY MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL

Author:

Approved by:

Charles E. Emde

r^ \\lh/*JL*>S*-''

Hemant K. Bhargava, Thesis Advisor

V6sVe Sevx [^

Kishore Sengupta^Aesociatei hesis |\dvisor

Reuben T. Harris, Chairman
Department of Systems Management

111

IV

ABSTRACT

This thesis discusses the implementation of a prototype of a decision support

system (DSS) for aviation mishap reporting. The Naval Aviation Safety Program, as

defined by OPNAVTNST 3750.6Q is a complete reference for the reporting

requirements for naval aviation mishap reporting, and this thesis augments the

reporting requirements by defining a mishap investigation heuristic in the form of a

logical model. This model directly addresses problems an investigator may encounter

in the course of a mishap investigation such as logical omissions and incomplete

deduction or investigation. Typically, mishap investigators are faced with numerous,

unorganized pieces of evidence which develop into a complex web of interrelationships

which recreate the events which caused the mishap. Our model suggests a process

which organizes evidence and cause factors, and then we automate the model in a

decision support prototype. The system also addresses the "administrative overhead"

of a mishap by outlining the architecture of a complete system providing facilities for

initial and final mishap reporting in addition to the automation of the deliberation

model.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. PURPOSE 1

B. SCOPE 1

C. MISHAP CHARACTERISTICS 2

1. Uncertainty 3

2. Time Constraints 4

3. Administrative Overhead 4

D. SOLUTION 5

H. DETAILED DESCRD?TION OF THE PROBLEM 7

A. THE NAVAL AVIATION SAFETY PROGRAM 7

B. PROGRAM PARTICIPANTS 8

1. The Senior Member 8

2. The Aviation Safety Officer 9

3. The Aviation Mishap Board 10

4. Other Experts 11

C. MISHAP INVESTIGATION 11

1. The Mishap Investigation Report 12

D. THE INVESTIGATION PROBLEM 14

1. Example Presentation 14

2. Why is there the Need for an Automated Deliberation Process? 15

HL A DECISION SUPPORT SYSTEM FOR NAVAL MISHAP
INVESTIGATION 19

A. SYSTEM OVERVD2W 19

1. General Description and Requirements 19

B. MODULE OR APPLICATION DEVELOPMENT 21

1. Server and Database Design 21

2. Initial Reporting 22

3. The Final Mishap Reporting Application 27

IV. THE DELD3ERATION APPLICATION 29

A. BACKGROUND 29

1. The Aviation Safety School Model 29

B. THE AMB DELD3ERATION MODEL 31

1. Model Description 33

vii

2. The Deliberation Engine 40

3. Interface Goals, User Run-Time Routines 44

4. Screen Prototype Presentation 45

V. CONCLUSION 57

A IMPLEMENTATION ISSUES 57

B. QUESTIONS FOR FURTHER STUDY 58

LIST OF REFERENCES 61

APPENDIX A 63

APPENDIX B 69

APPENDIX C 99

APPENDIX D 109

INITIAL DISTRIBUTION LIST 117

vni

I. INTRODUCTION

A. PURPOSE

The purpose of this thesis is to develop formal methodologies and Software to

improve the naval aviation mishap investigation and reporting process as described by the

OPNAV 3710 series instruction. The use of information technology and a customized

application will, it is hoped, improve the quality, timeliness and accuracy of an

investigation by providing logical direction and reducing administrative overhead. The

focus of our research is on supporting the deliberation process occurring during the

mishap investigation process. This thesis will outline the requirements of such an

application and provide an example of a basic prototype of the key element of the system.

B. SCOPE

The scope of this thesis encompasses the development of a Decision Support

System that supports the Naval Aviation Mishap reporting process, concentrating on the

development and implementation of a "deliberation model". Object oriented and Rapid

Application Development technologies bring this type of development out of the

professional software programming environment and put it in the hands of "power- users"

and non- programmers. It is our intention to support the end- user computing

environment: We describe an architecture which developers can easily implement and

focus on the "deliberation" model and application which is unique research. Rather than

focusing on the implementation of a prototype only, we also present the development of

the underlying model. The implementation of the entire system is a topic in this thesis,

but it's importance is secondary. Our primary goal is the development, formalization, and

implementation of the mishap investigation deliberation process, and we present a basic

implementation within an architecture for a complete client/ server system.

C. MISHAP CHARACTERISTICS

Naval aviation mishaps are the inevitable result of the practice of aviation. The

Navy and other services continue to strive for a reduced aviation mishap rate through

numerous safety programs. The Naval Aviation Safety Program is one such program

responsible for reductions in aircraft accidents through the careful investigation,

documentation and analysis of aircraft accidents. Mishaps occur for numerous reasons,

and those reasons are a mystery until the evidence is collected and interpreted by a board

of investigators.

The Naval Aviation Safety Program, OPNAV instruction 3750.6Q directs the

conduct of naval aviation mishap investigations including the initial reporting of the

mishap, the collection of evidence, and the formal publication of the final investigation

and accompanying supporting evidence. The success of the Naval Aviation Safety

Program is attributable to the Naval Safety Center's ability to organize and examine

aggregate data collected from mishap investigations. Reduced mishap rates are the result

of direct actions taken in response to mishap investigations, and to achieve this the

investigations are highly structured and programmed. This high level of structure allows

analysts to identify dangerous trends and mandate immediate changes to operational

procedures and training when necessary. The mishap rate of 50 mishaps per 100,000

flight hours in the first reporting of accidents in the 1950s of has dropped to 1.96 in May

of 1995 because of this ongoing analysis and data collection [Naval Safety Center

Statistics].

Military aviation mishaps share the common elements of accidents and mishaps

that occur in other contexts, but the military environment and the OPNAVINST 3750.6Q

mandates place extraordinary pressures on the mishap investigator and investigative board.

The most significant of these pressures explained in more detail below are uncertainty,

time constraints, and the unique administrative burdens imposed on an Aviation Mishap

Board (AMB) during the course of a mishap investigation.

1. Uncertainty

Uncertainty exists at many different levels in the mishap investigation. Obviously,

the primary source of uncertainty in mishap investigation is the evidence presented with

unanswered causes. It is the goal of the Aviation Mishap Board to deliberate upon the

evidence and accurately identify the hazards to naval aviation defined by the evidence.

Although the members of the Aviation Mishap Board are experts in areas such as aircraft

operations and maintenance, they may lack the expert knowledge required to interpret,

organize and investigate evidence presented by outside sources. The AMB is thus

responsible for it's own training as well as the tasks associated with active mishap

investigation. The level of this training introduces additional uncertainty defined by the

competence of the board. A required member of any Navy AMB is the Aviation Safety

Officer (ASO) who is specially qualified to reduce this type of uncertainty by training the

board members and "translating" expert data to facilitate deliberations.

An additional source of uncertainty is introduced by the nature of the mishap.

Evidence left in the wake of a mishap may not immediately point to obvious causes but

their careful organization may imply numerous event "chains" which the AMB must

consider. Often those mishaps which leave little physical evidence become difficult to

investigate because the number of causal factors cannot be eliminated based on evidence.

In these cases an AMB must develop many different scenarios which point to sources of

evidence and then deliberate on the validity of each. How these facts relate to each other

and how the scenarios are inter- related produces uncertainties which require the AMB to

have an organized strategy for organizing and recording deliberations. An AMB which

proceeds with an investigation without a strategy for documenting it's own deliberations

will revisit uncertainties and questions numerous times resulting in inefficiencies and

inaccuracies in logic. The central topic of this thesis, the deliberation model, directly

addresses the above discussed uncertainties. A supporting application development is

suggested around this model to address other important problems faced by the AMB.

These include time constraints and administrative overhead. Other problems more specific

to the deliberation model are discussed in Chapter II of this text.

2. Time Constraints

The timely delivery of the results of an investigation are critical to the prevention

of similar mishaps. As such, OPNAVTNST 3750.6Q requires completion of investigations

of specified severity within given time periods. Time constraints force additional pressures

on the deliberation process, and poorly managed mishap boards may produce inaccurate

investigations. Although the Mishap Investigation Report is a highly structured document

which forces the authors to make logical connections between evidence and causal factors,

the Naval Aviation Safety Program instruction does not suggest a clear strategy for board

deliberation. Without such a strategy, the time constraints placed on the investigating

body not only tax the organizational structure of the board and the personal skills of the

ASO, but they may also affect the quality of the investigation. The deliberation model

developed in this thesis, together with the suggested additional modules of the decision

support system, will aid the AMB in reaching timely, logically accurate conclusions.

Although not implemented here, the mishap reporting process can be greatly enhanced by

the implementation of the database portion of the decision support system. This

implementation would automate many of the message reporting procedures making the

time constraints placed on a mishap board less significant.

3. Administrative Overhead

The Secretary of the Navy assigns the mishap reporting and investigative tasks to

the "reporting custodian" of the aircraft involved in the mishap [OPNAVTNST 3750.6Q].

Safety instructions and directives require the existence of a standing mishap board, but

often squadron or activity resources do not allow the assignment of the administrative

support necessary for a major investigation on a permanent basis. As a result, the

administrative burden associated with the mishap investigation process can further

contribute to the quality of the investigative results as the board assumes the

administrative burdens of the investigation. In addition, the actual occurrence of mishaps

in aviation activities is not routine and thus administrative procedures may be the results of

crisis management rather than established procedure. Although safety directives require

the commanding officer and the ASO to conduct training and drilling, they cannot predict

the workload associated with the actual mishap occurrence.

D. SOLUTION

Our proposed solution to the problem is the implementation of a system which

addresses the above problems of uncertainty, time constraints and administrative

overhead. This thesis addresses the entire mishap investigation process with a focus on

the central issue of the mishap investigation, the deliberation of the board. We

concentrate on the development of a "deliberation model" because it directly addresses the

purpose of the Mishap Investigation Report, that of accurately identifying hazards or

causal elements. We provide an example implementation of this model to demonstrate it's

usefulness in a simulated mishap. In addition to the development of the deliberation model

which is the centerpiece of the DSS, we suggest Schemas for the development of the

related databases supporting the "deliberation engine". It is the role of these supporting

functions which will complete a DSS development by automating the report generation

processes. In addition, we seek to automate many of the decisions involving mishap

classification and rules in reporting defined by the Naval Safety Center Program

instruction

This thesis presents a decision support model which is logically based and seeks to

aid the investigator in the investigative process. The model does not strive to automate

the decision making process, rather to introduce efficiencies made available by principled

information processing and storage. In addition, the model presents a context which is

visually based, and although the implementation presented in this thesis does not provide a

visual tool, the basis for the model is best represented in this graphical context. The thesis

examines in detail the problems of mishap investigation and focuses on the core of the

proposed decision support system. Finally, we present a basic implementation using a

"canned" mishap investigation and propose further development.

H. DETAILED DESCRIPTION OF THE PROBLEM

A. THE NAVAL AVIATION SAFETY PROGRAM

OPNAV instruction 3750.6Q is the current version of the instruction governing the

mishap investigation process. The mandate of this instruction is much broader, however

and includes most aspects of the Naval Aviation Safety Program including the conduct of

individual aviation command safety programs. This thesis enhances the purpose of the

Naval Aviation Safety Program by improving the mishap investigation process as defined

in the 3750.6Q instruction. The instruction states this purpose on page 1-1:

"The purpose of the Naval Aviation Safety Program is to preserve
human and material resources. The program enhances operational
readiness by preserving the resources used in accomplishing naval aviation
missions. The human resources include professional pride, high morale,
physical well-being, and life itself, all of which are susceptible to damage
and destruction by mishaps. The material resources include all kinds of
property which might be damaged by a naval aircraft mishap, such as naval
aircraft, ships, weapons, and facilities. The Naval Aviation Safety Program
thus directly supports all aspects of naval aviation. Resources other than
naval aviation resources may be preserved through success of the program,
and knowledge gained in the program may assist other safety efforts. The
program, therefore, yields benefits beyond its scope."

The instruction further defines the objective of the program on page 1-1:

"The purpose of the Naval Aviation Safety program is accomplished
by the prevention of damage and injury. Potential causes of damage and
injury are termed hazards. The objective of the Naval Aviation Safety
Program is to eliminate hazards."

The Program seeks to eliminate hazards through their identification, and mishap

investigation is one of the primary vehicles for this identification. In addition to the

understanding of the Program and Objectives, this thesis utilizes some basic concepts and

definitions reviewed in section 105 of the instruction. We base much of the deliberative

model on the following concepts defined in the instruction:

♦ Necessitarianism: The doctrine that events are inevitably determined by preceding
causes, and the corollary that events may be prevented by the elimination of their
causes.

♦ Damage and Injury are the events to be eliminated and thus the causes of damage
and injury may be prevented by eliminating their causes.

The causes of damage and injury are hazards and thus the purpose of the program

is to eliminate hazards. Logically, the ideal outcome of the Naval Aviation Safety

Program would be the elimination of all hazards or causes of mishaps. By this definition, a

mishap is a failure of the Naval Aviation Safety Program. The instruction describes the

importance of the sequences of prescribed action necessary both before and after the

occurrence of a mishap; when these actions occur after the mishap, their purpose

becomes that of preventing a recurrence. The instruction defines these actions specifically

on page 1-3 as "hazard detection" and "hazard elimination".

Hazard detection and elimination after a mishap are the responsibility of the

permanent Aircraft Mishap Board (AMB) appointed by the reporting custodian of the

aircraft involved. The purpose of this board is specifically to "detect hazards through

mishap investigation" [OPNAVTNST 3750.6Q]. The instruction further states provisions

for hazard reporting after the mishap in the form of the Mishap Investigation Report

(MIR) which is required for all defined naval aircraft mishaps. The MIR is the final

product of the AMB and serves the primary purpose of hazard identification. In addition

to this identification, the AMB provides recommendations for the elimination of the

identified hazards through formal recommendations of corrective actions which require

documented action. Thus the AMB becomes a powerful force in the elimination of

identified hazards after their identification.

B. PROGRAM PARTICIPANTS

1. The Senior Member

The investigation, deliberation and formulation of the Mishap Investigation Report

fall under the responsibility of the Aviation Mishap Board (AMB). The Naval Aviation

Safety Program instruction requires reporting custodians (usually commanding officers of

aviation squadrons) to appoint and maintain a standing AMB. Technically, the reporting

custodian must also appoint an AMB "senior member" to take responsibility for the

training and readiness of the AMB but the senior member is usually the reporting

custodian (also the commanding officer). The Senior Member acts as the "chairman" of

the board and is ultimately responsible for a given mishap investigation.

2. The Aviation Safety Officer

The Aviation Safety Officer (ASO) is a designated naval aviator or naval flight

officer who is a graduate of the "Aviation Safety School". The ASO is a participating

pilot or flight officer in the primary mission of the squadron and possesses additional

training as a specialist in the Naval Aviation Safety Program from the Naval Aviation

Safety School at the Naval Postgraduate School. The ASO school also provides the ASO

with specialized training in such areas as wreckage examination, structural engineering,

human factors in mishap investigations, and the conduct of mishap investigation and

reporting. Although the training and maintenance of the AMB is the responsibility of the

Senior Member of the AMB, since the Senior Member is usually also the commanding

officer, these responsibilities are typically delegated to the ASO.

In the context of an actual mishap, the ASO is the primary functionary in the

investigation process. The ASO possesses the basic knowledge and acts as the translator

between the technical experts and the AMB members. The ASO's task is similar to that of

a lawyer in a courtroom, he must take highly technical data and evidence from expert

investigators and translate it to the level of expertise of the AMB. This often requires that

the ASO provide training for the AMB in certain areas to facilitate clear understanding of

the evidence. In addition, the ASO is responsible for the accurate collection and

interpretation of evidence by technical sources. The ASO school training seeks to prepare

ASOs for this by providing a level of training which will make the ASO at least conversant

in the technical areas encountered in mishap investigations. Experts such as Naval Safety

Center investigators and design engineers do not participate in the deliberations of the

AMB in a mishap, they only provide evidence on which the AMB deliberates. It remains

the responsibility of the ASO to provide the evidence to the appropriate experts and then

return them for AMB deliberations.

3. The Aviation Mishap Board

The Naval Aviation Safety Program governing instruction requires that each

"reporting custodian" maintain a standing Aviation Mishap Board. Paragraph 206 (pp.2-4

to 2-6) states that the members shall be appointed by name and in writing by the

designated appointing authority. The AMB is basically composed of active duty,

commissioned officers of the USN or USMC. At a minimum the board must include four

officers including a Senior Member, an ASO, a flight surgeon, an officer well qualified in

aircraft maintenance and an officer well qualified in aircraft operations. If necessary, the

appointing authority may designate members from outside the command if experienced or

qualified officers are not available within the command. In addition, for mishaps involving

aircraft manned by aircrew, the board shall consist of at least one officer who is qualified

in that particular model of aircraft. Typically, squadrons or aviation activities maintain

mishap boards composed of four to ten officers, and include designated alternate members

to replace primary members who might not be available at the time of a mishap.

The Senior Member of the AMB ensures (through the ASO) that the board is

trained and prepared for a Mishap. This training is formalized in A "pre-mishap" plan

which serves as a contingency plan for implementation in the event of a mishap. The plan

serves as the training document for the AMB and anticipates "all reasonable eventualities"

encountered in the aftermath of a mishap and attempts to cope with these eventualities.

Site security, media coordination, area law enforcement, and wreckage preservation are

just a few of the issues addressed in the pre-mishap plan. A decision support system

implementation would necessarily become part of this plan: And the Pre-Mishap plan

should address hardware, software and connectivity as appropriate to the computing

environment on which the system is implemented.

10

4. Other Experts

Section 603f and section 608 of OPNAVINST 3750.6Q describe sources of

assistance outside the resident AMB which a Senior Member may request during the

course of an investigation. The Chief of Naval Operations may mandate a Naval Safety

Center investigation, or the AMB may request investigative assistance. The Naval Safety

Center provides professional investigators to the AMB and serves as another source of

evidence when requested or mandated. This investigative assistance does not absolve the

AMB of responsibility, it only enhances the ability of the board in high- profile or difficult

investigations. In addition to investigative assistance, an AMB may request technical and

medical assistance from other defense agencies. The sources of this assistance are varied,

they range from engineering assistance from government laboratories to forensic

pathology evaluations from the Armed Forces Pathology Institute. Since there is often a

"knowledge gap" between the expert assistance and the AMB knowledge base, ASOs are

trained in the more common areas to understand the technical results and translate them

for the AMB. The results of expert assistance are advisory and the AMB deliberations

treat all assistance as evidence.

C. MISHAP INVESTIGATION

In designing a decision support system for aviation mishap investigation, the task

of this thesis is simplified by the highly structured requirements of the Naval Aviation

Safety Program. In seeking to identify the cause factors in a mishap the program requires

the final product, or the Mishap Investigation Report be in a rigid format which requires

logical support for arguments. The program instruction does not however, provide

guidelines for detailed deliberation and decision making techniques beyond the formatting

of the final product. The Safety Program does not provide guidance for the investigation

process. The Senior Member, the ASO and the members of the AMB are left to determine

a strategy for evidence collection, cataloging and deliberation. This thesis takes advantage

of the MIR structure to develop the deliberation model.

11

The deliberation model developed in this thesis does not require a detailed

description of naval mishap classes. As background however, the reader should

understand that mishap classes are categorized by severity based on monetary losses and

human casualties, and also by types of occurrences such as flight mishaps and ground

mishaps. The most severe mishaps are class "A" and require the most stringent reporting

requirements. Class A mishaps require the AMB to respond more quickly with an initial

report and subject the final report to detailed review not required of lower classifications

of mishaps. Our model development targets the environment encountered in the

investigation and reporting of a Class A mishap but is germane to other investigations as

well. The basic elements of the model are common to all naval aviation mishap and hazard

investigations.

1. The Mishap Investigation Report

The Mishap Investigation Report (MIR) is the result of the deliberations of the

Aviation Mishap Board following a naval aviation mishap. The purpose of the MIR is to

report and document the hazards which were the cause of the mishap and damage and

injury which may have occurred in the course of the mishap (sec 702). The MTR develops

a list of evidences into "detailed cause factors" through a series of logical steps, and these

cause factors are the end result of the mishap investigation. Once the MIR is completed,

the AMB publishes it as a naval message. As the message passes "up the chain of

command", each endorser comments on the investigation and addresses specific

recommendations made by the board. A more detailed description of the process is

represented in figure 2-1.

a. Evidence

After the occurrence of a mishap, an initial message is published and the

formal investigation convenes the AMB. The AMB eventually collects the evidence,

deliberates and then publishes the MIR. The first significant section of the MIR is the

evidence section. The investigative process results in a list of evidences which are

categorized in the MIR in a summary format. Each piece of evidence is part of an

12

"enclosure" which denotes the location of the described physical evidence. The evidence

section thus contains the factual data in the mishap describing all of the relevant evidence

1
— 1

1
Evidence

Accepted
Evidence

Causal
Factor

Detailed Causal
Factor

Figure 2-1 Mishap Information Flow

in the investigation from all sources.

b. Analysis

The next section of the MIR contains the analysis paragraph. The AMB

documents the investigation by separating the mishap into "factors" which it either accepts

or rejects. The given factors are described as aircrew, supervisory, facilities,

maintenance or material and must be based on the evidence included in the previous

section. Section 716 of the Safety Program instruction describes each rejected or

accepted factor as a "scenario" which is tested by the board in light of the evidence. This

section includes a summary of each scenario by describing the deliberations of the AMB in

13

reaching their conclusions. The instruction suggests that a useful technique for describing

these factors is in chronological sequence when documenting deliberations.

c Conclusions

The "conclusions" section of the MIR classifies the accepted factors from

the analysis section and determines their individual severity using "risk assessment codes".

In addition, the AMB must further classify each accepted factor as a "detailed cause

factor" which is the finest level of classification in the investigation. The AMB must

translate each accepted factor to a "detailed cause factor" provided in appendix L of

OPNAVINST 3750.6Q. This list is "an exhaustive tabulation of the way in which people

and aviation machines have historically interacted to produce mishaps; as such they

provide a menu of possible Human Factors that could be involved in a mishap"

[OPNNAVINST 3750.6Q p.L-1]. These cause factors are divided into who, what and

why or component, mode and agent categories and serve to contribute to the Naval Safety

Center's mishap data file. The AMB chooses the "Who/What/Why" tabulated cause

factors most appropriate to each developed factor accepted in the analysis, and this set of

factors represents the final outcome of the mishap investigation process. A separate

section of the MIR includes causal factors causing other damage or injury in the mishap

which are indirect results of the mishap. This section uses a slight variant of the process

described above.

D. THE INVESTIGATION PROBLEM

1. Example Presentation

OPNAV Instruction 3750.6Q provides the following fictitious example to present

message formatting:

"Scenario: GEAR-UP LANDING

A multi-piloted aircraft joined the landing pattern. The aircrew
consisted of pilot (aircraft commander), and copilot (pilot qualified in
model). The copilot, a brand new nugget recently reported, read the
landing checklist and the pilot, a seasoned veteran of intimidating

14

demeanor, executed it. The pilot put the landing gear handle in the down
position but did not check the gear position indicators. They showed the
gear up, and neither pilot noticed the gear warning light which was
illuminated. The gear was, in fact, up. That particular aircraft was
equipped with a warning horn which sounded when the throttle was
retarded to a descent setting and the landing gear was up. The horn failed
to sound when the pilot retarded the throttle at the 180. The aircraft
subsequently landed gear-up with Class "B" damage.

The following facts were discovered in the ensuing investigation:
The pilot had only four hours sleep the previous night because he worked
late; the pilot's father had died the month before; maintenance work done
previous to the flight had been in accordance with directives but a
significant step was omitted from the maintenance handbook which allowed
the gear handle to be lowered without lowering the gear; an emergency
backup to lower the gear was available but not used; a microswitch inside
the throttle quadrant was found corroded and failed as an open circuit, the
microswitch activated the warning horn system; the normal climate at
homebase at that time of year was wet an rainy, the aircraft had not been
hangared on a regular basis which was not required." [3750.6Q, p. M-l]

The purpose of the above example mishap is to illustrate the process of taking

evidence discovered in the course of the mishap investigation to compose paragraphs 10

through 13 of the MIR [3750.6Q, p. M-l]. The authors of the instruction admit the

example is hypothetical, brief and contains many logical errors, and thus serves this

discussion well in pointing out the utility of the model. The "facts" or evidence

discovered during this example investigation are incomplete and useful for illustrating the

deliberation model. The discussion will argue the utility of the deliberation model based

on this example, and draw additional inferences which might aid the fictitious Aviation

Mishap Board investigating this mishap. During the subsequent discussion, we will

repeatedly refer directly to this example to enhance selected themes.

2. Why is there the Need for an Automated Deliberation Process?

The focus of this thesis is the development of the deliberation model. The

presentation of the underlying, formalized principles provides a reference for future

implementations of decision support systems using this simple logic with advancing

15

technology. Automation of the deliberation process addresses the "macro" problems in

Chapter 1, and we can specifically state influences on the deliberation process likely to

affect the deliberation process. Three of these are "selective inattention", bias and logical

errors encountered in deliberations.

a. Selective Inattention

Selective inattention or cognitive filtering acts to "hide" evidence or

probable causes based on any number of influences. [Frew, 1995] The unconscious act of

selectively omitting or discarding relevant information in any context leads to poor

decision making, or in this case, inaccurate deliberation. Selective inattention may be the

result of the opinions of an influential AMB member, or it may result simply from various

pressures put collectively on an AMB or it's members. For example, squadron loyalty and

pride may make the deliberations of an AMB difficult if the reputation of a popular

commander is marred by results. As the AMB deliberates, they might selectively and

unconsciously omit any chain of events which may point to the commander. The

organized approach presented by the deliberation model forces a continuous process of

inquiry which, if properly implemented, will address selective inattention.

b. Bias

If the AMB deliberates an investigation in an unstructured manner, the

possibility of deliberate bias becomes much greater. Although the concept of "privilege"

[OPNAV 3750.6Q p. 1-5] protects witnesses who provide evidence in a mishap, this

concept cannot fully protect the findings of a board. Deliberations which result in

politically sensitive or volatile conclusions can face external, deliberate pressures which

affect board members consciously and unconsciously. In the extreme, a biased member

can deliberately try to direct or sway deliberations, and the Senior Member might not

detect this if he does not organize and document the deliberation process. Biased

conclusions will not develop logically, and credible evidence will not support them. This

deliberation model presents a causal flow and evidence assignment which exposes such

bias.

16

c Logical Errors

A logical approach to mishap investigation is not difficult, and yet logical

errors cause AMBs to re- deliberate and re-visit issues unnecessarily. Unfortunately the

reporting custodians of aircraft involved in a mishap (commanding officers) who release

flawed investigations receive immediate feedback from Senior's endorsements, making

their logical errors very public. The model presented here assumes the AMB commits

logical errors when they fail to adequately support a conclusion based on a probable

cause, or inadequately support a probable cause with evidence. In addition, the AMB can

commit logical errors by not completing the investigation, i. e. the board fails to seek

evidence to support the most "detailed" probable cause at the end of a "chain of events".

The quoted example provides an illustration of this type of error: Although the board

discovered that the pilot had only four hours sleep the previous night, the board failed to

continue the investigation and consider why he was awake. This approach might force

the board to investigate the possibility of a physiological or psychological problem the

pilot suffered rather than accepting the lack of sleep as the root cause.

In this chapter, we have presented the detailed description of the problem of mishap

investigation, focusing on the deliberation process (or lack thereof). We have attempted

to illustrate some, but not all of the problems associated with an unorganized approach to

the deliberation of the AMB. Current directives leave the deliberation process open to

interpretation and yet this process should be the basic building block of any mishap

investigation. This theme is recognized by the professional instruction staff at the Aviation

Safety School and this staff attempts to address this lack of methodology in the instruction

given to Aviation Safety Officers. This instruction serves as a basis for the subsequent

model development.

The deliberation model is the center of the thesis, but it is supported by other

modules of the entire system. These modules seek to address the problems discussed in

Chapter 1, and their implementation is discussed in the following chapter in advance of the

detailed deliberation model development. The discussion of the system development lays

17

the foundation and provides many of the assumptions germane to the deliberation module

and model discussions which follow in the subsequent chapter.

18

m. A DECISION SUPPORT SYSTEM FOR NAVAL MISHAP INVESTIGATION

A. SYSTEM OVERVIEW

Notebook

DBMS
) ~

CZ3 _

Server

S \
MisMp Expert r MIR (jeqerator

Figure 3-1 Application Architecture

1. General description and requirements

Figure 3-1 describes the overall proposal for the complete decision support system.

Developers may follow this architecture in a single application treating each separate box

as a module, but the client/ server approach best satisfies the requirements of this

application. Specifically, the above proposal suggests "database server" type architecture

commonly referred to in client/ server terminology [Orfali, Harkey and Edwards, 1995].

The requirements of the system are basic. They simply automate the mishap reporting

process. In addition, the system shall aid the AMB in the deliberation process. The client/

server architecture facilitates the standardization of data, the portability of individual

component applications and data, and the ability to develop and easily implement

additional applications based on future requirements. In addition, the intelligent and

careful development of the server database might provide interface with other activity

functional databases such as personnel or maintenance departments.

19

Multiple Det Sites
Local Database +
Application Suite

Command
Administration

Figure 3-2 Distributed Environment

Server+
Notebook
Mishap Gen
Mishap Expert
Application X
Server App.

A stand-alone or single platform client/ server implementation similar to Figure 3-1

utilizes a single database. Implementations which involve distributed computing

environments such as the "detachment scenario" described in Figure 3-2 might require a

slightly different architecture in which remote client applications communicate with a

command server. Often, naval aviation squadrons or activities are tasked with operations

over a large geographical area, necessitating the establishment of temporary "detachment"

sites which serve as sub- commands of a parent. In these situations, the parent command

may delegate many of the reporting and investigative tasks to the detachment commander,

but the message release authority and central administration functions reside at the central

command location. Necessarily, developers would attach a maintainable, local database

capability at the detachment site which would communicate with the command server

system for database updates and mishap investigation administration such as revision and

modification of mishap investigation messages. This type of client/ server architecture is

20

described by a distributed data management model which allows the client application to

manage the presentation, application logic and data management, and tasks the server with

data management only [Orfali, Harkey and Edwards, 1994]. If the command location is

also an operational site, then the command will become a client and also maintain the

server and associated DBMS. This cooperative processing allows the generation of the

final investigation product at any detachment or client site while the server platform

provides the squadron- wide database services.

B. MODULE OR APPLICATION DEVELOPMENT

1. Server and Database Design

The OPNAV 3750.6Q instruction provides a reference for database development.

A careful examination of the database model presented in Appendix A will illustrate our

strategy of providing a reusable database while replicating the data elements required by

our deliberation application presented in Chapter IV, and other specific elements required

by the system we propose in this chapter. In addition to this semantic table, the ANSI

SQL-92 Schema is included in Appendix B. An examination of the mishap and mishap

investigation message formats suggests some of these data objects such as Evidence,

Factors and Cause Factors. This thesis follows the semantic object database design

approach and we develop the schema based on the semantic object modeling in Appendix

B.

The development of the above schema seeks to provide data elements common to

a mishap with reuse by other squadron activities in mind. For example, a maintenance

department data application might make use of the "Aircraft" object, or an administrative

office might utilize the "person" object. We developed this particular schema to support

the applications treated in this thesis, however, and future developers may consider

modifications appropriate.

21

2. Initial Reporting

The initial reporting application should provide the timely release of the initial

mishap message and voice reports according to the limits specified in the OPNAV 3750

series. This application will also set the default information for a particular mishap and

automate the decisions associated with the classification of a mishap. To produce the

initial mishap message and voice report alone, the message drafter must make numerous

significant decisions requiring the reference of the OPNAV 3750 instruction:

• The existence of a "defined" naval mishap,

• The category of the mishap as described by paragraph 401 of OPNAV 3750,

• The severity of the mishap as described by paragraph 413.

Specifically, these decisions are formally represented in the decision trees located

in the Appendix A of Chapter IV of the instruction and provide developers with a template

for the decision code generation. Readers should review this instruction and the

associated decision trees for further information.

An excellent example of an implementation of the decision logic of the 3750

instruction was developed by LT Hugh Brian while assigned at the Naval Aviation Safety

School in June of 1995. His implementation was accomplished using the Delphi Rapid

Application Development tool and the language used is ObjectPascal. We present this

implementation as an excellent example of an application supporting the initial reporting

phase of a mishap. Although the application does not support the client server

architecture described here, the interface and decision mechanisms provide templates for

future development.

The application "Notebook" provides the user with a number of important

features. Brian allows the user to set default values which are locally preserved for future

use. Among these values are "Officer Recall", and default squadron information. The

following figures present the screens developed by LT Brian in the Mishap Notebook

application. In addition, the application contains a built- in template for the initial message

generation and the capability to store that information as a text or message- formatted file.

22

The application also provides the user with the capability to generate an "OPREP"

message (a naval incident reporting message) and an "OPREP" phone report. The

interface of the application guides the user through the process of the initial mishap

message reporting procedure (Figures 3-2 and 3-3), using a checklist to ensure the user

MtSHAP NOTEBOOK
File Help

L
■BtttHtet If aoamBtf" J iMoanm J tmsfcapCal J mtslagaw

6.««BT;otär~| roPBEPBsir ; ftsafefrctrflai ~) ».waazm f SS**£.
j Sca«taStatB«B» SrodtaPLAP

JS&.M-
3

adUSL. MtntepWigfaj CbttBJtacial

; Soxww -

■ C-Murn»

fo
: 'AoewftType- - CAP' •

—TSCZ
K->--- ic^:

{Tjp*
J§

UMfitdConaaumdw

Figure 3-3 Notebook Initial Info. Screen

=1 MisHAPttoTEBOotc | **&.
Ble Help

!!SJ^rTn3!spaa5!sr-:- ftlbmcHtixaWtbm
f 6.WfiB=SJ0ite I 7.0PREPJJSB' T SS&HtCVTttf.][S.MtetHBft* J IfrttVtfo

! CJKKMJSI 1 * SJUCSTSBBI 3 3JSs»aptBfc J 4Msti«>Cal J 5J*s*sipS*

1 SrM.J] VlM |

C^BMTSKSII Bsz3i£Hlsw jSyuwli&A , j£s3iMt£lxm gSHS^taJtHbRtf '&&•
cocac •

NAME

NAME

:COMFHONE AUTOTON»

COMPHONE AUTOTON*

COMPHUNE iAUTOYON*

3«x»Jf •?.(.;S'Sf; ^i^
OTSQfMBT

Mat* Officer NAME

NAME

COMPHONE :A0TOVON#

COMPHONE lAUTOVON* ,| rJBwt5W]0K>Il *u . -~ ' 1* d,
j'

PsopoaoiMMlapBaasI 9a&£Htam jScjntam ^HaaeHrae |ONS«iidcja«» S3^
AIü&SaiczMet&ar

NAME

COMPHONE AUTOTON»

": iCÖMPHÖKE AUTCVON# F3ig&lS«QK>B-

Mast Officer NAME COMPHONE AUTCVON* * £ «u t* >v ;;

-

Figure 3-4 Notebook Officer Recall Screen

23

MISHAP 'NOTEBOOK
File Help

e.OPREPVoice | 7.QPREPMS3 ~~| a.Safety Cfr Rpt j a.MishagRpt } Unit Info ~

iiäw^Üöi I 2.0fficerijeca» | 3.Mishap Info } 4.Wis&apCat } 5.Mishap£ev

f~ Yon have j^ bee» iafon^afeimsbap. Verify tie Bishop aircraft belongs to ymx sguadnox

I- Iimaafetly8ss%ttotl»rava36fcfepeisoimeltoa9S3st5Dn

r OWotteOFFICERRBCAlXTABsadc^theappiopnateofficös.

r GOTO the MISHAP INFO Tab and fiE out PAGE ONE.

r GOTO the MshapCeiTab to determine MISHAP CATEGORY.

r GOTOtheMidapSevTabto detenan*'MEHAF SEVERITY

r GOTO OPREP 3 VOICE TA>. THIS REPORT IS DUE IN 5 MINUTES.

F GOTO the OPREPMsg. TA. THE MESSAGEMUST BESENT IN 20 MINUTES.

F GOTO the MISHAP INFO Tsb and ffl offlt the REMAINING PAGES.

r SAFEWCENTFJiVOICTR^ORT.DoemONEHOURarCfassAor CLASS B mishap;

r INITIAL MISHAP REPORT Deem FOUR HOURS for CLASS A ORB. 24 horns forCk

Figure 3-5 Notebook Checklist Screen

complete all the required items. Figure 3-4 is the checklist screen implemented in the

application. This interface allows the user to gage his progress and also informs him/her of

the elapsed time with a running clock, which continues to remind the drafter of the time

requirements.

a. The Mishap Category Decision

Notebook aids the user in selecting the mishap category with the interface

presented in Figure 3-5, the "Mishap Cat." screen. The OPNAV 3750 instruction

provides a "decision matrix" to determine the mishap category based on nine different

conditions. In order to aid the user in selecting the correct mishap classification, Brian

presents the user with a series of standard windows check boxes in a interview format.

The user's responses are recorded and the program executes the following Pascal code to

determine the correct category of mishap:

24

MISHAP NOTEBOOK
File Help

? Monde« »f<> in» MblMp

•(e.OPREPMotas J 7.0PRB»Msg ~T S.gafefrCtfRpt] 9JKl3haBRpt~n[üflitlnfo

tgwcttist. ;~7 lOWcerEstat

« ESTAiHOIHCr
C PEH&UHEKTrÖTÄLKSiBÖiJY

C «3SKr*iJB«ncw<»5C»aKaEK68Scaoffii
c offiiflsrwoRKBiy

CLASS A 31
3 E^B'i

i4trisWlte<juesfct»il^:Prasslte

Figure 3-6 Notebook Severity Screen

procedure TNoteBookForm.MishapCatDoneClick(Sender: TObject);

var

MishapType, MishaplnjuryrTMishapClass;

begin

if (Damage. Item Index = 0) or (Damage.ltemlndex = 1)

then MishapType:= ClassA;

if (Damage.ltemlndex = 2) then MishapType:=ClassB;

if (Damage.ltemlndex = 3) then MishapType:=ClassC;

if (Injury.ltemlndex = 0) or (Injury.Itemlndex = 1)

then Mishaplnjury:= ClassA;

if (Injury.ltemlndex = 2) or (Injury.ltemlndex = 3)

then Mishaplnjury:=ClassB;

if (Injury.ltemlndex = 4) then Mishaplnjury:=ClassC;

if (MishapType = ClassA) or (Mishaplnjury = ClassA)

then MishapSeverity.ltemlndex:= 0 else

25

if (MishapType = ClassB) or (Mishaplnjury = ClassB)

then MishapSeverity.ltemlndex:= 1 else

if (MishapType = ClassC) or (Mishaplnjury = ClassC)

then MishapSeverity.ltemlndex:= 2;

end;

The above code executes the decision trees located OPNAVINST 3750.6Q

Specifically, when combined with the screen which determines the "intent for flight", this

code executes the decision tree on page 4C-1 of the above instruction titled "Severity

Classification". When the user defines and selects certain exclusive check boxes, the

simple series of Pascal "IF- THEN" statements select the correct category when the button

is selected. Figure 3-5 is the screen implementation of the above ObjectPascal code. The

".itemlndex" extensions indicate the objects which contain the values of the checked box,

and these returned values determine the classification of the mishap.

LT Brian's application is currently a stand-alone version which saves

information only to a text or a message file. It is presented here as an example of a

successful implementation of the decision matrices specified by the Aviation Safety

Reporting instruction. In order to be applicable to this system, however, developers

would need to rewrite this application to include database access. The Delphi software

package and it's object oriented approach to programming will facilitate conversion of this

type application to include database functionality. In doing so, developers should follow

the server schema presented below when considering the local database design. At this

thesis writing, version LIB of the entire system is under development at NPS attempting

to convert LT Brian's application into a "client" application in our framework (with the

permission of the author). In implementation of this system, we strive to implement LT

Brain's interface and design, rewriting the code to communicate with the server database.

We also would preserve the additional capabilities included in the Mishap Notebook

application as part of the entire system. LT Brian's Mishap Notebook application can be

obtained on the internet at the Naval Postgraduate School Aviation Safety homepage

26

(http//www.nps.navy.mil) or from the Aviation Safety FTP site located at "nps.navy.mil"

on the internet.

3. The Final Mishap Reporting Application

Developers may include the final reporting application with the AMB deliberation

application presented in the next chapter. If implemented separately, however, the Final

Mishap Reporting Application will serve to produce the final mishap message in

accordance with OPNAV 3750.6. The database schema suggested for the server

facilitates the reuse of the original message by simply appending the latest version of the

initial message. The referenced instruction specifies the first nine paragraphs as those

appearing in the initial message and the subsequent sections specifically treat the reporting

of the deliberation and investigation of the mishap after the initial report.

Currently, version LIB of the Decision Support System in development during the

writing of this thesis supports a separate Mishap generation application which imports

specific data from the AMB deliberation application module. Once this information is

processed in the final message generation application, the user application should prepare

the final message. We do not address this portion of the system in detail because it is a

simple application which developers may easily implement.

This application should provide a template function which maintainers can easily

update and revise. Ideally, this "template updating" function should reside in a server

application, so the client applications can receive new templates when needed. A system

administration type function should be integrated into the suite of application included

with the server maintenance to update templates and provide them to client applications.

The following chapter presents the central focus of this thesis, the deliberation

application.

27

28

IV. THE DELIBERATION APPLICATION

A. BACKGROUND

1. The Aviation Safety School Model

The central issue addressed in this thesis is the development of the deliberation

model and a supporting application. This application or functionality seeks to improve the

quality of the deliberation process during mishap investigation by providing an interaction

with the user which will record and organize the reasoning of the AMB. The goal is not

to completely automate the decision process, rather to present the user with an organized

and proven strategy for effective presentation of the evidence, causes and conclusions of a

mishap deliberation.

The genesis of the model we develop below is a version of "blackboard" method

currently taught by Aviation Safety School faculty to Aviation Safety Officer trainees in

Mishap

Human Factors Material Factors

Inattention

Lack of Sleep

Late Work

Poor Crew Coordination Improper Maint Bad M/Switch

Distraction

Death of Father WHY?

Omitted Step Corroded

Hangaring

WHY? WHY? WHY?

Figure 4-1 Aviation Safety School Mishap Investigation Model
(Maj. Tom Hazard)

29

the Mishap Investigation course. Major Tom Hazard, USMC an instructor in Mishap

Investigation, uses the model reproduced from his teaching notes in Figure 4-1. This

version of his model includes the data from the example mishap in Chapter I.

Maj. Hazard's model characterizes the methodology we follow in the development

of a similar model below. The model should accomplish the following goals through

interaction with the agent:

1. It should present the evidence and facts in the form of a logical "chain of events".
2. It should allow the investigator to infer differing influences on these events.
3. It should prompt the investigator to seek evidence supporting the "ends" of these

chains by continually researching the simple question "why?" using logical
deduction.

4. It should allow the AMB to "test" various scenarios using logical abduction.
5. It should provide a useful interaction with the investigator to "visualize" the

mishap.

When we speak of a logical chain of events in the first point, we refer to a logical

placement of causal elements rather than a temporal one. The temporal chain of events

focuses on the order of events rather than the reason for their occurrence. Using a logical

chain of events, often a temporal order occurs, but the reasoning is more organized. For

example, an investigator in our "toy" mishap would continue to ask why an event occurred

until he produced evidence and then would ask the same question again. The end result of

deliberation is a series or a set of statements about the mishap, the statements are the

result of dialog among the members of an Aviation Mishap Board. The following is a

sample logical dialog which might occur during a mishap board deliberation:

Why did the mishap occur? Because the gear was up. This is
supported by the wreckage photographs.

Why was the gear up? We think it is because a microswitch failed.
This is supported by a wreckage photograph which shows the switch in the
open position.

30

Why did the switch fail? We suspect that the switch failed because of
corrosion we observed on the switch. This is supported by the results of an
engineering investigation stating that there was corrosion on the switch.

Why was there corrosion on the switch? There is a possibility that
the switch was poorly manufactured, but there is no evidence to support
this (or there might be evidence to refute this).

Why was there corrosion on the switch? We think that the aircraft
was improperly hangared and corrosion resulted. This is supported by
maintenance records that reflected a violation of hangaring regulations.

Why were the regulations not followed? We think poor supervision
is the result of the improper hangering and this is supported by maintenance
records.

The above discussion follows the model suggested at the Aviation Safety School.

This logical connecting of true statements forces the investigator to examine each scenario

in a detailed manner, and supported arguments become the basis for the continuation of

the logical chain and investigation. The difficulty with the logic, however, lies in the

complexity of naval mishaps. Mishaps occur with varying amounts of evidence and AMBs

must consider numerous scenarios. An automated system supporting this type of logical

process serves to record and document the reasoning process used during an AMB

deliberation session and also serves to export the results of the deliberation directly into

the final Mishap Investigation Report product.

B. THE AMB DELIBERATION MODEL

We seek to automate our version of the Safety School model by formalizing the

model and providing examples of research which supports the use of such a type of

reasoning in modern decision theory. The type of diagramming used by Maj. Hazard is

not uncommon to professional disciplines and is a type of human cognition known as

"cognitive mapping" [Eden, 1988],[Duncan and Paradice, 1992]. Cognitive mapping is

broadly applied to many different disciplines but in this case refers to the "representation

perceived by an human being to exist in a visible or conceptual world" [Zhang, 1994],

31

[Axelrod, 1976]. In Mishap investigation, the problem space is the entire mishap event

consisting of a set of evidences and causes. Ultimately, the cognitive map will look much

like Maj. Hazards diagram, but we provide a context in which we can apply formal logic

and Artificial Intelligence methodology.

Academicians in all fields have recognized the importance of cognitive mapping for

almost a century, and recently it is becoming more important as computer graphics and

Artificial Intelligence provide a means to manipulate the data in a cognitive map [Axelrod,

1976]. Not only can we reproduce the graphical representation of a mishap investigation

cognitive map, but we can potentially automate the entire process. With enough data and

tools such as neural networks, we can envision systems which analyze mishaps and

determine the most likely causes independent of human decision processes. Although

these capabilities exist, the practical and political implications of a system which excludes

human reasoning would make implementation impractical in the current aviation safety

environment. We propose to find "middle ground" between the blackboard method of

cognitive mapping and the total reliance on computer technology in the investigation

process with a system which allows the user to reason using the computer as a guide and

administrator.

When visualizing the mishap event in the manner taught by the Aviation Safety

School, we create a cognitive map. The effectiveness of the cognitive map concept is

proven in numerous artificial intelligence applications and can serve as a basis for model

development. The importance of cognitive mapping is illustrated by a study conducted by

Rook and Donnell which suggests that the most powerful explanation format in expert

systems is the graphic- based inference explanations based on existing user problem spaces

[Rook and Donnell, 1993]. In our context, the existence of visual models such as the one

developed by Hazard provide an cognitive map which we should seek to support in the

graphical context. We believe it is reasonable to assume that a cognitive map of the

mishap problem space is a common visualization in mishap investigation (although we can

only informally verify this) among investigators. Although we cannot assume that a

32

specific type of cognitive map will be perfectly understood by an AMB, the representation

presented at the Aviation Safety School provides a good basis. In designing the model

and the interface, we should ensure that the interface communicates the graphical problem

space and the textual rule based problem space to the user to elicit the greatest user/

interaction performance as Rook and Donnell suggest.

In order to formalize the Deliberation Model, we apply the cognitive mapping

concepts to a formal knowledge representation scheme. The concepts of semantic

networks in artificial intelligence combine the use of textual, graphical and visual

representations. In using a semantic network construct, we combine the idea of cognitive

mapping with an artificial intelligence heuristic which we can easily formalize. The

original development of semantic networks was defined by Quillan and utilizes a set of

nodes and arcs or edges to represent the problem space [Quillan, 1968]. The significance

of the nodes and arcs vary with the goal of the model, but the use of semantic networks is

widespread. Quillan's original heuristic, for example, defined the English language

through detailed definitions of nodes and arcs. Another type of network was developed

by Reiger [Reiger, C, and M. Grinberg, 1977], and uses nodes and arcs to define causal

relationships. Reiger's causal networks facilitate descriptions of such things as a the

operation of a reverse- trap toilet [Gonzalez and Denkel, 1993]. Semantic networks

provide a great deal of flexibility in describing a problem space, and facilitate reasoning

about the problem. The semantic network we present is an extension of Major Hazard's

work and allows us to take advantage of an easily understood problem space.

1. Model Description

We describe our model formally in the context of a directed network composed of

the elements mentioned in the paragraph above. This semantic network is "directed"

because it defines relationships from a "root" probable cause or evidence to a "leaf*

probable cause or evidence. We clarify the definitions of these terms below. Figures 4-2

and 4-3 illustrate examples of the network, using our previously described toy mishap.

Figure 4-2 is a branch of our semantic network, indicating its basic components. Similar

33

Figure 4-2 Deliberation Model Branch

to Major Hazard's model, the network expands outward with the nodes at the beginning of

the arcs or arrows representing the more basic or "roots" of the mishap while the nodes at

the outermost limits (or the "leaves") represent the ends of the chains of events. Thus we

may say that a unique chain of events or a scenario is defined by one of these outermost

nodes. In our semantic network, evidence is a unit of supporting information linked by

two causes. We contend that a cause is the result of another cause and this relationship is

supported by evidence. In deliberation, the AMB suggests causes until a reasonable cause

cannot be found. The set of resulting, connected causes is a chain of events. We also

refer to a unique chain of events as a scenario.

In constructing the network from the perspective of the AMB, we recognize that

the model can be used to apply "abductive" logic as well as deductive logic. Abduction

allows the board to propose a scenario without evidence, effectively leaving these nodes

blank. If the board uses deductive reasoning, it proposes a cause factor based on the

existence of an evidence element, in effect the network which applies deductive logic

34

E= Evidence
C= Cause Factor

Figure 4-3 Mishap Deliberation Model

contains nodes which contain evidence. As with the strategy described by Hazard, the

model should lead the AMB to ask the question "why?" in either case, testing various

scenarios and then looking for evidence to support them if the evidence does not exist. If

the board decides to proceed with a given chain of events such as the one represented in

Figure 4-2, then they effectively populate the nodes with supporting evidence; any node

that cannot be filled brings the entire chain of events into question.

Figure 4-3 is the füll conceptual development of our semantic network model.

This graphical representation is the development of the cognitive map taught at the

Aviation Safety School, here we present it as a semantic model which we can more easily

35

formalize. Figure 4-3 is merely numerous branches or scenarios joined together to

represent the entire problem space, or the entire mishap. As discussed in figure 4-2, each

node (labeled "Ex") represents a piece of evidence and each arc (labeled "Cx") represents

a cause. The dotted lines circle unique scenarios, and although only three scenarios are

identified, there are nine different scenarios represented here. This semantic

representation is the ideal graphical presentation for an implementation. It combines a

common cognitive map with the semantic network construct which is a common artificial

intelligence developmental tool, and lends itself to the textual development of the model

through predicate logic we discuss below.

Although the semantic network directly relates to the investigators perceived

cognitive map of the mishap, it does not directly aid our goal of the automation of the

deliberation process. The network allows us to represent knowledge about a mishap

graphically, but in order to automate the deliberation process we need another vehicle

which allows us to generate a computer based system. In procedural language coding

such as Pascal or Ada, we can use a type of "psuedo code" which attempts to make the

task readable as a sentence or a statement to be translated to code. In artificial

intelligence, a common approach to describing statements which can be represented by

networks is predicate logic [Rowe, 1988].

Predicate logic allows us to formalize the relationships in our network and describe

the assertions made during a deliberation about a mishap. Predicate logic, according to

Gonzalez and Dankel, is based on the premise that sentences express relationships

between objects; in our case these objects are evidences and causes. The result or the

application of predicate logic is the construction of "predicates" or predicate clauses which

express the relationship between certain terms. The two basic predicates we develop are

the "evidence" predicate and the "probable cause" predicate. These predicates define the

relationships between the terms or objects in our model which we define as "cause

factors" and "evidentiary exhibits". We describe these terms in detail below.

36

a. Evidentiary Exhibits

In the earliest stages of a mishap, the investigative team must begin with

the "raw data" or the evidentiary exhibits. Each exhibit is unique and may be in the form

of a report, an interview, a photograph or even an physical piece of an aircraft. This is the

mishap information in its most granular form. In our network, the evidentiary exhibit is

the information which is contained in a node. As we noted earlier, the model may or may

not contain evidentiary exhibits, depending on the progress of the deliberation. An

evidentiary exhibit is one of the items or objects which our predicate treats.

b. Cause Factors

In the act of deliberating a mishap, the AMB will suggest a set of cause

factors. A cause factor may or may not be based on evidence, but it is important the

model support both abductive and deductive logical processes. To construct a set of

cause factors, the board deliberates, and in deliberation the board will suggest a "root"

cause factor and proceed to suggest a set of cause factors representing a chain of events.

In our network representation, they would be proceeding outward away from the root and

toward the ultimate leaf in a scenario, the cause factors are the arcs in the network and

they establish a connection to a node. We might say that a node (evidentiary exhibit)

supports the preceding cause factor was caused by the following cause factor. Referring

to Figure 4-2, for example, we can say that the information contained in photo 2 was

caused by the cause factor failed microswitch, and this failed microswitch (supported by

the evidentiary exhibit photo 2) was caused by corrosion. The logical dialog we review in

Section A of this chapter is an example of the process which produces cause factors. The

cause factor, like the evidentiary exhibit is the other basic element in our predicate

development.

c Probable Causes

In defining a probable cause, we are expressing a relationship between

cause factors. A probable cause is not physically represented in our network, it is rather

37

the basic relationship between cause factors. The distinction between a cause factor and

the probable cause factor is simple: The probable cause predicate:

"probable-cause (cause-factorA, cause-factor)"'states that "the probable cause of cause

factor A is cause factor B". Referring back to our network, we could assert an instance

as probable-causetfailed-microswitch, corrosion) , representing the sentence "the

probable cause of the failed microswitch is corrosion. A set of these probable cause

relationships and/ or a set of evidence relationships (discussed in the next section)

compose our network.

Our network model implies a "transitive" relationship, in other words if a

probable cause relationship states that the probable cause of cause factor A is cause factor

B, then we continue the deliberation by suggesting a cause factor which caused cause

factor B. If we suggest that there is an additional cause factor, C which might have

caused B, then we create another probable cause entity which connects B and C.

Transitivity allows us to say that if A caused B and B caused C, then C is also related to A

as a cause factor. This transitivity property allows us to construct a chain of events. We

apply this transitivity property by imposing some limitations on the construction of our

predicates. If, for example we have a chain of events or scenario consisting of cause

factors A, B, C and D in a scenario, then probable cause predicates would take the

following form:

probable-cause(cause-factor A, cause-factor B),
probable-cause(cause-factor B, cause-factor C),
probable-cause(cause-factor C, cause-factor D).

The predicates above "chain" or connect our cause factors transitively by repeating the

second cause factor as the first cause factor in the next clause. Our implementation

depends on this type of relationship to ensure transitivity.

d. Evidence

Evidence, like probable cause, describes a relationship. This relationship

adds an evidentiary exhibit to a probable cause relationship and thus allow the AMB to

38

support the given probable cause relationship. If we apply similar predicate notation to

this relationship we can say "evidencefcause factor A, cause factor B, exhibit Q". We

read this as "the cause factor A was caused by cause factor B and is supported by

evidentiary exhibit C" . We impose transitivity on the predicates in the same manner as we

do with cause factors, only we attach the evidence element to the predicate.

e. Chain of Events

A chain of events is a set of either probable cause entities or evidence

entities. The chain of events is defined by the transitive property we describe above and is

composed of a "root" node and a "leaf* node. In the network in figure 4-3 we have a set

of cause factors, and a set of evidentiary exhibits. The nodes represent the evidentiary

exhibits and the arcs or arrows represent the cause factors. Each discrete path in this

model represents a chain of events.

Ultimately, the AMB must support any given scenario with evidence, and thus the

evidence predicate we propose ultimately describes all scenarios in the problem space.

Although Hazard's model seems to deal with those scenarios we might call true, the board

may also want to support arguments that are not true in order to document reasoning.

They might need to support an argument against some suggested scenarios to disprove

unsupported hearsay or illustrate the completeness of their investigation. OPNAVINST

3750.6Q requires the AMB to document this logic in the final mishap report to refute

arguments which might be strongly implied but not supported by evidence. Paragraph 607

of the instruction describes how the mishap board "rejects" plausible scenarios in the text

of the message that the board considers "too remote in probability".

We now continue with the implementation of the model by converting our

predicate statements to Prolog code. Since Prolog is based on predicate logic, this task is

not difficult and as we demonstrate, our predicates become the data elements which

populate a Prolog database.

39

2. The Deliberation Engine

We pursue the basic implementation of the model in the Prolog computer

language. The "basic" implementation is the reasoning engine described by the network

model in the previous section and does not include the graphical interface which we

implement in another context later in this chapter. Prolog was developed in the late

1970s and stands for PROgramming in LOGic and is based on predicate logic. It provides

some distinct advantages over procedural languages when implementing problems that

involve reasoning. Prolog provides mechanisms which "backtrack" rather than querying

databases when attempting to satisfy a rule. The alternative to Prolog queries in

procedural languages such as Pascal when trying to solve problems similar to the mishap

deliberation would be numerous if-then constructs or a complicated database structure of

linked lists. Prolog allows developers to directly test the truth of a query based on a set of

predefined rules. In addition, the structure of the database and the rules are related to

predicate calculus and developers can apply formal logic to programming without having

to translate logic to a particular language procedure.

A Prolog program consists of three elements according to Clocksin and Mellish:

♦ Facts about objects and their relationships,

♦ Rules about objects and their relationships,

♦ Questions or queries about objects and their relationships [Clocksin and Mellish,

1984].

In keeping with our original example, we begin this discussion by presenting the

Prolog database of the example presented in chapter 2, or the "facts" as described by

Clocksin and Mellish. In our model, the relationship predicates we presented earlier define

the facts that will populate the prolog database. The Prolog computer language is based

on predicate statements similar to the examples we presented. Appendix C provides the

database populated with information from our example. Two typical examples of this

code are as follows:

prob_cause(aircraft_mishap,gear_not_down).

evidence(aircraft_mishap,gear_not_down,wreckage_inspection).

40

The reader will recognize the relation ship between prolog code and predicate

logic: The code above is a reproduction of the predicates we developed applied to Prolog.

This example and the complete listing in Appendix C are examples of a list of the predicate

relationships. In Prolog, the database is composed of the set of assertions about the data,

our database is composed of evidence and probcause predicates. The user of a common

Prolog interpreter such as the Quintus system can either enter each of the individual

predicates into an interpreter, or the user can create a file containing the list of predicates

and have these facts loaded in during the interpreter initialization. Once the facts are in

the Prolog database, we can query in a number of ways. Prolog allows us to simply

request the contents of the database, or we can develop a set of rules which define

relationships between predicates. We reproduce our model by writing a set of Prolog

rules presented in Appendix C, Section B. These rules allow the user to query the

database for sets of predicates describing scenarios and related evidence. Again, the user

can either enter these rules into the terminal or use the Prolog "consult" routine to

automatically load the rules into the system upon initialization. The code includes

comments which explain much of the syntax. The reader will find consistency between the

Prolog rules in the Appendix and the development of the model in the previous section.

It is not the purpose of this chapter to provide an instruction in Prolog syntax, thus we

provide basic descriptions of the code in the comments of the program for easier

reference. The functionality of the "rules" of this program provide the user with a means

to:

1. Query the contents of a scenario chain.
2. Query the final link in a scenario chain and thus determine the root cause.
3. Query any fact in the database and examine the chain which proceeds from it.
4. Retrieve an explanation for a completed and "supported" chain of events,

including the evidence associated with probable causes.

41

Appendix C, Section C provides a scripted query result and illustrates how a set

of rules we define in Prolog function once loaded into the Prolog interpreter. The first

query, "prob_cause(X,Y)" requests the contents of the "prob_cause" database . As

Appendix C indicates, the query simply returns a listing of probcause predicates in the

database.

The type of query initiated above could also ask for the second half of a pair of

causes. For example, if we wanted to know what cause was paired with "improper

hangering" we would simply enter "prob_cause(improper_hangering, Y)" and the database

would return "poor_supervision". The next query utilizes a "scenario rule" defined by

the code in Appendix C, Section B. This rule is implemented by three Prolog statements ,

"scenario", "scenario_chain" and "scenario _chain_it". These three statements allow the

user to query a list of causefactors which compose a scenario chain. Section C of

Appendix C contains a run of this type of query by requesting all scenarios in the database

calling the procedures with the statement "scenario _chain(X,Y)". The script thus

contains all of the scenarios in the database.

Each one of the "X" values in the above query holds the value of a cause factor,

and the " Y" values contain the list of the causes which proceed from that cause factor.

The reader should note that these queries are not based on evidence, thus the Prolog rules

implemented here satisfy the abductive reasoning requirement mentioned earlier by

allowing the user to logically "test" scenarios without providing supporting evidence. The

script below continues the example run by illustrating how the user can request the cause

factors emanating from a particular cause factor which begins the "chain". By entering

"scenario_chain(poor_training,Y).", Prolog returns the list containing the chain or cause

factors particular to "poortraining". This type of query is reproduced again with the

second query.

scenario_chain(poor_training,Y).

Y = [crew_uncoordinated,no_coord_training,no_command_support];

No

scenario_chain(handle_malfunctioned,Y).

42

Y = [improper_maintenance,omitted_stepIpoorly_written_handbook,

missing_page];

We are able to ask the database the contents of a scenario relating to any cause

factor. If a particular cause factor becomes the cause of more than one scenario, then the

Prolog interpreter would simply list these additional scenarios. In our example above,

however, both "poor_training" and "handlemalfimctioned" result in only one chain of

events each.

The final Prolog Rule allows the user to query an "explanation" to a tested chain of

events. The "explainscenario" rule applies our second logical rule which attaches

evidentiary exhibits to the causefactors. In querying a root and a general cause, the user

can determine if he has evidence to support the scenario. Thus the query only returns

those scenarios supported by evidence. The following script illustrates a query request to

support the scenario which was caused by a poorly written maintenance handbook:

explain_scenario(gear_not_down, poorty_written_handbook, Explain).

Explain = [gear_not_down,"was caused by',handle_malfunctioned,'and is supported

by',wreckage_inspection,...,handle_malfunctioned,'was caused by',improper_maintenance,'and is

supported by,,records_insp,...,improper_maintenance,'was caused by',omitted_step,'and is

supported by',handbook,...,om'rtted_step,'was caused by',pooriy_written_handbook,'and is

supported by',expert_interview,...];

If the scenario above contained causes that did not contain evidence, then the

Prolog interpreter would return "No" indicating that the database did not satisfy the rule.

The following is another example of the above type of query which examines a scenario in

"mid- chain" to illustrate the a branch of a scenario which composes a separate scenario:

explain_scenario(no_waming_hom, corrosion, Explanation).

43

Explanation = [no_warning_horn,'was caused by',malfunctioning_switch,'and is

supported by',wreckage_examination,...,malfunctioning_switch,'was caused by',corrosion,'and is

supported by',wreckage_examination,...];

The Prolog implementation presented in this section discusses only the rules and

the logical model implementation, or the reasoning "engine". The prototype

implementation however, is incomplete without the addition of a user interface. Although

we present an implementation of the logic in the form of a Prolog program, the user

interface completes the application of logic described by our model. The interface must

allow the user to communicate queries to the database and preserve the process for

deliberation described by our logical model. The next section provides an example of such

an interface, the reader may note that this approach and the Prolog code generated in

Appendix C support an stand- alone system, but simple modifications would allow

developers to adapt the same code to support the client/ server approach described in

Chapter II.

3. Interface Goals, User Run-Time Routines

The importance of the user interface in the deliberation application cannot be

overlooked. Even if the logic we present for the model is sound and useful for

implementation, the application will be useless if the user interface is not carefully

designed. When we describe the interface, we are referring to the interaction between the

user and the Prolog rules presented in the previous section. The method for composing

the predicate relationships that compose the "facts" in the database should be designed

into the user interface so the user understands the reasoning process.

The "strategy" we mention as a goal of the deliberation application in the opening

paragraphs of this chapter should be implemented as an interactive element of the user

interface. The core of the application, the deliberation model written in Prolog, should be

supported by a user- computer interaction which provides correctly formatted data to the

Prolog interpreter or engine. This interaction should make clear the rules used in the

model and present a graphical interpretation similar to the semantic model on which our

44

Prolog model is based. A successful interface should not only allow the user access to the

database, but it should also communicate the underlying logic of the model to facilitate

accurate reasoning. One of the goals of the interface should be to ensure the user has

access to the decision making process as Rook and Donnell suggest. This type of

interaction will extract the greatest user performance levels which in our context is

accurate and timely mishap investigation [Rook and Donnell, 1993]. In addition, the

interface should organize the mental model or cognitive map of the user and enable the

AMB to revisit and reconstruct the cognitive maps of previous deliberations when the

investigation occurs over a period of time. This recording of the deliberation process is an

essential functionality: Without it the AMB might re-deliberate the mishap problem each

time it reconvenes, wasting time and introducing inaccuracies. Finally, our interface

should provide easy access to a database server and other applications of the system and

enable the user to produce the output, the final mishap message.

4. Screen Prototype Presentation

Version l.OB of the "Mishap Expert" is a prototype used to demonstrate the

functionality of the program and the desired user inter face and routines. Version l.OB is

not a client- server version, and the database is maintained entirely by the Prolog

interpreter. The Prolog interpreter is a basic Edinburgh syntax interpreter which has

limited windows API (Application Program Interface) capabilities; serious development

of this application will require a full API enabled interpreter [See SWI reference for

interpreter information]. The interface is written in Borland's Delphi, and the application

itself is non-proprietary and not copyrighted. At the writing of this thesis, a team of Naval

Postgraduate School students is developing a client/ server version (version LIB) of the

entire system which will include import and export of message information to and from

this application. The purpose here is simply to present a basic functional interface for the

Prolog implementation.

a. Mishap Expert, version 1. OB

45

Version LOB is a "bare-bones" prototype of the deliberation model

presented earlier in this chapter. The purpose of presenting this basic interface is to

specify and demonstrate the advantages of an effective user interface for the Prolog

reasoning engine. Thus we only demonstrate basic capability in this version enabling the

user to perform the functions performed by the above Prolog code. The prototype is

written in Borland's Delphi using the Object Pascal language. The designed format

MtshapExpert ^ l~j$:
File Edit Window Help

& mW&I&
Sceaiioftewww

Entertha Mishap BesoipS» ghree. twxdt BMKJ;

1Ed" 1 .
V/hy dritte aSove overt occw? lent« a BfoteUe c&asi

JE«*2 ~1

CScfc ta Create thePratMUoLcas» predrcata

List o» aobar* cau*pre*:at«:

^'Create J
I Screen Boat To enable the
«a to create the ptob_cause
predicate. The predicate will
be formatted and stored in the
file ^acts.p^ when the Prolog
interpreter is loaded

i

■■■

. i

Figure 4-4 Version 1 .OB Investigation Screen

includes a "Tabbed Notebook" format similar to the "Notebook" application designed by

LT Hugh Brian. By clicking on any of the "Tabs" located at the top of the page, the user

may navigate through the application. The screen in figure 4-4 is the Investigation screen.

The primary purpose of this screen is to build the "prob_cause" predicate database for the

Prolog interpreter. This screen is also designed to introduce the user to the logic of the

model and serve as a tutor in the investigative logic it applies. The run- time routine we

apply here is important to both the formatting of the input into Prolog code and to

"educating" the user about the reasoning of the system.

46

First the user is prompted to enter the most general cause of the mishap,

after the initial entry of the first "cause factor" the caption over the top entry box changes

from "Enter the Mishap Description" to "Continue by selecting an event, or a new cause

factor". In addition, a button enabling the user to create the predicate appears. When the

user enters information in the top box, two events occur. First, the top box is disabled so

that the user is forced into an entry into the second box. Second, the cursor moves to the

second box where the user is prompted for the reason for the occurrence of the event

appearing in the upper box. In this manner, the application prompts the user for the next

link in the chain of events. Once the user clicks on the "create" button, the predicate is

added to the list and the application makes another option available in the form of an "End

Scenario" button.

As the user exits the lower entry box, the two statements are formatted and

converted to Prolog syntax forming the probcause predicate which is appended onto the

end of a list and eventually saved to a text file to be loaded into the interpreter in another

application function. In this version of the application, the formatted statements appear in

the list box to the right of the edit boxes. For example, if the user entered the system for

the first time and entered the root cause as "Gear Not Down" and either exited the box or

clicked on "OK" the cursor would move to the second box. When the user enters the

second box, the contents of the first box dim, and that box becomes read- only. When the

user enters another cause in the lower box and exits, the Prolog predicate statement

appears in the list box to the right. If the user entered "Malfunctioning Handle" in the

lower box and exited the box, the system would format the pair of causes and transfer the

contents of the lower box to the upper box prompting the user to enter another cause.

This function logically steps the user through the scenario, and also ensures the predicate

arguments are identical in syntax. This matching syntax is necessary for the model "rules"

to function properly. For example, the deliberation engine will relate the predicates

prob_cause (gear_not_down, malfunctioningjiandle),

47

prob_cause (malfunctioning_handle, failed_microswitch

together only when it recognizes the common "malfunctioninghandle" argument. If the

application does not force this type of formatting, then the model will treat each differing

entry as a separate cause factor and unrelated causal pair.

Version 1. OB is a single session version with no database capabilities. Thus

when the user selects the "End Scenario" button, the upper box is enabled and the user is

able to begin another scenario and add to the predicate list. Version 1. IB, however uses a

database and the user is forced into selecting an existing cause factor during the

deliberation of a single mishap, and prohibits the user from entering a new cause factor in

the top entry box. If we do not impose this limitation on the user, then the addition of a

new cause factor in the top box would cause the Prolog interpreter to treat is as a separate

mishap, because it would not be related to any other existing predicate in the database.

Clicking on the "Evidence Log" tab moves the user to the evidence log

screen presented in figure 4-4. The evidence log simply allows the user to add, modify or

delete information from a temporary file holding evidence information. The evidence log

provides a repository for evidence if the user chooses not to begin deliberation

immediately, this function is purely a database of evidence information. Version LOB

reproduces the list of evidence in the Scenario Reviewer screen to build the evidence

predicate saved in the "facts.pl" file. Evidence is important to the application when the

user is interested in viewing the textual and graphical results of a deliberation, and figure

4-5 presents the "Scenario Reviewer" screen which constructs the Prolog evidence

predicates.

The Scenario Reviewer presents the user with the list of predicates built in

the Investigation screen (in the left box) and the list of evidence articles entered in the

Evidence screen. By selecting prob_cause predicate and a piece of evidence and clicking

"Create", the user supports a clause "cause_factor2 occurred as a result of causefactorl"

in the form of a Prolog predicate with a piece of evidence and creates the evidence

predicate. If for example, the left box included a list of probcause statements including

48

Mishap Expert
Hie Edit Window Help

jSc«r»ai»» tin WBWetT ^j_ Inwestigator Evidence Log

Select a prob.cane pwxicate. then iiihict an evidence. CSck on cteate to create B«e «svidoncepradtcate;

Ijrttfjifobabtecaujeptedfcates: UstoSewferic« Oeaie

View Scenarios i

View Evidence ;

__ _ ______ . . : ___-

Figure 4-5 Version 1 .OB scenario Reviewer Screen

the predicate prob_cause(gear_not_down, malfunctioning handle) and the evidence "photo

1" then the user could select both of these items and then click "Create" and the system

would build the predicate evidence(gear_not_down, manfunctioriing_handle, photo 1), and

add it to the "Evid.pl" text file which stores the predicates to load into the Prolog

interpreter. This functionality allows the user to construct the predicates necessary to

perform the queries in a subsequent screen. By selecting the View Evidence button, he is

taken to a screen which lists the contents of this text file.

When the user selects the "View Scenarios" button, he is moved to a

separate application screen not in the tabbed notebook. Including the view function in the

tabbed notebook might tempt the user to view a the results of a query before the file has

been built. The View Scenarios screen in Figure 4-6 is the query generator for the Prolog

engine. The view button opens the view screen, and opens and initializes the Prolog

interpreter. By "initializing" we mean the loading of the existing "factors.pl" and "evid.pl"

49

Scenario Viewer

Select we of the folewng:

View all Scenarios

View Selected Scenarios

View a Specific Scenario

View Supported Scenarios

'*/ OK !

% Cancel i

T Help j

Figure 4-6 Version 1 .OB Scenario Viewer Screen

files into the interpreter along with the "rules.pl" file which holds the prolog rules

supporting our model. Ideally, the interpreter would be opened at this time and the

application and the interpreter would communicate with API calls. Due to the limitations

of our interpreter, however, we must rely on separate initializations for each button query

function, returning the contents of "scripted" files recorded by the common Prolog

predicate "tell". This predicate writes the results of a query to a text file, which the

interface displays back to the user. In combination with the use of a custom query routine,

we can attach any of the queries mentioned in the previous section to a separate button

which initializes the interpreter, loads the database, performs a query and returns a value

to a text file and then closes the interpreter. Appendix C, Section D provides an example

of these routines along with the initialization file. The code in Appendix C is re-applied to

each query generation button in the application, customized to the particular query

involved. This is clearly an inefficient method only implemented here to demonstrate

functionality; a better solution would utilize a Prolog interpreter which supports direct

communication between applications such as OLE (Object Linking and Embedding) or

DDE (Dynamic Data Exchange). This type of solution would increase the speed and

efficiency of the system above the prototype implementation.

The view screen in Figure 4-6 contains four choices. The user may view

all scenarios, in which the interpreter executes the scenario(X,Y) query and the system

50

***} AH Scenarios EG
Scofumot änÜMi &fltabsss: ■ I; yV OR ■1

.:..♦* 'CaBC«l'|.

:'■!?■■'■»*■{.

\ ■■:■■.■■■■ :

8«<* ■•]
"

Figure 4-7 Version 1 .OB All Scenario Viewer Screen

Unsupported Scenarios izhi

Let of probable cause predrcates:
To view a scenario, «elect a
probable cause predicate and
prart go.

lebt

5 steered SconflBO

^ « j
*; Cancel |

ft*> j

ftacfc

Figure 4-« Version 1 .OB Unsupported Scenario Screen

51

returns a list of all the developed scenarios in the box in Figure 4-7. If the user desires to

view a scenario beginning with a particular event, he moves to the "unsupported scenario"

screen, Figure 4-8, and selects a particular probcause pair. The "go" button will execute

the query instantiating the X variable to the first argument of the selected prob_cause

predicate. For example if the user wanted to query the prolog database about the

"handlemalfunctioned, improper_maintenance scenario as in our earlier example, he

would select that predicate from the left box and click on "go". The interpreter would

then execute a scenario(handle_malfunctioned, Y) query and return the same list we

presented in the earlier section.

The explain scenario button executes and displays the results of the

explain_scenario query described earlier in this chapter in Figure 4-9. The application

presents the user with a list of existing scenario causes (the results of the scenario(X,Y)

query) and the user selects one of the presented scenarios. The application takes the first

and the last arguments and forms the explain_scenario(X,Y,Z) query. For example, if the

H Explain Scenario |"i;

Scenairo in the database

</ OK X Cancel: ? tir*t>

Select two medicates at Ihe
beginning and the end of a
chain, and then dick on go. If
the scenario » supported by
evidence then an explanation
«rill lesult. If not. the
interpreter wS return "No."

Back

So

Explanation:

Explanation «rill appear here.

Figure 4-9 Version 1 .OB Explain Scenario Screen

52

user selected the displayed scenario containing gear_not_down and

poorlywrittenhandbook, the text box would display the same output generated in

response to this query presented in the previous section.

b. Version LIB

Version LIB (currently under development) implements the above

application with a Database Management System provided by the Borland Delphi

package. The local database will enable enhanced functionality in the application and will

allow the system to export information to the server in the architecture described in the

Chapter III. Version LIB will be included as a prototype application in a project

delivered to NPS faculty in partial fulfillment of the requirements for the IS 4925 course at

xfcfalBFoiiii--
File Ed» Window Help

m
uiBiajHiajjJ >i%H5Taiy|m

yl *T7

■ tntw KWOTMBOTI EvdvKeLog

j ^ L
Otfcoaa

cz>

Figure 4-10 Version 1.1B Graphical Presentation Prototype

the Naval Postgraduate School.

Version LIB will implement the graphical description of the model

important to the user interface. Figure 4-10 is a prototype of this graphical description

of a chain of events and comes close to the semantic model description of our deliberation

53

model. This representation allows the user to view the mishap scenario in one of two

contexts. The model can be called after the execution of a scenario(X,Y) query, or it can

contain the contents of an explain_scenario(X,Y,Z) query. Since version 1. IB will contain

a local database for query and data storage, we will be able to place the contents of

related tables in the fields of the graphical description, and perform the Prolog queries on

database pointers rather than formatted textual descriptions. When the user desires to

view a scenario in this screen, he will see the probable causes (as he entered them)

displayed above the arcs in the diagram, while the nodes will simply display the word

"evidence". When the user views the same screen returning the results of an

"explain_scenairio" type query, the application will label the arcs with the causes and fill in

the nodes with a single word description of the evidence explaining the adjacent cause

factors. This evidence text will be colored and will serve as a hypertext link to the field in

the database containing the detailed description ofthat particular piece of evidence.

In addition to the graphical display capability described by Figure 4-10,

version LIB will also contain the necessary "housekeeping" capabilities enabling the user

to maintain the database containing the mishap information. The Prolog deliberation

engine code will not require revision in files other than the initialization routines included

with specific queries. The use of the database will bring the necessary closure to the entire

application by allowing the user to export the results of the AMB deliberation.

When the user performs the explainscenario query, the application will

only return complete chains of events which are supported by evidence. As mentioned in

Chapter II, the OPNAV 3750.6 instruction requires the AMB to both accept and reject

scenarios based on supporting evidence. Thus in this context, evidence can serve to

support or disprove a chain of events. In either case, the chain of events discussed in the

message must be supported by evidence in order for it to appear in the message as an

accepted or rejected cause factor. The MIR generation module appends the deliberation

information to the initial mishap report in a formalized manner. The Mishap Expert

application should contain export the evidence descriptions entered in the original

54

evidence log, and the data returned by the "explainscenario" queries. The MIR

generation module should allow the user to choose the queries, accept or reject them

based on the content of the evidence and proceed with the remainder of the final mishap

message.

55

56

V. CONCLUSION

This thesis outlined the development and implementation of a decision support

system for Naval Aviation Mishap investigation and reporting, and presented the

"deliberation model" for mishap investigation. In outlining the implementation, we

concentrated on the model for deliberation using artificial intelligence methods and the

Prolog language. Finally, we outlined the implementation of the model in the "Mishap

Expert" application. At the writing of this thesis, the development of version 1.1b of the

entire support system was ongoing, and completion of a fully functional prototype is

expected by October of 1995. Version l.OB is a basic implementation of the Mishap

Expert application only. This application prototype presents the Prolog model with a

very basic user interface which demonstrates desired routines. A full implementation of

this system requires significant further study and many of these important issues are

beyond the scope of this thesis.

A. IMPLEMENTATION ISSUES

This thesis presents a largely experimental implementation of the DSS and the

deliberation application. The full implementation of a similar system for fleet use requires

careful study and consideration of such issues as infrastructure supporting a client/ server

architecture and compatibility with different platforms. In addition, the selection of the

database system and the related applications (such as the Prolog interpreter) require

careful attention. An informal survey of aviation squadrons indicates that this

infrastructure does not exist in most cases, and thus the client/ server approach is presently

infeasible. We suggest that the most practical application of this model is therefore a

single-platform system supported by a database as described in Chapter III.

The use of Prolog and Borland's Delphi in this prototype should not suggest that

this is the only implementation approach. Developers may find solutions using other

languages and tools. The commercial Prolog market continues to grow and at this

writing, powerful and complete graphical Prolog development tools are appearing,

57

hopefully future development of this model will result in an single application providing

reasoning and a user interface rather than the use of multiple applications demonstrated in

our prototype.

B. QUESTIONS FOR FURTHER STUDY

The obvious subject for further study in this thesis is the full implementation and

testing of the entire Decision Support System. As mentioned in Chapter IV, this research

is ongoing and will be completed by October of 1995. In addition to the implementation

of the system, we suggest further questions for study:

♦ The implementation and testing of the entire decision support system.

♦ An examination of the computing infrastructure necessary to support such a system.

♦ How would the department of the Navy support this software implementation?

This question will become increasingly important as end- users continue to develop

useful information applications. If the support for end- user applications is not

specified, users might become dependent on an application with no recourse when

the application or system fails or requires update. In applications where processes

are automated such as the message generation capabilities of our system, the

absence of an automated system might paralyze an organization that forgets how to

manually execute automated processes. This question is particularly important to

DoD when military officers develop applications and subsequently move to other

assignments, taking the "support" for an application with them.

♦ Additional analysis of the deliberation model, with continued discussions with the

Aviation Safety School. This model may also be appropriate for entry into the

OPNAVTNST 3750.6Q instruction as a method for investigation.

As we discussed in the introduction of this thesis, we presented the development of

the administrative system architecture to the end-user developer recognizing the growing

trend of end-user application development with such tools as Borland's Delphi. As tools

become available to end-users to develop applications with increasing ease, examinations

of processes and practices such as the mishap deliberation process we present here will

58

become more important. The "addiction" to the power of Rapid Application Development

(RAD) tools will lead to an explosion of applications which do not support or improve a

defined process. Thus process examination in application development will become more

important than application implementation.

Our discussion directly addressed a weakness in the Naval Aviation Safety mishap

investigation process. Although the Aviation Safety School at the Naval Postgraduate

School informally teaches a deliberation methodology, this methodology is not formalized

in the directive instruction, OPNAVINST 3750.6Q. In suggesting a strategy based on the

teaching methods at the NPS Safety school, we provide an avenue for improved mishap

investigation and reporting through the use of an automated "deliberation" model. In

addition, we present the architecture for an administrative system to support the entire

reporting process.

As the Navy continues to downsize and conserve resources, the preservation of

both human and material assets in naval aviation will receive greater attention. The

thoughtful examination of the investigation process and the application of appropriate

technology can enhance and improve mishap investigation and reporting. By supporting

the administrative demands of an investigation and providing a defined process for

deliberation, an implementation of the model discussed here will not only improve the

efficiency of the investigation process, it will also improve the quality of the completed

investigation.

In conclusion, mishaps are an unfortunate yet inevitable product of the practice of

aviation. Naval aviation in particular provides the most challenging and demanding

environment in the world of aviation. From the flight decks of carriers to the cockpits of

patrol aircraft far from base, naval aviators perform feats which put them at far greater

risk than other aviation communities, and thus the task of mishap investigation in naval

aviation is far more difficult and critical to their survival. The occurrence of a mishap

obligates us to rectify undetected hazards through investigation, failure to detect these

hazards dooms us to eventually repeating our mistakes and suffering the consequences

59

over and over. Each mishap is thus an opportunity to save future lives and assets, but if

we fail to logically examine evidence or consider all possible scenarios in a mishap, we

endanger the future of Naval Aviation.

60

LIST OF REFERENCES

Axelrod, R. Structure of Decision, Princeton University Press, Princeton, New Jersey,
1976.

Clocksin, William F. and Christopher S. Mellish, Programming in Prolog, Springer-
Verlag, Berlin Heidelberg, Germany, 1984.

Duncan, Nancy and David Paradice, "Creativity in GDSS: An Integration of Creativity,
Group Dynamics, and Problem Solving Theory." Proceedings of the 25th Hawaii
International Conference on Systems Sciences pp. 277-287, Vol. 4, IEEE Computer
Society Press, Los Alamitos, CA,1991.

Eden, Colin, "Strategic Decision Support Through Computer Based Analysis and
Presentation of Cognitive Maps." Working Paper, Management, Science, Theory Method
and Practice Series, September, 1988.

Frew, Barry, Instructional Notes for IS4182, Naval Postgraduate School, 1995.

Gonzales, Avelino and Douglas D. Dankel, The Engineering of Knowledge- Based
Systems, Theory and Practice, Prentice- HalL Englewood Cliifs, New Jersey, 1993.

Harkey, Dan, Robert Orfali and Jeri Edwards, Essential Client/Server Survival Guide,
John Wiley & Sons, New York, 1994.

Quillan, M. R, "Semantic Memory." In Semantic Information Processing, ed. M.
Minskey. Cambridge, MA: MIT Press, 1968.

Reiger, C, and M. Grinberg, "The Declarative Representation and Procedural Simulation
of Causality in Physical Mechanisms." Proceedings of the Fifth International Joint
Conference on Artificial Intelligence. San Mateo, CA: Morgan Kaufmann, 1977.

Rook, Frederick W. and Michael L. Donnell, "Human Cognition and the Expert System
Interface: Mental Models and Inference Explanations", JEEE Transactions on Systems,
Man and Cybernetics, Vol. 23 No. 6, November/ December 1993.

Rowe, N.C, Artificial Intelligence Through Prolog, Prentice-Hall, Englewood Cliffs,
New Jersey, 1988.

Weilemaker, Jan, SWI-PROLOG Version 1.9.4, University of Amsterdam, Amsterdam,
The Netherlands, 1994. Available on the internet as freeware at http://www.psy.uva.nl.

61

Zhang, When-Ran, "Cognitive Map Composition, Derivation, and Focus Generation for
Distributed Group Decision Support", Proceedings of the 23rd Annual Hawaii
International Conference on Systems Sciences, pp. 318-326, vol.3. IEEE Computer
Society Press, Los Alamitos, CA USA, 1994.

62

APPENDIX A

DATABASE DESIGN

A. ANSI SQL-92 SCHEMA

CREATE SCHEMA MisDataBase

CREATE TABLE Mishap
(Mishap_Serial_Num

EventDate
EventTime
Time_Zone
Location
Unit ID FK2

SMALLINT NOT NULL,
DATE NOT NULL,
TIME NOT NULL,
CHARACTER VARYING (10) NOT NULL,

CHARACTER VARYING (10),
INTEGER NOT NULL,

Flight_lnformation_ID_FK3 INTEGER,
Mishap_Summary CHARACTER VARYING (10) NOT NULL,
_ID INTEGER NOT NULL,

PRIMARY KEY (_ID),
UNIQUE (Mishap_Serial_Num),
FOREIGN KEY (Unit_ID_FK2)

REFERENCES Unit,
FOREIGN KEY (Flight_lnformation_ID_FK3)

REFERENCES Flightjnformation
)

CREATE TABLE MishapJRecommendations
(Recommendations CHARACTER VARYING (32000) NOT NULL,

Mishap_ID_FK1 INTEGER NOT NULL,
ID INTEGER NOT NULL,

PRIMARY KEY (_ID),
FOREIGN KEY (Mishap_ID_FK1)

REFERENCES Mishap
)

CREATE TABLE Passenger
(Person_ID_FK11

Rank
Rate
Service
USN
Non_DoD
Duty_Status
ParentJJnit
Lost_Wk_Days
Hospital_Days
Mishap_ID_FK14

INTEGER NOT NULL,
CHARACTER VARYING (10),
CHARACTER VARYING (10),
CHARACTER VARYING (10),
CHARACTER VARYING (10),
CHARACTER VARYING (10),
CHARACTER VARYING (10),
CHARACTER VARYING (10),

SMALLINT,
SMALLINT,
INTEGER,

63

_ID INTEGER NOT NULL,

PRIMARY KEY (JD),
FOREIGN KEY (Person_ID_FK11)

REFERENCES Person,
FOREIGN KEY (Mishap_ID_FK14)

REFERENCES Mishap
)

CREATE TABLE Unit
(Short_Name CHARACTER VARYING (10) NOT NULL,

UIC CHARACTER VARYING (10) NOT NULL,
PLAD CHARACTER VARYING (10),
AddressJ CHARACTER VARYING (10) NOT NULL,
Mlshap_Number CHARACTER VARYING (10) NOT NULL
JD INTEGER NOT NULL,

PRIMARY KEY (JD),
UNIQUE (UIC)

)

CREATE TABLE Flightjnformation
(Origin CHARACTER VARYING (10),
Flight_Pur_Code CHARACTER VARYING (10) NOT NULL,
Mission CHARACTER VARYING (10) NOT NULL,
Destination CHARACTER VARYING (10) NOT NULL,
Aircraft.Evolution CHARACTER VARYJNG (10) NOT NULL,
TypeJrlight_Plan CHARACTER VARYING (3) NOT NULL,
DayJMIght CHARACTER VARYING (5) NOT NULL,
WXJDesc CHARACTER VARYING (32000) NOT NULL
Altitude SMALLINT NOT NULL,
JD INTEGER NOT NULL,

PRIMARY KEY (JD)
)

CREATE TABLE Mishap_CivilianJ=atalities
(CivilianJ=atalities CHARACTER VARYING (10) NOT NULL,
MishapJDJ=K4 INTEGER NOT NULL,
JD INTEGER NOT NULL,

PRIMARY KEY (JD),
FOREIGN KEY (MishapJD_FK4)

REFERENCES Mishap
)

CREATE TABLE Mishap_DoDJ=atalities
(DoD_Fatalities CHARACTER VARYING (10) NOT NULL,
MishapJD_FK5 INTEGER NOT NULL,
JD INTEGER NOT NULL,

PRIMARY KEY (JD),

64

FOREIGN KEY (Mishap_ID_FK5)
REFERENCES Mishap

)

CREATE TABLE Crewmember
(Person_ID_FK7

Rank
Rate
Service
ParentJJnit
Duty_Status
HospitaI_Days
NVG_Use
ModelJHours
Total_Hours
Mishap_ID_FK10

ID

INTEGER NOT NULL,
CHARACTER VARYING (10),
CHARACTER VARYING (10),
CHARACTER VARYING (10) NOT NULL,

CHARACTER VARYING (10) NOT NULL,
CHARACTER VARYING (10) NOT NULL,
SMALLINT,
CHARACTER VARYING (10) NOT NULL,
INTEGER,

INTEGER,
INTEGER NOT NULL,

INTEGER NOT NULL,

PRIMARY KEY (_ID),
FOREIGN KEY (Person_ID_FK7)

REFERENCES Person,
FOREIGN KEY (Mishap_ID_FK10)

REFERENCES Mishap
)

CREATE TABLE Evidence
(Enclosure_Number

Description
Summary_Number
Summary
Mishap_ID_FK16

ID

CHARACTER VARYING (4) NOT NULL,
CHARACTER VARYING (10),

BIT (8) NOT NULL,
CHARACTER VARYING (32000),

INTEGER,
INTEGER NOT NULL,

PRIMARY KEY (_ID),
UNIQUE (Enclosure_Number),
FOREIGN KEY (Mishap_ID_FK16)

REFERENCES Mishap
)

CREATE TABLE Factor
(Factor_Name
Accept_or_Reject
Explanation
Mishap_ID_FK17

ID

CHARACTER VARYING (10) NOT NULL,
CHARACTER VARYING (10) NOT NULL,

CHARACTER VARYING (10) NOT NULL,
INTEGER,

INTEGER NOT NULL,

)

PRIMARY KEY (_ID),
UNIQUE (Factor_Name),
FOREIGN KEY (Mishap_ID_FK17)

REFERENCES Mishap

65

CREATE TABLE Causal_Factor
(Determination_Statement CHARACTER VARYING (10) NOT NULL,

Factor_ID_FK18 INTEGER NOT NULL,
RAC CHARACTER VARYING (3) NOT NULL,
Who_or_Comp CHARACTER VARYING (10) NOT NULL,
What_or_Mode CHARACTER VARYING (10) NOT NULL,
Why_or_Agent CHARACTER VARYING (10) NOT NULL,
Para_Number CHARACTER VARYING (10) NOT NULL,
Mishap_ID_FK19 INTEGER,
_ID INTEGER NOT NULL,

PRIMARY KEY (_ID),
FOREIGN KEY (Factor_ID_FK18)

REFERENCES Factor,
FOREIGN KEY (Mishap_ID_FK19)

REFERENCES Mishap
)

CREATE TABLE CF_Other_Dam
(Determinatk>n_Statement CHARACTER VARYING (10) NOT NULL,
Factor_ID_FK20 INTEGER NOT NULL,
Who_Comp CHARACTER VARYING (10) NOT NULL,
What_or_Mode CHARACTER VARYING (10),
Why_or_Agent CHARACTER VARYING (10),
Mishap_ID_FK21 INTEGER,
_ID INTEGER NOT NULL,

PRIMARY KEY (_ID),
FOREIGN KEY (Factor_ID_FK20)

REFERENCES Factor,
FOREIGN KEY (Mishap_ID_FK21)

REFERENCES Mishap
)

CREATE TABLE Person
(Name CHARACTER VARYING (10) NOT NULL,
SSN CHARACTER VARYING (10) NOT NULL,
AddressJ CHARACTER VARYING (10),
Phone_2 CHARACTER VARYING (10),
Officer_Recall_!D_FK6 INTEGER,
_ID INTEGER NOT NULL,

PRIMARY KEY (_ID),
FOREIGN KEY (Officer_Recall_ID_FK6)

REFERENCES OfficerJRecall
)

CREATE TABLE Officer_Recall
(Position_AA CHARACTER VARYING (10),
_ID INTEGER NOT NULL,

PRIMARY KEY (_ID)

66

)

CREATE TABLE Crewmember_Position
(Position_AA CHARACTER VARYING (10) NOT NULL,
Crewmember_ID_FK8 INTEGER NOT NULL,
_ID INTEGER NOT NULL,

PRIMARY KEY (_ID),
FOREIGN KEY (Crewmember_ID_FK8)

REFERENCES Crewmember
)

CREATE TABLE Crewmember_Signifigant_lnjuries
(Signifigantjnjuries CHARACTER VARYING (10) NOT NULL,
Crewmember_ID_FK9 INTEGER NOT NULL,
_ID INTEGER NOT NULL,

PRIMARY KEY (_ID),
FOREIGN KEY (Crewmember_ID_FK9)

REFERENCES Crewmember
)

CREATE TABLE Passenger_Position
(Position_AA CHARACTER VARYING (10) NOT NULL,

Passenger_ID_FK12 INTEGER NOT NULL,
_ID INTEGER NOT NULL,

PRIMARY KEY (_ID),
FOREIGN KEY (Passenger_ID_FK12)

REFERENCES Passenger
)

CREATE TABLE Passenger_Signifigant_lnjuries
(Signifigantjnjuries CHARACTER VARYING (10) NOT NULL,

Passenger_ID_FK13 INTEGER NOT NULL,
_ID INTEGER NOT NULL,

PRIMARY KEY (_ID),
FOREIGN KEY (Passenger_ID_FK13)

REFERENCES Passenger
)

CREATE TABLE Unit_Phone_2
(Phone_2 CHARACTER VARYING (10) NOT NULL,

Unit_ID_FK15 INTEGER NOT NULL,
_ID INTEGER NOT NULL,

PRIMARY KEY (_ID),
FOREIGN KEY (Unit_ID_FK15)

REFERENCES Unit
)

67

B. SEMANTIC OBJECT REPRESENTATION

Mishap
ID Mishap_Serial_Num

EventDate

EventTime

Time_Zone

Recommendations

Location

Passenger |0N

Unit 1.1

[Flightjnformation L.

Civilian_Fatalities

Mishap_Summary

DoD Fatalities

Crewmember 1.N

Evidence 1.N

Factor
1.N

Causal_Factor 1.N

CF_Other_Dam O.N

Factor
|D Factor_Name

Accept_or_Reject

Explanation

Causal Factor 0.1

CF_Other_Dam 0.1

Mishap 10,

Evidence
]D Enclosure_Number

Description

Summary_Number

Summary

Mishap 0.1

Person
Name

SSN

Address_1

Phone_2

i Crewmember 0.1

Passenger 0.1

Officer Recall i J0.1

Officer Recall
Person

Position

1.N

Unit
Short_Name

ID UIC

PLAD

Address_1

Phone_2

Mlshap_Number

Crewmember
Person

1.1

Position

Rank

Rate

Service

Parent_Unit

Duty_Status

Signifigantjnjuries

Hospital_Days

NVG_Use

Model_Hours

Total Hours

Mishap 1.1

Causal Factor
Determination_Statement

Factor
1.1

RAC

Wrto_or_Comp

What_or_Mode

Why_or_Agent

Para_Number

Mishap 0.1

Mishap 0.N

Passenger
Person 1.1

Flightjnformation
Origin

Flight_Pur_Code

Mission

Destination

AirCrafLEvolution

Type_Flight_Plan

Day_Nlght

WX_Desc

Altitude

Position

Rank

Rate

Service

USN

Non_DoD

Duty_Status

Parent_Unit

Lost_Wk_Days

Signifigantjnjuries

Hospital_Days

Mishap 0.1

Mishap

68

APPENDIX B

NOTEBOOK SOURCE CODE

(WRITTEN BY LT HUGH BRIAN, USN)

unit Noteform;

interface

uses SysUtils,WinTypes, WinProcs, Classes, Graphics, Forms, Controls, Menus,
Dialogs, StdCtrls, Buttons, ExtCtrls, TabNotBk, Grids, IniFiles, Tabs, Spin,
Printers,Gauges, Aboutnot, Mask, Diagl, Printgd;

type
TNoteBookForm = class(TForm)
MainMenu: TMainMenu;
FileMenu: TMenuItem;
Saveltem: TMenuItem;
Exitltem: TMenuItem;
Nl: TMenuItem;
SaveDialog: TSaveDialog;
Helpl: TMenuItem;
About 1: TMenuItem;
StatusBar: TPanel;
Notebook: TTabbedNotebook;
Gridl: TStringGrid;
MishapPanel: TPanel;
MishapCategory: TComboBox;
Yesl: TButton;
Panel 1: TPanel;
MishapSeverity: TComboBox;
SeverityDone: TButton;
OprepMemo: TMemo;
GroupBox7: TGroupBox;
OprepPOC: TComboBox;
OprepType: TComboBox;
Notebookl: TNotebook;
Label7: TLabel;
Label8: TLabel;

69

Label 10: TLabel;
CallerName: TEdit;
CallerOrganization: TEdit;
MishapLocation: TEdit;
GroupBox3: TGroupBox;
MishapDescriptionMemo: TMemo;
GroupBoxll: TGroupBox;
Weather: TMemo;
DayNiteSel: TRadioGroup;
GroupBoxl3: TGroupBox;
Label35: TLabel;
Label36: TLabel;
Label37: TLabel;
Label38: TLabel;
LabeWO: TLabel;
Origin: TEdit;
MissionCode: TComboBox;
FPC: TComboBox;
Destination: TEdit;
AirEvol: TEdit;
TabSetLTTabSet;
Panel5: TPanel;
UnitName: TLabel;
Label3: TLabel;
Address: TLabel;
Label2: TLabel;
Labell5: TLabel;
AircraftTypeLabel: TLabel;
SquadronName: TEdit;
UnitPlad: TEdit;
SAddress: TEdit;
S State: TEdit;
AircraftTypeComboBox: TComboBox;
GroupBox2: TGroupBox;
CheckBox2: TCheckBox;
CheckBox3: TCheckBox;
CheckBoxl: TCheckBox;
CheckBox4: TCheckBox;
CheckBox5: TCheckBox;
CheckBox6: TCheckBox;
CheckBox7: TCheckBox;
CheckBox8: TCheckBox;
CheckBox9: TCheckBox;

70

CheckBoxll: TCheckBox;
SCVoice: TMemo;
Timer 1: TTimer;
POCPhone: TComboBox;
CadPlad: TComboBox;
TYCOM: TComboBox;
WingCom: TComboBox;
Label4: TLabel;
Label9: TLabel;
DodDead: TRadioGroup;
CivDead: TRadioGroup;
Grid2: TStringGrid;
Gauge 1: TGauge;
Labelll: TLabel;
UpdateUnitlnfo: TButton;
Labell3: TLabel;
Label 14: TLabel;
GroupBox5: TGroupBox;
Label5: TLabel;
Labell: TLabel;
Label6: TLabel;
LocalTime: TEdit;
ZuluTime: TEdit;
DateAndTime: TEdit;
UpdateTime: TButton;
Label 17: TLabel;
ZuluTimeSet: TSpinEdit;
Label 18: TLabel;
LatLong: TEdit;
Labell9: TLabel;
FlightPlan: TComboBox;
Label22: TLabel;
Altitude: TEdit;
Label39: TLabel;
ACGrid: TStringGrid;
SaveOprepVoiceReportl: TMenuItem;
OPREPMessagel: TMenuItem;
SafetyCenterVoiceReportl: TMenuItem;
MishapReportl: TMenuItem;
Contents 1: TMenuItem;
Panel2: TPanel;
UpdateMisAircraft: TButton;
AircraftNumber: TSpinEdit;

71

Label23: TLabel;
Panel3: TPanel;
Button3: TButton;
NumberCrew: TSpinEdit;
Label24: TLabel;
PersGrid: TStringGrid;
ShipPlad: TEdit;
Labell2: TLabel;
ComPhoneLabel: TLabel;
AutovonLabel: TLabel;
LTime: TEdit;
ZTime: TEdit;
Print 1: TMenuItem;
OprepVoiceReportl: TMenuItem;
OPREPMessage2: TMenuItem;
SafetyCenterVoiceReport2: TMenuItem;
MishapReport2: TMenuItem;
PrintDialogl: TPrintDialog;
N2: TMenuItem;
StartTimer: TButton;
Panel4: TPanel;
Button2: TButton;
PaxGrid: TStringGrid;
TabContinue: TButton;
MisSevQl: TRadioGroup;
MisSevQ2: TRadioGroup;
MisSevQ3: TRadioGroup;
MisSevQ4: TRadioGroup;
MisSevQ5: TRadioGroup;
Damage: TRadioGroup;
Injury: TRadioGroup;
CheckBoxl2: TCheckBox;
MishapNumber: TSpinEdit;
Label27: TLabel;
ServiceSel: TRadioGroup;
FleetCom: TComboBox;
Label20: TLabel;
UniCom: TComboBox;
Label21: TLabel;
UIC: TEdit;
Label29: TLabel;
LabeBO: TLabel;
Panel7: TPanel;

72

Panel8: TPanel;
MsgMemo: TMemo;
OprepRemarks: TMemo;
Panel9: TPanel;
Panel 10: TPanel;
Panelö: TPanel;
Label26: TLabel;
ALSSBox: TCheckBox;
CarLandBox: TCheckBox;
HeloLandBox: TCheckBox;
SarCheckBox: TCheckBox;
MishapReport: TMemo;
Panelll: TPanel;
GroupBoxl: TGroupBox;
Labell6: TLabel;
PaxNumber: TSpinEdit;
GroupBox4: TGroupBox;
LabeBl: TLabel;
InjuredPax: TSpinEdit;
GroupBoxö: TGroupBox;
Label32: TLabel;
InjuredNonOccupants: TSpinEdit;
AVPhone: TMaskEdit;
ComPhone: TMaskEdit;
Szip: TEdit;
PanelD: TPanel;
OfficerRecalll: TMenuItem;
BitBtn3: TBitBtn;
BitBtnl: TBitBtn;
BitBtn2: TBitBtn;
BitBtn4: TBitBtn;
BitBtn5: TBitBtn;
BitBtn6: TBitBtn;
BitBtn7: TBitBtn;
BitBtn8: TBitBtn;
BitBtn9: TBitBtn;
BitBtnl0: TBitBtn;
BitBtnl 1: TBitBtn;
BitBtnl2: TBitBtn;
BitBtnl3: TBitBtn;
BitBtnH: TBitBtn;
BitBtnl5: TBitBtn;
BitBtnl6: TBitBtn;

73

BitBtnl8: TBitBtn;
BitBtnl9:TBitBtn;
BitBtn20: TBitBtn;
BitBtn21: TBitBtn;
BitBtn22: TBitBtn;
Panell2: TPanel;
UpdateOfficer: TButton;
RecallMemo: TMemo;
BitBtnl7: TBitBtn;
BitBtn23: TBitBtn;
BitBtn24: TBitBtn;
procedure ShowHint(Sender: TObject);
procedure ExitItemClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure UpdateOfficerClick(Sender: TObject);
procedure MishapCatDoneCHck(Sender: TObject);
procedure TabSetlClick(Sender: TObject);
procedure TimerlTimer(Sender: TObject);
procedure StartTimerClick(Sender: TObject);
procedure UpdateOprepCIick(Sender: TObject);
procedure OprepPOCChange(Sender: TObject);
procedure UpdateOPClick(Sender: TObject);
procedure FormResize(Sender: TObject);
procedure UpdateUnitInfoClick(Sender: TObject);
procedure UpdateSafetyCallClick(Sender: TObject);
procedure UpdateMRClick(Sender: TObject);
procedure UpdateTimeClick(Sender: TObject);
procedure UpdateMshapClick(Sender: TObject);
procedure AircraftNumberChange(Sender: TObject);
procedure NumberCrewChange(Sender: TObject);
procedure AboutlClick(Sender: TObject);
procedure InjuredPaxChange(Sender: TObject);
procedure UpdateMisAircraftClick(Sender: TObject);
procedure Contents lClick(Sender: TObject);
procedure MishapReportlClick(Sender: TObject);
procedure SafetyCenterVoiceReportlClick(Sender: TObject);
procedure SaveOprepVoiceReportlClick(Sender: TObject);
procedure OPREPMessagelClick(Sender: TObject);
procedure Button2Click(Sender: TObject);
procedure AircraftTypeComboBoxChange(Sender: TObject);
procedure OprepVoiceReportlClick(Sender: TObject);
procedure OPREPMessage2Click(Sender: TObject);
procedure SafetyCenterVoiceReport2Click(Sender: TObject);

74

procedure MishapReport2Click(Sender: TObject);
procedure TabContinueClick(Sender: TObject);
procedure InfoCompClick(Sender: TObject);
procedure NfishapInfoCompleteClick(Sender: TObject);
procedure CompeteNextCIick(Sender. TObject);
procedure Button7Click(Sender: TObject);
procedure YeslClick(Sender: TObject);
procedure Button6Click(Sender: TObject);
procedure GotoMishapCatClick(Sender: TObject);
procedure CompleteMishapCatClick(Sender: TObject);
procedure MishapSevDoneClick(Sender: TObject);
procedure Button8CHck(Sender: TObject);
procedure MRCompleteClick(Sender: TObject);
procedure OfficerRecalllClick(Sender: TObject);

private
{Private declarations}
public
{Public declarations}
end;

var
NoteBookForm: TNoteBookForm;

type TMishapCLass = (ClassA,ClassB,ClassC);
const
ScreenWidth: Longlnt = 640; {I designed my form in800x600 mode.}
ScreenHeight: Longlnt = 480;

implementation

{$R *.DFM}

procedure TNoteBookForm. ShowHint(Sender: TObject);
begin

StatusBar.Caption := Application.Hint;
end;

procedure TNoteBookForm.ExitItemClick(Sender: TObject);
begin
Close;

75

end;

procedure TNoteBookForm.FormCreate(Sender: TObject);
var
Intro: TIntroForm; {IntroForm pusedo splash screen}
Notebooklni: TIniFile;
R,C,I: Integer; {Counters}
Name, Phone: String;
UnitlnfoList: TStringList;
x, y: Longlnt; {Integers will not not a large enough value.}
begin
{Screen Settings}
{this comes to you with courtesey from Loyd of Borland Tech Support}
NoteBookForm.scaled := true;
x := getSystemMetrics(SM_CXSCREEN);
y := getSystemMetrics(SMCYSCREEN);
if (x o ScreenHeight) or (y o ScreenWidth) then

begin
NoteBookForm.height := NoteBookForm.height * y DIV ScreenHeight;
NoteBookForm.width := NoteBookForm.width * x DIV ScreenWidth;
scaleBy(x, ScreenWidth);

end;
{End Screen Settings}

{Initial Settings }
TabSetl.Tabs := Notebookl.Pages;
Notebook.PageIndex:=0;
Application. OnHint := ShowHint;
Labell 1 .Transparent:=True;

{set combo boxes to first item}
for i:= 0 to GroupBox7.ControlCount -1 do
TComboBox(GroupBox7.Controls[i]).ItemIndex:=0;
{Update time and date stamp when program loads}
UpdateTime. Click;
{Start mishap timer}
StartTimer. Click;
{Create List for retrieving valuse from Ini File}
UnitlnfoList—TStringList. Create;
{NoteBok.ini file initialization}
NoteBookIni:=TInMle.Create('notebook.ini');
for R~ 1 to Gridl.RowCount-1 do begin

Gridl.Cellstl^-NoteBooklni.ReadStringCOfficerRecair, 'Name' +
IntToStr^^AME');

76

Gridl.Cells[2,R]:= NoteBookIni.ReadString('OfficerRecaIl', 'Unitld' +
IntToStr(R),SquadronName.Text);

Gridl.Cells[3,R]:= NoteBookIni.ReadString('OfficerRecair, 'CPhone' +
IntToStr(R),,COMPHONE');

Gridl.Cells[4,R]:=NoteBookIni.ReadString('OfficerRecair, 'APhone' +
IntToStr(R),'AUTOVON#');

end;
for R:= 1 to Gridl.RowCount-1 do begin

Grid2.Cells[l,R]:= NoteBookIni.ReadString('MisBoard', 'Name' +
IntToStr(R),*NAME');

Grid2.Cells[2,R]:= NoteBookIni.ReadString('MisBoard', 'Unitld' +
IntToStr(R),SquadronName. Text);

Grid2.Cells[3,R]:= NoteBookIni.ReadString(MsBoard*5 'CPhone* +
IntToStr(R),'COMPHONE');

Grid2.Cells[4,R]:= NoteBookIni.ReadString(*MisBoard', 'APhone' +
IntToStr(R),'AUTOVON#');

end;

{Read in Unitlnfo into TSTringList}
NoteBookIni.ReadSectionValues('UnitInfo',UnitInfoList);

{Assign values from List to edit boxes}
SquadronName.Text:=UnitInfoList.Values['UnitName'];
UnitPlad.Text:=UnitInfoList.Values[*UnitPlad'];
SAddress.Text:=UnitInfoList.Values['Address'];
SState.Text:=UnitInfoList.Values['State'];
SZip.Text:=UnitInfoList.Values['Zip'];
ShipPladText-UnitlnfoListValuesf'ShipPlad'];
AircraftTypeComboBox.Text:=UnitInfoList.Values['AircraftType'];
CadPlad.Text:=UnitInfoList.Values['CADPlad'];
AVPhone.Text:=UnitInfoList.Values[*AVPhone'];
ComPhone.Text:=UnitInfoList.Values['ComPhone'];
TYCOM.Text:=UnitInfoList.Values['Tycom'];
Wingcom.Text—UnitlnfoList.ValuesfWingcom'];
FleetCom. Text:= UnitlnfoList. Values[TleetCom'];
UniCom. Text: = UnitlnfoList. Values[TJnifiedCom'];
ZuluTimeSet.Value—NoteBooklni.ReadlntegerCUnitlnfo'/ZuluTimeSet*, 0);
NfishapNumber.Value:=NoteBookIni.ReadInteger('UnitInfoVNfishapNumber', 0);
Servic^Sel.ItemIndex:=NoteBooldni.ReadInteger(,UnitInfo,,'ServiceSer,0);
UIC.Text- UnitlnfoList. ValuesCUIC'];

NoteBooklni.Free;
UnitlnfoList.Free;

{Fül Grid Labels}
Gridl .Cells[0,0]:= 'Officer Recall';

77

Gridl.Cells[0,l]
Gridl.Cells[0,2]
Gridl.Cells[0,3]
Gridl.Cells[0,4]
Gridl.Cells[0,5]
Gridl.Cells[0,6]
Gridl.Cells[0,7]
Gridl.Cells[0,8]
Gridl.Cells[0,9]

'CO/OIC;
: 'XO';
'OPS Officer';

: Maint, Officer';
Tlight Surgeon';
'ASO';
'Safety Officer';
'CACCO Officer':
'PAO Officer';

{Grid One Label fill}
Gridl.Cells[l,0]:= 'Rank&Name';
Gridl.Cells[2,0]:= 'Squadron';
Gridl.Cells[3,0]~ 'Home Phone';
Gridl.Cells[4,0]:= 'DNS Work Phone';

Grid2.Cells[0,0]
Grid2.Cells[0,l]
Grid2.Cells[0,2]
Grid2.Cells[0,3]
Grid2.Cells[0,4]
Grid2.Cells[0,5]

"Proposed Mishap Board';
= AMB Senior Member';
= Tlight Surgeon';
= "Main! Officer';
= 'OPS Officer';
= 'Other';

|:= 'Rank&Name';
: 'Squadron';
'Home Phone';

|:= 'DNS Work Phone';

Grid2.Cells[l,0]:=
Grid2.Cells[2,0]:=
Grid2.CeUs[3,0]:=
Grid2.Cells[4,0]:=
{fill Aircrew data label}
PersGrid.Cells[0,0]:='Position';
PersGrid.Cells[l,0]:='Rank';
ifServiceSel.ItemIndex= 1 then

PersGrid.Cells[2,0]:='MOS' else
PersGrid.Cells[2,0]~'Desg/NEC;

PersGrid.Cells[3,0]:='Service';
PersGrid.Cells[4,0]:='ParentUnit';
PersGrid.CeUs[5,0]:=T)utyStarus';
PersGrid.CeUs[6,0]:=,Sig.Injuries';
PersGrid.Cells[7,0]:='Hosp.Days';
PersGrid.Cells[8,0]:=LostWkDays';
PersGrid.Cells[9,0]:=NVGS USED';
PersGrid.Cells[10,0]:=TOTAL HOURS';
PersGrid.Cells[l 1,0]:=*MODEL HOURS';
{Fill Aircraft Data Labels}

78

ACGrid.Cells[0,0]:=,Model';
ACGrid.Cells[1,0] --Bureau*';
ACGrid.CensP.Ol^Side*';
ACGrid.CeHs[3,0]:=Trmf;
ACGrid.Cells[4,0]:=*EngineType/Model/Series';
ACGridCellstS^-'EngmeSerialtf';
ACGrid.Cells[6,0]:=*EquipmentModel';
ACGrid.Cells[7,0]:='EquipmentMake';
ACGrid.Cells[8,0]:='EquipmentPart#';
ACGrid.Cells^oj-'EquipmentCode*;
{FILL INJURED PASSENGER DATA FIELD}
PaxGrid.Cells[0,0]:=RANK';
if ServiceSel.Itemlndex = 1 then begin

PaxGrid.Ceüsll.OJ^OS';
PaxGrid.Cells[2,0]:='USMC';
end else begin
PaxGrid.CeUs[l,0]:=UESG.';
PaxGMCdlsP.Ol^SNTDOD';
end;

•DOD/Non-DOD';
^TJnif;

'Duty Status';
-InjuryType';

TnjuryDesc';
HospitalDays';
LostWorkDays';

PaxGrid.Cells[3,0]:
PaxGrid.Cells[4,0]:
PaxGrid.Cells[5,0]:
PaxGrid.Cells[6,0]:
PaxGrid.Cells[7,0]:
PaxGrid.Cells[8,0]:
PaxGrid.Cells[9,0]:

{Create Intro Screen}
Intro:= TIntroForm.Create(self);
Intro. ShowModal;
if Intro.ModalResult = mrNo then Intro.Free

else begin
Notebook.PageIndex:= 9;
Intro.Free
end;

end; {End of MainForm Create}

{Officer recall update to the NoteBoklNI file
Updates the officer recall list gridBox and the mishap
board GridBox}

procedure TNoteBookForm.UpdateOfficerClick(Sender: TObject);
var
R, C: Longlnt;

79

NoteBooklni: TIniFile;
begin
{Write Officer Recall to NoteBoklni}
if MessageDlg('Are you sure you want to change OFFICER RECALL
Information?',mtConfirmation,mbOKCancel,0) = mrOk
then begin
NoteBookIni~TIniFile.CreateCnotebook.ini');

for R:= 1 to Gridl.RowCount-1 do begin
with NoteBooklni do begin
WriteString('OfficerRecair,'Name,+IntToStr(R), Grid 1 .Cells[1 ,R]);
WriteStringCOfficerRecall^TJnitld' + IntToStr(R), Gridl.Cells[2,R]);
WriteStringCOfficerRecallVCPhone'+IntToStrCR), Gridl.Cells[3,R]);
WriteString(*OfficerRecallVAPhone' +IntToStr(R), Gridl.Cells[4,RJ);
end;

end;
for R:= 1 to Grid2.RowCount-l do begin
with NoteBooklni do begin

WriteString('MisBoard,,'Name'+IntToStr(R), Grid2.Cells[l,R]);
WriteStringCMisBoard^TJnitld' + IntToStr(R), Grid2.Cells[2,R]);
WriteStringCMisBoardVCPhone'+IntToStr(R), Grid2.Cells[3,R]);
WriteStringCMsBoard'/APhone' +IntToStr(R), Grid2.Cells[4,R]);
end;

end;
NoteBooklni.Free;
end;

end;

(Don't delelte}
procedure TNoteBookForm.MishapCatDoneClick(Sender: TObject);
var

MishapType, Mishaplnjury: TMishapClass;
begin
if (Damage.Itemlndex = 0) or (Damage.Itemlndex = 1)
then MishapType:= ClassA;
if (Damage.Itemlndex = 2) then MishapType:=ClassB;
if (Damage.Itemlndex = 3) then MishapType:=ClassC;

if (Injury.Itemlndex = 0) or (Injury.Itemlndex = 1)
then Mishaplnjury— ClassA;

if (Injury.Itemlndex = 2) or (Injury.Itemlndex = 3)
then Mishaplnjury—ClassB;

if (Injury.Itemlndex = 4) then Mishaplnjury—ClassC;

80

if (MishapType = ClassA) or (Mishaplnjury = ClassA)
then MishapSeverity.ItemIndex:= 0 else

if (MishapType = ClassB) or (Mishaplnjury = ClassB)
then MishapSeverity.ItemIndex:= 1 else

if (MishapType = ClassC) or (Mishaplnjury = ClassC)
then MishapSeverity.ItemIndex:= 2;

end;

{Determine mishap severity}
procedure TNoteBookForm.TabSetlClick(Sender: TObject);
begin
Notebook 1 .Pagelndex:= TabSetl .Tablndex;
end;

procedure TNoteBookForm.TimerlTimer(Sender: TObject);
var
minutes: integer;
begin
Timerl .Tag:=Timerl .TAg+1;
Gaugel.Progress:= Timerl .Tag;
Label 11.Caption: = IntToStr(Timerl.Tag) +' Minutes of 60 into Mishap';
if (Timerl .Tag = 5) then
MessageDlg('OPREP-3 Voice Report Due. OPREP-3 Message due in 15
miniutes',mtInformation, [mbOk], 0);
if (Timerl.Tag = 20)then
MessageDlg('OPREP-3 Message Due.',mtInformation, [mbOk], 0);
if (Timerl .Tag = 60)then
MessageDlg('Safety Center Voice Report Due.',mtInformation, [mbOk], 0);
if (Timerl .Tag = 30)then
MessageDlgCMishap Report Due in 3.5 hours ',mtInformation, [mbOk], 0);
if (Timerl .Tag = 60)then
MessageDlgCMishap Report Due in 3 hours ',mtInformation, [mbOk], 0);
if (Timerl.Tag = 120)then
MessageDlgCMishap Report Due in 2 hours ^mtlnformation, [mbOk], 0);
end;

procedure TNoteBookForm.StartTimerClick(Sender: TObject);
begin
Timerl .Enabled:=True;
end;

81

{Update Oprep Voice Report}
procedure TNoteBookForm.UpdateOprepClick(Sender: TObject);
var
Report: TStringList;
i:integer;
begin

checkBox6.Checked:= True;
Report:=TStringList.Create;
OprepMemo. Lines. Clear;
With Report do begin
Add(DateAndTime. Text);
Add(");
Add(OprepPOC.Text +' THIS IS ' + SquadronName.Text + ' OPREP-3 * +
OprepType.Text +' OVER.');

AddC);
Add('Response:');
Add(""+SquadronName.Text +' THIS IS ' + OprepPOC.Text +', SEND OPREP-3 ' +
OprepType.Text +'.'+"");
AddC);
Add(OprepPOC.Text +' THIS IS ' + SquadronName.Text);
Add(#13);
If OprepType.Itemlndex = 0 then
Add(TLASH) else Add(TMMEDIATE');

Add('OPREP-3 '+ OprepType.Text);
Add(");
Add(,UNCLASSIFIED,);
AddCLINELN/A);
Add(");
Add('LINE 2:'+ MishapLocation.Text);
Add(");
Add('LINE 3:'+MishapDescriptionMemo.Text);

{filler so file will write to disk}
for i:=l to 30 do

Add(« ');
end;
OprepMemo.LInes:= Report;
Report.Free;

end;
{Synchonize POC PHone Number with phone list}

procedure TNoteBookForm.OprepPOCChange(Sender: TObject);
begin
POCPhone. Itemlndex-OprepPOC. Itemlndex;

82

end;
{Update OPREP Message}
procedure TNoteBookForm.UpdateOPClick(Sender: TObject);
var
Report, TempList:TStringList;
i,j:integer;
begin

Checkbox5 .Checked:=True;
Report:=TStringList. Create;
MsgMemo.LInes.Clear;
With Report do begin
Add(TAAUZYUW JulianDate -UUUU-- .');
AddCZNRUUUUU');
Add(*P'+ DateAndTime.Text+' YZB');
Add(");
Add(TM: *+UnitPlad.Text);
Add(TO: CNO WASHINGTON DC //JJJ//');
Add(' '+ FleetCom.Text + V/JJJ//1);
Add(' '+ UniCom.text+ V/JJJ//');
Add(* ' + TYCOM.Text+' //JJJ//');
Add(' , + WingCom.Text + 7/JJJ//');

Add(TNFO:');
Case Injury.ItemlNdex of

0: begin
if (ServiceSel.Itemlndex = 1) then Add(' CMC WASHINGTON DC//JJJ//*);
Add(' CNO NOVEMBER ONE WASHINGTON DC //JJJ//1);
Add(* CHNAVPERS WASHINGTON DC //JJJ//');
Add(' COMNISCOM WASHINGTON DC //22D//1);
end;

1,2,3,4: begin
if (ServiceSel.Itemlndex = 1) then Add(' CMC WASHINGTON DC//JJJ//1);
Add(' CNO NOVEMBER ONE WASHINGTON DC //JJJ//');
Add(' CHNAVPERS WASHINGTON DC //JJJ//');
end;

end;
{if DoDDead.Itemlndex = 0 then begin}

if CivDeadltemlndex = 0 then Add(' NAVY JAG ALEXANDRIA VA);
Add(* COMNAVAIRSYSCOM WASHINGTON DC//JJJ//1);
Add(' COMNAVSAFECEN NORFOLK VA //00/10/11/541//');
Add(' NAVMARINTCEN WASHINGTON DC //JJJ//');

83

Add('BT');
Add('UNCLAS');
Add('MSGID/OPREP-3NB/*+SquadronName.Text+ VOO' +

IntToStr(MishapNumber.Value)+'/'
+ FormatDateTime('mmm',StrToDateTime(ZTime.Text)) +'//');

Add('REF/A/OPREP-3NB/'+SquadronName.Text + '/'+ DateAndTime.Text + '//');
Add(*FLAGWORD/'+ OPREPTYPE.Text +'/-//');
AddCTTMELOC/1 + DateAndTime.Text+V + LatLong.Text + '/INIT//');
Add('GENTEXT/INCIDENT IDENTIFICATION AND DETAILS/');
Add(MishapLocation.Text);
Add(MishapDescriptionMemo. Text);
Add(MISHAP DATA.');

Add('AIRCRAFT DATA.');
TempList:=TStringList.Create;
TempList:=AddGridList(ACGrid);
AddStrings(TempList);
TEmpList.Free;

Add('CUSTODIAN LOCATION. *+ ShipPlad.text);
AddCMISSION. '+ MissionCode.Text);
AddCEVOLUTION.'+ AirEvol.Text);
Add('AIRCREW AND PASSENGERS. SOULS ONBOARD ' +

IntToStr(NumberCrew.Value+PaxNumber. Value));
Add('SAR STATUS.');
Add('//');
Add(");
AddCRMKS/1);
Add(OprepRemarks.Text+7/');
AddCBT');
Add(Gridl.Cells[l,l]+', COMMANDING OFFICER,'+ SquadronName.Text);
end;
MsgMemo.LInes:= Report;
Report .Free;

end;

procedure TNoteBookForm.FormResize(Sender: TObject);
begin
Labell l.Left:= Gaugel.Width div 2 - Labell 1.Width div 2;
end;
{CheckList Update }
procedure TNoteBookForm.UpdateUnitInfoClick(Sender: TObject);
var

84

NoteBooklni: TIniFile;
R,C: integer;
begin
if MessageDlg('Update Squadron Information?',mtConfirmation,mbOKCancel,0) = mrOk
then begin
NoteBookIni:= TIniFile. Create('notebook.ini');

with NoteBooklni do begin
WriteString(lUnitInfoVUnitNamel,SquadronName.Text);
WriteString('UnitInfo,

;'UnitPlad'5UnitPlad.Text);
WriteString('UnitInfoVAddress,

5SAddress.Text);
WriteString('UnitInfoVState',SState.Text);
WriteString(UmtInfoVZip',SZip.Text);
WriteStringCUnitlnfoVShipPlad^ShipPladText);
WriteString(TJnitInfoVAircraftType',AircraftTypeComboBox.Text);
WriteStringCUnitlnfo'/CADPlad^CADPladText);
WriteString(TJnitInfo','AVPhone*, AVPhone. Text);
WriteString('UnitInfo,,,ComPhone,,CornPhone.Text);
WriteString(,UnitInfo,,Tycom,,TYCOM.Text);
WriteStrmg(UnitInfo^WmgCom\WingCom.Text);
WritelntegerCUnitlnfo'/ZuluTimeSet^ZuluTimeSet. Value);
WriteInteger(XJnitInfo',lMishapNumber',MishapNumber. Value);
WriteInteger(TJnitInfoVServiceSer,ServiceSel.ItemIndex);
WriteString(TMtIrrfb\TJIC^UIC.Text);
WriteString(TJnitInfo',TleetCom',FleetCom.Text);
WriteString(TJnitInfo',,UniriedCom,,UniCom.Text);

' for R := 1 to Gridl.RowCount -1 do
Grid 1. Cells[2,R] :=SquadronName. Text;

for R:= 1 to Grid2.RowCount -1 do
Grid2.Cells[2,R]:=SquadronName.Text;

end;
Notebooklni.Free;
Notebook.Pagelndex :=1;
end;

end;
{Update Safety Center PHone Report}
procedure TNoteBookForm.UpdateSafetyCallClick(Sender: TObject);
var
Temp: string;
Report: TStringList;
ij:integer;
begin
Report:=TStringList.Create;

85

With Report do begin
Add('CALL: NAVAL SAFETY CENTER')
AddO;
Add(" AUTO VON: 564-2929/3520');
Add(' COMMERCIAL: (804)444-2929/3250 (CALL COLLECT)')
Addf);
Add(TNCLUDE THE FOLLOWING INFORMATION *)
AddO');
Add('A:'+ SquadronName.Text);
AddCB: '+ AircraftTypeComboBox.Text);
Temp:-';
for i:= ACGrid.RowCount downto 1 do

Temp:= Temp+ ACGrid.Cells[l,i]+*';
Add('C: '+temp);

Add('D:'+ MishapLocation.Text + ' The Lat/Long of the mishap is '+ LatLong.Text);
Add(*E:'+ MishapDescriptionMemo.Text);
Add(T:'+ "Dammage/Injury and Fatalities');
Add('G:'+ Gridl.Cells[0,6]+ ':' + Gridl.Cells[1,6]);
Add(' COM:' +Gridl.Cells[3,6]+' AV: ' + Gridl.CellsR 61)
AddO; '
end;

CheckBox8. Checked:=True;
SCVoice.LInes:= Report;
Report.Free;
end;
{Update Mishap Report)
procedure TNoteBookForm.UpdateMRClick(Sender: TObject);
var
Temp: string;
Report,TempList:TStringList;
ij,r,c: Integer;
begin
CheckBoxl 1 .Checked:=True;
Report"TStringList.Create;
MishapReport.LInes.Clear;
With Report do begin

Add('PAAUZYUW JulianDate -UUUU- .');
Add('ZNR UUUUU);
Add('P'+ DateAndTime.Text+' YZB')
Addf);
Add('FM '+UnitPlad.Text);

Add('TO CNO WASHINGTON DC//JJJ//');

86

Add('CMC WASHINGTON DC//A/SD//');
Add('COMNAVSAFECEN NORFOLK VA//00/10/11/FILE//');
Add(CadPlad.Text);

Add('INFO ');
AddCNAVAIRWARCENACDIV LAKEHURST NJ//JJJ//*);
Add('COMNAVSEAS YSCOM WASHINGTON DC//JJJ//");
Add(ShipPlad.Text);
if DoDDead.Itemlndex = 0 then

Add(*ARMED FORCES INSTITUE OF PATHOLOGY WASHINGTON
DC//CME-0//1);
if CivDead.Itemlndex = 0 then AddCNAVY JAG ALEXANDRIA VA //JJJ//');
if CarLandBoxCheckedthen Add('LSO SCHOOLNAS OCEANA VA//JJJ//1);
if ALSSBox.Checked then begin

AddCNAVAIRWARCENWPNDIV CHINA LAKE CA//JJJ//');
AddCNAVAIRWARCENACDIV WARMINSTER PA//JJJ//*);
Add('ALL AEROMEDICAL ACTIVITIES//');
end;

if HeloLandBox. Checked then begin
Add('HELSUPPRON EIGHT//');
Add(*HELSUPPRON THREE//1);
end;

if SARCheckBox.Checked then AddCHELANTISUBRON ONE//60//*);

AddCBT');
AddCUNCLAS FOUO //N03750//');
Add(");

AddCSUBJ/THIS IS AN INITIAL GENERAL USE NAVAL AIRCRAFT MISHAP
REPORT/1);

Add(SquadronName.Text+', '+MisHapSeverity.Text+' '+MishapCategory.Text+' *
+ '0' + IntToStr(MishapNumber.Value)+'-'
+ AnsiUpperCase(FormatDateTimeCyy '5StrToDateTime(LTime.Text)))
+', '+ ACGrid.Ceüs[0,l] + '^REPORT SYMBOL OPNAV 3750-20//");

Add('REF/A/DOC/OPNAVrNST3750.6Q/-//');
AddCREF/B/DOC/JAGINST 5800.7C/-//1);
AddCRMKS/1. SUMMARY. '+MishapDescriptionMemo.Text);
Add('2 DATA');
AddC A. AIRCRAFT.');

for i:= 1 to ACGrid.RowCount -1 do begin
Add(");

87

for j:= 0 to ACGrid.ColCount - 1 do
Add('('+IntToStr(j+l)+')' + ACGrid.Cells[j,i]);

end;
Add(");
Add('B EQUIPMENT. NA);
AddO;
Add('C. ENVIRONMENT.');
AddCCiy+FormatDateTimeChhnn^StrToDateTimeCLTime.Text)));
Add(,(2),+FormatDateTime('ddmmyy', StrToDateTime(LTime. Text)));
Add('(3)'+IntToStr(ZuluTimeSet. Value));
Temp:=";
if DayNiteSel.Itemlndex = 0 then Temp:= 'DAT else Temp^TSflGHT';

Add(*(4)'+ Temp);
Add('(5)'+LatLong.Text);
Add('(6)'+Altitude.Text);
AddC(7)'+Weather.Text);
AddO;
Add('3. CIRCUMSTANCES');
Add(*(A)'+Origin.Text);
Add(*(B)'+MissionCode.Text);
Add('(C),+FPC.Text);
Add(*(D)'+FlightPlan.Text);
Add('(E)'+Destination. Text);
Add('(F)'+AirEvol.Text);
AddO;
Add('4. MISHAP CATEGORY');
Add(MishapSeverity.Text+' '+MishapCategory.Text+ ''
+ '0' + IntToStr(MshapNumber.Value)+'-'
+ AnsiUpperCase(FormatDateTime('yy !,StrToDateTime(LTime.Text))));

AddO;
Add('5. DAMAGE AND COSTS');
AddO;
If Damage. Itemlndex= 0 then

Add(' A. AIRCRAFT DESTROYED') else Add(' A TBD')
Add(' B. TBD');
Add(' C. TBD');
AddO;
Add('6. PERSONNEL INFORMATION AND INJURIES');
Add(' A. SOULS ON BOARD: '+ IntToStr(NumberCrew'Value +

PaxNumber. Value));
Add(' B. CREW: '+IntToStr(NumberCrew.Value));

88

TempList:=TStringList. Create;
TempList:=AddGridList(PersGrid);
AddStrings(TempList);
TEmpList.Free;

AddO;
if PaxNumber. Value = 0 then begin

Add(*C. TOTAL NUMBER OF PASSENGERS: NA);
AddCO) INJURED PASSENGERS: NA);
Add('(2) UNINJURED PASSENGERS: NA);
end else

begin
Add(*C. TOTAL NUMBER OF PASSENGERS. '+

IntToStr(PaxNumber. Value));
if InjuredPax. Value > 0 then

begin
Add(*(l) INJURED PASSENGERS: '+IntToStr(InjuredPax. Value));
TempList:=TStringList.Create;
TempList:=AddGridList(PaxGrid);
AddStrings(TempList);
TempList.Free;
end
else Add(' (1) INJURED PASSENGERS: NA);
Report.Add('(2) UNINJURED PASSENGERS: '+

IntToStr(PaxNumber. Value - InjuredPax. Value));
end;

Add(T). INJURED NON-OCCUPANTS: '+IntToStr(InjuredNonOccupants. Value));
AddO;
Add(E. AEROMEDICAL ANALYSIS WILL BE SENT');

AddO;
Add(7. MISHAP INVESTIGATION');
Add(");
Add('8. JAG MANUAL INVESTIGATION);

AddO;
Add(' TfflS MISHAP (DOES/DOES NOT) MEET THE REQUIREMENTS IN REF

B FOR A JAG MANUAL INVESTIGATION);
Add(*9. POINTS OF CONTACT*);
AddO;
TempList:=TStringList. Create;
TempList:=AddGridList(Grid2);
AddStrings(TempList);

89

TEmpList.Free;
Add(V/');
Add('BT');
Add('#0001');
end;

MishapReport.Lines~ Report;
Report.Free;
end;

procedure TNoteBookForm.UpdateTimeClick(Sender: TObject);
var
LocalTimeStamp, ZuluTimeStamp: TDateTime;
begin
{Update Mishap Info Time Groups}
LocalTime Stamp: =Now;
ZuluTimeStamp:=(LocalTimeStamp - ZuluTimeSet.Value/24);
LTime.Text:=DateTimeToStr(LocalTimeStamp);
ZTime.Text:=DateTimeToStr(ZuluTimeStamp);
LocalTime.Text:=FormatDateTime('dd mmm yy hhnn',LocalTimeStamp);
ZuluTime.Text:=FormatDateTime('dd mmm yy hhnn',ZuluTimeStamp);
DateAndTimeText—FonnatDateTmeC'ddhhnnZmmmyy^ZuluTimeStamp);
end;

procedure TNoteBookForm.UpdateMishapClick(Sender: TObject);
var
ij,R: integer,
begin
{Fill Grids with test data}
for R:= 1 to PersGrid.RowCount-1 do begin

PersGrid.Cells[0,R]:=?AC;
if ServiceSel.Itemlndex = 1 then begin

PersGrid.Cells[l,R]
PersGrid.Cells[2,R]
PersGrid.Cells[3,R]
end else begin
PersGrid.Cells[l,R]
PersGrid.Cells[2,R]
PersGrid.Cells[3,R]
end:

= ,Capf;
= MOS';
= TJSMC;

='LT';
='1310';
^SN1;

PersGrid.Cells[4,R]
PersGrid.Cells[5,R]
PersGrid.Cells[6,R]
PersGrid.Cells[7,R]

=SquadronName. Text;
='ONDUTY;
-•NOINJURY1;

'#OFHOSP.':

90

PersGrid.Cells[8,R] :=INOLWD';
PersGrid.Cells[9,R]:=,NVGS NOT USED';
PersGrid.Cellsf 10,R] :='0HOURS';
PersGrid.Cells[l l,R]:='0HOURS';
end;

end;

procedure TNoteBookForm.AircraftNumberChange(Sender: TObject);
begin
ACGrid.RowCount:=AircraftNumber. Value + 1;
ACGrid.CUentHeight:= Notebook!.Height - 50;
end;

procedure TNoteBookForm.NumberCrewChange(Sender: TObject);
begin
if (NumberCrew. Value <=2) then begin
PersGrid.Height:= 57;
PersGrid.RowCount:=2;
end;

PersGrid.RowCount:= NumberCrew. Value +1;
PersGrid.ClientHeight:=Notebookl .Height -75;
end;

procedure TNoteBookForm.AboutlClick(Sender: TObject);
var
About: TAboutMishap;
begin
About:=TAboutMishap.Create(NoteBookForm);
About. ShowModal;
About .Free
end;

procedure TNoteBookForm.InjuredPaxChange(Sender: TObject);
begin
if PaxNumber. Value < InjuredPax. Value then
PaxNumber.Value:= PaxNumber. Value + 1;
if (InjuredPax. Value <= 1) then begin
PaxGrid.Height:= 57;
PaxGrid.RowCount:=2;
end else
PaxGrid.RowCount:=InjuredPax. Value + 1;
PaxGrid.ClientHeight:=Notebookl.Height - 75;
end;

91

procedure TNoteBookForm.UpdateMisAircraftClick(Sender: TObject);
var
ij,k: integer;
begin
{Fill Aicraft Grid with default values}
for i := 1 to ACGrid.RowCount - 1 do

for j:=0 to ACGrid.ColCount -1 do begin
ACGrid.Cells[0,i3:=AircraftTypeComboBox.Text;
ACGrid.Cells[l,i]:=,BUNO,;
ACGrid.Cells[2,i]:=*SIDE#';
ACGrid.Cells[3,i]~ SquadronName.Text;
ACGrid.Cells[4,i]-'TBD';
ACGrid.Cells[5,i]~,TBD';
end;

end;

procedure TNoteBookForm. Contents lClick(Sender. TObject);
begin
Application.HelpFile:=('notebook.hlp');
Application.HelpContext(1000);
end;

procedure TNoteBookForm.MishapReportlClick(Sender: TObject);
begin
SaveDialog.Filename:-misreprt.txt';
SaveDialog.Execute;
MishapReport.Lines.SaveToFile(SaveDialog.Filename);

end;

procedure TNoteBookForm.SafetyCenterVoiceReport 1 Click(Sender. TObject);
begin
SaveDialog.FileName:-centrvoc.txt';
SaveDialog.Execute;
SCVoice.Lines.SaveToFile(SaveDialog.Filename);

end;

procedure TNoteBookForm. SaveOprepVoiceReport 1 Click(Sender: TObject);
begin
SaveDialog.Filename:='Oprepvoc.txt';
SaveDialog.Execute;

92

MishapReport.Lines.SaveToFile(SaveDialog.Filename);
end;

procedure TNoteBookForm.OPREPMessagelClick(Sender: TObject);
begin
SaveDialog.Filename:='OPREPmsg.txt';
SaveDialog.Execute;
MsgMemo.Lines.SaveToFile(SaveDialog.Filename);

end;

procedure TNoteBookForm.Button2Click(Sender: TObject);
var
R: integer;
begin
if PaxNumber. Value < InjuredPax. Value then

PaxNumber.Value:= InjuredPax. Value;

for R:= 1 to PAXGrid.RowCount-1 do begin
if ServiceSel.Itemlndex = 0 then begin

PaxGrid.Cells[0,R]:=,RANK,;
PaxGrid.Cells[1 ,R] -DESG.';
PaxGrid.Cells[2,R]:=,USN*;
end else begin

PaxGrid.Cells[(>,R]:=,RANK';
FaxOnd-Cens^Rl^'MOS';
PaxGrid.Cells[2,R] :=TJSMC;

end;
PaxGrid.Cells[3,R]:=TX)D';
PaxGridCeUs^^-'TBD';
PaxGrid.Cells[5,R]:='0:NDUTY;
PaxGrid.CellsföRJ-TBD';
PaxGridCellstV^j-'TBD*;
PaxGrid.CellsföRj-'TBD*;
PaxGrid.Cells^Rl-'TBD';
end;

end;

procedure TNoteBookForm.AircraftTypeComboBoxChange(Sender: TObject);
begin
CADPlad.ItemIndex:=AircraftTypeComboBox.ItemIndex;
end;

93

procedure TNoteBookForm.OprepVoiceReportlClick(Sender: TObject);
begin

PrintReport(OprepMemo);
end;

procedure TNoteBookForm.OPREPMessage2Click(Sender: TObject);
begin
PrintReport(MsgMemo);
end;

procedure TNoteBookForm.SafetyCenterVoiceReport2Click(Sender: TObject);
begin
PrintReport(SCVoice);
end;

procedure TNoteBookForm.MishapReport2Click(Sender: TObject);
begin
PrintReport(MishapReport);
end;

procedure TNoteBookForm. TabContinueClick(Sender: TObject);
begin
With Notebook do
Pagelndex:= Pagelndex + 1;
end;

procedure TNoteBookForm.InfoCompClick(Sender: TObject);
begin
NoteBookl.Pagelndex— NoteBook.Pagelndex + 1;
TabSetl.TabIndex:=TabSetl.TabIndex+l;
end;

procedure TNoteBookForm.MishapInfoCompleteClick(Sender: TObject);
begin
if MessageDlg('MISHAP INFORMATION COMPLETE! The next step in the*+
' check hst is to CREATE THE OPREP-3 MESSAGED
' Do you want to continue with the Checklist?',
mtConfirmation,rnbOKCancel,0) = mrOk
then begin
CheckBox 12. Checked:=True;
NoteBook.Pagelndex— 6;
end;
end;

94

procedure TNoteBookForm.CompeteNextClick(Sender: TObject);
begin
if MessageDlg('OPREP-3 VOICE REPORT COMPLETE! The next step in the'+
' check list is FILL OUT THE REMAINING SUB TABS OF THE MISHAP INFO tab'+
'Do you want to continue with the Checklist?',
mtConfirmation,mbOKCancel,0) = mrOk
then begin
CheckBox7.Checked:= True;
NoteBook.PageIndex:=2;
NoteBookl .Pagelndex:=l;
end;
end;

procedure TNoteBookForm.Button7Click(Sender: TObject);
begin
if MessageDlg('You have just completed the OPREP MESSAGE. The next step is'+

* is to create THE SAFETY CENTER VOICE REPORT.' +
' Do want to Continue?',

mtConfirmation,mbOKCancel,0) = mrOk
then begin
CheckBox6.Checked:= True;
TabContinue.Click;
end;
end;

procedure TNoteBookForm.YeslClick(Sender: TObject);
begin
if (MisSevQl.Itemlndex = 0) then MishapCategory.ItemIndex:= 4;

if (MisSevQl.Itemlndex = 1) and (MisSevQ2.ItemIndex = 0) and
(MisSevQ3.ItemIndex = 0) and (MisSevQ4.ItemIndex = 0) and
(MisSevQ5.ItemIndex = 0) then MishapCategory.ItemIndex:= 3;

if (MisSevQl.Itemlndex = 1) and (MisSevQl.Itemlndex = 0) and
((MisSevQ3.ItemIndex = 1) or (MisSevQ4.ItemIndex = 1) or
(MisSevQ5.ItemIndex = 1)) then MishapCategory.ItemIndex:= 2;

if (MisSevQl.Itemlndex = 1) and (MisSevQ2.ItemIndex = 1) and
(MisSevQ3.ItemIndex = 0) and ((MisSevQ4.ItemIndex = 1) or
(MisSevQ5.ItemIndex = 1)) then MishapCategory.ItemIndex:= 1;

if (MisSevQl.Itemlndex = 1) and (MisSevQ2.ItemIndex = 1) and

95

(MisSevQ3. Itemindex = 1) then MishapCategory.ItemIndex:= 0;

if (MisSevQl.Itemlndex = 1) and (MisSevQ2.ItemIndex = 1) and
(MisSevQ3.ItemIndex = 0) and (MisSevQ4.ItemIndex = 0) and
(MisSevQ5.ItemIndex = 0) then MishapCategory.ItemIndex:= 3;

end;

procedure TNoteBookForm.Button6Click(Sender: TObject);
begin
if MessageDlg('OFFICER RECALL COMPLETE! The next step in the*+
' check list is to fill out PAGE ONE of the Mishap Info. Tab* +
' Do you want to continue with the Checklist?',
mtConfirmation,mbOKCancel,0) = mrOk
then begin
CheckBox5.Checked:=True;
TabContinue. Click;
end;
end;

procedure TNoteBookForm.GotoMishapCatClick(Sender: TObject);
begin
if MessageDlg('PAGE ONE of Mishap Info. COMPLETE! The next step in the'+
' check list is to determine Mishap Category.' +
' Do you want to continue with the Checklist?',
mtConfirmation,mbOKCancel,0) = mrOk
then begin
CheckBox9.Checked:= True;
TabContinue. Click;

end;
end;

procedure TNoteBookForm.CompleteMishapCatClick(Sender: TObject);
begin
if MessageDlgCMISHAP CATEGORY COMPLETE! The next step in the'+
' check list is to determine Mishap Severtiy.' +
' Do you want to continue with the Checklist?',
mtConfirmation,mbOKCancel,0) = mrOk
then begin
CheckBox3.Checked:= True;
TabContinue. Click;

end:

96

end;

procedure TNoteBookForm.MishapSevDoneClick(Sender: TObject);
begin
if MessageDlg('MISHAP SEVERITY COMPLETE! The next step in the'+
' check list is to CREATE THE OPREP-3 VOICE REPORT+
' Do you want to continue with the Checklist?',
mtConfirmation,mbOKCancel,0) = mrOk
then begin
CheckBox4.Checked:= True;
TabContinue. Click;
end;
end;

procedure TNoteBookForm.Button8Click(Sender: TObject);
begin
if MessageDlg('SAFETY CENTER VOICE REPORT COMPLETE! The next step in the
'+

' checklist is to complete the MISHAP REPORT/+
' Do want to Continue?',

mtConfirmation,mbOKCancel,0) = mrOk then begin

CheckBox8. Checked" True;
TabContinue. Click;
end;
end;

procedure TNoteBookForm.MRCompleteClick(Sender: TObject);
begin
if MessageDlgCMISHAP REPORT COMLETE! You have finished all of the required'+

1 steps in the checklist. Make sure you have saved and printed all' +
1 applicable reports. Prssing OK will take you back to the CheckList Tab',
mtConfirmation,mbOKCancel,0) = mrOk then

begin
CheckBoxl 1 .Checked:=True;
NoteBook.PageIndex:=0;
end;
end;

procedure TNoteBookForm.OfficerRecalllClick(Sender: TObject);

begin
PrintGrid(Gridl,V);

97

PrintGrid(Grid2,V);
end;

end.

98

APPENDIX C

PROLOG CODE

A. PROLOG FACTS

/*File facts.pl
Created by Hemant Bhargava and Charles Emde on May 8,1995.
Following our extensive discussions on how to formalize and
document
the mishap investigation process.
7
/* This file contains the database of information inputted by the
user in the form of causes and supporting evidence. The evidence
is textual for clarity. The actual implementation should contain
database field pointers rather than the text descriptions here.7
/* Description of Predicates Used:*/

/*
probable cause predicate (prob_cause(arg1 ,arg2)) is read as
"the probable cause of event(arg1) is event(arg2).

evidence predicate (evidence(prob_cause1 ,prob_cause2,supporting
evidencel))
is read as "supporting evidencel implies that prob_cause2 is a
result of prob_cause1.
*/

/*Example: This mishap is fictional. It is the hypothetical
example taken from OPNAVINST 3750.6Q, Appendix M. The scenario
is described as a gear up landing. Please refer to the
instruction for details.
7
/*root mishap*/

prob_cause(aircraft_mishap,gear_not_down).
evidence(aircraft_mishap,gear_not_down,wreckage_inspection).

/*one chain of events*/

prob_cause(gear_not_down,pilot_overlooked_indicators).
prob_cause(pilot_overiooked_indicators,fatigue).
prob_cause(fatigue,four_hours_sleep).
prob_cause(four_hours_sleep,overwork).
prob_cause(overwork,poor_supervision).
evidence(gear_not_down,pilot_overlooked_indicators,interview).
evidence(fatigue,four_hours_sleep,interview).
evidence(four_hours_sleep,overwork,interview).
/"there is no evidence to suggest poor supervision*/

99

/*a second chain of events based on the pilot overlooking the
indicators*/

prob_cause(pilot_overtooked_indicators,distracted).
prob_cause(pilot_distracted ,father_died).
evidence(pilot_overlooked_indicators,distracted,interview).

/*There is no evidence that the distraction was caused by the
father's death.*/

/*a third chain of events*/
prob_cause(gear_not_down,handle_malfunctioned).
prob_cause(handle_malfunctioned,improper_maintenance).
prob_cause(improper_maintenance,omitted_step).
prob_cause(omitted_step,poorly_written_handbook).
prob_cause(poorly_written_handbook,missing_page).
evidence(gear_not_down,handle_malfunctioned,wreckage_inspection).
evidence(handle_malfunctioned,improper_maintenance,records_insp).
evidence(improper_maintenance,omitted_step,handbook).
evidence(omitted_step,poorly_written_handbook,expert_interview).

/*a fourth chain of events*/
prob_cause(gear_not_down, backup_not_used).
prob_cause(backup_not_used,poor_training).
prob_cause(poor_training,crew_uncoordinated).
prob_cause(crew_uncoordinated,no_coord_training).
prob_cause(no_coord_training,no_command_support).
evidence(gear_not_down,backup_not_used,wreckage_examination).
evidence(backup_not_used,poor_training,training_records).
evidence(poor_training,crew_uncoordinated,interview).
evidence(crew_uncoordinated,no_coord_training,training_records).

/*a fifth chain of events*/
prob_cause(gear_not_down, no_warning_horn).
prob_cause(no_warning_hom,malfunctioning_switch).
prob_cause(malfunctioning_switch,corrosion).
prob_cause(corrosion,improper_hangering).
prob_cause(improper_hangering,poor_supervision).
evidence(gear_not_down,no_warning_hom,wreckage_examination).
evidence(no_warning_horn,maifunctioning_switch,wreckage_examination).
evidence(malfunctioning_switch,corrosion,wreckage_examination).
evidence(corrosion,improper_hangering).

B. PROLOG RULES

/* File rules.pl
Created by Hemant Bhargava and Charles Emde on May 8,1995.
Following our extensive discussions on how to formalize and document
the mishap investigation process.
7

100

/*rules: first rule states that a scenario consists of scenarios of at
least two probable causes, and scenarios and events are transitive. /

scenario(X, Y) :-
prob_cause(X,Y).

scenario(X, Y) :-
prob_cause(X,Z),
scenario(Z,Y).

/* A scenario chain is constructed by following ALL the events that
are (transitively) probable causes for the event (X) in question.
There may be multiple answers since an event may have more than
one probable cause. There are two ways to do this:D
using recursion and using iteration (or accumulators).
7

/* The recursion solution shown below is elegant. However the problem is
that it will create multiple answers including subsets of the correct chain.

scenario_chain(Event,[Head|Rest]) :-
prob_cause(Event, Head),
scenario_chain(Head,Rest).

scenario_chain(_,Q).

7

/* The iterative solution produces the same results, but does so
in a constructive "forward chaining" approach, which consumes less
memory. The second argument is the accumulator. At the end the
accumulator has the answer: see the final clause.
It is the final cause that prevents the multiple/subset
answers from appearing as you ask for more solutions. 7

scenario_chain(Event, Chain) :-
scenario_chain_it(Event, Q, Chain).

/* At the start you have accumulated nothing. 7

scenario_chain_it(Event, Temp, Chain) :-
prob_cause(Event, Cause), /* Now you add the first cause 7
append(Temp, [Cause], Tempi), /*to your accumulator Tempi 7
scenario_chain_it(Cause, Tempi, Chain).

scenario_chain_it(Event, Chain, Answer) :-
(prob_cause(Event, _),!, fail;
Answer = Chain).

I* When you reach an event which has no probable cause,
you have accumulated in Chain the Answer for the original event. 7

101

/*The following allows the user view the results of his deliberation and
returns the set of scenario explanations that are chained together and
are supported by evidence*/

explain_scenario(X,Y,Explanation) :-
prob_cause(X,Y),
evidence(X,Y,EV),
Explanation = [X,'was caused by',Y,'and is supported by'.EV,'...'].

explain_scenario(X,Y,Explanation):- not(prob_cause(X,Y)),
prob_cause(X,Z),
explain_scenario(X,Z, ExpXZ),
scenario(Z,Y),
explain_scenario(Z,Y,ExpZY),
append(ExpXZ,ExpZY, Explanation).

C. EXAMPLE SCRIPTS
1. prob_cause(X,Y).

prob_cause(X,Y).

X = aircraft_mishap

Y = gear_not_down ;

X = gear_not_down

Y = pilot_overiooked_indicators

X = pilot_overlooked_indicators

Y = fatigue ;

X = fatigue

Y = four_hours_sleep;

X = four_hours_sleep

Y = overwork;

X = overwork

Y = poor_supervision ;

X = pilot_overlooked_indicators

102

Y = distracted ;

X = pilot_distracted

Y = father_died ;

X = gear_not_down

Y = handlejnalfunctioned ;

X = handlejnalfunctioned

Y = improper_maintenance;

X = improper_maintenance

Y = omitted_step;

X = omitted_step

Y = poorly_written_handbook

X = pooriy_written_handbook

Y = missing_page;

X = gear_not_down

Y = backup_not_used ;

X = backup_not_used

Y = poorjraining;

X = poor_training

Y = crewjincoordinated ;

X = crewjincoordinated

Y = no_coord_training ;

X = no_coord_training

Y = no_command_support;

103

x = = gear_not_down

Y = = no_warning_horn ;

X = = no_warning_horn

Y = = malfunctioning_switch ;

X = = malfunctioning_switch

Y = = corrosion ;

X = = corrosion

Y = = improperjiangering ;

X = : improper_hangering

Y = = poor_supervision ;

Nc >

2. scenario_chain(X,Y).

scenario_chain(X,Y).

X = : aircraft_mishap

Y = : [gear_not_down,pilot_overlooked_indicators,fatigue,

four_hours_sleep,overwork,poor_supervision];

X = aircraft_mishap

Y = [gear_not_down,pilot_overlooked_indicators,distracted];

,
X = aircraft_mishap

Y = [gear_not_down,handle_malfunctioned,improper_maintenance,

omitted_step,poorly_written_hanclbook,missing_page];

X = aircraft_mishap

Y = [gear_not_down,backup_not_used,poor_training,crew_uncoordinated,

no_ .coord_training,no_command_support];

X = aircraft_mishap

104

Y = [gear_not_down,no_warning_horn,malfunctioning_switch,corrosion,

improper_hangering,poor_supervision];

X = gear_not_down

Y = [pilot_overlooked_indicators,fatigue,four_hours_sleep,

overwork,poor_supervision];

X = gear_not_down

Y = [pilot_overlooked_indicators,distracted];

X = pilot_overlooked_indicators

Y = [fatigue,four_hours_sleep,overwork,poor_supervision];

X = fatigue

Y = [four_hours_sleep,overwork,poor_supervision];

X = four_hours_sleep

Y = [overwork,poor_supervision];

X = overwork

Y = [poor_supervision];

X = pilot_overlooked_indicators

Y = [distracted];

X = pilot_distracted

Y = [father_died];

X = gear_not_down

Y = [handle_malfunctioned,improper_maintenance,omitted_step,

poorly_written_handbook,missing_page];

X = handle_maifunctioned

Y = [improper_maintenance,omitted_step,poorly_written_handbook,

missing_page];

105

X = improper_maintenance

Y = [omitted_step,pooriy_written_handbook,missing_page];

X = omitted_step

Y= [poorly_writteri_handbook,missing_page];

X = poor1y_written_handbook

Y = [missing_page];

X = gear_not_down

Y= [backup_not_used,poor_training,crew_uncoordinated,no_coord_training,

no_command_support];

X = backup_not_used

Y = [poor_training,crew_uncoordinated,no_coord_training,

no_command_support];

X = poor_training

Y = [crew_uncoordinated,no_coord_training,no_command_support];

X = crew_uncoordrnated

Y = [no_coord_training,no_command_support];

X = no_coord_training

Y = [no_command_support];

X = gear_not_down

Y = [no_warning_hom,malfunctioning_switch,corrosion,improper_hangering,

poor_supervision];

X = no_warning_hom

Y = [malfunctioning_switch,corrosion,improper_hangering,poor_supervision];

X = malfunctioning_switch

106

Y = [corrosion,improper_hangering,poor_supervision]

X = corrosion

Y = [improper_hangering,poor_supervision];

X = improper_hangering

Y = [poor_supervision];

No

D. INTERFACE TOOLS

1. Query Generation

queryexe :-

/* scenario_chain_exe, */

scenario_exe.

scenario_exe :-

/* repeat, 7

show_scenario(X),

scenario(X,Y),

write(X), writeC caused by"), write(Y).

scenario_exe. /* when there's no more to go. 7

scenario_chain_exe(Event) :-

scenario_chain(Event, Answer),

write(Answer).

/*

scenario_chain_exe :-

repeat,

show_scenario(Event), comes from query file

scenario_chain(Event, Answer),

107

write(Answer), modify this to write answer nicely fail.*/

108

APPENDIX D

MISHAP EXPERT VERSION 1.01B OBJECT PASCAL SOURCE CODE

A. MAIN FORM

unit Main;
interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, Buttons, ExtCtrls, Menus, TabNotBk, Stmgfun, Allsce,
Explain, Misexp, Unsupp;

type
TMainForm = class(TForm)

MainMenu: TMainMenu;
FileNewItem: TMenultem;
FileOpenltem: TMenultem;
FileSaveltem: TMenultem;
FileSaveAsItem: TMenultem;
FilePrintltem: TMenultem;
FilePrintSetupItem: TMenultem;
FileExitltem: TMenultem;
EditUndoltem: TMenultem;
EditCutltem: TMenultem;
EditCopyltem: TMenultem;
EditPasteltem: TMenultem;
WindowTileltem: TMenultem;
WindowCascadeltem: TMenultem;
WindowArrangeltem: TMenultem;
HelpContentsItem: TMenultem;
HelpSearchltem: TMenultem;
HelpHowToUseltem: TMenultem;
HelpAboutltem: TMenultem;
OpenDialog: TOpenDialog;
SaveDialog: TSaveDialog;
PrintDialog: TPrintDialog;
PrintSetupDialog:TPrinterSetupDiaiog;
SpeedBar: TPanel;
SpeedButtonl: TSpeedButton
SpeedButton2: TSpeedButton
SpeedButton3: TSpeedButton
SpeedButton4: TSpeedButton
SpeedButtonö: TSpeedButton
SpeedButton6: TSpeedButton
SpeedButton7: TSpeedButton
SpeedButton8: TSpeedButton
SpeedButton9: TSpeedButton

{&New}
{ ÄOpen...}
{ ÄSave}
{ Save &As...}
{&Print...}
{P&rint Setup...}
{ &Undo }
{Cu&t}
{&Copy }

109

SpeedButtonIO: TSpeedButton; {ÄPaste}
SpeedButton11: TSpeedButton;
TabbedNotebookl: TTabbedNotebook;
Panell: TPanel;
LabeM: TLabel;
Label2: TLabel;
Panel2: TPanel;
Label3: TLabel;
Button 1:TButton;
Label4: TLabel;
Memo1:TMemo;
Panel3: TPanel;
Edit3: TEdit;
Memo2: TMemo;
Memo3: TMemo;
ListBox2: TListBox;
Label5: TLabel;
Label6: TLabel;
LabeI7: TLabel;
Button2: TButton;
Panel4: TPanel;
Label8: TLabel;
ListBox3: TListBox;
ListBox4: TListBox;
Label9: TLabel;
Button3: TButton;
LabeM 0: TLabel;
Label12: TLabel;
Button4: TButton;
Button5: TButton;
Editl: TEdit;
Edit2: TEdit;
LIstBoxl: TListBox;
LabeH 1: TLabel;
Panel5: TPanel;
LabeH 3: TLabel;
ListBox5: TListBox;
Panel6: TPanel;
Label14: TLabel;
ListBox6: TListBox; { &Contents}
procedure FileNew(Sender: TObject);
procedure FileOpen(Sender: TObject);
procedure FileSave(Sender: TObject);
procedure FileSaveAs(Sender: TObject);
procedure FilePrint(Sender: TObject);
procedure FilePrintSetup(Sender: TObject);
procedure FileExit(Sender: TObject);
procedure EditUndo(Sender: TObject);
procedure EditCut(Sender: TObject);
procedure EditCopy(Sender TObject);
procedure EditPaste(Sender: TObject);
procedure WindowTile(Sender: TObject);

110

procedure WindowCascade(Sender: TObject);
procedure WindowArrange(Sender: TObject);
procedure HelpContents(Sender: TObject);
procedure HelpSearch(Sender: TObject);
procedure HelpHowToUse(Sender: TObject);
procedure HelpAbout(Sender TObject);
procedure Button1Click(Sender: TObject);
procedure Edit1Enter(Sender: TObject);
procedure Editl Exit(Sender: TObject);
procedure Button2Click(Sender: TObject);
procedure Editl KeyDown(Sender: TObject; var Key: Word;
Shift: TShiftState);

procedure Edit2KeyDown(Sender: TObject; var Key: Word;
Shift: TShiftState);

procedure Edit2Exit(Senden TObject);
procedure Edit3KeyDown(Sender: TObject; var Key: Word;

Shift: TShiftState);
procedure Edit3Exit(Sender: TObject);
procedure Button3Click(Sender: TObject);
procedure Button5Click(Sender: TObject);
procedure FormCreate(Sender: TObject);

end;

var
MainForm: TMainForm;
Scenario: TStringList;
EvList: TStringList;
TempList:TStringList;
ChainList:TStringList;
Chainlndex:lnteger;
{TempCauseList: TStringList;}

implementation

{$R *.DFM}

procedure TMainForm.FileNew(Sender: TObject);
begin
{Add code to create a new file}

end;

procedure TMainForm.FileOpen(Sender: TObject);
begin
if OpenDialog.Execute then
begin
{Add code to open OpenDialog.FileName}

end;
end;

procedure TMainForm.FileSave(Senden TObject);
begin

111

{Add code to save current file under current name }
end;

procedure TMainForm.FileSaveAs(Sender: TObject);
begin
if SaveDialog.Execute then
begin
{Add code to save current file under SaveDialog.FileName}

end;
end;

procedure TMainForm.FilePrint(Sender: TObject);
begin
if PrintDialog.Execute then
begin
{Add code to print current file}

end;
end;

procedure TMainForm.FiiePrintSetup(Sender: TObject);
begin

PrintSetupDialog.Execute;
end;

procedure TMainForm.FileExit(Sender: TObject);
begin

Close;
end;

procedure TMainForm.EditUndo(Sender: TObject);
begin
{Add code to perform Edit Undo}

end;

procedure TMainForm.EditCut(Sender: TObject);
begin
{Add code to perform Edit Cut}

end;

procedure TMainForm.EditCopy(Sender: TObject);
begin
{Add code to perform Edit Copy}

end;

procedure TMainForm.EditPaste(Sender TObject);
begin
{Add code to perform Edit Paste}

end;

procedure TMainForm.WindowTile(Sender: TObject);
begin
Tile;

112

end;

procedure TMainForm.WindowCascade(Sender: TObject);
begin

Cascade;
end;

procedure TMainForm.WindowArrange(Sender: TObject);
begin
Arrangelcons;

end;

procedure TMainForm.HelpContents(Sender: TObject);
begin
Application.HelpCommand(HELP_CONTENTS, 0);

end;

procedure TMainForm.HeipSearch(Sender. TObject);
const

EmptyString: PChar =";
begin
Appiication.HelpCommand(HELP_PARTIALKEY, Longint(EmptyString));

end;

procedure TMainForm.HelpHowToUse(Sender: TObject);
begin
Appiication.HelpCommand(HELP_HELPONHELP,0);

end;

procedure TMainForm.HelpAbout(Sender: TObject);
begin
{Add code to show program's About Box}

end;

procedure TMainForm.Button1Click(Sender: TObject);
var
i,j: integer;
begin
for i :=0 to ListBoxl .Items.Count - 2 do

begin
Scenario.Add(ProbCause(ListBox1. Items[i], ListBoxl .ltems[i+1]));
ListBox3.Items := Scenario;
ListBox6. Items := Scenario;

end;
end;

procedure TMainForm.Edit1Enter(Sender: TObject);
begin
Scenario:=TStringList.Create;
EvList:=TStringList.Create;
{TempCauseList.Create;}
end;

113

procedure TMainForm.Edit1Exit(Sender: TObject);
begin

Buttonl.Enabled := Taie;
ListBoxl .ltems.Add(Edit1 .text);
editl .enabled := false;
labeh .visible := false;

end;

procedure TMainForm.Button2Click(Sender: TObject);
begin

ListBox2.ltems.Add(Edit3.Text);
ListBox4. ltems.Add(Edit3.Text);
Edit3.Clear;
{EvList.Add(Edit3.Text);
ListBox2.ltems:=EvList;
ListBox4.ltems:=EvList;
Edit3.Clear;
Edit3.SetFocus;}

end;

procedure TMainForm.Edit1KeyDown(Sender: TObject; var Key: Word;
Shift: TShiftState);

begin
if (key = VK_RETURN) then
Edit2.SetFocus;

end;

procedure TMainForm.Edit2KeyDown(Sender: TObject; var Key: Word;
Shift: TShiftState);

begin
if (key = VK_RETURN) then
panel Lsetfocus;
edit2.setfocus;

end;

procedure TMainForm.Edit2Exit(Sender: TObject);
begin
ListBoxl .ltems.Add(Edit2.Text);
Editl Text:=Edit2.Text;
Editl .Enabled:=False;
Edit2.Clear;

labell .visible := false;
label 11.visible :=true;
end;

procedure TMainForm.Edit3KeyDown(Sender: TObject; var Key: Word;
Shift: TShiftState);

begin
if (key = VK_RETURN) then

114

Memo2.setFocus;
end;

procedure TMainForm.Edit3Exit(Sender: TObject);
begin

ListBox2. ltems.Add(Edit3.Text);
ListBox4. Items. Add(Edit3.Text);
Edit3.Clear;

end;

procedure TMainForm.Button3Click(Sender: TObject);

var k,l:integer;
first, second:string;
begin
try
first:=ListBox3.ltems[ListBox3.ltemlndex];
Delete(first,1,11);
Delete(first,Length(first)-1,2);
ListBox5.items.AddCevidence(,+first+,,'+ListBox4.ltems[ListBox4.ltemindexl+
•)-');
except

on E: EStringListError do
MessageDlgCSelect a prob_cause and evidence!', mtlnformation,
[mbOK], 0);

end;

end;
procedure TMainForm.FormCreate(Sender: TObject);
begin

ChainList:=TstringList.Create;
TempList:=TStringList.Create;
Chainlndex := 0;

end;
procedure TMainForm.Button5Click(Sender: TObject);
begin

TempList.AddStrings(ListBox5.ltems);
TempList.Addstrings(ListBox6.ltems);
ChainList.AddObject(lntToStr(Chainlndex), TempList);
Chainlndex:=Chainlndex + 1;
TempList:=TStringl_ist(ChainList.Objects[0]);
TempList.SaveToFileCc:\pl\facts.pl');

BtnRightDIg.Show;

end;

end.

115

B. UNSUPPORTED SCENARIO SCREEN
unit Unsupp;

interface

uses WinTypes, WinProcs, Classes, Graphics, Forms, Controls, Buttons
StdCtrls, ExtCtris;

type
TBtnRightDlg2 = classfTForm)

OKBtn: TBitBtn;
CancelBtn: TBitBtn;
HelpBtn: TBitBtn;
Bevell: TBevel;
Panel4: TPanel;
Label8: TLabel;
ListBox3: TListBox;
Labell: TLabel;
Memol: TMemo;
Button 1:TButton;
Button2: TButton;
ListBoxl: TListBox;
procedure Button1Click(Sender: TObject);
procedure FormActivate(Sender: TObject);

private
{Private declarations}

public
{Public declarations}

end;

var
BtnRightDlg2: TBtnRightDlg2;

implementation
uses Main;

{$R *.DFM}
procedure TBtnRightDlg2.Button1Click(Sender: TObject);

var
Prolog :word;
FileName: string;
begin
Prolog:=WinExec('c:/pl/pl -f c:/pl/start.pl',1);
ListBoxl. ltems.LoadFromFile('c:\pl\Answer.pr);

end;

procedure TBtnRightDlg2.FormActivate(Sender: TObject);
begin
listBox3.Items := TempList;

end;

end.

116

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Cameron Station
Alexandria, VA22304-6145 2

2. Library, Code 013
Naval Postgraduate School
Monterey, CA 93943-5101 2

3. Professor Bhargava, Code SM/BH
Naval Postgraduate School
Monterey, CA 93943-5101 1

4. Professor Segumpta, Code SM/KS
Naval Postgraduate School
Monterey, CA 93943-5101 1

5. Aviation Safety Programs, Code 034 Attn.: MAjor Tom Hazzard, USMC
Naval Postgraduate School
1588 Cunningham Rd., RM 301
Monterey, CA 93943-5202 1

6. LT Hugh Brien
8661 Point of Woods Dr
Manassas, VA 22110 1

7. LT Charles Emde
165B Ocean View Blvd.
Pacific Grove, CA 93950 2

117

