REPORT DOCUM	MENTATION PA	AGE		Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is gathering and maintaining the data needed, and completing collection of information, including suggestions for reducing Davis Highway, Suite 1204, Arlington, VA 22202-4302, and t	estimated to average 1 hour per : g and reviewing the collection of ii g this burden, to Washington Hea to the Office of Management and :	response, including the time for nformation. Send comments re douarters Services, Directorate Budget, Paperwork Reduction P	reviewing insi garding this bi foi Informatio roject (0704-01	tructions, searching existing data sourc urden estimate or any other aspect of t n Operations and Reports, 1215 Jeffers 88), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank) 2.1	REPORT DATE	3. REPORT TYPE A FINAL 01 N		COVERED O 31 Oct 95
4. TITLE AND SUBTITLE			alertak genetakonan madalakokakoa	DING NUMBERS
BIODEGRADATION OF NITROA	AROMATIC COMPOUN	DS		9620-93-1-0042
5. AUTHOR(S)	handa a china cananana manina di yafar da karda ca handa ca handa a china da canana china da canana a canana a	Manual Science Science Science and Science May Science Science Science Science Science Science Science Science S		.102F
Dr David T. Gibson				03/DS
7. PERFORMING ORGANIZATION NAME(S) A Dept of Microbiology	ND ADDRESS(ES)	dalan Calanan ang Pilik yi Calang ni Sadan Sadan Sada		ORMING ORGANIZATION
University of Iowa 3733 Bowen Science Bldg			A	-OSIZ-TTZ-
Iowa City, IA 52242-110)9		\subset	16-0015
. SPONSORING/MONITORING AGENCY NAI AFOSR/NL	ME(S) AND ADDRESS(ES)	1997 - Malandar Maria, anna an Santa an Anna an Anna Anna Anna Anna Anna		NSORING/MONITORING NCY REPORT NUMBER
110 Duncan Ave Suite B11				
Bolling AFB DC 20332-80				
Dr Kozumbo		1996020	ׂון י	14()
1. SUPPLEMENTARY NOTES			V I	114
	NT		12b. DIS	TRIBUTION CODE
2a. DISTRIBUTION / AVAILABILITY STATEME			125. DIS	TRIBUTION CODE
			125. DIS	TRIBUTION CODE
2a. DISTRIBUTION / AVAILABILITY STATEME			125. DIS	TRIBUTION CODE
 2a. DISTRIBUTION / AVAILABILITY STATEME Approved for public release distribution unlimited. 3. ABSTRACT (Maximum 200 words) Pseudomonas sp. strain JS42 toluene to form 3-methylcate 	catalyzes the o echol. This rea	xidative remova ction is cataly	l of ni zed by	itrite from 2-nitro a multicomponent
 2a. DISTRIBUTION / AVAILABILITY STATEME Approved for public release distribution unlimited. 3. ABSTRACT (Maximum 200 words) Pseudomonas sp. strain JS42 toluene to form 3-methylcate enzyme system designated 2-re 	catalyzes the o echol. This rea nitrotoluene 2,3	xidative remova ction is cataly -dioxygenase.	l of ni zed by The fer	itrite from 2-nitro a multicomponent credoxin 2NT
 2a. DISTRIBUTION / AVAILABILITY STATEME APProved for public release distribution unlimited. 3. ABSTRACT (Maximum 200 words) Pseudomonas sp. strain JS42 toluene to form 3-methylcate enzyme system designated 2-m component of the dioxygenase [2Fe-2S] protein with proper 	catalyzes the o echol. This rea nitrotoluene 2,3 e system was pur rties similar to	xidative remova ction is cataly -dioxygenase. ified and chara the isofunctio	l of ni zed by The fer acterize	itrite from 2-nitro a multicomponent credoxin 2NT ed. It is a Rieske credoxins in other
 2a. DISTRIBUTION / AVAILABILITY STATEME APProved for public release distribution unlimited. 3. ABSTRACT (Maximum 200 words) Pseudomonas sp. strain JS42 toluene to form 3-methylcate enzyme system designated 2-r component of the dioxygenase [2Fe-2S] protein with proper multicomponent dioxygenase s and terminal oxygenase component 	catalyzes the o echol. This rea nitrotoluene 2,3 e system was pur rties similar to systems. The ge onents of 2-nitr	xidative remova ction is cataly -dioxygenase. ified and chara the isofunctiones encoding the	l of ni zed by The fer icterize onal fer ice reduc genase w	itrite from 2-nitro a multicomponent credoxin 2NT ed. It is a Rieske credoxins in other ctase, ferredoxin vere cloned and the
 2a. DISTRIBUTION / AVAILABILITY STATEME Approved for public release distribution unlimited. 3. ABSTRACT (Maximum 200 words) Pseudomonas sp. strain JS42 toluene to form 3-methylcate enzyme system designated 2-r component of the dioxygenase [2Fe-2S] protein with proper multicomponent dioxygenase s and terminal oxygenase component nucleotide sequences determinal 	catalyzes the o echol. This rea nitrotoluene 2,3 e system was pur rties similar to systems. The ge onents of 2-nitr ined. The predi	xidative remova ction is cataly -dioxygenase. ified and chara the isofunction nes encoding the otoluene dioxyg cted amino acid	l of ni zed by The fer icterize onal fer ie reduc genase v l sequer	itrite from 2-nitro a multicomponent credoxin 2NT ed. It is a Rieske credoxins in other ctase, ferredoxin vere cloned and the nces of the three
2a. DISTRIBUTION/AVAILABILITY STATEME APProved for public release distribution unlimited. 3. ABSTRACT (Maximum 200 words) Pseudomonas sp. strain JS42 toluene to form 3-methylcate enzyme system designated 2-r component of the dioxygenase [2Fe-2S] protein with proper multicomponent dioxygenase so and terminal oxygenase component nucleotide sequences determing protein components showed so components in naphthalene di	catalyzes the o echol. This rea nitrotoluene 2,3 e system was pur rties similar to systems. The ge onents of 2-nitr ined. The predi ignificant ident ioxygenase. How	xidative remova ction is cataly -dioxygenase. ified and chara the isofunction nes encoding the otoluene dioxyg cted amino acid ity to the seque ever, there wer	l of ni zed by The fer incterize onal fer ine reduc genase w l sequer inences co re signi	itrite from 2-nitro a multicomponent credoxin 2NT ed. It is a Rieske credoxins in other ctase, ferredoxin were cloned and the nees of the three of the isofunctional ificant differences
 2a. DISTRIBUTION/AVAILABILITY STATEME SEPROVED for public release distribution unlimited. 3. ABSTRACT (Maximum 200 words) Pseudomonas sp. strain JS42 toluene to form 3-methylcate enzyme system designated 2-r component of the dioxygenase [2Fe-2S] protein with proper multicomponent dioxygenase component dioxygenase components in aphthalene di components in naphthalene di in the substrate specificiti 	catalyzes the o echol. This rea nitrotoluene 2,3 e system was pur rties similar to systems. The ge onents of 2-nitr ined. The predi ignificant ident ioxygenase. How ies of the two e	xidative remova ction is cataly -dioxygenase. ified and chara the isofunction nes encoding the otoluene dioxyg cted amino acid ity to the sequever, there wer nzymes. The ge	l of ni zed by The fer incterize onal fer ine reduce genase w l sequer inences co re signi ene enco	itrite from 2-nitro a multicomponent credoxin 2NT ed. It is a Rieske credoxins in other ctase, ferredoxin were cloned and the nees of the three of the isofunctions ificant differences oding catechol 2,3-
2a. DISTRIBUTION / AVAILABILITY STATEME APProved for public release distribution unlimited. 3. ABSTRACT (Maximum 200 words) Pseudomonas sp. strain JS42 toluene to form 3-methylcate enzyme system designated 2-r component of the dioxygenase [2Fe-2S] protein with proper multicomponent dioxygenase so and terminal oxygenase components in naphthalene di components in naphthalene di in the substrate specificiti dioxygenase in a nitrobenzer E. Coli. The results to dat	catalyzes the o echol. This rea nitrotoluene 2,3 e system was pur rties similar to systems. The ge onents of 2-nitr ined. The predi ignificant ident ioxygenase. How ies of the two e ne-degrading Com te represent the	xidative remova ction is cataly -dioxygenase. ified and chara the isofunction nes encoding the otoluene dioxyg cted amino acid ity to the seque ever, there wer nzymes. The ge amonas strain we first purifica	I of ni zed by The fer interize onal fer ine reduce genase we sequer ine signi- ine enco vas clor ition ar	itrite from 2-nitro a multicomponent credoxin 2NT ed. It is a Rieske credoxins in other ctase, ferredoxin were cloned and the nees of the three of the isofunctiona ificant differences oding catechol 2,3- ned and expressed in d characterization
2a. DISTRIBUTION/AVAILABILITY STATEME Approved for public release distribution unlimited. 3. ABSTRACT (Maximum 200 words) Pseudomonas sp. strain JS42 toluene to form 3-methylcate enzyme system designated 2-re component of the dioxygenase [2Fe-2S] protein with proper multicomponent dioxygenase so and terminal oxygenase components showed so components in naphthalene di in the substrate specificiti dioxygenase in a nitrobenzer E. Coli. The results to dat of an enzyme system that car	catalyzes the o echol. This rea nitrotoluene 2,3 e system was pur rties similar to systems. The ge onents of 2-nitr ined. The predi ignificant ident ioxygenase. How ies of the two e ne-degrading Com te represent the	xidative remova ction is cataly -dioxygenase. ified and chara the isofunction nes encoding the otoluene dioxyg cted amino acid ity to the seque ever, there wer nzymes. The ge amonas strain we first purifica	I of ni zed by The fer interize onal fer ine reduce genase we sequer ine signi- ine enco vas clor ition ar	itrite from 2-nitro a multicomponent credoxin 2NT ed. It is a Rieske credoxins in other ctase, ferredoxin were cloned and the nees of the three of the isofunctiona ificant differences oding catechol 2,3- ned and expressed in d characterization
2a. DISTRIBUTION/AVAILABILITY STATEME Approved for public release distribution unlimited. 3. ABSTRACT (Maximum 200 words) Pseudomonas sp. strain JS42 toluene to form 3-methylcate enzyme system designated 2-re component of the dioxygenase [2Fe-2S] protein with proper multicomponent dioxygenase so and terminal oxygenase components showed so components in naphthalene di in the substrate specificiti dioxygenase in a nitrobenzer E. Coli. The results to dat of an enzyme system that car	catalyzes the o echol. This rea nitrotoluene 2,3 e system was pur rties similar to systems. The ge onents of 2-nitr ined. The predi ignificant ident ioxygenase. How ies of the two e ne-degrading Com te represent the	xidative remova ction is cataly -dioxygenase. ified and chara the isofunction nes encoding the otoluene dioxyg cted amino acid ity to the seque ever, there wer nzymes. The ge amonas strain we first purifica	I of ni zed by The fer interize onal fer ine reduce genase we sequer ine signi- ine enco vas clor ition ar	itrite from 2-nitro a multicomponent credoxin 2NT ed. It is a Rieske credoxins in other ctase, ferredoxin were cloned and the nees of the three of the isofunctiona ificant differences oding catechol 2,3- ned and expressed in d characterization
2a. DISTRIBUTION/AVAILABILITY STATEME APProved for public release distribution unlimited. 3. ABSTRACT (Maximum 200 words) Pseudomonas sp. strain JS42 toluene to form 3-methylcate enzyme system designated 2-r component of the dioxygenase [2Fe-2S] protein with proper multicomponent dioxygenase so and terminal oxygenase components in naphthalene di in the substrate specificiti dioxygenase in a nitrobenzer E. Coli. The results to dat of an enzyme system that can benzene nucleus.	catalyzes the o echol. This rea nitrotoluene 2,3 e system was pur rties similar to systems. The ge onents of 2-nitr ined. The predi ignificant ident ioxygenase. How ies of the two e ne-degrading Com te represent the	xidative remova ction is cataly -dioxygenase. ified and chara the isofunction nes encoding the otoluene dioxyg cted amino acid ity to the seque ever, there wer nzymes. The ge amonas strain we first purifica	I of ni zed by The fer interize onal fer ine reduce genase we sequer ine signi- ine enco vas clor ition ar	itrite from 2-nitro a multicomponent credoxin 2NT ed. It is a Rieske credoxins in other ctase, ferredoxin were cloned and the nees of the three of the isofunctiona ificant differences oding catechol 2,3- ned and expressed in d characterization
2a. DISTRIBUTION / AVAILABILITY STATEME	catalyzes the o echol. This rea nitrotoluene 2,3 e system was pur rties similar to systems. The ge onents of 2-nitr ined. The predi ignificant ident ioxygenase. How ies of the two e ne-degrading Com te represent the	xidative remova ction is cataly -dioxygenase. ified and chara the isofunction nes encoding the otoluene dioxyg cted amino acid ity to the seque ever, there wer nzymes. The ge amonas strain we first purifica	I of ni zed by The fer interize onal fer ine reduce genase we sequer ine signi- ine enco vas clor ition ar	itrite from 2-nitro a multicomponent credoxin 2NT ed. It is a Rieske credoxins in other ctase, ferredoxin were cloned and the nees of the three of the isofunctiona ificant differences oding catechol 2,3- ned and expressed i d characterization ts from the
2a. DISTRIBUTION/AVAILABILITY STATEME APProved for public release distribution unlimited. 3. ABSTRACT (Maximum 200 words) Pseudomonas sp. strain JS42 toluene to form 3-methylcate enzyme system designated 2-r component of the dioxygenase [2Fe-2S] protein with proper multicomponent dioxygenase component nucleotide sequences determing protein components showed sign components in naphthalene di in the substrate specificities dioxygenase in a nitrobenzer E. Coli. The results to date of an enzyme system that can benzene nucleus. 4. SUBJECT TERMS 7. SECURITY CLASSIFICATION [18. SECU	catalyzes the o echol. This rea nitrotoluene 2,3 e system was pur rties similar to systems. The ge onents of 2-nitr ined. The predi ignificant ident ioxygenase. How ies of the two e ne-degrading Com te represent the	xidative remova ction is cataly -dioxygenase. ified and chara the isofunction nes encoding the otoluene dioxyg cted amino acid ity to the seque ever, there wer nzymes. The ge amonas strain we first purifica	I of ni zed by The fer incterize onal fer ine reduce genase v l sequer ine encos vas clor tion ar stituent	itrite from 2-nitro a multicomponent credoxin 2NT ed. It is a Rieske credoxins in other ctase, ferredoxin were cloned and the nces of the three of the isofunctiona ificant differences oding catechol 2,3- ned and expressed i nd characterization ts from the
2a. DISTRIBUTION/AVAILABILITY STATEME APProved for public release distribution unlimited. 3. ABSTRACT (Maximum 200 words) Pseudomonas sp. strain JS42 toluene to form 3-methylcate enzyme system designated 2-r component of the dioxygenase [2Fe-2S] protein with proper multicomponent dioxygenase component dioxygenase component nucleotide sequences determing protein components showed signated for a number E. Coli. The results to date of an enzyme system that can benzene nucleus. 4. SUBJECT TERMS 7. SECURITY CLASSIFICATION [18. SECU	catalyzes the o echol. This rea nitrotoluene 2,3 e system was pur rties similar to systems. The ge onents of 2-nitr ined. The predi ignificant ident ioxygenase. How ies of the two e ne-degrading Com te represent the n oxidatively re	xidative remova ction is cataly -dioxygenase. ified and chara the isofunction nes encoding th otoluene dioxyg cted amino acid ity to the seque ever, there wer nzymes. The ge amonas strain w first purifica move nitro subs	I of ni zed by The fer incterize onal fer ine reduce genase w is sequer tences of re signi- tences of re signi- tences of restituent	itrite from 2-nitro a multicomponent rredoxin 2NT ed. It is a Rieske credoxins in other ctase, ferredoxin were cloned and the nees of the three of the isofunctional ificant differences oding catechol 2,3- ned and expressed i and characterization ts from the 15. NUMBER OF PAGES

.

j¶.

THIRD ANNUAL TECHNICAL REPORT FOR GRANT

· ·

F49620-93-1-0042

Project Officer: Dr. Walter J. Kozumbo

BIODEGRADATION OF NITROAROMATIC COMPOUNDS

Submitted by:

David T. Gibson, Ph.D., Principal Investigator

Department of Microbiology and the Center for Biocatalysis and Bioprocessing, The University of Iowa, Iowa City, IA 52242

Telephone:319-335-7980Fax:319-335-9999E-mail:david-gibson@uiowa.edu

The period covered by this report is 10/31/94-10/31/95

1 - 112 Auge

SUMMARY

Pseudomonas sp. strain JS42 catalyzes the oxidative removal of nitrite from 2-nitrotoluene to form 3-methylcatechol. This reaction is catalyzed by a multicomponent enzyme system designated 2-nitrotoluene 2,3-dioxygenase. The ferredoxin_{2NT} component of the dioxygenase system was purified and characterized. It is a Rieske [2Fe-2S] protein with properties similar to the isofunctional ferredoxins in other multicomponent dioxygenase systems. The genes encoding the reductase, ferredoxin and terminal oxygenase components of 2-nitrotoluene dioxygenase were cloned and their nucleotide sequences determined. The predicted amino acid sequences of the three protein components showed significant identity to the sequences of the isofunctional components in naphthalene dioxygenase. However, there were significant differences in the substrate specificities of the two enzymes. The gene encoding catechol 2,3-dioxygenase in a nitrobenzene-degrading *Comamonas* strain was cloned and expressed in *E. coli*. The results to date represent the first purification and characterization of an enzyme system that can oxidatively remove nitro substituents from the benzene nucleus.

RESEARCH OBJECTIVES

The major objective of this research project is to determine the mechanisms used by bacteria to degrade nitroaromatic compounds. The results obtained will form the scientific foundations necessary for the development of bioremediation technology. The specific aims for the period 10/31/94-10/31/95 were as follows:

- 1. To purify and characterize component C (ferredoxin_{2NT}) of the 2-nitrotoluene dioxygenase complex.
- 2. To clone, sequence, and express the structural genes of the 2-nitrotoluene dioxygenase complex.
- 3. To clone and sequence the genes responsible for nitrobenzene oxidation by a *Comamonas* sp. This was another new collaborative venture with Dr. Jim C. Spain's research group at Tyndall Air Force Base, Panama City, FL.

PROGRESS

Pseudomonas sp. strain JS42, isolated by Dr. Jim C. Spain and his colleagues at Tyndall Air Force Base, releases nitrite from 2-nitrotoluene by the reaction shown below. In our second

Oxidative Pathway for 2NT Degradation in *Pseudomonas* sp. Strain JS42

2-Nitrotoluene

3-Methylcatechol

Annual Technical Report we showed that this reaction is catalyzed by a multicomponent enzyme complex and succeeded in isolating and purifying the protein responsible for the catalytic reaction. This enzyme is an iron-sulfur protein which we have designated ISP_{2NT} . We proposed at that time the following organization for the 2-nitrotoluene dioxygenase complex.

During the current grant period we have almost completed our first and second specific aims and made significant progress on the third. The second protein in the complex, ferredoxin_{2NT} has been purified to homogeneity and preliminary characterization studies are complete. A 5-kilobase DNA fragment isolated from strain JS42 was shown to contain all of the genes required for 2-nitrotoluene dioxygenase activity. The nucleotide sequence of the 5-kb fragment was determined and the genes encoding the 2-nitrotoluene dioxygenase components were identified. In spite of considerable effort we have yet to clone the genes responsible for nitrobenzene oxidation by a *Comamonas* sp. A new screening procedure has been developed which will simplify our ability to detect the nitrobenzene oxygenase genes.

Details of progress on the specific aims for the current grant period are given below.

1. Purification and characterization of the ferredoxin_{2NT} a component of the 2nitrotoluene dioxygenase complex.

The properties of ferredoxin_{2NT} and its relationship to the enzyme complex are shown below.

n.d. = not determined

sh = shoulder

When we have determined the acid-labile sulfur content of $ferredoxin_{2NT}$ this work will be submitted for publication.

2. Cloning, expression and nucleotide sequence of the structural genes of the 2-nitrotoluene dioxygenase complex.

A 4.5-kb SacI DNA fragment from *Pseudomonas* strain JS42 was cloned in *Escherichia* coli and identified by its ability to release nitrite from 2-nitrotoluene. This showed that all of the structural 2-nitrotoluene dioxygenase genes were located on the 4.9-kb DNA fragment. Both DNA strands were sequenced at the University of Illinois Genetic Engineering Facility (Urbana-Champaign, IL). The nucleotide sequence and the predicted amino acid sequences are shown below.

GCAGATCCATGATGCCTCACCATTATTCATGCTGGTGATTTTAACTATCAGACTTGATCTATAGCGCTATACCGATCGACGCGCCAGTATCGCAGCCATTCGGAGACAACTGAAAAAAGA 480 GCTTGCATGGAACTGGTAGTAGAACCCCTCAATTTGCATCTGAACGCGGAGACCCGGCAGCACCCTGCTTGACGTGCTCAGGTCCAACGAGGTCCCCATTTCTTATAGCTGCATGTCGGGC 600 ntd&a M E L V V E P L N L H L N A E T G S T L L D V L R S N E V P I S Y S C M S G R C G T C R C R V I A G H L R D N G S E T G R P Q A G K G A Y V L A C Q A V L T GAAGACTECACGATCGAGATTCCTGAATCTGACGAGATCGTGGTTCACCCGGCGCGCCGCCATCGTCAAGGGGACGGTCACAGCGATAGACGAAGCCAACCCATGACATCCGGCGCCTCGCCCATC 840 E D C T I E I P E S D E I V V H P A R I V K G T V T A I D E A T H D I R R L R I AAACTGGCCAAACCGCTTGAGTTCAGCCCTGGCCAGTACGCAACGGTGCAGTTCACGCCCGAATGCGTCCGCCCCTATTCGATGGCCGGGCTGCCTAGCGATGCGGAAATGGAGTTTCAG 960 KLAKPLEFSPGOYATVOFTPECVRPYSMAGLPSDAEMEFO I R A V P G G H V S N Y V F N E L S V G A S V R I S G P L G T A Y L R R T H T G P M L C V G G G T G L A P V L S I V R G A L E S G M S N P I H L Y F G V R S E Q D I Y D E E R L H A L A A R F P N L K V N V V A T G P A G P G H R S G L V T D CTGATCGGCCGTGACTTGCCCAATTTGGCGGGATGGCGCGCCTACCTGTGTGGCGCCTCCGGCCATGGTCGAGGCCCTGAACCTGCTCGTTGCTCGCCCAGGCATAGTACCCGGGCACACT 1440 LIGRDLPNLAGWRAYLCGAPAMVEALNLLVARLGIVPGHI CATGCCGATGCGGTTCTATCCCAGCGCGCTCTGAGCGAAGGCACCATGCGAACCCAATTCAACCCAAGGATACCAAGGCATGAAGCCCAACGATTAAAACCCCGTGTTTCCCCCAAGGAT 1560 HADAFYPSGV ORF2 M S E P Q R L K P V F P Q D ccgaaatggccggagggaggaggaggaggaggcgctcccttctgggcctacacccgcgaaggcctgtacaaggcgcgaattggagcgcctgttctatgcaaccactggtgctatgtaggcctg 1680K W P G E G S S R V P F W A Y T R E D L Y K R E L E R L F Y A N H W C Y V G L GAAGCCGAGATTCCGGATCCAGGCGACTTCAAGCGAACGGTGATCGGTGAGCGCCCCGGTCATCATGGTGGCGTGATCCGGATGACGTCGGGGGAGAACGTCTGCGCCCACTGT 1800 E A E I P N P G D F K R T V I G E R S V I M V R D P D G G I N V V E N V C A H C GGCATGCGCTTTTGCCGCGAGGCCACGGCAACGCCAAGGACTTCTTCTGCCCCTACCACCAGTGGAACTACAGGCTCAAGGGTGACCTGCAGGGCGTGCCCTTCCGCCGAGGCGTCAAG 1920 G M R F C R E R H G N A K D F F C P Y H Q W N Y S L K G D L Q G V P F R R G V K Q D G K V N G G M P K D F K L E E H G L T K L K V A A R G G A V F A S F D H D V EPFEDCACTTAR* ntdAb M S E N W I D A I A R D A V GCCTGAGGGCGATGTGGTCGGAGTCATCGTGGCAGGCAAAGACATTGCCTTCTATGAGGTGGAAGGTGAGGTCTTCGCCACCGACAACTTGTGTACCCACGGGGCTGCGCGCTTGAGCGA 2280 P E G D V V G V I V A G K D I A F Y E V E G E V F A T D N L C T H G A A R L S D G F L E G R E I E C P L H Q G R F D V C T G K A L C T P L T Q D I K T Y P V K I CGAAAACATGCGCGTGATGCTCAAGCTGGACTAAAACTCTTTGCAGGAGGAAGCCAAATCCGGAAATCACCCAACCCAATCACCAGTTTTCAAACAAGAGGAGAAAACATGCCGAAATCACCCAATCACCAATCACCAGTTTTCAAACAAGAGGAGAAAACATGCGGAAATCACCCGAATCACCAATCACCAGTTTTCAAACAAGAGAGAAATCACGAAATCACCCAATCACCAATCACCAATCACCGATTTCAAACAAGAGAGAAATCACGAAATCACGAAATCACCCAATCACCAATCACCGAAATCACGGAAATCACGAGAAATCACGAAATCACGAAATCACGAAGAGAAATCACGAATCACCAATCACCAATCACCAATCACCGATTTCAAAACAAGAGAGAAATCACGAAATCACGAAATCACCAAATCACGAAATCACGAATCACCGAATCACCAATCACCCAATCACCAATCACCAATCACGAGAAATCACGAAATCACGAAATCACCAAATCACGAAATCACGAAATCACGAAATCACGAAATCACGAAATCACGAAATCACCAATCACAATCACCAATCAATCACCAATCACCAATCAATCAATCACCAATCAATCAATCAATCAATCAATCAATCAATCAATCAATCAATCAATTCAATCAATTCAATTCAATCAATTCAATCAATTCAATCAATTCAATTCAATTCAATCAATTCAATCAATTCAATTCAATTCAATTCAATTCAATTCAATTCAATTCAATTCAATTCAATTCAATTCA ENMRVMLKLD ntdla TTATGAGTTACCAAAACTTAGTGAGTGAAGCAGGGCTGACGCCAAAAGCTCCTGATTCATGGCGACAAAGAACTTTTCCAGCACGAATTGAAGACCATCTTCGCGCGGAACTGGCTTTTTC 2640 M S Y Q N L V S E A G L T Q K L L I H G D K E L F Q H E L K T I F A R N W L F TGACCCATGACAGTCTGATTCCCCCCGGGGACTATGTCACAGCCAAAATGGGCGTCGATGAAGTCATCGTCTCCCGCCAGAACGATGGCTCGGTGCGAGCCTTTTTGAATGTTTGCC 2760 H D S L I P S P G D Y V T A K M G V D E V I V S R Q N D G S V R A F L N V C R GTCACCGGGGCAAGACACTAGTTCACACTGAAGCCGGAAATGCGAAAGGCTTTGTGTGCGGGCTACCGGCTGGGGCTACGGTTCCAACGGCGAACTGCAAAGCGTTCCCTTTGAAAAAAG 2880 H R G K T L V H T E A G N A K G F V C G Y H G W G Y G S N G E L O S V P F E K E AGTTGTACGGAGATGCGATCAAAAAGAAATGCCTGGGCTTGAAAGAAGTCCCCCGCGCTCGAAAGCTTTCATGGCTTTATCTATGGCTGTTTTGATGCAGAAGCTCCCCCCGCTCATCGATT 3000 LYGDAIKKKCLGLKEVPRIESFHGFIYGCFDAEAPPLIDY

CTGG																																							
LG	I	נכ	4 2	A	W	Y	L	E	P	5	r F	· •	СН	I S	G	G	1	י ד E	: 1	- v	, c	G E	? F	? (5 1	< '	V V	,	V F	. A	N	W	к	P	F	A	E	N	F
GTAG	GTC	GAC	ATC	TAC	CAC	GT	TGG	TT	GGA	CGC	CACO	CAC	CGG	GTI	TGC	GCG	CAC	GGC	AG	rcgg	TA	TTTA	GTI	CTC	TTC	GCG	GGC	AC	GCTA	AGC	TTC	CAC	CCG	AAG	GCG	CGG	GCT'	TGCA	AA
V G	I)	L 7	Y	н	v	G	W	т	ł	HA ,	. 1	A	L	, F	A	. (; Q	! !	3 V	/ I	FS	5 5	5 1	. 7	¥ (G 1	1	A F	L	₽	P	E	G	A	G	L	Q	м
ACCA																																							
T S	ŀ	K Y	e c	G	s	G	М	G	L		r v	1 1	y A	Y Y	5	G	1	1 F		S A	• I	S N	1 V	/ 1	? I	נכ	ւչ	1 2	A F	G	A	A	ĸ	Q	Е	ĸ	L	A	ĸ
GAAA	TCO	GC	JATO	GTC	CGG	GC.	ACG	GA?	TTT.	ACO	CGCF	GCI	TTC	TGA	ACG	GCA	CG	JTTT	TC	CCGA	AC	AACF	\GC1	rrr.	TG	ACC	GGCI	rcc	GCTA	CCT	TCA	AGG	rct	GGA	ACC	CGA	TCG.	ATGA	AA
ΕI	C	G 1	י כ	v	R	A	R	I	Y	ł	R S	3 1	Ľ	, N	I G	Т	1	/ F	' 1	P N	1 1	N S	S F	7 1	5 3	F (G (5 .	r A	F	ĸ	v	W	N	P	· I	D	Е	N
ACGA	~~~						.	~	-		~~ ~ ~ ~			maa	~~~~		200			~~~~		~~~		-			-			.	~~~	~~~		~ ~ ~ ~	man	0000			~~
ICGA F T																																							
					-	-		-																			•									-	-	-	
ACG																																							
ΙE	V	11	4 H	E '	Т	L	S	Q	N	1	A, K		ίΥ	ç	S	s	1	i s	· I	ΣQ	!]	IP	1 5	5 1	. (; I	f (K L	v	Ŷ	G	D	Е	C	Y	Р	G	v
TTG	GCA	AA	rcgo	GCA	ATC	GG	CGA	AAG	CCA	GCI	TATO	GCC	GAT	TCT	ACC	GTG	cci	CACC	AG	GCTC	:ACI	ATC	GCA	AGC 2	rccz	AT	rggo	CC	GAGI	TCG	ААА	ATG	сст	ccc	GAP	ATT	GGC.	ACAC	CG
																																						т	
										~~ •												1000						-			1 mm				0.000	~~~	~~~		~.
TCAC								ATC	CC <u>A</u>	GG/																												ACAA O	
	ſ	`		•	D	r									-		•	¥	5	2		-	•	0	n		0		-	-	•		••	•	•	-	•	¥	2
																																						AGTG	
Α	L	L	Q	Е	V	7 1	N	т	L	L	т	R	Е	A	н	L	L	D	I	Q	A	Y	К	A	W	L	E	н	С	v	Α	Ρ	Ε	Ι	К	Y	Q	v	I
'aca	AGZ	ممد	rrc(ст	CCA	CT	TCC	GA	GCG	TCO	GATA	CCF	ACT	GAA	TGA	TGC	GG'	[GAP	TC	FCTP		ACGZ	GAA	ACT2	TC	AAC.	AGCI	GA	AAGI	TCG	AGT	TGA	ACA	CCA	GAT	GGA	TCC	TCAG	AA
																																						Q	
	_																																						
																																						CGCC A	
A	14	14	r	K		-	R.	1.	-	ĸ	-	Ŷ	•		•	•				D		5		•	-	•••	-		v	•	0		-	-	-	••			
GAGA																																							
Е	N	Q	v	D	V	7	F	Y	Α	т	R	Ε	D	К	W	К	R	I	E	G	G	G	I	К	r	v	E	R	F	v	D	Y	Ρ	Е	R	I	P	Q	т
ACAA(N								AC	CCT	GG	GGAT	GCC	TGC	сто	GAI	GGC	GG	JCAT	TC	GTGA	\TT2	ATTI	rtt <i>i</i>	AAC2	\GA7	AAT'	TTA:	гтG	CCAI	GAA	CAC	ACA	GCA	AGT	TGI	TGC	CAT	CACI	GG
CCGG	СТС	CGG	GCA.	ГТG	GTI	TC	GAG	TT	GGT	TC	GCTC	TTT	TAP	AGGC	AGC	CGG	TT	\TC G	;CG	TATC	TG	CACI	rcgi	rrc	GCAI	ACG.	AGG	AGC.	AAGA	GGC	GGG	TCT	TCG	CAG	ΤG₽	ATT	CAA	AGAC	'GA
TTGA	GAI	rcg	rggo	CGG	GCG	SAT	GTC	CG	TGA	TCI	ACGO	CAC	CAA	TGA	GAA	GCT	GG	гтаа	AC	AGAC	GG	TTGO	CAA	AGT	rcgo	GGC	GCC	rgg.	ATTO	CTT	CAT	CGG	AAA	TGC	CGC	GAT	ATG	GGAT	TA
rger	GAC	GCA	rcgi	ATG	ATC	ст	TGG	GAG	GAA	AT?	тсто	GGG	CAG	TTT	CGA	CGA	GA.	rati	TG:	ACAT	(CA)	ACG?	rca#	AAA	GCT2	\TT	TCA	GCG	GCAI	CAG	CGC	GGC	CTT	GCC	GGA	GCT	С		

Nucleotide (nt) sequence of the cloned 4912 bp *SacI* DNA fragment from JS42 containing the genes *ntdAaAbAcAd* required for 2-nitrotoluene dioxygenase activity (top line). The predicted amino acid (aa) sequences for the *ntdAaAbAcAd* genes are also shown (bottom line). Asterisks (*) indicate stop codons. Potential ribosome binding sites are underlined. The *ntdAaAbAcAd* genes encode the reductase_{2NT}, ferredoxin_{2NT}, and the ISP_{2NT} (α subunit) and ISP_{2NT} (β subunit), respectively. A summary of the results including a restriction map of the 5-kb DNA fragment from JS42 is shown below. This work is currently being prepared for publication.

Gene order and predicted ntdAaAbAcAd gene products from Pseudomonas sp. JS42

A comparison of the predicted amino acid sequences for reductase_{2NT}, ferredoxin_{2NT} and ISP_{2NT} (α and β subunits) with other multicomponent dioxygenases is shown below. The 2nitrotoluene dioxygenase system is clearly related to the naphthalene dioxygenase system from *Pseudomonas* sp. NCIB 9816-4. Since the nucleotide and predicted amino acid sequences for the α and β subunits of ISP_{NAP} from NCIB 9816 have not been published we determined these sequences during the current grant period.

	Percent AA Identity ^a with 2-NTDO Predicted Polypeptide										
	Reductase	Ferredoxin	ISPα	ISPβ							
Naphthalene Dioxygenase (9816-4)	67	72	84	76							
Chlorobenzene Dioxygenase (p51)	23	35	34	25							
Biphenyl Dioxygenase (RHA1)	18	31	33	26							
Biphenyl Dioxygenase (LB400)	19	40	32	30							
Biphenyl Dioxygenase (KF707)	19	40	31	27							
Toluene Dioxygenase (PpF1)	19	36	34	25							

2-Nitrotoluene Dioxygenase (2-NTDO) Amino Acid Sequence Comparisons

^a Percent aa identities are the percentage of the amino acids from the 2NTDO component identical to the amino acids of the corresponding three component dioxygenase system. Percentages were determined using the "GAP" program of the Wisconsin Sequence Analysis Package.

We have compared the substrate specificities of naphthalene and 2-nitrotoluene dioxygenases and the results obtained are shown in the table below. The results show that there are significant differences between the two enzymes. It is important to note that 2-nitrotoluene dioxygenase oxidizes naphthalene to almost racemic (+)-*cis*-(1R,2S)-dihydroxy-1,2-dihydronaphthalene in contrast to 2,4-dinitrotoluene and naphthalene dioxygenases which form enantiomerically pure preparations of this compound. In addition, 2-nitrotoluene dioxygenase oxidizes the aromatic nucleus of the substrates shown in the following table whereas 2,4-dinitrotoluene and naphthalene dioxygenases oxidize the methyl substituents of most of these substrates.

Products 2-Nitrotoluene Dioxygenase Naphthalene Dioxygenase Substrate 3-Methylcatechol (18.0)^a 2-Nitrobenzyl alcohol 2-Nitrotoluene 2-Nitrobenzyl alcohol (1.0) 3-Nitrobenzyl alcohol 3-Nitrotoluene 3-Nitrobenzyl alcohol (4.0) 3-Methylcatechol (1.0) No products detected 4-Nitrobenzyl alcohol 4-Nitrotoluene No products detected Catechol Nitrobenzene cis-Naphthalenediol (12.6)^b cis-Naphthalenediol^C Naphthalene 1-Naphthenol (1.0) 1-Indanol (15.0) 1-Indanol (19.2) Indan 3-Hydroxy-1-indanone (5.0) 1-Indenol (5.7)2-Hydroxy-1-indanone (3.0) cis-Indandiol (2.0) 1-Indanone (1.0) 1-Indenol (2.0)cis-Indandiol (9.3) Indene trans-1,2-Dihydroxyindan (1.7) cis-Indandiol (1.0) 1-Indenol (1.0) 1-Indanone (trace) Trifluorotoluene No products detected Trifluorotoluenediol

Biotransformation Products by 2-Nitrotoluene Dioxygenase and Naphthalene Dioxygenase

a) Relative ratios of biotransformation products are in parentheses and were determined by integration of the total ion current chromatograms obtained by GC/MS analysis.

b) 42% enantiomeric excess.

c) 98% enantiomeric excess.

3. To clone and sequence the genes responsible for nitrobenzene oxidation by a *Comamonas* sp., strain JS765.

This organism, isolated in Dr. Jim C. Spain's laboratory is novel in terms of the reaction used to initiate the degradation of nitrobenzene. To date it is the only organism known to oxidatively remove nitrite from nitrobenzene. During the current grant period we have tried to use Southern hybridization techniques to identify the nitrobenzene dioxygenase genes in the Comamonas strain. To date, no positive hybridization results have been obtained, indicating that the genes responsible for the removal of nitrite from nitrobenzene in this organism are different to any known strains capable of the oxidative degradation of nitroaromatic compounds. It is well known that many dioxygenases will oxidize indole to indoxyl which oxidizes spontaneously to form indigo. Thus the formation of blue colonies in the presence of indole can be used in some cases to indicate the presence of active dioxygenase enzymes. Nitrobenzene grown cells do not oxidize indole to indigo. Consequently, we prepared a cosmid library in pHC79 and sprayed isolated colonies with a solution of catechol in ether. The rationale for this approach is as follows. Catechol is formed from nitrobenzene by the Comamonas strain. Ring cleavage of catechol by catechol 2,3-dioxygenase leads to the formation of 2-hydroxymuconic semialdehyde which is bright yellow at alkaline pH due to its high extinction coefficient at 375 nm. Thus recombinant E. coli strains which form yellow colonies from catechol will contain JS42 DNA that encodes catechol 2,3-dioxygenase. If the genes for nitrobenzene degradation are located on an operon, or form part of a gene cluster, the isolation of the DNA that contains the catechol 2,3-dioxygenase genes may also contain the genes encoding nitrobenzene dioxygenase. Our initial experiments resulted in the cloning of a large fragment (40-45-kb) of JS42 DNA into the cosmid vector pHC79. This recombinant plasmid, designated pDTG900, contains the gene for catechol 2,3-dioxygenase. Subcloning experiments with the vector pK19 gave a recombinant strain of E. coli DH5a (pDTG901) which turned yellow when sprayed with an ether solution of catechol. The size of the insert in pDTG901 was approximately 7-kb.

4. Significance.

The results obtained to date represent the first demonstration of the multicomponent nature of an enzyme responsible for initiating the degradation of a nitroaromatic pollutant. The cloning of the genes encoding the structural components of 2-nitrotoluene dioxygenase is a major breakthrough which will enable us to clone each component in high expression vectors. This is particularly important for genes *ntdAc* and *ntdAd* which encode the large (α) and small (β) subunits of the oxygenase component. Thus, we will be able to determine the function of each subunit, locate the active site of the enzyme and ultimately elucidate the mechanism of nitrite release. These are high but not unobtainable goals. The rapid advances in bioanalytical technology including Xray crystallography, electrospray and laser desorption techniques in mass spectrometry, NMR, EPR, resonance Ramon, Mössbauer, ENDOR and EXAFS spectroscopies can all be utilized to study the mechanism of action of the enzyme. Knowledge from these experiments can be used to construct a more efficient enzyme with the ability to degrade a wide range of nitroaromatic pollutants. This type of information is a necessary adjunct to ongoing developments in bioremediation technology. It lends credibility and direction to applied studies and could conceivably lead to the development of stable synthetic catalysts that can be used to remove nitroaromatic pollutants from contaminated sites. These are the ultimate goals of this project and they focus on the challenges posed by the presence of nitroaromatic compounds in military establishments and the environment.

PARTICIPATING PROFESSIONALS

David T. Gibson, Ph.D. John M. Brand, Ph.D. Juanito V. Parales, B.S. Ashwani Kumar, Ph.D.--participated in project but did not receive financial support. Rebecca E. Parales, Ph.D.--participated in project but did not receive financial support.

PUBLICATIONS

None (3 in preparation).

INTERACTIONS

a. Participation/presentations.

i. David T. Gibson. "Multiple reactions catalyzed by multicomponent dioxygenases." Presented at a Keystone Symposium on Environmental Biotechnology, March 16-22, 1995. Lake Tahoe, Granlibakken Resort, California.

ii. David T. Gibson. "New insights on the bioconversion of contaminants by oxygenases." Gordon Research Conference on Applied and Environmental Microbiology, July 2-7, 1995. New Hampton School, New Hampton, New Hampshire.

iii. David T. Gibson has been invited to present a seminar on "Microbial Solutions to **Problems of Environmental Pollution**" to the Environmental Division of DuPont Central Research and Development, Wilmington, DE, on May 1, 1996. Contact: Dr. Vasantha Nagarajan.

iv. Rebecca E. Parales presented a poster, "2-Nitrotoluene Dioxygenase from *Pseudomonas* sp. Strain JS42: Protein Purification, Molecular Biology, and Substrate Specificity", at the Fifth Annual Symposium on *Pseudomonas* held August 21-26, 1995, at Tsukuba, Japan. Co-authors contributing to this work were Dr. Danmei An, Dr. Ashwani Kumar, Mr. Juan V. Parales, Mr. Sol M. Resnick, Dr. Jim C. Spain, and Dr. David T. Gibson.

b. Consultative and advisory functions.

i. **Industry: Genencor International.** Properties and crystallization of hydrocarbon dioxygenase components. Primary contact: Dr. Gregory M. Whited (visit 5/15/95 and several telephone and e-mail contacts).

ii. Government: Los Alamos National Laboratory. Invitation to participate with 5-8 other experts in a discussion with scientists at the Los Alamos National Laboratory September 25 and 26. The purpose is to identify research problems in bioremediation which are best suited to a multidisciplinary group of scientists at Los Alamos with expertise in structural biology, theory and modeling, molecular biology, and microbial ecology. Unable to attend due to health problems.

iii. Air Force: Tyndall Air Force Base, Panama City, FL. We have had an ongoing consultation/collaboration relationship with Dr. Jim C. Spain's laboratory for several years. This year it became clear that both laboratories had complementary expertise in a variety of ongoing research projects. In order to optimize the transfer of information and to identify areas of mutual interest that could serve as the starting point for new collaborative projects, a one day workshop on the Biodegradation of Nitroaromatic Compounds was held on 9 June, 1995. The program for the workshop is given below.

BIODEGRADATION OF AROMATIC COMPOUNDS

Reduction of nitro groups

- 9:00 Chuck Somerville- Preparing nitrobenzene for ring cleavage: the reductive pathway
- 9:15 John Davis- Genetic analysis of the nitrobenzene reduction pathway
- 9:30 Urs Lendenmann- Purification and characterization of 2-aminophenol dioxygenase
- 9:45 Andreas Schenzle- 3-Nitrophenol degradation by *Alcaligenes eutrophus* JMP134
- 10:00 Paul Fiorella- Synthesis of novel TNT metabolites by strain JS45

Dioxygenase catalyzed removal of nitro groups

- 10:30 Wen Chen Suen, Billy Haigler- 2,4-Dinitrotoluene degradation: pathway, gene cloning and sequence analysis
- 10:50 Shirley Nishino- Recalcitrance of 2,6-DNT
- 11:05 Juan Parales, Wen Chen Suen- 2-Nitrotoluene dioxygenase sequence: comparison with DNT dioxygenase and naphthalene dioxygenase
- 11:20 Juan Parales, Sol Resnick- 2-Nitrotoluene dioxygenase: Substrate specificity
- 11:35 Becky Parales- ISP_{NAP}: Random mutagenesis of the ISP small subunit gene
- 11:50 Haiyan Jiang- ISP_{TOL}: Reconstitution of active enzyme from purified α and β subunits
- 1:30 Billy Haigler, Sol Resnick- 2,4,5-Trihydroxytoluene oxygenase: ortho or meta ring cleavage?
- 1:45 Staci Eaton- Dihydronaphthalene metabolism by *Beijerinckia*
- 2:00 Lloyd Nadeau- Transformation of DDT by *Alcaligenes eutrophus*. 3-nitrobenzoate dioxygenase

Oxidative degradation of nitrobenzene

- 2:15 Shirley Nishino- Pathway and substrate range
- 2:30 Becky Parales- Cloning of genes and selection of mutants: thoughts and future plans
- 2:40 Kadiyala Venkateswarlu- Biodegradation of PNP by *Bacillus sphaericus*
- 3:15 Small group discussions

INVENTIONS/PATENT DISCLOSURES

None.

Specific Aims for the next grant period:

- 1. Determination of the stoichiometry of the reaction catalyzed by 2-nitrotoluene dioxygenase.
- 2. Initiate studies on the function of the open reading frame in the nucleotide sequence encoding the structural genes of 2-nitrotoluene dioxygenase.
- 3. Construction of hybrid dioxygenases from ISP_{2NT} and ISP_{NAP} to determine regions responsible for substrate specificity.