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Annual Technical Report 
(7/1/94 - 9/30/95) 

Abstract 

This report is a summary of all the research performed on the project entitled 

"Recombination, electron-excited atom collisions and Ion-Molecule Reactions". Basic theoretical 

research was completed and published on the following topics: 

(A) Dissociative Recombination 

(B) Electron-Excited Atom Collisions 

(C) Electron-Ion and Ion-Ion Recombination Processes 

(D) Elastic Scattering: Classical, Quantal, and Semiclassical 



I. Introduction 

This report summarizes all of the basic Physics research performed and published on the 

project: 

Title: Recombination, electron-excited atom collisions and Ion-Molecule reactions. 

Grant Number: F49620-94-1-0379 

Award Amount: $105,000. 

Award Period: 94/07/01 - 95/09/30 

The objectives of this basic research program was to formulate, develop, and implement 

theoretical methods essential to the physics of electronic and atomic collision processes with 

relevance to various Air Force Missions. 

n. Research Completed 

Research was completed on the following topics: 

(A) Dissociative Recombination: 

e- + AB+-A + B* 

(B) Electron-(excited) Atom Collisions: 

e* + A* - e- + A** 

(C) General Electron-Ion and Ion-Ion Recombination Processes: 

(D) Elastic Scattering: Classical, Quantal, and Semiclassical Theories. 



DI. Research Published and In Press 

1. M. R. Flannery, "Semiclassical Theory of Direct Dissociative Recombination", in "Atomic 

Collisions", (D. R. Schultz, M. R. Strayer and J. H. Macek, eds.) AH» Press, 1995), 

pp. 53-75. Reprinted as Appendix A. 

2. M. R. Flannery, "Semiclassical-Classical Path Theory of Direct Electron-Ion Dissociative 

Recombination and e" + H3
+ Recombination", Int. J. Mass Spectrom. (1996), in press. 

Reprinted as Appendix B. 

3. M. R. Flannery, "Electron-Ion and Ion-Ion Recombination Processes", in Atomic. Molecular. 

and Optical Phvsics Handbook. AIP Press (1996), in press. Reprinted as Appendix C. 

4. E. J. Mansky, "Rydberg Collisions: Binary Encounter, Born and Impulse Approximations", 

in Atomic, Molecular and Optical Physics Handbook, AIP Press (1996), in press. 

Reprinted as Appendix D. 

5. M. R. Flannery, "Elastic Scattering: Classical, Quantal, and Semiclassical", in "Atomic, 

Molecular, and Optical Physics Handbook", AIP Press (1996), in press. Reprinted as 

Appendix E. 

6. E. J. Mansky and M. R. Flannery, "Automatic Generation of Analytical Matrix Elements for 

Electron-Atom Scattering", Comput. Phys. Commun. 88 (1995) 278-292. 6 Reprints 

attached in separate Report GIT-94-003. 

7. E. J. Mansky and M. R. Flannery, "The Multichannel Eikonal Theory Program for Electron- 

Atom Scattering", Comput. Phys. Commun. 88 (1995) 249-277. 6 Reprints attached 

in separate Report GIT-94-002. 

The abstracts of publications #6 and 7 are printed in Section V. 



IV.   Technology Transitions and Transfers with Phillips Laboratory Resulting 
from the Research Work of M.R. Flannery on Recombination. 

A. Environmental connection: The present program on theoretical treatments of the 
rate and cross sections for the Dissociative Recombination Process: 

e" + AB+-A + B* (1) 

is very important to the environmental program of Dr. A.A. Viggiano and Dr. T. Miller 
at Phillips Laboratory, Hanscomb Air Force Base. Interactions of the neutral products of 
(1), particularly the excited state products e.g. O* (JD) and N*, with the greenhouse gases 
SF6 and CF4 are important to the physics of the Greenhouse Effect. The Greenhouse 
gases SF6 and CF4 have long lifetimes in the atmosphere. They are unreactive with the 
usual atmospheric ground state species and with the usual atmospheric cleansing agent 
OH. They, however, react strongly with 0(1D), an excited metastable oxygen atom, 
which is produced in the dissociative recombination process 

e' + CV-O + OOD) (2) 

between the electrons e" and molecular 02
+ ions in the atmosphere. The dissociative 

recombination process (2) is the dominate source of metastable O ('D) which then react 
and cause fragmentation of the greenhouse gases SF6 and CF4. How much 0(!D) is 
produced and how fast it is produced is therefore of key significance. Examination of (1) 
provides the answer. 



B. Re-Entry Flowfields: The present program on theoretical treatments of the Three- 
Body Recombination Process: 

e" + A+ + (N2, H20, C02) - A + (N2, H20, C02) (3) 

is very important to the program of Dr. R.A. Morris at Phillips Laboratory. It is key to 
the analysis of re-entry flowfields of spacecraft and the subsequent wake-neutralization. 
Here the positive ions A+ are the alkali (ablated) contaminants in space craft materials 
and the third bodies (N2, H20, C02) are atmospheric species. The wake-neutralization 
between electrons and positive ions occurs via (3) and is strongly dependent on the nature 
of the third bodies. Neutralization is also effected by Dissociative Recombination 

e" + NO+ - N + N* (4) 

with atmospheric ions NO+. Processes (3) and (4) control the electron concentration in 
the plasma. These processes have quite different physical mechanisms. Knowledge of 
the partitioning of electron depletion between processes (3) and (4) is extremely 
important and is addressed by Flannery's research. 



IV. Research Abstracts 
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Abstract 

A code which can be used to automatically generate entire sets of analytical matrix elements of the instantaneous 
electrostatic interaction potential between the projectile electron and the target atom is described. The code can be 
used at present for both hydrogen and helium target atoms. In the case of hydrogen, the present code V i j 
generalizes and extends an earlier code of Jamison [1]; while in the case of helium, Hartree-Fock frozen-core 
wave-functions are used to represent the two-electron wavefunctions. When an entire set of matrix elements is 
generated, a complete set of FORTRAN subroutines is produced which can be directly incorporated into the code 
H E T_c ross used to solve the multichannel eikonal theory (see accompanying paper). A principal application of the 
code V i j is to aid the elucidation of the systematic trends observed in transitions among metastable states in 
electron-atom collisions by studying the functional form of the underlying interaction matrix elements. 

PROGRAM SUMMARY 

Title of program: V i j 

Catalogue number: AD AX 

Program obtainable from: CPC Program Library, Queen's 
University of Belfast, N. Ireland (see application form in this 
issue) 

Licensing provisions: none 

Computers for which the program is designed and others on 
which it has been tested: IBM RS/6000 and HP/Apollo 9000 
model 700 series workstations with a FORTRAN 77 compiler. 
With minor changes the program will also run on CDC 800 
series mainframes and Cray supercomputers (see comment 
cards in code for details). 

1 E-mail address: mansky@eikonal.physics.gatech.edu. 

Computers: IBM RS/6000 model 520 and HP/Apollo 9000 
model 730 workstations; Installation: School of Physics, Geor- 
gia Institute of Technology. 

Operating systems: AIX 3.1.7, HP-UX 8.07, 9.01 

Programming Language used: FORTRAN 77 

Memory required to execute with typical data: 3848 words 

No. of bits in a word: VL 

Peripherals used: Terminal or card reader for data input. 
Terminal, line printer or magnetic disk for storage of output 
data. 

No. of lines in distributed program, including test data, etc: 3022 

Keywords: interaction matrix elements, inelastic, analytical 
electron-atom matrix elements, Hartree-Fock, frozen-core, 
wavefunctions 

0010-4655/95/$09.50 © 1995 Elsevier Science B.V. All rights reserved 
SSDI 0010-4655(94)00163-4 
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Nature of physical problem 
Generation of individual or complete sets of analytical inter- 
action matrix elements for use in electron-atom scattering 
codes. 

Method of solution 
The core of the present program is a generalization of a 
hydrogenic interaction matrix elements code of Jamison [1] 
which has been extended to deal with both electron-hydrogen 
and electron-helium interaction matrix elements. In the case 
of He, the Hartree-Fock frozen-core wavefunctions of Cohen 
and McEachran and co-workers [2,3] are used in the repre- 
sentation of the Slater form of the two-electron wavefunctions 
required in the matrix element calculation. 

Restrictions on the complexity of the problem 
There are no limits on the number of individual matrix 
elements which can be generated at a given time. In generat- 
ing complete sets of matrix elements the program is limited to 
orbitals with principal quantum number n < 6. The restriction 
n < 6 can be relaxed for H, but cannot at present be relaxed 
for He due to the use of the frozen-core Hartree-Fock 
wave-functions [2,3]. 

Typical running times: between 4 and 24 seconds 

References 
[1] M.J. Jamison, Comput. Phys. Commun. 1 (1970) 437. 
[2] M. Cohen and R.P. McEachran, Proc. Phys. Soc. 92 (1967) 

37. 
[3] R.P. McEachran and M. Cohen, J. Phys. B 2 (1969) 1271. 

LONG WRITE-UP 

1. Introduction 

One of the central quantities in the formulation of both quantal and semiclassical scattering theories 
of the electronic excitation of atoms are the matrix elements of the instantaneous electrostatic interac- 
tion, 

Vnj{R) = {%\V(R,{rl))Wj), (1) 

which characterizes the potential energy of the interaction between the projectile electron and the target 
atom. Over twenty years ago Jamison published in this journal [1] a code for the evaluation of (1) for 
hydrogenic wavefunctions. In this paper we generalize and extend Jamison's code for hydrogenic target 
wavefunctions to handle two-electron Hartree-Fock frozen-core wavefunctions and to automatically 
generate a FORTRAN code for the evaluation of the analytical expressions which result from [1]. The 
present code V i j can be used to generate individual matrix elements Vnj, or entire sets {Vn]) suitable for 
direct incorporation into the multichannel eikonal scattering code M E T_c ross (see accompanying 
paper). Knowledge of the analytical behavior of the interaction matrix elements (1), with respect to the 
projectile-target relative separation R, in addition provides insight into the mechanism for the direct 
electronic excitation in the bound-bound transition j -*n and hence is important in elucidating the role 
various multipole terms play in electronic transitions among metastable states of H and He. 

The remainder of this paper is organized as follows. Section 2 presents the functional form of the 
direct interaction matrix elements V ■ for the hydrogenic and two-electron atomic targets of interest to 
us. In Section 3 a description of the algorithm used to generate the matrix elements (1) is given, while a 
sample of the output produced by V i j is provided in Section 4. Unless otherwise noted, atomic units are 
used throughout the paper. Program names in this paper are indicated in typewriter type-set, while 
names of modules are given in boldface. 

2. Theory 

The basic theory for the hydrogenic case has been covered in detail by Jamison [1], while Flannery and 
McCann [2] have considered the two-electron case using the Hartree-Fock frozen-core wavefunctions of 
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Cohen and McEachran [3-6]. Here we simply collect together the central formulae and refer the 
interested reader to the atomic physics literature for details. 

2.1. Hydrogen 

In the case of hydrogen the matrix elements of the Coulomb interaction between the projectile and 
target electrons is expressed [1] as 

1 
^ee)(*)=/*/(r)—^(r)dr (2) 

where the hydrogenic wavefunctions for the initial and final states are given, respectively, by ijti and fy, 
and the integration is over the coordinate r of the electron bound to the H+ core. Upon application of 
the multipole expansion [7] to the Coulomb interaction, the matrix elements Vnj(R) can be expressed as 
analytical functions of the projectile-target distance R. The resultant analytical expression (see below) 
facilitates the investigation of the underlying physics responsible for the systematic trends observed in 
metastable atom collisions [8,9]. After expressing the hydrogenic wavefunctions in terms of the associated 
Laguerre polynomials [10-13] L%iy\2ßr) (ß = Z/n\ and some algebraic manipulation, the following 
expression is obtained: 

n+e       n'+r e+r 

k = 0 k' = o L=\e-C I M = 

(K + 2L + 2)\     1 

£     (-1) 
2L + 1 

D(f,L, r-m, -M,m')YLM(R) 

X 

+ e 

y 
K+2L+3 R1 

-ßR 
I   L 

p   (K+1)\RP 1      ß   (K + 2L + 2)\ RQ 

(3) 

with K = S + S' + k + k'-L, Q = K + 2L + 2, P = K+1 and y = ß + ß' (Z = 1 for H). 
The function D(t, L, l'\ m, -M, m') is the angular part of the matrix element and is given by 

fYlm(r)YLM
f)Y;min dr 

(2/+l)(2/'+l)(2L + l) 
4TT 

1/2 
e  L  r 
ooo 

i 
m 

L    r 
—M    m' 

= D{1, L, l'\m, -M,m') (4) 

in terms of 3-j symbols and using the phase convention of Edmonds [14]. The remaining coefficients in 
(3) are given by 

A^ 
{-l)k     [(n+/)!(n-/^l)!] 

1/2 )(+k+\ 

  (5) 
k\     (n-e-k-l)\(2e + k + \)\ nf+k+2 

A similar expression for A$n is obtained from (5) by replacing n, i and k by their primed 
counterparts. 

The 3-j symbols needed in (4) are obtained using an adaptation of a code of Tamura [15]. The 
subscripts / and / used in (2) are shorthand for the complete quantum numbers {«, I, m) and 
{«', £', m'} for the initial and final states, respectively. The expressions (5) are the products of the 
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normalization constants and the coefficients in the power series definition [12,13] of the associated 
Laguerre polynomials L^l\2ßr) and L%Ql\2ß'r) which appear in the radial part of the hydrogenic 
wavefunctions ^nfm(r) and \pn,e,m(r), respectively. The particular choice used here for the definition of 
associated Laguerre polynomials [12,13] results in the coefficient multiplying the highest power of r for a 
given n, I being unity. Other choices are possible [16] and lead to expressions similar in functional form 
to (3) above. Note that our choice of associated Laguerre polynomials is the one most commonly used in 
the atomic physics literature [17,18] and differs from that used in applied mathematics [19]. 

2.2. Helium 

The matrix elements of the Coulomb interaction between the projectile electron and the bound 
electrons in the target helium atom are written [2] as 

Vf\R)=f&rif dr2 V,(ru r2)' (y^ + j^)^1' ^ (6) 

where the labels i and j are shorthand for the complete set of LS-coupled quantum numbers n1'3Lm and 
n'l,3Lm, for the initial and final states of the He atom, respectively. Since our primary interest lies in the 
development of scattering codes to describe the scattering of electrons, in the intermediate to high 
energy regime, by atoms initially in an excited or metastable state, a single-configuration frozen-core 
Hartree-Fock level of description for the two-electron wavefunctions %(rv r2) is adequate. As shown 
by Cohen, McEachran and co-workers [20-22], the frozen-core Hartree-Fock level of the description of 
the wavefunctions yields systematic trends and dipole and quadrupole oscillator strengths in good 
agreement with the Hylleraas-type variational wavefunctions of Weiss and co-workers [23,24] and 
becomes increasingly accurate as both the principal quantum number n and orbital quantum number L 
increase. A resort to more sophisticated multi-configuration Hartree-Fock wavefunctions [25] or CI- 
wavefunctions [26] is only required if one is interested in electronic excitation near threshold or if one is 
studying the resonances in electron-atom scattering. 

The two-electron wavefunctions ^(rj, r2) in the frozen-core approximation are written as 

VtfKri, r2) =Nn,[<t>0(ri) <Mr2) ±0o(r2) <M'i)]> (7) 

where the superscripts ( + ) indicate the spin multiplicity ( + : singlet, -: triplet) and Nnl is the 
normalization constant for the two-electron wavefunction. The one-electron valance orbitals are given by 
[3-6] 

4>0(r)=2Z3/2e^y00(r), (8a) 

*„,(r) = (Zr)'    E    a^^ir\2ßr)e-^Yfm(r), (8b) 
j = 2l+l 

where Z = 2 for He and again ß = Z/n, while a = 2 ?+ 1. The coefficients afe) in the expansion (8b) 
over the associated Laguerre polynomials of the un-normalized valence orbital <j>nf are solutions of a 
generalized eigenvalue problem and have been tabulated in [3-5]. As shown by Flannery and McCann 
[2], it proves useful to transform the valence orbitals (8b) into Slater-type orbitals (STO), 

<MO=    l'^-'e-^Jr), (8b') 
N=l+\ 
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where the coefficients Bftn are given in terms of the afn coefficients, 

jr (-l)N-'z'(2ß)N-'-\j\)2 

N   JJZ+<
J
 (N-t-iy.(N+nKj-N-ni 

and have been tabulated in [27]. 
In terms of the valence orbitals (8), the matrix elements (6) become 

(9) 

Vfe\R)=NjNiYJ Uj 
k = \ \ 

1 

\R-rt 
4>ij±(<t>M0)Ui 

l 

\R-rt 
H 

where the notation 

\R-rt 
<U+ <<£,■ I &>U 

Ä-r, 
0/ ' (10) 

-00 

</!*>=( f*(x) g(x) x2dx 

is used, and the normalization constants are 

1 
#./=■ [2(//„,±G^)]1/2' 

The overlap integral of the un-normalized valence orbitals is written in terms of the B coefficients as 

jr-i     jr-t     ^    ^ (N + N')\ 
{4>j\'i>i)-Gn(n>r = 8(r8min,   E E    B£   B£,        N+r HJV'+l (Ha) 

and equals Hn( when n = ri. The remaining overlap integrals {<j>n( I <£„/> and <</>„ \^n() = <</v I <^0> 
are determined using the expressions [2,27] 

jf-i    jv'-i (N + N')\ 
i4>nA<i)n^-Hne=       E E      Btf^Bft0 N + N'+1 , 

N=l+1 N'=f+\ \lP) 

*-i (N+l)l 

(lib) 

(lie) 

Upon replacing the Coulomb interactions in (10) with the multipole expansion, the first 3 terms in (10) 
yield expressions similar in form to Eq. (3) above, while the fourth term in (10) can be written in closed 
form. Collecting together the resultant expressions from (9) we get 

^+/' L        ( 1 \^ 

vJr\R)=A-rrNiNj  E     E TrhD(f' L> r> m> ~M> m'} YLM{A) 

L=\l-t \  M=-L  ZL + l 

X 
jv-e JV'-I 

L B^  E  B$' 
N=e+\        N'=t+i 

(N + N'+L)\     1 
N+N'+L + 1     RL + 1 

y 

J   ,fi   iV   Rp       1    ft     (2i!    Rq 

+ e J r pt0r
Pl-^'     Ät+I,.orfl'-,+19i 
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(N'+L + l)l 1 

283 

jr-e 
±2Gi8Ll,5M,_m,2Z3/2    E B(nO DN' 

N'=t+1 

X 
1       p*            P2\           R

p 

nL y 
lv £0(fr + z)p>+>+1pi 

jir-e 

±2Gjöu8M,_m2ZV2   E   5tf° 

N' + L + 2 RL + 1 

ö2! 

(ß' + Z) 

1 02 

R^^oiß' + Z) 

(N + L + l)l      1 

+ e-(/3'+Z)R 

J?« 
Ö2-9+1   ?! 

N=e+i 

X 
^3! 

/?LE - 
p-o(i8+Z) 

/?p 

P3-P + 1 p\ RL+1
q%(ß + Z)Q> 

+ INiNp» 
1 

R R 
+ Z\ e (12) 

where JV and ^f' are the number of a(j"') coefficients in the expansion (8b) of the valence orbitals <f>nl 

and (j)n,r, respectively, and y = ß + ß'. Typically [28] the number of terms varies from 9 to 22 for the 
ground state to the 61,3 D states of He. The limits on the various inner summations in (12) are 

(13a) Px=N + N'-L-l,    P2 = N'-L,    P3=N-L, 

Q1=N + N' + L,    Q2 = N' + L + l,    Q3 = N + L + 1. 

Returning to (1), the full instantaneous electrostatic interaction is written as 

1 
V(R, {r,}) 

_ 7        (1 or 2) 

+  E ■ 
(■=1 

R R-r, 

(13b) 

(14) 

composed of the Coulombic attraction between the projectile electron and the target nucleus (of atomic 
charge Z) and the mutual electronic replusion between the projectile electron and electron(s) bound to 
the target atom. The matrix elements of the interaction (14) are then written as a sum of two terms, 

Vnj(R) = Vnf\R) + VnfXR), (15) 

where expressions for the electron-electron matrix elements are provided by Eqs. (3) and (12) for 
hydrogen and helium, respectively. The nuclear matrix elements in the case of H are particularly simple, 

R*l R 

while in the two-electron case, the nuclear matrix elements are written as 

Vf"XR) = Uj 
1 

(16a) 

V^\R)^(% 
1 

(16b) 

(16c) 

where in (16c) we have used the analytical frozen-core Hartree-Fock wavefunctions (7) to express the 
two-electron overlap integrals, <*} |^>, in terms of the overlap among the un-normalized valence 
orbitals and the overlap between the un-normalized valence orbitals and the normalized core orbital. 
Combining (16c) with (12) we see that in the case of He (Z = 2), the nuclear matrix elements (16c) are 
cancelled exactly by corresponding terms in the electronic matrix elements (12). In particular, the first 
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Table 1 
Number of matrix elements in full and reduced equation sets 

yTr -^M 
[full) 

2 4 1 11 15 
3 10 4 65 105 
4 20 10 265 465 
5 35 20 840 1540 
6 56 35 2226 4186 

term in (16c) is cancelled by the summation of the L = 0 part of the first term in (12) and the long-range 
Coulomb part of the fourth term in (12). The second term in (16c) is likewise cancelled exactly by 
addition of the L = 0 part of the long-range multipole in the second and third terms of (12). 

The cancellation of the nuclear matrix elements in the two-electron case is only partial in the ionic 
case with Z > 3 as expected. The incomplete cancellation of the nuclear matrix elements when Z > 3 can 
be seen clearly in the Z dependence of (12) and is facilitated by use of the analytical wavefunctions (7). 

Handling the nuclear matrix elements in the one-electron case is simpler due to the orthogonality of 
the hydrogenic wavefunctions. Upon addition of (16a) to (3) we see that the hydrogenic nuclear matrix 
element is cancelled exactly by the L = 0 part of the long-range multipole term in (3). 

Therefore, taking advantage of the exact cancellation of the nuclear matrix elements (16) we omit 
from the electronic matrix elements (3) and (12) the long-range l/R Coulomb term arising from the 
L = 0 part of the multipole expansions. The resultant expressions for the electron-electron matrix 
elements for H and He from (3) and (12), respectively, can then be easily evaluated and output as 
analytical functions of R and inserted into the program MET_cross for use in semiclassical scattering 
calculations. 

In the accompanying paper on the multichannel eikonal theory (MET), a key assumption is that the 
motion of the projectile electron about the target atom occurs in the plane of scattering. The assumption 
of central force motion is accurate for the small-angle long-range encounters in the intermediate to high 
energy region of primary interest to us in metastable atom scattering, and will generally be valid 
whenever explicit magnetic or spin-dependent forces are absent from the Hamiltonian. One consequence 
of central force motion is that the azimuthal-angle dependence of the matrix elements of the instanta- 
neous electrostatic interaction (15) is concentrated in the YLM(R) spherical harmonics. The resultant 
symmetry properties of the spherical harmonics (e.g. YL_M = (-1)MYLM) allow for a reduction in the 
number of coupled equations which need to be solved in the semiclassical MET due to independence of 
the radial part of the matrix elements (15) on the azimuthal angle. Details on the transformation, 
effected by the use of the azimuthal angle symmetry properties of the spherical harmonics, to reduce the 
number of coupled equations to be solved, can be found in [29]. In Table 1 are shown the numbers of 
matrix elements (15) which are needed for different size basis sets ranging from nmax = 1-6 for both the 
full (i.e. all M substates included) and reduced (i.e. M > 0) coupled equation sets. A general expression 
for the number of matrix elements needed in the reduced equation set is 

^r=K(^-r + l)+5^,(^+1), (17) 
where JVX is the number of coupled equations in the reduced set and yVM are the number of equations in 
the reduced set with M > 0. The first term in (17) is simply the total number of matrix elements on and 
above the diagonal 2 of the coefficient matrix of the reduced equations, while the second term in (17) is 

" The matrix elements (15) are Hermitian. 
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Table 2 
Number of lines of FORTRAN code generated by v i j with i s e t = 1 for H and He 

Hydrogen Helium 

singlet states triplet states 

2 187 409 250 
3 1314 2723 2317 
4 7274 7665 7044 
5 28847 16005 15058 
6 91031 28448 27133 

the number of additional matrix elements required in the reduced equation set due to the transformation 
restricting the number of coupled equations to those with M > 0 (see [29] for details). The overall utility 
of the transformation from the full to the reduced equation sets is evidenced then by the reduction 
(ranging from 38% to 47% for basis sets with nmax = 3-6) in the number of matrix elements (15) needed. 
Table 2 shows the number of lines of FORTRAN code output by V i j for different size basis sets with 
„max = 2-6. It is clear from Table 2 that the number and complexity of matrix elements (15) is a central 
issue in the design and implementation of an algorithm to solve the coupled amplitude equations of the 
multichannel eikonal theory. In the case of H the matrix elements are exact, while for He the choice of 
frozen-core Hartree-Fock wavefunctions represents a compromise between keeping the resultant code 
length tractable and incorporating the physics essential to describe metastable atom scattering into the 
problem. 

3. Description of the code 

The general logical structure of the code Vi j is illustrated by the flowchart in Fig. 1. Figs. 2 and 3 
show the details of the computational tasks preformed in modules HYD and COFF, respectively. At 
present the code is restricted to the targets H and He. In the two-electron case the Hartree-Fock 
frozen-core wavefunctions of McEachran and co-workers [3-6] are used, which in turn are limited by the 
tabulated values of the afn coefficients [28] to states with L < 2 in both the singlet and triplet 
manifolds. Below is given a short description of each of the modules in V i j. 

The output produced by V i j is the FORTRAN source code needed for the evaluation of the desired 
matrix elements and is suitable for direct incorporation into a scattering code (e.g. see the description of 
MET_c ross in the accompanying paper) for the computation of cross sections, or into a program for the 
study of individual matrix elements. Standard ANSI FORTRAN 77 syntax is used and all code produced 
by V i j assumes 64-bit word lengths (i.e. calculations are done in double precision for 32-bit worksta- 
tions). The original version of Vi j (then called Helium) was written by K.J. McCann in 1974 using 
FORTRAN 66 syntax. The present code, V i j was first written in 1981 by the first author for use on 
mainframes, and has been in continual usage since, evolving under extensive testing on a number of 
mainframe computers and (starting in 1990) on workstations. Any questions regarding code usage and 
portability can be sent to the e-mail address of the first author. 

VTJ. The main routine first reads in the input data (described in Section 4 below), initializes various 
quantities and then calls subroutine HYD (once in the case of H, four times in the case of He 3) to 
generate the FORTRAN code necessary to evaluate the electronic matrix elements (3) and (12). If an 

3 Four times in the case of He due to the four terms appearing in (10). 
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VIJ 

' 
H 

ATOM = ? 
H« 

' \ i \ 

HYD GIJ 

1 
HYD compute A 

\ 

HYD compute B 

* 

HG 

I 

HYD compute C 

1 ' 
HG 

i 

HYD compute D 

\ ' 

print-out radial part  _ 
of matrix element Vij(R) 

\ f 

print-out angular part _ 
of matrix element Vij[R) 

YLM-DATA 

Fig. 1. Logical flowchart of program V i j. 

entire set of matrix elements is required, the main routine also prints out the FORTRAN code needed 
to assemble the individual matrix elements computed by HYD into a coefficient matrix for use in the 
program M E T_c ross. 

HYD. The principal module used to generate the FORTRAN code needed to evaluate an individual 
electronic matrix element. Once the coefficients for the initial and final state wavefunctions have been 
obtained from module COFF, the coefficients and powers of R needed in (3) and (12) are computed and 



E.J. Mansky, M.R. Flannery / Computer Physics Communications 88 (1995) 278-292 287 

HYD 

COFF 

COFF 

assemble wavefunciion for initial state 

assemble wavefunciion for final state 

compute powers and 

exponents'of Vij(R) 

print-out powers and exponents 

THREEJ D 

Fig. 2. Logical flowchart of module HYD used in program V i j. 

then the FORTRAN code necessary for the evaluation of the radial part of the matrix element is output. 
Finally, before returning the control back to the main module VTJ, the angular part of the matrix element 
is determined from the output of the function D and then the requisite FORTRAN code for it's 
evaluation is output. 

COFF. Given the quantum numbers and atomic charge Z of the atomic state desired, the coefficients 
in the power series (5) in the case of H, or the B$f) coefficients (9) in the case of He, are computed and 
stored for use in subroutines HYD, GIJ and HG. When dealing with helium the normalization constants 
Nn( are also computed. The coefficients stored, for further use elsewhere in the code, are actually the 
product NnlB^^. Further discussion about the product NneB

(^l) can be found in Section 2 of [27]. 

COFF 

* ' 
E ATOM = ? He 

> ' \ r 

set-up Hydrogenic 
wavefunctions 

COHEN ,(»0 

Fig. 3. Logical flowchart of module COFF used in program V i j. 
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GIJ. Given the atomic charges and quantum numbers of the two valence orbitals, this evaluates (11a) 
for the overlap Gn(rie< between the orbitals <f>ne(r) and 4>n,r(r). 

HG. Computes the overlaps <<k,,l0„,> =Hnl and (cf>0 I <£„,> = <<£„, I 4>0) = Gn( from (llb,c), re- 
spectively, given the quantum numbers of the valence orbital <£„//•). 

COHEN. Respository of the wavefunction coefficients a<"° in the frozen-core Hartree-Fock repre- 
sentation (8b) of the valence orbital 4>nf(r). The present tabulation, taken from [28], is more extensive 
than that published in [3-6] and yields two-electron overlap integrals \{% \ %) I < 10"3 for all singlet 
and triplet states of He up to n = 6 and L < 2. 

D. Evaluates Eq. (4) for the angular part of the electronic matrix element given the orbital and 
magnetic quantum numbers {I, f, L} and {m, rri, M), respectively. 

THREEJ. Evaluates the Wigner 3-j symbols [14] appearing in (4) by an adaptation of a code of 

Tamura [15]. 

YLM _DATA. Block data module of coefficients defining the spherical harmonics YLM(R) up to L = 6. 

The original output of Jamison's [1] subroutine HYD has been replaced by WRITE statements which 
generate a FORTRAN code to evaluate the electronic matrix elements (3) and (12). The execution time 
of the code for generating entire sets of matrix elements is quite rapid - being in all cases less than 1 
minute for all sets with nmax < 6. However, the output created (see Table 2) can be extensive and care 
must be taken by the user in viewing the results or in obtaining hard copies. 

At present only matrix elements with nmax < 4 have been used in the DMET code (see accompanying 
paper). The overall algebraic structure of the polynomials in R in the matrix elements, involving 
alternating powers of R, will necessarily put practical limits on the value of rcmax which can be used in a 
scattering code. The practical limitations on the accuracy achievable with a given basis set in the DMET 
code is discussed in further detail in [8,9,30]. 

4. Description of input data and test runs 

The amount of input data required depends on whether the user wishes to produce entire sets of 
matrix elements or just a select number of individual elements. The input variable i s e t governs the 
choice of whether individual matrix elements (i set = 0) or entire sets (i set = 1) are required by the 
user. Below are detailed the remaining input variables required by V i j: 

Line 1:  i set 
i set =0: i set = 1: 

Line 2: NVIJ,   Z1,   Z2 Line 2 
Line 3: ELEMENT Line 3 
Line4: if(ELEMENT =He) SPIN      Line 4 
Line 5: LABEL 
Line 6: N1,   L1,   M1,   N2,   L2,   M2,   NL 
Line 7:  (L(K),   K = 1,   NL) 

When i s e t = 0, the remaining input variables are defined as follows: 
NVIJ = number of matrix elements required by user, 
z 1, z 2 = atomic charges of the initial and final states of the target atom. 

NNMAX,   Z1,   Z2 

ELEMENT 

if(ELEMENT = He) SPIN 
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SPIN = integer variable indicating the spin multiplicity ofHe(SPlN = l indicates singlets and SPIN = 3 
indicates triplets). 
ELEMENT= character variable identifying the target atom (H for hydrogen and He for helium). 
LABEL = character variable labeling the matrix element. See comment cards in code for a description of 
the labeling scheme used. 
{N1, L1, M1, N2, L2, M 2} = principal, orbital and magnetic quantum numbers for the initial and final 
states in the matrix element, respectively. 
N L = number of terms in multipole expansion (3). 
L(K) = value of L in the multipole expansion (3). 

When i set = 1, the amount of input data required is reduced considerably. The variables ELEMENT, 
SPIN and Z1, Z2 retain their meanings given above. The only new variable required is NNMAX, the 
principal quantum number of the largest shell the user wishes to include in the basis set. NNMAX is 
currently limited to values less than or equal to six. 

4.1. Test runs 

As an example of the use of V i j, below are three sample test runs. In the first, we provide an example 
of the use of V i j to generate a single electronic matrix element. In the second and third examples we 
show the use of V i j to generate entire sets of matrix elements. In the latter two examples we choose 
NNMAX =«max = 3. Below we exhibit only one of the 65 matrix elements generated, the full output is 
provided with the source code in the tape provided with this issue. 

Example 1. Generate a single hydrogenic matrix element: 

Line 1: 0 
Line 2: 1, 1 .0, 1 .0 
Line 3: H 
Line 4: V2S3P0 
Line 5: 2, 0, 0, 3, 1, 0, 1 
Line 6: 1 

Example 2. Generate an entire set of matrix elements for the singlet states of He: 

Line 1: 1 
Line 2: 3,2.0,2.0 
Line 3: H E 
Line 4: 1 

Example 3. Generate an entire set of matrix elements for the triplet states of He: 

Line 1 
Line 2 
Line 3 
Line 4 

1 
3, 2.0, 2.0 
HE 
3 

4.2. Test run results 

An example of the output produced by Vi j for the F2s^3po(Ä) hydrogenic matrix element and the 
f/2i,3-,3i,3p(Ä) matrix elements of He are given below. A full listing of the output produced by Vi j is 
provided with the code listing in the tape distributed with this issue. 
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Example 1. Hydrogenic matrix element V^^^R): 

c 
C V( 2, 0, 0; 3, 1, 0) 

c 
A=0.0 

B=0.0 

C=0.0 

D=0.0 

E=0.0 

A = 
$ .306481E41E+01*R**( -2) 
*+(( -.307920144E-01)*R**( 3)+( -.492672230E-01)*R**( 2) 

$+( -.106417202E+01)*R**( 0)+( -.280823171E+00)*R**( 1) 

$+( -.306481S41E+01)*R**( -2) + ( -.25B401284E+01)*R**( -1)) 

$ *EXP(-R*( .833333333E+00)) 

A =A *( 1.181635901)*Y10 

V2S3P0=A+B+C+D+E 

Example 2. Helium singlet state matrix element V2is^3iPo(R): 

c 
C V( 2, 0, 0; 3, 1, 0) 

c 
A=0.0 

B1=0.0 

B2=0.0 

B3=0.0 

B4=0.0 
B5=0.0 

C=0.0 

D=0.0 

Bl= 
$ .161780700E+01*R**( -2) 
$+(( -.120892841E-16)*R**( 21)+( .14238208BE-14)*R**( 20) 

$+( .104286194E-02)*R**( 6)+( -.3S8795234E-02)*R**( 7) 

$+( .141343206E-02)*R**( 8)+( -.639241785E-03)*R**( 9) 

$+( .198011762E-03)*R**( 10)+( -.49474SS44E-04)*R**( 11) 

$+( .959744627E-05)*R**( 12)+( -.147964830E-0E)*R**( 13) 

$+( .1793S4810E-06)*R**( 14)+( -.170B01952E-07)*R**( 15) 
$+( .125246864E-08)*R**( 16)+( -.697870211E-10)*R**( 17) 

*+( .2848S1904E-11)*R**( 18)+( -.807515692E-13)*R**( 19)) 

$ *EXP(-R*( .166666667E+01)) 

B1=B1 
$+(( -.266065271E-01)*R**( E)+( -.56681S780E-01)*R**( 4) 

$+( -.224695416E+01)*R**( 0)+( -.125436008E+01)*R**( 1) 

$+( -.53021B296E+00)*R**( 2)+( -.209352BB8E+00)*R**( 3) 

$+( -.161780700E+01)*R**( -2)+( -.269634499E+01)*R**( -1)) 

$ *EIP(-R*( .166666667E+01)) 

B1=B1* 1.18163S901*Y10 

C = 
$ .117599923E-01*R**( -2) 
$+(( .242273848E-11)*R**( 12)+( -.220062934E-09)*R**( 11) 

$+( -.31359979BE-01)*R**( -l)+( -.418133060E-01)*R**( 0) 

$+( -.292217421E-01)*R**( l)+( -.3B8987920E-02)*R**( 2) 

$+( -.101038368E-02)*R**( 3)+( .1BB722428E-02)*R**( 4) 

$+( -.617872B12E-03)*R**( B)+( .1712B75B7E-03)*R**( 6) 

$+( -.280B823B1E-04)*R**( 7)+( .303964573E-0B)*R**( 8) 

$+( -.209213963E-06)*R**( 9)+( .903397663E-08)*R**( 10) 

$+( -.117599923E-01)*R**( -2)) 

$ *EXP(-R*( .266666667E+01)) 

C =C * 1.181636901*Y10 

V2S3P0=A+B1+B2+B3+B4+B5+C+D 
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Example 3. Helium triplet state matrix element V23S_33P^R): 

c 
C V( 2.  0,   0;   3,   1,   0) 

c 
A=0.0 
B1=0.0 
B2=0.0 
B3=0.0 
B4=0.0 
B5=0.0 
C=0.0 
D=0.0 
Bl= 

$ -.847866486E+00*R**( -2) 
$+((   .711S80370E-17)*R**( 20)+(  -.616120024E-16)*R**(  19) 
$+(   .141310914E+01)*R**( -l)+(   .1177B9095E+01)*R**( 0) 
$+(   .666908328E+00)*R**(  l)+(   .29374238BE+00)*R**(  2) 
$+(   .181267886E+00)*R**( 3)+(   .321201766E-01)*R**( 4) 
*+(   .234102036E-01)*R**( S)+(  -.112747362E-02)*R**( 6) 
$+(   .168687521E-02)*R**( 7)+(  -.29468799BE-03)*R**( 8) 
$+(   .8S849414SE-04)*R**( 9)+(  -.13B847621E-04)*R**(  10) 
$+(   .200481943E-0S)*R**(  ll)+( -.1912B2417E-06)*R**(  12) 
$+(   .12389439BE-07)*R**(  13)+( -,423321476E-10)*R**(  14) 
$+(  -.780479B68E-10)*R**(  lB)+(   .968880358E-11)*R**(  16) 
$+(  -.6244361E1E-12)*R**(  17)+(   .2674B2079E-13)*R**(  18) 
$+(   .847866486E+00)*R**( -2)) 
$ *EXP(-R*(   .166666667E+0D) 

B1=B1*  1.181636901*Y10 
C = 

$ -.180166309E-08*R**( -2) 
$+(( -.163320997E-18)*R**( 12)+( .142370347E-16)*R**( 11) 

$+( .480443491E-08)*R**( -l)+( .640B91321E-08)*R**( 0) 

$+( .409807247E-08)*R**( l)+( -.460096893E-09)*R**( 2) 

$+( .388933740E-09)*R**( 3)+( -.239424281E-09)*R**( 4) 

$+( .630764242E-10)*R**( B)+( -.140214816E-10)*R**( 6) 

$+( .198B13B10E-11)*R**( 7)+( -.200807733E-12)*R**( 8) 

$+( .133493330E-13)*R**( 9)+( -.S76006461E-1B)*R**( 10) 

*+( .180166309E-08)*R**( -2)) 

$ *EIP(-R*( .266666667E+01)) 

C =C * 1.18163B901*Y10 

V2S3P0=A+B1+B2+B3+B4+BB+C+D 
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Abstract 

The operation of the code HET_cross for the solution of the semiclassical multichannel eikonal theory for 
electron-atom scattering is described. Also described is a second code, MET_states, which utilizes the results 
produced by M E T_c ross to generate a complete set of state multipoles and coherence and alignment parameters 
needed to characterize the polarization properties of the radiation emitted in the decay of the metastable atomic 
states excited in the collision. Included also is a discussion of the relationship between the present codes used to 
solve the semiclassical multichannel eikonal theory and codes used to implement other semiclassical and quantal 
scattering theories of electron-atom scattering. 

PROGRAM SUMMARY 

Title of program: MET_cross 

Catalogue number: AD AW 

Program obtainable from: CPC Program Library, Queen's 
University of Belfast, N. Ireland (see application form in this 
issue) 

Licensing provisions: none 

Computers for which the program is designed and others on 
which it has been tested: IBM RS/6000 and HP/Apollo 9000 
model 700 series workstations with a FORTRAN 77 compiler. 
With minor changes the program will also run on CDC 800 
series mainframes and Cray supercomputers (see comment 
cards in code for details). 
Computers: IBM RS/6000 model 520 and HP/Apollo 9000 

1 E-mail address: mansky@eikonal.physics.gatech.edu. 

model 730 workstations; Installation: School of Physics, Geor- 
gia Institute of Technology 

Operating systems: AIX 3.1.7, HP-UX 8.07, 9.01 

Programming language used: FORTRAN 77 

Memory required to execute with typical data: 13 776 words 

No. of bits in a word: 32 

Peripherals used: Terminal or card reader for data input. 
Terminal, line printer or magnetic disk for storage of output 
data. 

No. of tines in distributed program including test data, etc.: 4631 

Keywords: Hamilton-Jacobi equation, Schödinger's equation, 
semiclassical, partial differential equations, inelastic cross sec- 
tions, electron-atom scattering 

0010-4655/95/S09.50 © 1995 Elsevier Science B.V. All rights reserved 
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Nature of physical problem 
Calculation of the complex scattering amplitudes, differential 
and integral cross sections for the elastic and inelastic scatter- 
ing of electrons by atoms in the intermediate to high energy 
regime. In addition, a characterization of the orientation and 
alignment of the atomic charge clouds via calculation of the 
coherence and correlation parameters. 

Method of solution 
The semiclassical multichannel eikonal theory (MET) [1,2] is 
used to solve the Schrödinger equation describing the elec- 
tron-atom scattering using an impact-parameter representa- 
tion for the system wavefunction, for the complex amplitude 
functions. In the present paper the design of the algorithm 
used to implement the MET, for the case of straight-line 
trajectories and electron exchange neglected is described. The 
resulting set of Hamilton-Jacobi coupled partial differential 
equations for the amplitude functions is solved using the 
rational extrapolation technique of Bulirsch and Stoer [3]. 
Evaluation of the complex scattering amplitudes, differential 
and integral cross sections for each of the states in the basis 
set is then achieved by Gaussian quadrature. 

Restrictions on the complexity of the problem 
At present the MET code is limited to a maximum of 10 
states in the basis set and 1600 points in the Z-integration of 
the coupled Hamilton-Jacobi equations. Furthermore, the 
maximum number of impact parameters p and electron scat- 
tering angles 0 which can be considered is 250 and 126, 
respectively. All of the above limits are easily changed by 
adjusting the appropriate array lenghts in the PARAMETER 
statements in the code (see instructions in the comment cards 
for details). 

Typical running times: 1-3 CPU hours (depending on the 
energy) 

References 
[1] M.R. Flannery and K.J. McCann, J. Phys. B 7 (1974) 2518. 
[2] E.J. Mansky and M.R. Flannery, J. Phys. B 23 (1990) 4549, 

4573. 
[3] R. Bulirsch and J. Stoer, Num. Math. 8 (1966) 1. 

Program Summary 

Title of program: H E T_s t a t e s 

Catalogue number: ADAY 

Program obtainable from: CPC Program Library, Queen's 
University of Belfast, N. Ireland (see application form in this 
issue) 

Licensing provisions: none 

Computers for which the program is designed and others on 
which it has been tested: IBM RS/6000 and HP/Apollo 9000 
model 700 series workstations with a FORTRAN 77 compiler, 
With minor changes the program will also run on CDC 800 
series mainframes and Cray supercomputers (see comment 
cards in code for details). 
Computers: IBM RS/6000 model 520 and HP/Apollo 9000 
model 730 workstations; Installation: School of Physics, Geor- 
gia Institute of Technology 

Operating systems: AIX 3.1.7, HP-UX 8.07, 9.01 

Programming language used: FORTRAN 77 

Memory required to execute with typical data: 1549 words 

No. of bits in a word: 32 

Peripherals used: terminal or card reader for data input. 
Terminal, line printer or magnetic disk for storage of output 
data 

No. of lines 
2531 

distributed program, including test data, etc.: 

Keywords: state multipoles, orientation, alignment tensor, 
scattering amplitude, magnetic substate coherences, Stokes 
parameters 

Nature of physical problem 
Given the complex scattering amplitudes /,- -> n(0) for excita- 
tion of atomic states \n), by intermediate to high energy 
electrons, calculate the state multipoles (T(J'J)^Q) charac- 
terizing the coherence among the magnetic substates and the 
correlation between the scattered electron and the photon 
emitted in the decay of the state \n) under the influence of 
the Q-component of a tensor T of rank K. Also, completely 
determine the degree of polarization of the emitted radiation 
by computing the Stokes parameters Pt and density matrices 

Pin- 

Method of solution 
At present the program applies the formulae of Fano and 
Macek [1,2] for the orientation vector OQ± and alignment 
tensor Aß+, the state multipoles of Blum and Kleinpoppen 
[3] and the Stokes parameters Pt of Andersen and co-workers 
[4-6], to the complex scattering amplitudes /, -»n(6) gener- 
ated by the multichannel eikonal theory code. 

Restrictions on the complexity of the problem 
The program is presently limited to using the semiclassical 
scattering amplitudes obtained from the companion program 
in the spin-averaged versions of the formulae for the above 
physical observables in [1-6]. Future versions of the code will: 
(a) incorporate the use of the full, spin-dependent formulae 
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for the state multipoles, coherence and correlation parame- [3] K. Blum and H. Kleinpoppen, J. Phys. B 10 (1977) 3283; 
ters and the Stokes parameters, and (b) allow the user to Phys. Rep. 52 (1979) 203. 
input complex scattering amplitudes obtained from other the- [4] N. Andersen and S.E. Nielsen, Adv. At. Mol. Phys. 18 
ories (e.g. R-matrix, distorted-wave). (1982) 265. 

[5] H.W. Hermann and I.V. Hertel, Comments At. Mol. Phys. 

Typical running times: less than 30 seconds 12 (1982) 61, 127. 
[6] N. Andersen, J.W. Gallagher and I.V. Hertel, Phys. Rep. 

165 (1988) 1. 
References 
[1] U. Fano and J.H. Macek, Rev. Mod. Phys. 45 (1973) 553. 
[2] J.H. Macek and D.H. Jaecks, Phys. Rev. A 4 (1971) 2288. 

LONG WRITE-UP 

1. Introduction 

A large number of computer codes for the theoretical study of excitation processes in electron-atom 
scattering have been published during the past twenty years. The types of codes published, using 
algorithms designed to implement various theories for electron-atom collision processes, can be 
characterized in general by the energy regime of the projectile electron. At low energies, from threshold 
to (approximately) the first ionization threshold, codes like the R-matrix [1], NIEM [2], IMPACT [3] and 
the general algebraic variational [4], optical potentials [5] and non-iterative partial differential equation 
[6] methods (among many others) allow one to treat electron-atom scattering processes, with atomic 
wavefunctions of varying sophistication, using an eigenfunction expansion technique. In the codes 
published in [1-4] both the projectile and target are treated quantum mechanically and the eigenfunction 
expansion techniques used lead numerically to a matrix diagonalization problem. The size of the 
Hermitian matrix to be diagonalized is a function of the number of atomic states in the basis set and the 
number of partial waves needed to characterize the relative motion of the projectile. The latter quantity 
is necessarily a sensitive function of the energy of the colliding electron and hence the size of the matrix 
diagonalization problem grows dramatically with energy. Addition of the n = 5 manifold to the basis set 
in helium for example, results in a doubling of the maximum size of the Hamiltonian matrix to be 
diagonalized in the R-matrix code [7] from 1433 X 1433 to 3363 X 3363. A major impediment to the 
continued extension of codes like the R-matrix [1] (for example) to incorporate additional continuum 
orbitals into their basis sets is therefore the memory requirements of, and the numerical stability 
characteristics attendant with, the direct techniques [8] needed to solve the matrix diagonalization 
problem. Hence balancing the task of including the physics essential to describing electron-atom 
scattering in the intermediate to high energy regime, whilst keeping the algorithms, resulting from the 
dual treatment of both projectile and target quantum mechanically, tractable, is difficult in eigenfunction 
expansions. 

In order to handle the intermediate energy regime (roughly from one to several times the ionization 
threshold) to the high energy regime (wherein the Born approximation is valid), a number of perturbative 
[9] and semiclassical [10-12] techniques have also been developed over the past two decades. In 
perturbative methods an expansion in the matrix elements of the instantaneous electrostatic interaction 
V(R, {r,}), between the projectile electron and the bound electrons in the target atom, results in Born, 
Bethe or distorted-wave types of series in powers of V for the scattering amplitude to be summed. 
Semiclassical methods avoid the difficulties associated with explicitly summing over partial waves, as 
required when both projectile and target are treated quantum mechanically [1-4], by employing a 
coordinate representation in the eigenfunction expansion wherein the projectile electron is treated 
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classically and the target atom quantum mechanically. The use of a coordinate representation in 
semiclassical methods like the multichannel eikonal theory [12] therefore maps discrete variables such as 
the orbital angular momentum of the scattered electron into a continuous impact-parameter variable p, 
thereby converting summation over partial waves / into integration over p. The mapping from / to p 
therefore allows for the incorporation of the physics important in the intermediate to high energy regime 
to be accounted for in semiclassical theories in a manner more tractable numerically due to the 
reformulation of the core numerical problem of the algorithm from one of matrix diagonalization to that 
of solving systems of differential equations in the plane. 

The mapping / -»p done in semiclassical scattering theories necessarily involves making trade-offs 
between the accuracy to which the cross sections are desired against the numerical effort required to 
achieve that level of accuracy. The original objective in developing the multichannel eikonal theory 
(MET) was to formulate a means of computing integral cross sections for electronic excitation of atoms 
initially in an excited or metastable state. Hence the differential cross sections for excitation only needs 
to be accurate for scattering angles 6 < 40° wherein the majority of the contribution to the integral cross 
section is made. Furthermore, the region wherein electron exchange effects are expected [14,15,33] to 
contribute significantly to the integral cross section is reduced when dealing with transitions between 
metastable states, when compared to excitation out of the ground state, due to the much smaller 
threshold energies involved and the consequent increased importance of long-range interactions such as 
polarization. Therefore, the neglect of electron exchange effects and the use of straight-line trajectories 
is justified when interest lies primarily in predicting cross sections for the electronic excitation of atoms 
initially in an excited state. Hence the trade-off in the MET of restricting the validity of the amplitude 
equations to the small-angle-high-energy regime allows for the computation of integral cross sections for 
the excitation of atoms initially in metastable states with only a small loss of accuracy and with a 
considerable reduction in the numerical effort required. When interest lies in resonance phenomena in 
the region near threshold, a quantal treatment of the motion of the projectile electron is required due to 
the low relative speed of the projectile electron, as compared to the electrons bound in the target atom, 
and hence with the increased probability of strong deflections of the scattered electron through large 
angles due to close encounters with the target atom. In this case a large number of codes have been 
developed [1-4] which may be used to deal with excitation out of the ground state as well as a limited 
number of excited states. However, application of the codes which decompose the relative motion of the 
projectile in terms of partial waves is necessarily limited to the near threshold region due to the growth 
rate of the matrix diagonalization problem as a function of impact energy. To cover the entire energy 
regime from threshold to the high energy limit generally requires a hybrid code which uses a partial wave 
description in the near threshold regime and an impact parameter description in the high energy regime. 
A future paper will detail the design and operation of such a hybrid code. The intermediate energy 
R-matrix theory of Burke and co-workers [34] is an example of another such hybrid code developed 
within the R-matrix theory. 

In this paper the design and use of the algorithm which implements the multichannel eikonal theory 
[12] is described. The present version of the multichannel eikonal theory assumes that the motion of the 
projectile electron occurs in the scattering plane (central force motion) via a rectilinear trajectory and 
that electron exchange can be omitted. In a separate paper [13] we describe the detailed numerical 
properties (e.g. convergence rates, grid selection, etc.) of the algorithm. Here we provide a guide to the 
actual use and underlying design of the code. The results of the present MET code for electron 
scattering by hydrogen and helium appears elsewhere [14,15] and largely updates and supercedes the 
earlier work in [12]. 

The remainder of the paper is organized as follows. Section 2 provides an overview of the general 
logical structure of the algorithm and details the method used to solve the coupled system of differential 
equations which arise in the MET. It also contains a discussion of the quadrature grids employed in the 
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evaluation of the scattering amplitudes and the differential and integral cross sections. Section 3 
describes the type of output produced by the algorithm, while Section 4 provides a test run. Unless 
otherwise noted, atomic units are used throughout the paper. In this and the accompanying paper [16] 
the names of actual computer codes are indicated in typewriter type-set, while the names of specific 
modules constituting a given code are given in boldface. Variable names within a module are in turn 
denoted by CAPITAL letters in the text and typewriter type-set in the tables. 

2. Description of the code 

The algorithm described in this paper implements numerically the multichannel eikonal theory using a 
semiclassical coordinate representation to formulate and solve the resultant coupled differential equa- 
tions for the amplitude functions. The basic design is to minimize the required input data (see Section 4 
below) and user intervention as much as possible by separating the algorithm into two principal parts: 
MET_cross and MET_states. The code MET_cross solves the coupled amplitude equations, per- 
forms the necessary quadratures to obtain the complex scattering amplitudes, differential and integral 
cross sections, and then outputs the results for M ET_s t a t e s to generate the state multipoles and Stokes 
parameters. The two codes have been used principally [12,14,15] to study electron scattering by H and 
He. The modifications needed to treat other target atoms are detailed in Section 3 under the appropriate 
modules which require editing. In addition to the input data described in Section 4, the user must supply 
MET-cross with energy levels of the target atom being studied and the values of the matrix elements, 

Vin(R) = (%\V(R,{r})Wl)r, (1) 

of the instantaneous electrostatic interaction between the projectile electron and the target atom's bound 
electrons. The matrix elements (1) may be provided by the user as analytical functions of the projectile- 
target distance R, or interpolated from numerical tables. In the accompanying paper [16], a code V i j is 
described which can be used, for the cases of H and He, to generate the required matrix elements (1) for 
entire basis sets as analytical functions of R. Fig. 1 illustrates the overall logical relationship between the 
three codes MET_cross, MET_states and Vi j. A general flowchart showing the logical arrangement 
of the modules and a breakdown of the computational tasks performed in M E T_c ross appears in Figs. 2 
and 3. Fig. 4 provides a similar illustration of the order of the tasks performed in MET_states. 

Here in this paper we simply quote the basic equations of the MET and refer the reader to the atomic 

output files auxiliary- program 

MET-cross.out 

MET-Startes.out 

MET ..cross Vij 

^ ' 

Fig. 1. Logical ordering of programs MET_c ross and HET_s ta tes. 
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physics literature for details [12,14,15]. The coupled differential equations to be solved in MET_cross 
for the complex amplitude functions Cn(p, Z) are 

i-K„(p, Z)     7      '+   -K„(p, Z) [K„(P, Z)-kn] + Vnn(p, Z)\Cn(p, Z) 
fi bZ \fi J 

= E VnJ(p, Z) Cj(p, Z) exp[i(kj-kn)Z], (2) 

where the local and asymptotic wavenumbers, Kn(p, Z) and kn, in channel n are given by 

2M      \1/2     .,     ,,     2M / 2/x,      \v" 2/i 
K„(p, Z) = ^2-^F„„j     ,    fc2 = £,2--^(e„-e;) 

and where kt is the wavenumber of the incident electron and the en are the eigenenergies of the target 
atom. The yf coupled equations (2) are solved subject to the asymptotic boundary conditions 

C„(p,Z->-oo) =5„. 
over a rectangular grid: 0 < p < pmax and -Zmax < Z < Zmax. The choice of grid limits pmax and Zmax are 
determined by the constraints 

E |C„(p,Z = Zmax)|
2-l<0.10, (3a) 

n = \ 

(\Q„(p2)-Qn(Pl)\\ A n ,„. max    -——    <e,    p2-p!=4p,    0<p<pmax, (3b) 
»   I        G»(PI)        / 

where e is a user-supplied tolerance (generally \%) and <2„(p;) is the usual impact-parameter expression 
for the integral cross section for the i -> n excitation in terms of the probabilities, 

^.<GL) 

Qn(Pj) = 2TT\
P
'\ Cn(p, Z) I 2p dp = 2TT  E <Pu I C„(Pit>Z) I 2 p„ (4) 

•'o t=i 

where the p-integration in (4) is done using an y^/GL)-point Gauss-Legendre quadrature. By choosing 
the p-grid used in solving the coupled equations (2) to be the pivot points, in succession of 1-, 2-, 4- and 
10-point Gauss-Legendre quadratures [17] a progressive refinement is made in the evaluation of Q„(pj) 
until two such evaluations of the impact-parameter cross section differ by less than a specified amount 
(e) for each of the J^ states in the basis set. 

Once the solutions to the coupled equations (2) are obtained, subject to the constraints (3), the MET 
expression for the complex scattering amplitude fi_n(8), 

/U„(0) = -(0"+1 fhWp)[h(p> y(e))-ii2{P, y(0))]P dp, (5) 
•'o 

is evaluated, with q', A and y(8) being given by 

<?' = £„ sin 0,    A=mi-mn,    y{6) =kn(l - cos 8). 

The differential and integral cross sections are then given by the usual expressions 

!H "-■<•>''■ (6a> 
<Tni = 2Trr~\f^n(8)\2sin8de. (6b) 

•'0      k; 
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MET_cross 

CONST 

increase p—grid by Ap 

loop over Gauss-Legendre p—integration 

DIVPBS(IMSL) 

No 

DFN 

Z>Zm 

Yes 

DOIGAF(NAG) 

No 
test (3b) for current pj 

No 

Yes 

test (3b) for entire p—grid 

Yes 

DSVRGP(IMSL) 

SPLN1 
compute 

QG80 

BesJ 
compute 

Adipclc),gs 

BesK 

compute /;_„        (0) 

compute | C„{p, 2™,) |   and Qn{Pmax) 

print-out | C„(p, Zmax) | 

ANGLES DCS 

print-out Qn(Pmax) and IT, 
(DMET) 

Fig. 2. Logical flowchart detailing computational tasks in program MET   cross. 

The integrals Ix and I2 in (5) are defined as 

h{p,y{0))=f^ZKn(p,Z)     "\P
z    

Jexp[iy(e)Z], (7a) 
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DCS 

I 
sum over magnetic substates 

to get DCS for L > 0 states 

I 
compute £\f!™E™ET\9)fM6) 

SPLN1 

QG64, QG80 

compute 
(DMET) 

.   _   _   _       J 

SPLN1 
compute 

(MET) 

QG64, QG80 

  j 

compute Coherence/Alignment parameters 

modulii/phase angles of /;_,„        (6) 

for L >-0 states 

compute modulii/phase- angles of /,-_,„        (6) 

for L =-0 states 

I 
compute £7 (total) 

compute polarization fractions 

print-out DCS, modtilii/phase angles and 

Coherence/Alignment parameters 

Fig. 3. Logical flowchart of module DCS in program M E T_c ross. 
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MET_states 

input HET_cross. out 

compute parameters 
characterizing' p —» s decay 

compute parameters 
characterizing- d —> p decay 

print-out of state multipole data 
(see Table 4-for a listing) 

Fig. 4. Logical flowchart detailing computational tasks in program M E T_s t a t e s. 

HP, 7(0)) = f    dZ Kn(p, Z) [K„(P, Z) - kn\ + —vnn 
ß 

XC„(p,Z)exp[iy(0)Z], (7b) 

and the matrix elements (1) which appear in (2) and (5) are factored into radial and azimuthal parts as 
[16] 

VnJ(R) = Vnj(R,e)exp(iA<P). (8) 

It proves advantageous in preforming the Z-integration needed in evaluating /x and I2 in (7), to 
choose the Z-grid in solving (2) to be the pivot points to be used in performing the quadratures in (7). 
Once the integrals Ix and I2 have been evaluated, the p-integration in (5) and the 0-integration in (6) are 
done using the Gauss-Legendre quadrature [17]. With the assumption of straight-line trajectories, the 
coupled equations (2) are independent of the electron scattering angle 9. The scattering angle depen- 
dence arises in (5) in the term y(0) and in the argument q' of the Bessel function JA(x), of integer order 
A, which itself arises due to the factorization (6) of the azimuthal angle <P dependence of the matrix 
elements (1). Finally, once the complex scattering amplitudes ft^n(9) for each of the states in the basis 
set have been obtained from (5), the subsequent determination of the state multipoles, Stokes parame- 
ters and the orientation and alignment parameters are obtained without further quadrature in MET_ 
states. In the appendix we collect together for completeness the expressions used in M E T_s t a t e s to 
determine the orientation and alignment parameters, state multipoles and Stokes parameters (hereafter 
denoted collectively as state multipole data). 

An important feature of the coupled equations (2) is that the impact-parameter dependence only 
appears parametrically. As discussed in more detail elsewhere [13], the majority of the time in the MET 
is spent in solving (2) and then evaluating the quadratures (7). Hence the heart of the code M E T_c ross 
is the loop in which (2) is solved and (7) evaluated and is illustrated schematically in Fig. 5. A judicious 
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increment p 

loop over p—integration 

solve (2) at a given (p, Z) point in the 2d grid 

No z> z, C-  "mal 

Yes 

integrate (7) 

No 
test for satisfaction of (3b) locally 

(ie. for a> given p) 

No 

Yes 

test for satisfaction of (3b) globally 
(ie. for the entire p—grid) 

Yes 

Fig. 5. General logical ordering of the solution of the coupled equations (2). 

choice of the Z-grid therefore will eliminate the need for interpolation in the quadrature (7) and save a 
considerable amount of time in the execution of the code. In addition, by placing the quadrature (7) 
inside the loop over the impact parameter (see Fig. 5), the need to index the arrays storing the integrand 
of (5) with respect to Z is eliminated, thereby reducing the memory requirements of the code (since 
indexing the integrand of (5) with respect to the state (n), scattering angle (0) and impact parameter (p) 
must already be done). 

After extensive testing [13] of a variety of rectangular grids and solution methods for the coupled 
first-order partial differential equations (2), a robust integration scheme has been developed and 
incorporated into M E T_c ross which should require only minimal user intervention and which makes 
use of the loop struture shown in Fig. 5. A nonlinear grid in Z (chosen to cluster points near the origin at 
Z = 0) is used with the extrapolation method of Bulirsch and Stoer [18] to solve the coupled equations 
(2). The subsequent quadrature (7) over the nonlinear Z-grid used to solve (2) is performed with the 
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NAG routine D01 GA F [19] which uses a third-order finite difference formula due to Gill and Miller [20]. 
The outer loop over the impact parameter (see Fig. 5) is executed until the constraint (3b) is satisfied for 
all states in the basis set. The evaluation of (7a, b) over the nonlinear Z-grid used to solve (2) must 
necessarily be done for all states in the basis set and all electron scattering angles 6 at each stage of the 
p-loop. The real and imaginary parts of the term in square brackets in (5) is then assembled from (7) and 
stored in the arrays FRR and FIR indexed by scattering angle, state and impact parameter (see Table 1 
in Section 3). Upon exiting the outer p-loop, the subsequent integration of (5) over the impact parameter 
is achieved by an 80-point Gauss-Legendre quadrature [17] over the entire extent of the impact 
parameter grid: 0 < p < pmax. 

When dealing with transitions i -»n among metastable states, the long-range dipole interactions 
present in optically allowed transitions influence dramatically [15] the distant, large-impact-parameter 
region. The long-range dipole interaction yields complex amplitudes Cn(p, Z) with substantial long-range 
tails at large impact parameters, which in turn results in non-negligible contributions to (5) in the range 
Pmax < P < °°- Tr,e contribution from the range pmax < p < <» to small-angle scattering is especially 
important, and hence cannot be neglected in the calculation of the scattering amplitudes. Labeling the 
scattering amplitude obtained from the 80-point Gauss-Legendre quadrature over the range 0 < p < pmax 

by ft -»n(MET)(0) and the remainder by /,. -»«(dipole)(0) we have the expression [14] 

//™ET)(0) 
f//^(ö)+//^ole)(0),    Al=±l, (9a) 

{m*T\e), Al = 0, (9b) 

where the contribution to the scattering amplitude from the long-range dipole interaction in the limit of 
large impact parameter is [14] 

mp°le\e) =r(i)4-^^rr^Ui-W*i) KA(X2) -X2UXI) KA+1(X2)}, (io) 
n      q   + a 

with a' = y(6) - a, Xi = <?'Pmax> X2 = «'Pmax and r= _(04 + 1. The dipole moment dni for the transition 
i -»n appears in the term d'ni as dni = (3-n-/4)1/2dm. 

Therefore, for optically allowed dipole-coupled transitions, once /, -»rc(MET)(0) has been stored, Eq. 
(10) is evaluated and, using the prescription (9), the contribution the long-range tails of the amplitude 
functions Cn(p, Z) make to the scattering amplitude is accounted for. 

Finally, the differential cross section is determined from (6a) and the integral cross section from (6b). 
The integration over scattering angle 6 in (6b) is done using 64- and 80-point Gauss-Legendre 
quadrature [17]. 

We should note that the use of a succession of 1-, 2-, 4- and 10-point Gauss-Legendre quadratures in 
the outer p-loop in solving (2) to estimate (4) results in the storage of the integrand of (5) with respect to 
the impact-parameter index not in an ascending order. A simple sort is then performed to allow the 
subsequent integration over p to proceed. The Gauss-Legendre quadratures over p in (5) and 6 in (6b) 
are performed via a cubic spline interpolation [21] of the appropriate integrand. Other choices for the 
p-quadrature (5) are possible (e.g. Gauss-Kronrod) and necessarily involve trade-offs between execution 
time and storage requirements. Further details on the results of testing a number of different quadrature 
methods for the p-integration in (4) and (5) are given in [13]. 

The method used in M E T_c ross to generate the p-grid used to solve (2) has been automated as much 
as possible to require minimal user intervention. Once the user inputs the p-grid spacing Ap and the 
impact-parameter cross section tolerance e, the code will continue to increase the p-grid (in increments 
of Ap) until the constraint (3b) is satisfied. The unitarity constraint (3a) is evaluated and output but is 
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Table 2 
Major variables in program MET-states 

Mathematical symbol Variable name in code Comments 

Np,Nä 

A(CO\.)    *(col.)   ^(col.) 

^(col.) 

/((col.)   /((col.)   A(col.) 

^(col.) 

y 
<L±> 

A, *7 
Lp,Wp 

p.(col.) ((- = !_4) 

p(COl.)jp(COl.)| 

p(nat.) 

p(nat.)   I j>(nat.) I 

< 7X00)5, > 
<r(10)1

+
m>(m = 0,l) 

<nn)o+o> 
<7XID+> 
<nn)2

+o) 
<nii)£> 
<nn)2

+
2> 

<r(20)0
+
0> 

<7X20)2
+
m>(m = 0,1,2) 

<7X22)0
+
0> 

(7X22)+> 
<7X22)2

+
m>(m = 0,l,2) 

NP, ND 

RP, IP 

AOP, A1PP, A2PP 

01HP 

AOD, A1PD, A2PD 

01MD 

ANGHIN 

LPS, LDP 

MU, ETA 

LP, WP 

XI, NU, ZETA, OMEGA 

PCI, PC2, PC3, PC4 

PCL, PC 

PN1, PN2, PN3, PN4 

PNL, PN 

T0000 

T1010, T1011 

T1100 

T1111 

T1120 

T1121 

T1122 

T2200 

T2020, T2021, T2022 

T2200 

T2211 

T2220, T2221, T2222 

number of p and d states in basis set 
Fano-Macek parameters given by (A.5b,c) 
alignment tensor (A.la) for p -» s decay 
orientation vector (A. lb) for p -> s decay 
alignment tensor (A.7a,b) for d -» p decay 
orientation vector (A.7c) for d -» p decay 
orientation angle of charge cloud (A.6b) 
angular momentum transferred in p -»s (A.2) and d -> p 
(A.13) decays 
natural frame parameters (A.2) 
length and width of p state charge clouds 
natural frame parameter set (A.12) 
collision frame Stokes parameters (A.lc) and (A.7d,e) 
collision frame linear and total polarizations 
natural frame Stokes parameters (A.9a,b) 
natural frame linear and total polarization 
p -»s state multipole (A.3a) 
p -»s state multipole (A.3b): complex quantity written 
as arrays of lenght 2 
p -»s state multipole (A.3c) 
p -> s state multipole (A.3d) 
p -» s state multipole (A.3e) 
p -» s state multipole (A.3f) 
p -»s state multipole (A.3g) 
d -> p state multipole (A.14a) 
d -» p state multipole (A.14b-d): complex quantity written 
as arrays of lenght 2 
d -> p state multipole (A.14e) 
d -» p state multipole (A.14f) 
d -» p state multipole (A.14g-i) 

not used to guide the code in grid generation as (3b) is used. The primary purpose of (3a) is that it 
provides a check on unitarity of the amplitude functions Cn(p, Z), thereby allowing the user to gauge the 
choices of Ap, pmax and Zmax used. 

3. Description of output data produced 

In this section a summary of each module in the programs MET_cross and MET_states is given. 
Table 1 provides a list of the major variables used in the code MET_cross, while Table 2 provides a 
similar list of variables used in MET_states. In both Tables 1 and 2 the mathematical symbol used in 
this paper to identify a particular quantity is given along with the label used to identify it inside the code. 

All calculations in both M E T_c ross and M E T_s t a t e s are done using 64-bit word lengths (double 
precision on 32-bit machines) and are written using standard ANSI FORTRAN 77 syntax. An earlier 
version of part of MET_cross, involving the numerical solution of coupled semiclassical equations, dates 
from 1969 in work published [32] by the second author. This early work on impact-parameter equations 
made extensive use of a module written by R.H.G. Reid for the solution of coupled differential 
equations. The semiclassical code which was developed by the second author then was used as a template 
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for the development, with K.J. McCann during the period 1972-74, of the original version of M E T_c ross 
to solve the coupled semiclassical equations (2) using at that time FORTRAN 66 syntax. Limitations on 
machine architecture at the time the MET code was originally developed required the solution of (2) and 
the evaluation of (5) to be done in two stages. In 1980 considerable changes in the original code 
developed by K.J. McCann and the second author were made by the first author and involved the 
evolution of MET_cross to FORTRAN 77 syntax, increasing by a factor of ten the accuracy of the 
solutions of (2) and evaluation of (5), and incorporating modifications to handle larger basis sets and the 
new procedure to solve the coupled equations (see Fig. 5 for details). The code M E T_s t a t e s dates from 
1983 and was designed by the first author to be an adjunct to MET_cross to allow for the easy 
generation of additional state multipole data. Both codes have been in continual use and have been 
tested on a variety of mainframes since 1974 and (starting in 1990) on workstations and should be 
portable with little code modification required. Any questions regarding code usage and portability issues 
can be sent to the e-mail address of the first author. 

3.1. Program MET_cross 

M E T_c ross. The main routine first initializes all global and local constants, begins the loop over 
impact parameter, solves (2) over the range -Zmax < Z < Zmax, performs the quadratures in (7), and then 
tests for satisfaction of the constraint (3b) at both the current stage of the p-loop and then globally over 
the entire p-grid. Once (3b) is satisfied both locally and globally, then the p-Ioop is excited and the 
impact parameters used to solve (2) are sorted into ascending order, the scattering amplitudes //^^T)(ö) 
and /,• -»n(dipole)(0) (when needed) are computed and then /,■ -» n(DMET)(0) is assembled via the prescrip- 
tion (9). If (3b) is not satisfied locally, the next Gauss-Legendre quadrature is performed in succession 
until it is satisfied. The resultant errors associated with the p-quadrature (4) are then printed out in 
MET_c ross.out (see test run output below). The relative magnitudes of the errors associated with the 
constraint (3a) give an indication of the accuracy of the semiclassical amplitudes Cn(p, Z). A detailed 
analysis of the absolute error associated with different algorithms used to solve the coupled equations 
(2), and a comparison of the error associated with different quadrature schemes used in Eq. (4), (5) and 
(7) is given in [13]. As an example of the relative errors associated with the DMET cross sections of the 
different states in the basis set, we note that the sum of the probabilities for excitation of the 3d states of 
H, by an electron of energy 54.40 eV and impact parameter p = 1.133 a0, is 0.119%, which is only about 
one-third the deviation of the sum of all the probabilities at that impact parameter from unity. The fact 
that the probability associated with the excitation of the 3d states is one-third the total deviation of the 
sum of the probabilities (3a) from unity is an indication of the increasing difficulty in computing cross 
sections for states in the basis set which have only a weak direct coupling mechanism to the initial state. 
For further details and for a discussion of the relative merits of different quadrature schemes and 
methods of solving the coupled equations (2) see [13]. 

Finally, the probabilities | C„(p, Z = Zmax) I 2 are computed and printed out along with the cross 
sections from the impact-parameter expression (4), and the differential cross sections from /, -»«(MET)(0) 
and //™ET)(0) are stored for later use in DCS. The subroutine DCS is then called, and once control is 
passed back to MET _ cross, the integral cross sections ani determined by (6b) are printed out. 

The overall portability of M E T_c ross is only limited by the choice of integration routine used to solve 
(2), and the quadrature method invoked for (7). The results of extensive testing of a variety of algorithms 
for the initial value problem (2) and quadrature schemes for (7) are reported in [13]. The present version 
of MET_cross makes use of the Bulirsch-Stoer extrapolation algorithm [18] in the IMSL software 
library [22] and the integration routine D01GAF [19,20] for unequally spaced data from the NAG 
software library. Other choices are possible and are detailed in [13]. 

Besides the array sizes appearing in the PARAMETER statements, and the use of formatted WRITE 
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statements, the main parts of MET_cross which are dependent upon choice of target atom are the 
subroutines CONST and DFN. The program V i j (see accompanying paper [16]) can be used to generate 
subroutines CONST and DFN for target atoms H and He. To modify M E T_c ross to deal with other 
target atoms requires the user to supply the energy levels and matrix elements (1) as well as various 
arrays used to store labeling and basis set information. See the discussion under the DFN and CONST 
subroutines for details. 

As an example of the adaptation of MET _ cross to handle specific basis sets and target atoms, we 
provide three copies of the parts of the code dependent upon basis set and target atom data in the 
collection of programs distributed with this issue. The three copies, labeled MET_cross.eh, MET - 
cross.ehel and MET - cross.ehe3 are for the cases of electron scattering by H and He. The latter two 
routines for the scattering of electrons by helium are for the cases where the basis set is composed solely 
of singlet or triplet states. 

CONST. This subroutine initializes the main arrays used to characterize the basis set. First, the 
energies of the atomic states in the basis set are set up in array E, the orbital and magnetic quantum 
numbers of the atomic states in arrays L and ML, respectively. The character array LAB contains the 
standard spectroscopic notation for each of the states in the basis set. Finally, the constants in the 
expressions for the spherical harmonics are given. The spherical harmonics are used in subroutine DFN 
in the evaluation of the matrix elements (1). This entire module may be generated by V i j [16] or 
supplied by the user. 

DFN. In this subroutine the user supplies the algorithm used to solve the coupled equations (2) for the 
value of the derivatives dC„(p, Z)/dZ at each point in the 2D grid. The three copies of this module 
(DFN.eh, DFN.ehel, DFN.ehe3), supplied with the collection of programs distributed with this issue, 
provide an example of the use of V i j [16] for generating entire sets of matrix elements for H and He. 

The present version of DFN is designed to be called from DIV P B S [22] to compute the first derivatives 
of the amplitude functions, dC„(p, Z)/dZ, given the spherical harmonics, matrix elements (1) and local 
wavenumbers Kn(p, Z). To complete the determination of the necessary spherical harmonics, the polar 
angle 6 that R has with respect to the direction of the incident beam of electrons is computed from 
analytic geometry. This then allows for the complete determination of the spherical harmonics required 
in a given basis set. 

The next segment of DFN is generally the longest and consists of an enumeration of all the matrix 
elements (1) required in the basis set. We have chosen to represent the matrix elements Vnj(R, 0) as 
explicit analytical functions rather than interpolate over an array of numerical data due to the number of 
times DFN is entered (~ 105) and the total number of distinct matrix elements required (see Table 1 of 
[16]). Once all the matrix elements have been computed, the diagonal and off-diagonal elements are 
stored in arrays VON and VOFF, respectively. Next, the local wavenumbers xn(p, Z) are computed, and 
the derivatives dC„(p, Z)/dZ are determined and stored. Note that the coupled equations (2) are 
written as JV complex equations whereas what is needed in DFN are real equations. The required 
algebra to convert the jr complex equations (2) into 2J" real equations is straightforward and is not 
repeated here, but is incorporated into the code. 

Finally, in view of the need to perform the quadrature (5) after the integration of (2) over a given 
Z-grid has been completed, the real and imaginary components of the term in square brackets in (5) 
(without the exp [iy(0)Z] term) are computed and stored in arrays ZREAL and ZIMAG, respectively, 
for later use in MET _ cross. 

As with CONST, the user can generate the code required in DFN for targets H and He by application 
of V i j or, using DFN.eh, DFN.ehel and DFN.ehe3 as templates, provide his own version of DFN. When 
modifying DFN to handle targets other than H or He, the same basic structure as Eq. (2) will be retained 
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if a single-configuration quasi one-electron representation of the target atom wavefunction is appropri- 
ate. 

DCS. The principal purpose of this module is to compute, and return to MET _ cross, the integral 
cross sections ani, obtained from (6b), by direct numerical integration of the differential cross sections. 
The computation of crni by direct quadrature in fact is quite rapid [16] and is broken up into 3 basic 
parts: (a) For all states with non-zero L a sum over magnetic substates is done for the differential cross 
sections do-(DMET)/d/2 and do-(MET)/d,0, which are computed, respectively, from the scattering ampli- 
tudes /.(2MET)(0) and /,(^ET)(0) (see Section 2 for details); (b) Then, after forming the respective two 
integrands"for a„(,DMET) and o-„(,MET> by multiplying d^DMET)/dÜ and d<r(MET)/dß by sin 6, cubic spline 
interpolating polynomials [21] are computed and stored; and (c) The actual integration in (6b) over 0 is 
accomplished using 64- and 80-point Gauss-Legendre quadratures over the respective cubic spline 
interpolating polynomials. The Gauss-Legendre quadrature of (6b) is done in stages, 

r-^-sin 0 d9 = f a(80) + [ 10(80) + f(64) + f-(64), (11) 

to insure an accurate representation of the contribution the differential cross section in the forward 
direction makes to the integral cross section. Such a fine quadrature mesh is especially important when i 
is an excited state [15]. In (11) above, the angular limits are in degrees and the numbers in parentheses 
on the right-hand-side are the number of points in the respective Gauss-Legendre quadrature. In the 
present version of MET_cross the upper limit 0max is generally taken to be 50°. Differential cross 
sections are computed beyond (0 ~ 40°) the region of validity of the eikonal approximation to provide a 
basis against which the results of Paper II of this series can be compared. 

The remainder of the code in DCS is concerned with the generation of the coherence and alignment 
parameters and the moduli and phase angles of the complex scattering amplitudes //™ET>(0). The 
familiar A and x parameters [23] for the P (L = 1) states and the {A, x, <A> M) parameters [24] for the D 
(L = 2) states are also computed. Next, the moduli and phase angles of the complex scattering 
amplitudes //™ET)(0) for all states in the basis set are determined and stored for future use in 
MET_states. 

Lastly, the optical theorem is used to provide an estimate of the total integral cross section o-(total), 
while the polarization fractions [25,26] for the P and D states are calculated. The module DCS then ends 
by printing out the two differential cross sections do-(DMET)/d/2 and do-(MET)/d/2, the moduli and phase 
angles of ff™ET)(6\ the state multipole data mentioned above and the total cross section and 
polarization fraction data. See Table 3 for the specific variables that are output to MET_c ross. out. 

FR. Compute the real part of the integrand of (5), JA(q'p) Mp) p for pivot point p, where the 
ordinary Bessel function of the first kind Jn(x) is computed by standard methods (see below), and «^(p) 
is the interpolated value, at the Gauss-Legendre pivot point p, of the cubic spline polynomial fitted to 
the real part of the complex quantity in square brackets in (5). See Section 2 and Table 1 for details. 

FI. Compute the imaginary part of the integrand of (5), JA(q'p) Sip) p for pivot point p, where again 
the Bessel function is straightforward to compute and J"{p) is the interpolated value at p of the 
imaginary part of the complex quantity in square brackets in (5). See Section 2 and Table 1 for details. 

FDXN. Compute the integrand (6b) at pivot point 0. The module makes use of routine SPLN2 (see 
below) to evaluate the stored integrand (&„/&,-) I /;_ „(0)1 2 sin 0 at the Gauss-Legendre pivot point 0. 

Block Data ANGLES. This module initializes the array THETA which contains the values of the 
electron scattering angles (in degrees) for which the complex scattering amplitudes are desired. The user 
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Table 3 
Order of print-out of variables in program M E T_c ross 

Variables output in module MET _ cross: 

NST, NROW, NANG, LOW, UP, ENER, TOL, VEL, ROHIN, ROMAX, ZINF, REMASS, NZAVG, 

MZ, LAM(INT) 

Repeated NROW times: 

RO,    (PROBBd,   J),   J = 1,   5) 
ERRORU),   J = 1,   5 
RO,    (PROBBd,   J),   J = 1,   6),   NST,   SSUM(I) 

(ERRORU),   J = 1,   6),   NST 

Repeated NST + NGP times: 

LAB(I),    (QIP(I,   J),   J = 1,   3),   QDMETCI,   J),   J=1,   3 

LAB(I),    (QMETd,   J),   J = 1,   3) 

Variables output in module DCS: 

Repeated NANG times: 

THETA, (DDXNCI, J), J=1, 6) 

THETA, (DDXNCI, J), J=7, NST) 

THETA, (DDXNCI, J), J=NST+1, NCOL) 

if INT=1: THETA, DDXN2CI, 3), DDXN2CI, 4), DDXN2CI, 6), DDXN2CI, 7), 

DDXN2CI, 11), DDXN2CI, 12) 

if 2<INT<4: THETA, DDXN2CI, 1), DDXN2CI, 5), DDXN2CI, 8), DDXN2CI, 9), 

DDXN2CI, 10), DDXN2CI, 13) 

THETA, CDCSDOCI, J), J=1, 6) 

THETA, (DCSDOCI, J), J=7, 10) 

THETA, (DCSDOCI, J), J=11, 13) 

THETA, BETAPOCI, 1), BETAP1CI, 1), BETAPOCI, 2), BETAP1CI, 2) 

THETA, BETADOCI, 1), BETAD1CI, 1), BETAD2CI, 1) 

THETA, FPOCI, 1), FPKI, 1), FPOd, 2), FPKI, 2) 

THETA, FDOd, 1), FDKI, 1), FD2(I, 1) 

THETA, (FS(I, J), J = 1, 3), (BETASd, J), J = 1, 3) 

THETA, (LAHPd, J), CHIPd, J), J = 1, NLCP) 

THETA, CLAMDCI, J), MUD(I, J), CHID(I, J), PSIDd, J), J = 1, NLCD) 

(P(1, J), J=1, 3) 

QTOTd), QTOT(2), QTOTC3) 

may change the grid of scattering angles if needed and then simply update the length of the array 
THETA in the appropriate PARAMETER statements in MET_cross and MET_states. 

The following six routines are provided with the program M E T_c ross for the execution of basic 
numerical tasks required in the calculation of the MET cross sections. The user may keep these routines 
and use them together with M E T_c r o s s, or place them in a separate user-defined software library. 

3.2. Library routines 

QG64, QG80. Functions used to perform a Gauss-Legendre 64- and 80-point quadrature over a 
specified (arbitrary) interval of a user-defined integrand. The user-defined integrand is computed in a 
FUNCTION subprogram and must be declared in an EXTERNAL statement from the calling routine. 
Examples of such integrands are the modules FR, FI and FDXN. 

SPLN1. Module used to generate a cubic spline polynomial fit to N data points given arbitrary and 
conditions on the spline. The output is the 3N array of coefficients defining the cubic spline polynomials. 
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SPLN2. Module used to evaluate a cubic spline polynomial at a given point. Requires as input the 3N 
array of coefficients output by SPLN1. The output of SPLN2 yields the desired function value, as well as 
the first three derivatives of the function at the interpolated abscissa. For a given set of TV data points to 
be fitted, one call to SPLN1 suffices to define the cubic spline polynomial. Then a separate call to 
SPLN2 must be executed each time an interpolated value of the fitted function is required. 

BESJ, BESK. Modules used to compute ordinary Bessel functions of the first kind Jn(x) and modified 
Bessel functions of the first kind K„(x), respectively, for integer order n and real argument x. The 
modules compute, for a given argument x, the Bessel functions Jn(x) and Kn(x) for a range of indices 
0 < n < nmax by applying the standard three-term recurrence relationships for Bessel functions [27]. 
Module BESJ makes use of the IMSL functions [28] DBS JO and DBSJ1 in the recurrence relationship, 
while BESK makes use of IMSL functions DBSKOandDBSKL The linkage of modules BESJ and BESK 
to the IMSL software library can be eliminated by calls to routines of the user's preference which 
perform the same tasks if necessary. 

3.3. Program MET_states 

MET_states. The program HET_states consists of a single module which first inputs the results of 
M E T_c ross from the file M E T_c r o s s . o u t (see Fig. 1), and then computes the remainder of the state 
multipole data. The calculation of the state multipole data is done in two parts. First, the orientation 
vector O, alignment tensor A and Fano-Macek parameters [29] R, I characterizing the polarization 
properties of the radiation emitted in the decay of the 2p state of H and the 21'3? states of He are 
computed. Also computed at this stage in MET _ states are the Stokes parameters Pl (i = 1-4) [30] and 
the complete set of (spin-averaged) state multipoles [31] (T(lm)£M) in the collision frame which 
characterize the coherence and correlation of the n = 2, 3 S and P states of the target (currently limited 
to H and He). 

At the second stage in MET_states, the alignment tensor in the collision frame [30], the {A, x, <A, M) 

parameters [24] and the Stokes parameters in the collision and natural frames are all computed for the 
decay of the 3d state of H and the 31,3D states of He. In addition, the entire set of (spin-averaged) state 
multipoles (T(lm)^M) in the collision frame, characterizing the degree of coherence and correlation 
among the S and D states of the n = 3 manifold of the target are computed. 

In the appendix we enumerate the definitions of the above state multipole data in terms of the 
underlying complex scattering amplitudes to make our discussion here relatively self-contained. Table 2 
provides a list of the major variables in MET_states and their corresponding mathematical symbols. 
Therefore, cross-referencing between Table 2 and the appendix will allow the user of MET_states to 
identify a particular quantity or parameter of interest. 

The remainder of MET _ states contains the formatted WRITE statements needed to output the state 
multipole data generated. Table 4 lists the variables output by MET_states in the sequence printed 
using the same terminology as Table 2. 

4. Description of input data and test runs 

The amount of data to be input into M E T_c ross is quite small; however, the extent of the typical 
execution time is generally too long for iteractive use of the code at present. Therefore, we recommend 
running M E T_c ross in the background or through the use of a batch queue system. Once M E T_c ross 
has completed execution, and MET_cross. out has been produced, the second program MET_states 
may be run interactively with no further user input required. 
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Table 4 
Order of print-out of variables in program M E T_s t a t e s 

Repeated for each p state in the basis set: 

THETA, AOP, A1PP, A2PP, 01MP 
THETA, PC1, PC2, PC3, PC4, PCL, PC 
THETA, MU, ETA, GAMMA, THETA-MIN, LPS 
THETA, RO, R1, R, 10, II, I 
THETA, T0000, T1010C1), T1010C2), T101K1), T101K2), T1100 
THETA, T1111/J, T1120, T1121, T1122, LP, WP 

Repeated for each d state in the basis set: 

THETA, AOD, A1PD, A2PD, 01MD 
THETA, PC1, PC2, PC3, PC4, PCL, PC 
THETA, PN1, PN2, PN3, PN4, PNL, PN 
THETA, XI, NU, ZETA, OMEGA, GAMMA, THETA-MIN 
THETA, R000, LDP, LD, WD 
THETA, RO, R1, R2, 10, 11, 12 
THETA, T0000, T2200, T2211/*', T2220, T2221, T2222 
THETA, T2020CI), T2020C2), T202K1), T202K2), T2022C1), T2022(2) 

The specific order of variables to be input into MET_cross  are given below. See Table 1 for 
definitions of the symbols. 

Line 1 i nt 
Line 2 ATOM 

Line 3 if (ATOM = He) SPIN 

Line 4 
Line 5 

Flower' Pupper' fc 

E 

The sample test run provided, illustrating the use of MET_cross and MET_states, is for e~+H(ls) 
scattering at an incident energy of 54.40 eV. Only a sample of the output contained in M E T_c ross.out 
and MET_states .out is provided in this paper due to the length of the output. A full listing appears 
with the code in the tape provided with this issue. 

4.1. Test run 

example, e  + H(ls) scattering at E = 54.40 eV: 

Line 1 
Line 2 
Line 3 
Line 4 

1 
H 
0.0,   4.0,   0.005 
54.40 
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Appendix 

Parameters characterizing the p -> s decay in H and the  ' P -> US decay in He. The orientation 
vector, alignment tensor components and Stokes parameters are given by [29,30] 

4>coL) = Kl - 3A),    A™ = A(l-A)cos x,    AT^ = KA - 1), 

'= -/A(l-A) sin A', 

i,1 = 2A-l,    J>2 = -2/A(l-A)cos*,    i,
3 = 2/A(l-A)sin^,    P^jPf + Pl 

in the collision frame, while in the natural frame the parameters 

M = -2/A(l -A) sin *,    ^ 
J2/A(l-A) 

tan  *|      X_2A     cos* <L±)=-P3 

completely characterize the decay of the p state. 
• State multipoles for the n = 2 s and p states (collision frame) [31]: 

<r(oo)0
+

0> = (r2s(e), 

(nW)L)-[a2s(e)a2Pm(e)]1/2[Rm(pms*)+Hm(pm^)], 

<r(ii)o
+

o> = ^<72p(0), 

(T(ll)L)=-i^2a2p(6)I8ml, 

<r(ii)2
+o> = /f"[a2p+i(e)-c72po(0)], 

<T(ll)2
+

1>=-V2 a2p(6) R, 

<r(ll)2
+

2>=-i(l-A)or2p(ö), 

where the complex amplitudes are written as 

/2s(0) = I /2s(0) I exp[i/3B(0)],   /2Pm(0) = I /2Pm(ö) | exp[ißm(0)], 

and where the A, *, i?m, /m, R and / parameters used in (A.1)-(A.3) are defined by 

A = 

Ä™ — 

x = ß!-ß0,   R 
A(l-A) 

cos A',    7: 
A(l-A) 

o-2p(Ö) V 2 

Re</2pje) /2.(fl)' >     1 /2s(g) I I /2pjg) 1 ax(ßm-ßs) 

W2s(0) cr2Pm(6)}1/2 [^s(e)a2Pm(e)}1/2 

Im</2Pw(0) /2s(0)*>      l/2,(0)l l/2pjg)lsin(j3m-jSs) 

[^2s(ö)(r2Pm(0)]1/2 

sm *, 

(A.la) 

(A.lb) 

(A.lc) 

(A.2) 

(A.3a) 

(A.3b) 

(A.3c) 

(A.3d) 

(A.3e) 

(A.3f) 

(A.3g) 

(A.4) 

(A.5a) 

(A.5b) 

(A.5c) 
m        [<r2s(0)cr2pSe)}1/2 

with Re(2T), Im(^) indicating the real and imaginary parts of the complex quantity Z. 
In terms of the collision frame Stokes parameters, the lenght (L) and width (W) of the charge cloud 

of the excited p state are given by [30] 

Lp = \(l+P,),   Wp = \{\-Pt), (A.6a) 
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while the angle the charge cloud makes with the direction of the incident beam is 

y = ^tan~\P2/P1). (A.6b) 

• Parameters characterizing the d -> p decay in H and the  ' D -» ' P decays in He. The components 
of the alignment tensor and the Stokes parameters in the collision frame are [30] 

A<SoL) = 1 - 2 A - f/x,    A^ = /|A7TCOS x + //i(l-A-/i)cos ip, (A.7a) 

A?» = - \n + 2^A(l-A-/i)cos(Ar + *), (A.7b) 

c?\™l) = -/fV sin x - i//i(l-A-Ai)sin $, (A.7c) 

/,i(=o..)=_L_L_ lLlt   p(coi.)=__i^> (A-7d) 

/fol° =        /y        ,    ^r0-       K   ° JX ■ (A.7e) 

The {A, ,Y, i/f, ^,} parameters in the collision frame are given by [24] 

»"3d (0) 
A = ^f    X = ßi~ßo, (A.8a) 

°3d(ö) 

2o-3d(e) 
M = TT^,    * = ß2-ßu (A.8b) 

O-3d(0) 

while in the natural frame the Stokes parameters are 

— 6^ cos £ — \/6 ^ sin £ 
P(nat.) =   ^(nat.) =   (A.9a) 

i 3-2f 2 3-2£ v        y 

-3« 3 — 6£ — i/o v cos £ p(nat.) =   p(„at.) =  *       (A9b) 
3 3 - 2f       4 3 + 2£ - )/6 v cos f y       ' 

/* = 4 - (y4(
0
coU - 3y4(

2
cf)),    /' = 4 - (y4(

0
col) + 3A^f)). (A.10) 

The {£, v, £, «} parameters in the natural frame are defined [24] by 

,   Innat\e)12 I/o
(nat)(0) /2

(nat)* +/in
2
at)(0) /o(nat)* I ,A„, 

£= 7^ '    v= 7T\ ' (A.lla) 

I |f2
(nat->(ö)|2- l/(n

2
at)(0)l2l 

£ = arg(/o^)(0) /<"«•>• +/in
2
at) ft"'),    <o = ^      a(6) ' {AAlb) 

The {£, v, £, «} set of parameters in the natural frame can be expressed in terms of the {A, x, "A, /4 
parameter set in the collision frame as [24,35] 

f = |[3 - 2A - 3fi + 2/3A(l-A-/i)cos(* + «A)], (A.12a) 

^2=§(l-2A-,u,)2 + 5[A(l-A ~A0 COS
2
(* + I/0 + A/A cos2 * + 3/A(1 - A-/i) cos2 tp] 

+ /3A(1 —A -/A) [fi cos i/f cos *--j(l -A -/A) cos(* +1/0], (A.12b) 
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^tan"1 A/i cos x + PMO ~~ A - ix) cos i/f 

f\/3 (1 - 2A - /*) - /A(l-A-/x)cos(^ + i/0 

tan" 
/3(l-A-/i)sin(Ar + ^) 

i/Ä" + /3(l-A-/t)cos(^ + «A) /' 

&) = — 1/^(1 — A —/A) sin i/f + /3A/7sin ^ I. 

The orientation vector and orbital angular momentum transferred are given by 

■> =;, ■,    {L1_) = 2c 

• State multipoles for the n = 3 s and d states (collision frame) [31]: 

<r(2O)o
+

o> = cr3S(0), 

<r(2O)2
+

o> = </3do(0)/3s(0)*> 

= l/3.(e)M/3d0(e)l[cos(j80-i8s)+isin(i80-j8s)]> 

<r(20)2
+

1> = </3di(e)/3s(ö)*> 

= I /3s(Ö) I I /3dl(0) I MJS, - j8s) + i sinO! - j8s)], 

<n20)2
+

2> = </3d2(e)/3s(ö)*> 

= l/3s(ö)ll/3d2(e)l[cos(/32-j8s)+isin(j82-i8s)], 

<r(22)o
+

o> = /r<73d(0), 

<r(22)ri> = i/flm</3di(0) /3d2(0)*>+i/f"Im</3d0(e) /3dl(0)*> 

= i[/f I /3d,(ö) I I /3d2(») I sinC/S, -/32) 

+ l/Fl/3d1(e)M/3d0(Ö)lsin(j80-/31)]> 

<r(22)2
+

0> = /§ < I /3d2(fl) 12> - /f < I /3di(0) 12> - /f < I /3do(e) 12> 

= /f[2<73d2(Ö)-£r3di(ö)-cr3do(ö)], 

<r(22)2
+

1>=-/fRe</3di(e)|/3d2(0)*>-/f</3do(e)/3di(e)*> 

= ~/f [V6 |/3di(ö) I I /3d2(0) I cos(^ -ß2) 

+ l/3do(0)M/3d1(0)lcos(/3o-/31)], 

<T(22)2
+

2> = /f Re</3do(0) /3d2(0) * > - /f < I /3di(0) I 2> 

= /? [2 I /3do(0) I I /3d2(ö) I cos(/30 -ß2) - V3 a3d](ö)], 

and where the complex amplitudes for the 3/m states are written in terms of moduli and 

/3s(0) = I /3s(0) I exp[i/3s(ö)],    /3do(ö) = I /3do(fl) | exp[i/3o(0)], 

/3dl(Ö) = I fMl(0) I expfi^ö)],   /3d (fl) = | /3d (0) | exp[ij32(0)]. 

(A.12c) 

(A.12d) 

(A.13) 

(A.14a) 

(A.14b) 

(A.14c) 

(A.14d) 

(A.14e) 

(A.14f) 

(A.14f) 

(A.14g) 

(A.14h) 

(A.14h) 

(A.14i) 

(A.14i') 

phase angles as 

(A.15a) 

(A.15b) 
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The real and imaginary components of the complex scattering amplitudes, /2,m(0) and f3!m(6), for the 
21 m and 3s, 3dm states needed to compute the state multipole data are denoted, respectively, with an R 
or I superscript: 

/2s(ö)=/2
(
s

R)(Ö)+i/2
(P(ö),   U9)=/:»+i0«)    (n = 2,3), (A.16a) 

/*(*) =/3
(sR)(ö) + i/£>(*),   /*,„(*) =/3dR2(ö) + i/&(*), (A-16b) 

where these real and imaginary components are determined from (5), 

/U„(0) = -(04+1 r^(?'p)[/.(R)(p. r(0)) +/|°(P, ?(0))]P dp, (A.na) 
■'o 

yu„(*) = (i)4f/4(9'p)[/i(I)(p. r(e)) -^R)
(P> r(ö))]p ^, (A.ivb) 

•'o 
where the real and imaginary components of integrals Ix and 72, given by (6), are denoted by superscripts 
R and I, respectively. Expressions (A.17a,b) are alternately real or imaginary depending on whether A is 
an even or odd integer, respectively. 

The moduli I /„/m(0)| and phase angles ßm(6) for the npm and 3s, 3dm states are then simply given by 

l/„Jö)| = {[/<fm>(0)]   +[/„(E(e)]}     ,   0m = tan 

where the phase angles /3m are computed (modulo <rr) using the FORTRAN intrinsic function ATAN2. 
In the above expressions the differential cross sections for excitation of the 2p and 3d states are given 

by 
<r2pW=cr2pB(d)+2a2p+i(e),    <r3d(0) = a3do(0) + 2<T3d+](0) + 2a3dj6), 

wherein the differential cross sections for excitation of the 2pm and 3dm magnetic substates are denoted 
by a7n (0) and aM (0), respectively. 
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TEST RUN OUTPUT 

Test Run Output: 

MULTICHAHHEL EIKOHAL CALCULATION OF E- + H(  IS ) 

INPUT PARAMETERS  :  HST =  10 HRHO = 71 NAHG =  126 LOW =   .00 UP = 4.00 EHER = 5.440000E+01 EV.  TOL =   .00500 
VEL =  1.999632E+00 AU.  ROMIH = B.00000 ROMAX = 2B0.00000 ZIHF = 120.00000 REMASS =  1.00000 

HZ-AVG = 1600.0000 HZ = 1601 

RO PROB(IS) PR0BC2S) PR0B(2P0) PRDB(2P1) PR0B(3S) 

S.2186920000E-02 9.2027B63B98E-01 3.3982271B17E-02 2.999B633077E-02 8.16278871B1E-0B 7.1B41948197E-03 
2.6987324000E-01 9.1489B97289E-01 3.56248770BBE-02 3.0322304182E-02 2.2616072033E-03 7.6B83B81486E-03 

2 7772738000E-01 9.14746B7640E-01 3.B606394610E-02 3.032B404032E-02 2.39E8833476E-03 7.B517760781E-03 
6 4118084000E-01 9.116092B687E-01 2.9698740B4BE-02 2.9676823100E-02 1.1982734611E-02 B.9310321438E-03 
8 4B29946000E-01 9.1200440280E-01 2.4071636421E-02 2.8621764507E-02 1.8962919768E-02 4.4904303479E-03 

1.1332092000E+00 9.139459344BE-01 1.6370992989E-02 2.64232106B9E-02 2.8249171987E-02 2.6630631463E-03 

1.91B4700E40E+01 9.9998870368E-01 3.B922460322E-08 6.24B8131403E-06 6.4923S02006E-06 8.1098972939E-09 

ERROR = O.OOOOOOE+OO    1.33183BE-04    3.633493E-03    2.412476E-03    1.848416E-04 

RO PR0B(3P0)       PR0B(3P1)        PR0B(3D0)       PR0B(3D1)      PR0B(3D2)        SUM 

B 2186920000E-02 7.7383387999E-03 2.3306B81211E-06 1.6506832062E-03 6.B914068384E-07 3.4408574419E-10 1.0009023B 
2 6987324000E-01 7.76620827EBE-03 6.47E7661171E-04 1.6310170419E-03 1.7843980B80E-0B 2.6846964752E-07 1.00072603 
2 7772738000E-01 7.7648967B82E-03 6.8599846243E-04 1.628B28619SE-03 1.8896121B7BE-05 3.0121BB0863E-07 1.00072466 
6 4118084000E-01 7.4958334334E-03 3.39B2B00B17E-03 1.3943698236E-03 9.B140359B79E-OB 7.972S160041E-06 1.00128716 
8 4B29946000E-01 7.1B43763232E-03 B.310719S941E-03 1.19B07B500BE-03 1.B322601187E-04 2.1683645878E-0B 1.00198623 
1.1332092000E+00 6.4713146014E-03 7.744B297896E-03 8.972B144219E-04 2.3B48828427E-04 5.668BB86179E-0B 1.0030B764 

1.91E4700E40E+01 3.3920642320E-07 3.006E612449E-07 3.7342727977E-08 S.6773600372E-08 3.409372624BE-08 1.00000126 

ERROR = 1.286331E-03    6.191309E-04    1.633987E-03    2.062938E-03    1.498004E-03 

DIFFEREHTIAL CROSS SECTIONS(A0**2) 

THETA    DCS-DMET(IS)    DCS-DMET(2S)   DCS-DMET(2P0)    DCS-DMET(2Pl)   DCS-DMET(3S)    DCS-DMET(3P0) 

.0000 3.3070188313E+00 2.9291160352E+00 3.84732B3274E+01 O.OOOOOOOOOOE+OO 4.9921912677E-01 4.7801914362E+00 

.0200 3.3069972126E+00 2.9290830845E+00 3.8472293722E+01 4.416893S440E-04 4.9921213202E-01 4.7801124334E+00 

.0400 3.3069323576E+00 2.9289842353E+00 3.846941B273E+01 1.7666288B69E-03 4.991911B136E-01 4.77987B4358E+00 

.0600 3.3068242710E+00 2.9288194959E+00 3.8464618539E+01 3.9744328927E-03 4.9916618BB4E-01 4.7794804760E+00 

.0800 3.3066729600E+00 2.928B888803E+00 3.84B7904B39E+01 7.06446899B6E-03 4.991072374SE-01 4.7789276080E+00 

.1000 3.30647843B2E+00 2.9282924083E+00 3.844927470BE+01 1.103B80818BE-02 4.9904431118E-01 4.778216907BE+00 

THETA    DCS-DMET(3P1)   DCS-DHET(3D0)   DCS-DMET(3D1)   DCS-DMET(3D2) 

.0000 O.OOOOOOOOOOE+OO 4.9164863223E-01 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+OO 

.0200 4.0B4B203776E-0B 4.9164124841E-01 3.8127827279E-06 B.63840B4389E-12 

.0400 1.6217307436E-04 4.9161909761E-01 1.B2B0B74924E-0B 9.02114887E7E-11 

.0600 3.6486039219E-04 4.91B8218179E-01 3.4311708722E-0B 4.B667036B12E-10 

.0800 6.48B6846680E-04 4.91B30B0419E-01 6.09934046B9E-0B 1.4431919476E-09 

.1000 1.0132431B01E-03 4.9146406939E-01 9.B291772160E-05 3.B23066BS43E-09 
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THETA DCS-DMET(2P) DCS-DMET(3P) DCS-DMET(3D) 

.0000 

.0200 

.0400 

.0600 

.0800 

.1000 

8473253274E+01 
8472735412E+01 
8471181902E+01 
8468B92971E+01 
8464968998E+01 

8460310B13E+01 

7801914362E+00 
7801529786E+00 
7800376089E+00 
77984B3364E+00 
779B761764E+00 
7792301B06E+00 

9164863223E-01 
9164E06120E-01 
9163434828E-01 

916164939BE-01 
91B9149904E-01 
91BB936469E-01 

THETA     DCS-MET(2P0)     DCS-MET(2P1)   DCS-MET(3P0)   DCS-MET(3P1) 

.0000 3.32730B0862E+01 

.0200 3.3272489S37E+01 

.0400 3.327080B627E+01 

.0600 3.3267999321E+01 

.0800 3.3264070934E+01 

.1000 3.3259020910E+01 

0.O0OO0000O0E+0O 
2.989338BB3BE-04 
1.19B6879816E-03 
2.6901200689E-03 
4.7819929698E-03 
7.4709747B03E-03 

4.4767327247E+00 
4.47667361E9E+00 
4.4764962949E+00 
4.4762007769E+00 
4.47E7870877E+00 
4.47B2BB2631E+00 

O.OOOOOOOOOOE+OO 3 
3.3BB4870189E-0B 3 
1.3421S03431E-04 3 
3.019671B388E-04 3 
5.3678900086E-04 3 
8.3864946189E-04 3 

DCS-MET(2P) 

3273050862E+01 
3272788471E+01 
327200131BE+01 
3270689441E+01 
32688E2927E+01 
326649188BE+01 

DCS-MET(3P) 

4.4767327247E+00 
4.4767071708E+00 
4.476630B099E+00 
4.476B027440E+00 
4.4783238767E+00 
4.4760939126E+00 

AHGULAR DISTRIBUTION: SH(THETA)*DXH(THETA) 

THETA       DXIDOÜS)       DIID0(2S)      DMD0(2PO) 

.0200 1.1B43B97708E-03 1.0224428B70E-03 1.34293636B2E-02 1 

.0400 2.3086741237E-03 2.044816B797E-03 2.68B6718132E-02 1 

.0600 3.46289764B9E-03 3.0670B20434E-03 4.0280046979E-02 4 

.0800 4.61698493B0E-03 4.0890801433E-03 S.3697347163E-02 9 

.1000 B.7708906043E-03 B.1108318038E-03 6.7106609790E-02 1 

DXID0(2P1) 

B417866698E-07 1 
233339B083E-06 3 
1620166319E-06 B 

8638423426E-06 6 
9261109066E-0S 8 

DXID0(3S) DXID0(3P0) 

.7425790386E-04 1.668B739777E-03 

.48B0113922E-04 3.3369822966E-03 

.2271B03962E-04 B.0060B933B7E-03 

.9688494269E-04 6.672639E498E-03 

.7099619214E-04 8.339BB7B070E-03 

THETA DXHD0(3P1) 

.0200 1.41B294S748E-08 1 

.0400 1.132181BB03E-07 3 

.0600 3.8208083939E-07 B 

.0800 9.0BB7211938E-07 6 

.1000 1.768442011EE-06 8 

DXMD0(3D0) 

7161E16698E-04 1 
4321484888E-04 1 
14783B6289E-04 3 
8630E83077E-04 8 
E776618113E-04 1 

DMD0(3D1) 

3309122183E-09 
064690894EE-08 
B931130784E-08 
B162830992E-08 
.6631B43297E-07 

DXID0(3D2) 

.968174749BE-1B 

.2979494962E-14 

.7822400066E-13 

.01B0764432E-12 

.1489079921E-12 

THETA DXID0(2P) DXHD0(3P) DXID0(3D) 

.0200 1.3429E17831E-02 1, 

.0400 2.68E7949471E-02 3 

.0600 4.028420899BE-02 S 

.0800 E.370721100SE-02 6 

.1000 6.712B870899E-02 8 

668B881306E-03 1 
33709BB147E-03 3 
00B441416EE-03 E 
673S4E1219E-03 6 
34132S9490E-03 8 

7161649790E-04 
4322B49E8BE-04 
.14819494B0E-04 
.8639099B62E-04 
.S7932B0271E-04 

ABSOLUTE PHASE AHGLES BETA (II RADIAHS) 

THETA        BETA(2P0)       BETA(2P1) BETA(3P0) BETA(3P1) 

.0200 -1.483E492148E+00 

.0400 -1.4836463942E+00 

.0600 -1.483E416932E+00 

.0800 -1.483B3E1117E+00 

-1.B724402708E+00 
-1.B724401170E+00 
-1.B724398607E+00 
-1.E72439E018E+00 

.1000 -1.483E266498E+00 -1.E724390403E+00 

■1.2736692641E+00 -1.3801947286E+00 
■1.27366E1B78E+00 -1.3801919347E+00 
■1.2736B83142E+00 -1.3801872782E+00 
■1.273648733BE+00 -1.3801807E94E+00 
•1.2736364160E+00 -1.3801723786E+00 
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ABSOLUTE PHASE AHGLES BETA  (IS RADIAIS) 

THETA BETA(3D0) BETA(3D1) BETA(3D2) 

.0200 -9.7380763076E-01 -6.379716E983E-01 -7.4B69734361E-02 

.0400 -9.7380671B9SE-01 -6.3796801219E-01 -7.4E6819S016E-02 

.0600 -9.7380B191B7E-01 -6.3796193289E-01 -7.4B6B629487E-02 

.0800 -9.738030B806E-01 -6.379E342211E-01 -7.4B62037846E-02 

.1000 -9.7380031607E-01 -6.3794248009E-01 -7.4EE7420191E-02 

ABSOLUTE MAGHITUDE OF THE SCATTERING AMPLITUDE F(THETA) FOR THE 2P, 3P AID 3D STATES 

THETA     ABS(F(2P0»     ABS(F(2P1))     ABS(F(3P0))     ABS(F(3P1)) 

0200 6.E332219034E+00 2.2136646789E-02 2.3281801313E+00 6.780B86B914E-03 

0400 6.B3297749B1E+00 4.4271682743E-02 2.32812241B1E+00 1.3660849E48E-02 

0600 6.B32E7018B3E+00 6.640349739EE-02 2.3280262271E+00 2.034046E282E-02 
0800 6 B320000304E+00 8.8E30481014E-02 2.327891S7S6E+00 2.7119110304E-02 
.1000 6.B312671090E+00 1.106S102498E-01 2.3277184724E+00 3.3896461268E-02 

THETA     ABS(F(3D0))     ABS(F(3D1))     ABS(F(3D2)) 

.0200 7.466E792E18E-01 2.0793066933E-03 2.B28E74031EE-06 
!o400 7.4664110472E-01 4.1B8S37E838E-03 1.01141280B1E-0E 
.0600 7.4661307144E-01 6.2376168726E-03 2.27B61B7848E-0E 
.0800 7.46E73826EEE-01 8.3164687691E-03 4.04E3823123E-0E 
.1000 7.46E2337174E-01 1.039B017494E-02 6.320E947E62E-0E 

SCATTERIHG AMPLITUDES F(THETA) FOR THE IS, 2S AID 3S STATES 

THETA      ABS(FdS))     ABS(F(2S))     ABS(F(3S))       BETA(IS) BETA(2S) BETA(3S) 

8186210S61E+00 1.802692S242E+00 7.B239020051E-01 5.2B14739814E-01 -1.812B828499E+00 -1.2714869286E+00 

+ 1.8026823846E.00 7.S238493023E-01 E.2E14826683E-01 -1.812B83B417E+00 -1.27148E0 3E.00 

8 84972801E+00 1.8026B19663E+00 7.E236911962E-01 E.2B1E08728EE-01 -1.812B8E6170E+00 -1.27 «22196E+00 
8 8467E611E.00 1.8026012710E+00 7.S234276932E-01 E.251EB21610E-01 -1.812B890761E+00 -1.27 ^7B838E.00 
8 842B9B67E.00 1.80263030UE+00 7.B230B88043E-01 B.2S16129638E-01 -1.812B939196E+00 -1 -"4710949^00 
8 83724688E+00 1.8024390603E+00 7.B22B84B44BE-01 B.2B1691134BE-01 -1.8126001479E+00 -1.2714627636E+00 

.0000 1 

.0200 1 

.0400 1 

.0600 1 

.0800 1 

.1000 1 

COHEREICE AID ALIGIMEIT PARAMETERS FOR THE 2P.3P STATES 

THETA        LAMDA(2P)        CHI(2P)       LAMDA(3P)        CHI(3P) 

0200 9.99988B1942E-01 -8.88910B6023E-02 9.99991B1801E-01 -1.06B2B464B4E-01 
0400 9 999S407916E-01 -8.8893722849E-02 9.999660728BE-01 -1.06B2677687E-01 
0600 9 9989668369E-01 -8.8898167B48E-02 9.9992366690E-01 -1.06B2896404E-01 
0800 9.998163404BE-01 -8.8904390099E-02 9.9986430419E-01 -1.06B3202B98E-01 
1000 9.997130B983E-01 -8.8912390476E-02 9.9978799030E-01 -1.O6B3B96261E-01 
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COHEREFCE AHD ALIGHMEHT PARAMETERS FOR THE 3D STATE 

THETA LAMDA(3D) HU(3D) CHI (3D) PSI(3D) 

.0200 9.9999224484E-01 7.7EB1631161E-06 3.3B83597093E-01 S.6340192B47E-01 

.0400 9.9996897966E-01 3.10201B7S17E-0E 3.3B83870376E-01 B.6339981717E-01 

.0600 9.9993020B42E-01 6.9793648391E-0B 3.368432B868E-01 5.6339630340E-01 

.0800 9.9987B92371E-01 1.240733S110E-04 3.3B84963B9BE-01 6.6339138427E-01 

.1000 9.998061367EE-01 1.938B608127E-04 3.3B8B783B98E-01 B.633860B990E-01 

P0LARIZATI0I FRACTIOHS FOR THE 2P,3P,3D STATES 

REPRESEITATIOI     P(2P-1S) P(3P-2S) P(3D-2P) 

W/0 FS. 1.3204031211E-01  1.4376623883E-01  2.1861BB0773E-01 
W/O HFS. 4.B3439322E0E-02  4.9B00067044E-02  1.6910530932E-01 

TOTAL CROSS SECTIOK (FROM OPTICAL THEORM) 

q-T0TAL(A0**2)    q-T0TAL(PI*A0**2)  q-T0TAL(AHGST**2) 
B.729422B2E8E+00  1.8237318321E+00  1.6044186269E+00 

IMPACT PARAMETER ASD DMET INTEGRAL CROSS SECTIOIS 

STATE       QIP(A0**2)    qiP(PI*A0**2)   qiP(AHGST**2)   qDMET(A0**2)  qDMET(PI*A0**2)  qDMET(AJGST**2) 

IS 1 29272B9437E+00 4.1148744801E-01 3.6200394942E-01 1.2907779E71E+00 4.1086738462E-01 3.614B84B188E-01 
2S 2.7763643898E-01 8.8374423293E-02 7.7746940800E-02 2.E97E816013E-01 8.2683S90386E-02 7.2740460049E-02 
2P0 1.2024740793E+00 3.827B938733E-01 3.36730B869BE-01 1.047B809070E+00 3.334EE3B928E-01 2.933BE6238EE-01 
2P1 2!3110194118E+00 7.3B62032B94E-01 6.471S816863E-01 1.60640E6861E+00 B.1133481110E-01 4.49844149B4E-01 
3S 4!823197E429E-02 1.B3E2714609E-02 1.3B06471096E-02 3.9B99028148E-02 1.2604762143E-02 1.10889741E8E-02 

3P0 2 2B18971996E-01 7.1680114130E-02 6.30602088BOE-02 1.791E02B782E-01 B.702E29817EE-02 B.0167710477E-02 
3P1 4 79691B7816E-01 1.B2690E716BE-01 1.3432873893E-01 2.68232487E9E-01 8.B3810E2B96E-02 7.S113B3844EE-02 
3D0 2 3630174621E-02 7.6217181942E-03 6.617192B923E-03 1.6E32901963E-02 B.262B861420E-03 4.6297328797E-03 
3D1 2 7824607484E-02 8.8B68476413E-03 7.79176E8027E-03 1.9067764242E-02 6.0694B786B6E-03 5.339B740961E-03 
3D2 2 2949389327E-02 7.30B017B048E-03 6.426BB12840E-03 1.1316207B81E-02 3.6020607473E-03 3.1688942710E-03 
2P 3.B134934911E+00 1.1183797133E+00 9.838887BBB9E-01 2.6E3986B931E+00 8.4479017038E-01 7.4319977339E-01 
3P 7 0488129812E-01 2.2437068E78E-01 1.9738894778E-01 4.4738274B41E-01 1.424063B077E-01 1.2B28124892E-01 
3D 7.4404171433E-02 2.3683B83340E-02 2.083BB09679E-02 4.6916873786E-02 1.49341047BBE-02 1.3138201247E-02 

MET IITEGRAL CROSS SECTIOHS 

STATE      qMET(A0**2)   qMET(PI*A0**2)  qMET(AHGST**2) 
2P0 1.0443922192E+00 3.3244036842E-01 2.9246269090E-01 
2P1 1.602B892409E+00 B.1011999888E-01 4.4877B42479E-01 
3P0 1.7898198430E-01 B.697173B0B0E-02 B.0120B88B9BE-02 
3P1 2.680B01B711E-01 8.B32301B000E-02 7.B062480172E-02 
2P 2.6469814601E+00 8.42B6036730E-01 7.4123811B69E-01 
3P 4.4703214140E-01 1.422947B0OEE-01 1.2B18306877E-01 
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Semiclassical Theory of Direct 
Dissociative Recombination 

M. R. Flannery 

School of Physic» 
Georgia Institute of Technology 
Atlanta, Georgia 30331-0430 

A generalised semiclassical theory of direct dissociative recombina- 
tion is developed. It covers the possibility that two or more regions 
of stationary phase can contribute to the Franck-Condon overlap with 
and without autoionisation. The analysis uniformly connects the sta- 
tionary phase regions of large separation with the caustic region where 
these regions coalesce. The turning point divergence is also treated. It 
is shown how various interference effects from stationary phase regions 
can be exhibited in the cross section for the direct process even if left 
uncoupled from the indirect mechanism.   

I. INTRODUCTION 

Dissociative recombination (DR) for diatomic ions can occur (1) via a cross- 
ing at Rx between the bound and repulsive potential energy curves V+(R) 
and Vd(R) for AB+ and AB*', respectively. This direct process involves the 

two-stage sequence 

e-+AB+{vi)^{AB")r-^A + B + hv. (1) 

The first stage is dielectronic capture whereby the free electron of energy 
e = Vd{R) - V+(R) excites an electron of the diatomic ion AB+ with internal 
separation R and is then resonantly captured by the ion at rate kc to form 
a repulsive state d of the doubly excited molecule AB**, which in turn can 
either autoionize at probability frequency va, or else in the second stage pre- 
dissociate into various channels at probability frequency vd- This competition 
continues until the (electronically excited) neutral fragments accelerate past 
the crossing at Rx- Beyond Rx the increasing energy of relative separation 
has reduced the total electronic energy to such an extent that autoionization is 
essentially precluded and the neutralization is then rendered permanent past 
the stabilization point Rx. This interpretation of Bates (1) has remained 
intact and robust in the current light of ab initio quantum chemistry and 
quantal scattering calculations for the simple diatomics {0%,Nf,Nef, etc.) 
where there are accessible curve crossings. 

© 1993 American Institute of Physics 1 
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Based on a first-order treatment of Eq. (1), Bates (1,2) and Bardsley (3) 
provided simple expressions for the rate and cross section for this direct dis- 
sociative recombination. Böttcher (4) has provided a first-order semiclassical 
treatment of DR. Miller (5) has examined a semiclassical framework of asso- 
ciative and Penning ionization — the inverses of Eq. (1) where AB+ is either 
vibrationally bound or dissociated, respectively. The local approximation for 
the survival probability has been invoked in previous studies (3-5). 

In a tribute to Chris, the spirit of his approach will be used to develop a 
generalized semiclassical treatment to cover the possibility that two or more 
regions of stationary phase generally contribute to the Franck-Condon overlap 
between the bound and continuum vibrational wavefunctions. In so doing, a 
uniform Airy approximation will be provided which naturally remedies the 
divergence in the cross section at the "caustic" energy, where the two regions 
of stationary phase coalesce. The divergence in the cross section associated 
with a stationary phase at the classical turning point Re of A - B relative 
motion will also be addressed. New results will emerge. 

The analysis will also show that various interference effects not in the first- 
order treatment (1-4) will be exhibited. These arise from the differences 
in the classical action between two separations Rij of stationary phase on 
either the incoming and/or the outgoing legs of the trajectory and between 
the incoming and outgoing classical paths at a given A-B relative separation 
R. Interferences at the caustic energies are also to be expected. 

II. QUANTAL CROSS SECTIONS 

The quantal expression for the autoionization frequency, with electron en- 
ergy e in the range e,e+de and with the ion left in state (v, J), is 

^de = ^   J2   \(Mr,R)1>:{R)\Hei(r,R)\mR))\2p(e)de      (2) 

where the system wavefunction for A-B* collisions at energy E is 

¥(f, R) = ±;ME, R)YJM{R)Mr, R) (3) 
XI 

the product of the Born-Oppenheimer electronic wavefunction fa, the actual 
continuum (radial) vibrational wavefunction fd in the presence of autoioniza- 
tion, and the rotational wavefunction YJM{R)- The rovibrational wavefunc- 
tion for AB+{v,J) is 

tf(R) = ^tiR)YjM(R). (4) 

Since the electronic angular momentum is relatively small, the molecular 
rotational energy remains conserved. The continuum vibrational wavefunction 
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\j>d(E,R) and the continuum electronic wavefunction <f>+ for the (e~ — AB+) 
system are both energy-normalised with unit densities p(E), p(e) of states, 
respectively. The incident current (dj/dE)dE integrated for all directions of 
E is therefore (8irME/h3)dE = (k\B/2r*h)dE. The associative ionization 
cross section {dva/dj) is then 

<rAi(E) = -?-(2J + l)\aQ(v)\3 (5) 

where the quanta! autoionization amplitude OQ or transition matrix element 
Tq is 

aq{v) = 2T /" V£(Ä) [^(Ä)^(fi)]  dR (6) 

in terms of the bound-continuum electronic coupling matrix elements 

Vde(R) = (<f>d | *.,(?, *(*)) | Mr, R-))rV = Kd(R) (7) 
where the integration is over the electronic coordinates r and the direction e 
of the ejected electron. The energy width for autoionization at a given R is 

T(R) = 2ir\Vd\(R)\3. (8) 

From detailed balance 

UABVAB'MB; », J) = (2ü>+)(2 J + \)k\<rDR(t\ v, J) (9) 

where w*AB and u+ are the electronic statistical weights of AB* and AB+ and 
2 is the spin-statistical weight of the incident electron, the cross section for 
e~ — AB+{y, J) dissociative recombination is 

where the amplitude (Eq. (6)) for UQ is dimensionless. 

A. Quantal Approximations 

On ignoring the effect of autoionization on the continuum vibrational wave- 
function i/)d(R), then a "Born" approximation to the T-matrix element (Eq. 
(6)) is 

TB = 2* J~ Vl(R) [V>r md
0)(R)] dR (11) 

where ip^ ' denotes ipd in the absence of the back reaction of autoionization. 
In this situation Eq. (10) reduces to the cross section 
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for initial capture of the electron of energy e by AB+(vi). The effect of 
autoionization is now introduced by setting the DR cross section as 

*DR(e) = <*c{*)Ps (13) 

where Ps is the probability of survival against autoionization on the V& curve 
until stabilization takes place. Since |T<j|2 < 1, the maximum capture cross 
section from Eq. (10) is 

The Born matrix element TB violates unitarity so that Eq. (12) can exceed 
Eq. (13). But any approximate Hermitian reactance K-matrix yields a T- 
matrix which satisfies unitarity. The Born K-matrix element is KB = TB/2r. 
The various scattering (5), transition (T), and reactance (R or K) matrices 
are interrelated by 

s = L±* = I + "K=1_tT. (is) 
I-xR     I-xrK 

On solving the Heitler-London damping equation, 

f = -2R + i*R6(E-H0)f (16) 

where the Ö symbols denote operators, the corresponding unitarized T-matrix 
element for a two-(vibrational) state system [AB+(vi),A - B] is 

T =     2RB  , = ?L__ (17) 
1 + \RB\2      l + |iTB|

2 

where TB is given by Eq. (11). The cross section (Eq. (10)) is therefore given 
by Eq. (13) where 

-2 

Ps = 1 + \\TB\3 1 = ji+x21 jT v;f(R) l^mfHR)] dR^ 

(18) 

is the survival probability. This derivation provides an alternate route to 
the weak-coupling expression of Giusti (6) for one open vibrational channel 
v+ and pertains to recombination at low energies e. As c is increased, the 
number of accessible vibrational levels v+ of the ion AB+ increases and as a 
further approximation to PSt \TB\2 in Eq. (18) is then summed (6,7) over all 
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accessible v+. In the higher-energy e-limit where a large number of u+—levels 
can be populated following autoionization, then with the aid of closure, 

5>+'W.+(ä')=*(ä-ä') 

the survival probability is 

Ps = 1 + T3 rRx        2 
/   \v;t{R)\3 $\R) dR 

-2 

(19) 

Upon use of a semiclassical JWKB function for rp* (cf. §111, Eq. (25)), this 
reduces to 

Ps = 1 + sjT^r-HH"    <-> 
where v(R) is the local radial speed of A-B relative motion, (i/„) is the fre- 
quency of autoionization averaged over time rd for the A-B to dissociate from 
their distance Rc of closest approach to the crossing point Rx- The survival 
probability is also given by a local approximation (3) as 

Ps{Rc,Rx) = exj, 
i fR' T(R)dR        r   r* 

dt (21) 

where Rc and Rx are the initial capture and stabilization radii, respectively. 
On recognizing that AB** formed in the first stage of Eq. (1) decays either 
by autoionization at frequency i/ol or by dissociation at frequency v* ~ 1/TJ, 

the stabilization probability is also 

Ps = 
Vd 

(fa + Vd) 
= (1 + VaTd) 

-1 (22) 

as in Bates (1). Expressions (20)-(23) for Ps all agree in the weak coupling 
limit va <C Vi. By adopting in Eq. (18) the Winans-Stueckelberg wavefunc- 
tion, 

MR) = \Vi(R)\~1/26{R-Rc), (23) 

the simplest continuum vibrational (energy-normalized) wavefunction, 
wherein Re is the classical turning point for (A — B) relative motion (and 
the capture radius for a vertical transition from V+(R) to Vj(Ä)), then the 
capture cross section (Eq. (12)) reduces to 

"e(e) = 5 (iSf) [2irT{Rc)] (iW \tf(Rc)\2} (24) 
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where the term in braces is the effective Franck-Condon factor. This is the 
result (3) used so effectively by Bates in his explanation of super-dissociative 
recombination (2). 

A further semiclassical connection of the high-energy result (Eq. (21)) with 
the low-energy weak-coupling limit (Eq. (18)) is provided in §V B. Further 
developments in applications of the quantal theory of configuration mixing 
and multichannel quantum defect theory have been well reviewed recently 
(8). 

III. SEMICLASSICAL CROSS SECTIONS: JWKB 
FRANCK-CONDON OVERLAP WITHOUT AUTOIONIZATION 

The JWKB normalized semiclassical wavefunctions for the bound vibra- 
tional level (v = n, J = I)1 of AB+ with vibrational frequency vnt is 

tf(Ä) = 2 Vnl 

MR) 

1/2   r r* T 
sin    /    k+(R)dR+- R>Ro      (25) 

where hvnt = de^j/dv is the level spacing, and RQ is the classical turning 
point given by the innermost zero of 

i«.i(«)=5!is=^-r(«)+<]-^    <*) 
the radial speed v+(R) of relative motion of energy {E-e) in potential V+(R). 
The JWKB wavefunction energy normalized to 6{E - E') for the vibrational 
continuum of AB* without autoionization is 

where Rc is determined by the innermost zero of 

for the radial speed Vd(R) of relative motion in the dissociative potential 
Vd(R). Angular momentum of relative nuclear motion is conserved (J = L). 
The quantal amplitude (Eq. (6)) with the semiclassical product 

#• (R)MR) = K//>01/2(f+f <0~1/a I«P +*MR) + «P -*A(Ä)]    (29) 

is then 

'The quantum sets (n,l) and (v, J) are used interchangeably whenever there is a 
need to distinguish the vibrational quantum number v from the radial speed t>(fl). 
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aq{n) = 2T(p£)1/J jf {v+(R)vd{R)}1/3 Vl(R) [«P +*A(Ä) 

+ exp-iA(Ä)] dÄ        (30) 

where the phase difference is 

A(Ä) = fRk+(R) dR- I   kd{R) dR (31) 
JRO JRC 

and where the (highly oscillatory) phase sums have been neglected. The (±) 
terms exp(±iA) in Eq. (30) provide the contributions to S torn the incoming 
(-) and outgoing (+) components of 1>d. The phase A has a stationary point 
where A'(Ä) = dA/dR = 0, i.e., where 

Jb+(Ä«) = kd(Rt) (32) 

so that the kinetic energy of relative nuclear motion under each interaction 
Vd and V+ is conserved at the point Rt of stationary phase. Let W{R) be 
the potential energy difference Vd{R) - V+(R) so that 

W{R) - e = Vd(R) - [V+ (R) + e] (33a) 

= {h'/2M)[kl(R)-kl{R)} (33b) 

= h[v+(R) + vd(R)]A'(R). (33c) 

Hence Eq. (32) with Eq. (33b) implies that the condition 

Vd{Rt) = V+(Rt) + e (34) 

for a vertical transition at Rt is also satisfied. These two conditions (Eq. (32) 
and Eq. (34)) are illustrated in Fig. 1. On expanding 

A(Ä) = A(Rt) + A'(Rt) (R - Re) + \A"(Rt) (R - Rtf (35) 

and on changing the integration variable to * = R - Rt with limits (±oo), 
then Eq. (30) can be evaluated with the aid of 

/_: 
exp(±»|a|*')d«=   £       exp(^). (36) 

1 LIU 

The quanta! amplitude is therefore 

1/2 

11/2 
/ It     * \   */ * I Z.-K 

*Q = 2*Vd\(R) I h )     v(Rt) L|A"(Äe)|J      \ L   v 4J 

+ exp-»[A(Ät)±J]}]     (37) 
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FIG. 1. Potential energy PE curves and energetics for dissociative recombination 
and associative ionization. Vi(R),V+(R): diabatic PE's for AB'(R) and AB+(R) 
which cross at Rx. e: ejected electron energy with ion left in AB+(v). Ri,Rj: loca- 
tion of stationary phase where Jta(fi) = *+(-R) which results in « = Vd{Ri)-V+(Rt). 
Rc: classical turning point of (A-B) motion with relative energy E. 

where the constant phases (±*"/4) pertain to positive or negative values of 
A"(J2e) = *+(Ä£) - k'd(Rt), respectively; i.e., to either minima or maxima in 
the phase difference A at Rt. From Eq. (33c) and Eq. (32) 

*"<*•> = EBJ 5 <v< - »*>«. ■ MW-""'S'»- 
(38) 

The cross section (Eq. (10)) for dissociative recombination for one point of 
stationary phase is then 

O"X»ä(C) = £b (S?) ^]|5(Äe)|2 - a(Ä')r(Ä<) ,5(Ä£)|2 (39) 
8irmc. 

where the semiclassical Franck-Condon (FC) bound-free factor \S\   has di- 
-l mensions of [E]     and is 
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i5±<Ä«)ia=i^J M*)!"1 co82 hfi<) ± 3 
which oscillates (rapidly foi A large) about its aveiage value 

2Vnl 
(isi'H; »(*.)J 

iw(fi.)i -i 

9 

(40) 

(41) 

which, when integrated over all c, yields unity. For one root 1Z() S
+ pertains 

to phase minima when W'(R) = dW/dR > 0, and S~ to phase maxima 
when W'(R) < 0. For two widely separated regions of stationary phase at 
Äi and Ä3l W(R) = c has two roots specified by Äi < £2, W'(JRi) > 0, and 
W'fäj) < 0, which then correspond to phase minima and maxima at Ri and 
Ra, respectively. In this situation 

<rDR(e) = a1f2(Rl)S+(Rl) + alt2(Ra)S-(R2) (42) 

When the bound vibrational JWKB wavefunction ^+ of Eq. (25) is taken 
with respect to its right-hand turning point RQ, rather than the left-hand 
turning point RQ, then the analysis is as above except with A replaced by 

A(Ä)= / °k+(R)dR- f   kd(R) 
JR. JRC 

With the aid of the quantization condition 

ft /  ° k+{R) dR = (v + i J ft 

dR. 

this reduces to 

A(R) = (V + -)T- f   k+{R) dR+ f   kd(R) dR 
JRO JRC 

(43) 

(44) 

(45) 

The smaller of A and A in practice is adopted in Eq. (37) for a<j or Eq. 
(40) for 15* |2. 

A. Special Cases: Turning Point and Caustic 

Two cases of special interest now arise. One is when Ri is the turning point 
Rc where the radial speed v(R) vanishes and the Franck-Condon factor (Eq. 
(40)) diverges. The other case is when the two points Äi and A3 of stationary 
phase coalesce at the caustic where e* = ^(£1,3) is maximum (as indicated 
in Fig. 2) so that W'fäij) vanishes and Eq. (40) again diverges. 
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FIG. 2. Energy separation W{R) = Vt(R)- V+(R) for classical path R{t). Station- 
ary phase locations e = W(Rij). Caustic (Rainbow) at «' = ffm«(Ä'). The three 
horizontal dashed lines represent the energies e*, ei, ea of the Caustic, 4 crossing 
point and 2 crossing point cases, respectively. The vertical dotted line represents t', 
while the four vertical dashed lines (from left to right) represent ti_«, respectively. 

1. Turning Point Divergence 

(a) In classical mechanics the quantal probability 

\^t(R)\2 dR=^ = 2vnldt (46) 

is replaced by the corresponding classical average over the period T for vibra- 
tional motion, the factor of 2 arising from inward and outward radial motion, 
i.e., \ij>t(R)\a = 2vni/v{R). This also follows from averaging the JWKB func- 
tion (Eq. (25)). Use of this correspondence in Eq. (40) therefore yields the 

Pranck-Condon factor 

ls*CÄ.>r = * |V5"Cä.)I* >-'"> 

-l 

cos' 
R. 

[A(fi.)±J]. (47) 

23 



11 

This form is advantageous in that it circumvents the divergence in the over- 
lap (Eq. (40)) at the classical turning point Ac common to all JWKB-based 
approximations. The averaged FC factor is 

(|S*(H,)|") = |tf(Ä,)|2 

&*-**> 

-1 

(48) 

which is finite.   The FC factor with the simplest continuum function (Eq. 
(23)) is 

|5|a = K(fic)|3 dVd 

dR 

-l 

Re 

(49) 

to be compared with the more accurate expressions (Eq. (47) or Eq. (48)) 

It is therefore valid when |f£| >   ^ , i.e., the potential Vd is so steep 

and strongly repulsive relative to V+(R). The above Franck-Condon overlap 
(Eq. (49)) is that used by Bardsley to provide the cross section (Eq. (24)) for 
dissociative recombination. 

(b) Airy Function Remedy: 
In order to remedy the well-known breakdown of the JWKB functions (Eqs. 

(25) and (27)) close to the classical turning points, the JWKB functions can 
be replaced by their Airy function counterparts 

sin (J* k dR + \\ => SW*Ai(-z),      \z*l* = J* 

in Eq. (6). The stationary phase result is (Eq. (39)) with 

k dR (50) 

(51) 

for the resulting overlap, where the argument of the Airy function Ai in terms 
of the phase difference (Eq. (31)) is 

?(*.) = |A(Ä€) 
a/3 

(52) 

For large arguments »7, i.e., for Rf well removed from the classical turning 
points Rc and Ro, then 

x^W^M-v)^sin (A +1)    *' > ** (53) 

so that Eq. (47) is recovered (for the case W'(Re) < 0). The overlap (Eq. 
(51)) uniformly connects the classical accessible and inaccessible regions and 
does not diverge when Rf is located at the classical turning point fie. 
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t. Caustic Region: W'(R') = 0 

The caustic occurs at the maximum energy c* = W(R) where W'(R*) = 0 
so that both A' and A" vanish at R* and hence the FC overlap within Eq. 
(37) for UQ diverges. In the vicinity of the caustic 

where v* = v(R*). The amplitude (Eq. (37)) under the expansion 

A(fi,e) = A(Ä*) + 

is then 

aQ(n) = 2*Vi(Ä*) 

(«•-«) 
ftu, 

*\3 (fi-Ä*) + ^A"'(Ä*)(fi-Ä*) 

jA»'(Äo)|j 

where Ax is the Airy function with argument 

1/3 

* = A'(Ä*,e) 
"11/3 

A'"(fi*). 
2hvt 

_\W"(R*)\ 

1/3 

Ai(-z) 

ft«. 

(54) 

(55) 

(56) 

(57) 

The amplitude (Eq. (56)) and the cross section (Eq. (10)) are now finite at the 
caustic (s=0). The divergent term [2x/ \A"(R)tf-/2 in Eq. (37) is, in effect, 
replaced by 2T[2/A'"{R)]1/3Ai(-z). The cross section is given by Eq. (39) 
where the Franck-Condon factor, appropriate to one stationary phase point 
located at the caustic, is 

"<*•>!'= T(^)[]^ 
I3/3 

)l 
Ai'(-z) (58) 

which is finite. Although this procedure has eliminated the divergence of Eq. 
(37) at the caustic, the result (Eq. (56)) does not uniformly connect with 
Eq. (37) for well-separated regions of stationary phase. A uniform result will 
now be presented in the following section, together with generalization of the 
JWKB wavefunctions so as to include autoionization. 

IV. FRANCK-CONDON OVERLAP WITH AUTOIONIZATION 

Autoionization is, in effect, within the reaction zone between the crossing 
point Rx, where V& = V+, and the distance Re of closest approach on Vi(R) 
at energy E. To account for this, the JWKB vibrational wavefunction (Eq. 
(27)) decaying in the continuum is generalized to 
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-s(Ä)expt( f   kddR+j\\ (59) 

where c(R) is the amplitude for survival on Vd(R) from Rx to R on the 

incoming leg, and s(R) is the survival amplitude from Rx -» Re -* R on the 
outgoing leg. These amplitudes can be obtained from a recent classical path 
formulation (9) of DR. The Franck-Condon amplitude 

s = r r+{R)MR) <*Ä (60) 
Jo 

in terms of Eq. (31) for the phase difference A is 

S = (^)1/2 f0 {v+(R)vd(R)}1/2 [c(R) eip +iA(R) + s(R) eip -iA(R)] dR. 

(61) 

Evaluation of S by a stationary phase method to yield a result which uni- 
formly connects the caustic region (A" = 0) with the regions of well-separated 
phase is formally identical to the well-established analysis of classical rainbow 
scattering (10). Here A(-R), W(R), R, and e above are analogous to the phase 
shift T](l), deflection function x{£) = drj/dl, angular momentum I, and scat- 
tering angle 9, respectively, in semiclassical elastic scattering. By mapping the 
phase A(e; R) onto the integrand of the Airy function, a uniform Airy approx- 
imation which uniformly connects Eq. (51) for two points ÄXl2 of stationary 
phase with the caustic region can therefore be constructed. The uniform Airy 
approximation (10) to the integrals 

A±(e) = J g{e; R) exp [±tA(e; R)} dR (62) 

is written here in compact form as 

A+{e) = 0l(e)exp [t(Ai + jj\ F*(A31) + a2(e)exp [t(A2 - J)] F(A21)  (63a) 

= [ai(e)f(Aai) - w2(e)exp(iA21)F(A21)]exp [i(Ai + ^)] (63b) 

and 

A~(e) = ai(e) exp [-i(A! + J)] F(A21) + a2(e) exp [-t(A2 - J)] 

•■F*(A2i) (63c) 

= [ai(e)F (A2i) + ta2(e)exp(-iA21)F *(Aax)] 

xexp[-»(A1 + J)]. (63d) 
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The amplitudes 

ai{e) = [2T/\A^\}1/2g(e,Ri) (64) 

are assumed real, and 

Ai = A{Ri)     ;      Aai = Aa-Ai>0. (65) 

The complex function F is denned in terms of the Airy function Ai(z) and its 
z—derivative Ai'(z) by 

F[A21(e)] = [*W*Ai(-z) + x^z-^Ai!(-z)\ exp -x (^ - j) , 

\ \zf12 = Aai > 0. (66) 

The points Rh2 are such that W'{Ri) > 0, i.e., A"{Ri) > 0 where the phase A 
is minimum, and W'(R2) < 0, i.e., A"(Ä2) < 0 where the phase is maximum. 
Since A2i is the area enclosed by the W(R) curve and the straight line W = e 
(cf. Fig. 2), it is always positive, except when it is sero at e = c* = W(R*). 
It is shown below (§IV i) that the divergence in the constructive interference 
term (ax + a2) at the caustic (Aj' = 0) is exactly balanced by the vanishing 
of the coefficient z1/4 of Ai ; also the divergence in the coefficient 2"1/4 of 
Ai'{-z) at the caustic is offset by the destructive interference term (oi - a2) 
which vanishes more rapidly. In the limit of high z » 1, or for well-separated 
regions A2i > 1, F(A3i) -» 1, with unit amplitude and sero phase such that 
Eq. (63) tends to the primitive form (Eq. (37)). The uniform Airy result (Eq. 
(63)) is general in that it continuously connects the caustic (A12 = 0, A" = 0) 
result (Eq. (56)) at e» with the result (Eq. (37)) for well-separated regions. 

Application of Eq. (63) to Eq. (61) therefore yields 

S = {SlClF2\ - iS2c2F2iexpiA2i}exp [+t(Ai + J)j 

+ {SiSiFji + iS2S2F2\ exp -tA2i} exp [-t(Ai + J)] (67a) 

= Sin exp [-B(Ax + £)] + S„t exp [-»(Ax + J)] (67b) 

where 

Si = 
11/2 

v(Ri) 
(68) 

and where the in-out contributions Sin and Sout are associated with Cj = c(Ri) 
and Si = s(Ri), respectively. Alternatively, the Franck-Condon overlap is 
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S = [Si {dfj*! - isiFai exp (-2tA0} 

- tS2 exp (tA21) {caF21 + *s2F2\ exp (-2iA2)}] exp t(Ai + j).        (69) 

For widely separated phase regions F —♦ 1 the primitive form 

5 = 5i {ci - »S! exp (-21A1)}exp [t(Aj + ^)] 

+ Sa {c2 + is2 exp (-2tA2)} exp [i(Aa - ^)] (70) 

for 5 is obtained. The above results (Eqs. (67)-(70)) provide the generaliza- 
tion of Eq. (40) to include autoionization. For one region of stationary phase, 
the Franck-Condon factor reads 

\S\2 = Si (c\ + sj - 2ciSi sin 2AX) . (71) 

When autoionization in Eq. (70) is ignored, Cj = 1 = Sj. Then 

S = 2 [sx cos(A! + j) + S2 cos(Aa - ^)] (72) 

and each amplitude is in agreement with Eq. (40). 

A. Caustic 

The divergence in Si due to the vanishing of W'(R) at the caustic R* = R\i2 

is exactly balanced by the behavior of the function -F(A) of Eq. (66) as A —♦ 0. 
This becomes apparent by rewriting the in-out contributions (Eq. (67b)) to 
Sas 

Sin = (Sici + S2c2)A{A21) - i [SlCl - S2c2] A'(A2i) (73a) 

Smt = (Sisi + S2s2)A{A21) +1 [SlSl - S2s2] A'(A21) (73b) 

where 

A(A21) = r^z^Aii-z); A'(A21) = r^z^'^Ai^-z) (74) 

with argument 

* = [3A21/4]2/3. (75) 

The form (Eq. (67a)) for S is useful for probing the limit A2i S> 1 for 
well-separated regions when F2\ —♦ 1, while the form (Eq. (73)) in Eq. (67b) 
for S is useful in the neighborhood of the caustic region when AJI —► 0. Since 
c = e* = W{R*) and W'{R*) = 0 at the caustic R\ then 

W{R) = c* - i \W"(R*)\ (R - R*)3 (76) 
2t 

28 



16 

so that c = W(R) at the two separations 

R3<1 = R*±[2(e*-e)/\W"(R*)\}1'2, (77) 

The derivative W'(R) therefore tends to sero on each side of the caustic at 
R* as 

0*\3 

(78) 

(79a) 

W'(R,e) = ±{2(e^-c)\W"(R^)\)1,2. 

The phase A is expanded consistently with Eq. (76) as 

A(Ä) = A(Ä-) + A'(fi-)(Ä - R-) + \ (^)Rm (
R ~ Rt) 

= A(Ä.) + _L(£* _ £)(fi - R*) - J- \W"{R*)\ {R ~ I?)3     (79b) 

since A"(fi*) vanishes and A'(fi) = [W{R) - c]/hv.. The phase difference is 
therefore 

25/a   (e*-e)3/2 

A31(e) = A(iEa)-A(i?l)=3^-|^)|1/2. 

The dimensionless argument z of the Airy functions in Eq. (74) is 

z(e) = 
2hv, 

W"{R>) 

1/3 (**-Q 

(80) 

(81) 

(82) 

As Äi -♦ R2 -» Ä*, 

s'=[^h]-(^)"sp(€'-e)|H"'(fi')ir'" 
the (c -f e*) divergence of which is exactly balanced by the (e* - e)-1'4 

variation of z1'* in ^(A2i) of Eq. (73a). Also S^d - S2(e)c2 -» 0 as e — e* 
faster than the divergence of z~x'A in ^'(A21) of Eq. (74). The Franck-Condon 
factor in the caustic region is then 

|S(e)|a = |2SlCl^(A21) + 2SlSl>l(A21) exp(-2;A1)|
2 (83a) 

= \Sc(<)\2 [c2(R) + s2{R) + 2c(Ä)s(Ä) cos 2A(Ä)] (83b) 

where 

\Sc(e)\2 
2-KVnt 2hvt 

hv* W"(R) 

2/3 

Ai>(-z) (84) 
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is finite. When the effect of autoionization in the continuum vibrational wave- 
function is neglected, then c = s = 1 and Eq. (83b) reduces to the previous 
result (Eq. (58)) so that, for e ~ e*, 

a(e) #_(£B\ \m] [*L1** J**_ 2l\?(-z)\.   (85) 

V. DECAY AMPLITUDES AND STABILIZATION PROBABILITIES 

A recent classical path R — R(t) theory (9) of dissociative recombination 
has shown that the amplitude c(t) is determined by the following integral 
equation: 

-2*ft2c(0 = /'   dt' I" deT{e, 1; t')c(t') eip t [7(e; 1) - 7(«! *')] (86) 
Jtx       Jo 

at time t. This depends on the previous history of the system between tx and 
t via the non-local interaction 

T(e,t;t') = 2*Vd((t)Vl(i') (87) 

and on the phase difference 

7(e; *) - 7(«; *') = £/, fa" (V++e)]   dt (88) 

at different times. Once this equation is solved by numerical procedures, 
the amplitude s(t) = c(t + te), where tc is the time for nuclear motion from 
separation Rx to the distance of closest approach Re, can be determined. 

A. High-Energy Local Approximation 

A local approximation to Eq. (86) yields (8) 

c(t) = «p(~jfr(t)*) (89) 
for the amplitude for survival of travel from Rx to R(i) on the inward leg 
(t < te), and 

s(i) = C(TX -t) = exp -5rrH-p(+äjfr(o*)<9o> 

for the amplitude for survival during the sequence Rx —* Re —» R(Tx — *) = 
JZ(t) on the outward leg. 
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In terms of R, these amplitudes are 

,«      ( * fRx S*!&£**\ -m (-± fRx TWdR\   (9i) c(Ä) = exp^-yÄ „(*)       )-"*[   2h]R        v[R)   )     (91) 

and 

<»>—i-irgM-^fSi "2ft/Äc    i>(£) 
dfi (92) 

In this (high-energy) local approximation the averaged FC factor (Eq. (69)), 
which involves autoionization to many vibrational levels n of the ion, reduces 
for one point Ri of stationary phase to 

-ton}- 
When Ri coincides with the classical turning point Rc, then 

(\s\3) = \tf{Rc)\i\w'{Re)\-
1Ps(Rx) 

where the probability Ps against autoionization is given by Eq. (21). 

B. Low- and High-Energy Semiclassical Correspondance of Ps 

In e~ - AB+(vi) recombination at low energies c, AB* decays by autoion- 
ization only into a limited number of open vibrational levels n = 0,1,2,... of 
AB+. The DR cross section is (Eq. (13)) where the probability Ps against 
autoionization is 

(93) 

(94) 

pB _ i + l£l?M*;n)|2 
-2 

(95) 

Stationary phase evaluation of the weak-coupling (Born) TB of Eq. (11) 
yields 

w-*r«)Woi"-M^S (96) 

where c = W(R) and where S0 is the overlap S without autoionization. Hence, 
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since the level spacing (de/dn) is hv^i. The maximum energy of electron 
ejection is cm. Expanding Eq. (95) yields 

P#~l-z+^xa-ix3 + ... (98) s 4 2 

which agrees only in the weak-coupling limit (x < 1) with the expansion 

P#~l-x + ix2-i*3 (99) 

for the local probability (Eq. (21)). Since 

x ~ (r/ft) T = (i/„) jVi = («/«) Td 

where (i/a) is the frequency of autoioniaation averaged over the time T = i/J 
for dissociation from Re to Rx, then expansion of the probability (Eq. (22)) 
yields 

Ps = Vdl (vm + "<0 = (1 + "a7*)"1 ~ 1 - x + x2 - x3 + ... (100) 

in agreement with Eq. (21) and Eq. (95) in the weak-coupling limit. This 
establishes the semiclassical correspondance between the various low- and 
high-energy survival probabilities. 

VI. SEMICLASSICAL CROSS SECTIONS 

The quantal amplitude (Eq. (6)) with the semiclassical product 

OQ(€) = 2*(vnl/h)1'3 J°°{v+vd)-^
2Vl(R) [c(R) exp +iA(R) 

+s(fi)exp-tA(fi)] dR (101) 

can be similarly evaluated by the stationary phase technique of §IV. The 
semiclassical cross section (Eq. (10)) for dissociative recombination is then 

<TDR.{t; n) = \(x\13 [cxF2\ - xs1F31 exp (-2»Ai)] - vr\'2 exp [-i{An + jj\ 

x [c2F2i + ts2F^xp{-2iA2i)]\7 (102) 

where the magnitudes Oi = ff(-Rt) are 

and where the decay amplitudes c* = c(Ri) and hence sj = s{R) are deter- 
mined in general from Eq. (86). This is the basic expression for the cross 
section for dissociative recombination in the present semiclassical theory with 
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all the phase interference information included in A21 and F. For one point 
of stationary phase, then F21 = 1 and <r2 = 0 in Eq. (102) which reduces to 

tfu*(e; n) = a(R) [c2(R) + s7(R) - 2c(R)s{R) sin 2Aj (104) 

which exhibits a pattern of rapid oscillations of frequency r/A(R) which varies 
with e and impact parameter b. It oscillates with c about the classical mean 

(*{e)) = a(R)[c2(R) + s2(R)] (105) 

between the envelopes \c ± sf a(R). These oscillations are due to the action 
difference A at R between the incoming and outgoing legs. This in-out in- 
terference effect is present also in the more general result (Eq. (85)) which, 
in addition, exhibits broader oscillations due to the Airy function within F. 
When the one region of stationary phase coincides with the distance of closest 
approach Re, then, on replacing 2vnl/v{R) in Eq. (103) by |#(£)| , 

<rDR{e*) = 2<r1(Rc)c
2{Re) Srmet\2u)+)     h 

{\W(Rc)\-1 

\tf(Rc)\2 Ps{Rx)}     (106) 

where Ps = |e(Äe)|a »s the survival probability between Rx aud Re against 
autoionization. This simple result then represents a first improvement over 
the result of Bardsley (cf. Eq. (24) and Eq. (21) in Eq. (13)) in that it includes 
W'(R) = jk [Vd - V+] rather than Vj alone. The simple result of Bardsley 
(Eq. (24)) is therefore valid (a) when one region of stationary phase at Re is 
assumed, (b) when V+ is so shallow that k+{Re) = 0, and (c) when Vd is so 
steep that the Winans-Stueckelberg wavefunction \V^(Re)\~

1/2 S(R-Re) can 
be used for the continuum vibrational state. 

The cross section (Eq. (103)) reduces in the neighborhood of the caustic 
energy «* = W(R') where W'(R*) = 0 to 

a(e) = h3     (*\B )m{ 2x 4i/n/ 2hvt 

W"(R*) 

2/3 ^ 
(107) 

which remains finite at the caustic. 

VII. BATE OF DIRECT DISSOCIATIVE RECOMBINATION 

For a Maxwellian distribution of electron energies e = e'(kT) at temperature 
T, the DR rate is 

Q(T) = v f°° aDÄ(e)e'exp(-£') de' = v(crDR(T)) (108) 
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where t; is the mean electron speed (SibT/xm)1/2 and {(TDR) is a mean cross 
section at temperature T. An energy threshold e0 = KJ(ÄO) - V+(-Ko) > 0 is 
appropriate for the case when the energy Vd(Rx) at the crossing exceeds the 
original vibrational energy of AB+(v). In terms of the probability \a(e)\ for 
dissociative recombination, the cross section can also be written as 

where the semiclassical probability for dissociative recombination is 

|a(e)|2 = \p}/3(n) [ClF3\ - «iFai eip (-2^0] - »P2
1/2(n) 

x exp [-i(A3i + jj\ [c2F2i + m F^ exp (-2iA2)] 

in terms of 

which is dimensionless. Thus, 

(109) 

(110) 

p<(») = 2xr(Äi) {l^Wf1 (^y)} (m) 

is the basic expression for the rate which includes all the interference effects 
present in Eq. (110). 

A. Approximate Rates 

In order to obtain a simplified analytical rate, assume that there is only one 
region of stationary phase at Rt so that e = Vd(Rt) - V+(Rt) and that the 
in-out interference effect is averaged out. The probability is then 

|a(n;e)|2 = 
r(i9  \W(R)\~l 

hv(R) 

which, with Eqs. (91) and (92), is 

R. 

hunl[c2{Rt) + s'(Rt)] 

\a(n;e)\3 = Pß- \W'{R)\~l 

_hv{R) 
2hvnl 

R. 

srsH x cosh 

(113) 

(114) 

where the term in braces, appropriate at high e, is the average probability for 
out 

survival from Rf ™   Rx and Rf ™ Rc ™ Rx on Vd(R).  Adoption of Eq 
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(114) in Eq. (112) therefore demands the location Ac which depends in turn 
on the energy 

of relative motion under Vd. From c = Vd{Rf) - V+(Ä«) and the vibrational- 
rotational level (v, L) otAB+, k+(Rt) ~ kd(Rt) and E can then be determined 
to provide Ac as a function of c. Further reduction of Eq. (112) with Eq. (114) 
is therefore not possible without additional assumptions. 

(a) In the low-energy limit e -♦ 0, the capture and stabilization separations 
are close so that Ps -* 1. Hence, 

\a(n;e - 0)|» = 2*r(*x) ^(ftr)!"1 { [^] = |tf(*x)|'}      (116) 

such that Eq. (112) reduces at low T to 

^=^^0YJT1{^R^'tT^iE')fl}-(1I7) 

The term in braces is an effective thermal Franck-Condon factor for bound- 
free transitions. This analytical result is a generalized version of the result 
of Bates (2) in that it includes W'(R) = ^(Vj - V+) rather than VJ alone. 
It therefore allows for a distinction to be made between crossings on either 
side of the potential minimum. For crossings at the potential minimum, the 
results are identical. 

(b) Assume either that V+ is so shallow that fc+(fl«) ~ ° or that V* " so 

steep. Then Rt = Re which is given universally by e = Vd{Re) - V+(Äe). The 
recombination of electrons of energy e originates at the distance of closest 
approach so that the cross section (Eq. (106)) can be used directly in Eq. 
(108) to give 

°m=p^(^)'2^T)rp(«)eip(-',),fc' <ii8) 

where P(e) is the probability density (Eq. (113)) given in the local approxi- 
mation by 

'»-s-äanr^-'BnH (n9) 

where e = W(R). For constant drainage dPd/de is constant and Eq. (117) is 
recovered from Eq. (119). 
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VIII. SUMMARY 

A detailed semiclassical theory of direct dissociative recombination (DR) 
has been developed in the spirit of Böttcher (4). Semiclassical expressions 
(Eqs. (67) and (69)) for the Franck-Condon bound-free vibrational overlap S, 
with and without autoionization, have been presented here (to the author's 
knowledge) for the first time. These results are uniform in that they continu- 
ously connect the primitive forms (Eqs. (40) and (72)), valid for well-separated 
regions of stationary phase, with the caustic result (Eq. (58)) appropriate to 
the instance when the vertical separation energy e between Vd{R) and V+(R) 
is maximum at R* ie. VJ(Ä*) = V|(Ä*). 

New semiclassical expressions (Eq. (102) and Eqs. (110)-(112)) for DR cross 
sections aDR and rates aDR are also derived. They represent considerable 
improvement and generality over previous simpler results (2,3). The present 
theory is applicable to DR which may or may not involve curve crossings. The 
present developments for S and <rDR represent required generalization of the 
important semiclassical analysis of both Miller (5) for the reverse process of 
associative ionization and of Böttcher (4) for dissociative recombination. 

The decaying amplitudes, c(R) and s{R) integral to this analysis, are de- 
termined from a recent classical path theory (9) of DR. This yields, in the 
high-energy limit, a local approximation for the survival probability adopted 
previously (3-5). The classical path theory, represented by Eqs. (86)-(88), 
removes the need for using the local approximation to c(R) and s(R) within 
expressions for S and cDR{e) at lower energies e. It also removes the need 
for using continuum vibrational wavefunctions VM(-R) without the effect of 
autoionization within the quantal result (Eq. (10) with Eq. (6)). 

ACKNOWLEDGEMENTS 

This research is supported by the U. S. Air Force Office of Scientific Re- 
search under Grant No. F49620-94-1-0379. 

REFERENCES 

1. D. R. Bates, Phys. Rev. 78, 492 (1950). 
2. D. R. Bates, J. Phys. B: At. Mol. Opt. Phys. 24, 703 (1991). 
3. J. N. Bardsley, J. Phys. B: Proc. Phys. Soc. 1, 365 (1968). 
4. C. Böttcher, J. Phys. B: At. Mol. Phys. 9, 2899 (1976). 
5. W. H. Miller, J. Chem. Phys. 52, 3563 (1970). 
6. A. Giusti, J. Phys. B: At. Mol. Phys. IS, 3867 (1980). 
7. S. L. Guberman, this volume (1995). 
8. A. Giusti-Suzor, I. F. Schneider, and O. Dulieu, in Dissociative Recombination: 

Theory, Experiment and Applications, B. R. Rowe, J. B. A. Mitchell, and A. 
Canosa (eds.) (Plenum Press, NY, 1993). 

9. M. R. Flannery, Phys. Rev. A, submitted (1995). 

36 



10. M. S. Child, Semiclastical Mechanics with Molecular Applications, Oxford Univ. 
Press, 1991, Appendix B, p 334. 

37 



Vm. Appendix B: 

The Semiclassical-Classical Path Theory of Direct Electron-Ion 

Dissociative Recombination and e" + H3
+ Recombination 

by 

M. R Flannery 

School of Physics 

Georgia Institute of Technology 

Atlanta, Georgia 30332 

38 



The Semiclassical-Classical Path Theory of Direct 
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1. Introduction 

The dissociative recombination (DR) processes, 

->   H + H + H (1) 

at low electron energy e and, 

e" + HeH+ - He + H(n = 2) (2) 

have spurred renewed theoretical interest because they both proceed1-5 at respective 
rates of (2 ■ 10"7 - 2 • 10-8)cm3s"1 and 10"8cm3^-1 at 300 K. Such rates are generally 
associated with the direct DR which involves favorable curve crossings between the 
potential energy surfaces (PES), V+(R) and Vd(R) for the ion AB+ and neutral 
dissociative AB** states. The difficulty with (1) and (2) is that there are no such 
curve crossings, except 6 at e > 8eV for (1). In this instance, standard theory would 
support only extremely small rates when electronic resonant conditions do not prevail 
at thermal energies. 

Seminal investigations 7fi of David Smith and his colleagues (N. G. Adams and 
C. R. Herd) in 1989-91 had already established that the non-crossing recombination 
channel 

e" + H30
+ -* H20{XxAx) + H{lS) + 6.4eV (3) 

where the products are in their ground states is just as rapid as the channels 

e~ + H30
+   -   OH + H + H (4a) 

-»   OH + H2 (4b) 
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which involve favorable curve crossings. As is now realized, this observation provides 
an important signal (to theorists) that non-crossing DR can be rapid and that ground 
states can be populated. 

Bates 9 and Bates et al10 reasoned that DR for (1) could proceed via intermediate 
Rydberg levels of JT|* which then connect, via quantum tunneling of the various 
vibrational wavefunctions, with the non-crossing dissociative product state whose 
PES lies to left and falls below all the Rydberg states. Although the tunneling 
probabilities are small, the final step involves only a single electron transition, rather 
than the much smaller dielectronic transition rate involved with the direct process. 
The overall rate may therefore be quite large. In a different interpretation, Guberman 
4 has proposed that DR for (2) is driven by the action of the nuclear kinetic energy 
operator on the adiabatic potential curves. 

It is now time to re-examine the whole basis of dissociative recombination with 
a view towards providing a new mechanism and a more tractable theory capable of 
implementation on a level more accurate than currently being performed. We shall 
see that current calculations are based upon a first-order theory in the sense that the 
vibrational wavefunctions associated with Vd(R) do not include autoionization. This 
effect is subsequently acknowledged by introducing, after the fact, a probability P$ 
for stabilization against autoionization. 

In this paper a new mechanism for DR in the absence of curve crossing will be 
proposed in § 3, and a semiclassical-classical path theory of direct DR will be presented 
in § 5. Some background and standard theory are reviewed in § 2 and § 4. 

2. Past and Recent Background 

2.1. Direct Process 

Bates n postulated that, dissociative recombination (DR) for diatomic ions can 
occur via a crossing at Rx between the bound and repulsive potential energy curves 
V+(R) and Vd(R) for AB+ and AB**, respectively. Here, DR involves the two-stage 
sequence, 

kc vd 

e- + AB+(vi)^(AB**)r—+A + B + hv (5) 

va 

The first stage is dielectronic capture whereby the free electron of energy e = Vj(i2) — 
V+(R) excites an electron of the diatomic ion AB+ with internal separation R and 
is then resonantly captured by the ion, at rate kc, to form a repulsive state d of 
the doubly excited molecule AB**, which in turn can either autoionize at probability 
frequency i/„, or else in the second stage predissociate into various channels at prob- 
ability frequency vj.   This competition continues until the (electronically excited) 

40 



neutral fragments accelerate past the crossing at Rx. Beyond Rx the increasing en- 
ergy of relative separation has reduced the total electronic energy to such an extent 
that autoionization is essentially precluded and the neutralization is then rendered 
permanent past the stabilization point Rx- Bates' interpretation has remained intact 
and robust in the current light of ab-initio quantum chemistry and quant al scattering 
calculations for the simple diatomics (Ot,N^}Net} etc.). Observation of emitted 
radiation hv yields information on the excited products. Mechanism (5) is termed 

the direct process. 

2.2. Indirect Process 

Bardsley 12 pointed out the possiblity that a three-stage sequence, 

e" + AB+(vt) - [AB+(vf) - e~]n - (AB")d -+A + B* (6) 

the so-called indirect process, might contribute. Here the accelerating electron loses 
energy by vibrational excitation (vf -► u/) of the ion and is then resonantly captured 
into a Rydberg orbital of the bound molecule AB* in vibrational level vf which 
then interacts one way (via configuration mixing) with the doubly excited repulsive 
molecule AB**. The capture initially proceeds via a small effect - vibronic coupling 
(the matrix element of the nuclear kinetic energy) induced by the breakdown of 
the Born-Oppenheimer approximation - at certain resonance energies e„ = E(v/) — 
E(vf) and, in the absence of the direct channel (5), would therefore be manifest by 
a series of characteristic very narrow Lorentz profiles in the cross section. Uncoupled 
from (5) the indirect process would augment the rate. Vibronic capture proceeds 
more easily when vf = v/ + 1 so that Rydberg states with n « 7 - 9 would be 
involved (for Hf(vf = 0)) so that the resulting longer periods of the Rydberg electron 
would permit changes in nuclear motion to compete with the electronic dissociation. 
Recombination then proceeds as in the second stage of (5) ie. by electronic coupling 
to the dissociative state d at the crossing point. Giusti 13 has provided a unified 

account of the direct and indirect processes. 

2.S. Interrupted Recombination 

O'Malley 14 noted that the process, 

kc vd 

e~ + AB+{Vi) ** (AB")d —+A + B* (7) 

Vnd^l Vdn 

[AB+(v) - e"]n 
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proceeds via the first (dielectronic capture) stage of (5) followed by a two-way elec- 
tronic transitions with frequency Ujn and Vnd between the d and n states. All (n, v) 
Rydberg states can be populated, particularly those in low n and high v since the elec- 
tronic d—n interaction varies as n-1"5 with broad structure. Although the dissociation 
process proceeds here via a second order effect (i/<jn and Vnd) the electronic coupling 
may dominate the indirect vibronic capture and will interupt the recombination in 
contrast to (6) which as written in the one-way direction feeds the recombination. 
Such dip-structure has been observed. Guberman and Giusti-Suzor 15 have assessed 
the effect of each contribution of (5), (6) and (7) to the resonance shape and integral 
cross section. 

2.4- Multistep Indirect Model 

For DR cases as e~ — H%,HeH+ which do not involve curve crossings between 
the ion and neutral potential energy surfaces (PES), Bates 9 postulated a multistep 
model wherein the electron is first captured into a Rydberg state n with the vibra- 
tional quantum number v increasing from 0 to 1, as in the first stage of the indirect 
process (6). Quantal tunnelling to the other neutral levels (n',v') then proceeds via 
A-B nuclear motion until recombination becomes stabilized by predissociation to the 
repulsive potential of the ground state via a single electron radiationless transition. 
These intermediate multisteps violate the Born-Oppenheimer (BO) approximation at 
each step, are generally restricted to vibrational increases Av « 1, and are associated 
with many-order perturbation theory (e.g. third-order for three steps). Although 
the multisteps can also proceed in the reverse manner (n',v' —► n,v — 1), it may 
be rationalized that intramolecular vibrational rearrangement of multiatomic species 
may inhibit or close these reverse channels. The key idea with this model is that the 
small multistep probabilities are augmented by the large rate for the single-electron 
transition in the final step, in contrast to the smaller rate of the dielectronic transition 
involved in the direct process (5) when PES cross. 

2.5. Nuclear Driven Operator Method 

Guberman 4 proposed that the non-crossing DR is driven by action of the nuclear 
kinetic-energy operator on adiabatic potential curves. The kinetic-energy derivative 
operator allows for capture into repulsive curves that are outside of the classical 
turning points for the nuclear motion. 

3. New Mechanism for e~ + Hf Recombination 

The previous two mechanisms critically depend on quantum tunneling in the nu- 
clear motion of the Rydberg neutral molecule. Another mechanism can be based on 
the fact that interaction of the Rydberg electron with the core produces energy and 
angular momentum changes in the Rydberg electron which therefore cascades down to 
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lower Rydberg levels. The key idea here is that the nuclear motion readjusts itself to 
the (slower) electronic motion, rather than the (faster) electronic motion readjusting 
itself to the (slower) nuclear motion as in §2.4 and §2.5. 

The direct mechanism (5) is only operative for (e~ + Hf) recombination at high 
electron energies e > SeV for access to the resonance state (2Ai configuration loi, 2ax) 
which crosses the potential for the ground Mi of the H% state and which dissociates 
to Hf(X2Z+) + H-(ls2). At low e, neither the direct or indirect mechanisms (5) and 
(6) are operative. The first stage of (6), 

e-(e, L = 0,1) + H}(v = 0; J) - [e~ - J5tf(v'; J')] e,, (») 

is however feasible. Here a low energy electron in a core-penetrating hyperbolic orbit 
with low angular momentum and therefore high eccentricity, vibrationally excites 
Hf and is itself captured into a highly eccentric elliptic orbit with energy e* < 0 
corresponding to a Rydberg orbit with principal quantum number n ~ 6 — 8. Energy 
resonance, for example, occurs for e = 0.03eV ~ 1.2kT at 300 K when v' = l,n = 
7. At the pericenter of the (n^')-orbit is energy and angular momentum mainly 
transferred to the core ion by, 

[e- - Ht(v',J')]clitl - [e- - #3>V")U, (9) 
where ro-vibrational transitions occur and the Rydberg electron is left in a smaller 
Rydberg orbit (e" < t?,l"). Every time the electron (periodically) returns to the peri- 
center further ro-vibrational excitation can occur. Energy is transferred periodically 
as in the winding up of a watch. Resonance conditions can occur when the electron 
period Te is a multiple of j times the rotational period TR. In the outer part of 
the elliptic orbit far from the pericenter the electron moves only under the isotropic 
Coulomb part of the ion potentials. Close to the pericenter the electron ineracts with 
the molecular ion via an orientation-dependent potential producing rotational and 
vibrational excitation and possibly de-excitation. 

This process continues until dissociation (fragmentation), 

H+   -»   H+ + H2 (10a) 

-»   H+ + H + H (10b) 

occurs via centrifugal explosion and stretching forces at which time a single electron 
capture transition, 

+»++{«":„ -«+{/;„ (") 

simultaneously occurs thereby completing the recombination. Theoretical description 
of this overall mechanism is currently being developed from both classical and quanta! 
viewpoints. 

43 



The mechanisms in §2.4 and §2.5 depend on the (fast) bound electron readjusting 
itself to the (slower) nuclear motion — a breakdown of BO. The mechanism proposed 
here originates from the interaction of the (slow) Rydberg electron with the core, 
thereby increasing the nuclear motion via rotational and vibrational excitation of the 
molecular ion i.e. the nuclear motion readjusts itself to the electronic motion, rather 
than vice versa as in §2.4 and §2.5. 

4. Quanta! Cross Section 

The cross section for direct dissociative recombination (DR), 

e" + AB+(vf) ^ (AB**)r -^A + B + hu (12) 

of electrons of energy e, wavenumber ke and spin statistical weight 2, for a molecular 
ion AB+(v?) of electronic statistical weight u\B in vibrational level v? is, 

Here u*AB is the electronic statistical weight of the dissociative neutral state of AB* 
whose potential energy curve V* may or may not cross the corresponding potential 
energy curve V+ of the ionic state. The transition T-matrix element for autoionization 
of AB* embedded in the (moving) electronic continuum of AB+ + e- is the quantal 
amplitude, 

aQ(v) = 27T r Vl(R) [frf(R)MR)}  dR (14) 
JO 

for autoionization. Here ip+ and V>d are the nuclear bound and continuum vibrational 
wavefunctions for AB+ and AB*, respectively, while, 

V^R) = (Ai | Haft R(t)) I Ur, R))rV = V&R) (15) 

are the bound-continuum electronic matrix elements coupling the diabatic electronic 
bound state wavefunctions ipdi^K) for AB* with the electronic continuum state 
wavefunctions &(f,R) for (AB+ + e"). Both continuum electronic and vibrational 
wavefunctions are energy normalized and, 

T(R) = 2*\Vl(R)\2 (16) 

is the energy width for autoionization at a given intemuclear separation R. Given 
T(R) from quantum chemistry codes, the problem reduces to evaluation of continuum 
vibrational wavefunctions in the presence of autoionization. 

4.1. Maximum Cross Section and Rate 
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_max 

Since the probability for recombination must remain less than unity, |ag| < 1 
and (13) yields the maximum cross section 

where u\B has been replaced by 2(2/ + l)u>+ under the assumption that the captured 
electron is bound in a high level Rydberg state of angular momentum I. The maximum 
rate associated with a Maxwellian distribution of electrons at temperature T and 
mean speed ve = 1.05 • 107(r/300)3/2 is therefore 

RhT t 
<W   =   [—]1/2    ea%%*(e)exp(-e/kT)de/(kT)2 (18) 

7T771 J 

(19) 

which reduces to 

£W   =   *e (8*mkT)(2/ + 1} = *' g^I(6 = hT) (20) 

(21) 

such that 

<Wr   «   5 • 10"7(300/r)1/2(2/ + lJcmV1 (22) 

Cross section maxima 5(2/ + 1)(300/T) • 10-14cm2 are therefore possible being 
consistent with the rate (22). 

4-2. First-Order Quantal Approximation 

When the effect of autoionization on the continuum vibrational wavefunction 
ipd(R) for AB* is ignored, then a first-order undistorted approximation to the quantal 
amplitude (14) is, 

TB(v
+) = 27T jH V£(R) [^(R)^\R)} dR (23) 

where ip^ ' is ipd in the absence of the back reaction of autoionization. Under this 
assumption then (13) reduces to, 

which is then the cross section for initial electron capture since autoionization has 
been precluded. Although the Born T-matrix (23) violates unitarity, the capture 
cross section (24) must remain less then the maximum value, 
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_ *(<SAB\_(  
h2   )(»AB\ 

kl\2u+)      \8irme)\2u>+) 
(25) 

since |a<j|2 < 1.   So as to acknowledge after the fact the effect of autoionization, 
assumed small, and neglected by (23), the DR cross section can be approximated as, 

aDR(e,v+) = ac(e,v+)Ps (26) 

where Ps is the probability of survival against autoionization on the Vj curve until 
stabilization takes place at some crossing point Rx- 

By utilizing the reactance K-matrix, Flannery 16 has shown that a unitarized 
T-matrix can be written as, 

T = 
2RB TB 

i + \RBr   I + \\TB\ 

(a) The DR cross section is then given by (26) with, 

(27) 

Ps(lowe) 1 + ^*1 ' -1 = |l + 7T2 |jT VUR) {ti*mP(R)} <«f }       (28 o 

which is valid at low e when only one vibrational level v+ ie. the initial level of the 
ion is re-populated by autoionization. 

(b) At higher e when population of many other ionic levels vj occurs then, 

ftW = i + iElaWJf 
-l 

(28b) 

where the summation is over all the open vibrational levels vf of the ion. 
When no intermediate Rydberg AB*{v) states are energy resonant with the initial 

e~ + AB+(v+) state ie. coupling with the indirect mechanism is neglected, then (26) 
with (28b) is the direct DR cross section normally calculated 4,n. 

These survival probabilities (28a) and (28b) agree with the weak-coupling results 
of Giusti 13. The result (26) is therefore valid within the framework of the Born 
approximation (23). 

(c) In the high e-limit when an infinite number of v^ levels are populated following 
autoionization the survival probability, with the aid of closure, is then, 

Ps = 1 + *2 [Rx vim2 mm2 dR 
JRc 

-2 

(29) 

(d) On adopting in (29) the semiclassical wavefunction, 
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tf(R) = 2 
.II+(ä). 

l/a 

sm JCMS) di2 + Ä>Äo (30a) 

where Ju/„* = dcuj/dv is the level spacing, and Äo is the classical turning point given 
by the innermost zero of 

\Mvl{R)=n^& = E-[V^R) + t]- J2 

2MB? 
(30b) 

The survival probability (29) then reduces to, 

Ps(highe) 1 + 
l   rKx r 

2% JRe     v 
Rx T(R) 

(R) 
dR 

-2 

1 + 
1    A«* 1~2 

iL Ua(t)dt. (31) 

where v(R) is the local radial speed of A-B relative motion, and where (va) is the 
frequency va{t) of autoionization averaged over time r& for the A-B to dissociate from 
their distance Re of closest approach at time tc to the crossing point Rx at time tx- 

(e) A classical path local approximation for Ps yields 12,17, 

Ps = ex?(-Jt
tXva{t)dty) (32) 

(33) 

which agrees to first-order for small v, with the expansion of (31). 
(f) A partitioning of (5) yields, 

Ps = Vdliy* + vd) = (T"
1
 + T^)Ta 

on adopting macroscopic averaged frequencies V{ and associated lifetimes Ti = v^ . 
The stabilization probabilities in (a)—(f) above are all suitable for use in the DR cross 
section (26). 

4-8. Further Approximation 

The Pranck-Condon Approximation to (23) provides, 

\TB(vf)\2   =   l«'\Vl(R)\2F(v+,e) 

=   2TrTaF{e) = hPa{e)F(e) 

(34a) 

(34b) 

where F is the Franck-Condon (FC) factor and va = Ta/h is the Ä-averaged autoion- 
ization frequency. Hence the DR cross section (24) in (26) is, 

ffßfi(e,"  ) = 
h3 

87T77ie {w)ne)9a{e)p'{e) (35) 
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where Ps is given by any of the expressions (28a) - (33), (28b) being the most accurate. 
The recombination rate is. 

a(T)   =   v f°° e'aDR(e')exp(-e')de' 
Jo 

(36) 

where v is the mean electron speed (ülcT/irm)1/2 appropriate to a Maxwellian velocity 
distribution at temperature T. With (35), 

«(T)   = 
h* 

»] GüJ+) r F{€' V?>~°WPsM *M-eßT)de   (37a) (2nmkT)3/2\ 

where (^a^s) is the e—averaged frequency. On adopting averaged frequencies and 
lifetimes, T0 = (i^ä)-1 and rd = i/J1, by definition, then (31) and (32) are consistent 
with (33), and, 

VaPs = VaVd/{ua + Vd) = Ta
1+Td

1 

Adoption of the Winan-Stueckelberg wavefunction, 

(38) 

MR) = \vd(R)\~1/2s(R-Rc) (39) 

where Ac is the classical turning point for A — B relative motion, then the FC factor 
is, 

F(e) = 
dVd 

dR 
_1 K1 (40) 

This FC factor (40), when inserted in (37b), with (38), is the original DR rate of 
Bates u. The DR cross section of Bardsley 12 is recovered by inserting both (32) and 
(40) into (35). Flannery 16 has shown in a semi classical analysis that an improved 
FC factor is given by, 

F{t) = |tf (*,)f 
&*-**> 

-1 

Re 

(41) 

where e(R) = Vd(R) - V+(R) is the energy for a vertical transition.   Hence (37b) 
yields, 

a(T) = 
(2irmkT)3/2 GS+) {v~aPs) C l^+(Ä)|2 exp [~<R)/kT] dR     (42) 

48 



The physical significance of this rate becomes apparent upon comparison with the 
following macroscopic rate. 

4.4. Macroscopic Treatment 

A steady-state macroscopic (kinetic rate) analysis of the two-stage sequence (12) 
provides the overall two-body rate a(cm35_1) at electron temperature T as, 

a(T) = kcPs = K{T)vaPs (43) 

where the reaction volume, 

K(T) = nAB/nen+ = kc/ua (44) 

expresses detailed balance between the rate kc for dielectronic capture and the fre- 
quency va for autoionization ie. for the first forward-reverse stage of (12). The 
thermodynamic equilibrium number densities are denoted by nl of species i. For DR 
at low e then K, which is not an equilibrium constant in the usual sense since nAB 

includes only those states which satisfy energy and angular momentum conservation 
above the dissociation limit, on comparison with (42) is 

K(T) = 
h3 

(S?) IT K+(i2)f ™ti-<R)ikTvR   (45) (27rmJfcr)3/2 

5. Present Semiclassical-Classical Path Theory 

5.1. Full Theory 

The strategy16-18 here is to insert within the original T-matrix (14) or probability 
amplitude OQ the semiclassical JWKB wavefunctions (30a) for tp^(R) and, 

MR) = 
Mä)]

1
" 

c(R)exp-i(f   kddR + j 

-s(R)expi(J   kddR+j 

4/ 

(46) 

which is the JWKB wavefunction for nuclear motion under interaction Vd(R) in the 
presence of autoionization. The turning point Re is determined by the innermost zero 

of, 

iM« = M = £_^)__£L (47) 
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for the radial speed Vd(R) of relative motion in the dissociative potential Vd(R). 
Angular momentum of relative nuclear motion is assumed conserved (J = L, large) 
since the angular momentum I of the autoionizing electron is small. 

The amplitudes for survival of A — B motion under Vd(R) against autoionization 
from the crossing point Rx to Ä, on the incoming leg of the classical trajectory 
R — R(t), and from Rx to R^ and back to R on the outgoing leg, are c(R) and s(R), 
respectively. No crossing between V* and V+ implies infinite Rx and is covered by 
the present theory. Since the nuclear motion is now considered to follow the classical 
orbit R = R(t), these amplitudes can be determined from a recent classical path 
theory 17 of associative ionization and recombination. The classical path R = R(t) 
theory 1T of dissociative recombination shows that the amplitude c(t) is determined 
by the following integral equation, 

- 27TÄ2c(t) = /'   dt' r deT(e, t; i')c{i') exp i [7(e; t) - 7(e; t')] (48) 
Jtx       Jo 

at time t. This depends on the previous history of the system between tx and t via 
the non-local interaction, 

r(e,t]t') = 2*Vde(i)Vd\(t') (49) 

and on the phase difference, 

7(e; t) - 7(e; t') = | £ [Vd - (V+ + e)} dt (50) 

at different times. Once this equation is solved by numerical procedures, the other 
amplitude s(<) = c(t + tc) where tc is the time for nuclear motion from separation Rx 
to the distance of closest approach Re can be determined. 

The full theory involves inserting the classical path solutions of (48) for the ampli- 
tudes of A — B survival against autoionization into the semiclassical JWKB function 
(46) for A — B nuclear motion for use in the basic amplitude (14). It is therefore a hy- 
brid semiclassical-classical path theory16-18. The full quantal numerical wavefunction 
or the JWKB wavefunction (30a) can be used for ip+(R). 

5.2. Stationary Phase Amplitudes 

The quantal amplitude (14) with the semiclassical product for tl>^(R)ip,i(R) is 16,1T, 

aQ(e) = 2ir(Vnl/h)^2J0
OO(v+vd)-^

2Vl(R)[c(R)exp+zA(R) 

+s(R)exp-iA(R)] dR (51) 

The method of stationary phase can be used to provide analytical expressions 16,ir 

for the transition amplitude (51) in terms of c(-R») and s(Ri) evaluated at the points 
Ri where the difference, 
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A(R) = lR kJR) dR - lR UR) dR (52) 
JRo JRC 

is stationary. Various interference oscillatory patterns can then be exhibited in the 
cross section o~DR.{t) of (13) even when coupling with the indirect mechanism is ig- 
nored. These oscillations arise from the different phases of the various stationary 
phase contributions to the amplitude (51). 

Moreover, the integral equation (48) for c(t) can also be solved approximately in 
analytical form by the method of stationary phase when there is a crossing between 
V+(R) and Vd(R) at Rx- When there is no crossing, other techniques can be imple- 
mented. A hierarchy of the various levels of approximation and analytical results for 
c(R(t)) and ag(e) are provided in reference 17. 
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44.1    RECOMBINATION PROCESSES 

44.1.1 Electron-Ion Recombination 

This proceeds via the following four processes: 
(a) radiative recombination (RR) 

e" + A+(t) -> A(nt) + hv, (44.1) 

(b) three-body collisional-radiative recombination 

e" + A+ + e" — A + e" , (44.2a) 

e-+A+ + M-+A + M, (44.2b) 

where the third body can be an electron or a neutral gas. 
(c) dielectronic recombination (DLR) 

e- + A*+(Q ^ [A'+(k) - e-]nl - ^71)+(/) + **, 

(44.3) 

(d) dissociative recombination (DR) 

e~+AB+ ->A + B*. (44.4) 

Electron recombination with bare ions can proceed 
only via (a) and (b), while (c) and (d) provide additional 
pathways for ions with at least one electron initially or for 
molecular ions AB+. Electron radiative capture denotes 
the combined effect of RR and DLR. 

44.1.2 Positive-Ion Negative-Ion 
Recombination 

This proceeds via the following three processes: 
(e) mutual neutralization 

A+ + B- -+A + B*, (44.5) 

(f) three-body (termolecular) recombination 

A+ + B- + M - AB + M, (44.6) 

(g) tidal recombination 

AB+ + C~ + M->AC + B + M       (44.7a) 

^BC + A + M,      (44.7b) 

where M is some third species (atomic, molecular or 
ionic). Although (e) always occurs when no gas M is 
present, it is greatly enhanced by coupling to (f). The 
dependance of the rate ä on density N of background gas 
M is different for all three cases, (e)-(g). 

Processes (a), (c), (d) and (e) are elementary pro- 
cesses in that microscopic detailed balance (proper bal- 
ance) exists with their true inverses, i.e., with photoion- 
ization (both with and without autoionization) as in (c) 
and (a), associative ionization and ion-pair formation 
as in (d) and (e), respectively. Processes (b), (f) and 
(g) in general involve a complex sequence of elementary 
energy-changing mechanisms as collisional and radiative 
cascade and their overall rates are determined by an 
input-output continuity equation involving microscopic 
continuum-bound and bound-bound collisional and ra- 
diative rates. 

44.1.3    Balances 

Proper balances are detailed microscopic bal- 
ances between forward and reverse mechanisms that are 
direct inverses of one another, as in 

(a) Maxwellian:   e-^) + e_(v2) — e~(v[) + e~(v'2), 

(44.8) 

where the kinetic energy of the particles is redistributed; 

(b)Saha:   e" + H(n0 - e" + H++ e" (44.9) 

between direct ionization from and direct recombination 
into a given level nl; 

(c) Boltzmann:   e" +E(n£) *± e~ +H(n',^)      (44.10) 

between excitation and de-excitation among bound lev- 
els; 

(d) Planck:   e" + H+ ^ H(n*) + hv, (44.11) 

which involves interaction between radiation and atoms 
in photoionization/recombination to a given level nl. 
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Improper balances maintain constant densities 
via production and destruction mechanisms that are not 
pure inverses of each other. They are associated with 
flux activity on a macroscopic level as in the transport 
of particles into the system for recombination and net 
production and transport of particles (i.e. e~, A+) for 
ionization. Improper balances can then exist between 
dissimilar elementary production-depletion processes as 
in (a) coronal balance between electron-excitation into 
and radiative decay out of level n. (b) radiative balance 
between radiative capture into and radiative cascade out 
of level n. (c) excitation saturation balance between 
upward collisional excitations n—1 —► n —► n+1 between 
adjacent levels, (d) de-excitation saturation balance 
between downward collisional de-excitations n+1 -»«-» 
n—1 into and out of level n. 

44.2    COLLISIONAL-RADIATIVE 
RECOMBINATION 

Radiative recombination. Process (44.1) involves 
a free-bound electronic transition with radiation spread 
over the recombination continuum. It is the inverse of 
photoionization without autoionization and favors high 
energy gaps with transitions to low n ~ 1,2,3 and low 
angular momentum states I ~ 0,1,2 at higher electron 
energies. 

Three-body electron-ion recombination. Pro- 
cesses (44.2a,b) favor free-bound collisional transitions 
to high levels n, within a few kBT of the ionization limit 
of A(n) and collisional transitions across small energy 
gaps. Recombination becomes stabilized by collisional- 
radiative cascade through the lower bound levels of A. 
Collisions of the e~-A+ pair with third bodies becomes 
more important for higher levels n and radiative emission 
is important down to and among the lower levels n. In 
optically thin plasmas this radiation is lost, while in op- 
tically thick plasmas it may be re-absorbed. At low elec- 
tron densities radiative recombination dominates with 
predominant transitions taking place to the ground level. 
For process (44.2a) at high electron densities, three-body 
collisions into high Rydberg levels dominate, followed by 
cascade which is collision dominated at low electron tem- 
peratures Te and radiation dominated at high Te. For 
process (44.2b) at low gas densities N, the recombina- 
tion is collisionally-radiatively controlled while, at high 
N, it eventually becomes controlled by the rate of diffu- 
sional drift (44.61) through the gas M. 

Collisional-radiative recombination. Here the 
cascade collisions and radiation are coupled via the 
continuity equation. The population n,- of an individual 
excited level t of energy E{ is determined by the rate 
equations 

= £ Wjvjt - niVij] = Pi - mDi,        (44.13) 
»W 

which involve temporal and spatial relaxation in (44.12) 
and collisional-radiative production rates Pi and destruc- 
tion frequencies Di of the elementary processes included 
in (44.13). The total collisional and radiative transition 
frequency between levels t and / is i/j/ and the /—sum 
is taken over all discrete and continuous (c) states of the 
recombining species. The transition frequency i/,-/ in- 
cludes all contributing elementary processes that directly 
link states t and /, eg., collisional excitation and de- 
excitation, ionization (t —► c) and recombination (c —► t) 
by electrons and heavy particles, radiative recombination 
(c -» t), radiative decay (i -+ /), possibly radiative ab- 
sorption for optically thick plasmas, autoionization and 
dielectronic recombination. 

Production rates and processes. The production 
rate for a leveltis 

Pi = Y, wfKh+<x+k?i+£n/ [^+Bt^ 

+ neAT+[ä?*+ /?,■/>„], (44.14) 

where the terms in the above order represent (1) colli- 
sional excitation and de-excitation by e~-A(f) collisions, 
(2) three-body e~-A+ collisional recombination into level 
t, (3) spontaneous and stimulated radiative cascade, and 
(4) spontaneous and stimulated radiative recombination. 

Destruction rates and processes. The destruc- 
tion rate for a level t is 

riiDi = nerii Y Kff + n^S, + n,- ^ [AiS + Bifpv] 

+ n,- 53 Bi}P» + mBicP» . (44.15) 

where the terms in the above order represent (1) colli- 
sional destruction, (2) collisional ionization, (3) spontan- 
taneous and stimulated emission, (4) photo-excitation, 
and (5) photoionization. 

44.2.1    Saha and Boltzmann 
Distributions 

Collisions of A(n) with third bodies such as e" 
and M are more rapid than radiative decay above a 
certain excited level n*. Since each collision process is 
accompanied by its exact inverse the principle of detailed 
balance determines the population of levels t > n*. 

Saha distribution. This connects equilibrium den- 
sities fi,-, ne and N+ of bound levels t, of free electrons 
at temperature Te and of ions by 

dn{      on,-     _ .       . _ = _+V.(„,.v,.) (44.12) neiV+ 
g(i) 

9e9A 

h3 

.  (27rmelbTe)
3/2 exp(V*BTe),  (44.16) 
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where the electronic statistical weights of the free elec- 
tron, the ion of charge Z+l and the recombined e_— A+ 

species of net charge Z and ionization potential /,- are 
<7e = 2, g\ and g(i), respectively. Since n< < n,- for 
all t, then the Saha-Boltzmann distributions imply that 
ni » n,- and ne > n,- for i ^ 1,2, where t = 1 is the 
ground state. 

Boltzmann Distribution. This connects the equi- 
librium populations of bound levels i of energy Ei by 

Zifij = MWaU)] exp [-(Ei - Ei)/kBTe] .     (44.17) 

44.2.2 Quasi-Steady State Distributions 

The reciprocal lifetime of level i is the sum of radiative 
and collisional components and is therefore shorter than 
the pure radiative lifetime TR ~ 10~7Z~4 s. The lifetime 
T\ for the ground level is collisionally controlled, is 
dependent upon ne, and generally is within the range 
of 102 and 104 s for most laboratory plasmas and the 
solar atmosphere. The excited level lifetimes T,- are 
then much shorter than T\. The (spatial) diffusion or 
plasma decay (recombination) time is then much longer 
than T,- and the total number of recombined species is 
much smaller than the ground-state population ni. The 
recombination proceeds on a timescale much longer than 
the time for population/destruction of the excited levels. 
The condition for quasi-steady state, or QSS-condition, 
drii/dt = 0 for the bound levels t ^ 1, therefore holds. 
The QSS distributions n,- therefore satisfy Pi = n,A. 

44.2.3 Ionization and Recombination 
Coefficients 

Under QSS, the continuity equation (44.13) then 
reduces to a finite set of simultaneous equations P, = 
TiiDi. This gives a matrix equation which is solved 
numerically for n,(» ^ 1) < n,- in terms of ni and ne. The 
net ground-state population frequency per unit volume 
(cm~3s-1) can then be expressed as 

dn 
dt 

- = neN
+&CR - neniScR, (44.18) 

where CKCR and SCR, respectively, are the overall rate 
coefficients for recombination and ionization via the 
collisional-radiative sequence. The determined &CR 

equals the direct (c —► 1) recombination to the ground 
level supplemented by the net collisional-radiative cas- 
cade from that portion of bound-state population which 
originated from the continuum. The determined SCR 

equals direct depletion (excitation and ionization) of the 
ground state reduced by the de-excitation collisional ra- 
diative cascade from that portion of the bound levels ac- 
cessed originally from the ground level. At low ne, öCR 

and SCR reduce, respectively, to the radiative recombi- 
nation coefficient summed over all levels and to the col- 
lisional ionization coefficient for the ground level. 

C, S and S Blocks of Energy Levels 

For the recombination processes (44.2a), (44.2b) and 
(44.6) which involve a sequence of elementary reactions, 
the e~ — A+ or A+ — B~ continuum levels and the 
ground A(n = 1) or the lowest vibrational levels of 
AB are therefore treated as two large particle reservoirs 
of reactants and products. These two reservoirs act 
as reactant and as sink blocks C and S which are, 
respectively, drained and filled at the same rate via 
a conduit of highly excited levels which comprise an 
intermediate block of levels £. This C draining and 
S filling proceeds, via block £, on a timescale large 
compared with the short time for a small amount from 
the reservoirs to be re-distributed within block £. This 
forms the basis of QSS. 

Working Formulae 

For electron-atomic-ion collisional-radiative recombi- 
nation (44.2a), detailed QSS calculations can be fitted by 
the rate [1] 

dCR = [3.8 x 10-9re-
45ne + 1.55 x IO-

10
^"

063 

(44.19) + 6 x 10-9T-218n£° 37] cm3s-1 

agrees with experiment for a Lyman a optically thick 
plasma with ne and Te in the range: 109 cm-3 < ne < 
1013cm-3 and 2.5 K< Te < 4000 K. The first term is 
the pure collisional rate (44.49), the second term is the 
radiative cascade contribution, and the third term arises 
from collisional-radiative coupling. 

For (e~ — Hej) recombination in a high (5 — 100 Torr) 
pressure helium afterglow the rate for (44.2b) is [2] 

/ T   x -(4±0.5) 

dcR=[(4±0.5)xlO-2V]^J 

-I- {(5 ± 1) x 10-27n(i/e) + (2.5 ± 2.5) x 10"10} 
, T \-(i±i) x (10   cm3/s-(442o) 

The first  two terms are in  accord with  the  purely 
collisional rates (44.49) and (44.52b), respectively. 
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44.3    MACROSCOPIC METHODS 

44.3.1    Resonant Capture-Stabilization 
Model: Dissociative and 
Dielectronic Recombination 

The electron is captured dielectronically (cf. (44.41)) 
into an energy-resonant long-lived intermediate collision 
complex of super-excited states d which can autoionize or 
be stabilized irreversibly into the final product channel / 
either by molecular fragmentation 

e-+AB+(t)   -   AB**   -* A + B*, (44.21) 

as in direct dissociative recombination (DR), or by 
emission of radiation as in dielectronic recombination 
(DLR) 

e-+A*+(0   f   [Az+(k)-e-]nl 
"a 

(44.22) 

Production Rate of Super-Excited States d. 

^ = neN
+kc(d) - n*d [uA(d) + vs(d)] 5       (44-23) 

uA(d) = ^2ua(d^i'), (44.24a) 
i' 

"s(<0 = £"*(<*-/')• (44.24b) 
/' 

Steady-State Distribution. For a steady-state distri- 
bution, the capture volume is 

ld    _ kc(d) 

neN+      vA{d) + i*(d) 
(44.25) 

Recombination Rate and Stabilization Probabil- 
ity. The recombination rate to channel / is 

«/ = ]£ 
kc(d)va(d^f) 
VA(d) + vs(d) 

and the rate to all product channels is 

«-E vA(d) + iAä(d) 

(44.26a) 

(44.26b) 

In the above, the quantities 

Pf(d) = u,(d - /)/ [vA(d) + us{d)] ,     (44.27) 

Ps(d) = ps{d)l [uA(d) + vs(d)) , (44.28) 

represent the corresponding stabilization probabilities. 

Macroscopic Detailed Balance and Saha Distribu- 
tion. 

Kdi(T) = 
n*d    =     kc(d) 

neN+      v*(d-*«') 

A3 

(2*mekBT)3/2 
"(d) 
2w+ 

kc(d)ra(d -f«) (44.29a) 

exP[-Edi/kBT\ ,     (44.29b) 

where Edi is the energy of super-excited neutral levels 
AB** above that for ion level AB+(i), and u are the 
corresponding statistical weights. 

Alternative Rate Formula. 

aj £** i/.(rf-n>.(«f-»/) 
vA{d) + vs{d) 

Normalized Excited State Distributions. 

Pd - nJnd - [uA(d) + us(d)] ■ 

& = Y^kc(d)Ps(d) = Y,KdiPdvs(d) 
d d 

= Y,^(d)\pdus(d)ra(d^i)). 

(44.30) 

(44.31) 

(44.32a) 

(44.32b) 

Although equivalent, Eqs. (44.26a) and (44.30) are 
normally invoked for (44.21) and (44.22), respectively, 
since Ps < 1 for DR so that dDR —► *c; and vA > vs for 
DLR with n < 50 so that a -* Kdiva. For n > 50, 
^s ^ VA and d —► Ärc. The above results (44.26a) 
and (44.30) can also be derived from microscopic Breit- 
Wigner scattering theory for isolated (nonoverlapping) 
resonances. 

44.3.2    Reactive Sphere Model: 
Three-Body Electron-Ion and 
Ion-Ion Recombination 

Since the Coulomb attraction cannot support quasi- 
bound levels, three body electron-ion and ion-ion recom- 
bination do not in general proceed via time-delayed res- 
onances, but rather by reactive (energy-reducing) colli- 
sions with the third body M. This is particularly effec- 
tive for A-B separations R < RQ, as in the sequence 

*c 
A + B   *±   AB*(R<Ro),       (44.33a) 

i>d ~ 

AB*(R<Ro) + M   £   AB + M. (44.33b) 

In contrast to (44.21) and (44.22) where the stabilization 
is irreversible, the forward step in (44.33b) is reversible. 
The sequence (44.33a) and (44.33b) represents a closed 
system where thermodynamic equilibrium is eventually 
established. 
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Steady State Distribution of AB* Complex. 

"• = (^)^(""B(')+(^)-(i)(44M) 

Saha and Boltzmann balances: 

Saha: nA«B*c = »'"d, (44.35) 
Boltzmann: n»v-» = n*va. 

n* is in Saha balance with reactant block C and in 
Boltzmann balance with product block S. 

Normalized Distributions. 

/ = ^ = PD
7c(t) + Ps

78(t), 

HyiriB ' ' '        n8 

Stabilization and Dissociation Probabilities. 

(44.36a) 

(44.36b) 

Ps = PD = 
"d 

(J/S + I'd) '      * (". + "d) 

Time Dependent Equations. 

^■ = -kcP
snAnB[7c(t)-ys(t)}, 

= -I/_sP
Dn8[T8(<)-Tc(<)]. 

dns 

It 

^ = -a3nA(t)nB(t) + kdns(t) 

(44.37) 

(44.38a) 

(44.38b) 

(44.39) 

where the recombination rate coefficient (cm3/s) and 
dissociation frequency are, respectively, 

d3 = kcP
s = 

kcVs 
{vB + "d) 

jfed = i/_8P
D = 

(Vt + Vd) ' 

(44.40) 

(44.41) 

which also satisfy the macroscopic detailed balance rela- 
tion 

Öt^flAnB = fcd"s (44.42) 

Time Independent Treatment. The rate d3 given 
by the time dependent treatment can also be deduced 
by viewing the recombination process as a source block 
C kept fully filled with dissociated species A and B 
maintained at equilibrium concentrations HA, «B (i-e- 
7C = 1) and draining at the rate a3nAnB through 
a steady-state intermediate block £ of excited levels 
into a fully absorbing sink block S of fully associated 
species AB kept fully depleted with ys = 0 so that 
there is no backward re-dissociation from block 5. The 
frequency ifcd is deduced as if the reverse scenario, 
7, = 1 and jc = 0, holds. This picture uncouples 
d and Jb<j, and allows each coefficient to be calculated 

independently.    Both dissociation (or ionization) and 
association (recombination) occur within block £. 

If 7c = 1 and 78 = 0, then 

p* - n*/n* = Vd/(vt + i/d), 

K = ii*/hAnB = kc/ud = kcTd , 

PS = V8/(l/8 + J/d) = P*V*TS , 

and the recombination coefficient is 

a = kcP
s = ibc \p*vBrd] = Kp*vt 

(44.43a) 

(44.43b) 

(44.43c) 

(44.44) 

Microscopic Generalization. From (44.167), the mi- 
croscopic generalizations of rate (44.40) and probability 
(44.43c) are, respectively, 

d = v r ee-'de I ° 2x6 dbPs(e, b; RQ) ,       (44.45a) 
Jo Jo 

Ps(e,b;Ro)=i    Pi(R)v-(R)dt = (pi/.) rd ,     (44.45b) 
jRi 

where p<(P) = n(e, b; R)/n(e, b; P); i/Jö) is the frequency 
(44.164a) of (A-B)-M continuum-bound collisional tran- 
sitions at fixed A-B separation R, P,- is the pericenter of 
the orbit, | i) = | e,b), and 

bl = R2
0[l-V(R)/E],    e = E/kBT, (44.45c) 

a = kc(Ps)th,    v = (8kBT/*MAB)1/2 ,      (44.45d) 

jbc = {irPg [1 - V(Ro)/kBT]v} . (44.45e) 

where MAB is the reduced mass of A and B. 
Low Gas Densities. Here p,(P) = 1 for E > 0, 

Ps(e, 6; Ro) = I ° v(t) dt = I " ds/Xi.       (44.46) 
JRi JR. 

A,- = (Na)'1 is the microscopic path length towards the 
(A-B)-M reactive collision with frequency v — Nva. 
For A,- constant, the rate (44.45a) reduces at low N to 

d = (v(T0N) / 
Jo 

*°r 1_V(R) 
kBT 

4nR2dR        (44.47) 

which is linear in the gas density N. 

44.3.3    Working Formulae for 
Three-Body Collisional 
Recombination at Low Density 

For three-body ion-ion collisional recombination of 
the form A+ + B~ + M in a gas at low density N, set 
V(R) = -e2/P. Then (44.47) yields 

W=(S£f*** 2Po 
(a0N), (44.48) 
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where Re = e2/kBT, and the trapping radius Ro, 
determined by the classical variational method, is OAIR^, 
in agreement with detailed calculation. The special cases 
are: 

(a) e~ + A+ + e~. Here, <r0 = \*R\ for (e~ - e") 
collisions for scattering angles 9 > ic/2 so that 

ac
te(T) = 2.7 x 10 -20 /300\4'5 

em's"1 (44.49) 

in agreement with Mansbach and Keck [3]. 

(b) A+ + B~ + M. Here, <r0tJ ~ 10"9cm3s_1, which is 
independent of T for polarization attraction. Then 

&3(T) = 2 x 10 -25 (£)"* cm3s_1 (44.50) 

(c) e~ + A+ + M. Only a small fraction 8 — 2m/M of 
the electron's energy is lost upon (e~ — M) collision so 
that (44.45a) for constant A is modified to 

[Ro [Em 
&eM = a0N 4irR2dR h(R,E)vdE    (44.51a) 

= vea0N /     4irR2dR ee e de 

(44.51b) 

where e = E/kBT, and Em = 6e2/R = emkBT is the 
maximum energy for collisional trapping. Hence, 

aeM(Te) = 4w6 

10-26 

M 

/8tBr.y/a RlRo[aoN] 
\ irme 

m 2.5 

N cmös 3.-1 

(44.52a) 

(44.52b) 

where the mass M of the gas atom is now in amu. This 
result agrees with the energy diffusion result of Pitaevskii 
[4] when R0 is taken as the Thomson radius ÄT = \Re- 

44.3.4    Recombination Influenced by 
Diffusional Drift At High Gas 
Densities 

Diffusional-Drift Current. The drift current of A+ 

towards B~ in a gas under an A+-B~ attractive poten- 
tial V(R) is 

3(R) = -DVn(R) - -VV(R) 
e 

»(A) (44.53a) 

R. (44.53b) 

Relative Diffusion and Mobility Coefficients. 

DNANBe-v^k-T^ 

D = DA + DB, 

K = KA + KB,    De = K{kBT), 
(44.54) 

where the £>,• and if,- are, respectively, the diffusion and 
mobility coefficients of species i in gas M. 

Normalized Ion-Pair JR-Distribution. 

rtÄ) = Tnr 
n(R) 

NANBex?[-V(R)/kBT\ 

Continuity Equations for Currents and Rates 

dn 

(44.55) 

dt 
+ V-J = 0,    Ä>Äo 

&KN{RO)P(RO) = <*/>(oo) 

(44.56a) 

(44.56b) 

The rate of reaction for ion-pairs with separations R < 
Ro is «RN(ÄO). This is the recombination rate that 
would be obtained for a thermodynamic equilibrium 
distribution of ion pairs with R > Ro, i.e. for p(R > 
Ro) = 1. 

Steady-State Rate of Recombination. 

&NANB = ^ (^) dR = -4*R2 J(Ro).     (44.57) 

Steady-State Solution. 

p(R) = p(oo) 
<*TR(ä). 

p(Ro)   = p(oo) [ä/dRN(Äo)] . 

Recombination Rate. 

<XKN(RO)CXTR(RO) 

R>Ro 

a = — 
äRN(ÄO) + <*TR(-RO) 

<*RN,     N -> 0 
dxR,    N —► oo. 

f <*i 
\ a-; 

Diffusional-Drift Transport Rate. 

foo eV(H)/tBT 

/fio 

With V(R) = -e2/R, 

<*TR(ÄO) = 4irD \J R2 dR 
-l 

i-i 

(44.58a) 

(44.58b) 

(44.59a) 

(44.59b) 

(44.60) 

(44.61) &TR(RO) = 4*Ke [1 - exp(-Äe/Äo)]" 

where Re = e2/kBT provides a natural unit of length. 

Langevin Rate. For Äo <C Re, the transport rate 

«TR —*&L = 4irKe, (44.62) 

tends to the Langevin rate which varies as JV-1. 

Reaction  Rate.     When  Ro  is large enough  that 
iZo-pairs are in {E,L2) equilibrium (cf. (44.167)), 
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&KN(RO) = V f   ee-'de f ° 2*6 dbPs(e, b; Po) 
Jo Jo 

= vj°° ee-< de [*blPs(e; Ro)] (44.63a) 
Jo 

= vxb2
maxP

s(Ro), 

where 

62 = äS[1-V(ÄO)/E], e = E/kBT, 
v = (MT/ICMAB)

1
'
2
 , 

'max = Ä0 1- V(Äo)l 
ißT 

(44.63b) 

(44.64a) 

(44.64b) 

(44.64c) 

The probability Ps and its averages over 6 and (6, E) 
for reaction between pairs with R < Ro is determined 
in (44.63a)-(44.63b) from solutions of coupled master 
equations. Ps increases linearly with N initially and 
tends to unity at high N. The recombination rate 
(44.59a) with (44.63a) and (44.61) therefore increases 
linearly with N initially, reaches a maximum when 
<*TR ~ «RN and then decreases eventually as N'1, in 
accord with (44.3.4). 

Reaction Probability. The classical absorption solu- 
tion of (44.157) is 

Ps(£,&;Po) = l-exp 
JRi    A.- 

(44.65) 

With the binary decomposition \i 
l = A,^1 + \iB , 

Ps = PA + PB - PAPB ■ (44.66) 

Exact 62-Averaged Probability. With Vc = -e2/R 
for the A+-B~ interaction in (44.63a), and at low gas 
densities N, 

PA>B(E,Ro) = 

4Pp 
3A A,B 

1- 
3Vc(Po) 

2Ei 
(44.67) 

[1 - Vc(Ro)/Ei] 

appropriate for constant mean free path A,-. 

(E, 62)-Averaged Probability. Ps(Po) in (44.63b) at 
low gas density is 

PAMRO) = PA,B(E = kBT, Ro) ■ (44.68) 

Thomson Trapping Distance. When the kinetic 
energy gained from Coulomb attraction is assumed lost 
upon collision with third bodies, then bound A — B pairs 
are formed with R < PT. Since E = § kBT - e2/P, then 

Thomson Straight-Line Probability. The E -+ oo 
limit of (44.65) is 

PIBQ>\ AT) = 1 - exp [-2(J$ - 62)/AAiB] .   (44.70) 

The 62—average is the Thomson probability 

P£B(PT) = 1 - 2^ [1 - e-2*(l + MT)] (44.71a) 

for reaction of (A — B) pairs with R < Px- As JV —♦ 0 

PJMRT) -* ix [l - \X + f*2 - ±X3 + • • •] 
(44.71b) 

and tends to unity at high N. X = RT/^A,B = 
N((TORT)- These probabilites have been generalized [13] 
to include hyperbolic and general trajectories. 

Thomson Reaction Rate. 

&T = *B&[PJ + PI-P1P2\ (44.72) 

lirPJKA^ + Aä1),   JV-0 
2 77 ■KR\V, N-+ao. 

44.4 DISSOCIATIVE 
RECOMBINATION 

44.4.1    Curve-Crossing Mechanisms 

Direct Process. Dissociative recombination (DR) 
for diatomic ions can occur via a crossing at Rx between 
the bound and repulsive potential energy curves V+(R) 
and Vd(R) for AB+ and AB**, respectively. Here, DR 
involves the two-stage sequence 

e- + AB+(vi)   f   (AB**)R   —»   A + B*.    (44.73) 

The first stage is dielectronic capture whereby the free 
electron of energy e = Vd(R) - V+(R) excites an elec- 
tron of the diatomic ion AB+ with internal separation R 
and is then resonantly captured by the ion, at rate fcc, to 
form a repulsive state d of the doubly excited molecule 
AB**, which in turn can either autoionize at probabil- 
ity frequency i/a, or else in the second stage predisso- 
ciate into various channels at probability frequency Vi. 
This competition continues until the (electronically ex- 
cited) neutral fragments accelerate past the crossing at 
Rx • Beyond Rx the increasing energy of relative sep- 
aration reduces the total electronic energy to such an 
extent that autoionization is essentially precluded and 
the neutralization is then rendered permanent past the 
stabilization point Rx- This interpretation [5] has re- 
mained intact and robust in the current light of ab initio 
quantum chemistry and quantal scattering calculations 
for the simple diatomics (Of, Nf, Nef, etc.). Mecha- 
nism (44.73) is termed the direct process which, in terms 
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of the macroscopic frequencies in (44.73), proceeds at the 
rate 

& = kcPs = ike [viliy* + vd)) , (44.74) 

where Ps is probability for A - B* survival against 
autoionization from the initial capture at Äc to the 
crossing point Rx- Configuration mixing theories of 
this direct process are available in the quantal [6] and 
semiclassical-classical path formulations [7]. 

Indirect Process.   In the three-stage sequence 

e-+AB+(vt)^[AB+(vj)-e-]n 

-+A + B* 
(AB")d 

(44.75) 

the so-called indirect process might contribute. Here 
the accelerating electron loses energy by vibrational 
excitation («+ —► vj) of the ion and is then resonantly 
captured into a Rydberg orbital of the bound molecule 
AB* in vibrational level vj, which then interacts one 
way (via configuration mixing) with the doubly excited 
repulsive molecule AB**. The capture initially proceeds 
via a small effect — vibronic coupling (the matrix 
element of the nuclear kinetic energy) induced by the 
breakdown of the Born-Oppenheimer approximation — 
at certain resonance energies en = E(vj) - E(vf) and, 
in the absence of the direct channel (44.73), would 
therefore be manifest by a series of characteristic very 
narrow Lorentz profiles in the cross section. Uncoupled 
from (44.73) the indirect process would augment the 
rate. Vibronic capture proceeds more easily when vj = 
D+ + 1 so that Rydberg states with n « 7 - 9 would 
be involved [for T&%(vt = 0)] so that the resulting 
longer periods of the Rydberg electron would permit 
changes in nuclear motion to compete with the electronic 
dissociation. Recombination then proceeds as in the 
second stage of (44.73), i.e., by electronic coupling to the 
dissociative state d at the crossing point. A multichannel 
quantum defect theory [8] has combined the direct and 
indirect mechanisms 

Interrupted Recombination.   The process 

jb Vd 
e-+AB+(vi)   4   (AB**)d   -»  A + B* 

va 
Vnd\\Vdn 

[AB+(v)-e~]n 

(44.76) 

proceeds via the first (dielectronic capture) stage of 
(44.73) followed by a two-way electronic transition with 
frequency vdn and vnd between the d and n states. 
All (n, v) Rydberg states can be populated, particularly 
those in low n and high v since the electronic d - n in- 
teraction varies as n-15 with broad structure. Although 
the dissociation process proceeds here via a second order 
effect (vdn and vnd), the electronic coupling may domi- 
nate the indirect vibronic capture and interrupt the re- 
combination, in contrast to (44.75) which, as written in 

the one-way direction, feeds the recombination. Such dip 
structure has been observed [9]. 

44.4.2    Quantal Cross Section 

The cross section for direct dissociative recombination 

e" + AB+(vt) ** (AB**)T -+A + B*        (44.77) 

of electrons of energy e, wavenumber ke and spin statis- 
tical weight 2, for a molecular ion AB+(yf) of electronic 
statistical weight u\B in vibrational level vf is 

0"DR w-^)^-(i^)(Sf)^- 
(44.78) 

Here u*AB is the electronic statistical weight of the 
dissociative neutral state of AB* whose potential energy 
curve Vd crosses the corresponding potential energy 
curve V+ of the ionic state. The transition T-matrix 
element for autoionization of AB* embedded in the 
(moving) electronic continuum of AB++e~ is the quantal 
probability amplitude 

aQ(v) = 2* f°° Vl(R) K+*(Ä)lfc(Ä)] dR     (44.79) 
Jo 

for autoionization. Here Vtf and r/v are the nuclear 
bound and continuum vibrational wavefunctions for AB+ 

and AB*, respectively, while 

Vde(R) = {4>d | Wd(r,A(0) | *,(r,R)),,* 
= V;d{R) (44.80) 

are the bound-continuum electronic matrix elements cou- 
pling the diabatic electronic bound state wavefunctions 
^(r.R) for AB* with the electronic continuum state 
wavefunctions <j>c{r,R) for AB+ + e~. The matrix ele- 
ment is an average over electronic coordinates r and all 
directions e of the continuum electron. Both continuum 
electronic and vibrational wavefunctions are energy nor- 
malized (see Sect. 44.8.3), and 

r(Ä) = 2*|ta(ß)|2 (44.81) 

is the energy width for autoionization at a given nu- 
clear separation R. Given T(R) from quantum chemistry 
codes, the problem reduces to evaluation of continuum 
vibrational wavefunctions in the presence of autoioniza- 
tion. The rate associated with a Maxwellian distribution 
of electrons at temperature T is 

d = Ue / c <rDR(e)e-e/tBT def(kBT)2 (44.82) 

where vt is the mean speed (see Sect. 44.9). 
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Maximum Cross Section and Rate. Since the 
probability for recombination must remain less than 
unity, |a<j|2 < 1 so that the maximum cross section and 
rates are 

where u*AB has been replaced by 2(2* + l)w+ under the 
assumption that the captured electron is bound in a high 
level Rydberg state of angular momentum i, and 

<w(T) = tJe «(* = *BT) (44.84a) 

» 5 x 1(T7 (300/T)1/2 (21 + 1) cm3/s. (44.84b) 

Cross section maxima of 5(2*+ 1)(300/T) x 10_14cm2 

are therefore possible, being consistent with the rate 
(44.84b). 

First-Order Quanta! Approximation. When the 
effect of autoionization on the continuum vibrational 
wavefunction VM(-R) for AB* is ignored, then a first-order 
undistorted approximation to the quantal amplitude 
(44.79) is 

TB(v+) = 2*J°° Vl(R) [#)"(ß)^0)(Ä)] dR  (44.85) 

where rj>d°' is $d m the absence of the back reaction of 
autoionization. Under this assumption, (44.78) reduces 
to 

^V+) = i(^)lT^+)|2' (44.86) 

which is then the cross section for initial electron capture 
since autoionization has been precluded. Although the 
Born T-matrix (44.85) violates unitarity, the capture 
cross section (44.86) must remain less then the maximum 
value 

*-*(&) = (*£)(&)•   (44'87) 

since |OQ|
2
 < 1. So as to acknowledge after the fact the 

effect of autoionization, assumed small, and neglected by 
(44.85), the DR cross section can be approximated as 

<rDR(e,v+) = ac(e,v+)Ps, (44.88) 

where Ps is the probability of survival against autoion- 
ization on the Va curve until stabilization takes place at 
some crossing point Rx- 

Approximate Capture Cross Section. With the 
energy-normalized Winans-Stiickelberg vibrational wave- 
function 

V40)(Ä) = M(Ä)|"1/2 6(R - Re), (44.89) 

where Ac is the classical turning point for (A — B*) 
relative motion, (44.86) reduces to 

-<-+) = 5(Sf)t2'r(A)1{Tw} (44'90) 

where the term inside the braces in (44.90) is the effective 
Franck-Condon factor. 

Six Approximate Stabilization Probabilities. 
(1) A unitarized T-matrix is 

T = 
TB (44.91) 

so that Ps = |T|2 / |rB|
2 to give 

Ps(lowe) 

foo l21 ~2 

1 + *2 \Jo°° VZ{R) [itf*(Ä)^°(Ä)] *| ] 

(44.92a) 

which is valid at low e when only one vibrational level 
t>+, i.e., the initial level of the ion is repopulated by 
autoionization. 

(2) At higher e, when population of many other ionic 
levels vt occurs, then 

Ps(e) = I+!EN)| 
-2 

(44.92b) 

where the summation is over all the open vibrational lev- 
els vt of the ion. When no intermediate Rydberg AB*(v) 
states are energy resonant with the initial e~ +AB+(v+) 
state, i.e., coupling with the indirect mechanism is ne- 
glected, then (44.88) with (44.92b) is the direct DR cross 
section normally calculated. 

(3) In the high-e limit when an infinite number of v+ 
levels are populated following autoionization, the survival 
probability, with the aid of closure, is then 

Ps = \ + r 
rRx 

/    I^(ä)I
2 

JRC 

1-2 

rPd°\R)\  dR (44.93) 

(4) On adopting in (44.93) the JWKB semiclassical 

wavefunction for ipd ', then 

ft(hiSh£)=[i+i/R;s|« 
l fix 

-2 

(44.94) 
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where v(R) is the local radial speed of A — B relative 
motion, and where the frequency v*(t) of autoionization 
isT/ft. 

(5) A classical path local approximation for Ps yields 

ft = exp(-jf* !/.(*)*), (44.95) 

which agrees to first-order for small v with the expansion 
of (44.94). 

(6) A partitioning of (44.73) yields 

Ps = Vdliy* + Vd) = (1 + VtTi)-1, (44.96) 

on adopting macroscopic averaged frequencies i/< and as- 
sociated lifetimes TJ = v,"1. The six surivival probabili- 
ties in (44.92a), (44.92b), (44.93)-(44.96) are all suitable 
for use in the DR cross section (44.88). 

44.4.3    Noncrossing Mechanism 

The dissociative recombination (DR) processes 

e- + Hj -f H2 + H 

-* H + H + H (44.97) 

at low electron energy e, and 

e~ -I- HeH+ -» He + H(n = 2) (44.98) 

have spurred renewed theoretical interest because they 
both proceed at respective rates of (2 x 10~7 to 2 x 
10-8) cm3s-1 and 10~8 cm3s_1 at 300 K. Such rates are 
generally associated with the direct DR, which involves 
favorable curve crossings between the potential energy 
surfaces, V+(R) and Va(R) for the ion AB+ and neutral 
dissociative AB** states. The difficulty with (44.97) and 
(44.98) is that there are no such curve crossings, except 
at e > 8eV for (44.97). In this instance, the previous 
standard theories would support only extremely small 
rates when electronic resonant conditions do not prevail 
at thermal energies. Theories [10,11] are currently being 
developed for application to processes such as (44.97). 

44.5    MUTUAL NEUTRALIZATION 

A+ + B~ -f A + B . (44.99) 

Diabatic Potentials. v/0)(Ä) and VJ°\R) for initial 
(ionic) and final (covalent) states are diagonal elements 
of 

Vij(R) = (*,(r, R) | W,,(p, R) | *,(r, R))r,       (44.100) 

where 9ij are diabatic states and %t\ is the electronic 
Hamiltonian at fixed internuclear distance R. 

Adiabatic Potentials for a Two-State System. 

V±(Ä) = Vo(R) ± [A
2
(R) + |V5,(Ä)|a]1/2    (44.101a) 

Vo(R) = \ \V?\R) + VJ°\R)] (44.101b) 

A(R) = [vl0)(R) - V}0\R)] . (44.101c) 

For a single crossing of diabatic potentials at Rx then 
v[0)(Rx) = V}°\RX) and the adiabatic potentials at 
Rx are, 

V£(RX) = vf°\Rx) ± Vif(Rx) (44.102) 

with energy separation 2Vij(Rx)- 

44.5.1    Landau-Zener Probability for 
Single Crossing at Rx 

On assuming A(R)   —   (R - Rx)A'(Rx), where 
A'(Ä) = dA(R)/dR, the probability for single crossing is 

PiARx) = exp [r)(Rx)/vx(b)] 

v(Rx) 
/2TT\ \Vif{Rx 
\h)    A'(RX 

)|2 

(44.103a) 

(44.103b) 

1/2 
vx(b) = [l - V?\Rx)/E - b*/Rx]      .     (44.103c) 

Overall Charge-Transfer Probability.    From the 
incoming and outgoing legs of the trajectory, 

PX(E) = 2P,/(1 - Pi,). (44.104) 

44.5.2    Cross Section and Rate 
Coefficient for Mutual 
Neutralization 

<rM(E) = 4*J XPif(l - Pit)bdb = *bxPM ,   (44.105a) 

'     v^iRx)] 
riU» l- 

= IT 1 + 

E 

14.4 

R\ 

Rx(k)E(eV)\ 
RY (44.105b) 

PM is the b2—averaged probability (44.104) for charge- 
transfer reaction within a sphere of radius Rx- 

The rate is 

f°° 
&M = (8kBT/*MAB)1,:i /    «rM(c)e-cdt     (44.106) 

Jo 

where t = E/kBT. 
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44.6    ONE-WAY MICROSCOPIC 
EQUILIBRIUM CURRENT, 
FLUX, AND 
PAIR-DISTRIBUTIONS 

Notation: 
M     reduced mass MAMB/(MA + MB) 

R internal separation of A — B 
E orbital energy \MV

2
 + V(R) 

L orbital angular momentum 
L2 2MEb2 for E > 0 
VR radial speed |Ä| 
v mean relative speed (8kT/irMAB)1' 
e normalized energy E/kBT 
n,- pair distribution function nf + n,~ 
nf component of n, with R > 0 (+) and R < 0 (-). 

All quantities on the RHS in the expressions (a)-(e) be- 
low are to be multiplied by NANB [W^B/WAWB] where 
the Ui denote the statistical weights of species i which 
are not included by the density of states associated with 
the E,L2 orbital degrees of freedom. 

Case (a): 11) = \H,E,L2). 

Current: jf(R) = n±(R, E, L2)vR = nfvR 

Current: j±(Ä) = £fc-W»T, (44.113) 

Flux: 45rÄ
2j±(Ä) = 7TÄ2tJe-v(Ä)/iBT,     (44,114) 

Distribution:        n(Ä) = e-
v(">/tBT. (44.115) 

When /^-integration is only over dissociated states 
(E > 0), the above quantities are 

(44.116) ii{R) = fr[l-V(R)/kBT\, 

4xR2jf{R) = *R 1- 
V(R) 
kBT . 

n(Ä) = [1 - V{R)/kBT\ 

v = *b2
maxv,      (44.117) 

(44.118) 

Alr2e-B/kBT 

Flux: 4*R2jf(R)dEdL< = {2,MkBT)m 
dEdL2. 

(44.107) 

This flux is independent of R.    For dissociated pairs 
E>0, 

Case (d): (E, L2)-Distribution. For Bound Levels 

(44.119) 

where TR = § dt = (8JR/8E) is the period for bounded 
radial motion of energy E and radial action JR(E, L) = 
MfvRdR. 

Case (e): ^-Distribution. For bound levels 

-w*=£*f (Tärf*1 (44120) 

where RA is the turning point E = V(RA)- 

Example: For electron-ion bounded motion, V(R) = 
-Ze2/R, RA = Ze2/\E\, J2e = Ze2/kBT, e = E/kBT. 
Then m = 2T(m/Ze2)1/2(RA/2)3/2, 

1/2 

4*R2jt(R)dEdL2=[vee-'de][2*bdb).        (44.108) /      [ ä" " H      dR" T^^2'        (44-121) 

(R, £, L2) - Distribution: n(R, £, L2) dR dE dL2 

Case (b): | »') = | K,E); L2-integrated quantities. 

and 

n'(E)dE = 
2e~e 

2e— 
V5F 

-RV
2
R

X
J
2 

x2Rl 

,4|e| 
5/2 

(44.122) 

(44.123) 

Current: jf{R) = ivn±(R)£) = §tmf , 

Flux: AirR2jf(R)dE = [vee-'de] *b2
0, 

*b2 = *R2[l-V(R)/E] 

(R, ^-Distribution: 

n(R,.E)dRd£=-= V   ' 

(44.110) 

(44.111a) 

(44.111b) 

For closely spaced levels in a hydrogenic e   - Az+ 

system, 

,M = ^)(f)(£) 
»•M = »(*)(f)- 

(44.124a) 

(44.124b) 

(44.112) 
Using £ = -(2p2)-1(^2e2/ao) and I2 = (m/2)2R2 

for level (p,t) then 

which defines the Maxwell-Bollzmann velocity vistribu- 
tion GMB in the presence of the field V(R). 

Case (c): (E,L2)-integrated quantities. 

ME,L)Tp dl\     [ dp \ [ dt 

= h[(2£+l)h2 

(44.125) 

(44.126) 
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n'(p,t) _ 2(2/+1) 
neAT+ 

A3 

2u>+     (27rmeJbBT)3/2 

2p2 A3 
"'(P)  
neN+        2w+(2TmeJtBr)

3/2' 

e/,/*BT j (44-127a) 

/,/*BT ( (44.127b) 

in agreement with the Saha ionization formula (44.16) 
where N+ is the equilibrium concentration of Az+ ions 
in their ground electronic states. The spin statistical 
weights are ueA = we = 2. 

44.7    MICROSCOPIC METHODS FOR 
TERMOLECULAR ION-ION 
RECOMBINATION 

At low gas density, the basic process 

A+ + B~+M->AB + M. (44.128) 

is characterized by nonequilibrium with respect to 
E. Dissociated and bound A+-B~ ion pairs are in 
equilibrium with respect to their separation R, but 
bound pairs are not in E—equilibrium with each other. 
£2—equilibrium can be assumed for ion-ion recombina- 
tion but not for ion-atom association reactions. 

At higher gas densities N, there is non-equilibrium in 
the ion-pair distributions with respect to R, E and L2. 
In the limit of high N, there is only non-equilibrium with 
respect to R. See the appropriate reference list for full 
details of theory. 

44.7.1    Time Dependent Method: Low 
Gas Density 

Energy levels Ei of A+-B~ pairs are so close that 
they form a quasi-continuum with a nonequilibrium 
distribution over Ei determined by the master equation 

^ = J~ {niVij - njuji) dEs , (44.129) 

where n< dEi is the number density of pairs in the interval 
dEi about Ei, and i/,-/ dEj is the frequency of t-pair 
collisions with M that change the t-pair orbital energy 
from Ei to between Ej and Ef + dEj. The greatest 
binding energy of the A+-B~ pair is D. 

Association Rate. 

= &NA(t)NB(t) -*n.(0, 

(44.130a) 

(44.130b) 

where P? is the probability for collisional stabilization 
(recombination) of t-pairs via a sequence of energy chang- 
ing collisions with M. The coefficients for C —* S re- 
combination out of the C—block with ion concentrations 

NA(t), NB(t) (in cm-3) into the S block of total ion-pair 
concentrations ns(f) and for S —* C dissociation are d 
(cm3s-1) and i(s-1), respectively. 

One-Way Equilibrium Collisional Rate and De- 
tailed Balance. 

Cif = Hit/if = hfVfi = Cfi, (44.131) 

where the tilde denotes equilibrium (Saha) distributions. 

Normalized Distribution Functions. 

%■(*) = «.-(*)/**? >    7.(0 = n.(t)/hf(t), (44.132) 
7c(t) = NA(t)NB(t)/NANB, (44.133) 

where nf and hB are the Saha and Boltzmann distribu- 
tions. 

Master Equation for 7,(t) 

dt 
= -f°[7«(0-7/(t)H/*E/-        (44. 

J-D 
134) 

Quasi-Steady State (QSS) Reduction. Set 

7i(t) = P?7c(t) + Phsitf^l (44.135) 

where P/5 and P? are the respective time-independent 
portions of the normalized distribution 7,- which orig- 
inate, respectively, from blocks C and S. The energy 
separation between the C and S blocks is so large that 
P? = 0 (Et > 0, C block), if < 1 (0 > Ei > -S, 
€ block), Pf = 1 (-S > Ei > -D, S block). Since 
P? + PP = 1, then 

dlijt) 
dt =- [TC(O - 7.(0] r (p° - p/D)c« dEi ■ J-D 

(44.136) 

Recombination and Dissociation Coefficients. 
Equation (44.135) in (44.130a) enables the recombi- 

nation rate in (44.130b) to be written as 

/OO i-OO 

If dEi        (P? - Pf) Cif dEj . 
■D J-D 

(44.137) 

The QSS condition (dni/dt = 0 in block E) is then 

PP I    VijdE}=(    VijPfdEj, (44.138) 
J-D J-D 

which involves only time independent quantities. Under 
QSS, (44.137) reduces to the net downward current across 
bound level — E, 

/OO r-E 

dEi /      (P? - Pf) Cif dEf , (44.139) 
■ E J-D 
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which is independent of the energy level (-E) in the 
range 0 > -E > -S of block S. 

The dissociation frequency k in (44.130b) is 

Jbn8 = /     dEi l°° {Pf - Pf) dj dEf ,     (44.140) 
J-D J-B 

and macroscopic detailed balance &NANB — knt is 
automatically satisfied, d is the direct (C —► S) collisional 
contribution (small) plus the (much larger) net collisional 
cascade downward contribution from that fraction of 
bound levels which originated in the continuum C. Jfc<j 
is the direct dissociation frequency (small) plus the 
net collisional cascade upward contribution from that 
fraction of bound levels which originated in block S. 

44.7.2    Time Independent Methods: 
Low Gas Density 

QSS-Rate. Since recombination and dissociation (ion- 
ization) involve only that fraction of the bound state pop- 
ulation which originated from the C and S blocks, respec- 
tively, recombination can be viewed as time independent 
with 

NANB = NANB,  nt(t) = Q, (44.141a) 

Pi = m/hi = PP (44.141b) 

öCNANB = r dE< I     0* - Pf) C<i dEl ■     (44-141c) 
J-E J-D 

QSS Integral Equation. 
/OO fOO 

VijdEj= /    pjVifdEj (44.142) 
■ D J-S 

is solved subject to the boundary condition 

Pi = l(Ei > 0),    pi = 0(-5 > Ei > -D).    (44.143) 

Collisional Energy-Change Moments. 

D^(Ei) = —, [°°(Ef - EiTdj dEf ,        (44.144) 
m! J_D 

$m) = ~({AB)m)- (44-145) m! at 

Averaged Energy-Change Frequency. For an equi- 
librium distribution n< of Ei -pairs per unit interval dEi 
per second, 

Averaged Energy-Change per Collision. 

Time Independent Dissociation. The time indepen- 
dent picture corresponds to 

n,(0 = fi.,    7c(0 = 0,    Pi = ni/hi = Pf,    (44.146) 

in analogy to the macroscopic reduction of (44.38ab). 

Variationai Principle 

The QSS-condition (44.135) implies that the fraction 
PP of bound levels i with precursor C are so distributed 
over t that (44.137) for a is a minimum. Hence PP or pi 
are obtained either from the solution of (44.142) or from 
minimizing the variational functional 

&NANB = [    TU dEi I    (Pi - Ps)vij dEf     (44.147a) 
J-D J-D 

= \ l°° dEi r (Pi - Psf Cij dEf   (44.147b) 
lJ-D J-D 

with respect to variational parameters contained in a trial 
analytic expression for p,-. Minimization of the quadratic 
functional (44.147b) has an analogy with the principle of 
least dissipation in the theory of electrical networks. 

Diffusion-in-Energy-Space Method 

Integral Equation (44.142) can be expanded in terms 
of energy-change moments, via a Fokker-Planck analysis 
to yield the differential equation 

3 
dEi 

D ,(») dPi 
dEi 

= 0, 

with the QSS analytical solution 

T f°     dE    1 r /° dE 
DW(E) 

-l 

(44.148) 

(44.149) 

of Pitaevskii [4] for (e~ + A+ + M) recombination where 
collisional energy changes are small. This distribution 
does not satisfy the exact QSS condition (44.142). When 
inserted in the exact non-QSS rate (44.147b), highly 
accurate & for heavy-particle recombination are obtained. 

Bottleneck Method 

The one-way equilibrium rate (cm-3s-1) across — E, 
i.e., Eq. (44.141c) with pi = 1 and pf = 0, is 

/oo i— B 

dEi /      Qf dEf.      (44.150) 
■E J-D 

This is an upper limit to (44.141c) and exhibits a 
minimum at — E*, the bottleneck location. The least 
upper limit to d is then d(—E*). 

Trapping Radius Method 

Assume that pairs with internal separation R < Rj 
recombine with unit probability so that the one-way 
equilibrium rate across the dissociation limit at E = 0 
for these pairs is 
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ä(RT)NANB = / *dR I      Cij(R)dEj,       (44.151) 
Jo JV(R) 

where V(R) = -e2/R, and Cif(R) = n,(ß)i/,7(Ä) is 
the rate per unit interval (dRdEi) dEj for the Et -> Ej 
collisional transitions at fixed R in 

(A+ - B-)EUR + M-+(A+- B-)E]tR + M. (44.152) 

The concentration (cm-3) of pairs with internal sep- 
aration R and orbital energy Ei in the interval dRdEi 
about (R,£,) is n,(Ä)dRdi?.-. Agreement with the 
Exact treatment is found by assigning AT = (0-48 - 
0.55)(e2/JbBT) for the recombination of equal mass ions 
in an equal mass gas for various ion-neutral interactions. 
For further details on the above methods, see the appro- 
priate references on termolecular recombination in Sect. 
44.10. 

44.7.3    Recombination at Higher Gas 
Densities 

As the density N of the gas M is raised, the recom- 
bination rate a increases initially as N to such an extent 
that there are increasingly more pairs nj (R, E) in a state 
of contraction in R than there are those nf(R,E) in a 
state of expansion; i.e., the ion-pair distribution densi- 
ties nf(R, E) per unit interval dEdR are not in equilib- 
rium with respect to R in blocks C and S. Those in the 
highly excited block £ in addition are not in equilibrium 
with respect to energy E. Basic sets of coupled master 
equations have been developed [12] for the microscopic 
nonequilibrium distributions n±(fi, E, L2) and n (Ä, E) 
of expanding (+) and contracting (—) pairs with respect 
to A-B separation R, orbital energy E and orbital angu- 
lar momentum L2. 

With n(R, Et,L
2)   =  n,-(Ä),  and using the nota- 

tion defined at the beginning of Sect. 44.6, the distinct 
regimes for the master equations discussed in Sect. 44.7.4 
are: 

Low N Equilibrium in R, but not in E, L2 

—* master equation for n(E,L2). 

For Pure Coul.    Equilibrium in L2 

attraction —» master equation for n(E). 

High N Nonequilibrium in R, E, 1? 
—► master equation for nf(R). 

Highest N Equilibrium in (E, L2) but not in R 
—* macroscopic transport equation 
(44.56a) in n{R). 

Normalized Distributions 
For a state 11) = \E,L2), 

*<Ä>-5^'    Pi{R)-W(R-)> (44.153) 

Pi(R) = \(pt + PT)- 

Orbital Energy and Angular Momentum. 

1 
Ei = ^MABv2 + V(R) 

Ei = ±MABv2
R + Vi(R) 

L2 

(44.154a) 

(44.154b) 

v'W=vw+üfc# (44154c) 

Li = |R x MABy\,    L2 = (2MABEi)b2, Et>0. 

(44.154d) 

Maximum Orbital Angular Momenta. 
(1) A specified separation R can be accessed by all 

orbits of energy E{ with L2 between 0 and 

L2
m(Ei, R) = 2MABR2 [Ei - V(R)] .        (44.155a) 

(2) Bounded orbits of energy Ei < 0 can have L2 

between 0 and 

Ll(Ei) = 2MABR\ [Ei - V(Rc)] , (44.155b) 

where Re is the radius of the circular orbit determined 
by dVi/ÖR = 0, i.e., by Et = V(J2c) + \Rc(dV/dR)iu. 

44.7 A    Master Equations 

Master Equation for nf (Ä) = n±(R,£,,-,I?). [12] 

= -/       dE, dL2[nt{R)vi3{R) 
JV(R) JO 

-nf(R)vji(R)] . (44.156) 

The set of master equations for nf is coupled to the nj~ 
set by the boundary conditions n^(Rf) = nf(Rf) at the 
pericenter Ä,~ for all Ei and apocenter Rf for Ei < 0 of 
the EitL

2-orbit. 

Master Equations for Normalized Distributions. 
[12] 

x[pt(R)-pf(R)]uif(R).      (44.157) 

Corresponding Master equations for the L2 integrated 
distributions rr^-R, E) and p±(R,E) have been derived 
[12]. 
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Continuity Equations. 

Ji = K(Ä) - «,-(*)] j.,1 = (,+ - pi) if       (44.158) 

x [ni{R)uiJ(R)-nJ(R)uJi(R)), 

(44.159) 

x|^(Ä)-/»/(Ä)]MÄ)- 
(44.160) 

44.7.5    Recombination Rate 

Flux Representation. 
The Ro —■ oo limit of 

ä#AJVB = -4Xä2/(ÄO) (44.161) 

has the microscopic generalization 

&NANB = r    dE< I   C dL? \**Rl~it (^o)] 
JV(Ro) •'O 

x [/>r(Äo)-/>f(Äo)].       (44-162) 

where I?c is given by (44.155b) with Ac = Äo for bound 
states and is infinite for dissociated states, and where 

pT{Ro) - pf(Ro) = I ° Pi(R) K(Ä) + vf(R)] dt, 
JRi 

(44.163) 

with 

rV(Ro) fL)m 

pt(R)vl(R)= dEf dLJlpiW-pjiR)] 
Jv(R) JO 
xi/ij(R), (44.164a) 

Pi (R)uf(R) = r    dEs [*" dL) [pi (Ä) - pj (Ä)] 
JV(Ro) JO 

xuif(R). (44.164b) 

Collisional Representation. 

.  -      r°° rL'"   » z*0 

&NANB= dEi dL?        ni(R)dR 
Jv(Ro) JO JRi 
x [Pi{R)v\{R)\ , (44.165) 

which is the microscopic generalization of the macro- 
scopic result d = Kp*va = <XRN(RO)P(RO)- 

The flux for dissociated pairs 2?,- > 0 is 

4Tä2 M hf (R) dEdL2 = [vee~c de] [2x6 db] NANB , 

(44.166) 

so the rate (44.165) as Äo -♦ oo is 

a = v r ee~' de I °2xbdb I ° Pi(R)^(R) dt, 
Jo Jo JRi 

(44.167) 

which is the microscopic generalization (44.45b) of the 
macroscopic result d = kcP

s of (44.44). 
Reaction Rate a^Äo): On solving (44.157) subject 
to p(Ro) = 1, then according to (44.56b), & determined 
by (44.162) is the rate &HN of recombination within 
the (A - B) sphere of radius Ro. The overall rate of 
recombination & is then given by the full diffusional-drift 
reaction rate (44.59b) where the rate of transport to Ro 
is determined uniquely by (44.60). 

For development of theory and computer simulations, 
see the appropriate reference list on Termolecular Ion-Ion 
Recombination: Theory and Simulations, respectively. 

44.8    RADIATIVE RECOMBINATION 

In the radiative recombination (RR) process 

e-{E,£') + Az+(c) - A<*-1>+(*,n/) + Ä»',    (44.168) 

the accelerating electron e~ with energy and angular 
momentum {E,l') is captured, via coupling with the 
weak quantum electrodynamical interaction (e/mc)A-p 
associated with the electromagnetic field of the moving 
ion, into an excited state nl with binding energy I„i 
about the parent ion Az+ (initially in an electronic state 
c). The simultaneously emitted photon carries away the 
excess energy hv = E + I„i and angular momentum 
difference between the initial and final electronic states. 
The cross section <T^(E) for RR is calculated (a) from 
the Einstein A coefficient for free-bound transitions or (b) 
from the cross section or"'(Ai/) for photoionization (PI) 
via the detailed balance (DB) relationship appropriate to 
(44.168). 

The rates (vecTR) and averaged cross sections ((TR) for 
a Maxwellian distribution of electron speeds «e are then 
determined from either 

*R (r.) = ». ^ eag(e) exp(-e) de = ve (og(Tt)) , 
Jo 

(44.169) 

where e = E/kßTe, or from the Milne DB relation 
(44.243) between the forward and reverse macroscopic 
rates of (44.168).    Using the hydrogenic semiclassical 
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&l of Kramers [13], together with an asymptotic ex- (b) For A(n£) state b[Sc,Lc;n,t]SL: 
pansion [14] for the (/—factor of Gaunt [15], the quan- g* = (25+ 1)(2L+ 1). 
tal/semiclassical cross section ratio in (44.249), Seaton (c) For ^ electrQn outgide a dosed ^ 

[16] calculated o#. g+= l,gA = 2(2£+l). 
The rate of electron energy loss in RR is 

Cross sections are averaged over initial and summed over 

/^\    = net7e(JbBTe) r e2<#(C)e- de,   (44.170) final de8enerate states- For ca*e (c)> 
\dt/nl JO n-1 

and the radiated power produced in RR is 

\^r)nr
neVel° ehv(r^t(e)e-t de      (44.171) 

*F = ^X>'+1K';     <44175a) 
n-l 

«TR = 5^2(2/+l)ffSf. (44.175b) 
/=o 

Standard Conversions 

E 

hv/In 

kvao 

= p2J2m = h2k2J2m = k2
ea

2(e2/2a0) (44.172a) 

= K2(Z2e2/2a0) = e(Z2e2/2a0), (44.172b) 

£„ = hv - hu = hkvc = (In + E) (44.172c) 

= [1 + n2e) (Z2e2/2n2aQ), (44.172d) 

= 1 + n2e,    Jb2a2 = 2E/(e2/a0),        (44.172e) 

= {hv)a/(e2/a0), (44.172f) 

= {hvf/(2Emc2) (44.172g) 

= a2{hv)2/ [2E(e2/a0)] , (44.172h) 

= e2/2a0,    a = e2 /Ac = 1/137.035 9895 

= mc2/(e2/a0),    /„ = (Z2/n2)IH .     (44.1721) 
In 
a~2 

The electron and photon wavenumbers are ke and ifc„, 
respectively. 

44.8.1    Detailed Balance and 
Recombination-Ionization Cross 
Sections 

Cross sections cr^(E) and <T"*(/II>) for radiative re- 
combination (RR) into and photoionization (PI) out of 
level nl of atom A are interrelated by the detailed balance 
relation 

Mpl°g (*0 = MAklofQiv), (44.173) 

where ge = gv = 2. Electronic Statistical weights of A 
and J4

+
 are ju and g%, respectively. Thus, using Eq. 

(44.172g) for k2Jk2
e, 

^(E\-l9A\\{hv)2] o?{hv). 

The statistical factors are: 
(a) For (A+ + e~)   state c[Sc, Lc;e,£', m']: 

(7+ = (25c + l)(2Lc + l). 

(44.174) 

44.8.2    Kramers Cross Sections, Rates, 
Electron Energy-Loss Rates and 
Radiated Power for Hydrogenic 
Systems 

These are all calculated from application of detailed 
balance (44.173) to the original an(hv) of Kramers [13]. 

Semiclassical (Kramers) Cross Sections 

For hydrogenic systems, 

In = 
Z2e2 

hl/ = In+E. (44.176) 
2n2a0' 

The results below are expressed in terms of the quantities 

In 
bn = 

kßTe 

„ _ 647ra2)Or / n \ 

"I0 _ ~UT \~z2) 

<r™{E) 

«o(re) 

7.907071 x 10-18 (n/Z2)  cm2. 

87ra2a3\ (Z2e2/a0) 

~\   3V3   ) E 

_ (8ira2a3\ (Z2e2/a0) 

•<*&) kBTe 

(44.177) 

(44.178) 

(44.179) 

(44.180) 

PI and RR Cross  Sections for Level n.    In the 
Kramer (K) semiclassical approximation, 

Kof(hu) = (jj£)  of0 = K<T?'(M (44.181) 

«*W = ™w(l)(j±ä) (44-182) 

= 3.897 x 10"20 [ne(13.606 + n2e2)]-1  cm2, 

where e is in units of eV and is given by 

e = E/Z2 = (2.585 x 10"2/Z2) (Te/300) .       (44.183) 
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Equation (44.182) illustrates that RR into low n at low 
E is favored. 

Cross Section for RR into Level nl. 

K^=[(2£+l)/n2]K^. (44.184) 

Rate for RR into Level n. 

&ä(r.) = do(re) (2/n) bnt*-Ex(bn), (44.185a) 

which tends for large 6„ (i.e. kßTe ■< 7„) to 

aJ(re-0) = do(re)(2/n) 
x[l-6^ + 26-2-66-3 + ...]. 

(44.185b) 

The Kramers cross section for photoionization at 
threshold is <r"0 and 

1 - 6ne»-£1(6„) 

<TRO = 2<Tfio/n;    oj = 2&0/n 

provide the corresponding Kramers cross section and rate 
for recombination as E —* 0 and Te —► 0, respectively. 

RR  Cross   Sections  and  Rates  into all  Levels 
n > rif. 

r°° 
a£(E)= /    *UE)dn 

= <jK0{E) ln(l + I] IE), (44.187a) 

al(Te) = &o(Te) [7 + In 6/ + e4/^i(6/)]        (44.187b) 

Useful Integrals. 

1.00 

/    e-x\nxdx = j (44.188a) 
Jo 

/    x-xe-'dz = Ei(b) (44.188b) 

/   exE1(x)dx = j + lnb + ehE1{b) (44.188c) 
Jo 

/   [1 - xe'E^x)] dx = 7 + In 6 + e6(l - b)Ei(b) 
Jo 

(44.188d) 

where j = 0.5772157 is Euler's constant, and Ei(b) is 
the first exponential integral such that 

6e»£?i(6) ^i 1 - ft"1 + 26-2 - 66"3 + 246"4 + 

Electron Energy Loss Rate 

Energy Loss Rate for RR into Level n. 

(44.188e) 

<f>.-"^P,Jwl[1-V.*(M 
(44.189a) 

which for large 6„ (i.e. (kßTe) < In) tends to 

n,&£(Te)*BTe [1 - K1 + M-2 - 136-3 + • • •]  (44.189b) 

with (44.185a) for d£. 

Energy Loss Rate for RR into all Levels n>rif. 

(^ = nekBTe&o(Te) [y + lnbf + ei^1(6/)(l - 6,)] 

(44.190a) 

= ne(JbBTe) [&1{TJ - &o(Te)bje»'JS?i(6/)] 

(44.190b) 

with (44.187b) and (44.180) for d£ and d0. 

(44.186)      Radiated Power 

Radiated Power for RR into level n. 

(^■^  = ned^(Te)7n [i„e»"£i(M]_1 ,      (44.191a) 

which for large 6n (i.e. (^B^e) -C In) tends to 

ne&^(Te)In [1 + 6-1 - 6"2 + 36"3 + • • -](44.191b) 

Radiated Power for RR into all Levels n > fif. 

(^) = "edo(Te)J/- (44192) 

To allow n-summation, rather than integration as 
in (44.187a), to each of the above expressions is added 

to'. K'. *<*>,., «d *(*£*),.,• «sP^ively. 
The expressions valid for bare nuclei of charge Z are also 
fairly accurate for recombination to a core of charge Zc 

and atomic number ZA > provided that Z is identified as 
\(ZA+Ze). 

Differential Cross Sections for Coulomb Elastic 
Scattering: 

<E>ß) = T-?TTZ>    bl = (Ze2/2E)\      (44.193) 
4sm j9 

The integral cross section for Coulomb scattering by 
6 > x/2 at energy E = (3/2)/fcBT is 

<rc(E) = X&2, = \*Rl,    Re = e2/kBT.       (44.194) 

Photon Emission Probability. 

P„ = OI{E)I<TC{E) . (44.195a) 

This is small and increases with decreasing n as 
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44.8.3    Basic Formulae for Quantal 
Cross Sections 

Radiative Recombination and Photoionization 
Cross Sections 

The cross section a^ for recombination follows from 
the continuum-bound transition probability P</ per unit 
time. It is also provided by the detailed balance relation 
(44.173) in terms of <Xjl which follows from P/,-. The 
number of radiative transitions per second is 

9*9Äve7Zt^3crR(k*) 

\geg+p(E)dEdk\] Pif [/>(£„) dEv <fk„] 

—+.. JE± 
\2irhf 

where the electron current (cm-2s-1) is 

(44.196) 

**=(«)„*.        (44.197) 

and the photon current (cm~2s *) is 

cfk„ (hi/)2    ,„    « 
C-TT-^ = c,:  A. dEvdk„ . 
'(2a-)3        (2nhc)3 (44.198) 

Time Dependent Quantum Electrodynamical 
Interaction. 

V(,,t) = ^A-p = ie (^yV)e-»(k"—*> 
= V(r)eW. (44.199) 

In the dipole approximation, e-,k"'r ~ 1. 

Continuum-Bound State-to-State Probability. 

Pi}='^\V}i\
26{Ev-{E + In)) 

Vfi = <tf„/m(r) | V(r) | ¥,(r,k*)) . (44.200) 

Number of photon states in volume V. 

p(Ev, *„) iEy dkv = V{hv)2 l(2irhcf dE„ dk„   (44.201a) 

= V [u2/(2ncf] du dkv .      (44.201b) 

Continuum-Bound Transition Rate. 
On summing over the two directions (g„ = 2) of 

polarization, the rate for transitions into all final photon 
states is 

A„/m(*;,ke) = JPi,p(Ev)dEv dkv 

_ 4e2 {hvf 
3ft (fie) 3 |(*^m |r | *,(ke))r .(44.202) 

Transition Frequency: Alternative Formula. 

Anlm(EX) = (27T/Ä) \Dji\2 , (44.203) 

where the dipole atom-radiation interaction coupling is 

/ <v>3 \ 1I2 

£>/,(ke) = (w)      (*"<m ' er ' **(ke)) •    (44-204) 

RR Cross Section into level (n, I, m). 

<"(£) =-^/<™(lc).ii, 

RR Cross Section into level (n, I). 

(44.205) 

*w-^[5 
(ahvf 

p(E)R?l(E) 
2(e2/a0)E\ 

Rf(E) = ( dke £ |(*„/m I r I ¥,-(ke))|2 .       (44.206) 

Transition T-matrix for RR. 

|7RP  =47T2y"X)|JD/,-|2rfke 

(44.207) 

(44.208) 

Photoionization Cross Section.  From detailed bal- 
ance in Eq. (44.196), a\l is 

<^(M = (jP) cthu (&) p{E)Rf(E).        (44.209) 

Continuum Wavefunction Expansion. 

*,-(ke,r) = £ t*'ei*«RBv(r)Yt,m.fe)Yl.m.{i). 
I'm' 

(44.210) 

Energy Normalization. With p(E) = 1, 

J%(ke-,rW(K-,r)dr=6(E-E')6(ke-k)- 

(44.211) 

Plane Wave Expansion. 

e'kr = 4*r£ iljt(kr)Y;m(k)Ylm(r) (44.212) 
/=o 

jt(kr) ~ sin(ifer - \trc)/{kr). (44.213) 

For bound states, 

¥»/m(r) = Rni{r)Ylm(r). (44.214) 
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RR and PI Cross Sections and Radial Integrals. 

°g(E) ~   3   [j [2(e2/a0)E, 
p(E)Ri(E; nt).       (44.215) 

For electron outside a closed core, 

,+ = 1,   gA = W+l) 
4ir2ahup(E) <(H = Ri(E;nt), 

3(21+1) 
i       f°° 

Ku  = /    (Ru-rRnt)  r2dr, 
Jo 

RiiE; nt) = £ |<fl \(t+l) J#+* 

(44.216a) 

(44.216b) 

(44.216c) 

For an electron outside an unfilled core (c) in the 
process (A+ + e~) —► A(nl), the weights are 

State i: [Sc, Lc; e],  g\ = (2SC + 1)(2XC + 1) 

State /: [(Sc, Lc; n£)S, L],  gA = (25 + 1)(2I + 1). 

K    c T   ; l'=l±l v K ' 

.     (44.217) 

This reduces to (44.216c) when the radial functions Ä,-j 
do not depend on (Sc, Lc, S, L). 

Cross Section for Dielectronic Recombination 

°DLR(-£) - 
7T0Ä 

\T»LK(E)\2p(E), (44.218) 
(ka0) 

|7bLR(£)|2=47r2|dke 

„y>|^/|J?|^)(^|V|^.-(ke))a 

{E-Cj+iTj/2) 

(44.219) 

which is the generalization of the T-matrix (44.208) to in- 
clude the effect of intermediate doubly-excited autoion- 
izing states | $;) in energy resonance to within width 
Tj of the initial continuum state \P,-. The electrostatic 

interaction V = c253^i(ri - TN+I)'
1
 initially pro- 

duces dielectronic capture by coupling the initial state 
i with the resonant states j which become stabilized 
by coupling via the dipole radiation field interaction 
D = (2w3/37rc3)1/2Ei=t1(er,) to the final stabilized 
state /. The above cross section for (44.3) is valid for 
isolated, non-overlapping resonances. 

Continuum Wave Normalization and Density of 
States 

The basic formulae (44.206) for tr^ depends on the 
density of states p(E) which in turn varies according to 
the particular normalization constant N adopted for the 
continuum radial wave, 

REI{T) ~ Nsin(fcr - \t* + ru)/r, (44.220) 

in (44.210) where the phase is 

t]t = arg r(* + 1 + iß) - ß In 2kr + 6t.        (44.221) 

The phase corresponding to the Hartree-Fock short-range 
interaction is Si. The Coulomb phase shift for electron 
motion under (-Ze2/r) is (r)t - 6t) with ß = Z/(ka0). 

For a plane wave ^k(r) = N' exp(j'kT), 

<fc(r) | ^,(r)> dk = (27T)3 \N'\2 p(k) dk6(k - k') 

= (—\ \N' \2p(E,k)dEdk6(E- E')S(k - k'). 
\mpj 

(44.222) 

On integrating (44.222) over all E and k for a single 
particle distributed over all | E, k) states, N' and p are 
then interrelated by 

r/.2 \Nrp(E,k) = mp/hö. 

The incident current is 

jdEdke = v\N'\2 p(E, k) dE dke 

= (2mE/h3) dEdke = v dpe/h
3 

(44.223) 

(44.224a) 

(44.224b) 

Radial Wave Connection. From Eq. (44.210) and 
(44.212), N = (4irN'/k), so that the connection between 
N of (44.220) and p(E) is 

\N\2p(E,k) = 
(2m/fi2 

irk 
(2/') 

(ka0)e2 (44.225) 

RR Cross Sections for Common Normalization 
Factors of Continuum Radial Functions 

(a) N = 1;    p(E) = 
(2m/h2)_   (2/T) 

irk 
(44.226) 

(ka0)e2 ' 

*K(E) = S/5>''|2*e' (44227) 

where Dji of (44.204) is dimensionless. 

(b) N = Jfc-1;    p(E) = (2m/h2){k/ir), (44.228) 

*R (E) = 
167rag 

3\/2 (Ä)'WQH 
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where (44.216b) and (44.216c) for Ri has dimension [I5]. 

■K 
(c)N = k-V>;    p(E) = {*^, 

where Äi has dimensions of \L*\. 

(d) N = (2m/ft Vtf)1/4;    />(£) = 1, 

»/m _ 4(*«o)2 f a*(hi>r 1 f *i \ 

where ifr has dimensions of [L22?-1]. 

(44.230) 

(44.231) 

(44.232) 

(44.233) 

44.8.4    Bound-Free Oscillator Strengths 

For a transition nl —► E to E + dE, 

dE        3 (e2/ao) (2^ +1)2^ 2s \Tnim   I    .      144.^4; 

Ä,(e;n*) =  / dke£)|(*n/m | f | ¥,(£; ke^m'))!' 
m 

=   E   |rn'mf. (44-235) 
m,t' ,m' 

.,» = !»>.«j,i(^. (44.236b) 

Semiclassical Hydrogenic Systems 

9A=gni = 2(2e+l),    ^ = 1, 

*R(£) = E «#(*0 = 2*2"ao (|) ^ ,        (44.237) 

(44.238) 
n-l 

ntm dFn _ '^-A      dfni _0ir^df, 
dE -L^miE -*2^-dE 

1=0 l,m 

Bound-Bound absorption oscillator strength. For 
a transition n—*n'. 

*■«.• = SEE £2 
lm I'm1 

26 

I m 
lm (44.239a) 

{h-*)~ \7±-    <44239b> 
2<Vnl 

3V/3TT 

^n           25 J2 

(44.239c) 

's(£) = 0h$oH- (44'239d) 

= 7.907071 (J;) (£)    Mb. (44.2391) 

This semiclassical analysis yields exactly Kramers PI 
and associated RR cross sections in Sect. 44.8.2. 

44.8.5    Radiative Recombination Rate 

&#(%) = %       e(T^{e)e-t de (44.240a) 
Jo 

= Ue«(Te)), (44.240b) 

where i = E/kBT and {<rg(Te)) is the Maxwellian- 
averaged cross section for radiative recombination. 

In terms of the continuum-bound Ani(E), 

«r«>=(ä^söTTi r {*&) -" * •<4424i) 

^ = P(E) Y, j -iWE, t) dt, . (44.242) 
m 

Milne Detailed Balance Relation. 
In terms of ^{hv), 

(44.243) 

where, in reduced units w = hv/In, T — k^T^/In = b'1, 
the averaged PI cross section corresponding to (44.174) 
is 

<<r?'(T)> = ^ p u2<T?l{u>)e-"lT du .     (44.244) 

When <r"'(w) is expressed in Mb (10~18 cm2), 

x(o?l(T))    em's-1. (44.245) 

When «ri can be expressed in terms of the threshold cross 
section <r£ [Eq. (44.178)] as 

<rf{hu) = (In/hvy*0(n);  (p = 0,1,2,3),     (44.246) 

then (<r?l(T)) = Sp(T)<r0(n), where 

50(T) = 1 + 2T + 2T2, Si (T) = 1 + T, (44.247a) 

S2(T) = 1, (44.247b) 

53(T) =  [e1/T/T\ Ei(l/T) (44.247c) 

T<1l_r + 2T2-6T3. (44.247d) 
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The case p = 3 corresponds to Kramers PI cross section 
(44.181) so that 

K<CTe) = £^£&o(Te)S8(T) (44.248a) 

= Kä&£(Te->0)S3(T). (44.248b) 

such that Kag ~ Z2/(n3Te
1/2) as T = (fcBTe//„) - 0. 

44.8.6    Gaunt Factor, Cross Sections and 
Rates for Hydrogenic Systems 

The Gaunt Factor G„/ is the ratio of the quantal to 
Kramers (K) semiclassical PI cross section such that 

af(hu) = K<r? (hv)Gnt(u); (44.249) 

u = hv/In = 1 + ElIn . 

(a) Radiative Recombination Cross Section. 

°«w = (ft) [sÄl*"«*<* <*">(44250a) 

= G„,(W)K<#(£) (44.250b) 

= P^«u0] K*R(£) , (44.250c) 
a&E) = G„(U,)K<TR(£) (44.250d) 

where the Gaunt Factor, or quantum mechanical correc- 
tion to the semiclassical cross sections 

_   ,  .       f 1, u-+l (44.251) 

favors low nl states. The ^-averaged Gaunt factor is 

G„(«) = (l/n2)£(2£+ 1)G„£(«). (44.252) 
1=0 

Approximations for G„: as e increases from zero, 

-3/4 

Gn(e) = 
4,        ,  x     28 ,' 

l + ^(an+bn) + -a2
n 

7 7 
l-(an+bn) + -a„bn + -b2

n 

where £ = e(Z2e2/2a0), w = 1 + n2e, and 

a„(e) = 0.172825(1 - n2e)c„(e) 

6n(e) = 0.04959 
4 
3' 

l + ^t + nV 4(«) 

c„(£)=n-2/3(l + n2
e)-2/3. 

Radiative Recombination Rate. 

(44.253a) 

(44.253b) 

(44.254a) 

(44.254b) 

(44.254c) 

&g(T,) = K<(Te - 0)Fnl(T), (44.255) 

<(T« - 0) = ^±^ (£) MT.), (44-256) 

in accordance with (44.185b). 

Fnl(T) = ^f^e-^du,.        (44.257) 

The multiplicative factors F and G convert the semi- 
classical (Kramers) Te -» 0 rate and cross section to 
their quantal values. Departures from the scaling rule 
(Z2/n3Te

1/2) for RR rates is measured by Fnl(T). 

44.8.7    Exact Universal Rate Scaling 
Law and Results for Hydrogenic 
Systems 

atf(Z,Te) = Z&tf(l,Te/Z
2) (44.258) 

as exhibited by (44.243) with (44.239e) and (44.244). 
Recombination rates are greatest into low n levels 

and the u~l~lf2 variation of Gni preferentially popu- 
lates states with low I ~ 2-5. Highly accurate analytical 
fits for Gnt{ui) have been obtained for n < 20 so that 
(44.249) can be expressed in terms of known functions 
of fit parameters [17]. This procedure (which does not 
violate the 52 sum rule) has been extended to nonhy- 
drogenic systems of neon-like Fe XVII, where tfl{w) is a 
monotonically decreasing function of u>. 

Variation of the ^-averaged values 

n-l 

n-2^(2£+l)F^(T) 
/=o 

is close in both shape and magnitude to the correspond- 
ing semiclassical function S3(T), given by (44.257) with 
G„/(w) = 1. Hence the £—averaged recombination rate 
is 

&l(Z,T) = (300/T)1/2(Z2/n)Fn(T) 

x 1.1932 xlO-12 cm3 s_1, (44.259) 

where F„ can be calculated directly from (44.257) or be 
approximated as G„(1)5(T). A computer program based 
on a three-term expansion of G„ is also available [18]. 
From a three-term expansion for G, the rate of radiative 
recombination into all levels of a hydrogenic system is 

&{Z,T) = 5.2 x lO-^A1/2 [o^ + ilnA + O^/A1'2] , 

(44.260) 

where A = 1.58 x 105Z7/T and [a] =cm3/s. Tables [19] 
exist for the effective rate 
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oo   n'-l 

&nEl{T) = X) E tt'Cn-t'M (44.261) 
n'=n l'=0 

of populating a given level n£ of H via radiative recom- 
bination into all levels n' >n with subsequent radiative 
cascade (i —► /) with probability dj via all possible 
intermediate paths. Tables [19] also exist for the full rate 

n=N t=0 

(44.262) 

of recombination, into all levels above N = 1,2,3,4, of 
hydrogen. They are useful in deducing time scales of 
radiative recombination and rates for complex ions. 

44.9    USEFUL QUANTITIES 

(a) Mean Speed. 

" T 
1/2 

?e=(8*Bn      = 1.076042 xlO7 

= 6.692 38 xlO7^2 cm/s 

T 
vi =2.51116 x 10° 

-l 1/2 

300 

300 

1/2 

1/2 

cm/s 

(rrip/mi) '     cm/s 

where (rrip/m^1/2 = 42.850352, and T = 11604.45 TeV 

relates the temperature in K and in eV. 
(b) Natural Radius: |V(Äe)l = e2/Äe = kBT. 

Re = 
kBT -■"(?)*-(£)*■ 

(c) Boltzmann Average Momentum. 

/oo 

e-p'/2mkaT dp = (2wmekBT)^2 . 
•oo 

(d) De Broglie Wavelength. 

AHB = T-T = 
7.453 818x10 -6 

(p)      (2fmetBT)1/2 

1/2 
V 1/2 

cm 

- 43.035 (-j      A = -^rA. 
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45.1    INTRODUCTION 

Rydberg collisions are collisions of electrons, ions and 
neutral particles with atomic or molecular targets which 
are in highly excited Rydberg states characterized by 
large principal quantum numbers (n > 1). Rydberg col- 
lisions of atoms and molecules with neutral and charged 
particles includes the study of collision-induced transi- 
tions both to and from Rydberg states and transitions 
among Rydberg levels. The basic quantum mechanical 
structural properties of Rydberg states are given in Chap. 
??. This Chapter collects together many of the equa- 
tions used to study theoretically the collisional proper- 
ties of both charged and neutral particles with atoms 
and molecules in Rydberg states or orbitals. The pri- 
mary theoretical scattering approximations enumerated 
in this Chapter are the impulse approximation, binary 
encounter approximation and the Born approximation. 
The theoretical techniques used to study Rydberg colli- 
sions complement and supplement the eigenfunction ex- 
pansion approximations used for collisions with target 
atoms and molecules in their ground (n = 1) or first few 
excited states (n > 1), as discussed in Chap. ??. 

Direct application of eigenfunction expansion tech- 
niques to Rydberg collisions, wherein the target particle 
can be in a Rydberg orbital with principal quantum num- 
ber in the range n > 100, is prohibitively difficult due to 
the need to compute numerically and store wave func- 
tions with n3 nodes. For n = 100 this amounts to ~106 

nodes for each of the wave functions represented in the 
eigenfunction expansion. Therefore, a variety of approx- 
imate scattering theories have been developed to deal 
specifically with the pecularities of Rydberg collisions. 

45.1.1    Rydberg Collision Processes 

(A) State-changing Collisions 
Quasi-elastic ^-mixing collisions: 

A*{n)+B(ß)-+A*(n') + B((?), (45.3) 

A'^ + B-^A'in^ + B. (45.1) 

Quasi-elastic   J -mixing collisions:    Fine  structure 
transitions with J = \£± 1/2| -+ J' = \£ ± 1/2| are 

A*(n£J) + B-+ A*{nW) + B. 

Energy transfer n-changing collisions: 

(45.2) 

where, if B is a molecule, the transition ß —* ß1 represents 
an inelastic energy transfer to the rotational-vibrational 
degrees of freedom of the molecule B from the Rydberg 
atom A*. 

Elastic scattering: 

A*{i) + B-+A'(i) + B1 (45.4) 

where the label y denotes the set of quantum numbers 
n,£ or n,£,J used. 

Depolarization collisions: 

A*{n£m) + B ^ A*{n£rri) + B, 

A*(rUJM) + B^ A*{n£JM') + B . 

(B) Ionizing Collisions 
Direct and associative ionization: 

A+ + B(ß') + C 
BA+ + e" . A*(T) + 2?(/3)-{ 

Penning ionization: 

A*(j) + B-^A + B+-re- 

Ion pair formation: 

,4*(7) + B — A+ + B~ . 

Dissociative attachment: 

A*(j) + BC^A+B- +C 

(45.5a) 

(45.5b) 

(45.6) 

(45.7) 

(45.8) 

(45.9) 

'present address 

45.2    GENERAL PROPERTIES OF 
RYDBERG STATES 

Table 45.1 displays the general n-dependence of a 
number of key properties of Rydberg States and some 
specific representative values for hydrogen. 

45.2.1    Dipole Moments 

Definition: D,_/ = —cX,-_/ where 
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Table 45.1. General n-dependence of characteristic properties of Rydberg states. Adapted from Ref. [1]. 

Property n-Dependence n=10 n = 100 n = 500 n = 1000 

Radius (cm) n2aQ/Z 5.3 x 10-7 5.3 x 10"5 1.3 x 10~3 5.3 x lO"3 

Velocity (cm/s) VßZ/n 2.18 x 107 2.18 x 106 4.4 x 105 2.18 x 105 

Area (cm2) xa^/Z2 8.8 x 10"13 8.8 x 10"9 5.5 x lO"6 8.8 x 10~5 

Ionization potential (eV) Z2R0O/n2 1.36 x 10-1 1.36 x 10-3 5.44 x 10"5 1.36 x lO"6 

Radiative lifetime (s)° n5[31nn-i]/(A0Z
4) 8.4 x 10"5 17 7.3 x 104 7.22 hours 

Period of classical motion (s) 2*/w„,»±i = hn3/(2Z2R00) 1.5 x 10-13 1.5 x 10-10 1.9 x 10"8 1.5 x 10 7 

Transition frequency (s_1) Wn,n±l = 2Z2R00/(hn3) 4.1 x 1013 4.1 x 1010 3.3 x 10« 4.1 x 107 

Wavelength (cm) A„,n±l = 27rc/wn|„±l 4.6 x 10"3 4.6 570 4560.9 

"AQ = [8a3/(3V5*)j (VB/OO) 

Hydrogenic Dipole Moments: See Bethe and 
Salpeter [2] and the references by Khandelwal and co- 
workers [3-6] for details and tables. 

Exact Expressions: In the limit |k| —► 0, the dipole 
allowed transitions summed over final states are 

28   7(n-l)2n-5 

n 
3 

|Ai,_„|   = — n (45.11a) 
(n + 1)2"+5 ' 

(45.11b) 

2    2* i(i-i)2"-7/     m 
144n3(I + I)2n+7 V        «V 

Asymptotic Expressions: For n ^> 1, 

n3\Xu~n\2 

95 n_i\2"-7 

IV I2   — ^2        "' |A2,^„|     - 3n3        +       2n+7 

P^p-nf (45.11c) 

(45.12a) 

n3|X2^„|2 

n   |X2p_n| 

_„  5.731  13.163 , 24.295 
1.563 + —5- + r- + — 

n2    n4     nb 

39.426  58.808 
+  n8 + n10 ' 

180.785  1435.854  9341.634 
14.658 + 5— + 7— + 

n2      n4 

54208.306  292202.232 
+   ^   +   n*°   ' 
,o .o, 218.245  2172.891 
13.437 + r— + 4— 

n2 n4 

17118.786     117251.682 
+ ~z + 1«  

n" 

(45.12b) 

+ 731427.003 
„10 

(45.12c) 

45.2.2    Radial Integrals 

Definition: 

RnJ = r RntiryRnuirytdr, (45.13) 
Jo 

where Rnt(r) are solutions to the radial Schrödinger 
equation. See Chap. ?? for specific representations of 
Rni for hydrogen. 

Exact Results for Hydrogen:   For t = / - 1 and 
n?n'[7], 

R „7-1 _ ao(-ir,-f(4nnOW(»-",)"+n'-2<-2 

nl        —    <7 AfOP— 1W« J.n'^+"' 4(2^-l)!(n + n')n+n' 

r(n + l)!(n' + *-l)'l1/2 

* [(n'+t')\(n-t-l)\\ 

x {^(-n-M+l.-n' + ^Y) 

-(j^^Fxi-n + t-^-n' + t^Y^, 

where Y = -Ann'/(n - n')2. For n = n', 

K^ = iao/Z)^nVn2-P. 

(45.14) 

(45.15) 

Semiclassical Quantum Defect Representation: 
(see Ref. [8]). 

R n l 
nt 

-(I+^)JA+I(-«) 

+ -sin(xA)(l-e) 
7T 

where 

ne = 2n*n*7(n* + n*'), 
A = n*' - n* , 

At = f-t, e> = max(e,el), 
x = eA, e = \f\-{t>/nc)

2, 

(45.16) 

(45.17a) 

(45.17b) 

(45.17c) 

(45.17d) 

and Jn(y) is the Anger function. 
The energies of the states nt and n't' are given in 

terms of the quantum defects by 

83 



Eni = -Z2Roo/n'2,    n* = n-6t, 

En,v = -ZtRoo/n*'2,    n" = n' - Sv . 

Sum Rule: For hydrogen 

El p«''-i 2 _ V^ I T?n'1 M-l 

2„2 n~a: 

(45.18a) 

(45.18b) 

(45.19a) 

(45.19b) 

(45.20a) 

(45.20b) 

-2^2[5n2 + l-3/(/ + l)]. 

See §61 of Ref. [2] for additional sum rules. 

45.2.3    Line Strengths 

Definition: 

S(n'e',ne) = e2(2£+l)\rnlt',ni\2 

= e3max(/,0 RnJ ' , 

where £' = £ ± 1. For hydrogen 

S{n ,n) _ 32 ^— j   (nn )  („ + n,)2(n+n,)+4 

x{[2Fi(-n',-n+l;l;y)]2 

-[^(-n' + l.-njljY)]2}, 

where Y =-4nn'/(n-n')2. 
Semiclassical Representation: [9] 

where e = 1/n2, e' = 1/n'2. and the Gaunt factor G(An) 
is given by 

(45.21) 

Density of Line Strengths: For bound-free n£ —* 
E£' transitions in a Coulomb field, the semiclassical 
representation [1] is 

+ (l-I)ji(eA)°]g,        (45.28) 

where A = ftwn3/2Ä00 and e = ^/l - (* +±)2/n2. 
Asymptotic Expression for A ^ 1: 

^S(n£,E) = 
2(21 + 1) 

3TT
2 

C+l)4 (R0oY(t + 
\ fiw J        ri 

x [Kl/3{r,) + Kl/a(r,j\jj&,      (45.29) 

where n = (E/Roo)(£+1/2)3/6 and the Kv(x) are Bessel 
functions of the third kind. 
Line Strength of Line n: 

Sn=S(n) = £S(n + *,n)p». (45.30) 
**o 

Born Approximation to Line Strength Sn: [1] 

Z R0 5„B = 
E sMi+«./«)E(i-ä)p 

0.821n(l + £i)+i^ 
Z2R, 

E 
I Ale, 

ee 

(45.31) 

G(An) = xV3 |An| JA„(An)J'A„(An).        (45.23)      where e = |£„| Z2/R00 and ee = e/Z2i?0 

where the prime on the Anger function denotes differenti- 
ation with respect to the argument An. Equation (45.23) 
can be approximated to within 2% by the expression 

45.2.4    Form Factors 

1- 
1 

4|An|' 

Relation to Oscillator Strength: 

S(n',n) = ^2S(n'£',n£) 

(45.24) Fn.n(Q) = £ E l^ml e<Q"r l"Ym'>|2 • <45'32) 
l.m I'm' 

Connection       with       Generalized       Oscillator 
Strengths: 

i,i< 

,R, 
fn'n{Q) = ~27T23

Fn'n(Q) ■ 
"  V   "0 

(45.33) 

2   2 •"•<» V^ * 
= 3e ao-r— 2_^Wt>,nty 

i.i' 

Connection with Radial Integral 

hu  max(£,£') 
— fn'l',nt = 

3/?oo  (2/+1) 
R\ n't' 

nt 

(45.25) 

(45.26) 

(45.27) 

Semiclassical Limit: 

32 
Hm/n,n(Q) = g^ 

nn 

An(n + n'). 

where Jm(y) denotes the Bessel function. 

AnJA„(An)JAn(An) 

(45.34) 
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Representation as Microcanonical Distribution: 

Fn'MQ) = (2/ + I)—!22" / <*P \9nl(p)\2 

(45.35) 

4Z»ü,oa  [ dpdr    (p*      Ze> \ 

x 6 
(p - RQ)2     Ze2 

2m r 
-£?„. 

29 

~ 3x(nn')a (K2
 + «2)3(*2 + «l)3 ' 

where K = Qa0/Z and /c± = |l/n ± l/n'|. 

(45.36) 

(45.37) 

45.2.5    Impact Broadening 

The total broadening cross section of a level n is 

<rn = {*al/Z4)nASn . (45.38) 

The width of a line n —> n + k is [10] 

7n,r>+* = "e [(^n) + {^n+k)] , (45.39) 

where ne is the number density of electrons, and 

(wn> = £ <v<7«+*.»> = a*» (45.40a) 
*#0 

£303/2 
_ n^ira^VB   J    e-E/kBTs .   E dE f Jo '(^Äoo)3 

,     (45.40b) 

where 0 = kBT/Z2R0O. See Chap. ?? for collisional line 
broadening. 

45.3    CORRESPONDENCE 
PRINCIPLES 

These are used to connect quantum mechanical ob- 
servables with the corresponding classical quantities in 
the limit of large n. See Ref. [11] for details on the equa- 
tions in this section. 

45.3.1    Bohr-Sommerfeld Quantization 

Ai = JiAwi <f> pidqt = 2xn(n,- + a,), (45.41) 

where n, = 0,1,2,... and a,- = 0 if the generalized 
coordinate g,- represents rotation, and o/j = 1/2 if ?,- 
represents a libration. 

45.3.2    Bohr Correspondence Principle 

En+, -En = /»!/„+,,„ ~ shun, s = 1,2,... < n, 

(45.42) 

where vn+t,n is the line emission frequency and w„ is 
the angular frequency of classical orbital motion. The 
number of states with quantum numbers in the range 
An is 

AN = "[I An = JJ (A JiAwi) /(2*h)D 

•=1 i=l 
D 

= n(AwA«0/(2*ft)1\ (45.43) 
«=i 

for systems with D degrees of freedom, and the mean 
value F of a physical quantity F(q) in the quantum state 
¥ is 

F =(*|F(g)W=Eam«n^eiu (45.44) 

where the Fmn are the quantal matrix elements between 
time independent states. 

The first order S-matrix is 

S}i = -£j. jH dtj2* " Vmt)Ah)]eUu(-u-1)dtl, 

(45.45) 

where R denotes the classical path of the projectile and 
r the orbital of the Rydberg electron. 

45.3.3    Heisenberg Correspondence 
Principle 

For one degree of freedom [11], 

/■OO 

2#)(R)=/    rm(r)F(rtR)Mr)dr (45.46) 
Jo 

= i± /        F^[r(t)]ei,utdt. (45.47) 
2v J0 

The three-dimensional generalization is [11] 

FL% ~ ^(C)(J) = 8^8 / F*M3> w)]e»-dw,   (45.48) 

where n,  n' denotes the triple of quantum numbers 
(n,l, m), (n',l', m'), respectively, and s = n — n'. 

The correspondence between the three dimensional 
quantal and classical matrix elements in (45.48) follows 
from the general Fourier expansion for any classical 
function F^^r) periodic in r, 
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F(c)[r(t)] = ^FW(j)exP(-.-s.w).        (45.49)     45.4    DISTRIBUTION FUNCTIONS 

where J,w denotes the action-angle conjugate variables 
for the motion. For the three dimensional Coulomb 
problem, the action-angle variables are 

Jm — mh, wm = <I>E, 

where IJ>E is the Euler angle between the line of nodes 
and a direction in the plane of the orbit (usually taken 
to be the direction of the perihelion or perigee), and is 
constant for a Coulomb potential. The Euler angle <J>E is 
the angle between the line of nodes and the fixed x-axis. 
See Ref. [11] for details. 

The first order S-matrix is 

Sji = - 2^h 

»2ir/u) fix 

/ dU 
JO J-c 

dtV[B.(t),r(t + te)y itUtm 

(45.51) 

with s = i - /, R is the classical path of projectile, 
and r(te) is the classical internal motion of the Rydberg 
electron. 

45.3.4    Strong Coupling Correspondence 
Principle 

The S-matrix is 

S}i = ^- dteexpli(su)te) 

-ij°° V[R(t),r(t + te)]dt}. 

See Refs. [11-14] for additional details. 

(45.52) 

45.3.5    Equivalent Oscillator Theorem 

|;«n(WnWe^ = |: ad+J(t)Vd(t)e-^.  (45.53) 
d=-f 

The S-matrix is 

5„-,» = au.(t - oo) (45.54) 

=  F pL exp [is.w - { /°° V(w + ut, t)dt\ . 
J0    8ir3        L n J-oo J 

The function Wa(x)dx characterizes the probability 
(distribution) of finding an electron in a Rydberg orbital 
a within a volume dx centered at the point x in phase 
space. Integration of the distribution function Wa over 
all phase space volumes dx yields, depending upon the 
normalization chosen, either unity or the density of states 
appropriate to the orbital a. 

45.4.1    Spatial Distributions 

Distribution over n,£, m [1]: 

Wntm{r,6)r2em6drd0 

r2 sin 0drd6 
~ T2a2r{[e2 _ (1 _ r/a)2] [sin2 0 _ (m/*)2]}l/2 ' 

(45.55) 

where a = Ze2/2 \E\ = n2ft2/mZe2ft2 is the semimajor 
axis, and e2 = 1 - (1/n)2 is the eccentricity. 

Distribution over n,l: 

Wnt(r,6)r2 sin0 drdO 

= gM 
r2 sin 0<frd0 

27ra2r[e2-(l-r/a)2] 21I/2 ' 

where g(nl) = 21. 
Distribution over n: 

11/2 2 r       /       r\2l1/2 rdr W.(r)r>dr = y(n)-[l-(l--) j      -^ , 

with g(n) = n2. 

45.4.2    Momentum Distributions 

Distribution over n,t [1]: 

Wni(p)p2dp = g(nt)- 
dx 

ir(l + x2)2' 

where x = p/pn and p2 = 2m \E\. 
Distribution over n: 

Wn(p)p2dp = g(n) 
32    x2dx 
T (1 + x2)4 

Sum Rules: 

where x = nkao/Z, and 

(45.56) 

(45.57) 

(45.58) 

(45.59) 

i"f<«+i)W)l!t! = ^TO'   (4"°b) 
1=0 
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G„/m(k) = gnt(k)Ylm(k), (45.61a) 

(-ix) 
(x2 +1) ̂ e/Mfcl)'   (45.61b) 

where Cf \y) is the associated Gegenbauer polynomial. 
See Chap. ?? for additional details on hydrogenic wave 
functions. 
Quantum Defect Representation: [15] 

9ni(k) = - 
2    r(n*-l)   l1/2

n.(ao/z)3/222(/+i) 
7rr(r»*+*+l) 
(I+!)!(-,•*)' 

x \z> + iy+> J(n*>e+1->x)> (45.62) 

where n* = n — S, 6 being the quantum defect, and 
x = n'kao/Z. The function J' is given by the recurrence 
relation 

J(n*,l+l;X) = - 

J(n',0;X) = - 

8 
2(2t + 2)dX 
n*sm[n*(ß-ir)] 

J(n*,£;X),     (45.63) 

sin(/? — ir) 

sinn'TT f1    (l-s2)sn* 

Vo (1- 2Xs + s2) 
ds, 

(45.64) 

where X = (x2 - l)/(x2 + 1), and ß = cos"1 X. In the 
limit ^ < n*. Eq. (45.62) becomes 

IM*)I' 
n*a0\

3 1 - (-1)* cos [2n* (/?-*)] =<m 7TZ2(a;2 +1)2 

(45.65) 

Classical Density of States: 

**)./«[*-*(,.,» **=J!*.       (45.66) 
,5*2 

45.5    CLASSICAL THEORY 

The classical cross section for energy transfer AE 
between two particles, with arbitrary masses mi, m2 and 
charges Z\, Z2, is given by [16] 

O-AE(VI,V2) = 
2T/\2 27r(ZiZ2e
2K) 

«2 |A£|3 

AÜ7 
1 + COS20 +  — COS0 

pvV 

(45.67) 

valid for -1 < cos6-AE/(/ivV) < 1, and 0-AE(VI, V2) = 
0 otherwise, where 

V = V! - V2 , (45.68a) 
V = (mivx + m2v2)/M, (45.68b) 

*       1 cos 0 = -77V» V, 
vv 

(45.68c) 

and n = mim2/M, M = mi + m2. If particle 2 has 
an isotropic velocity distribution in the lab frame, the 
effective cross section averaged over the direction n2 of 
v2 is 

«l^AB^vi.vj) = — / dh2 |vi - v2n2|orAB(vi,v2). 

(45.69) 

If vi is also isotropic, then the average of (45.69), 
together with (45.67), gives for the special case of a 
Coulomb potential 

»A*(vi.va) 
2\2 r s{Z\Zlt  )'     .   2 2\/,/2       ,,I2\(,,-1       ,,-l\ 

+(„2 + v\ + «? + v?)(vu - vi) - |(t£ - if) 

where        v[ = (u2 - 2AE/m1)
1/2 , 

«,2=(t,2+2A£/m2)
1/2, 

(45.70) 

(45.71) 

(45.72) 

and vu, vi are defined below for cases (l)-(4). With the 
definitions 

Aei2 = 4mim2(^i - E2)/M
2 ,    Ami2 = |mi - m2|, 

M2     \    vi v2) 

the four cases are 

(1) AE > Aei2 + |Aei2| > 0, and 2m2t>2 > Ami2«i: 

vi = v'2- vi ,    vu = v[ + v2 ,    AE>0;        (45.73a) 

vi = v2 - vi,    vu = vi + v2 ,    AE < 0.        (45.73b) 

If 2m2t>2 < Ami2Vi, then (r^E(vi,v2) = 0, 

(2) Aci2 — Aei2 < AE < Aei2 + A£i2, and mi > m2: 

vi = v2- v'i,    vu = vi + v2 ,    A£ > 0;        (45.73c) 

vi = v2-vi,,    vu = v'1 + v'2,    AE<0        (45.73d) 

(3) AE < Aei2 - |A£i2| < 0, and 2miVi > Ami2v2: 

vi = vi - v2 ,    vu = vi + v2 ,    AE > 0;        (45.73e) 

v, = v'i -v'2t    vu = v'i + v'2 ,    AE < 0.        (45.73f) 

If 2mit>i < Ami2»2 then O^B^I,^) = 0, 
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(4)   Aei2 + Aei2 < AE < Ae\2 - Aiu, and mi < m2: 

vi = vi-v2,    vu = v'1 + v2,    AE>0;        (45.73g) 

vi = vi-v2)    vu = vi + t>2)    AE<0.        (45.73h) 

If 2mi«i < Ami2t>2 then (r^ß^i,^) = 0. 

Since vi and v'2, given by (45.71) and (45.72) respectively, 
must be real, <TAE(VI,V2) = 0 for AE outside the range 

-\m2v\ <AE< \miv\ (45.74) 

which simply expresses the fact that the particle losing 
energy in the collision cannot lose more than its initial 
kinetic energy. 

The cross section (45.70) must be integrated over 
the classically allowed range of energy transfer AE and 
averaged over a prescribed speed distribution W(v2) 
before comparison with experiment can be made. See 
Refs. [16,34] for details. 

Classical Removal Cross Section [17]. The cross 
section for removal of an electron from a shell is given by 

r°° 
ar(V)= I    f(v)<rAE(vi,v2)dv. (45.75) 

Jo 

Total Removal Cross Section [17]. In an indepen- 
dent electron model, 

alotal(V) = Nshen<rt(V), (45.76) 

where JVgheii is the number of equivalent electrons in a 
shell. In a shielding model, 

Ttotaln/\ _ 00 = i-^Sgi^W) JV8hell0-r(V), 

(45.77) 

where f2 is the root mean square distance between 
electrons within a shell. Experiment [18] favors (45.77) 
over (45.76). See Fig. 4a-e of Ref. [17] for details. 

Classical trajectory and Monte-Carlo methods are 
covered in Chap. ??. 

45.6    WORKING FORMULAE FOR 
RYDBERG COLLISIONS 

45.6.1    Inelastic n, ^-Changing 
Transitions 

A*(n£) + B-+ A*(n') + B + AEn,<nt, (45.78) 

where AEn>tnt = E„> - Ent is the energy defect. The 
cross section for (45.78) in the quasi-free electron model 
[19] is 

**'MV) = jyj£fasU'.ntW,    '<»•     (45-79) 

where a„ is the scattering length for e    + B scatter- 
ing,   A   =   n*a0Wn',nl/V>  un',nl   =   \AEn>tnt\/fl,  E„i   = 
-Roo/n'2, and Ent = -Roo/n*2, with n* = n-St. Also, 
t>B is the atomic unit of velocity, and 

fn'.nlW = — '»-'(!)-H1+ä)]' (45- 
Limiting cases:    fn',ni(ty   —►   1  as A 

/n',n*(A) ~ 8/(3TTA
3
) for A > 1. Then 

0~n',nl ~ < 

2ira2 

(F/VB)
2
«'

3
 ' 

16a?Vn3 

A-+0 

,   A>1 
3vB \SI + An\3 

Rate Coefficients: 

= (^AB)2n'3^',n/(T); 

80) 

0,  and 

(45.81) 

(45.82a) 

(45.82b) 

where VT = s/2kBT/n, \T — n*a0un>ini/VT, An = 
n' — n, and fi is the reduced mass of A-B. The function 
W,n/(A:r) m (45.82b) is given by 

yv,n/(AT) = eA*/4erfc(lAT) 

l-^|ln(l/A^),    AT^0      (45g3b) 

2/(v^FA3), AT > 1 

and erfc (x) is the complementary error function. 

45.6.2    Inelastic n —► n' Transitions 

A*(n) + B^ A*(n') + B + AEn.n . 

(A) Cross Sections: 

(2^+1) 

w 
n2     <Tn'l'y 

2*a2 

nt i 

0-„>,n(V) = Fn'nW » {V/vB)2n'3 

where A = na0unin/V = \An\vB/(n2V), and 

F„.„(A) = - 
7T 

tan' 

Limiting cases: 

2na2 

"(!)- 

2A(3A2 + 20) 
3(4 +A2)2  . 

(45.84) 

(45.85) 

(45.86) 

(45.87) 

OVn ~  < 
iYhln'*) ' 

-elastic 
Je--B 256^Laitjf(V7t>B)3n7 

15*-|An|' 

A<1 

A»l 
(45.88) 
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where af^ß is the elastic cross section for e~ + B 
scattering. 
(B) Rate Coefficients: 

Kn.i.,„t(T) = (Van.e,nt) , (45.89a) 

Kn>n(T) = Y, ^^■KnU'M > (45.89b) 
i,i< 

.elastic 

where 

^SW>)W      (45-89c) 

*V.(*r) = e^/« {e^/8erfc(lAT) - J=2>_3 ^ 

(45.90a) 

{ (45.90b) 
l-8AT/3v/5r,   Ar < 1 

26/(v^4) -       ^T > 1 

where £>_„(j/) denotes the parabolic cylinder function. 
Limiting cases: 

KMT) J   ^J      "^' nnl  j     I   2%<^/2*Br\
2 

(45.91) 

Born Results: 

8* 1   /'fc+fc' p 
*2 »2 J|t-k'| 

(Q) 
d(Qa0) 

(Qao? ' 

(A) Electron-Rydberg Atom Collision: 

(45.92) 

Pn'n = 
_ 87ra2.R0 

Z2£r 
Roo / r 11 (£re')3/2 W1 

+ 1- 
(£/)3/2 0.6 

AnJ e + ee (Ae)2 [3A 3^ + 7]}(45-93> 
for n' > n, where ee = E/{Z2R00), e = 1/n2, t' = 1/n'2, 
and Ae = e — e'. 
(B) Heavy Particle-Rydberg Atom Collision: 

87rag22 f r 11 (ee')3/2 , „ 

r       0.61     ee    (Q
3/2[  4        11] 

L      AnJ t + ee (Ae)2 [3An     £J / ' 
(45.94) 

where ee = me/MZ^Roo with heavy particle mass and 
charge denoted above by M and Z, respectively, and all 
other terms retain their meaning as in Eq. (45.93). 

45.6.3    Quasi-elastic I -Mixing 
Transitions 

{ 

(45.95a) 

(45.95b) 

(i—mixing)   \""* ant = 2^ ^'t'.nt 
l'4l 

(Tgeo = 47ra2
)n

4,    n < nma 

2na2
svl/V2n3,    n > nma 

The two limits correspond to strong (close) coupling 
for n < «max, and weak coupling for n » nmax, and 
expressions (45.95b) are valid when the quantum defect 
St of the initial Rydberg orbital nl is small. nmax is 
the principal quantum number, where the ^—mixing cross 
section reaches a maximum [20], 

nmax~(^)2/7. (45.96) 

For Rydberg atom-Rare gas atom scattering, nmax = 
8 — 20, while for Rydberg atom-alkali atom scattering 
"max = 15 — 30. 

45.6.4    Elastic nl —*■ nl' Transitions 
Am(nl) + B-*A*{nt!) + B. 

(A) Cross Sections: 

27rC„as
2 

.elastic/T^x   
•"     V   '~{V/vB)W 

(45.97) 

(45.98) 

(45.99) 

valid for n* > [vB |a8|/(47a0)]1/4 with 

ß      /•l/v'2 
C„ = 4/        [K(k)]2dk, 

'  Jo 
where K(k) denotes the complete elliptic integral of the 
first kind. 
(B) Rate Coefficients: [21] (3 Cases) 

With the definitions 

VB = vB/vrms,    vIms = y/(8kBT)/nir, 

f(y) = sT1/2(i - (i - y)e-') + f'2n(v), 
V = (^a,)2/(4;ra2n'8), 

m = (KN/4ao)1/4, 
11/3 

(45.100) 

(45.101) 

(45.102) 

(45.103) 

(45.104) n2 = 0.7 [|a.|i£/6/(adaj|)1/6 

where ay is the dipole polarizability of A*, then 

( 8?ragn*4, "* < nj 

47r1/2a0|ag|i/B/(l/) , «l < n* < n2 

<•£> ~ < 
7(ad^)2/3 + ^i !»4 

2.7q2
1/

2(ad^B)1/3 

a0n*6 n* > "2 

(45.105) 
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45.6.5    Fine Structure ntJ 
Transitions 

nlJ' 

A*(nlJ) + B — A*(nW) + B + AEJ.J .      (45.106) 

(A) Cross Sections: (Two cases) 

Cnorm^n*4, (45.107) „nlJ'(V\ _    2,// + 1 
a»"<v>- 2(21+1) 

valid for n* < n0(V), and 

jW„2.,2 

V2n 
1- »S(*0 

2n ,♦8 

valid for n* > no(V), where the quantity n0(V) is the 
effective principal quantum number such that the impact 
parameter po of B (moving with relative velocity V) 
equals the radius 2n*2a0 of the Rydberg atom A*. n0(V) 
is given by the solution to the following transcendental 
equation 

(45.109) 

The constant cn0rm in (45.107) is equal to 5/8 if Ogeo = 

* (r2)nl, or 1 if <Tgeo = 47ragn*4. The function <p%(vj'j) 
in (45.108) is given in general by [22] 

V%(UJ.J) = t$A»j-j)/&)A0), (45.H0a) 
l fOO 

$Aw) = E^'Jw /    i?(*)JJ(*W*• (45-110b) 
.=0 J"i'l 

vJ.j = \Sw-Su\^, (45.110c) 

where j,(z) is the spherical Bessel function and the 
coefficients C$ and A^j in (45.108) and (45.110b), 
respectively, are given in table 5.1 of Beigman and 
Lebedev [1]. The quantum defect of Rydberg state n£J 

is Sa. For elastic scattering, VJJ = 0, and ipjj(0) = 1. 
Symmetry Relation: 

&&•*) = !£&&&'>)■ (45.111) 

(B) Rate Coefficients: 

<•#> ■ 2(2/+1) 

1/2 

X   XOg ™(^)<  <45112) 

where < = ng(Vr)/n*8, and 

^(0 = Vc E2(0 + ^(1-^) (45.113) 

where E2OO is an exponential integral. 
Limiting cases: 

(    2J' + l 
2(2/+ 1) 

Cnorm4iraon*4,   n* < n„. 

2nCf)jayB 

V^n*4 "* > "max 

(45.114) 

where n*max = (3/2)^sn0(V) if VJ>J < 1. 

(45.108)     457   IMPULSE APPROXIMATION 

45.7.1    Quantal Impulse Approximation 

Basic Formulation [23] 

Consider a Rydberg collision between a projectile (1) 
of charge Z\ and a target with a valence electron (3) in 
orbital ip{ bound to a core (2). The full three-body wave 
function for the system of projectile + target is denoted 
by \P,-. The relative distance between 1 and the center- 
of-mass of 2 - 3 is denoted by <r, while the separation of 
2 from the center-of-mass of 1 — 3 is p. 

Formal Scattering Theory: 

(45.115) 

where the Möller scattering operator fl(+) = 1 + G+Vi, 
and Vi = Vb + Vi3. 

Let  Xm   be  a  complete set  of free-particle  wave 
functions satisfying 

(Ho-Em)Xm=0, (45.116) 

and define operators w+(m) by 

4(m)Xm = (l + Em-H0
1-Vij+UVii) Xm ' 

(45.117) 

where Vy denotes the pairwise interaction potential 
between particles t and j (i,j - 1,2,3). Then the action 
of the full Green's function G+ on the two-body potential 
Vij is 

G"%- = K(m)-l] 
+ G+ {(Em -E) + Via + V13 + V23 - Vij} 

x [w+(m) - 1] . (45.118) 

Projection Operators: 
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6j(m) = W+(m)-l, (45.119a) 

(45.119b) 

G+Vtj fa) = £G+Vij \xm) (Xm | V>.) (45.120a) 
m 

= {6++G+[^3,6t.] 

+G+ [Via + Vis - Vij] bfjim)} fa) . (45.120b) 

Möller Scattering Operator: 

fi+ = (W+3 + «+  - 1) + G+ [723, (6f8 + *&)] 
+ G+(V13bf2 + V12bt3). (45.121) 

Exact T-matrix: 

2V = W/|Vjr|(W++W+2-l)ifc> 

+ (V-/IV, |G+(7136f2 + 7126+ )^> . (45.122) 

The impulse approximation to the exact T-matrix 
element (45.122) is obtained by ignoring the second term 
involving the commutator of 723- 

9i _> *™P = (W+ + w+ - l)V-,-. (45.123) 

Impulse Approximation: Post Form. 

T$p = (4>j | V, |(W+ + w+ - l)V,-> • (45.124) 

The impulse approximation can also be expressed using 
incoming-wave boundary conditions by making use of the 
prior operators 

«5(™)X« = (l + ^.ff/.Vy-fc1*') Xm ' 

W«i =SWtf(m)IXm)^m| 

(45.125a) 

(45.125b) 

The impulse approximation (45.124) is exact if V23 = 
const, since the commutator of V23 vanishes in that case. 

Applications [23] 

(1) Electron Capture: X+ + H(t) -+ X(f) + H+. 

7J7P = (t/>/ I Viz + Vm(ut2 + uta ~ 1)V>.) •    (45.126) 

Wave functions: V"i = e*ki"Vi(r), i>j = elVrP<p]{x), 
Xm = (27r)~3exp[i(K-x + k-/))], where the ipn are hy- 
drogenic wave functions. 

If X above is a heavy particle, the Vn term in (45.126) 
may be omitted due to the difference in mass between the 

projectile 1 and the bound Rydberg electron 3. See [23] 
and references therein for details. With the definitions 

4aS2 

z = 
(T - 2S)(T - 2aS) 

6 = ißK-p-K, 

ti = K/o + v, 
Mi 

a = 
Mi + me ' 

k = ak2 — (1 — a)k/ , 

t = (K-p)/a, 

T = ß2 + P2 

v = aZi/K 

N(v) = e*"l2Y{l - iv) 
. M2 
6 = T7  

K = aki - (1 - a)k,-, 

p = dkf — k,-. 

the impulse approximation to the T-matrix becomes, in 
this case, 

^r-^I^KaV-.} (45.127) 

= 2^3 / ^(")*(ti W, K, p),       (45.128) 

where, for a general final s-state, 

:F(/,K,p) = f ^(x)e'>xiFi[lV, 1;,'(**- K-x)]dx. 

(45.129) 

where in (45.128) fft(ti) denotes the Fourier transform 
of the initial state. The normalization of the Fourier 
transform is chosen such that momentum and coordinate 
space hydrogenic wave functions are related, y>n(r) = 
(2x)~3/exp(itiT)</„(ti)dti, where n denotes the prin- 
cipal quantum number. Below the variable ß = aZi/n. 
For the case / = Is, 

tf3/2 d 
yfi dß 

(1 - iv)ß 
T2 

(45.130) 
ivjß-JK) (    T    \ 
T(T-2S)  \T-2SJ 

evaluated at ß = aZ\. For the case / = 2s, 

^(2s,K,p) = -^[(| + ^)I(l/(0^1-K,p) 

(45.131) 

evaluated at ß = aZ\/2. For a general final ns—state /, 

I(v,a,ß,K,p) = y*( T-2aS 
T   \T-26 

x (J7cosh7ri/±»Vsinhirj/),   (45.132) 

where the complex quantity U + iV is 

U + iV = (4z)'"^fl^aF1(-.V, -.V; 1 - 2.V; 1/z) 
r(i -1-11^) 

(45.133) 
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(2) Electron Impact Excitation: 

e-+H(i)->e- + H(/). (45.134) 

Neglecting V12 and exchange yields the approximate T- 
matrix element 

i#'p~(*/lvri«K*i> (45135> 

(2*a) 

x   fdK N{p)gi(t1)e
itl-T

1F1(iu, 1; iKx - tK-x) 

= -Z£*    /«flK^HftCtOjJCtjJI^.O.O.-K.-q), 
{2iray J 

where 

IfaO.O.-K.-q) 

= lim 
4* /?2 + S2 

^0 /?2 + q2 Iß2 + «2 + 2q-K - 2ißK_ 

Air 2K        \ 
H cos0      A{zosff), 

9 I 
with 

/     1,       cosO>-q/2K 
A(cos9) = { e_™     cos6<_q/2K 

(45.136) 

(45.137) 

(45.138) 

(45.139) 

and cos 0 = K-q, t2 = ti + 6q and q = k, - k/. 

(3) Heavy Particle Excitation: [24] 

H+ + H(ls) - H+ + H(2«). (45.140) 

r?   _ _z12
ujy r°° dKN^K2 f d(cosö) 

2K \       ~ 
1 + COS0       A{cos9), 

9 I 
(45.141) 

where 

•7,      ^      2ir 
A(cos 6) = -p4 

q£>(J>-262)       8(362-£>) 
(a2 _ £2)3/2   + (a2 _ £2)1/2 

48T
2
D

2
6

2
       16D [yD - (3T + 4a)62] 

(72 _ £2)5/2 + (72 _ £2)3/2 

+ 32QP-362) 
(T2_^2)l/2 J4(COS 6), (45.142) 

4t,V 8 = —Bme 
aq 

6 = 4ß,    7 = 4a + D, 

D = ^l(q + 2Kcos6), 
a 

with J4(COS0) given by (45.139), and 

a = b2 + v2 + ¥- + -(- + AE)cose,   (45.143a) 
a2      aq\n ) 

2"|1/2 

-(£ + AE\ ,     (45.143b) 

(45.143c) 

(45.143d) 

while v and N(y) retain their meaning from (45.128). 

(4) Ionization: e" + H(t') -+ e" + H+ + e". 

irr ~ -%m«<y - *q) (P^K)" •(4{U44) 

where K = a(k - 6q - v) and q = k< - k/ and exchange 
and V12 are neglected. 

(5) Rydberg Atom Collisions: [11,25] 

A + B(n)^A + B(n') (45.145) 

-+A + B++e~. (45.146) 

Consider a Rydberg collision between a projectile (3) and 
a target with an electron (1) bound in a Rydberg orbital 
to a core (2) (see [11,25] for details). 

Full T-matrix element: 

= (^(n)e,'ki-r'|r(r1,r8)|*i+)(ri>r8;k8)) , (45.147) 

with primes denoting quantities after the collision, and 
where the potential V is 

F(ri, r3) = Vi3(r) + Vacfo + an),    r = ri - r3, 

(45.148) 

with a = Mi/(Mi+M2), while the subscript C labels the 
core. The impulse approximation to the full, outgoing 
wave function V}+' is written 

*jmp = (27r)3'2 /(/i(ki)$(ki,k3;r1,r3)<iki, (45.149) 

ft(ki) = (2^71 / Mn)e-iVl-ld*i ■ (45-150) 

Impulse approximation: 

7j7(k3, k3) = J &i J dk[ ff;(ki)*(ki)ris(k, k') 

x*[P-(ki-ki)], (45.151) 

where Ti3 is the exact off-shell T-matrix for 1-3 scatter- 

ing, 

r13(k, k') = (exp(«V-r)| Vis(r) |V-(k, r)) .      (45.152) 

The delta function in (45.151) ensures linear momentum, 
K = ki + k3 = ki + k3, is conserved in 1-3 collisions, 
with 

ki = ki + (ks-ki)ski + P, (45.153a) 

k' =      M\   (kl + ks) - k3 = k + P . (45.153b) 

Elastic scattering: 
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Ii.(k3)k3) = J^(kOff.CkOT^k.k)*!,     (45.154) 

where k = (M3/M)ki + (Mi/M)k3 and M = Mi + M3. 
Integral cross section: for 3—(1,2) scattering, 

x/is(klk')|y.-(k1)>|Jdk',> (45.155) 

where MAB is the reduced mass of the 3—(1,2) system, 
M\z the reduced mass of 1-3. The 1-3 scattering 
amplitude /13 is given by 

/13(k,k') = --L (2^8) T13(k,k').        (45.156) 

Six Approximations to Eq. (45.151) 

(1) Optical Theorem: 

O"tot(fc3) = -; T2—^>'i'(k3,k3) 
K3    n 

= - / |«(ki)|2 [»I3«T?S(I>13)] dk1,     (45.157) 
v3 j 

where cj3 is the total cross section for 1-3 scattering at 
relative speed t>i3. The resultant cross section (45.157) 
is an upper limit and contains no interference terms. 

(2) Plane-wave Final State: 

Mn) = (2n)~3'2 exp(i/c'1.r1), (45.158) 

gJ(k'1) = 6(k'1-K'1), (45.159) 

T/i(k3)k3) = <7,(k1)T13(k)k'),    k1 = K1-P,   (45.160) 

■Pt = (IT)
2
T ^? ^k'k'tf(45-161) dk3dk[       \ Jwi3 J   K3 

(3) Closure: 

jt 9,(K)9j(K) = W ~ K) - (45-162) 

(45.163) 

where ki = (M3/M)(kx + k3) - k3. 
Conditions for validity of (45.163): (a) k3 is high 

enough to excite all atomic bound and continuum states, 
and (b) Jb3

2 = (k% - 2eji/MAB) can be approximated 
by ifc3, or by an averaged wavenumber k'3 = (fc| — 
2€fi/MAß)1^2, where the averaged excitation energy is 

eSi = ln(£/l) = £/,,- lney (2^)-1 •      (45-164) 

and the /y are the oscillator strengths. 

(4) Peaking Approximation: 

r;;ak(k3)k3) = F/l(P)T13(k, k'), (45.165) 

where F/,- is the inelastic form factor 

FjilP) = JtiOn + P)ft(ki)dki (45.166) 

= (V-/(r)|exp(iP.r)|V,(r)). (45.167) 

(5) T13 = rls(P): 

7),(k3)k3) = Tl3(P)Ffi(P). (45.168) 

(6) T\3 = constant: 
/i3 = aB = constant scattering length. 

Validity Criteria 

(A) Intuitive Formulation: [25] 

(i) Particle 3 scatters separately from 1 and 2, i.e. r^ > 
.Ai^; the relative separation of (1,2) > the scattering 
lengths of 1 and 2. 
(ii) Ai3  <C  ri2, i.e., the reduced wavelength for 1-3 
relative motion <C ri2-   Interference effects of 1 and 2 
can be ignored and 1,2 treated as independent scattering 
centers. 
(iii) 2-3 collisions do not contribute to inelastic 1-3 
scattering. 
(iv)  Momentum impulsively transferred  to  1  during 
collision (time TCO\\) with 3 >> Momentum transferred to 
1 due to V12 i.e., 

P>(Vw|-Wi2|M
rcoii. (45.171) 

For a precise formulation of Validity Criteria based 
upon the Two-Potential Formula see the Appendix of 
Ref. [25]. 

Two classes of interaction in A-B(n) Rydberg col- 
lisions justify use of the impulse approximation for the 
T-matrix for 1 — 3 collisions: (i) Quasiclassical binding: 
V^ore = const, (ii) Weak binding: 

E3 > AEe ~ <V>n(r)| Vlc(r) |^„(r)) (45.172a) 

(^n(ri)| - 2^V? \M*i)) ~ k»l > (45.172b) 

where E3 is the kinetic energy of relative motion of 3, 
and AEe is the energy shift in the core. The fractional 
error is [26] 
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/i3 AEC 

A   h 
(^+rdeIayj <1, (45.173) 

where A ~ fcj1 is the reduced wavelength of 3, /13 is the 
scattering amplitude for 1-3 collisions and Tdeiay is the 
time delay associated with 1-3 collisions. 
Special Case: for nonresonant scattering with Tdeiay = 
0 

/l3 |gf»| 

A   E3 
<1, (45.174) 

which follows from (45.173) upon identifying the shift in 
the core energy AEC with the binding energy |e|. 

Condition (45.174) is less restrictive than (45.172a) 
or (45.172b) since /13 can be either less than or greater 
than A. 

45.7.2    Classical Impulse Approximation 

(A) Ionization: For electron impact on heavy particles 
[27], the cross section for ionization of a particle moving 
with velocity t by a projectile with velocity s is 

g(S)t) = 4^r3^[iM + 5(z)l)    (45.175) 
'        U* TT12 Ji      Z*   L    Z J 

where 

-^^(*«/a—öi1/a) (45.176a) 

B(Z) = 2m^ [(mi + m2)(s2 " *****'* ~ X",2) 

-(m2 - mi)(xj£2 - x\[2) (45.176b) 

For electron impact, (45.176b) is evaluated at mi = 1. 
The remaining terms above are given by 

u = v2 = Ionization potential of target, 

xoi = (s2 +t2 - 2st cos 0.), i=l,2, 

|K0±KI| < 1 
cosö,- = t   1, Ko ± «1 > 1       , 

/Co ± «1 < —1 

«0 

{K0±Ki, 

Equal Mass Case: (mi = m2) 

J^\2{s2-lfl2 

Q(s,t) = 
3s2 u2 

4    1 

t 

2<2 + 3 - 
3    ' 

3s2 u2 s2-t2J 

1< s2 < t2 + 1 

S2 > *2 + 1 . 

(45.177) 

Integrating over the speed distribution (see Sect. 45.4), 

OM_321 rQ(s,t)t2dt 
(<2+i) 4' (45.178) 

which is then numerically evaluated. For electrons, the 
integral can be done analytically with the result 

<?(!/) = 
8 

3*y2(y + l)4 

x [(5y4 + löy3 - 3y2 - 7y + 6)(y - l)1'2 

+ (5y5 + 17y4 + 15y3 - 25y2 + 20y) x tan^y - l)1'2 

y/y + Vy^T 
-24y3/2ln 

y/y-Vv-i 
(45.179) 

with y — s2. 
Thomson's Result: 

«W'HM1-»)-     (45180) 

(B) Electron Loss Cross Section: [17] 

.4(10 + B(u) ^A+ + e~ + B(f), (45.181) 

where B(f) denotes that the target B is left in any 
state (either bound or free) after the collision with the 
projectile A. The initial velocity of the projectile is V 
while the velocity of the Rydberg electron relative to the 
core is u, and the ionization potential of the target B is 
I. 

1      f°° 
floss = Ö Ö   /        dx ffT(xÜ) 

Z™2 JrlAV 

Zvx-\-(v- xf - IT 

[i+("-*)2r 

+ 
[l + (i/ + x)2-r]2J ' 

(45.182) 

where v = V/ü, r = J/|meü
2, ü = y/2I/me, and <TT 

is the total electron scattering cross section at speed 
xü. The cross section (45.182) is valid only for particles 
being stripped (or lost from the projectile) which are 
not strongly bound. See Refs. [17,28,29] for details and 
numerous results. 

(C) Capture Cross Section from Shell i: [17] 

/C(-l) 

- «2 - ,?u 
(45.183) 

'captured) =-3^^     dr ^     ^     <f(cOS ff) [P,(r)]2 

^ ynV [As2 - Q-2 - y2)(l + e2 + a2 - y2)] 
r3/2e9/2(1 + „2)3^2 _ „2 

where C denotes that the integration range [—1,+1] is 
restricted such that the integrand is real and positive and 
that |1 — e\ < \/y2 — a2. The dimensionless variables a 
and y above are denned, 
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yi = 2L\V{R)\V\    a2 = — IiV2,        (45.184) 
me "le 

and with Pi(r)/r representing the Hartree-Fock-Slater 
radial wave function for shell i, with normalization 

r[Pi(r)]3dr=l. (45.185) 
Jo 

The ionization potential and number of electrons in shell 
i are denoted above, respectively, by /»• and Ni. 

(D) Total Capture Cross Section: [17] 

<C?ure(vO = £"c capture ' (45.186) 

(E) Universal Capture Cross Section: [17] 
A universal curve independent of projectile mass M 

and charge Z is obtained from the above expressions for 
the capture cross section by plotting the scaled cross 
section 

rtotal        
£11/4 

„total 
capture — j^ 11/4^7/2^3/4    capture 

versus the scaled energy 

~_meE 
E
-~M1' 

(45.187) 

(45.188) 

where m« is the mass of the particle captured, which 
is usually taken to be a single electron, and I is the 
ionization potential of the target. The term A in (45.187) 
is the coupling constant in the target potential, V(R) = 
meX/R2, which the electron being captured experiences 
during the collision. See Fig. 11 of [17] for details. 

45.7.3    Semiquantal Impulse 
Approximation 

Basic Expression: [25,30] 

der 
dcdPdkidkd<f> i      J55K3 \M13J 

(45.189) 

J55 is the 5-dimensional Jacobian of the transformation 

(45.190a) (P,e,ti,Mi)-(ki.ki). 
a(P,e,*i,Mi) 

J55 = ötcos^.fci, cos 0i.fi) 
(45.190b) 

Expression for Elemental Cross Section: [25] 
In the (P,e,k!,k,<t>i) representation, 

da = 
dedP 
MIA 

lg,(ki)|2 ffiMfr 
/\|2j,.2 |/13(k,k')|2<V 

yJigX-W-gl) 
(45.191) 

Where g\ = \B± J\B* - C, and 

B = B(e,P,v1;v3) 
a       P2 

~(l + a)»Jltfs 

4e(e + A3) 
P2 

C = C(e,P,v1;va) 

+ (.}+.?+«+.?+^) 

y\ + avl   P2 .   2 ,w   ,2 _    ,2) 

+ ^(v2 + v2) + ^[vl(e + A3)-ev2], 
M13 p2 

a = 
M2M3 

M1(Mi + Af2 + M3)' 

M1 = Mi(l + Mi/M2), 

It ../2 •? = .; + «-, ^ = ^- 
Mi 

3    2(e + A3) 
MAB 

and A3 is the change in internal energy of particle 3, 
while e denotes the energy change in the target 1 — 2. 
Hydrogenic Systems: ffi(ki) = gnt(ki)Ytm(6i,<l>i). 

The gni are the hydrogenic wave functions in momen- 
tum space See Chap. ?? for details on hydrogenic wave 
functions. 
Elemental  Cross   Sections:    (m-averaged  and <j>i- 
integrated) 

2 j„2 

d<x = 
dedP Wnt(vi)dvi      \fia(P,9)\ dg 

Mhvl >2        2Vl        y/igl-g'W-gl) 

(45.192) 

where the speed distribution W„t is given by (45.58). 
Two Representations for 1-3 Scattering Ampli- 
tude: [25] 
(i) /13 = fi3(P,g) is a function of momentum transferred 
and relative speed. Then 

v   ;     M&2 Jtl      JVl0 »1        Jp- 

I ''+       \hz{P,9)Y dg2 

*- yl{g\-g2){g2-g2S 
(45.193) 

where v2
0(e) = max[0, (2e/Af)], and the limits to the P 

integral are 

P+ = P+(e,t»i;«3) 

= min [M(vi + »1), MAB(V'3 + "3)] ,    (45.194a) 

P~ = p-(e,v1;v3) 

= max[M K - vi|, MAB K " v^ ,   (45.194b) 

and unless P+ > P~, the P integral is zero. 
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(ü) f13 = fi3(g,ip) is a function of relative speed and 
scattering angle. Then 

r"       r™WntMdvi   fs+      9dg T{V3)=^r\£rwMdnr 
S(vi,g;v3) 

\fi3(g,i>)f d(cosi>) 

^/(cos V>+ — cos V>)(cos %l> — cos V>~) 

(45.195) 

where 

Mi3 

Scattering angle V'-limits, 

cos rp* = cos V^ (e, v\,g; v3) 

9       1 

211/2 

(45.196) 

-(a + e)2]1/2}, (45.197) 

where 

a = a(v1,g;v3) = ±M13  v\ - v\ + ( y— J g2   , 

ß = ß(vi,9-,v3) = \M13 [(2t;2 + 2v2-g2)g2 

-\vl ~ V3)  J > 

w = g'/g,   £ = £ + T-r-A3 • l + a 

Special Case: /i3 = f\z(P) 

r'3 /"°° WntMdvi 
*(V3) = 

13v3 Jei •/«! 

X-|/i3(p)|2 
«1 

(45.198) 

45.8.1    Differential Cross Sections 

Cross Section per Unit Momentum Transfer 

Let the masses, velocities and charges of the particles 
be (mi,vi,Zi,e) and (m2,V2,^2,e), with v = |vi — V2I 
denoting the relative velocity and quantities after the 
collision are denoted by primes. Then for distinguishable 
particles, 

<rp = 
8wZfZ%e4P exp(tV) 

P2 
(45.199) 

where the phase shift ijp is 

TIP = -27 ln(P/2fiv) + 2770 + w, 

and with 

/* = 
mim2 

mi + T712 
7 = 

ZiZ2e
2 

ftt) 

+ *, (45.200) 

2t'iJo _ r(i + t7) 
r(i-i7)- 

(45.201) 

For identical particles, 

o* = 
8*ZfZ$e*P »•ip R"»S 

P2   =*=   52 

where 77p is given by (45.200) and rjs is 

t)S = -27ln(5/2/i«) + 2T7Q + r, 

(45.202) 

(45.203) 

while T70 is given by (45.201). The momenta P and S 
transferred by direct and exchange collisions, respectively 
are given by 

P = mi(vi - v'J = m2(v2 - v2), 

S = mi(vi - v2) = m2(\[ - v2) . 

The collision rates (in cm3/s) are 

dtp = vi<rp ,    dp = Viffp . 

(45.204a) 

(45.204b) 

(45.205) 

45.8    BINARY ENCOUNTER 
APPROXIMATION 

The basic assumption of the binary encounter ap- 
proximation is that an excitation or ionization process is 
caused solely by the interaction of the incoming charged 
or neutral projectile with the Rydberg electron bound 
to its parent ion. If, for example, the cross section de- 
pends only on the momentum transfer P to the Rydberg 
electron (as in the Born approximation), then the total 
cross section is obtained by integrating ap over the mo- 
mentum distribution of the Rydberg electron. The basic 
cross sections required are given in the following section. 
For further details see [31] and references therein. 

Cross Section per Unit Momentum Transferred 
per Unit Sterradian 

Differential relationships: 

d2a d2a   dtp 
<*E,P = 

dtp 

dPdE 

For distinguishable particles 

op = 2wvi(TptV> = 2naptV,, 

aP,v> = 

dPdipdE     ap'v'dE' 

P2 

<*E,P = Vi(TE,P = 
8Z2Z\tA 

V1V2VX 

p*VP 

Pi 

(45.206) 

(45.207a) 

(45.207b) 

(45.207c) 
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For identical particles, 

a%<P = 

4ZlZle*P exp(t*»7p)     exp(i»75) 
P2 

± ± 8Zj Z2 e 
aJB,P = V1°~E,P = 

A2 

P2        S2 

,  (45.208a) 

,   (45.208b) 

where 

X = - cos2 <f> + 2(vrP)(v2-P) cos <j> + 1 

- (vi-P)2 - (v2-P)2 (45.209a) 

= (cos ^min — cos ^)(cos <f> — cos <j>max.)   (45.209b) 

= (^p) (£max~E)^E"^min)' (45209c) 

with ^ being the angle between the velocity vectors vi 
and V2. 

For the special case where the target particle (2) is an 
electron in a Rydberg orbital, m2 = me, Z2 = — 1, and 

0E,p{<t>) = 

±    ,., 8e 

8Z2e* 

v\v2P*\fX ' 
4 

(45.210) 

.(*) = "S^'-vlvtVxlP^S* 
J_ 1     ,   2CQS(??P-T75) 

p2£2 

(45.211) 

where »?P - »?s = -2Tln(P/5) = (2e2/hv)ln(S/P), and 
X is given by (45.209b). 

Integrated Cross Sections 

For incident heavy particles: 

(TE,P = /   <r£ip(^)- sin <£ d(f> = vzv 1
pA .     (45.212) 

For incident electrons: 

f* 1 (45.213a) 

47re4 

vjv2 

J_     «2 +a2. - P2/2m2 - 2E2/P2 

P4 mj \v2 -v2- 2E/mef 
2$ 

m2P2K2-t>2-2£7me|. 

where $ can be approximated [32] by 

(45.213b) 

$ ~ cos Ro 
Ez — E2 

1/2 

In 
E 

E3 — E2 — E 
(45.214) 

and Ez is defined in ref. [32]. 

Cross Sections per Unit Energy 

For incident heavy particles (3 cases): 

_   _ 27rZ2e4 ( 1    , 2me«
2^ 

" = ~m^f II2" + ~^-J ' (45215) 

which is valid for 2t>i > v2 + v'2, E < 2mevi(wi — v2), or 

<TE = 
*Z2e* 

3v\v2E
3 lvl-fa-*2? (45.216) 

which is valid for v2 — v2 < 2«i < v'2 + v2, 2mewi(t»i — 
v2) < E < 2mevi(ui + v2), or otherwise, aß = 0 for 
E> mevi(v'2 + v2). 

For incident electrons (2 cases): 

2ne 4 r 

met>2 
__     2mev| 
£2       3£3 

1       2mef e"2 
+ D2 +   3-D3 

2$ 

(45.217) 

which is valid for me(ui—v[) < me(v2—v2), me(v'2+v2) < 
me(vi + v'x), D > 0, or 

<Tß = 
2;re4 

mev\ 
1       2me«;i2        1       2mei/

2   ,     2$ 
E2        3E3        D2      3 p|3      £ |D| «l 

(45.218) 

which is valid for me(v'2—v2) < me(t>i—vi), me(t>i+t;i) < 
me(v'2 + v2), D<0. 

In the expressions above, the exchange energy D 
transferred during the collision is 

D = im,«? - \mev'i = §met>2 - \mev
2

2 - E. (45.219) 

45.8.2    Integral Cross Sections 

e" (T) + A(E2) -> e" (E) + A+ + e~ ,        (45.220) 

where T is the initial kinetic energy of the projectile 
electron, while the Rydberg electron, initially bound in 
potential £/,• to the core A+, has kinetic energy E2. The 
cross section per unit energy E is denoted below by O~E- 

See the review by Vriens [31] for details. 
For electron impact, there are two collision mod- 

els: the unsymmetrical collision model of Thomson and 
Gryzinski assumes that the incident electron has zero po- 
tential energy, and the symmetrical collision model of 
Thomas and Burgess assumes that the incident electron 
is accelerated initially by the target (and thereby gains 
kinetic energy) while losing an equal amount of potential 
energy. 

Unsymmetrical model (2 cases): 

(TE = 
7re _L    i^2     _L     AE2       * 

E2 + 3£3 + D2 + 3D3     ED 
,   (45.221) 
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which is valid for D = T - E2 - E > 0 or, 

<TE = 
xe7" J_     4T     J_      4r 

£2 + 3£3 + D2 + 3 |D|3 £?|D|jUaJ 
1/2 

which is valid for U{<T<E2 + Ut. 
In the symmetrical model, 

(45.222) 

which is valid for D  <  0 and T  >  E;  and where 
T' = T - E. 

Symmetrical model (2 cases): 

_7T£< 

"    Ti Ui   r   3 \ü?   rvJ ' 
2$'   ,   T" 

ln7T    ' 

ire 4 r J_     4^     J_     4J^ 
aB ~ Ti   [E2 + 3£3 + X,2 + 3X? 

$ 
£X,- 

, (45.223) 

Lr+Üi     Ui 

where $' can be approximated by [32] 

1/2 

which is valid for Xf  = T+U{-E>0, with T{  = 
T+Ui + E2, and 

$' = cos ( Ace y\ Ei 
{Et + UiJ      UUi 

(45.230) 

(45.231) 

(45.232) 

(TE = Ti 
1       47;'       1 

-^ + 777^ + ^79 + 
AT! $ 7n1/2 

£2 T 3£3 T X? T 3 |X,|3     E \Xi\\ \E2J 

(45.224) 

which is valid for 0 < 7? < E2, T > 0, with 7V = 7J _ £, 
and where $ is given by (45.214). 

For  incident   heavy   particles,   the   unsymmetrical 
model (45.221) should be used. 

Single Particle Ionization 

The total ionization cross section per atomic electron 
for incident heavy particles is 

Qi = 
2*Zfe4 1       mev. 
mev

2    [Ui      ZU?      2rne(v\ - v2) 

which is valid for Ui < 2mevi(t>i — v2), or 

(45.225) 

n — K^ie4 ( 1 1 me    r„ 3 
Qi ~ T^f Ume^+i),) + ÜI + Z^U? [    l + V 

-(1H) 
3/2' 

which is valid for 2met>i(i>i — v2) <Ut < 2met;i(vi 4- V2), 
or otherwise Qi = 0 for Ui > 2mevi(t>i + v2). 

For electron impact, 

Qi = UQtit + QTl + QT (45.227) 

In the unsymmetrical model, Q*x diverges, hence the 
exchange and interference terms above are omitted in 
the unsymmetrical model for electrons to obtain 

Qtr = ^r 
2E2 

Ui     ZU?     T-E2\ 

which is valid for T > E2 + Ui, or 

Qi 
Air_2*e*(T-Uj)W 

ZT      U?y/E~2 

(45.228) 

(45.229) 

and Ei is defined in [32]. 
The sum of (45.230) and (45.231) yields 

«•JT 
}__i,lfE1_E2\_     $' T_' 
Ji    r    3 \Ui     T2)    T+Ui nUi\ ' 

(45.233) 

which is also obtained by integrating the expression 
(45.224) for <r£, 

Q 
i(r+u<) 

asdE. (45.234) 

Ionization Rate Coefficients.    For heavy particle 
impact [27], 

(Q) = ^ {^(«3fc3 " fc3/2) + 3^(35 - f 6 - f &2) 

+ Inab [(5 - 4/c2)(3a2 + f ab + b2) 

- A/c(^ + 9a + 56)] - 16/ca4ln(4«2 + 1) 

+ 9 [f - K2a(§ + 3a + 4a2 + 8a3)]} ,    (45.235) 

(45.226)      where 

K — VI/VQ,    A = K — (4/c)  1,    0 = A-+ 2 tan *A, 

(45.236) 

a = (l + /c2)-1,    6 = (1 + A2)-1, (45.237) 

(aE,pdPdE) 
64e4ug / 
3v2P4 ^ 

£__P_ 
P     2me 

-3 

+ t>2J  dPd£, 

(45.238) 

where \m^v2 is the ionization energy of H(ls). 
Scaling Laws. Given the binary encounter cross 

section for ionization by protons of energy E\ of an atom 
with binding energy ua, the cross section for ionization 
of an atom with different binding energy uj and scaled 
proton energy E[ can be determined to be [17] 
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E[ = (m/««)£?i, 

(45.239) 

(45.240) 

where <r;OI1(l?,«) is the ionization cross section for re- 
moval of a single electrom from an atom with binding 
energy u by impact with a proton with initial energy E. 

Double Ionization: See Ref. [33] for binary en- 
counter cross section formulae for the direct double ion- 
ization of two-electron atoms by electron impact. 

Excitation 

Excitation is generally less violent than ionization and 
hence binary encounter theory is less applicable. Binary 
encounter theory can be applied to exchange excitation 
transitions e.g., e" + He(n1X) -f e" + He(n/3L), with 
the restriction of large incident electron velocities. The 
cross section is 

Of =   / (TE^dE 
Ju, 

_ ire4 f_l 12 \JEi_ _ ET. 1 \ 
-~W\Tn+i   r„ + 3[r„2

+1   v\j' 
(45.241) 

valid for T >  U„+i, with T„  =  T + Ut - Un and 
T„+i=r + üi + ün+i,or 

Qf =   /    ffB,e*dE 

Tre4 f 1       12 \E2     E2]\ t^OdK 

valid for Un  < T < Un+i.   Un and Un+i denote the 
excitation energies for levels n and n + 1, respectively. 

45.8.3    Classical Ionization Cross Section 

Applying the classical energy-change cross section 
result (45.70) of Gerjuoy [16] to the case of electron- 
impact ionization yields the four cases [34] 

/■AB. 
<Ti0n( «l ,»a) ~ /       ofE(vi,V3]mi/ma) d(AE) 

JAEi 

(45.243) _ 7r(ZiZae2)2 [-2«a  _    6t>2 

~      3i>?»a      L(A^)2     rn2AE 

which is valid for 0 < AE < b, or 

on(vi,v2) 

n(Z1Z2e
7) 2\a 4(»i - 2v[)        4(v2 - 2v'2) + 

"»i(«i - vi)2     mi(v2 - v'2)
2. 

,(45.244) 

n(vi,V2)-_3^2~ [(Älj^. (45.245) 

which is valid for A£ > a, 2m2v2 > |mi - m2|vi, or 
otherwise is zero for AE > a, 2m2t>2 < |mi - m2|t>i. 

The limits AEtiU to the AE integration in each of 
the four cases is indicated in the appropriate validity 
conditions. The constants a and 6 above are given by 

4™im2     [El-E2 + \v1v2(m1-m2)], a = 

6 = 

(mi + m2)
2 

4mima 
[Ei - E2 - \viv2{mx - m2)] . 

(mi + m2)
2 

The expressions above for <7i0n(«i>V2) must be aver- 
aged over the speed distribution of v2 before comparison 
with experiment. See [34] for explicit formulae for the 
case of a delta function speed distribution. 

45.8.4    Classical Charge Transfer Cross 
Section 

Applying the classical energy-change cross section 
result (45.70) of Gerjuoy [16] to the case of charge- 
transfer yields the four cases [34] 

fAE, 
<rcx(«i,«2)~ /        <T^(vi,v2)dAi; 

JAEt 

_   ™4   [     2v*    _ 6^/m2] . 

which is valid for 0 < AE < 6, or 

ffcx(vi>«2) = 
7re4   I" «i/mi -v2/m2 

3v\v2 [ AE 

,K3-«S)-(«? + "?)• 
{AEf 

(45.247) 

which is valid for b < AE < a, or 

o~cx 

which is valid for AE > a, mev2 > (mx - me)vi, or 
otherwise <xcx = 0 when AE > a, mev2 < (mi - me)t>i. 
The above expressions for ccx(vi > "2) must be averaged 
over the speed distribution W(v2) before comparison 
with experiment. See [34] for details. The constants a 
and b above are as defined in Sect. 45.8.3, and the limits 
AEtiU are given by 

AEt = \mev\ + UA-UB< (45.249a) 

(45.249b) 

(45.249c) 

AEU = |mev? + UA + UB , 

v2 = y/2UA/me, 

where UA,B are the binding energies of atoms A and B. 
The expressions above for o~cx diverges for some vi > 0 
if UA <UB- If UA = UB then aCx diverges at t>i = 0. 
To avoid the divergence, employ Gerjuoy's modification, 

which is valid for b < AE < a, or AEt= \mev\ + UA- 
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45.9    BORN APPROXIMATION 

See reviews [35,36], as well as any standard textbook 
on scattering theory, for background details on the Born 
approximation, and [37-40] for extensive tables of Born 
cross sections. 

45.9.1    Form Factors 

The basic formulation of the first Born approximation 
for high energy heavy particle scattering is discussed in 
Sect. ??.?.?. For the general atom-atom or ion-atom 
scattering process 

3r 

AM + Btf)^A{f) + B(f), (45.250) 

with nuclear charges ZA and ZB respectively, let fiK,- and 
hKj be the initial and final momenta of the projectile A, 
and hq = KKj — fiK,- be the momentum transferred to 
the target. Then Eq. (??.?.?) can be written in the 
generalized form 

•V - 8tra, 

x\ZB6iir-F?r(t)\2 , (45.251) 

where the momentum transfer is t — qao, and s = V/VQ 

is the initial relative velocity in units of VB ■ The form 
factors are 

F,j(t) =(*f\ $>xp(«t.r0/ao)  <^) ,       (45.252) 

where NA is the number of electrons associated with 
atom A, and similarly for Ffi(t). The limits of integra- 
tion are t± = \Kj ± Ki\a0. For heavy particle collisions, 
t+ ~ oo and 

where M = MAMB/(MA + MB). 
Limiting Cases. As discussed in Sect. ??.?.?, for 

the case t = /, Ftj(t) — NA as t — 0, so that 
ZA - Ffi(t) -+ZA- NA. For the case i # /, Ftj(t) — 0 
as t —* 0 and t —+ oo. 

45.9.2    Hydrogenic Form Factors 

Bound-Bound Transitions:   In terms of r = t/Z, 

16 
l*W.I = (4 + r2)2 

|Fi.,2.|=217/2 

(4r2 + 9)3 

(45.254a) 

(45.254b) 

l*i.*l = 2l5/2^T9)3 (45-254c) 

\Fu&\ = **7»%l?£ (45254d) 
1^,3^=2^33^;;+^; (45.254e) 

[FuM = 217/237/2
(9r2

T
+

2
16)4 («.264f) 

Bound-Continuum Transitions:   In terms of the 
scaled wave vector K = kao/Z for the ejected electron, 

\FL,K\
2
 = 

l2 2
8
KT

2
(1 + 3r2 + /c2)exp(-2g/x) 

3 [1 + (r - /c)2]3 [1 + (r + K)
2
]
3
 (1 - e"2'/«) 

(45.255) 

where 0 = tan-1[2K/(l + r2 - K
2
)]. Expressions for the 

bound-continuum Form Factors for the L-shell (2£ —► K) 

and M-shell (3^ —► /c) transitions can be found in Refs. 
[41] and [42], respectively. See also §4 of [43] for further 
details. 

General Expressions and Trends: 

For final ns states 

üMn-ll' + n'TT1 

T2 [(n + l)2 + n^r^J 
x sin2(n tan-1 x + tan-1 y), (45.256) 

where 

x = »(^-»-v '-^TO»- (45257> 

For final n^ states [46] 

-""-"'^'''tlt^.'" [(n+l)2 + n2T2](»+<+3)/2   I 

-bnlC^?l2(x) + «*c£&<«)} , (45.258) 

with coefficients am, b„t and c„* given by 

am = (n + 1) [(n - l)2 + n2r2] , (45.259a) 

bnt = 2n\/[(n - l)2 + n2r2] [(n + l)2 + n2r2], (45.259b) 
cn* = (n - 1) [(n + l)2 + nV] , (45.259c) 

and argument 

x = 
n2 _ 1 + n2r2 

^[(n + l)2 + n2r2][(n-l)2 + n2r2J 
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(45.260) 

Summation over final £ states 

|*i.,»|a=£l*Wla 

i 

= 28nV[i(n2-l) + nV] 

[(n-l)2 + n2r2]"-3 

X  [(„ +1)2+ „2TT
+3 ' 

which becomes for large n, 

l^"l2~W^M<^Ti))-  <45M1) 

For initial 2s and 2p states, 

|p        |2_o4   7_2r       1    ,   12        3 „4,1 „6 
\*2,,n\     - 1  n  T   I-3 + 2"    _16n   +48n 

,_2_2/'l       2_2   ,   19„4\   ,   _4_4c5       7_2\ 
+ "T(3~3n   +48n  ) + "  T  ^3 ~ 6°  ) 

[(In_1)2 + n2r2ln-4 
+ n^WTWT^'     (45262) 

o4„9_2 
ip      i2 — ri       7 „2 ,   11 „4 
K2p,n|     -  3 l4 - 24n   + 192° 

_2_2/5       23„2\   ,   1„4_4] 
-n  T  U ~ 24n  )+ 4n  T J 

[(ln-l)2 + n2r2]n-4 

X [(In+1)2 +n2r2]«+4- 

Power Series Expansion:    r2<l [4] 

\Fu,n,(T)\2 = ^(»K4 + B(n)r6 + C(n)r8 + • 

(45.263) 

(45.264) 

where 

A(n) = 
28n9(n - l)2n -6 

B(n) = - 

C(n) = - 

32(n + l)2n+6   ' 

29nn(n2 + ll)(n-l)2"-8 

325(n +1)2»+8 

28n13(313n4 - 1654n2 - 2067)(n - l)2""10 

32527(n + 1)*»+« 

For analytical expressions for A(n), B(n) and C(n) for 
final np and nd states see Refs. [44,45]. 
General Trends in Hydrogenic Form Factors: [47] 

The inelastic form factor |Fni-»n'/'| oscillates with £' 
on an increasing background until the value 

Car = min {<*-».-(£$f-£}<—> 
is reached, after which a rapid decline for £ > £'m 

occurs. See [47] for illustrative graphs. 

45.9.3    Excitation Cross Sections 

Atom-Atom Collisions [48] 

Single Excitation.    For the process 

Eq. (45.251) reduces to 

(45.266) 

87ra 2   f°° 
as- /"Jl^l'l^-tfi'f •       (45-267) 

Double Excitation.   For the process 

H(ls) + H(ls) -► R(n£) + H(nY), 

i.,nV_8xag   [°°dt 2 

(45.268) 

'U,nl    —     s2 Jt    §\Fu,nA2\Fu,ni\2-     (45-269) 

Special cases are [49] 

U|2, _ 2307rag(880fl + 396f2 + 81) 
°u,2, - 495fi2(4f2_ + 9)u 

rl«.2p _ 230347ra§ 
»U,2p- llfi2(4t2  + 9)11 • 

i,.2P     2»3a(44£ + 9) 
u'2' ~ 55s2(4*?_ + 9)11 ' 

with it = [9/(16s2)][l + 3me/(4Ms2) + •••]. 

Ion-Atom Collisions. 

For the proton impact process 

H+ + H(ls) -* H+ + E(n£), 

Eq. (45.251) reduces to 

'■fjs\FuM*)\' 

(45.270a) 

(45.270b) 

(45.270c) 

8?rag 
<?lt,nl =  Ö 

(45.271) 

(45.272) 

with t_ = (1 - n"2)/(2s). 
Asymptotic Expansions: 

VU.nt = 
4™2(n2-l)|Xi™| 2 r 

+ • 
24s2n2 

313n4 - 1654n2 - 20671 

C.(n)--j + 
1      n2 + ll 

8400n4«6 

s2      20n2«4 

(45.273) 

Cl$,np = 

0U,nd = 

2«7ra2n7(n - 1) 2n-5 

3s2(n+l)2"+5 

313n4 - 1654n2 - 2067 

Cp(n) + lns2 + 2     "2 + ll 

5600n4«4 

2n7ra§(n2 - 4)n5(n2 - l)2(n - 1)2"~7 

325s2(n +1)2"+7 

\_ , .      1      lln2 + 13 
Cd{n) - -x + 

28n2s 2o4 

10r»2fi2 

(45.274) 

(45.275) 

where C,(2) = 16/5, C,(3) = 117/32, C,(4) « 3.386, and 
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„ , x     1.3026     1.7433     16.918 
1nCp(n) = —-r- + —-T- + —-J- .. 

7nCd(n) 

with 

2.0502     7.6125 
1       "■ __s 

7n = 
28n7(n - 1)(2"-5) 

3(n +1)(2"+5) 

(45.276) 

(45.277) 

(45.278) 

Further asymptotic expansion results can be found in 
Refs. [3-«]. 

A general expression for Born excitation and ioniza- 
tion cross sections for hydrogenic systems in terms of a 
parabolic coordinate representation (see Chap. ??) is 
given in Ref. [50]. 

Number of Independent Transitions A/i be- 
tween levels n and n':    [50] 

* = »*[•••-©] + © <4"79» 
Validity Criterion: The Born approximation is 

valid provided that [51] 

n£> "(© (45.280) 

for transitions n-m' when n, n' ^> 1 and \n — n'\ ~ 1. 
The constant J„ is undetermined (see [51] for details) but 
is generally taken to be the ionization potential of level 
n. 

45.9.4    Ionization Cross Sections 

e~ (k) + H-+ e~ (k') + H++ e~ (K) (45.281) 

The general expression for the Born differential ion- 
ization cross section can be evaluated in closed form us- 
ing screened hydrogenic wave functions. The differential 
cross section per incident electron scattered into solid 
angle dfif, integrated over directions K for the ejected 
electron (treated as distinguishable) is [52,53] 

I(6,<f>)dnkldK' = 
ALI 

-—^-A\Fnty{q)\2 dSlydK', 
kq^aoZ-Q 

(45.282) 

where the form factor is given by Eq. (45.256) for the case 
nt = Is, with the ejected electron wavenumber K and 
momentum transferred q in the collision, K' = KOQ/ZB, 

q = (k' — k)ao/Zß, being scaled by the screened nuclear 
charge ZB appropriate to the n£-shell from which the 
electron is ejected. The total Born ionization cross 
section per electron is 

<7?on=/ d/c'/        I(q,K')dq (45.283) 
JO Jk-k' 

which is generally evaluated numerically. 

Table 45.2.   Coefficients Cfati -* njlj) in the Born 
capture cross section formula (45.288). 

nfe} C(ls -> njlj) 

Is 

2s 

2V 

3s 

3p 
3d 

4s 

4p 

4d 

4/ 

2*ZAZB 

26ZAZBß
3 

213ZAZ
7

B/36 

215ZAZBß
9 

22ZAZ% 

$ZAZB 
75 79 

C(2s- 

C(2p- 

nf£f) = C(ls -* njtj)ß 
nst.j) = <7(l«-»n/4/)/24 

45.9.5    Capture Cross Sections 

Electron Capture: 

A+ + B{nl) -» A{n'H) + B+ . (45.284) 

In the Ochkur-Brinkmann-Kramer (OBK) approxima- 
tion [54], 

ant>n,v = ML^L I   d(cos6) \Fnl^nU'\2 ,    (45.285) 

where v* = «JÄ,-, \J = v/nf, 0 is the angle between n,- 
and Hj, M = MAMB/(MA + MB), and 

\Fni,n>l,\ = Jjdrds^r)^) (^) e*"*"">, 

(45.286) 

with 

MA a = kjuj + kihi 
MA + rne ' 

MB ß = -ki&i - kfuj 
MB + me 

_ vj MB(MA + me) 

*' ~ h (MA + MB + me) ' 

_ vj (MB + me)MA 
s ~ h (MA +MB + me) ' 

The Jackson-Schiff correction factor [55] is 

1    A«,     56     S2\ 

tan 1 \p 

48p ("? + 2) 
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Table 45.3.  Functions F{riili —► njlf,x) in the Born 
capture cross section formula (45.288). 

»/'/ F(nili,n}t};x) 

Is 

2s 

2p 

3s 

3p 

3d 

4s 

4p 

Ad 

4/ 

.-6 

.-10 

(x - 262)2*-8 

(* - b2)x~8 

(x2 - %b2x + ^bA)2x- 

(* - b2)(x - 2b2)2x~10 

{x - b2)2X~W 

(x - 2b2)2(x2 - &b2x + 864)2x-12 

(x-62)(x2-f62x + f64)V 
(x - b2)2(x - 2b2)2x~12 

(x - 62)3x"12 

12 

F(2s,nflj;x) = (x - 2a2)2x~2F(ls,n}ef;x) 

F(2p,n}t};x) = {x-a2)x-2F{\s,n}lj;x) 

-1 1^2 
+ (tan"1 \p) 

24p2 

and the capture cross section is 

2 

»On«,,!!,/,) = ESgi-cM.n/t,) 

(.. + £ + £).       (45.287) 

x  f   F{nili,n}tJ;x)dx,     (45.288)       12 
Jx 

with 

mvi ZA ZB 

x=[p2 + (a + i)2][p2 + (a-6)2]/4p2. 

The coefficients C in Eq. (45.288) are given in Table 45.2, 
while the functions F are given in Table 45.3 [54]. In 
Table 45.3, the appropriate value of a and 6 is indicated 
by the quantum numbers n,-, ti and nj, if. 
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46.1    CLASSICAL SCATTERING 
FORMULAE 

Central Field: The total energy E > 0 and orbital 
angular momentum L of relative planar motion are 
conserved. For a particle of mass M with coordinates 
(R,if>), a symmetric potential V(R), and asymptotic 
speed v, 

* = W + VW + WE? = \Mv* =constant ■ 
(46.1) 

L2 = (2ME)b2 = M2v2b2 = [Mä
2
(0^(0]

2
 = constant. 

(46.2) 

Equation (46.2) implies constant areal velocity. 
Radial momentum p(R): 

p(R;E,b) = (2ME)1'2 

Effective potential: 

1- 
E R2 

VMR) = V(R) + ^-2=V(R)+RIE. 

(46.3) 

(46.4) 

The turning points Ri(E, b) are the roots of E = 
Vefi(R). The smallest Ri is the distance of closest 
approach Re(E,b) at the pericenter. The maximum 
impact parameter bx and angular momentum Lx for 
approach to within a distance Rx are 

bx =RX[1-V(RX)/E), 

L2x = 2MRx[E-V(Rx)). 

(46.5a) 

(46.5b) 

The trajectory is denned by R = R(t;E,b), V = 
ip(t;E,b), where R is the distance from the scattering 
center O and ip is measured with respect to the apse line 
OA joining O to the pericenter Rc. Taking t = 0, Eq. 
(46.1) implies 

t(R) = 
M}1'2 fR 

2£J      JRe 

V(R) 
E R2 

T 1/2 
rfÄ,   (46.6) 

which implicitly provides fi = R(t; E, b). 

ii>(t;E,b) = jiJ
tR-2(t)dt 

1>(R;E,b) = b f   — 
JRc [1 - 

dR/R2 

[1 - V(R)/E - P/R2]1'2 
(46.8) 

3_ 
96, 

For large 6 and/or small V{R)/E < 1, (46.9) reduces to 

(46.10) 

n„     i      b    f°° (dV\ rKR-.oo;E,b) = - + -Ji    (^) 
(R2 - 62)1/2 ' 

(46.11a) 

For a straight-line path, R2 = b2 + Z2, where Z is the 
distance along the scattering axis, and 

(46.11b) 

46.1.1    Deflection Functions 

The deflection function x(E,b) (-00 < X < *") is 
defined to be x(E, b) = x - 2if>(R -+ co; E, b). Then 

dR/R2 

X(E ,b) = ir-2b I     (46.12) 
[1 - V(R)/E - 62/Ä2]1/2 

(46.13) 

An expression which avoids spurious divergences is 

X(E,b) = 7T + 2^ jf° [1 - V(R)/E-b3/R*]1/3dR. 

(46.14) 

Small-angle scattering, V(RC)/E < 1, 6 ~ Äc: 

*">=(T)JC 
[y(flc)-y(Ä)]fl<fiZ 

(Ä2 - Ä2)3/2 

(l-z2)3/2 Wo 

(46.15a) 

(46.15b) 

where x = Re/R. From (46.10)-(46.11b), other forms are 

(2Mg62) 

W 
1/2 

fR-2{t)dt.    (46.7) -_ir(^) 
Jo 'Eh    \dRj 

V(R) dR 
(1 - &2/Ä2)1/2 

£*Ä 

(Ä2 - 62)1/2 

(46.16a) 

(46.16b) 

Orbit integral (0 < V1 < 7r): V1 is symmetrical about 
and measured from the apse line joining O and Äc. 

1     fi     t°° 

-B5l.vl^ (4616c) 
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For straight-line paths R? = 62 + vH2, Eq. (46.12) 
yields the impulse-momentum result 

X(E, b) = (Mv)-1 f    Fx(t) dt = Apx/Poo ,    (46.17) 
J—oo 

where Api is the momentum transferred perpendicular 
to the incident direction and F± = -(dV/dR)(b/R) is 
the impulsive force causing scattering. Special cases are 

Head-on collisions (6 = 0):    \{E, 0) = *. 
Overall repulsion: 
Overall Attraction: 
Forward Glory: 

Backward Glory: 
Rainbow Scattering: 
Deflection Range: 
Orbiting Collisions: 
Diffraction Scattering: 

0 < X < *■ 
-co < X < 0. 
X = 0, -(2n - 1)*, 

11 = 0,2,.... 
X = -2r»T,n= 1,2,.... 
(dX/db) = 0 at xr < 0. 
Xr < X < r- 
cf. Eq. (46.34). 
X —* 0 as 6 —♦ oo. 

The scattered particle may wind or spiral many times 
around (x —» -oo) the scattering center. The exper- 
imentally observed quantity is the scattering angle 0 
(0 < 0 < *) which is associated with various deflections 

Xi = +0,-0,-2*±0,-4*±0,...(i = l,2,...n) 

resulting from n different impact parameters &,-. 

Gauss-Mehler Quadrature Evaluation of the 
Deflection Function. 

x(E,b) = * >-(£)=£■.*.> (46.18) 

where 

at = cos I ——* ),    k = n+l-j, and 

g(x) = [1 - V(Re/x)/E - &V/Ä2] "1/2 ,    0 < x < 1 

46.1.2    Elastic Scattering Cross Section 

Differential cross section: 

^p.^I(0;E)^a(0;E), 

a{0,E) = Y, 
i=l 

bi dbi 
= !>(*)•   (46-19) 

•=i d(cosx0 

Integral cross section for scattering by angles 0 > 0Q- 

(E) = 2* f'l(0; E) d(cos 0) = 2* f °  °bdb,   (46.20) 
Je0 Jo 

where 00 results from one b0 = b(0o).  When 0 results 
from three impact parameters &i, 62,63, for example, then 

<TQ 

oo (E) = 2* I*bdb + 2* I*bdb = *[b\ + b\-b2
2] . 

Jo Jhi 

(46.21) 

Diffusion (momentum-transfer) cross section: 

trd(E) = 2* f [1 - cos 0(E, b)] 1(0) d(cos 0),     (46.22a) 
Jo 

r°° 
= 2*       [1 - cos 0(E, b)] b db, (46.22b) 

Jo 
r°° 

= 4*       sin2 [\0(E, b)] b db. (46.22c) 
Jo 

Viscosity cross section: 

trv(E) = 2* f [1 - cos2 0(E, b)] 1(0) d(cos 0),   (46.23a) 
Jo 

= 2* r [1 - cos2 0(E, b)) b db, (46.23b) 
Jo 

= 2* r [sin2 0(E, b)) b db. (46.23c) 
Jo 

Small-Angle Diffraction Scattering. The small- 
angle scattering regime is defined by the conditions 
V(Re)/E < 1, b > Re, where 0 = |X|. The main 
contribution to d<r/dü for small-angle scattering arises 
from the asymptotic branch of the deflection function x 
at large impact parameters 6, and is primarily determined 
by the long-range (attractive) part of the potential V(R) 
(see Sect. 46.3.6). 

Large-Angle Scattering. The main contribution 
to dtr/dCl for large-angle scattering arises from the 
positive branch of x at small b and is mainly determined 
by the repulsive part of the potential. 

46.1.3    Center-of-Mass to Laboratory 
Coordinate Conversion 

Let ^l) ^2 be the angles for scattering and recoil, 
respectively, of the projectile by a target initially at rest 
in the lab frame. Then 

(n(V'i)dßi = <r2(V>2)dfi2 = <r&2)(0)dClcm,    Q<0<*; 
(46.24) 

«ä)(ö,« = ^)(*-«^ + »)- (46-25) 
(A) Two-body elastic scattering process without con- 

version of translational kinetic energy into internal en- 
ergy: (1) + (2) - (1) + (2). 

//>x(l + 2*cosg + *2)3/2 

*i(*) = *«(») ,l4.xcosö|  

<T2(il>2) = <Tcm(O)\4smi0\ ; 

V>2 = i(7T-0),   Q<^2<\*\ 

sinö 
tant/>i = 

(x + cos 0) 
,      X = M1/M2 ■ 

(46.26) 

(46.27) 

(46.28) 
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Mi > M2:     As 0 < 0 < 0C = cos~1(-M2/M1), 
0 < rpi -> V>5nax = sin^iMi/Mi) < \*. 
As0c<0-^T,^5nax<V'i-O. 
0 is a double-valued function of i/>. 

Mi = M2:     ffi(V'i) = (4cosV'iKm(ö = 2V'i), 
0<V>i<|»,^i + ^2 = ^; 
no backscattering. 

Mi < M2:    <ri(rl>i) = <rCm(8 = V"i) 
lab and cm. frames identical. 

(B) Two-body elastic scattering process with conver- 
sion of translational kinetic energy into internal energy: 
(1) + (2) -> (3) + (4). For conversion of internal energy 
ei so that kinetic energy of relative motion (in the cm. 
frame) increases from Ei to E] = Ei + e,-. For j = 3,4, 

*Mi) = *«»(*) [l + XjCOSe\      ' (4629) 

_  ■M1M3Ei]
1/2 [M1M4^]1/2 

*
8
-IM2M4£?/J      '    *4"     [M2M3^/J      ' 

sin0 .      . sing 
tan^3=(^Tc^)'    tan^4=(M-cosö)- 

46.1.4    Glories and Rainbow Scattering 

Glory: The deflection function x passes through 
-2mr (forward glory) or -(2n + 1)* (backward glory) 
at finite impact parameters 6g. Then sin 0 -* 0 as 0 -* 03 

so that classical cross section diverges as 

•™=(£) dx 
as0->0 8 (46.30) 

Rainbow: The deflection function x passes through 
a negative minimum at b = 6r; (dx/db)T —» 0 so that 

(46.31) 

(46.32) 

x(b) = x(K) + Wr(b-br)
7, 

The classical cross section diverges as 

<r{E,0) = -^-M0t-e))-ll\    0<0tt    (46.33) v 2sin0 

and is augmented by the contribution from the positive 
branch of xQ>). 

(MjS\     =0,    E = V*{Ro), (46.34) 

which when combined, yields 

E = Kfr(Äo) = V(Ro) + ^Ro (~)     •       (46.35) 

The angular momentum LQ of the circular orbit is 

Ll = (ME)bl = MRl [E - V(Ro)] ■        (46.36) 

Thus 6g = B%F, where 

V(Ro) _ 1 {R«\ fdV\ 
F=l 

E 2 V E J \dRJ 
(46.37) 

ÄO 

is the focusing factor. The orbiting and spiraling cross 
section is then 

<rorh{E) = *bl = *RlF. (46.38) 

46.1.6    Quantities Derived from 
Classical Scattering 

The semiclassical phase r)(E,b) = T){E,\), with A = 
(t + 1) = kb is a function of 6 or A. The quantitites 
p(Ä) = p(R;E,L) and p0(Ä) s po(Ä;£,£) are radial 
momenta in the presence and absence of the potential 
V(R), respectively. 

T,
SC

(E, 6) = i \T p(R) dR - jT po(R) dR       (46.39) 

= jb [°°[l-V/E-b2/R2}1/2dR 
JRO 

-k r [l-b2/R2]1/2dR. (46.40) 

Asymptotic speed v: E = \Mv2 = h2k2/2M, 
k/2E = l/hv. 

Jeffrey-Born phase function: 
For small V/E and 6 ~ Re, 

»7JB w»)=-s/" 
V(R)dR 

(1 - P/R2) 1/2 
(46.41) 

Eikonal phase function: 
For small V/E and a linear trajectory R2 = b2 + Z2, 

k    f°° 
46.1.5    Orbiting and Spiraling Collisions Tm(E,b) = -—J^V(b,Z)dZ. (46.42) 

Attractive interactions V(R) = -C/Rn (n > 2) can 
support quasibound states with positive energy within 
the angular momentum barrier. Particles with 6 < 60 

spiral towards the scattering center. Those with 6 = 60 

are in unstable circular orbits of radius Äo- The radius 
Ro is determined from the two conditions 

Semiclassical cross sections: 
POO 

o-(E) = 8* I    [sin2 i](E,b)]bdb, 
Jo 

= (8a-/*2) /   sin2 t)(E, X)XdX. 
Jo 

(46.43) 

(46.44) 
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Landau-Lifshitz cross section: 
/•TO 

^LL(^) = 8TT /     [sin2 WH (£, 6)] b db. 
Jo 

Massey-Mohr cross section: 

r,(E,b0) = h    (sin2 V(E,b< b0)) = ±, 

<ruu(E) = 2*b2
0 + 8* /    IJ3„(£, 6)6db. 

Schiff cross section: 

<re(E) = 4 /°° dX (    dY   [4 sin2 IJE(X, Y)] 
J— OO </ — oo 

This reduces to (46.45) for spherical V(K). 
Random-phase approximation (RPA): 

For angle a, 

4* r P{b) sin2 a(b)b db = 2* J' P(b)b db,    (46.49) 

(46.45) 

(46.46) 

(46.47) 

(46.48) 

where <*(6C) = l/"-- 
Collision delay time function: 

r(E,\)-2h     dE      -v    Qk 

Deflection-angle phase function relation: 

= 2< 
fr \\     2dr,(E,b) _ndy(E,X) 

d\ 

(46.50) 

(46.51) 

46.1.7    Collision Action 

The classical collision action along a classical path 
with deflection x = x(E,L), measured relative to the 
action along the path of the undeflected particle, is 

S°(E, L; x) = SK(E, L) - LX(E, L) (46.52a) 

= 2r,sc(E,L)h-LX. (46.52b) 

Radial component of collision action 5C: 

Sn(E,L) = 2 f°       P(R)dR-2 \       Po(R)dR 

(46.53a) 

= 2r,sc(E,L)h (46.53b) 

Collision delay time function: 

r   *oo    jp ^c 

- fdsA 
\9EjL- 

Deflection angle function: 

dR 

Po(R) 
(46.54a) 

(46.54b) 

nr  r°° dR/R? 

fdSR\ 
~\dL)E- 

(46.55a) 

(46.55b) 

Radial collision action change: 

dSR = T(E, L)dE + x(E, L)dL = 2hdr)SC      (46.56) 

46.2    QUANTAL SCATTERING 
FORMULAE 

The basic quantity in quantal elastic scattering is 
the complex scattering amplitude f{E,6), expressed 
in terms of the phase shifts r\i{E) associated with 
scattering of the £th partial wave. Derived quanti- 
ties are the diagonal elements of the scattering ma- 
trix S, transition matrix T and reactance matrix K. 

Reduced Energy:       ib2 = (2M/h?)E. 
Reduced Potential:    U(R) = (2M/h2)V(R). 

46.2.1    Basic Formulae 

Wave function: As R —♦ oo, 

*(R) -+ exp(tibZ) + i/(0)exp(iiA) (46.57) 

for symmetric interactions V = V(R). 
Elastic scattering differential cross sections (DCS): 

H-'M-IMM' (46.58) 

Scattering, transition and reactance matrix elements 
in terms of rjf. 

St(k) = exp(2iifc), (46.59a) 

Tt(k) = sinift exp(iifc), (46.59b) 

Kiik) = tan t]t. (46.59c) 

Scattering amplitudes f(0): 

f{9) = 5£ f>* + 1) [exp(2iiW) - 1] P/(cos 9) 
1=0 

= f>(0), (46.60a) 
1=0 

1    °° 
f(6) = ^r V(2* + 1) [St(k) - 1] ft(cos B),       (46.60b) 

2tk 1=0 

1 °° 
f(6) = j 5^(2^ + l)Ti(k)Pt(cos 6), (46.60c) 

k 1=0 

/(0) = ^f>(*)P*(cos0),    0#O, (46.60d) 
llk 1=0 

= I S2£ + 1)3i(*)>     e = ° • (4660e) 
*=0 
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Integral cross sections <r(E): 

<r(E) = 2x I  I(0)d(cos0), 
Jo 

= ^5>+l)sinV 
1=0 

Optical theorem: 

<r(2?) = (4*/*)3/(0). 

Partial cross sections <rt(E): 

oo 

1=0 

at(E) =-£(2C+ 1) sin2 r)t 

(46.61a) 

(46.61b) 

(46.62) 

= £(2/+ 1) \Tt\
7 = ^-(2£ + 1) [1 - ttSt] 

4TT. 

P1 

Upper limit: 

<rt(E)<(4w/k2)(2£+l). 

Unitarity, flux conservation, rjt is real: 

|&|2 = 1,    |7i|a = 9T/. 

Differential cross sections (DCS): 

da(E, 0) 
du 

= \f(0)f = I{0) = A{0f + B(0)2 ,      (46.65a) 

1 
A{0) = 8/(0) = -j 5^(2/+ 1) sin 2%P£(coBff), (46.65b) 

1   °° 
5(0) = 9/(0) = — 2^(2/ + 1) [1 - cos 2ife] P^(cos 0). 

/=o 
(46.65c) 

/ A{6fdQ. = ^ JT(2/ + 1) sin2 r?/ cos2 m (46.66a) 
•^ *   1=0 

J3(0)2dQ = ^ 5Z(2/ + 1) sin4 r;/ (46.66b) 
/=o 

d<r(JS?, 0)       1 
du = pE^(^)^(cosö) (46.67a) 

i=o 
oo       l+L 

aL = J2    J3   (SZ+^^ + lK^'OOl^LO)2 

1=0/'=|l-L| 

x sin ijf sin tyi cos(r)i — 77//) (46.67b) 

where (Wmm' \ tl'LM) are the Clebsch-Gordon Coeffi- 
cients. 

Three-Term Expansion: 

da(E,0) _  1 
dfl     ~ ib2 

1 3 
("0 — n °2) + °1 COS 0 +  qa2 COS2 0 

dt *t 

(46.68) 

a0(£) = 53(2^ + !)sin2 W. (46.69a) 
1=0 

(46.63) 

oo 

ai (£) = 6 53 (^ + !)sin Vtsin W+i 
*=o 

x cos(j;/+i - rit) , (46.69b) 

(46.64a) 
a2(E) = 5 53 [h sin2 ^ + c* s^n Wsin 

1=0 

x cos(>7/+2 - i)t)] . 

W+2 

(46.69c) 

(46.64b) 
with coefficients 

/(/+1)(2/+1) 
'     (2£ - 1)(2/ + 3) ' 

(46.70a) 

3(/+l)(/ + 2) 
Ct~       (2/ +3)      ' 

(46.70b) 

S, P wave (/ = 0,1) net contribution: 

-jrr = 72 [«a2 % + [6 sin T)0 sin T71 COS(T7I - »jo)] cos 0 
dn     k2 

+ 9 sin2 T/i cos2 0] , 

.      . 4lT   r   .     o n    •    2        1 
<T(£) = -p- [sm »?o + 3 sin' TjiJ 

(46.71) 

(46.72) 

For pure 5-wave scattering, the DCS is isotropic For 
pure P-wave scattering, the DCS is symmetric about 0 = 
7r/2, where it vanishes; the DCS rises to equal maxima 
at 0 = 0, IT. For combined S- and P-wave scattering, the 
DCS is asymmetric with forward-backward asymmetry. 

Transport cross sections (n > 1): 

'^H1-^ i) 

-i 

x /  [l-cosn0]/(0)d(cos0). (46.73) 
Jo 

The diffusion and viscosity cross sections (46.22a) and 
(46.23a) are given by the transport cross sections a^1' and 
|<r(2), respectively. 

°(1)(E) = F £(/ +1) sin2{m ~ m+l) (46J4a) 
/=0 

'"to=s (Dg (/+!)(/ +2)  . j 
(2/+ 3)     sm^-^2)' 
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Air (*+l) 

(46.74b) 

(l + 2)(l-t-3)  . a . 
(2^3)     Sm(^-^+3) 

(46.74c) 

(46.74d) 

gW(E) = —T \*T*) 
/=o v ' 

3(l2 + 2l-l)  . 2, /I 
+      (2/ - 1) ^ ~ ^+l)J ' 

*    ^-täU>/^(2/ + 3)(2/ + 7) 

r(/ + 3)(/ + 4) . 2, . X[     (2/+5)     ■»(*-**> 
2(2*2 + 6*-3)  . 2, ; 

+       (21-1)    '"(*-*+»> 

Collision  integrals:    Averages  of o-(n>(.E)   over  a 
Maxwellian distribution at temperature T are 

1   f°° 
fi("-')(r) = [(« + l)!(ibT)'+2]_1 /    ^")(£?) 

Jo 
x exp(-jE;/JbT)i;'+1(iJE:. (46.75) 

Normalization factors are chosen so that the above 
expressions for a^ and fi(n-*) reduce to vd? for classical 
rigid spheres of diameter d. 

Mobility: The mobility K of ions of charge e in a gas 
of density N is given by the Chapman-Enskog Formula 

K = - J^L ( 1/2 

16AT \2MkTJ 
[&l>l\T)\   * .        (46.76) 

Phase shifts r]i can be determined from the numerical 
solution of the radial Schrodinger equation (46.91), from 
an integral equation (46.177b), from solving a nonlin- 
ear first-order differential equation (46.177a), from Log- 
arithmic Derviatives (see Sect. 46.2.5) or from variational 
techniques (see Sect. ??.?.?). 

46.2.2    Identical Particles: Symmetry 
Oscillations 

Colliding Particles, each with spin a, in a Total 
Spin St Resolved State in the Range (o —► a«). 

Particle Interchange: *(R) = (-1)5«¥(-R) 

1 (46.77) 

*ü,s(R) - [exp(iiZ) Texp(-itZ)] 

+ i[/(0)=F/(*-0)]exp(»fcß),       (46.78) 
it 

2 
1 °° 

Y^ w*(2^+1) [exp 2iru -1] P/(cos 0)    , 
1=0 

(46.79) 

IA,S(9) = 4p 

<rA,s{E) = ^^«/(2^ + l)sin2r?/; 

*    1=0 

(46.80) 

where A and 5 denote antisymmetric and symmetric 
wave functions (with respect to particle interchange) for 
collisions of identical particles with odd and even total 
spin St. 

A:     St odd    ut = 0 {I even);    ut = 2 (£ odd); 
B:    St even    ut = 2 (£ even);    w/ = 0 (i odd). 

Spin-States St Unresolved. S/A combination: 

I(0) = 9AIA(O) + 9SIS(6), (46.81) 

<r(E) = gA<rA(E) + gs<rS(E). (46.82) 

where ju and gs are the fractions of states with odd and 
even total spins St - 0,1,2, ...,2s. For Ferimons (F) 
with half integer spin s, and Bosons (B) with integral 
spin s 

F:    i/x = (s + l)/(2s+l);    gs =s/(2s + l); 
B:    ffA = S/(2s + l); ,s = (s +l)/(2s + l). 

so that (46.81) and (46.82) have the alternative forms 

J(F) = |/(0)|2 + |/Or-0)|2-Z, 

<r(F) = \{<rs + <rA) -\Ws- *A] /(2S + 1) 

/(S) = |/(0)|2 + |/Or-0)|2+Z, 

<B) = \['s + 'A] + \WS- <*A\ /(2S + 1). 

where the interference term is 

Example: For fermions with spin 1/2, 
CO 

J2 (2t+1) sin* Tji 

(46.83a) 

(46.83b) 

(46.83c) 

(46.83d) 

(46.84) 

£=even 
oo 

+ 3 ]£ (2£+l)sin5 
Vi 

l=odd 

(46.85) 

Symmetry oscillations originate from the interference 
between unscattered incident particles in the forward 
(0 = 0) direction and backward scattered particles (0 = 
n,£ — 0). Symmetry oscillations are sensitive to the 
repulsive wall of the interaction. 
Resonant Charge Transfer and Transport Cross 
Sections for (A+ — A) Collisions: 

The phase shifts for elastic scattering by the gerade 
(g) and ungerade («) potentials of Ä% are, respectively, 
rft and r#. The charge transfer (X) and transport cross 
sections are 

"*(E)   =-£f;(2^+l)sin2(^-r??) 
K  1=0 

*   z=o 

(46.86a) 

(46.86b) 

l)(l+2)  . a . 

j2MTsm{ßt-ßw)- 
(46.86c) 

112 



A:   ßt = Vi (Z even)>    or Vi (£ odd) 
S:    ßt = »7/ (£ even),    or r\{ (£ odd) 

<rA's contains (g/u) interference; aA's does not. 
When nuclear spin degeneracy is acknowledged the cross 
sections <TA,S are summed according to (46.83b) or 
(46.83d). 

Since there is no coupling between molecular states 
of different electronic angular momentum, the scattering 
by the 2SJjU pair and the 2II,iU pair of Ne% potentials 
(for example) is independent and 

Singlet-triplet spin flip cross section: 

(46.87) 

<rsr(E) = £ f)(2/ + 1) «na(i£ - 1,1),        (46.88) 
/=o 

where nj'* are the phase shifts for individual scattering 
by the singlet and triplet potentials, respectively. 

46.2.3    Partial Wave Expansion 

*(R) = 45Y,Atvt(kR)Pt(coe0), 

Al-il(2e + l)exp(irll). 

(46.89) 

(46.90) 

Radial Schrödinger equation (RSE): 

d2vt 

<m2 + k2 - U(R) - 
£(£+1) 

R2 vt(R) = 0      (46.91) 

where «/ is normalized so that 

vi(R) *=*" cosT)iFt(kR) + sinT)tGt(kR) 

—►   sin(JfcÄ — \£* + TU) as R —»• oo 

(46.92) 

The regular (nonsingular) solution (zero at R = 0) of 
the field-free RSE (46.91) with U(R) = 0 is 

Ft(kR) = (kR)ji(kR) = {\nkR)1/2 Jl+1/2(kR)   (46.93) 

f (Jfcfl)/+7(2*+l)!!,   R-*0 
sin(ikÄ- \£*), R—» oo, 

(46.94) 

where jt is the spherical Bessel function. Equation 
(46.89) with vt = Ft is the partial-wave expansion for 
the incident plane-wave exp(t'Ä;Z). 

The irregular solution (divergent at R = 0) of the 
field-free RSE is 

Gt(kR) = -(kR)nt(kR) 

= Q*JbÄ)1/2 J-(t+1/2)(kR) 

f (2*-l)!!/(*Ä)£,   R-^0 
~* \ cos(kR— j£n),      R—» oo, 

(46.95) 

(46.96) 

where nt is the spherical Neumann function. 
The full asymptotic scattering solution is the combi- 

nation (46.92) of the regular and irregular solutions. The 
mixture depends upon: 

Forms of Normalization for v/. In Eq. (46.89), 
possible choices of normalization are: 

(a) At = il(2£ + l)expir,t, (46.97a) 

vt{R)~sm{kR-\£* + r)t)\ (46.97b) 

(b) ^ = i/(2^ + l)cosjj/, (46.98a) 

vt(R) ~ sin(JbÄ - \£t) + Kt cos(kR - \£*); (46.98b) 

(c) At = t(2e+1), (46.99a) 

vt(R) ~ sin(ibÄ - \IK) + Tte***-1*™ ; (46.99b) 

(d) At = ±il+1(2£+1), (46.100a) 

vi(R) ~ e-«(*«-"/a) - 5/e*'(*H-/'/2>; (46.100b) 

Si = 1 + 2ÖI;      Kt = Til {I + iTi); 

Tt = sin rue'"';    1 + xTt = cos i^e'". 

(46.101) 

(46.102) 

Significance of r\t, Kt, Tt, and St. The effect 
of scattering is therefore to: (1) introduce a phase shift 
t)t in Eq. (46.97b) to the regular standing wave, (2) 
leave the regular standing wave alone and introduce 
either an irregular standing wave of real amplitude Kt in 
Eq. (46.98b) or, a spherical outgoing wave of amplitude 
Tt in Eq. (46.99b), and (3) to convert in Eq. (46.100b) an 
incoming spherical wave of unit amplitude to an outgoing 
spherical wave of amplitude 5/. 

Levinson's Theorem. A local potential U(R) can 
support nt bound states of angular momentum £ and 
energy En such that 

lim»?o(*)= | 

lim r)i(k) — niw, 
k-*0 

n07T, En < 0 
(n0 + |)TT,    En+1 = 0, 

*>0. 

(46.103) 

(46.104) 

46.2.4    Scattering Length and Effective 
Ranges 

Blatt-Jackson Effective Range Formula.    For 
short-range potentials, 

Jbcotr?0 = -i + ^Äeib2 + O(A:4). (46.105) 

Effective range: 

Re = 2 f° [ujj(Ä) - v2(R)} dR, (46.106) 
Jo 

where «o = sin(iki? + t,0)/ sin 770 is the k = 0 limit of the 
potential-free £ = 0 radial wave function and normalized 
so that u0(R) goes to unity as k —► 0.   The potential 
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distorted t = 0 radial function v0 is normalized at large R 
to uo(-R)- The effective range is a measure of the distance 
over which v0 differs from u0- The outside factor of 2 in 
Eq. (46.106) is chosen such that Re = a for a square well 
of range a. 

Scattering length: 

as = -lim/(0). (46.107) 

Relation with fc —► 0 elastic cross section. 

a(k -> 0) = TJ 
sin2 fo 

= 47rag
2 {[1 - ifc^sÄe]2 + *2a,2}-1    (46.108) 

~ 47ra2 [1 + a,fc2(Äe - a,)] (46.109) 

Relation with Bound Levels. If a I = 0 bound 
level of energy En = -ft2Jk2/2M lies sufficiently near 
the dissociation limit the effective range and scattering 
lengths, Re and as, respectively, are related by, 

-1 = _i„ + ^Rekl + 
as 2 

(46.110) 

Wigner Causality Condition. If r\t provides the 
dominant contribution to f(9) then 

druik) 
8h    - 

> —a. (46.111) 

where as is the scattering length {I - 0) and is a measure 
of the range of the interaction. 

Effective Range Formulae. [1-5] The Blatt- 
Jackson formula must be modified for long-range inter- 
actions as follows. 

(1) Modified Coulomb potential: V(R) ~ Z1Z2e
2/R 

2(K/a0) = -(l/as) + ±Rek2 (46.112) 

7T COt 77o 
K = ,2™ _ 1 

-\nß- 0.5772 

+^EW"2+^2)] 
>2M-1 (46.113) 

n=l 

where ß = ZiZ2e
2/hv = ZiZ2/(ka0). 

(2) Polarization potential: V(R) = -ade2/2Ä4 

tani» = -*Bk-fak2-lc4aBk
3ln(kao)+Dk3+Fk\ 

Unm = ^-C4k
2-aWk3, 

15 

tan t}i = 
7rC4Jfc2 

(2/ + 3)(2/+l)(2/-l) 

for I > 1, where 

(46.114) 

(46.115) 

+ 0(Jfc"+1),   (46.116) 

Example: e~-Ar low energy collisions: The values 
a, = -1.459a0;    D = 68.93ag 
ai^ = 8.69a3

0;      F =-97a4
0 

provide an accurate fit to recent measurements [6] of 
(46.74a) for the diffusion cross section <Td- 

(3) Van der Waals potential: V{R) = -C/R6 

—1 Jb4ln(Jba0) + 0(k4)    (46.118) 
15as L  ft2   J 

e-Atom Collisions with Polarization Attrac- 
tion. As Jb -► 0, the differential cross section is 

(46.119) 

and the elastic and diffusion cross sections are 

a(k - 0) = 4*a2 [l + 2^g* + f C4fc2 ln(*ao) + • • •] 

(46.120) 

<rd(* - 0) = 4™2 [l + ^^ + fC4fc2 ln(*a0) + • ■ ■] 
(46.121) 

For e~-noble gas collisions, the scattering lengths are 

He      Ne        Ar        Kr      Xe 
as(a0)    1.19    0.24    -1.459    -3.7    -6.5 

For atoms with a8 < 0, a Ramsauer-Townsend minimum 
appears in both a and crd at low energies, provided that 
scattering from higher partial waves can be neglected, 
because from Eq. (46.114), »70 a 0 at fc = -3as/7rC4. 

Semiclassical Scattering Lengths. For heavy particle 
collisions, t)sc(E -* 0,6) tends to 

nsc 

= ffl 

1/2 

r \V(R)\U2 

JRo 
dR. (46.122) 

(a) Hard-core + well: 

V(R) ■{ 
00,   R < Ro 

-Vo,   Ro<R<Ri 
0,   i?i < R 

a„= [l-tanijgc/(*Äi)]Äi 

^c = fc(i21 + Äo),    k2 = 2MV0/h2. 

(46.123) 

(46.124) 

The phase-averaged scattering length is (ag) = Ri. 
(b) Hard-core + power-law (n > 2): 

«=£(¥)-£)(£)•  <46II7)      rw~{ 
00,       R < Ro 

±C/Rn,   R>Ro 
(46.125) 
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Repulsion (+): with y2 = 2MC/h2 

(46.126) 

Attraction (-): with 0„ = ir/(n — 2), 

a<-> = a<+) [1 - tan 9n tan (^c - \0n) ] cos 0n , 

(46.127) 

„sc 
»to =7 rR-n 

JRo 
rn,2dR = 2yRo 

,l-n/2 

n-2 
(46.128) 

(46.129) (a<->) =a(+)cosÖn. 

Number of bound states: 

Nh = int |1 [%SC - |(n - 1)0„] } + 1,       (46.130) 

where int [a;] denotes the largest integer of the real 
argument x. For integer x, al' is infinite and a new 
bound state appears at zero energy. 

46.2.5    Logarithmic Derivatives 

Phase shift calculations can be based on the logarith- 
mic derivative at R = a separating internal and external 
regions. Two equivalent forms using sets (Rt,jt,nt) or 
(vt, Ft, Gt) when Rt = vt/kR are 

kn't(ka) - ji{k)ni(ka) 

kFj(ka) - Lt(k)Ft(ka) 
kG't(ka) - Lt(k)Gt(ka) ' 

where the logarithmic derivative of the internal solution 
at R = a appropriate to either set, is 

(46.131a) 

(46.131b) 

7£ = [Rj'dRi/dR]^ , (46.132) 

or alternatively, Lt  =   [vt 
1dvi/dR]R=a . The primes 

denote differentiation with respect to the argument, i.e. 

B't(ka) = 
dBt(x) 

dx J x=ka 

dBt(kR)' 
dR R=a 

, (46.133) 

where Bt denotes the functions Ft, Gt, jt, and n/. 

Decomposition of the 5-Matrix Element: 

7/ - (n - isi) Si(k) 

where 

e2i"' = 
ft - (rt + ist) 

e2i"< ,       (46.134) 

„*m _    .?*(*«) ~ intjka) 
VtW-    Mk^ + imika)' 

rt + ist = k 
j't(ka) + in't(ka) 
Jt(ka) + int(ka) 

(46.135) 

(46.136) 

Decomposition of the Phase Shift: 

m = Vt + k. (46.137) 

where ijf is determined by (46.135), and where 6t is 
determined by 

tan^ = H 
yt-n 

(46.138) 

which depends on the shape of U via the logarithmic 
derivative yt of Eq. (46.132), and can vary rapidly with 
ife, thereby giving rise to resonances. 

Examples: 
(1) Hard sphere:   if V(R) = oo for R < a, and 

V(R) = 0 for R > a, then 7/ = 00, and 

tffs>=tan,T>(fc) = ^ * * nt(ka) 
(46.139) 

-(ta)M+V [(2/ + 1)!!(2/ - 1)!!],   ka < 1 
-tan(ifca-i&r), ka > 1 

(46.140) 

S<HS) = exp [2i„<HS) 

= 1 + 2i7JHS) 

jt(ka) - intjka) 
jt(ka) + im(ka) 

(46.141) 

The phase shift r$ in the decomposition (46.137) is 

therefore identified as rft    ' for hard sphere scattering. 

<x(E — 0) = 47ra2 . 

Diffraction pattern: As E —* 00, 

da 
dil 

cr(E) 

\a3[l + cat2(±0)JUkawL$j\ 

2ira* 

(46.142) 

(46.143) 

(46.144) 

Classical hard sphere scattering and diffraction about the 
sharp edge each contribute ira2 to <r. 

(2) Spherical Well: if U(R) = -U0 for R < a, and 
U(R) = 0 for R > a, then 

7<(*) = «4(-^- K2 = U0 + Jb2 = k2
Q + k2. (46.145) 

jt(na)' 

5-wave (£ = 0) properties: 

Tj0(k) = -ka + tan-1 [(*/«:) tan tea] . (46.146) 

As Jfc —> 0, 00(E) —► 4irA2, where the scattering length is 

A0 = [1 - tan(Jfc0a)/(froa)]a ■ (46.147) 

For a shallow well k0a < 1: a0(E) = (Air/fyUga6, which 
agrees with the Born result (46.169) as k —► 0. 

The condition for I = 0 bound state with energy 
En = -(h2k2

n/2M) is 
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ibn tan K'CL = —K',    /C   = k% - fc, (46.148)     46.2.7    Resonance Scattering 

As the well is further deepened, <r0(E) oscillates between 
zero, where tanJboa = Jboa, and oo, where koa = nir/2, 
the condition both for appearance of a new level n at 
energy E and for ao —► oo. In the neighborhood of these 
infinite resonances, 

(46.149) 
. 47T 

where K' = /c/tan/ca. 

46.2.6    Coulomb Scattering 

Direct solution of RSE (46.91) yields 

vt ~ sin(fcÄ- \t* + ij[C) ~ ßln2kR), (46.150) 

ß = ZiZie^/hv = ZtZi/ikao). (46.151) 

Coulomb phase shift: 

n<c) = arg T(t + 1 + iß) = 9 In r(* + 1 + iß). (46.152) 

Coulomb S-matrix element: 

Coulomb scattering amplitude: 

ßexp [2f»j(C) - tain (sin2 ±0)] 
fc(0) = - 2fcsin2±0 

(46.154) 

Coulomb differential cross section: 

— = ¥-TT- = ^M-™*¥,        (46-155) dQ,     4ife2sin4±0        16£2 2   >        v 

which is the Rutherford scattering cross section. 
Mott Formula: For the Coulomb scattering of two 

identical particles: From (46.83a) and (46.83c) 
(a) spin-zero bosons (e.g. 4He - 4He): 

f£. = £. [csc* \e + sec4 \9 + 2 esc2 ±0sec2 \0 cosr] , 
CLiL T:A* 

(46.156) 

(b) spin-i fermions (e.g. H+ - H+, e* - e*) 

^ = ^[csc4le + sec4Iß_csc2Iösec2Iöcosr] , 

(46.157) 

wherer = 2/?ln(tan|0). 

Zero-Energy Broad Resonances. The spheri- 
cal well example (46.145) serves to illustrate broad res- 
onances. When the well depth Uo is strong enough 
to accomodate the (n0 + 1) th energy level at zero en- 
ergy, the bound state condition (46.148) implies that 
»7o(Jb -»0) = (no + l)ir, illustrating Levinson's theorem 
(46.103). As Jb increases, TJ0 generally decreases through 
either (2n-l)x/2, or (n-l)ir, where <r0 has, respectively, 
a maximum value 4x/ib2 and a minimum value of zero. 
If the phase shifts T)t for I > 0 are small, then a nonzero 
minimum value in <r(E) is evident. This is the Ramsauer- 
Townsend minimum manifest when the potential is just 
strong enough to introduce one or more wavelengths into 
the well with no observable scattering. Since the rate 
of decrease of no cannot be arbitrarily rapid, [cf. Eq. 
(46.103)], broad resonances will be exhibited in contrast 
to narrow (Breit-Wigner) resonances when r)t increases 
rapidly through (2n — 1)^/2 over a small energy range 
AE. 

Narrow Resonances. The general decomposition 
(46.137) can be used to analyze narrow resonances. 
When yt varies rapidly within an energy width T about 
a resonance energy ET then 6t increases through odd 
multiples of ir/2 and 

^ = ^ = tan"12^b)' (46"158) 

so that (46.60a) with (46.59a) and (46.59b) is 

/£ = 
(21+1) T(HS)+ £(HS) T/2 

Et-E- 
P/(cos0). 

(46.159) 

Breit-Wigner Formula. For a pure resonance with 
no background phase shift, S^ ' — 1 and the cross 
section has the Lorentz shape 

'(E) = 
4;r(2l+l) 

Jb2 

r2/4 
(E - Er)

2 + T2/4 
(46.160) 

Shape Resonances. (Also called quasibound state 
or tunneling resonances). At very low impact energies 
near or below the energy threshold for orbiting, sharp 
spikes superimposed on the glory oscillations may be 
evident in the £-dependance of <r(E). These are due 
to quasibound states with positive energy Eni supported 
by the effective potential V(r) + L2/(2Mr2). In heavy 
particle collisions, quasibound levels are the continuation 
of the bound rotational levels to positive energies Eni > 
0. 

Systems in quasibound states (nt), with nonresonant 

eigenenergy Eni and phase shift nj ', have 
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E = Enl- -T„t, 

m^ + tf, 
»?/ = ^0) + tan-1 r„/ 

2(Enl - E) ' 

(46.161a) 

(46.161b) 

(46.161c) 

St{E) = e2"" = 
E-Enl- $rnt 

E-Ent + iTnl 

-W 

„<°> 2i"'   .    (46.162) 

The phase shift n)    increases by T as £ increases 
through Eni at a rate determined by T„/. The dominant 
amplitude shifts from the external to the quasibound 
internal regions at E = Im- 

partial-Wave Scattering Amplitude. 

//(*) = ^(2£ + l)exp(2ir,°)Pt(coS0) 

1- 
»T, nt (46.163) 

(E - Ent + pm) 
= background potential scattering amplitude 

+ resonance scattering amplitude. 

The partial-wave cross section is composed of the fol- 
lowing: potential resonance and interference contribu- 
tions to aL - \ft(0)\2: 

4TT ,„ „     ,. 
^=^(2^+1) 

•   2    (0) sin T)I ' 

T2
nl cos 2rfp + 2rnt(Ent - E) sin 2^ 

4(E-Ent)
2 + T2

nt 

(46.164a) 

|(2*+l){sin2n<' (0) (E-Entf 

+ cos2^0) 

+ sin2^0) 

{E - Ent)
2 + (TntßY 

(Tm/2?  
(E - Entf + (Tnl/2Y 

(Tnt/2)(Enl - E) 

(E-Enly + {Tnl/2Y 

a(E) = 53 at = a0(E) + a^E) 

(46.164b) 

(46.164c) 
*=o 

Resonance Shapes. Resonance shapes depend on 
the value of the background phase shift T)\ K The case 

T)l' = 0 gives a Lorentz line shape through the Breit- 
Wigner formula 

crt 
4TT(2^+1) r^/4 

i»       (E-Entp + TlJi' 

The other cases from Eq. (46.164b) are 

(46.165) 

T)V' = nir Large positive spike; 

r/2° = (" + 2) T Large negative spike; 
n* < Ut    < (n + 5) * Positive then negative; 
(n + 5) T < T)}' < (n + l)n Negative then positive. 

(46.166) 

Time Delay. 

■=»(£),-» H o>r 
8E 

+ ^-.        (46.167) 

The time for capture into quasibound levels is rc  = 
4R/r„/, and the capture frequency is vc = T„t/4h. 

46.2.8    Integral Equation for Phase Shift 

sin tu. = -\ r Ft{kR)U{R)v{^\kR) dR,     (46.168a) 
* Jo 

Kt = tan rii = -T I   Ft(kR)U(R)v[B\kR) dR, 
k Jo 

(46.168b) 

Tt = c*'" sin m = ~i I    Ft(kR)U{R)vf\kR) dR, 

(46.168c) 

St - 1 = exp(2i%) - 1 

= -T /    i?i(ifeÄ)C/(Ä)^I>)(*Ä)di?,     (46.168d) 

where rJA\ v^ ',uj \t>j  ^ are so chosen to have asymp- 
totes prescribed by Eqs. (46.97b)-(46.100b), respectively. 

Born  Approximation for  Phase  Shifts.    Set 
vt = Ft in Eqs. (46.168a)-(46.168d) to obtain 

rOO 

tan rjf (i) = -Jk /    U(R) \jt(kR)]2 R2 dR.    (46.169) 
Jo 

For A = (t+ 1/2) > ka, substitute 

(ifc2Ä2 \jt(kR)Y) = \ [1 - A2/*2i?2] "1/2 .     (46.170) 

For the Jeffrey-Born (JB) phase shift function, I > ka, 

tan T)JB (i) = -^/ 

V(R)dR 

x/k [1 - A2/(*Ä)2]1/2 
,    (46.171) 

which agrees with (46.41) since bk = ^+| = A. For linear 
trajectories R? = b2 + Z2, the eikonal phase (46.42) is 
recovered. 

Born S-wave Phase Shift. 

tan7^(Jfc) = --J- /    U(R)sin2(kR)dR       (46.172) k Jo 
e-aR TJ 

Examples : (i) U = U0—£-,   (ü) U = ,R2 + R2y> 
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Co (i) tan„«=-Sln[l + 4*7"2]. 
4Jfc 
rU0 

(46.173) 

(Ü) tan $ = - Jg| [1 - (1 + 2kRo)e-"R°}     (46.174) 

Born Phase Shifts (Large £). For £ > ka, 

J.2/+1 r°° 
tanT?? = - 

K2/+1) 
^ f°° U{R)Ru+2dR,   (46.175) 

valid only for finite range interactions U(R > a) = 0. 
Example: *7 = -üb, Ä < a and tf = 0, Ä > a. 

<»^**°>=^Wwi^- (46176) 

For £ > iba, ru+i/m ~ (fca/2£)2 . 

46.2.9 Variable Phase Method 

The phase function r}i(R) is defined to be the scat- 
tering phase shift produced by the part of the potential 
V(R) contained within a sphere of radius R. It satisfies 
the nonlinear differential equation for rn(R) 

%a = -kR2U(R)[cosrU(R)jl(kR)-smril(R)nt(kR)]i . 
dR 

(46.177a) 

The corresponding integral equation for t]i(R) is 

rR 

m(R) = -k /    [coBtu{R)jt(kR) 
Jo 

- sin m(R)ni(kR)}2 U(R)R2 dR.     (46.177b) 

The Born approximation (46.169) is recovered by substi- 
tuting Tjt = 0 on the RHS of Eq. (46.177b) as R -► oo. 

46.2.10 General Amplitudes 

For a general potential V(R), define the reduced 
potential £/(R) = (2M/fi2)V(R). The plane wave 
scattering states are 

^k(R) = exp (tk • R) = ^*_k(R) (46.178) 

and the full scattering solutions have the form 

*k
±}(R) ~ tfk(R) + ^^ exp (±ikR) , (46.179) 

where the scattering amplitude is 

/(k,k') = ~ (MR) | U(R) | *k
+)(R)) (46.180a) 

= __L (*k7>(R) | U(R) | ^k(R)) (46.180b) 

= _-L^k,(R)|T|*k(R)) (46.180c) 
47T 

The last equation defines the T-matrix element. 
First Born Approximation. 
Set     *£ = <£k in (46.180a). Then 

fB(K) = ~ J U(R) exp (»K • R) dR,      (46.181) 

where the momentum change is K = k - k', and K = 
2Jfesin \0. For a symmetric potential, 

fB(K) = -J ™££u(R)R2 dR. (46.182) 

Connection with partial wave analysis: 

sin KR = g(2£ + 1} ^(tÄ)]3 Pi{cos e)       (46 183) 
KR 1=0 

which is consistent with (46.169). 
The static e~-atom scattering potential and Born 

scattering amplitude are 

**>--£+•■/ mr)\2dr 
|R-r| 

(46.184) 

where the elastic form factor is ir(-ff) = 
/|r/>(r)|2exp(t'K-r)<fr. For a pure Coulomb field, 
F(K) = 0 and <rB(0,E) = |/B(-^)|

2
 reduces to Eq. 

(46.155). 
Two Potential Formulae.   For scattering from the 

combined potential U(R) = UQ(R) + Ui(R), 

/(k,k') = -^[(MR) I MR) I xL+)(R)) 

+ (xL^(R) I ^i(R) I *L+))] (46-186a) 

where xL^R) and ^if^R) are ful1 solutions for scat" 
tering by V0 and V0 + Vi, respectively.   For symmetric 
interactions, 

1    °° r 1 
f{6) = \ YlU + 1) if > + if}  Pt(cos 0)    (46.187) 

k7=t L 

^0) = exp[^0)]sin^0); (46.188a) 

i   t°° 
TJ0) = -i;        dR[Ft(R)Uo(R)MR)} ■        (46.188b) 

* Jo 

2f > = exp [2ti<°>] exp [it,™] sin ^ , (46.189a) 

T<x) = -i J" dR [ut(R)Ui (R)vt(R)] .        (46.189b) 

where «/ and vi are the radial wave functions in (46.91), 

with phase-shifts r^0) and t)t = ^0) + T)^, for scattering 
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by Vb and Vo + Vi, respectively, normalized according to 
(46.99b). 

Distorted-Wave Approximation. 

*L+)(R)~xL+)(R) 

/(k,k') = -i- [(^k,(R) I tfo(R) | xL+)(R)) 

+ (x^R) I C^i(R-) I xL+)(R)) ] •      (46.190) 

46.3    SEMICLASSICAL SCATTERING 
FORMULAE 

46.3.1    Scattering Amplitude: Exact 
Poisson Sum Representation 

Poisson Sum Formula: A = t + ^ 

A. Legendre Function Asymptotic Expansions 

Main range: sin0 > A-1, 9 not within A-1 of zero or jr. 

Pt(co8 0) = [2/(irA sin 0)]1/2 cos [A0 - */4] .    (46.193) 

Forward formula: 6 within A-1 of zero. 

P*(cos 6) = [0/ sin 0]1/2 Jo(A0), 

Jo(A0) = - f' e"' 
* Jo 

„—i AS cos 

(46.194a) 

(46.194b) 

Backward formula: 6 within A     of v. 

P*(cos0) = 
7T-0 

sind 

1/2 

Jo [A(* - 0)] e-v<A-1/2>. 

(46.195) 

Equations (46.193)-(46.195) are useful for analysis of 
caustics (rainbows), diifraction and forward and back- 
ward glories, respectively. Also, a useful identity is 

00 r 

f> ('+§)= £ (-i)m/°°^y2mxA^-       j>/+i)ft(co6 0)=| 
/=0 m=-oo -'0 _ 

45(1-cos 0),   0>O 
0 0 = 0 

(46.191)      where 6{x) is the Dirac delta function. 

When applied to (46.60b), 

t°°     r 1 
f(0) = (ik)-1   £  (-1)-/    A[e2'^)-l] 

m=-oo " 

xPA_i(cosÖ)e,'2m'A dA, (46.192) 

where 77(A) and P>-i/2 = ^(A, #) are now phase functions 
and Legendre functions of the continuous variable A, 
being interpolated from discrete to continuous I. This 
infinite-sum-of-integrals representation for f(6) is in 
principle exact. It is the appropriate technique for 
conversion from a sum over (quantal) discrete values of 
a variable to a continuous integration over that variable 
which classically can assume any value. The particular 
merit here is that the index m labels the classical paths 
that have encircled the (attractive) scattering center m 
times, and that the terms with m < 0 have no regions 
of stationary phase (SP). For deflections x in tne range 
—ir < x < f, the only SP contribution is the m = 0 term. 

46.3.2    Semiclassical Procedure 

Semiclassical analysis [7-9] involves reducing (46.192) 
by the three approximations represented by cases A to C 
below. Since the integrands can oscillate very rapidly 
over large regions of A, the main contributions to the 
integrals arise from points A,- of stationary phase of each 
integrand. The amplitude can then be evaluated by the 
method of stationary phase, the basis of semiclassical 
analysis. 

B. JWKB Phase Shift Functions 

A211/2 

= lim f I™ kt(R')dR'-kR l. 

dR   (46.196a) 

(46.196b) 

Local wave number: 

kl(R) = ib2 - U(R) - X2/R2 , 

with the Langer modification: 

b 
y/t(l+l) _ 1+1/2 _ A 

(46.197) 

(46.198) 

Useful Identity: 

sinj/* [i3-A2/Ä3]1/3dÄ+^} 

—► sin (kR — ^tir)   as R —► oo. (46.199) 

JWKB phase functions are valid when variation of the 
potential over the local wavenumber kj (R) is a small 
fraction of the available kinetic energy E — V(R). Many 
wavelengths can then be accomodated within a range AR 
for a characteristic potential change AV. The classical 
method is valid when (l/k)(dV/dR) < (E - V). 
Phase-Deflection Function Relation. 

X(A) = 2 ex (46.200) 
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C. Stationary Phase Approximations (SPA) to 
Generic Integrals 

A*(6) = r g(0; A) exp [±iy(0; A)]  dX      (46.201) 
J — OO 

for parametric 0. In cases where the phase function y 
has two stationary points, a phase minimum 71 at Ai 
and a phase maximum 72 at A2, then 7* = 0, 7^ > 0, 
72' < 0 where 7! = (dy/dX) at A,- and 7? = (<Py/dX2) for 
* = 1,2. Since g is real, A~ = (A+)*, g((0) = g{0, A,). 

Uniform Airy result. 

A+(0) = a1(ö)e<^l+'/4>F*(72i) 

+ a2(^)e<(Ta-'/4)F(72i), (46.202) 

a,(0) = [2*/ |7H]1/29i(0),    «'=1,2, (46.203) 

721 (0) = 72-71 

= f|z(0)|3/2>O, (46.204) 

^[72i(Ö)] = [z^AK-zJ + tz-^Ai't-*)] V? 
xe-.(73i/2-T/4) _ (46.205) 

where Ai and Ai' are the Airy function and its derivative. 
This result holds for all separations (A2 — Ai) in 

location of stationary phases including a caustic (or 
rainbow), which is a point of inflection in 7, i.e. 71 =72, 
yi = 0 = 7". An equivalent expression is [9] 

A+(0)= [(ai + a2)z
1/4Ai(-z) 

- »(ax - a2)z"1/4Ai'(-z)] V^e* ,        (46.206) 

where the mean phase is 7 = 3(71 + 72)- The first 
form (46.202) is useful for analysis of widely separated 
regions of stationary phase when 721 ~^> 0 and F —► 1. 
The equivalent second form (46.206) is valuable in the 
neighborhood of caustics or rainbows when the stationary 
phase regions coalesce as a\ —► a2. 

Primitive result. For widely separated regions Ai 
and A2, F —► 1 and 

A±{€) = [ai(e) T ia2(e)e±'^"] e^^+'M ,   (46.207a) 

J4
±(e) = a1(e)exp[±i(7i + J)] 

+ a2(e)exp[±»(72-^)] • (46.207b) 

Note that the minimum phase 71 is increased by 7r/4 
and the maximum phase 72 is reduced by ir/4. 

Transitional Airy result. In the neighborhood of 
a caustic or rainbow where 7" = 0, at the inflexion point 
Ai = A2 = Ar, then 

i±/m _ A*(0) = 2* 
V"(Ar) 

1/3 

g(0; Ar)Ai(-z)e±,'1'(':A') (46.208) 

z = 
7"'(Ar) 

1/3 

-/(Mr). (46.209) 

Only over a very small angular range does this result 
agree in practice with the uniform result (46.202), which 
uniformly connects Eqs. (46.207a) and (46.208). These 
stationary-phase formulae are not only applicable to 
integrals involving (A,0) but also to (t,E) and (R,p) 
combinations which occur in the Method of Variation of 
Constants and in Franck-Condon overlaps of vibrational 
wave functions, respectively. 

46.3.3    Semiclassical Amplitudes: 
Integral Representation 

A. Off-Axis Scattering: sinO > A-1. 

Except in the forward and backward directions, Eq. 
(46.192) with (46.193) reduces to 

1 °° fOO 

x L.A+(A,m) _ eiA-(A;m)l   ^ 

(46.210) 

A±(A; m) = 2J?(A) + 2m7rA ±\0± TT/4 (46.211) 

= Sc±ir/4, (46.212) 

where 5C is the classical action (46.52b) divided by h. 
The stationary phase condition dA^/dX = 0 yields 

the deflection function x to scattering angle 0 relation 

x(A,-) = =F0-2m7r, (46.213) 

where Aj are points of stationary phase (SP). Since TT > 
X > —00, integrals with m < 0 have no SP's and vanish 
under the SPA. For cases involving no orbiting (where 
X —► —00) and when * > x > — ""> tnen integrals with 
m > 0 also vanish under SPA so that the only remaining 
contribution from m = 0 to (46.212) is 

m~    *(2*sin0)i/2 h Le J 
dX, 

A
±
(X) = 2T)(X)±X0±X/4. 

(46.214) 

(46.215) 

The attractive branch A+ contributes only negative 
deflections and the repulsive branch A- contributes only 
positive deflections and has one SP point at Aj where A- 

is maximum. 
Rainbow angle 0T:  (A+)'A't = 0, so that x'(Ar) = 0 

and x(Ar) < 0 has reached its most negative. 
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0 < 9T:    A+ has two SP points A2,3! 
a maximum at A2 and 
a minimum at A3. 

0 = 0t:    A2 = A3: SP's coalesce. 
0 > 0T:    no classical attractive scattering. 

A+ has no SP points. 

B. Forward Amplitude: sinö ~ 6 < A-1. 

x ' m=-oo " 

x L2«-i(A) _ ij e2«'m"A«fA. (46.216) 

Stationary phase points: Y(Am) = 0. 

x(Am) = 2(|^=-2m*. (46.217) 

Terms with m < 0 therefore make no SP contribution to 
f(9) since x < ""• The m = 0 term provides dim-action 
due to x —► 0i x' -* 0 at long range, and a forward glory 
due to x —► 0 at a finite Ag and nonzero xg- 

C. Backward Amplitude: 6 ~ TT - 0(A_1). 

i /.*-   AN
1
/

2
   °° r00 

v ' m=-oo " 
X e«[2^(A)+(2m-l)»A] dA (46.218) 

Stationary phase points: 

x(Am) = 2 (|[) = -(2m - 1)*. (46.219) 

There are no SP for m < 0. The m = 0 term provides 
a normal backward amplitude due to repulsive collisions 
(X = 7r), and m > 0 terms are due to attractive half- 
windings. 

D. Eikonal Amplitude. 

The m = 0 term of Eq. (46.216) gives 

fE(9) = jj^r A [e2,'"(A) - l] M™) dX (46.220a) 

= -ik r [e2'"W - l] Jo(*W)6 db.        (46.220b) 

From the optical theorem, 

<rE(E) = 8TT /   sin2 »?(&, E)b db (46.221) 
Jo 

For potentials with cylindrical symmetry, kb9 can be 
replaced by 2ib6sin \9 = K - b, and 

/E(0) = ~ I [e2'"(i) - l] Jo(K ■ b) db.     (46.222) 

46.3.4    Semiclassical Amplitudes and 
Cross Sections 

Amplitude addition: 

N 

(46.223) 

where each classical path bj — bj{0) or SP-point Xj = 
Xj(0) contributes. 

Primitive amplitudes: 

fs(0) = -iai/J,-<rj/2(*)exp [iSf(9)] 

X'i = (dx/dX); 

(46.224) 

(46.225) 

. _ p±t*/4. a,- = e ;    (+)xj>0;    (-)xj<0;    (46.226a) 

/?, = e±f-/4;    (+)Xi>0;    (-)Xi<0.    (46.226b) 

Classical cross section: 

*>(') = 
bdb 

d(cosx) 
*i (46.227) 

Xj. -*w|x$r 
iV classical deflections x> provide the same 0: 

Xj- = X(A;) = 9, -9, -2TT ± 0, -Air ± 0,... .    (46.228) 

Classical collision action ^(E,L;x)/h'- 

Sf = 2f](Xj)-XjX(Xj) (46.229a) 

= 2r)(Xj) -XJ6,    0 < x < * (46.229b) 

= 27?(Ai) + AJß-m7r,    x<0, (46.229c) 

where m = 0,1,2,... is the number of times the ray 
has traversed the backward direction during its attractive 
windings about the scattering center. 

A. Amplitude Addition: For three well 
separated regions of stationary phase 
\i<\2< A3 

A scattering angle 0 in the range 0 < 9 < 0T (rainbow 
angle) typically results from deflections X; at three im- 
pact parameters 6 (or A): 9 = {x(&i)> -x(h), ~x(h)} = 
{Xj}- Scattering in the range 0r < 0 < IT results 
from one deflection at &i. &i is in the positive branch 
(inner repulsion) and 62,3 are in the negative branch 
(outer attraction) of the deflection function x(&) 8UCh 
that &! < 62 < 63. kb = (I + 1/2) = A. Thus 

3 3 

/(*) = £/;(*) = £ M*)]1/2«p(»"5j) -     (46-230) 
i=i 3=1 

where the overall phases of each fj are 
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Si = 2ij(A1)-A10-*/2> 

52 = 2r?(A2) + X20 - x, 

53 = 2r)(\3) + \30-x/2, 

(46.231a) 

(46.231b) 

(46.231c) 

which are appropriate, respectively, to deflections xi = 0 
at Ai, X2 = —0 at A2 and X3 = —# a^ A3, within the 
range — x < x < *• 

The elastic differential cross section 

3 3 

*(*) = E'iW + 2£M0)<ri(0)]1/2cos(5,- -Si) 

= <rc(0) + Acr(0) (46.232) 

exhibits interference effects. The first term ac is the 
classical background DCS with no oscillations. The 
second term A<r provides the oscillatory structure which 
originates from interference between classical actions 
associated with the different trajectories resulting in a 
given 6. The part of Sy = 5,- - Sj most rapidly 
varying with 6 are the angular action changes (Ai + X^)^, 
(Ai + Aß)*? and (A2 — X3)6. Interference oscillations 
between the action phases S\ and S2 or between Si and 
53 then have angular separations 

2™ 
A0i;(2i3) - (Ai + Aa 3) , 

which are much smaller than the separation 

A02;3 = 
2xn 

(A2 - A3) 

(46.233) 

(46.234) 

for interference between phases S2 and 53. The oscilla- 
tory structure in Ac(0) is composed therefore of super- 
numerary rainbow oscillations with large angular separa- 
tions A02;3 from 52 and 53 interference, with superim- 
posed rapid oscillations with smaller separation A9i^2,3) 
from interference between Si and 52 or 5i and 53. 

For deflections Xj = #, -0, -2x =F 9, -4x =F 9, 
■■•, then the A+-branch of (46.210) provides additional 
contributions to (46.230) with phases 

52
t
m = 27,(A2m)±A2m0-2mtf-*, (46.235a) 

Stn = 2r?(A3m) ± \3m6 - 2mx - x/2, (46.235b) 

for m = 1,2,3, — 

B. Uniform Airy Result: For two regions of 
stationary phase which can coalesce 

The combined contribution f23(0) from the A2 and A3 
attractive regions in A+ branch is 

/asW = <r\l2eiS*F23 + (#V5'F£,, (46.236a) 

F23 = [A + iB] e-'(s"/2), (46.236b) 

523 = S2 — S3 

= 2(T,2-T)3) + (\2-\3)0-±T, (46.236C) 

A(z) = x1/V4Ai(-z), (46.236d) 

B(z) = i*/*z-l'4Ai'(-z), (46.236e) 

I \z\3/2 =S?-S° = 523 + |x. (46.236f) 

The amplitude /23 tends to the primitive result f2{9) + 
f3{9) in the limit of well-separated regions (z > 1) when 
F23 —► 1. An equivalent form of (46.236a) is 

/»(*) = [A{°\
12

 + <r\12) + iB(c\12- 4f2)] exp(t5), 

(46.237) 

where the mean phase 5 = %(S2+S3). This form is useful 
for analysis of caustic regions at 9 ~ 9T where z —► 0. 

C. Transitional Result: Neighborhood of 
Caustic or Rainbow at (0T, b,., XT) 

In the vicinity of rainbow angle 9 « 9r, 

x' = § = [2(ör-ö)x"(Ar)]
1/2 

z = (6I-6)[2/x"(*r)]1/3>0 
1 
2 

The scattering amplitude 

5r = i(5i + 52) = 2r,(Ar) + Ar0r - § x. 

(46.238) 

(46.239) 

(46.240) 

/»(M = 
2xAr 

Jfc2 sin 6T 

1/2 -,1/3 

Lx"(Ar)J 
Ai(-z)eiS', 

(46.241) 

is finite at the rainbow angle 9T. In Eq. (46.237), the 
(6T-0)-ll4 divergence in |x*|1/2 of Eq. (46.238) arising in 

the constructive interference term (<r2 +03 ) is exactly 
balanced by the z1/4 term of A{z). Also (oy -O3 ) —► 0 
in (46.237) more rapidly than z~1/4 in B(z) so that 
(46.237) at 9T is finite and reproduces (46.241). 

The uniform semiclassical DCS 

dc_ 
du 

,1/2/ M2( <r\i\0)ls> +v1
2
/\e)F23e

iS' + (#aF,V'5»l 23c 

(46.242) 

contains, in addition to the Si/Sj interference oscillations 
in the primitive result (46.232), the 9-variation of the 
Airy Function |Ai(z)|2, which has a principal finite 
(rainbow) maximum at $ < 9t, the classical rainbow 
angle, and subsidiary maxima (supernumary rainbows) 
at smaller angles. The DCS decreases exponentially as $ 
increases past 9T into the classical forbidden region and 
tends to <TI(9) at larger angles. For 0T < 6 < x, 

/(ö) = <T1
1/2WexP(«51). (46.243) 
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46.3.5    Diffraction and Glory 
Amplitudes 

Diffraction. Diffraction arises from the outer (at- 
tractive) part of the potential. Many contributions arise 
from the attractive A+ branch appropriate for negative 
X at large b where TJ is small. Here x> x' hoth tend to 
zero. 

Glory. The deflection function x passes through zero 
at a finite Ag. A confluence of the two maxima of each 
phase shift from the positive and negative branches of 
X(6) occurs at bi = b2 = be = Ag/ib. tje is maximum 
for x = 0.  In general x(&m) = -2mx (forward glory); 
X(6m) = -(2m - l)x (backward glory); m = 0,1,2  
There is only a forward glory at x = 0 when the deflection 
at the rainbow is |xr| < 2x. In contrast to diffraction, 
the glory contribution can be calculated by the stationary 
phase approximation. 

Transitional Results for Forward and Backward 

Glories 

Forward Glories. Contributions arise from x = ±0. 
—2x ±0, • • •, —2mx ± 0 as 0 -* 0. The stationary phase 
points Am are located at 

x(Am) = Xm = -2mx;    m > 0. (46.244) 

The phase function in the neighborhood of a glory is 

rj(X) = r,m- mx(A - Am) + ±Xm(A - Am)2-    (46.245) 

The m = 0 term provides zero deflection x due to a 
net balance of attractive and repulsive scattering for 
a finite impact parameter 6g or Ag where 17(A) attains 
its maximum value r)m. The glories at 0 are due to a 
confluence of the two contributions from the deflections 
Xm = —2mx ± 0 at the stationary phase points Amn = 
Ami and Am2. SP integration of (46.216) with (46.245) 
yields the forward glory amplitude 

1    2    00 

/FG = T X) ^2 A" 
n=l m=0 

2x •■1/2 

Ux'rnW 
Jo(Amn0)e<5& , 

Sfel - 2»?(Amn) + mx(Amn - 1) - f x. 
(46.246) 

(46.247) 

Backward Glories. Contributions arising from x = 
-x ± a, -3x ± a, • • •, —(2m - l)x ± a coalesce as 
a = x — 0 -* 0. The phase function near a backward 
glory is 

•?(A) = i?(Am) + ixm(A - Am) + ±xm(A - Am)2. 

(46.248) 

The m = 0 term provides the normal backward ampli- 
tude due to head-on (6 = 0) repulsive collisions, m > 0 

terms provide contributions from attractive collisions for 
which there are two points Am„ of stationary phase for 
each m in Xm = —(2m — l)x ± a. 

The backward glory amplitude at 0 = -K — a is 

11/2 
iSÜSl 1 To     1  ' 

/BG = T X) D Am»    jrrn -MAmnOOe' 
n=lm=0 LUmnlJ 

(46.249) 

S%1 = 2r/(Amn) + x(2m - l)(Amn - £) - |x.    (46.250) 

In contrast to the Bessel amplitudes (below), these 
transitional formulae do not uniformly connect with the 
primitive semiclassical results for (fi+h) away from the 
critical glory angles. 

Uniform Bessel Amplitude for Glory Scattering 

The combined contributions from xi = —Nir + 0 
and X2 = —Nir — 0, where N = 2m, for forward and 
N = 2m — 1 for backward scattering, yield [9] 

,S1 \1/2expiS(c\0) 

x[(^ + ^);o(^) 

-id"—FVi (&£)]> (46-251) 

where S^i   is, 

S%\0) = Sic) - S[C), (46.252) 

the difference of the collision actions (46.229a) 

$c\0) = 2t,(\i)-\iXi,    f=l,2,      (46.253) 

with mean 

^V) = |[4C) + 5<C)]. (46-254) 

and phases 

a,-^"/4;    (+)xj>0;    (-)xj<0,       (46.255) 

and the ordinary Bessel functions Jn(Z) satisfy the 
relationships Ji(z) = -JQ(Z), JI(-Z) = -^1(2). This 
formula, valid for both forward (0 ~ 0) and backward 
(0 ~ x) glories, does uniformly connect the primitive 

result for (/1 + /2), valid when S^ > 1 to the 
transitional results (46.246) and (46.249), valid only in 
the vicinity of the glories. 

46.3.6    Small-Angle (Diffraction) 
Scattering 

Diffraction originates from scattering in the forward 
direction by the long-range attractive tail of V(R) where 
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X, x' and i/-»0. The main contributions to (46.220a) 
arise from a large number of small 17(A) at large A. The 
Jeffrey-Born phase function (46.171) can therefore be 
used in (46.220b) for f{6) and in (46.45) and (46.47), 
respectively, for <r(E). A finite forward diffraction peak 
as 0 —* 0 is obtained for f{6) in contrast to the classical 
infinite result. 

Integral Cross Sections 

For V(R) = -C/Rn, the Landau-Lifshitz (LL) and 
Massey-Mohr (MM) cross sections are [cf. Equation 
(46.346)] 

O-LL(-E) = * 
2CF(n)12/(n-1) 

^MM(^) = f 

(n - l)hv\ 

*4in(^)rG^i)r(46256) 

2CF(n)12/("-1V2n-3> 

(n - l)hv 

/2n-3\ 
\n-2j 

(46.257) 

where F(n) = y/ir r(|n+ |)/r(±n) and v is the relative 
speed. For «TMM, the phases are »7(A) = 5 (0 < A < Ao) 
and n(A) = T)3B (A > A0). For (TLL, phases are »?JB for all 
A. Both CLL and CMM have the general form 

vD(E) -(£) 
2/(n-l) 

(46.258) 

Ion-Atom Collisions. For n = 4 attraction at low 
energy, vD ~ v"2'3. TLL = 11-373, TMM = 10.613. 
For n = 12 repulsion at high energy, <rD ~ v~2ln. 
TLL = 6.584, 7MM = 6.296. 

Atom-Atom Collisions. For n = 6 (attraction), 
o-D ~ v-2'5, TLL = 8.083, 7MM = 7.547 (see Fig. 46.1). 

Exact numerical calculations favor «TLL over <TMM (see 
Ref. [10], pp. 1325 for details). 

Differential Cross Section 

U   =|jr°°AsinN(A)[l-iA2ö2]dA 

/.'   = 
k<TD(E) 

4ir H^>-<«4 
/r   =iy°°Asin2^A)[l-iA2Ö2 

(46.259a) 

(46.259b) 

(46.259c) 

(46.259d) 

(46.259e) 

and where O-Q is given by (46.258) and where 

9j(n) = 7r * tan 
3% 

n-1 
{r[2/(n-l)]}2 

(46.260) 
r[4/(n-l)] 

The optical theorem (46.62) is satisfied, and 

/D(0 ~ 0) = 4/2(2?)e''5°(n>, (46.261) 

where the (energy-independent) phase is 

5b(n) 
,7r(n-3) 
2(n-l) 

(46.262) 

46.3.7    Small-Angle (Glory) Scattering 

Amplitude and Cross Section. The other contribu- 
tion to forward scattering is the forward glory, which orig- 
inates from the combined null effect of attraction and re- 
pulsion at a specified glory impact parameter bg — Xe/k, 
where ry(A) attains a maximum value of r)g. The m = 0 
term of (46.246) yields 

/G(0) = 4/2(0) exp [iSa(E)) ,      (46.263a) 

ffG(*)=^(i^)J°2(v)'   (46263b) 

SG(E) = 2r,e(E)-^, (46.263c) 

where J$(x) ~ l-^i2+- • •. The classical result (46.30) is 
recovered by averaging (46.263b) over several oscillations 

with (.#(*)) = (™0_1- 
Diffraction-Glory Oscillations. 

47T. 
ff(£?) = y9l/b(0)+/G(0)] 

= <Tr>(E) + AaG(E), 

(46.264a) 

(46.264b) 

where the diffraction cross section is (46.258), and where 

(46.265a) 
2TT 

A<rG(E) = -fi\g\x6\cos(2r]s-\*) 
Jb2 

- k2 6 

' 2-K ' 

[kij 
1/2 

sin (2rjs(E) - f w)   (46.265b) 

oscillates with E. 
For sufficiently deep attractive wells, the phase shift 

Tjs successively decreases with increasing E through a 
series of multiples of ir/2. Writing t]g(E) = ir(N - §), 
maxima appear at N = 1,2,..., and minima at JV = 
|,|,|,... . The glories are indexed by JV in order of 
appearance, starting at high energies. r]6(E —> 0) is 
related to the number n of bound states by Levinson's 
theorem: t)0(E -+ 0) = (n + \)n. Diffraction-glory 
oscillations also occur in the DCS at a frequency governed 
entirely by the energy variation of Tjg(E) and n of 
(46.262). 
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JWKB Formulae for Shape Resonances and 
Tunneling Predissociation 

For the three classical turning points Ri < R2 < R3 
at energies E below the orbiting threshold VmBX at Rx, 
the JWKB phase shift 

It =[40)-$*{*)]+lP (46.266) 

is composed of (a) the phase shift 

^0) = fllim [ r k(R) dR-kR+±(e+ i)*|   (46.267) 

appropriate to one turning point at A3, (b) a contribution 
rfr) arising from the region between the two inner turning 
points R2 and A3 due to penetration of the centrifugal 
barrier and given by 

tan^r)(£) = 
{l + exp(-27<)}1/2-l 

[{l + exp(-27l)}
l" + l 

tan(a/-i<fo) , 

(46.268) 

and (c) a phase correction factor 

Mit) = arg T(i + te) - eIn |e| + e, (46.269) 

where c = —yt/ic. The radial action JR(E) is 2fia/(J5). 
For motion within the potential well a/ is 

<*/(£)= / ' k(R)dR, (46.270) 
JRi 

and is 

r*a 
ME < Emax) = / ' |*(Ä)| dR (46.271) 

JRa 

in the classically forbidden region of the potential hump. 
The above expressions also hold for energies E > 

Vmax, except that (46.271) is replaced by 

lt(E > £max) = -i /      k(R) dR, (46.272) 
JR. 

where R± are the complex roots of ib/(Ä) = 0. For the 
quadratic form 

V(R) = Vmax - \Mul(R - i^ax)2 , (46.273) 

appropriate in the vicinity of the potential hump, 7 for 
both cases reduces to 

7 = *(Vn« - E)/hu. (46.274) 

The deflection function xi =  ^(drji/dt) no longer 
diverges at the orbiting angular momentum £Q or impact 

parameter 6o- The singularities in T)t of Eq. (46.51) are 
exactly canceled by -\(d<j>/dt) in Eq. (46.269). 

Limiting cases: 
(a) E > Vmax. Then 7/ -> -00 and tj> -> 

—(tf/247/) —► 0, so that ryp —* or/ and 17/ reduces to 
the single turning point result (46.267) with A3 = i?x- 

(b) E < Knax. Then 7/ > 1 and 

rf[\E) = tan"1 [\e~2-« tan (at - i&)] ,     (46.275) 

which remains negligible except for those energies E close 
to quasibound energy levels E„i determined via the Bohr 
quantization condition 

at(E)-$ME) = (n + h)*. (46.276) 

As E increases past each Eni, rfc' increases rapidly 
by 7T. Since (dJ/dE)nt = v~\ — 2ir/uni, the time period 
for radial oscillation within the potential barrier, the level 
spacing is hunl = hunt = ir(dE/da)nt. 

Shape Resonance. In the neighborhood of Eni ~ 
E, 

at(E) = anl(Enl) + (■£-) (E - Enl),     (46.277) 

and, under the assumption that the energy variation of 
4>i can be neglected, (valid for E not close to V^„ax)> then 
17/ reduces to the Breit-Wigner form 

,-1 W2 
Enl — E_ 

with resonance width 

■ exp(-27n/)]1/2 - 1 

[l + exp(-27„*)]1/2 + l V * / 1 + 

(46.278) 

(46.279) 

where y„t = f(Ent)- The partial cross sections are then 
determined by (46.164a)-(46.164b) with T)[ ' replaced by 

^0)- ¥if) of (46.267). 
Gamow's Result. For E < V^ax, Int > 1, then 

Tnt 
7>1 fKUnl\ 

\ 2T ) 
exp(-27„*). (46.280) 

The probabilities of transmission through and reflec- 
tion from a barrier for unit incident flux from the left 
are 

Transmission Probability: 

T=[l + e2"']-12^V2'>'. 

Reflection Probability: 

R = [1 + e-2-"]-1 ^ 1. 

Frequency of leakage: 

(46.281) 

(46.282) 

(46.283) 
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St = At(k) txppiru), (46.287) 

where the absorption (inelasticity) factor is 

At = exp(-27/) < 1. (46.288) 

46.4.1    Quantal Elastic, Absorption and 
Total Cross Sections 

Figure 46.1. Illustration of all the various oscillatory 
effects for elastic scattering by a Lennard-Jones (12,6) 
potential of well depth c and equilibrium distance R*. 
Ordinate a* = <r/(2a\R2), abscissa v* = hv/(eRe). 

46.3.8    Oscillations in Elastic Scattering 

Figure 46.1 is an illustration [11] of all the various 
oscillatory structure and effects — Ramsauer-Townsend 
minimum (see Sect. 46.2.4), orbiting resonances (46.340), 
diffraction-glory oscillations (46.264b) and symmetry os- 
cillations (46.80) — for elastic scattering by a Lennard- 
Jones (12,6) potential. Note the shift of velocity depen- 
dence from v~2/& at low v to v~2/11 at high v. a = 2jrA2 

is the averaged cross section 2irbl in (46.47) at bo = R*. 
The region <r* > 1 probes the attractive part of the po- 
tential at low speeds and <r* < 1 probes the repulsive 
part at high speeds. The four distinct types of structure 
originate from nonrandom behavior of sin2»; in (46.45). 
Orbiting trajectories exist for E < 0.8e (see Sect. 46.5). 

46.4    ELASTIC SCATTERING IN 
REACTIVE SYSTEMS 

All nonelastic processes (e.g. inelastic scattering 
and rearrangement collisions/chemical reactions) can be 
viewed as a net absorption from the incident beam cur- 
rent vector J and modeled by a complex optical potential 

V(R) = VT(R) + iVi(R). 

The continuity equation is then 

V-J = -|^(Ä)|*(R)|2, 

(46.284) 

(46.285) 

so that particle absorption implies V^ > 0 and particle 
creation V\ < 0. Since particle conservation implies 
|5/|2 = 1, the phase shift 

6t(k)=rn(k) + i7l(k) 

is also complex since then 

(46.286) 

Um = 2^ £(2*+ 1) [Ate2i"< - 1] P/(cos0), 
t=o 

«Tel 

(46.289a) 

(46.289b) 

<7abs (46.289c) 

(46.289d) 

"    1=0 
oo 

fftot(fc) = 0-el(*) + <7abs(*) 

2fl"^ 
= TlE^+1)[1-A/COs2^- 

*    1=0 

Upper limits to the partial cross sections are 

of< §(2/+l),    «f <£_(2*+l), (46.290a) 

«tf* < |^(2* + 1) = j^'(« = 0) • (46.290b) 

For pure elastic scattering with no absorption, At = 
1. All nonelastic processes (0 < At < 1) are always 
accompanied by elastic scattering, even in the (At = 0) 
limit of full absorption. 

Eikonal Formulae for Forward Reactive Scat- 
tering. 

/•TO 
U(6) = -ik /    [e2" - 1] J0(2kb sin ±6)bdb, (46.291a) 

Jo 

(rel(Jb) = 2TT f°| [1 - e"2 V*'"] fbdb, (46.291b) 
Jo 
r°° 

,(*) = 2TT /    [1 - e~47] 6 db, (46.291c) 
Jo 

,(k) = 4TT /   [1 - e"27 cos2 rfibdb, (46.291d) 
Jo 

where the phase shift function 6 = T) + j at impact 
parameter 6 can be either the Jeffrey-Born phase 

where kb = A = (£ + 1/2), or the eikonal phase 

1   r°° 
SE(b) = -±j     U(b,Z)dZ, (46.293) 

CBbg 

«''tot 
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where the reduced interaction is U = (2m/h2)V. 
Fraunhofer Diffraction by a Black Sphere. For 

a complex spherical well U 

(46.294) 

(46.295) 

U -\ 0, R>a. 

The eikonal phase function (46.42) is 

*/«_/ (U/2k)(a2-b2y/2,   0<b<a 
6(0) ~ \ 0 6 > a. 

The absorption factor is 

\A(b)\2 = e~** = exp [-2(a2 - i2)1'2/*] ,     (46.296) 

where A = k/Ui is the mean free path towards absorption. 
For strong absorption, A <; a, so that 

fe\(6) = ik I J0(2kbsin \e)bdb, 
Jo 

dir, 
~dil T = (*a)2 

rJi(2ifeasiniö)' 

2fcasin|0 

(46.297) 

(46.298) 

which has a diffraction shaped peak of width ~ 6  < 
(ifca)-1 about the forward direction, and 

«rtot = y 9/«i(* = 0) = 27ra2 (46.299) 

is composed of 7ra2 for classical absorption and ira2 for 
edge diffraction or shadow (nonclassical) elastic scatter- 
ing. This result also holds for the perfectly reflecting 
sphere (xa2 for classical elastic and va2 for edge diffrac- 
tion). 

46.5    RESULTS FOR MODEL 
POTENTIALS 

Exact results for various quantities in classical, quan- 
tal, and semiclassical elastic scattering are obtained for 
the model potentials (a)-(s) in Table 46.1. 

Classical Deßection Functions for Model 
Potentials 

(a) Hard Sphere. 

0(b;E) = x=[ 0) 

6(0) = a cos §0, 

T - 2 sin    b/a,   b < a; 
b> a. 

(46.300) 

(46.301) 

(46.302) 

a = 7ra2 = geometric cross section; (46.303) 

0, (T(6) and c are all independent of energy E. 

.„.      da      1   2     •   , 

Table 46.1. Model interaction potentials. 

Potential V(R) 

(a) Hard sphere 
(b) Barrier 
(c) Well 
(d) Coulomb (±) 
(e) Finite-range 

Coulomb 

(f) Pure dipole 
(g) Finite-range 

dipole 

(h) Dipole + 
hard sphere 

(i) Power law 
attractive 

(j) Fixed dipole + 
polarization 

(k) Fixed dipole + 
Coulomb 

(1) Lennard- 
Jones (n, 6) 

(m) Polarization 
(«.4) 

(n) Multiple-term 
power law 

(o) Exponential 
(p) Screened 

Coulomb 

(q) Morse 

(r) Gaussian 
(s) Polarization 

finite 

oo, R<a;  0, R > a 
V0, R<a;  0, R > a 

-Vo, R<a;  0, R > a 
±k/R 

-k/R + k/R, R<R,;  0, R > R, 

±a/R2 

±a/R2, R<a;  0, R > a 

-C/Rn,  (n>2) 

Z?ecos0d     aye2 

R? W 
De cos öd      e2 

^n\RJ        \RJ 

^:-%: = Vm{R)-vn{R) 

Vo exp(—aR) 

Vo exp(-aR)/R 

Vbexp(-a2fi2) 

-Vo/(R2 + R2
0) 

en 
n-6 

en 
n -4 

D2\2 

(b) Potential Barrier. 
For E < Vb, classical scattering is the same as for hard 

sphere reflection as given by Eqs. (46.300)-(46.303). For 
E > Vo and 0 = \, define n2 = 1 - V0/E, b0 = na. Then 

am - / 2 [sin-1(&/na) ~ sin^t/a)]     0 < b < b0 
m -\w - 2sin"1(6/a), b0<b<a 

(46.304) 

and 0max = 2cos-1n.   For a given 0, the two impact 
parameters which contribute are 

bx(6) = 
an sin 16 

0 < 6i < &o    (46.305) 
[l-2ncosi0 + n2]1/2' 

62(0) = acosf0, 60<62<a     (46.306) 

For 0 < e < emax, 
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da      1 2     a
2n2(n cos ifl-l)(n-cos §fl) 

d£l     4 
(46.307) 

wa (46.308) 

4cosi0[l + n2-2cosi0] 

and do-/dfi = 0 for 0max < 0 < T. Finally, 

»£"G5)- 
(c) Potential Well. 

Results are similar to the potential barrier case above, 
except that there is only a single scattering trajectory 
with 0 = -x, and n = (1+VQ/E)

1
!
2
 is the effective index 

of refraction for the equivalent problem in geometrical 
optics. Refraction occurs on entering and exiting the 
well. Then 

(46.309) 

(46.310) 

0(b) = -2 [sm-\b/na) - sin'^/a)] , 

0(6 = a) = 0max = 2 cos-^l/n), 

—an sin \0 
m = [l-2ncosi0 + n2]i/2 ' 

d<r      q2n2[ncos±fl-l][n-cosfg] 

dH~   4cosi0[n2 + l-2ncosi0]2 

<r = ira2 

(d) Rutherford or Coulomb. 

0(6, E) = |x| = 2 esc"1 [1 + (26£/*)2]1/2 

b{0,E) = {k/2E)cot\0. 

(46.311) 

(46.312) 

(46.313) 

(46.314) 

(46.315) 

'W = a"(5J-'i#- (4"16) 

(e) Finite Range Coulomb. 

Ro{E) = -^,    a{E) = Ro(E)/R., 

da_ 

dn 4 

1 + a 

a2+ (1 +2a) sin2 ±0 
(46.317) 

(f) Pure Dipole. R2
0(E) = a/E. 

Repulsion (+): x > 0. X = 6. 

da irRn 1 

+ 1 

(46.318) 

(46.319) 

(46.320) 

dQ - 4sin0 |02     (2TT-0)
2
| 

Attraction (-): X < 0- 

**>=*[(&-EFTS) 5 
There is an infinite number of (negative) deflections 
X = x* associated with a given scattering angle 0: 

\xt | = 27TM + 0,      n = 0,1,2,..., (46.321a) 

|x-1 = 2™ - 0,      n = 1,2,3,.... (46.321b) 

The infinite sum over contributions from 6* = b(xt) for 
the attractive dipole yields 

■KRQ da_       
du ~ 4sin0 

1 
T7 + 
02^(2TT-0)2 

(46.322) 

(g) Finite Range Dipole Scattering. 
R2 = a/E, R2 = b2± R2

0, b2 = a2± R2
0. 

Repulsion (+): for 6 < a, 

(46.323) 

x(0) = *,    x(b>a) = 0,    a = *a2. (46.324) 

Attraction (—): for 6 > Ro, 

(46.325) 

X(i2o)^oo,    x(6>a) = 0.    <r = ™2. 

(h) Dipole + Hard Sphere Scattering. R% = a/E, 
R2 = b2± Rl, b2 = a2 ± Rl Repulsion (+): for 
0 < 6 < 60, 

,     <Rt-f>),   26 x(b) Rt Rt -(?)-*-©• 
(46.326) 

(46.327) 

60<6<a;    x(6)= TT - 2sin"1(6/a), (46.328) 

x(0)= T ,    x(b>a) = 0,    (T = ira2. 

Attraction (-): for 6 > Ro, 

*(>>=«+|U-'(S)-^), 
(46.329) 

X(&) = Xmin at 6 = a , 

X(0) = *,    X0> > a) = 0.    <r=wa2. 

Orbiting or Spiraling Collisions 

From Sect. 46.1.7, the parameters are 

Orbiting radius: Ro- 
Focusing factor: F = [1 - V(Ro)/E]. 
Orbiting cross section:    corb = itR0F. 

(i) Attractive Power Law Potentials. 

Ven(Ro) = (l-%n)V(Ro),  n>2, 

W)=[^ 

Corb(-E) = * 

;n-2)C] l/n 

,    F = 

"(n - 2)C" 

n 
2E 

n 

L(n-2)J 
2/n 

[{n-2)\ 2E 

(46.330) 

(46.331) 
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For the case n = 4 with V(R) = -ade2/2R4, this 
gives the Langevin cross section 

<rL(£) = 2ffÄ2 = 2ff(^|-J (46.332) 

for orbiting collisions, and the Langevin rate 

*L = vah(E) = 2ff(ade2/M)1'2 , (46.333) 

which is independent of E. 
The case n = 6 with V(R) = -C/R6 is the van der 

Waals potential for which 

<rOTb(E) = \*F% = fff (2C/E)1/3 . (46.334) 

(j) Fixed Dipole plus Polarization Potential. 

*m-(>gf. 
"orb 

V  IE 

fv\     o   /W2V/2 ,  (*Decos6<i\ 

(46.335) 

(46.336) 

For a locked-in dipole, the orientation angle is 0<j = 0, 
and <r0rb(E) > 0 for all 0d when E>EC = (D2/2ad). 

On averaging over all öd from 0 to 0max = 
[±ff + sin~1(2£'Äg/De)], which satisfies aOTb(E) > 0 for 
all E, then 

(<Torb(^)>9d   = ff (£) 
1/2 

2£0 

+ ffDe 

IF l-# £< c. 
(46.337a) 

(46.337b) — oi^E) asE-+Ec. 

(k) Fixed Dipole + Coulomb Repulsion. 

R2
0(E) = e2/2E. (46.338) 

For all E and fixed rotations in the range 0 < 6d < 
Ömax = cos-1(e2/2£>e), 

aOTh{E) = (ffDe cos 0d)/£ - *Rl(E).        (46.339) 

(1) Lennard-Jones (n,6). For the following two 
interactions, there are two roots of E = V^ff(Äo) = 
V(Ro) + \RQV\RO). They correspond to stable and 
unstable circular orbits [with different angular momenta 
associated with the minimum and maxima of the different 
l4ff(Ä)]. Analytical expressions can only be derived for 
the orbiting cross section at the critical energy Emax 

above which no orbiting can occur. 
For the Lennard-Jones (n, 6) potential, orbiting oc- 

curs for E < £max = 2c [4/(n - 2)]6/(n_6). The orbiting 
radius at 2?max is 

Ro(Em*x) = R*[(n-2)/4]lKn-6). 

The orbiting cross section at Emax = 2t{Re/Rof is 

<rorb(£max) = ff^max) = \*R\ (j^)  '   (46340) 

n = 12 : Emax = 4e/5, RQ = 1.165^, <rorb = 2.4TTä
2
 . 

(m) Polarization (n,4). As discussed for case (1), 

2 
Emax — £ 

Äo(^max) = -Re 

n-2 

n-2 

1 4/(n-4) 

) 

l/(n-4) 

(46.341) 

(46.342) 

(46.343) <7orb(Ü'max) — 2ffÄ0 ,    _   . , 

n = 12 : Emax = c/VH;  i?o = 1.22Ä«;  <rorb = 3.6ffiJ2. 

Small-Angle Scattering 

For the power law potential V(R) = -C/R", Eq. 
(46.12) can be expanded in powers of V(R)/E to obtain 
analytic expressions for x an<l ^JB- The general form is 

x(b) = £ V(b) 
E *}(")■ 

Fj(n) = 
ffV2r(ijn + I) 

r(i + i)r(iin-i + i)" 

(46.344) 

(46.345) 

For the leading j = 1 term, Fi(n) = F(n), as denned 
following Eq. (46.256). Then to first order in V/E, 

_     (k\\CF(n 

CF(n) da 
= /cW = £0 

2/n 

nö sin 0 

(46.346) 

(46.347) 

iFrom a log-log plot of sin 9(d<r/dQ) versus E, C and n 
can both be determined. 

The integral cross sections for scattering by 6 > 0Q is 

r(E) = 2ff /  lc(0)d(cos$) = 2TT / *°" bdb 
Je0 Jo 

CF(n) 

E$o 

2/n 
(46.348) 

where 0o is the smalles't measured scattering angle corre- 
sponding to a trajectory with impact parameter, 6max = 
[CF(n)/E60]1,n- A plot of \na(E) versus hiE is a 
straight line with slope (—2/n). 

The Landau-Lifshitz cross section (46.256) and the 
Massey-Mohr cross section (46.257) follow from use of 
the JB phases (46.346). 

The diffusion cross section is 
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ad(E) = AT f ' (sin2 0/2) bdb,    \X(bc)\ = - 
Jo T 

= *(C/2E)7'n [jF(n)]2/n . (46.349) 

(n) Multiple-Term Power-Law Potentials. 

X(E, 6) = I [Vm(b)F(m) - Vn(b)F(n)} .      (46.350) 

For example, a Lennard-Jones (n, 6) potential (see Table 
46.5) has the following features: 

Forward Glory: X = 0 when 6g = ai'(n-6)fie. 
Rainbow: dX/db = 0 at 6r = (nan/ö)1/^"6)^, 

where a„ = 6F(n)/[nF(6)]. 

Ut = I (d2
Xr/rf62)r = ^ |x(6r)| (46.351) 

(o) Exponential Potential. 

WB(tf,*) = -5*^^1(0*) — -2*6"^ [&)     • 

(p) Screened Coulomb Potential. 

X(£,&)   =   a(Vb/£?)üfi(o6) 

-   frab)1,3V{b)/E, 

r)3B(E,b)   =   -—VoK0(ab) 

Urge 6 '**V/a 

(46.352) 

(46.353) 

(q) Morse Potential. 

X(E,b)   =   (2ßb)^)[e2^K0(2ßb)-e^K0(ßb)], 

Urge 6 

(46.354) 

6r   =   fie + (2ß)~1 In 2, 

Xr   =   -(^r)
1/2(^/2^), 

"r    =    /?2|Xr|ße
2- 

Large-Angle Scattering 

For power law potentials V(Ä) = C/Rn, 

n   T   F -i(2j-i)/n 

f^[V(b)\ (46.355) 

with Jfe = [(2j - l)/n] -j-\. For the j = 1 term, 

X(6) = *- 
E -,1/n 

Led 
Gi(n)6, 

«•»■B- 
c„ 
£ 

2/n 

Gr2("), 

(46.357) 

(46.358) 

which is isotropic. Including both j = 1 and 2 terms 
provides a good approximation to the entire repulsive 
branch of the deflection function x- Series (46.355) for 
large angles and (46.344) for small angles eventually 
diverge for impact parameters b < bc and b > bc, 
respectively, where 

—GTfc -2| l/n 

1/2 
2| 

46.5.1    Born Amplitudes and Cross 
Sections for Model Potentials 

k2 = 2ME/h2,    K = 2k sin \0,   . 

U0 = 2MV0/h
2,    Uo/k2 = V0/E. 

(a) Exponential: V(R) — Vbexp(-afi). 

2aU0 
/B(Ö)    =    - (a2 + K2)2 (46.359) 

3a4 + 12a2 k2 + 16ife 

(46.360) 

(46.361) 

ME)    =     y^o2
L       a4(a2 + 4jk2)3 

(b) Gaussian: V(R) = V0exp(-a2R2). 

/BW = -(^)exP(-^/4a2), 

ffB{E)= (0) (1) l1-^-2*2/«2)] •  (46-362) 

(c) Spherical well: V{R) = V0 for Ä < a, V(R) = 0 
for fi > a. 

/B(0) = _JZ| [sin #<, _ Ka cos tfa] , (46.363) 

aB(E) = ~(t/0a
4) [1 - (ka)~2 + (ka)~3sin2ka 

1 E 
-(Jba)-4sin22Jba] (46.364) 

(d) Screened Coulomb:   V{R)  - V0 exp(-aÄ)/Ä, 
Vb = Ze2, Uo = 2Z/a0. 

Uo 

(TB(E) = 
4T^2 

(5) © a2(a2 + 4Jb2) 

When a — 0, then /B(0) = -U0/a
2 

(46.365) 

(46.366) 
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(e) e~-Atom: 

V(R) = -Ne2 [Z/ao + 1/R] exp(-2ZÄ/o0),   (46.367) 

H(ls): N = 1, Z = 1; He(ls2): N = 2;Z = 27/16. 

2N 
/B(*) = — 

2a2 + X2 
a = 2Z/a0,        (46.368) 

a0  L(«2 + ^2)2J 
,a2Ar2[l2Z"-H8Z2A:2ag + 7fcV0] 

aB^ - zzHz* + Vc?üy 
v      ' 3Z2(Z2 + 

Also, /B decomposes as 

fB(K) = tf(K) + fö(K)F{K), (46.370) 

where /£ are two-body Coulomb amplitudes for (i,j) 
scattering, and where 

F(K) = I |*o(R)|2 exp (tK • R) dR (46.371) 

is the elastic form factor. 

(f) Dipole: V(R) = V0/R2. 

fB(6) = *Uo/2K. (46.372) 

(g) Polarization potential: V(R) = V0/(Ä
2 + Ä2)2- 

fB(9) = -i* Q|) exp(-^iZo), (46.373) 

(46.374) 
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