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Abstract 

This report describes the use of computer program 'SEEK' which works in 

conjunction with two user-written subroutines and an input data file to 

perform an optimization procedure on a user's problem. The optimization 

method uses a modified feasible directions gradient technique. SEEK is 

written in ANSI standard Fortran 77, has an object size of about 46 K bytes 

and can be used on a personal computer running DOS. This report describes the 

use of the program and discusses the optimizing method. The program use is 

illustrated with four example problems: a bushing design, a helical coil 

spring design, a gear mesh design and a two-parameter Weibull life-reliability 

curve fit. 
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SUMMARY 

This report describes the use of a computer program, 'SEEK' for 

engineering design optimization. The program is not complete in itself in 

that it is written to work with problem specific user subroutines and an input 

data file. It performs a gradient search optimization of the user's problem 

to find an optimal set of design parameter values. Optimization is performed 

using a modified feasible directions gradient technique. The program is 

written in ANSI standard Fortran 77 and has an object size of about 46 K bytes 

for the optimizing code alone for use on a personal computer running DOS. Its 

source code is about 1,200 lines in length and its size is 39 K bytes. 

In the OPTIMIZATION FORMAT section, the four interface vectors to the 

procedure are described. These vectors are: 1) the problem constants, 2) the 

independent design parameters, 3) the constraint bounds, and 4) the objective 

function terms. The problem constants and independent design parameter values 

define a specific trial design. In the optimization, the program varies the 

design parameter values to search for the design which has the best objective 

function value while satisfying the constraint bounds. 

In the PROGRAMMING section, the report describes the two analysis 

routines, BOUNDS and VALUES which the user must write to evaluate the 

constrained functions and the objective function. BOUNDS takes as input the 

constant and design parameter vectors and produces a vector of the constrained 

function values as its output. VALUES takes as input the same constant and 

design parameter vectors and produces the objective function value vector as 

its output. The format and make-up of the input data file which gives the 

four vectors of constants, design parameters, constraint limits and objective 

function weighting coefficients are described. In this file, extensive 
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labeling for the four vectors is included. The design verification feature of 

the optimization program is described also. Once a numerical optimum is 

found, the program provides the user the opportunity to try alternate designs 

for comparison purposes. 

To illustrate the use of the program, four examples are presented: 

1) a bushing design, 2) a helical coil spring design, 3) a spur gear mesh 

design, and 4) a Weibull data curve fit. The bushing design problem is to 

find the length and diameter of a bushing to minimize the friction torque in 

the bearing for a given load and material properties. The spring design is to 

find the wire diameter and mean coil diameter which support a given 

alternating load with a required stiffness. Three different design objectives 

of minimum spring weight, minimum spring height and minimum coil volume are 

sought. The gear design is to determine the number of pinion teeth, diametral 

pitch and face width for a compact spur gear set to transmit a given power at 

a given input speed with a given speed reduction. Two objectives are sought: 

1) minimum center distance for a desired life and 2) maximum life for a given 

center distance. The fourth example shows the fitting of a two-parameter 

Weibull distribution to life data for a series of identical units tested at 

the same load. 

Each example includes an analysis of the problem, the organization of 

the optimization variables, the writing of the analysis subroutines and the 

input data file for a specific problem, the compiling and running of the 

program, the use of design verification to obtain reasonable values and an 

interpretation of the output data file. In each case, the design verification 

opportunity leads to the discovery of a practical solution with near optimal 

characteristics. 



After the examples, the OPTIMIZATION METHOD section presents a 

description of the gradient search method with its three modes of operation: 

1) unconstrained searching, 2) acceptable design searching, and 3) feasible 

direction searching along one or more design constraints. The unconstrained 

searching mode employs the gradient in the objective function to improve the 

design at the fastest rate when possible. The acceptable design searching 

uses the sum of the gradients in the violated constraints to find the 

acceptable design region. And, the feasible direction searching mode combines 

the gradients in the objective function and the violated constraints to 

improve the objective function value while keeping the trials within the 

acceptable design region. This section concludes with a description of the 

program structure and operation. 



INTRODUCTION 

Optimization is a mathematical process of seeking the most favorable 

combination of parameters to achieve the best outcome possible [1-3]. In 

design, one constantly searches for an ideal trade-off of conflicting 

performance objectives. For aircraft transmissions, for example, we might 

wish to obtain the lightest transmission which has some minimum acceptable 

service life, or we may want to maximize the service life at a given 

transmission weight [4]. These objectives are sought throughout the design 

and development process with repetitive design descriptions and evaluations - 

on paper or CAD layout at the design stage and in hardware at the prototype 

stage. Many of the optimizing, trade-off decisions which develop and improve 

the product are made by engineers without the help of mathematical models of 

the product's performance. 

Optimization offers the promise of assistance with the difficult trade- 

off decisions at the early stages of the design, before costly prototypes are 

constructed and tested [5]. A spectrum of optimization codes have been 

written to assist in the design of complex structures which can be modeled 

with large matrices of simultaneous linear equations [2,3]. With an objective 

computer search through the space of potential designs, we are given a greater 

chance of determining a truly optimum design. 

Unfortunately, many mechanical design problems cannot be described by a 

set of linear equations. The size of the problem as measured by the number of 

independent design parameters and the constraints which are to be satisfied 

may be small. But the complexity of the problem may be large due to the non- 

linear and often discontinuous nature of the design property and constraint 

relations. This combination keeps the optimization of mechanical designs in 



the realm of an art which requires considerable engineering insight to 

complement the available mathematical models and computer solutions [6]. 

In modeling mechanical systems, one is often confronted with the choice 

of obtaining exact solutions to an approximate model or obtaining approximate 

solutions to an exact model. With the designer active in the process, rapid 

solutions of an approximate model can lead to practical optimal designs even 

when the mathematical optimum contains some flaws [7]. Modified gradient 

optimization techniques such as the feasible directions method are quite 

powerful and rapid when they have continuous models in which gradients can be 

calculated. The method of this optimization is to have the engineer write 

Fortran subroutines which model the design with continuous properties as 

functions of the constants and independent design parameters which define the 

design. The optimizer can then find the optimal solution to this 'ideal' 

problem and report it to the engineer to allow a check of alternate designs 

which satisfy additional constraints of practicality. The end result is a 

practical, optimal design. 

This report describes the use and background of a Fortran program, SEEK, 

which is written to assist the mechanical designer in developing balanced 

optimal designs. The intent of the program is to keep the engineer in the 

process while providing a systematic search of potential designs. In doing 

this, it allows the engineer to use the mathematical models of the 

optimization to evaluate near optimal, practical designs. SEEK, which 

requires two user-written analysis subroutines, reads its input from an ASCII 

data file and writes the output of the optimization both to the screen and to 

an output ASCII log file. To document the optimization clearly, the input 



data file includes a significant amount of text to describe the numerical 

values in the output file. 

The report includes an OPTIMIZATION FORMAT section which describes the 

basic format of the optimization problem: the constants, design parameters, 

constraint bounds and objective function; as well as a PROGRAMMING section, 

which describes the programming required to prepare SEEK for use in an 

interactive design session. This section describes: the two analysis 

subroutines, the input data file, the use of the program with changes to the 

input file and design verification in the interactive session. 

To demonstrate the power and ease of use of this optimization procedure, 

several small design examples follow in the next sections: a bushing, a 

spring, a spur gear mesh, and the fitting of a two parameter Weibull 

distribution to experimental test data. 

An OPTIMIZATION METHOD section follows which describes the structure and 

operation of the optimization code. This code is small with 1200 lines and 

less than 40 k bytes so the optimization can be performed on a personal 

computer running with DOS. The speed of a 486 machine may become attractive 

for the more complex analysis models. 



OPTIMIZATION FORMAT 

An optimization problem may be formulated as a constrained search in 

terms of four vectors and two sets of relations. In this formulation, only 

inequality relations are used for the constraints. The four vectors are: 

1) the constants of the problem which do not change for a given design, 2) the 

parameters which define a design and which are the sought values, 3) the 

constraint values which may be upper or lower bounds on properties of the 

design, and 4) the objective function's weighting coefficients. 

In this formulation, at least two Fortran subroutines are needed: 

1) BOUNDS which evaluates the constrained variable values in terms of the 

constants and design parameter values and 2) VALUES which evaluates the 

objective function's value for a given set of constants and design parameter 

values. These two subroutines combine with the input data file to define the 

specific problem for optimization. The gradient calculations which perform 

the optimization by calling these two subroutines repeatedly and the input and 

output file interfacing are contained in the SEEK Fortran code. 

Constants 

Each problem is defined by a series of constant values such as: size, 

power level, speed of operation, elastic modulus, material strength or 

requested service life. These constants are fixed for all trial designs of 

the optimization effort, and the constrained properties and objective function 

values are direct functions of them. The constants may change for a different 

design using the same analysis subroutines, however. For example, designs 

made of steel will have different properties from those made of nylon, yet 

each steel design will have the same material stiffness and strength as the 

other steel designs. 



The program will read these constants and their labels from the ASCII 

input file, store them in arrays and use the values whenever the constrained 

property or objective function values are calculated. 

Parameters 

In each problem, we are searching for a set of parameter values which 

optimize the objective function to either a minimum or a maximum value. These 

parameters are the second vector entered in the input data file. The 

optimization scheme proceeds by analyzing repeated trials until it selects one 

for which the analysis yields an optimum objective function value. So the 

values entered for the design parameters include an initial value for each 

parameter for the first trial analysis. This vector also includes upper and 

lower values for each design parameter. These upper and lower values serve to 

establish the relative sensitivity of the parameter for the gradient searches, 

but do not limit the value itself. By increasing the span between the upper 

and lower values for a design parameter, the user can increase the sensitivity 

of that parameter in the design search. If it appears that a design parameter 

is not changing as the optimizer seeks out better designs, increasing this 

span between the upper and lower values will increase its tendency to change 

in future optimization runs. 

After reading these parameter values and their labels from the input 

file, the program will store them in arrays, use the parameter ranges to set 

relative sensitivities which will not change throughout the optimization and 

place the initial parameter values into the parameter array. The parameter 

array will change throughout the operation of the program until it contains 

the values of the parameters which optimize the objective function. 



Constraints 

Limiting each design is a series of constraints on the properties of the 

design. These constraints may be applied directly to one or more of the 

parameters such as the thickness of a beam or they may be applied to a 

calculated property of the design such as the maximum stress in the beam. The 

constraints of this algorithm are inequality constraints. In the general 

optimization formulation, two types of constraints are possible: inequality 

and equality. Gradient search algorithms require a continuum of parameter and 

property values in which to move around in search of the optimum. Inequality 

constraints provide boundaries to the design space but do not diminish it. 

Equality constraints reduce the space by one dimension. Each equality 

constraint transforms one independent design parameter into a dependent design 

parameter. There are two ways to include an equality constraint in this 

algorithm: 1) reduce the design space by one, or 2) enter the equality 

constraint into the data as an inequality constraint. 

The first method is the best because it simplifies the calculations 

making the optimization more direct and faster. If the width of a rectangular 

spring is always seven times its height, then one can remove the width from 

the list of independent design parameters and set it equal to seven times the 

height in the calculations. This reduces all gradient calculations by one 

element and leaves a full design space for the remaining parameters' gradient 

searches. 

The second method may be easier to implement if the equality constraint 

is not tied to the parameters directly. By entering it as an inequality 

constraint, one leaves the design space at its larger dimensional size and 

cuts it in half with the bounding value. Since the unbounded optimal design 



would probably lie off this constraint, placing this bound between the 

unbounded optimum and the acceptable design space will place the bounded 

optimal design right on this constraint and thus actually satisfy the equality 

constraint. 

The program will read these constraints, their directions and their 

labels from the input file, place them in arrays and use them in the 

subroutine BOUNDS, which is provided by the user, to limit the acceptable 

design space throughout the optimization. 

Objective Function 

In each optimization, some property or combination of properties, called 

the objective function, is to be minimized or maximized. The weighting 

coefficients of these properties are the last vector entered in the input data 

file. These coefficients may be percentages, unit conversions to place the 

properties in the same dimensions or they may be switches such as zero and one 

to change the optimization in the data file by changing the sought objective. 

The assumption is that the objective function to be optimized may be expressed 

as a linear sum of terms, each with its own weighting coefficient. The 

weighting coefficients and direction of optimization will remain fixed 

throughout the optimization. 

The program will read these coefficients and their labels from the end 

of the input data file, place them in arrays and use the coefficients to 

modify the objective function property values. These values are calculated in 

subroutine VALUES which is provided by the user. 
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PROGRAMMING 

With these four vectors defined and labeled, the program starts the 

output file with an echo of the input data to document the optimization 

problem. It then proceeds to seek an optimal design with the modified 

feasible directions gradient method. Using gradients in the objective 

function and in the violated constraints, the program can move from an initial 

design which does not satisfy the design constraints to designs which are 

valid. It can also improve a valid initial design to obtain an optimum design 

within the assumptions of the model. 

Once an optimum design is found, the program prints: the found design 

parameters, the objective function value with its component function values, 

and the constraints with both their design and limit values. The program then 

offers the user the opportunity to try alternate designs. On receiving the 

revised design parameter values, the program uses subroutines BOUNDS and 

VALUES to check this design, prints out its properties and offers the user the 

chance to try another alternate design. All design trials are printed to the 

screen and the ASCII output log file. 

Analysis Subroutines 

To model a problem, the program needs two analysis subroutines: BOUNDS 

and VALUES. These subroutines are problem specific and should match the input 

data. Subroutine BOUNDS calculates the constrained property values for each 

design trial and gradient perturbation as direct functions of the constants 

and design parameters only. Data are passed to BOUNDS with two dynamically 

dimensioned arrays: CONST(NCO) for the constants and X(NX) for the design 

parameters, and the constraint value results are returned to the program in 

the array VCSTR(NCS). Subroutine VALUES calculates the objective function 
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values also as direct functions of the constants and design parameters only. 

Data are passed to VALUES with the same two arrays: CONST(NCO) for the 

constants and X(NX) for the design parameters, and the object function values 

are returned in the array OBJECT(NOB). 

Both subroutines must be able to determine their outputs as continuous 

functions over the range of design parameters used. Since small perturbations 

are given to the design parameters to determine corresponding changes in the 

objective function value and in the constrained variable values throughout the 

design search, the subroutine calculations must be defined and continuous. 

Discrete parameter requirements such as integer tooth numbers for gears and 

standard component sizes can be added by the user in the verification stage of 

the optimization process. They cannot be included in the simulation model 

itself. 

These subroutines may contain formulas, interpolated data, iterations or 

other subroutines as long as the resulting calculations yield continuous 

functions of the design parameters. If the subroutines call other 

subroutines, they should not have the same names as those subroutines included 

in the optimizing part of SEEK, which are listed in Table 1. 

Common blocks may be used by the subroutines, but SEEK uses four common 

blocks, which should not be altered: CURVE, PAR, VAR, and UNITS. One of these 

common blocks, UNITS, contains four integer variables, NW, NR, NF and ND. 

These are the file numbers for writing and reading to the interface devices. 

NW identifies the screen, NR identifies the keyboard, NF identifies the output 

file and ND identifies the input file. The user may add additional 

information to the output with these file numbers, bearing in mind that BOUNDS 

and VALUES are called many times by SEEK in the optimization process. 
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Table 1 

Subroutines of Program SEEK 

Line Name 

756 BACK 

983 BOUNCE 

1207 BOUNDS 

1113 CHECK 

1033 GRADNT 

1174 MERIT 

724 RESIZE 

912 SCAN 

874 SCOUT 

740 SIZE 

088 UNIT 

210+ VALUES 

146 WALL 

Function 

Search for Acceptable Design Space 

Find Gradient Sum of the Violated Constraints 

User Supplied Constraint Analysis 

Test for Constraint Violation 

Evaluate a Gradient 

Evaluate the Objective Function Sum 

Unscale the Design Parameters into Real Units 

Increment the Design in the Acceptable Design 

Space 

Try a New Design Position And Check the 

Constraints 

Scale the Design Parameters to Unit Space 

Normalize a Vector 

User Supplied Objective Function Analysis 

Evaluate a Specified Constraint 
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Input Data File 

Coordinated with these two required subroutines is the ASCII input data 

file, which is described in Appendix A - SEEK.DOC. The initial line in the 

data file is a text line of fifty characters or less which describes the 

design being optimized. This is followed by a line which contains a single 

number, NCO, - the number of constant values to follow, which is the first 

vector in the data file. Each optimization constant is then entered in a set 

of three lines: 1) the numerical value, 2) the name of the constant in thirty 

characters or less, and 3) the units for the constant in twelve characters or 

less. With this information, the program will label the constant values 

whenever it prints them. 

Following the constants in the input data file is the list of 

independent design parameters, which is the second vector. After the last 

constant has been listed, the next line is once again a single number, NX, - 

the number of parameter values to follow. Each parameter is then entered in a 

set of three lines: 1) three numerical values - a low estimate for the 

parameter, a high estimate and an initial estimate; 2) the name of the 

parameter in thirty characters or less; and 3) the units for the parameter in 

twelve characters or less. 

The list of constraint bounds is the third vector. After the last 

parameter has been listed, the next line is a single number, NCS, - the number 

of constraint bounds to follow. Each bound is then entered in a set of three 

lines: 1) the word 'UPPER' or 'LOWER' followed by the numerical value 

including its decimal point, 2)-the name of the constraint in thirty 

characters or less, and 3) the units of the constraint in twelve characters or 

less. 
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Finally, the list of weighting coefficients is the fourth vector 

entered. After the last constraint has been listed, the next line is a three 

letter prefix, 'MIN' or 'MAX', which describes the direction of optimization. 

This is followed by a line with a single number, NOB, - the number of 

weighting coefficients to follow. Each coefficient is then entered in a set 

of three lines: 1) the numerical value, 2) the name of the property in thirty 

characters or less, and 3) the units for the property in twelve characters or 

less. 

Design Verification 

As described at the start of this section, the use of SEEK is somewhat 

interactive. Because the user must add at least two subroutines to the 

program in addition to the input data file, the combined program must be 

compiled separately for each optimization application. After writing the 

analysis subroutines with the proper dynamic dimensioning in the calling 

arguments, the user may add subroutines to the end of the source code for SEEK 

and compile the program in the environment in which it is to be run. The 

compiler should be a Fortran 77 compiler of which there are several PC 

versions available. Once compiled and linked into an executable program, the 

optimizer can be run with the matching data file to find an optimal design. 

With the interaction of the data file and the analysis subroutines, the 

user may change the way an optimization is conducted through small changes in 

the data file. By using one and zero as weighting coefficients to an 

objective function that contains totally different terms and by switching 

constraints from UPPER to LOWER or changing their values to make them active 

or inactive, one can change an optimization significantly. 
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For example, one could have a transmission life optimization program 

which included bounds on the transmission size and life as well as terms in 

the objective function for size and life [8]. By requesting that the size be 

less than some value, that the life be greater than zero and by having a 

weighting coefficient of one for life and zero for size and by selecting 'MAX' 

in the input data file, one would have an optimization that would maximize the 

life of the transmission within a given acceptable size. Shifting the 

requests in the input file to request that the size be greater than zero, that 

the life be greater than some desired value, and by having a weighting 

coefficient of zero for life and one for size with 'MIN' selected in the input 

data file would minimize the size of the transmission for the requested 

service life. 

Smaller changes in limit values or problem constants could change the 

size of a requested design or some other feature without requiring a change in 

the compiled program. As stated earlier, the program generates a complete log 

file of the obtained designs and the verified designs in response to keyboard 

input after an 'ideal' design has been found and written to the screen and the 

log file. Speed of execution of the program is entirely dependent upon the 

complexity of the analysis models. Small optimization programs can run 

quickly on the personal computer. The following four sections will 

demonstrate the use of SEEK for several different design optimizations. 
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BUSHING OPTIMIZATION 

Four examples of increasing complexity will be presented to illustrate 

the capability of SEEK. The first example is that of the design of a low- 

speed bearing to support a radial shaft load. For this application, the 

simplest bearing is a bushing which is defined by its material, length and 

diameter. 

Theory 

Consider the design of a bushing to support a radial shaft load. With 

little or no lubrication, a bushing's capacity is both strength and power 

limited [9]. By constraining the bearing length to be less than or equal to 

some percentage of the shaft diameter, one can treat the radial load as 

supported uniformly over the length of the bushing. Thus: 

L 
< ß (1) 

D 

The nominal contact pressure in the bushing can then be taken as: 

F 
P =   (2) 

L D 

where the pressure, P, is measured in MPa; the load, F, is in Newtons; and the 

length, L, and diameter, D, are in mm. And the sliding velocity in the 

bushing, V  , measured in m/s is: 

s 
2 77 

60 
If  =   QI  I 10"3 (3) 

where the shaft speed, Q, is in RPM. The strength limit on the bushing is 

thus: 
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p < p, max 
(4) 

The power limit on the bushing, which is proportional by the coefficient of 

friction to the power lost in the bushing, is the PV factor of: 

P K„ 
L D 

D     I 2 77 
— Q   
2      60 

10 -3 (5) 

F Q 77 

P v„ 
60 

10" < PV, max (6) 

Figure 1 is a graph of the contact pressure in a bushing versus the 

contact sliding velocity which shows the regions of the two pressure limits. 

Acceptable designs have pressures lower than the plotted values. As the speed 

increases, the power limit becomes active and restricts the design to lower 

and lower acceptable pressures. Values for these limits for both metallic and 

non-metallic materials are readily available [10,11]. 

Given adequate strength, a bushing may be sized to minimize the 

frictional torque on the shaft. This torque is given in N-m by: 

D 
= fJ  F 10" (7) 

Programming 

The problem of designing a bushing is now defined mathematically. The 

constants which specify the particular application are: 1) the radial load, F; 

2) the shaft speed, Ü; and 3) the coefficient of friction, //. The two design 

parameters to be selected are: 1) the bushing length, L; and 2) the shaft 

diameter, D. The three inequality constraints are: 1) the length to diameter 

18 
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ratio, ß\  2) the acceptable pressure, Pmax; and 3) the acceptable pressure 

times velocity factor, PVm . All three constraints are upper bounds. The 

objective function, which is to be minimized, is the frictional torque, Tf. 

These quantities are summarized in Table 2. 

The relations for the constraints are equations (1), (4) and (6), and 

the relation for the objective function is equation (7). A subroutine BOUNDS 

which is written to determine the constrained values using equations (1), (2) 

and (6) is listed in Table 3. And a subroutine VALUES which is written to 

determine the objective function value using equation (7) is listed in 

Table 4. 

The simplicity of the subroutines matches the simplicity of the 

relations. In each subroutine, the input constant and design parameter 

vectors are converted to individual variables which have names that identify 

them more clearly. Then the equations are entered in an easily checked format 

and the results are transferred to the output constrained variable or 

objective function vectors. Note that the vector quantity subscripts match 

the input data order. These quantities are numbered in the output file echo 

of the input to assist the user in verifying that the proper input and output 

quantities are used for the equations in the two analysis subroutines. 

Once written, these two subroutines must be compiled and linked to 

program SEEK to generate an executable program to perform the optimization. 

One way to do this is to add the subroutines to the end of the source file for 

program SEEK.FOR, save the combined program with a problem specific name such 

as BUSHING.FOR and compile it. The result will be an executable file, 

BUSHING.EXE. A second way would be to compile SEEK.FOR and the two analysis 

subroutines BOUNDS.FOR and VALUES.FOR separately to generate object files 
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Table 2 

Bushing Optimization Parameters 

Constants Design Parameters Inequality Constraints Objective Function 

L 
F L 

D    
Hmax (Vmin 

Q D P < P max 

fJ P V     < PV s     max 
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Table 3 

Bushing Constraint Evaluation Subroutine Bounds 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c 
c 
c 
c 
c 
c 
c 

SUBROUTINE BOUNDS(CONST,NCO,X,NX,VCSTR,NCS) 

BOUNDS DETERMINES THE PRESENT CONSTRAINT 
FUNCTION VALUES 

FOR A BUSHING DESIGN EXAMPLE 

PARAMETERS: 

CONST - FIXED DESIGN CONSTANT 
NCO  - NUMBER OF DESIGN CONSTANTS 
NCS  - NUMBER OF INEQUALITY CONSTRAINTS 
NX   - NUMBER OF INDEPENDENT DESIGN PARAMETERS 
VCSTR - PRESENT CONSTRAINT VALUES 
X   - PRESENT DESIGN PARAMETER VALUES 

ALL VALUES ARE IN PROBLEM UNITS 

CONST(l) = F 
CONST(2) = N 
CONST(3) = f 

X(D = L 
X(2) = D 

VCSTR(l) 

VCSTR(2) 

VCSTR(3) 

P 

PV 

L/D 

- RADIAL LOAD (POUNDS) 
- SHAFT SPEED (RPM) 
- FRICTION COEFFICIENT 

- BUSHING LENGTH  (IN) 
- BUSHING DIAMETER (IN) 

- AVERAGE BUSHING CONTACT PRESSURE 
(PSI) 

- BUSHING PRESSURE TIMES VELOCITY 
FACTOR (PSI - FT/MIN) 

- BUSHING LENGTH TO DIAMETER RATIO 

DIMENSION CONST(NCO),X(NX),VCSTR(NCS) 
PI = 3.14159265 
FORCE = CONST(l) 
RPM = CONST(2) 
BLEN = X(l) 
DIA = X(2) 
PRESS = FORCE/(BLEN*DIA) 
PV = 0.0Ol*PI*FORCE*RPM/(60.0*BLEN) 
RATIO = BLEN/DIA 
VCSTR(l) = PRESS 
VCSTR(2) = PV 
VCSTR(3) = RATIO 
RETURN 
END 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

Table 4 

Bushing Objective Function Evaluation Subroutine Values 

SUBROUTINE VALUES(CONST,NCO,X,NX,OBJECT,NOB) 

VALUES DETERMINES THE PRESENT DESIGN 
OBJECTIVE FUNCTION VALUES 

FOR A BUSHING DESIGN EXAMPLE 

PARAMETERS: 

CONST - FIXED DESIGN CONSTANT 
NCO   - NUMBER OF DESIGN CONSTANTS 
NOB   - NUMBER OF OBJECTIVE FUNCTION TERMS 
NX    - NUMBER OF INDEPENDENT DESIGN VARIABLES 
OBJECT - PRESENT OBJECTIVE FUNCTION VALUES 
X    - PRESENT DESIGN PARAMETER VALUES 

ALL VALUES ARE IN PROBLEM UNITS 

CONST(l) = F 
CONST(2) = N 
CONST(3) = f 

X(D = L 
X(2) = D 

OBJECT(l) = Tf 

- RADIAL LOAD (POUNDS) 
- SHAFT SPEED (RPM) 
- FRICTION COEFFICIENT 

- BUSHING LENGTH  (IN) 
- BUSHING DIAMETER (IN) 

- BUSHING FRICTION TORQUE (LB - IN) C 

DIMENSION CONST(NCO),X(NX),OBJECT(NOB) 
FORCE = CONST(l) 
FRICT = CONST(3) 
DIA = X(2) 
TORQUE = 0.001*FRICT*FORCE*DIA/2.0 
OBJECT(l) = TORQUE 
RETURN 
END 
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only. These object files can then be linked with SEEK.OBJ listed first to 

produce an executable file, BUSHING.EXE [12,13]. 

Since this is a two parameter design problem with a single objective 

function, one can draw two graphs which illustrate the optimization. The 

first is called a design space in that it is a graph in coordinates which 

match the design parameters. Points in the graph represent specific design 

parameter values or designs. Plotted in this graph are the design constraint 

limits. These constraint limits divide the design space of potential designs 

into two regions: 1) an acceptable design region in which all design 

constraints are satisfied, and 2) an unacceptable design region in which at 

least one design constraint is violated. Figure 2 is a graph of a design 

space for the bushing design problem. 

The second graph, Figure 3, is a plot of the objective function versus a 

design parameter. If the objective function were a function of both design 

parameters, a contour plot on the same coordinates as Figure 2 would be 

required to show how the objective function varies for different designs. 

Since the objective function of equation (7) is not a function of the bushing 

length, a simple graph of friction torque versus shaft diameter shows how this 

property varies for the potential designs. Figure 3 is drawn directly below 

the design space so that the objective function of friction torque can be 

visualized as a plane contour rising in the design space above. 

On inspection of these graphs, it is obvious that the optimal design is 

the bushing with the smallest shaft diameter which satisfies the three 

inequality constraints plotted in Figure 2. Once this information is known, 

there is no need to go through a formal optimization to find the optimal 

design. Optimization techniques have their greatest value for problems for 
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which optimum solutions are not yet known. Knowing this optimum will help us 

verify the effectiveness of the modified gradient method. But once an optimum 

solution is known, either from a graphical analysis or by a computer 

optimization, it is more efficient to calculate it directly [14]. 

Numerical Example 

For an example, consider the design of a bushing to support 750 N at a 

shaft speed of 40 RPM. The shaft is steel and the bushing is to be nylon 

which has a coefficient of friction with steel of 0.2 and which has a design 

pressure limit of 14 MPa and a design PV limit of 0.11 MPa m/s. In this 

design, the length is to be limited to be less than or equal to seventy 

percent of the shaft diameter and the shaft size and bushing length are to be 

in whole mm's. 

Table 5 is a listing of an input file for this problem, including line 

numbers which are not part of the input file. The first line is the problem 

title. The next line is the number of constants, 3, which is followed by 

three sets of three lines. Each constant is identified by its value, its name 

and its dimension. 

The frictional coefficient has no dimension, so its dimension line is 

left blank in order for the following line which is the number of independent 

design parameters, 2, to appear in its proper place. If this line 11 were not 

left blank, an error checking routine would identify an error in the input 

file on line 13 and stop the program. Line 13 is the next line of text in the 

input file - the name of the first design variable. Due to the missing 

line 11, the program would try to read this text as the numerical value for 

the first design variable. Although this error message does not point 

directly to the cause of the reading error, it does indicate the presence of 
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Table 5 

First Bushing Input File 

Line Column 
1 

1 RADIAL NYLON BUSHING 
2 3 
3 750.0 
4 RADIAL LOAD 
5 NEWTONS 
6 40.0 
7 SHAFT SPEED 
8 RPM 
9 0.2 

10 FRICTION COEFFICIENT 
11 
12 2 
13 0.0 10.0  5.0 
14 BUSHING LENGTH 
15 mm 
16 0.0 10.0  5.0 
17 BUSHING DIAMETER 
18 mm 
19 3 
20 UPPER 14.0 
21 CONTACT PRESSURE 
22 MPa 
23 UPPER 0.11 
24 PV FACTOR 
25 MPa - m/s 
26 UPPER 0.7 
27 LENGTH TO DIAMETER 
28 RATIO 
29 MIN 
30 1 
31 1.0 
32 FRICTION TORQUE 
33 N - m 
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an error. Checking the data on line 13 and the lines that precede it should 

lead to this discovery in a short amount of time. 

The next six lines contain the design parameter values, names and 

dimensions. The value lines contain three numbers: 1) the low estimate, 

2) the high estimate, and 3) the initial estimate. At this point in the 

solution, we know the least about the values to enter for these design 

parameters. Let us guess ranges from zero to ten mm and initial values of 

five mm for the two design variables. The next line contains the number of 

design constraints, 3. Following are nine lines with the three constraint 

limit types and values with their decimal points on the first lines, their 

names on the second lines and their units on the third lines. 

The data for the objective function vector follows. The next line 

contains the letters 'MIN' to identify minimization as the direction of 

optimization. This is followed by a line with the single value of one to 

indicate that the objective function has only one term. The last three lines 

are the weighting coefficient value and the name and units for the term. 

This file is saved with a name such as NYL0N1.IN. The compiled program 

BUSHING.EXE can now be run by typing BUSHING at the prompt. As shown in 

Figure 4, the program will request the prefix for an input file, which should 

be NYL0N1 in this case. Since "data points" is not in the first constant 

description, the program will bypass this option and not try to open and read 

a data file. After receiving the input, the program will run. It will echo 

the input data to the screen, with several PAUSEs. Press the ENTER key at 

each PAUSE to continue execution of the program. For the input data of 

Table 5, it turns out that the initial guess is too small and the ranges are 

small also. The program will try to change this initial guess into a design 
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which does satisfy the design constraints, but since the design ranges are 

small also, the improvement steps are too small to reach the acceptable design 

space in the twenty steps allowed by the program. 

Table 6 is a listing of the output file for this trial. In this output, 

one can see that the shaft diameter was tripled in an attempt to reach the 

region of good designs. The PV limit was the major constraint, with values 

twenty percent higher than the limit for the revised design and three times 

the limit for the initial design. A second input file, NYL0N2.IN can now be 

made by copying the first and modifying the design parameter initial values. 

In this second file the ranges of both design parameters are left at zero to 

ten mm and the initial values are increased to twenty mm for the length and 

thirty mm for the diameter. These are the only changes from the first input 

file. Table 7 lists the new input file, NYL0N2.IN. 

The results of running the program again with the new input file are 

listed in Table 8. An optimum design was found in 45 steps with a length of 

14.28 mm and a diameter of 20.41 mm. The design has a friction torque of 

1.53 N-m and satisfies all three constraints. The two limiting constraints 

which are just satisfied are the PV factor limit and the length to diameter 

ratio. These results are consistent with the graphical results of Figures 2 

and 3. 

Note that the input ranges of the design variables only set the 

sensitivity of the search, they do not limit the design to have diameters less 

than 10 mm. To make that a limit, one must add an upper limit of 10 mm to the 

diameter as a fourth constraint. This would prevent the optimizer from 

finding a solution, since no design with a diameter less than 10 mm can have a 
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Table 6 

First Bushing Output Log File 

RADIAL NYLON BUSHING 

DESIGN WITH MODIFIED GRADIENT OPTIMIZATION 
USING A MAXIMUM STEP LIMIT AND SCALED VARIABLES. 

FIXED DESIGN REQUIREMENTS: 

1 RADIAL LOAD 
2 SHAFT SPEED 
3 FRICTION COEFFICIENT 

750.00000 NEWTONS 
40.00000 RPM 
0.20000 

THERE ARE 2 INDEPENDENT DESIGN VARIABLES. 

ESTIMATED VALUES: 

1 BUSHING LENGTH 
2 BUSHING DIAMETER 

THE 3 CONSTRAINT LIMITS ARE: 

1 CONTACT PRESSURE 
2 PV FACTOR 
3 LENGTH TO DIAMETER 

MINIMIZE THE OBJECTIVE FUNCTION. 

OBJ = FRICTION TORQUE 

LOW HIGH 

0.00000 10.00000 
0.00000 10.00000 

14.00000 MPa 
0.11000 MPa - m/s 
0.70000 RATIO 

INITIAL 

5.00000 mm 
5.00000 mm 

TYPE 

UPPER 
UPPER 
UPPER 

IN N TIMES 1.0000 
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Table 6 Continued 

First Bushing Output Log File 

OPTIMIZATION COULD NOT BEGIN - BAD INITIAL VALUE. 

THE INITIAL VALUE FOR THE PROBLEM VIOLATED 
AT LEAST ONE INEQUALITY CONSTRAINT. 

THE PROGRAM COULD NOT FIND ANOTHER VECTOR WHICH 
SATISFIED ALL THE INEQUALITY CONSTRAINTS. 

1 BUSHING LENGTH 
2 BUSHING DIAMETER 

X INITIAL 

5.00000 
5.00000 

X MODIFIED 

12.07892 mm 
16.83625 mm 

THE 3 CONSTRAINT VALUES FOR X INITIAL ARE: 

1 CONTACT PRESSURE 
2 PV FACTOR 
3 LENGTH TO DIAMETER 

= 30.000 
= .31416 
= 1.0000 

MPa 
MPa - m/s 
RATIO 

THE 3 CONSTRAINT VALUES FOR X MODIFIED ARE: 

LIMIT 

14.000 
.11000 
.70000 

LIMIT 

TYPE 

UPPER 
UPPER 
UPPER 

TYPE 

1 CONTACT PRESSURE = 3.6880 MPa 14.000 UPPER 
2 PV FACTOR = .13004 MPa - m/s .11000 UPPER 
3 LENGTH TO DIAMETER = .71744 RATIO .70000 UPPER 
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Table 7 

Second Bushing Input File 

RADIAL NYLON BUSHING 
3 
750.0 
RADIAL LOAD 
NEWTONS 
40.0 
SHAFT SPEED 
RPM 
0.2 
FRICTION COEFFICIENT 

2 
0.0 10.0 20.0 
BUSHING LENGTH 
mm 
0.0 10.0 30.0 
BUSHING DIAMETER 
mm 
3 
UPPER 14.0 
CONTACT PRESSURE 
MPa 
UPPER 0.11 
PV FACTOR 
MPa - m/s 
UPPER 0.7 
LENGTH TO DIAMETER 
RATIO 
MIN 
1 
1.0 
FRICTION TORQUE 
N - m 
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Table 8 

Second Bushing Output Log File 

RADIAL NYLON BUSHING 

DESIGN WITH MODIFIED GRADIENT OPTIMIZATION 
USING A MAXIMUM STEP LIMIT AND SCALED VARIABLES. 

FIXED DESIGN REQUIREMENTS: 

1 RADIAL LOAD 
2 SHAFT SPEED 
3 FRICTION COEFFICIENT 

750.00000 NEWTONS 
40.00000 RPM 
0.20000 

THERE ARE 2 INDEPENDENT DESIGN VARIABLES. 

ESTIMATED VALUES: 

LOW HIGH   INITIAL 

1 BUSHING LENGTH 
2 BUSHING DIAMETER 

THE 3 CONSTRAINT LIMITS ARE: 

0.00000 10.00000 20.00000 mm 
0.00000 10.00000 30.00000 mm 

1 CONTACT PRESSURE 
2 PV FACTOR 
3 LENGTH TO DIAMETER 

MINIMIZE THE OBJECTIVE FUNCTION. 

OBJ = FRICTION TORQUE 

OPTIMIZATION SUCCESSFUL IN 

THE FINAL DESIGN VECTOR IS: 

1 BUSHING LENGTH 
2 BUSHING DIAMETER 

14.00000 MPa 
0.11000 MPa - m/s 
0.70000 RATIO 

IN N - m 

45 STEPS 

X(I) 

14.28342 mm 
20.40649 mm 

TYPE 

UPPER 
UPPER 
UPPER 

TIMES   1.0000 

THE MINIMUM OBJECTIVE FUNCTION =  1.53049 

1 FRICTION TORQUE = 1.5305 

, ITS COMPONENTS ARE: 

N - m      TIMES   1.0000 

THE LAST CHANGE IN THE OBJECTIVE FUNCTION       = -0.677109E-04 
THE LAST STEP CHANGE SIZE FOR THE DESIGN VARIABLE = 0.390625E-03 

34 



Table 8 Continued 

Second Bushing Output Log File 

THE 3 CONSTRAINT VALUES ARE: 

1 CONTACT PRESSURE 
2 PV FACTOR 
3 LENGTH TO DIAMETER 

LIMIT TYPE 

= 2.5735 MPa 14.000 UPPER 
= .10999 MPa - m/s .11000 UPPER 
= .69989 RATIO .70000 UPPER 

DESIGN CHECK 

1 BUSHING LENGTH 
2 BUSHING DIAMETER 

X(I) 

15.00000 mm 
21.00000 mm 

THE MINIMUM OBJECTIVE FUNCTION =  1.57500 

1 FRICTION TORQUE = 1.5750 

THE 3 CONSTRAINT VALUES ARE: 

1 CONTACT PRESSURE 
2 PV FACTOR 
3 LENGTH TO DIAMETER 

ITS COMPONENTS ARE: 

TIMES 1.0000 

LIMIT TYPE 

= 2.3810 MPa 14.000 UPPER 
= .10472 MPa - m/s .11000 UPPER 
= .71429 RATIO .70000 UPPER 

DESIGN CHECK 

1 BUSHING LENGTH 
2 BUSHING DIAMETER 

X(I) 

15.00000 mm 
22.00000 mm 

THE MINIMUM OBJECTIVE FUNCTION =  1.65000 

1 FRICTION TORQUE = 1.6500 

THE 3 CONSTRAINT VALUES ARE: 

ITS COMPONENTS ARE: 

N - m TIMES 1.0000 

LIMIT TYPE 

1 CONTACT PRESSURE = 2.2727 MPa 14.000 UPPER 
2 PV FACTOR = .10472 MPa - m/s .11000 UPPER 
3 LENGTH TO DIAMETER = .68182 RATIO .70000 UPPER 
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PV factor less than 0.11 MPa - m/s and a ß less than 0.7. Repeated trials 

such as the first one would tell us that. 

However, another constraint on the solution was that the diameter and 

length be in whole mm's. This can be obtained with the design check provision 

of the program, which is shown in Table 8. Once the numerical optimum has 

been found, the program lists the number of optimizing steps followed by: the 

found design parameter values for bushing length and bushing diameter, the 

objective function value and the three constrained variable values and limits. 

Then the program re-lists the design variables with their found values and 

offers the user the option to change them for a design check. Figure 5 shows 

this interaction. The user responded with a 'Y' to the question on trying 

another design and entered the two values of '15' and '21' for the bushing 

length and diameter. The program then printed the results to the screen and 

added them to the output file as shown in Table 8. This option is offered to 

the user at the end of each analysis until the response to the first question 

is 'N' which tells the program to close the output file and stop the program. 

Increasing the length to 15 mm and the diameter to 21 mm increases the 

friction torque slightly to 1.575 N-m but still does not satisfy the length to 

diameter constraint. A second trial with a 15 mm length and a 22 mm diameter 

has a friction torque of 1.65 mm and satisfies all three modeled constraints 

and the additional requirement of standard sizes. This trial is the optimal 

design and is shown in Figure 6. 
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X(I) 
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21 
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SPRING OPTIMIZATION 

In this example, consider the design of a steel helical coil compression 

spring to support a varying load with a specified spring rate. The applied 

load varies between minimum and maximum values in service and may be larger if 

the spring is compressed solid at assembly. For a given spring material, four 

geometric parameters define the spring: 1) the wire diameter, dw; 2) the mean 

coil diameter, D; 3) the number of active coils, Na; and 4) the height of the 

spring when unloaded, h*. 

In this design problem, one more requirement can be placed on the 

performance of the spring: it could have a specified outside diameter, or work 

over a rod of a given diameter or it could have a required height under load. 

Instead, we will let the optimizer find a spring with a minimized property 

which can support the specified loads with the given spring rate. Three 

separate objective functions will be minimized: 1) spring weight, 2) spring 

height, and 3) spring coil volume. The resulting designs will satisfy the 

load and deflection requirements, but they will be different. 

For the spring design to have some practicality, the wire size should be 

selected from a finite list of available diameters and the mean coil diameter 

should also be a standard size. 

Theory 

A spring's performance is modeled by its strength and deflection. A 

helical coil spring supports its axial load as a torsional shear stress in the 

wire with a small additional direct shear stress. Figure 7 shows the axial 

load and the internal wire torque and shear which support it. Due to the 

curvature of the wire, Wahl determined a stress concentration factor, Kw, 

which compares the maximum shear stress in the wire to the nominal torsional 
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stress caused by the couple of the axial load through the center of the spring 

and the supporting shear force through the center of the wire [10,15]. The 

shear stress and stress concentration factor are: 

(8) T     = 
w q 8.0 K,, F D w 8.0 K, F C w 

2.0 J "C ■ W 
and 

\, - 

4.0 C - 1.0 0.615 
4- 

4.0 C - 4.0 C 

where the spring index, C is: 

C = 
D 

dw 

(9) 

(10) 

The deflection of a helical coil spring at any load, F, is a result of 

the twist in the wire due to the applied torque, T : 

D      D  T L 
S   = — e   = 9— (11) 

2      2   J G 

or 

or 

D/2 ( F D/2 ) ( /7 D N )     8 F D3 N 
6   =  , ?— =  Ä ?-      (12) 

( 17 d 4/32 ) G d 4 G 

8 F C3 N 
6   =  (13) 

dwG 

The stiffness of the spring or its rate is thus: 

F      d G 
k = — "  %  <14> 6 8.0 CJ N 
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These basic equations for stress (8), deflection (13) and stiffness (14) 

can be applied to the specified loads to model the performance of the spring. 

To avoid yielding, the maximum stress in the spring should be less than the 

shear yield strength of the wire divided by the design stress, or the static 

design factor, N , should be greater than the desired design factor, where: 

Ns =  S$y (15) 
rsol 

and the maximum stress in the spring, TSQ},  is found by using the solid height 

force, F -,, in equation (8). The shear yield strength of the wire can be 

estimated as eighty percent of the ultimate shear strength of the wire. As 

spring wire is drawn to a smaller diameter, its ultimate strength increases. 

Using the octahedral shear factor of 0.577, the ultimate shear strength can be 

estimated as a function of the drawn wire size as [15]: 

S   = 0.577 Slir d
a (16) 

su        uc w 

In addition to having adequate strength to avoid yielding when 

compressed solid, springs should be able to support an infinite number of 

loading cycles without experiencing a fatigue failure. Figure 8 is a 

Soderberg diagram of alternating shear stress versus mean shear stress, which 

shows the reduction in alternating strength with increasing mean stress, for a 

helical coil compression spring. Since the stress concentration affects the 

alternating stress directly and does not affect the mean stress influence, the 

Wahl factor is applied only to the alternating shear stress. An algebraic 

trick, which allows all stresses to be calculated with equation (8), is to 

multiply the stress concentration factor by the ultimate strength to divide it 

out of the mean stress. 
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In Figure 8, the negative sloped lines show the Goodman criteria for 

fatigue strength with and without the design factor, Nf, and the positive 

sloped line shows the load ratio of alternating stress, ra, to mean stress, 

T     for this application. The design factor equation for this criteria is 
m' 

[15] 
_Ü5_ + JjL- (17) 

Nf    Kw Ssu     Sse 

or 

1.0 
Nf 

m      a 

(18) 

+ 
Kw Ssu    Sse 

The mean stress is calculated with equation (8) using the average applied 

load: 

F   + F . P  _  max mm (19) 
m =     2.0 

And the alternating stress is calculated using the alternating applied load: 

F   - F . 
F  =  max mm (20) 
a       2.0 

Unlike the ultimate wire strength, the fatigue strength of the steel wire, 

S , is constant at these high strengths, 
se 

Figure 9 is a plot of the force on the spring versus the height of the 

spring. Near the solid height, the axial load on the spring increases rapidly 

as the coils close. In service, the spring operates between the working 

heights of hmin and hmax with loads of Fmax and Fmin. The unloaded height of 

the spring is the sum of the deflection to solid height and the solid height: 
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with: 

hf = -^°L + 1.01 dw ( Na + Ne ) (2D 

Coil weight is a direct function of the volume of wire in the spring: 

Vw = Y dw2 < Na + Ne > " D (22) 

Wt = w Vw (») 

The volume of the coil is the area of the outside diameter's circular disc 

times the spring height: 

W       2 h. (24) V     =   OD hf 
coil    A t 

Programming 

Table 9 summarizes the design problem in terms of the constants which 

define the problem, the design parameters which are to be found, the equality 

and inequality constraints on the design and the three separate objective 

functions which will be sought. In the initial formulation, there are two 

equality constraints on the stiffness and the force at solid height, which can 

be used to reduce the number of independent design parameters from four to 

two. There are four active inequality constraints: 1) that the number of 

active coils be positive, 2) that the fatigue design factor be greater than 

the desired design factor, 3) that the static design factor at assembly be 

greater than the desired design factor, and 4) that the spring index be 

greater than two, so a coil can be manufactured. 
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Table 9 

Initial Spring Optimization Parameters 

Constants Design Parameters Constraints 
Equality  Inequality 

Objective Function 

min dw k N > 0.0 
a 

(hf}min 

max D Fsolid 
Fsolid 

Na Nf > Ndes 
or 

k hf 
Ne N

S > 
Ndes (VVmin 

Ndes 
s C > 2.0 or 
se 

S su 
G v  'mm 
w 

Table 10 

Revised Spring Optimization Parameters 

Constants Design Parameters Inequality Constraints Objective Function 

min dw N > 0.0 a (Vmin 

max D Nf > Ndes 
or 

Fsolid 
Ns > Ndes CVmin 

k C > 2.0 or 

Ne 
rm3V > 0.0 max 

(Vol)m. v  'mm 

Sse 
0D > 0.0 

Suc vw > 0.0 

a 

G 

w 
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From the stiffness equation (14), one can relate the number of active 

coils to the wire and mean coil diameters, the stiffness and the shear modulus 

of the material: 

d G 
N  =  " (25) 
a   8.0 k r 

Equation (21) relates the spring height to: the maximum force, F$ol; the 

spring rate; the wire diameter; and the numbers of active and end coils. 

These two equations convert two design parameters from independent parameters 

to dependent parameters and simplify the optimization. Table 10 is a second 

pass at formulating the optimization problem in this simpler form. Three 

inactive constraints have been added to the inequality constraint list to make 

the optimizer report these properties. All properties are constrained to be 

greater than zero, which they will be for all designs. The watched properties 

are: 1) maximum static stress, rmax; 2) outside diameter, OD; and 3) wire 

volume, V . The final differences between the two formulations are in the 
w 

constant list: 1) the elimination of the design factor from the constant list 

since it is used in the constraint limit list and, 2) the replacement of the 

ultimate shear strength of the wire by the ultimate tensile strength constant 

and the wire power to enable the program to vary the strengths with wire size. 

Figure 10 is a plot of the design space for this reformulated 

optimization. The graph plots the two independent design parameters: the wire 

diameter, d , and the mean coil diameter, D, versus each other. On the graph 
w 

are drawn constraint lines for the four active constraints. The number of 

active coils constraint, N , is drawn for a limit of 0.1 coils to show its 
a 

shape.    A limit of zero coils lies on the x axis.    Designs which satisfy all 
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constraints can be found in the region labeled acceptable designs which is 

between the spring index limit, labeled C, and the solid stress limit, labeled 

SOLID. 

Each of the three objective functions are complex functions of these 

parameters, so a single plot of the objective function versus mean coil 

diameter is not possible. Contour plots for each objective function would 

have to be drawn on the design space to obtain a graphical solution to the 

problem. 

Two analysis subroutines must now be written to operate on the constants 

and design parameters of Table 10 and determine the constraint values and the 

objective function values listed. Subroutine BOUNDS, which is listed in 

Table 11, takes the constant array and the design parameter array from the 

calling list and determines the constraint values. As with the bushing 

example, this is done in three steps to clarify the calculations: 

1) conversion of input arrays to variables, 2) calculation of the properties 

and 3) transferring the property values to the constraint property array. The 

analysis of equations (8) through (25) is used in the subroutine. Subroutine 

VALUES, which is listed in Table 12, performs a similar determination of the 

three objective function values. Once written, these two subroutines must be 

compiled and linked to program SEEK to generate an executable program to 

perform the optimization. 

Numerical Example 

For the example, consider the design of a spring to have a spring rate 

of 4 kN/m. In use, the spring will see a load which varies from a minimum of 

24 N to a maximum of 120 N. The spring should not go solid until the applied 

load reaches a value of 150 N. The spring wire is to be selected from stock 
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Table 11 

Sprinq Constraint Evaluation Subroutine Bounds 

c 
c 

SUBROUTINE BOUNDS(CONST,NC0,X , NX,VCSTR,NCS) 

BOUNDS DETERMINES THE PRESENT CONSTRAINT 
c 
c 
c 
c 
c 
c 
c 

FUNCTION VALUES 

FOR A HELICAL COIL SPRING DESIGN 

PARAMETERS: 

CONST - FIXED DESIGN CONSTANT 
c NCO  - NUMBER OF DESIGN CONSTANTS 
c NCS  - NUMBER OF INEQUALITY CONSTRAINTS 
c NX   - NUMBER OF INDEPENDENT DESIGN VARIABLES 
c VCSTR - PRESENT CONSTRAINT VALUES 
c 
c 
c 
c 
c 

X    - PRESENT DESIGN VARIABLE VALUES 

ALL VALUES ARE IN PROBLEM UNITS 

CONST(l) = Fmin - MINIMUM FORCE (NEWTONS) 
c CONST(2) = Fmax - MAXIMUM FORCE (NEWTONS) 
c CONST(3) = Fsol - MINIMUM SOLID FORCE (NEWTONS) 
c CONST(4) = k - SPRING RATE (kN/m) 
c CONST(5)  = Ne - NUMBER OF DEAD COILS 
c CONST(6) = Sse - SHEAR FATIGUE STRENGTH (MPa) 
c CONST(7) = Sue - TENSILE STRENGTH COEFICIENT (MPa) 
c C0NST(8) = a - TENSILE STRENGTH WIRE POWER 
c CONST(9) = G - SHEAR MODULUS (MPa) 
c 
c 
c 

CONST(IO) = w - WEIGHT DENSITY (kN/m**3) 

X(l) = dw - WIRE DIAMETER (mm) 
c 
c 
c 

X(2) = D - MEAN COIL DIAMETER (mm) 

VCSTR(l) - Na - NUMBER OF ACTIVE COILS 
c VCSTR(2) = Nf - FATIGUE DESIGN FACTOR 
c VCSTR(3) = Ns - STATIC DESIGN FACTOR 
c VCSTR(4) = C - SPRING INDEX 
c VCSTR(5) = Tmax - MAXIMUM SHEAR STRESS (MPa) 
c VCSTR(6) = OD - OUTSIDE DIAMETER (mm) 
c 
c 
c 

VCSTR(7) = Vw - SPRING WIRE VOLUME (mm**3) 
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Table 11 Continued 

Spring Constraint Evaluation Subroutine Bounds 

DIMENSION CONST(NCO),X(NX),VCSTR(NCS) 
PI = 3.14159265 
FMIN = CONST(l) 
FMAX = C0NST(2) 
FSOL = C0NST(3) 
RATE = CONST(4) 
ZNE = CONST(5) 
SSE = CONST(6) 
CSUT = C0NST(7) 
ASUT = C0NST(8) 
G = C0NST(9) 
DW = X(l) 
D = X(2) 
C = D/DW 
ZNA = DW*G/(8.0*C*C*C*RATE) 
SSU = 0.577 * CSUT * DW**ASUT 
SSY = 0.8*SSU 
FA = (FMAX - FMIN)/2.0 
FM = (FMAX + FMIN)/2.0 
SKW = (4.0*C - 1.0)/(4.0*C - 4.0) + 0.615/C 
TA = (8.0*SKW*FA*C/(PI*DW*DW)) 
TM = (8.0*FM*C/(PI*DW*DW)) 
ZNF = 1.0/(TM/SSU + TA/SSE) 
TMAX = (8.0*SKW*FSOL*C/(PI*DW*DW)) 
ZNS = SSY/TMAX 
OD = D + DW 
ZNT = ZNA + ZNE 
VW = 0.25*PI*DW*DW*ZNT*PI*D 
VCSTR(l) = ZNA 
VCSTR(2) = ZNF 
VCSTR(3) = ZNS 
VCSTR(4) = C 
VCSTR(5) = TMAX 
VCSTR(6) = OD 
VCSTR(7) = VW 
RETURN 
END 
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Table 12 

Spring Objective Function Evaluation Subroutine Values 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

SUBROUTINE VALUES(CONST,NCO,X,NX,OBJECT,NOB) 

VALUES DETERMINES THE PRESENT DESIGN 
OBJECTIVE FUNCTION VALUES 

FOR A CANTILEVER BEAM DESIGN EXAMPLE 

PARAMETERS: 

CONST 
NCO 
NOB 
NX 
OBJECT 
X 

FIXED DESIGN CONSTANT 
NUMBER OF DESIGN CONSTANTS 
NUMBER OF OBJECTIVE FUNCTION TERMS 
NUMBER OF INDEPENDENT DESIGN VARIABLES 
PRESENT OBJECTIVE FUNCTION VALUES 
PRESENT DESIGN VARIABLE VALUES 

ALL VALUES ARE IN PROBLEM UNITS 

CONST(l) = Fmin 
CONST(2) = Fmax 
CONST(3) = Fsol 
CONST(4) = k 
CONST(5) = Ne 
C0NST(6) = Sse 
CONST(7) = Sue 
C0NST(8) = a 
C0NST(9) = G 
CONST(IO) = w 

X(l) = dw 
X(2) = D 

OBJECT(l) = Wt 
OBJECT(2) = hf 
OBJECT(3) = Vc 

MINIMUM FORCE (NEWTONS) 
MAXIMUM FORCE (NEWTONS) 
MINIMUM SOLID FORCE (NEWTONS) 
SPRING RATE (kN/m) 
NUMBER OF DEAD COILS 
SHEAR FATIGUE STRENGTH (MPa) 
TENSILE STRENGTH COEFICIENT (MPa) 
TENSILE STRENGTH WIRE POWER 
SHEAR MODULUS (MPa) 
WEIGHT DENSITY (kN/m**3) 

WIRE DIAMETER (mm) 
MEAN COIL DIAMETER (mm) 

SPRING WEIGHT (NEWTONS) 
SPRING HEIGHT (mm) 
SPRING CYLINDER VOLUME (mm**3) 

DIMENSION CONST(NCO),X(NX),OBJECT(NOB) 
PI = 3.14159265 
FSOL = CONST(3) 
RATE = CONST(4) 
ZNE = CONST(5) 
G = CONST(9) 
W = CONST(10)/1000000.0 
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Table 12 Continued 

Spring Objective Function Evaluation Subroutine Values 

DSOL = FSOL/RATE 
DW = X(l) 
D = X(2) 
C = D/DW 
OD = D + DW 
ZNA = DW*G/(8.0*C*C*C*RATE) 
ZNT = ZNA + ZNE 
VW = 0.25*PI*DW*DW*ZNT*PI*D 
WJ = vw*w 
HF = DSOL + DW*ZNT*1.01 
VC = 0.25*PI*OD*OD*HF 
OBJECT(l) = WT 
OBJECT(2) = HF 
OBJECT(3) = VC 
RETURN 
END 
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sizes which have whole and half mm values. The mean coil diameter should also 

have values with whole or half mm precision. The springs are to be made of 

hard drawn spring wire with an ultimate strength constant of 1510 MPa, a wire 

diameter strength variation exponent of -0.201, and a shear fatigue strength 

of 465 MPa. The acceptable design factor is 1.5 and the spring ends are to be 

squared and ground with one inactive coil at each end. The shear modulus of 
3 

steel is 79,000 MPa and its weight density is 76.5 kN/m . 

Table 13 is a listing of the input file for the minimum weight design 

option. The file begins with the title for the output file. The second line 

has the number of constants to follow - ten. The next thirty lines contain 

these ten constants in the order listed in Table 10 with their descriptions 

and units. Following the constants is a line with the number two which 

indicates that two independent design parameters will follow. These two 

parameters are the wire diameter and the mean coil diameter. Low, high and 

initial estimates are selected as 1.0, 15.0 and 5.0 for the wire size and 

25.0, 500.0 and 100.0 for the mean coil diameter. The next line has the 

single value of seven for the seven design constraints listed in Table 10. 

All seven constraints happen to be lower. Following the constraints is a line 

with the letters 'MIN' to select minimization as the direction of 

optimization, a line with the value of three to indicate that there are three 

terms in the objective function. The last nine lines are the weighting 

coefficients, names and units for the three objective function terms of 

weight, height and volume. The weighting coefficient of the first is one and 

the last two are zero. By changing which term has the unit coefficient, one 

can change the optimization goal without changing the program. 
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Table 13 

Spring Design Input File For Minimum Weight 

HELICAL COIL SPRING - MINIMUM WEIGHT 
10 
24.0 
MINIMUM FORCE 
NEWTONS 
120.0 
MAXIMUM FORCE 
NEWTONS 
150.0 
MINIMUM FORCE WHEN SOLID 
NEWTONS 
4.0 
SPRING RATE 
kN/m 
2 
END COIL NO. 

465.0 
SHEAR FATIGUE STRENGTH 
MPa 
1510.0 
TENSILE STRENGTH CONSTANT 
MPa 
-0.201 
TENSILE STRENGTH WIRE POWER 

79000.0 
SHEAR MODULUS 
MPa 
76.5 
WEIGHT DENSITY 
kN/m**3 
2 
1.0 15.0 5.0 
WIRE DIAMETER 
mm 
25.0 500.0 100.0 
MEAN COIL DIAMETER 
mm 
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Table 13 Continued 

Sprinq Desiqn Input File For Minimum Weight 

7 
LOWER 0.0 
ACTIVE COIL 
NO. 
LOWER 1.5 
FATIGUE DESIGN FACTOR 

LOWER 
STATIC 

1.5 
DESIGN FACTOR 

LOWER 
SPRING 

2.0 
INDEX 

LOWER 0.0 
MAXIMUM SHEAR STRESS 
MPa 
LOWER 0.0 
OUTSIDE COIL DIAMETER 
mm 
LOWER 0.0 
SPRING WIRE VOLUME 
mm**3 
MIN 
3 
1.0 
WEIGHT 
NEWTONS 
0.0 
HEIGHT 
mm 
0.0 
SPRING 
mm**3 

COIL VOLUME 
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This ASCII file can then be saved with a name such as 'WEIGHT.IN' and 

used with the spring optimization program. Table 14 is the output file which 

resulted from running the spring optimization program with this file. The ten 

constants, two design parameters, seven constraints and three objective 

function term are all listed with their values, names, units, limit 

directions, and weighting coefficients at the start of the file. The 

optimization reached a solution in 24 steps with a wire diameter of slightly 

more than 3 mm and a mean coil diameter of 23.13 mm. The spring weight was 

0.79 Newtons and the spring had 17.5 active coils with a height of 97 mm a 

3 
spring index of 7.5 and a spring coil volume of 52,000 mm . The static 

overload stress was the limiting factor in the design with a static design 

factor of 1.5 at the limit and a maximum shear stress of 370 MPa. 

Following this output is a design check with a 3.5 mm wire diameter and 

a mean coil diameter of 35 mm. With the larger standard wire size, the larger 

coil diameter keeps the spring weight down by reducing the number of active 

coils needed to obtain the spring rate without lowering the design factors. 

The weight increased to 0.86 Newtons, the number of active coils dropped to 

8.64 and the spring index increased to 10. In addition, the height dropped to 

75 mm and the spring coil volume increased to 87,500 mm . Although the spring 

is slightly heavier than the initial optimum, it has standard wire and coil 

dimensions, so it is a practical optimal solution to the posed problem. 

Table 15 is the output file produced by running the spring optimization 

program with a second input file which has two weighting coefficients changed 

and the problem title changed in line one. The two numerical changes were to 

the first and second weighting coefficient values to switch the object of 

minimization from weight to height. As shown in Table 15, this optimum is 
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Table 14 

Spring Design Output File For Minimum Weight 

HELICAL COIL SPRING - MINIMUM WEIGHT 

DESIGN WITH MODIFIED GRADIENT OPTIMIZATION 
USING A MAXIMUM STEP LIMIT AND SCALED VARIABLES. 

FIXED DESIGN REQUIREMENTS: 

1 MINIMUM FORCE 24.00000 NEWTONS 
2 MAXIMUM FORCE 120.00000 NEWTONS 
3 MINIMUM FORCE WHEN SOLID 150.00000 NEWTONS 
4 SPRING RATE 4.00000 kN/m 
5 END COIL NO. 2.00000 
6 SHEAR FATIGUE STRENGTH 465.00000 MPa 
7 TENSILE STRENGTH CONSTANT 1510.00000 MPa 
8 TENSILE STRENGTH WIRE POWER -0.20100 
9 SHEAR MODULUS 79000.00000 MPa 

10 WEIGHT DENSITY 76.50000 kN/m**3 

THERE ARE 2 INDEPENDENT DESIGN VARIABLES. 

ESTIMATED VALUES: 

LOW      HIGH INITIAL 

1 WIRE DIAMETER 
2 MEAN COIL DIAMETER 

THE 7 CONSTRAINT LIMITS ARE: 

1 ACTIVE COIL 
2 FATIGUE DESIGN FACTOR 
3 STATIC DESIGN FACTOR 
4 SPRING INDEX 
5 MAXIMUM SHEAR STRESS 
6 OUTSIDE COIL DIAMETER 
7 SPRING WIRE VOLUME 

1.00000 15.00000  5.00000 mm 
25.00000 500.00000 100.00000 mm 

TYPE 

0.00000 NO. LOWER 
1.50000 LOWER 
1.50000 LOWER 
2.00000 LOWER 
0.00000 MPa LOWER 
0.00000 mm LOWER 
0.00000 mm**3 LOWER 

MINIMIZE THE OBJECTIVE FUNCTION, WHICH HAS 3 TERMS, 

OBJ = THE LINEAR SUM OF: 

1 WEIGHT IN NEWTONS TIMES 1.0000 
2 HEIGHT IN mm TIMES 0.0000 
3 SPRING COIL VOLUME IN mm**3 TIMES 0.0000 
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Table 14 Continued 

Spring Design Output File For Minimum Weight 

OPTIMIZATION SUCCESSFUL IN 

THE FINAL DESIGN VECTOR IS: 

1 WIRE DIAMETER 
2 MEAN COIL DIAMETER 

24 STEPS 

X(I) 

3.05491 mm 
23.12969 mm 

THE MINIMUM OBJECTIVE FUNCTION = 0.789480 

1 WEIGHT 
2 HEIGHT 
3 SPRING COIL VOLUME 

=0.78948 
= 97.285 
= 52388. 

ITS COMPONENTS ARE: 

NEWTONS 
mm 
mm**3 

TIMES 
TIMES 
TIMES 

1.0000 
0.0000 
0.0000 

THE LAST CHANGE IN THE OBJECTIVE FUNCTION      = 0.596046E-07 
THE LAST STEP CHANGE SIZE FOR THE DESIGN VARIABLE = 0.390625E-03 

THE 7 CONSTRAINT VALUES ARE: 

1 ACTIVE COIL 
2 FATIGUE DESIGN FACTOR 
3 STATIC DESIGN FACTOR 
4 SPRING INDEX 
5 MAXIMUM SHEAR STRESS 
6 OUTSIDE COIL DIAMETER 
7 SPRING WIRE VOLUME 

LIMIT TYPE 

17.525 NO. .00000 LOWER 
2.1345 1.5000 LOWER 
1.5035 1.5000 LOWER 
7.5462 2.0000 LOWER 
370.49 MPa .00000 LOWER 
26.070 mm .00000 LOWER 
10320. mm**3 .00000 LOWER 
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Table 14 Continued 

Spring Design Output File For Minimum Weight 

DESIGN CHECK 

1 WIRE DIAMETER 
2 MEAN COIL DIAMETER 

X(D 

3.50000 mm 
35.00000 mm 

THE MINIMUM OBJECTIVE FUNCTION = 0.861137 ITS COMPONENTS ARE: 

1 WEIGHT =0.86114 NEWTONS TIMES 1.0000 
? HEIGHT = 75.115 mm TIMES 0.0000 
3 SPRING COIL VOLUME = 87445. mm**3 TIMES 0.0000 

THE 7 CONSTRAINT VALUES ARE: 
LIMIT TYPE 

1 ACTIVE COIL 
2 FATIGUE DESIGN FACTOR 
3 STATIC DESIGN FACTOR 
4 SPRING INDEX 
5 MAXIMUM SHEAR STRESS 
6 OUTSIDE COIL DIAMETER 
7 SPRING WIRE VOLUME 

8.6406 NO. .00000 LOWER 
2.1430 1.5000 LOWER 
1.5179 1.5000 LOWER 
10.000 2.0000 LOWER 
356.97 MPa .00000 LOWER 
38.500 mm .00000 LOWER 
11257. mm**3 .00000 LOWER 
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Table 15 

Spring Design Output File For Minimum Height 

HELICAL COIL SPRING - MINIMUM HEIGHT 

DESIGN WITH MODIFIED GRADIENT OPTIMIZATION 
USING A MAXIMUM STEP LIMIT AND SCALED VARIABLES. 

FIXED DESIGN REQUIREMENTS: 

1 MINIMUM FORCE 24.00000 NEWTONS 
2 MAXIMUM FORCE 120.00000 NEWTONS 
3 MINIMUM FORCE WHEN SOLID 150.00000 NEWTONS 
4 SPRING RATE 4.00000 kN/m 
5 END COIL NO. 2.00000 
6 SHEAR FATIGUE STRENGTH 465.00000 MPa 
7 TENSILE STRENGTH CONSTANT 1510.00000 MPa 
8 TENSILE STRENGTH WIRE POWER -0.20100 
9 SHEAR MODULUS 79000.00000 MPa 

10 WEIGHT DENSITY 76.50000 kN/m**3 

THERE ARE 2 INDEPENDENT DESIGN VARIABLES. 

ESTIMATED VALUES: 

LOW HIGH INITIAL 

1 WIRE DIAMETER 
2 MEAN COIL DIAMETER 

THE 7 CONSTRAINT LIMITS ARE: 

1.00000 15.00000  5.00000 mm 
25.00000 500.00000 100.00000 mm 

TYPE 

1 ACTIVE COIL 
2 FATIGUE DESIGN FACTOR 
3 STATIC DESIGN FACTOR 
4 SPRING INDEX 
5 MAXIMUM SHEAR STRESS 
6 OUTSIDE COIL DIAMETER 
7 SPRING WIRE VOLUME 

MINIMIZE THE OBJECTIVE FUNCTION, WHICH HAS 3 TERMS. 

OBJ = THE LINEAR SUM OF: 

0.00000 NO. LOWER 
1.50000 LOWER 
1.50000 LOWER 
2.00000 LOWER 
0.00000 MPa LOWER 
0.00000 mm LOWER 
0.00000 mm**3 LOWER 

1 WEIGHT IN NEWTONS TIMES 0.0000 
2 HEIGHT IN mm TIMES 1.0000 
3 SPRING COIL VOLUME IN mm**3 TIMES 0.0000 
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Table 15 Continued 

Spring Design Output File For Minimum Height 

OPTIMIZATION SUCCESSFUL IN 

THE FINAL DESIGN VECTOR IS: 

1 WIRE DIAMETER 
2 MEAN COIL DIAMETER 

14 STEPS 

X(I) 

6.30577 mm 
195.96942 mm 

THE MINIMUM OBJECTIVE FUNCTION =  53.5408 ITS COMPONENTS ARE: 

1 WEIGHT = 3.7045 NEWTONS TIMES 0.0000 
2 HEIGHT = 53.541 mm TIMES 1.0000 
3 SPRING COIL VOLUME =0.17205E+07 mm**3 TIMES 0.0000 

THE LAST CHANGE IN THE OBJECTIVE FUNCTION       = 0.381470E-04 
THE LAST STEP CHANGE SIZE FOR THE DESIGN VARIABLE = 0.625000E-02 

THE 7 CONSTRAINT VALUES ARE: 
LIMIT TYPE 

1 ACTIVE COIL = .53093 NO. .00000 LOWER 
2 FATIGUE DESIGN FACTOR = 2.2086 1.5000 LOWER 
3 STATIC DESIGN FACTOR = 1.5438 1.5000 LOWER 
4 SPRING INDEX = 30.786 2.0000 LOWER 
5 MAXIMUM SHEAR STRESS = 312.12 MPa .00000 LOWER 
6 OUTSIDE COIL DIAMETER = 199.46 mm .00000 LOWER 
7 SPRING WIRE VOLUME = 47506. mm**3 .00000 LOWER 
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Table 15 Continued 

Spring Design Output File For Minimum Height 

DESIGN CHECK 

1 WIRE DIAMETER 
2 MEAN COIL DIAMETER 

X(I) 

6.50000 mm 
220.00000 mm 

THE MINIMUM OBJECTIVE FUNCTION 53.3470 ITS COMPONENTS ARE: 

1 WEIGHT = 4.2351 NEWTONS TIMES 0.0000 

? HEIGHT = 53.347 mm TIMES 1.0000 

3 SPRING COIL VOLUME =0.21495E+07 mm**3 TIMES 0.0000 

THE 7 CONSTRAINT VALUES ARE: 

1 ACTIVE COIL 
2 FATIGUE DESIGN FACTOR 
3 STATIC DESIGN FACTOR 
4 SPRING INDEX 
5 MAXIMUM SHEAR STRESS 
6 OUTSIDE COIL DIAMETER 
7 SPRING WIRE VOLUME 

LIMIT TYPE 

.41387 NO. .00000 LOWER 
2.1515 1.5000 LOWER 
1.5020 1.5000 LOWER 
33.846 2.0000 LOWER 
318.54 MPa .00000 LOWER 
226.50 mm .00000 LOWER 
55361. mm**3 .00000 LOWER 
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different from the first. The spring has a wire diameter of 6.3 mm and a mean 

coil diameter of 196 mm with only 0.53 active coils and a spring index of 31. 

The height is shorter at 53.5 mm but the weight is higher at 3.7 Newtons and 

the spring coil volume is much higher at 1.72*10 mm . This design was also 

limited by the static design factor. 

However, it was reached in only 14 trials and the static design factor 

was slightly higher than 1.5 at 1.54. These two facts indicate that this may 

not be an absolute minimum height design. Changing the starting position as 

was done for the bushing design or changing the sensitivity ranges on the two 

independent design parameters would give the optimizer a chance to search 

longer and find a slightly better optimal design. However, since we were 

going to change the wire size and mean coil diameter to standard values 

anyway, the starting position and sensitivity ranges were not changed. The 

design check chosen has a wire diameter of 6.5 mm and a mean coil diameter of 

220 mm for a height of 53.3 mm. This design is also heavy and large with a 

fraction of an active coil at 0.41 and a spring index of 34. 

Table 16 shows the output file for a design which minimizes the spring 

coil volume. The only changes in the input file for this case were the 

weighting coefficients in the objective function list to select spring volume 

as the target for minimization and the problem title. This design was 

achieved in 28 steps and has a wire diameter of 2.2 mm and a mean coil 

diameter of 7.5 mm. The spring coil volume is the smallest of the found 

designs at 26,300 mm3 which is about one-half that of the first design. 

However it is heavier at 0.99 Newtons and much longer at 355 mm. The spring 

index is small at 3.4 and the number of active coils is large at 140. 

Changing the wire diameter to 2.5 mm and the mean coil diameter to 11.5 mm 
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Table 16 

Spring Design Output File For Minimum Coil Volume 

HELICAL COIL SPRING - MINIMUM COIL VOLUME 

DESIGN WITH MODIFIED GRADIENT OPTIMIZATION 
USING A MAXIMUM STEP LIMIT AND SCALED VARIABLES. 

FIXED DESIGN REQUIREMENTS: 

1 MINIMUM FORCE 24.00000 NEWTONS 

2 MAXIMUM FORCE 120.00000 NEWTONS 

3 MINIMUM FORCE WHEN SOLID 150.00000 NEWTONS 

4 SPRING RATE 4.00000 kN/m 

5 END COIL NO. 2.00000 

6 SHEAR FATIGUE STRENGTH 465.00000 MPa 
7 TENSILE STRENGTH CONSTANT 1510.00000 MPa 
8 TENSILE STRENGTH WIRE POWER -0.20100 

9 SHEAR MODULUS 79000.00000 MPa 
10 WEIGHT DENSITY 76.50000 kN/m**3 

THERE ARE 2 INDEPENDENT DESIGN VARIABLES. 

ESTIMATED VALUES: 

LOW HIGH INITIAL 

1 WIRE DIAMETER 
2 MEAN COIL DIAMETER 

THE 7 CONSTRAINT LIMITS ARE: 

1.00000 15.00000  5.00000 mm 
25.00000 500.00000 100.00000 mm 

TYPE 

1 ACTIVE COIL 
2 FATIGUE DESIGN FACTOR 
3 STATIC DESIGN FACTOR 
4 SPRING INDEX 
5 MAXIMUM SHEAR STRESS 
6 OUTSIDE COIL DIAMETER 
7 SPRING WIRE VOLUME 

0.00000 NO. LOWER 
1.50000 LOWER 
1.50000 LOWER 
2.00000 LOWER 
0.00000 MPa LOWER 
0.00000 mm LOWER 
0.00000 mm**3 LOWER 

MINIMIZE THE OBJECTIVE FUNCTION, WHICH HAS 3 TERMS. 

OBJ = THE LINEAR SUM OF: 

1 WEIGHT IN NEWTONS TIMES 0.0000 

? HEIGHT IN mm TIMES 0.0000 

3 SPRING COIL VOLUME IN mm**3 TIMES 1.0000 
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Table 16 Continued 

Spring Design Output File For Minimum Coil Volume 

OPTIMIZATION SUCCESSFUL IN 

THE FINAL DESIGN VECTOR IS: 

1 WIRE DIAMETER 
2 MEAN COIL DIAMETER 

28 STEPS 

X(I) 

2.21384 mm 
7.51284 mm 

THE MINIMUM OBJECTIVE FUNCTION =  26353.6 

1 WEIGHT 
2 HEIGHT 
3 SPRING COIL VOLUME 

=0.98587 
= 354.67 
= 26354. 

ITS COMPONENTS ARE: 

NEWTONS 
mm 
mm**3 

TIMES 
TIMES 
TIMES 

0.0000 
0.0000 
1.0000 

THE LAST CHANGE IN THE OBJECTIVE FUNCTION 
THE LAST STEP CHANGE SIZE FOR THE DESIGN VARIABLE 

-0.781250E-02 
0.195313E-03 

THE 7 CONSTRAINT VALUES ARE: 

1 ACTIVE COIL 
2 FATIGUE DESIGN FACTOR 
3 STATIC DESIGN FACTOR 
4 SPRING INDEX 
5 MAXIMUM SHEAR STRESS 
6 OUTSIDE COIL DIAMETER 
7 SPRING WIRE VOLUME 

LIMIT TYPE 

140.58 NO. .00000 LOWER 
2.2583 1.5000 LOWER 
1.5032 1.5000 LOWER 
3.3870 2.0000 LOWER 
395.29 MPa .00000 LOWER 
9.7067 mm .00000 LOWER 
12907. mm**3 .00000 LOWER 
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Table 16 Continued 

Spring Design Output File For Minimum Coil Volume 

DESIGN CHECK 

1 WIRE DIAMETER 
2 MEAN COIL DIAMETER 

X(I) 

2.50000 mm 
11.50000 mm 

THE MINIMUM OBJECTIVE FUNCTION =  31196.3 

1 WEIGHT 
2 HEIGHT 
3 SPRING COIL VOLUME 

=0.88738 
= 202.66 
= 31196. 

THE 7 CONSTRAINT VALUES ARE: 

ITS COMPONENTS ARE: 

NEWTONS 
mm 
mm**3 

TIMES 
TIMES 
TIMES 

0.0000 
0.0000 
1.0000 

LIMIT TYPE 

1 ACTIVE COIL 
2 FATIGUE DESIGN FACTOR 
3 STATIC DESIGN FACTOR 
4 SPRING INDEX 
5 MAXIMUM SHEAR STRESS 
6 OUTSIDE COIL DIAMETER 
7 SPRING WIRE VOLUME 

63.408 NO. .00000 LOWER 
2.2430 1.5000 LOWER 
1.5367 1.5000 LOWER 
4.6000 2.0000 LOWER 
377.29 MPa .00000 LOWER 
14.000 mm .00000 LOWER 
11600. mm**3 .00000 LOWER 
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with the design check provision gives a design with a spring coil volume of 

31,200 mm3, a weight of only 0.89 Newtons and a height of 203 mm. This spring 

has 63.4 active coils with a spring index of 4.6. 

Figure 11 shows all three optimum designs to the same scale for 

comparison. In Figure 10, which was used earlier to describe the design 

space, three crosses mark the locations of the three optimal designs in this 

design space. Each design is at or near the static strength limit, and the 

minimum weight design, with its cross between the other two, is the design we 

expect from practice. It is the most economical in that it uses the least 

material and it is not extremely long or large in diameter. However, the 

other designs may still have their applications. 
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SPUR GEAR OPTIMIZATION 

The third example problem is that of a compact gear mesh, which is to 

have a compact size at a given life, load, reduction and speed. For steel 

involute teeth, the loading which may cause failure is dynamic due to the 

variation in contact geometry and load sharing as the teeth enter and leave 

the gear mesh. Three primary modes of failure are possible: 1) bending tooth 

fracture, 2) tooth surface pitting, and 3) tooth tip scoring. When fracture 

of the gear teeth due to bending is the primary mode of failure, the minimum 

number of teeth which avoids interference offers the strongest gear set for a 

given size [16]. However, as speeds increase, so do the prospects for pitting 

and scoring modes of failure. 

For a given combination of gear material and lubrication conditions, the 

design problem can be formulated in terms of three independent design 

variables: The number of pinion teeth, N ; the diametral pitch, Pd; and the 

gear and pinion face width, f.    Although many designs can transmit the same 

power at the same input and output speeds, two designs will be sought. The 

first will have the minimum center distance between the input and output 

shafts for a specified reliability life. This design will also have the 

minimum gear weight and volume. The second will have the maximum life for a 

specified center distance. 

Theory 

All acceptable gear designs avoid involute interference. For equal 

pinion and gear addenda, involute interference will occur at the base of the 

pinion tooth. As shown in Figure 12, involute interference can be measured by 

the roll angle, 6,,  which corresponds to the distance along the line of acti 

from the base circle of the pinion to the addendum circle of the gear. 
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6-,    = tan 0 + 
R2 sin 0 - i  Ra2  - .xb2 

(26) 
Rbl 

This angle must be positive for the gear tooth tip to contact the pinion tooth 

on its involute surface and avoid interference. 

In performing the gear tooth load analysis, the tangential load on the 

gear mesh, Ft, is the pinion torque divided by the pitch radius of the pinion. 

This is the nominal force acting between the gears. The force along the line 

of action is this force divided by the cosine of the pressure angle, <p.    The 

pitch line velocity is the rotational speed of the pinion times its pitch 

radius, which is the speed of the pitch circles. 

To estimate the dynamic load, one can use the AGMA velocity factor 

model [17]. In terms of a gear quality number, Qy, the AGMA estimate of the 

sum of the transmitted load and the dynamic load is: 

Fd = Ft 

A + VT" 
(27) 

where 

I     [ 12 - Qv ]Z/3 1 
A - 50 + 56  1 -  (28) 

In equation (28), the gear quality number, Qv, may have a value between 6 and 

11 with 11 corresponding to the higher quality gear. In this example, all 

gear stresses and lives are calculated using this total dynamic load, Fd, with 

a quality number, Qv = 9. 

As noted above, gear tooth bending fatigue, gear tooth pitting and gear 

tip scoring are the three most probable modes of failure for gear teeth. The 

bending fatigue model uses the AGMA J factor [17] to estimate the bending 
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stress with the dynamic load at the highest point of single tooth contact on 

the pinion, which produces the maximum tooth bending stress. The formula for 

the bending stress is: 

% 
_A °_ (29) 

Figure 13 shows the dynamic load on the gear tooth and the Lewis parabola 

which describes the strongest constant strength beam inscribed in the tooth 

Gear tooth pitting is a result of contact stress on the gear tooth 

surface. The maximum contact stress and gear tip Hertzian pressure are 

calculated [18] as: 

Fd    |  1 / pj + 1 / p2 

H   [      rr f  cos 0 '  1 - vS 1 - vf 
 1_ +  1- 

El       E2 

1/2 

(30) 

This maximum contact stress occurs at the lowest point of full load contact on 

the pinion tooth. Figure 14 shows the two teeth in contact at this point and 

their radii of curvature on which this stress is based. The small parabola on 

the tooth surface shows this contact pressure distribution. 

The gear tip Hertzian pressure uses one-third of the total dynamic load 

since the load is shared unequally between two tooth pairs at this point due 

to the elastic interaction of the two tooth pairs in contact. The gear tip 

scoring model includes the pressure times velocity factor and the critical oil 

scoring temperature model from lubrication theory. The normal pressure times 

sliding velocity is proportional to the frictional power loss of the gear set. 

This factor is the highest for contact at the gear tip, with the normal 

< 
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pressure equal to the gear tip Hertzian pressure. The sliding velocity at the 

gear tip is given by: 

Vs    =   w2 Ra2 sin ^ + aa2^ " wl Rl sin ^ + a0 (31) 

The lubricating oil flash temperature is another factor used to monitor 

gear tooth scoring. One estimate of this temperature [18] is given by: 

3/4 

Tf -  h  + 
*rFd 

(Rj + R2) 
(32) 

The gear life model is based on surface pitting and is similar to the 

model for rolling element bearings [19]. Its reliability estimation is based 

on the two-parameter Wei bull distribution: 

1 
Ln 

R 
= Ln 

1 

0.9 

t 

10 
(33) 

The life to reliability relationship of equation (33) is for a specific 

load which determines the f1Q life. This load, F, is related to the component 

dynamic capacity, C,  as: 

P 

'10 
C 

F 
(34) 

where the dynamic capacity of the component, C,  is the load which has a 

90 percent reliability life of one million cycles. 

For a spur gear tooth, the dynamic capacity, C., can be expressed as a 

function of Buckingham's load-stress factor [20], B,  which is a material 

strength constant: 
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Ct    -    B 
1/Pj + l/p2 

(35) 

With the dynamic capacity expressed in this form, the material strength 

constant serves the role of the surface fatigue strength, Sac, of the AGMA 

design code. A relation for the material strength constant in terms of the 

surface fatigue strength is: 

_ / 1 - v}
2 1 - v?

2   \ 
B   - rrsj       — *  + —J- <36> 

The dynamic capacity of the whole gear is lower than that of a single 

tooth due to the number of teeth subjected to the same load: 

C9 - P» (3?) 

g 

The gear and pinion weights are modeled with solid discs which have 

radii equal to the pitch radii of the two gears and thicknesses equal to the 

face width. 

Programming 

Table 17 summarizes this design problem in terms of the constants, 

design parameters, inequality constraints and objective functions. There are 

thirteen constants, three design parameters, fourteen constraints and two 

objective functions in this list. 

Included in the list of constants are: Poisson's ratio and the elastic 

modulus for the gear material: the nominal pressure angle, 0, and gear ratio, 

n, for the mesh; the transmitted power, Hp, and pinion speed, cap the material 

weight density, y,  surface constant, B,  Weibull slope, b, and load-life 
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Table 17 

Spur Gear Mesh Optimization Parameters 

Constants Design Parameters Inequality Constraints Objective Function 

V Nl 
6l    <    0.001 C . mm 

E Pd f/Dj < 0.5 or 

0 f C > 0.0 v m'max 

n Wj + w2 > 0.0 

HP Tj > 0.0 

wl 
Ft > 0.0 

Y V   >    0.0 

B Fd > 0.0 

b a.     <    40,000. 

P Ou    <    150,000. 

R aHt < 150,000. 

h P V      <    100. 
s 

"m 
Tf    <    275. 

L  > 2-° m 
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exponent, p; the desired reliability of the mesh, R;  the lubricant base 

temperature, 7ß; and the surface finish, jJm- 

The three design parameters are: 1) the number of teeth on the pinion, 

N,; the diametral pitch, Pd; and the face width, f. 

Design constraints listed are: active constraints for involute 

interference and the width to diameter ratio; inactive constraints of being 

positive for the center distance, weight sum, input torque, transmitted force, 

pitch line velocity, and dynamic force; active bending and pitting strength 

limits; active scoring limits of pressure times velocity and flash 

temperature; and the mesh life bound. 

The objective functions include the center distance which is to be 

minimized and the mesh life which is to be maximized. In running the program, 

these two functions will not be active in the same case. The listed values 

are for the first objective function of minimum center distance. When the 

program is run to maximize the mesh life, the center distance limit is changed 

to an active limit of 2.5 inches and the mesh life constraint is changed to be 

positive and thus inactive. 

Subroutines BOUNDS and VALUES, developed for this example gear problem, 

are listed together in Table 18. These two routines call a series of analysis 

subroutines to evaluate the properties of the gear design. These subroutines: 

DYNAM, MESH, GLIFE, GEARWT and TEMPER are also listed in Table 18 along with 

LEWIS which MESH calls. Subroutine DYNAM determines the dynamic load in the 

mesh with the AGMA velocity factor calculation using equations (27) and (28). 

Subroutine MESH performs a kinematic analysis of the gear mesh geometry and 

calculates the bending stresses and Hertzian contact stresses on the teeth in 

the mesh with equations (26) and (29) through (31). MESH also calculates the 

80 



Table 18 

Spur Gear Mesh Constraint and Obiective Function Evaluation Routines 

c 
c 

SUBROUTINE BOUNDS(CONST,NCO,X,NX,VCSTR,NCS) 

BOUNDS DETERMINES THE PRESENT CONSTRAINT 
c FUNCTION VALUES 
c 
c 
c 
c 
c 
c 

FOR A SPUR GEAR LIFE DESIGN EXAMPLE 

PARAMETERS: 

CONST - FIXED DESIGN CONSTANT 
c NCO  - NUMBER OF DESIGN CONSTANTS 
c NCS  - NUMBER OF INEQUALITY CONSTRAINTS 
c NX   - NUMBER OF INDEPENDENT DESIGN VARIABLES 
c VCSTR - PRESENT CONSTRAINT VALUES 
c X   - PRESENT DESIGN VARIABLE VALUES 
c 
c ALL VALUES ARE IN PROBLEM UNITS (UNSCALED) 
c 
c CONST(l) = mu - POISSON'S RATIO 
c CONST(2) = E - ELASTIC MODULUS (PSI) 
c CONST(3) = PHI - PRESSURE ANGLE (DEGREES) 
c CONST(4) = N - GEAR RATIO 
c CONST(5) = Hp - PINION POWER (HORSEPOWER) 
c CONST(6) = Np - PINION SPEED (RPM) 
c CONST(7) = GAMMA - MATERIAL WEIGHT DENSITY (LBS/IN**3) 
c C0NST(8) = Be - MATERIAL STRENGTH CONSTANT (PSI) 
c CONST(9) = b - WEIBULL SLOPE 
c CONST(10)= p - LOAD-LIFE FACTOR 
c CONST(ll)- Rel - DESIGN RELIABILITY 
c CONST(12)= Tb - OIL INLET TEMPERATURE (DEGREES F) 
c CONST(13)= RMS - TOOTH SURFACE FINISH (RMS) 
c 
c VCSTR(l) = DELI - INVOLUTE INTERFERENCE ANGLE (RADIANS) 
c VCSTR(2) = LAMMIN - FACE WIDTH TO PINION DIAMETER RATIO 
c VCSTR(3) = C - CENTER DISTANCE (INCHES) 
c VCSTR(4) = WT - PINION & GEAR WEIGHTS (POUNDS) 
c VCSTR(5) = Tq - PINION TORQUE (POUND - INCHES) 
c VCSTR(6) = Ft - TRANSMITTED FORCE (POUNDS) 
c VCSTR(7) = V - PITCH LINE VELOCITY (FT/MIN) 
c VCSTR(8) = Fd -DYNAMIC LOAD (POUNDS) 
c VCSTR(9) = BDSTR - AGMA BENDING STRESS (PSI) 
c VCSTR(10)= HZSTR - CONTACT PRESSURE (PSI) 
c VCSTR(11)= TIPPR - GEAR TIP HERTZ CONTACT PRESSURE (PSI) 
c VCSTR(12)= PVF - PRESSURE TIMES VELOCITY FACTOR 
c (10**6 PSI-FT/MIN) 
c VCSTR(13)= Tf - FLASH TEMPERATURE (DEGREES F) 
c 
c 

VCSTR(14)= Lm - MESH LIFE (10**3 HOURS) 
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Table 18 Continued 

Spur Gear Mesh Constraint and Objective Function Evaluation Routines 

C X(l) = nl       - NUMBER OF PINION TEETH 
C X(2) = Pd      - DIAMETRAL PITCH (1.0/IN) 
C X(3) = Wd      - FACE WIDTH (INCHES) 
C 
C 

DIMENSION X(NX),VCSTR(NCS),CONST(NCO) 
REAL LM,LP,LG 
PI = 3.14159265 
POI = CONST(l) 
E = CONST(2) 
PHI = CONST(3) 
RATIO = CONST(4) 
HP = CONST(5) 
RPM = CONST(6) 
GAM = CONST(7) 
BC = C0NST(8) 
B = CONST(9) 
P = CONST(IO) 
REL = CONST(ll) 
TB = CONST(12) 
RMS = CONST(13) 
TNI = X(l) 
PD = X(2) 
WD = X(3) 
TN2 = RATIO*TNl 
PHIR = PHI*PI/180.0 
RP = 0.5*TN1/PD 
RG = RATIO*RP 
C = RP*( 1.0 + RATIO ) 
V = RPM*RP*PI/6.0 
TQ = HP*63025.0/RPM 
FT = TQ/RP 
CALL DYNAM(FT,V,DL) 
TDQ = RP*DL 
CALL MESH(PHI,PD,TN1,TN2,E,P0I,WD,TDQ,RPM,CMP,DEL1,RH1, 

1 PVF,TIPHZ,TIPBS,HZSTR,BDSTR) 
RH2 = C*SIN(PHIR) - RH1 
CALL GLIFE(DL,WD,RH1,RH2,TN1,TN2,RPM,BC,B,P,REL, 

1 LM,LP,LG,CYLP,CYLG) 
CALL'GEÄRWT(GAM'GAM,RP,RG,WD,PW,GW) 
CALL TEMPERED, PHI,TNI,TN2,WD,DL,V,TB, RMS,TF,CSN) 
VCSTR(l) = DELI 
VCSTR(2) = WD/(2.0*RP) 
VCSTR(3) = C 
VCSTR(4) = PW + GW 
VCSTR(5) = TQ 
VCSTR(6) = FT 
VCSTR(7) = V 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

Table 18 Continued 

Spur Gear Mesh Constraint and Objective Function Evaluation Routines 

VCSTR(8) = DL 
VCSTR(9) = BDSTR 
VCSTR(IO) = HZSTR 
VCSTR(ll) = TIPHZ 
VCSTR(12) = PVF/1000000.0 
VCSTR(13) = TF 
VCSTR(14) = LM/1000.0 
RETURN 
END 

SUBROUTINE VALUES(CONST,NCO,X,NX,OBJECT,NOB) 

VALUES DETERMINES THE PRESENT DESIGN 
OBJECTIVE FUNCTION VALUES 

PARAMETERS: 

CONST 
NCO 
NOB 
NX 
OBJECT 
X 

FIXED DESIGN CONSTANT 
NUMBER OF DESIGN CONSTANTS 
NUMBER OF OBJECTIVE FUNCTION TERMS 
NUMBER OF INDEPENDENT DESIGN VARIABLES 
PRESENT OBJECTIVE FUNCTION VALUES 
PRESENT DESIGN VARIABLE VALUES 

ALL VALUES ARE IN PROBLEM UNITS (UNSCALED) 

CONST(l) = mu - POISSON'S RATIO 
CONST(2) = E - ELASTIC MODULUS (PSI) 
CONST(3) = PHI - PRESSURE ANGLE (DEGREES) 
CONST(4) = N - GEAR RATIO 
CONST(5) = Hp - PINION POWER (HORSEPOWER) 
CONST(6) = Np - PINION SPEED (RPM) 
CONST(7) = GAMMA - MATERIAL WEIGHT DENSITY (LBS/IN**3) 
C0NST(8) = Be - MATERIAL STRENGTH CONSTANT (PSI) 
CONST(9) = b - WEIBULL SLOPE 
CONST(10)= p - LOAD-LIFE FACTOR 
C0NST(11)= Rel - DESIGN RELIABILITY 
C0NST(12)= Tb - BASE TEMPERATURE (DEG FAHR) 
C0NST(13)= RMS - TOOTH SURFACE FINISH (RMS) 

- CENTER DISTANCE (INCHES) 
- MESH LIFE (10**3 HOURS) 

- NUMBER OF PINION TEETH 
- DIAMETRAL PITCH (1.0/IN) 
- FACE WIDTH (INCHES) 

OBJECT(l) = C 
0BJECT(2) = Lm 

X(l) = nl 
X(2) = Pd 
X(3) = Wd 
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Table 18 Continued 

Spur Gear Mesh Constraint and Objective Function Evaluation Routines 

DIMENSION X(NX),0BJECT(N0B),C0NST(NC0) 
REAL LM,LP,LG 
PI = 3.14159265 
POI = CONST(l) 
E = CONST(2) 
PHI = CONST(3) 
RATIO = CONST(4) 
HP = CONST(5) 
RPM = CONST(6) 
BC = C0NST(8) 
B = CONST(9) 
P = CONST(IO) 
REL = CONST(ll) 
TNI = X(l) 
PD = X(2) 
WD = X(3) 
TN2 = RATIO*TNl 
PHIR = PHI*PI/180.0 
RP = 0.5*TN1/PD 
C = RP*( 1.0 + RATIO ) 
V = RPM*RP*PI/6.0 
TQ = HP*63025.0/RPM 
FT = TQ/RP 
CALL DYNAM(FT,V,DL) 
TDQ = RP*DL 
CALL MESH(PHI,PD,TN1,TN2,E,P0I,WD,TDQ,RPM,CMP,DEL1,RH1, 

1 PVF,TIPHZ,TIPBS,HZSTR,BDSTR) 
RH2 = C*SIN(PHIR) - RH1 
CALL GLIFE(DL,WD,RH1,RH2,TN1,TN2,RPM,BC,B,P,REL, 

1 LM,LP,LG,CYLP,CYLG) 
OBJECT(l) = C 
OBJECT(2) = LM/1000.0 
RETURN 
END 

C 
SUBROUTINE MESH(PHI,PD,TN1,TN2,EL,P0I,WD,TQ,RPM,CMP,DEL1,R0B, 

1 PVF,SQA,AGBN2,SQB,AGBN1) 
C 
C MESH 
C 
C   THIS ROUTINE CALCULATES THE GEAR TOOTH CONTACT GEOMETRY 
C 
C        INPUTS: 
C PHI  - NOMINAL PRESSURE ANGLE (DEGREES) 
C PD   - DIAMETRAL PITCH (1.0/INCH) 
C TNI  - NUMBER OF TEETH ON PINION 
C TN2  - NUMBER OF TEETH ON GEAR 
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Table 18 Continued 

Spur Gear Mesh Const 

EL 

raint and Objective Function Evaluation Routines 

c ELASTIC MODULUS OF TEETH (PSI) 
c POI  - POISSON'S RATIO FOR TEETH 
c WD TOOTH FACE WIDTH (INCHES) 
c TQ TORQUE APPLIED TO PINION (POUND - INCHES) 
c RPM  - SPEED OF PINION IN REVOLUTIONS PER MINUTE 
c 
c OUTPUTS: 
c CMP  - MESH CONTACT RATIO 
c DELI - DISTANCE FROM PINION BASE CIRCLE TANGENCY 
c TO TIP OF GEAR TOOTH ALONG LINE OF ACTION 
c MEASURED AS A PINION ROLL ANGLE 
c ROB  - PINION TOOTH SURFACE RADIUS OF CURVATURE 
c AT THE LOWEST POINT OF SINGLE TOOTH CONTACT C 

PVF  - SCORING FACTOR (PSI-FT/MIN / 10**6) 
c SQA  - HERTZIAN CONTACT STRESS AT TIP OF GEAR TOOTH 
c (PSI) 
c AGBN2 - AGMA BENDING STRESS FOR HALF LOAD AT TIP 
c OF GEAR TOOTH (PSI) 
c SQB  - HERTZIAN CONTACT STRESS AT LOWEST POINT OF 
c SINGLE TOOTH CONTACT (PSI) 
c AGBN1 - AGMA BENDING STRESS FOR FULL LOAD AT 
c HIGHEST POINT OF SINGLE TOOTH CONTACT (PSI) C 

ACS(A)=ATAN(SQRT(1. -A*A)/A) 
ASN(A)=ATAN(A/SQRT( l.-A*A)) 
FINV(A)=SIN(A)/COS(A)-A 
NW=0 

c 
c 
c 

PI=3.14159265 

IT IS ASSUMED THAT THE PINION IS THE DRIVING GEAR 

J=l 
FJ=J 
ADD=1. 
DED=1.25 
RFR=0.3 
IF(PD.GE.20.0) DED= 1.2+0.002*PD 
ADD1=ADD 
ADD2=ADD 
DDD1=DED 
AD1=ADD1/PD 
AD2=ADD2/PD 
DD1=DDD1/PD 
RF=RFR/PD 
PC=PI/PD 
RAD=180./PI 
P=PHI/RAD 
COP=COS(P) 
SIP=SIN(P) 
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Table 18 Continued 

Spur Gear Mesh Constraint and Objective Function Evaluation Routines 

PB=PC*C0P 
R1=0.5*PC*TN1/PI 
R2=0.5*PC*TN2/PI 
RB1=R1*C0P 
RB2=R2*COP 
RA1=R1+AD1 
RA2=R2+AD2*FJ 
C=FJ*R1+R2 
C1=SQRT(RA1*RA1-RB1*RB1) 
C2=SQRT(RA2*RA2-RB2*RB2) 
Z=C1+(C2-C*SIP)*FJ 
CMP=Z/PB 
AA1=(C2-R2*SIP)/RB1*FJ 
AA2=(C2-R2*SIP)/RB2*FJ 
DEL1=SIP/C0P-AA1 

C 
C        IF DELI LESS THAN 0 INTERFERENCE WILL HAPPEN 
C 
C SET EQUAL TO A SMALL VALUE TO GENERATE 
C LARGE CONTACT STRESSES 
C 

IF(DELl.LT.O.O) DELI = 0.001*SIP/COP 
AB2=(C1-R1*SIP)/RB2 
DEL2=SIP/COP-AB2 
IF(J.LT.O) DEL2=SIP/COP-AA2 

C 
C        IF DEL2 LESS THAN 0 INTERFERENCE WILL HAPPEN 
C 
C SET EQUAL TO A SMALL VALUE TO GENERATE 
C LARGE CONTACT STRESSES 
C 

IF(DEL2.LT.O.O) DEL2 = 0.001*SIP/COP 
BL1=(Z-PB)/RB1 
BH1=(2.*PB-Z)/RB1 
TL1=DEL1+BL1 
TU1=TL1+BH1 
RAT=TN2/TN1 
IF(J.GT.O) GO TO 5 
TP=FINV(P) 
PA1=ACS(RB1/RA1) 
PA2=ACS(RB2/RA2) 
TA1=FINV(PA1) 
TA2=FINV(PA2) 
BETA1=ACS((RA2*RA2-RA1*RA1-C*C)/(2.0*C*RA1)) 
BETA2=ASN(RA1*SIN(BETA1)/RA2) 
GAMMA1=BETA1+TA1-TP 
GLIM2=BETA2+TA2-TP 
GAMMA2=TN1*GAMMA1/TN2 
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Table 18 Continued 

Spur Gear Mesh Constraint and Objective Function Evaluation Routines 

IF(GAMMA2.GT.GLIM2) GO TO 5 
XINT=RA2*(GLIM2-GAMMA2) 
WRITE (NW,122) XINT 

122 F0RMAT(//'       SECONDARY INVOLUTE INTERFERENCE'/ 
1 '    TOOTH TIP OVERLAP = ',F8.5,' INCHES AT ENTRY'/ 
2 '     INCREASE N2/N1 TO AVOID THIS INTERFERENCE'/) 

5 CONTINUE 
FSIN = TQ/R1 
FTIP = FSIN/3.0 
EO=EL/(l.-POI*POI) 
R0A=RB1*DEL1 
R0B=RB1*TL1 
CAP1=1./(R0A*(1.-FJ*R0A/(C*SIP))) 
CAP2=l./(ROB*(l.-FJ*ROB/(C*SIP))) 
SBA=SQRT(2.*FTIP/(COP*PI*EO*WD*CAPl)) 
SQA=FTIP/(COP*PI*WD*SBA) 
SBB=SQRT(2.*FSIN/(C0P*PI*E0*WD*CAP2)) 
SQB=FSIN/(COP*PI*WD*SBB) 
PU1=ATAN(TU1)*RAD 
TC=PC/2 
CALL LEWIS(PHI,DD1,TC,RF,PD,TN1,PU1,YS,AKS) 
SBND1=FSIN*PD/(WD*YS) 
AGBN1=SBND1*AKS 
TT1=TU1+BL1 
PT1=ATAN(TT1)*RAD 
CALL LEWIS(PHI,DD1,TC,RF,PD,TN1,PT1,YT,AKT) 
SBND2=FTIP*PD/(WD*YT) 
AGBN2=SBND2*AKT 
RTP1=RA2*SIN(AA2)/SIN(AA1) 
OMEGA=RPM*2.*PI 
VLG=(OMEGA/RAT)*RA2*SIN(P+AA2) 
VLP=0MEGA*RTP1*SIN(P-AA1) 
PVF=SQA*(VLG-VLP)/12. 
RETURN 
END 

C 
SUBROUTINE LEWIS(PHI,B,TC,RF,PD,TN,PHIA,Y,AK) 

C 
C LEWIS CALCULATES THE LEWIS FORM FACTOR FOR A PINION TOOTH 
C 
C PHI = THE PITCH LINE PRESSURE ANGLE IN DEGREES 
C B = THE PINION DEDENDUM IN INCHES 
C TC = THE PITCH CIRCLE TOOTH THICKNESS IN INCHES 
C RF = THE CUTTER TIP RADIUS IN INCHES 
C PD = THE DIAMETRAL PITCH IN 1./INCHES 
C TN = THE PINION TOOTH NUMBER 
C PHIA = THE PRESSURE ANGLE AT THE POINT OF CONTACT 
C FOR WHICH Y IS CALCULATED IN DEGREES 
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Table 18 Continued 

Spur Gear Mesh Constraint and Objective Function Evaluation Routines 

C      Y = THE LEWIS FORM FACTOR 
C     AK = THE TOOTH FILLET STRESS CONCENTRATION FACTOR 
C 

FINV(X)=SIN(X)/COS(X)-X 
PI=3.14159265 
NW = 0 
ACC=.001 
P=PHI*PI/180.0 
PHA=PHIA*PI/180.0 
RP=TN/(2.*PD) 
YB=B-RF 
C0P=C0S(P) 
SIP=SIN(P) 
DELTA=PI/(2.*PD)-TC/2.0-YB*SIP/COP-RF/COP 
RC=RP*COP/(COS(PHA-TC/(2.0*RP)-FINV(P)+FINV(PHA))) 
BETA=PI/TN-DELTA/RP 
ER=1. 
DTH=.01 
THETA=.00 
DO 3 1=1,500 
THETA=THETA+DTH 
XB=RP*THETA 
RB=SQRT(YB**2+XB**2) 
COA=COS(BETA+THETA) 
SIA=SIN(BETA+THETA) 
XE=(RP-YB)*SIA-XB*COA-(RF/RB)*(YB*SIA+XB*COA) 
YE=(RP-YB)*COA+XB*SIA+(RF/RB)*(XB*SIA-YB*COA) 
SLOPE=-((l.+(YB/XB)*(SIA/COA))/(YB/XB-SIA/COA)) 
ERR=SLOPE+(2.*(RC-YE))/XE 
IF(ABS(ERR).LT.ACC)GO TO 4 
IF(ERR/ER.LT.0.)DTH=-DTH/2. 
ER=ERR 

3 CONTINUE 
WRITE (NW,1) 

1 FORMAT('0  ITERATION FOR THETA UNSUCCESSFUL') 
Y=0. 
AK=1.0 
GO TO 5 

4 Y=2.*((XE**2)/(RC-YE))*PD/3. 
AP=0.4583662*P 
AH=0.340-AP 
AL=0.316-AP 
AM=0.290+AP 
RAP=RF+YB*YB/(RP+YB) 
BH=RC-YE 
TR=(2.0*XE/RAP)**AL 
TY=(2.0*XE/BH)**AM 
AK=AH+TR*TY 
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Table 18 Continued 

Spur Gear Mesh Constraint and Objective Function Evaluation Routines 

5 RETURN 
END 

SUBROUTINE GLIFE(FORCE,WD,RHP,RHG,TNP,TNG,PINRPM,BC,B,P,REL, 
1    LM,LP,LG,CYLP,CYLG) 

SUBROUTINE TO CALCULATE THE LIFE OF A GEAR MESH 

INPUTS 

FORCE = NORMAL TOOTH LOAD IN POUNDS 
WD = EFFECTIVE FACE WIDTH IN INCHES 
RHP = PINION CONTACT RADIUS OF CURVATURE IN INCHES 
RHG = GEAR CONTACT RADIUS OF CURVATURE IN INCHES 
TNP - NUMBER OF TEETH ON PINION AS A REAL VARIABLE 
TNG = NUMBER OF TEETH ON GEAR AS A REAL VARIABLE 
PINRPM = PINION SPEED IN REVOLUTIONS PER MINUTE 
BC = MATERIAL STRENGTH CONSTANT IN PSI 
B = WEIBULL SLOPE 
P = LOAD LIFE FACTOR 
REL = DESIRED RELIABILITY AS A DECIMAL 

OUTPUTS 

LM = MESH LIFE IN HOURS 
LP = PINION LIFE IN HOURS 
LG = GEAR LIFE IN HOURS 
CYLP = PINION LIFE IN MILLION ROTATIONS 
CYLG = GEAR LIFE IN MILLION ROTATIONS 

REAL LM,LP,LG 
CT = BC*WD/(1.0/RHP + l.O/RHG) 
EX = 1.0/(B*P) 
CP = CT*(1.0/TNP)**EX 
CG = CT*(1.0/TNG)**EX 
PLIO = (CP/FORCE)**P 
GLIO = (CG/FORCE)**P 
BR = l.O/B 
RATLF = (ALOG(REL)/ALOG(0.9))**BR 
CYLP = PL10*RATLF 
CYLG = GL10*RATLF 
LP - CYLP*1000000.0/(60.0*PINRPM) 
LG = CYLG*1000000.0*TNG/(60.0*PINRPM*TNP) 
LM = 1.0/((1.0/TP)**B + (1.0/TG)**B)**BR 
RETURN 
END 
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SUBROUTINE DYNAM (FT.V.DL) 
C 
C        DYLOAD CALCULATES THE DYNAMIC LOAD OF THE MESHING OF 
C        THE GEARS USING THE AGMA VELOCITY FACTOR 
C 
C        DL = THE DYNAMIC LOAD DUE TO THE MESHING 
C 
C    INPUTS: 
C        FT    THE TRANSMITTED LOAD (POUNDS) 
C        V   = THE PITCH LINE VELOCITY (FT/MIN) 
C 
C   OUTPUT: 
C        DL    THE TOTAL DYNAMIC LOAD (POUNDS) 
C 

QV = 9.0 
A = 50.0 + 56.0*(1.0 - (12.0 - QV)**(2.0/3.0))/4.0 
VF = ( A + SQRT(V) )/A 
DL = FT*VF 
RETURN 
END 

C 
SUBROUTINE TEMPERED, PHI,TNI,TN2, WD,DL,V,TB,RMS,TF,CSN) 

C 
C TEMPER IS A SUBROUTINE THAT CALCULATES THE FLASH 
C TEMPERATURE, THE CRITICAL SCORING NUMBER AND THE MINIMUM 
C ELASTOHYDRODYNAMIC FILM THICKNESS FOR TWO GEARS IN MESH 
C 
C PHI = PRESSURE ANGLE IN DEGREES 
C TN1.TN2 = NUMBER OF TEETH ON PINION AND GEAR 
C PD DIAMETRAL PITCH 
C V PITCH LINE VELOCITY (FEET/MINUTE) 
C RMS = TOOTH SURFACE FINISH (RMS) 
C RA2 = GEAR ADDENDUM RADIUS 
C RB2 = GEAR BASE RADIUS 
C WD FACE WIDTH 
C DL TOOTH DYNAMIC LOAD (POUNDS) 
C TB INLET OIL TEMPERATURE 
C C2 RADIUS OF CURVATURE AT TIP OF GEAR TOOTH 
C TF FLASH TEMPERATURE 
C FT NORMAL TOOTH LOAD IN POUNDS 

PI = 3.14159265 
P = PHI*PI/180.0 
COP = COS(P) 
SIP = SIN(P) 
Rl = TN1/(2.0*PD) 
R2 = TN2/(2.0*PD) 
C = Rl + R2 
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c 
c 
c 

c 
c 
c 

Spur Gear Mesh Constraint and Objective Function Evaluation Routines 

GR = TN2/TN1 
RPM = 6.0*V/(PI*R1*C0P) 
RAl = Rl + 1.0/PD 
RBI = R1*C0P 
Cl = SQRT(RA1*RA1 - RB1*RB1) 
TAT = Cl/RBl 
TAP = SIP/COP 
GY = TAT/TAP - 1.0 

FD IS THE NORMAL FORCE ON THE GEAR 

FD = DL/3.0 

CRITICAL SCORING TEMPERATURE OF THE GEAR 

XM = 1.75 
AX = ABS(SQRT(1.0 + GY) - SQRT(1.0 - GY/GR)) 
BX = ((1.0 + GY)*(GR - GY))**0.25 
XG = 0.51*SQRT(GR + 1.0)*AX/BX 
SW = (FD/WD)**(0.75) 
TI = SW*(0.027*50.0/(50.0 - RMS))*XM*XG*SQRT(V)/(C**0.25) 
TF = TB + TI 

c CRITICAL SCORING NUMBER 
c 

c 

CSN = SW*SQRT(RPM)/(PD**.25) 
RETURN 
END 

SUBROUTINE GEARWT (RH01,RH02,R1,R2,WD,PW,GW) 
c 
c 
c 
r 

GEARWT CALCULATES THE WEIGHT OF THE PINION AND GEAR 
IN MESH 

C        RH01,RH02 = MATERIAL DENSITY OF THE RESPECTIVE GEARS 
C        R1,R2    = PITCH RADIUS OF THE PINION AND GEAR 
C        WD FACE WIDTH OF GEARS 
C        PW PINION WEIGHT 
C        GW GEAR WEIGHT 

PI = 3.14159265 
PW = RH01*PI*R1**2 *WD 
GW = RH02*PI*R2**2 *WD 
RETURN 
END 

91 



pressure times velocity at the gear tip to model potential scoring. In order 

to calculate the bending stresses, subroutine MESH calls subroutine LEWIS 

which performs an interval halving iteration to determine the size of the 

largest inscribed parabola in the tooth. Subroutine GLIFE performs a Weibull 

analysis with equations (33) through (37) to estimate the life of the gear 

mesh for the reliability specified in the constant list. Subroutine GEARWT 

estimates the weights of the pinion and the gear and subroutine TEMPER 

calculates the flash temperature for the mesh using equation (32) to determine 

the potential for scoring damage. 

Any permissible subroutine names may be used in programming for a 

specific problem as long as the names of the subroutines in SEEK are avoided. 

These names are listed in the file SEEK.DOC, which is Appendix A, and in 

Table 1 of the programming section and are: BACK, BOUNCE, BOUNDS, CHECK, 

GRADNT, MERIT, RESIZE, SCAN, SCOUT, SIZE, UNIT, VALUES and WALL. Once the 

problem subroutines have been written, they need to be compiled and linked to 

the compiled program SEEK.OBJ to produce an executable program with a name 

such as GEAR.EXE. With this program, various optimal gear designs can be 

found using different input files. 

Numerical Example 

For an example, let us consider the design of a gear set to transmit 

10 horsepower from a shaft turning at 4,500 RPM to an output shaft turning at 

3,000 RPM. The center distance of the gears should be minimized for a mesh 

life of at least 2,000 hours with a reliability of 90 percent. The face width 

ratio is to be less than or equal to 0.5, the material strengths are 

40,000 psi in bending and 150,000 psi surface endurance, the PV factor limit 
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is 100 million psi-ft/min and the flash temperature limit is 275 degrees 

Fahrenheit. 

Table 19 is a listing of the input file defining this example. Rules 

for writing the input data file are given in "SEEK.DOC," which is listed in 

Appendix A. The data file starts with the problem title. On the next line is 

the number thirteen, and the following thirty-nine lines contain the problem 

constants as listed in Table 17, their definitions and their units. The 

material surface constant of 9,800 psi corresponds to a surface compression 

endurance strength of 200,000 psi at 10 fatigue cycles and a reliability of 

90 percent. The load-life factor of 8.93 is from the ANSI/AGMA 2001 B88 

Standard, and the Weibull slope of 2.5 is from the NASA Lewis gear test data 

[21]. Following the constants is a line with the number three for the number 

of independent design parameters, which are on the next nine lines with their 

ranges, initial values, definitions and units. The number fourteen follows on 

the next line, with the fourteen constraint limits, their directions and their 

names and units on the following forty-two lines. After these comes a line 

with the optimization direction, MIN, and a line with the number two for the 

number of objective function terms. The first term is the center distance 

which has a weighting coefficient of one and the units of inches, and the 

second is the mesh life with a weighting coefficient of zero and units of 

thousand hours. 

Running the program GEAR.EXE with this data file produced the output 

data file listed in Table 20. The first page lists the problem constants, 

design parameters and constraint limits as provided by the input data file but 

in a little more readable form. The second page lists the merit function 

terms and notes that an optimum was found in thirty-three steps. It then 
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Table 19 

Spur Gear Mesh Input File for Minimum Size 

COMPACT SPUR GEAR WITH A REQUIRED LIFE 
13 
0.25 
POISSON'S RATIO 

30000000.0 
ELASTIC MODULUS 
PS I 
20.0 
PRESSURE ANGLE 
DEGREES 
1.5 
GEAR RATIO 

10.0 
TRANSMITTED POWER 
HORSEPOWER 
4500.0 
PINION SPEED 
RPM 
0 283 
MATERIAL WEIGHT DENSITY 
LBS/IN**3 
9800.0 
MATERIAL SURFACE CONSTANT 
PS I 
2.5 
WEIBULL SLOPE 

8 93 
LOAD-LIFE FACTOR 

0.90 
RELIABILITY 

120.0 
BASE TEMPERATURE 
DEGREES F 
32 
TOOTH SURFACE FINISH 
RMS 
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Table 19 Continued 

Spur Gear Mesh Input File for Minimum Size 

3 
10.0 100.0 40.0 
PINION TEETH 

4.0 28.0 10.0 
DIAMETRAL PITCH 
1.0/INCHES 
0.5 5.0 2.5 
FACE WIDTH 
INCHES 
14 
LOWER 0.001 
INVOL. INTERFERENCE 
RADIANS 
UPPER 0.5 
FACE WIDTH TO DIAMETER 
RATIO 
LOWER 0.0 
CENTER DISTANCE 
INCHES 
LOWER 0.0 
GEAR AND PINION WEIGHT 
POUNDS 
LOWER 0.0 
PINION TORQUE 
LB-IN 
LOWER 0.0 
TRANSMITTED FORCE 
POUNDS 
LOWER 0.0 
PITCH LINE VELOCITY 
FT/MIN 
LOWER 0.0 
TOTAL DYNAMIC LOAD 
POUNDS 
UPPER 40000.0 
AGMA BENDING STRESS 
PS I 
UPPER 150000.0 
FULL LOAD CONTACT STRESS 
PS I 
UPPER 150000.0 
GEAR TIP HERTZ PRESSURE 
PS I 
UPPER 100.0 
PV FACTOR 
M PSI-FT/MIN 
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Table 19 Continued 

Spur Gear Mesh Input File for Minimum Size 

UPPER 275.0 
FLASH TEMPERATURE 
DEGREES F 
LOWER 2.0 
MESH LIFE 
10**3 HOURS 
MIN 
2 
1.0 
CENTER DISTANCE 
INCHES 
0.0 
MESH LIFE 
10**3 HOURS 
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Table 20 

Spur Gear Mesh Output File for Minimum Size 

COMPACT SPUR GEAR WITH A REQUIRED LIFE 

DESIGN WITH MODIFIED GRADIENT OPTIMIZATION 
USING A MAXIMUM STEP LIMIT AND SCALED VARIABLES. 

FIXED DESIGN REQUIREMENTS: 

1 POISSON'S RATIO 
2 ELASTIC MODULUS 
3 PRESSURE ANGLE 
4 GEAR RATIO 
5 TRANSMITTED POWER 
6 PINION SPEED 
7 MATERIAL WEIGHT DENSITY 
8 MATERIAL SURFACE CONSTANT 
9 WEIBULL SLOPE 

10 LOAD-LIFE FACTOR 
11 RELIABILITY 
12 BASE TEMPERATURE 
13 TOOTH SURFACE FINISH 

0.25000 
30000000.00000 

20.00000 
1.50000 

10.00000 
4500.00000 

0.28300 
9800.00000 

2.50000 
8.93000 
0.90000 

120.00000 
32.00000 

PS I 
DEGREES 

HORSEPOWER 
RPM 
LBS/IN**3 
PS I 

DEGREES F 
RMS 

THERE ARE 3 INDEPENDENT DESIGN VARIABLES. 

ESTIMATED VALUES: 

LOW HIGH   INITIAL 

1 PINION TEETH 
2 DIAMETRAL PITCH 
3 FACE WIDTH 

THE 14 CONSTRAINT LIMITS ARE: 

1 INVOL. INTERFERENCE 
2 FACE WIDTH TO DIAMETER 
3 CENTER DISTANCE 
4 GEAR AND PINION WEIGHT 
5 PINION TORQUE 
6 TRANSMITTED FORCE 
7 PITCH LINE VELOCITY 
8 TOTAL DYNAMIC LOAD 
9 AGMA BENDING STRESS 

10 FULL LOAD CONTACT STRESS 
11 GEAR TIP HERTZ PRESSURE 
12 PV FACTOR 
13 FLASH TEMPERATURE 
14 MESH LIFE 

10.00000 100.00000 40.00000 
4.00000 28.00000 10.00000 
0.50000  5.00000  2.50000 

1.0/INCHES 
INCHES 

TYPE 

0.00100 RADIANS LOWER 
0.50000 RATIO UPPER 
0.00000 INCHES LOWER 
0.00000 POUNDS LOWER 
0.00000 LB-IN LOWER 
0.00000 POUNDS LOWER 
0.00000 FT/MIN LOWER 
0.00000 POUNDS LOWER 

40000.00000 PS I UPPER 
150000.00000 PS I UPPER 
150000.00000 PS I UPPER 

100.00000 M PSI-FT/MIN UPPER 
275.00000 DEGREES F UPPER 

2.00000 10**3 HOURS LOWER 
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Table 20 Continued 

Spur Gear Mesh Output File for Minimum Size 

MINIMIZE THE OBJECTIVE FUNCTION, WHICH HAS 2 TERMS, 

OBJ = THE LINEAR SUM OF: 

1 CENTER DISTANCE 
2 MESH LIFE 

IN INCHES     TIMES   1.0000 
IN 10**3 HOURS TIMES   0.0000 

OPTIMIZATION SUCCESSFUL IN 

THE FINAL DESIGN VECTOR IS: 

1 PINION TEETH 
2 DIAMETRAL PITCH 
3 FACE WIDTH 

33 STEPS 

X(I) 

20.39544 
13.91159 1.0/INCHES 
0.73295 INCHES 

THE MINIMUM OBJECTIVE FUNCTION =  1.83259 

1 CENTER DISTANCE 
2 MESH LIFE 

= 1.8326 
= 2.0065 

ITS COMPONENTS ARE: 

INCHES 
10**3 HOURS 

TIMES 
TIMES 

1.0000 
0.0000 

THE LAST CHANGE IN THE OBJECTIVE FUNCTION       = -0.326633E-04 
THE LAST STEP CHANGE SIZE FOR THE DESIGN VARIABLE = 0.976563E-04 

THE 14 CONSTRAINT VALUES ARE: 
LIMIT TYPE 

1 INVOL. INTERFERENCE 
2 FACE WIDTH TO DIAMETER 
3 CENTER DISTANCE 
4 GEAR AND PINION WEIGHT 
5 PINION TORQUE 
6 TRANSMITTED FORCE 
7 PITCH LINE VELOCITY 
8 TOTAL DYNAMIC LOAD 
9 AGMA BENDING STRESS 

10 FULL LOAD CONTACT STRESS 
11 GEAR TIP HERTZ PRESSURE 
12 PV FACTOR 
13 FLASH TEMPERATURE 
14 MESH LIFE 

.10861 RADIANS .10000E- -02 LOWER 

.49980 RATIO .50000 UPPER 
1.8326 INCHES .00000 LOWER 
1.1376 POUNDS .00000 LOWER 
140.06 LB-IN .00000 LOWER 
191.07 POUNDS .00000 LOWER 
1727.1 FT/MIN .00000 LOWER 
418.72 POUNDS .00000 LOWER 
25097. PS I 40000. UPPER 
.14999E+06 PS I .15000E+06 UPPER 
.12518E+06 PS I .15000E+06 UPPER 
92.633 M PSI-FT/MIN 100.00 UPPER 
216.49 DEGREES F 275.00 UPPER 
2.0006 10**3 HOURS 2.0000 LOWER 
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Table 20 Continued 

Spur Gear Mesh Output File for Minimum Size 

DESIGN CHECK 

1 PINION TEETH 
2 DIAMETRAL PITCH 
3 FACE WIDTH 

X(I) 

22.00000 
14.00000 1.0/INCHES 
0.75000 INCHES 

THE MINIMUM OBJECTIVE FUNCTION =  1.96429 

1 CENTER DISTANCE 
2 MESH LIFE 

= 1.9643 
= 7.8155 

THE 14 CONSTRAINT VALUES ARE: 

ITS COMPONENTS ARE: 

INCHES     TIMES   1.0000 
10**3 HOURS TIMES   0.0000 

LIMIT TYPE 

INVOL. INTERFERENCE 
FACE WIDTH TO DIAMETER 
CENTER DISTANCE 
GEAR AND PINION WEIGHT 
PINION TORQUE 
TRANSMITTED FORCE 
PITCH LINE VELOCITY 

8 TOTAL DYNAMIC LOAD 
9 AGMA BENDING STRESS 

FULL LOAD CONTACT STRESS 
11 GEAR TIP HERTZ PRESSURE 
12 PV FACTOR 
13 FLASH TEMPERATURE 
14 MESH LIFE 

1 
2 
3 
4 
5 
6 
7 

10 

.12489 RADIANS .10000E- -02 LOWER 

.47727 RATIO .50000 UPPER 
1.9643 INCHES .00000 LOWER 
1.3379 POUNDS .00000 LOWER 
140.06 LB-IN .00000 LOWER 
178.25 POUNDS .00000 LOWER 
1851.3 FT/MIN .00000 LOWER 
398.15 POUNDS .00000 LOWER 
22845. PS I 40000. UPPER 
.13873E+06 PS I .15000E+06 UPPER 
.10980E+06 PS I .15000E+06 UPPER 
81.164 M PSI-FT/MIN 100.00 UPPER 
206.59 DEGREES F 275.00 UPPER 
7.8155 10**3 HOURS 2.0000 LOWER 
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lists the found design parameter values, the objective function values and the 

constrained variable values with their limits. Although it is an "ideal" 

design with 20.395 teeth on the pinion, this theoretical optimum identifies 

the region of good designs. The smallest center distance for a life of 

2,000 hours is about one and seven-eights inches and the limiting constraints 

were: the face width to diameter ratio, the full load contact stress and the 

mesh life. The watched variables in the constraint list tell us the weight of 

the design and its loads and velocities. 

The third page is a design check for a design with 22 teeth on the 

pinion and a diametral pitch of 14 with a face width of 0.75 inches. This 

design has a slightly larger center distance of 1.964 inches, but all 

constraints are satisfied and the mesh life is about 7,800 hours. The gear 

and pinion weigh 1.34 pounds, the pinion torque is 140 pound-inches, the 

transmitted force is 178 pounds, and with a pitch line velocity of 1850 feet 

per minute, the dynamic load is estimated to be 400 pounds. Figure 15 is a 

drawing of this design showing the pinion and the gear with its 33 teeth in 

mesh. 

With a few changes in the input data file, one can find a design with 

the greatest life for a given center distance. As can be seen in the second 

output file of Table 21, five changes were made in the input data file: 1) the 

problem title was changed, 2) the center distance limit was changed from a 

lower bound of zero to an upper bound of 2.5 inches, 3) the direction of 

optimization was changed from MIN to MAX, and 4 & 5) the two weighting factors 

in the objective function were switched to multiply the center distance 

objective term by zero and the mesh life objective term by one. 
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PINION 
22 TEETH 

GEAR 
33 TEETH 

MINIMUM SIZE SPUR GEAR DESIGN 

FIGURE 15 
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Table 21 

Spur Gear Mesh Output File for Maximum Life 

MAXIMUM LIFE SPUR GEAR WITH A FIXED SIZE 

DESIGN WITH MODIFIED GRADIENT OPTIMIZATION 
USING A MAXIMUM STEP LIMIT AND SCALED VARIABLES. 

FIXED DESIGN REQUIREMENTS: 

1 POISSON'S RATIO 
2 ELASTIC MODULUS 
3 PRESSURE ANGLE 
4 GEAR RATIO 
5 TRANSMITTED POWER 
6 PINION SPEED 
7 MATERIAL WEIGHT DENSITY 
8 MATERIAL SURFACE CONSTANT 
9 WEIBULL SLOPE 

10 LOAD-LIFE FACTOR 
11 RELIABILITY 
12 BASE TEMPERATURE 
13 TOOTH SURFACE FINISH 

0.25000 
30000000.00000 

20.00000 
1.50000 

10.00000 
4500.00000 

0.28300 
9800.00000 

2.50000 
8.93000 
0.90000 

120.00000 
32.00000 

PS I 
DEGREES 

HORSEPOWER 
RPM 
LBS/IN**3 
PS I 

DEGREES F 
RMS 

THERE ARE 3 INDEPENDENT DESIGN VARIABLES. 

ESTIMATED VALUES: 

1 PINION TEETH 
2 DIAMETRAL PITCH 
3 FACE WIDTH 

THE 14 CONSTRAINT LIMITS ARE: 

LOW HIGH   INITIAL 

10.00000 100.00000 40.00000 
4.00000 28.00000 10.00000 
0.50000  5.00000  2.50000 

1.0/INCHES 
INCHES 

TYPE 

1 INVOL. INTERFERENCE 0.00100 RADIANS LOWER 

2 FACE WIDTH TO DIAMETER 0.50000 RATIO UPPER 
3 CENTER DISTANCE 2.50000 INCHES UPPER 
4 GEAR AND PINION WEIGHT 0.00000 POUNDS LOWER 
5 PINION TORQUE 0.00000 LB-IN LOWER 

6 TRANSMITTED FORCE 0.00000 POUNDS LOWER 
7 PITCH LINE VELOCITY 0.00000 FT/MIN LOWER 

8 TOTAL DYNAMIC LOAD 0.00000 POUNDS LOWER 

9 AGMA BENDING STRESS 40000.00000 PSI UPPER 

10 FULL LOAD CONTACT STRESS 150000.00000 PS I UPPER 

11 GEAR TIP HERTZ PRESSURE 150000.00000 PSI UPPER 
12 PV FACTOR 100.00000 M PSI-FT/MIN UPPER 

13 FLASH TEMPERATURE 275.00000 DEGREES F UPPER 
14 MESH LIFE 0.00000 10**3 HOURS LOWER 
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Table 21 Continued 

Spur Gear Mesh Output File for Maximum Life 

MAXIMIZE THE OBJECTIVE FUNCTION, WHICH HAS 2 TERMS. 

OBJ = THE LINEAR SUM OF: 

1 CENTER DISTANCE 
2 MESH LIFE 

IN INCHES     TIMES   0.0000 
IN 10**3 HOURS TIMES   1.0000 

OPTIMIZATION SUCCESSFUL IN 

THE FINAL DESIGN VECTOR IS: 

1 PINION TEETH 
2 DIAMETRAL PITCH 
3 FACE WIDTH 

48 STEPS 

X(I) 

26.19858 
13.09929 1.0/INCHES 
1.00000 INCHES 

THE MAXIMUM OBJECTIVE FUNCTION =  4689.19 

1 CENTER DISTANCE 
2 MESH LIFE 

= 2.5000 
= 4689.2 

,  ITS COMPONENTS ARE: 

INCHES      TIMES 
10**3 HOURS TIMES 

0.0000 
1.0000 

THE LAST CHANGE IN THE OBJECTIVE FUNCTION       = 0.976563E-03 
THE LAST STEP CHANGE SIZE FOR THE DESIGN VARIABLE = 0.953674E-07 

THE 14 CONSTRAINT VALUES ARE: 
LIMIT TYPE 

1 INVOL. INTERFERENCE 
2 FACE WIDTH TO DIAMETER 
3 CENTER DISTANCE 
4 GEAR AND PINION WEIGHT 
5 PINION TORQUE 
6 TRANSMITTED FORCE 
7 PITCH LINE VELOCITY 
8 TOTAL DYNAMIC LOAD 
9 AGMA BENDING STRESS 

10 FULL LOAD CONTACT STRESS 
11 GEAR TIP HERTZ PRESSURE 
12 PV FACTOR 
13 FLASH TEMPERATURE 
14 MESH LIFE 

.15891 RADIANS .10000E- -02 LOWER 

.50000 RATIO .50000 UPPER 
2.5000 INCHES 2.5000 UPPER 
2.8895 POUNDS .00000 LOWER 
140.06 LB-IN .00000 LOWER 
140.06 POUNDS .00000 LOWER 
2356.2 FT/MIN .00000 LOWER 
334.97 POUNDS .00000 LOWER 
12766. PSI 40000. UPPER 
96590. PS I .15000E+06 UPPER 
70072. PSI .15000E+06 UPPER 
56.012 M PSI-FT/MIN 100.00 UPPER 
175.53 DEGREES F 275.00 UPPER 
4689.2 10**3 HOURS .00000 LOWER 
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Table 21 Continued 

Spur Gear Mesh Output File for Maximum Life 

DESIGN CHECK 

1 PINION TEETH 
2 DIAMETRAL PITCH 
3 FACE WIDTH 

X(I) 

24.00000 
12.00000 1.0/INCHES 
1.00000 INCHES 

THE MAXIMUM OBJECTIVE FUNCTION =  4432.67 

1 CENTER DISTANCE 
2 MESH LIFE 

= 2.5000 
= 4432.7 

, ITS COMPONENTS ARE: 

INCHES     TIMES 
10**3 HOURS TIMES 

THE 14 CONSTRAINT VALUES ARE: 

1 INVOL. INTERFERENCE 
2 FACE WIDTH TO DIAMETER 
3 CENTER DISTANCE 
4 GEAR AND PINION WEIGHT 
5 PINION TORQUE 
6 TRANSMITTED FORCE 
7 PITCH LINE VELOCITY 
8 TOTAL DYNAMIC LOAD 
9 AGMA BENDING STRESS 

10 FULL LOAD CONTACT STRESS 
11 GEAR TIP HERTZ PRESSURE 
12 PV FACTOR 
13 FLASH TEMPERATURE 
14 MESH LIFE 

LIMIT 

0.0000 
1.0000 

TYPE 

.14243 RADIANS .10000E- -02 LOWER 

.50000 RATIO .50000 UPPER 
2.5000 INCHES 2.5000 UPPER 
2.8895 POUNDS .00000 LOWER 
140.06 LB-IN .00000 LOWER 
140.06 POUNDS .00000 LOWER 
2356.2 FT/MIN .00000 LOWER 
334.97 POUNDS .00000 LOWER 
12009. PSI 40000. UPPER 
97085. PSI .15000E+06 UPPER 
73216. PSI .15000E+06 UPPER 
63.518 M PSI-FT/MIN 100.00 UPPER 
180.12 DEGREES F 275.00 UPPER 
4432.7 10**3 HOURS .00000 LOWER 
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For this new objective of maximizing the life of a larger gear set, the 

program found an optimum design with a life of 4.69 million hours in 48 steps. 

This design was bounded by the center distance limit of 2.5 inches and the 

length to diameter ratio limit of 0.5. This optimum also had an unrealistic 

number of teeth on the pinion of 26.2 and diametral pitch of 13.1. The last 

page of Table 21 shows the results of a nearby design check using 24 teeth on 

the pinion, a diametral pitch of 12 and a face width of one inch. This design 

is shown in Figure 16 with 24 teeth on the pinion and 36 teeth on the gear and 

the requested 2.5 inch center distance. 

The realistic design has a slightly lower life of 4.43 million hours, a 

gear and pinion weight of 2.9 pounds, a pinion torque of 140 pound-inches, a 

transmitted force of 140 pounds, a pitch line velocity of 2356 feet per 

minute, and an estimated dynamic load of 335 pounds. Since it is larger than 

the minimum size design, it also has lower loads and stresses. 
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FIGURE 16 
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WEIBULL DATA FITTING 

The fourth example application is the use of the optimizer to fit 

experimental life data to a two-parameter Weibull distribution. With its 

abilities to iterate in n independent variables and provide an easy check of 

the performance of alternate solutions, the computer program SEEK.FOR offers a 

variety of uses. One valuable application is that of fitting a curve to 

experimental data. 

Theory 

A nonlinear least squares fitting procedure compares the measured data 

to the fitted curve at each point. The sum of the squares of the errors 

between the measured data and the values on the fitted curve is a positive 

definite scalar measure of the scatter of the data about the curve. Taking 

the square root of this squared error sum divided by the number of data points 

less one gives a dispersion with the same dimension as the measured quantity 

[22]. For the two-parameter Weibull relationship of equation (33), this 

dispersion would be: 

.2 , 1/2 

% ND-1 
(38) 

where Rc  is the reliability on the curve, /?D is the median rank reliability of 

the measured life and NQ is the number of data points. 

Thus one can use SEEK.FOR to determine the ninety-percent reliability 

life, f10, and Weibull slope, b, from a set of life test data. Table 22 

summarizes this problem in the design optimization format with: the lone 

constant being the number of data points; the two design parameters, £1Q and 
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Table 22 

Spur Gear Mesh Optimization Parameters 

Constants Design Parameters Inequality Constraints Objective Function 

ND '10 

b 

ND > 0 (Vmin 

Table 23 

Median Ranked Life Data 

Life Reliability 

103 Hours 

190.0 0.95484 
250.0 0.89060 
310.0 0.82568 
340.0 0.76061 
410.0 0.69548 
450.0 0.63033 
510.0 0.56517 
550.0 0.50000 
600.0 0.43483 
670.0 0.36967 
710.0 0.30452 
770.0 0.23939 
790.0 0.17432 
830.0 0.10940 
880.0 0.04516 
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b; the inequality constraint of having a positive number of data points; and 

the objective function of minimizing the dispersion, o^. 

For a group of identical units subjected to an identical life test, 

different units will fail at different times. By recording the times to 

failure and ranking them from the shortest to the longest, one can use a 

median rank table [23] to list the median reliability and test life in a table 

or data file similar to the numerical values in Table 23. This table lists 

the time to failure and the corresponding median reliability for a life test 

of fifteen units. 

Programming 

Inside SEEK.FOR is the additional capability to read a second data file 

in addition to the input data file. This action is enabled by setting the 

first constant in the constant array to the number, n, of data point pairs, 

(XD.,YD.)t in the data file and including the words, "DATA POINTS," in its 

description. When this is combined with the presence of a data file of n 

lines with n point pairs; XD. , YD.; and a name which has the same prefix as 

the ".IN" file but the extension ".DAT;" SEEK will open and read the ".DAT" 

file after it has read the ".IN" file. The data pairs will be placed in a 

common block, COMMON/CURVE/XDP(200),YDP(200), for use in subroutine VALUES. 

If the limit of 200 data pairs is too low, changing this dimension in the 

program will allow larger data sets to be fit. 

Table 24 lists subroutines BOUNDS and VALUES which will fit a two- 

parameter Wei bull distribution to the data in the ".DAT" file. Subroutine 

BOUNDS checks that the number of data points is positive, since it has to do 

something to permit the overall program to execute. Subroutine VALUES uses 
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Table 24 

Two-Parameter Weibull Fitting Analysis Subroutines 

SUBROUTINE BOUNDS(CONST,NCO,X,NX,VCSTR,NCS) 
C 
C      INPUT 
C        CONST(l) = THE NUMBER OF DATA POINTS 
C 
C      OUTPUT 
C VCSTR(l) = THE NUMBER OF DATA POINTS 
C 

DIMENSION X(NX),CONST(NCO),VCSTR(NCS) 
VCSTR(l) = CONST(l) 
RETURN 
END 

C 
SUBROUTINE VALUES(CONST,NCO,X,NX,OBJECT,NOB) 

C 
C        MINIMIZE THE SUM OF THE FITTED ERRORS SQUARED 
C 
C      INPUTS 
C        CONST(l) = THE NUMBER OF DATA POINTS 
C 
C        X(l) = RL - THE SOUGHT 90% RELIABILITY LIFE 
C OF THE DISTRIBUTION 
C        X(2) = B - THE SOUGHT WEIBULL SLOPE 
C 
C      OUTPUT 
C        OBJECT(l) = THE DEVIATION IN THE ERRORS 
C 

DIMENSION X(NX),CONST(NCO),OBJECT(NOB) 
COMMON/CURVE/TDP(200),RDP(200) 
N = CONST(l) 
RL = X(l) 
B = X(2) 
ERS = 0.0 
DO 10 I = 1,N 
R = 1.0/EXP(AL0G(1.0/0.9)*(TDP(I)/RL)**B) 
E = R - RDP(I) 
ERS = ERS + E*E 

10 CONTINUE 
XN = N - 1 
OBJECT(l) = SQRT(ERS/XN) 
RETURN 
END 
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equations (33) and (38) to determine the dispersion of the measured data about 

the trial distribution. 

Numerical Example 

To illustrate this data fitting process, the fifteen data points of 

Table 23 and the analysis subroutines of Table 24 will be used. A listing of 

the input data file "W.IN" which will initiate the curve fitting is given in 

Table 25. In this file; the first line is the problem title; the second line 

is the number of constants, which is one; and the next three lines are the 

number of data points, 15; the description "NUMBER OF DATA POINTS" which 

includes the words "DATA POINTS" and a blank line for the units. Following 

this is a line with the number of independent parameters, two. The next six 

lines give the two distribution parameters, with their low, high and initial 

estimates. This is followed by the number of design constraints, one, and 

three lines which describe the lower bound on the number of data points. On 

the next line are the three letters "MIN" to signal that the objective 

function is to be minimized and four lines which give the number of object 

functions as one and the weighting coefficient, description and units for the 

reliability error dispersion. Once again, the unit line is blank. 

Compiling the subroutines of Table 24, linking them with SEEK.OBJ, and 

running the resulting program with the two data files W.DAT which holds the 

numbers of Table 23 and W.IN which is listed in Table 25 yields the output 

file of Table 26. This file echoes the input file information and reports a 

successful curve fit in 43 steps. The fitted curve has an £1Q life of 

238.8 thousand hours and a Weibull slope of 2.296 with a dispersion 

reliability of 0.0317. 
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Table 25 

Two-Parameter Weibull Fitting Input Data File 

WEIBULL RELIABILITY DISTRIBUTION FIT 
1 
15 
NUMBER OF DATA POINTS 

2 
100.0 2000.0 500.0 
90% RELIABILITY LIFE 
10**3 HOURS 
0.0 6.0 2.0 
WEIBULL SLOPE 

1 
LOWER 0.0 
NO. OF DATA POINTS 

MIN 
1 
1.0 
RELIABILITY ERROR DISPERSION 
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Table 26 

Two-Parameter Wei bull Fitting Output Data File 

WEIBULL RELIABILITY DISTRIBUTION FIT 

DESIGN WITH MODIFIED GRADIENT OPTIMIZATION 
USING A MAXIMUM STEP LIMIT AND SCALED VARIABLES. 

FIXED DESIGN REQUIREMENTS: 

1 NUMBER OF DATA POINTS 15.00000 

THERE ARE 2 INDEPENDENT DESIGN VARIABLES. 

ESTIMATED VALUES: 

LOW      HIGH 

1 90% RELIABILITY LIFE 
2 WEIBULL SLOPE 

THE 1 CONSTRAINT LIMITS ARE: 

100.0000 2000.0000 
0.0000    6.0000 

1 NO. OF DATA POINTS 0.00000 

MINIMIZE THE OBJECTIVE FUNCTION. 

OBJ = RELIABILITY ERROR DISPERSION  IN 

15 POINTS READ FROM TABULAR DATA FILE 

INITIAL 

500.0000  10**3 HOURS 
2.0000 

TYPE 

LOWER 

TIMES   1.0000 

OPTIMIZATION SUCCESSFUL IN 

THE FINAL DESIGN VECTOR IS: 

1 90% RELIABILITY LIFE 
2 WEIBULL SLOPE 

43 STEPS 

X(I) 

238.80429 10**3 HOURS 
2.29637 

THE MINIMUM OBJECTIVE FUNCTION = 0.316652E-01 , ITS COMPONENTS ARE: 

1 RELIABILITY ERROR DISPERSION =0.31665E-01 TIMES   1.0000 

THE LAST CHANGE IN THE OBJECTIVE FUNCTION      = -0.372529E-08 
THE LAST STEP CHANGE SIZE FOR THE DESIGN VARIABLE = 0.610352E-05 
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Table 26 Continued 

Two-Parameter Weibull Fitting Output Data File 

THE 1 CONSTRAINT VALUES ARE: 

1 NO. OF DATA POINTS 15.000 

LIMIT 

.00000 

TYPE 

LOWER 

DESIGN CHECK 

1 90% RELIABILITY LIFE 
2 WEIBULL SLOPE 

X(D 

240.00000 10**3 HOURS 
2.30000 

THE MINIMUM OBJECTIVE FUNCTION = 0.315955E-01 , ITS COMPONENTS ARE: 

1 RELIABILITY ERROR DISPERSION =0.31596E-01 TIMES   1.0000 

THE 1 CONSTRAINT VALUES ARE: 

1 NO. OF DATA POINTS = 15.000 

LIMIT 

.00000 

TYPE 

LOWER 
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As shown in the design check, rounding the *10 life to 240 thousand 

hours and the Weibull slope to 2.3 changes this dispersion to 0.0316. This 

rounded function fits the data slightly better than the "ideal" function as 

found by the optimizer due to the finite step size procedure of the gradient 

algorithm. Selecting a different starting position or sensitivity ranges for 

the two Weibull parameters could result in an "ideal" solution which is 

slightly better than the rounded solution, but it would not be significantly 

different. A good fit is achieved with two digit precision parameters, using 

the combination of the optimizer and the design check. 

Figure 17 is a two-parameter Weibull graph of the measured data with its 

median rank reliability plotted as crosses. On this plot is drawn the rounded 

two-parameter Weibull distribution which has been fit to the data. It is 

always a good idea to draw the fitted curve with the data points to which it 

is fit. Since the dispersion is a single value representing the overall fit 

of the curve, some local anomalies may exist in a fitted curve. A graph shows 

these. If the data does not have the general shape of the fitted function, 

either a partial fit in the region of interest or a more sophisticated 

function should be used. 

By changing the ranking from median to both low and high reliability 

ranks, the program can be run twice more to determine confidence bounds on the 

distribution. These two runs would give the user a low reliability fit to the 

test data and a high reliability fit to the same data. Plotting these two 

curves on the graph of Figure 17 would show the confidence range for the 

distribution. 

To investigate the potential improvement in fitting the data with a 

higher order Weibull distribution, a three-parameter Weibull distribution 
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RELIABILITY R     (%) 

99.0 
100.0 200.0 500.0 1,000.0 

LIFE-    I    (10J HOURS) 

TWO-PARAMETER WEIBULL DISTRIBUTION 

WITH ^ 0= 240 * 103 HOURS AND b = 2.3 

FIGURE 17 
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could be fit to the same data by changing the reliability equation and adding 

a third independent parameter to the optimization. The equation for the three 

parameter Weibull distribution is: 

1 
Ln - Ln  —   ■   °- (39) 

0.9      l10 - tQ 

where the minimum life, 2Q,  is the additional independent parameter. The 

third parameter, I , replaces zero as the minimum life that all units would 

realize. 

Modifying the program and the input data file would enable one to obtain 

a three-parameter Weibull distribution fit to the same data. Comparing the 

two dispersions would indicate whether the additional complexity of the three- 

parameter distribution is justified in the life model. A small minimum life 

would confirm the adequacy of the two-parameter Weibull distribution as well. 
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OPTIMIZATION METHOD 

Parameter Scaling 

As illustrated in the examples, the optimization procedure begins with 

several vectors. An optimization solution is the design variable vector, X, 

which minimizes or maximizes the objective function value, M, with all 

constraint values, V., bounded by their specified limits. A procedure starts 

with a guess for the design variables, X, and iterates using gradients to find 

the optimal values. Opportunity is then given to the user to try alternate 

solutions and compare their properties. 

To maintain balance among the independent design parameters, the design 

space is scaled into a dimensionless design space [3]. The scaled design 

parameters, Y., vary from - 1.0 to + 1.0 as specified by upper and lower 

bounds on the independent design parameters, X., such that: 

- 1.0 < Y. < + 1.0 (40) 

as 

Xu < Xi < Xu. (41) 

This linear transformation, which is shown in Figure 18, is: 

Yi = di Xi + bi (42) 

where 

2 
(43) 

and 

(44) 

i 
xui - XLi 

bi 

XUi ♦ xL1 

XUi - XLi 
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DESIGN PARAMETER SCALING 
TRANSFORMATION 

FIGURE 18 
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The actual design variable, X., can be retrieved from the scaled variable, Y., 

by the inverse transformation: 

X, = 
Yi - bi 

d. 

(45) 

Gradients 

Central to this method is the gradient calculation which is performed 

with small perturbations in the design variables from the nominal position. 

The gradient in the merit function, V M, is calculated [1] as: 

3M 

VH = 

3M 

dM 
(46) 

where, 

3M 
3Y7 

K(Ylf ■ Ji+AY,■,Yn) - M(Y1,-,Yi,-,Yn) 

 ÄY" 
(47) 

In the program, the small change AY, which is made in each Y., is set at 0.001 

which is 0.05 percent of the full range of a scaled design parameter. 

The magnitude of the gradient vector is given by: 
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n 2  1/2 

I VN I - ( E ( ^-   ]  ) (48) 
1-1   9Yi 

In the program, the step size is separated from the gradient magnitude but for 

minimization its direction is opposite to the gradient direction, so negative 

unit gradient vectors are determined: 

VM 
Vm =  («) 

I VM | 

For maximization, the sign in equation (49) reverses. This sign reversal 

also occurs for the constraint gradient when the limit is a lower bound. 

Search Directions 

In the simple gradient method which is used in the acceptable design 

region, equation (49) defines the direction of change in the scaled design 

vector, Y.. 
J 

Y. , = Y. + AS ■ Vm (50) 

If no constraints are violated, this will be the next value for Yj in the 

search. 

For stability and directness, a nominally fixed step size, AS, is used 

in this optimization. Initially, the step size is 0.1, which is five percent 

of the range of a single design parameter. Then, whenever a local minimum is 

reached or the search is trapped in a constraint corner, the procedure halves 

the step. To complete the search procedure, the program declares a solution 
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when the percent change in the merit function is less than a pre-set limit of 

0.0001: 

MJ+I - MJ <  o.oooi (51) 

Two other modes of searching are used in the procedure: 1) poor guess 

correction when constraints are violated initially, and 2) feasible direction 

searching near constraint boundaries. 

These modes are enabled with a second gradient. Just as one can 

calculate the gradient in the objective function, one also can calculate the 

gradient in a violated constraint variable: 

k    I vvk I 

For upper bound constraints, moving through the design space in the direction 

of V v., will reduce the constraint value Vfc. For lower bound constraints, a 
IN 

sign reversal in equation (52) produces an increase in the constraint value, 

V. , for motion in the gradient direction. The vector sum of the gradients in 

the violated constraints, V h, is the second gradient of the algorithm: 

1  (53) V h = 

E Vvl 
k 

The gradient in the violated constraints, V h, points towards the 

acceptable design space from the unacceptable design space. By itself, it 
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enables the algorithm to turn an unacceptable initial guess into an acceptable 

design trial  by a succession of steps: 

Y.  ,    =    Y.    +   AS-Vh (54) 
J+l J 

Once inside the acceptable design region, the algorithm proceeds along 

the steepest descent direction with equation (50) until the calculated step 

places the next trial outside the acceptable design space. To avoid this 

condition, the algorithm selects a feasible direction for the next step. 

Figure 19 shows a sloped constraint intersecting vertical contour lines of the 

objective function. This figure is an enlargement of a small region in 

Figure 2, which is a plot of the length versus diameter for a bushing. In 

this example, the objective function is directly proportional to the bushing 

diameter and independent of its length. So a steepest descent direction is 

always horizontal for the problem. The sloped constraint curve is the length 

to diameter upper bound. Figure 19 shows vertical contour lines in the 

frictional torque objective function and unit gradient vectors in this 

objective function, V m, and the impending constraint, V h. The two gradient 

vectors are added at the last viable design step. The feasible direction 

selected, V f, is the unit vector sum of these two gradients: 

V m + V h 
Vf =   (55) 

| V m + V h | 

And the next step becomes: 

Y    - Yj + AS • V f (56) 
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Program Structure 

In writing the optimization code, subroutines were used to modularize 

the programming and perform the vector calculations in a structured way. 

Table 1, which is cited in the PROGRAMMING section of this report, lists the 

subroutines which compose this program with short descriptions of their 

functions. Each subroutine's name is related to its operation to describe its 

use. 

The scaling and unsealing of the design parameter vector are performed 

by two routines: SIZE and RESIZE, so that this linear transformation can be 

performed anywhere in the program with relative ease. Subroutines GRADNT and 

UNIT evaluate and normalize any gradient vector. Subroutine BOUNCE finds the 

gradient sum of the violated constraints at any design position. Subroutine 

CHECK compares a constraint value to its limit and subroutine WALL evaluates a 

specific constraint in the same way that subroutine MERIT evaluates the 

objective function. 

At a higher level in the program structure, subroutine BOUNCE directs 

the search for the acceptable design space when the initial design guess 

violates at least one constraint. Subroutine SCAN performs the search for 

better designs within the acceptable design space and subroutine SCOUT checks 

the next potential design for constraint violations. Finally, subroutines 

BOUNDS and VALUES are the user supplied, problem specific routines which 

evaluate the design constraints and the objective function values for the 

design. 

Figure 20 is a logic flow chart for the optimization program which 

includes: 1) the reading of the input data files, 2) the echoing of the input 

data file information at the start of the output data file, 3) the initial 

125 



READ DATA & SET CONSTANTS 
WRITE INPUT DATA TO OUTPUT FILE 

FOR FIRST CONSTANT 
READ TABLE OF XDP 

OF "DATA POINTS" 
, YDP VALUES 
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no 
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TAKE STEP IN Vf DIRECTION 

ION IMPROVE ? 
no 
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yes 

no 
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OFFER CHANCE TO CHANGE DESIGN 
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ACCEPT NEW DESIGN 

no 
«STOP 

PARAMETER VALUES 

ANALYZE DESIGN 

SEEK PROGRAM FLOW CHART 

FIGURE 20 
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search for a good starting design, 4) the main optimization loop, and 5) the 

design verification loop. 

The search for a good starting design which satisfies all constraints is 

performed in a DO loop with a limit of twenty corrections. If a valid design 

is not found in twenty trials, both the first and twentieth trials are written 

to the output file with an analysis of all constraints, the file is closed and 

the program is stopped. 

Once a good starting design is found, the search for the optimal design 

is conducted in the main DO loop with a limit of five-hundred iterations. In 

this DO loop, subroutine SCOUT checks the constraint values at the next design 

point using the objective function gradient increment as shown in 

equation (50) to locate the next design point. If all the constraints are 

satisfied, the full design step is taken in the direction of the objective 

function gradient using equation (50).  If at least one constraint is not 

satisfied, subroutine SCAN increments the design along the feasible direction 

gradient using equation (56). If all the constraints are still not satisfied, 

the step size is reduced and the half step is taken in the feasible direction. 

After a step is taken, the objective function value is then checked. If 

it increased, the step size is divided by two. Otherwise, no change is made. 

Finally, the percent change in the objective function is checked using MERIT. 

If this change is below the desired limit, a solution is declared and the 

procedure leaves the DO loop. If the change is greater than the desired 

limit, the DO loop indexes and the iteration process is repeated. 

If the merit function criteria are not satisfied after five-hundred 

iterations, the program writes the five-hundredth design to the screen and the 

output file with an error message and provides the user with the opportunity 
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to change the design and have it re-analyzed. This documentation and 

opportunity for modification are also given to the user at the end of a 

successful design optimization search. The final design modification loop is 

controlled by the user with no termination count. Additional designs may be 

evaluated until the user chooses to end the program. 
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DISCUSSION OF RESULTS 

In this report, a computer program, 'SEEK.FOR,' is described and its use 

is illustrated with four different examples. SEEK has been written to make 

optimization available to the general technical community with only the need 

for modeling the applied problem. The program is a general purpose optimizing 

tool which can find the best combination of design parameter values which 

satisfy a series of constraints placed on calculable properties of the design 

parameters. The set of design parameter values is 'best' in that it maximizes 

or minimizes a linear sum of objective function terms. 

Although the computer program requires the user to write two analysis 

subroutines and an input data file for his or her application, it is written 

to be interactive and to communicate clearly to the user. By requiring text 

labels for all variables, the program is able to label its restatement of the 

problem and all results in the words of the user. In the input file, the user 

is able to change the starting design values and the relative sensitivity of 

the individual design parameters by changing the low and high estimates of 

these values. 

Based on a bounded step gradient method, the program searches with 

gradients in three functions: 1) the objective function, 2) the violated or 

nearly violated constraints and 3) a vector sum of the first two. The first 

gradient provides a rapid solution path when no obstacles are present. The 

second gradient permits the user to start with an initial trial design which 

may not satisfy all constraints. And the third gradient allows the algorithm 

to continue improving the objective function even when the direct path is 

blocked with one or more constraints. 
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To enable the gradient calculations, the provided models for the 

objective function terms and the constrained variables need to be continuous. 

Discrete values can be entered later in a design check mode which the program 

enters once a numerical optimum has been found in the continuous design space. 

This design check mode is part of the interactive operation of the program. 

By allowing the user to try alternate designs after the numerical optimum has 

been found, the program assists the user in finding practical optimums which 

satisfy discrete requirements which can not be treated in the continuous 

models. An output file is written during the session to document the design 

problem and all solutions which are displayed on the screen. In this file, 

each solution has its design parameter values, objective function values, and 

constrained variable values and limits listed with the users descriptions as 

labels. 

This report illustrates the model preparation and programming required 

to use 'SEEK.FOR' for four examples: 1) a bushing design, 2) a spring design, 

3) a gear design, and 4) a curve fit. The bushing design problem illustrates 

the determination of two parameters: the bushing length and its diameter 

subject to three inequality constraints, a single objective function and 

discrete size requirements. The example also shows the program's ability to 

overcome a poor initial trial design. 

The spring design problem illustrates the conversion of equality 

constraints to simplify the problem by taking a four-parameter problem and 

treating it as a problem with two independent parameters. The number of 

active coils in the spring and the free length of the spring are shown to be 

dependent parameters and the wire diameter and mean coil diameter are left as 

independent parameters. The example finds three separate designs which all 
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have the same stiffness and design factor under the same loading but which 

satisfy three separate objective functions. By changing the objective 

function for the same design constraints, the program finds the lightest 

spring, the smallest volume spring and the shortest spring in separate runs. 

A visual comparison of the three springs shows their obvious differences. 

The gear design problem illustrates a three parameter design problem 

which requires considerably more analysis than the first two. The three 

parameters are the number of teeth on the pinion, the diametral pitch and the 

face width of the gears. Designs are obtained for a minimum size at a given 

life and for a maximum life at a given size. The example illustrates the use 

of additional subroutines by the two analysis routines: BOUNDS and VALUES. 

The curve fit problem illustrates the use of the optimizing program as a 

tool for minimizing the dispersion of the data from a modeled function. 

Although the program can minimize the overall error between a fitted curve and 

the experimental data, it is recommended that a plot of the fitted curve and 

the original data be made to verify that the function truly models the data 

closely in the region of highest interest. One feature of this use of the 

program is the ability in the design check mode to quickly see the influence 

of curve coefficients on the goodness of fit. 

No optimization program can solve all problems. The use of this program 

is limited to solving problems which can be modeled continuously with finite 

constraint and objective function values over the search area. The program 

contains arbitrary size limits of forty for the constants and constraints and 

fifteen for the design parameters and objective function terms. As the number 

of independent design parameters increases from the low numbers of these 

examples, gradient searching becomes more difficult. More steps are required 
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to find a solution and more calculations are required for each step. Design 

parameters, which do not change, can dilute the effectiveness of the method 

with additional calculations. Often, a large optimization problem can be 

reduced to a simpler one which permits a more rapid and direct solution by the 

removal of design parameters which do not change from the design parameter 

vector. 

For any problem which can be modeled continuously, the program 

'SEEK.FOR' offers an easily used, interactive tool for the determination of a 

practical optimum solution. The program is small with an object code size of 

46 k bytes and runs quickly on a 486 personal computer running DOS. 

132 



SUMMARY OF RESULTS 

In this report, the use of a computer program, 'SEEK.FOR' is 

demonstrated with four optimization examples. The program is written to work 

with two user-provided subroutines and an input data file.  Its purpose is to 

perform a gradient search optimization of a user's problem. The method of 

optimization uses a modified feasible directions gradient in addition to 

simpler gradients in the objective function and the violated constraints. The 

program is written in ANSI standard Fortran 77, is about 1,200 lines long and 

has an object size of about 46 K bytes for the optimizing code for use on a 

personal computer running DOS. 

To illustrate the use of the program, this report documents four 

optimization examples: a bushing design, a helical coil spring design, a gear 

mesh design and a two-parameter Weibull life-reliability curve fit. In each 

example, the theory of the problem is described, the organization of the 

problem into an optimization framework is given, the programming of the 

modeling subroutines is explained and a numerical example is shown with the 

input and output data files explained. 

In the bushing design problem, two independent design parameters are 

found which minimize a single objective function subject to three inequality 

constraints. In the spring design problem, four design parameters are reduced 

to two independent design parameters and three separate objective functions 

are minimized with three separate runs of the same program. The designs 

satisfy seven inequality constraints. For the gear design problem, two sets 

of three independent design parameters are found in two separate runs to 

satisfy two opposing objective functions. In this model, fourteen inequality 

constraints are satisfied. For the curve fitting example, a table of x and y 
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data points is read into the program and two parameters are found which fit a 

curve to the data with minimized dispersion. One innocuous inequality 

constraint is used to allow the program to run, since the program requires the 

subroutine to be in place. As written, the program accepts problems with up 

to forty input data constants and forty inequality constraints. The limit on 

the number of independent design parameters is fifteen as is the limit on the 

number of objective function terms. 

This report describes the use of the optimizing program, gives four 

examples of its use and discusses the program and method themselves. The 

program 'SEEK.FOR' is an adaptable, analytical tool for finding optimal 

solutions to technical problems. 
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APPENDIX A 

SEEK.DOC FILE 

C 
C PROGRAM SEEK.FOR 
C 
C MODIFIED GRADIENT OPTIMIZATION PROGRAM 
C 
C WITH INEQUALITY CONSTRAINT AVOIDANCE 
C 
C LINK THIS PROGRAM WITH TWO PROBLEM SPECIFIC ANALYSIS 
C SUBROUTINES AND RUN WITH A PROBLEM SPECIFIC DATA FILE. 
C 
C "NAME".IN DATA INPUT FILE REQUIRED 
C 
C FORMAT: 
C 
C LINE 1                     : NTITLE (50 CHAR. MAX) 
C FOR THE CONSTANTS 
C LINE 2                      : NCO 
C IN SETS OF THREE LINES EACH 
C LINE 3 - (1A)                 : CONST(I) 
C LINE 4 - (2A)                 : NCON (30 CHAR. MAX) 
C LINE 5 - (3A)                 : NUCON (12 CHAR. MAX) 
C THEN FOR THE INDEPENDENT VARIABLES 
C LINE 3 + 3*NCO                : NX 
C IN SETS OF THREE LINES EACH 
C LINE (IB)                    : XLOW(I) , XHIGH(I) , XZ(I) 
C LINE (2B)                    : NVAR (30 CHAR. MAX) 
C LINE (3B)                    : NUVAR (12 CHAR. MAX) 
C THEN FOR THE CONSTRAINTS 
C LINE 4 + 3*NCO + 3*NX           : NCS 
C IN SETS OF THREE LINES EACH 
C LINE (1C)                    : LIMIT(I) , CSTR(I) 
C LINE (2C)                    : NCSTR (30 CHAR. MAX) 
C LINE (3C)                    : NUCSTR (12 CHAR. MAX) 
C THEN FOR THE OBJECTIVE FUNCTION 
C LINE 5 + 3*NC0 + 3*NX + 3*NCS     : DIR 
C LINE 6 + 3*NC0 + 3*NX + 3*NCS     : NOB 
C IN SETS OF THREE LINES EACH 
C LINE (ID)                    : WGHTF(I) 
C LINE (2D)                    : NOBJ (30 CHAR. MAX) 
C LINE (3D)                    : NUOBJ (12 CHAR. MAX) 
C 
C 
C TO HAVE ACCESS TO A TABLE OF X AND Y DATA VALUES, 
C LET THE FIRST CONSTANT BE THE NUMBER OF DATA POINTS 
C AND INCLUDE THE WORDS "DATA POINTS" IN ITS DESCRIPTION. 
C 
C A DATA FILE WITH X,Y DATA PAIRS AND THE NAME "NAME".DAT 
C SHOULD ALSO EXIST IN THE SAME DIRECTORY. 
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c 
c 
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c 
c 
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c 
c 
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c 
c 
c 
c 
c 
c 
c 
c 

UP TO 200 DATA PAIRS WILL BE PLACED IN THE COMMON BLOCK 
COMMON /CURVE/XDP(200),YDP(200). 

TWO ANALYSIS SUBROUTINES ARE REQUIRED 

BOUNDS(CONST,NCO,X,NX,VCSTR,NCS) ; AND 
VALUES(CONST,NCO,X,NX,OBJECT,NOB) 

BOUNDS EVALUATES THE INEQUALITY CONSTRAINTS 

VALUES DETERMINES THE OBJECTIVE FUNCTION'S 
COMPONENT PROPERTIES 

DEFINITIONS: 

CONST _ FIXED DESIGN PROBLEM CONSTANT 
CSTR  - CONSTRAINT LIMIT VALUE INCLUDING DECIMAL POINT 
DIR   - OPTIMIZATION DIRECTION ( MIN , MAX ) 
LIMIT - CONSTRAINT LIMIT BOUND TYPE ( UPPER , LOWER ) 
NCO   - NUMBER OF PROBLEM CONSTANTS 
NCS   - NUMBER OF INEQUALITY CONSTRAINTS 
NOB   - NUMBER OF PROPERTIES IN MERIT FUNCTION 
NX    - NUMBER OF INDEPENDENT VARIABLES 
NCON  - CONSTANT NAME 
NUCON - CONSTANT DIMENSION UNITS 
NVAR  - VARIABLE NAME 
NUVAR - VARIABLE DIMENSION UNITS 
NCSTR - CONSTRAINT NAME 
NUCSTR - CONSTRAINT DIMENSION UNITS 
NOBJ  - MERIT FUNCTION COMPONENT NAME 
NUOBJ - MERIT FUNCTION COMPONENT DIMENSION UNITS 
NTITLE - DESIGN PROBLEM TITLE 
OBJECT - MERIT FUNCTION COMPONENT VALUES 
VCSTR - CONSTRAINT FUNCTION VALUES 
WGHTF - WEIGHTING COEFFICIENT FOR COMPONENT IN 

LINEAR MERIT FUNCTION SUM 
X    - INDEPENDENT DESIGN VARIABLE 
XHIGH - HIGH VARIABLE VALUE 
XLOW  - LOW VARIABLE VALUE 
XZ    - INITIAL VARIABLE VALUE 

AT PRESENT, THE ARRAY SIZE LIMITS ARE: 

MAX NCO = 40, 
MAX NCS = 40, 
MAX NOB = 15, AND 
MAX NX 15. 
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C AVOID THE USE OF SUBROUTINE AND COMMON BLOCK NAMES 
C WHICH ARE ALREADY USED BY SEEK. 
C 
C THE SUBROUTINE NAMES USED BY SEEK ARE: 

C BACK FSUBRT 
C BOUNCE FSUBRT 
C BOUNDS extern 
C CHECK   FSUBRT 
C GRADNT FSUBRT 
C MERIT   FSUBRT 
C RESIZE FSUBRT 
C SCAN FSUBRT 
C SCOUT ....   FSUBRT 
C SIZE.   FSUBRT 
C UNIT FSUBRT 
C VALUES extern 
C WALL FSUBRT 
C 
C THE COMMON BLOCK NAMES USED BY SEEK ARE: 
C 
C CURVE   common 
C PAR common 
C VAR common 
C UNITS   common 
C 
C TO PRINT OUT INTERMEDIATE RESULTS FROM BOUNDS, VALUES 
C OR ANY SUBROUTINE CALLED BY BOUNDS OR VALUES, INCLUDE THE 
C COMMON BLOCK "UNITS" IN THAT SUBROUTINE, AS FOLLOWS: 
C 
C COMMON /UNITS/NW,NR,NF,ND 
C 
C WHERE: 
C NW = WRITE NUMBER FOR WRITING TO THE SCREEN 
C - WRITE(NW,...) 
C NR = READ NUMBER FOR READING FROM THE KEYBOARD 
C - READ(NR,...) 
C NF = WRITE NUMBER FOR WRITING TO THE OUTPUT FILE 
C - WRITE(NF,...) ,AND 
C ND = READ NUMBER FOR READING FROM THE INPUT DATA FILE 
C - READ(ND,...). 
C 
C 
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APPENDIX B 

SYMBOLS 

Variables 

A   - AGMA velocity factor constant 

b.   - independent design variable scaling constant 

B -  material surface strength constant (psi) 

C   - center distance (in) 

C2  - minimum gear tooth curvature (in) 

C        -  dynamic capacity (lbs) 

C -  gear dynamic capacity (lbs) 

C.        - tooth dynamic capacity (lbs) 

d.   - independent design variable scaling slope 

d   - wire diameter (mm) w 
D - shaft or mean coil diameter (mm) 

E - elastic modulus (psi) 

f - face width (in) 

F - applied force (N) 

Vf - normalized feasible direction gradient 

G - shear modulus (MPa) 

hf - unloaded spring height (mm) 

Vh  - normalized violated constraint gradient 
4 

J   - polar moment of inertia (mm ) or AGMA bending stress factor 

k   - spring rate (N/mm) 

K - Wahl  stress concentration factor w 

I - life (h) 

I - minimum life (h) o v  ' 
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£ -  mesh life (103 .. m n; 

L - bearing length (mm) 

M - objective function vector 

Vm - normalized objective function gradient 

VM - unsealed objective function gradient 

N - number of active spring coils 
31 

N< - design factor 

Nn - number of data points 

N - number of inactive end coils e 
Nf - design factor in fatigue 

N - number of gear teeth 
g 

N - static design factor s 
OD - outside coil diameter (mm) 

P - contact pressure (MPa) 

P. - diametral pitch (in~ ) 

PV - pressure times velocity scoring factor (MPa - m/s) 

Q - AGMA surface quality factor 

R - gear radius (in) 

R -  reliability ' 

R- -  calculated reliability 

/?n - measured reliability 

S - surface compression strength (psi) 
aC 

S - shear endurance strength (MPa) 

S - shear ultimate strength (MPa) su 
S - shear yield strength (MPa) sy 
S - tensile strength constant (MPa) 
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AS - step size 

7D - base temperature (°F) 

Tf -  flash temperature (°F) 

Tf - friction torque (N-m) 

T - applied torque (lb-in) 

V - shear force (N) 
3 

V .-, - sprinq coil cylinder volume (mm ) 
coi I 

V. - single violated constraint 
3 

V - wire volume (mm ) w 
V - pitch line velocity (ft/sec) 

V -  sliding velocity (m/s) or (ft/sec) 

Vv. - single violated constraint gradient 
3 

w - weight density (kN/m ) 

W - gear weight (lbs) 

W. - spring weight (N) 

X - independent design parameter vector 
3 

XD. - life test data value (10 h) 

X, - independent design parameter lower value 

Xu - independent design parameter upper value 

Xr - geometric temperature factor 

X*. - thermal-elastic temperature factor 

Xr -  load sharing temperature factor 

V - scaled independent design parameter vector 

AY - incremental step change in scaled design parameter vector 

YD. - reliability data point value 

a -  gear tooth involute angle (radians) 
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ß - length to diameter ratio 

6 -  spring deflection (mm) 

<J - involute interference angle (radians) 

0 -  spring wire rotation angle (radians) 

jj -  coefficient of friction 

u -  surface roughness (RMS) 
^m 
v -  Poisson's ratio 

p -  radius of curvature (in) 

a. -  bending stress (psi) 

an -  dispersion of data from fitted curve 

(7U - Hertzian contact stress (psi) 
n 

CTU+ - Hertzian contact stress at the gear tooth tip (psi) 

T -  shear stress (MPa) 

0 - pressure angle (radians) 

u) - gear angular velocity (rad/sec) 

Ü - shaft speed (RPM) 

Subscripts 

a - alternating 

al - pinion addendum 

a2 - gear addendum 

bl - pinion base 

b2 - gear base 

d - dynamic 

i - independent design parameter index 

j - optimization step index 
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k - violated constraint index 

m - mean 

max - maximum 

min - minimum 

sol - solid height 

1 - pinion 

2 - gear 

10 - 90 percent reliability 

Superscripts 

a   - wire strength exponent 

b   - Wei bull slope 

p   - load-life exponent 
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