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The Role of Probability-Based Inference in an Intelligent Tutoring System 

Robert J. Mislevy & Drew H. Gitomer 

Educational Testing Service 

Abstract 

Probability-based inference in complex networks of interdependent 

variables is an active topic in statistical research, spurred by such diverse 

applications as forecasting, pedigree analysis, troubleshooting, and medical 

diagnosis. This paper concerns the role of Bayesian inference networks for 

updating student models in intelligent tutoring systems (ITSs). Basic 

concepts of the approach are briefly reviewed, but the emphasis is on the 

considerations that arise when one attempts to operationalize the abstract 

framework of probability-based reasoning in a practical ITS context. The 

discussion revolves around HYDRTVE, an ITS for learning to troubleshoot 

an aircraft hydraulics system. HYDRIVE supports generalized claims about 

aspects of student proficiency through probability-based combination of 

rule-based evaluations of specific actions. The paper highlights the 

interplay among inferential issues, the psychology of learning in the 

domain, and the instructional approach upon which the ITS is based. 

Key words:     Bayesian inference networks, cognitive diagnosis, 

HYDRIVE, intelligent tutoring systems, probability-based 

inference, student models 



Overview 

Intelligent tutoring systems (ITSs) depend on some form of student modeling to 

guide tutor behavior. Inferences about a student's current skills, knowledge, and strategy 

usage can affect the presentation and pacing of problems, the quality of feedback and 

instruction, and the determination of when a student has completed some set of tutorial 

objectives. But we cannot directly observe what a student does and does not know; this we 

must infer, imperfectly, from what a student does and does not do. This paper discusses 

an integration of principles of cognitive diagnosis and principles of probability-based 

inference in a framework for student modeling in intelligent tutoring systems. 

Central to the development is the notion of the "student model", a set of variables 

corresponding to aspects of skill and knowledge that are important in the domain. 

Configurations of values of student-model variables approximate the multifarious skill and 

knowledge configurations of real students. There could be one or hundreds of variables in 

a student model. They could be categorical, qualitative, or numerical; they might concern 

tendencies in behavior, conceptions of phenomena, availability of strategies, or levels of 

aspects of developing expertise; they might be conceived as persisting over time or apt to 

change at the next problem step. The factors determining the form of the student model in a 

particular application are the nature and acquisition of competence in the domain, and the 

goals and philosophy of the instructional component of the system. The student model 

mediates between students' unique actions in specific situations, and the more abstract level 

of theory about the development of competence and the design of instruction. 

Probability theory provides powerful mechanisms for explicating relationships, 

criticizing and improving models, and handling evidentiary subtleties, when it is possible to 

construct a joint distribution of variables whose modeled interrelationships approximate 

beliefs about the interrelated aspects of the real-world situation of interest—in this case, 

students' competencies and actions. Due to the recent developments sketched below, this 

requirement is not as constraining as is often believed. Discussions of the advantages of 

the probabilistic approach, compared to alternatives such as fuzzy logic and rule-based 

reasoning, appear in Cheeseman (1986), Pearl (1988), Schum (1979, 1994), and 

Spiegelhalter (1989). Two appealing features of probability-based reasoning for ITSs are 

its capabilities for principled synthesis of information from multiple, complex-structured 

observations, and for projecting beliefs about student-model variables to expectations for 

future observations, which can then be used for instructional decisions and, when 
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compared with actual observations, for model improvement. The viability of probability- 

based reasoning for expert systems in general sets the stage for investigating the scope and 

the limitations of the learning domains, student models, and instructional approaches for 

which probability-based reasoning can be profitably employed in the ITS context. 

To this end, this paper discusses the implementation of probability-based reasoning 

in the HYDRIVE tutoring/assessment system for developing troubleshooting skills for the 

F-15 aircraft's hydraulics systems (Gitomer, Steinberg, & Mislevy, 1995). In the course 

of implementing principles of cognitive diagnosis, HYDRIVE uses a Bayesian inference 

network to express and update student-model variables—even as rule-based inference plays 

a complementary role in the system. Our objective is to share our experiences to date in 

exploring the ways that probability's conceptual and practical tools can be exploited in this 

context. We begin with an introduction to HYDRIVE that concentrates on its cognitive 

underpinnings, then review the basic elements of probability-based reasoning. Discussion 

of further developments in probability-based reasoning and the considerations they entail in 

HYDRTVE are interleaved in the presentation. 

An Introduction to HYDRIVE 

The hydraulics systems of the F-15 aircraft are involved in the operation of flight 

controls, landing gear, the canopy, the jet fuel starter, and aerial refueling. HYDRTVE 

simulates many important cognitive and contextual features of troubleshooting the F-15 

hydraulics systems on the flightline. A problem starts with a video sequence in which a 

pilot, who is about to take off or has just landed, describes some aircraft malfunction to the 

hydraulics technician; for example, the rudders do not move during pie-flight checks. 

HYDRIVE's interface allows the student to perform troubleshooting procedures by 

accessing video images of aircraft components and acting on those components; to review 

on-line technical support materials, including hierarchically organized schematic diagrams; 

and to make instructional selections at any time during troubleshooting, in addition to or in 

place of instruction the system itself recommends. HYDRTVE's system model tracks the 

state of the aircraft system, including the fault to be isolated and any changes brought about 

by user actions. In a manner described below, the student's performance is monitored by 

evaluating how he or she uses available information about the system to direct 

troubleshooting actions. Components of HYDRIVE's student model diagnose the quality 

of specific troubleshooting actions, and characterize student understanding in terms of more 

general constructs such as knowledge of the systems, strategies, and procedures. 
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The rationale for HYDRIVE's design was established through the application of the 

PARI cognitive task analysis methodology (Means & Gott, 1988; Gitomer et al., 1992). 

These analyses were intended to reveal critical cognitive attributes that differentiate 

proficient from less-proficient performers in the domain of troubleshooting aircraft 

hydraulics systems. PARI tracing is a structured protocol analysis in which technicians are 

asked to solve a problem mentally, at each step detailing the reasons (Precursor) for the 

Action that they would take. They are presented a hypothetical Result and asked to 

Interpret how the result modifies their understanding of the problem. They are also asked 

to represent their understanding of the specific aircraft system by drawing a block diagram 

of the suspect system. Differences appeared in three fundamental and interdependent areas, 

all of which seem necessary for an effective mental model for troubleshooting: system 

understanding, strategic understanding, and procedural understanding (Kieras, 1988). 

System understanding. System understanding consists of how-it-works 

knowledge about the components of the system, knowledge of component inputs and 

outputs, and understanding of system topology, all at a level of detail necessary to 

accomplish necessary tasks. Novices' block diagrams did not evidence appropriate mental 

models of any hydraulics system sufficient to direct troubleshooting behavior. Experts 

evidenced a fuller understanding of how individual components operated within any given 

system (even though they did not understand the internal workings of these same 

components, which they had only to replace). Experts also demonstrated a principled 

sense of hydraulics system functioning beyond the specifics of the F-15, and organized 

their knowledge hierarchically according to the functional boundaries of the system. They 

understood the individual and shared characteristics of flight control and other hydraulics- 

related aircraft systems. An important consequence of this type of understanding is that, in 

the absence of a completely pre-specified mental model of a system, experts can construct a 

mental model using schematic diagrams. They can flesh out the particulars from their basic 

functional understanding of how hydraulics systems work in aircraft. 

Strategic understanding. Novices did not employ effective troubleshooting 

strategies. That is, they demonstrated little ability to perform actions that would allow them 

to draw inferences about the problem from the behavior of the system. In many cases, the 

only strategy available to these individuals was to follow designated procedures in technical 

materials (Fault Isolation Guides, or FIs), even when it wasn't clear that the symptom 

matched the conditions described therein. While FIs can be useful tools, novices often fail 

to understand what information about the system a particular FI procedure provides or how 
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it serves to constrain the problem space. Even in those cases where they exhibit some 

system understanding, they frequently use a serial elimination strategy, wherein adjacent 

components are operated on in order. This strategy allows the technician to make claims 

only about a single component at a time. Experts try to use space-splitting strategies, 

isolating problems to a subsystem by using relatively few and inexpensive procedures that 

can rule out large sections of the problem area. When experts consult the FI guide, they do 

so as a reference to check whether they may be overlooking a particular problem source, 

and any FI action is immediately interpreted in terms of, and integrated with, their mental 

model of the system. Technicians with intermediate skills are quite variable in their use of 

strategies. When such individuals have fairly good system understanding for a specific 

situation, they frequently evidence effective troubleshooting strategies. When their system 

understanding is weak, they default to FI and serial elimination strategies. 

Procedural understanding. Every component can be acted upon through a variety 

of procedures that provide information about some subset of the aircraft. Information 

about some types of components can only be gained by removing and replacing (R&R) 

them. Others can be acted upon by inspecting inputs and outputs (electrical, mechanical, 

and/or hydraulic), and by changing states (e.g., switches on or off, increasing mechanical 

input, charging an accumulator). Some actions, including most R&R procedures, provide 

information only about the component being acted upon, while other actions can provide 

information about larger pieces of the problem area under certain states of the system 

model. Novices are generally limited to R&R actions and the procedures specified in the 

FI. They often fail to spontaneously use the information that can be provided from 

studying gauges and indicators and conventional test equipment procedures. As 

individuals gain expertise, they develop a repertoire of procedures that can be applied 

during troubleshooting. Experts are particularly adept at partially disabling aircraft systems 

and isolating major portions of the problem area as functional or problematic. 

The relationship between system, strategic, and procedural understanding. A 

mental model includes information not only about the inputs and outputs of components, 

but also about available actions that can be performed on components. The tendency to 

engage in certain procedures or strategies is often a function of the structure and 

completeness of system understanding, rather than the understanding of strategies or 

procedures in the abstract. A student's failure to execute a space-splitting action may 

appear at first to be a strategic failure, but the difficulty may lie with an impoverished 

understanding of the subsystem—a distinct possibility if the student has exhibited strong 
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strategic practice on other problems for which good system understanding exists. This 

view of troubleshooting expertise has implications for instruction as well as for inference. 

HYDRIVE's instruction focuses on effective system understanding and troubleshooting 

strategies rather than on optimizing actions to take at a given point in a problem. The 

instructional approach is to develop an understanding of the system as an hierarchy of 

interrelated models, a critical feature of expert knowledge, along with the general strategy 

of space-splitting in this system. HYDPJVE attempts to make this structure explicit 

through the use of hierarchical diagrams and similarly-organized verbal information. 

Probability-Based Inference 

When we reason from what we know and observe to explanations, conclusions, or 

predictions, the information we work with is typically incomplete, inconclusive, and 

amenable to more than one explanation (Schum, 1994). We attempt to establish the weight 

and coverage of evidence, as it informs the inferences and decisions we wish to make. 

While workers in every field address these questions as they arise with the kinds of 

inferences and the kinds of evidence they customarily address, interest in principles of 

inference at a level that might transcend the particulars of fields and problems has been 

keenest in the fields of statistics, philosophy, and jurisprudence. We focus on the concepts 

and the uses of mathematical or Pascalian probability-based reasoning, from what is 

usually called a subjectivist or personalist perspective (de Finetti, 1974; Savage, 1961). 

A friend's request for advice on games of chance sparked Blaise Pascal's 

trailblazing application of the tools of mathematics to reasoning under uncertainty. He, 

followed by Bernoulli, Laplace, and others, laid out a framework for reasoning in such 

contexts. A "random variable" X is defined in terms of a collection of possible outcomes 

(the sample space), and a mapping from events (subsets of the sample space) to numbers 

which correspond to how likely they are to occur (probabilities). We will denote by p(x) 

the mapping from a particular value x of X onto a probability. Probabilities satisfy the 

following requirements: (i) an event's probability is greater than or equal to 0, (ii) the 

probability of the event that includes all possible outcomes is 1, and (iii) the probability of 

an event defined as the union of two disjoint events is the sum of their individual 

probabilities. These simple axioms lead to consistent inference even for very complex 

situations, such as games with unknown probabilities linked in complicated ways or with 

events whose probabilities depend on the outcomes of earlier observations (a form of 

"conditional" probabilities, or the probability of* given that another variable Z takes the 
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value z, denoted p(x\z))—all of which can be verified empirically in repeatable chance 

situations such as games. 

The applicability of mathematical probability for these aleatory, or chance, 

situations, is unquestioned. However, "there has been lingering controversy ... about the 

extent to which we should accept the Pascalian system ... as guides to life in probabilistic 

inference, especially when our evidence and hypotheses refer to singular or unique events 

whose probability can rest on no overt enumerative process" (Schum, 1994, p. 222). The 

personalistic Bayesian position is that if one's beliefs about a real-world situation are 

represented in the form of probability distributions, the axioms of mathematical probability 

ensure that all aspects of the individual beliefs are consistent with one another, or 

"coherent." This is particularly important when one must revise beliefs in response to new 

information—which is, after all, what student modeling in an ITS is all about. The real 

question is not whether probability-based reasoning is permissible in applications that lie 

outside the realm of repeatable chance situations, but the degree to which the salient aspects 

and relationships in a given real-world problem can be satisfactorily approximated in this 

framework. The following sections address issues encountered in defining variables, 

expressing their interrelationships, constructing suitable probability distributions, and 

carrying out inference, as they arise in the context of HYDRTVE. 

Defining Variables In HYDRIVE 

Unlike bridge hands and coin flips, few real-world problems present themselves to 

us in terms of natural "random variables." Random variables are not features of the world, 

but features of the patterns through which we organize our thinking about the world. From 

unique events, we must create abstractions which capture aspects we believe are salient but 

neglect infinitely many others. We must choose the level of detail at which variables will 

be defined, relationships will be modeled, and analyses will be carried out. Although 

probability and statistics textbooks start with predefined random variables, conceptualizing 

our problem in terms of variables amenable to probabilistic inference (particularly 

"observable variables") was one of the toughest challenges we faced! 

Wenger (1987) describes three levels of information that student modeling might 

address in an ITS, and therefore at which variables can be defined. The behavioral level is 

often concerned with the correctness of student behaviors as compared with a model of 

expert performance (e.g., Brown, Burton & Bell's (1975) SOPHIE-I contrasted student 

behaviors with domain performance simulations in order to provide corrective feedback). 
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The epistemic level is concerned with particular knowledge states of individuals (Lesgold et 

al.'s (1992) SHERLOCK makes inferences about the goals and plans students are using to 

guide their actions during problem solving, and feedback is meant to respond to "what the 

student is thinking"; also see Appelt & Pollack, 1992, and Bauer, in press). The individual 

level addresses broader assertions about the individual that transcend particular problem 

states. Whereas the epistemic level of analysis might lead to the inference that "the student 

has a faulty plan for procedure X", the individual level of information might include the 

assertion that "the student is poor at planning in contexts that have properties A and B." 

HYDPJVE aims to support generalized claims about aspects of student 

troubleshooting proficiency on the basis of detailed epistemic analysis of specific actions 

within the system. By bridging the gap between the individual and epistemic levels of 

information, the ITS is designed to have both the specificity to provide immediate feedback 

in a problem-solving situation, and the generality to help sequence problems, adapt 

instruction, and track proficiency in broad terms. 

"Strategic knowledge", for example, is an abstraction that instructors use to 

summarize patterns of trainees' behavior—in conversations and classroom activities, as 

well as in their troubleshooting actions. We might therefore propose a variable called 

"strategic knowledge" for our student model, with possible values that represent increasing 

levels of expertise. Figure 1 depicts three possible states of belief about a student's 

"strategic knowledge." The first panel represents belief about a new student entering our 

course, reflecting our experience that most entering students are relatively weak in 

troubleshooting strategies. The second panel represents strong belief that a student is fairly 

good at troubleshooting strategies, a belief acquired perhaps from studying his transcript, 

reading his supervisor's recommendation, or observing expert-level troubleshooting 

actions. The third panel represents certainty that the student's level of expertise is "weak." 

Although a student's state of knowledge is never known with certainty, we shall see its role 

for reasoning in a "what if?" manner when structuring our knowledge about a domain. 

Later, we will pin down the meaning of "strategic knowledge" by specifying the tendencies 

of actions we expect in various troubleshooting situations from a student at each level, 

moderated by other student-model variables such as subsystem and procedural knowledge. 

These specifications represent deductive reasoning, from individual-level variables in the 

student model to probabilities of interpretations of observable actions (see de Rosis et al., 

1992, and Jameson, 1992, for probability-based reasoning in similarly structured systems 

of person-level and observable variables). 
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As a student works through a HYDRIVE problem, the inferential task is to reason 

from the student's actions to implications in the student-model space. This problem is 

harder than the one faced in traditional educational assessment, since there predetermined 

observational settings with predetermined response categories (i.e., test items) can be 

devised and presented to students. Constraining observations in this manner limits what 

can be learned about students, but it is easy to know how to 'score' their responses. In a 

relatively unconstrained ITS such as HYDRIVE, however, students can take an unlimited 

number of routes through a problem. There are no clearly defined and replicable 'items' to 

score and calibrate. Different students carry out different sequences of action under 

different system-model configurations; each action depends on multiple aspects of 

competence, intertwined throughout the diverse situations students lead themselves 

through. We must, in some fashion, attempt to capture key aspects of their performance in 

terms consonant with the theory of performance that emerged from the cognitive analysis. 

As an example, we may define a variable at a lower level of abstraction than 

"strategic knowledge": an "interpreted action" in a given problem situation. Interpreted 

actions lie at the epistemic level, taking the form of "plan recognition." Action sequences 

are not predetermined and uniquely defined in the manner of usual assessment items, since 

a student could follow a virtually infinite number of paths through the problem. Rather 

than attempting to model all possible system states and specific possible actions within 

them, HYDRIVE posits equivalence classes of states, or scenarios, each of which could 

arise many times or not at all as a given student works through a problem. The values of 

interpreted action variables are produced by HYDRTVE's system model, action evaluator, 

and strategy interpreter. The student activates the system model by providing input to the 

components; it processes the actions of the student and propagates sets of inputs and 

outputs throughout the system; the student can then examine the results for any other 

component of the system. The action evaluator calculates the action sequence's effects on 

the active problem area, so that a student's actions can be evaluated in terms of the 

information they yield in light of the previous actions. 

For a given equivalence class of situations in which power-path splitting is 

possible, the potential values of interpreted action might be "power-path split", "serial 

elimination", "redundant action", "irrelevant action", and "remove and replace"—the value 

to be determined by the relationship of the effect of the action sequence on the problem 

area, as defined through information available to the student up through the time the action 

is taken. If, having supplied inputs, a student observes the output of a certain component 
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that the system model 'knows' is normal, then it is possible for the student to infer that all 

components on the activated path are functioning correctly and remove them from the 

problem area. If the student makes this interpretation and draws the appropriate inferences, 

then the problem areas that the student and HYDPJVE's system model hold will 

correspond and troubleshooting will continue with acceptable actions such as serial 

elimination and R&R, or expert actions, such as space-splitting, predominating. If the 

student incorrectly concludes that the observed component output was unexpected, then, in 

the student's mind, all the components in the active path remain in the problem area, others 

might be spuriously eliminated, and the problem area in the student's mind would begin to 

diverge from the one maintained by HYDRTVE; irrelevant and redundant actions become 

more likely. 

The strategy interpreter employs a relatively small number of strategy interpretation 

rules (-25) to characterize the student's apparent strategy usage on the basis of the nature 

and the span of problem area reduction. An example of a student strategy rule is: 

IF an active path which includes the failure has not been created and the 
student creates an active path which does not include the failure and the 
edges removed from the problem area are of one power class, THEN the 
student strategy is splitting the power path. 

We note that these rules can be generalized to other troubleshooting domains. The 

generalizability resides in explicitly defining strategies in terms of an action's effect on the 

active problem area. While other domains may require different strategy definitions from 

HYDRTVE's, generalization is straightforward as long as these strategies can be referred to 

changes in the state of the problem area, or some similar representation. 

Interpreted actions are examples of what are called "virtual evidence" in the expert 

systems literature; since students' plans are not actually observed, but are fallible judgments 

from the rule-based parsing of students' behaviors, there can be discrepancies between 

students' actual and interpreted reasons for actions. Plan recognition is most successful 

when both tasks and user actions are constrained, and plausible hypotheses about the space 

of potential plans are predetermined (e.g., Corbett & Anderson, 1995; Desmarais et al., 

1993), because these factors reduce the uncertainty about students' plans given their 

actions. The uncertainty increases as constraints are relaxed, and as less can be anticipated 

about likely plans. At the limit, uncertainty in inferences about students' reasoning from 

single action sequences can render an ITS's feedback meaningless and its decisions 

misguided. For this reason, HYDPJVE's main instructional actions lie not at the level of 



Probability-Based Inference in an ITS 

Page 10 

plan recognition, but at the level of accumulating patterns of interpreted actions. 

HYDRTVE uses a simpler rule-based logic to scan raw behavior for meaningful features 

without attempting the daunting and, for its purposes, pointless task of comprehensively 

explaining each one; it uses the more complex probability-based reasoning, as described 

below, to synthesize their meaning for more important instructional decisions. 

Interrelationships Among Variables 

While the terms "deductive", "inductive", and "abductive" inference have been used 

in somewhat different ways by different writers, Schum (1994) proposes definitions that 

are particularly useful for discussing the construction, utilization, and evolution of 

probability-based inference networks. Deductive reasoning flows from generals to 

particulars, within an established framework of relationships among variables—from 

causes to effects, from diseases to symptoms, from a student's knowledge and skills to 

observable behavior. Inductive reasoning, as Schum uses the term, flows in the opposite 

direction, also within an established framework of relationships—from effects to possible 

causes, from symptoms to probable diseases, from students' solutions or patterns of 

solutions to likely configurations of knowledge and skill; abductive reasoning proceeds 

from observations to new hypotheses, new variables, or new relationships among 

variables. Using this terminology, it may be said that Bayesian inference networks erect a 

reasoning structure in terms of deductive relationships, which, since the mathematical 

probability axioms are satisfied, supports coherent inductive inference. Model construction 

(developing a theory from which to posit variables and their interrelationships) and model 

improvement (modifying the network in response to unexpected or unsatisfactory 

outcomes) require abductive reasoning. 

The theories and explanations of a field suggest the structure through which 

deductive reasoning flows. The requisite structure for deductive reasoning in HYDRTVE's 

student modeling emanates from the cognitive analyses: If a student is fairly familiar with 

troubleshooting strategies and the hydraulics system, but hazy about the workings of the 

landing gear system, what are the chances of various possible actions for a given state of a 

canopy failure? Inductive reasoning (in Schum's sense) flows through this same structure, 

but in the opposite direction: If a student makes a redundant action in a given state of a 

canopy failure, what does this imply about his familiarity with troubleshooting strategies, 

the hydraulics system, and the workings of the landing gear system? We will now render 

precise a simple exemplar relationship between a student-model variable and an interpreted- 
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action variable, and use it to illustrate probability-based deductive and inductive inference. 

Bayes' Theorem and the concepts of conditional dependence and independence are 

introduced in this connection. This will be followed by a discussion of how more complex 

interrelationships among many variables are represented in Bayesian inference networks. 

Suppose that a student in question has strong knowledge of the problematic 

subsystem and relevant procedures, so that only strategic knowledge is at issue. In a 

situation near the problem solution, where space-splitting is no longer an option, what are 

our expectations that a student at each level of strategic knowledge might perform action 

sequences interpreted as "serial elimination", "redundant action", "irrelevant action", and 

"remove and replace"? Serial elimination is the best strategy available; remove and replace 

is useful but inefficient; both redundant and irrelevant actions are undesirable. Table 1 

gives illustrative numerical values for probabilities of these actions at the different levels of 

proficiency. Figure 2 illustrates this flow of deductive reasoning. Each panel depicts the 

conditional probabilities of the various action categories, given level of strategic 

knowledge. We see increasing likelihood for serial elimination and decreasing likelihood 

of redundant and irrelevant actions as level of knowledge increases—although even experts 

sometimes make redundant moves, and novices sometimes make what appear to be expert 

moves, if not always for the same reasons experts make them. 

Where do these probabilities come from? Initial values were set on the basis of 

qualitative input from expert instructors, patterns observed in PARI traces, and 

modifications based on "reasonableness checks" from simulated inputs and outputs (see 

von Winterfeldt & Edwards, 1986, on techniques of eliciting conditional probability 

distributions from subject matter experts). Current research in probability-based reasoning 

addresses modeling sources of information about these conditional probabilities, and the 

sensitivity of inferences to errors or misspecification in them. The probability framework 

also allows conditional probabilities to be characterized as unknown parameters—another 

level of modeling to represent our beliefs about the structures of relationships among 

observable and student-model variables—which can capture the "vagueness" of our beliefs 

about them, yet be coherently updated and made more precise as experience accumulates 

(Spiegelhalter et al., 1993). Whereas Table 1 simply provided numerical values for the 

conditional probabilities, a more complete representation of belief would take the form of a 

probability distribution for these conditional probabilities, which would itself depend on 

other aspects of knowledge and information. 
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In practice, we reason in the reverse direction; in ITSs, from interpreted actions to 

updated beliefs about students' strategic knowledge. This is accomplished in probability- 

based reasoning by means of Bayes' Theorem. Let X be a variable whose probability 

distribution p(x\z) depends on the variable Z. Suppose also that prior to observing X, 

belief about the value of Z can be expressed in terms of a probability distribution p(z) For 

example, we may consider all possible values of Z equally likely, or we may have an 

empirical distribution based on values observed in the past. Bayes' Theorem says 

p(z\x) = p(x\z)p(z)/p(x), (1) 

where p(x) is the expected value of p{x\z) over all possible values of Z—a normalizing 

constant required by the axiom that belief about Z after having learned x must be 

represented by a probability distribution that sums to one. Suppose we start from the initial 

new-student beliefs about strategic knowledge from the first panel in Figure 1, and observe 

one action in the scenario that has the expectations depicted in Figure 2. The first panel in 

Figure 3 shows expectations for an action before it is observed; probabilities for the action 

variable are the average over the possible values of Strategic Knowledge, weighted by the 

initial belief probabilities for those possibilities. If we observe an action sequence 

interpreted as serial elimination and apply Bayes' Theorem, we obtain the results in the 

second panel of Figure 3. Because serial elimination is more likely to be carried out by 

students at higher levels of Strategic Knowledge, belief has shifted upwards from the first 

panel. Similar calculations would lead to the results in the remaining panels if we had 

observed any of the other possible interpretations. 

This sequence illustrates the essence of the characterization of belief and of weight 

of evidence under the paradigm of mathematical probability (Good, 1950): 

• Before observing a datum x, belief about possible values of a variable Z is 

expressed as a probability distribution, the prior distribution p(z). The "prior" 

distribution can be conditional on other previous observations, and belief about Z 

may have been revised many times previously; the focus here is just on change in 

belief associated with observing x, ceteris paribus. 

After observing x, belief about possible values of Z is expressed in terms of another 

probability distribution, the posterior distribution p{z\x). 
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• The evidential value of the observation x is conveyed by the likelihood function 

p{x\z), the factor that revises the prior to the posterior for all possible values of Z. 

One can examine the direction by which beliefs associated with any given z change 

in response to observing x (is a particular value of z now more probable or less 

probable than before?) and the extent to which they change (by a little or by a lot?). 

Bayesian Inference Networks 

HYDRIVE moves from the space of unique observations to a space of random 

variables by interpreting action sequences in terms of equivalence classes. The challenge is 

to synthesize, in terms of belief about student-model variables, the import of many such 

actions—some in equivalent scenarios and others not, perhaps involving different 

subsystems and aspects of strategic understanding, each allowing for the possibility that the 

interpreter's evaluation does not match the student's thinking. Mathematical probability 

provides tools for combining evidence within a substantively determined structure— 

provided that the crucial elements of the situation can be satisfactorily mapped into the 

probability framework. The first requirement is to express the things we wish to talk about 

in terms of variables, as discussed above in the context of HYDRIVE. The second is to 

express the substantive, theoretical, or empirical relationships we perceive among them in 

terms of structural relationships among probability distributions. 

Applying Bayes' Theorem in its textbook form (Eq. 1) quickly becomes unwieldy 

as the number of variables in a problem increases. Research on probability-based inference 

in complex networks of interdependent variables, or Bayes nets, has been spurred by 

applications in such diverse areas as forecasting, pedigree analysis, and medical diagnosis. 

Interest centers on obtaining the distributions of selected variables conditional on observed 

values of other variables, such as likely characteristics of offspring of selected animals 

given characteristics of their ancestors, probabilities of disease states given symptoms and 

test results, or, in the case of an ITS, values of student model variables given observed 

behaviors (see Mislevy, 1994a, 1995; Martin & VanLehn, 1993; Villano, 1992). 

The notions of conditional independence and dependence are critical in this regard. 

Two random variables X and Fare independent if their joint probability distribution 
p(x,y) is simply the product of their individual distributions, or p(x, y) = p(x)p(y); 

equivalent^, p(x\y) = p(x) and p(y\x) = p(y). Knowing the value of one provides no 

information about the value of the other. X is dependent on Z if belief about values of X 

varies with values of Z, as denoted by the conditional distribution p{x\z) ■ For example, 
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the troubleshooting action (X) we expect depends on a student's level of strategic 

knowledge (Z). This notion is important because the evidential value of an observation 

may depend in complex ways upon the other items of evidence (Schum, 1994, p. 208). 

Random variables X and Y are conditionally independent given Z if beliefs about X and Y 

are unrelated once the value of Z is known, even if they would have been related otherwise; 
that is, p(x,y) * p(x)p(y) but p{x,y\z) = p(x\z)p{y\z). The troubleshooting action we 

observe in one scenario certainly influences what we expect in the next, but we might posit 

it would not if we knew the values of all the relevant skill and knowledge variables. 

Structuring a Bayes net begins with a recursive representation of the joint 

distribution of a set of random variables x\,...jcn, or 

n 

p(xv...,xn) = p(xn\xn_l,...,x])p(xn_l\xn_2,...,xl)---p(x2\x])p(xl) = ]Jp(xj\xj_l,...,xl),   (2) 

where the term for;'=l is defined as simply p(xi). A recursive representation can be 

written for any ordering of the variables, but one that exploits conditional independence 

relationships is useful because variables drop out of the conditioning lists. For example, if 
X3 is conditionally independent of X2 given Xh then p(X3\X2,Xl) simplifies to 

p(X3\Xl). A graphical representation of (2), or a directed acyclic graph (DAG), depicts 

each variable as a node; each variable has an arrow drawn to it from any variables on which 

it is directly dependent (its "parents"). Conditional independence corresponds to omitting 

arrows ("edges") from the DAG, thus simplifying the topology of the network. In the 
example just given, the arrow from X2 to X3 can be omitted, leaving only the arrow from 

X!toX3. 

The conditional independence relationships suggested by substantive theory and 

discovered empirically determine the topology of the network of interrelationships in a 

system of variables. If it is favorable, the calculations required for probability-based 

reasoning can be carried out efficiently even in very large systems, by means of strictly 

local operations (implicit applications of Bayes' Theorem) on small subsets of interrelated 

variables ("cliques") and their intersections. Discussions of construction and computation 

in Bayesian inference networks are found in Lauritzen and Spiegelhalter (1988), Neapolitan 

(1990), and Pearl (1988). 
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A Simplified HYDRIVE Bayesian Inference Network 

Figure 4 is a DAG expressing the dependence relationships in a simplified version 

of the inference network for the HYDRIVE student model. The direction of the arrows 

represents the deductive flow of reasoning used to construct probability distributions that 

incorporate the depicted dependence structure. A joint probability distribution for all these 

variables can be constructed by first assigning a probability distribution to each variable 

which has no parents (in this example, there is only one: "overall proficiency"); then for 

each successive variable, assigning a conditional probability distribution to its possible 

values for each possible combination of the values of its parents. The values expressed in 

these assignments incorporate such patterns as conjunctive or disjunctive relationships, 

incompatibilities, and interactions among diverse influences. The probabilities depicted in 

Figure 4 correspond to the initial status of belief about all variables in the network, or 

before any actions are observed from a student. They are determined by the initial 

distribution for "overall proficiency" and the posited conditional probabilities for all other 

variables in the network given their parents. 

Four groups of variables can be distinguished in Figure 4: (1) The rightmost nodes 

are the "interpreted actions", the results of rule-driven epistemic analyses of students' 

actions in a given situation. Two prototypical sets appear, each corresponding to an 

equivalence class of potential observables in a given scenario: canopy situations in which 

space-splitting is not possible, and landing-gear situations in which space-splitting is 

possible. Three members are represented from each class. (A virtual storage algorithm 

allows the full network to absorb information from an indefinite number of variables in 

such a class while storing and manipulating only two copies of representative class 

members; see Mislevy, 1994b.) (2) The immediate parents of the interpreted action 

variables are the knowledge and strategy requirements that in each case define the class. 

The possible values are all combinations of the values of the system and strategic 

knowledge variables that play a role in the scenario class, as indicated by the directed 

arrows into these nodes. There are too many to depict, so the node is left blank rather than 

showing all the probability bars. (3) The long column of variables in the middle concerns 

aspects of subsystem and strategic knowledge, which correspond to instructional options. 

We see that canopy actions in which space-splitting is not possible are conditionally 

independent of space-splitting proficiency, given the proficiencies that are directly relevant. 

(4) To the left are summary characterizations of more generally construed proficiencies. 
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Serial elimination is the best strategy in a canopy/no-split situation, and, as 

expressed in conditional probabilities that embody deductive reasoning in the network, is 

likely when the student has strong knowledge of this strategy and all relevant subsystems. 

Remove-and-replace is most likely when a student possesses some subsystem knowledge 

but lacks familiarity with serial elimination, whereas weak subsystem knowledge increases 

chances of irrelevant and redundant actions. Figure 5 depicts belief after observing, in 

three separate situations in the canopy/no-split class, one redundant and one irrelevant 

action (both ineffectual troubleshooting moves) and one remove-and-replace (serviceable 

but inefficient). 

Subsystem and strategy variables serve to summarize tendencies in interpreted 

behaviors at a level addressed by instruction, and to disambiguate patterns of actions in 

light of the fact that inexpert actions can have several causes. Figure 5, which is posterior 

to three inexpert canopy actions, shows belief shifted from values in Figure 4, toward 

lower values for serial elimination and all subsystem variables directly involved in the 

situation (mechanical, hydraulic, and canopy knowledge). Any or all could be the source 

of the student's difficulty, since all are required for high likelihoods for expert actions. 

Belief about the student's level knowledge of subsystems not directly involved in these 

situations is also lower, because students unfamiliar with one subsystem tend to be 

unfamiliar with others; also, to a lesser extent, students unfamiliar with subsystems tend to 

be unfamiliar with troubleshooting strategies. These relationships are expressed through 

the more general system and strategic knowledge variables at the left of the figure. These 

variables serve to exploit the indirect information about aspects of knowledge not directly 

tapped in a given scenario, and to summarize broadly construed aspects of proficiency for 

purposes of evaluation and problem selection. 

Figures 6 and 7 represent the state of belief that would result after further observing 

two different sets of actions in situations involving the landing gear in which space-splitting 

is possible. Figure 6 shows the results of three more inexpert action sequences. Status on 

all subsystem and strategy variables is further downgraded, and reflected in the more 

generalized summary variables. Figure 7 shows the results that would obtain if, instead, 

one observed three good actions: two space-splits and one serial elimination. Belief about 

strategic skill has shifted toward higher levels, as have beliefs about subsystems involved 

in the landing gear situations. Weakness in mechanical, hydraulic, and/or canopy 

subsystem knowledge are now the most plausible explanations of the three inexpert canopy 

situation actions. The diffuse belief at the generalized proficiency level results from the 
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uneven profile of subsystem knowledge. In this network, diffuse belief at higher levels in 

the student model can result either from lack of information about finer-grained aspects of 

the student's knowledge, or, as in this situation, from fairly accurate but conflicting 

information about them. 

We did not have the luxury of large numbers of solutions from acknowledged 

experts and novices of various configurations, from which to determine the conditional 

probabilities of observable variables given student-model variables. Initial values were set 

on the basis of expert opinion and checked by means of data obtained in PARI traces. We 

have recently acquired traces of forty students working through ten problems each, from 

which we may empirically improve the original conditional probability specifications in the 

manner described by Spiegelhalter and Cowell (1992). With larger amounts of empirical 

data, we can capitalize on the probability framework to carry out formal statistical model- 

checking procedures. After two-thirds of a student's actions have been entered, for 

example, updated student-model parameters and conditional distributions yield predictive 

distributions for subsequent actions. These model-based predictive distributions can be 

compared with the actual remaining third of the observations to verify model calibration, or 

to provide clues for improving the model. 

Additional Grounds for Revising Belief 

In the preceding discussion and examples, observations obtained sequentially over 

time are presumed to simply provide additional information about unchanging values of 

student-model variables. The whole point of an ITS, however, is to help students change 

over time; in particular, to improve their proficiencies. This section concerns two 

additional reasons for modifying belief about student-model variables: change due to 

explicit instruction, and change due to implicit learning. In both cases, the requirement 

under a probabilistic approach is to do so in a manner that maintains coherence. We 

discuss an approach to accomplishing this end while avoiding the construction and 

maintenance of a full dynamic model. 

Updating based on direct instruction. While HYDRTVE's system model functions 

as a discovery world for system and procedural understanding from the student's point of 

view, the evaluations its student-modeling components make are based on an implicit 

strategic goal structure observed in expert troubleshooting. This structure is made explicit 

in HYDRTVE's instruction. The student is given great latitude in pursuing the problem 

solution, with prompts or reminders given only when an action violates important rules 
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associated with the strategic goal structure. HYDPJVE recommends direct instruction only 

when information that accumulates across scenarios shifts belief about, say, knowledge of 

a subsystem or strategy, sufficiently downward to merit more specifically focused 

feedback, review, and exercises. In light of the compatibility of probability-based 

inference and decision theory, a natural extension of the system we have not yet undertaken 

would be to incorporate decision-theoretic reasoning to manage these interventions. 

We expect direct instruction to change students' understanding. The change in our 

belief about the values of a student-model variable due to instruction differs from the 

previously discussed updating of belief about presumably static student-model variables due 

to observed actions. The change due to instruction might be modeled as dependent on the 

student's previous level of understanding and the expected effects of instruction, perhaps 

additionally informed by a posttest following the instruction. A fully specified dynamic 

model is schematized in the first panel of Figure 8, in which multiple time points, with 

corresponding multiple copies of student-model variables, are jointly modeled and 

maintained. Multiple copies of observable variables are also shown, with expectations that 

correspond to belief about possibly different values of student-model variables. As 

proficiency increases with instruction, for example, expectations for expert actions in 

classes of relevant situations increase. 

A more parsimonious alternative to jointly modeling all variables before and after 

instruction employs a small stand-alone Bayesian network to account for change due to 

instruction. A single time-point network for the full set of student-model and observable 

variables is maintained, but variables affected by direct instruction are modified in 

accordance with this stand-alone network, replaced in the appropriate nodes, and 

implications propagated in the same manner as are changes effected by observations. The 

result is the "virtual" dynamic network schematized in the second panel of Figure 8. Figure 

9 is an example of the stand-alone network. Table 2 gives the corresponding conditional 

probabilities; these can be refined over time, starting with expert opinion and limited 

experience but honed as experience accumulates. Conditional independence with respect to 

other student-model and observable variables is implied by the use of the stand-alone 

network. The probability distribution for the relevant student-model variable before 

instruction and the outcome of an instructional posttest exercise are entered, and the 

distribution posterior to instruction is obtained. The resulting posterior distribution for the 

student-model variable is replaced into the full network in a manner that assures coherence 

will be maintained,1 and the consequences of this change are propagated through the 
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network in the usual manner in order to revise accordingly beliefs about other student-model 

variables and expectations about future observations. 

Updating based on learning while problem-solving. Even without direct 

instruction, students can be expected to improve their troubleshooting skills as a result of 

practicing them and thinking through the problems. Although this probably occurs 

incrementally throughout a problem, we follow Kimball's (1982) expedient of revising 

belief due to implicit learning only at problem boundaries. Kimball's tutor, like 

Anderson's LISP tutor (Corbett & Anderson, 1995), revises belief in a manner consistent 

with probability axioms through an explicit learning model. That is, a particular functional 

form for change is presumed, and degree of learning is also assumed or estimated. We 

employ a more conservative and less model-bound approach: The ITS accommodates the 

student's learning by gradually discounting information from past actions that were 

determined by earlier, presumably lower, levels of understanding. The student learns; to 

account for this, the system that models his knowledge forgets. 

The idea is to enter each problem with student-model variable distributions that 

generally agree with the final values from the previous problem as to direction and central 

tendency, but are more diffuse and thus easier to change in light of new actions driven by 

possibly different (presumably improved) values. Two strategies for accomplishing this 

end are (1) downweighting the influence of actions as they recede in time, and (2) between 

problem sessions, mixing then-current posterior distributions with noninformative 

distributions and propagating the revised versions through the network as described above 

for instructional revisions. These "decaying-information estimators" are less efficient than 

full-information estimators if there is no change over time, or if there is change and it is 

modeled accurately; but, when trends do exist, they can provide better approximations than 

either ignoring it or modeling it incorrectly. 

Discussion 

Mathematical probability provides powerful machinery for coherent reasoning about 

complex and subtle interrelationships—to the extent that one can capture within its 

framework the key aspects of a real-world situation. If this can be accomplished, 

advantages both conceptual and practical accrue. A Bayes net built around the generating 

principles of the domain makes interrelationships explicit and public, so one can not only 

monitor what one believes, but communicate why one believes it. A model can be refined 

over time in light of new information, as when initial subjective conditional probability 
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specifications are updated in light of accumulating data. Able to calculate predictive 

distributions of any subset of variables given values of any others, one can investigate a 

modeled structure by entering hypothetical data to check for fidelity to what one believes, 

or entering real data to check for fidelity to what one observes (see the review by 

Spiegelhalter, Dawid, Lauritzen, & Cowell, 1993, on model-checking tools for complex 

networks). It may be painstaking and difficult work to carry out the requisite modeling 

tasks, but recent progress in calculation, model-building, and model-checking has been 

explosive (again, see Spiegelhalter et al., 1993). 

The challenge most significant in any application of probability-based reasoning is 

channeling one's scope of vision from an open-ended universe of human experience, to a 

closed universe of variables and probability distributions. We experienced this constraint 

in HYDRIVE first in having to interpret observations in terms of variables over which 

probabilities sum to one. Just how to do this was not immediately obvious in HYDRIVE's 

unconstrained observational setting. We eventually cast interpreted actions as members of 

exhaustive and mutually exclusive classes, so that the updating that occurs when a space- 

split did occur depends intimately on the fact that an R&R (remove & replace), serial 

elimination, or redundant or irrelevant action could have, but did not occur. HYDRTVE's 

progenitor, SHERLOCK (Lesgold et al., 1992) also interprets action sequences in terms of 

inferred plans, but it changes values of student-model variables according to action-specific 

rules that address only inference from evaluated actions to student-model variables. These 

rules are easier to construct than HYDRTVE's conditional probability structures, because 

the rules triggered by any observation can be specified without regard to rules for other 

potential observations. But since no provision is made for reasoning from student-model 

values to future actions, claims of student proficiency are difficult to check conceptually or 

empirically. An interpreted action in SHERLOCK may be an "event" in the everyday sense 

of the word, but it is not in the sense of mathematical probability. 

The constraints of mathematical probability also pinch in the presumption that all 

potential states of the real-world situation can be satisfactorily approximated under the 

model, relative to the purpose at hand. Shafer (1976) calls modeling the possibilities one 

will explore "defining the frame of discernment." But what if a particular student's 

conception differs from any of the postulated models? The probabilities that result from the 

use of Bayes' Theorem depend on the posited structure. Only possibilities built into the 

model can end up with positive probabilities! Apparently precise numerical statements of 
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belief prove misleading or downright embarrassing when it is later determined that the true 

state of affairs could not even be approximated in the analytic model. 

Two strategies help address this problem in applied settings. One approach is to 

augment theoretically-expected unobservable states with one or more "catch-all" states 

which increase in probability when unexpected patterns arise in observable data (e.g., the 

class associated with flat likelihood for all symptom patterns in the MUNIN expert system 

for neuromuscular diseases, described in Andreassen et al., 1987; its posterior probability 

increases when symptoms appear that fail to match any of the patterns typical of the 

diseases built into the model). Another approach is to calculate indices of model misfit or 

"surprise" (e.g., Good, 1971). While carrying out inference within a given probabilistic 

structure, one calculates indices of how usual or unusual the observed data are under that 

structure. Both of these approaches can flag patterns of evidence that are not likely under 

any of the possibilities built into the model, calling for model revision (further abductive 

reasoning, in Schum's sense). 

Conclusion 

Probability-based reasoning has emerged as a viable approach to structuring and 

managing knowledge in the presence of uncertainty, due partly to computational advances 

such as rapid local updating (Spiegelhalter et al., 1993), but more to conceptual progress— 

a confluence of ideas about personal probability (e.g., Savage, 1961; de Finetti, 1974) and 

the structuring of inference (e.g., Schum, 1994). This progress was spurred by the 

emergence of alternative frameworks for reasoning in the presence of uncertainty, such as 

fuzzy logic (Zadeh, 1965) and the Dempster-Shafer theory of evidence (Shafer, 1976). 

Whether mathematical probability couldn't be used to deal with the problems that promoters 

of alternative approaches advanced was fiercely contested, but clearly it wasn't. We can 

safely predict continued rapid progress along statistical lines, increasing prospects for the 

usefulness of probability-based reasoning in intelligent tutoring systems. 

Perhaps the main lesson we take from HYDRTVE is the importance of cognitive 

grounding. Arguing in the abstract about advantages and disadvantages of approaches to 

managing uncertainty is well and good, and quite necessary—but in the final analysis, the 

success of a given application will depend on identifying the key concepts and 

interrelationships in the domain. Ad hoc reasoning with sound substance beats coherent 

reasoning with inadequate substance, if you must choose between them—but coherent 

reasoning around sound substance dominates! Especially germane to the ITS context are 
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(1) understanding principles of the target domain and how people learn those principles, so 

as to structure the student model efficaciously, and (2) determining what one needs to 

observe, and how it depends on students' possible understandings, so as to structure 

observable variables and their relationship to student-model variables. 

Concepts from statistics, cognitive psychology, and instructional science must 

come together for a successful ITS. Over time, prototypical approaches for developing 

ITSs consonant with the principles of these domains must evolve, in the form of examples, 

effective approaches to common problems, knowledge elicitation schemes aligned to the 

anticipated model, and expedients that strike good balances among competing properties 

such as fidelity and computability. Our experiences with HYDRIVE persuade us that the 

quest will be arduous, but worthwhile. 
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Notes 

1 For a single affected student-model variable X, this revision is accomplished as follows: 
Suppose that belief about X before instruction is expressed by probabilities (bi,b2,...,bm) 

for its m possible values. These are initializing values in the stand-alone network. 

Instruction is provided and the posttest is administered; in accordance with the conditional 

probabilities in the stand-alone network, a revised vector of beliefs about X is obtained, say 
(q, q>, ■ ■ ■, cm). The columns in the potential table in the full network into which evidence 

aboutXis absorbed are reweighted by the factors (q/q ,C2/b2,...,cm jbm), so the 

resulting beliefs about X take the desired values (q, c2,..., cm). The consequences of 

entering this so-called "virtual evidence" are propagated throughout the rest of the network. 

This scheme can be extended to cases in which instruction directly affects multiple student- 

model variables. Coherent revision of joint beliefs is accomplished through the use of a 

new variable defined as the joint product of all pertinent individual student-model variables. 

This extended variable serves as the interface between the full and stand-alone nets in the 

manner described above for a single variable. 
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Table I 

Numerical Values of Conditional Probabilities of Interpreted Action Sequences, 

Given Strategic Knowledge 

Conditional Probability of Interpreted Action Sequence 

Strategic Serial Redundant Irrelevant Remove and 

Knowledge Elimination Action Action Replace 

Expert .75 .10 .05 .10 

Good .50 .10 .10 .30 

Okay .30 .15 .15 .40 

Weak .20 .20 .30 .30 



Table n 

Conditional Probability Tables Concerning Strategic Knowledge after Instruction 

Conditional Probability of Status after Instruction 

Status before 
Instruction Expert Good Okay Weak 

Expert .95 .05 .00 .00 

Good .30 .65 .05 .00 

Okay .10 .40 .45 .05 

Weak .05 .30 .45 .20 

Conditional Probability of Posttest Performance after Instruction 

Status after 
Instruction High Medium Low 

Expert .90 .10 .00 

Good .75 .25 .00 

Okay .25 .50 .25 

Weak .00 .25 .75 
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Three configurations representing possible belief about "Strategic Knowledge" 
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Conditional probabilities of interpreted action sequences, given Strategic Knowledge 
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Updated probablilities for Strategic Knowledge, given interpreted action sequences 



expert. 10 M^ 
Stay !40 m 
weak .25■ 

"Overall 
Proficiency' 

strong. 4 6 
weak .54 

Mechanical 
Knowledge 

strong. 4 6 
weak .54 

Procedural 
Knowledge 

Hydraulics 
Knowledge 

strong. 46 
weak .54 

ffl 
Electronics 
Knowledge 

strong. 4 5 
weak .55 T 

Canopy 
Knowledge 

strong. 4 5 
weak .55 

Landing Gear 
Knowledge 

strong. 5 4 
weak .46 

Seria 
Elimination 

strong. 4 6 
weak -54 T 

Space 
Splitting 

strong. 4 5 
weak -55 

- 

Electrical 
Tests 

strong. 4 5 
weak .55 

- 

Use of 
Gauges 

■ ■ ■ 
elim .28 
redun  .22 

randr .28 

■ elim .28 
redun .22 
irrel, .22 
randr .28 

■ elim .28 
redun .22 
irrel, .22 
randr .28 

Evaluations 
of Canopy 

Actions 

I 
I 

I ■ 

split    .20 

redun  .17 
irrel     •17 

randr -28 

Landing Gear, 
Scenario 

Requisites—Split 
Possible 

■ 
1 

I 

split    .20 
elim    .19 
redun  .17 

randr.28 

\r ■ 
I 

split    .20 

redun  -17 
irrel     • 17 

randr .28 

Evaluations 
of Landing 

Gear Actions 

Note: Bars represent probabilities, summing to one for all the possible values of a variable. 

Figure 4 

Initial Status of Student Model (i.e., Before Observing any Actions) 
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Status of Student Model after Observing Three Inexpert Actions in Canopy Situations 
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Status of Student Model after Observing Three Inexpert Actions in Canopy Situations 

and Three Inexpert Actions in Landing Gear Situations 
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Status of Student Model after Observing Three Inexpert Actions in Canopy Situations 

and Three Expert Actions in Landing Gear Situations 
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Schematic Diagrams for Two Approaches to Dynamic Modeling 
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