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NON-LINEAR BEHAVIOR OF
FIBER COMPOSITE LAMINATES

by Zvi Hashin, Debal Bagchi and B. Walter Rosen
Materials Sciences Corporation

SUMMARY .

The non-linear stress-strain behavior of fiber composite
laminates has been analyzed to define the relationship between
laminate behavior and the non-linear stress-strain characteris-
tics of unidirectional composites. The resulting analysis has
been programmed to yield an efficient computerized design and
analysis tool.

The approach utilized herein was to adopt a Ramberg-
Osgood representation of the non-linear stress-strain behavior
and to utilize deformation theory as an adequate representation
of the material nonlinearities. The prbblem was viewed on two
levels. First, the relationship between the constituent proper-
ties and the stress-strain response of a unidirectional fiber
composite material was studied. For this problem, the primary
attention was directed toward axial shear behavior, and an ex-
pression was established relating the composite average-stress/
average-strain curve to the fiber moduli and the matrix non-
linear stress-strain curve. Second level of approach is to treat
the intere%ationship between the properties of the unidirectional
layers and those of the laminate. For this case, the starting
point is a non-linear stress-strain curve for transverse
stress and for axial shear and a linear stress-strain relation

for stress in the fiber direction. The non-linear lamina
stress-strain curves can be modeled by proper selection of the

Ramberg-Osgood parameters. In the present study, with this as a
starting point, an interaction expression was formulated to ac-
count for simultaneous application of axial shear and transverse
stress.

A laminate having an arbitrary number of oriented layers
and subjected to a general state of membrane stress was treated.
Parametric results and comparison with experimental data and

prior theoretical results are presented.




1. INTRODUCTION
A basic requirement for the engineer designing with fiber
composite materials is a definition of the stiffness and strength

of these materials under a variety of loading conditions, includ-
ing cases for which experimental materials properties data are
not available. For this purpose, it is necessary that he have at
his disposal reasonably accurate procedures to predict these
mechanical properties. Existing analyses can predict the elas~-
tic behavior of a laminated composite quite well when the elas-
tic properties of the unidirectional materials from which it

is made are known. However, the situation has been much more
complicated and much less satisfactory with regard to the in-
elastic stiffness and strength of a laminate. The present pro-
gram was undertaken to develop a computerized analysis of the
inelastic behavior of fiber composité laminates which could be
used as a design tool. The results of this study and compari-
sons of these results with experimental data are presented in
this report.

It is essential to recognize that the utilization of fiber
composite materails in structural design involves the incor-
poration of material design into the structural design process.
This is illustrated clearly by the fact that the gross mate-
rial properties of a fiber composite laminate change when any
change is made in the laminate ply orientations. Even when
the designer considers a material formed from a particular com-
bination of fiber and matrix materials, there remains a large
number of geometric variables associated with the laminate de-
sign. Thus, in the preliminary design phase, experimental mate-
riallproperties data will generally be too limited. In the
case of elastic properties, sufficient capability to synthesize
the necessary properties exists. ~This procedure generally starts
with the definition of the elastic properties of unidirectional
fiber composite materials. These can, of course, be determined
experimentally. Also, when such data are not available, they
can be estimated using a variety of analytical techniques. These

2.




latter are generally referred to as micromechanics analyses.
For example, a set of relatively simple relations for predict-
ing the moduli of unidirectional reinforced composites are
presented in [l1]. Alternate micromechanics approaches are
described in [2] to [4]. A review of these methods is pre-
sented in [5]. With these properties available, it is assumed
that the individual laminae are homogeneous and anisotropic.

A laminate analysis is carried out in a straight forward

fashion following methods originally developed for such mate-
rials as plywood, and more recently extended to the more
general cases associated with fiber composite laminates (e.g.,
[6] to [8]).

However, contemporary fiber composite materials generally
consist of elastic brittle fibers such as glass, boron or
graphite in relatively soft matrix materials such as epoxy or
aluminum. For these matrix materials it is reasonable to an-
ticipate that at a certain loading state the matrix will begin
to exhibit inelastic effects. This results in non-linear re-
lations between structural loads and deformations. These in-
elastic effects can, of course, be expected to have a signifi-
cant effect upon failure of the laminate. It is quite clear
that adequate definition of these failure conditions are
essential to achieve structural designs of high reliability.

In the present study, a non-linear laminate analysis has
been developed which can provide realistic assessments of the
stresses and strains in the various laminae and of the inelas-
tic stiffnesses of the laminate at any stress level. This in-
formation can be used for assessment of such effects as struc-
tural stability or structural stress distributions. The stress
distributions in the laminae and the laminates can also be
utilized for the development of more realistic failure criteria.

Inelastic matrix behavior can be classified broadly as
either time dependent or time independent. Time dependent be-
havior is called viscoelastic if lihear and creep if non-linear.

- Polymeric matrices such as epoxy do exhibit such behavior. In
3.




the case of metallic matrix materials, such as aluminum, time-
dependent effects are generally negligible unless elevated
temperature conditions are considered. The present study is
concerned with time independent non-linear matrix behavior
which is of significance for both polymeric and metallic matri-
ces. Throughout this paper the expression "inelastic" is used
to describe this time independent mechanical behavior. The
method of approach to these problems is similar to that of the
elastic analysis. Thus, it is necessary to determine, first,
the inelastic properties of the unidirectional fiber composite
materials. This can be done experimentally or by micromechan-

ics methods. Given this information, a method to determine

stresses and strains in an inelastic laminate is then devised.
The problem is complicated by the fact that the inelastic
stress~strain relations are non-linear.

A limited number of pertinent investigations can be found
in the literature. Hill [4] considered, in approximate

fashion, a limited aspect of inelastic behavior of a uniaxially

reinforced material: the case of stress in fiber direction
combined with isotropic transverse stress. Petit and Waddoups
[6] devised an incremental method for laminate analysis in
which it was assumed that in single laminae there is no inter-
action of stress components in different directions as far as
lamina deformation is concerned. This assumption is restric-
tive, and also their incremental laminate analysis scheme is
unduly complicated. Adams [7] used a finite element technique
for numerical analysis of unidirectional materials in the form
of periodic fiber arrays under conditions of plane strain.
Huang [8] gave an approximate analysis for transverse inelas-
tic behavior for a unidirectional material in plane strain,
but it is diffucult to assess the validity of the appfoxima-
tions introduced.

A detailed analysis of the inelastic laminate problem
has been given by Foye and Baker [9]. Using finite element
methods, they computed the inelastic effective properties of

unidirectional rectangular and square arrays of elastic fibers
4.




in inelastic matrix. These properties were then used in an
inelastic laminate analysis. The analysis is based on
incremental plasticity theory and is, unfortunately, very
complicated and requires a great deal of computer time. The
results obtained are, however, of great importance for com-
parison with results predicted by more simplified theories,
such as the one which will be given in the present work.

The body of this report is divided into four major sec-
tions. In the first, consideration is given to the behavior
of unidirectional fiber composite materials. This requires:

a definition of the appropriate form of the inelastic stress-
strain relations; some consideration of the relationship be-
tween composite properties and constituent properties; and a
definition of the appropriate form of the interaction between
various stress components. The basic objective in this phase
of the report was to define appropriate constitutive relations
for the individual lamina which can be used in the non-linear
laminate analysis. Further, there is a desire to gain some
insight into the influence of the particular constituent
properties upon the lamina stress-strain relations. In this
phase of the study, it is found useful to characterize the
unidirectional material with the aid of Ramberg-Osgood stress-
strain relations.

In the next section of the report, the analysis of the
inelastic behavior of laminates is described. Here, a pro-
cedure for incorporating the non-linear constitutive relations
into an analysis which defines the state of stress in the in-
dividual laminae under an arbitrary set of external loads,
is defined. Analyses are developed for the case of symetric
laminates subjected to membrane loading. The equations which
are developed uniquely define the desired laminate internal
average stress distribution under a given set of membrane loads.
Governing equations, however, are non-linear and require numeri-
cal solution procedures. An efficient algorithm has been de-
fined which enables computer solution to be achieved for arbitrary

5.




laminates at minimal cost. The solution is obtained by appli-
cation of the Newton-Raphson method.

In the final section, the computerized analysis which has
been developed is applied to series of problems. The first
group presents comparisons with ‘various analytical results from
the more complex analyses of Ref. [6] and [9]. The second group

of numerical results presents comparisons between theoretical

results from the present model and available experimental data.
The third group of results provides several parametric studies
to gain insight into those factors which contribute signifi-

cantly to the non-linear behavior of fiber composite laminates.
Also, computations have been made to provide a preliminary
assessment of combined load effects including comparisons with
limited experimental data.

Details of the various analytical developements, as well
as descriptions of the computer program, are presented in
appendices to the report.

The principal result of the present program is a computer
program which provides a simple engineering tool which can be
used for the parametric study of the influence of material prop-
erties upon laminate performance. This laminate analysis capa-
bility can be used by the structural designer to define design
allowable stresses and to aid in the selection of fiber com-
posite materials for structural applications. A comparison of
the present results with the limited amount of available experi-
mental data shows good agreement. There are, however certain
cases in which the agreement is not good, par ticularly as the
laminate loading approaches failure. The results of the present
analytical method agree well with the results for those prob-

lems for which more exact and more complex analytical results

exist.




2. NON-LINEAR STRESS—-STRAIN RELATIONS OF UNIAXIAL
FIBER REINFORCED MATERIALS

2.1 General Form of Stress-Strain Relations

An effective stress-strain relation of a composite mate-
rial is defined_as a relation between average stress aij and
average strain Eij' Here and in the following latin indices
range over 1, 2, and 3. If the composite is elastic the

general effective stress-strain relation takes the form

= Ok
939 = Tijk1 Gkl (2.1.1)

where C{jkl are the effective elastic moduli which are material
constants and are thus independent of stress or strain. Thus,
(2.1.1) is a linear relation between average stress and strain.
If the composite is subject to symmetries the form of
(2.1.1) simplifies. For a uniaxial FRM the most important
cases of symmetry are transverse isotropy, around fiber direc-
tion, and square array (square symmetry). In these cases the

stress-strain relations (2.1,1) for transverse isotropy assume

the form:
Gy1 = C*;3 €11 + C*1, €5, + C*y1, E33
P = CO% = * = * =
Oap = C%)p €7 + C%, €, + C%y €4,
033 = C*¥1, €11 + C¥*,3 €22 + C*,5 €33
- - 2.1.2
012 = 2C*4y €12 ( )
023 = 2C*s55 €33
031 = 2C*,y €3,
and
(2.1.3)

C*g55= (C*¥32-C*33)/2

In (2.1.2-3) 1 indicates direction and 2, 3 perpendicular direc-
tions transverse to 1.
In the event of inelastic matrix and elastic fibers, the

situation is much more complicated since the stress-strain




relation are nonlinearity and history dependent. In no case is
stress proportional to strain so that superposition of effects
is not valid, and in order to determine current strain it is
not sufficient to know current stress but it is necessary to
know precisely the variation of stress which preceded its cur-
rent value. Thus, for a material in a known state of combined
shear and uniaxial tension, the state of strain is different
if: (a) tension is first applied and then the shear, (b) shear
is first applied and then the tension- (c) tension and shear

are applied simultaneously. For this reason stress-strain re-

lations must be presented in incremental form. That is, strain

increment is related to stress and stress increment. This com=-

plicates matters enormously. However, it is known that in
the case of proportional loading, that is, all stresses at a
point grow simultaneously in a fixed ratio to one another,
incremental theory can be integrated into the much simpler

total or deformation theory for which current strain.is com-

pletely determined by current stress.

Deformation theories have a wider range of validity than
proportional loading. Comparison of numerous detailed solutions
carried out both incrementally and by much simpler deformation
theory show surprising agreement in many cases, and Budiansky
{10] has shown that deformation theory can also be valid for
"neighboring" loading paths.

In the present work, we are concerned with composites
which are subjected to some external load. If it is supposed
that the various external load components grow proportionally,
this does not necessarily imply that the components of stress
at a typical internal point also grow proportionally. It is,
however, felt that the manner of growth of these internal
stress components cannot deviate severely from proportional
loading if external loading is proportional. Consequently,
deformation type stress-strain relations are assumed for the

matrix.
This assumption results in considerable simplification.

It will be seen that it yields results which are extremely
8.




close to the ones obtained in [9] on the basis of the much
more complicated incremental theory.

It is shown in Appendix A that for elastic fibers and
an inelastic matrix described by deformation type theory, the
effective stress-strain relations for a transversely isotropic

or square symmetric FRM are:

€11 = S11 011 + S12 022 + Sy 033
€22 = S12 011 + Sz2 Oap + Sz3 033
€33 = S12 011 + Sp3 022 + S22 033 (2.1.4)
€12 = 2544 012
€23 = 2Ss55 023
€15 = 2844 013
and
. Ss5= (S22-S23)/2 (2.1.5)

The coefficients Sll' SlZ’ etc. are the effective inelas-

tic complianceées of the material and are functions of the aver-

age stresses, or rather of certain invariants of the average

stress tensor.

We are here primarily concerned with thin uniaxially re-
inforced laminae which are in a state of plane stress. Let
X denote fiber direction, Xy direction transverse to fibers
in lamina plane, and Xy direction perpendicular to lamina,
Figure 1. Then the plane stress condition is expressed by:

013 = 023 = G33 =0 (2.1.86)
Equs. (2.1.4) then assume the form:

€11 = S11 011 + Siz 022 (2.1.7)

€22 = S12 031 + S22 022

€12 =284y 032




Note that 533 does not vanish. It is however of no interest

for present purposes.

The inelastic compliances in (2.1.7) are functions of
the stresses Oll’ 022, 012.

It is convenient to split the strains in (2.1.7) into

! —_
elastic strains eaB’ and inelastic strains Eas. Thus:

€ = ' ~" (2.1.8)
EaB € B + € a8

where here and in the following greek indices range over 1, 2.
The elastic strains are recovered after unloading of the com-
posite and are related to the stresses by elastic stress-strain
relations. Thus:

R ' - ' -
€11 = S33 011 + S12 022
] ]

- L — -
€22 = S12 031 + Sso Os2 (2.1.9)

- ! 1 —-—
€12 =284y 01

where v
] l L} A
Si1 = 5 Si12 = - g~
! 1 8 ! lA (2.1.10)
S22= ‘E__' s,+,_} = Za_
T . A
Here E, is the effective Young's modulus in fiber direction,

Va© the associated effective Poisson's ration, ET - the effec-
tive Young's modulus transverse to fibers and GA - axial effec-

tive shear modulus, related to 1-2 shear.
The inelastic, permanent, strains then have the form:

it 1" n

€11 = S11 011 + S35 032

|} 113 - " -

€22 = S12 0 11+ S22 022 (2.1.11)
- n —

€12 = 284y 012

where
(2.1.12)

S,8 = 5,8 (11, O22, O12)

10.
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In order to further simplify the stress-strain relations
(2.1.11-.12), some specific features of FRM will be taken into
account. In such materials, the fibers are by an order of mag-
nitude stiffer than the matrix (for the case of boron and/or
graphite fiber in an epoxy matrix the ratio of fiber to matrix
Young's modulus can be in excess of 100). The stiffness ratio
becomes larger in the inelastic range since the matrix loses
stiffness (i.e., flows) while the fibers retain their stiffness.
It is, therefore, clear that the stress 511 in fiber direction
is practically carried by the fibers alone, with insignificant
matrix contribution.

On the other hand, the transverse stress 522 and the shear

stress o are primarily carried by the matrix with little

12
fiber contribution.

It follows that inelastic behavior of the FRM is produced

primarily by o and o while inelastic behavior for 511 load

22 12

can be neglected.

The foregoing comments are summarized into two basic

assumptions:
(a) the inelastic strains 522 and 512 are not functions
of 991
(b) the inelastic strain Ell always vanishes.

On the basis of these assumptions, the stress-strain re-

lations (2,1.11-.12) simplify to:

511 = 0
- " - - _ (2.1.13)
€22 = S22 (022, 0O12) 022
-t n - - -
€12 = 2544 (022, O12) 012
11.




2.2 Plane Stress-Strain Relations in Ramberg-Osgood Form

A convenient representation of non-linear one dimensional

stress-strain relations has been given by Ramberg and Osgood

[l1]. For uniaxial stress, for example:
_ _C g ,m-1
€ = — [1 + k (
E, ;T) ] (2.2.1)

where El represents the elastic Young's modulus, and k, ¢',

and m are three parameters to be obtained by curve fitting. The
parameter o' is sometimes called nominal yield stress. Equa-
tion (2.2.1) represents a family of curves with initial slope
El’ and monotonically decreasing slope with increasing o. The
curves flatten out with increasing m (Fig. 2). Without loss

of generality (2.2.1) can be written in the form:

e =g 1+ (&0
1 g
Y

which will be used from now on. Similarly, a stress-strain

m-1
] (2.2.2)

curve in shear can be represented in the form:

=X -
YEE e+ &Y (2.2.3)
T
Y
where Gl is the elastic shear modulus.

It should be emphasized that (2.2.2-.3) are valid only for
one dimensional cases. The question of the generalization to
general states of stress and strain has no unique answer. One
common used form is isotropic J2 deformation theory [12].
Next, we consider the case of effective or macroscopic
stress-strain relations for the special case of a uniaxially
reinforced material in which the matrix in non-linear, with
stress-strain relations in Ramberg-Osgood form. .
Consider, for example, the case of uniaxial average stress
522 in direction transverse to fibers, all other average stresses
vanish. It then follows from (2.1.7) that:

€22 = S22 (T22) 022 (2.2.4)

12.




Similarly, if the only nonvanishing average stress is 512,

the shear stress-strain relation of the composite is:

€12 =2Su4y (012) 012 (2.2.5)

Evidently the inelastic effective compliances 522 and
S44 are functions of the parameters of the inelastic Ramberg-
Osgood stress-strain relations of the matrix, of the elastic
properties of the fibers and of the internal geometry of the
composite. Actual prediction is a very difficult problem. Such
problems will be cnsidered in limited fashion in the next para-
graph.

Just as matrix stress-strain relations are represented in
Ramberg-0Osgood form, the same type of curve fitting can also
be applied for the effective stress-strain relation of the

composite. Thus (2.2.2-.3) are written in the form:

l

;_ 022 ‘ 822 -
fe = L+ ") (a)
T Y
a h__z_)'N—l] (2.2.6)

- G312
g12 = 5= [1 + (
2GA Ty

(b)

Where ETAis the effective transverse elastic Young's modulus
GA - effective axial elastic shear modulus and Oy’ Ty, M and
N are curve fitting parameters which are in general quite
different from the corresponding Ramberg-Osgood matrix para-
meters.

A question of fundamental and of practical importance is
the form of the stress-strain relations for the case of plane
stress, taking into account interaction among the various stress
components. It should be noted in this repsect that (2.2.6)
are special stress-strain relations when 522 or 512 act only
by themselves.

It is recalled that equations (2.1.13) represent the
inelastic parts of the strains for plane stress-strain re-

lations for FRM with stiff fibers. It is shown in Appendix B

13.




that the Ramberg-Osgood form of such plane stress-strain re-

lations is as follows:

€11 =0 _ Mol
e = 22 (@2 v &% 72
Bp 9y y , (2.2.7)
- - 2 5 2 N-l
g1. = T2 ((EH° + (AT 2
2GA Y Y
The parameters ET, GA’ Gy’ Ty, M, N in (2.2.7) are those of

the one dimensional stress-strain relations (2.2.6) which may
be regarded as experimentally (or perhaps theoretically) known.

The inelastic parts of the strains are given by (2.1.9-
.10), and the total strains are then given by adding equations
(2.2.7) and (2.1.9).

Equations (2.2.7) have been compared with computed numeri-
cal results given in [9]). Reasonable agreement was obtained.
Comparisons for the interaction cases of transverse stress, 522,
versus transverse strain, 522, in the presence of axial shear
stress, 012, and axial shear stress, 012, versus axial shear
strain, Yipr are shown in Figures 3 and 4 respectively (in both:

cases o = 8/3). It is seen that the agreement is fair

227912 .
for transverse stress-strain relations (Fig. 3) and very good
for the shear stress-strain relations (Fig. 4).

Figures 3 and 4 also show the stress-strain relations ob-
tained from Egs. (2.2.7) for one dimensional transverse tension
o

297 and axial shear, 512, respectively.

14.




2.3 Axial Shear Stress-Strain Relation

This paragraph is concerned with the problem of prediction
of a one dimensional effective axial shear stress-strain re-
lation of a uniaxial FRM in terms of matrix and fiber properties
and the internal geometry of the composite.

The main reason for concentrating on the axial shear prob-
lem is that the inelastic effect is predominant in axial shear
for which significant nonlinearity of the stress-strain response
is obtained (e.g., Figure 4). The effect in fiber direction is
practically non-existent as has indeed been assumed above, and
is relatively small in transverse stress which is shown by the
‘small curvature of the stress~strain relation in this case
(e.g., Figure 3). ,

On the basis of all this, it can indeed be assumed as
first approximation that the nonlinearity of the uniaxial FRM
is limited to axial shear alone.

Consider a uniaxially reinforced lamina which is subjected
to pure axial shear, Figure 5, on its surface. The boundary

conditions are:

Xy =+ t/2 031 = O3z = 033 = 0

(2.3.1)
Xy =+ b Gi2 = T, OG22 = 033 =
X, = *a 012 = T, 011 =013 =0

It may be shown that under such load the only nonvanishing

average stress in the composite is:

(2.3.2)

It would seem at first that, given the complexity of the in-
ternal geometry of the composite, the state of stress at any
interior matrix or fiber point is generally three dimensional.
Surprisingly enough, however, this is not so and the only non-

vanishing stress components in the interior of the composites

15.




are the shear stresses 012kand 013, which are moreover func-
tions of X, and Xq only. Thus, the interior state of stress
is:

Ci12 = 012 (X,, X,)
2
3 (2.3.3)

G13 = 013 (le X3)

011 = 0Oz = 033 = 03 =0

The wvalidity of equations (2.3.3) for the case of an elastic

composite has been proved in [5]. Their validity for the pre-

sent much more general inelastic case will be shown elsewhere.
The effective stress-strain relation of the composite in

axial shear is defined by:

512 = Ol; = °s
2G 2G
A A (2.3.4)
s s , =
GA = GA(Ulz) = Gz(To)

where Gi is the effective secant shear modulus of the mate-

rial. The nonlinearity of the stress-strain relation is ex-
’pressed by the fact that Gi function of the applied stress.

It is seen that in order to determine Gi it is necessary
to compute the average shear strain €15 for given applied
shear stress. This is a formidable problem even with the
simplification (2.3.3) and we shall content ourselves with a
brief outline of its formulation. To simplify matters, the
fibers shall be assumed to be ideally rigid relative to the
matrix. This is a very accurate assumption for the case of
Boron and Graphite Fibers. There is no difficulty to extend
the formulation to the case of non-rigid elastic fibers.

In view of (2.3.3) the problem is two dimensional and
need only be considered in a typical X5, X section. In the

matrix domain:

le.




ot

9012 3013 _ (2.3.5a)
3X2 + 3X3 =0

- .3.5b

e1r = 322 11+ (E9™h (2:3.50)
T
y

€15 = géa 1+ (_T_._)n-l] (2.3.5¢)
T
y

. ) (2.3.6)

_ 1 3w, (2.3.7a)
€12 = 35 7y,
€13 =% du, (2.3.7b)
3X3
u; = uy (x2, x3) (2.3.8)

and, u, = 0 at fiber/matrix interface.

1
Here equ. (2.3.5) is the only surviving equilibrium
equation, (2.3.6) are Ramberg-Osgood stress-strain relations

for isotropic J. theory (2.3.7) are usual strain-displace-

2

ment relations in which u, and u, do not enter since it may

be shown that they are noi functions of Xy and (2.3.8) ex-
presses the ideal rigidity of the fibers.

Equs. (2.3.5-.8) must be solved subject to boundary
condition (2.3.1). If this is done the strain €15 is known
everywhere and can be averaged to obtain Gz from (2.3.4).

The problem is exceedingly difficult because of the non-
linearity introduced by the stress-strain relations (2.3.6).
There is very little hope to solve it analytically for any
kind of fiber geometry. It should therefore be handled by
numerical methods for fiber arrangements and fiber shapes
of engineering interest.

Another way to approach an analytically intractable
problem such as the present one is by variational techniques .
17.




In this fashion, approximations or bounds for quantities
of interest are obtained by methods which are much simpler
than bonafide solution of the problem. Such variational
methods have been extensively used for determination of
effective elastic moduli of FRM (e.g., [5]).

In the course of the present work, it has been found that
variational methods can also be used for inelastic problems
such as the present one to obtain bounds on effective secant

moduli. The main ingredients of the method are:

(a) Construction of an extremum principle in terms
of an energy integral such that the true energy
is the minimum of the integral.

(b) Expression of the true energy in terms of effec-
tive secant modulus.

(c) Establishment of admissible fields to obtain a
value of the energy integral which is larger than
the true energy, thus obtaining a bound for Gi.

The work involves complicated developments and deriva-
tions which are given in Appendix C. Here only the end result
for a lower bound on Gi will be given for a special geometry
of FRM which is known as composite cylinder assemblage. This
geometry has been described in detail in [1, 5] and consists
of an assemblage of composite cylinders of variable sizes
which are joined together so as to fill the whole volume of
the composite. In order to fill the whole volume, composite
cylinders vary from finite to infinitesimal size. This geom-
etry has been used to advantage for elastic FRM to obtain
simple expressions for effective elastic moduli which are well
verified by experiment [1, 5]. In the present case only a
lower bound on G; has been obtained for the case in which the
exponent n in matrix stress-strain relations is n=3.

It has been found that with this exponent and proper
choice of Ty, epoxy shear stress-strain relations can be well

described. The result for the lower bound is: .
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1+c

G
l-¢c
S S —
G > G = 2 3
A = "A(-)
1+ (32)2 3+13c+c ;c (2.3.9)
! 3(1+c)
Yy
where
c - volume fraction of fibers
G - elastic (initial) matrix shear modulus
T§ - Ramberg-0Osgood matrix stress parameter, and
Ty T~ applied shear stress.
It follows from (2.3.4) that:
c, < T; (2.3.10)
ZGA(_)

In other words, with the lower bound on GZ an upper bound
on €, variation with Ty is obtained.

If (2.3.10) is explicitly written in terms of (2.3.9) it
assumes the form:

- 2,3 (2.3.11)
€12 _f_ Ti+c [l + (Tg)z 3+13c+c"+c
1 3
2Gi—-—6 '['y 3(1+C)

Recalling that for the composite cylinder assemblage

with rigid fibers the axial elastic shear modulus GA is given

in [1, 5] as:

l+c (2.3.12)
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{2.3.11) with (2.2.6) with choice of exponent

the same as matrix exponent), it is seen that:

12 3(1+¢) 3
3

Y 3413c+c+c , ' (2.3.13)

The prediction of (2.3.11) has been compared with numeri-
cal results obtained in [9]. Figure 6 shows the variation of
the right side of (2.3.1l) in comparison with the results ob-
tained in [9] for a fiber volume fraction, c=0.5. Since re-
sults of [9] were for boron fibers in epoxy matrix, the rigid
fiber approximation is accurately valid. It is seen that the
results are reasonably close. It should be noted that the
geometry of [9] is a rectangular fiber array which is quite
different from the composite cylinder assemblage geometry.

The results defined by (2.3.12) and (2.3.13) used in
equation (2.2.6) yield the result plotted in non-dimensional
form in Fig. 7. The shear strains are normalized with respect
to the matrix siastic strain, er, at the yield stress, Ty

-y (2.3.14)
Y ve G

It is natural to also consider the establishment of an
upper bound on Gz. Unfortunately, however, this is a matter
of formidable difficulty for the reason that inversion of
(2.3.6) to express stresses in terms of strains leads very
complicated expressions. Further discussion of this diffi-

culty is given in Appendix C.
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3. ANALYSIS OF NON-LINEAR LAMINATES

3.1 Formulation

The general problem to be investigated in the present
chapter is as follows: given the inelastic stress-strain re-
lations of uniaxially reinforced laminae determined theoreti-
cally or experimentally, and a laminate composed of such
laminae and loaded on its edges by uniformly distributed loads
in the plate of the laminate:

(a) What are the stresses in the various laminae?

(b) What is the macroscopic strain response of the

laminate to the loads?

This problem has been extensively investigated for elastic
laminates, and the results obtained will serve as important
guidelines for the present much more complicated problem. It
is therefore very helpful to first briefly review the theory
of elastic laminates.

Let the laminate be referred to a fixed system of coord-
inates Xyr Xy, X3 @S shown in Figure 8. This will henceforth

be referred to as the laminate coordinate system.

Any lamina, kth say, in the laminate will be referred to
its material system of coordinates xl(k), xz(k), X3 where xl(k)
is in fiber direction, xz(ky perpendicular to fiber direction

and X3 is the same as the laminate X3, Figure 8. The reinforce-

ment angle ek is defined by:

o = ¥ (xg, xl(k)) =¥ (x,, xz(k)) (3.1.1)

Let it be assumed that the laminae are in states of plane stress.
It will be later explained under what conditions this is true. .
Then the stress-strain relations of a single lamina referred to

its material coordinate system are written in the forms:

) . (K) (k)
€8 = 5 apys %ys (a)
(3.1.2)
(k) g0 g 0) ) , 21,




where (3.1.2a) is in tensor notation with range of subscripts
1, 2 and (3.1.2b) is in matrix notation. It should be noted
that (3.1.2) represent the stress-strain relations (2.1.9 -

.10), i.e.,

(k) (k)

ck_ %11 Va 5 (k)
11 (k) (k) 22
EA EA

(k) (k)
e _ YA ), %22 (3.1.3)
22 glk) 11 g (k)

A T

(k)
k) _ %12
12 e (R)

26 ,

Let a laminate of rectangular form, Figure 8, be loaded

by a uniform edge stress:

0113, x;) = 0,37
01p(kas x5) = 0,3 (3.1.4)
O12(¥ps #P) = 0,5
022(X1’ +b) = 025

The elasticity solution of the laminate must satisfy the
following requirements:

(a) Equilibrium of stresses,

(b) Traction continuity at laminae interfaces,

(c) Boundary conditions (3.1.4), and

(d) Displacement continuity at laminae interfaces.

It is assumed that the stresses in any lamina are con-
stant, but different in the different laminae. The condition
(a) is satisfied within any lamina. Since the assumed lamina
stresses are plane there are no traction components on laminae
interfaces. Therefore (b) is satisfied.

The boundary conditions (3.1.4) cannot be strictly éatis—
fied in each lamina but only in an average sense. To do this

. k . . .
lamina stresses o( ) referred to lamina material coordinates

of
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are transformed to laminate axes. The stresses in the kth

lamina referred to laminate axes are denoted (k)oaB' The
transformation is given by:
(k)cll=c{§) coszek +c(§; sin29k - 20{5) cosek sin ek
(k)022=oé§) sinzek (g; coszek + 20{?) cosé, sin 0, (3.1.5)
(k)o 5o (ﬁl éggsinek cos8, + ( )(cos 8 - sinzek)
or in matrix notation:
(k) g = g(k) c (k) (3.1.6)

Let the edges of the laminate be loaded by constant forces

per unit length T and define the stresses (3.,1.4)

117 T220 T2
as edge averages over the laminate thickness h:

011= Tyy/h
° = 7. /h
052= Tao/ (3.1.7)
0157 Ty,/h
Equilibrium requires that:
K
*)
X o} = g2
oy C11 11
K
o) = o3
o1 22 (3.1.8)
K
o) = o,
k=1

where K is the number of laminae. Written in terms of stresses

oég) using (3.1.6), we have:
K
g o &) = ge _ (3.1.9)
k=1
where ¢° denotes the stresses c&B at the edges. 23,




Replacement of the boundary conditions (3.1.4) by (3.1.6)
is an approximation of Saint Venant type. Thus, there must be
expected edge perturbations (among them interlaminar shear) on
the stresses predicted by laminate theory.

Equations (3.1.8) are three equations for the 3K stresses

Oéé), Oééz..cég) in the laminae. There are needed én additional
3(K-1) equations which are provided by displacement continuity

(a) .

Since the stresses in each laminae are by hypothesis uni-

at lamina interfaces, requirement

form, so are the strains. Therefore, displacement continuity

is ensured if the lamine strains in adjacent laminae, referred

to laminae coordinate system are the same. Thus:
(k) (k+1)
f11 7 €11
() = (kD) k=1,2..... k
22 22 (3.1.10)
(k) _ (k+1)
f12 7 €12
Equations (3.1.10) are the additional required 3(K-1l) equations.
They will be written in terms of laminae stresses Oég) referred
to laminae material axes. To do this it is noted that:
(k)i _ Q(k) E(k)
which is just a transformation of (3.1.6). From (3.1.2b):
(k)E _ Q(k) §(k) CF_(k) (3.1.11)
and inserting the last result in (3.1.10):
Q(k) S(k)O(k) — e<k+l)§(k+l) g__(k"l'l) k=l,2 ----- k (3.1-12)

Equations (3.1.9)
3K stresses in an
It should be

is based on plane

24.

and (3.1.12) are 3K linear equations for the
elastic laminate, with K layers.
carefully noted that the analysis given above

stress conditions in individual laminae. This




is a valid assumption if:

(a) The loads on the laminate are statically equiva=-
lent to in-plane forces (membrane forces) and pro-
duce neither bending nor twisting moments, and

(b) The laminate has a certain stacking sequence of
laminae which defines a so called balanced or

symmetric laminate.

This stacking sequence 1is an arrangement in which the
laminate has a middle plane of geometrical and of material
symmetry. The laminae are arranged in paris with respect to
the plane of symmetry. The laminae of such pair have equal
thicknesses, same distances from middle plane, and are of
the same material with same angles of reinforcement.

In a non-symmetric laminate application of membrane
forces will in general produce bending and twisting of lam-
inae and thus a plane state of stress will not be realized.
The symmetric laminate is, however, sufficiently versatile
to cover most cases of practical interest.

Let it now be assumed that the laminate is inelastic but
still fulfills the conditions of symmetry and pure membrane
loading. In this case the only equations which necessarily
change in the preceding development are the stress-strain re-
lations of the laminae, (3.1.2), which must be replaced by in-
elastic laminae stress-strain relations are given by (2.1.7)
where the compliances are now functions of the stresses. These
compliances now replace the elastic compliances in (3.1.2)
which thus become non-linear.

It is convenient for later purposes to rewrite (3.1.2) in

the inelastic case in different form. To do this the strains
(k)
oB
tic strains (2.1.11). Preceeding to (3.1.12) this equation

€ are first split into elastic strains (2.1.9) and inelas-

assumes the form:

g (k#1) g1 (k1) (L) _ g k) gL (k) 5 (1)

g(k+l)Sll(k+l)g_(k+l) + Q_(k)g’_ll(k) (k) (3.1.13)

k=1, 2 ..... k
25.




where
1(k) - elastic compliance matrix of kth layer

Sll(k)— inelastic part of compliance matrix of kth layer

(k) _ Sl(k) 11 (k) ' (3.1.14)

s +s

Eguations (3.1.13) are now written out in component form
with notation (2.1.10), (2.1.12) for compliances:

k+1 1 (k+1) 2 1(k+1
{1 )(S bt cos?ey , 1457, bin%ey, )
k+1 1(k+1l) &ip2
(k+1) .1(k+1) . _ (k) 1(k 2 1(k) . 2
—4012 844 cos ek+131n9k+l 911 (Sll &os ek +512 sin ek)
(k) 1(k) 2 1 , 2 - (k) .1(k) ,
+ 055 (S12 cos”8, +S5, sin ek) 407, Sy, cos 8, sin®,
- (k+1) ll(k+1 11 (k+1
=" o (57 bos? 841+5713 * hiney )
(k+1 11 (k+1 2 11 (k+1)sin2 B (k+1) 11 (k+1) .
t 0,y )(812( )cos ek+l+522( Jsin 01 40 915 Sua cosek+151nek+l
(k) ll(k) 11(k)_,. 2 (k) ,o11(k)} 11 . 2
(S cos 9 +S12 sin ek) + 022 (S12 cos 9k+82251n ek)
- 15 k) gll(k) ; (3.1.15)
40 912 44 cosek51n9k
26.




(k+1)
11

1(k+1) 1(k+1)
11 sin ek +S12 cos ek +1

1(k+1)sin‘2€)k+l + S%ék+l)coszek+l)

o (S

(k+1)
22

(k+1) .1 (k+1) .
12 544 cosek+l Sln6k+l

{E) i{k) in2 8, + Sl(k) cos2 8

k 12 k
(k)(sl(k)

+0 (s

+40

(s

+o k

sin ek + 522

(k) 1(k) L1l(k) .
12 812 844 cos ek sin G

_ (kD) ll(k+l) . 2 11 (k¥1) 2
} = oy (87 sin 8, ., *+ 575 cos” 8,49

(k+1 11 (k+1) 11 (k+1) 2
22 (815 cos” 8

k+1
(k+1) ll(k+l) ll(k)
12 44

ég) ll(k) sine. +gll (k)

+40

+0 6 +

k+1 22

siné +Sll(k)cos 0

. (k)
os sin® + K k)

k+1 k+1 911

(k) 11 (k+1)
g TSy, cos ek+4012 44

+40 (S

cos sin®

+o k+1 k+1

(S

(k+1)
911

(k+1)
22

1(k+1)_ 1 (k+1)_.
11 522 51n9k+lcosek+l

1(k+1) _gL (k+1)
12 22

(k+1)sl(
12 44

(k) <1(k)

11 11

(k) 11 (k) _ 1(k) \ k) .1(k) 2, .2

22 (S12 22 ) 51n9kcosek+2012 844 (cos ek sin ek)
_ (k+1) .11 (k+1)_ 11 (k+1)
=- 957 81 512
(k+1) ,o11(k+1) _ ll(k+l)

922 12 22

o (k1) (11 (k+1) 2 2
912 " S44 (cos™6y ,; — sin%6, )

(k)( 11(k)_ ll(k)
911 ll l2

(k) (gll(k)_ gl1(k)
922 12 22

(k) .11 (k) 2. .2
+2075 5S4y (cos™@, - sin"6,) (3.1.17)

k=1,2 «on.. k-1 27.

(s

+0 (S ) siné cosf

k+1 k+1

k+l)(c0529 - sin29

+20 k+1 k+1

_ <l(k) .
o] (S 512 ) sin8, cosé

k k

+

9

) 51n9k+l cosek+l

+0 (s ) 51n6k cosek

+

+ ) siné cosek

k

+0 (s ) sinek cos 6

k




To these must be adjoined equations (3.1.9) which are written

here in components:

k
(k 2 (k) .. 2, _, (k) . _ Ao
kz{olléos ek+022 sin ek 2012"c°sek 51n6k)tk = 01, h (a)
g(o(k)sinze +o(k)coé26 +20(k)cose sing,) t, = 03, h b
o 11 k%22 k%12 k k) *x T %22 (b)
g(o(k)—o(k))cose siné +o(k)(cosze —sin29 Yt, = 02, h (
o192 kSin8ytory K Kt T 912 °)

(3.1.18)

We now consider special cases of interest. In the first
case the inelastic laminae strains have the form (2.1.13).
Then the right side of (3.1.15-.17) simplifies by setting:

Sii(k)z Sii(k+l) _ Si%(k)= Si%(k+l) -0
_séé(k+1)= S%%(k+l)(gég+l), O{§+1))

S AT AT

Sii(k+l)= Sﬁi(k+l)(“§§+l)' 0{§+1)) (3.1.19)

Once the stresses in the laminae have been obtained the
strains in the laminae, referred to laminate axes, are deter-
mined from (3.1.11). Since the strains in all laminae are
the same when referred to the laminate coordinate system, these
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are also the average laminate strains and thus determine the

inealstic response of the laminate.
In the simplest case the lamina material is assumed to
be inelastic in shear only. In that event we have in addition

to (3.1.19):

"(k) _ " (k+l) _
Sa2 7 = 8y, =0 (3.1.20)

and for Ramberg-Osgood presentation of inelastic part of shear

compliance:
' (k) N_-1
RENCS IS N B
44 2G (k) (k)
A v
] - 1.2
LGl 1 (012“+1))Nk+1 1 (3.1.21)
44 B g, (k+1) (k+1)
T
A y

In Ramberg-Osgood representation (2.2.1) the inelastic parts

of the compliances assume forms such as:

' ) 5. () a0t -1)
11(k)_ 1 22 2 12 .2 M -
S20 - T Limy) ot ®)) X
En Y Y
735 o125 1/205,1)
11(k) _ 1 22 2 12 .2 .1/2(N, -
A y y
(3.1.22)
, (k+1) o (kD) |
11 (k+1) 1 022 2 912 2 1/2(M . -1
532 = L) L« 0 T ) ) et
| T y y
(k+1) L (k1) ,
11(k+1)_ 1 022 2 12 2 1/2(N -1)
2543 = o5 D) L . Gt (T w0 ) k
A y y
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3.2 Method of Solution

The equations which define the laminae stresses are (3.1.9)
and (3.1.13) in condensed form, or equivalently, (3.1.15- 3.1.17),
(3.1.18) in full form. To explain the solution method it is
simpler to write in terms of the condensed form.
Define the matrices:
El(k+l)=e(k+l)sl(k+l)

Lll(k+l)

1R g

L1100 _ gt g11(k)

(k+1) 11 (k+1) (3.2.1)

=8

(k) glk)

Then equs. (3.1.13) assume the form:

Ll(k+l)g(k+l)—Ll(k)c(k) -1

ll(k+l)0(k+l)+Lll(k)o(k) (3.2.2)

to which are adjoined equs. (3.1.9) which are here rewritten:

o) 0 _ e S (3.2.3)

The equations may be solved numerically by an iteration
method which proceeds as follows: Consider equs. (3.2.2-3)

with the right side of (3.2.2) zero. This defines a set of

(k)

stresses g given by:

El(k+l)g£k+l) B El(k)gék) =0 (a)
k=1,2 ..... k=1 (3.2.4)
K
5 g(k) gék) = g° (b)
k=1
Since (3.2.4a) contains only elastic compliances S'(k) it is

seen that the equations are linear and define the stresses in
an elastic laminate. Now insert the stresses oo(k) into the

right side of (3.2.2) and define the stresses gl(k) by:

30.




L)y bl | 100, (k) = - L0+ [ GetDy, (k1) (@)
s 110 00y ) (3.2.5)
K , ,
oo () g (b)
k=1

(k)

Equs. (3.2.5) defines (hopefully) a new approximation 9,
which is the solution of a set of linear equations. The stresses
in square brackets in the right side of (3.2.5) are to emphasize
the stress dependence of the non-linear parts of the compliances.
The procedure just initiated can be repeated indefinitely.

In general:

El(k+l)g(k+l)_£l(k)g(k) =_Lll(k+l)[0(k+l)] o (k+1)
2+1 1 e 2
+Ell(k)[g(k)] g(k)
2] 2{ (3-2.6)
K
5 g(k)o(k) = go
k=1 T+l -

This iteration procedure is guite easy to carry out with
aid of a computer. It replaces the solution of a set of non-
linear equations by solution of a sequence of linear equations,

provided of course, that convergence is obtained.

It should be noted that the first iteration step does not
necessarily have to start with equs. (3.2.4a), i.e., with zero
right side of (3.2.2). Any stresses cék) which fulfill (3.2.4Db)
can be used to start the iteration with (3.2.5) and continuing
with the general iteration relation (3.2.6).

It is desired to obtain a laminate solution for only one
load system 0° then it would seem most logical to start with

b (3.2.4). But suppose there is a sequence of loadings Ac®,
2Ac°...nAg . Suppose that a solution for (n-1) A¢° has been
obtained a;d that a solution for nAg® is desired. One possi-
bility is to multiply all stresses due to the load (n-1) Ag®
by the factor n/(n-1). The stresses thus obtained certainly
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also satisfy (3.2.6b) because of the linearity of these equa-
tions. They will generally'be reasonable starting values
g (¥) for the iteration.

° This method of iteration to obtain a solution was found
to work well for many sample problems; however, there were
cases in which the solution did not converge. Attempts to modi-
fy the recurrence relations to overcome this problem met with
only partial success. Thus, an alternate procedure for solu-
tion was defined. The solution was obtained by application of
the Newton-Raphson method.

The set of 3K nonlinear equations represented by equs.

(3.2.2-.3) may be presented in the form:

F(0,.5) =0 n=1,2 ...3K (3.2.7)

The function Fi is expanded in a Taylor series about an arbi-
trary set of initial stresses which may be taken as the solu-
tions of the elasticity problem. Considering only two terms

of the series, it is found that

o

. 3F .
F, = F, + lk po K=o
i i 36 mn (3.2.8)
mn
or
a ]
F
ko % ko —m 7l ° : (3.2.9)
ij ij 30 k m

where ok. is the corrected solution obtained from the assumed
solution °o§j. Using Oij as the initial guess, the process
is repeated until the result is obtained within a desired ac-
curacy. A recurrence form of equation (3.2.9) to obtain the
stresses at t+l cycle from t cycle can be constructed as

follows:
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After the stresses 0?. are obtained for all layers of the
laminate, strains for any layer k in terms of laminae axes
can be computed using equs. (3.1.3). Strains in terms of
the laminate axes can be obtained using the strain trans-
formation law.
This analysis has been developed into an efficient

computer program. A description of the program including

a listing, is presented in Appendix E.

oF (3.2.10)
m
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3.3 Numerical Results

The computer program which has been developed under the
present study has been utilized in the analysis of a variety
of different composite laminates. The initial studies using
the computerized analysis were directed at presenting a compari-
son between the results of the present analysis and those of
previous analyses, notably that of Ref. 9. (The present results
were also compared to available experimental data, primarily
those of Ref. 6 which had also been used for comparison with the
analytical results in Ref. 9.) The objective of this phase
of the numerical study was to determine whether the present
results, which can be obtained with minimal computer usage,
compare well with those of the more exact and complex analyti-
cal results in Ref. 9. The results of this comparison are highly
encouraging, as will be shown below, and support the utilization
of the present analysis as an efficient design tool.

In the second phase of the design numerical studies, con-
sideration was given to examining the sensitivity of laminate
results to individual properties of the layers. These para-
metric studies are presented for several classes of typical
laminates.

A series of laminates of boron/epoxy composites for which
experimental data had been obtained in Ref. 6 were examined
analytically in Ref. 9. 1In Figures 9 to 15, results of the pre-
sent analytical method are added to the comparison of experimen-
tal results of [6] and analytical results of [9]. For example,
in Fig. 9, the experimental stress-strain curve for a 0-90 boron/
epoxy laminate is compared to the analytical results obtained
in Ref. 9 and in the present analysis. Both analytical re-
sults coincide; both show slightly less inelastic strain than
the experiment. The solid point on the curve indicates the
stress level at which fiber fracture is computed to occur in
one of the layers of the laminate.

The‘shear stress-strain curve used in the present analysis

was the best fit Ramberg-Osgood curve having an exponent n=3.
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The values of modulus and yield stress obtained from the least
squares fit are shown on the figure. A similar result is shown
for the unidirectional tension +45° laminate in Fig. 10. Here

it is seen that the two analytical curves are similar, although
the agreement is not as close as in Fig. 9. Experimental data
reflect a substantially higher degree of inelasticity than
either analytical result. The present analysis shows a higher
degree of inelastic strain at the higher stress level than that
of Ref. 9. However, the reverse is true in the comparison of

the two analytical results shown in Fig. 11 for a +30° laminate.
The present results were obtained with a linear stress-strain
curve in the transverse direction within each of the layers.

The computations were made in this fashion because the transverse
stress—-strain curve of Ref. 9 does not show a significant degree
of inelasticity.

Figure 12 presents results for the case of a quasi-isotrop-
ic laminate (0/+45/90) of boron/epoxy. Both the present result
and that of Ref. 9 show a relatively insignificant amount of
inelasticity. Again, the experimental data show a greater
inelastic effect. Here the predicted failure strain level is
in good agreement with the experimental failure strain level;
however, there is a significant difference in the failure
stress level. A similar result is presented in Fig. 13 for
the quasi-isotropic laminate formed from the 0/+60° configura-
tion.

Computations performed for the present study for laminates
having fibers in several directions, including the loading direc-
tion, for a simple unidirectional load have shown a relatively
small amount of inelastic strain. Another example of this is v
presented in Fig. 14 for a 0/+45° laminate. Here, however, the
agreement of all the analytical methods and the experimental
method is very good.

The final comparison taken from Ref. 9 is presented in
Fig. 15 for a laminate having fibers in three different direc-
tions and a tensile load applied ét some intermediate angle.

The present analysis agrees reasonably well with the results
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Ref. 9. The discrepancy between the failure load predicted

on the basis of fiber failure and the experimentally ob-
served failure stress is quite substantial. It is possible
that fialure in laminate of this type caould result from
shearing or transverse stresses within the individual layers,
and thus, not be a result of tension in the fiber failure.
This mode of failure has not been treated in the present
computer program. The mode of failure observed experimentally
is not known to the authors.

The experimentally measured response of a multidirectional
laminate to an applied shear stress has been reported in Ref.
13. Comparison of the experimental result with the theory of
Ref. 9 was presented in Ref. 14. Computations for this case,
made using the present analysis and the prior analytical re-
sult (Ref. 14), are compared to the experimental result in
Fig. 16. Again, correlation between the two analytical re-
sults is good, agreement between analytical and theoretical
results is reasonably good with the experimental observation
showing higher inelastic strains and lower tangent shear moduli
at the very high stress levels.

The conclusion of these comparisons with analytical and
experimental data seem to justify the adoption of the present
computer program as a useful engineering tool for the design
and analysis of composite laminates. However, it appears that
further study of the failure region is required.

Parametric study of the influence of various laminate
geometric and mechanical properties has also been explored.
Fig. 17 shows the results obtained for a 0/+45° laminate in-
dicating that the inelastic response in the transverse direc-
tion can become significant at higher stress levels. Failure
due to fiber fracture under a transverse stress applied to
the laminate occurs at strain levels larger than those plotted
in Fig. 17. In the gquasi-isotropic laminate having four fiber
directions, (0/+45/90) the degree of inelasticity in the longi-

tudinal and transverse directions is of course the same and is
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in both cases very small., It is to be anticipated, on an
intuitive basis, that the maximum degree of inelastic response
would be observed for a stress applied midway between two of
the fiber directions on this quasi-isotropic laminate. The
stress—-strain curve for this latter case is also shown in Fig.
18. Although the inelastic strains for this case are not
significant there is a large difference in the predicted
failure stress levels based on stress in the fiber direction
for the two cases. It is worthwhile to emphasize that the
quasi-isotropic laminate need not be isotropic in its strength
characteristics.

Because of the directional strength characteristics inter-
esting effects may be expected for combined stress cases. Some
results of the exploration of this question are presented in |
Fig. 19 where the four direction quasi-isotropic laminate is
subjected to combined stress state with respect to a 22-1/2°
axis of symmetry. This laminate shows high strength under both
the unidirectional load and shear load by itself. The combined
stress case for equal values of applied shear stress and axial
stress results in fiber failure, and therefore, laminate failure,
at a substantially lower stress. The stress-strain curve prior
to failure is not affected significantly by the presence of com-
bined stress. The quasi-isotropic laminate having fibers in
three directions (0/+60) is examined in Fig. 20. The sensitivity
of this laminate to the Ramberg-Osgood parameters for the indi-
vidual ply had little effect upon the stress-strain result. In-
deed as an extreme example of this variation all lamiates stiff-
nesses except the axial stiffness were equal to zero. Enforcement
of the Kirchhoff-Love plate assumptions for this case results
in the so-called netting analysis. The response for this net-
ting case, which is linear, is shown by the dashed curve in
Fig. 20. Even with this extreme assumption, matrix inelasticity

does not introduce a significant amount of inelastic strain.

Experimental data for comparison with this result are not easily
available, however Ref. 17 does present a stress-strain curve

for this case which shows a transverse failure stress for the
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quasi-isotropic 0/+60° laminate which is about 60% of the
failure stress in the axial direction. Also, the inelastic
strain at failure is approximately 30% larger than the elas-
tic strain associated with the failure stress level. The net-
ting analysis result presented here suggests that in order to
obtain such a strain, one might have to consider that the
axial stiffness, either in tension, compression or both; or
that other effects not considered in the conventional lamin-
ate analysis, such as interlaminar or transverse shear de-
formations, might contribute significantly to the overall
laminate deformation.

The influence of the characteristic stress levels for
transverse stress and axial shear of the unidirectional layer
of a boron/epoxy material is examined in Fig. 21. The measure
of this effect is taken to be the influence upon the stress-
strain curve for the unidirectional tension of +30° laminate.
The strong sensitivity to the characteristic axial shear
stress Ty and the relative insensitivity to the transverse
characteristic stress cy for the R~0 representations is
illustrated in the figure. A similar comparison made for a
boron/aluminum laminate of the same geometry subjected to
uniaxial applied stress is shown in Fig. 22. Similar sensi-
tivities are observed for this case. Boron/aluminum laminate
response under transverse applied stress with the same values
of the Ramberg-Osgood parameters is shown in Fig. 23. Here
the fiber failure criterion did not come into play and thus
the computations were extended to rather large strains in
matrix. It is clear, that for this case, the failure criterion
based on other stress-strain components is required. The exam-
ination of the computer print-out permits one to terminate
the stress-strain curves at some stress level prior to fiber
fracture depending upon the choice of the failure criterion.
This can be done rather readily. The choice of the failure
criterion is discussed in Appendix D. \

The lamina properties for boron/aluminum are used to
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analyze a 0°/+30° laminate under combined loading. These re-
sults are shown in Fig. 24. Axial stress-strain curves are
presented for varying ratios of axial shear stress to axial

tensile stress.
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4. CONCLUDING REMARKS

Current approaches to the definition of design allowable
stress for advanced fiber composite laminates are based upon
the utilization of extremely conservative criteria. These limit
the laminate to stress levels below which no significant démage
of any kind occurs. The utilization of overly conservative de-
sign criteria can negate much of the potential for effective de-
sign utilizing advanced composite materials. The heterogeneous
nature of these materials is such that a variety of possible
damage modes exist. Thus, matrix cracking or yielding, fiber
fracture, debonding, and other inelastic effects can all occur
in local regions at relatively low average stress levels. These
nonuniform and nonlinear effects greatly complicate the problem
of establishing reliable design allowables. In the present pro-
gram, the problem of nonlinear laminate behavior resulting from
nonlinearities in the behavior of the matrix material was studied.
The objective of the program was to develop an understanding of
the inelastic behavior of composite laminates and to develop a
computer program which will be used as an engineering tool in
the design of fiber composite laminated structures.

The method of approach utilized herein was to adopt a Ram-
berg-Osgood representation of the nonlinear stress-strain be-
havior and to utilize deformation theory as an adequate repre-
sentation of the material nonlinearities. The problem was viewed
on two levels. First, the relationship between the constituent
properties and the stress-strain response of a unidirectional
fiber composite material was studied. For this problem, the
primary attention herein was directed toward the axial shear be-
havior, in as much as experimental data had indicated that it is
this type of load which results in the most significant nonlineari-
ties in material behavior. For this case, an expression was estab-
lished relating the composite average-stress/average-strain curve
to the fiber moduli and the matrix nonlinear stress-strain curve.
This expression, which was developed as a lower bound, was found

to give good agreement with the more exact results obtained by
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applying incremental plasticity theory and using a numerical
finite element analysis to the assessment of the material be-
havior (Ref. 9).

The second level of approach treats the interelationship
between the properties of the unidirectional layers and those
of the laminate. For this case, one may consider that the
starting point is a nonlinear stress-strain curve for trans-
verse stress, and for axial shear stress, alone, and a linear
stress-strain relation for stress in the fiber direction. The
nonlinear lamina stress-strain curves can be modeled by proper
selection of the Ramberg-Osgood parameters.

In the present study, unlike other formulations an inter-
action expression was formulated to account for simultaneous
application of axial shear and transverse stress. A laminate
having an arbitrary number of oriented layers, and subjected
to a general state of membrane stress, was treated. The results
of this analysis were programmed into an efficient computer
routine for numerical evaluation of arbitrary laminates. Results
obtained show good agreement with those of previous complex
numerical methods utilizing incremental plasticity theory.

Certain limitations connected with this program should
also be discussed. First, deformation type stress-strain re-
lations have been used; hence, it is implicit in this result
that the stress and strain values obtained for any given set
of loads are functions only of those loads and not of the
loading history. On the other hand, if points are computed for
intermediate values of loads, following different load paths,
then different intermediate conditions will be obtained. Thus,
the question is raised as to what is the accuracy of the results
obtained for paths which do not yield proportional loading. It
is known that for local proportional loading, the deformation
theory result is the same as that for the incremental theory.
In the laminate, local proportional loading does not exist,
in general, even when the external loading is proportional. How-
ever, the assumption is made that the deformation theory will
yield an approximation which is satisfactory to generate a
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rational engineering tool. This can only be assessed by com-
parison with an exact analysis, or since this does not exist
for the case of arbitrary loading paths, perhaps by comparison
with experimental data.

Comparisons of the present results with experimental data
tend to show moderately good agreement. There are, however,
cases in which experimental results show a higher degree of
inelastic strain than predicted by the present analysis. These
experimental data are quite limited and may be insufficient
for drawing conclusions in this regard.

The question of failure criteria incorporated into the pre-
sent analysis required further consideration. The present
analysis obtains more accurate representations of the stress
components in the individual layers than have been obtained
from elastic analyses. Hence, the use of these stress components
in any failure criteria should represent an improvement in
failure prediction

In addition to a description of the methods of analysis,
and of the numerical comparisons which have been carried out,
the present report also presents a description of the computer
program for study of nonlinear behavior of laminates in suffi-
cient detail to permit the utilization of this program by

others.
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APPENDIX A

SYMMETRY SIMPLIFICATION OF NON-LINEAR STRESS-STRAIN RELATIONS

The most general inelastic stress-strain relations of the
deformation type are of the form

i3 = Sijk1 %1 (1)

where Sijklare functions of the stresses. Let it be assumed

that the material is transversely isotropic with X axis of

symmetry. Any rotation about X changes Eij and Oij into E'ij
and O'ij’ Then the condition of transverse isotropy demands
that
1 1)
© 13 = Sigk1 9 k1 (2)

where Sijkl in (1) and (2) are the same. To fulfill this last
requirement it is necessary that Sijkl be functions of stresses
only through stress expressions which are invariant for rota-
tions about the Xy axis. There are five such invariants and

they are given by, [15]

2 2

I, =911 I, = 0y%033 I3 = Op5 %033 (3)
I, = 1/2(0,,-0 )2+20 2 I_ =1/2(0,,=-0,,) (O 2—0 2)+20 0., .0
4 - 22 733 23 5 22 "33 12 13 12713723
43,




Thus

I.) (4)

Sik1 T Sigxr (Tyr Ipr Izr Ig0 Ig

It follows that for rotations around the Xy axis of
symmetry the sijkl behave as constants. Consequently, the
symmetry reduction of (1) to transverse isotropy is just
as in elasticity. /

The reduction may be performed in following fashion: For
rotation of angle & about the Xy axls, the stress tensor Oij
transforms into G'ij in the following fashion

11 i1
o'y, = 1/2 (0, + 043) + 1/2 (0,, = 033) oS 28 + 0,3 sin 28
0'33 = 1/2 (0,, + 033) = 1/2 (0,, = 043) cos 26 - 0,4 sin 28
0'23 = 1/2 (033 - ozz)sin 28 + 023 cos 29
0'12 = 04, COS 8 + 013 sin @ ,(5)
0'13 = -0, sin 8 + 0,3 coOS )

The same transformation relations obviously also hold for
strains. If the transformed stresses and strains are intro-
duced into (2) then coefficients of cos 28, sin 26, cos 6 and
sin & and remaining terms independent of 6 must be equal.

These equalities result in relations among the various compo-
nents which reduce the stress-strain law to the form (2.1.4- 5)
from Chapter 2 of this report. (Average stresses and strains
appear in the latter but this obviously makes no differences

in the derivation.)
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APPENDIX B

PLANE STRESS-STRAIN RELATIONS OF FIBER REINFORCED MATERIAL IN
GENERALIZED RAMBERG-OSGOOD FORM

The purpose of the present appendix is to arrive at
equs. (2.2.7). For convenience in writing, overbars on
stresses and strains will be omitted.

The present development is guided by isotropic J2 theory
for deformation type plastic stress-strain relations. The basic
assumption of this theory in the isotropic case is that the
plastic strains have the form

Eij = f(Jz)Sij (l?
where Sij is the stress deviator and

is its second invariant.
It is instructive to work out the form of (1) for Ramberg-
Osgood type stress-strain relations. Suppose that in pure shear

the stress-strain relation is

o %912 0y, 1 (3)
€1, =—= 1+ (=9 1
2G y
Now in pure shear it follows from (2) that
_ 2
Jp = %912
Therefore (3) can be written in the form
o vJ n-1
" _ 12 2
€12 T2z B &) (4)
Y
which is in the form(l). Consequently, in the general case of

three dimensional stress and strain

S vd, n-1
" = 1] 2
i3 sg LY (Ty )] (5)
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It should be emphasized that there is nothing fundamental
about (l). It is an assumption which states that the plastic
strains can be represented by the stress deviator components
multiplied by a function of a quadratic expression in the stress-
es which is J2. The choice of J2 for a guadratic expression
is not arbitrary but may be arrived at by isotropy arguments.

In an anisotropic material it may be assumed by general-
ization that plastic strains are given by

Eij = s £ (L) (6)

ij
Where L is some general quadratic function of the stresses. This

assumption will form tne basis of the present development.

Consider the stress-strain relations (2.1.13). It
is assumed that 552 and 324 functions of the most
general quadratic form in 950 and 01o-
Thus
s, = s, (A5,.° + BT, 5, + C5,.%)
22 22 22 22 712 12
n - 3] — 2 —_— —_ —_— 2 _ (7)
" Sy4 Syq (A022 + B022 915 + cal2 )

It should be noted that the material reacts in same fashion
to positive or negative shear stress, therefore also in same
fashion to some 522 together with positive or negative shear
stress. However, the middle term in the guadratic changes
sign with shear stress. Therefore, this term should be omitted.

Now rewrite (7) in form

n _ J__ 2 - 2 2 = 2
S22 T Bp T2z (0% 0pp" + 87 0y,7)
2 . (8)
w1 2 - 2 2 —
Sga T N £gq (07 0py" + BT 0y, )
Gy
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where f,, and f44 are nondimensional functions and o and g

have dimensions of reciprocal of stress. If 312=0 the first of

(8) assumes the form

" 1 2 = 2
S22 = & T2 (@™ 65,7 (%)
For one dimensional 522 P from the Ramberg-Osgood stress-
strain relation (2.2.6a) '
" =L (022) M-1
22 ET Oy !
which can be written as
) o M-1
L] l . 22 2 ——
S, =z [(o_) 172 _ (10)
T y
It follows from (8) and (10) that
2 _ 1
) (11)
Y
and the function of f22 is determined as (M-1)/2 power.
In similar fashion, when.522=0 , the second of (8) assumes
the form
" _ 1 2— 2
sS4 = 76, faa P12 (12)
From the Ramberg-Osgood relation (2.2.6b) for one dimen-
sional P _
U | ("12) N-1
44 2G, T
T vy
which can be written as
o 2 N-1
n _ 1 12 —=
Sg4 = 35 UFT) 12 (13)
. T Yy
It follows from (12) and (13) that
2 1
™ = =3 (14)
T
y
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and the function f44
(8) now assumes the form

Consequently
; 1 %222 9152 M1
So9 =5 [(6_—) + (=) 1 2
T Yy Yy
e ta 6B e T
T Yy Y

Then (2.2.7) follows from (15) and (2.1.13).
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APPENDIX C

1. EXTREMUM PRINCIPLES OF DEFORMATION THEORY OF PLASTICITY

i. Principle of Minimum Potential Energy

Let
935 = Cijx1 k1 (1.1)
where cijkl are functions of the strains. The strain ensrgy
density is defined by the path dependent integral
c
E —
W=/ o..(e)de, . 1.2
=0 ij ij (1.2)
where £ is a concise notation for Eij . The strain energy

U® of a body of volume V is defined by
vt = S Htav : (1.3)

Let the surface of the body be subjected to the boundary con-

ditions
—— o
ui(S) = u% on Su (1.4)
- -]
Ti(s) T ; on ST

and let the body forces vanish. The potential energy U
p

is defined by

= € - °

Up S av fST T°u, (1.5)
Define an admissible displacement field ﬁi(x) by

~  _ .o

uy u’y on Su

ﬁi(§) continuous everywhere (1.6)
Associated with ai are the strains ¢, , derived from it by

, 1]
- the usual relations.
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5
we o= S 5,. dE,. (1.7)
, ij ij
=
where
955 = Ci3k1(®) &y - (1.8)
Define
0 = [ € L mo (1.9)
Up fvw av fsTl ;8,88

The principle of minimum potential energy for the present case
ti:en states that

U_>U

p {1.10)

p

equality taking place if and only if

In the event that displacements are prescribed over the
entire surface, the surface integral in (1.9) vanishes. Then

the principle reduces to that of minimum strain energy

gt > Ut (1.11)

ii. Principle of Minimum Complementary Energy
Let

- (o) (1.12)
®15 T Cisk1 ‘¥ 9

where S are stress dependent compliances

jk1
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Define the complementary energy density ' by the path
dependent integral
o

0 = 1.13
W / Eijdcij ( )

o=0

Let the surface of the body be subjected to the boundary con-
ditions (L4) and let the body forces vanish. The complementary

energy Uc is defined by

- Oqv - o (1.14)
Up = S av fSuTiu ; as

Define an admissible stress field Gij by the following

requirenents

T, = G,.n, continuous everywhere (1.15)

= ©
Ti(S) T  on ST

Define the complementary energy functional UC by

~ ~

N} - ° (1.16)
fVW av fsu Tiu idS

(=}
il

jae

jae
i
o m

. .4s. . (1.17)
i1 1)

=
il
-

€19 = Si4x1 (@ 9
Then the principle of minimum complementary energy states that

Ue 29 (1.18)
equality occurring if and only if

§.. = 0,.
ij ij

If tractions are prescribed over the entire surface, Su=0'

the principle reduces to

~ (1.19)
©° > u°




For proof of these principles see e.g. [16]. An interesting
application to obtain approximate solutions has been given

in [17].

iii. sSpecialization of the Principles to Axial Shear with

Ramberg-Osgood Stress-Strain Relations

In the case of axial shear of a uniaxially fiber reinforced

material the only surviving stresses are
(1.20)

where 1 indicates fiber direction. Denote the associated shear

strains by

c _ _ (1.21)
127 %2 f13 7 %3
Then the generalized Ramberg-Osgood stress-strain relations,
Appendix B, (5) assume in the present case the form
T n-1
. 2 T
82—2—6[1"' (:["‘) ]
Yy
T n-1
_ 3 T
3=z L1 ) ]
y
(1.22)
t =‘fT22+T32 J2

In the present case

.de.. = 2(1 (1.23)

Gi] i3 2d€2+T3d€3)
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Inserting {(1.22) into (1.23) and using the relation

TdT = T2d T2+T3d T3

it is easily shown that
T T n-1
oijde i3 == [1+n (;*) ] dr (1.24)
Y

To compute W® as defined by (1.2) it is necessary to
integrate (1.24) from zero to some state of strain €yr E3¢
But it should be noted that (1.24) is expressed in terms of
the variable T only. Now T can be expressed in terms of

strains in following fashion. Define

€, + €,
It follows at once from (1.22) that
n-1
2 = L L (1.26)
£ = 36 (1 + (T ) ]
Y
This relation defines 1 as a function of € . Conse-

quently, w® assumes the form

O (€) . -l
-G J T [1+n (?—) 1 drt
° Y
which is easily integrated to yield

2 -1
1+ 20 (1,7 (1.27)

ntl T
y

According to (1.3) the strain energy u® is then given by
the volume integral of (1.27). Note however that it is very
difficult to express U® in terms of strains since this requires
the solution of (1.26) for T in terms of £. In general it is
not possible to do this analytically. This places a severe
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limitation on the use of the principle of minimum potential
energy or of minimum strain-energy with Ramberg-Osgood stress-

strain relations.
Next we consider the principle of minimum complementary

energy for axial shear. Since there are only shear stresses

g

T and shear strains ¢ e, the integrand in W ’

Tar T3 27
(1L.13), is given by

3

B (1.28)
gijdoij = 2(82dT2+€3dT3)

It follows from (1.22-.23) that (1.28) is given by
. - n-1
eijdcij =g 1+ () ] dt
Integration of this expression from 0 to T yields
2 n-1
W= o1+ 2 (I ] (1.29)
Expression (1.29) now enters as the integral into the volume

integral of UC’ (1.14).
We now examine the meaning of an admissible stress field

%2’ T3 in the present case. The only surviving equilibrium
equation is
5% % (1.30)
2 3 _
5%, | 9% =0
2 3
The traction components are
Tl = T2n2+T3n3
~ o (1.31)
Ty = T
T3 = T3

We shall be concerned with cylindrical boundaries in fiber
reinforced materials whose generator is in Xy direction. On such
a surface nl=0. Therefore the only surviving t:action compo-

nent on such a surface is

Tl =1 = 12n2+r3n3 . (1.32)
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Consequently an admissible stress system %3, T3

(1.30) and the value 1° of 7
n n

boundary.
The complementary energy functional (1.16) assumes the form

~

9)

~

W

—t

C

(o)

!

i

[\

wlav - S T.u°.ds

v g 11
2 U . n-1
[1 + _2_ (I—)

G n+l ‘71
y
R

]

wherever prescribed on the

(a)

{b)
(1.33)
(c)

must satisfy
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2. LOWER BOUND FOR AXIAL SHEAR MODULUS
Consider a uniaxially reinforced lamina which is subjected

to axial shear T, in the 1-2 plane on its boundary, fig. 5.

By the average stress theorem, of Ref. 5.

015 = To (2.1)

and all other average stresses vanish.
By the average theorem of virtual work, of Ref. 5,

fveijdo_ij = €559 944 (2.2)

Since the only nonvanishing average stress in the present

case 1s {2.1l) we have
Eijdoij = 2612 dt,
The complementary energy of the body is given by (14) of

(2.3)

Appendix A. The surface integral vanishes however in the pre-
sent case since no displacements are prescribed on the

boundary. Now

Uo =fvw0dv =7, < Eijdé‘ljdv
o=0 (2.4)
s _ . To
= feljdoijdv f° €15 dTo

The last equality following from (2.2, 3).
By definition the effective secant modulus Gg is given by

o
€, = Sli = L (2.5)
Hence (2.4) assumes the form
To TodT, (2.6)
=V [
UC fo 3

GA_(TO)

In order to find a bound on Gz it will be necessary to

find a bound on (2.6) by use of the principle of minimum com-

plementary energy.
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It is assumed that the fibers are infinitely rigid in com-
parison to the matrix. Therefore at fiber/matrix interface

U = 0 ‘ ’ - (2.7)

and the only contribution to the complementary energy is from

the matrix. Thus, the surface integral in (1.33a) vanishes and

it can be written as

Uo = [ W’ av (2.8)

A\
m
where Vm is the matrix volume.

Furthermore, by (2.3.3) the actual stresses are functions

x, only. It is therefore natural to also choose admissible

of x2, 3
stresses as functions of Xyr Xg oo Thus W° in (1.33) becomes

a function of Xy X3 only and therefore without loss of generality
(1.33a) can be taken over unit length in fiber direction. Thus

it can be written

N o]
UC = fAm W (x2, x3) dx2 dx3 (2.9)

In order to construct an admissible stress system it is
necessary to devise a geometrical model for a uniaxially rein-
forced material . 1In past analyses of FRM two kinds of models
have been successfully treated: Periodic arrays of identical
circular fibers have been analyzed numerically with the aid of
computers and the composite cylinder assemblage model has been
treated analytically [1,5] yielding simple closed results. Since
the present treatment is to be analytical the composite cylinder
assemblage model will be used. A detailed description of the
model has been given in[5]. Suffice it to say here that the model
represents a cylindrical specimen of a fiber reinforced material
as an assemblage of composite cylinders of different sizes which
£fill the space in the limit. In each composite cylinder the

inner cylinder is a fiber and the outer shell is matrix material.
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In all cylinders the ratios of fiber to matrix shell radius are
the same, (figure 26).

It is recalled that an admissible stress system must satisfy
equilibrium and boundary conditions. An obvious possibility
for such an admissible field are the stresses of the elastic
solution since they certainly satisfy the required conditions.
These stresses are the same in any composite cylinder of the

assemblage and are given in cylindrical coordinates by (see [5])

2
5 =% = to_ a_
Orz T, i4C (1 + 2) cos 9 (2.10)
r 3
- ~ To a2 .
OQZ = Te = - 'I—_l_—é- (l - —) sin 6

where ¢ is the volume fracgion of fibers, a is the radius of any
fiber and r,gare polar coordinates, fig. 26.
Since % as expressed by (1.33c) is an invariant with

respect to rotations about x, = z we have also

2 2 2
T =3 + 7 (2.11)
r 0

Substituting (2.10) into (2.11l) yields

2 2
T =rp (l+l—+2—— cos 8) (2.12)
p*  p?
where
T
P = 33c 0 = § (2.13)

To simplify the analysis the exponent n in (1.22) will

be assigned the value

n= 3 (2.14)

It has been found that with this value of n, experimentally

obtained shear stress-strain relations of epoxy can be quite

accurately represented with proper choice of 1 y Recalling
(1.33), (2.9) then assumes the form
0= 1 ~2 1 ,T,%, .
UC = 35 fA T2 (1 + 5 (=—) 1 da (2.15)
m y
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where G is the matrix elastic shear modulus. Let the assemblage
consist of K composite cylinder. Define Uck for the kth comp-

osite cylinder by

o4 2
UCk = %E N (x) 1 aa o (2.16)

mk Yy

N

where A, is the matrix area akiribk in the kth composite
cylinder. Then
= K ~k
U= & U (2.17)
k=1

since T2 has been expressed in polar coordinates, (2.12),

it is convenient to also evaluate (2.16) in the same coordinates.

Using the variable p we have

~ B 2m ~ 2
k _ 1 ~2 T (2.18)
UC = 5 I S T o+ (?—) ] pdpde
1 0 y
where
~ (2.19)
B = b, /a

which by construction has the same value in all composite cy-
linders. HNote also that the volume fraction of fibers c is
given by ,

(2.20)

Substituting (2.12) into (2.18) and carrying out the integra-

tion we have

N b2
o) LS S

T .
l-c | ( 9)2 3+10c-12c2-c"
C 2G T

1+c 6 (1+c) "

] (2.21)
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where (2.20) has been used. It is seen that wbzk is the area
of the cross section of the kth composite cylinder and the
parenthesis has the same value for all composite cylinders.

Therefore, if (2.21) is inserted into (2.17) we find

o A 2 l-c T 2 3+10c-12¢%- ¢
U, = 357 To [_"“_‘ + (=2) ] (2.22)
C 2G 1+ & Ty 6 (1+c) "
Let (2.22) be written
~ To du
= 7 L ¢ (2.23)
UC A S . A at. d T,

Without loss of generality (2.6) can be evaluated for unit

height of cylindrical specimen. Thus

To

UC=A fo

TodT, (2.24)
S
Gy (To)

Now introduce (2.23) and (2.24) into the minimum complementary

inequality (1.18). Thus
T du
JERE c _ To (2.25)
1 dr, >0
o A dt, s =
G(To)

Since the integral is positive for all values of T,
the integrand must also be positive for all values of 1, .

It follows that

—Ble o S, (2.26)
dUC/dTo A

where the extreme right denotes lower bound on the secant
modulus 5. Substituting (2.22) into (2.26) and rearrang-
ing we find the lowér bound (2.3.9) of Chapter 2.

There naturally arises the question of the establishment
of an upper bound. The difficulties involved have been dis-
cussed above: It is not in general possible to solve Ramberg-

Osgood relations for stresses in terms of strains. It is
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therefore not possible to analytically express the potential
energy functional in terms of admissible strains.
A possibility to resolve the difficulty is to write in-

elastic stress-strain relations of type (1.22) in the form

- _ (E a-1
T, = 2Ge,, [i (€ ) ]
Y 1
~ o=
_ _ £ (2.27)
Ty = 3G€3 [1 (E—) ]
Yy
e =/ 2.3
82+€3

where o and ¢ are to be determined by curve fitting. The
minus sign in the parenthesis is due to the fact that the
stress—-strain curve is below a straight line with the initial

slope.

It should be noted that (2.27) are not an inversion of
(1.22). They are merely another form of approximation of
actual stress-strain curves.

In principle the representation (2.27) can now be used in
conjunction with the principle of minimum potential energy
to establish an upper bound on G: in same fashion as a lower
bound has been established. It has however been found that in
attempting to fit (2.27) to actual epoxy stress-strain curves
a fractional exponent o was needed. This led to integrals of
formidable difficulty in the evaluation of potential energy

functionals. Therefore this approach has not been continued

here.
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APPENDIX D

FAILURE OF NON-LINEAR LAMINATES

It is expedient to separate the problem of the establish-
ment of failure criteria of laminates into two separate problems:
{(a) Establishment of failure criteria for uniaxially

. fiber reinforced material, i.e., laminae.

(b} Establishment of failure criteria of the laminate

on the basis of laminae failure criteria.

A great deal of wrok has been done on problem (a). The
problem has been approached in micro as well as macro-fashion.
In micro-approach, it is attempted to predict failure on the
basis of local analysis of the interior of the composite. Such
an approach evidently encounters extreme difficulties. Although
important work of fundamental nature has been done in this area,
we shall not be concerned with it here since the work has not
advanced to the stage of prediction of failure criteria under
states of combined stress.

In the macro-approach, a failure criterion is heuristically
postulated as some function of pertinent state variables (gener-
ally average stresses) which also contains undetermined para-
meters. These parameters are then to be determined in terms of
experimentally accessible information.

We shall in the present discussion limit ourselves to states
of plane stress. The simplest failure criterion is the so-called
maximum stress criterion which states that failure occurs when
either one of: stress in fiber direction, stress transverse to
fibers, shear stress, reaches its critical value, these cri-
tical values being the same whether or not the stresses act

simultaneously. In symbols the criterion is:

Oll = OA
or
(1)
922 T 9p
62. or )
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where 1 is fiber direction and 2 is the transverse direction.
Generally, failure stresses 0Op and Oq are different in
tension and compression. This is known as Bauschinger effect.
There is evidently no Bauschinger effect for the shear stress.
The simplest generalization of (1) to account for Bauschinger

effect would be to assume as failure criterion:

0, =9 i 9070
o1y = OA— if 0,4 <0
0pp = g if T92 7 0 (2)
Opp = Tpp 92 = 0
01, = Tar 2 912
whichever occurs first, where (+) and (-) superscripts denote

failure stresses in tension and compression respectively. The

main drawback of these simple criteria is in that they take

no account of interaction effects.

The most commonly used criterion which takes into account
interaction is of quadratic form. For plane stress it has the

form

Allgli * By 0y * B120110,5% Byy0ys = 1 (3)
Here, products of shear stress with normal stress have been
omitted since the material cannot distinguish between positive
and negative shear stress. Therefore, odd powers (one, in this
case) of shear stress cannot appear.
Applying (3) to failure for stress in fiber direction
alone, stress transverse to fiber direction alone, shear stress

alone, in turn, it is seen at once that
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Ay = 2
A
1
A = e
22 2
9p (4)
1
A =
44~ T2
The coefficient A is troublesome since its determina-

12
~tion requires a failure experiment under combined stress.

Several authors have proposed to use failure experiments on
off-axis specimens under uniaxial stress for the determination
of A12° See e.g. [18] for discussion.

The situation becomes more complicated if it is required
to take into account Bauschinger effect, that is difference of
failure stresses in tension and compression. One possibility
to account for this effect is to assume that All"AZZ assume
different values for tension and compression. The situation
regarding A12’ however, becomes very awkward as it wquld have
to assume four different values to account for four different
possibilities of sign combination in biaxial stressing
and

It is also possible to add linear terms to (3) in which
case it would assume the form:
2, 2 + + A 2 + (5)

B11971 TRy,9,; A12911922 44912

Bloll + B2022 =1

Such a device was suggested by Hoffman [19]. In this case it
is possible to determine values of All’ Bl’ A22, B2 to account
for different tensile and compressive uniaxial failure stresses
in fiber direction and transverse to it. But the difficulty of
assigning four different values to Al2 remains, unfortunately.

In summary, the status of quadratic failure criteria has
to date not been finalized. However, special versions of such
criteria have been successfully fitted to experimental data.

It is of importance to realize that in the fiber rein-
forced materials used in practice failure predictions on the
64.




basis of maximum stress criterion or quadratic failure cri-
terion are not very different. This is due to the large
ratios between strength in fiber direction and transverse
and shear strengths and is easiest realized by considering
the failure criteria as surfaces in Gypr Ogpr 019 stress
space. The maximum stress criterion is a very elongated
rectangular parallelopiped while the quadratic failure cri-
terion is an ellipsoid. For A12=0, Fig. 25 shows this
schematically on a cut in the G117 %99 plane. Thus it is
seen that stress points on the two failure surfaces are close
together for most parts of the surfaces.

The situation would be entirely different for a material
and o were of comparable magnitudes.

A’ T
We shall now consider problem (b) i.e., the establishment

in which o

of laminate failure criteria in terms of laminae failure cri-
teria. The most conservative laminate failure criterion is to
assume that once any lamina has failed the laminate has reached
its ultimate load. There are cases of laminates in which all
laminae would fail simultaneously and then this criterion would
be justified. For example: a 16 laminate in which the exter-
nal load direction bisects the angle between the fibers.

In most cases, however, a certain group of laminae will
fail first and failure of remaining groups would require fur-
ther increase of load. Therefore a more realistic alternative
is to determine the load at which the first laminae group fails.
At this state, the further carrying capacity of the laminate
may be assumed to be given by the remaining undamaged laminae.
The increase in load which fails another group of laminae is
then determined. This process is continued until failure of
all laminae has taken place.

Still another possibility is to assume that when a lamina
has failed, certain of its stiffnesses reduce to zero. For ex-
ample: suppose that a lamina or group of laminae has failed
in shear. Such a failure implies a crack through the lamina in

fiber direction. In that event, it is reasonable to assume
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that the shear and transverse stiffnesses of the lamina are
zero, but it still retains its stiffness in fiber direction.
If, however, a lamina fails because of the stress in fiber
direction the damage is so widespread that all of its stiff-
nesses will be negligible. According to the type of failures
encountered analysis is continued for the damaged laminate
with the new stiffness rearrangement. This process is con-
tinued until failure of all laminae has taken place.\This
method of analysis seems to be the most realistic but is
also the most complicated.

In almost all of the practical strength analyses of
laminates in the literature, according to any of the methods
outlined above, the stresses used for failure criteria have
been determined on the basis of elastic laminate analysis.
With the present inelastic laminate analysis, more realistic

stresses are available in a better assessment of laminate

.failure loads.
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APPENDIX E

MSC-NOLIN COMPUTER PROGRAM

1. General Description of the Program

This is a computer program developed for the inelastic
analysis of a laminate subject to any constant, arbitrary
combination of in-plane loading. Details of the method of
analysis and of the numerical solution, using the Newton-
Raphson method, have been described in the body of this
report. The essential features of the program are summari-
zed below.

The primary capability of MSC-~NOLIN is to compute lam-
inae properties when the laminate loads are defined. There
is also a limited capability to work with constituent proper-
ties, rather than laminae properties, as the input. Details of
the input options ars discussed subsequently. Basically, the
inputs required are the stress-strain characteristics of the
individual laminae for each of the three in-plane stress
components applied separately. The stress-strain curves for
transverse stress and for stress and for axial shear stress
are defined by Ramberg-0Osgood stress-strain curves. The
parameters for these curves along with the laminae elastic
constants are the required material property inputs.

It has been observed that axial shear stresses in indivi-
dual laminae are a major, perhaps the major, source of non-
linearities in laminate response. Therefore, several additional
options have been included in the MSC-NOLIN to accomodate more
detailed characterization of shear response, First, the lam-
inae shear stress-strain response may be input in tabular
form and a least squares fit to the data is autométically ob-
tained for the R-0 yield stress (limited to the use of an
exponent, n=3). Secondly, the matrix shear stress-strain curve
can be input along with fiber élastic properties and the laminae
shear stress-strain curve will be computed. In this latter case,

the laminae elastic constants are also computed.
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The input specifies one of two options for the determina-
tion of the initial set of stresses to be used in the itera-
tion at each value of applied load on;the laminate. In one
case the stresses found at one load are increased to the load
for which the stresses were evaluated. In the other, and
generally used option, the increment between the initial stresses
used at the nth laminate load value and the actual stresses
found for the (n-1)st load value bears the same relation to the
ratio of those two load values as the similar relation computed

at the previous load cycle, that is,

(n) (n-1) (n-1)  (n-2)
O,. = O.. o. . - 0.

= 1] = ij ij
Fn/Fn-1 Fn=-1/Fn-2

The program contains a number of controls to define: the
size and number of steps of loading at which computations are
made; the maximum number of iterations to be permitted in the
numerical solution; the desired accuracy to be obtained in
convergence; the criteria for divergence of the solution in
the iterative process to avoid the use of unnecessary execu-
tion time in the case of breakdown of the solution procedure.
The program defines the failure of the laminate in a limited
fashion, either on the basis of the maximum allowable stress
in the fiber in tension or compression, or on the basis that
the tangent modulus of the stress-strain curve of the laminate
becomes less than a specified value. Failure due to shear or

transverse stress are not included at this stage in the develop-

ment of the program.

2.  Input

The main features of input in this program are the follow-
ing: '

(a) Specify the number of laminates or problems tb be

solved;
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(e)
(£)
(g)

Define the geometrical properties of each layer;

Define either the material properties of each layer

or the properties of its constituents;

Define either of the following for each layer:

(i)

(ii)

yield'stress in transverse direction and yield
stress in shear;

yvield stress in transverse direction and a table
of values defining shear stress-strain curve for
the matrix plus a set of values of stresses to
be used for the computation of yield stress in
shear;

Specify the type of Ramberg-Osgood relation to be used;
Define the loadings; and

Define the control paraﬁeters.

A guide to the preparation of input data for this program

is given in section 4 below.

3. Details of Output

The output can be divided basically into two steps:

(a)

(b)

Output of Input Data:

The first section of the output deals with the output

of the input data. If the input is in the form of

properties of constituents of the layer, it gives
an output of the properties of the constituents first
and then the computed value of the properties of the

layer; otherwise, it gives output directly the prop-
erties of the layer.

Output of Stresses and Strains:

For each set of loading, the computer prints the
following:

(1)
(2)
(3)

(4)

value of the load applied;

number of iterations for convergence;

stresses for individual laminae with respect
to principal elastic axes of the laminae; and
strains for individual laminae in terms of both

laminae and laminate axes. 69.




4. Input Details for MSC-NOLIN

(1) Read (I5) NSETS

NSETS: number of problems

(2) Read (I5) LAY

LAY:

number of layers in this laminate analysis

(3) Read (I5) INP

INP:

INP

INP

(4 (a)

Option for reading in material properties
= 1; read in material properties of individual
laminae;
= 2; compute properties of laminae from the
properties of constituents.
If INP = 1

(ii) Read (5D15.5) Glz, sy, TY

(iii) Read (D15.5,I5) T, IANG

(b)

If INP = 2
(i) Read (4D15.5) EF, MUF, GF, VF

(ii) Read (3D15.5) EM, MUM, GM

(iii) Read (I5) I2

70.

If I 2 = 0; read in SY and TY
(1) Read (2D15.5) SY, TY

If I 2 =1; TY is to be computed
(i) Read (5,1002) SYCE
(ii) Read ( 2 I 5) NUMT
NUMT = number of values in the table

(iii) Read (5D15.5) TAU (J), J=1, NUMT
(Table of shear stress values of
matrix read in)

(iv) Read (5D15.5) GAM (J),J=1, NUMT
(Table of shear strain values of
matrix read in)

(v) Read (5D15.5) SGl2 (J), J=2,11
(Table of shear stress values of
laminae read in)




(5)

(6)

(7)

(8)

(9)

(10)

Read (5D15.5) XN, XM

XN: exponent in nonlinear transverse stress-
strain law;

XM: exponent in nonlinear shear stress-strain
law.

Read (5D15.5) S0O11, S022, sO12

S011l: applied stress in X—~direction
S022: applied stress in Y-direction
S012: shear stress in XY

Read (I5, D15.5) KSGM, SMLT
KSGM: total number of loading increments

SMLT: ratio of load increment to the initial
load.

Read (Dl15.5) STIFF

STIFF: tangent modulus of stress-strain curve
in terms of the laminate axes; specify
a value of STIFF below which the program
will not run.

Read (p15.5) SGR

SGR: maximum allowable stress in the fiber in
tension or compression

Read (I 5, 2D15.5) IT, EPS, UPBD
IT: maximum number of iteration permitted in
Newton-Raphson analysis

EPS: convergence criteria; (ratio of values of
two successive iterations should be less
than EPS)

UPBD: divergence criteria (solution will stop

if ratio of two successive iterations is
greater than loilz)

Read(1I5) INMT

If INMT = 1, the program uses ratio of previous
two solutions as the initial guess
value iteration process;

If INMT = 2, the program uses extrapolated value

of previous two solutions proportioned
on the basis of stress ratio as the

initial guess.
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Coordinate system for unidirectional fiber composite

material.
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Fig. 13 - 0° Tensile stress-strain curves for [0/+60] B/Ep.
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SPACE ADMINISTRATI

... OFFICIAL BUSINESS
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“T'he acronautical and space activities of the United States shall be
conducted 5o as to contribute . . . to the expansion of human knowl-
edge of phenomena in the atmosphere and space. The Administration
shall provide for the widest practicable and appropriate dissemination
of information concerning its activities and the results thereof.”

—NATIONAL AERONAUTICS AND SPACE ACT OF 1958 \

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and TECHNICAL TRANSLATIONS: Information
technical information considered important, published in a foreign language considered
complete, and a lasting contribution to existing to merit NASA distribution in English.
knowledge.

TECHNICAL NOTES: Information less broad SPECIAL PUBLICATIONS: Informatiox?

in scope but nevertheless of importance as a derived from or of value to NASA acrivities.
contribution to existing knowledge. Publications inzlude final reports of major

projects, moncgraphs, data compilations,
handbooks, sourcebooks, and special
bibliographies.

TECHNICAL MEMORANDUMS:
Information receiving limited distribution
because of preliminary data, security classifica-
tion, or other reasons. Also includes conference

. L o . TECHNOLOGY UTILIZATION
proceedings with either limited or unlimited

PUBLICATIONS: Information on technology

distribution. ‘ used by NASA that may be of particular
CONTRACTOR REPORTS: Scientific and interest in commercial and other non-aerospace
technical information generated under a NASA applications. Publications include Tech Briefs,
contract or grant and considered an important Technology Utilization Reports and
contribution to existing knowledge. Technology Surveys.

Details on the availability of these publications may be obfained from:
SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546




