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NON-LINEAR BEHAVIOR OF 
FIBER COMPOSITE LAMINATES 

by Zvi Hashin, Debal Bagchi and B. Walter Rosen 
Materials Sciences Corporation 

SUMMARY 
The non-linear stress-strain behavior of fiber composite 

laminates has been analyzed to define the relationship between 

laminate behavior and the non-linear stress-strain characteris- 

tics of unidirectional composites.  The resulting analysis has 

been programmed to yield an efficient computerized design and 

analysis tool. 
The approach utilized herein was to adopt a Ramberg- 

Osgood representation of the non-linear stress-strain behavior 

and to utilize deformation theory as an adequate representation 

of the material nonlinearities. The problem was viewed on two 

levels. First, the relationship between the constituent proper- 

ties and the stress-strain response of a unidirectional fiber 

composite material was studied. For this problem, the primary 

attention was directed toward axial shear behavior, and an ex- 

pression was established relating the composite average-stress/ 

average-strain curve to the fiber moduli and the matrix non- 

linear stress-strain curve. Second level of approach is to treat 

the interelationship between the properties of the unidirectional 

layers and those of the laminate. For this case, the starting 

point is a non-linear stress-strain curve for transverse 

stress and for axial shear and a linear stress-strain relation 

for stress in the fiber direction.  The non-linear lamina 
stress-strain curves can be modeled by proper selection of the 

Ramberg-Osgood parameters. In the present study, with this as a 

starting point, an interaction expression was formulated to ac- 

count for simultaneous application of axial shear and transverse 

stress. 
A laminate having an arbitrary number of oriented layers 

and subjected to a general state of membrane stress was treated. 

Parametric results and comparison with experimental data and 

prior theoretical results are presented. 



1.   INTRODUCTION 

A basic requirement for the engineer designing with fiber 

composite materials is a definition of the stiffness and strength 

of these materials under a variety of loading conditions, includ- 

ing cases for which experimental materials properties data are 

not available. For this purpose, it is necessary that he have at 

his disposal reasonably accurate procedures to predict these 

mechanical properties.  Existing analyses can predict the elas- 

tic behavior of a laminated composite quite well when the elas- 

tic properties of the unidirectional materials from which it 

is made are known.  However, the situation has been much more 

complicated and much less satisfactory with regard to the in- 

elastic stiffness and strength of a laminate.  The present pro- 

gram was undertaken to develop a computerized analysis of the 

inelastic behavior of fiber composite laminates which could be 

used as a design tool.  The results of this study and compari- 

sons of these results with experimental data are presented in 

this report. 

It is essential to recognize that the utilization of fiber 

composite materails in structural design involves the incor- 

poration of material design into the structural design process. 

This is illustrated clearly by the fact that the gross mate- 

rial properties of a fiber composite laminate change when any 

change is made in the laminate ply orientations.  Even when 

the designer considers a material formed from a particular com- 

bination of fiber and matrix materials, there remains a large 

number of geometric variables associated with the laminate de- 

sign.  Thus, in the preliminary design phase, experimental mate- 

rial properties data will generally be too limited.  In the 

case of elastic properties, sufficient capability to synthesize 

the necessary properties exists.  This procedure generally starts 

with the definition of the elastic properties of unidirectional 

fiber composite materials.  These can, of course, be determined 

experimentally.  Also, when such data are not available, they 

can be estimated using a variety of analytical techniques. These 
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latter are generally referred to as micromechanics analyses. 

For example, a set of relatively simple relations for predict- 

ing the moduli of unidirectional reinforced composites are 

presented in [1].  Alternate micromechanics approaches are 

described in [2] to [4].  A review of these methods .is pre- 

sented in [5].  With these properties available, it is assumed 

that the individual laminae are homogeneous and anisotropic. 

A laminate analysis is carried out in a straight forward 

fashion following methods originally developed for such mate- 

rials as plywood, and more recently extended to the more 

general cases associated with fiber composite laminates (e.g., 

[6] to [8]). 

However, contemporary fiber composite materials generally 

consist of elastic brittle fibers such as glass, boron or 

graphite in relatively soft matrix materials such as epoxy or 

aluminum. For these matrix materials it is reasonable to an- 

ticipate that at a certain loading state the matrix will begin 

to exhibit inelastic effects. This results in non-linear re- 

lations between structural loads and deformations.  These in- 

elastic effects can, of course, be expected to have a signifi- 

cant effect upon failure of the laminate.  It is quite clear 

that adequate definition of these failure conditions are 

essential to achieve structural designs of high reliability. 

In the present study, a non-linear laminate analysis has 

been developed which can provide realistic assessments of the 

stresses and strains in the various laminae and of the inelas- 

tic stiffnesses of the laminate at any stress level.  This in- 

formation can be used for assessment of such effects as struc- 

tural stability or structural stress distributions. The stress 

distributions in the laminae and the laminates can also be 

utilized for the development of more realistic failure criteria. 

Inelastic matrix behavior can be classified broadly as 

either time dependent or time independent. Time dependent be- 

havior is called viscoelastic if linear and creep if non-linear. 

Polymeric matrices such as epoxy do exhibit such behavior. In 
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the case of metallic matrix materials, such as aluminum, time 

dependent effects are generally negligible unless elevated 

temperature conditions are considered.  The present study is 

concerned with time independent non-linear matrix behavior 

which is of significance for both polymeric and metallic matri- 

ces.  Throughout this paper the expression "inelastic" is used 

to describe this time independent mechanical behavior.  The 

method of approach to these problems is similar to that of the 

elastic analysis.  Thus, it is necessary to determine, first, 

the inelastic properties of the unidirectional fiber composite 

materials.  This can be done experimentally or by micromechan- 

ics methods.  Given this information, a method to determine 

stresses and strains in an inelastic laminate is then devised. 

The problem is complicated by the fact that the inelastic 

stress-strain relations are non-linear. 
A limited number of pertinent investigations can be found 

in the literature.  Hill [4] considered, in approximate 

fashion, a limited aspect of inelastic behavior of a uniaxially 

reinforced material: the case of stress in fiber direction 

combined with isotropic transverse stress.  Petit and Waddoups 

[6] devised an incremental method for laminate analysis in 

which it was assumed that in single laminae there is no inter- 

action of stress components in different directions as far as 

lamina deformation is concerned.  This assumption is restric- 

tive, and also their incremental laminate analysis scheme is 

unduly complicated.  Adams [7] used a finite element technique 

for numerical analysis of unidirectional materials in the form 

of periodic fiber arrays under conditions of plane strain. 

Huang [8] gave an approximate analysis for transverse inelas- 

tic behavior for a unidirectional material in plane strain, 

but it is diffucult to assess the validity of the approxima- 

tions introduced. 
A detailed analysis of the inelastic laminate problem 

has been given by Foye and Baker [9].  Using finite element 

methods, they computed the inelastic effective properties of 

unidirectional rectangular and square arrays of elastic fibers 



in inelastic matrix. These properties were then used in an 

inelastic laminate analysis.  The analysis is based on 

incremental plasticity theory and is, unfortunately, very 

complicated and requires a great deal of computer time. The 

results obtained are, however, of great importance for com- 

parison with results predicted by more simplified theories, 

such as the one which will be given in the present work. 

The body of this report is divided into four major sec- 

tions.  In the first, consideration is given to the behavior 

of unidirectional fiber composite materials.  This requires: 

a definition of the appropriate form of the inelastic stress- 

strain relations; some consideration of the relationship be- 

tween composite properties and constituent properties; and a 

definition of the appropriate form of the interaction between 

various stress components. The basic objective in this phase 

of the report was to define appropriate constitutive relations 

for the individual lamina which can be used in the non-linear 

laminate analysis.  Further, there is a desire to gain some 

insight into the influence of the particular constituent 

properties upon the lamina stress-strain relations.  In this 

phase of the study, it is found useful to characterize the 

unidirectional material with the aid of Ramberg-Osgood stress- 

strain relations. 

In the next section of the report, the analysis of the 

inelastic behavior of laminates is described.  Here, a pro- 

cedure for incorporating the non-linear constitutive relations 

into an analysis which defines the state of stress in the in- 

dividual laminae under an arbitrary set of external loads, 

is defined.  Analyses are developed for the case of symetric 

laminates subjected to membrane loading. The equations which 

are developed uniquely define the desired laminate internal 

average stress distribution under a given set of membrane loads. 

Governing equations, however, are non-linear and require numeri- 

cal solution procedures.  An efficient algorithm has been de- 

fined which enables computer solution to be achieved for arbitrary 
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laminates at minimal cost.  The solution is obtained by appli- 

cation of the Newton-Raphson method. 
In the final section, the computerized analysis which has 

been developed is applied to series of problems.  The first 

group presents comparisons with'various analytical results from 

the more complex analyses of Ref. [6] and [9].  The second group 

of numerical results presents comparisons between theoretical 

results from the present model and available experimental data. 

The third group of results provides several parametric studies 

to gain insight into those factors which contribute signifi- 

cantly to the non-linear behavior of fiber composite laminates. 

Also, computations have been made to provide a preliminary 

assessment of combined load effects including comparisons with 

limited experimental data. 
Details of the various analytical developements, as well 

as descriptions of the computer program, are presented in 

appendices to the report. 
The principal result of the present program is a computer 

program which provides a simple engineering tool which can be 

used for the parametric study of the influence of material prop- 

erties upon laminate performance.  This laminate analysis capa- 

bility can be used by the structural designer to define design 

allowable stresses and to aid in the selection of fiber com- 

posite materials for structural applications.  A comparison of 

the present results with the limited amount of available experi- 

mental data shows good agreement.  There are, however certain 

cases in which the agreement is not good, par ticularly as the 

laminate loading approaches failure.  The results of the present 

analytical method agree well with the results for those prob- 

lems for which more exact and more complex analytical results 

exist. 



2.   NON-LINEAR STRESS-STRAIN RELATIONS OF UNIAXIAL 
FIBER REINFORCED MATERIALS 

2.1  General Form of Stress-Strain Relations 

An effective stress-strain relation of a composite mate- 

rial is defined as a relation between average stress ö.. and 

average strain e...  Here and in the following latin indices 

range over 1, 2, and 3.  If the composite is elastic the 

general effective stress-strain relation takes the form 

o . .   =C*,.M  e. , 
X]       ljkl    Kl 

where Cf ., -, 
xjkl 

(2.1.1) 

are the effective elastic moduli which are material 

constants and are thus independent of stress or strain. Thus, 

(2.1.1) is a linear relation between average stress and strain. 

If the composite is subject to symmetries the form of 

(2.1.1) simplifies.  For a uniaxial FRM the most important 

cases of symmetry are transverse isotropy, around fiber direc- 

tion, and square array (square symmetry).  In these cases the 

stress-strain relations (2.1.1) for transverse isotropy assume 

the form: 

an   = C*u  if.ii  +  C*i2   e22  +  C*i2   e 3 3 

rT =    P* F +     C* F +     C*- £ 022 v-    12     Ml     T    °   22     t2 2 °    23 33 

033     =    C*12     Ell     +"C*2 3     £22     +    C*22     £33 

a i2   =  2C 1 2 
(2.1.2) 

and 

a23  =  2C*5 5   e2 3 

c 31   =  20*^^   e 31 

C*55=     (C* 2 2_>~    2 3 )/2 

(2.1.3) 

In (2.1.2-3) 1 indicates direction and 2, 3 perpendicular direc- 

tions transverse to 1. 

In the event of inelastic matrix and elastic fibers, the 

situation is much more complicated since the stress-strain 



relation are nonlinearity and history dependent. In no case is 

stress proportional to strain so that superposition of effects 

is not valid, and in order to determine current strain it is 

not sufficient to know current stress but it is necessary to 

know precisely the variation of stress which preceded its cur- 

rent value.  Thus, for a material in a known state of combined 

shear and uniaxial tension, the state of strain is different 

if:  (a) tension is first applied and then the shear, (b) shear 

is first applied and then the tension- (c) tension and shear 

are applied simultaneously.  For this reason stress-strain re- 

lations must be presented in incremental form. That is, strain 

increment is related to stress and stress increment. This com- 

plicates matters enormously.  However, it is known that in 

the case of proportional loading, that is, all stresses at a 

point grow simultaneously in a fixed ratio to one another, 

incremental theory can be integrated into the much simpler 

total or deformation theory for which current strain is com- 

pletely determined by current stress. 
Deformation theories have a wider range of validity than 

proportional loading. Comparison of numerous detailed solutions 

carried out both incrementally and by much simpler deformation 

theory show surprising agreement in many cases, and Budiansky 

[10] has shown that deformation theory can also be valid for 

"neighboring" loading paths. 
In the present work, we are concerned with composites 

which are subjected to some external load. If it is supposed 

that the various external load components grow proportionally, 

this does not necessarily imply that the components of stress 

at a typical internal point also grow proportionally. It is, 

however, felt that the manner of growth of these internal 

stress components cannot deviate severely from proportional 

loading if external loading is proportional.  Consequently, 

deformation type stress-strain relations are assumed for the 

matrix. 
This assumption results in considerable simplification. 

It will be seen that it yields results which are extremely 



close to the ones obtained in [9] on the basis of the much 

more complicated incremental theory. 

It is shown in Appendix A that for elastic fibers and 

an inelastic matrix described by deformation type theory, the 

effective stress-strain relations for a transversely isotropic 

or square symmetric FRM are: 

En = Sii on + S12 cr22 + S12 er 3 3 

£22 = S12 cr 1 1 + S22 o22 + S23 o 3 3 

£.33 = S12 Ö11 + S23 022 + S22 cr 3 3 

£ 1 2 = 2S 4 it a 1 2 

£23  = 2S55  023 

e 1 3 = 2 S i, it a 1 3 

(2.1.4) 

and 

>= (SS ,)/2 (2.1.5) 

The coefficients S,,, S,?, etc. are the effective inelas- 

tic compliances of the material and are functions of the aver- 

age stresses, or rather of certain invariants of the average 

stress tensor. 

We are here primarily concerned with thin uniaxially re- 

inforced laminae which are in a state of plane stress.  Let 

x, denote fiber direction, x_ direction transverse to fibers 

in lamina plane, and x.. direction perpendicular to lamina, 

Figure 1.  Then the plane stress condition is expressed by: 

0 1 3 ~ 0 2 3 =   033=0 (2.1.6) 

Equs. (2.1.4) then assume the form: 

En = S11 O11 + S i 2 Ö22 

£22 = S12 Oil + S22 Ö22 

£ 12 =2841, a 12 

(2.1.7) 



Note that e,3 does not vanish.  It is however of no interest 

for present purposes. 
The inelastic compliances in (2.1.7) are functions of 

the stresses a,, , a22  a,,
1 

It is convenient to split the strains in (2.1.7) into 

elastic strains eaß, and inelastic strains E^. Thus: 

'aß aß + e a£ 
(2.1.8) 

where here and in the following greek indices range over 1, 2. 

The elastic strains are recovered after unloading of the com- 

posite and are related to the stresses by elastic stress-strain 

relations.  Thus: 

E 1 1 - S 1 1 on  + Si2 o 22 

-i     i _      ■  _ 

£22 = Si 2 Oil  + S22  022 

— I        I _ 

e i 2 =2Si, i, a 12 

(2.1.9) 

where 

S.l = =- 

A 

S 2 2 = 

A 
EA 
1 
4G 

(2.1.10) 

A 
Here E  is the effective Young's modulus in fiber direction, 

v - the associated effective Poisson's ration, ET - the effec- 

tive Young's modulus transverse to fibers and GA - axial effec- 

tive shear modulus, related to 1-2 shear. 

The inelastic, permanent, strains then have the form: 

Ell - Si i  On  + Si 2 Ö22 

— "     " —      " _ 
£22 = Sl2  O  11+ S22  Ö22 
_ 11 11   — 

£12 = 2S^i, 0i2 

(2.1.11) 

where 

(2.1.12) 

'2ß 
= S (Oil, 022 , 012) 
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In order to further simplify the stress-strain relations 

(2.1.11-.12), some specific features of FRM will be taken into 

account.  In such materials, the fibers are by an order of mag- 

nitude stiffer than the matrix (for the case of boron and/or 

graphite fiber in an epoxy matrix the ratio of fiber to matrix 

Young's modulus can be in excess of 100).  The stiffness ratio 

becomes larger in the inelastic range since the matrix loses 

stiffness (i.e., flows) while the fibers retain their stiffness. 

It is, therefore, clear that the stress a,, in fiber direction 

is practically carried by the fibers alone, with insignificant 

matrix contribution. 

On the other hand, the transverse stress a__ and the shear 

stress a, „ are primarily carried by the matrix with little 

fiber contribution. 

It follows that inelastic behavior of the FRM is produced 

primarily by a?_ and a, ? while inelastic behavior for a.. , load 

can be neglected. 

The foregoing comments are summarized into two basic 

assumptions: 

(a) the inelastic strains e 22 and £-.„ are not functions 

of a 11 

(b)  the inelastic strain e,, always vanishes. 

On the basis of these assumptions, the stress-strain re- 

lations (2.1.11-.12) simplify to: 

_ n 
Ell 

— II 

£22 

— it 

£12 

=   0 
H _             _ _ 

=    S22 (<?22 ,        Ö 1 2 ) 0 22 

11 _               _                      — 

=    2Sl4lt 1.0 22 r    C12)            012 

(2.1.13) 
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2.2  Plane Stress-Strain Relations in Rambera-Osgood Form 

A convenient representation of non-linear one dimensional 

stress-strain relations has been given by Ramberg and Osgood 

[11].  For uniaxial stress, for example: 

e = JL   El + k (jV)-
1] (2.2-1) 

where E1 represents the elastic Young's modulus, and k, a', 

and m are three parameters to be obtained by curve fitting. The 

parameter a'   is sometimes called nominal yield stress.  Equa- 

tion (2.2.1) represents a family of curves with initial slope 

E.. , and monotonically decreasing slope with increasing a.   The 

curves flatten out with increasing m (Fig. 2).  Without loss 

of generality (2.2.1) can be written in the form: 

e = |-  [1 + (^)m-1] (2.2.2) 
1       a 

y 

which will be used from now on.  Similarly, a stress-strain 

curve in shear can be represented in the form: 

Y = a" n + (^n_1l (2.2.3) 
T 

3X [1 + (—-)> 

y 
where G, is the elastic shear modulus. 

It should be emphasized that (2.2.2-.3) are valid only for 

one dimensional cases.  The question of the generalization to 

general states of stress and strain has no unique answer. One 

common used form is isotropic J2 deformation theory [12]. 

Next, we consider the case of effective or macroscopic 

stress-strain relations for the special case of a uniaxially 

reinforced material in which the matrix in non-linear, with 

stress-strain relations in Ramberg-Osgood form. 

Consider, for example, the case of uniaxial average stress 

ö   in direction transverse to fibers, all other average stresses 

vanish.  It then follows from (2.1.7) that: 

£22 = S22 (ö22) ö22 (2.2.4) 

12. 



Similarly, if the only nonvanishing average stress is a,-, 

the shear stress-strain relation of the composite is: 

e12 =2S^^ (o 12)  a 12 (2.2.5) 

Evidently the inelastic effective compliances S„2 and 

S.. are functions of the parameters of the inelastic Ramberg- 

Osgood stress-strain relations of the matrix, of the elastic 

properties of the fibers and of the internal geometry of the 

composite.  Actual prediction is a very difficult problem. Such 

problems will be cnsidered in limited fashion in the next para- 

graph. 
Just as matrix stress-strain relations are represented in 

Ramberg-Osgood form, the same type of curve fitting can also 

be applied for the effective stress-strain relation of the 

composite.  Thus (2.2.2-.3) are written in the form: 

z 12 

022 az2M-l 
ET [1 + (—>    ] 
T       y 

2GA     Ty 

(a) 

(b) 
(2.2.6) 

Where E . is the effective transverse elastic Young's modulus 

G - effective axial elastic shear modulus and a   ,   x , M and 
A y  y 

N are curve fitting parameters which are in general quite 

different from the corresponding Ramberg-Osgood matrix para- 

meters. 

A question of fundamental and of practical importance is 

the form of the stress-strain relations for the case of plane 

stress, taking into account interaction among the various stress 

components. It should be noted in this repsect that (2.2.6) 

are special stress-strain relations when cL« or a, ~ act only 

by themselves. 

It is recalled that equations (2.1.13) represent the 

inelastic parts of the strains for plane stress-strain re- 

lations for FRM with stiff fibers.  It is shown in Appendix B 
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that the  Rainberg-Osgood  form of  such plane  stress-strain re- 
lations   is  as   follows: 

P 12 

— II 

ez2  = [(^)2 

El2 = 
2GA  y 

y 

+ (|^)2] 
y 

M-l 
2 

N-l 
(2.2.7) 

The parameters E , G , a   , T , M, N in (2.2.7) are those of 

the one dimensional stress-strain relations (2.2.6) which may 

be regarded as experimentally (or perhaps theoretically) known. 

The inelastic parts of the strains are given by (2.1.9- 

.10), and the total strains are then given by adding equations 

(2.2.7) and (2.1.9). 

Equations (2.2.7) have been compared with computed numeri- 

cal results given in [9].  Reasonable agreement was obtained. 

Comparisons for the interaction cases of transverse stress, ö_2' 

versus transverse strain, £->-,, in the presence of axial shear 

stress, cf,„, and axial shear stress, o,„,   versus axial shear 

strain, Y-i2' 
are shown in Figures 3 and 4 respectively (in both 

cases a^^/a, „ = 8/3).  It is seen that the agreement is fair 

for transverse stress-strain relations (Fig. 3) and very good 

for the shear stress-strain relations (Fig. 4). 

Figures 3 and 4 also show the stress-strain relations ob- 

tained from Eqs. (2.2.7) for one dimensional transverse tension 

a?„, and axial shear, 0,„, respectively. 
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2.3 Axial Shear Stress-Strain Relation 

This paragraph is concerned with the problem of prediction 

of a one dimensional effective axial shear stress-strain re- 

lation of a uniaxial FRM in terms of matrix and fiber properties 

and the internal geometry of the composite. 

The main reason for concentrating on the axial shear prob- 

lem is that the inelastic effect is predominant in axial shear 

for which significant nonlinearity of the stress-strain response 

is obtained (e.g., Figure 4).  The effect in fiber direction is 

practically non-existent as has indeed been assumed above, and 

is relatively small in transverse stress which is shown by the 

small curvature of the stress-strain relation in this case 

(e.g., Figure 3). 

On the basis of all this, it can indeed be assumed as 

first approximation that the nonlinearity of the uniaxial FRM 

is limited to axial shear alone. 

Consider a uniaxially reinforced lamina which is subjected 

to pure axial shear, Figure 5, on its surface.  The boundary 

conditions are: 

x3 = + t/2 

x., = + b 

x. = + a 

0 3 1    =   032    =   o 33    =    0 

O12     =    TQ 022=02 3 

"12     =    T0 

(2.3.1) 

On = o13 = o 

It may be shown that under such load the only nonvanishing 

average stress in the composite is: 

(2.3.2) 
Ol2 = T, 

It would seem at first that, given the complexity of the in- 

ternal geometry of the composite, the state of stress at any 

interior matrix or fiber point is generally three dimensional. 

Surprisingly enough, however, this is not so and the only non- 

vanishing stress components in the interior of the composites 
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are the shear stresses a,-and o13/ which are moreover func- 

tions of x„ and x^ only. Thus, the interior state of stress 

is : 

Ö12    =    Ö12      (X2,     X3) 

a 13 a13   (x2,  x3) 
(2.3.3) 

oil    =   CT22    =   0" 3 3    =   a23    =    0 

The validity of equations (2.3.3) for the case of an elastic 

composite has been proved in [5].  Their validity for the pre- 

sent much more general inelastic case will be shown elsewhere. 

The effective stress-strain relation of the composite in 

axial shear is defined by: 

T 

£12 =    g12 

2G? 2G: 
(2.3.4) 

Gl=    6S<°X2> Gj(x0) 

where G is the effective secant shear modulus of the mate- 

rial. The nonlinearity of the stress-strain relation is ex- 

pressed by the fact that G function of the applied stress. 

It is seen that in order to determine G it is necessary 

to compute the average shear strain e,? for given applied 

shear stress.  This is a formidable problem even with the 

simplification (2.3.3) and we shall content ourselves with a 

brief outline of its formulation.  To simplify matters, the 

fibers shall be assumed to be ideally rigid relative to the 

matrix.  This is a very accurate assumption for the case of 

Boron and Graphite Fibers.  There is no difficulty to extend 

the formulation to the case of non-rigid elastic fibers. 

In view of (2.3.3) the problem is two dimensional and 

need only be considered in a typical x_, x., section.  In the 

matrix domain: 
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3a- +  42JL1 = o 
3x2   '  3x3 

c12 =|^ [1+ ( 
T .n-1. 

(2.3.5a) 

(2.3.5b) 

El3 - 2G~ [1 + {~T]        ] 
(2.3.5c) 

T   —   V 9 0 
an  + <Ji3 

(2.3.6) 

El2 

El 3 

1 3uj_ 
2 3x2 

1 3uj_ 
2 3x3 

Ul = Ul (X2' X3) 

(2.3.7a) 

(2.3.7b) 

(2.3.8) 

and, u, = 0 at fiber/matrix interface. 

Here egu. (2.3.5) is the only surviving equilibrium 

equation, (2.3.6) are Ramberg-Osgood stress-strain relations 

for isotropic J_ theory (2.3.7) are usual strain-displace- 

ment relations in which u„ and u, do not enter since it may 

be shown that they are not functions of x, and (2.3.8) ex- 

presses the ideal rigidity of the fibers. 

Equs. (2.3.5-. 8) must be solved subject to boundary 

condition (2.3.1).  If this is done the strain £,„ is known 

everywhere and can be averaged to obtain G  from (2.3.4). 

The problem is exceedingly difficult because of the non- 

linearity introduced by the stress-strain relations (2.3.6). 

There is very little hope to solve it analytically for any 

kind of fiber geometry.  It should therefore be handled by 

numerical methods for fiber arrangements and fiber shapes 

of engineering interest. 

Another way to approach an analytically intractable 

problem such as the present one is by variational techniques < 
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In this fashion, approximations or bounds for quantities 

of interest are obtained by methods which are much simpler 

than bonafide solution of the problem.  Such variational 

methods have been extensively used for determination of 

effective elastic moduli of FRM (e.g., [5]). 

In the course of the present work, it has been found that 

variational methods can also be used for inelastic problems 

such as the present one to obtain bounds on effective secant 

moduli.  The main ingredients of the method are: 

(a) Construction of an extremum principle in terms 

of an energy integral such that the true energy 

is the minimum of the integral. 

(b) Expression of the true energy in terms of effec- 

tive secant modulus. 

(c) Establishment of admissible fields to obtain a 

value of the energy integral which is larger than 

the true energy, thus obtaining a bound for G^. 

The work involves complicated developments and deriva- 

tions which are given in Appendix C.  Here only the end result 

for a lower bound on G will be given for a special geometry 

of FRM which is known as composite cylinder assemblage.  This 

geometry has been described in detail in [1, 5] and consists 

of an assemblage of composite cylinders of variable sizes 

which are joined together so as to fill the whole volume of 

the composite. In order to fill the whole volume, composite 

cylinders vary from finite to infinitesimal size.  This geom- 

etry has been used to advantage for elastic FRM to obtain 

simple expressions for effective elastic moduli which are well 

verified by experiment [1, 5]. In the present case only a 

lower bound on G^ has been obtained for the case in which the 

exponent n in matrix stress-strain relations is n=3. 

It has been found that with this exponent and proper 

choice of T , epoxy shear stress-strain relations can be well 

described.  The result for the lower bound is: 
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GA >-  GA(-) 

1+c 
1-c 

1+ (1^,2 3+13c+c
2+c3 

T'     3(1+C)
J 

(2.3.9) 

where 

c - volume fraction of fibers 

G - elastic (initial) matrix shear modulus 

x1 - Ramberg-Osgood matrix stress parameter, and 

T  - applied shear stress. 

It follows from (2.3.4) that: 

El2 < 
(2.3.10) 

2G 
'A(-) 

In other words, with the lower bound on G an upper bound 

on i,_ variation with x  is obtained. 
12 o 
If (2.3.10) is explicitly written in terms of (2.3.9) it 

assumes the form: 

El2 < 
2G 1+c 

1-c 

[1 + (I^)2 3+13c+c2+c3 j 
x'     3(l+cV* 

(2.3.11) 

Recalling that for the composite cylinder assemblage 

with rigid fibers the axial elastic shear modulus G is given 

in [1, 5] as: 

GA= G 1^ 

(2.3.12) 
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comparing (2-3,11) with (2.2.6) with choice of exponent 

(wiixch is the same as matrix exponent) , it is seen that: 

I 2 

> T 3(l+c) 
y  3+13c+c2+c3 (2.3.13) 

The prediction of (2.3.11) has been compared with numeri- 

cal results obtained in [9].  Figure 6 shows the variation of 

the right side of (2.3.11) in comparison with the results ob- 

tained in [9] for a fiber volume fraction, c=0.5.  Since re- 

sults of [9] were for boron fibers in epoxy matrix, the rigid 

fiber approximation is accurately valid.  It is seen that the 

results are reasonably close.  It should be noted that the 

geometry of [9] is a rectangular fiber array which is quite 

different from the composite cylinder assemblage geometry. 

The results defined by (2.3.12) and (2.3.13) used in 

equation (2.2.6) yield the result plotted in non-dimensional 

form in Fig. 7.  The shear strains are normalized with respect 

to the matrix elastic strain, y     , at the yield stress, x : 
ye        -1 y 

T 

Y   = -X- ye  G 
(2.3.14) 

It is natural to also consider the establishment of an 

upper bound on G^.     Unfortunately, however, this is a matter 

of formidable difficulty for the reason that inversion of 

(2.3.6) to express stresses in terms of strains leads very 

complicated expressions.  Further discussion of this diffi- 

culty is given in Appendix C. 

20. 



3. ANALYSIS OF NON-LINEAR LAMINATES 

3.1 Formulation 

The general problem to be investigated in the present 

chapter is as follows:  given the inelastic stress-strain re- 

lations of uniaxially reinforced laminae determined theoreti- 

cally or experimentally, and a laminate composed of such 

laminae and loaded on its edges by uniformly distributed loads 

in the plate of the laminate: 

(a) What are the stresses in the various laminae? 

(b) What is the macroscopic strain response of the 

laminate to the loads? 

This problem has been extensively investigated for elastic 

laminates, and the results obtained will serve as important 

guidelines for the present much more complicated problem.  It 

is therefore very helpful to first briefly review the theory 

of elastic laminates. 

Let the laminate be referred to a fixed system of coord- 

inates x.. , x„, x, as shown in Figure 8. This will henceforth 

be referred to as the laminate coordinate system. 

Any lamina, kth say, in the laminate will be referred to 

its material system of coordinates x, _5       j. 
(k)    (k)     ,      (k) 

, x?   , x, where x. 

is in fiber direction, x_ perpendicular to fiber direction 

and x-, is the same as the laminate x.,, Figure 8.  The reinforce- 

ment angle 9, is defined by: 

9 = * (xx, x1
(k)) = * (x2, x2

(k)) (3.1.1) 

Let it be assumed that the laminae are in states of plane stress. 

It will be later explained under what conditions this is true. 

Then the stress-strain relations of a single lamina referred to 

its material coordinate system are written in the forms: 

^= S (k>  a(k> 

(k) s(k) a(k) 

(a) 

(b) 

(3.1.2) 
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where (3.1.2a) is in tensor notation with range of subscripts 

1, 2 and (3.1.2b) is in matrix notation.  It should be noted 

that (3.1.2) represent the stress-strain relations (2.1.9 - 

.10), i.e., 

a(k)   v(k) 

Ell  F(k)   "TOO*  
a22 

EA      EA 

v(k)   ,„   a(k> 
e 

e 

<k) = -   A  a
(k) +   22 (3.1.3) 

22       (k)  all  +   (k) 
hA ET 
a(k) (k)      a12 

12    ?r (k) 
2G A 

Let a laminate of rectangular form, Figure 8, be loaded 

by a uniform edge stress: 

all(±a, x2) = a±l 

a     (+a, x9) = a   ° 1^ ~   2    12 (3.1.4) 
a12(xl' ±b) = ai2 

a22(x1, +b) = a2° 

The elasticity solution of the laminate must satisfy the 

following requirements: 

(a) Equilibrium of stresses, 

(b) Traction continuity at laminae interfaces, 

(c) Boundary conditions (3.1.4), and 

(d) Displacement continuity at laminae interfaces. 

It is assumed that the stresses in any lamina are con- 

stant, but different in the different laminae.  The condition 

(a) is satisfied within any lamina.  Since the assumed lamina 

stresses are plane there are no traction components on laminae 

interfaces.  Therefore (b) is satisfied. 

The boundary conditions (3.1.4) cannot be strictly satis- 

fied in each lamina but only in an average sense.  To do this 
(k) lamina stresses a Q   referred to lamina material coordinates ap 
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are transformed to laminate axes.  The stresses in the kth 
(k) lamina referred to laminate axes are denoted   a  0.     The 

transformation is given by: 

(k)a11=a^   cos\ +a<k>     sin\  -  2a£>   cos9k  sin ^ 

(k)a„=a<k)   sinV   +a(k>     ™.2a    A  0„(k) 
22=a22     Sln  9k  +a   22     cos   6k  +   2al2     cos9k  sin   9k       (3-1,5) 

k  ~  sin\) (k)al2=^ilioi^sinek   cos\   +  ^2><C08V   -   sin2e 

or in matrix notation: 

(k) £ = 9(k) a (k) (3.1.6) 

Let the edges of the laminate be loaded by constant forces 

per unit length T.,, T_2, T.,2 and define the stresses (3.1.4) 

as edge averages over the laminate thickness h: 

8n= Tn/h 

0° = T„„/h 22   22 (3.1.7) 
a°2= T12/h 

Equilibrium requires that: 

K    &) 

E   0?2 = °22 
k=l   ZZ (3.1.8) 

K   /» 

k=l 

where K is the number of laminae.  Written in terms of stresses 
(k) a   „       using (3.1.6), we have: aß      3 

f    e(k) a(k) = a° (3.1.9) 
k=l 

where a° denotes the stresses a°R at the edges. 23. 



Replacement of the boundary conditions (3.1.4) by (3.1.6) 

is an approximation of Saint Venant type. Thus, there must be 

expected edge perturbations (among them interlaminar shear) on 

the stresses predicted by laminate theory. 

Equations (3.1.8) are three equations for the 3K stresses 

On,   a   „...a „     in the laminae.  There are needed an additional 
aß   a3   ap 

3(K-1) equations which are provided by displacement continuity 

at lamina interfaces, requirement (d). 

Since the stresses in each laminae are by hypothesis uni- 

form, so are the strains.  Therefore, displacement continuity 

is ensured if the lamine strains in adjacent laminae, referred 

to laminae coordinate system are the same.  Thus: 

(k)_  = (k+l)c 
11 ell 

(k)    = (k+1) k=l,2 k 
22        e22 (3.1.10) 

(k)      (k+1) 
12 e12 

Equations (3.1.10) are the additional required 3(K-1) equations. 
(k) They will be written in terms of laminae stresses a   „       referred 

to laminae material axes.  To do this it is noted that: 

(k)£ = i(k) £(k) 

which is just a transformation of (3.1.6). From (3.1.2b): 

(k)£ = 0(k) s(k) a(k) (3.1.11) 

and inserting the last result in (3.1.10): 

9(k)_S(k)a(k) = e<k+1)S(k+1) a(k+1) k=1'2 k (3.1.12) 

Equations (3.1.9) and (3.1.12) are 3K linear equations for the 

3K stresses in an elastic laminate, with K layers. 

It should be carefully noted that the analysis given above 

is based on plane stress conditions in individual laminae.  This 

24". 



is a valid assumption if: 

(a) The loads on the laminate are statically equiva- 

lent to in-plane forces (membrane forces) and pro- 

duce neither bending nor twisting moments, and 

(b) The laminate has a certain stacking sequence of 

laminae which defines a so called balanced or 

symmetric laminate. 

This stacking sequence is an arrangement in which the 

laminate has a middle plane of geometrical and of material 

symmetry. The laminae are arranged in paris with respect to 

the plane of symmetry.  The laminae of such pair have equal 

thicknesses, same distances from middle plane, and are of 

the same material with same angles of reinforcement. 

In a non-symmetric laminate application of membrane 

forces will in general produce bending and twisting of lam- 

inae and thus a plane state of stress will not be realized. 

The symmetric laminate is, however, sufficiently versatile 

to cover most cases of practical interest. 

Let it now be assumed that the laminate is inelastic but 

still fulfills the conditions of symmetry and pure membrane 

loading.  In this case the only equations which necessarily 

change in the preceding development are the stress-strain re- 

lations of the laminae, (3.1.2), which must be replaced by in- 

elastic laminae stress-strain relations are given by (2.1.7) 

where the compliances are now functions of the stresses. These 

compliances now replace the elastic compliances in (3.1.2) 

which thus become non-linear. 

It is convenient for later purposes to rewrite (3.1.2) in 

the inelastic case in different form. To do this the strains 
(k) e  '  are first split into elastic strains (2.1.9) and inelas- 

tic strains (2.1.11).  Preceeding to (3.1.12) this equation 

assumes the form: 

e(k+l)sl(k+l)a(k+l) _ e(k)sl(k)a(k) 

_ i(k+l)£ll(k+l)£(k+l) + gOOglKk) £(k) (3.1.13) 

k = 1, 2  k 
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where 

„1(k) - elastic compliance matrix of kth layer 

sll(k)- inelastic part of compliance matrix of kth layer 

s(k) = sl(k) + sll(k) (3.1.14) 

Equations (3.1.13) are now written out in component form 

with notation (2.1.10), (2.1.12) for compliances: 

0*+1)(sii(*+i,cos26k+i+sia+Hina9k+i) 

«22<*+l' (sJf+1,0OS
29k+1+slf +1)    sin\+1) 

-U™tf+»~.  ek+1si„Vl  -     c*'(8i*io.\  «J*»   .in\> 

.- .11
(wl,<sii"wli=.2.1[+XJ*+1^"aVi' 

+ oi*+i,(sij*+i>=o.j.1[+i«J
ii,k*i,'i»2vi - "^^""'«Vnu 
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(3.1.16) 

^, (k+l)_l(k+l)   „    . - +4a12  S^   'cosek+1 sinek+1 

(k),_l(k) . 2 .  , _l(k) „2 a 0, , (S,,  sin 8, + S,_   cos  9, 

+ 4o,(k) S^k) S^,(k) cos ö. sin 9U 12   12    44       k     k 

= -  o(k+1)(S11(k+1)sin2 6    + S11(k+1)cos2 8   ) °11   (fall     Sln  9k+l + &12     COS  ek+l' 

+4o,r,siia+i,COSk+i si„Vi + 0<«(siJ*>sinVSJi*>C0S29k) 

o*+»,si*«»-sJ*«».lnei[+1oo.9 k+1 

(k+1)   l(k+l)  l(k+l) 
+CT22    (S12     S22    ' Sln9k+1 COs9k+l 

LO (k+1)„1(k+1) ,2-       . 2.   , 
+2ö12   S44    (coS 9k+l " Sln 9k+l) 

- a^ts^10- S^k)) sinek cosek 

+  a(k)(S^(k)-  S^k))   sin9Rcos9k+20;[k)sJf)(cos2ek-sin2ek) 
__   (k+1)  11 (k+1)_  11 (k+1) - -  01X   {S±1 S12     ) sin9k+1 cos9k+1 

(k+1)  11 (k+1)   11 (k+1) 
+CT22   (S12       S22     } Sln9k COs9k 

^   (k+1)„11(k+1) ,2.      • 2_   . +2a{2 >S44 (cos 8k+1 - sin ek+1) 

+ a£>(s£<
k>- S^M)   sin9kcosek 

(k) fsll(k)_ „11 (k)   . 
+ö22  (S12     S22   ) Sln9k COS 9k 

(k) 11 (k)     2   _  .2 
+2a12 S44    (cos 9k  sin ek) (3.1.17) 
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To these must be adjoined equations (3.1.9) which are written 

here in components: 

E(a^cos29k+0^
)sin20k-2a:[^lcosek sin9k)tk = a°±1  h    (a) 

k=l 

E(a^)sin29k+a^
)cos2ek+2a^

)cos8k sin9k) tR = a°2 h  (b) 
k=l 

E(all)_a22))coseksin8k+a12)(cos29k-sin
29k)tk = a°2 h  (c) 

k=l 
(3.1.18) 

We now consider special cases of interest.  In the first 

case the inelastic laminae strains have the form (2.1.13). 

Then the right side of (3.1.15-.17) simplifies by setting: 

cll(k)  cll(k+l) _ Qll(k)_  11(k+1) _ n Sll  = Sll     ~ S12  ~ S12     ~ U 

„ll(k)_ „11 (k) . (k)    ( 
S22  " S22    l°22 '  al 

(k) 
2 

„11(k+l)_ „11 (k+1) , (k+1) (k+1), 
S22     " S22     (°22   ' °12   ' 

„11 (k)  _ „11 (k) ,  (k) (k), 
S44     ~ b44    l a22 ' °12 ' 

„ll(k+l)_ „11 (k+1) , (k+1) „(k+Uv 
S44     " S44     (a22   ' CT12   ' 

(3.1.19) 

Once the stresses in the laminae have been obtained the 

strains in the laminae, referred to laminate axes, are deter- 

mined from (3.1.11).  Since the strains in all laminae are 

the same when referred to the laminate coordinate system, these 
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are also the average laminate strains and thus determine the 

inealstic response of the laminate. 

In the simplest case the lamina material is assumed to 

be inelastic in shear only.  In that event we have in addition 

to (3.1.19) : 

s" 00 _ c"  (k+1) _ n b22    _ S22      " ° (3.1.20) 

and for Ramberg-Osgood presentation of inelastic part of shear 

compliance: 

o  (k)  V1 
„ll(k)_   1   ,12   , 
2S44   _ 9r (k)( (k)' 

2GA    TY 

„ll(k+l)     1     .^"""W1       (3'1-21) 2b
44    ~  9r (k+1)\   (k+1) ; 

2GA     Ty 

In Ramberg-Osgood representation (2.2.1) the inelastic parts 

of the compliances assume forms such as: 

a  (k)       a  (k) 

„ll(k)_   1    r , °22     2   , °12   ,2  1/2(^-1) 
S22   -  (k) [ (  a (k)>   + (  T (k)} ]     * 

ET      Y        y 

a  (k)      a  (k) 

„11 (k) _   1    r ,^22  2   .^12 ,2  1/2 (N -1) 
2S44    - TTlk) [ ( „ (k))    ( _ (k)}  J 

2GA       °y TY 
(3.1.22) 

(k+1)     0     (k+1) 
cll(k+l)     1    r , °22    ,2 , u12     .2  1/2 (M. ,-1) 
S22     = p (k+1) [ ( a (k+l)) (  _ (k+1))  ]    ^+1 

E
T ay        Ty 

(k+1)       (k+1) 
„ll(k+l)_    1 f , °22 2 + (ll2 .2  1/2 (N -1) 
2S44     " or   (k+1) 

[ (  „ (k+1))  + (
T (k+1) ^  J 

2G
A ay        y 
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3.2  Method of Solution 

The equations which define the laminae stresses are (3.1.9) 

and (3.1.13) in condensed form, or equivalently, (3.1.15- 3.1.17), 

(3.1.18) in full form.  To explain the solution method it is 

simpler to write in terms of the condensed form. 

Define the matrices: 

Ll(k+l)=e(k+l)sl(k+l) 

ll(k+l)= e(k+l) sll(k+l) (3.2.1) L 

Ll(k)= Q(k) sl(k) 

Lll(k)     =    e(k)     gll(k) 

Then equs. (3.1.13) assume the form: 

^l(k+l)a(k+l)_Ll(k)a(k) = _Lll(k+l)a(k+l)+Lll(k)a(k) (3.2.2) 

to which are adjoined equs. (3.1.9) which are here rewritten: 

I     9(k)a(k) = a° (3.2.3) 
k=l 

The equations may be solved numerically by an iteration 

method which proceeds as follows:  Consider equs. (3.2.2-3) 

with the right side of (3.2.2) zero.  This defines a set of 
(k) stresses a0 given by: 

Tl(k+1) (k+1)   Tl(k) (k) _ 
_     _°    - _   _°   — 

k = 1,2  k=l     (3.2.4) 

K 

k=l 

(a) 

I     9(k) a0
(k) = a° (b) 

(k) 
Since (3.2.4a) contains only elastic compliances S'   it is 

seen that the equations are linear and define the stresses in 
(k) 

an elastic laminate.  Now insert the stresses a0   into the 
  (k) 

right side of (3.2.2) and define the stresses a^ by: 
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tKk+l)£   (k+l)   _ kUV0_  (k)   = - ^'^[c.^W^ U) 

+L1:L<kWk)]   c0
(k> (3-2-5) 

Z    9<k>a   <k)   =a° (b) 

k=l 1 

(k) 
Equs. (3.2.5) defines (hopefully) a new approximation a^ 

which is the solution of a set of linear equations. The stresses 

in square brackets in the right side of (3.2.5) are to emphasize 

the stress dependence of the non-linear parts of the compliances. 

The procedure just initiated can be repeated indefinitely. 

In general: 

Ll(k+l)a(k+l)_Ll(k)a(k) =_Lli(k+l) [a(k+l)j a(k+l) 

£+1        «,+1 

+L
11(k)[a(k)] a(k) 

(3.2.6) 

*    £(k)a<k>  = a° 
k=l     £+1 

This iteration procedure is quite easy to carry out with 

aid of a computer.  It replaces the solution of a set of non- 

linear equations by solution of a sequence of linear equations, 

provided of course, that convergence is obtained. 

It should be noted that the first iteration step does not 

necessarily have to start with equs. (3.2.4a), i.e., with zero 

right side of (3.2.2).  Any stresses a{0
k)   which fulfill (3.2.4b) 

can be used to start the iteration with (3.2.5) and continuing 

with the general iteration relation (3.2.6). 

It is desired to obtain a laminate solution for only one 

load system a_°  then it would seem most logical to start with 

(3.2.4).  But suppose there is a sequence of loadings Aa°, 

2Aa°...nAa ,  Suppose that a solution for (n-1) Aa° has been 

obtained and that a solution for nAo° is desired.  One possi- 

bility is to multiply all stresses due to the load (n-1) Aa° 

by the factor n/(n-l).  The stresses thus obtained certainly 
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also satisfy (3.2.6b) because of the linearity of these equa- 

tions.  They will generally be reasonable starting values 
llr) 

a    for the iteration. 
o 

This method of iteration to obtain a solution was found 

to work well for many sample problems; however, there were 

cases in which the solution did not converge.  Attempts to modi- 

fy the recurrence relations to overcome this problem met with 

only partial success.  Thus, an alternate procedure for solu- 

tion was defined.  The solution was obtained by application of 

the Newton-Raphson method. 

The set of 3K nonlinear equations represented by equs. 

(3.2.2-.3) may be presented in the form: 

Fn (aijk) = °       n = 1,2 ...3K (3.2.7) 

The function F. is expanded in a Taylor series about an arbi- 

trary set of initial stresses which may be taken as the solu- 

tions of the elasticity problem.  Considering only two terms 

of the series, it is found that 

o 

°    8Fl       k 
F. = F. +  V  Aa    = 0 ,-,„„, l    l   3a  k    mn (3.2.8) 

mn 

or 
o 

a..k= Y.
k - f^-r1  F ° ' (3-2.9) 

1] 13 g     ^ 
ID 

where a.. is the corrected solution obtained from the assumed 
iD  k k 

solution "a...  Using a.. as the initial guess, the process 

is repeated until the result is obtained within a desired ac- 

curacy.  A recurrence form of equation (3.2.9) to obtain the 

stresses at t+1 cycle from t cycle can be constructed as 

follows: 
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3F (3.2.10) 

do . . 
1] 

After the stresses a.. are obtained for all layers of the 

laminate, strains for any layer k in terms of laminae axes 

can be computed using equs. (3.1.3).  Strains in terms of 

the laminate axes can be obtained using the strain trans- 

formation law. 

This analysis has been developed into an efficient 

computer program.  A description of the program including 

a listing, is presented in Appendix E. 
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3.3  Numerical Results 

The computer program which has been developed under the 

present study has been utilized in the analysis of a variety 

of different composite laminates.  The initial studies using 

the computerized analysis were directed at presenting a compari- 

son between the results of the present analysis and those of 

previous analyses, notably that of Ref. 9. (The present results 

were also compared to available experimental data, primarily 

those of Ref. 6 which had also been used for comparison with the 

analytical results in Ref. 9.)  The objective of this phase 

of the numerical study was to determine whether the present 

results, which can be obtained with minimal computer usage, 

compare well with those of the more exact and complex analyti- 

cal results in Ref. 9.  The results of this comparison are highly 

encouraging, as will be shown below, and support the utilization 

of the present analysis as an efficient design tool. 

In the second phase of the design numerical studies, con- 

sideration was given to examining the sensitivity of laminate 

results to individual properties of the layers.  These para- 

metric studies are presented for several classes of typical 

laminates. 

A series of laminates of boron/epoxy composites for which 

experimental data had been obtained in Ref. 6 were examined 

analytically in Ref. 9.  In Figures 9 to 15, results of the pre- 

sent analytical method are added to the comparison of experimen- 

tal results of [6] and analytical results of [9].  For example, 

in Fig. 9, the experimental stress-strain curve for a 0-90 boron/ 

epoxy laminate is compared to the analytical results obtained 

in Ref. 9  and in the present analysis.  Both analytical re- 

sults coincide; both show slightly less inelastic strain than 

the experiment.  The solid point on the curve indicates the 

stress level at which fiber fracture is computed to occur in 

one of the layers of the laminate. 

The shear stress-strain curve used in the present analysis 

was the best fit Ramberg-Osgood curve having an exponent n=3. 
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The values of modulus and yield stress obtained from the least 

squares fit are shown on the figure. A similar result is shown 

for the unidirectional tension +45° laminate in Fig. 10. Here 

it is seen that the two analytical curves are similar, although 

the agreement is not as close as in Fig. 9. Experimental data 

reflect a substantially higher degree of inelasticity than 

either analytical result. The present analysis shows a higher 

degree of inelastic strain at the higher stress level than that 

of Ref. 9. However, the reverse is true in the comparison of 

the two analytical results shown in Fig. 11 for a +30° laminate. 

The present results were obtained with a linear stress-strain 

curve in the transverse direction within each of the layers. 

The computations were made in this fashion because the transverse 

stress-strain curve of Ref. 9 does not show a significant degree 

of inelasticity. 
Figure 12 presents results for the case of a guasi-isotrop- 

ic laminate (0/+45/90) of boron/epoxy. Both the present result 

and that of Ref. 9 show a relatively insignificant amount of 

inelasticity. Again, the experimental data show a greater 

inelastic effect. Here the predicted failure strain level is 

in good agreement with the experimental failure strain level; 

however, there is a significant difference in the failure 

stress level.  A similar result is presented in Fig. 13 for 

the quasi-isotropic laminate formed from the 0/+60° configura- 

tion. 
Computations performed for the present study for laminates 

having fibers in several directions, including the loading direc- 

tion, for a simple unidirectional load have shown a relatively 

small amount of inelastic strain. Another example of this is 

presented in Fig. 14 for a 0/+45° laminate. Here, however, the 

agreement of all the analytical methods and the experimental 

method is very good. 
The final comparison taken from Ref. 9 is presented in 

Fig. 15 for a laminate having fibers in three different direc- 

tions and a tensile load applied at some intermediate angle. 

The present analysis agrees reasonably well with the results 
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Ref. 9.  The discrepancy between the failure load predicted 

on the basis of fiber failure and the experimentally ob- 

served failure stress is quite substantial. It is possible 

that fialure in laminate of this type caould result from 

shearing or transverse stresses within the individual layers, 

and thus, not be a result of tension in the fiber failure. 

This mode of failure has not been treated in the present 

computer program.  The mode of failure observed experimentally 

is not known to the authors. 

The experimentally measured response of a multidirectional 

laminate to an applied shear stress has been reported in Ref. 

13.   Comparison of the experimental result with the theory of 

Ref. 9 was presented in Ref. 14.  Computations for this case, 

made using the present analysis and the prior analytical re- 

sult (Ref. 14), are compared to the experimental result in 

Fig. 16.  Again, correlation between the two analytical re- 

sults is good, agreement between analytical and theoretical 

results is reasonably good with the experimental observation 

showing higher inelastic strains and lower tangent shear moduli 

at the very high stress levels. 

The conclusion of these comparisons with analytical and 

experimental data seem to justify the adoption of the present 

computer program as a useful engineering tool for the design 

and analysis of composite laminates. However, it appears that 

further study of the failure region is required. 

Parametric study of the influence of various laminate 

geometric and mechanical properties has also been explored. 

Fig. 17 shows the results obtained for a 0/+450 laminate in- 

dicating that the inelastic response in the transverse direc- 

tion can become significant at higher stress levels. Failure 

due to fiber fracture under a transverse stress applied to 

the laminate occurs at strain levels larger than those plotted 

in Fig. 17. In the quasi-isotropic laminate having four fiber 

directions, (0/+45/90) the degree of inelasticity in the longi- 

tudinal and transverse directions is of course the same and is 
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in both cases very small.  It is to be anticipated, on an 

intuitive basis, that the maximum degree of inelastic response 

would be observed for a stress applied midway between two of 

the fiber directions on this quasi-isotropic laminate.  The 

stress-strain curve for this latter case is also shown in Fig. 

18.  Although the inelastic strains for this case are not 

significant there is a large difference in the predicted 

failure stress levels based on stress in the fiber direction 

for the two cases.  It is worthwhile to emphasize that the 

quasi-isotropic laminate need not be isotropic in its strength 

characteristics. 
Because of the directional strength characteristics inter- 

esting effects may be expected for combined stress cases. Some 

results of the exploration of this question are presented in 

Fig. 19 where the four direction quasi-isotropic laminate is 

subjected to combined stress state with respect to a 22-1/2° 

axis of symmetry. This laminate shows high strength under both 

the unidirectional load and shear load by itself. The combined 

stress case for equal values of applied shear stress and axial 

stress results in fiber failure, and therefore, laminate failure, 

at a substantially lower stress. The stress-strain curve prior 

to failure is not affected significantly by the presence of com- 

bined stress. The quasi-isotropic laminate having fibers in 

three directions (0/+60) is examined in Fig. 20. The sensitivity 

of this laminate to the Ramberg-Osgood parameters for the indi- 

vidual ply had little effect upon the stress-strain result. In- 

deed as an extreme example of this variation all lamiates stiff- 

nesses except the axial stiffness were equal to zero. Enforcement 

of the Kirchhoff-Love plate assumptions for this case results 

in the so-called netting analysis. The response for this net- 

ting case, which is linear, is shown by the dashed curve in 

Fig. 20. Even with this extreme assumption, matrix inelasticity 

does not introduce a significant amount of inelastic strain. 

Experimental data for comparison with this result are not easily 

available, however Ref. 17 does present a stress-strain curve 

for this case which shows a transverse failure stress for the 
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quasi-isotropic 0/+60° laminate which is about 60% of the 

failure stress in the axial direction. Also, the inelastic 

strain at failure is approximately 30% larger than the elas- 

tic strain associated with the failure stress level. The net- 

ting analysis result presented here suggests that in order to 

obtain such a strain, one might have to consider that the 

axial stiffness, either in tension, compression or both; or 

that other effects not considered in the conventional lamin- 

ate analysis, such as interlaminar or transverse shear de- 

formations, might contribute significantly to the overall 

laminate deformation. 

The influence of the characteristic stress levels for 

transverse stress and axial shear of the unidirectional layer 

of a boron/epoxy material is examined in Fig. 21. The measure 

of this effect is taken to be the influence upon the stress- 

strain curve for the unidirectional tension of +30° laminate. 

The strong sensitivity to the characteristic axial shear 

stress T  and the relative insensitivity to the transverse 

characteristic stress a     for the R-0 representations is 

illustrated in the figure.  A similar comparison made for a 

boron/aluminum laminate of the same geometry subjected to 

uniaxial applied stress is shown in Fig. 22.  Similar sensi- 

tivities are observed for this case. Boron/aluminum laminate 

response under transverse applied stress with the same values 

of the Ramberg-Osgood parameters is shown in Fig. 23. Here 

the fiber failure criterion did not come into play and thus 

the computations were extended to rather large strains in 

matrix. It is clear, that for this case, the failure criterion 

based on other stress-strain components is required. The exam- 

ination of the computer print-out permits one to terminate 

the stress-strain curves at some stress level prior to fiber 

fracture depending upon the choice of the failure criterion. 

This can be done rather readily. The choice of the failure 

criterion is discussed in Appendix D. 

The lamina properties for boron/aluminum are used to 
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analyze a 0°/+30° laminate under combined loading. These re- 

sults are shown in Fig. 24.  Axial stress-strain curves are 

presented for varying ratios of axial shear stress to axial 

tensile stress. 
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4.   CONCLUDING REMARKS 

Current approaches to the definition of design allowable 

stress for advanced fiber composite laminates are based upon 

the utilization of extremely conservative criteria. These limit 

the laminate to stress levels below which no significant damage 

of any kind occurs.  The utilization of overly conservative de- 

sign criteria can negate much of the potential for effective de- 

sign utilizing advanced composite materials. The heterogeneous 

nature of these materials is such that a variety of possible 

damage modes exist.  Thus, matrix cracking or yielding, fiber 

fracture, debonding, and other inelastic effects can all occur 

in local regions at relatively low average stress levels.  These 

nonuniform and nonlinear effects greatly complicate the problem 

of establishing reliable design allowables. In the present pro- 

gram, the problem of nonlinear laminate behavior resulting from 

nonlinearities in the behavior of the matrix material was studied. 

The objective of the program was to develop an understanding of 

the inelastic behavior of composite laminates and to develop a 

computer program which will be used as an engineering tool in 

the design of fiber composite laminated structures. 

The method of approach utilized herein was to adopt a Ram- 

berg-Osgood representation of the nonlinear stress-strain be- 

havior and to utilize deformation theory as an adequate repre- 

sentation of the material nonlinearities.  The problem was viewed 

on two levels.  First, the relationship between the constituent 

properties and the stress-strain response of a unidirectional 

fiber composite material was studied.  For this problem, the 

primary attention herein was directed toward the axial shear be- 

havior, in as much as experimental data had indicated that it is 

this type of load which results in the most significant nonlineari- 

ties in material behavior.  For this case, an expression was estab- 

lished relating the composite average-stress/average-strain curve 

to the fiber moduli and the matrix nonlinear stress-strain curve. 

This expression, which was developed as a lower bound, was found 

to give good agreement with the more exact results obtained by 
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applying incremental plasticity theory and using a numerical 

finite element analysis to the assessment of the material be- 

havior (Ref. 9)• 
The second level of approach treats the interelationship 

between the properties of the unidirectional layers and those 

of the laminate.  For this case, one may consider that the 

starting point is a nonlinear stress-strain curve for trans- 

verse stress, and for axial shear stress, alone, and a linear 

stress-strain relation for stress in the fiber direction. The 

nonlinear lamina stress-strain curves can be modeled by proper 

selection of the Ramberg-Osgood parameters. 

In the present study, unlike other formulations an inter- 

action expression was formulated to account for simultaneous 

application of axial shear and transverse stress. A laminate 

having an arbitrary number of oriented layers, and subjected 

to a general state of membrane stress, was treated. The results 

of this analysis were programmed into an efficient computer 

routine for numerical evaluation of arbitrary laminates. Results 

obtained show good agreement with those of previous complex 

numerical methods utilizing incremental plasticity theory. 

Certain limitations connected with this program should 

also be discussed.  First, deformation type stress-strain re- 

lations have been used; hence, it is implicit in this result 

that the stress and strain values obtained for any given set 

of loads are functions only of those loads and not of the 

loading history. On the other hand, if points are computed for 

intermediate values of loads, following different load paths, 

then different intermediate conditions will be obtained. Thus, 

the question is raised as to what is the accuracy of the results 

obtained for paths which do not yield proportional loading. It 

is known that for local proportional loading, the deformation 

theory result is the same as that for the incremental theory. 

In the laminate, local proportional loading does not exist, 

in general, even when the external loading is proportional. How- 

ever, the assumption is made that the deformation theory will 

yield an approximation which is satisfactory to generate a 
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rational engineering tool.  This can only be assessed by com- 

parison with an exact analysis, or since this does not exist 

for the case of arbitrary loading paths, perhaps by comparison 

with experimental data. 

Comparisons of the present results with experimental data 

tend to show moderately good agreement.  There are, however, 

cases in which experimental results show a higher degree of 

inelastic strain than predicted by the present analysis. These 

experimental data are quite limited and may be insufficient 

for drawing conclusions in this regard. 

The question of failure criteria incorporated into the pre- 

sent analysis required further consideration.  The present 

analysis obtains more accurate representations of the stress 

components in the individual layers than have been obtained 

from elastic analyses. Hence, the use of these stress components 

in any failure criteria should represent an improvement in 

failure prediction 

In addition to a description of the methods of analysis, 

and of the numerical comparisons which have been carried out, 

the present report also presents a description of the computer 

program for study of nonlinear behavior of laminates in suffi- 

cient detail to permit the utilization of this program by 

others. 
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APPENDIX A 

SYMMETRY SIMPLIFICATION OF NON-LINEAR STRESS-STRAIN RELATIONS 

The most general inelastic stress-strain relations of the 

deformation type are of the form 

£ij = Sijkl akl (1) 

where s. ., ,are functions of the stresses.  Let it be assumed xjkl 
that the material is transversely isotropic with x, axis of 

symmetry.  Any rotation about x, changes z. . and CT.. into e'.. 
x X j       X J x j 

and CT' . ..   Then the condition of transverse isotropy demands 

that 

e . . = S. ., , CT , , (2) i]    xjkl  kl v^' 

where S. .,, in (1) and (2) are the same.  To fulfill this last X J KX 
requirement it is necessary that S^ .^-^ be functions of stresses 

only through stress expressions which are invariant for rota- 

tions about the x, axis.  There are five such invariants and 

they are given by, [15] 

Xl  = °11        X2  =  °22+°33    X3  = al22+°132        {3) 

I4 = 1/2(CT22-CT33)
2
+2CT23

2
     I5 = 1/2(CT22-CT33)(CT12

2
-CT13

2
)+2CT12CT13CT23 
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Thus 

S. ., , = S. ., , (I, , I0, I-, I. , IJ (4) ljkl    ljkl   1   2   3   4   5 

It follows that for rotations around the x1 axis of 

symmetry the s..   behave as constants.  Consequently, the J ljkl 
symmetry reduction of (1) to transverse isotropy is just 

as in elasticity. 

The reduction may be performed in following fashion:  For 

rotation of angle 9  about the x1 axis, the stress tensor a.. 

transforms into a'..  in the following fashion 
iD 

11 

22 

33 

23 

12 

13 

= a 11 

= 1/2 (a22 + a33) + 1/2 (a22 - a33) cos 26 + a23 sin 26 

= 1/2 (a00 + a,,) - 1/2 (a _ - a -) cos 26 - a„3 sin 28 22    33 22    33' 

1/2 (a33 - a22)sin 29 + a23 cos 29 

a   cos 6 + a13 sin 9 

-a12 sin 9 + a13 cos 6 

(5) 

The same transformation relations obviously also hold for 

strains. If the transformed stresses and strains are intro- 

duced into (2) then coefficients of cos 29, sin 29, cos 9 and 

sin 9 and remaining terms independent of 9 must be equal. 

These equalities result in relations among the various compo- 

nents which reduce the stress-strain law to the form (2.1.4- 5) 

from Chapter 2 of this report.  (Average stresses and strains 

appear in the latter but this obviously makes no differences 

in the derivation.) 

44. 



APPENDIX B 

PLÄNE STRESS-STRAIN RELATIONS OF FIBER REINFORCED MATERIAL IN 

GENERALIZED RAMBERG-OSGOOD FORM 

The purpose  of the present appendix is to arrive at 

equs. (2.2.7).  For convenience in writing, overbars on 

stresses and strains will be omitted. 

The present development is guided by isotropic J2 theory 

for deformation type plastic stress-strain relations.  The basic 

assumption of this theory in the isotropic case is that the 

plastic strains have the form 

*U       =f(J2)Sij (1) 

where   s..       is the stress deviator and 
ID 

J0 = 1/2 s.• s.• (2) 2        lj xj 

is its second invariant. 

It is instructive to work out the form of (1) for Ramberg- 

Osgood type stress-strain relations.  Suppose that in pure shear 

the stress-strain relation is 

e;2 . Ill     u + ^i!,"-
1, <3) 

xz     2G y 
Now in pure shear it follows from (2) that 

J2 = ü122 

Therefore (3) can be written in the form 
a-l? /J?  n_1 e12  = ^   [1 + (_2,    ]                                                           (4) 

which is in the form(l). Consequently, in the general case of 

three dimensional stress and strain 

Sj ^       /JT n-1 
il   [i + (_!)""  ] (5) 

i:   2G    ^xy 
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It should be emphasized that there is nothing fundamental 

about (1).  It is an assumption which states that the plastic 

strains can be represented by the stress deviator components 

multiplied by a function of a quadratic expression in the stress- 

es which is J„.  The choice of J„ for a quadratic expression 

is not arbitrary but may be arrived at by isotropy arguments. 

In an anisotropic material it may be assumed by general- 

ization that plastic strains are given by 

e" .  = s. . f (L) (6) 

Where L is some general quadratic function of the stresses.  This 

assumption will form the basis of the present development. 

Consider the stress-strain relations (2.1.13).  It 

is assumed that s'    and  s"     functions of the most 

general quadratic form in o and ö", „. 

Thus 

s22  = S22   (A°222 + B^22 °12 + C°l2
2) 

s44  = S44   (A^222 + B^22 °12 + ^l.^ ^ 

It should be noted that the material reacts in same fashion 

to positive or negative shear stress, therefore also in same 

fashion to some o„_ together with positive or negative shear 

stress.  However, the middle term in the quadratic changes 

sign with shear stress.  Therefore, this term should be omitted. 

Now rewrite (7) in form 

1*   / 2 -  2  , fl2 -  2. 
S22  = i^ f22 (a  °22   + 3 ö12 ) 

1  *   ,   2 -  2 A R2  -     2     ■ (8) 

S44  = — f44 (a  a22  + 3 al2 } 

2GT 
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where f. and f..  are nondimensional functions and a and g 

have dimensions of reciprocal of stress.  If ä±2=Q   the first of 

(8) assumes the form 

S22  = F^ f22 (a2 F222) (9) 

For one dimensional a„ ,   from the Ramberg-Osgood stress- 

strain relation (2.2.6a) 

22    K„, ^a  ' T  y 
which can be written as 

s22 -h  Kö^)2! 2 (10> 
T   y 

It follows from (8) and (10) that 

2   1 
2 (11) 

and the function of f_2 is determined as (M-l)/2 power. 

In simila 

the form 

In similar  fashion, when a    =0      ,   the second of (8) assumes 

*U      = 2^  f44 ^122> (12) 

From the Ramberg-Osgood relation (2.2.6b) for one dimen- 

sional öj.2 

s"   = JL (!±i) N-l S44    2GT 
lxy ' 

which can be written_as 
1   ai2  2 Mli 

S44  = 2fc "T^  ] 2 (13) 

T    y 

It follows from (12) and (13) that 

-T- <14) 
T 
y 
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and the function f.   is determined as (N-l)/2 power. 

Consequently (8) now assumes the form 

.    ä  2   5", 0 2  M-l 
s"    = ±- ii^1)      + (r^) ] "2~ 
22     ET   0y       Ty 

..    a00 2   ä10 2  N-l (15) 

"    - _1  r / 22N     . 12. , —~— 
s44   " 2GT [(~>  + (—> ]  2 

T    y       y 

Then (2.2.7) follows from (15) and (2.1.13). 
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APPENDIX C 

1.   EXTREMUM PRINCIPLES OF DEFORMATION THEORY OF PLASTICITY 

i.  Principle of Minimum Potential Energy 

Let 

a.  . = C. ., , e, , (1.1) i]    ljkl kl \ ■*■•■!-1 

where C     are functions of the strains.  The strain energy 
ijkl 

density is defined by the path dependent integral 

We = /   a.  .(e)de.. (1.2) 
£=0   J     J 

where £ is a concise notation for eij .  The strain energy 

Ue  of a body of volume V is defined by 

Let the surface of the body be subjected to the boundary con- 

ditions 

u. (S) = u°.  on S (1.4) 
1       i      u 

Tj_(S) = T^ on ST 
and let the body forces vanish.  The potential energy u 

is defined by 

U = /„W£dV - /_  T°.u. (1-5) P   V      sT  u 

Define an admissible displacement field ü. (x)   bY 

u. = u°. on S 
1     l     u 

u. (x) continuous everywhere (1.6) 

Associated with Ü. are the strains g. .    derived from it by 
i ID 

the usual relations. 
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Define  W  by 

WE = / a.  . de. . (1.7) 
ID   ID 

e=0 
where 

5ij ~ Cijkl(i} £kl (1.8) 

Define 

U  = / W£dV - /_ T°.u.dS (1-9) P    V       ST  l l 

The principle of minimum potential energy for the present case 

then states that 

Up > Up (1.10) 

equality taking place if and only if 

u. = u. 
l   l 

In the event that displacements are prescribed over the 

entire surface, the surface integral in (1.9) vanishes. Then 

the principle reduces to that of minimum strain energy 

U£  >  Ue (1.11) 

ii. Principle of Minimum Complementary Energy 

Let 

£ij = Sijkl ^ akl 
where s..,   are stress dependent compliances 

(1.12) 
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Define the complementary energy density w by the path 

dependent integral 
a 

Wa = / e..da.. (1-13) 

a=0 

Let the surface of the body be subjected to the boundary con- 

ditions (14) and let the body forces vanish.  The complementary 

energy  U is defined by 

n = / wadV - /„ T.u°. dS (1.14) 
C   V       fau i  i 

Define an admissible stress field  5.. by the following 
ID 

requirements 

a. ., .=0 

T. = 5..n.    continuous everywhere (1.15) 

T±(S) = T°i on ST 

Define the complementary energy functional Uc by 

n = / w °dV - /_  T u°.dS (1.16) 
C   V        bu l  i 

where-    ~ ,, .._, 
W° = /- e..do.. (1'17) 

ID  ID 
5=0 

£ij = 5ijkl(a) akl 

Then the principle of minimum complementary energy states that 

UC -UC {1-18) 
equality occurring if and only if 

a . .   = a . . 
ID    ID 

If tractions are prescribed over the entire surface, Su=0, 

the principle reduces to 
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For proof of these principles see e.g. [16].  An interesting 

application to obtain approximate solutions has been given 

in [17]. 

iii.  Specialization of the Principles to Axial Shear with 

Ramberg-Osgood Stress-Strain Relations 

In the case of axial shear of a uniaxially fiber reinforced 

material the only surviving stresses are 

n=T CJ=T (1.20) 
°12     2 13     3 

where 1 indicates fiber direction.  Denote the associated shear 

strains by 

(1.21) 
£12 ~   £2 E13 ~  £3 

Then the generalized Ramberg-Osgood stress-strain relations, 

Appendix B, (5)  assume in the present case the form 

T„ n-1 
e 2   [ 1 + (£->"  ] -2   2G '     ^xy 

T3        T  n_1 
e3  = -| [ 1 + <^>   ] 

(1.22) 

T "/^7Tv~~   ^ 

In the present case 

a..de.. = 2(xodeo+T0de0) ij     13     2  2  3  3 
(1.23) 
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= ^ [1 + (2-)   ] (1-261 

Inserting (1.22) into (1.23) and using the relation 

TdT = T2d T2+T3d T3 

it is easily shown that 

n-1 
a. .de . . = -£ t 1 + n (?—■)        ]     dx (1.24) 
ID   ID    G T

y 

To compute We as defined by (1.2) it is necessary to 

integrate (1.24) from zero to some state of strain z^,   Zy 

But it should be noted that (1.24) is expressed in terms of 

the variable x only. Now x can be expressed in terms of 

strains in following fashion. Define 

= v/  j—   2 (1.25) 
e2    + e3 

It follows at once from (1.22) that 
n-1 

«- h » + % - 
This relation defines  x  as a function of  £     .  Conse- 

quently, WE  assumes the form 

e   1   T (e) n-1 
W_G/   T [1 + n (~~)        }   dx 

y 

which is easily integrated to yield 

„e   x  r    2n  ,x  n~ , (1.27) 
W  = 2G [1 + n+T (7^   ] 

x = x (e) 

According to (1.3) the strain energy U is then given by 

the volume integral of (1.27). Note however that it is very 

difficult to express Ue in terms of strains since this requires 

the solution of (1.26) for x in terms of t.   In general it is 
not possible to do this analytically. This places a severe 
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limitation on the use of the principle of minimum potential 

energy or of minimum strain-energy with Ramberg-Osgood stress- 

strain relations. 

Next we consider the principle of minimum complementary 

energy for axial shear. Since there are only shear stresses 

x2,  T,   and shear strains z   ,   e  the integrand in  w °  / 

(1.13) , is given by 
(1 28) 

c.da.. = 2(e»dx0+e^dT0) l]  l]      2  2  3  3 

It follows from (1.22-.23) that (1.28) is given by 

n-1 
e..da.. = I [1 + (I-)   ] dx 

Integration of this expression from 0 to T  yields 

2       „     n-1 
W0 = ^- [ 1 + -2- (^-)   ] (1-29) 2G L x  n+1 Ki   '        J 

Expression (1.29) now enters as the integral into the volume 

integral of U, (1.14). 
We now examine the meaning of an admissible stress field 

T„, T,  in the present case.  The only surviving equilibrium 

equation is 
(1.30) 

9x„    3T, 
_£ +   J = o 
8x2    8x3 

The traction components are 

(1.31) 

Tl = T2n2+T3n3 

*2 = T2nl 
T3 = Vl 

We shall be concerned with cylindrical boundaries in fiber 

reinforced materials whose generator is in x,,   direction.  On such 

a surface n,=0.  Therefore the only surviving traction compo- 

nent on such a surface is 

T, = T  = T_n0+f_n_ (1.32) 1    n    2 2  3 3 
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Consequently an admissible stress system x3, T_  must satisfy 

(1.30) and the value T° of T  wherever prescribed on the 
n     n 

boundary. 

The complementary energy functional (1.16) assumes the form 

Uc =  /vW
adV - / T1u°1dS (a) 

2        u    n-1 

Y 
(1.33) 

x  =  •- 2 . ~ 2 ,s x2  + T3 (c) 
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2.  LOWER BOUND FOR AXIAL SHEAR MODULUS 

Consider a uniaxially reinforced lamina which is subjected 

to axial shear  T0  in the 1-2 plane on its boundary, fig. 5. 

By the average stress theorem, of Ref. 5. 

ö   = T (2.1) 
°12 

and all other average stresses vanish. 

By the average theorem of virtual work, of Ref. 5, 

/ e . . da . . = e .  . d a . . 12   ?) 
v i:  ID    ID   ID {*•*) 

Since the only nonvanishing average stress in the present 

case is (2.1) we have 

F. .da. . = 2F,. dx0 (2.3) 
ID  ID     12 

The complementary energy of the body is given by (14) of 

Appendix A.  The surface integral vanishes however in the pre- 

sent case since no displacements are prescribed on the 

boundary.  Now 
a _  _ 

uc  =/ Wadv = /v      /  £ijda.jdV 

2.= ° (2.4) 

a  _  _      To _ 
= / fe. .da.  .dV  /   e,0 dt0 ID  ID     „   12   ° 

a=0 

The last equality following from (2.2,  3). 
s        • 

By definition the effective secant modulus GA  is given by 

e       = °12 =  la  (2.5) 
12 GA<-12> 2GA    <T°> 

Hence    (2.4)   assumes  the  form 

T0     T0dx0 (2.6) 
U    = V /       ~  

C °     G| (T0) 

In order to find a bound on G^ it will be necessary to 

find a bound on (2.6) by use of the principle of minimum com- 

plementary energy. 
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It is assumed that the fibers are infinitely rigid in com- 

parison to the matrix.  Therefore at fiber/matrix interface 

u±  = 0 '      ■     ■  (2.7) 

and the only contribution to the complementary energy is from 

the matrix.  Thus, the surface integral in (1.33a) vanishes and 

it can be written as 

U =  /  W° dV (2.8) 
C    V m 

where V  is the matrix volume, m 
Furthermore, by (2.3.3) the actual stresses are functions 

of x9, x, only.  It is therefore natural to also choose admissible 

stresses as functions of x2, x3 .  Thus W  in (1.33) becomes 

a function of x„, x3 only and therefore without loss of generality 

(1.33a) can be taken over unit length in fiber direction.  Thus 

it can be written 

Uc = ;A W° (x2, x3) dx2 dx3 (2.9) 

In order to construct an admissible stress system it is 

necessary to devise a geometrical model for a uniaxially rein- 

forced material .  In past analyses of FRM two kinds of models 

have been successfully treated:  Periodic arrays of identical 

circular fibers have been analyzed numerically with the aid of 

computers and the composite cylinder assemblage model has been 

treated analytically [1,5] yielding simple closed results.  Since 

the present treatment is to be analytical the composite cylinder 

assemblage model will be used.  A detailed description of the 

model has been given in[5].  Suffice it to say here that the model 

represents a cylindrical specimen of a fiber reinforced material 

as an assemblage of composite cylinders of different sizes which 

fill the space in the limit.  In each composite cylinder the 

inner cylinder is a fiber and the outer shell is matrix material. 
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In all cylinders the ratios of fiber to matrix shell radius are 

the same, (figure 26). 

It is recalled that an admissible stress system must satisfy 

equilibrium and boundary conditions.  An obvious possibility 

for such an admissible field are the stresses of the elastic 

solution since they certainly satisfy the required conditions. 

These stresses are the same in any composite cylinder of the 

assemblage and are given in cylindrical coordinates by (see [5]) 
2 

a       = T = la- (l + ä_) cos G 
rz   r  1+c      2' (2.10) 

T°      a2 5ez = xe = - ^ (1 - —) sin 9 
where c is the volume fraction of fibers, a is the radius of any 

fiber and r,Qare polar coordinates, fig. 26. 

Since  T  as expressed by (1.33c) is an invariant with 

respect to rotations about x, = z we have also 

2      2 2 
T = T     +   TQ r      6 

(2.11) 

Substituting (2.10) into (2.11) yields 

2    2      1    2       x (2.12) 
T  = p    (1 + — + —  COS 6) 

4        2 P    P 

where 

T 
r> = —2— r P  1+c p = ±- 

d 

(2.13) 

To simplify the analysis the exponent n in (1.22) will 

be assigned the value 

n = 3 (2.14) 

It has been found that with this value of n, experimentally 

obtained shear stress-strain relations of epoxy can be quite 

accurately represented with proper choice of T   .  Recalling 
(1.33), (2.9) then assumes the form 

°C"2G'A 
?2 [1+ \   (-)2] dA (2-15) m y 
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where G is the matrix elastic shear modulus. Let the assemblage 

consist of K composite cylinder. Define Uc
k for the kth comp- 

osite cylinder by 

"ck = lG 'A ** [1+ \  (T-)2] dA (2*16) C
   2G   mk y 

where A^  is the matrix area ak<r<bk in the kth composite 

cylinder.  Then 
~     K  ~ k to   11) uc =  E  uc U.J-/; 

k=l 

Since T2  has been expressed in polar coordinates, (2.12), 

it is convenient to also evaluate (2.16) in the same coordinates, 

Using the variable p we have 

~ v   i   e   21T        T  2 (2.18) 
U* = i= /   /  T2[l + (f-) ] Pdpd9 
c  2G l  o      Ty 

where 
(2.19) 

3 = bk/ak 

which by construction has the same value in all composite cy- 

linders.  Note also that the volume fraction of fibers c is 

given by 
c _ (%

2  = i (2.20) 
Dk e 

Substituting (2.12) into (2.18) and carrying out the integra- 

tion we have 

irb 2 
IT  

k        ""  k     T   
2r1-c   +   (la-/   3+l0c-12c2-c''   , (2.21) 

uc    = -W    T°   [I+c~ +   (xy
} 6(l+c)' J 
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where (2.20) has been used. It is seen that ffb2, is the area 

of the cross section of the kth composite cylinder and the 

parenthesis has the same value for all composite cylinders. 

Therefore, if (2.21) is inserted into (2.17) we find 

"C = 35 T°2 [T^ + {IT)2   3+10a-12f-   °hl (2.22) C   2G      1+c   Ty     6(l+c)* 

Let (2.22) be written 

U  = A / T° i  ^  d T <2-23> UC   A J   0  A  dx0  
a T° 

Without loss of generality (2.6) can be evaluated for unit 

height of cylindrical specimen.  Thus 

U = A /°   T°dT° (2.24) 
C      °   GS

A  (O 

Now introduce (2.2 3) and (2.24) into the minimum complementary 

inequality (1.18).  Thus 

'X°   '5 ^T ^~  1 <T. > 0 (2-25) 
GA(x0) 

Since the integral is positive for all values of x0 
the integrand must also be positive for all values of  T0 . 

It follows that 

G!(T„) > -^**—=   G* . <2'26> 
A    ~ dUc/dx0    

A( ) 

where the extreme right denotes lower bound on the secant 
modulus  GS. Substituting (2.22) into (2.26) and rearrang- 

ing we find the lowe*r bound (2.3.9) of Chapter 2. 

There naturally arises the question of the establishment 

of an upper bound.  The difficulties involved have been dis- 

cussed above:  It is not in general possible to solve Ramberg- 

Osgood relations for stresses in terms of strains.  It is 
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therefore not possible to analytically express the potential 

energy functional in terms of admissible strains. 

A possibility to resolve the difficulty is to write in- 

elastic stress-strain relations of type (1.22) in the form 

T2 = 2Gc2 [1 - (§-) a_1] 

x3 = 3Gc3 [1 - (f) a_1] (2-27) 

e2  £3 

where   a and £ are to be determined by curve fitting.  The 

minus sign in the parenthesis is due to the fact that the 

stress-strain curve is below a straight line with the initial 

slope. 

It should be noted that (2.27) are not an inversion of 

(1.22).  They are merely another form of approximation of 

actual stress-strain curves. 

In principle the representation (2.27) can now be used in 

conjunction with the principle of minimum potential energy 

to establish an upper bound on G^ in same fashion as a lower 

bound has been established. It has however been found that in 

attempting to fit (2.2 7) to actual epoxy stress-strain curves 

a fractional exponent a was needed.  This led to integrals of 

formidable difficulty in the evaluation of potential energy 

functionals.  Therefore this approach has not been continued 

here. 
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APPENDIX D 

FAILURE OF NON-LINEAR LAMINATES 

It is expedient to separate the problem of the establish- 

ment of failure criteria of laminates into two separate problems: 

(a) Establishment of failure criteria for uniaxially 

fiber reinforced material, i.e., laminae. 

(b) Establishment of failure criteria of the laminate 

on the basis of laminae failure criteria. 

A great deal of wrok has been done on problem (a). The 

problem has been approached in micro as well as macro-fashion. 

In micro-approach, it is attempted to predict failure on the 

basis of local analysis of the interior of the composite. Such 

an approach evidently encounters extreme difficulties. Although 

important work of fundamental nature has been done in this area, 

we shall not be concerned with it here since the work has not 

advanced to the stage of prediction of failure criteria under 

states of combined stress. 

In the macro-approach, a failure criterion is heuristically 

postulated as some function of pertinent state variables (gener- 

ally average stresses) which also contains undetermined para- 

meters. These parameters are then to be determined in terms of 

experimentally accessible information. 

We shall in the present discussion limit ourselves to states 

of plane stress. The simplest failure criterion is the so-called 

maximum stress criterion which states that failure occurs when 

either one of: stress in fiber direction, stress transverse to 

fibers, shear stress, reaches its critical value, these cri- 

tical values being the same whether or not the stresses act 

simultaneously. In symbols the criterion is: 

ail = aA 

or 
(1) 
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where 1 is fiber direction and 2 is the transverse direction. 

Generally, failure stresses aR  and aT are different in 
tension and compression. This is known as Bauschinger effect. 

There is evidently no Bauschinger effect for the shear stress. 

The simplest generalization of (1) to account for Bauschinger 

effect would be to assume as failure criterion: 

°11 = °A+    lf 

an = "A"  if    an K  ° 

a  = a +   if     a  > 0 
22   T 22 (2) 

a  = a  ~  if      a   < 0 
22    22 22 

a  = i     all     ono 12   AT 12 

whichever occurs first, where (+) and (-) superscripts denote 

failure stresses in tension and compression respectively. The 

main drawback of these simple criteria is in that they take 

no account of interaction effects. 

The most commonly used criterion which takes into account 

interaction is of quadratic form. For plane stress it has the 

form 

A11011 + A22 °22 + A12allCT22+ A44a12 = 1 (3) 

Here, products of shear stress with normal stress have been 

omitted since the material cannot distinguish between positive 

and negative shear stress. Therefore, odd powers (one, in this 

case) of shear stress cannot appear. 

Applying (3) to failure for stress in fiber direction 

alone, stress transverse to fiber direction alone, shear stress 

alone, in turn, it is seen at once that 
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All     2 
ÜA 

A   = -i- 22     2 a
T (4) 

A   = -L_ 
44   -AT2 

The coefficient A, „ is troublesome since its determina- 

tion requires a failure experiment under combined stress. 

Several authors have proposed to use failure experiments on 

off-axis specimens under uniaxial stress for the determination 

of A,2. See e.g. [18] for discussion. 

The situation becomes more complicated if it is required 

to take into account Bauschinger effect, that is difference of 

failure stresses in tension and compression. One possibility 

to account for this effect is to assume that A,,,-A22 assume 

different values for tension and compression. The situation 

regarding A,_, however, becomes very awkward as it would have 

to assume four different values to account ,for four different 

possibilities of sign combination in biaxial stressing 

and 

It is also possible to add linear terms to (3) in which 

case it would assume the form: 

Allall2+A22a222 + A12alla22 + A440122 + (5) 

Vll + B2CT22 = X 

Such a device was suggested by Hoffman [19]. In this case it 

is possible to determine values of A,,, B,, A22, B2 to account 

for different tensile and compressive uniaxial failure stresses 

in fiber direction and transverse to it. But the difficulty of 

assigning four different values to A,„ remains, unfortunately. 

In summary, the status of quadratic failure criteria has 

to date not been finalized. However, special versions of such 

criteria have been successfully fitted to experimental data. 

It is of importance to realize that in the fiber rein- 

forced materials used in practice failure predictions on the 
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basis of maximum stress criterion or quadratic failure cri- 

terion are not very different. This is due to the large 

ratios between strength in fiber direction and transverse 

and shear strengths and is easiest realized by considering 

the failure criteria as surfaces in cr^, °22' °12 
stress 

space. The maximum stress criterion is a very elongated 

rectangular parallelopiped while the quadratic failure cri- 

terion is an ellipsoid.  For A12=0, Fig. 25 shows this 

schematically on a cut in the o±1,   a22 plane.  Thus it is 
seen that stress points on the two failure surfaces are close 

together for most parts of the surfaces. 
The situation would be entirely different for a material 

in which a   , and a    were of comparable magnitudes. 
We shall now consider problem (b) i.e., the establishment 

of laminate failure criteria in terms of laminae failure cri- 

teria. The most conservative laminate failure criterion is to 

assume that once any lamina has failed the laminate has reached 

its ultimate load. There are cases of laminates in which all 

laminae would fail simultaneously and then this criterion would 

be justified. For example: a +9 laminate in which the exter- 

nal load direction bisects the angle between the fibers. 

In most cases, however, a certain group of laminae will 

fail first and failure of remaining groups would require fur- 

ther increase of load. Therefore a more realistic alternative 

is to determine the load at which the first laminae group fails. 

At this state, the further carrying capacity of the laminate 

may be assumed to be given by the remaining undamaged laminae. 

The increase in load which fails another group of laminae is 

then determined. This process is continued until failure of 

all laminae has taken place. 
Still another possibility is to assume that when a lamina 

has failed, certain of its stiffnesses reduce to zero. For ex- 

ample: suppose that a lamina or group of laminae has failed 

in shear. Such a failure implies a crack through the lamina in 

fiber direction. In that event, it is reasonable to assume 
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that the shear and transverse stiffnesses of the lamina are 

zero, but it still retains its stiffness in fiber direction. 

If, however, a lamina fails because of the stress in fiber 

direction the damage is so widespread that all of its stiff- 

nesses will be negligible. According to the type of failures 

encountered analysis is continued for the damaged laminate 

with the new stiffness rearrangement. This process is con- 

tinued until failure of all laminae has taken place. This 

method of analysis seems to be the most realistic but is 

also the most complicated. 

In almost all of the practical strength analyses of 

laminates in the literature, according to any of the methods 

outlined above, the stresses used for failure criteria have 

been determined on the basis of elastic laminate analysis. 

With the present inelastic laminate analysis, more realistic 

stresses are available in a better assessment of laminate 

failure loads. 
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APPENDIX E 

MSC-NOLIN COMPUTER PROGRAM 

1.   General Description of the Program 

"Shis  is a computer program developed for the inelastic 

analysis of a laminate subject to any constant, arbitrary 

combination of in-plane loading. Details of the method of 

analysis and of the numerical solution, using the Newton- 

Raphson method, have been described in the body of this 

report. The essential features of the program are summari- 

zed below. 

The primary capability of MSC-NOLIN is to compute lam- 

inae properties when the laminate loads are defined.  There 

is also a limited capability to work with constituent proper- 

ties, rather than laminae properties, as the input. Details of 

the input options are discussed subsequently. Basically, the 

inputs required are the stress-strain characteristics of the 

individual laminae for each of the three in-plane stress 

components applied separately. The stress-strain curves for 

transverse stress and for stress and for axial shear stress 

are defined by Ramberg-Osgood stress-strain curves.  The 

parameters for these curves along with the laminae elastic 

constants are the required material property inputs. 

It has been observed that axial shear stresses in indivi- 

dual laminae are a major, perhaps the major, source of non- 

linearities in laminate response. Therefore, several additional 

options have been included in the MSC-NOLIN to accomodate more 

detailed characterization of shear response. First, the lam- 

inae shear stress-strain response may be input in tabular 

form and a least squares fit to the data ia automatically ob- 

tained for the R-0 yield stress (limited to the use of an 

exponent, n=3). Secondly, the matrix shear stress-strain curve 

can be input along with fiber elastic properties and the laminae 

shear stress-strain curve will be computed. In this latter case, 

€he laminae elastic constants are also computed. 
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The input specifies one of two options for the determina- 

tion of the initial set of stresses to be used in the itera- 

tion at each value of applied load on the laminate.  In one 

case the stresses found at one load are increased to the load 

for which the stresses were evaluated.  In the other, and 

generally used option, the increment between the initial stresses 

used at the nth laminate load value and the actual stresses 

found for the (n-l)st load value bears the same relation to the 

ratio of those two load values as the similar relation computed 

at the previous load cycle, that is, 

(n)    (n-1) (n-1)   (n-2) 
o. .     -  o. . a.        -a 
m    n       = ij     ii 
F /F  i F   /F n' n-1 n-l/rn-2 

The program contains a number of controls to define: the 

size and number of steps of loading at which computations are 

made; the maximum number of iterations to be permitted in the 

numerical solution; the desired accuracy to be obtained in 

convergence; the criteria for divergence of the solution in 

the iterative process to avoid the use of unnecessary execu- 

tion time in the case of breakdown of the solution procedure. 

The program defines the failure of the laminate in a limited 

fashion, either on the basis of the maximum allowable stress 

in the fiber in tension or compression, or on the basis that 

the tangent modulus of the stress-strain curve of the laminate 

becomes less than a specified value.  Failure due to shear or 

transverse stress are not included at this stage in the develop- 

ment of the program. 

2.   Input 
The main features of input in this program are the follow- 

ing: 
(a)  Specify the number of laminates or problems to be 

solved; 
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(b) Define the geometrical properties of each layer; 

(c) Define either the material properties of each layer 

or the properties of its constituents; 

(d) Define either of the following for each layer: 

(i)  yield stress in transverse direction and yield 

stress in shear; 

(ii)  yield stress in transverse direction and a table 

of values defining shear stress-strain curve for 

the matrix plus a set of values of stresses to 

be used for the computation of yield stress ir> 

shear; 

(e) Specify the type of Ramberg-Osgood relation to be used; 

(f) Define the loadings; and 

(g) Define the control parameters. 

A guide to the preparation of input data for this program 

is given in section 4 below. 

Details of Output 

The output can be divided basically into two steps: 

(a) Output of Input Data: 

The first section of the output deals with the output 

of the input data.  If the input is in the form of 

properties of constituents of the layer, it gives 

an output of the properties of the constituents first 

and then the computed value of the properties of the 

layer; otherwise, it gives output directly the prop- 

erties of the layer. 

(b) Output of Stresses and Strains: 

For each set of loading, the computer prints the 

following: 

(1) value of the load applied; 

(2) number of iterations for convergence; 

(3) stresses for individual laminae with respect 

to principal elastic axes of the laminae; and 

(4) strains for individual laminae in terms of both 

laminae and laminate axes. 69. 



Input Details for MSC-NOLIN 

(1) Read (15) NSETS 

NSETS:  number of problems 

(2) Read (15) LAY 

LAY:  number of layers in this laminate analysis 

(3) Read (15) INP 

INP:  Option for reading in material properties 

INP = 1;  read in material properties of individual 

laminae; 

INP = 2;  compute properties of laminae from the 

properties of constituents. 

(4) (a)  If INP = 1 

(i) Read (5D15.5) E
11'

E
22'

y12 ,Vl21 

(ii) Read (5D15.5) G±2>   SY, TY 

(iii) Read (D15.5,I5) T, IANG 

(b)  If INP = 2 

(i) Read (4D15.5) EF, MUF, GF, VF 

(ii) Read (3D15.5) EM, MUM, GM 

(iii) Read (15) 12 

If I 2 = 0; read in SY and TY 
(i)  Read (2D15.5) SY, TY 

If I 2 = 1; TY is to be computed 
(i)  Read (5,1002) SYCE 

(ii)  Read (215) NUMT 
NUMT = number of values in the table 

(iii)  Read (5D15.5) TAU (J), J=l, NUMT 
(Table of shear stress values of 
matrix read in) 

(iv)  Read (5D15.5) GAM (J),J=1, NUMT 
(Table of shear strain values of 
matrix read in) 

(v)  Read (5D15.5) SG12 (J), J=2,ll 
(Table of shear stress values of 
laminae read in) 
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(5) Read (5D15.5) XN, XM 

XN:  exponent in nonlinear transverse stress- 
strain law; 

XM:  exponent in nonlinear shear stress-strain 
law. 

(6) Read (5D15.5) SOU, S022, S012 

SOU:  applied stress in X-direction 
S022:  applied stress in Y-direction 
S012:  shear stress in XY 

(7) Read (15, D15.5) KSGM, SMLT 

KSGM:  total number of loading increments 

SMLT:  ratio of load increment to the initial 
load. 

(8) Read (D15.5) STIFF 

STIFF:  tangent modulus of stress-strain curve 
in terms of the laminate axes;  specify 
a value of STIFF below which the program 
will not run. 

Read (D15.5) SGR 

SGR:  maximum allowable stress in the fiber in 
tension or compression 

(9) Read (I 5, 2D15.5) IT, EPS, UPBD 

IT:  maximum number of iteration permitted in 
Newton-Raphson analysis 

EPS: convergence criteria; (ratio of values of 
two successive iterations should be less 
than EPS) 

UPBD: divergence criteria (solution will stop 
if ratio of two successive iterations is 
greater than ,.+12. 

(10) Readflö) INMT 

If INMT = 1, the program uses ratio of previous 
two solutions as the initial guess 
value iteration process; 

If INMT = 2, the program uses extrapolated value 
of previous two solutions proportioned 
on the basis of stress ratio as the 
initial guess. 
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Fig. 1 - Coordinate system for unidirectional fiber composite 
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Fig. 5 -  Unidirectional fiber composite material under axial 
shear stress. 
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Fig. 8 -  Laminate coordinate system. 
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Fig. 26 - Composite Cylinder Assemblage 
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