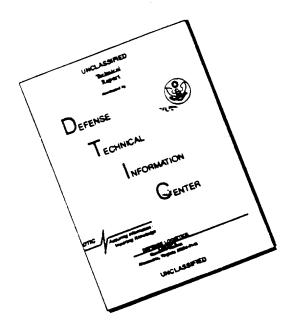
NASA CONTRACTOR REPORT

NASA CR-2313

Lit.

19960201 086

NON-LINEAR BEHAVIOR OF FIBER COMPOSITE LAMINATES


by Zvi Hashin, Debal Bagchi, and B. Walter Rosen

Prepared by MATERIALS SCIENCES CORPORATION Blue Bell, Pa. 19422 for Langley Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. . APRIL 1974

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

1, Report No. NASA CR-2313	2. Government Access	ion No.	3. Recipient's Catalog	No.
4. Title and Subtitle			5. Report Date AD	RIL 1974
NON-LINEAR BEHAVIOR OF FIB	D COMPOSITE IA	MINATES	AP	VIF T2/4
NON-LINEAR BEHAVIOR OF FIDE	IR COMPUSITE LA	HINATES -	6. Performing Organization Code	
7. Author(s)			8. Performing Organiza	ation Report No.
ZVI HASHIN, DEBAL BAGCHI, AND B. WALTER RO		OSEN _	TFR/7309	
9. Performing Organization Name and Address			501 - 22-03-02	
MATERIAL SCIENCES CORPORATION		 -	11. Contract or Grant	
· · · · · · · · · · · · · · · · · · ·			NAS1-11284	
BLUE BELL, PENNSYLVANIA		_		
12. Sponsoring Agency Name and Address		13. Type of Report and Period Covered		
		Contractor Report		
National Aeronautics and Si Washington, D.C. 20546	TION	Sponsoring Agency	Code	
15. Supplementary Notes				
FINAL REPORT				
16. Abstract				
THE NON-LINEAR BEHAV		MDOSITE LAMINATES	WHICH DECINT	'S EDOM
		_		The second secon
LAMINA NON-LINEAR CHARACTER	RISTICS WAS EXA	MINED. THE ANALY	rsis uses a Ra	WREKG-OSGOOD
REPRESENTATION OF THE LAMINA TRANSVERSE AND SHEAR STRESS STRAIN CURVES IN				
CONJUNCTION WITH DEFORMATION THEORY TO DESCRIBE THE RESULTANT LAMINATE NON-LINEAR				
BEHAVIOR.				
A LAMINATE HAVING AN ARBITRARY NUMBER OF ORIENTED LAYERS AND SUBJECTED TO A				
_				
GENERAL STATE OF MEMBRANE STRESS WAS TREATED. PARAMETRIC RESULTS AND COMPARISON				
WITH EXPERIMENTAL DATA AND PRIOR THEORETICAL RESULTS ARE PRESENTED.				
,				
17. Key Words (Suggested by Author(s))		18. Distribution Statement		
		Unclassified - Unlimited		
		ONCLASSIFIED -	ONLIMITED	
			(CAT. 32
19. Security Classif. (of this report)	20. Security Classif. (d	of this page)	21. No. of Pages	22. Price*
Unclassified		170		\$4.75
I UNCLASSIFIED	I OMCTW991L1	L-17	100	1 94./5

Blank Pages

TABLE OF CONTENTS

			Page
LIST	OF	SYMBOLS	- v
SUMM			
1.	INTI	RODUCTION	- 2
2.	NON-	-LINEAR STRESS-STRAIN RELATIONS OF AXIAL FIBER REINFORCED MATERIALS	- 7
	2.1	General Form of Stress-Strain Relations	- 7
	2.2	Plane Stress-Strain Relations in Ramberg-Osgood Form	
	2.3	Axial Shear Stress-Strain Relation	15
3.	ANAI	LYSIS OF NON-LINEAR LAMINATES	21
	3.1	Formulation	
	3.2	Method of Solution	30
	3.3	Numerical Results	34
4.	CON	CLUDING REMARKS	40
APPE	ENDI	CES:	
	A -	Symmetry Simplification of Non-Linear Stress-Strain Relations	43
	В -	Plane Stress-Strain Relations of Fiber Reinforced Material in Generalized Ramberg- Osgood Form	45
	c -	1. Extremum Principles of Deformation Theory of Plasticity	- - 49
		2. Lower Bound for Axial Shear Modulus	56
	D -	- 	62
	E -	MSC-NOLIN Computer Program	67
REFI	EREN	CES	- - 7 2
FIG	JRES		74
₽ ₽ ∩	1 D A M	LISTINGS	100

LIST OF SYMBOLS

```
- Laminate dimension;
2a, 2b
                 - Fiber volume fraction;
C*
ijkl
                 - Stiffness. matrix;
                 - Elastic Young's modulus;
E
                 - Young's modulus in fiber direction;
EA
                 - Young's modulus in transverse direction;
\mathbf{E}_{\mathbf{T}}
                 - Function of stress oii;
F
                 - Elastic shear modulus of matrix;
G_1, G
                 - Axial shear modulus;
G_{\mathbf{A}}
                 - Effective secant shear modulus of composite;
G_{\Delta}^{S}
                 - Subscripts ranging from 1 to 3;
ijkl
                 - Ramberg-Osgood parameters for the matrix;
k,m,n
                 - Stress invariants;
I<sub>1,2,3,4,5</sub>
                 -s_{ij}s_{ij}/2;
J_2
                 - Number of laminae in a laminate;
K
                 - Matrices, also quadratic function of stresses;
L,L
                 - Ramberg-Osgood parameters for the composite;
M,N
                 - Cylindrical coordinate system;
r, \theta, z
                 - Stress deviator;
sij
                 - Compliance matrix;
Sij
                 - Elastic compliance matrix;
S¦;
s"
                 - Inelastic compliance matrix;
                 - Laminate thickness;
t
                 - Surface tractions;
                 - Constant edge forces per unit length;
^{\mathbf{T}}_{\alpha\beta}
                 - Displacements in x<sub>1,2,3</sub> directions, respectively;
u_{1,2,3}
                 - Admissible displacement field;
ũi
                 - Strain energy;
UE
                 - Complimentary energy;
UC
                 - Potential energy;
```

SYMBOLS CONTINUED

```
V
                  - Volume;
w^{\epsilon}
                  - Strain energy density;
\mathbf{w}^{\sigma}
                  - Complimentary energy density;
                  - Fixed coordinate directions;
x_{1,2,3}
x_{1,2,3}^{(k)}
                  - Local coordinate system for the kth lamina;
α,β
                  - Subscripts ranging from 1 to 2;
                  - Shear strain;
Υ
                  - Strain;
                  - Average strain tensor;
                  - Elastic strains;
                  - Inelastic strains;
                  - Stress;
σ
                  - Nominal composite yield stress;
                  - Nominal matrix yield stress;
σ'
                  - Stress \sigma_{\alpha\beta}^{\circ} at the edges;
                  - Average stress tensor;
σ°ii
                  - Applied stress;
                  - Shear stress;
                  - Nominal composite yield shear stress;
                  - Average shear stress in composite;
                 - Nominal matrix yield shear stress;
                 - Poisson's ratio; and
v_{\mathbf{A}}
\theta_{k}
                 - Reinforcement angle.
```

NON-LINEAR BEHAVIOR OF FIBER COMPOSITE LAMINATES

by Zvi Hashin, Debal Bagchi and B. Walter Rosen Materials Sciences Corporation

SUMMARY

The non-linear stress-strain behavior of fiber composite laminates has been analyzed to define the relationship between laminate behavior and the non-linear stress-strain characteristics of unidirectional composites. The resulting analysis has been programmed to yield an efficient computerized design and analysis tool.

The approach utilized herein was to adopt a Ramberg-Osgood representation of the non-linear stress-strain behavior and to utilize deformation theory as an adequate representation of the material nonlinearities. The problem was viewed on two levels. First, the relationship between the constituent properties and the stress-strain response of a unidirectional fiber composite material was studied. For this problem, the primary attention was directed toward axial shear behavior, and an expression was established relating the composite average-stress/ average-strain curve to the fiber moduli and the matrix nonlinear stress-strain curve. Second level of approach is to treat the interelationship between the properties of the unidirectional layers and those of the laminate. For this case, the starting point is a non-linear stress-strain curve for transverse stress and for axial shear and a linear stress-strain relation for stress in the fiber direction. The non-linear lamina stress-strain curves can be modeled by proper selection of the Ramberg-Osgood parameters. In the present study, with this as a starting point, an interaction expression was formulated to account for simultaneous application of axial shear and transverse stress.

A laminate having an arbitrary number of oriented layers and subjected to a general state of membrane stress was treated. Parametric results and comparison with experimental data and prior theoretical results are presented.

1. INTRODUCTION

A basic requirement for the engineer designing with fiber composite materials is a definition of the stiffness and strength of these materials under a variety of loading conditions, including cases for which experimental materials properties data are not available. For this purpose, it is necessary that he have at his disposal reasonably accurate procedures to predict these mechanical properties. Existing analyses can predict the elastic behavior of a laminated composite quite well when the elastic properties of the unidirectional materials from which it is made are known. However, the situation has been much more complicated and much less satisfactory with regard to the inelastic stiffness and strength of a laminate. The present program was undertaken to develop a computerized analysis of the inelastic behavior of fiber composite laminates which could be used as a design tool. The results of this study and comparisons of these results with experimental data are presented in this report.

It is essential to recognize that the utilization of fiber composite materails in structural design involves the incorporation of material design into the structural design process. This is illustrated clearly by the fact that the gross material properties of a fiber composite laminate change when any change is made in the laminate ply orientations. Even when the designer considers a material formed from a particular combination of fiber and matrix materials, there remains a large number of geometric variables associated with the laminate de-Thus, in the preliminary design phase, experimental material properties data will generally be too limited. case of elastic properties, sufficient capability to synthesize the necessary properties exists. This procedure generally starts with the definition of the elastic properties of unidirectional fiber composite materials. These can, of course, be determined experimentally. Also, when such data are not available, they can be estimated using a variety of analytical techniques. These

latter are generally referred to as micromechanics analyses. For example, a set of relatively simple relations for predicting the moduli of unidirectional reinforced composites are presented in [1]. Alternate micromechanics approaches are described in [2] to [4]. A review of these methods is presented in [5]. With these properties available, it is assumed that the individual laminae are homogeneous and anisotropic. A laminate analysis is carried out in a straight forward fashion following methods originally developed for such materials as plywood, and more recently extended to the more general cases associated with fiber composite laminates (e.g., [6] to [8]).

However, contemporary fiber composite materials generally consist of elastic brittle fibers such as glass, boron or graphite in relatively soft matrix materials such as epoxy or aluminum. For these matrix materials it is reasonable to anticipate that at a certain loading state the matrix will begin to exhibit inelastic effects. This results in non-linear relations between structural loads and deformations. These inelastic effects can, of course, be expected to have a significant effect upon failure of the laminate. It is quite clear that adequate definition of these failure conditions are essential to achieve structural designs of high reliability.

In the present study, a non-linear laminate analysis has been developed which can provide realistic assessments of the stresses and strains in the various laminae and of the inelastic stiffnesses of the laminate at any stress level. This information can be used for assessment of such effects as structural stability or structural stress distributions. The stress distributions in the laminae and the laminates can also be utilized for the development of more realistic failure criteria.

Inelastic matrix behavior can be classified broadly as either time dependent or time independent. Time dependent behavior is called viscoelastic if linear and creep if non-linear. Polymeric matrices such as epoxy do exhibit such behavior. In

the case of metallic matrix materials, such as aluminum, time dependent effects are generally negligible unless elevated temperature conditions are considered. The present study is concerned with time independent non-linear matrix behavior which is of significance for both polymeric and metallic matrices. Throughout this paper the expression "inelastic" is used to describe this time independent mechanical behavior. The method of approach to these problems is similar to that of the elastic analysis. Thus, it is necessary to determine, first, the inelastic properties of the unidirectional fiber composite materials. This can be done experimentally or by micromechanics methods. Given this information, a method to determine stresses and strains in an inelastic laminate is then devised. The problem is complicated by the fact that the inelastic stress-strain relations are non-linear.

A limited number of pertinent investigations can be found in the literature. Hill [4] considered, in approximate fashion, a limited aspect of inelastic behavior of a uniaxially reinforced material: the case of stress in fiber direction combined with isotropic transverse stress. Petit and Waddoups [6] devised an incremental method for laminate analysis in which it was assumed that in single laminae there is no interaction of stress components in different directions as far as lamina deformation is concerned. This assumption is restrictive, and also their incremental laminate analysis scheme is unduly complicated. Adams [7] used a finite element technique for numerical analysis of unidirectional materials in the form of periodic fiber arrays under conditions of plane strain. Huang [8] gave an approximate analysis for transverse inelastic behavior for a unidirectional material in plane strain, but it is diffucult to assess the validity of the approximations introduced.

A detailed analysis of the inelastic laminate problem has been given by Foye and Baker [9]. Using finite element methods, they computed the inelastic effective properties of unidirectional rectangular and square arrays of elastic fibers

in inelastic matrix. These properties were then used in an inelastic laminate analysis. The analysis is based on incremental plasticity theory and is, unfortunately, very complicated and requires a great deal of computer time. The results obtained are, however, of great importance for comparison with results predicted by more simplified theories, such as the one which will be given in the present work.

The body of this report is divided into four major sections. In the first, consideration is given to the behavior of unidirectional fiber composite materials. This requires: a definition of the appropriate form of the inelastic stressstrain relations; some consideration of the relationship between composite properties and constituent properties; and a definition of the appropriate form of the interaction between various stress components. The basic objective in this phase of the report was to define appropriate constitutive relations for the individual lamina which can be used in the non-linear laminate analysis. Further, there is a desire to gain some insight into the influence of the particular constituent properties upon the lamina stress-strain relations. In this phase of the study, it is found useful to characterize the unidirectional material with the aid of Ramberg-Osgood stressstrain relations.

In the next section of the report, the analysis of the inelastic behavior of laminates is described. Here, a procedure for incorporating the non-linear constitutive relations into an analysis which defines the state of stress in the individual laminae under an arbitrary set of external loads, is defined. Analyses are developed for the case of symetric laminates subjected to membrane loading. The equations which are developed uniquely define the desired laminate internal average stress distribution under a given set of membrane loads. Governing equations, however, are non-linear and require numerical solution procedures. An efficient algorithm has been defined which enables computer solution to be achieved for arbitrary

laminates at minimal cost. The solution is obtained by application of the Newton-Raphson method.

In the final section, the computerized analysis which has been developed is applied to series of problems. The first group presents comparisons with various analytical results from the more complex analyses of Ref. [6] and [9]. The second group of numerical results presents comparisons between theoretical results from the present model and available experimental data. The third group of results provides several parametric studies to gain insight into those factors which contribute significantly to the non-linear behavior of fiber composite laminates. Also, computations have been made to provide a preliminary assessment of combined load effects including comparisons with limited experimental data.

Details of the various analytical developments, as well as descriptions of the computer program, are presented in appendices to the report.

The principal result of the present program is a computer program which provides a simple engineering tool which can be used for the parametric study of the influence of material properties upon laminate performance. This laminate analysis capability can be used by the structural designer to define design allowable stresses and to aid in the selection of fiber composite materials for structural applications. A comparison of the present results with the limited amount of available experimental data shows good agreement. There are, however certain cases in which the agreement is not good, par ticularly as the laminate loading approaches failure. The results of the present analytical method agree well with the results for those problems for which more exact and more complex analytical results exist.

2. NON-LINEAR STRESS-STRAIN RELATIONS OF UNIAXIAL FIBER REINFORCED MATERIALS

2.1 General Form of Stress-Strain Relations

An effective stress-strain relation of a composite material is defined as a relation between average stress $\bar{\sigma}_{ij}$ and average strain $\bar{\epsilon}_{ij}$. Here and in the following latin indices range over 1, 2, and 3. If the composite is <u>elastic</u> the general effective stress-strain relation takes the form

$$\overline{\sigma}_{ij} = C^*_{ijkl} \overline{\epsilon}_{kl}$$
 (2.1.1)

where C_{ijkl}^* are the effective elastic moduli which are material constants and are thus independent of stress or strain. Thus, (2.1.1) is a linear relation between average stress and strain.

If the composite is subject to symmetries the form of (2.1.1) simplifies. For a uniaxial FRM the most important cases of symmetry are transverse isotropy, around fiber direction, and square array (square symmetry). In these cases the stress-strain relations (2.1.1) for transverse isotropy assume the form:

$$\overline{\sigma}_{11} = C \star_{11} \overline{\epsilon}_{11} + C \star_{12} \overline{\epsilon}_{22} + C \star_{12} \overline{\epsilon}_{33}$$

$$\overline{\sigma}_{22} = C \star_{12} \overline{\epsilon}_{11} + C \star_{22} \overline{\epsilon}_{22} + C \star_{23} \overline{\epsilon}_{33}$$

$$\overline{\sigma}_{33} = C \star_{12} \overline{\epsilon}_{11} + C \star_{23} \overline{\epsilon}_{22} + C \star_{22} \overline{\epsilon}_{33}$$

$$\overline{\sigma}_{12} = 2C \star_{44} \overline{\epsilon}_{12}$$

$$\overline{\sigma}_{23} = 2C \star_{55} \overline{\epsilon}_{23}$$

$$\overline{\sigma}_{31} = 2C \star_{44} \overline{\epsilon}_{31}$$

$$(2.1.2)$$

and

 $C^*_{55} = (C^*_{22} - C^*_{23})/2$ (2.1.3)

In (2.1.2-3) 1 indicates direction and 2, 3 perpendicular directions transverse to 1.

In the event of inelastic matrix and elastic fibers, the situation is much more complicated since the stress-strain

relation are nonlinearity and history dependent. In no case is stress proportional to strain so that superposition of effects is not valid, and in order to determine current strain it is not sufficient to know current stress but it is necessary to know precisely the variation of stress which preceded its current value. Thus, for a material in a known state of combined shear and uniaxial tension, the state of strain is different (a) tension is first applied and then the shear, (b) shear is first applied and then the tension- (c) tension and shear are applied simultaneously. For this reason stress-strain relations must be presented in incremental form. That is, strain increment is related to stress and stress increment. This complicates matters enormously. However, it is known that in the case of proportional loading, that is, all stresses at a point grow simultaneously in a fixed ratio to one another, incremental theory can be integrated into the much simpler total or deformation theory for which current strain is completely determined by current stress.

Deformation theories have a wider range of validity than proportional loading. Comparison of numerous detailed solutions carried out both incrementally and by much simpler deformation theory show surprising agreement in many cases, and Budiansky [10] has shown that deformation theory can also be valid for "neighboring" loading paths.

In the present work, we are concerned with composites which are subjected to some external load. If it is supposed that the various external load components grow proportionally, this does not necessarily imply that the components of stress at a typical internal point also grow proportionally. It is, however, felt that the manner of growth of these internal stress components cannot deviate severely from proportional loading if external loading is proportional. Consequently, deformation type stress-strain relations are assumed for the matrix.

This assumption results in considerable simplification. It will be seen that it yields results which are extremely 8.

close to the ones obtained in [9] on the basis of the much more complicated incremental theory.

It is shown in Appendix A that for elastic fibers and an inelastic matrix described by deformation type theory, the effective stress-strain relations for a transversely isotropic or square symmetric FRM are:

$$\overline{\varepsilon}_{11} = S_{11} \ \overline{\sigma}_{11} + S_{12} \ \overline{\sigma}_{22} + S_{12} \ \overline{\sigma}_{33}
\overline{\varepsilon}_{22} = S_{12} \ \overline{\sigma}_{11} + S_{22} \ \overline{\sigma}_{22} + S_{23} \ \overline{\sigma}_{33}
\overline{\varepsilon}_{33} = S_{12} \ \overline{\sigma}_{11} + S_{23} \ \overline{\sigma}_{22} + S_{22} \ \overline{\sigma}_{33}
\overline{\varepsilon}_{12} = 2S_{44} \ \overline{\sigma}_{12}
\overline{\varepsilon}_{23} = 2S_{55} \ \overline{\sigma}_{23}
\overline{\varepsilon}_{13} = 2S_{44} \ \overline{\sigma}_{13}$$
(2.1.4)

and

$$S_{55} = (S_{22} - S_{23})/2$$
 (2.1.5)

The coefficients s_{11} , s_{12} , etc. are the effective inelastic compliances of the material and are <u>functions of the average stresses</u>, or rather of certain invariants of the average stress tensor.

We are here primarily concerned with thin uniaxially reinforced laminae which are in a state of plane stress. Let \mathbf{x}_1 denote fiber direction, \mathbf{x}_2 direction transverse to fibers in lamina plane, and \mathbf{x}_3 direction perpendicular to lamina, Figure 1. Then the plane stress condition is expressed by:

$$\bar{\sigma}_{13} = \bar{\sigma}_{23} = \bar{\sigma}_{33} = 0$$
 (2.1.6)

Equs. (2.1.4) then assume the form:

$$\overline{\varepsilon}_{11} = S_{11} \overline{\sigma}_{11} + S_{12} \overline{\sigma}_{22}$$

$$\overline{\varepsilon}_{22} = S_{12} \overline{\sigma}_{11} + S_{22} \overline{\sigma}_{22}$$

$$\overline{\varepsilon}_{12} = 2S_{44} \overline{\sigma}_{12}$$

$$(2.1.7)$$

Note that $\bar{\epsilon}_{33}$ does not vanish. It is however of no interest for present purposes.

The inelastic compliances in (2.1.7) are functions of the stresses $\bar{\sigma}_{11}$, $\bar{\sigma}_{22}$ $\bar{\sigma}_{12}$.

the stresses $\bar{\sigma}_{11}$, $\bar{\sigma}_{22}$, $\bar{\sigma}_{12}$.

It is convenient to split the strains in (2.1.7) into elastic strains $\bar{\epsilon}'_{\alpha\beta}$, and inelastic strains $\bar{\epsilon}''_{\alpha\beta}$. Thus:

$$\overline{\varepsilon}_{\alpha\beta} = \overline{\varepsilon}'_{\alpha\beta} + \overline{\varepsilon}''_{\alpha\beta} \tag{2.1.8}$$

where here and in the following greek indices range over 1, 2. The elastic strains are recovered after unloading of the composite and are related to the stresses by elastic stress-strain relations. Thus:

$$\bar{\varepsilon}_{11}' = S_{11}' \bar{\sigma}_{11} + S_{12}' \bar{\sigma}_{22}
\bar{\varepsilon}_{22}' = S_{12}' \bar{\sigma}_{11} + S_{22}' \bar{\sigma}_{22}
\bar{\varepsilon}_{12}' = 2S_{44}' \bar{\sigma}_{12}$$
(2.1.9)

where

$$S_{11} = \frac{1}{E_{A}}$$

$$S_{12} = -\frac{v_{A}}{E_{A}}$$

$$S_{22} = \frac{1}{E_{TD}}$$

$$S_{44} = \frac{1}{4G_{A}}$$
(2.1.10)

Here ${\rm E_A}$ is the effective Young's modulus in fiber direction, ${\rm v_A}^-$ the associated effective Poisson's ration, ${\rm E_T}$ - the effective Young's modulus transverse to fibers and ${\rm G_A}$ - axial effective shear modulus, related to 1-2 shear.

The inelastic, permanent, strains then have the form:

$$\bar{\varepsilon}_{11}^{"} = S_{11}^{"} \bar{\sigma}_{11} + S_{12}^{"} \bar{\sigma}_{22}
\bar{\varepsilon}_{22}^{"} = S_{12}^{"} \bar{\sigma}_{11} + S_{22}^{"} \bar{\sigma}_{22}
\bar{\varepsilon}_{12}^{"} = 2S_{44}^{"} \bar{\sigma}_{12}^{"}$$
(2.1.11)

where

$$S_{2\beta}^{"} = S_{2\beta}^{"} (\bar{\sigma}_{11}, \bar{\sigma}_{22}, \bar{\sigma}_{12})$$
 (2.1.12)

In order to further simplify the stress-strain relations (2.1.11-.12), some specific features of FRM will be taken into account. In such materials, the fibers are by an order of magnitude stiffer than the matrix (for the case of boron and/or graphite fiber in an epoxy matrix the ratio of fiber to matrix Young's modulus can be in excess of 100). The stiffness ratio becomes larger in the inelastic range since the matrix loses stiffness (i.e., flows) while the fibers retain their stiffness. It is, therefore, clear that the stress $\bar{\sigma}_{11}$ in fiber direction is practically carried by the fibers alone, with insignificant matrix contribution.

On the other hand, the transverse stress $\bar{\sigma}_{22}$ and the shear stress $\bar{\sigma}_{12}$ are primarily carried by the matrix with little fiber contribution.

It follows that inelastic behavior of the FRM is produced primarily by $\bar{\sigma}_{22}$ and $\bar{\sigma}_{12}$ while inelastic behavior for $\bar{\sigma}_{11}$ load can be neglected.

The foregoing comments are summarized into two basic assumptions:

- (a) the inelastic strains $\bar{\varepsilon}_{22}^{"}$ and $\bar{\varepsilon}_{12}^{"}$ are not functions of $\bar{\sigma}_{11}$
- (b) the inelastic strain $\bar{\epsilon}_{11}^{"}$ always vanishes.

On the basis of these assumptions, the stress-strain relations (2.1.11-.12) simplify to:

$$\bar{\varepsilon}_{11}^{"} = 0
\bar{\varepsilon}_{22}^{"} = S_{22}^{"} (\bar{\sigma}_{22}, \bar{\sigma}_{12}) \bar{\sigma}_{22}
\bar{\varepsilon}_{12}^{"} = 2S_{44}^{"} (\bar{\sigma}_{22}, \bar{\sigma}_{12}) \bar{\sigma}_{12}$$
(2.1.13)

2.2 Plane Stress-Strain Relations in Ramberg-Osgood Form

A convenient representation of non-linear one dimensional stress-strain relations has been given by Ramberg and Osgood [11]. For uniaxial stress, for example:

$$\varepsilon = \frac{\sigma}{E_1} \left[1 + k \left(\frac{\sigma}{\sigma} \right)^{m-1} \right]$$
 (2.2.1)

where E_1 represents the elastic Young's modulus, and k, σ' , and m are three parameters to be obtained by curve fitting. The parameter σ' is sometimes called nominal yield stress. Equation (2.2.1) represents a family of curves with initial slope E_1 , and monotonically decreasing slope with increasing σ . The curves flatten out with increasing m (Fig. 2). Without loss of generality (2.2.1) can be written in the form:

$$\varepsilon = \frac{\sigma}{E_1} \left[1 + \left(\frac{\sigma}{\sigma_V} \right)^{m-1} \right] \tag{2.2.2}$$

which will be used from now on. Similarly, a stress-strain curve in shear can be represented in the form:

$$\gamma = \frac{\tau}{G_1} \left[1 + (\frac{\tau}{\tau_v})^{n-1} \right]$$
 (2.2.3)

where G_1 is the elastic shear modulus.

It should be emphasized that (2.2.2-.3) are valid only for one dimensional cases. The question of the generalization to general states of stress and strain has no unique answer. One common used form is isotropic J_2 deformation theory [12].

Next, we consider the case of effective or macroscopic stress-strain relations for the special case of a uniaxially reinforced material in which the matrix in non-linear, with stress-strain relations in Ramberg-Osgood form.

Consider, for example, the case of uniaxial average stress $\bar{\sigma}_{22}$ in direction transverse to fibers, all other average stresses vanish. It then follows from (2.1.7) that:

$$\bar{\varepsilon}_{22} = S_{22} (\bar{\sigma}_{22}) \bar{\sigma}_{22} \qquad (2.2.4)$$

Similarly, if the only nonvanishing average stress is $\bar{\sigma}_{12}$, the shear stress-strain relation of the composite is:

$$\bar{\varepsilon}_{12} = 2S_{44} (\bar{\sigma}_{12}) \bar{\sigma}_{12} \qquad (2.2.5)$$

Evidently the inelastic effective compliances \mathbf{S}_{22} and \mathbf{S}_{44} are functions of the parameters of the inelastic Ramberg-Osgood stress-strain relations of the matrix, of the elastic properties of the fibers and of the internal geometry of the composite. Actual prediction is a very difficult problem. Such problems will be ensidered in limited fashion in the next paragraph.

Just as matrix stress-strain relations are represented in Ramberg-Osgood form, the same type of curve fitting can also be applied for the effective stress-strain relation of the composite. Thus (2.2.2-.3) are written in the form:

$$\bar{\epsilon}_{22} = \frac{\bar{\sigma}_{22}}{E_{T}} \left[1 + (\frac{\bar{\sigma}_{22}}{\sigma_{y}})^{M-1} \right]$$
 (a)
$$\bar{\epsilon}_{12} = \frac{\bar{\sigma}_{12}}{2G_{D}} \left[1 + (\frac{\bar{\sigma}_{12}}{\tau_{y}})^{N-1} \right]$$
 (b)

Where $E_{\rm T}$ is the effective transverse elastic Young's modulus $G_{\rm A}$ - effective axial elastic shear modulus and $\sigma_{\rm y}$, $\tau_{\rm y}$, M and N are curve fitting parameters which are in general quite different from the corresponding Ramberg-Osgood matrix parameters.

A question of fundamental and of practical importance is the form of the stress-strain relations for the case of plane stress, taking into account interaction among the various stress components. It should be noted in this repsect that (2.2.6) are special stress-strain relations when $\bar{\sigma}_{22}$ or $\bar{\sigma}_{12}$ act only by themselves.

It is recalled that equations (2.1.13) represent the inelastic parts of the strains for plane stress-strain relations for FRM with stiff fibers. It is shown in Appendix B

that the Ramberg-Osgood form of such plane stress-strain relations is as follows:

$$\frac{\bar{\epsilon}_{11}^{"}}{\bar{\epsilon}_{12}^{"}} = \frac{\bar{\sigma}_{22}}{\bar{E}_{T}} \left[\left(\frac{\bar{\sigma}_{22}}{\sigma_{y}} \right)^{2} + \left(\frac{\bar{\sigma}_{12}}{\tau_{y}} \right)^{2} \right] \frac{M-1}{2}$$

$$\bar{\epsilon}_{12}^{"} = \frac{\bar{\sigma}_{12}}{2G_{A}} \left[\left(\frac{\bar{\sigma}_{22}}{\sigma_{y}} \right)^{2} + \left(\frac{\bar{\sigma}_{12}}{\tau_{y}} \right)^{2} \right] \frac{N-1}{2}$$
(2.2.7)

The parameters E_T , G_A , σ_y , τ_y , M, N in (2.2.7) are those of the one dimensional stress-strain relations (2.2.6) which may be regarded as experimentally (or perhaps theoretically) known.

The inelastic parts of the strains are given by (2.1.9-.10), and the total strains are then given by adding equations (2.2.7) and (2.1.9).

Equations (2.2.7) have been compared with computed numerical results given in [9]. Reasonable agreement was obtained. Comparisons for the interaction cases of transverse stress, $\bar{\sigma}_{22}$, versus transverse strain, $\bar{\epsilon}_{22}$, in the presence of axial shear stress, $\bar{\sigma}_{12}$, and axial shear stress, $\bar{\sigma}_{12}$, versus axial shear strain, $\bar{\gamma}_{12}$, are shown in Figures 3 and 4 respectively (in both cases $\bar{\sigma}_{22}/\bar{\sigma}_{12}=8/3$). It is seen that the agreement is fair for transverse stress-strain relations (Fig. 3) and very good for the shear stress-strain relations (Fig. 4).

Figures 3 and 4 also show the stress-strain relations obtained from Eqs. (2.2.7) for one dimensional transverse tension $\bar{\sigma}_{22}$, and axial shear, $\bar{\sigma}_{12}$, respectively.

2.3 Axial Shear Stress-Strain Relation

This paragraph is concerned with the problem of prediction of a one dimensional effective axial shear stress-strain relation of a uniaxial FRM in terms of matrix and fiber properties and the internal geometry of the composite.

The main reason for concentrating on the axial shear problem is that the inelastic effect is predominant in axial shear for which significant nonlinearity of the stress-strain response is obtained (e.g., Figure 4). The effect in fiber direction is practically non-existent as has indeed been assumed above, and is relatively small in transverse stress which is shown by the small curvature of the stress-strain relation in this case (e.g., Figure 3).

On the basis of all this, it can indeed be assumed as first approximation that the nonlinearity of the uniaxial FRM is limited to axial shear alone.

Consider a uniaxially reinforced lamina which is subjected to pure axial shear, Figure 5, on its surface. The boundary conditions are:

$$x_3 = \pm t/2$$
 $\sigma_{31} = \sigma_{32} = \sigma_{33} = 0$
 $x_2 = \pm b$ $\sigma_{12} = \tau_o$ $\sigma_{22} = \sigma_{23} = 0$
 $x_1 = \pm a$ $\sigma_{12} = \tau_o$ $\sigma_{11} = \sigma_{13} = 0$ (2.3.1)

It may be shown that under such load the only nonvanishing average stress in the composite is:

$$\bar{\sigma}_{12} = \tau_{o} \tag{2.3.2}$$

It would seem at first that, given the complexity of the internal geometry of the composite, the state of stress at any interior matrix or fiber point is generally three dimensional. Surprisingly enough, however, this is not so and the only nonvanishing stress components in the interior of the composites

are the shear stresses σ_{12} and σ_{13} , which are moreover functions of x_2 and x_3 only. Thus, the interior state of stress is:

$$\sigma_{12} = \sigma_{12} \quad (x_2, x_3)$$

$$\sigma_{13} = \sigma_{13} \quad (x_2, x_3)$$

$$\sigma_{11} = \sigma_{22} = \sigma_{33} = \sigma_{23} = 0$$
(2.3.3)

The validity of equations (2.3.3) for the case of an elastic composite has been proved in [5]. Their validity for the present much more general inelastic case will be shown elsewhere.

The effective stress-strain relation of the composite in axial shear is defined by:

$$\bar{\varepsilon}_{12} = \frac{\sigma_{12}}{2G_{A}^{S}} = \frac{\tau_{o}}{2G_{A}^{S}}$$

$$G_{A}^{S} = G_{A}^{S}(\bar{\sigma}_{12}) = G_{A}^{S}(\tau_{o})$$
(2.3.4)

where G_A^S is the <u>effective secant shear modulus</u> of the material. The nonlinearity of the stress-strain relation is expressed by the fact that G_A^S function of the applied stress.

It is seen that in order to determine G_A^s it is necessary to compute the average shear strain $\bar{\varepsilon}_{12}$ for given applied shear stress. This is a formidable problem even with the simplification (2.3.3) and we shall content ourselves with a brief outline of its formulation. To simplify matters, the fibers shall be assumed to be ideally rigid relative to the matrix. This is a very accurate assumption for the case of Boron and Graphite Fibers. There is no difficulty to extend the formulation to the case of non-rigid elastic fibers.

In view of (2.3.3) the problem is two dimensional and need only be considered in a typical \mathbf{x}_2 , \mathbf{x}_3 section. In the matrix domain:

$$\frac{\partial \sigma_{12}}{\partial \sigma_{13}} + \frac{\partial \sigma_{13}}{\partial \sigma_{13}} = 0 \tag{2.3.5a}$$

$$\frac{\partial \sigma_{12}}{\partial \mathbf{x}_2} + \frac{\partial \sigma_{13}}{\partial \mathbf{x}_3} = 0$$

$$\varepsilon_{12} = \frac{\sigma_{12}}{2G} \left[1 + \left(\frac{\tau}{\tau} \right)^{n-1} \right]$$

$$(2.3.5a)$$

$$(2.3.5b)$$

$$\varepsilon_{13} = \frac{\sigma_{13}}{2G} \left[1 + \left(\frac{\tau}{\tau_{y}}\right)^{n-1}\right]$$
(2.3.5c)

$$\tau = \sqrt{\sigma_{12}^2 + \sigma_{13}^2}$$
 (2.3.6)

$$\varepsilon_{12} = \frac{1}{2} \frac{\partial u_1}{\partial x_2} \tag{2.3.7a}$$

$$\varepsilon_{13} = \frac{1}{2} \frac{\partial u_1}{\partial x_3} \tag{2.3.7b}$$

$$u_1 = u_1 (x_2, x_3)$$
 (2.3.8)

and, $u_1 = 0$ at fiber/matrix interface.

Here equ. (2.3.5) is the only surviving equilibrium equation, (2.3.6) are Ramberg-Osgood stress-strain relations for isotropic J₂ theory (2.3.7) are usual strain-displacement relations in which u_2 and u_3 do not enter since it may be shown that they are not functions of x_1 and (2.3.8) expresses the ideal rigidity of the fibers.

Equs. (2.3.5-.8) must be solved subject to boundary condition (2.3.1). If this is done the strain ϵ_{12} is known everywhere and can be averaged to obtain G_{A}^{S} from (2.3.4).

The problem is exceedingly difficult because of the nonlinearity introduced by the stress-strain relations (2.3.6). There is very little hope to solve it analytically for any kind of fiber geometry. It should therefore be handled by numerical methods for fiber arrangements and fiber shapes of engineering interest.

Another way to approach an analytically intractable problem such as the present one is by variational techniques. In this fashion, approximations or bounds for quantities of interest are obtained by methods which are much simpler than bonafide solution of the problem. Such variational methods have been extensively used for determination of effective elastic moduli of FRM (e.g., [5]).

In the course of the present work, it has been found that variational methods can also be used for inelastic problems such as the present one to obtain bounds on effective secant moduli. The main ingredients of the method are:

- (a) Construction of an extremum principle in terms of an energy integral such that the true energy is the minimum of the integral.
- (b) Expression of the true energy in terms of effective secant modulus.
- (c) Establishment of admissible fields to obtain a value of the energy integral which is larger than the true energy, thus obtaining a bound for G_{Λ}^{S} .

The work involves complicated developments and derivations which are given in Appendix C. Here only the end result for a lower bound on G_A^S will be given for a special geometry of FRM which is known as composite cylinder assemblage. This geometry has been described in detail in [1, 5] and consists of an assemblage of composite cylinders of variable sizes which are joined together so as to fill the whole volume of the composite. In order to fill the whole volume, composite cylinders vary from finite to infinitesimal size. This geometry has been used to advantage for elastic FRM to obtain simple expressions for effective elastic moduli which are well verified by experiment [1, 5]. In the present case only a lower bound on G_A^S has been obtained for the case in which the exponent n in matrix stress-strain relations is n=3.

It has been found that with this exponent and proper choice of τ_{y} , epoxy shear stress-strain relations can be well described. The result for the lower bound is:

$$G_{A}^{S} \geq G_{A(-)}^{S} = \frac{G \frac{1+c}{1-c}}{1 + (\frac{\tau_{o}}{\tau_{v}^{'}})^{2} \frac{3+13c+c^{2}+c^{3}}{3(1+c)^{3}}}$$
(2.3.9)

where

c - volume fraction of fibers

G - elastic (initial) matrix shear modulus

 $\tau_{_{\mathbf{V}}}^{\, \boldsymbol{\shortmid}}$ - Ramberg-Osgood matrix stress parameter, and

 τ_{o} - applied shear stress.

It follows from (2.3.4) that:

$$\bar{\varepsilon}_{12} \leq \frac{\tau_{o}}{2G_{A}^{S}(-)} \tag{2.3.10}$$

In other words, with the lower bound on G_A^S an upper bound on $\bar{\epsilon}_{12}$ variation with τ_o is obtained.

If (2.3.10) is explicitly written in terms of (2.3.9) it assumes the form:

$$\tilde{\epsilon}_{12} \leq \frac{\tau_o}{2G\frac{1+c}{1-c}} \left[1 + \left(\frac{\tau_o}{\tau_v}\right)^2 \frac{3+13c+c^2+c^3}{3(1+c)^3}\right]$$
 (2.3.11)

Recalling that for the composite cylinder assemblage with rigid fibers the axial elastic shear modulus ${\sf G}_{\!\!\!A}$ is given in [1, 5] as:

$$G_{A} = G \frac{1+c}{1-c}$$
 (2.3.12)

and comparing (2.3.11) with (2.2.6) with choice of exponent W=3 (which is the same as matrix exponent), it is seen that:

$$\tau_{y}^{2} \ge \tau_{y}^{2} \frac{3(1+c)^{3}}{3+13c+c^{2}+c^{3}}$$
 (2.3.13)

The prediction of (2.3.11) has been compared with numerical results obtained in [9]. Figure 6 shows the variation of the right side of (2.3.11) in comparison with the results obtained in [9] for a fiber volume fraction, c=0.5. Since results of [9] were for boron fibers in epoxy matrix, the rigid fiber approximation is accurately valid. It is seen that the results are reasonably close. It should be noted that the geometry of [9] is a rectangular fiber array which is quite different from the composite cylinder assemblage geometry.

The results defined by (2.3.12) and (2.3.13) used in equation (2.2.6) yield the result plotted in non-dimensional form in Fig. 7. The shear strains are normalized with respect to the matrix elastic strain, γ_{ye} , at the yield stress, τ_{y} :

$$\gamma_{\text{ye}} = \frac{\tau_{\text{y}}}{G} \tag{2.3.14}$$

It is natural to also consider the establishment of an upper bound on G_A^s . Unfortunately, however, this is a matter of formidable difficulty for the reason that inversion of (2.3.6) to express stresses in terms of strains leads very complicated expressions. Further discussion of this difficulty is given in Appendix C.

3. ANALYSIS OF NON-LINEAR LAMINATES

3.1 Formulation

The general problem to be investigated in the present chapter is as follows: given the inelastic stress-strain relations of uniaxially reinforced laminae determined theoretically or experimentally, and a laminate composed of such laminae and loaded on its edges by uniformly distributed loads in the plate of the laminate:

- (a) What are the stresses in the various laminae?
- (b) What is the macroscopic strain response of the laminate to the loads?

This problem has been extensively investigated for elastic laminates, and the results obtained will serve as important guidelines for the present much more complicated problem. It is therefore very helpful to first briefly review the theory of elastic laminates.

Let the laminate be referred to a fixed system of coordinates x_1 , x_2 , x_3 as shown in Figure 8. This will henceforth be referred to as the laminate coordinate system.

Any lamina, kth say, in the laminate will be referred to its <u>material system of coordinates</u> $x_1^{(k)}$, $x_2^{(k)}$, $x_3^{(k)}$ where $x_1^{(k)}$ is in fiber direction, $x_2^{(k)}$ perpendicular to fiber direction and x_3 is the same as the laminate x_3 , Figure 8. The reinforcement angle θ_k is defined by:

$$\theta = (x_1, x_1^{(k)}) = (x_2, x_2^{(k)})$$
 (3.1.1)

Let it be assumed that the laminae are in states of plane stress. It will be later explained under what conditions this is true. Then the stress-strain relations of a single lamina referred to its material coordinate system are written in the forms:

$$\varepsilon_{\alpha\beta}^{(k)} = S_{\alpha\beta\gamma\delta}^{(k)} \sigma_{\gamma\delta}^{(k)}$$

$$\varepsilon_{\alpha\beta}^{(k)} = S_{\alpha\beta\gamma\delta}^{(k)} \sigma_{\gamma\delta}^{(k)}$$
(a)
$$\varepsilon_{\alpha\beta}^{(k)} = S_{\alpha\beta\gamma\delta}^{(k)} \sigma_{\gamma\delta}^{(k)}$$
(b)
21.

where (3.1.2a) is in tensor notation with range of subscripts 1, 2 and (3.1.2b) is in matrix notation. It should be noted that (3.1.2) represent the stress-strain relations (2.1.9 - .10), i.e.,

$$\varepsilon_{11}^{(k)} = \frac{\sigma_{11}^{(k)}}{E_{A}^{(k)}} - \frac{v_{A}^{(k)}}{E_{A}^{(k)}} \quad \sigma_{22}^{(k)}$$

$$\varepsilon_{22}^{(k)} = -\frac{v_{A}^{(k)}}{E_{A}^{(k)}} \quad \sigma_{11}^{(k)} + \frac{\sigma_{22}^{(k)}}{E_{T}^{(k)}}$$

$$\varepsilon_{12}^{(k)} = \frac{\sigma_{12}^{(k)}}{2G_{A}^{(k)}}$$
(3.1.3)

Let a laminate of rectangular form, Figure 8, be loaded by a uniform edge stress:

$$\sigma_{11} \stackrel{(+a, x_2)}{=} \sigma_{11}^{\circ}$$

$$\sigma_{12} \stackrel{(+a, x_2)}{=} \sigma_{12}^{\circ}$$

$$\sigma_{12} (x_1, +b) = \sigma_{12}^{\circ}$$

$$\sigma_{22} (x_1, +b) = \sigma_{22}^{\circ}$$
(3.1.4)

The elasticity solution of the laminate must satisfy the following requirements:

- (a) Equilibrium of stresses,
- (b) Traction continuity at laminae interfaces,
- (c) Boundary conditions (3.1.4), and
- (d) Displacement continuity at laminae interfaces.

It is assumed that the stresses in any lamina are constant, but different in the different laminae. The condition (a) is satisfied within any lamina. Since the assumed lamina stresses are plane there are no traction components on laminae interfaces. Therefore (b) is satisfied.

The boundary conditions (3.1.4) cannot be strictly satisfied in each lamina but only in an average sense. To do this lamina stresses $\sigma_{\alpha\beta}^{(k)}$ referred to lamina material coordinates

are transformed to laminate axes. The stresses in the kth lamina referred to laminate axes are denoted $^{(k)}\sigma_{\alpha\beta}$. The transformation is given by:

or in matrix notation:

$$\underline{\sigma} = \underline{\theta}^{(k)} \underline{\sigma}^{(k)}$$
 (3.1.6)

Let the edges of the laminate be loaded by constant forces per unit length T_{11} , T_{22} , T_{12} and define the stresses (3.1.4) as edge averages over the laminate thickness h:

$$\sigma_{11}^{\circ} = T_{11}/h$$
 $\sigma_{22}^{\circ} = T_{22}/h$
 $\sigma_{12}^{\circ} = T_{12}/h$
(3.1.7)

Equilibrium requires that:

$$\begin{array}{ccc}
K & \sigma_{11}^{(k)} & \sigma_{11}^{(k)} & \sigma_{11}^{\circ} \\
K & \Sigma & \sigma_{22}^{(k)} & \sigma_{22}^{\circ} & \sigma_{22}^{\circ} \\
K = 1 & K & \sigma_{12}^{(k)} & \sigma_{12}^{\circ} & \sigma_{12}^{\circ}
\end{array} \tag{3.1.8}$$

where K is the number of laminae. Written in terms of stresses $\sigma_{\alpha\beta}^{(k)}$ using (3.1.6), we have:

$$\sum_{k=1}^{K} \underline{\theta}^{(k)} \underline{\sigma}^{(k)} = \underline{\sigma}^{\circ}$$
(3.1.9)

where $\underline{\sigma}^{\circ}$ denotes the stresses $\sigma_{\alpha\beta}^{\circ}$ at the edges.

Replacement of the boundary conditions (3.1.4) by (3.1.6) is an approximation of Saint Venant type. Thus, there must be expected edge perturbations (among them interlaminar shear) on the stresses predicted by laminate theory.

Equations (3.1.8) are three equations for the 3K stresses $\sigma_{\alpha\beta}^{(1)}$, $\sigma_{\alpha\beta}^{(2)}...\sigma_{\alpha\beta}^{(K)}$ in the laminae. There are needed an additional 3(K-1) equations which are provided by displacement continuity at lamina interfaces, requirement (d).

Since the stresses in each laminae are by hypothesis uniform, so are the strains. Therefore, displacement continuity is ensured if the lamine strains in adjacent laminae, referred to laminae coordinate system are the same. Thus:

$$\begin{array}{lll}
(k) & \varepsilon_{11} & = & (k+1) & \varepsilon_{11} \\
(k) & \varepsilon_{22} & = & (k+1) & \varepsilon_{22} \\
(k) & \varepsilon_{12} & = & (k+1) & \varepsilon_{12}
\end{array} \tag{3.1.10}$$

Equations (3.1.10) are the additional required 3(K-1) equations. They will be written in terms of laminae stresses $\sigma_{\alpha\beta}^{(k)}$ referred to laminae material axes. To do this it is noted that:

$$(k)_{\varepsilon} = \theta^{(k)} \varepsilon^{(k)}$$

which is just a transformation of (3.1.6). From (3.1.2b):

$$(k)_{\varepsilon} = \theta^{(k)} \underline{\hat{s}}^{(k)} \underline{\sigma}^{(k)}$$
 (3.1.11)

and inserting the last result in (3.1.10):

$$\underline{\theta}^{(k)} \underline{s}^{(k)} \underline{\sigma}^{(k)} = \underline{\theta}^{(k+1)} \underline{s}^{(k+1)} \underline{\sigma}^{(k+1)} \qquad k=1,2,\ldots,k \quad (3.1.12)$$

Equations (3.1.9) and (3.1.12) are 3K linear equations for the 3K stresses in an elastic laminate, with K layers.

It should be carefully noted that the analysis given above is based on plane stress conditions in individual laminae. This 24.

is a valid assumption if:

- (a) The loads on the laminate are statically equivalent to in-plane forces (membrane forces) and produce neither bending nor twisting moments, and
- (b) The laminate has a certain stacking sequence of laminae which defines a so called balanced or symmetric laminate.

This stacking sequence is an arrangement in which the laminate has a middle plane of geometrical and of material symmetry. The laminae are arranged in paris with respect to the plane of symmetry. The laminae of such pair have equal thicknesses, same distances from middle plane, and are of the same material with same angles of reinforcement.

In a non-symmetric laminate application of membrane forces will in general produce bending and twisting of laminae and thus a plane state of stress will not be realized. The symmetric laminate is, however, sufficiently versatile to cover most cases of practical interest.

Let it now be assumed that the laminate is inelastic but still fulfills the conditions of symmetry and pure membrane loading. In this case the only equations which necessarily change in the preceding development are the stress-strain relations of the laminae, (3.1.2), which must be replaced by inelastic laminae stress-strain relations are given by (2.1.7) where the compliances are now functions of the stresses. These compliances now replace the elastic compliances in (3.1.2) which thus become non-linear.

It is convenient for later purposes to rewrite (3.1.2) in the inelastic case in different form. To do this the strains $\epsilon_{\alpha\beta}^{(k)}$ are first split into elastic strains (2.1.9) and inelastic strains (2.1.11). Preceding to (3.1.12) this equation assumes the form:

$$\frac{\theta^{(k+1)} \underline{s}^{1(k+1)} \underline{\sigma}^{(k+1)} - \underline{\theta}^{(k)} \underline{s}^{1(k)} \underline{\sigma}^{(k)} = \\
- \underline{\theta}^{(k+1)} \underline{s}^{11(k+1)} \underline{\sigma}^{(k+1)} + \underline{\theta}^{(k)} \underline{s}^{11(k)} \underline{\sigma}^{(k)} \\
k = 1, 2 \dots k$$
(3.1.13)

where

$$\underline{s}^{1(k)}$$
 - elastic compliance matrix of kth layer
$$\underline{s}^{1(k)}$$
 - inelastic part of compliance matrix of kth layer
$$\underline{s}^{(k)} = \underline{s}^{1(k)} + \underline{s}^{11(k)} \tag{3.1.14}$$

Equations (3.1.13) are now written out in component form with notation (2.1.10), (2.1.12) for compliances:

$$\begin{split} &\sigma_{11}^{(k+1)} \left(\mathbf{S}_{11}^{1} ^{(k+1)} \cos^{2}\theta_{k+1} + \mathbf{S}_{12}^{1(k+1)} \sin^{2}\theta_{k+1} \right) \\ &+ \sigma_{22}^{(k+1)} \left(\mathbf{S}_{12}^{1(k+1)} \cos^{2}\theta_{k+1} + \mathbf{S}_{22}^{1(k+1)} \sin^{2}\theta_{k+1} \right) \\ &- 4\sigma_{12}^{(k+1)} \mathbf{S}_{44}^{1(k+1)} \cos^{2}\theta_{k+1} \sin^{2}\theta_{k+1} - \sigma_{11}^{(k)} \left(\mathbf{S}_{11}^{1(k)} \cos^{2}\theta_{k} + \mathbf{S}_{12}^{1(k)} \sin^{2}\theta_{k} \right) \\ &+ \sigma_{22}^{(k)} \left(\mathbf{S}_{12}^{1(k)} \cos^{2}\theta_{k} + \mathbf{S}_{22}^{1} \sin^{2}\theta_{k} \right) = 4\sigma_{12}^{(k)} \mathbf{S}_{44}^{1(k)} \cos^{2}\theta_{k} \sin^{2}\theta_{k} \\ &= -\sigma_{11}^{(k+1)} \left(\mathbf{S}_{11}^{11(k+1)} \cos^{2}\theta_{k+1} + \mathbf{S}_{12}^{11(k+1)} \sin^{2}\theta_{k+1} \right) \\ &+ \sigma_{22}^{(k+1)} \left(\mathbf{S}_{12}^{11(k+1)} \cos^{2}\theta_{k+1} + \mathbf{S}_{22}^{11(k+1)} \sin^{2}\theta_{k+1} - 4\sigma_{12}^{(k+1)} \mathbf{S}_{44}^{11(k+1)} \cos^{2}\theta_{k+1} \sin^{2}\theta_{k+1} \right) \\ &+ \sigma_{11}^{(k)} \left(\mathbf{S}_{11}^{11(k)} \cos^{2}\theta_{k} + \mathbf{S}_{12}^{11(k)} \sin^{2}\theta_{k} \right) + \sigma_{22}^{(k)} \left(\mathbf{S}_{12}^{11(k)} \cos^{2}\theta_{k} + \mathbf{S}_{22}^{12} \sin^{2}\theta_{k} \right) \\ &- 4\sigma_{12}^{(k)} \mathbf{S}_{44}^{11(k)} \cos^{2}\theta_{k} \sin^{2}\theta_{k} \right) & \qquad (3.1.15) \end{split}$$

$$\begin{split} &\sigma_{11}^{(k+1)} \left(s_{11}^{1(k+1)} \sin^2 \theta_{k+1} + s_{12}^{1(k+1)} \cos^2 \theta_{k+1} \right. \\ &+ \sigma_{22}^{(k+1)} \left(s_{12}^{1(k+1)} \sin^2 \theta_{k+1} + s_{22}^{1(k+1)} \cos^2 \theta_{k+1} \right) \\ &+ 4 \sigma_{12}^{(k+1)} s_{44}^{1(k+1)} \cos \theta_{k+1} \sin \theta_{k+1} \\ &\sigma_{11}^{(k)} \left(s_{11}^{1(k)} \sin^2 \theta_k + s_{12}^{1(k)} \cos^2 \theta_k \right. \\ &+ \sigma_{22}^{(k)} \left(s_{12}^{1(k)} \sin^2 \theta_k + s_{22}^{1(k)} \cos^2 \theta_k \right. \\ &+ 4 \sigma_{12}^{(k)} s_{12}^{1(k)} s_{44}^{1(k)} \cos \theta_k \sin \theta_k \\ &= - \sigma_{11}^{(k+1)} \left(s_{11}^{1(k+1)} \sin^2 \theta_{k+1} + s_{12}^{11(k+1)} \cos^2 \theta_{k+1} \right) \\ &+ \sigma_{22}^{(k+1)} \left(s_{12}^{11(k+1)} \sin^2 \theta_{k+1} + s_{22}^{11(k+1)} \cos^2 \theta_{k+1} \right. \\ &+ 4 \sigma_{12}^{(k+1)} s_{44}^{11(k+1)} \cos_{k+1} \sin \theta_{k+1} + \sigma_{11}^{(k)} \left(s_{11}^{1(k)} \sin \theta_k + s_{12}^{11(k)} \cos^2 \theta_k \right) \\ &+ \sigma_{22}^{(k)} \left(s_{12}^{11(k)} \sin^2 \theta_k + s_{22}^{11(k)} \cos^2 \theta_k + 4 \sigma_{12}^{(k)} s_{44}^{1(k)} \cos_{k+1} \sin \theta_{k+1} \right. \\ &+ \sigma_{22}^{(k+1)} \left(s_{11}^{1(k)} \sin^2 \theta_k + s_{22}^{11(k)} \cos^2 \theta_k + 4 \sigma_{12}^{(k)} s_{44}^{1(k)} \cos_{k+1} \sin \theta_{k+1} \right. \\ &+ \sigma_{22}^{(k+1)} \left(s_{12}^{1(k+1)} - s_{22}^{1(k+1)} \sin \theta_{k+1} \cos \theta_{k+1} \right. \\ &+ \sigma_{22}^{(k+1)} \left(s_{12}^{1(k+1)} - s_{22}^{1(k+1)} \sin \theta_{k+1} \cos \theta_{k+1} \right. \\ &+ \sigma_{22}^{(k+1)} \left(s_{12}^{1(k+1)} - s_{22}^{1(k+1)} \sin \theta_{k+1} \cos \theta_{k+1} \right. \\ &+ \sigma_{22}^{(k+1)} \left(s_{12}^{1(k+1)} - s_{22}^{1(k+1)} \sin \theta_{k+1} \cos \theta_{k+1} \right. \\ &+ \sigma_{22}^{(k+1)} \left(s_{12}^{1(k+1)} - s_{22}^{1(k+1)} \sin \theta_{k+1} \cos \theta_{k+1} \right. \\ &+ \sigma_{22}^{(k+1)} \left(s_{12}^{1(k+1)} - s_{22}^{1(k+1)} \sin \theta_{k+1} \cos \theta_{k+1} \right. \\ &+ \sigma_{22}^{(k+1)} \left(s_{12}^{1(k+1)} - s_{22}^{1(k+1)} \sin \theta_{k+1} \cos \theta_{k+1} \right. \\ &+ \sigma_{22}^{(k+1)} \left(s_{12}^{1(k+1)} - s_{22}^{1(k+1)} \sin \theta_{k+1} \cos \theta_{k+1} \right. \\ &+ \sigma_{22}^{(k+1)} \left(s_{12}^{1(k+1)} - s_{22}^{1(k+1)} \sin \theta_{k+1} \cos \theta_{k+1} \right. \\ &+ \sigma_{22}^{(k+1)} \left(s_{12}^{1(k+1)} - s_{22}^{1(k+1)} \sin \theta_{k+1} \cos \theta_{k+1} \right. \\ &+ \sigma_{22}^{(k+1)} \left(s_{12}^{1(k+1)} - s_{12}^{1(k+1)} \sin \theta_{k+1} \cos \theta_{k+1} \right) \right]$$

$$\begin{split} &\sigma_{11}^{(k+1)} \left(\mathbf{S}_{11}^{1(k+1)} - \mathbf{S}_{22}^{1(k+1)} \sin \theta_{k+1} \cos \theta_{k+1} \right. \\ &+ \sigma_{22}^{(k+1)} \left(\mathbf{S}_{12}^{1(k+1)} - \mathbf{S}_{22}^{1(k+1)} \right) \sin \theta_{k+1} \cos \theta_{k+1} \\ &+ 2\sigma_{12}^{(k+1)} \mathbf{S}_{4}^{1(k+1)} \left(\cos^{2} \theta_{k+1} - \sin^{2} \theta_{k+1} \right) \\ &- \sigma_{11}^{(k)} \left(\mathbf{S}_{11}^{1(k)} - \mathbf{S}_{12}^{1(k)} \right) \sin \theta_{k} \cos \theta_{k} \\ &+ \sigma_{22}^{(k)} \left(\mathbf{S}_{12}^{11(k)} - \mathbf{S}_{22}^{1(k)} \right) \sin \theta_{k} \cos \theta_{k} + 2\sigma_{12}^{(k)} \mathbf{S}_{44}^{1(k)} \left(\cos^{2} \theta_{k} - \sin^{2} \theta_{k} \right) \\ &= - \sigma_{11}^{(k+1)} \left(\mathbf{S}_{11}^{1(k+1)} - \mathbf{S}_{12}^{11(k+1)} \right) \sin \theta_{k} \cos \theta_{k} \\ &+ 2\sigma_{12}^{(k+1)} \left(\mathbf{S}_{12}^{11(k+1)} - \mathbf{S}_{22}^{11(k+1)} \right) \sin \theta_{k} \cos \theta_{k} \\ &+ 2\sigma_{12}^{(k+1)} \mathbf{S}_{44}^{11(k+1)} \left(\cos^{2} \theta_{k+1} - \sin^{2} \theta_{k+1} \right) \\ &+ \sigma_{11}^{(k)} \left(\mathbf{S}_{11}^{11(k)} - \mathbf{S}_{12}^{11(k)} \right) \sin \theta_{k} \cos \theta_{k} \\ &+ \sigma_{22}^{(k)} \left(\mathbf{S}_{12}^{11(k)} - \mathbf{S}_{22}^{11(k)} \right) \sin \theta_{k} \cos \theta_{k} \\ &+ 2\sigma_{12}^{(k)} \mathbf{S}_{44}^{11(k)} \left(\cos^{2} \theta_{k} - \sin^{2} \theta_{k} \right) \\ &+ 2\sigma_{12}^{(k)} \mathbf{S}_{44}^{11(k)} \left(\cos^{2} \theta_{k} - \sin^{2} \theta_{k} \right) \end{aligned} \tag{3.1.17} \\ &\mathbf{k} = 1, 2 \dots \mathbf{k} - 1 \end{split}$$

To these must be adjoined equations (3.1.9) which are written here in components:

$$\sum_{k=1}^{k} (\sigma_{11}^{(k)} \cos^2 \theta_k + \sigma_{22}^{(k)} \sin^2 \theta_k - 2\sigma_{12}^{(k)} \cos \theta_k \sin \theta_k) t_k = \sigma_{11}^{\circ} h \qquad (a)$$

$$\sum_{k=1}^{k} (\sigma_{11}^{(k)} \sin^{2}\theta_{k} + \sigma_{22}^{(k)} \cos^{2}\theta_{k} + 2\sigma_{12}^{(k)} \cos\theta_{k} \sin\theta_{k}) t_{k} = \sigma_{22}^{\circ} h$$
 (b)

$$\sum_{k=1}^{k} (\sigma_{11}^{(k)} - \sigma_{22}^{(k)}) \cos \theta_k \sin \theta_k + \sigma_{12}^{(k)} (\cos^2 \theta_k - \sin^2 \theta_k) t_k = \sigma_{12}^{\circ} h \quad (c)$$
(3.1.18)

We now consider special cases of interest. In the first case the inelastic laminae strains have the form (2.1.13). Then the right side of (3.1.15-.17) simplifies by setting:

$$s_{11}^{11(k)} = s_{11}^{11(k+1)} = s_{12}^{11(k)} = s_{12}^{11(k+1)} = 0$$

$$s_{22}^{11(k)} = s_{22}^{11(k)} (\sigma_{22}^{(k)}, \sigma_{12}^{(k)})$$

$$s_{22}^{11(k+1)} = s_{22}^{11(k+1)} (\sigma_{22}^{(k+1)}, \sigma_{12}^{(k+1)})$$

$$s_{44}^{11(k)} = s_{44}^{11(k)} (\sigma_{22}^{(k)}, \sigma_{12}^{(k)})$$

$$s_{44}^{11(k+1)} = s_{44}^{11(k+1)} (\sigma_{22}^{(k+1)}, \sigma_{12}^{(k+1)})$$

$$(3.1.19)$$

Once the stresses in the laminae have been obtained the strains in the laminae, referred to laminate axes, are determined from (3.1.11). Since the strains in all laminae are the same when referred to the laminate coordinate system, these 28.

are also the average laminate strains and thus determine the inealstic response of the laminate.

In the simplest case the lamina material is assumed to be inelastic in shear only. In that event we have in addition to (3.1.19):

$$S_{22}^{"(k)} = S_{22}^{"(k+1)} = 0$$
 (3.1.20)

and for Ramberg-Osgood presentation of inelastic part of shear compliance:

$$2S_{44}^{11 (k)} = \frac{1}{2G_{A}(k)} \left(\frac{\sigma_{12}(k)}{\tau_{y}(k)}\right)^{N_{k}-1}$$

$$2S_{44}^{11 (k+1)} = \frac{1}{2G_{A}(k+1)} \left(\frac{\sigma_{12}(k+1)}{\tau_{y}(k+1)}\right)^{N_{k}+1}$$
(3.1.21)

In Ramberg-Osgood representation (2.2.1) the inelastic parts of the compliances assume forms such as:

$$s_{22}^{11}(k) = \frac{1}{E_{T}} \left[\left(\frac{\sigma_{22}(k)}{\sigma_{y}(k)} \right)^{2} + \left(\frac{\sigma_{12}(k)}{\tau_{y}(k)} \right)^{2} \right]^{1/2} (M_{k}^{-1})$$

$$2s_{44}^{11}(k) = \frac{1}{2G_{A}(k)} \left[\left(\frac{\sigma_{22}(k)}{\sigma_{y}(k)} \right)^{2} + \left(\frac{\sigma_{12}(k)}{\tau_{y}(k)} \right)^{2} \right]^{1/2} (N_{k}^{-1})$$

$$s_{22}^{11}(k+1) = \frac{1}{E_{T}(k+1)} \left[\left(\frac{\sigma_{22}(k+1)}{\sigma_{y}(k+1)} \right)^{2} \left(\frac{\sigma_{12}(k+1)}{\tau_{y}(k+1)} \right)^{2} \right]^{1/2} (M_{k+1}^{-1})$$

$$2s_{44}^{11}(k+1) = \frac{1}{2G_{A}(k+1)} \left[\left(\frac{\sigma_{22}(k+1)}{\sigma_{y}(k+1)} \right)^{2} + \left(\frac{\sigma_{12}(k+1)}{\tau_{y}(k+1)} \right)^{2} \right]^{1/2} (N_{k}^{-1})$$

3.2 Method of Solution

The equations which define the laminae stresses are (3.1.9) and (3.1.13) in condensed form, or equivalently, (3.1.15- 3.1.17), (3.1.18) in full form. To explain the solution method it is simpler to write in terms of the condensed form.

Define the matrices:

$$\underline{L}^{1(k+1)} = \underline{\theta}^{(k+1)} \underline{S}^{1(k+1)}$$

$$\underline{L}^{11(k+1)} = \underline{\theta}^{(k+1)} \underline{S}^{11(k+1)}$$

$$\underline{L}^{1(k)} = \underline{\theta}^{(k)} \underline{S}^{1(k)}$$

$$\underline{L}^{11(k)} = \underline{\theta}^{(k)} \underline{S}^{11(k)}$$
(3.2.1)

Then equs. (3.1.13) assume the form:

$$\underline{L}^{1(k+1)}\underline{\sigma}^{(k+1)}-\underline{L}^{1(k)}\underline{\sigma}^{(k)}=-\underline{L}^{11(k+1)}\underline{\sigma}^{(k+1)}+\underline{L}^{11(k)}\underline{\sigma}^{(k)} \quad (3.2.2)$$

to which are adjoined equs. (3.1.9) which are here rewritten:

$$\sum_{k=1}^{K} \underline{\theta}^{(k)} \underline{\sigma}^{(k)} = \underline{\sigma}^{\circ}$$
 (3.2.3)

The equations may be solved numerically by an iteration method which proceeds as follows: Consider equs. (3.2.2-3) with the right side of (3.2.2) zero. This defines a set of stresses $\underline{\sigma}_{\circ}^{(k)}$ given by:

$$\underline{L}^{1(k+1)}\underline{\sigma}_{\circ}^{(k+1)} - \underline{L}^{1(k)}\underline{\sigma}_{\circ}^{(k)} = 0$$

$$k = 1, 2 \dots k=1$$
(3.2.4)

$$\sum_{k=1}^{K} \underline{\theta}^{(k)} \underline{\sigma}_{o}^{(k)} = \underline{\sigma}^{o}$$
 (b)

Since (3.2.4a) contains only elastic compliances $S^{(k)}$ it is seen that the equations are linear and define the stresses in an <u>elastic</u> laminate. Now insert the stresses $\underline{\sigma}_{0}^{(k)}$ into the right side of (3.2.2) and define the stresses $\underline{\sigma}_{1}^{(k)}$ by:

$$\underline{L}^{1(k+1)}\underline{\sigma}_{1}^{(k+1)} - \underline{L}^{1(k)}\underline{\sigma}_{1}^{(k)} = -\underline{L}^{11(k+1)}[\underline{\sigma}_{0}^{(k+1)}]\underline{\sigma}_{0}^{(k+1)}$$

$$+\underline{L}^{11(k)}[\sigma_{0}^{(k)}]\sigma_{0}^{(k)}$$
(3.2.5)

$$\sum_{k=1}^{K} \frac{\theta^{(k)} \underline{\sigma}_{1}^{(k)} = \underline{\sigma}^{\circ}$$
 (b)

Equs. (3.2.5) defines (hopefully) a new approximation $\underline{\sigma}_1^{(k)}$ which is the solution of a set of linear equations. The stresses in square brackets in the right side of (3.2.5) are to emphasize the stress dependence of the non-linear parts of the compliances.

The procedure just initiated can be repeated indefinitely. In general:

$$\underline{L}^{1(k+1)} \underline{\sigma}_{\ell+1}^{(k+1)} - \underline{L}^{1(k)} \underline{\sigma}_{\ell+1}^{(k)} = -\underline{L}^{11(k+1)} [\underline{\sigma}_{\ell}^{(k+1)}] \underline{\sigma}_{\ell}^{(k+1)} + \underline{L}^{11(k)} [\underline{\sigma}_{\ell}^{(k)}] \underline{\sigma}_{\ell}^{(k)}$$

$$+ \underline{L}^{11(k)} [\underline{\sigma}_{\ell}^{(k)}] \underline{\sigma}_{\ell}^{(k)}$$

$$+ \underline{L}^{11(k)} [\underline{\sigma}_{\ell}^{(k)}] \underline{\sigma}_{\ell}^{(k)} = \underline{\sigma}^{\circ}$$

$$(3.2.6)$$

This iteration procedure is quite easy to carry out with aid of a computer. It replaces the solution of a set of non-linear equations by solution of a sequence of linear equations, provided of course, that convergence is obtained.

It should be noted that the first iteration step does not necessarily have to start with equs. (3.2.4a), i.e., with zero right side of (3.2.2). Any stresses $\sigma_o^{(k)}$ which fulfill (3.2.4b) can be used to start the iteration with (3.2.5) and continuing with the general iteration relation (3.2.6).

It is desired to obtain a laminate solution for only one load system $\underline{\sigma}^{\circ}$ then it would seem most logical to start with (3.2.4). But suppose there is a sequence of loadings $\Delta\underline{\sigma}^{\circ}$, $2\Delta\underline{\sigma}^{\circ}...n\Delta\underline{\sigma}_{\circ}$. Suppose that a solution for (n-1) $\Delta\underline{\sigma}^{\circ}$ has been obtained and that a solution for $n\Delta\underline{\sigma}^{\circ}$ is desired. One possibility is to multiply all stresses due to the load (n-1) $\Delta\underline{\sigma}^{\circ}$ by the factor n/(n-1). The stresses thus obtained certainly

also satisfy (3.2.6b) because of the linearity of these equations. They will generally be reasonable starting values $\underline{\sigma}_{\circ}^{(k)}$ for the iteration.

This method of iteration to obtain a solution was found to work well for many sample problems; however, there were cases in which the solution did not converge. Attempts to modify the recurrence relations to overcome this problem met with only partial success. Thus, an alternate procedure for solution was defined. The solution was obtained by application of the Newton-Raphson method.

The set of 3K nonlinear equations represented by equs. (3.2.2-.3) may be presented in the form:

$$F_n (\sigma_{ij}^k) = 0$$
 $n = 1, 2 ... 3K$ (3.2.7)

The function F_i is expanded in a Taylor series about an arbitrary set of initial stresses which may be taken as the solutions of the elasticity problem. Considering only two terms of the series, it is found that

$$F_{i} = F_{i}^{\circ} + \frac{\partial F_{i}^{\circ}}{\partial \sigma_{mn}^{k}} \Delta \sigma_{mn}^{k} = 0$$
(3.2.8)

or

$$\sigma_{ij}^{k} = \sigma_{ij}^{k} - \left[\frac{\partial F_{m}^{o}}{\partial \sigma_{ij}}\right]^{-1} F_{m}^{o}$$
(3.2.9)

where σ_{ij}^k is the corrected solution obtained from the assumed solution ${}^{\circ}\sigma_{ij}^k$. Using σ_{ij}^k as the initial guess, the process is repeated until the result is obtained within a desired accuracy. A recurrence form of equation (3.2.9) to obtain the stresses at t+1 cycle from t cycle can be constructed as follows:

$$(\sigma_{ij}^{k})_{t+1} = (\sigma_{ij}^{k})_{t} - \left[\frac{\partial F_{m}}{\partial \sigma_{ij}^{k}}\right]^{-1} (F_{m})_{t}$$
(3.2.10)

After the stresses σ_{ij}^k are obtained for all layers of the laminate, strains for any layer k in terms of laminae axes can be computed using equs. (3.1.3). Strains in terms of the laminate axes can be obtained using the strain transformation law.

This analysis has been developed into an efficient computer program. A description of the program including a listing, is presented in Appendix E.

3.3 Numerical Results

The computer program which has been developed under the present study has been utilized in the analysis of a variety of different composite laminates. The initial studies using the computerized analysis were directed at presenting a comparison between the results of the present analysis and those of previous analyses, notably that of Ref. 9. (The present results were also compared to available experimental data, primarily those of Ref. 6 which had also been used for comparison with the analytical results in Ref. 9.) The objective of this phase of the numerical study was to determine whether the present results, which can be obtained with minimal computer usage, compare well with those of the more exact and complex analytical results in Ref. 9. The results of this comparison are highly encouraging, as will be shown below, and support the utilization of the present analysis as an efficient design tool.

In the second phase of the design numerical studies, consideration was given to examining the sensitivity of laminate results to individual properties of the layers. These parametric studies are presented for several classes of typical laminates.

A series of laminates of boron/epoxy composites for which experimental data had been obtained in Ref. 6 were examined analytically in Ref. 9. In Figures 9 to 15, results of the present analytical method are added to the comparison of experimental results of [6] and analytical results of [9]. For example, in Fig. 9, the experimental stress-strain curve for a 0-90 boron/epoxy laminate is compared to the analytical results obtained in Ref. 9 and in the present analysis. Both analytical results coincide; both show slightly less inelastic strain than the experiment. The solid point on the curve indicates the stress level at which fiber fracture is computed to occur in one of the layers of the laminate.

The shear stress-strain curve used in the present analysis was the best fit Ramberg-Osgood curve having an exponent n=3.

The values of modulus and yield stress obtained from the least squares fit are shown on the figure. A similar result is shown for the unidirectional tension ±45° laminate in Fig. 10. Here it is seen that the two analytical curves are similar, although the agreement is not as close as in Fig. 9. Experimental data reflect a substantially higher degree of inelasticity than either analytical result. The present analysis shows a higher degree of inelastic strain at the higher stress level than that of Ref. 9. However, the reverse is true in the comparison of the two analytical results shown in Fig. 11 for a ±30° laminate. The present results were obtained with a linear stress-strain curve in the transverse direction within each of the layers. The computations were made in this fashion because the transverse stress-strain curve of Ref. 9 does not show a significant degree of inelasticity.

Figure 12 presents results for the case of a quasi-isotropic laminate (0/±45/90) of boron/epoxy. Both the present result and that of Ref. 9 show a relatively insignificant amount of inelasticity. Again, the experimental data show a greater inelastic effect. Here the predicted failure strain level is in good agreement with the experimental failure strain level; however, there is a significant difference in the failure stress level. A similar result is presented in Fig. 13 for the quasi-isotropic laminate formed from the 0/±60° configuration.

Computations performed for the present study for laminates having fibers in several directions, including the loading direction, for a simple unidirectional load have shown a relatively small amount of inelastic strain. Another example of this is presented in Fig. 14 for a $0/\pm45^{\circ}$ laminate. Here, however, the agreement of all the analytical methods and the experimental method is very good.

The final comparison taken from Ref. 9 is presented in Fig. 15 for a laminate having fibers in three different directions and a tensile load applied at some intermediate angle. The present analysis agrees reasonably well with the results

Ref. 9. The discrepancy between the failure load predicted on the basis of fiber failure and the experimentally observed failure stress is quite substantial. It is possible that fialure in laminate of this type caould result from shearing or transverse stresses within the individual layers, and thus, not be a result of tension in the fiber failure. This mode of failure has not been treated in the present computer program. The mode of failure observed experimentally is not known to the authors.

The experimentally measured response of a multidirectional laminate to an applied shear stress has been reported in Ref. 13. Comparison of the experimental result with the theory of Ref. 9 was presented in Ref. 14. Computations for this case, made using the present analysis and the prior analytical result (Ref. 14), are compared to the experimental result in Fig. 16. Again, correlation between the two analytical results is good, agreement between analytical and theoretical results is reasonably good with the experimental observation showing higher inelastic strains and lower tangent shear moduli at the very high stress levels.

The conclusion of these comparisons with analytical and experimental data seem to justify the adoption of the present computer program as a useful engineering tool for the design and analysis of composite laminates. However, it appears that further study of the failure region is required.

Parametric study of the influence of various laminate geometric and mechanical properties has also been explored. Fig. 17 shows the results obtained for a $0/\pm45^{\circ}$ laminate indicating that the inelastic response in the transverse direction can become significant at higher stress levels. Failure due to fiber fracture under a transverse stress applied to the laminate occurs at strain levels larger than those plotted in Fig. 17. In the quasi-isotropic laminate having four fiber directions, $(0/\pm45/90)$ the degree of inelasticity in the longitudinal and transverse directions is of course the same and is

in both cases very small. It is to be anticipated, on an intuitive basis, that the maximum degree of inelastic response would be observed for a stress applied midway between two of the fiber directions on this quasi-isotropic laminate. The stress-strain curve for this latter case is also shown in Fig. 18. Although the inelastic strains for this case are not significant there is a large difference in the predicted failure stress levels based on stress in the fiber direction for the two cases. It is worthwhile to emphasize that the quasi-isotropic laminate need not be isotropic in its strength characteristics.

Because of the directional strength characteristics interesting effects may be expected for combined stress cases. Some results of the exploration of this question are presented in Fig. 19 where the four direction quasi-isotropic laminate is subjected to combined stress state with respect to a 22-1/2° axis of symmetry. This laminate shows high strength under both the unidirectional load and shear load by itself. The combined stress case for equal values of applied shear stress and axial stress results in fiber failure, and therefore, laminate failure, at a substantially lower stress. The stress-strain curve prior to failure is not affected significantly by the presence of combined stress. The quasi-isotropic laminate having fibers in three directions $(0/\pm60)$ is examined in Fig. 20. The sensitivity of this laminate to the Ramberg-Osgood parameters for the individual ply had little effect upon the stress-strain result. Indeed as an extreme example of this variation all lamiates stiffnesses except the axial stiffness were equal to zero. Enforcement of the Kirchhoff-Love plate assumptions for this case results in the so-called netting analysis. The response for this netting case, which is linear, is shown by the dashed curve in Fig. 20. Even with this extreme assumption, matrix inelasticity does not introduce a significant amount of inelastic strain. Experimental data for comparison with this result are not easily available, however Ref. 17 does present a stress-strain curve for this case which shows a transverse failure stress for the 37.

quasi-isotropic 0/±60° laminate which is about 60% of the failure stress in the axial direction. Also, the inelastic strain at failure is approximately 30% larger than the elastic strain associated with the failure stress level. The netting analysis result presented here suggests that in order to obtain such a strain, one might have to consider that the axial stiffness, either in tension, compression or both; or that other effects not considered in the conventional laminate analysis, such as interlaminar or transverse shear deformations, might contribute significantly to the overall laminate deformation.

The influence of the characteristic stress levels for transverse stress and axial shear of the unidirectional layer of a boron/epoxy material is examined in Fig. 21. The measure of this effect is taken to be the influence upon the stressstrain curve for the unidirectional tension of +30° laminate. The strong sensitivity to the characteristic axial shear stress $\tau_{_{\mathbf{v}}}$ and the relative insensitivity to the transverse characteristic stress $\boldsymbol{\sigma}_{\mathbf{v}}$ for the R-O representations is illustrated in the figure. A similar comparison made for a boron/aluminum laminate of the same geometry subjected to uniaxial applied stress is shown in Fig. 22. Similar sensitivities are observed for this case. Boron/aluminum laminate response under transverse applied stress with the same values of the Ramberg-Osgood parameters is shown in Fig. 23. Here the fiber failure criterion did not come into play and thus the computations were extended to rather large strains in matrix. It is clear, that for this case, the failure criterion based on other stress-strain components is required. The examination of the computer print-out permits one to terminate the stress-strain curves at some stress level prior to fiber fracture depending upon the choice of the failure criterion. This can be done rather readily. The choice of the failure criterion is discussed in Appendix D.

The lamina properties for boron/aluminum are used to

analyze a $0^{\circ}/\pm 30^{\circ}$ laminate under combined loading. These results are shown in Fig. 24. Axial stress-strain curves are presented for varying ratios of axial shear stress to axial tensile stress.

4. CONCLUDING REMARKS

Current approaches to the definition of design allowable stress for advanced fiber composite laminates are based upon the utilization of extremely conservative criteria. These limit the laminate to stress levels below which no significant damage of any kind occurs. The utilization of overly conservative design criteria can negate much of the potential for effective design utilizing advanced composite materials. The heterogeneous nature of these materials is such that a variety of possible damage modes exist. Thus, matrix cracking or yielding, fiber fracture, debonding, and other inelastic effects can all occur in local regions at relatively low average stress levels. nonuniform and nonlinear effects greatly complicate the problem of establishing reliable design allowables. In the present program, the problem of nonlinear laminate behavior resulting from nonlinearities in the behavior of the matrix material was studied. The objective of the program was to develop an understanding of the inelastic behavior of composite laminates and to develop a computer program which will be used as an engineering tool in the design of fiber composite laminated structures.

The method of approach utilized herein was to adopt a Ramberg-Osgood representation of the nonlinear stress-strain behavior and to utilize deformation theory as an adequate representation of the material nonlinearities. The problem was viewed on two levels. First, the relationship between the constituent properties and the stress-strain response of a unidirectional fiber composite material was studied. For this problem, the primary attention herein was directed toward the axial shear behavior, in as much as experimental data had indicated that it is this type of load which results in the most significant nonlinearities in material behavior. For this case, an expression was established relating the composite average-stress/average-strain curve to the fiber moduli and the matrix nonlinear stress-strain curve. This expression, which was developed as a lower bound, was found to give good agreement with the more exact results obtained by 40.

applying incremental plasticity theory and using a numerical finite element analysis to the assessment of the material behavior (Ref. 9).

The second level of approach treats the interelationship between the properties of the unidirectional layers and those of the laminate. For this case, one may consider that the starting point is a nonlinear stress-strain curve for transverse stress, and for axial shear stress, alone, and a linear stress-strain relation for stress in the fiber direction. The nonlinear lamina stress-strain curves can be modeled by proper selection of the Ramberg-Osgood parameters.

In the present study, unlike other formulations an interaction expression was formulated to account for simultaneous application of axial shear and transverse stress. A laminate having an arbitrary number of oriented layers, and subjected to a general state of membrane stress, was treated. The results of this analysis were programmed into an efficient computer routine for numerical evaluation of arbitrary laminates. Results obtained show good agreement with those of previous complex numerical methods utilizing incremental plasticity theory.

Certain limitations connected with this program should also be discussed. First, deformation type stress-strain relations have been used; hence, it is implicit in this result that the stress and strain values obtained for any given set of loads are functions only of those loads and not of the loading history. On the other hand, if points are computed for intermediate values of loads, following different load paths, then different intermediate conditions will be obtained. Thus, the question is raised as to what is the accuracy of the results obtained for paths which do not yield proportional loading. It is known that for local proportional loading, the deformation theory result is the same as that for the incremental theory. In the laminate, local proportional loading does not exist, in general, even when the external loading is proportional. However, the assumption is made that the deformation theory will yield an approximation which is satisfactory to generate a

rational engineering tool. This can only be assessed by comparison with an exact analysis, or since this does not exist for the case of arbitrary loading paths, perhaps by comparison with experimental data.

Comparisons of the present results with experimental data tend to show moderately good agreement. There are, however, cases in which experimental results show a higher degree of inelastic strain than predicted by the present analysis. These experimental data are quite limited and may be insufficient for drawing conclusions in this regard.

The question of failure criteria incorporated into the present analysis required further consideration. The present analysis obtains more accurate representations of the stress components in the individual layers than have been obtained from elastic analyses. Hence, the use of these stress components in any failure criteria should represent an improvement in failure prediction

In addition to a description of the methods of analysis, and of the numerical comparisons which have been carried out, the present report also presents a description of the computer program for study of nonlinear behavior of laminates in sufficient detail to permit the utilization of this program by others.

APPENDIX A

SYMMETRY SIMPLIFICATION OF NON-LINEAR STRESS-STRAIN RELATIONS

The most general inelastic stress-strain relations of the deformation type are of the form

$$\varepsilon_{ij} = S_{ijkl} \sigma_{kl}$$
 (1)

where s_{ijkl} are functions of the stresses. Let it be assumed that the material is transversely isotropic with x_l axis of symmetry. Any rotation about x_l changes ϵ_{ij} and σ_{ij} into ϵ'_{ij} and σ'_{ij} . Then the condition of transverse isotropy demands that

$$\varepsilon'_{ij} = S_{ijkl} \sigma'_{kl}$$
 (2)

where S_{ijkl} in (1) and (2) are the same. To fulfill this last requirement it is necessary that S_{ijkl} be functions of stresses only through stress expressions which are invariant for rotations about the x_1 axis. There are five such invariants and they are given by, [15]

$$I_1 = \sigma_{11}$$
 $I_2 = \sigma_{22} + \sigma_{33}$ $I_3 = \sigma_{12}^2 + \sigma_{13}^2$ (3)

$$I_4 = 1/2 (\sigma_{22} - \sigma_{33})^2 + 2\sigma_{23}^2$$
 $I_5 = 1/2 (\sigma_{22} - \sigma_{33}) (\sigma_{12}^2 - \sigma_{13}^2) + 2\sigma_{12}^2 \sigma_{13}^2 \sigma_{23}^2$

Thus

$$S_{ijkl} = S_{ijkl} (I_1, I_2, I_3, I_4, I_5)$$
 (4)

It follows that for rotations around the \mathbf{x}_1 axis of symmetry the \mathbf{S}_{ijkl} behave as constants. Consequently, the symmetry reduction of (1) to transverse isotropy is just as in elasticity.

The reduction may be performed in following fashion: For rotation of angle θ about the x_1 axis, the stress tensor σ_{ij} transforms into σ'_{ij} in the following fashion

$$\sigma'_{11} = \sigma_{11}$$

$$\sigma'_{22} = 1/2 (\sigma_{22} + \sigma_{33}) + 1/2 (\sigma_{22} - \sigma_{33}) \cos 2\theta + \sigma_{23} \sin 2\theta$$

$$\sigma'_{33} = 1/2 (\sigma_{22} + \sigma_{33}) - 1/2 (\sigma_{22} - \sigma_{33}) \cos 2\theta - \sigma_{23} \sin 2\theta$$

$$\sigma'_{23} = 1/2 (\sigma_{33} - \sigma_{22}) \sin 2\theta + \sigma_{23} \cos 2\theta$$

$$\sigma'_{12} = \sigma_{12} \cos \theta + \sigma_{13} \sin \theta$$

$$\sigma'_{13} = -\sigma_{12} \sin \theta + \sigma_{13} \cos \theta$$
(5)

The same transformation relations obviously also hold for strains. If the transformed stresses and strains are introduced into (2) then coefficients of $\cos 2\theta$, $\sin 2\theta$, $\cos \theta$ and $\sin \theta$ and remaining terms independent of θ must be equal. These equalities result in relations among the various components which reduce the stress-strain law to the form (2.1.4-5) from Chapter 2 of this report. (Average stresses and strains appear in the latter but this obviously makes no differences in the derivation.)

APPENDIX B

PLANE STRESS-STRAIN RELATIONS OF FIBER REINFORCED MATERIAL IN GENERALIZED RAMBERG-OSGOOD FORM

The purpose of the present appendix is to arrive at equs. (2.2.7). For convenience in writing, overbars on stresses and strains will be omitted.

The present development is guided by isotropic J2 theory for deformation type plastic stress-strain relations. The basic assumption of this theory in the isotropic case is that the plastic strains have the form

$$\varepsilon_{ij}^{n} = f(J_2) s_{ij} \tag{1}$$

is the stress deviator and where sij

$$J_2 = 1/2 s_{ij} s_{ij}$$
 (2)

is its second invariant.

It is instructive to work out the form of (1) for Ramberg-Osgood type stress-strain relations. Suppose that in pure shear the stress-strain relation is

$$\varepsilon_{12}^{"} = \frac{\sigma_{12}}{2G} \quad [1 + (\frac{\sigma_{12}}{\tau_{y}})^{n-1}]$$
 (3)

Now in pure shear it follows from (2) that

$$J_2 = \sigma_{12}^2$$

Therefore (3) can be written in the form
$$\varepsilon_{12}'' = \frac{\sigma_{12}}{2G} \quad \left[1 + \left(\frac{\sqrt{J_2}}{\tau_y}\right)^{n-1}\right] \tag{4}$$

which is in the form(1). Consequently, in the general case of three dimensional stress and strain

$$\varepsilon_{ij}^{"} = \frac{s_{ij}}{2G} \left[1 + \left(\frac{\sqrt{J_2}}{\tau_y}\right)^{n-1}\right]$$
 (5)

It should be emphasized that there is nothing fundamental about (1). It is an assumption which states that the plastic strains can be represented by the stress deviator components multiplied by a function of a quadratic expression in the stresses which is ${\bf J}_2$. The choice of ${\bf J}_2$ for a quadratic expression is not arbitrary but may be arrived at by isotropy arguments.

In an anisotropic material it may be assumed by generalization that plastic strains are given by

$$\varepsilon_{ij}^{"} = s_{ij} f (L)$$
 (6)

Where L is some general quadratic function of the stresses. This assumption will form the basis of the present development.

Consider the stress-strain relations (2.1.13). It is assumed that $s_{22}^{"}$ and $s_{44}^{"}$ functions of the most general quadratic form in $\overline{\sigma}_{22}$ and $\overline{\sigma}_{12}$.

$$\mathbf{s}_{22}^{"} = \mathbf{s}_{22}^{"} \quad (A\overline{\sigma}_{22}^{2} + B\overline{\sigma}_{22} \overline{\sigma}_{12} + C\overline{\sigma}_{12}^{2})$$

$$\mathbf{s}_{44}^{"} = \mathbf{s}_{44}^{"} \quad (A\overline{\sigma}_{22}^{2} + B\overline{\sigma}_{22} \overline{\sigma}_{12} + C\overline{\sigma}_{12}^{2})$$
(7)

It should be noted that the material reacts in same fashion to positive or negative shear stress, therefore also in same fashion to some $\overline{\sigma}_{22}$ together with positive or negative shear stress. However, the middle term in the quadratic changes sign with shear stress. Therefore, this term should be omitted.

Now rewrite (7) in form

$$s_{22}^{"} = \frac{1}{E_{T}} f_{22} (\alpha^{2} \overline{\sigma}_{22}^{2} + \beta^{2} \overline{\sigma}_{12}^{2})$$

$$s_{44}^{"} = \frac{1}{2G_{T}} f_{44} (\alpha^{2} \overline{\sigma}_{22}^{2} + \beta^{2} \overline{\sigma}_{12}^{2})$$
(8)

where f_{22} and f_{44} are nondimensional functions and α and β have dimensions of reciprocal of stress. If $\overline{\sigma}_{12}$ =0 the first of (8) assumes the form

$$s_{22}'' = \frac{1}{E_{T}} f_{22} (\alpha^2 \overline{c}_{22}^2)$$
 (9)

For one dimensional $\overline{\sigma}_{22}$, from the Ramberg-Osgood stress-strain relation (2.2.6a)

$$s_{22}'' = \frac{1}{E_{T}} \left(\frac{\overline{\sigma}_{22}}{\sigma_{Y}} \right)^{M-1}$$

which can be written as

$$s_{22}'' = \frac{1}{E_T} \left[\left(\frac{\overline{\sigma}_{22}}{\sigma_V} \right)^2 \right]^{\frac{M-1}{2}}$$
 (10)

It follows from (8) and (10) that

$$\alpha^2 = \frac{1}{\sigma_y^2} \tag{11}$$

and the function of f_{22} is determined as (M-1)/2 power. In similar fashion, when $\overline{\sigma}_{22}=0$, the second of (8) assumes the form

$$s_{44}'' = \frac{1}{2G_m} f_{44} (\beta^2 \overline{\sigma}_{12}^2)$$
 (12)

From the Ramberg-Osgood relation (2.2.6b) for one dimensional $\overline{\sigma}_{1,2}$

$$s_{44}'' = \frac{1}{2G_{T}} \left(\frac{\overline{\sigma}_{12}}{\tau_{V}}\right)^{N-1}$$

which can be written as

$$s_{44}'' = \frac{1}{2G_{T}} \left[\left(\frac{\overline{\sigma}_{12}}{\tau_{V}} \right)^{2} \right]^{\frac{N-1}{2}}$$
 (13)

It follows from (12) and (13) that

$$\beta^2 = \frac{1}{\tau_y^2} \tag{14}$$

and the function f_{44} is determined as (N-1)/2 power. Consequently (8) now assumes the form

$$s_{22}'' = \frac{1}{E_{T}} \left[\left(\frac{\overline{\sigma}_{22}}{\sigma_{Y}} \right)^{2} + \left(\frac{\overline{\sigma}_{12}}{\tau_{Y}} \right)^{2} \right] \frac{M-1}{2}$$

$$s_{44}'' = \frac{1}{2G_{T}} \left[\left(\frac{\overline{\sigma}_{22}}{\sigma_{Y}} \right)^{2} + \left(\frac{\overline{\sigma}_{12}}{\tau_{Y}} \right)^{2} \right] \frac{N-1}{2}$$
(15)

Then (2.2.7) follows from (15) and (2.1.13).

APPENDIX C

1. EXTREMUM PRINCIPLES OF DEFORMATION THEORY OF PLASTICITY

i. Principle of Minimum Potential Energy

Let

$$\sigma_{ij} = C_{ijkl} \epsilon_{kl}$$
 (1.1)

where $C_{\mbox{ijkl}}$ are functions of the strains. The strain energy density is defined by the path dependent integral

$$W^{\varepsilon} = \int_{\varepsilon=0}^{\underline{\varepsilon}} \sigma_{ij}(\underline{\varepsilon}) d\varepsilon_{ij}$$
 (1.2)

where $\underline{\varepsilon}$ is a concise notation for ε_{ij} . The strain energy u^{ε} of a body of volume V is defined by

$$U^{\varepsilon} = \int_{V} W^{\varepsilon} dV \tag{1.3}$$

Let the surface of the body be subjected to the boundary conditions

$$u_i(S) = u_i^{\circ} \quad \text{on } S_u$$
 (1.4)

 $T_{i}(S) = T_{i}^{o} \text{ on } S_{T}$

and let the body forces vanish. The potential energy U p is defined by

$$U_{p} = \int_{V} W^{\varepsilon} dV - \int_{S_{T}} T^{\circ} u_{i}$$
 (1.5)

Define an admissible displacement field $\tilde{u}_i(\underline{x})$ by

$$\tilde{u}_i = u^{\circ}_i$$
 on S_{u}

$$\tilde{u}_{i}(\underline{x})$$
 continuous everywhere (1.6)

Associated with \tilde{u}_i are the strains $\tilde{\epsilon}_i$ derived from it by the usual relations.

Define
$$\widetilde{W}^{\varepsilon}$$
 by $\widetilde{\varepsilon}$

$$\widetilde{W}^{\varepsilon} = \int \widetilde{\sigma}_{ij} d\widetilde{\varepsilon}_{ij}$$

$$\widetilde{\varepsilon} = 0$$
(1.7)

where

$$\tilde{\sigma}_{ij} = C_{ijkl}(\tilde{\underline{\varepsilon}}) \tilde{\varepsilon}_{kl}$$
 (1.8)

Define

$$\tilde{\mathbf{U}}_{\mathbf{p}} = \int_{\mathbf{V}} \tilde{\mathbf{w}}^{\varepsilon} d\mathbf{v} - \int_{\mathbf{S}_{\mathbf{T}}} \tilde{\mathbf{u}}_{\mathbf{i}} d\mathbf{s}$$
 (1.9)

The principle of minimum potential energy for the present case then states that

$$U_{p} \stackrel{>}{=} U_{p} \tag{1.10}$$

equality taking place if and only if

$$\tilde{u}_i = u_i$$

In the event that displacements are prescribed over the entire surface, the surface integral in (1.9) vanishes. Then the principle reduces to that of minimum strain energy

$$\tilde{\mathbf{U}}^{\varepsilon} \geq \mathbf{U}^{\varepsilon}$$
 (1.11)

ii. Principle of Minimum Complementary Energy Let

$$\epsilon_{ij} = s_{ijkl} \frac{(\underline{\sigma}) \sigma_{kl}}{\text{where } s_{ijkl}}$$
 are stress dependent compliances

Define the complementary energy density $\boldsymbol{W}^{\!\sigma}$ by the path dependent integral

$$\mathbf{w}^{\sigma} = \int \frac{\mathbf{v}}{\varepsilon_{\mathbf{i}\mathbf{j}}} d\sigma_{\mathbf{i}\mathbf{j}}$$

$$\sigma = 0$$
(1.13)

Let the surface of the body be subjected to the boundary conditions (14) and let the body forces vanish. The complementary energy $U_{\mathcal{C}}$ is defined by

$$U_{C} = \int_{V} W^{\sigma} dV - \int_{S_{u}} T_{i} u^{\circ} i dS$$
 (1.14)

Define an admissible stress field $\tilde{\sigma}_{\mbox{\scriptsize ij}}$ by the following requirements

$$\tilde{T}_{i} = \tilde{\sigma}_{ij}^{n}_{j}$$
 continuous everywhere (1.15)

$$T_i(S) = T_i^o \text{ on } S_T$$

Define the complementary energy functional U_C by

$$\tilde{U}_{C} = \int_{V}^{\infty} dV - \int_{S_{u}} \tilde{T}_{i} u^{\circ} dS$$
 (1.16)

where
$$\tilde{W}^{\sigma} = \int_{-\tilde{\alpha}}^{\tilde{\alpha}} \tilde{\epsilon}_{ij} d\tilde{\sigma}_{ij}$$

$$\frac{\tilde{\alpha}}{\tilde{\alpha}} = 0$$
(1.17)

$$\tilde{\epsilon}_{ij} = S_{ijkl}(\tilde{\underline{\sigma}}) \tilde{\sigma}_{kl}$$

Then the principle of minimum complementary energy states that

$$U_{C} \geq U_{C} \tag{1.18}$$

equality occurring if and only if

$$\tilde{\sigma}_{ij} = \sigma_{ij}$$

If tractions are prescribed over the entire surface, $S_{\mathrm{u}}^{}=0$, the principle reduces to

$$\tilde{\mathbf{U}}^{\sigma} \geq \mathbf{U}^{\sigma}$$
 (1.19)

For proof of these principles see e.g. [16]. An interesting application to obtain approximate solutions has been given in [17].

iii. Specialization of the Principles to Axial Shear with Ramberg-Osgood Stress-Strain Relations

In the case of axial shear of a uniaxially fiber reinforced material the only surviving stresses are

$$\sigma_{12} = \tau_2 \qquad \sigma_{13} = \tau_3 \qquad (1.20)$$

where 1 indicates fiber direction. Denote the associated shear strains by

$$\varepsilon_{12} = \varepsilon_{2} \qquad \varepsilon_{13} = \varepsilon_{3}$$
(1.21)

Then the generalized Ramberg-Osgood stress-strain relations, Appendix B, (5) assume in the present case the form

$$\varepsilon_{2} = \frac{\tau_{2}}{2G} \left[1 + \left(\frac{\tau}{\tau_{y}} \right)^{n-1} \right]$$

$$\varepsilon_{3} = \frac{\tau_{3}}{2G} \left[1 + \left(\frac{\tau}{\tau_{y}} \right)^{n-1} \right]$$

$$\tau = \sqrt{\tau_{2}^{2} + \tau_{3}^{2}} \qquad \sqrt{J_{2}}$$
(1.22)

In the present case

$$\sigma_{ij}^{d\varepsilon} = 2(\tau_2^{d\varepsilon_2 + \tau_3^{d\varepsilon_3}}) \tag{1.23}$$

Inserting (1.22) into (1.23) and using the relation

$$\tau d\tau = \tau_2 d \tau_2 + \tau_3 d \tau_3$$

it is easily shown that

$$\sigma_{ij} d\varepsilon_{ij} = \frac{\tau}{G} \left[1 + n \left(\frac{\tau}{\tau_{y}} \right)^{n-1} \right] d\tau$$
 (1.24)

To compute W^{ϵ} as defined by (1.2) it is necessary to integrate (1.24) from zero to some state of strain ϵ_2 , ϵ_3 . But it should be noted that (1.24) is expressed in terms of the variable τ only. Now τ can be expressed in terms of strains in following fashion. Define

$$\hat{\varepsilon} = \sqrt{\varepsilon_2^2 + \varepsilon_3^2} \tag{1.25}$$

It follows at once from (1.22) that

$$\hat{\varepsilon} = \frac{\tau}{2G} \left[1 + (\frac{\tau}{\tau_y})^{n-1} \right]$$
 (1.26)

This relation defines τ as a function of $\,\,\hat{\epsilon}\,\,$. Consequently, $\,W^{\hat{\epsilon}}\,\,$ assumes the form

$$W^{\varepsilon} = \frac{1}{G} \int_{0}^{\tau} \tau \left[1 + n \left(\frac{\tau}{\tau_{V}}\right)^{n-1}\right] d\tau$$

which is easily integrated to yield

$$W^{\varepsilon} = \frac{\tau^2}{2G} \left[1 + \frac{2n}{n+1} \left(\frac{\tau}{\tau_{v}} \right)^{n-1} \right]$$
 (1.27)

$$\tau = \tau (\hat{\epsilon})$$

According to (1.3) the strain energy U^{ϵ} is then given by the volume integral of (1.27). Note however that it is very difficult to express U^{ϵ} in terms of strains since this requires the solution of (1.26) for τ in terms of $\hat{\epsilon}$. In general it is not possible to do this analytically. This places a severe

limitation on the use of the principle of minimum potential energy or of minimum strain-energy with Ramberg-Osgood stressstrain relations.

Next we consider the principle of minimum complementary energy for axial shear. Since there are only shear stresses and shear strains ϵ_2 , ϵ_3 the integrand in τ, τ, (1.13), is given by

$$\varepsilon_{ij}^{d\sigma} = 2(\varepsilon_2^{d\tau} + \varepsilon_3^{d\tau})$$
 (1.28)

It follows from (1.22-.23) that (1.28) is given by

$$\varepsilon_{ij}^{d\sigma}_{ij} = \frac{\tau}{G} \left[1 + \left(\frac{\tau}{\tau} \right)^{n-1} \right] d\tau$$
Integration of this expression from 0 to τ

$$W^{\sigma} = \frac{\tau^2}{2G} \left[1 + \frac{2}{n+1} \left(\frac{\tau}{\tau_{V}} \right)^{n-1} \right]$$
 (1.29)

Expression (1.29) now enters as the integral into the volume integral of U_C , (1.14).

We now examine the meaning of an admissible stress field $\tilde{\tau}_2$, $\tilde{\tau}_3$ in the present case. The only surviving equilibrium equation is

$$\frac{\partial \tilde{\tau}_2}{\partial \mathbf{x}_2} + \frac{\partial \tilde{\tau}_3}{\partial \mathbf{x}_3} = 0 \tag{1.30}$$

The traction components are

$$\widetilde{T}_{1} = \widetilde{\tau}_{2} n_{2} + \widetilde{\tau}_{3} n_{3}$$

$$\widetilde{T}_{2} = \widetilde{\tau}_{2} n_{1}$$

$$\widetilde{T}_{3} = \widetilde{\tau}_{3} n_{3}$$
(1.31)

 ${\rm T}_3 = \tilde{\tau}_3 {\rm n}_1$ We shall be concerned with cylindrical boundaries in fiber reinforced materials whose generator is in x_1 , direction. On such a surface $n_1=0$. Therefore the only surviving traction component on such a surface is

$$\tilde{T}_1 = \tilde{\tau}_n = \tilde{\tau}_2 n_2 + \tilde{\tau}_3 n_3$$
 (1.32)

Consequently an admissible stress system $\tilde{\tau}_3$, $\tilde{\tau}_3$ must satisfy (1.30) and the value τ_n° of $\tilde{\tau}_n$ wherever prescribed on the boundary.

The complementary energy functional (1.16) assumes the form

$$\tilde{U}_{C} = \int_{V} \tilde{w}^{\sigma} dV - \int_{S} \tilde{T}_{1} u^{\circ}_{1} dS$$
 (a)

$$\tilde{U}_{C} = \int_{V} \tilde{w}^{\sigma} dV - \int_{S} \tilde{T}_{1} u^{\circ}_{1} dS$$

$$\tilde{w}^{\sigma} = \frac{\tilde{\tau}^{2}}{2G} \left[1 + \frac{2}{n+1} \left(\frac{\tilde{\tau}}{\tau_{y}}\right)^{n-1}\right]$$
(b)

$$\tilde{\tau} = \sqrt{\tilde{\tau}_2^2 + \tilde{\tau}_3^2}$$
 (c)

(1.33)

2. LOWER BOUND FOR AXIAL SHEAR MODULUS

Consider a uniaxially reinforced lamina which is subjected to axial shear τ_{\circ} in the 1-2 plane on its boundary, fig. 5. By the average stress theorem, of Ref. 5.

$$\overline{\sigma}_{12} = \tau_{\circ} \tag{2.1}$$

and all other average stresses vanish.

By the average theorem of virtual work, of Ref. 5,

$$\int_{V} \varepsilon_{ij} d\sigma_{ij} = \overline{\varepsilon}_{ij} d\sigma_{ij}$$
 (2.2)

Since the only nonvanishing average stress in the present case is (2.1) we have

$$\overline{\varepsilon}_{ij} d\overline{\sigma}_{ij} = 2\overline{\varepsilon}_{12} d\tau_{\circ}$$
 (2.3)

The complementary energy of the body is given by (14) of Appendix A. The surface integral vanishes however in the present case since no displacements are prescribed on the boundary. Now

$$U_{C} = \int_{V} W^{\sigma} dV = \int_{V} \int_{\overline{\varepsilon}_{ij}} d\overline{\sigma}_{ij} dV$$

$$= \int_{\sigma=0}^{\sigma} \int_{\overline{\varepsilon}_{ij}} d\overline{\sigma}_{ij} dV \int_{0}^{\tau} \overline{\varepsilon}_{12} d\tau,$$

$$= \int_{\sigma=0}^{\sigma} \int_{0}^{\overline{\varepsilon}_{ij}} d\overline{\sigma}_{ij} dV \int_{0}^{\tau} \overline{\varepsilon}_{12} d\tau,$$
(2.4)

The last equality following from (2.2, 3).

By definition the effective secant modulus ${\tt G}_{\rm A}^{\rm S}$ is given by

$$\overline{\varepsilon}_{12} = \frac{\overline{\sigma}_{12}}{G_{A}^{S}(\overline{\sigma}_{12})} = \frac{\tau_{o}}{2G_{A}^{S}(\tau_{o})}$$
 (2.5)

Hence (2.4) assumes the form

$$U_{C} = V \int_{0}^{\tau_{o}} \frac{\tau_{o} d\tau_{o}}{G_{\Delta}^{S}(\tau_{o})}$$
(2.6)

In order to find a bound on G_A^S it will be necessary to find a bound on (2.6) by use of the principle of minimum complementary energy.

It is assumed that the fibers are infinitely rigid in comparison to the matrix. Therefore at fiber/matrix interface

$$\mathbf{u}_1 = \mathbf{0} \tag{2.7}$$

and the only contribution to the complementary energy is from the matrix. Thus, the surface integral in (1.33a) vanishes and it can be written as

$$\tilde{U}_{C} = \int_{V_{m}} \tilde{W}^{\sigma} dV \qquad (2.8)$$

where V_{m} is the matrix volume.

Furthermore, by (2.3.3) the actual stresses are functions of \mathbf{x}_2 , \mathbf{x}_3 only. It is therefore natural to also choose admissible stresses as functions of \mathbf{x}_2 , \mathbf{x}_3 . Thus $\widetilde{\mathbf{W}}^\sigma$ in (1.33) becomes a function of \mathbf{x}_2 , \mathbf{x}_3 only and therefore without loss of generality (1.33a) can be taken over unit length in fiber direction. Thus it can be written

$$\tilde{U}_{C} = \int_{A_{m}} \tilde{W}^{\sigma} (x_{2}, x_{3}) dx_{2} dx_{3}$$
 (2.9)

In order to construct an admissible stress system it is necessary to devise a geometrical model for a uniaxially reinforced material. In past analyses of FRM two kinds of models have been successfully treated: Periodic arrays of identical circular fibers have been analyzed numerically with the aid of computers and the composite cylinder assemblage model has been treated analytically [1,5] yielding simple closed results. Since the present treatment is to be analytical the composite cylinder assemblage model will be used. A detailed description of the model has been given in [5]. Suffice it to say here that the model represents a cylindrical specimen of a fiber reinforced material as an assemblage of composite cylinders of different sizes which fill the space in the limit. In each composite cylinder the inner cylinder is a fiber and the outer shell is matrix material.

In all cylinders the ratios of fiber to matrix shell radius are the same, (figure 26).

It is recalled that an admissible stress system must satisfy equilibrium and boundary conditions. An obvious possibility for such an admissible field are the stresses of the elastic solution since they certainly satisfy the required conditions. These stresses are the same in any composite cylinder of the assemblage and are given in cylindrical coordinates by (see [5])

$$\tilde{\sigma}_{rz} = \tilde{\tau}_r = \frac{\tau_o}{1+c} (1 + \frac{a^2}{r^2}) \cos \theta$$
(2.10)

 $\tilde{\sigma}_{\theta Z} = \tilde{\tau}_{\theta} = -\frac{\tau_{o}}{1+C} \cdot (1-\frac{a^{2}}{r^{2}}) \sin \theta$ where c is the volume fraction of fibers, a is the radius of any fiber and r, are polar coordinates, fig. 26.

Since $\tilde{\tau}$ as expressed by (1.33c) is an invariant with respect to rotations about x, = z we have also

$$\tilde{\tau}^2 = \tilde{\tau}_r^2 + \tilde{\tau}_\theta^2 \tag{2.11}$$

Substituting (2.10) into (2.11) yields

$$\tilde{\tau}^2 = p^2 \left(1 + \frac{1}{\rho^4} + \frac{2}{\rho^2} \cos \theta\right)$$
 (2.12)

where

$$p = \frac{\tau}{1+c} \qquad \rho = \frac{r}{a} \qquad (2.13)$$

To simplify the analysis the exponent n in (1.22) will be assigned the value

$$n = 3$$
 (2.14)

It has been found that with this value of n, experimentally obtained shear stress-strain relations of epoxy can be quite accurately represented with proper choice of τ_y . Recalling (1.33), (2.9) then assumes the form

$$\tilde{U}_{C} = \frac{1}{2G} \int_{A_{m}} \tilde{\tau}^{2} \left[1 + \frac{1}{2} \left(\frac{\tilde{\tau}^{2}}{V}\right)^{2}\right] dA$$
 (2.15)

where G is the matrix elastic shear modulus. Let the assemblage consist of K composite cylinder. Define $\overset{\circ}{U}_C^{\ k}$ for the kth composite cylinder by

$$\tilde{U}_{C}^{k} = \frac{1}{2G} \int_{A_{mk}} \tilde{\tau}^{2} \left[1 + \frac{1}{2} \left(\frac{\tilde{\tau}}{\tau_{y}}\right)^{2}\right] dA$$
 (2.16)

where ${\bf A}_{mk}$ is the matrix area ${\bf a}_k {\le} {\bf r} {\le} {\bf b}_k$ in the kth composite cylinder. Then

$$\tilde{U}_{C} = \tilde{\Sigma} \tilde{U}_{C}^{k}$$

$$k=1$$
(2.17)

Since $\tilde{\tau}^2$ has been expressed in polar coordinates, (2.12), it is convenient to also evaluate (2.16) in the same coordinates. Using the variable ρ we have

$$\tilde{U}_{C}^{k} = \frac{1}{2G} \int_{1}^{\beta} \int_{0}^{2\pi} \tilde{\tau}^{2} \left[1 + \left(\frac{\tilde{\tau}}{\tau}\right)^{2}\right] \rho d\rho d\theta$$
(2.18)

where

$$\beta = b_k/a_k \tag{2.19}$$

which by construction has the same value in all composite cylinders. Note also that the volume fraction of fibers c is given by

given by
$$c = (\frac{a_k}{b_k})^2 = \frac{1}{\beta^2}$$
 (2.20)

Substituting (2.12) into (2.18) and carrying out the integration we have

$$\tilde{U}_{C}^{k} = \frac{\pi b^{2} k}{2G} \tau_{o}^{2} \left[\frac{1-c}{1+c} + \left(\frac{\tau_{o}}{\tau_{y}} \right)^{2} \frac{3+10c-12c^{2}-c^{4}}{6(1+c)^{4}} \right]$$
 (2.21)

where (2.20) has been used. It is seen that πb_k^2 is the area of the cross section of the kth composite cylinder and the parenthesis has the same value for all composite cylinders. Therefore, if (2.21) is inserted into (2.17) we find

$$\tilde{U}_{C} = \frac{A}{2G} \tau_{o}^{2} \left[\frac{1-c}{1+c} + \left(\frac{\tau_{o}}{\tau_{y}} \right)^{2} \frac{3+10c-12c^{2}-c^{4}}{6(1+c)^{4}} \right]$$
 (2.22)

Let (2.22) be written

$$\tilde{U}_{C} = A \int_{0}^{\tau_{o}} \frac{1}{A} \frac{dU_{C}}{d\tau_{o}} d\tau_{o}$$
 (2.23)

Without loss of generality (2.6) can be evaluated for unit height of cylindrical specimen. Thus

$$U_{C} = A \int_{0}^{\tau_{o}} \frac{\tau_{o} d\tau_{o}}{G_{A}^{S}(\tau_{o})}$$
 (2.24)

Now introduce (2.23) and (2.24) into the minimum complementary inequality (1.18). Thus

$$\int_{\circ}^{\tau} \left[\frac{1}{A} \frac{\tilde{dU}_{C}}{d\tau_{\circ}} - \frac{\tau_{\circ}}{G_{\lambda}^{S}(\tau_{\circ})}\right] d\tau_{\circ} \geq 0$$
 (2.25)

Since the integral is positive for all values of τ_{o} the integrand must also be positive for all values of τ_{o} . It follows that

$$G_{A}^{S}(\tau_{o}) \geq \frac{A\tau_{o}}{dU_{C}/d\tau_{o}} = G_{A}^{S}(-)$$

$$(2.26)$$

where the extreme right denotes lower bound on the secant modulus G_A^S . Substituting (2.22) into (2.26) and rearranging we find the lower bound (2.3.9) of Chapter 2.

There naturally arises the question of the establishment of an upper bound. The difficulties involved have been discussed above: It is not in general possible to solve Ramberg-Osgood relations for stresses in terms of strains. It is

therefore not possible to analytically express the potential energy functional in terms of admissible strains.

A possibility to resolve the difficulty is to write inelastic stress-strain relations of type (1.22) in the form

$$\tau_{2} = 2G\varepsilon_{2} \left[1 - \left(\frac{\hat{\varepsilon}}{\varepsilon_{y}}\right)^{\alpha - 1}\right]$$

$$\tau_{3} = 3G\varepsilon_{3} \left[1 - \left(\frac{\hat{\varepsilon}}{\varepsilon_{y}}\right)^{\alpha - 1}\right]$$

$$\hat{\varepsilon} = \sqrt{\varepsilon_{2}^{2} + \varepsilon_{3}^{2}}$$
(2.27)

where α and ϵ are to be determined by curve fitting. The minus sign in the parenthesis is due to the fact that the stress-strain curve is below a straight line with the initial slope.

It should be noted that (2.27) are <u>not</u> an inversion of (1.22). They are merely another form of approximation of actual stress-strain curves.

In principle the representation (2.27) can now be used in conjunction with the principle of minimum potential energy to establish an upper bound on G_A^S in same fashion as a lower bound has been established. It has however been found that in attempting to fit (2.27) to actual epoxy stress-strain curves a fractional exponent α was needed. This led to integrals of formidable difficulty in the evaluation of potential energy functionals. Therefore this approach has not been continued here.

APPENDIX D

FAILURE OF NON-LINEAR LAMINATES

It is expedient to separate the problem of the establishment of failure criteria of laminates into two separate problems:

- (a) Establishment of failure criteria for uniaxially fiber reinforced material, i.e., laminae.
- (b) Establishment of failure criteria of the laminate on the basis of laminae failure criteria.

A great deal of wrok has been done on problem (a). The problem has been approached in micro as well as macro-fashion. In micro-approach, it is attempted to predict failure on the basis of local analysis of the interior of the composite. Such an approach evidently encounters extreme difficulties. Although important work of fundamental nature has been done in this area, we shall not be concerned with it here since the work has not advanced to the stage of prediction of failure criteria under states of combined stress.

In the macro-approach, a failure criterion is heuristically postulated as some function of pertinent state variables (generally average stresses) which also contains undetermined parameters. These parameters are then to be determined in terms of experimentally accessible information.

We shall in the present discussion limit ourselves to states of plane stress. The simplest failure criterion is the so-called maximum stress criterion which states that failure occurs when either one of: stress in fiber direction, stress transverse to fibers, shear stress, reaches its critical value, these critical values being the same whether or not the stresses act simultaneously. In symbols the criterion is:

$$\sigma_{11} = \sigma_{A}$$

or

(1)

$$\sigma_{22} = \sigma_{\rm rr}$$

62.

or

$$\sigma_{12} = \tau_{AT}$$

where 1 is fiber direction and 2 is the transverse direction.

Generally, failure stresses σ_A and σ_T are different in tension and compression. This is known as Bauschinger effect. There is evidently no Bauschinger effect for the shear stress. The simplest generalization of (1) to account for Bauschinger effect would be to assume as failure criterion:

$$\sigma_{11} = \sigma_{A}^{+} \quad \text{if} \qquad \sigma_{11} > 0$$

$$\sigma_{11} = \sigma_{A}^{-} \quad \text{if} \qquad \sigma_{11} < 0$$

$$\sigma_{22} = \sigma_{T}^{+} \quad \text{if} \qquad \sigma_{22} > 0$$

$$\sigma_{22} = \sigma_{22}^{-} \quad \text{if} \qquad \sigma_{22} < 0$$

$$\sigma_{12} = \tau_{AT} \quad \text{all} \qquad \sigma_{12}$$

whichever occurs first, where (+) and (-) superscripts denote failure stresses in tension and compression respectively. The main drawback of these simple criteria is in that they take no account of interaction effects.

The most commonly used criterion which takes into account interaction is of quadratic form. For plane stress it has the form

$$A_{11}\sigma_{11}^{2} + A_{22}\sigma_{22}^{2} + A_{12}\sigma_{11}\sigma_{22} + A_{44}\sigma_{12}^{2} = 1$$
 (3)

Here, products of shear stress with normal stress have been omitted since the material cannot distinguish between positive and negative shear stress. Therefore, odd powers (one, in this case) of shear stress cannot appear.

Applying (3) to failure for stress in fiber direction alone, stress transverse to fiber direction alone, shear stress alone, in turn, it is seen at once that

$$A_{11} = \frac{1}{\sigma_{A}^{2}}$$

$$A_{22} = \frac{1}{\sigma_{T}^{2}}$$

$$A_{44} = \frac{1}{\tau_{AT}^{2}}$$
(4)

The coefficient A_{12} is troublesome since its determination requires a failure experiment under combined stress. Several authors have proposed to use failure experiments on off-axis specimens under uniaxial stress for the determination of A_{12} . See e.g. [18] for discussion.

The situation becomes more complicated if it is required to take into account Bauschinger effect, that is difference of failure stresses in tension and compression. One possibility to account for this effect is to assume that \mathbf{A}_{11} , \mathbf{A}_{22} assume different values for tension and compression. The situation regarding \mathbf{A}_{12} , however, becomes very awkward as it would have to assume four different values to account for four different possibilities of sign combination in biaxial stressing and

It is also possible to add linear terms to (3) in which case it would assume the form:

$$A_{11}\sigma_{11}^{2} + A_{22}\sigma_{22}^{2} + A_{12}\sigma_{11}\sigma_{22} + A_{44}\sigma_{12}^{2} +$$

$$B_{1}\sigma_{11} + B_{2}\sigma_{22} = 1$$
(5)

Such a device was suggested by Hoffman [19]. In this case it is possible to determine values of A_{11} , B_1 , A_{22} , B_2 to account for different tensile and compressive uniaxial failure stresses in fiber direction and transverse to it. But the difficulty of assigning four different values to A_{12} remains, unfortunately.

In summary, the status of quadratic failure criteria has to date not been finalized. However, special versions of such criteria have been successfully fitted to experimental data.

It is of importance to realize that in the fiber reinforced materials used in practice failure predictions on the 64.

basis of maximum stress criterion or quadratic failure criterion are not very different. This is due to the large ratios between strength in fiber direction and transverse and shear strengths and is easiest realized by considering the failure criteria as surfaces in σ_{11} , σ_{22} , σ_{12} stress space. The maximum stress criterion is a very elongated rectangular parallelopiped while the quadratic failure criterion is an ellipsoid. For $A_{12}=0$, Fig. 25 shows this schematically on a cut in the σ_{11} , σ_{22} plane. Thus it is seen that stress points on the two failure surfaces are close together for most parts of the surfaces.

The situation would be entirely different for a material in which $\sigma_{\rm A}$, and $\sigma_{\rm T}$ were of comparable magnitudes.

We shall now consider problem (b) i.e., the establishment of laminate failure criteria in terms of laminae failure criteria. The most conservative laminate failure criterion is to assume that once any lamina has failed the laminate has reached its ultimate load. There are cases of laminates in which all laminae would fail simultaneously and then this criterion would be justified. For example: a $\pm \theta$ laminate in which the external load direction bisects the angle between the fibers.

In most cases, however, a certain group of laminae will fail first and failure of remaining groups would require further increase of load. Therefore a more realistic alternative is to determine the load at which the first laminae group fails. At this state, the further carrying capacity of the laminate may be assumed to be given by the remaining undamaged laminae. The increase in load which fails another group of laminae is then determined. This process is continued until failure of all laminae has taken place.

Still another possibility is to assume that when a lamina has failed, certain of its stiffnesses reduce to zero. For example: suppose that a lamina or group of laminae has failed in shear. Such a failure implies a crack through the lamina in fiber direction. In that event, it is reasonable to assume

that the shear and transverse stiffnesses of the lamina are zero, but it still retains its stiffness in fiber direction. If, however, a lamina fails because of the stress in fiber direction the damage is so widespread that all of its stiffnesses will be negligible. According to the type of failures encountered analysis is continued for the damaged laminate with the new stiffness rearrangement. This process is continued until failure of all laminae has taken place. This method of analysis seems to be the most realistic but is also the most complicated.

In almost all of the practical strength analyses of laminates in the literature, according to any of the methods outlined above, the stresses used for failure criteria have been determined on the basis of elastic laminate analysis. With the present inelastic laminate analysis, more realistic stresses are available in a better assessment of laminate failure loads.

APPENDIX E

MSC-NOLIN COMPUTER PROGRAM

1. General Description of the Program

This is a computer program developed for the inelastic analysis of a laminate subject to any constant, arbitrary combination of in-plane loading. Details of the method of analysis and of the numerical solution, using the Newton-Raphson method, have been described in the body of this report. The essential features of the program are summarized below.

The primary capability of MSC-NOLIN is to compute laminae properties when the laminate loads are defined. There is also a limited capability to work with constituent properties, rather than laminae properties, as the input. Details of the input options are discussed subsequently. Basically, the inputs required are the stress-strain characteristics of the individual laminae for each of the three in-plane stress components applied separately. The stress-strain curves for transverse stress and for stress and for axial shear stress are defined by Ramberg-Osgood stress-strain curves. The parameters for these curves along with the laminae elastic constants are the required material property inputs.

It has been observed that axial shear stresses in individual laminae are a major, perhaps the major, source of nonlinearities in laminate response. Therefore, several additional options have been included in the MSC-NOLIN to accommodate more detailed characterization of shear response. First, the laminae shear stress-strain response may be input in tabular form and a least squares fit to the data is automatically obtained for the R-O yield stress (limited to the use of an exponent, n=3). Secondly, the matrix shear stress-strain curve can be input along with fiber elastic properties and the laminae shear stress-strain curve will be computed. In this latter case, the laminae elastic constants are also computed.

The input specifies one of two options for the determination of the initial set of stresses to be used in the iteration at each value of applied load on the laminate. In one case the stresses found at one load are increased to the load for which the stresses were evaluated. In the other, and generally used option, the increment between the initial stresses used at the nth laminate load value and the actual stresses found for the (n-1)st load value bears the same relation to the ratio of those two load values as the similar relation computed at the previous load cycle, that is,

$$\frac{\sigma_{ij} - \sigma_{ij}}{F_{n}/F_{n-1}} = \frac{\sigma_{ij} - \sigma_{ij}}{F_{n-1}/F_{n-2}}$$

The program contains a number of controls to define: the size and number of steps of loading at which computations are made; the maximum number of iterations to be permitted in the numerical solution; the desired accuracy to be obtained in convergence; the criteria for divergence of the solution in the iterative process to avoid the use of unnecessary execution time in the case of breakdown of the solution procedure. The program defines the failure of the laminate in a limited fashion, either on the basis of the maximum allowable stress in the fiber in tension or compression, or on the basis that the tangent modulus of the stress-strain curve of the laminate becomes less than a specified value. Failure due to shear or transverse stress are not included at this stage in the development of the program.

2. Input

The main features of input in this program are the following:

(a) Specify the number of laminates or problems to be solved;

68.

- (b) Define the geometrical properties of each layer;
- (c) Define either the material properties of each layer or the properties of its constituents;
- (d) Define either of the following for each layer:
 - (i) yield stress in transverse direction and yield stress in shear;
 - (ii) yield stress in transverse direction and a table of values defining shear stress-strain curve for the matrix plus a set of values of stresses to be used for the computation of yield stress in shear;
- (e) Specify the type of Ramberg-Osgood relation to be used;
- (f) Define the loadings; and
- (g) Define the control parameters.

A guide to the preparation of input data for this program is given in section 4 below.

3. Details of Output

The output can be divided basically into two steps:

- (a) Output of Input Data:

 The first section of the output deals with the output of the input data. If the input is in the form of properties of constituents of the layer, it gives an output of the properties of the constituents first and then the computed value of the properties of the layer; otherwise, it gives output directly the properties of the layer.
- (b) Output of Stresses and Strains:
 For each set of loading, the computer prints the following:
 - (1) value of the load applied;
 - (2) number of iterations for convergence;
 - (3) stresses for individual laminae with respect to principal elastic axes of the laminae; and
 - (4) strains for individual laminae in terms of both laminae and laminate axes. 69.

4. Input Details for MSC-NOLIN

- (1) Read (I5) NSETS
 - NSETS: number of problems
- (2) Read (I5) LAY
 - LAY: number of layers in this laminate analysis
- (3) Read (I5) INP
 - INP: Option for reading in material properties

 - INP = 2; compute properties of laminae from the
 properties of constituents.
- (4) (a) If INP = 1
 - (i) Read (5D15.5) E_{11} , E_{22} , μ_{12} , μ_{21}
 - (ii) Read (5D15.5) G₁₂, SY, TY
 - (iii) Read (D15.5,I5) T, IANG
 - (b) If INP = 2
 - (i) Read (4D15.5) EF, MUF, GF, VF
 - (ii) Read (3D15.5) EM, MUM, GM
 - (iii) Read (I5) I2
 - If I 2 = 0; read in SY and TY
 - (i) Read (2D15.5) SY, TY
 - If I 2 = 1; TY is to be computed
 - (i) Read (5,1002) SYCE
 - (ii) Read (2 I 5) NUMT NUMT = number of values in the table
 - (iii) Read (5D15.5) TAU (J), J=1, NUMT (Table of shear stress values of matrix read in)
 - (iv) Read (5D15.5) GAM (J),J=1, NUMT
 (Table of shear strain values of
 matrix read in)
 - (v) Read (5D15.5) SG12 (J), J=2,11
 (Table of shear stress values of
 laminae read in)

- (5) Read (5D15.5) XN, XM
 - XN: exponent in nonlinear transverse stress strain law;
 - XM: exponent in nonlinear shear stress-strain law.
- (6) Read (5D15.5) SO11, SO22, SO12
 - SOll: applied stress in X-direction
 - SO22: applied stress in Y-direction
 - SO12: shear stress in XY
- (7) Read (I5, D15.5) KSGM, SMLT
 - KSGM: total number of loading increments
 - SMLT: ratio of load increment to the initial load.
- (8) Read (D15.5) STIFF
 - STIFF: tangent modulus of stress-strain curve in terms of the laminate axes; specify a value of STIFF below which the program will not run.
 - Read (D15.5) SGR
 - SGR: maximum allowable stress in the fiber in tension or compression
- (9) Read (I 5, 2D15.5) IT, EPS, UPBD
 - IT: maximum number of iteration permitted in Newton-Raphson analysis
 - EPS: convergence criteria; (ratio of values of two successive iterations should be less than EPS)
 - UPBD: divergence criteria (solution will stop if ratio of two successive iterations is greater than 10 ± 12)
- (10) Read(15) INMT
 - If INMT = 1, the program uses ratio of previous
 two solutions as the initial guess
 value iteration process;
 - If INMT = 2, the program uses extrapolated value of previous two solutions proportioned on the basis of stress ratio as the initial guess.

 71.

REFERENCES

- Z. Hashin and B.W. Rosen The Elastic Moduli of Fiber Reinforced Materials - J. Appl. Mech. 31, 223, (1964).
- 2. G. Pickett Elastic Moduli of Fiber Reinforced Plastic Composites in Fundamental Aspects of Fiber Reinforced Plastic Composites, R.T. Schwartz and H.S. Schwartz, Eds. Interscience, (1968).
- D.F. Adams, D.R. Doner and R.L. Thomas Mechanical Behavior of Fiber-Reinforced Composite Materials - AFML-TR-67-96, (1968).
- 4. R. Hill Theory of Mechanical Properties of Fiberotrengthened Materials - J. Mech. Phys. Solids, 12, 213, (1964).
- 5. Z. Hashin Theory of Fiber Reinforced Materials NASA CR-1974, (1972).
- P.H. Petit and M.E. Waddoups A Method of Predicting for the Nonlinear Behavior of Laminated Composites - J. Composite Mats. 3, 2, (1969).
- 7. D.F. Adams Inelastic Analysis of a Unidirectional Composite Subjected to Transverse Normal Loading J. Composite Mats. 4, 310, (1970).
- W. Huang Plastic Behavior of Some Composite Materials -J. Composite Mats. 5, 320, (1971).
- 9. R.L. Foye and D.J. Baker Design/Analysis Methods for Advanced Composite Structures AFML-TR-70-299, Vol. I, (1971).
- 10. B. Budiansky A Reassessment of Deformation Theories of Plasticity J. Appl. Mech., 26, 259, (1959).
- 11. W. Ramberg and W.B. Osgood Description of Stress-Strain Curves by Three Parameters NASA TN 902, (1943).
- 12. A.A. Iliouchine Plasticite ed. Eyrolles, (1956).
- 13. L.D. Wall, Jr. and M.F. Card Torsional Shear Strength of Filament-Wound Glass-Epoxy Tubes NASA TN D-6140, (1971).
- 14. R.L. Foye Theoretical Post-Yielding Behavior of Composite Laminates J. Composite Mats. 7, 178, (1973).
- 15. J. F. Mulhern, T.G. Rogers and A.J.M. Spencer A Continuum Theory of a Plastic-Elastic Fibre-Reinforced Material Int. J. Engng. Sci., 7, 129, (1969).
- 16. D.C. Drucker Variational Principles in the Mathematical Theory of Plasticity Symposium in Applied Mathematics, Vol. 8, 7, McGraw-Hill, (1956).
- 17. B. Budiansky and R.J. Vidensek Analysis of Stresses in the Plastic Range Around a Circular Hole in a Plate Subjected to Uniaxial Tension NASA TN 3542, (1955).

- 18. S.W. Tsai and E.M. Wu A General Theory of Strength for Anisotropic Materials J. Comp. Mats. 5, 58, (1971).
- 19. O. Hoffman The Brittle Strength of Orthotropic Materials J. Comp. Mats. $\underline{1}$, 200, (1967).

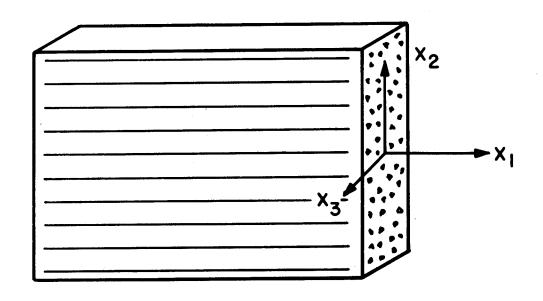


Fig. 1 - Coordinate system for unidirectional fiber composite material.

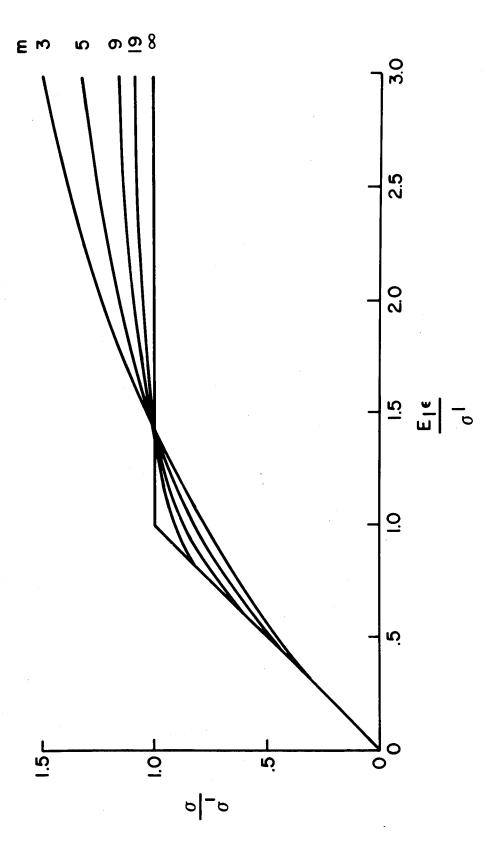


Fig. 2 - Nondimensional Ramberg-Osgood stress-strain curves. (e.g., 2.2.1 with k =0.4).

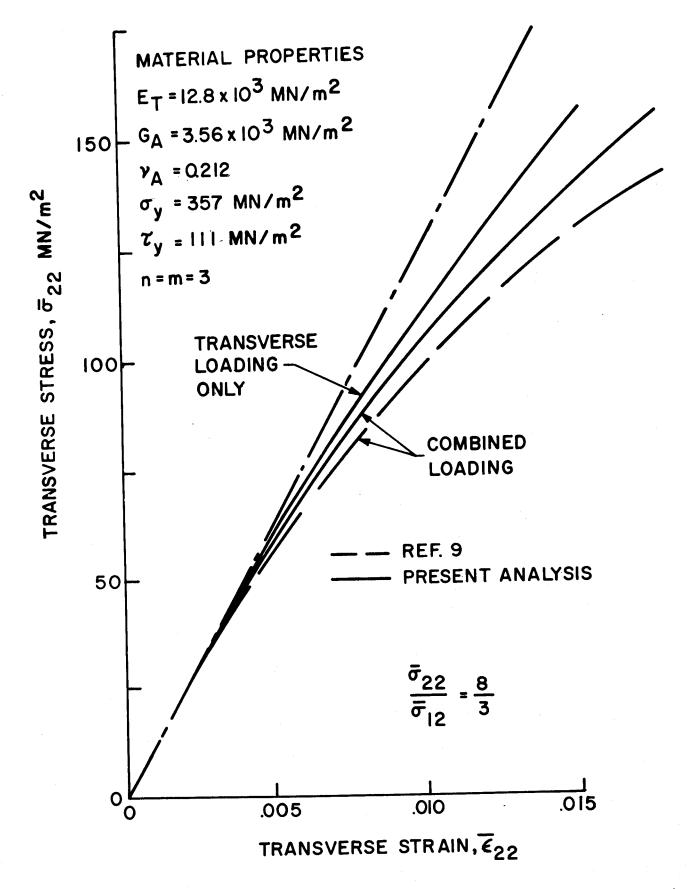


Fig. 3 - Transverse normal σ - ϵ curves for unidirectional Boron/Epoxy (for normal loading and normal + shear loading).

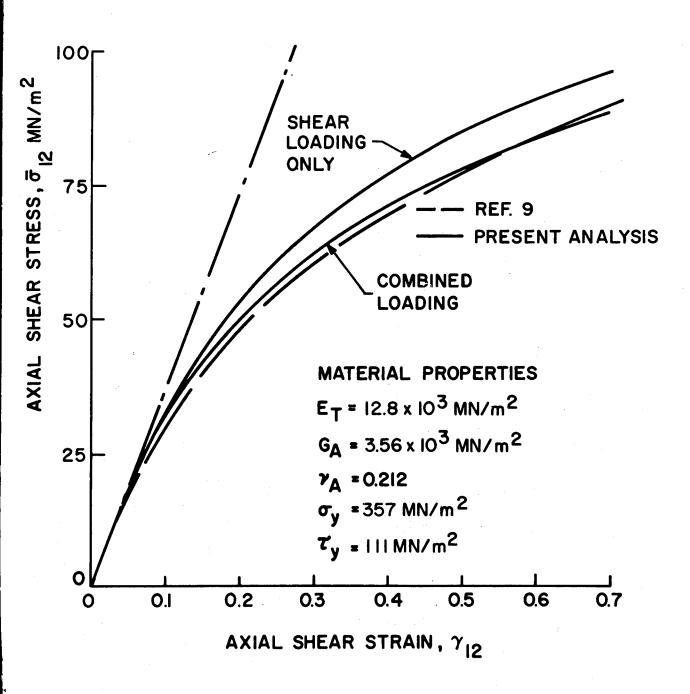


Fig. 4 - Shear σ - ϵ curves for unidirectional Boron/Epoxy (for shear loading and normal + shear loading).

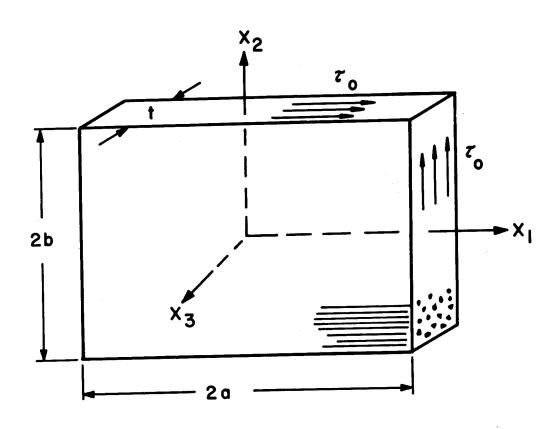


Fig. 5 - Unidirectional fiber composite material under axial shear stress.

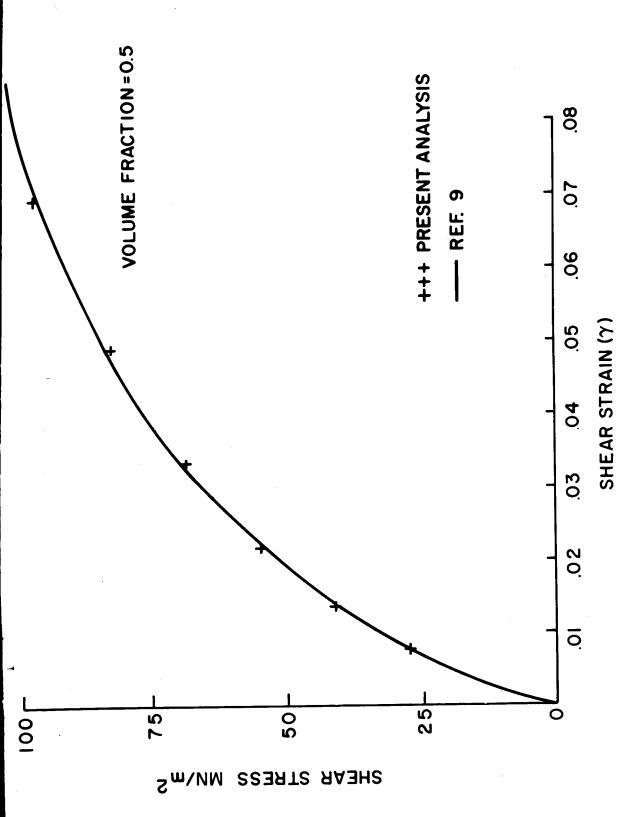
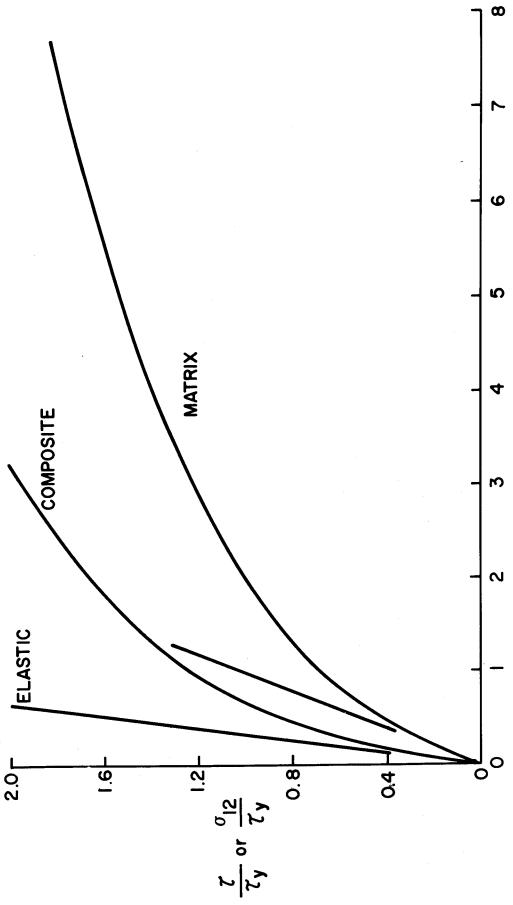



Fig. 6 - Axial shear stress-strain curve for composite computed from matrix properties.

Generalized Ramberg-Osgood stress-strain curve in axial shear for composite and matrix (n=3). 7 -Fig.

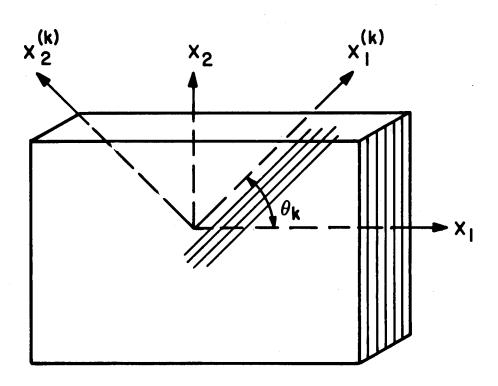


Fig. 8 - Laminate coordinate system.

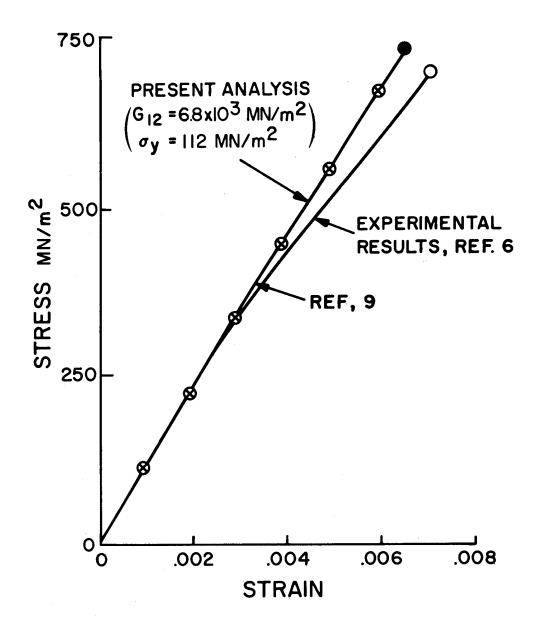


Fig. 9 - Tensile stress-strain curve with [0/90] B/Ep.

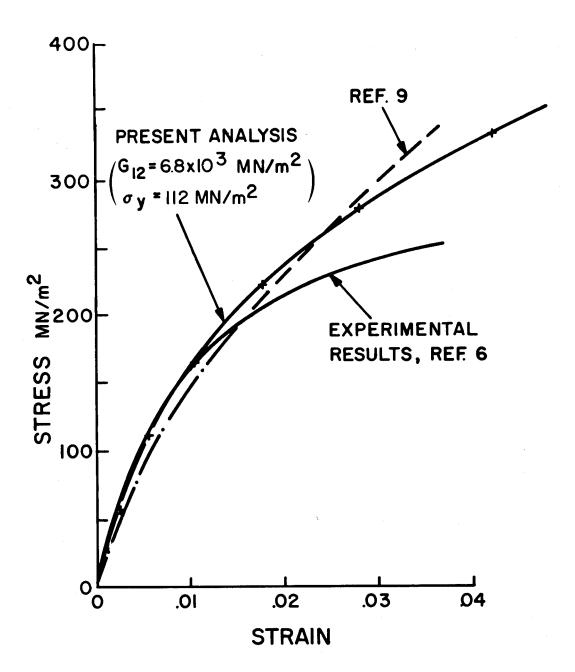


Fig. 10 - Tensile stress-strain curves for [+45] B/Ep.

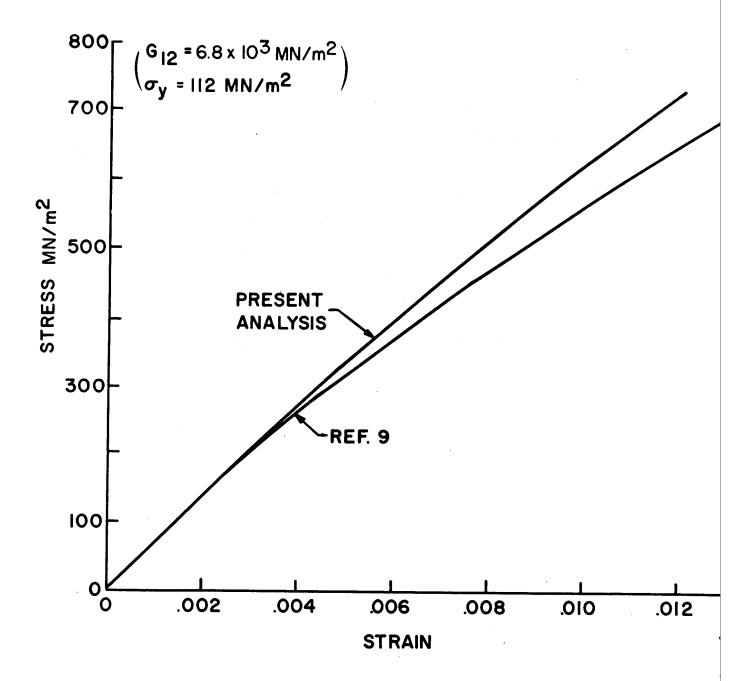


Fig. 11 - Tensile stress-strain curve with [±30] B/Ep.

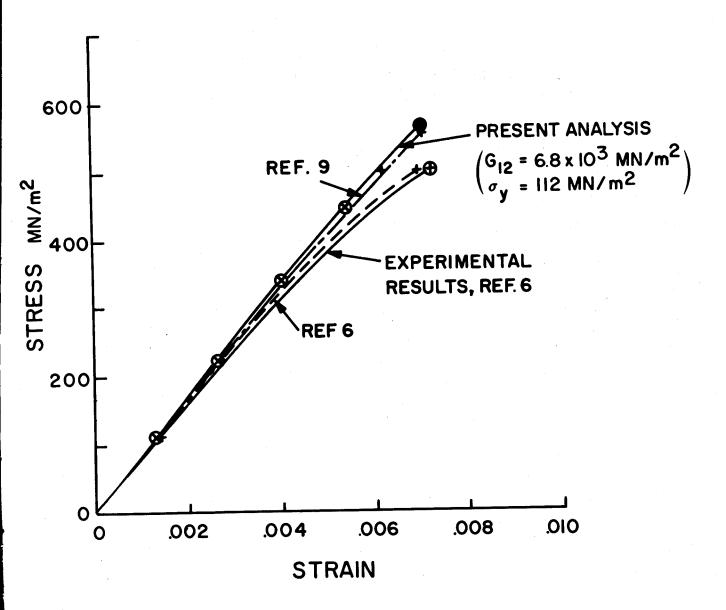


Fig. 12 - 0° Tensile stress-strain curves for [0/±45/90] B/Ep.

Fig. 13 - 0° Tensile stress-strain curves for $[0/\pm60]$ B/Ep.

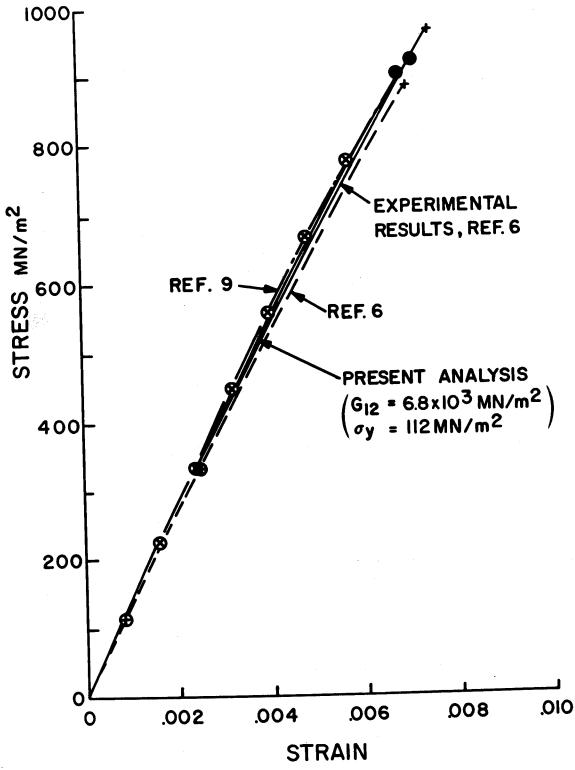


Fig. 14 - 0° Tensile stress-strain curves for $[0_3/\pm 45]$ B/Ep. 87.

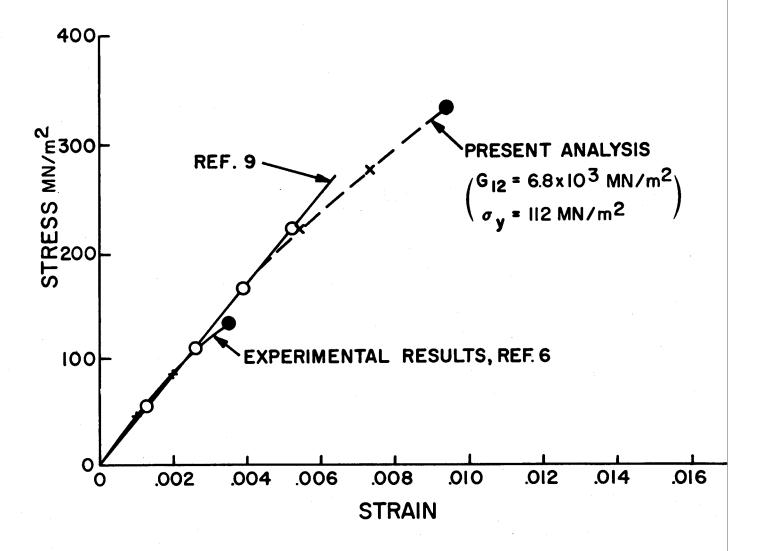


Fig. 15 - 0°Tensile stress-strain behavior of $[65_3/20/-70]$ B/Ep.

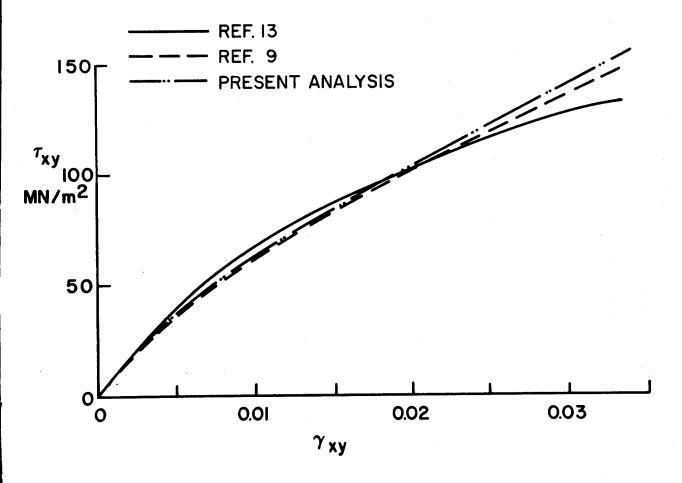


Fig. 16 - Comparison of present results with experimental data for Glass/Epoxy 90/+18 tubes in torsion, and with the results of Ref. 9.

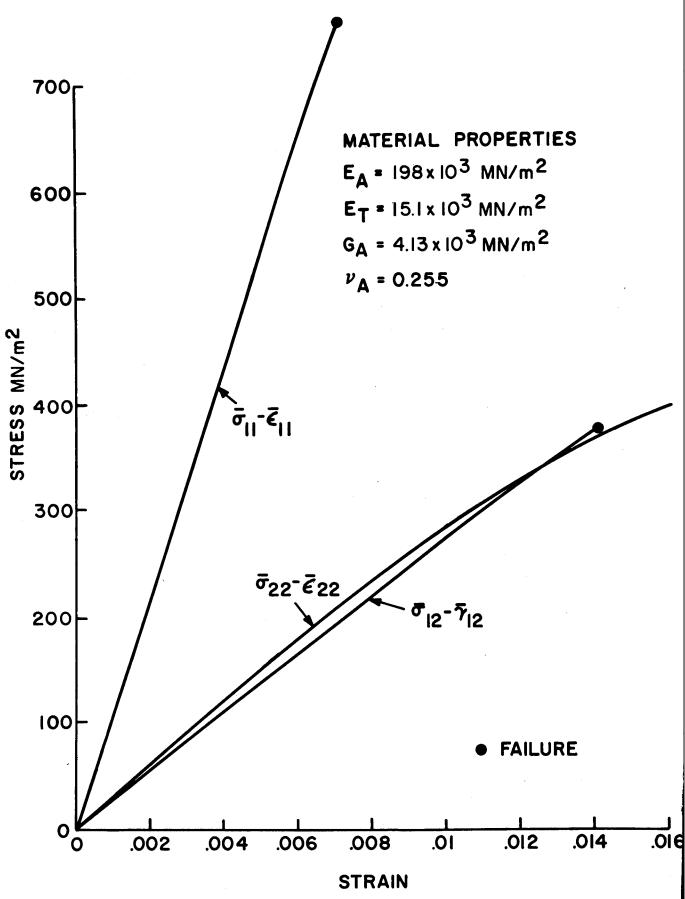


Fig. 17 - Stress-Strain curves for Axial, transverse and shear loading for [0°/±45°] laminate.

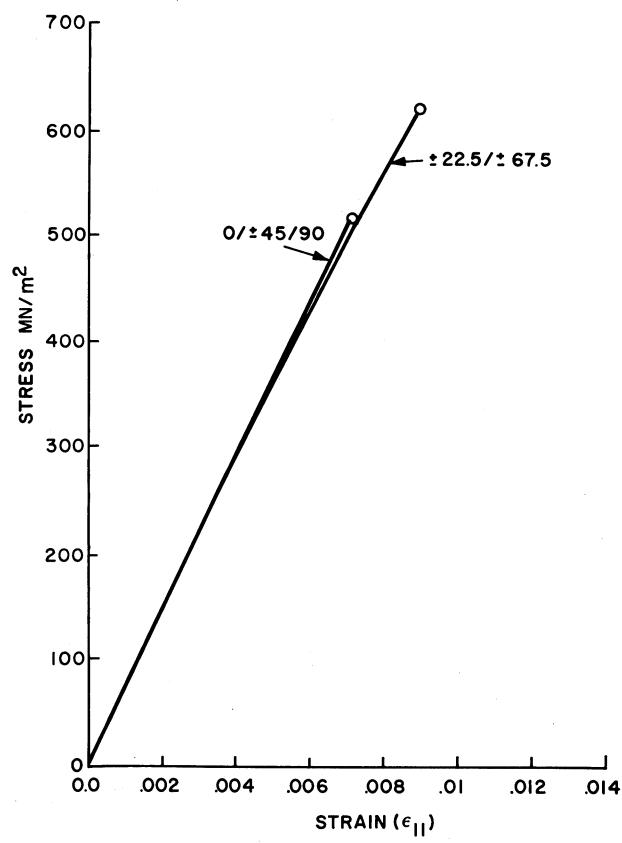


Fig. 18 - Four directional quasi-isotropic Boron/Epoxy plate under unidirectional tension in fiber direction and between fiber directions.

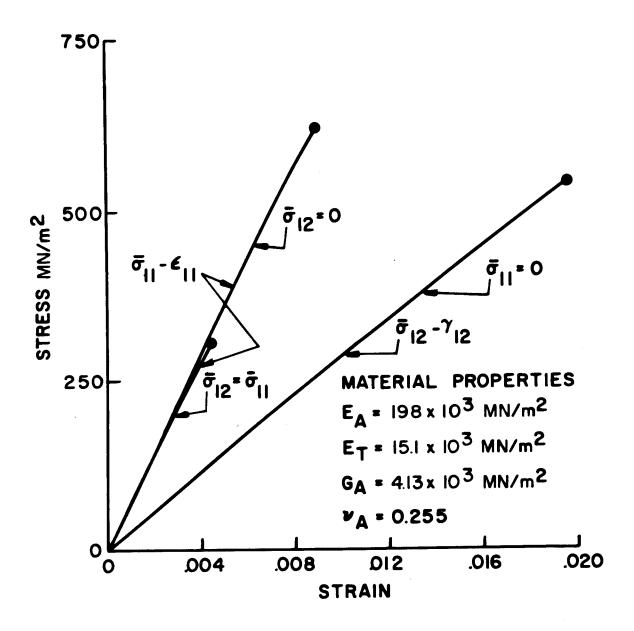


Fig. 19 - Combined stress effects on quasi-isotropic [+22.5/+67.5] laminate.

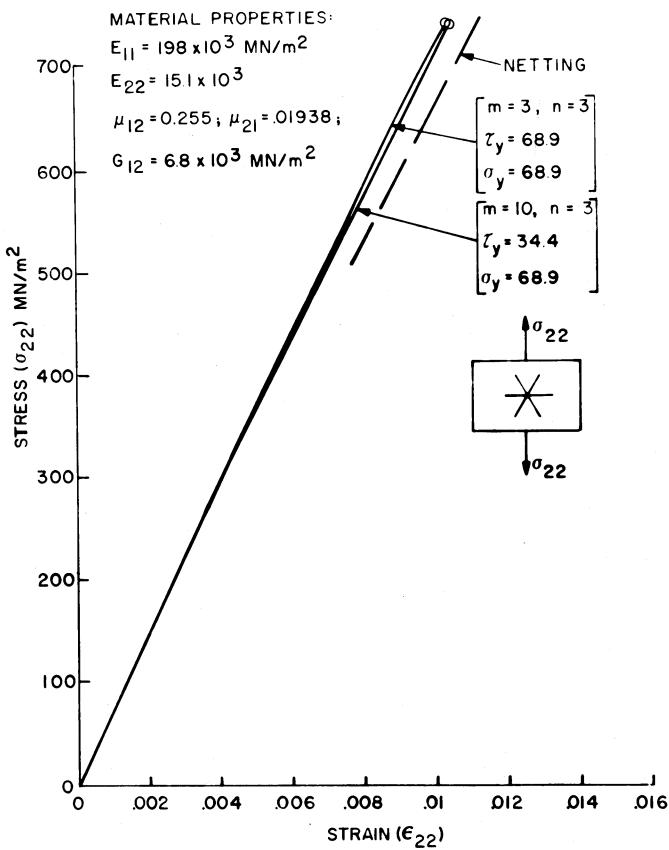


Fig. 20 - Effect of laminae inelasticity on transverse stress- 93. strain curve for $0/\pm60$ quasi-isotropic laminate.

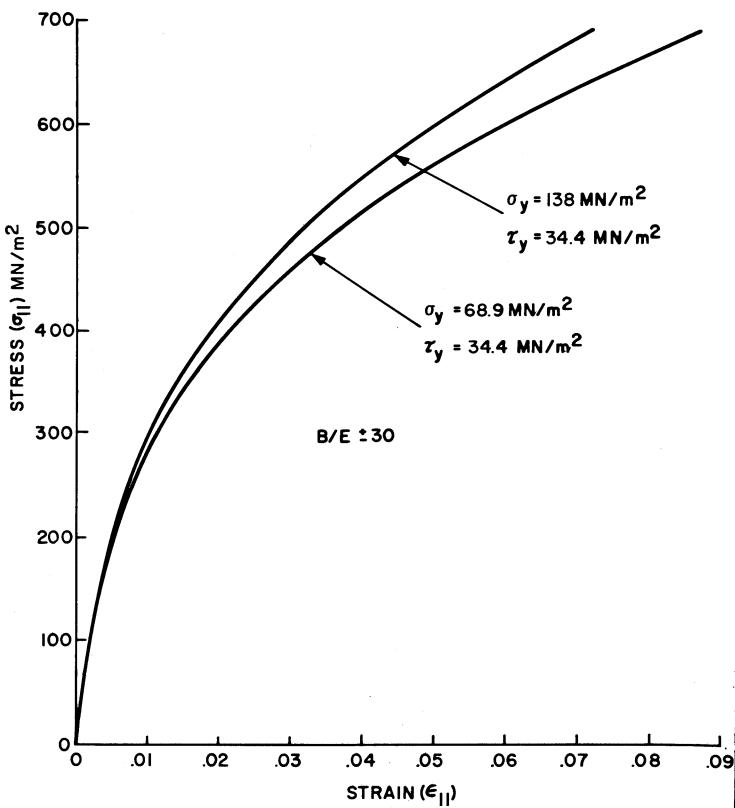


Fig. 21 - Influence of laminae inelasticity upon axial tensile stress-strain curve of ±30° Boron/Epoxy laminate.

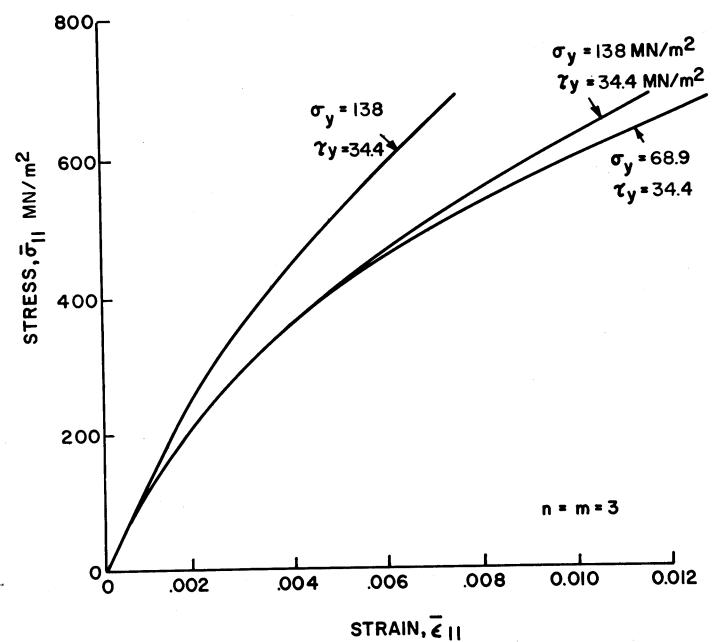


Fig. 22 - Influence of laminae inelasticity upon axial tensile stress-strain curve of ±30° Boron/Aluminum laminate.

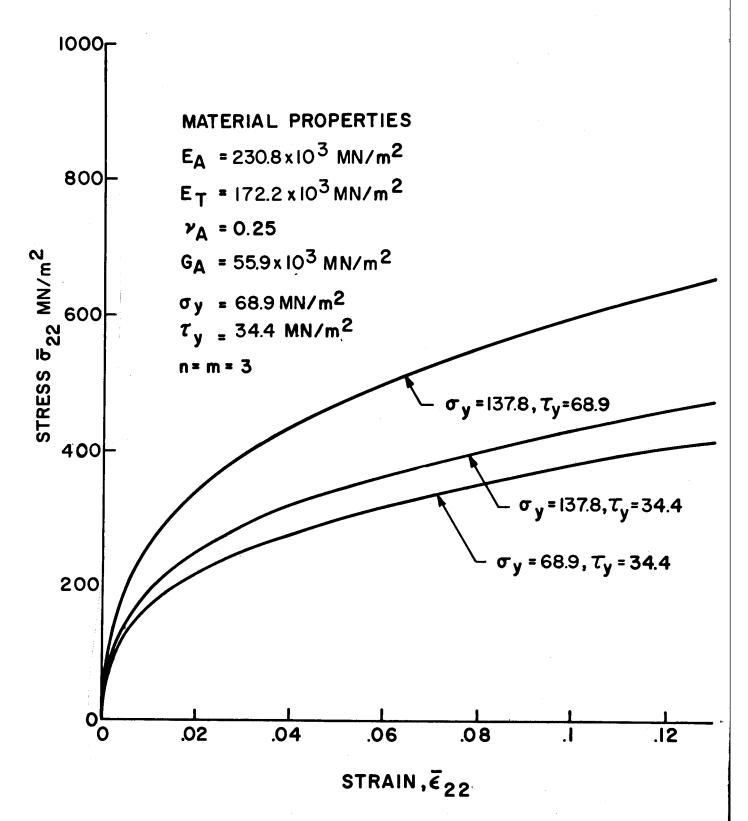


Fig. 23 - 0° Tensile stress-strain curves for $[0_3/\pm 45]$ B/Ep.

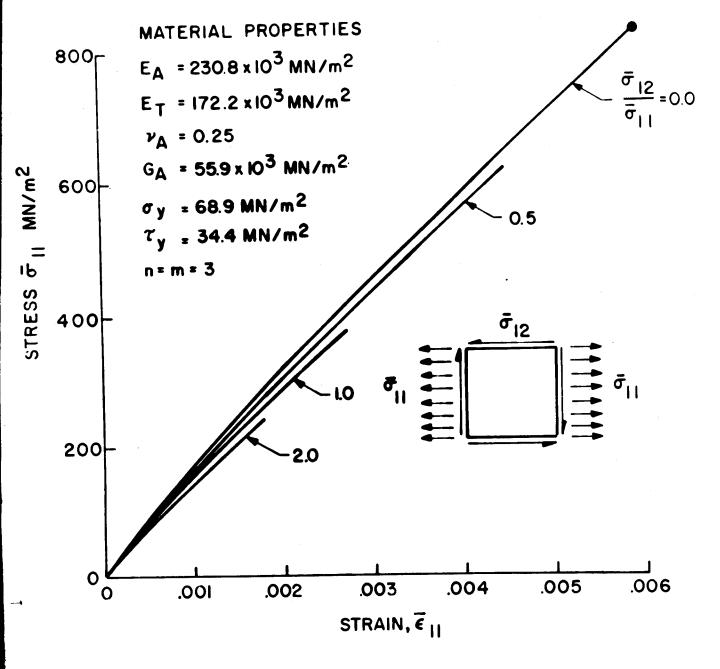


Fig. 24 - Stress-strain curves of Boron/Aluminum $[0/\pm 30]$ laminate under combined loading.

Fig. 25 - Comparison of failure criteria. 98.

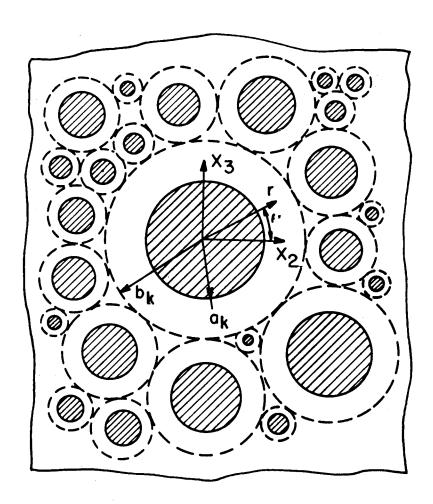


Fig. 26 - Composite Cylinder Assemblage

	C INELASTIC LEMINATE ANALYSIS
	3
1000	INDITET DEALASTA H. C 7)
0002	I MENSICN E11 (20
	2 A(20,20), SG(20,1), SG(20,1), SG(20), I SG(20), I SG(20), SG
0003	OI MENSICN
	2 EPS22(20), EPS12(20), SGS(20), DIF (20), SG2(20), 1 SGS(20), SGS
9000	F(3+20
9000	/CCP/
9000	COMMON / TLPARM/SGR.571FF
0007	CCMMCN /RAFNWT/S11.S12.S21,E22 LOGICAL MSING-MSING
	INPUT
	C NOTE: CONVENTION FOR VI2 AND V2! ESTABLISHED BY FCLLOWING
	RELATIONSHIPS- S12 = -V12/F11
0000	MRITE(4,1500) READ(5,1010) NSETS
0011	00 999 J = 1,NSETS READ(5,1010) LAY
0013	
0014	C LAMINATE OUTPUT HEADING WRITE(6,1509) J
0015 0016	WRITE(6,1981) WRITE(6,1510) LAY
0017	GO TO (20,25),
0018	20 CONTINUE 00 24 I ≈ 1.LAY
0020	9
0022	122) T(I), IANG
0024	1
0025	C INPUT 2: 25 CONTINUE
0026	
0028	WRITE(6,1565)
0030	CALL INPLTS(\$11,622,v12,v21,612,5V,TV,!)

0032	29 CONTINUE
0033	SO CONTINUE
700	C EQUATION PARAMETERS
0035	C INITIAL LCADING DEADLE, 10021, 5022, 5012
9200	C INCRIMENTATION PARAMETERS READISTION SMIT
7200	
0038	READ (5,10C2) SGR C CONTROL PARAMETERS
0039	READ(5,1024) IT, EPS, UPBD READ(5,1010) INMI
	C GUIPUI I.
0041	WRITE(6,1513) Di 60 i=1.14V
0043	MRITE(6,1515) 1,1ANG(1),T(1),E11(1),E22(1),V12(1),V21(1),
0044	60 CONTINUE WRITE(6.1516)
9700	
0048	WRITE(6,1520)
00500	
0051	C ANGLE REDUCTION ROUTINE C CALL ANGLE (LAY, IANG)
	C INITIAL ASSIGNMENTS AND COMPUTATIONS
0052	: 0.000 I = 1.LAY
0054	U 10 1 12
0056	00 105 I=1
0058	- 11
0000	5
0062	į.
0064	11
0065	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0067	H R
5900	= =
0071	LM1 = LAY -1
0072	00 107 1 S11(1) =
0074	1 -
)	

AAGE OOO

	A(3*1+2.1) = -511(1)*ShS +521(1)*CSS
0124	A(3*1+2,1+1) = S11(1+1)*SNSP+S21(1+1)*CSSF
0126) = S1
0127 0128	A(3*1+2,1+2*h+1) = -2.010*544(1+1)*5NP
0129	C = A(3*I+3*I) = -(SII(I)-S2I(I))*SN2 /2.0D0 $A(3*I+3.I+1) = (SII(I+1)-S2)(I+1)*SN2P/2.0D0$
0131	1 = -(512(1))
0133) = -2,000° +1) = 2,000°
0135	
0136	C A(1.N) = CSSD*T(N)
0137	1 (N #
0139	1 11 1
0141	
0143	A(3,2*N) = -SN2**I(N)/2.000
0144	1
9510	C C CONTINUE
0147	CALL INVRIGIA-20, LT3, DET, 1.0D-15, IRANK)
8710	C CHECK FOR SINGULAR MATRIX TELIFANK-FO. ITA GO TO 118
0149	ANK.
0151	60 T0 112
0153	
0155	60 10 999 116 CONTINUE
	C 8. C. VEC 108
0157	
0159	SG0(3,1) = SC12 CALL MXMULD(A,SG0,SG,20,20, 1,LT3,LT3,1)
	C RESET STRESS = 0, IF RELATIVE STRESS < 1.00-06
0161 0162	CALL RESET(LT3,SG,1.0D-06) GO TO 126
	C (MULTIPLICATIVE FACTOR) X (SOLUTION FROM PREVIOUS INCREMENT)
0163	120 CONTINUE 00 122 1=1,LT3
55	SG(1,1) = SF(1)*SGS(1)
0167	60 T0 126

125 CONTINUE 120 CONTINUE 121 CONTINUE 121 CONTINUE 122 CONTINUE 123 CONTINUE 124 CONTINUE 124 CONTINUE 125		: I - C + .
126 CONTINUE 126 CONTINUE 127 1=1,113 50,117,1) = 56(11,1) 51(11,1) = 56(11,1) 51(11,1) = 6.00 00 127 CONTINUE 51(11,1) = 6.00 00 127 CONTINUE 51(11,1) = 0.00 00 52 = CGSS(1) 53	0168	- 1
126 CONTINUE DD 127 I=1,L13 SG1(1,1) = SG1(1,1) BT(1) = 0.00 00 127 CONTINUE DD 1305 K=1,L13 DD 1305 K=1,L13 DB (K,L) = 0.00 D0 1305 CONTINUE DB (K,L) = 0.00 D0 1305 CONTINUE CALL NRTRM (LAY,SG,F,CALL NRTRM (LAY,SG,F,F,CALL NRTRM (LAY,SG,F,F,F,CALL NRTRM (LAY,SG,F,F,F,CALL NRTRM (LAY,SG,F,F,F,CALL NRTRM (LAY,SG,F,F,F,F,F,F,F,F,F,F,F,F,F,F,F,F,F,F,	0169	NIT = NIT
C	0110	CONTINUE
SGI(1,1) = SG(1,1) BI(1) = 0.00 00 127 CONTINUE DO 1305 K=1,LT3 DO 1305 K=1,LT3 DO 1305 K=1,LT3 DO 151 LM = 1 CALL NRTRM (LAY, SG, F,	1710	00 127 1
127 CONTINUE	0172	1) =
C 130 CONTINUE D 1305 K=1,LT3 D 1305 K=1,LT3 D 1305 COLINUE IF (N, E C, 1) LM1=1 O 151 I=1,LM1 CALL NRTRM (LAY, SG, F, CALL NRTRM (LAY, SG, F, F, CALL NRTRM (LAY, SG, F,	0173	BT(1) = 0.00
C 130 CONTINUE DO 1305 K=1,LT3 DO 1305 K=1,LT3 DO 1305 L=1,LT3 DO 150 L=1,LT3 I F(N,EG,1) LM1=1 OO 151 L=1,LM1 CALL NRTRM (LAY,SG,F,C,CALL NRTRM (LAY,SG,F,C,CALL NRTRM (LAY,SG,F,CALL NRTRM (LAY,SG,F,F,CALL NRTRM (LAY,SG,F,F,F,CALL NRTRM (LAY,SG,F,F,F,F,F,F,F,F,F,F,F,F,F,F,F,F,F,F,	4/10	_
DO 1305 K=1,113 DO 151 I=1,LM1 DO 151 I=1,LM1 CALL NRTRM (LAY, SG, F, F, CALL NRTRM (LAY, SG, F,		,
DO 1305 K=1,LT3 DO 1305 L=1,LT3 DB (K,L) = 0.0D DO 150 L51,LM1=1 CALL NRTRH (LAY,SG,F,CALL NRTRH (LAY,SG,F,F,CALL NRTRH (LAY,SG,F,F,F,F,F,F,F,F,F,F,F,F,F,F,F,F,F,F,	01.75	ſ
DO 1305 L=1,LT3 BO K,L) = 0.00 DO 1305 CONTINUE 15 (N.EG.1) LM1=1 DO 151 I=1,LM1 CALL NRTRM (LAY,SG,F,F,CALL NRTRM (LAY,SG,F,F,F,F,F,F,F,F,F,F,F,F,F,F,F,F,F,F,	9710	00 1305 K=1,LT3
DB(K,L) = 0.0D DO 1305 CONITNUE DO 151 1=1,LM1 CALL NRTRM (LAY, SG,F,F,CALL NRTRM (LAY, SG,F,F,F,F,F,F,F,F,F,F,F,F,F,F,F,F,F,F,F	2710	<u>CO 1305 E 1,173</u>
1305 CONTINUE 1505 CONTINUE 150 COLL NRTRM (LAY, SG, F, CALL NRTRM (LAY,	0178	DB(K,L) = 0.00
F(N*EC*1) M =1 CALL NRTRM (LAY, SG, F, CAS 1) CSS = SINS(1) CSS = COS2(1)	0179	- 1
CALL NRTRM (LAY, SG,F, CALL NRTRM (LAY, SG,F,F, CALL NRTRM (LAY, SG,F,F, CALL NRTRM (LAY, SG,F,F, CALL NRTRM (LAY, SG,F,F, CASS = SINS(11) CSS = COSS(1) CSS = COSS(1) CSS = COSS(11) CSSP = COSS(1+1) CSSP =	0180	IF (N.EG.1) LM1=1
CALL NRTRM (LAY, SG, F, CAS (I) SNS = SINZ(I) SNS = SINZ(I) SNS = SINZ(I+1) SNS = SINZ(I	1810	UU 151 1=1.1M1
C SNS = SINS(1) CS = CGSS(1) SNS = SINS(1) CSS = CGSS(1) SNS = CGSS(1) SNS = SINS(1) CSS = CGSS(1) SNS = SINS(1+1) CSS = CGSS(1) SNS = SINS(1+1) CSS = CGSS(1) CSS = CGSS(1) SNS = CGSS(1+1) CSS = CGS(1+1) CSS = CGS =	0182	CALL NATER (LAY, SG, F, G, H, G, L2, SY, TY, XN, XM, I)
SNS = SINS(1) CSS = CGSS(1) SN2 = SINS(1) SN2 = SINS(1) CSS = CGSS(1) SNS = CGSS(1) CSS = CGSS(1) SNS = CGSS(1) CSS = CGS(1) CSS = CGSS(1) CSS = CGS(1)	2010	CALL INTINE (LATESUET)
CSS = CGSS(1) SN2 = SIN2(1) CSS = CGSS(11) CSSP = CGSS(1+1) CSSP = CGSS(1+1) CSSP = CGS(1+1) CGSP = CG	0184	VVV
SN2 = SINS(I) CS2 = COS2(I) CS2 = COS2(I) SNSP = SINS(I+1) SNSP = SINS(I+1) SNSP = SINS(I+1) CSSP = CCSS(I+1) CSSP = CCS(I+1) CSSP = C	0185	,
C C S = COSZ(1) SNSP = SINS(1+1) CSSP = CCSS(1+1) CSSP = CSS(1+1) CSSP = CSSP = CSS(1+1) CSSP =	0186	1 1
The color of the	0187	
TF(N.EQ.1) GC TO 131		
CSSP = CCSS(1+1) CSSP = CCSS(1+1) SNSP = CCSS(1+1) SNSP = CCSS(1+1) CSSP = CCSS(1+1) DB(1,1) = CSS*T DB(1,1) = SNS*T DB(1,1+N) = SNS*T DB(2,1+N) = CSS*T DB(2,1+N) = CSS*T DB(2,1+N) = CSS*T DB(3,1+1) = CSS*T DB(3,1+N) = CSS*T DB(0188	IF (N. EQ. 1) GG TO
CSSP = CCSS(1+1) SN2P = SIN2(1+1) CS2P = COS2(1+1) CS2P = CS2*T CS2P = CS2(1+1) CS2P = CS2*T CS2P = CS2P	0189	SNSP = SINS(I+1)
SN2P = SIN2(I+1)	0100	CSSP = CCSS(1+1)
CS2P = COS2(11+1) CB(1,1) = CSS*T DB(1,1) = SNS*T DB(1,1) = SNS*T DB(2,1+N) = SNS*T DB(2,1+N) = SNS*T DB(3,1) = CS*T DB(3,1) = SNS*T DB(3,1) = CS*T DB(3,1) = SNS*T CS(3,1) = SNS*T DB(3,1) = SNS*T DB	1610	SN2P = SIN2(1+1)
131 CONTINUE	0192	
CONTINUE CSS*T CONTINUE CSS*T CB(1,114) = SNS*T CB(2,114) = SNS*T CB(2,114) = SNS*T CB(2,114) = SNS*T CB(2,114) = SNS*T CB(3,114) = SNS*T CB(3	2010	
DB(1,1+N) = SNS#T DB(1,1+N) = SNS#T DB(2,11) = SNS#T DB(2,1+N) = SNS#T DB(3,1) + N	0193	I CONTINUE - CEST
DB(1) 1 1 2 1 2 2 2 2 2 2	0195	F 40.40 - 1.14
CB(2,1) = SNS*T DB(2,1+*N) = CSS*T DB(3,1) = SNZ*T DB(3,1+*N) = SNZ*T DB(3,1+*N) = SNZ*T DB(3,1+*N) = CSZ*T F(N,EG,1) GO TO 161 CB(3*1+1,1+N) = CSZ*T CB(3*1+1,1+N) = CSZ*T CB(3*1+2,1) = CSZ*T CB(3*1+3,1) = CSZ*T CB(3*1+3,1+1) = CSZ*T CB(3*1+1,1+1,1+1) = CSZ*T CB(3*1+1,1+1,1+1) =	0196	1 + CNC 1 N
DB(2,1+N) = CSS*T DB(3,11+2*N) = SN2*T DB(3,1+N) = -SN2*T DB(3,1+N) = -SN2*T DB(3,1+2*N) = CS2*T DB(3*1+1,1+1) = CS2*T DB(3*1+2,1) = CS2*T DB(3*1+2,1) = CS2*T DB(3*1+2,1) = CS2*T DB(3*1+2,1+1) = CS2*T DB(3*1+3,1+1) = CS2*T DB(3*1+1,1+1) = CS	01.97	上*グツグ
DB(2,11+2*N) = SN2*T DB(3,11) = SN2*T DB(3,11+1) = CS2*T DB(3,11+1) = CS2*T DB(3,11+1,11+1) = CS2*T DB(3,11+1,11+1) = DB(3,11+1,11+1) = DB(3,11+1,11+1) = DB(3,11+1,11+1) = DB(3,11+1,11+1+1) = DB(3,11+1,11+1+1) = DB(3,11+2,11+1) = DB(3,11+3,11+1) = DB(3,11+3,11+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+	0198	# CSS#T
DB(3,1) = SN2*T DB(3,1+N) = -SN2*T DB(3,1+2*N) = -SN2*T DB(3*1+1,1+1) = -B(3*1+1,1+1) = B(3*1+1,1+1) = B(3*1+1,1+1) = B(3*1+1,1+1) = B(3*1+1,1+1) = B(3*1+1,1+1,1+1) = B(3*1+1,1+1,1+1) = B(3*1+2,1+1) = B(3*1+3,1+1)		DB(2,1+2*N) = SN2mT
DB(3,14x) = -5N2*T DB(3,142*N) = C52*T IF(N, EG,1) GO TO 161 L DB(3*I+1,11) = DB(3*I+1,11) = DB(3*I+1,11N) = DB(3*I+1,11N) = DB(3*I+1,11N) = DB(3*I+1,11N+1) = DB(3*I+1,11N+1) = DB(3*I+2,11,11N+1) = DB(3*I+2,11) = DB(3*I+2,1N+1) = DB(3*I+3,1N+1) = DB(3*I+3,1N	0200	= SN2*1
F(N.EG.1) GO TO 161 C	1020	L +2N2+ =
C C (0202	#700 =
DB(3*1+1,1) DB(3*1+1,1+1) DB(3*1+1,1+1) DB(3*1+1,1+2*N) DB(3*1+2,1) DB(3*1+3,1) DB(3*1+3,1) DB(3*1+3,1) DB(3*1+3,1) DB(3*1+3,1) DB(3*1+3,1) DB(3*1+3,1) DB(3*1+3,1+1) DB(3*1+3,1+1)	6030	171N.54.11 6U 1U
DB (3*1+1,1+1) DB (3*1+1,1+1) DB (3*1+1,1+1) DB (3*1+1,1+2*N) CK (3*1+2,1) DB (3*1+2,1) DB (3*1+2,1) DB (3*1+2,1) DB (3*1+2,1) DB (3*1+2,1) CK (3*1+2,1) DB (3*1+2,1) CK (3*1+2,1) DB (3*1+2,1) CK (3*1+2,1) CK (3*1+3,1+1)	0204	Į\$
08 (3*1+1,11*1*) 08 (3*1+1,1+2*N) 08 (3*1+2,1) 08 (3*1+2,1) 08 (3*1+2,1+1) 08 (3*1+2,1+N+1) 08 (3*1+3,1+1) 08 (3*1+3,1+1) 08 (3*1+3,1+1) 08 (3*1+3,1+1) 08 (3*1+3,1+1)	0205	p
DB (3*1+1,1+2*N) = CB(3*1+2,1) = DB (3*1+2,1+1) = DB (3*1+2,1+1) = DB (3*1+2,1+1) = DB (3*1+2,1+N) = DB (3*1+2,1+N) = DB (3*1+2,1+N) = DB (3*1+2,1+N) = DB (3*1+2,1+2*N) = DB (3*1+2,1+2*N) = DB (3*1+2,1+2*N) = CB (3*1+3,1+1) = DB (3*1	2070	1 (1
C 08(3*1+1,1+2*N+1) = 0.06(3*1+2,11) = 0.06(3*1+2,11) = 0.06(3*1+2,11+1) = 0.06(3*1+2,1+N+1) = 0.06(3*1+2,1+N+1) = 0.06(3*1+2,1+2,1+2,1+2,1+2,1+3,1) = 0.06(3*1+3,1) = 0.06(3*1+3,1+3,1+1) = 0.06(3*1+3,1+1) = 0.0	0208	"
08(3*1+2,1) = 08(3*1+2,1+1) = 08(3*1+2,1+N) = 08(3*1+2,1+N+1) = 08(3*1+2,1+N+1) = 08(3*1+2,1+2,1+N+1) = 08(3*1+2,1+2,1+2,1+2,1+1) = 08(3*1+3,1+3,1+1) = 08(3*1+3,1+3,1+1) = 08(3*1+3,1+3,1+1) = 08(3*1+3,1+3,1+1) = 08(3*1+3,1+3,1+1) = 08(3*1+3,1+3,1+1) = 08(3*1+3,1+3,1+1) = 08(3*1+3,1+3,1+1) = 08(3*1+3,1+3,1+1) = 08(3*1+3,1+3,1+1) = 08(3*1+3,1+3,1+1) = 08(3*1+3,1+3,1+1) = 08(3*1+3,1	0209	- (-
08(3*1+2,1) = 08(3*1+2,1+1) = 08(3*1+2,1+1) = 08(3*1+2,1+N+1) = 08(3*1+2,1+N+1) = 08(3*1+2,1+2*N) = 08(3*1+2,1+2*N+1) = 08(3*1+2,1+2*N+1) = 08(3*1+3,1+1) = 08		
DB(3*1*2,1*1) DB(3*1*2,1*1) DB(3*1*2,1*N) DB(3*1*2,1*2*N) DB(3*1*2,1*2*N+1) CE(3*1*3,1*1) CE(3*1*3,1*1) DB(3*1*3,1*1) CE(3*1*3,1*1)	0210	08(3*1+2,1)
08(3*1+2,1+N) = 08(3*1+2,1+N+1) = 08(3*1+2,1+2*N) = 08(3*1+2,1+2*N+1) = 08(3*1+2,1+2,1+2*N+1) = 08(3*1+3,1) = 08(3*1+3,1+3,1+1) = 08(3*1+3,1+1,1+1) = 08(3*1+3,1+1,1+1) = 08(3*1+3,1+1,1+1,1+1+1,1+1+1,1+1+1,1+1+1+1+1+	0211	н
D8(3*1+2,1+1+1) = D8(3*1+2,1+2*N) = D8(3*1+2,1+2*N+1) = C	0212	#
DB(3*1+2,1+2*N) = DB(3*1+2,1+2*N+1) = C	0213	H
C CB(3*1+2,1+2*N+1) = CB(3*1+3,1) = DR(3*1+3,1) = DR(3*1+3,1+1) = CR(3*1+3,1+1) = CR(3*1+1,1+1) = CR(3*1+1,1+1	0214	п
DB (3*1+3,1) = DB (3*1+3,1+1) = DB (3*1+1,1+1) = DB (3*1+	0215	DB(3*1+2,1+2*N+1) =
DR (3*1+3,1+1) DR (3*1+3,1+1) DR (3*1+3,1+1)	4160	00.04140.11
(N+[1/4] + 1/4] = 0.00 (0.00 + 1/4) = 0.00 (0.	0210	ių (
1	0218	11
1 124 74 787 77	0219	1 1

	61
1770	OB(3*I+3*I+2*N+1) = H(3*I+1)
0222	151 CONTINUE
0224	SNSP =
0226	CB(1,3*N) = SN2P*1(N) $DB(2,N) = SN5P*T(N)$
0227	a N
0228	08(2,3*N) = SN2F*T(N) $08(3,N) = SN2P*T(N)/2$
0230	2 2
0232	1 60 1
	l
0234	1, LT3
0236	IF (DABS/CB(K,L)).LT.1.0D-40) Db(K,L) = 0.0D 00
	INVERT MATRIX OB
0238	CALL INVETD.(DB, 20, LT3, DET, 1.0D-12, IRANK)
98.60	C CHECK FOR SINGULAR MATRIX IFITRANK.EC.1T3) GC TO 168
₹ 0240 0241	
0242	60 TC 130
0244	1
0246	60 10 ¢99 148 CRITINIE
	S
0248	00(1) = -8011
0249	U 11
0.251	[=1.1ΔY
0252	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
0254	1 1
0256	
0257) + SG(I,1)*SNS*T(I) + SG(
0258	
0259	6 CONTINUE
0260	C REDEFINE CUEFFICIENTS S22 AND S44
0261	T125
0263	T125 + T5225

0266	7 CONTINUE
0267	00 8 K=1,LM1
0269	1 11
0270	11 4
0272	, ,,
0273	CSSP = CCSS(K+1)
0275	1
0276	DC(3+3*K-2) = -(\$111(K) 1
	2 SG(2*LAY*K,1) + (S11(K+1)*CSSP*S21(K+1)*SNSP) 3 *SG(K+1,1) + (S12(K+1)*CSSP*S21(K+1)*SNSP)*
	SG(LAY+
0277	DC (3+3*K-1) =
	SG(2*LAY+K+1) (S11(K+1)*SNSP
	4 SNSP+S22(K+1)*CSSP)*SG(LAY*K+1,1) + 2.*S44(K+1)*SN2P
0278	DC(3+3*K) = -(S111K)-S21
	3 S22(K+1)) \$5.1(K+1) \$5.0(AY+K+1,1)/2. + 2.*544(K+1)*CS2***********************************
0279	CONTINUE
05 80	C DO 9 I=1,LT3
0281 0282	9 CONTINUE
0283	C DO I I=1,LT3
0284 0285	-
3286	C 00 15 1=1.1T3
0287 0288	SG(1+1
	C RESET STRESS = 0, IF RELATIVE STPESS < 1.05-06
0289 0290	CALL RESET(LT3,SG,1.0D-06) IF(NIT,EG.0) GG TC 125
0291 0292	CALL CCNVK(LAY,SG,SG1,KSG,&125,&900) 500 CONTINUE
	C STRAIN CCMPUTATIONS
0293	p=4
0295	11 11
0297	"
0298	P11(1) = \$11(1) * \$6(1,1) + \$12(1) *\$6(1+N,1)

0303 0304 0305 0306 0305 0305 0306 0306 0307 04 EP11(1) = P11(1) 0308 04 EP12(1) = P11(1) 0309 04 EP12(1) = P11(1) 0310 0310 0310 0310 0310 0310 0310 03	-1.1/2.1) sG(1+2*N,1)/(2.*G12(1))*(1.0D0+5125**([XM-6])*1)*(1.0D0+5125**([XM-6])*1)*(1.0D0+5125**([XM-6])*1)*(1.0D0+5125**([XM-6])*1)*(1.0D0+5125**([XM-6])*1)*(1.0D0+5125**([XM-6])*1)*(1.0D0+5125**([XM-6])*1)*(1.0D0+5125**([XM-6])*1)*(1.0D0+5125**([XM-6])*1)*(1.0D0+5125**([XM-6])*1)*(1.0D0+5125**([XM-6])*1)*(1.0D0+5125**([XM-6])*1)*(1.0D0+5125**([XM-6])*1)*(1.0D0+5125**([XM-6])*1)*(1.0D0+5125**([XM-6])*1)*(1.0D0+5125**([XM-6])*1)*(1.0D0+5125**([XM-6])*1)*(1.0D0+5125**([XM-6])*1)*(1.0D0+5125**([XM-6])*1)*(1.0D0+5125**([XM-6])*(1.0D0+5125**([XM-6])
130 C T T T T T T T T T T T T T T T T T T	= P11(1)*CSS + P22(1)*SNS - P12(1)*SN2 = P11(1)*SNS + P22(1)*SNS - P12(1)*SN2 = (P11(1)-\$P22(1))*SN2/2.DO + P12(1)*SN2 TEST 1525) 1527) 1528) 1529) 1529) 1529) 1529) 1529) 1529) 1529) 1529) 1529) 1529) 1529) 1529) 1529) 1539) = 14AY 1539) = 14AY 1538) 1538) 1538) 1538) 1538) 1538)
150 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	= P11(1)*CSS + P22(1)*SNS - P12(1)*SNZ = P11(1)*SNS + P22(1)*SNZ/2.D0 + P12(1)*SNZ = (P11(1)-P22(1))*SNZ/2.D0 + P12(1)*CSZ = (P11(1)-P22(1))*SNZ/2.D0 + P12(1)*CSZ = (P11(1)-P22(1))*SNZ/2.D0 + P12(1)*SNZ/2.Z = (P11(1)-P22(1))*SNZ/2.D0 + P12(1)*SNZ/2.Z = (P11(1)-P22(1))*SNZ/2.D0 + P12(1)*P12(1), P12(1) = (P11(1)-P22(1))*SNZ/2.D0 + P12(1), P12(1) = (P11(1)-P22(1))*SNZ/2.D0 + P12(1), P12(1), P12(1) = (P11(1)-P22(1))*P11(1), P22(1), P11(1), P22(1), P12(1) = (P11(1)-P22(1))*P11(1), P12(1), P11(1), P22(1), P22
067 1067 1067 1067 1067 1067 1067 1067 1	= (P11(I)-P22(I))*SN2/2.DO + P12(I)*CS2 = TESTS 4TSI(LAY.SG.SGS.KSG.KSG.M) 11.4 11.4 11.525) 11.525 11.529) SC12 11.529 SC12 11.530 NI 11.531
067	TESTS \$1(LAY.SG.SGS.KSC.KSGM) \$25) \$27) \$28) \$28) \$28) \$28) \$28) \$28) \$28) \$21 \$28) \$21 \$230 \$231 \$231 \$231 \$231 \$231 \$231 \$231 \$231 \$381 \$281 \$281 \$281 \$281 \$288)
087 087 087 087 087 087	TESTS SILLAY.SG.SGS.KSG.KSG.M) 525) 527) SO11 527) SO12 529 SO22 529 SO22 529 SO22 529 SO12 521 NIT 534) 537) 538) 538) 538) 538) 538) 538) 538) 538
130 1087 1087 1087	525) 527) S011 528) S022 529) S022 535) NI 536) 537) 531 538) = 1.LAY 550) 1.SG(1+1),SG(1+2*N+1), 591 [1.SG(1+1),Pl1(1),Pl2(1),Pl
730 067 067 07 07 07	S011 S022 S012 NII III II S0(1,1), S6(1+N,1), S6(1+2*N,1), EP11(1), EP22(1), EP12(1), P11(1) FP11(1), EP22(1), EP12(1), P11(1) FP11(1), EP22(1), EP12(1), P11(1) FP11(1), FP12(1), FP12(1) FP11(1), FP12(1) FP11(1)
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	S011 S022 S012 NII LAY 1, SG (I, 1), SG (I+2*N, 1), EP11 (I), EP22 (I), EP12 (I), P11 (I), P22 (I),
091	S012 NII LAY 1,5G(I,1),5G(I+N,1),5G(I+2*N,1), EP11(I),EP22(I),EP12(I),P11(I),P22(I),
092	LAY 1.5G(1,1),5G(1+N,1),5G(1+2*N,1), EP11(1),EP22(1),EP12(1),P11(1),P22(1), 790,790,760
1 150	LAY 1.5G(I,1),5G(I+N,1),5G(I+2*N,1), EP11(I),EP22(I),EP12(I),P11(I),P22(I), 790,790,760
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	LAY 1.5G(1,1),5G(1+N,1),5G(1+2*N,1), EP11(1),EP22(1),EP12(1),P11(1),P22(1), 790,790,760
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1,56(1,1),56(1+N,1),56(1+2*N,1), EP11(1),EP22(1),EP12(1),P11(1),P22(1),
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	092,190,760
092	090,790,760
09Ł 09Ł	
091	LICATIVE FACTOR FOR INITIAL ESTIMATE OF SOCEEDING
٥	
	144
762	OF PREVIOUS SCLUTIONS UE
	00.765 1=1.LT3
0329 IF (\$68()	IF(856.8(1).FG.0.000) GC TC 763
	= Se(1,1)/SeS(1)
763	N!
0334 765 CONTINUE	= 1,000 UF
J	770
766	UE 1-1-173
. 1	7.
0339 IF(SG(1)	IF(SG(1,1), EG. 0.000) G/IT 767
= S000	= VKSG*(VKSC-2)/(VKSG-1)**2
0343 60 10 768	• 000 + 000

SELID = 768 CONTINUE C STORE SI C STORE SI SOS(1+ P)	FOR TRAN IV	G LEVEL 21
The country of the	0346	768
772_GRITLURY \$125.11 \$1.14 \\ \$25.11 \$2.14 \\ \$25.11 \$2.14		STOPE SIBESS AND STRAIN
STATE	0347	770 CONTINUE
SSGILLERN SGILLERN	0348 0349	51 = 1, LAY 1 = SG(1)
FS1111 = P11(1)	0350	+1)9S = (N
FS22111 = P2241)	0352	P11(I)
FESTION FORTING FORTING	0353	
FESTER FESTER FESTER	0354	#
715 CONTINUE (KSG = KSG + 11 SOL = SCL + SM12 SOL = SM12	0356	9 1
C INCREMENT APPLIED LOADING SSST = SSST + SPR2 SSST = SSST	0358	775 CONTINUE
SOL		INCREMENT APPLIED L
\$001 = \$011 + \$011 + \$021 + \$022	0359	KSG = KSG + 1
SOUCHINGE	0360	111 +
79 CONTINUE 900 CONTINUE 901 CONTINUE 900	0362	= S012 +
790 CONTINUE 900 CONTINUE 9102 CORAT (1215.15) 1022 CORAT (1215.15) 1024 CORAT (1215.15) 1025 CORAT (1215.15) 1025 CORAT (1215.15) 1026 CORAT (1215.15) 1026 CORAT (1215.15) 1027 CORAT (1215.15) 1028 CORAT (1215.15) 1029 CORAT (1215.15) 1020 CORAT (1215	0363	GO TO 110
999 CONTINUE 999 CONTINUE 1002 FORMAT (1515.12) 1002 FORMAT (1515.12) 1002 FORMAT (1515.12) 1004 FORMAT (1515.12) 1005 FORMAT (1515.12) 1005 FORMAT (1515.12) 1006 FORMAT (17.1 MATRIX IS SINGULAR OF RAWK = '.12, 1420 FORMAT (17.1 NAMPRIX IS SINGULAR OF RAWK = '.12, 1420 FORMAT (17.1 NAMPRIX IS SINGULAR OF RAWK = '.12, 1420 FORMAT (17.1 NAMPRIX IS SINGULAR OF RAWK = '.12, 1510 FORMAT (17.1 NAMPRIX IS SINGULAR OF RAWK = '.12, 1510 FORMAT (17.1 NAMPRIX IS SINGULAR OF RAWK = '.12, 1511 FORMAT (17.1 NAMPRIX IS SINGULAR OF RAWK = '.12, 1512 FORMAT (17.1 NAMPRIX IS SINGULAR OF RAWK = '.12, 1513 FORMAT (17.1 NAMPRIX IS SINGULAR OF RAWK = '.12, 1514 FORMAT (17.1 NAMPRIX IS SINGULAR OF RAWK = '.12, 1515 FORMAT (17.1 NAMPRIX IS SINGULAR OF '.12, 1515 FORMAT (17.1 NAMPRIX IS SINGULAR OF '.12, 1516 FORMAT (17.1 NAMPRIX IS SINGULAR OF '.12, 1517 FORMAT (17.1 LAYPER) AN 'S FORMAT (17.1 SINGULAR OF '.12, 1518 FORMAT (17.1 LAYPER) AN 'S FORMAT (17.1 SINGULAR OF '.12, 1519 FORMAT (17.1 LAYPER) AN 'S FORMAT (17.1 SINGULAR OF '.12, 1519 FORMAT (17.1 LAYPER) AN 'S FORMAT (17.1 SINGULAR OF '.12, 1519 FORMAT (17.1 LAYPER) AN 'S FORMAT (17.1 SINGULAR OF '.12, 1519 FORMAT	0364	790 CONTIN
999 CONTINUE WRITE(6.1599) C C C C C C C C C C C C C C C C C C C	0365	005
### 1902 FORMAT (5015-5) 1002 FORMAT (5015-5) 1012 FORMAT (15,5115) 1022 FORMAT (15,5115-5) 1022 FORMAT (15,5115-5) 1022 FORMAT (15,5115-5) 1025 FORMAT (15,5115-5) 1026 FORMAT (15,5115-5) 1027 FORMAT (15,5115-5) 1028 FORMAT (15,5115-5) 1029 FORMAT (15,5115-5) 1030 FORMAT (15,5115-5) 1031 FORMAT (15,5115-5) 1032 FORMAT (15,5115-5) 1033 FORMAT (15,5115-5) 1033 FORMAT (15,5115-5) 1034 FORMAT (15,5115-5) 1035 FORMAT (15,5115-5)	7760	000
1002 FORMAT (1515) 1010 EGRATA (1515) 1011 EGRATA (1515) 1022 FORMAT (1515) 1022 FORMAT (1515) 1024 FORMAT (1515) 1025 FORMAT (1515) 1025 FORMAT (1515) 1025 FORMAT (1515) 1025 FORMAT (1115) 1025 FO	0367	ں ں
1010 FURNAT (515) 1024 FURNAT (515) 1024 FURNAT (1515.515.51) 1024 FURNAT (1515.5015.51) 1024 FURNAT (1515.5015.51) 1024 FURNAT (1515.5015.51) 1025 FURNAT (1522.515.5015.51) 1025	0348	1000 FORMAT (SD15
1022 F2RVAI (015.5.15) 1024 F3015.5) 1024 F0RMAI (15:0015.5) 1024 F0RMAI (15:0015.5) 1224 F0RMAI (17) MATRIX IS SINGULAR OF RANK = '.12, 1425 F0RMAI (1016.5.5) 1425 F0RMAI (1016.5.5) 150 F0RMAI (1017.11x, 12x, 121.11x, 12x, 12x, 12x, 12x, 12x, 12x, 12x,	0369	FURMAT (515)
1C24 FORMAT (15,5015.5) 1420 FORMAT (1/' MATRIX IS SINGULAR DE RANK = ',12, 1420 FORMAT (1/' MATRIX IS SINGULAR DE RANK = ',12, 1420 FORMAT (1/' NOTICE 1,000 1,00	0370	FORMAT
1420 FGRMAT (//: MATRIX IS SINGULAR DF RANK = '.12, 1425 FORMAT (615.5) 15	0371	1C24 FURMAT
1425 FORMAT (6D15.5) 5 C FORMAT (11 ILLANINATE 1.12) 1505 FORMAT (11 ILLANINATE 1.12) 1505 FORMAT (111.1LANINATE 1.12) 1510 FORMAT (111.1LANINATE 1.12) 1510 FORMAT (111.1LANINATE 1.12) 1511 FORMAT (111.1LANINATE 1.12) 1512 FORMAT (111.1LANINATE 1.12) 1513 FORMAT (111.1LANINATE 1.12) 1514 FORMAT (111.1LANINATE 1.12) 1515 FORMAT (111.1LANINATE 1.12) 1515 FORMAT (111.1LANINATE 1.12) 1515 FORMAT (111.1LANINATE 1.12) 1516 FORMAT (111.1LANINATE 1.12) 1517 FORMAT (111.1LANINATE 1.12) 1518 FORMATE (111.1LANINATE 1.12) 1518 FORMATE (111.1LANINATE 1.12) 1518 FORMA	0372	1420 FORMAT (// MATRIX IS SINGULAR OF RANK = "+I
150C FORMAT (' INELASTIC LAMINATE ANALYSIS'///) 150S FORMAT (IHI, 'LAMINATE ', 2) 151D FORMAT (IHI, 'LAMINATE ', 2) 151D FORMAT (/// NUMBER OF LAYERS = ', 12) 151D FORMAT (/// NUMBER OF C. 1, 15, 11, 15, 11, 15, 11, 15, 11, 15, 11, 15, 11, 15, 11, 15, 11, 15, 11, 15,	0373	FORMAT (6015.5)
1505 FORMAT (1H1,*LAMINATE ',12) 1510 FORMAT (1// NUMBEP OF LATERS = ',12) 1513 FORMAT (1// LAYER THEFL',7x,T',15x,*F11,11X,*E22',11X, 1515 FORMAT (1/,12x,12).25,4x,T(2x,512.5)) 1515 FORMAT (1/,12x,12).25,4x,T(2x,512.5)) 1515 FORMAT (1/,12x,12).25,4x,T(2x,512.5)) 1516 FORMAT (1/,12x,12).25,12,25) 1520 FORMAT (1/,12x,12).29,13,29,13,29,13,13,12,29,13,13,12,29,13,13,12,29,13,29,13,29,13,13,12,29,13,29,13,29,13,29,13,29,13,29,13,29,13,29,13,29,13,29,13,29,13,29,13,29,13,29,13,29,13,29,13,29,13,29,13,29,29,13,29,29,29,29,29,29,29,29,29,29,29,29,29,	0374	FORMAT (* INELASTIC LAMINATE
1510 FORMAT (///' NUMBEP OF LAYERS = ', 12) 1515 FORMAT (LAYER THETA', X''11', 15X,'F11', 11X,'F22', 11X, 1515 FORMAT (L4,5X,13,2X,E12.5,4X,7(2X,D12.5)) 1515 FORMAT (L7 EXPONENT M = ', 012.5) 1516 FORMAT (L7 EXPONENT M = ', 012.5) 1520 FORMAT (L EXFENNAL APPLIED LOADING') 1521 FORMAT (F X = ', 012.5) 1522 FORMAT (F X = ', 013.5) 1523 FORMAT (F X = ', 013.5) 1524 FORMAT (F X = ', 013.5) 1525 FORMAT (F X = ', 013.5) 1526 FORMAT (F X = ', 013.5) 1527 FORMAT (F X = ', 013.5) 1528 FORMAT (ZZX, (LAMINATE AXES), 29X,' (LAYER AXES)') 1537 FORMAT (ZZX, (LAMINATE AXES), 29X,' (LAYER AXES)') 1538 FORMAT (ZZX, (LAMINATE AXES), 29X,' (LAYER AXES)')	0375	FORMAT
1515 FORMAT (14.5%,13.2%,12.5,4%,7(2x,10.2%)) 1515 FORMAT (17.0 EVADNETEEFS) 1515 FORMAT (17.0 EXPONENT M = '.012.5) 1515 FORMAT (17.0 EXPONENT M = '.012.5) 1516 FORMAT (17.0 EXPONENT M = '.012.5) 1526 FORMAT (17.0 EXPONENT M = '.012.5) 1527 FORMAT (17.0 EXPONENT M = '.012.5) 1528 FORMAT (17.0 EX M = '.013.5) 1528 FORMAT (17.0 EX M = '.013.5) 1538 FORMAT (17.0 EX M = '.0 EX M =	0376 0377	FORMAT FORMAT
1515 FORMAT (// EXPONENT M = '.D12.5) 1518 FORMAT (/ EXPONENT M = '.D12.5) 1518 FORMAT (/ LCADING INCREMENTATION) 1525 FORMAT (' EXTERNAL APPLIED LCADING') 1528 FORMAT (' E X = '.D13.5) 1528 FORMAT (' E X = '.D13.5) 1528 FORMAT (' E X = '.D13.5) 1538 FORMAT (' E X = '.D13.5)	0378	'V12', IX, 'V21', IX, 'G12', 10X, 'G12', 10X, 'TAU Y'/) 1515 - FORMAT (14.5X, 13.2X, E12.5, 4X, 7 (2X, D12.5))
1517 FORMAT (' EXPONENT M = ',012.5) 1518 FORMAT (' EXPONENT N = ',012.5) 1520 FORMAT (' LCADING INTERENTATION') 1525 FORMAT (' F X = ',013.5) 1528 FORMAT (' F X = ',013.5) 1528 FORMAT (' F X = ',013.5) 1528 FORMAT (' F X = ',013.5) 1536 FORMAT (' F X = ',013.5) 1536 FORMAT (' F X = ',013.5) 1537 FORMAT (' E X = ',013.5) 1538	0379	1515 FORMAT (1/1 EQUATION PARAMETERS)
1518 FORMAT (' LCADING INCREMENTATION') 1520 FORMAT ('/' LCADING INCREMENTATION') 1525 FORMAT (' F X = ',Cl3.5) 1528 FORMAT (' F Y = ',Cl3.5) 1528 FORMAT (' F Y = ',Cl3.5) 1538 FORMAT (' F Y = ',Cl3.5) 1538 FORMAT (' E X = ',Cl3.5) 1538 F	0380	1917 FORMAI (/' EXPONENT M = 1,012.5)
1525 FORMAT (' EXTERNAL APPLIED LOADING') 1528 FORMAT (' F X = ',Cl3.5) 1528 FORMAT (' F Y = ',Cl3.5) 1538 FORMAT (' F Y = ',Cl3.5) 1536 FORMAT (' E X = ',Cl3.5) 1536 FORMAT (' E X = ',Cl3.5) 1537 FORMAT (' E X = ',Cl3.5) 1538 FORMAT (' E X = ',C	0381	C T EXPONE
1527 FORMAT ('F X = '.D12.5) 1528 FORMAT ('F Y = '.D13.5) 1525 FORMAT ('F Y = '.D13.5) 1536 FORMAT ('ZZX,'STPESS,'38X,'STPAIN',3TX,'STPAIN') 1536 FORMAT ('ZZX,'STPESS,'38X,'STPAIN',3TX,'STPAIN') 1537 FORMAT ('ZZX,'CLAMINATE 'XFS)',29X,'(LAYER AXES)') 1538 FORMAT ('ZZX,'STPESS,'38X,'STPAIN',5TP,'SGM XY',11X,'PPS X', 1538 FORMAT ('ZZX,'STPESS,'STPAIN',5TP,'STPAIN',5TP,'SGM XY',11X,'PPS X',8X,'	0382	- -
1528 FORMAT (' F Y = ' 0.13.5) 1525 FORMAT (' F XY = ' 0.13.5) 1536 FORMAT (' E XX, ' STPESS, ' 38X, ' STPAIN', 37X, ' STPAIN') 1536 FORMAT (' C XX, ' (LAMINATE ' XFS)', ', 29X, ' (LAYER AXES)') 1537 FORMAT (' Z X, ' (LAMINATE ' XFS)', Z Z X Y, ' (X X Y X X X X X X X X X X X X X X X X	0384	
1525 FURMAT (/22X, STPESS, 38X, STPAIN) 37X, STPAIN) 1537 FORMAT (/22X, STPESS, 38X, STPAIN) 1537 FORMAT (/22X, STPESS, 38X, STPAIN) 1538 FORMAT (/22X, STPESS, STPX, STPAIN) 1538 FORMAT (/22X, STPAIN) 1538 FORMAT (/22X, STPAIN) 11X, STPAIN 11X, S	0385	-
1530 FURMAI (7224) SIFESS 15047 SIFER SIFER SIFER A 1627 (1247ER A 1627) 1537 FORMAI (627, 1(1447ER A 1627)) 1538 FORMAI (17 LAYER 44, 15C X 1, 147, 15C X 1, 187, 15C X 1	0386	(* F. XY = *,154.5)
1538 FORMAT (/* LAYER*,4X,*15C* X*,8X,*15G* Y*,8X,*15M XY*,11X,**FPS 1 8X,*EPS Y*,8X,*EPS XY*,11X,*EPS X*,5X,*EPS Y*,8X,** EPS XY*/)	0388	(62X, (LAMINATE 1XFS), 29X, (LAYER AXES))
	6880	(/ LAYER', 4X, 1SC X1, 8X, 1SG Y1, 8X, 1SG XY, 11X, 1FPS 4X, 1EPS Y1, 8X, 1EPS Y1,

,

0351	FCRMAT
0392 0393	1563 FORMAL (/ 34X, F13E' , 34X, F1ELIX.) 1565 FORMAL (/ LAYE? , 3X, 2(/X, F: , 11X, MU, 12X, 'C', 12X, 'V', 12X)/)
0394	1735 EORMAT
0395	FORMAT ('')
0396	FORMAT (
0397	1956 FORMAT (160%)//)
0399	FORMAT (1+1)
0400	SICP
0401	END
*	

C C C C C C C C C C	C RECUCE ANGLES TO VA C C COMPUTING SIN AND C C COMPUTING SIN AND C C COMPOUTING SIN AND C C COMPOUTING SIN AND C C COMPOUTING SIN	
C RECUCE ANGLES TO VA C COMPUTING SIN AND C C COMPUTING SIN AND C C COMPOSITON SINSING COMMON SINSING TANG = 1ALGY COMMON SINSING TANG = 1ANG ANG = 1ANG ANG = 1ANG ANG = 1ANG ANG = 1ANG TANG = 1ANG TO	C RECUCE ANGLES TO VA C COMPUTING SIN AND C C DIMENSITY C DAMON SIN AND SINSING C DAMON SINSING C DAMO SI	
IMPLICIT REAL* DIMENSICN SINSI COMMON ANGRED/SINZ, DO 72 = 1.1.LY IANG = 1.2.LY IANG = 1.2.LY	IMPLICIT REAL* DIMENSICN SINSI COMMON ANGRED/SINZ, DO 72 = 1.1.LY IANG	
COMMON / ANGRED/SINZ, 14NG = 14.LAY 14NG = 14.LAY 14NG = 14.CAY 14NG = 14NG(1) ANG = 14NG + 14NG(1) ANG = 14NG + 14N	COMMON / ANGRED/SINZ, 14 NGZ = 14.1AY 14 NGZ = 14 NG(1) ANGZ = 14 NG(1) ANGZ = 14 NG(1) ANGZ = 14 NG(1) ANGZ = 18 NG(1) ANGZ = 18 NG(1) 14 VAL = 14 NG(1) 15 VAL = 14 NG(1) 16 VAL = 6.0 17 VAL = 16 S(15 V 2957) 17 VAL = 16 S(15 V 2957) 18 VAL = 16 S(10 V 1) 18 VAL = 18 NG(1) V 1 V 1 18 VAL = 18 NG(1) V	
ANG =	ANG =	
ANG2 = RAD = FAD =	ANG2 = RAD = RAD = 1 AVAL = 1 AVAL = 1 AVAL = 1 E (!AVAL	
AVAL = I AVAL = I AVAL = I AVAL = I F (I AVAL I AVAL I AVAL I F (I AVAL I AVAL I AVAL I F (I AVAL I	AVAL = 1 AVAL = 1 AVAL = 1 AVAL = 1 E (1 AVAL 1 AVAL 1 E (1 AVAL 1 AVAL 1 AVAL 1 E (1 AVAL 1 AVA	
TE (1AVAL. 1 1 1 1 1 1 1 1 1	TE (1AVAL. 1 1 1 1 1 1 1 1 1	
1 1 1 1 1 1 1 1 1 1		
SINZ(1) = SINZ(1) = G	SINZ(1) = (0.52(1) = (0.52(1) = (0.72(1) = 1.56N = 1.56N = 1.56N = 1.56N = 1.56N = (0.52(1) = (0.52	
60 TC 72 62 CONTINUE 1 SGN = 5 SGN = 5 SGN = 5 SGN = 1 F (1 AVAL- 5 STAZ (1) = 6 CONTINUE 1 RDA	60 TC 72 62 CONTINUE 1 SGN =	
1564 = 56A	156 = 56 = 56 = 56 = 56 = 56 = 56 = 56 = 56 = 56 = 56	
SGN = SF (I V V L \) ST (I V V V L \) ST (I V V V L \) ST (I V V V V V V V V V V V V V V V V V V	150	
SIN2(1) = 60 TO 68	SIN2(1) = COSZ(1) = COSZ(1) = CONTINUE IF (IAVAL, IPDA,	
COSZ(I) =	COSZ(1) = 60 TO 60	
64 CUNTINUE 1 F [LAVAL- 1 R DA S INZ [1] = C D S INZ [1]	64 CUNTINUE 1F [LAVA] 1F [LAVA] 1 PD4 RD4 RD4 RD4 RD7 COS (1) COS (1) COS (1) COS (1) COS (1) COS (1) RETURN END	
PDA	1804 RDA RDA RDA SINA(I) = G0S2(I) = G0 TO 68 G0 TO 68 SINA(I) = SINA(I) = SINA(I) = SINA(I) = SINA(I) = COSZ(I) = COSZ(I) = COSZ(I) = RETURN	
RDA RDA SINZ(I) = C0 SZ(I) = 60 TO 68 SINZ(I) = C0 SZ(I) = C0 SZ(I) = C0 SZ(I) = RETURN END	RDA RDA SINZ(I) = C0SZ(I) = 66 CDVINUE SINZ(I) = C0SZ(I) = C0SZ(I) = C0SZ(I) = RETURN FRETURN	
60 TO 68 60 TO 68 60 TO 68 81	60 10 68 60 10 68 60 10 68 81 10 10 68 CONTINUE 68 CONTINUE 8 10 8 10 8 72 CONTINUE RETURN END	
66 CONTINUE SINZ(1) = DSIN(RADZ) COSZ(1) = DCOS(RADZ) COSZ(1) = DCOS(RADZ) SINS(1) = DCOS(PAD)*** CCSS(1) = DCOS(PAD)*** RETURN END	66 CONTINUE \$1NZ(1) = DSIN(RAD2) COSZ(1) = DCOS(RAD2) 68 CONTINUE \$1NS(1) = DSIN(RAD)*** CCSS(1) = DCOS(PAD)*** 72 CONTINUE RETURN END	
SINZ(1) = DSIN(RAD2) COSZ(1) = DCGS(RAD2) 68 CONTINUE SINS(1) = DSIN(RAD1)** 72 CONTINUE RETURN END	SINZ(1) = DSIN(RADZ) COSZ(1) = DCGS(RADZ) ER CONTINUE SINS(1) = DSIN(RADZ)** CCSS(1) = DCGS(PADZ)** 72 CONTINUE RETURN END	
68 CONTINUE SINS(1) = DSIN(RAD)** CCSS(1) = DCOS(PAD)** TZ CONTINUE RETURN END	68 CONTINUE SINS(1) = DSIN(RAD)** CCSS(1) = DCGS(PAD)** 72 CONTINUE RETURN END	
SINS(I) = DSIN(RAD)** CCSS(I) = DCOS(PAD)** TZ CONTINUE RETURN END	SINS(I) = DSIN(RAD)** CCSS(I) = DCGS(PAD)** 72 CONTINUE RETURN END	
72 CONTINUE RETURN END	72 CONTINUE RETURN END	

1000	SUBROLTINE CONVR (LAY, 56, SG1, KSC, *, *)
))
0002	IMPLICIT FEAL*8 (A-F-2) DIMENSION SG120-11-SG1(20-1)-DIFF20)
0004	COMMON / CCFARM/FPS, UPED
0005	1 E 10 T
9000	LAY
7000	LT3 = LAY*3
	C CCNVERGENCE CHECK
9000	DO 375 J3=1,LT3 SUB = CABS(SG1(3,1))-DABS(SG1(13,1))
0010	IF(SGI(J3,1).EQ.0.0E0) 60 TO 330
0012	
0013	330 CONTINUE DIF(13) = SIB
0015	
0016	IF(DIF(J3).6T.EPS) GC TO 340 GO TO 375
	C ITERATION CHECK
0018	340 CONTINUE
00 20	
0021	7
0022 0023	10N = 4 60 TO 375
	C DIVERGENCE CHECK
0024	7
0026	
0027	3/0 UNI NOE
0029	375 CONTINUE
0600	GO TO (500,400,382,386),ICCN
	C NCN-CCNVERGENCE DUMP
0031	382 CONTINUE
0033	MRITE(6,1722) EPS
0035	386 CONTINUE
0036	ARITE(6,1730)
0037 0038	WRITE(6,1722) UPBD 395 CONTINUE
0039	NITP = NIT - 1
0041	. [
0043	WRITE(6,1550) 1,56(1,1),56(1+N,1),56(1+2*N,1),561(1,1),561(1+N,1),
0044	39.7 CONTINUE
0045	FETUKN 2

1500 CF 113.4		
1550 TOTAL 1551 TOTAL 1552 TOTAL 1553	0047	400_RETURN 1. 500_PETURN
17.22 F08.917 (*) FEMATIVE FRANCE (*) (*) (*) (*) (*) (*) (*) (*) (*) (*)		1550 FORMAT
1742 FERMAT 1742 FERMATOR 173 173 173 174		!! SCLUTION FOR STRESS DOES NOT CONVERGE:!!
1742 E18421 (* 1, 1474, 4718, 1716, * 1, 1374, 1716, * 1474, *		(* PELATIVE ERROR .GT.", DIS.5)
C FND 18E-XX1.11 FEL X.11.11 F		[/18X,*([TEKATION ', 13,*) ', 23X,*([TEMATION ', 13,*) ')
		1
		CMD
	!	
	,	

Octobe	.\$6\$.(20)
C TEST 1: SIJENESS TEST 1 00 071 1	
C TEST 1: STIFFNESS TEST S5C CONTINUE D10.675.1 = 1.1AY IF(KSG,FG,1) G0 TG 560 IF(S011,EC,0,000) GC TG 560 IF(S011,EC,0,000) GC TG 560 IF(RAILC,11,STIFF) G0 TO 677 C TEST 2: IEST EUR BULND CN SGM X S6O CONTINUE C TEST 2: IEST EUR BULND CN SGM X S6O CONTINUE C ASS CONTINUE C ASS CONTINUE C C C C C C C C C C C C C C C C C C C	
55C CONTINUE 10. 675.1 = 1,14Y 10. 675.1 = 1,14Y 11. (15011.Ec.0.000) GC TG 560 11. (15011.Ec.0.000) GC TG 560 12. 16. 1	
F(KSG.FG.1) GO TG 560 F(KSG.FG.1) GO TG 560 F(SO11.EC.0.000) GC TG 560 F(SO11.EC.0.000) GC TG 560 F(RATIO = DABS(SM11/(FP11(1)) - EPS11(1)) F(RATIO = LAST F) GO TG 670 F(C TEST 2: TEST F) GO TG 670 F(C CONTINUE	
RATIO = DABSISMIL(FPII(I)) = FRSII(I)) FRATICITY	
C TEST 2: TEST EUR BULND CN SGM X 560 CONTINUE C 675 CONTINUE C 675 CONTINUE C 677 LFAIL = 1 KSG = KSGM GO TO 700 679 LFAIL = 2 KSG = KSGM GO TO 700 C 700 CONTINUE C 700 CONTINUE C 700 CONTINUE C 700 MRITE(6,1450) C 701 MRITE(6,1450) C 702 MRITE(6,1450) C 703 MRITE(6,1450) C 704 MRITE(6,1450) C 705 MRITE(6,1450) C 705 MRITE(6,1450) C 706 FORMAT (1/' LAWINATE HAS FAILED: 1452 FORMAT (1/' AT FAILURE') 1454 FORMAT (1/' AT FAILURE') 1455 FORMAT (1/' AT FAILURE') 1455 FORMAT (1/' AT FAILURE') 1456 FORMAT (1/' AT FAILURE') 1457 FORMAT (1/') 1458 FORMAT (1/') 1458 FORMAT (1/') 1458 FORMAT (1/') 1459 FORMAT (1/') 1456 FORMAT (1/') 1457 FORMAT (1/') 1458 FORMAT (1/') 1458 FORMAT (1/') 1458 FORMAT (1/') 1459 FORMAT (1/') 1459 FORMAT (1/') 1450 FORMAT (1/') 1550 FORMAT (1/'') 1550 FORMAT (1/'') 1550 FORMAT (1/''') 1550 FORMAT (1/'''') 1550 FORMAT (1/'''''''	
560 CONTINUE C	
C 675 CONTINUE C WRITE(6,1955) RETURN 677 LFAIL = 1 KSG = KSGM GO TO 700 675 LFAIL = 2 KSG = KSGM GO TO 700 C C C TO 700 C TO 700	
C 675 CONTINUE C WRITE(6,1955) RETURN 677 LFAIL = 1 KSG = KSGM GO TO 700 675 LFAIL = 2 KSG = KSGM GO TO 700 C C CONTINUE 60 TO 700 C TO CONTINUE 60 TO 703), LFAIL 701 WRITE(6,1452) C TO 725 TO3 WRITE(6,1452) C TO3 WRITE(6,1452) C TO4 WRITE(6,1452) C TO5 WRITE	
C. WRITE(6,1955) RETURN 677 LFAIL = 1 677 LFAIL = 2 KSG = KSGM GO TO 700 675 LFAIL = 2 KSG = KSGM GO TO 700 C	
WRITE(6,1955) RETURN 677 [FAIL = 1 KSG = KSGM GO TO 700 675 [FAIL = 2 KSG = KSGM GO TO 700 C 700 CONTINUE 60 TO 703), LFAIL 701 WRITE(6,1452) 60 TO 725 703 WRITE(6,1452) 60 TO 725 725 WRITE(6,1452) C 1450 FORMAT (//' LAMINATE HAS FAILED; 1452 FORMAT (//' AI FAILURE') 1495 FORMAT (//' AI FAILURE') 1495 FORMAT (//' AI FAILURE') 1995 FORMAT (//')	
677 [FAIL = 1 KSG = KSGM GD TO 700 675 [FAIL = 2 KSG = KSGM GO TO 700 C C 700 CONTINUE 60 TO 703), [FAIL 701 WRITE(6,1452) GO TO 725 452) CO TO 725 452) CO TO 725 452) CO TO 725 FAILED: 1450 FORMAT (1/' LAWINATE HAS FAILED: 1452 FORMAT (1/' AT FAILURE') 1995 FORMAT (1/C) C C C C C C C C C C C C C	
GO TO 700 675 LFAIL = 2 KSG = KSGM GO TO 700 C TOO CONTINUE GO TO 703), LFAIL 701 WRITE(6,1450) GO TO 725 703 WRITE(6,1452) GO TO 725 725 WRITE(6,1495) C C C C C C C C C C C C C	
KSG = KSGM KSG = KSGM GO TO 700 C TO CONTINUE GO TO (TO, 703), LFAIL 701 WRITE(6,1450) GO TO 725 TO3 WRITE(6,1452) CO TO 725 TO3 WRITE(6,1452) CO TO 725 TO5 WRITE(6,1455) CO TO 725 TO5 WRITE(6,1452) TO5 WRITE(6,1452) CO TO 725 TO5 WRITE(6,1452) CO TO 725 TO5 WRITE(6,1452) TO5 WRITE	
KSG = KSGM GO TO 700 C 700 CONTINUE GO TO (721,1450) GO TO 725 703 WRITE(6,1452) GO TO 725 725 WRITE(6,1495) C 1450 FORMAT (//' LAWINATE HAS FAILED: 1452 FORMAT (//' LAWINATE HAS FAILED: 1452 FORMAT (//' AT FAILURE') 1995 FORMAT (//' AT FAILURE') END	
C C CONTINUE 60 TO (701,703), LFAIL, 60 TO (701,703), LFAIL, 701 WRITE(6,1450) 60 TO 725 703 WRITE(6,1452) 60 TO 725 WRITE(6,1452) 60 TO 725 WRITE(6,1495) 60 TO 725 WRITE(6,1	
700 CONTINUE 60 TO (701,703), LFAIL 701 MRITE(6,1450) 60 TO 7254 703 WRITE(6,1452) 60 TO 7254 725 WRITE(6,1495) 61 TO 725 FAILED: 1450 FORMAT (//' LAWINATE HAS FAILED: 1452 FORMAT (//' AT FAILURE') 1995 FORMAT (1+0) 65 FORMAT (1+0) 66 FORMAT (1+0) 66 FORMAT (1+0) 67 FORMAT (1+0) 68 FORMAT (1+0)	
GO TO (701,703), LTAIL 701 WRITE(6,1450) GO TO 725 703 WRITE(6,1495) GO TO 725 1450 FORMAT (//' LAWINATE HAS FAILED; 1452 FORMAT (//' AT FAILURE') 1995 FORMAT (11-0) C KETURN END	
CO TO 725 703 MRITE(6,1452) GO TO 725 725 WRITE(6,1495) C 1450 FORMAT (//' LAWINATE HAS FAILED; 1495 FORMAT (//' AT FAILURE') 1995 FORMAT (//' AT FAILURE') END END	TOTAL
703 WRITE(6,1452) 60 TO 725 725 WRITE(6,1495) C	
C C C C C C C C C C C C C C C C C C C	
1450 FORMAT (//' LAWINATE HAS FAILED: 1452 FORMAT (//' LAMINATE HAS FAILED: 1495 FORMAT (//' AT FAILURE') 1995 FORMAT (1-C) C KETURN ENC	
1495 FORMAT (1/1) AT FAILURE') 1995 FORMAT (1/1) C	ESS TEST FATLURE") EXCEDS MAXIMIM")
C KETURN ENC	
).	The second secon

	SUBSTITUTION IN INCITATION TO THE FULL OF STATES AND SMITT
)
0002	IMPLICIT REAL*8(A-H,C-Z)
0004	2
0005	2 F(5+20),6(3,20),H(3,20),TY(20),SY(20) CCMMON /RAFNWI/S11.S12.S21.F22
0006 0007	N = LAY T12S = (SG(I+2*N•1)/TY(1))**2
9000	= SG(1+2*N,1)/TY
0010	= SG(1+N+1)/TY(1)
0012	11 1
0014	11
0016	= RAT/SY(1)
0017	$C121 = SG(1+2*N_*1) \times SG(1+N_*1) / TY(1) * *2$ $T<2>5 = \{CG(1+N_*1) / CY(11) \times *2$
9100	T125 + T5225
0020	CIVSUS = SINS
0021	н
0023	CS2
0024 0025	C F(1,1) = S11(1)*CSS + S21(1)*SNS F(2,1) = S12(1)*CSS + SNS/E22(1) + SNS/E22(1)*S12S**((XN-1.)/2.)
	7 '
0026	- 2
0027	G(1,1) = S11(1)*SNS +
0.00	+ (SS * + (XM-1-)+C)
,	+ SN2*(XM-1.)/(-1-XX)+
0030 0031	H(1,1) = (S11(1)-S21(1))*SN2/2, H(2,1) = S12(1)*SN2/2, - SN2/(2,*E22(1)) - S125**((XN-1,)/2,)*SN2 1 /(2,*E22(1)) - (XN-1,)*S125**((XN-3,)/2,)*SN2/(2,*E22(1))
	*T\$22\$ *C\$2/(2.*(
0032	H(3,1)= CSZ/(2**G12(1))+ S12S** (XM-1*)/2*, *CSZ/(2,*G12(1)) 1 + (XM-1*)*S12S** ((XM-3*)/2*, *CZ/(2,*G12(1)) 2 - (XN-1*)*S12S** ((XM-3*)/2*, *CM2/(2**E2(1))
0033	C RETURN
0034	END

	1000	SUBROUTINE PESETILI3, SG, RVAL)
SOW = 0.048156(1,1) 11 A. MARINE (1,1) 12 A. MARINE (1,1) 13 A. MARINE (1,1) 14 A. MARINE (1,1) 15 A. MARINE (1,1) 16 A. M.		IMPLICIT PEAL*8 (A-F.D-Z)
Super Data (Scilli) Da		
11 FURLIANE SCH(x,1) SCH(x,		
10 319 KT LV LV LV CGWL 11 CATILITRALI SCIK.11 = 0.00 00 12 CONTINUE EXTURN EXTURN		X = DABS(SG(K,1))
119. (1041-17.RWL) SG(K.11) = 0.00 00 END END END END END END END E		
ESTIAN STATE OF THE STATE OF T		

ing the second s

IMPL	1000	SUBRCUTINE INPUTATELLIFE22,V12,V21,G12,SY,TY,I)
The color		
IMPLICIT FEAL **8(A-Z) DOUGLE PRECISIGN DEGRIT FEZEZ DIMENSION E11(20) FEZEZ LINES E12(Z) FEZEZ E12(Z) FEZEZ E12(Z) FEZEZ E12(Z) FEZEZ E12(Z) FEZEZ E12(Z) FEZEZ		
DIMENSION	A. 6	IMPLICIT REAL*8(A-Z) DOUBLE PRECISION DRORI
READ(5+) REA		0), F22(2
READ(5) READ(5) READ(5) READ(5) 1	١	I, J, NUMT, NUMS
READ(5) VM = 1 VM = 1 TRM1 = WRITE(4) 1F(12.6) 1F(12.6) 1F(12.6) 1F(12.6) 1F(12.6) 1F(12.6) 1F(12.6) 1F(12.6) 1F(13.6) 1F(1	.0 ~	1
TRM 1 = TRM 1 = TRM 1 = 1		
### ### ### ### #### #### ############		= (1.0D0+VF)/(1.0D0-VF)
C COMTINUE		UF OF OF PE
60 TO 60 30 CONTINUE READ(5,1) ROWS = 100 SO JE READ(5,1)	8	PE & D (5, 1002) SY(11, 1Y(1)
30 CONTINUE READ(5,1) ROWS = SUMS 4 = SUMS 6	+ 10	
READ (5.4) ROW	۰	CONTINUE
READ(5) READ(5) READ(5) READ(5) READ(5) READ(5) READ(5) READ(5) SUMS6 = SUMS		- 1
READIS, 1 READIS, 1 C COMPUTE SUMS 6 = SUM	20 (A	
C COMPUTE SUMS4 = SUMS4 = SUMS4 = SUMS4 = SUMS4 = SUMS5 = SUMS		(GAM(J),J=1,NUMT)
SUMS6 = SUMS6		READ(5,1002) (SG12(J),J=2,11)
SUMS = 50MS = 50 CONTINUE		COMPUTE TAUY FROM
SUMS3 = 50M SO J= 50M SO J= 50M SO J= 50M SO J= 60M SO J= 60 SO J=	CJ er	000.0
SUMSS = SUMSS = SUMSS = SUMSS = SUMSS = SUMSS = CONTINUE C COPPUTE C COPPUTE SUMSS = SUMSS		153 =
SUMSS = SUMSS = SUMSS = 40 CONTINUE C COPPUTE C COPPUTE SUMSS = 1		40 J=1, NUMT
SUMS3 = 40 CONTINUE TAUY = C COMPUTE SGIZ(1) SUMS4 = SUMS4 = COMPUTE SUMS4 = COMPUTE SY(1) = C CONTINUE SY(1) = C CONTINUE SY(1) = C C C CONTINUE SY(1) = C C C CONTINUE SY(1) = C C C C C C C C C C C C C C C C C C	۰.	+ 50MS6 +
C COMPUTE C COMPUTE SUMSA = 1 L RM2 = 1 L RM2 = 1 L RM2 = 1 C SAM 1) = 1 C SAM 1) = 1 C C CONTINUE SY (1) = 6 C C CONTINUE M = M = 1	m r	SUMS3 = SUMS3 + GAM(J)*TAU(J)
C COMPUTE SGLZ(1) SUMS6 = SUMS4 = IRM2 = IRM		TAUY = DSCPT(SUMS6/(GM*SUMS3-
C COMPUTE SUMS6 = SUMS4 = IRM2 = IRM3 IRM2 = IRM3 IRM		
SUMS6 = SUMS4 = TRM2 = 1		COMPUTE SY AND SG12(1) = 0.000
1 RM2 = 1 RM2 = 1 RM2 = 1 RM2 = 1 RM3	~ ~	្ន អ
DD 50 J= SURS4 =	20 4	+ = 0.050 + (2.000+13.000+15) (63
00 50 Ja 658(J) = 658(J) = 80 CONTINUE C C C CONTINUE F E E KF =		(3.000*(1.000+VF)**3)
SUMS6 = SUMS4 = SO CONTINUE SY(1) = G12(1) = C C C CONTINUE MF = MF = MM = MM = MM = MM = MM = MM	n o	J=1;11 = TRM1/((SG12(J)/TAUY)
50 CONTINUE 50 CONTINUE C C 60 CONTINUE KF = KM = M = 1		= SUMS6
C C G12(1) = (12(1) =	D 0	CONTINUE SUMS4
612(1) = C		SY(1) =
C 60 CONTINUE PI = KF = KM	_	612(1) =
T X X X I		09
XX XX II II		PI =
XX		11
1		ji ji

	1
0049 0050 0051	F) VI2(I)*(EM/E11(I))) OO-M131/(F11(I)+4.0D0*KK*
	v12(1)*E22(1)/E11(1) = v12(1)*E22(1)/E11(1) (5E15,5) (515) (14,2(7x, 4(D11,4,2x)))
	RE TURN END
-	

SUBE DUILINE PARMIDO DATE = 72027

C C DIRENSICN A(ND DOUBLE PRECISI 1 DNA, DSGRT, DRE 1 ND SGRT, SUN-SO, SUN-SUN-SUN-SO, SUN-SUN-SO, SUN-SUN-SUN-SO, SUN-SUN-SUN-SO, SUN-SUN-SUN-SO, SUN-SUN-SUN-SUN-SO, SUN-SUN-SUN-SUN-SUN-SUN-SUN-SUN-SUN-SUN-	(ADIM, NDIM) 1SICN PIV2, A_DETA, TSST, X, FIV, PIVL, TCL, TEMP, SUM, RWS, DAES, CBLE, FPS 501,1C(50), P, S , N , N , N , N , N , N , N	R1200002 R1200003 R1200004 R1200007 R1200007 R1200000 R1200001 R1200010 R1200011 R1200011 R1200012 R1200013 R1200014 R1200015 R1200016 R1200020 R1200020 R1200020 R1200020 R1200020
30 20 30 30 90 90 90 90 90 90 90 90 90 90 90 90 90	#.NDIM) N PIV2AA.DETA,TSST,X, FIV, PIVL,TCL,TEMP, SUM, RWS, 1C(50),P,S 1C(50),P,S *2 *2 *2 *1 *2 *1 *2 *2 *1 *2 *2	R12D0002 R12D0003 R12D0004 R12D0007 R12D0007 R12D0009 R12D0010 R12D0011 R12D0013 R12D0014 R12D0017 R12D0016 R12D0017 R12D0018 R12D0020 R12D0020 R12D0020 R12D0020 R12D0020 R12D0020 R12D0020 R12D0020 R12D0020 R12D0020 R12D0020
30 20 20 30 90 90 90 90 90 90 90 90 90 90 90 90 90	*2 *2 *0 T050 *1040 *10 T040 *10 T040	R1200003 R1200004 R1200007 R1200007 R1200008 R1200000 R1200010 R1200010 R1200010 R1200010 R1200010 R1200010 R1200010 R1200010 R1200020 R1200020 R1200020 R1200020 R1200020 R1200020
30 20 30 99 99 99 99 99 99 99 99 99 99 99 99 99	#2 #2 50 T050 10 T040	R1200026 R1200007 R1200007 R1200000 R1200000 R1200001 R1200012 R1200013 R1200014 R1200016 R1200016 R1200017 R1200020 R1200020 R1200020 R1200020 R1200020 R1200020
30 20 30 99 99 99 99 99 99 99 99 99 99 99 99 99	*2 50 T050 50 T040	R1200007 R1200007 R1200009 R1200009 R1200000 R1200011 R1200012 R1200013 R1200014 R1200016 R1200016 R1200020 R1200020 R1200020 R1200020 R1200020 R1200020 R1200020 R1200020
30 20 30 99 99 99 99 99 99 99 99 99 99 99 99 99		R1200007 R1200009 R1200009 P1200010 P12D0011 R12D0012 R12D0014 R12D0014 R12D0016 R12D0017 R12D0019 R12D0020 R12D0020 R12D0020 R12D0020 R12D0020 R12D0020 R12D0020
30 20 20 4 40 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		R L 2009 08 P L 2000 09 P L 2000 10 P L 2000 11 R L 2000 12 R L 2000 15 R L 2000 17 R L 2000 17 R L 2000 20
30 20 20 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		P1200010 P1200012 R1200012 R1200014 F1200015 R1200016 R1200016 R1200018 R1200019 R1200020 R1200020 R1200020 R1200022 R1200022 R1200022 R1200026 R1200026 R1200026
30 20 20 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	50 T050 50 T040	P12D0012 R12D0013 R12D0014 F12D0014 R12D0015 R12D0016 R12D0017 R12D0017 R12D0020 R12D0020 R12D0021 R12D0022 R12D0022 R12D0022 R12D0022 R12D0024 R12D0024 R12D0025 R12D0026
30 20 20 30 90 90 90 90 90 90 90 90 90 90 90 90 90	50 T050 50 T040	R 1 200012 R 1 200014 R 1 200014 R 1 200015 R 1 200017 R 1 200020 R 1 200020 R 1 200022 R 1 200024 R 1 200024 R 1 200025 R 1 200026 R 1 200026
30 20 30 30 30 30 30 30 30 30 30 30 30 30 30	50 T050 50 T040 50 T040	P1 200014 R1 200015 R1 200015 R1 200017 R1 200017 R1 200020 R1 200021 P1 200022 R1 200024 R1 200025 R1 200026 R1 200026 R1 200026 R1 200026
30 20 30 30 30 30 30 30 30 30 30 30 30 30 30	:0 T050 :0 T040	R1200015 R1200017 R1200017 R1200019 R1200020 R1200020 R1200022 R1200024 R1200025 R1200025 R1200026 R1200026
30 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	50 TD50 50 T040 7 T040	R12D3016 R12D0017 R12D0019 R12D0020 R12D0021 P12D0022 R12D0024 R12D0025 R12D0026 R12D0026 R12D0026 R12D0026
30 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	50 T050 50 T040	R1200017 R1200018 R1200019 R1200020 R1200021 P1200021 R1200025 R1200025 R1200026 R1200026 R1200026
30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50 T050 50 T040 7 T040	R 1200018 R1200020 R1200021 P1200022 R1200024 R1200026 R1200026 R1200026
0.5	50 T050 50 T040 7 T040	R1200020 R1200021 R1200023 R1200023 R1200026 R1200026 R1200027
05	50 T050 50 T040 7 T040	R1200021 R1200023 R1200024 R1200025 R1200026 R1200026
0,4	50 T050 50 T040 7 T040	P12D0022 R12D0023 R12D0024 R12D0025 R12D0026 R12D0027
0,4	50 T050 50 T040 7 T040	R1200023 R1200024 R1200025 R1200026 R1200027
99	50 T050 50 T040) T040	R1200024 R1200025 R1200026 R1200027
0,4	50 T040) T040	R1200025 R1200026 R1200027 R1200028
F (C (L) , N = . 0)	- I	R1200027 R1200028 R1200028
I = (X * L T = L E S T) I = (X * L T = L E S T) I = (S = X + Q = C ONT INUE S Q CONT INUE S Q CONT INUE I = (D = X + Q = C ONT INUE I = (D = X + Q = C ONT INUE I = (D = X + Q = C ONT INUE I = (D = X + Q = C ONT INUE I = (X + Q = I		R12D0028
1 = K 1 = L 1 = L 40 CONTINUE 50 CONTINUE 10 E 10 = L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		000000
151 X 40 CONTINUE 50 CONTINUE 50 CONTINUE 11 (15 11 11 11 11 11 11 11 11 11 11 11 11 1		470002 N
40 CONTINUE 50 CONTINUE PIVATITAL PIVATITAL IE (DETA-LT-11-11-11-11-11-11-11-11-11-11-11-11-11		R12D0030
40 CONTINUE 50 CONTINUE PIV=A(I,J) IF(DETA=LT-10 DETA=PIV=CETA IF(I)=J IR(I)=J IR(I)=J PIV = 1.0CO/P A(I,J)=PIV A(I,J)=PIV 60 F = 1,N CO 60 K = 1,N F (K,RE,J) A(I) IF (K,RE,J) A(I)		R12D0031
		K1 2000 32
F (DETA-LT)		R1200034
DETA=PIV*CETA IF (DABS(PIV) IR(I)=J IC(J)=I PIV = 1.0C0/P A(I,J)=PIV A(I,J)=PIV GG 60 K = 11,N DG 90 K	3-73) DETA = 0.0D 00	
		F1200035
(1)=J (1)=	•LE. TCL) GO TC 150	R1200036
		R L Z D U G 3 /
A(11, J)=PIV A(11, J)=PIV GG 60 K = 1,N FG 1F (K, NE, J) A(1) IF (K, EC, I) G IF (K, EC, I) G PIVI = A(K, J)		R 1 2000 39
60 1F(K*NE*J)A(I) 00 90 K = 1,N 00 90 K = 1,N 1F (K*EG*I) G		R1200040
6G IF(K*NE*J)A(I) DO 90 K = 1,N IF (K*EC*I) G PIVI = A(K*J)		R1200041
DO 90 K = 1; IF (K*EG*I) PIVI = A(K*	,Κ)=Δ(I, K)*PIV	R12D0042
IF (K.EC.1) PIVI = A(K.		R12D0043
PIVI = A(K	10 80	4120004F
		R 1 2 0 0 0 4 5
IF (1.NE.J)	L)=A(K,L)-PIV[*4([,L)	R12D0047
25		R12D0048
		R12D0049
100 IF (K.NE. I) A (K.J)	J) =-F!V*L(K, J)	2 2000 51
	30	R12D0052
0053 110 P0 142 1 = 1+N		R1200053
X=10(1)	A CONTRACT OF THE CONTRACT OF	
(1) v [= ii		R1200055
1F(K.FG.T)6G TC		81210050 01200057
		81200018

9059	TEMP=# (K = 1)
0060	A(K,L)=A(I,L) 120 A(I,L)=TEMS
0062	
0063	The state of the s
0064	The second secon
9900	IC(M)=K
0067	
8900	
00 70	RETURN
0071	
-	
	The second secon
	The second secon

	TAU Y 0.500000 04 0.50000 04 0.590000 04			EP S XV	0.3586			AXES)
	\$16 Y 0.100000 05 0.100000 05 0.100000 05			STRAIN (LAYER AXES)	0.52699			STRAIN (LAYER AXI
. 1	0.987000 06 0.987000 06 0.987000 06			X S dH	, 25 E			
-	v21 0.193610-01 0.193810-01 0.193810-01			AXES)	0.4709			AXES
SAMPLE PROBLEM	V12 0.255000 0C 0.255000 0C 0.255000 0C			STRAIN (LAMINATE AX	-0.30259 -0.30259 -0.30259			STRAIN (LAMINATE A)
	E22 0.218550 G7 0.218550 G7 0.218550 G7		I TERATION S) v a a u			ITERATIONS	
	E11 0.287550 C8 0.287550 08 0.287550 08		S WITHIN 2	>> NO	0.689300 03 0.898960 03 -0.692220 03		SES WITHIN 2	
	1YERS = 3 T T U.335300 00 0.333300 00 0.333300 00	ENT M = C.360000 01 ENT N = C.360000 01 INCKEMENTATION	EC LCADING 00 04 00 00 00 04 00 00 STRESS CUNVERGES	STRESS	55M Y 55M Y 55M Y 65M Y	EU LUADING	CCNVERG	STRESS
	NUMBER CF LAYERS = LAYER THETA T T T 1 -45 0.3353 3 2 0.3333 3 45 0.3333 EVLATION PARAMETERS	EXPCNENT M = EXPCNENT N = LUABING INCKEM	EXTERNAL APPLIEC LC F X = 0.50000 04 F Y = 0.00000 00 F XY = 0.50000 04 SOLUTION FCK STRESS		LAYER SGW X 1 -0.116596 2 0.118196 3 6.150606	EXTERNAL APPLIEU LU F X = 0.10CCUD 05 F Y = 0.00CUD 00	XY =	

EXTERNAL AFPLIEC LUADING. E.X. = 0.15600.05 F.Y. = 0.000000.00	\$0-061276*D- 60-045050*D	0.548300-03	0.105650-03	-0.622155-03 -0.846065-03	0.948290-03 -0.730390-03
0.15600E 0					
04.	51				
STRESS	STRAIN (LAMINATE AXES)			STRAIN	
SGM X SGM XY EP	S X EPS Y	EPS XY	EPS X	EPS Y	EPS XY
-0.391645 05 0.232495 64 0.185495 04 6.127. 0.363660 05 -0.114475 04 6.234775 04 6.127. 0.452575 05 -0.163850 04 -0.186985 04 0.127.	C.12748D-02 -0.96472D-03 C.12748D-02 -0.96472D-03 U.12748D-02 -0.96472D-03	0.143330-02 0.143340-02 0.143330-02	-0.127830-02 0.127460-02 0.158840-02	0.158840-02 -0.954720-03 -0.127830-02	0.111980-02 0.143340-02 -0.111980-02
EXTERNAL APPLIEC LCADING					
0.20000 0.200000 0.200000					
SULUTICA FCK STRESS CCNVERGES MITHIN Z ITERATION	.· .·	•			
SUP X SGM Y SGM XY EP	STRAIN (LAMINATE AXES)	YX × Ø H	X V Q 3	STRAIN (LAYER AXES)	
10 05 0.284390 C4 0.232240 04 E 05 -0.145430 C4 0.283140 04 70 C5 -1.205420 C4 -0.23751C 04	20-62 -0.132630-02 20-62 -0.13280-02 20-02 -0.132880-02 20-02 -0.132880-02		0D=02 2D=02 4D=02	40-02 80-02 00-02	0.152550-02 0.152476-02 -0.152550-62
EXTERNAL APPLIEC LUADING			•	·	
0.25ccc 05 0.coccor 06 0.25ccc 05		:			

									÷	* **		į				
	EPS XY	0.19447E-02 0.242060-02 -0.19446E-02	- Comments and the Comm			****		EPS XY	0.237470-02 0.292010-02 -0.237460-02		: :		:		EPS XY	0.26135D-02 0.34222D-02 -0.28134D-02
STRAIN (LAYER AXES)	FPS Y	0.265470-02 -0.171070-02 -0.218680-02					STRAIN (LAYEN AXES)	FPS Y	0.31879b-02 -0.21071b-02 -0.265270-02		-	And the second s		STRAIN (LAYER AXES)	EPS Y	0.312070-02 -0.251520-02 -0.312420-02
	EPS X	-0.218670-02 0.217860-02 0.265470-02						X 5 d3	-0.25526D-02 0.254230-02 0.31878D-62						EPS X	-0.312416=02 0.311180-02 - 0.372060-02 -
(5)	EPS XY	0.242670-02 0.24266D-02 5.242670-02					2	EPS XY	0.292020-02 0.292010-02 0.292020-02					(8)	EPS XY	0.342240-02 0.34220-02 0.342240-02
(LAMINATE AXES)	EPS Y	-0.171075-02 -0.171075-02 -0.171075-02					STRAIN (LAMINATE AXES)	EFS Y	-C.21071D-02 -0.21071D-02 -C.21071D-02			7	:	STRAIN (LAMINATE AXES	EPS Y	-0.251520-02 -0.251520-02 -0.251520-02
	EPS X	U.217870-02 U.217860-C2 C.217850-C2				ITEKATIONS		EPS X	0.26424D-02 - 0.264230-02 - 0.264220-02 -				ITERATIONS		EPS X	0.311180-02 - 0.311180-02 - 0.311160-02 -
	SGM XY	0.273130 04 0.327480 04 -0.279670 04				WITHIN 2		SGM XY	0.30941D 04 0.36590D 04 -0.31730D 04				NITHIN 2		SGM XY	0.342630 04 0.399866 04 -0.350820 04
	SGM Y	0.327250 C4 -0.173910 04 -0.241450 64 -		LOADING	9 (2.2)	SS CONVERGES	STRESS	SGM Y	0.30347D 04 0 -0.19947D 04 0 -0.27309D 04 -0		LCADING	TOTAL STATE OF THE	S, CLNVERGES	STRESS	\$ 6.₹ ₹	0.3947cD C4 0 -0.22336D 04 0 -0.30128D 04 -0
	NGR X	.62045E 05 .622040 05 .75719E 05		APPL IEC	\$0 30000£*0 00 3000000 \$0 30000	N FOR STRESS		SGM X	0. 75348E 05 0 0. 7547EE U5 -0 0. 7547EE U5 -0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.		A FPL 1ED	\$0 30005E 0 00 300000 °0 50 300000 °0	N FCK STRESS		SGP X	0.10622D 06 -0.00 00 00 00 00 00 00 00 00 00 00 00 00
	LAYER	3 - 2°		EXTERNAL	т т т х х х п п п	SOLUTION		LAYER	0 - 1 2 0 2 3 C		EXTERNAL	* * * * * * * * * * * * * * * * * * *	SOLUTION		LAYER	- 7 E

- 0.40CCCE		
SOLUTION FLY STRESS CLANERGES WITHIN 2	N V 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
STRESS	STRAIN (LAMINATE AXES)	JIRAIN JANES ANESS
LAYER SGP X SGP XY		EPS X TPS Y FPS XY
1 -0.102445 0c 0.422245 04 0.371715 04 2 0.102495 06 -0.245625 04 0.430335 09 3 0.121465 0c -0.326765 C4 -0.321185 04	0.356590-02 -0.293500-02 0.392660-02 0.358590-02 -0.293300-02 0.392630-02 0.355570-02 -0.293300-02 0.392660-02	010-02 0.425300-02 0.32595 590-02 -0.293300-02 0.35263 290-02 -0.590030-02 -0.32593
EXTERNAL APPLIEC LCADING		
900		
SOLUTION FOR STRESS CONVERGES WITHIN 2	ITERATIONS	
STRESS	STRAIN (LAMINATE AXES)	STKAIN (LAYER AXES)
LAYER SGM X SGM Y SUM XY	EPS X EPS Y EPS XY	EPS X EPS Y EPS XY
1 -0.11018D C6 0.4468BD C4 0.3989BD 04 2 0.11018D 06 -0.20643D C4 0.45803D 04 3 0.15669D 06 -0.34987D C4 -0.40695D 04	0.406340-02 -0.335840-02 0.443240-02 6.406340-02 -0.335840-02 0.443210-02 6.406340-02 -0.335890-62 0.443240-02	-0.40799D-C2 0.47849D-02 0.371146-02 0.40839D-02 0.40831D-02 0.47848D-02 -0.40800D-02 -0.371126-02
EXTERNAL APPLIEC LUADING		
F X = ' G.50CCUD 05 F Y = 0.C000UD GU F XY = 0.50UCUD 05		
SOLUTION FCK STRESS CCAVERGES MITHIN 2	ITEKATIUNS	
STRE SS	STRAIN (LAMINĀTE AXES)	STRAIN (LAYER AXES)
LAYER SGM X SCM Y SGM XY	EPS X EPS Y EPS XY	EPS X EPS Y EPS XY
1 -C.130C1E 36 0.40-909D 04 0.42-1-06 04 2 0.12956E 06 -0.20-99E 04 0.40-34-00 04 3 0.15192E 06 -0.3712CD 04 -C.43-459E 04	0.454510-02 -0.379150-02 0.454500-02 0.454510-02 -0.379150-02 0.493930-02 0.454480-02 -0.375150-02 0.443500-02	-0.450280-C2 0.371640-G2 0.416830-02 0.45416830-02 0.45410-G2 -0.374150-02 0.443930-02 0.531620-C2 -0.456250-02 -0.416810-02

		EPS XY	0.462956-02 0.544750-02 -07462530-02						EPS XY	0.50943D-02 0.55567D-02 -0.50942D-02					
	STRAIN (LAYER AXES)	EPS Y	0.58474D-02 -0.42299D-02 -0.50484D-02			•		STRAIN (LAYER AXES)	EPS Y	0.637600-02 -0.467350-02 -0.553620-02					STRAIR (LAYER AXES)
		EPS X	-0.504830-02 0.502900-02 0.584730-02					:	EPS X	-0.55360D-C2 0.55153D-G2 0.63779D-C2	The second secon				
		EPS XY	0.544780-02 0.544750-02 0.544780-02			i			EPS XY	0.595700-02 0.595670-02 0.595700-02	177 48 10 10 10 10 10 10 10 10 10 10 10 10 10				7
	STRAIN (LAMINATE AXES)	EPS Y	-0.422590-62 -0.422990-02 -0.422990-02					STRAIN (LAMINATE AXES	EPS Y	-0.467330-02 -0.467330-02 -0.467330-02					STRAIN (LAMINATE ANES
ITERATIONS		EPS X	C.5025CD-C2 U.502900-02 C.50287D-C2				TTERATIONS		EPS X	0.551530-02 0.551530-02 0.55150C-02				ITERATIONS	
MITHIN 2		SUR AY	0.447690 C4 0.507010 04 -0.45420 C4			: .	WITHIN 2		SGM XY	04 0.465730 04 04 0.526980 04 04 -0.480700 04				S WITHIN 2	
OL US STRESS CENVENGES	STRESS.	56P Y	0.4489420 C4 -0.304430 04 -0.390980 C4	: :	LCADING	300 300 300 300 300	STRESS CCNVERGES	STRESS	S GM Y	06 0.508170 04 06 -0.321910 64 C6 -0.405440 C4		LLACING	00 00 00 00	STRESS CONVERGES	STRESS
J. Soco		X × 26 ₹ X	-0.143910 06 0.143830 06 0.167140 06	1.	KNAL APPLIED	3000009.0 =	FLR		K SGR X	-0.157890 00 0.157775 00 0.162350 00		RNAL APPLIEC	= 6.650000 = 0.650000 = 0.650000	F K	
50LUTION		LAYER	- N		EXTERNAL	т. Х.У. Х.	SPLUTICA		LAYER	1 2 3		EXTERNAL	т п п × × ×	SOLUTION	12

EXTERNAL APPLIED LCADING

0. 35cute 05 0. 000000 0. 000000 0. 55cute

) X 4 4 X 4 7 .

LAYER SGE.X SGM Y SGM AY	EPS X	EPS Y	EPS XY	EPS X	EPS Y	EPS XY
1 -0.171535 06. 0.525590 C4. 0.490495 04 2 0.171775 060.538530 C4. 0.549589 C4 3 04.197565 060.4426765 C40.501655 C4	6.600360-02 -0.512115-02 C.600370-C2 -0.512110-C2 C.6009346-C20.512110-62	-0.512115-02 -0.512110-62 -0.512110-62	0.04670D-02 0.046670-02 0.64670D-02	-0.60257D-02 0.60037D-02 0.690816~03	0.694830-02 -0.512115-02 -0.602590-02	0.55624 E-02 C.6466 TD-02 -0.5562 E-02
	i			•		
	ė					
LAMINATE HAS FAILED; SGM X EXCEEDS PAXIMUM						
AT FAILUNE External appliec llacing				- ** <u>*</u>		
F X = 0.700000 00 F Y = 0.00000 00 F X = 0.70000 00			:			
SULUTION FUR STRESS CUNVERGES WITHIN 2 11	ITĒNĀTIUNS				ū	
STRESS	(6	STRAIN (EAMINATE AXES			STAZIN (LAYFA AXES)	
LAYER SGF X SGM Y SGM XY	€ P.S. A.	£PS Y	EPS XY	K 243	SPS Y	EPS XY
1 -0.100020 30 0.541690 04 0.510140 04 2 0.185020 04 -0.55450 04 0.55450 04 0.52490 04	0.049370-02 -0 0.045500-02 -0 0.045350-02 -0	-v.557286-62 -v.557280-u2 -0.557280-c2	6.4977750-02 6.6577750-02 6.6577753-02	-0.e51720-62 3.049360-62 0.143560-62	C.74382L-62 -C.557267-02 -0.651730-02	0.03320-02 0.057730-02 -0.60331E-02

OFFICIAL BUSINESS

SPECIAL FOURTH-CLASS RATE

POSTMASTER:

If Undeliverable (Section 158 Postal Manual) Do Not Return

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS:

Information receiving limited distribution because of preliminary data, security classification, or other reasons. Also includes conference proceedings with either limited or unlimited distribution.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include final reports of major projects, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546