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ABSTRACT 

The compressive flow of viscoelastic materials 

between two parallel flat disks under a constant load has 

been investigated analytically, numerically, and experi- 

mentally. This process simulates a number of compression 

molding and lubrication experiments; the purpose of our 

study was to assess the effects of fluid viscoelasticity and 

of temperature .gradients in these applications. 

h  dimensionless group 3 (= imax    A)  has been  found 
/mi« R 

very useful for determining the flow regimes when there 

exists a substantial transverse viscosity gradient in the 

fluid charge, such as in the nonisothermal compression 

molding processes. 

Compressive flow of linear viscoelastic materials 

has been analyzed analytically. It shows that the squeezing 

motion becomes oscillatory when the ratio of the Deborah 

number to the Reynolds number is larger than a critical 

value, and that tie linear viscoelastic materials are 

squeezed faster than the corresponding Newtonian cases. 

Compressive flow of various non-linear model fluids 

has  also  been  analyzed  numerically.   The  Maxwell fluid 
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behaves much Like linear viscoelastic materials, except 

under extraordinarily high loading conditions. But, the 

Johnson- Segalman model and the Marrucci structural model 

show that slower squeezing may arise after the initial rapid 

transient under moderate loading conditions. This slower 

squeezing must be due to the special features of these 

models, which the Maxwell model does not exhibit, such as 

stress overshoot in the transient flows. 

Experimentally two different observations have been 

made. A silicone polymer shows the oscillatory and the 

faster squeezing, which is predictable by the Maxwell type 

of model fluid. Two other polymer solutions show an 

inflection point, which probably reflects a very weak 

oscillation, and a slower squeezing than for the 

corresponding inelastic cases. The slower squeezing of 

these solutions seems to be due to the transient behavior of 

these materials such as stress overshoot. The use of those 

models, which can predict the transient behavior more 

precisely, is recommended to describe the transient 

responses of these materials. 



NOMENCLATURE 

Symbols 

a acceleration of the top plate 

#T horizontal shift factor 

Cj constants 

d, d;:      deformation rate tensor, and its components 

f function f defined by (4.3) 

F force on the top plate 

g gravitational acceleration 

G shear modulus 

G0 G at the equilibrium in (3.67) 

G' storage modulus 

G" loss modulus 

H half of the total film thickness 

H0 half of the initial film thickness at t=0 

K consistency factor of power-law fluid 

m mass of the load on the top plate 

n power-law index of power-law fluid 

p pressure 

r radial position 

R radius of the disk 

R0 initial radius of the disk 
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3 dimensionless number defined by (2.14) 

t time 

t dimensionless time defined by (2.19) 

At time increment 

Atn time increment defined by tn+| - tn 

T      "   oscillation period 

V speed of the top plate 

V velocity vector • 

Vr radial velocity 

Vz axial velocity 

Vj descritized V at node i 

V„ descritized V at t=tn 

x structural variable 

X spacial coordinate 

z axial position 

Greek symbols 

f shear rate in simple shear flow 

tvy wall shear rate 

yraax maximum shear rate 

S thickness of the lubricant layer 

gb biaxial ertensional rate 

£ material parameter in equation (3.53) 

"h viscosity 

* zero shear viscosity 
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")* complex viscosity 

7p viscosity of the polymer 

^sy viscosity of the solvent 

"7, viscosity of the lubricant (less viscous layer) 

72 viscosity of viscous layer 

9 angular position 

X, A| relaxation time 

A.2 retardation time 

X0 X at the equilibrium defined by (3.67) 

^ material parameter in equation (3.53-55) 

f density of the material 

f pseudo-fluid density defined by (3.47) or (4.24) 

f* apparent density { = J'+/i
m) 

G"  G;; total stress tensor, and its components 

7 t  7ij extra atress tensor, and its components 

7; descritized 7 at node i 

7. descritized 7 at t=tn 

Tp 7 due to the polymer 

7SV 7 due to the solvent 

# linear interpolation functions 

■ir. quadratic interpolation functions 

a) angular frequency 

üd second invariant of the deformation rate tensor d 
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material time derivative P 
Dt 

~z contravariant convected Oldroyd time derivative 
at 

v contravariant convected Oldroyd time derivative 

A        covariant convected Oldroyd time derivative 



CHAPTER 1 

INTRODUCTION 

1.1 Relevance of the problem 

The problem to be considered in this work is that of 

the compressive flow of viscoelastic fluids between two 

horizontal circular flat disks, shown schematically in 

Fig. 1.1. .The test fluid is contained between two disks 

which are at rest for times t<0; at t=0 the upper disk is 

released and falls under the normal load F. The spacing 

between the'disks is measured as a function of time. 

This compressive flow between disks is of interest 

for many reasons. 

(1) It is encountered in the popular plastometer 

method, which has been used to determine the material 

properties of highly-viscous materials. 

(2) It  is  also  encountered  in certain polymer 

*The term "compressive flow" stands for the flow in the 
opposite sense of the extensional flow, not for the flow of 
compressible fluids. It is equivalent to "squeezing flow" 
or "squeeze film flow" which has been used more often in the 
literature. 
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Fig. 1.1 Schematic diagram of 
the compressive flow. 
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processing operations such as compression molding, injection 

molding, stamping, etc. The polymeric charges in these 

processes are frequently filled with fibers, whose 

orientation will determine the material properties of final 

products, and the orientation of the fibers is believed to 

be determined by the flow behavior of the polymeric medium. 

(3) It also arises in lubrication systems, and there 

has been a controversy as to whether or not viscoelastic 

lubricants will perform better than Newtonian lubricants, 

since modern motor oils often contain polymeric additives 

which render them viscoelastic. 

(4) Most of all, this flow is of particular interest 

to rheologists since both shearing and extensional 

deformations are present under transient conditions, the 

flow being dominated by shear near the wall and by extension 

in the middle of the gap. Therefore, the compressive flow 

is a good candidate to be used in evaluating proposed 

constitutive equations, especially transient responses, and 

further improving them. 

It will be assumed throughout that the fluid is 

incompressible. 

1.2 Review of previous work 

In  this  section  we  will  review the   principal 
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theoretical  studies  and  experimental work which have been 

published. 

Stefan(1874) appears to be the first to have dealt 

with this problem. He analyzed the flow for Newtonian 

fluids and derived the equation 

H(t) = I , !6Ft 
_ H*  371 -) R* 

2. 

(1.1) 

which is known as the Stefan equation after him. A complete 

list of symbols and their meanings are found in the 

Nomenclature. A more systematic derivation of equation 

(1.1), based upon the creeping flow approximation and the 

parallel squeezing assumption, is given by Denn(1980). Here 

the term "parallel squeezing" implies that material planes 

which are initially horizontal remain so during the 

subsequent deformation. This assumption is not always 

valid, even though it is very useful in many cases. In 

Section 2.2, we will consider an example in which the 

parallel squeezing assumption fails. This has been also 

mentioned by Brindley et. al.(1976). The Stefan equation 

has been tested and verified experimentally for Newtonian 

fluids by many authors, including Parlato(1969), 

Leider(1974), Brindley et. al.(1976), and Grimm(1977). 

In 1931,  the  squeezing  of  power-law  fluids  was 

analyzed  by  Scott(1931), who developed an equation similar 
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to  equation   (1.1)   given by 

H(t) = 
n + . 

     n   ,    2(n+l)      F(nt3) 
H0j       "*"   2H+I      7L K Rn+3 

n+ i 

(1.2) 

where K and n are the consistency factor and the power-law 

index of the given power-law fluid, respectively. The 

derivation of equation (1.2) will not be repeated here since 

complete developments of the Scott equation are given 

elsewhere (Scott,1931; Leider and Bird,1974; Grimm,1977). 

Experimental work on power-law fluids has been carried out 

by Parlato(1969), Leider(1974), Brindley et. al.(1976), and 

Grimm(1977). In general, experimental data agree well with 

the Scott equation. 

Various researchers have considered the case of 

viscoelastic fluids in the compressive flow. Ail of them 

except Metzner(1968a) predict that viscoelastic fluids 

squeeze out faster than the corresponding inelastic fluids, 

which is the opposite of many available experimental 

results. 

Tanner(1965) analyzed the flow for contravariant 

convected Maxwell fluids with a power-law viscosity and a 

constant relaxation time. He argued that the normal stress 

effects are small compared to the shear stress effects and 

predicted faster squeezing of viscoelastic fluids than the 

corresponding power-law fluids. 



Metzner(L963a) appears to be the first to have 

recognized the possible importance of the extensional flow 

as well as the shearing flow in this problem. He mentioned 

that extraordinarily high stresses are predicted to be 

required for rapid extensional deformation of viscoelastic 

fluids, and he predicted slower squeezing of viscoelastic 

fluids (contravariant convected Maxwell fluids) based upon 

the "extensional primary field" approximation 

(Metzner,1971). Williams and Tanner(1970) also considered a 

combination of shear and extensional effects but concluded 

that extensional effects are small compared to the shearing 

effects. 

Kramer's analysis(1974) is unique in that the 

particle path equations are numerically solved using a 

convected coordinate system without neglecting any of the 

normal stresses. He used the integral constitutive equation 

of Lodge's rubberlike liquid(see Lodge, 1964) with a single 

exponential memory function, which is identical to the 

contravariant convected Maxwell fluid. 3y assuming parallel 

squeezing and negligible inertia, he predicted an initial 

instantaneous drop and more rapid squeezing of viscoelastic 

fluids. The initial drop implies that the material has no 

resistance at the instant t=0 except its own inertia; no 

resistance of the material implies zero apparent viscosity, 

hence infinite Reynolds number.  Thus, the inertia should be 



taken into account in the compressive flow of viscoelastic 

materials under a constant load, even though the creeping 

flow approximation (negligible inertia) is very useful in 

the inelastic cases. 

Leider and Bird(1974) have suggested that the use of 

a rheological model which can describe stress overshoot in 

simple shear flow is imperative to explain the slower 

squeezing of viscoelastic fluids. The models used in the 

three analyses cited above do predict the presence of a 

first normal stress difference, but do not predict the 

stress overshoot phenomena or a second normal stress 

difference in shear flows. Leider and Bird proposed an 

empirical equation with an overshoot correction factor to be 

used in squeeze film problems. 

Brindley et. al.(1976) analyzed the flow for the 

second order fluid and again predicted faster squeezing of 

viscoelastic fluids. The second order fluid shows the first 

and second normal stress differences in shear flows, but no 

stress overshoot. They also presented some very interesting 

experimental results which show solid-like bouncing behavior 

under some severe loading conditions, but they did not 

provide a theoretical explanation of this bouncing behavior. 

Experimental studies on viscoelastic materials 

include  those  of  Parlato(1969),  Leider(1974),  Brindley 
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et. al.(1976), and Grimra(1978). In general, with slow 

squeezing (low Deborah number), the squeezing behavior of 

viscoelastic fluids is close to the corresponding inelastic 

case. With fast squeezing (high Deborah number) most of 

experimental results show that viscoelastic materials 

squeeze out much slower than the corresponding inelastic 

fluids, and under very severe loading conditions some 

materials even bounce back after some amount of squeezing. 

Some authors (Leider,1974; Leider and Bird,1974) 

have used the "half time", which is the time required for 

the disks to move from a separation H0 to H0/2, to represent 

their experimental results. The "half time" is very useful 

in representing the data of purely viscous materials, but it 

is not recommended in the viscoelastic cases since it may 

conceal interesting elastic effects. This has been pointed 

out by Binding et. al.(1976a). 

Tichy and Winer(1978) studied constant speed 

squeezing flow instead of constant load squeezing, using 

Lodge's rubberlike liquid model with a single relaxation 

time. They predicted that the load-bearing capacity of a 

viscoelastic fluid may be increased due to normal stress 

effects or decreased due to a delayed response of shear 

stress to a change in shear rate. 

Shirodkar(1981), and Shirodkar  and  Middleman(1982) 
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also considered constant speed squeezing flow. They used a 

constitutive equation due to Wagner(1976), which is an 

empirical modification to the Lodge's rubberlike liquid 

model. Even though Wagner's model is capable of exhibiting 

non-Newtonian viscosity, normal stress in simple shear flow, 

and stress overshoot in transient simple shear flow, the 

principal drawback in this model is the absence of a general 

form of the damping function. They predicted that fluid 

elasticity can increase the force resisting the approach of 

the boundaries of a squeeze film at high shear rate. They 

also suggested that generalizations regarding the role of 

viscoelasticity may be impossible and the effect of 

polymeric additives on load-bearing capacity appears to 

depend upon whether the motion is under constant load or 

constant speed, or some combination thereof. 

The properties of polymeric materials responsible 

for the slower squeezing found experimentally are still in 

question and need to be studied more systematically. 

There has been a somewhat different question in the 

compression molding process (usually nonisothermal) which 

concerns the flow in the mold. It is important to identify 

the portion of the material that flowsj preferentially to 

fill the remainder of the mold cavity: the fluid near the 

wall or that in the central portion of the mold. The answer 

will  depend  upon  factors  such as  geometry,   material 
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properties,  and  temperature  gradient  in  the mold.  Both 

cases have been observed experimentally.  There has been no 

quantitative analysis of this flow. 

1.3 Objectives and approaches of present work 

Several basic problems in compressive flow remain 

unsolved. Resolving those problems will be the main 

objectives of this work, as follows: 

(1) We require a better qualitative 

understanding of the behavior in compressive 

flow of viscoelastic materials between disks 

under isothermal conditions. 

(2) Furthermore, we wish to analyze this flow 

quantitatively to explain the experimental 

observations of slower squeezing and bouncing 

behavior of viscoelastic materials. 

(3) Finally, in the compression molding 

processes, we wish to understand the 

preferential flow of some portion of the 

material in the mold cavity. 

In chapter 2 we will consider the compressive flow 

of purely viscous fluids, including Newtonian and power-law 

fluids. The flow in the mold cavity will be also examined 

quantitatively in this chapter. 
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Compressive flow between disks is not simple; it is 

a combination of shearing and extensional flow under 

transient conditions, and the viscoelastic nature of the 

materials of primary interest makes the problem even more 

complex. Before dealing with this complex problem we 

consider a rather simple, but closely related problem in 

Chapter 3; this is lubricated compressive flow. Since 

lubricated compressive flow between disks is essentially 

biaxial extensional flow, various kinds of non-linear 

viscoelastic constitutive equations can be treated without 

great difficulty. The unlubricated problem will be 

considered in Chapter 4. Numerical computation is required 

in this case. The finite element numerical technique, which 

will be tested in the simple lubricated problem in Chapter 

3, will be applied to solve the continuity, momentum, and 

constitutive equations simultaneously. In Chapter 5, 

experimental results will be compared to the theoretical 

predictions. 



CHAPTER 2 

GOMPRESSIVE FLOW OF 
PURELY VISCOUS FLUIDS 

The comprassive flow of purely viscous fluids will 

be treated in this chapter, focusing on the following: 

(1) We will investigate the validity of the 

Stefan equation (for a Newtonian fluid) and 

Scott equation (for a power-law fluid) by 

finite element calculations, in Section 2.1 and 

2.3, respectively. 

(2) We will analyze the flow in the mold cavity 

for the compression molding process in Sections 

2.2 and 2.4. 

(3) Throughout this chapter we will test the 

finite element and other numerical schemes used 

to solve compressive flow problems. 

2.1 Newtonian fluid 

The compressive flow of an isothermal inelastic 

fluid, neglecting fluid inertia, is governed by the 

following equations and boundary conditions: 

12 
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Continuity: 

Twi^r)  + #- - 0 (2.1) 

Navier-Stokes (variable viscosity, ^=J(r, z)): 

Boundary  conditions   (see   Fig. 2.1    for 

description of the coordinate system used): 

Vr = 0 , -^ = 0 at r = 0 (2-4) 

V_= o , -§£. = 0 at z = 0 (2.5) 

Vr=0,    Vz =   -V atz = H      (2.6) 

All the stresses vanish at the free    (2.7) 
surface 

The second condition in (2.4) comes from the 

requirement of zero shear stress along the axis of symmetry. 

In the case of the parallel squeezing assumption(Section 

2.2.1) this condition is automatically satisfied. This 

problem has been solved, based upon the parallel squeezing 

assumption, to give the Stefan equation (1.1). 
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constant force 

R 

Fig. 2.1 The domain used in the 
numerical calculations. 
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We wish to solve the problem numerically with no 

assumptions in order to compare the solution to the Stefan 

equation. A finite element technique will be used: the 

finite element formulation for generalized Newtonian fluids 

is given in appendix D.I. 

Because of flow symmetry, the domain of interest in 

numerical calculations will be confined to a quarter of 

entire domain (shaded portion in Fig. 2.1). Neglecting 

fluid inertia, the problem becomes a quasi-steady state 

problem even though the flow itself is transient. 

Therefore, at each time instant we solve the steady state 

equations (2.1-2.3) under the boundary conditions (2.4-2.7) 

on the given domain. Then, after a given time 

increment( At ), we move the boundary of the domain by 

V x *t / solve the problem on the new domain, and proceed to 

the next time step. The numerical algorithm is given in 

Fig. 2.2. Between time steps, a predictor-corrector method 

is used; since the problem is entirely linear, the top 

plate velocity(V) is adjusted linearly to produce the given 

constant force. 

Numerical calculations have been carried out for 

three different values of R/H0(=5,15,50). The results are 

compared to the Stefan equation in Fig. 2.3, in which 

dimensionless film thickness(H/H0) is plotted against 

dimensionless time, t(= *§■ J^:{^) y) •   At  large  values  of 
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Read  data   (   X(I),   FORCEO,     ^,   etc, 

1 
Time  zero  ? -30- 

lyes 1= 
-»■Finite  element  solution   (V(I),   p(D) 

i     ,   ~ 
Calculation of  force   (FORCE) 

1 Linear adjustment of solution 
V(I)=V(I)*(FORCEO/FORCE) 
p(I)=p(I)*(FORCEO/FORCE) 

Print solution 

i        no 
Next time step ? >STOP 

yes 

£old(I) 0C(I) 
-old 

1 
Enter ^t 

Read previous 
solution (V(I),p(D) 

Move boundary nodes (predictor part) 
X new=ä old+3£ old * At 

v 
Finite element solution (V   (I), Pnew(D) 

Calculation of force (FORCE) 

I 
Linear adjustment of solution 

-Move boundary nodes (corrector part) 

Snew^old+^ld +2new >*** 

Fig.  2.2 Numerical algorithm to solve compres- 
sive flow of Newtonian fluids. 
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R/H0, numerical results agree well with the Stefan equation, 

but as R/H0 decreases the discrepancy between the numerical 

solution and the Stefan equation increases. This 

discrepancy is due to the velocity rearrangement caused by 

the stress singularity at the edge of the disk and becomes 

small as R/H0 increases, which is also seen in the pressure 

profiles (see Fig. 6 and 7 in Appendix A). In other words, 

the parallel squeezing assumption is a good one as long as 

R/H is large enough. 

In the next section we will see a typical example in 

which the parallel squeezing assumption no longer holds and 

the boundary condition at the edge of the disk plays an 

important role. 

2.2 Gompressive flow between parallel disks with a 

transverse viscosity gradient 

Let us consider the flow in the mold cavity in the 

compression molding process, which is depicted schematically 

in Fig. 2.4. There have been two different observations on 

the flow patterns induced as the mold is closed; Marker and 

Ford(1977) observed the preferential flow of hot material 

near the mold faces, while Denton(193.'.) and Denn, Tadmor, 

and Edelist(1981) reported no preferential flow of the fluid 

near the wall and found the maximum velocity at the center 

plane.  These  flow patterns  are  shown  schematically in 
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—LJ U 

C 

polymer 
charge 

Fig. 2.4 Schematic diagram of the 
compression molding process. 
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Fig. 2.5.   Qualitatively it is obvious that both cases are 

possible, depending upon the material properties,  geometry, 

and processing conditions. 

A detailed quantitative analysis of this problem is 

given in Appendix A, and only its essence will be discussed 

in this section. Here we consider the flow between 

approaching disks when there is a substantial viscosity 

gradient in the fluid charge; this viscosity difference may 

result from the temperature difference caused by the hot 

plates, or it may represent an approximation to the 

properties of a viscoelastic charge in which the resistance 

to a biaxial deformation will be much greater than to 

shearing. 

2.2.1 Parallel squeezing assumption 

As already mentioned, The parallel squeezing 

assumption has been a conventional approach in the squeeze 

film problem. It can be shown that it is a direct 

consequence of the parallel squeezing assumption that low 

viscosity fluid near the disks cannot flow out 

preferentially, regardless of the viscosity difference 

between the center plane and the wall (see Appendex A). 

Therefore, we can see that the parallel squeezing assumption 

will not be valid when the viscosity difference and geometry 

are  such as  to generate  a preferential flow of the low 
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Fig. 2.5 Flow patterns observed 
experimentally. 
(a) preferential flow of centra,, fluid, 
(b) preferential flow of the fluid 
near the wall. 
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viscosity fluid near the wall. 

2.2.2 Squeezing force and boundary condition 

The force required to bring the plates together is 

obtained by integrating the axial total stress over the 

surfaces of the disks. The calculation of this force 

requires a knowledge of the boundary condition at the outer 

edge of the disks. 

The usual boundary condition employed at the disk 

edge is shown schematically in Fig. 2.6(a); the normal 

stress at the free surface, (£z=-p+'<zz # is balanced against 

atmospheric pressure.  This gives 

(2.8) 

where 

F = 7tC, R4 

8 

c, = V 
;H   )u ?(5) (2.9) 

For the case of constant viscosity, we obtain 

F= -äfi^- (2.10, 

At constant force, this leads to the Stefan equation. 

This boundary condition gives a paradoxical 

prediction for the case in which there is a large viscosity 

difference between the central plane and  the  walls.   From 



23 

'///////////////A 
p=0. 

z   =  +H 

Ö2i=  -p +?XB=  o. 

(a) 

'///////////////A 
G~ =  0.   along   free   surface 

z   =   0. 

(b) 

Fig. 2.6 Boundary condition at the 
edge of the disk. 
(a) conventional one 
(b) real situation 
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(2.8) and (2-9) the force required is of the order of the 

smallest viscosity that exists over the finite portion of 

the gap, even if the central portion of the gap contains 

fluid of arbitrarily large viscosity. Obviously this can 

not be true. 

A better boundary condition at the outer edge is the 

vanishing of all stresses on the free surface of the 

extruded sheet, shown schematically in Fig. 2.6(b). 

Assuming that the velocity rearrangement is restricted to a 

small neighborhood near the edge, we can approximate this 

condition by requiring that the net radial force component 

be zero at r=R; that is, 

■H r (T"rr dz « 0 at r = R (2.11) 

With   the  parallel   squeezing   assumption,   this  gives 

c =   *C,R* [, _  8 füf] +   3/-cC,R2f°    )<Jzf
2 id! 

h   s  L  3lRJ J   H V  'H im     (2,1 2) 

The second term in (2.12) corresponds to the stress from the 

biaxial extension of the central viscous fluid. 

When viscosity is constant, 

p - 7&C,R4 t 8 i+mf (2.13) 

As long as %<<1, (2.10) and (2.13) are identical.  Thus, the 

Stefan  equation  is  unchanged  by  the  alternate boundary 
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condition. 

The situation is quite different, however, when 

there  is  a  large viscosity variation across the gap.  The 

first term in (2.12) is of order ^m'"^R     and the second  is 
%      V RA 

of order    ^ .  Thus, the first or second term dominates 

depending upon whether the group 

S =   ]maX j£ (2.14) 
/ mm r\ 

is small or large, respectively, compared to unity. 

2.2.3 The dimensionless group S 

When 3 is small compared to unity, the stress from 

the biaxial extension of the center fluid is negligible and 

the maximum velocity occurs at the center plane. Thus the 

parallel squeezing assumption and the conventional boundary 

condition are both valid. ■ 

As S increases, the new boundary condition is 

necessary to compute the correct order of magnitude for the 

force, although the parallel squeezing assumption is still 

valid. 

When S is large compared to unity, the parallel 

squeezing assumption breaks down since the maximum velocity 

occurs in the low viscosity fluid near the disks. This has 

been shown numerically for the case of two fluids;  i.e., in 
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which the viscosity is constant in each of two regions, but 

changes discontinuously at an interface that is initially 

planar (see appendix A for the. details). Thus, a new 

analysis is necessary in this case. In the two fluids case, 

new assumptions other than the parallel squeezing assumption 

have been made to derive an analytical solution which is 

found to be in good agreement with the finite element 

numerical solution. 

Thus, we now have a quantitative criterion for the 

two different flow regimes observed experimentally; that 

is, 

* S << 1 :  flow regime of Fig. 2.5(a) 

* S >> 1 :  flow regime of Fig. 2.5(b) 

2.3 Power-law fluid 

In this section, the Scott equation (for a power-law 

fluid) will be tested by numerical computation, just as the 

Stefan equation has been tested in section 2.1. 

Governing equations and boundary conditions are  the 

same  as  in  Newtonian  case,  except that the viscosity is 

given by 

n-i 

7(Id) = K|4ild|  * (2.15) 

wnere 
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Id = -i[(trd)2- tr(d*)] (2.16) 

and 

(2.17) 

The fluid is assumed to be incompressible, so that 

*J- i^dz)  = iJ^+Jw+^a)* J« (2-18) 

In solving the problem numerically, an iterative 

scheme is used to evaluate the viscosity function. That is, 

the viscosity is initially based on the previous solution 

for an earlier time step. One then solves for the new 

velocity and pressure profiles, calculates the viscosity 

from this new velocity field, and repeats this procedure 

until the solution (velocity and pressure field) converges 

within a given error allowance. The numerical algorithm is 

given in Fig. 2.7. 

Numerical computations have been carried out for two 

different values of R/H0(5,15) and two different values of 

the power-law index(0.7,0.5). The results are given in 

Fig. 2.8, in which the Newtonian case (n=1.0) is also 

plotted for the comparison. In the figure, the 

dimensionless time t is defined by 
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Read data ( X(I), FORCED, ^, etc.) 

Time zero ?  0°. 

yes l! 
Finite element solution (V(l), p(l))- 
^Calculation of force (FORCE) 

Adjustment of solution 
V(I)=V(I)*(FORCEO/FORCE) 
p(I)=p(I)*(FORCEO/FORCE) 

Convergence test ? 
jyes 

Print solution 

no 

1 
Next time step ?■ 

jyes 

3oid ;*)=£( * L 
Sold «I)-^I) 

Enter    At 

I 

no 
->STOP 

Read previous 
solution (V(I),p(I)) 

~new ~oJ.a —-old 

Move boundary nodes (predictor part) 

t 
Finite element solution (V   (I), Pnew^1^" 
Calculation of force (FORCE) 

I 
Adjustment of solution 

*                           no 
Convergence test ?   

jyes 

-Move boundary nodes (corrector part) 

Snew^d+^ld^ew^ 

Fig.  2.7 Numerical algorithm to solve compres- 
sive flow of power-law fluids. 
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30 

I + H0 
n .(-^Jkt 

7L K Rn+3 (wjVa) 

(2.19) 

(2-20) 

With these definitions, the Scott equation as  well  as  the 

Stefan equation become 

±L = (| + t)~* (2-21) 

Again we can see that the edge effect is more 

significant at smaller values of the R/H0 ratio. The effect 

increases as the power-law index decreases, or as shear 

thinning behavior increases. This can be explained by 

considering the viscosity difference between the fluids 

inside and outside the edge of the disk. As the power-law 

index decreases, the fluid outside the edge has a higher 

viscosity than the fluid inside the edge, which implies that 

the fluid inside experiences more resistance from the fluid 

outside. Therefore, the squeezing speed becomes slower as 

the power-law index decreases. This effect decreases as 

R/Ho increases, and at large values of R/H0 the Scott 

equation is still adequate. 

2.4 Partially-filled compressive flow of Newtonian fluids. 

In this section we consider the flow with a moving 

front in the mold cavity, depicted in Fig. 2.9. We will 

focus on the moving free surface  and  the  flow near  this 
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Q. contact point 

free surface 

at time = 0, 

G 

1 

3 

Q £1 
at time = t 

Fig. 2.9 Schematic diagram of the 
flow of a Newtonian fluid in the 
mold cavity under the isothermal 
condition. 
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moving front. Numerical calculations are therefore 

inevitable, and the proper numerical scheme has to be 

developed to determine the new contact point between the 

fluid and the surface, as well as the shape of the free 

surface, for each time step. It will be assumed that the 

fluid is Newtonian and isothermal. 

2.4.1 Numerical scheme 

At any instant of time, the velocity and pressure 

distributions can be obtained by finite element calculation, 

as long as the domain is given beforehand At time t=Q, we 

start with a domain of rectangle shape with a flat free 

surface, as shown in Fig. 2.9, and solve for the velocity 

and the pressure. 

After a small time increment!at), the boundary of 

the domain is changed by 

XneW = Xold + \/'*t (2.22) 

The new contact point is determined by quadratic 

interpolation of three adjacent nodes, which is shown in 

Fig. 2.10. That is, after At the nodal point 1 moves to 1, 

2 to 2, and 3 to 3, etc., and a point p between 1 and 2 will 

move and just contact the wall; point p'is the new contact 

point between the fluid surface and the solid wall. The 

solution and the boundary shape are  then  improved  through 
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old contact point 

Fig. 2.10 Movement of the frontal 
nodes and contact point. 
... 0i<3 front 
  new front after At 
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the  predictor-corrector  method.   These  procedures  are 

repeated at each time step.   This  numerical  algorithm  is 

given in Fig. 2.11. 

2.4.2 Numerical calculation results 

Two sets of calculations have been carried out, one 

at a small value of R0/H0(=5), the other at a large value of 

R0/H0(=15). 

In the case of R0/H0=5, the movement of the boundary 

and the frontal free surface are shown in Fig. 2.12 at 

various stages of squeezing. The radial velocity profiles 

of the present case are compared in figures 2.13 through 

2.16 to the corresponding fully-filled case, which has an 

extra amount of fluid outside the edge of the disks; the 

radius for the fully-filled calculation is based on the 

contact point, p. At the beginning of squeezing 

(Fig. 2.13), the radial velocity in the partially-filled 

case is somewhat larger than in the fully-filled case, 

especially near the centerplane at the edge of the 

disks(z=0, r=R). This can be understood, considering that 

the fully-filled case experiences some resistance from the 

fluid outside the edge of the disks. This difference 

becomes smaller and smaller as squeezing goes on (see 

Fig. 2.14 2.16), since the partially-filled case begins to 

build up a "bulge" of fluid near the front, which acts  like 
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Read data ( X(I), FORCEO,  ^, etc.) 

Time zero ?  
yes 

Finite element solution (V(I), p(I)) 
Calculation of force (FORCE) 

Linear adjustment of solution 
V(I)=V(I)*(FORCEO/FORCE) 
p(I)»p(I)*(FORCEO/FORCE) 

Print solution 

f                     no 
Next time step ? >STOP 

yes 

SoidSiJ-Sji)«. 
Zoid(i)-X(i) 

Read previous 
"solution (V(I),p(D) 

Enter At 

I 
Move boundary nodes   (predictor part) 

£new=£qld+Xold* At 

Determine new contact point 

Finite element solution (Vy^d), pnew(l)) 
Calculation of force (FORCE) 

1 
Linear adjustment of solution 

I 
Move boundary nodes   (corrector part) 

£new=2old+i%ld +2new >*At 

1 
-Determine new contact point 

Fig.  2.11 Numerical algorithm to solve the 
partially-filled comprressive flow of Newto- 
nian fluids. 
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Fig.   2.12 Movement of the "boundary in the partially- 
filled compressive flow,  R0/Ho=5« 
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filled compressive flow compared to the fully-filled case, 
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Fig.   2.16 The radial velocity profiles  of the partially- 
filled compressive flow compared to the fully-filled case. 
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the fluid outside the disks in the full-filled case. 

Fig. 2.17 shows the pathlines of some material points as the 

squeezing goes on. The material points near the front are 

moving upwards, which represents the same phenomenon as 

observed in the injection molding process, known as the 

"fountain effect". The term "fountain effect" was coined 

and discussed by Rose(1961) and is important in determining 

the quality and morphology of the surface of the molded 

article. 

The movement of the boundary and the comparisons of 

the radial velocity profiles are shown in figures 2.18 

through 2.21 for a large value of R0/H0(=15). We see 

similar phenomena as for R0/H0=5, but the effect of the 

fluid outside the disks is rather small in this case and it 

becomes much smaller as the squeezing goes on (see 

Fig. 2.21). We can therefore conclude that as long as R0/H0 

is large enough, the flow patterns in the partially-filled 

compressive flow are essentially the same as those one 

observes in the fully-filled case except near the front: 

here we observe fountain flow phenomenon in the 

partially-filled case. 
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Fig. 2.17 The pathlines of material points in 
the partially-filled compressive flow of 
Newtonian fluid : the fountain effect is seen 
at the moving front. 
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Fig. 2.20 The radial velocity profiles of the partially- 
filled compressive flow compared to the fully-filled case, 
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Fig. 2.21 The radial velocity profiles of the 
partially-filled compressive flow compared to 
the fully-filled case. 



CHAPTER 3 

LUBRICATED COMPRESSIVE FLOW OF 
VISCOELASTIC FLUIDS 

3.1 Problem formulation 

Let us consider that the material is compressed 

between two circular disks under a constant load and assume 

that there exist thin lubricant or low viscosity fluid 

layers near the wall. The schematic diagram is shown in 

Fig. 3.1, in which the radius of the disk may or may not 

vary in time. If the viscosity of the lubricant is given in 

the proper range, which will be discussed in Section 3.5, 

the flow in the viscous material may be assumed as biaxial 

extensional flow with negligible shear. .The velocity 

profile in the cylindrical coordinate is then written as 

W = €b(t)  r (3.1) 

V2 = -zeb(t)z (3.2) 

V6   = 0 (3.3) 

in which 6fc(t) is the biaxial extensional rate and varies in 

time.  The deformation rate tensor d is given by 

44 
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R=Ro 

Fig. 3.1 Schematic diagram of the 
lubricated compressive flow. 
(a) R varies in time 
(b) R=Ro (constant) 
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/ Gb(t) 0 0 

0        ik(t)        0   j       (3.4) 
^ 0 0      -zii.it) 

Since d  is uniform in space, the extra stress tensor 

T may be also assumed uniform in space.  Hence, 

v- nr   = o (3.5) 

The equations of motion are then reduced to the form 

in which the fluid inertia terms are included. 

Integrating   (3,6)   and   (3.7),   the    pressure 

distribution is obtained as 

p(rfZ,t) = -i;/»^(# + 4,)+/>2*(#-24*;+M«  (3.8) 

To determine p0(t), which is the pressure at r=z=0 (see 

Fig. 3.1), the boundary condition at the free surface(at 

r=R) is applied in the following form: 

j  (^r)paRdz = 0 (3.9) 

where §~ri. ( = -p + Trr) is the radial  component of  the  total 
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stress   tensor  £•     Evaluating  the   integration  in   (3.9), 

= />RiH(# + &i)-|/'H3(^-24J')-2poH + a7rPH = 0 

Thus,   we  obtain  the  equation   for   p0(t), 

Substituting   into   (3.8)   then gives 

p(r,2,i; = ^(^-^)(Ä+4
i)-i-/'(4Ha-3za)(^^4ajf7,r(3.ii) 

The total force exerted by the fluid on the  upper 

disk is calculated through the following integration: 

rR 

=   /   <P" 7a)z.ZH2x>r<lr (3.12) 

Substituting equation (3.11) into (3.12) and performing  the 

integration, one obtains 

F=^Ä*(^ + ^) + f7t/»^Ha(^-26fc
aJ + ^Ra(7,r-7a) (3.13) 

One of the easiest ways to apply the force on the 

upper disk is to place a mass on it. In that case, the 

force is given by 
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F = m ( 3 - a) (3.14) 

where m = the total mass on and in the disk 

g = the gravitational acceleration 
J-2M 

a = the acceleration of the disk (= - Z -^j£ ) 

Equivalently, 

F  =   m(3 -4HÄ + 8H4aJ (3-15) dt 

since 

dH 
dt   =   (Vz)z = H    =   "2H^ (3.16) 

and 

«--*£(#) 
= 4H#-8H€„* (3.17) 

Now,   equating   equations   (3.13)   and   (3.15),   we have 

(3.18) 

<& =   w (5 + 8Hif) - iwR+ef + ^Kpitfef - JLI?( 7,,- 7^) 

(3.19) 
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Frequently, equations (3.18) or (3.19) can be simplified  as 

follows: 

(a) When R>>H, the term including H on the 

righthand side of (3.13) can be neglected compared to the 

first term to give 

<jeh   _     m(3+8Hi?)- JK/>R*eh
z- KR

2(7rr- 7^) 
dt tx*t„q*Jl-) (3.20) 

(b) When the compression is not very fast, the 

inertia of the fluid and the load can be neglected, in which 

case equation (3.18) is simplified to 

m^ = fcR*( 7rr-   ?**) (3.21) 

When the radius of disk varies in time (see 

Fig. 3.1(a)), the expression for the radius change is 

obtained from mass conservation;  that is, 

K2H = constant 

or 

^(*aH) = 0 

or 

& = ** (3.22) 

Here equation (3.16) has been used. 

The next step is to solve  equation  (3.19)  or  the 
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simplified form ((3.20),(3.21)) together with (3.16), 

(3.22), and appropriate constitutive equations which relate 

Trr and 7ZZ to the deformation. In the next section, we 

will consider the linear viscoelastic case, since in the 

limit of small deformations the response of polymeric 

materials may be considered linear. The non-linear case 

will be considered in Section 3.3. 

3.2 A linearized viscoelastic case 

For sufficiently small values of the deformation, 

the mechanical behavior of polymeric materials is entirely 

described by the constitutive equation of linear 

viscoelasticity. 

3.2.1 Constitutive equation 

A particular case of the  constitutive  equation of 

linearized viscoelasticity is given by 

X +   X,|f = 2.-) (A  + Az-ljS-) (3.23) 

where At stands for the relaxation time and  A2 stands for 

the  retardation  time.   Often \x   is set to be zero. Note 

that as Xj.  approaches A| ,  equation  (3.23)  approaches the 

Newtonian equation. 

* When Ai=Ai, aquation (3.23) is simply the sum of the 
Newtonian constitutive equation and the first time 
derivative multiplied by A(. 
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In  the  präsent problem,  the  radial  and   axial 

components of the constitutive equation are 

%r + A,^=2)(i + Xi4t-) (3.24) 

7«+A1*g*«-4}(€t + M|-) (3.25) 

from which it follows that 

("zz.   -       2- Tfr 
(3.26) 

and 

V„= «p(-^;.2. ^f(4 + A2#)exp(^)dt 
(3.27) 

3.2.2 Analytical solution 

i 

Let us consider the case (b) in Fig. 3.1,  in which 

the  radius  is  constant, and that R=R0>>H.  Further assume 

that the compression is not very fast, so that €\, « s%£~ '   and 

that  the  inertia of  the  load  is  small compared to the 

16 m[ inertia of fluid ( 'VI4 <<P   in 3.20).  Then equation  (3.18) 

or (3.20) becomes 

or 

mß   = J*fR?^- + <3-i.R*7Y.r 

(3.28) 

Here equation (3.26) has  been  used.   Substituting  (3.27) 

into (3.28) then gives 
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d4   __      4mg 
dt Kf>R<? 7#r«K-*)f<4 ♦*.#>«?(&* 

or 

-P^# «pm ^ *±L 
Xil    7lf>R+ /»^A, ) 

(4 + A,#)«p(^jJt 

Differentiating this with respect to time gives 

«r(Ö#+ i«rffl# = «^ Ä 
-^-u;^)**^) 

or 

^A>  d*a   "u +    />V   '7T  +    ** fct x«J Ke^ (3.29) 

which is a second order dynamical equation. 

The solution of equation (3.29) is given by 

6. ■ 

"5^i   + C,exp(DltJ + Caexp(D*tJ 

jfij- +exp(0,t). (V.W 
' when    Di = Rz 

(3.30) 

where Dj and D^, are the roots of the characteristic equation 

of (3.29), that is, 

A^ + Wl+^JO*^-»    (3.3D 

C| / Ci, C3, C4.  are  constants  to be  determined  by  the 

following initial conditions: 
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€y(0) — 

dt + TI 1 

4-mS 
(3.32) 

7Z/>R< 
Tjr       from (3.28) 

The characteristic feature of the solution (3.30) 

may be divided into the following three cases, depending 

upon the values of D, and \>x . 

Case I.   (i-^/- *%$h   >  0 (3.33) 

The D; are real, negative, unequal and given by 

D- -sir _ /.. MIA*,) +\[u+ m**)z -   ?€1Xi 

\|+  />*0*'
+\Ml +   pus->       w J 

-2A, /     y v 1-    ^; ^ j 

The solution decays exponentially to_a constant rate;   that 

is, 

€y(-t)   - 
rr\Q 

ST^KT + 6,«pU*) + C*€.p(oJtj   (334) 

where 

C = I 

Oi-Ra. 
+ 4-m3 

rtpRj 

C, = 
0,-D; 7T + 

4-mg 

Note   that   the   solution  approaches   the  Newtonian   solution     as 

Ai   approaches     to   \x  ,   and  at  long   times   for  any   A,   and   \z. 
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Newtonian  solution  is  given by 

Case  II.       /,_  *4? W_    96^XJ    -   o <3-35> 

P,   and   Dz are  equal  and negative, 

and 

where 

^ =    g^V   tejfP^'f^^ (3*36) 

^-*     —      —_ « _    /       T"   V\     f -~-L   r, a. 

r   - m3 

That is, the fluid is  gradually accelerated  to a  steady 

state deformation rate. 

Case III.  ( I + pfci  )     -      pR3.     <    0 (3.37) 

D| and Dz are complex conjugates, given by 

Di = 4x, 

and the solution is an oscillatory one in which we are 

particularly interested. The following case is of 

particular interest: 

op 2. //Ur OO 3.      J 
2. 

PRf      ' '  K ' "~      PR?   J (3.38) 
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-ä__J^.G^„p[.±(lt^i]yiil^-* 
CKJR?       xfRo   V ^jM 

(3.39) 

and,   from   (3.16) 

Ä=exp [-*(*<=; dt] 

Each term in equation (3.40) represents different features 

of the lubricated compressive flow of linear viscoelastic 

materials under the condition (3.38). The first term (A) 

represents Newtonian viscous damping, the second (B) is 

related  to  the  initial  amplitude,  and  the  third   (C) 

represents  the damping  of the oscillatory term (D), whose 
I7ÄT 

oscillation period is 7!R0\j $* • 

This oscillatory motion originates from the 

coexistence of the unsteady inertia term (/>-£■) and the 

unsteady elastic relaxation term (A -=■£•) • These two time 

derivatives interact to generate the second order time 

derivative in equation (3.29). 

The condition (3.37) is rather conservative for the 

oscillatory motion, since the solution (3.40) will behave as 

the non-oscillatory one if the damping term (G) is fast 

enough  to make  the  product  (C)*(D) very small in a time 
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which is smaller than the oscillation period. From this 

fact, we can develop a more useful necessary condition for 

the oscillatory motion:  that is, 

time scale of damping > oscillation period 

or 

+ f) A, > KR, 
M 

°\ 6 1 (3.41) 
2\t f> R*A t 

Here the choice of the factor a in front of the lefthand 

side is rather arbitrary, and one may choose a value between 

1 and 3. The value L gives 63%, 2 gives 86%, and 3 gives 

95% of decay in the exponential term. Choosing a=2, 

equation (3.41) becomes 

'^>0+^K : oscillation (3.42) 

and 

!0 1Ä 
P*< t<(/+^) : no oscillation  (3.43) 

When Ai=0, equations (3.42) and (3.43) become 

and 

10 > I 

< I 

oscillation    (3.42A) 

no oscillation (3.43A) 

It is useful to rewrite  the  condition  (3.42)  and 
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(3.43) in terms of the dimensionless groups defined below: 

'»■£ (&f > ll+2*% ®T     -   o«illatlon (3.44) 
2 

: no oscillation  (3.45) 

wnere 

Re  = 
HVP 

De  = 
VA, 

H 

Rd  = 
VXz 
H 

(Reynolds No.) 

(Deborah No.) 

(Retardation No.) 

Note that De/Re or RJ
/R€ depends on the material properties 

and the geometry only, but not on the squeezing speed, even 

though each group does depend on the squeezing speed. Also 

note that the dimensionless group De/|?e is similar to the 

first elasticity number given by Astarita and 

Marrucci(1974), which has been defined by the ratio of the 

Weissenberg and Reynolds numbers in quasi-viscometric flows. 

This elasticity number was employed by Denn and 

Porteous(1971) to identify conditions under which elasticity 

can be expected to be important in viscoelastic fluid flow. 

Also it is seen in the paper by Tordella(1953) who used this 

number to predict the onset of melt fracture, and in the 

paper by Boger(1977) who tried to correlate pressure losses 

due  to  the  elasticity  in  the capillary rheometer to the 
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elasticity number. 

The equation (3.29) and the conditions (3.42-3.45) 

can be modified to include the load inertia term, which has 

been neglected in the above by assuming —-nj>4 <<^>* First, 

we define several different densities, 

/>*= P'+ Pm (3.46) 

r" TK^ (3'47) 

p is the fluid density, and />m is a pseudo-fluid density 

corresponding to the mass of the load (m) in the lubricated 

compressive flow; P* is the apparent density which 

represents both effects of the fluid inertia and the load 

inertia. If we use f>* instead of using p in the equation 

(3.29) to include both inertia effects, we have 

p*\, £L  + p*(  I + Mlk s ^4   2&j_A    =    _±> n>3 (3 . 48 ) 

Here the constant radius condition also has been relaxed to 

include the situation of Fig. 3.1(a). Then the conditions 

(3.42-45) become 

'O-pVffT    >   (l+^ßp-)* ■•   oscillation     (3.49) 

10 ],\      < (l-h    2t}„*f : no oscillation  (3.50) 

or 
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/»Sßf >['«♦#(#]*   =oscillation    <3-51) 

'"Tlillf <   [h^(ff]2 =   no oscillation     (3.52) 

where 

Ra -  H V P—        (modified Reynolds No.) 

The oscillation period is also modified to 7iR\J §->,   . 

At this point we may note several interesting 

aspects of the lubricated compressive flow of linear 

viscoelastic materials : 

(1) The compressive motion under a constant amount 

of load may or may not be oscillatory, depending upon the 

conditions (the material properties, the amount of the load, 

and the geometry) as predicted by equations (3.49)-(3.52). 

(2) When oscillation occurs, it is due to the 

combined effects of the inertia, the elasticity, and the 

viscosity. The oscillation period depends only on geometry, 

inertia, and the elastic modulus. 

(3) The retardation time may play an important role 

in the damping of the oscillatory motion (see term (G) in 

equation (3.40)). 

(4) As Az approaches A, , the response of linear 

viscoelastic materials approaches the Newtonian one. 
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In the next section, numerical solutions will be 

considered with no assumptions made, and this will further 

support and refine the conclusions noted. 

3.2.3 Numerical solution 

Equation (3.19), together with (3.16), (3.22), and 

constitutive equations (3.24) and (3.25), can be solved 

simultaneously by the Runge-Kutta method or the method of 

Gear(1970). Many different combinations of material 

properties and geometrical factors have been considered to 

investigate the characteristic features of this flow in the 

case of Fig. 3.1(a), in which the radius varies to keep the 

total mass of the fluid constant. 

In Fig. 3.2, curves of H/H0 vs. time  are  shown  at 

various  values  of relaxation times ( A( = 0.003, 0.03, 0.1, 

0.3)  and  zero  retardation  time,  and  compared  to   the 

corresponding  Newtonian curve  ( \.  =  0.).  When io \ I   is 
f R 

less than the unity, the curve does not oscillate (see curve 

4),  as  expected  from  the  condition  (3.50).   As lO-2-^ 
P*FC 

increases, the oscillatory motion begins and becomes severe 

as the relaxation time, and hence the value of the group 

10 2*o'* ' increases (see curves 1 to 3 ). The oscillation 

period is about the same as the calculated value from 

equation (3.40), if we consider the change of radius in 

these calculations [equation (3.40) was derived on the basis 
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of a constant radius]. Note that most of the viscoelastic 

curves remain below the corresponding Newtonian curve, 

though the difference is minor at large times. 

In Fig. 3.3, the effect of the retardation time has 

been illustrated. All the conditions are the same as 

before, except that A, is kept constant (at O.L) in all 

these calculations, and A* varies ( Xz = 0., 0.01, 0.05, 

0.1). We can recognize that a small increase of the 

retardation time reduces the oscillation amplitude greatly, 

and the response approaches the Newtonian curve as A* 

approaches A|. All curves remain below the corresponding 

Newtonian curve (A|=Ai=0.). 

3.3 Non-linear viscoelastic cases 

3.3.1 Constitutive equations 

Since the linear model does not predict some of the 

important non-Newtonian behavior of polymeric materials, 

such as shear thinning, normal stresses in simple shear 

flows, and high extensional viscosity in extensional flows, 

various kinds of non-linear models have been proposed. We 

3nall now consider some of the currently popular and 

promising models. 

One of the most successful models is the one 

proposed    by     Phan-Thien    and    Tanner(1977)    and 
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Phan-Thian(1978),   which  has   the   following   form with  a   single 

relaxation  time: 

1 e*f[%trl]  +   A[d-jI)T + 1^]   =2)0i (3.53) 

Here, 7 and 7 are the contravanant and • covariant 

convected derivatives given by 01droyd(1950), respectively, 

and denoted by 

* D7 T 
7 = -£f - vV T - 7 7VT 

A      D7      T Z  =   -fe--i-7\/7+7 7y 
~'      Dt     ~ ~ 

This equation has four material parameters, ^, X , i   >      and 

£ .  ]„ is the zero shear viscosity and A is the relaxation 

time.  The parameter J can be determined from normal stress 

data in simple shear flow, since ^/z    is simply the ratio of 

the second normal stress  difference  to  the  first normal 

stress difference,  or  from the deviation of the viscosity 

from ^0.  £ is related to the limiting value of extensional 

viscosity by JU>m. 'h     = const- ('/s ) 
Te-*co 

When £ vanishes, (i.e., when the extensional 

viscosity has no limit), the Phan-Thien-Tanner model reduces 

to the one by Johnson and Segalman(1977), represented by 

y + A[O-J3>5 + jJ2] = 2Joi (3-54) 
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3y adding a retardation term to the righthand side of 

(3.54), a modification of the Johnson-Segalman model is 

obtained as 

where \z is the retardation time and M and A are defined 

in the same way as 2 and Z ' The existence of the 

retardation term can be explained if one considers a polymer 

solution made up of a Newtonian solvent and a polymeric 

solute which is described by (3.54). The total stress in 

the solution would be the sum of the polymeric contribution 

and Newtonian solvent contribution, that is, 

I = If    + Zsv 
(3.55) 

where 

7r + A,[<i-i»)2r*Mr]=^i <3-57) 

Here the subscript p stands for the polymer and sv  for  the 

solvent. 

Differentiating equation (3.53) 

7» ***)*,%, *nd    7„-2fai 
or 

l«\i 3 (3.59) 
(i-i:5?Ai2« = *iSv(i'i*)^i 
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I      \    & }     ^  ti (3.60) 

By adding (3.57-60) together, we get (3.55) in which 

(3.61) 
?•*> + ? 3V 

A*= ^-^fr- (3'62) 

The Johnson-Segalman model((3.54)) further reduces 

to the contravariant convected, covariant convected, and 

corotational Maxwell model as 5 has the values of 0, 2, 1, 

respectively. 

3=0      : 2   +  A T    =   27 d (3*63) 

I= 2      . T  +  A7   = I-] l <3'64> 

* 
3=1      : Z + AirtTtT] = .)SI (3-65) 

An equation of the form of (3.63) has been modified 

by tfhite and Metzner(1963) to accomodate a non-Newtonian 

viscosity function: 

1 + ^2 = iyh)L (3-66) 

* 2 L Z + 2J is often denoted by £ and is known as 
corotational Jaumann derivative (see Zaremba(1903) and 
Fromm(1947)). 
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where Jj is the second invariant of the deformation rate 

tensor and G is the shear modulus. This model is useful in 

situations in which the non-Newtonian viscosity plays an 

important role. 

The model proposed by Acierno et. al.(1976a), often 

called the "structural model", is also very promising. The 

model, with a single relaxation time, is represented by 

^2 +XMi^)    = ^ (3.67) 

<r = $0x ,   A= Aex'-4 

ijx.= _L(I_X) -ax^/J  (a* 0.25-0.4 ) 

where -A- is the contravariant  convected  time  derivative, 
ot 

and the scalar dimensionless quantity x( < 1. ) is regarded as 

a structural variable which describes how far the existing 

structure is from equilibrium. G0 and A0 
ars the 

equilibrium values of G and A (when x=l.). 

For comparison, we summarize the responses of each 

model fluid in simple shear flow in Table 3.1. 

The covariant convected Maxwell model predicts too 

large a value of Y^ - 733 in comparison to what is found in 

most polymeric materials. The corotational model exhibits a 

shear  viscosity  which  depends  upon  the  shear  rate too 
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7iz 'II     <22 7x2. ~ %3 
Stress 
overshoot 

Phan-Thien- 
Tanner 

No explcit 
very close 

expression, but 
to Johnson-Segalman yes 

Johnson- 
Sega lman 

X t ^,Af -iU?* 
yes Z+A^lfrf) H-A*v2$(2-S) /+Aaya!<2-u 

Johnson-Segalman 
with retard, time 

Xlb+h^fitäl 2)a(K-X2)i
z 

-j>.a,-A»)y* 
yes l+Xftfr-S) 1 +\*ft(2-$) 1 +Af?ai^-J) 

Contravariant 
convected Maxwell ?* z-)\irx 

0 no 

Covariant 
convected Maxwell K 2.j\tz -zy Af no 

Corotational 
Maxwell /+AaP 

2% x v* -%A** 
yes 

White- 
Metzner }(r) i 5 ft**** 

2  *   * 
0 no 

Marrucci 
structural MoX^a- 2$0\tx'*r* 0 yes 

* Structural variable x satisfies 
where fl= 0. 25-'0.4. 

- x 
x iT4 = aAo<r 

Table 3.1 Comparison of non-linear models in 
simple shear flow. 



strongly; it also predicts spurious oscillations after 

stress overshoot and much too large a value of 7^ -7S - 

Therefore, we shall disregard these two models in our 

numerical calculations. 

The contravariant convected Maxwell model and its 

modification, the White-Metzner model, predict zero ?^-?a3 

and no stress overshoot during startup. The 

Phan-Thien-Tanner model and its simplified form, the 

Johnson-Segalman model, predict non-zero values of '?»-'?'.« 

and also a stress overshoot. The structural model predicts 

zero 7aa.-?3$   but it does predict a stress overshoot. 

3.3.2 Numerical calculations 

Lubricated compressive flows of the viscoelastic 

model fluids mentioned above, including the contravariant 

convected Maxwell model, the White-Metzner model, the 

Johnson-Segalman model (with and without retardation term), 

and the structural model, are solved numerically in this 

section. Since the equations to be solved in each case, 

which are given in appendix B, consist of first order 

ordinary differential equations, the Runge-Kutta or Gear 

method can be used. Here, we consider the situation given 

in Fig. 3.1(a), and the initial conditions are given by 

€y  = V = 7« = 0       |   at  t s 0 

H -* HQ    *    rS, =  /Co 
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The results are shown in Figs. 3.4 through 3.10, in 

which H/H0 is plotted against time in each case. The curves 

for the contravariant convected Maxwell fluid are given in 

Fig. 3.4 and 3.5, those for the White-Metzner model in 

Fig. 3.6, the Johnson-Segalman model in Figs. 3.7-3.9, and 

the structural model in Fig. 3.10. 

When W' is small enough, the oscillation does 

not occur, as shown in Fig. 3.4. But if L^2 is not 

small, oscillation does occur. When the squeezing rate is 

slow or moderate, the oscillatory curves stay below the 

corresponding inelastic ones in all cases (see Fig. 3.5, 

3.6., 3.7, 3.10). In fast squeezing, each model behavior is 

distinct. 

The Maxwell model results in oscillation  and  stays 

below  the  Newtonian  curve  (Fig. 3.5).   In contrast, the 

White-Metzner model does not give oscillation at all for the 

power-law  index  of  0.5  and stays below the corresponding 

power-law curve (Fig. 3.6).  The absence of oscillation in 

the White-Metzner model in fast squeezing seems to be due to 

the large decrease of the viscosity and the relaxation  time 

at  high  deformation  rates.   These  effects,  plus  the 

increases in R as time progresses, combine  to make   J*0i. 
r K 

very  small,  under  which condition no oscillation would be 

expected. 
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The faster squeezing of the Maxwell model may look 

unusual to those who consider that the Maxwell model 

predicts very large elongational viscosities. But, if one 

remembers correctly, the large elongational viscosities of 

Maxwell fluids are obtained at large values of £t A after a 

long time. In other words, in a short time or at small 

values of 4A  the elongational viscosity  is  even  smaller 
• 

than in the Newtonian case (5^). In the squeezing flow, €y 

is large initially, but this large €t can not be maintained 

for a long time since the film thickness is getting thinner 

very quickly. Thus, it is very difficult to build up a 

large elongational viscosity in this geometry. This is why 

the Maxwell fluid is squeezed faster than the Newtonian 

fluid even with the high initial value of 6tA. But, under 

the extraordinarily high loading conditions, the Maxwell 

curves are crossing over the corresponding Newtonian ones at 

very small values of H/H0 (see \ppendix G for  the  detail). 

Even  though  the absolute differences between (H/H0) MaxwC|| 
-3 

and (H/Ho)N<Jwt0n;an  are very small (in the order of 10   or 

less), the relative differences between them are around 2 in 

the cases of Appendix C.  This fact may be important in  the 

field of lubrication technology. 

The rapid squeezing of the Johnson-Segalman model 

(Fig. 3.7-3.9) and the structural model (Fig. 3.10) are 

particularly interesting, because those  curves  move  above 
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the corresponding inelastic ones after some amount of 

initial faster squeezing. The effect is more prominent in 

the Johnson-Segalman model. The slower squeezing of these 

models must be due to the specific features which are not 

found in other models: that is, the predictions of the 

stress overshoot phenomenon and non-zero TÄ - 733 in simple 

shear flow of the Johnson-Segalman model, and the stress 

overshoot in the structural model. Figs. 3.8 and 3.9 show 

the effect of non-zero retardation time in the 

Johnson-Segalman model, which damps the oscillation. 

3.4 Finite element simulation (Maxwell) 

The main purpose of this section is to develop and 

test a finite element numerical scheme, to be used in 

solving the unlubricated problem in chapter 4. In 

particular, we will consider the contravariant convected 

Maxwell model. The problem has been already solved in the 

lubricated case in Section 3.3.2. Thus, the numerical 

scheme is tested by solving that same problem and comparing 

the result to the one obtained in Section 3.3.2. 

The problem becomes complicated since we wish to 

include the unsteady inertia and the unsteady elasticity 

terms in the equations of motion and the constitutive 

equations, respectively. Numerically, it becomes more 

complicated because the domain changes as time goes  on  and 
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unsteady transient equations have to be solved between time 

steps. Thus, we will pose the problem in a more natural 

way, following the pathlines of each material point in 

Lagrangian coordinates. In other words, each nodal point in 

the initial grid moves along its own pathline as time goes 

on, and we use material time derivatives instead of using 

the partial time derivatives in the equations. 

The equations to be solved are 

V-V  = 0 (3.68) 

DV 
/>£=- = -Vp + 7-2 (3.69) 

2 + xi^k -?yi-2vyT] = )[vy + yyT]     (3.70) 

Initial conditions have to be specified (since we have  time 

derivatives).  These initial conditions are given by 

r = v = 0     at t = 0. (3.71) 

The time derivatives are treated by a finite 

difference scheme in the time coordinate. We use the 

implicit three point recurrence scheme with variable time 

steps, which requires at least two previous solutions. To 

solve for the solution at t=tn+l based on two previous 

solutions (at tn and tn_, ) , the material time derivative is 

discretized (on the time axis) by 
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f£A)     = ' [^„-.(^tn + ^tn-i)^, 
V Pt/n+|        ^tn  Atn-i (Atn+Atn-i) L 

- (Atr,+ 4tn-i) An +(dtn) An-il3   ?2) 

where At„-,   =    t„ -  tn-i 

*atn     =       "fcn + i   ~ "tn 

A;   =    A      at     t = ti 

All other terras in the equations involve the unknown 

variables at t=tn+, . The discretized (in time) forms of 

equations (3.68 )-(3.70) are given by 

^Xn-H = 0 (3.73) 

riiB  - ■>.., -vz*: <3-74) 

I,., + XUnL  -W~2-,-Z»,7J/n«] = 1 ['y««tVy„:j  (3.75) 

The whole system has to be solved simultaneously on the 

given domain. The Newton-Raphson method is used to treat 

the nonlinear terms, and the predictor-corrector method is 

used to improve the shape of the grid in each time step. 

The mixed finite element method,  which  was  first 

introduced   by  Kawahara  and  Takeuchi(1977)  and  further 
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studied by Crochet and Bezy(l979), and Crochet and 

Keunings(1980), has been adopted to solve the system 

(3.73)-(3.75). This method differs from the displacement 

method used by Chang et. al.(1979a,b) in terms of the 

unknown fields. In the mixed method, the pressure, the 

velocity components, and the stress components are the 

unknown fields, while in the displacement method, the 

pressure and the velocity components are the unknown fields 

and the stress components are calculated by means of an 

iterative technique. In particular, we have chosen the 

triangular elements and the same shape functions as those of 

Crochet and Keunings; that is, the linear shape function in 

the pressure and the quadratic shape function in the 

velocity and the stress components (see Fig. 3.11). The 

Galerkin finite element formulation of system (3.59)-(3.51) 

is straightforward and is given in Appendix D. The 

resulting simultaneous linear algebraic system is solved by 

the frontal elimination technique proposed by Irons(1970) to 

reduce the use of the central core memory. The numerical 

algorithm to solve the lubricated compressive flow of the 

contravariant convected Maxwell fluid under a constant load 

is given in Fig. 3.12. 

The initial grid used in the calculation and the 

deformed grids at later times are shown in Fig. 3.13, in 

which one  can  easily  see  that  the  deformation  of  the 
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2l(7rr,Tzz, 7rz, 'fed- 

Pi 
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"j^ : quadratic 

d>. :   linear 

Fig. 3.11 A triangular element and nodal 

variables. 
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Read data  (  X, f,   mass,  7, A,   etc.) 

i 
Read previous solutions ( Yn»2h> Pn ) 

( Yn-i,2h-l.   Pn-1  ) 

 > Enter    At 

I 
Move nodal points   (  Xn+j_   ) 

1 
Finite element solution ( Vn+l»2ri+l» Pn+1 )<- 

I 
Calculation of force 

,,          n0  Adjust top disk 
Convergence test ? »velocity 

yes 

Print solution 

» no 
Next time  step ? »STOP 

I yes 

Yn-l=Xm    2n-l=2n»     Pn-l"Pn 
In=In+l >     Zn = In+1»     Pn=Pn+l 

Fig.   3.12    Numerical algorithm to  solve 
the  lubricated compressive flow of Maxwell 
fluid. 



85 

H/Ho =1.0 

Time = 0.0 

H/Ho = 0.7641 

Time = 0.075 

H/Ho = 0.8198 

Time = 0.120 

H/Ho = 0.6938 

Time = 0.230 

Fig. 3.13 The initial grid and the deformed 
grids (at later times) in the lubricated com- 
press ive flow of contravariant convected 
Maxwell fluid. 
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material is indeed biaxial extension. Small numbers of 

elements have been used in this calculation because the 

stress field is uniform throughout the domain, and there is 

no stress singularity in this problem. Fig. 3.14 shows the 

oscillatory finite element result (H/Ho vs. time curve) 

compared to the semianalytical solution obtained in Section 

3.3.2. The agreement between them is very good. Now, we 

can proceed to the next, more complicated problem, which is 

the unlubricated compressive flow of the contravariant 

convected Maxwell fluid. 

3.5 Viscosity range of the lubricant to produce the biaxial 

extensional flow 

If the viscosity of the lubricant is too low, the 

lubricant layer will be expelled quickly during the early 

time of the squeezing. On the other hand, if the viscosity 

is too high, then the flow in the viscous testing fluid will 

no longer be extensional flow. Therefore, to generate a 

lubricated compressive flow, or a biaxial extensional flow, 

a lubricant with the proper range of viscosity has to be 

used. 

We know from Section 2.2 that the less viscous fluid 

near the wall is expelled preferentially when the 

extensional stress in the central viscous fluid is greater 

than  the  shear  stress  in the less viscous fluid near the 
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wall.  In other words, in order to ensure that the lubricant 

layer  is  not preferentially expelled during the early time 

of the squeezing, we require the following condition: 

extensional stress in the viscous fluid 
_ ; . ,  <  1 

shear stress xn the lubricant 

or, for Newtonian fluids, 

4i(^<, (3.76, 

where ">, is the viscosity of the lubricant, ")z is the 

viscosity of the central viscous material, and 5 is the 

thickness of the lubricant layer.  From this we have 

(3.77) 

which gives us the lower limit of the lubricant viscosity. 

If the condition (3.77) is satisfied, parallel 

squeezing would be expected and hence the radial velocity 

profile is given by 

W=->4/H^i (3.78) 

where 

Cx - v' !H#] (3.79) 

See Appendix  A  for  the  details  of  deriving  the  above 

velocity profile. 
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In order to have nearly extensional flow in the 

central viscous fluid, the radial velocity at the interface 

between two fluids (at z=H-5) should be very close to the 

one at the centerplane (at z=0). Thus we can set a 

criterion for this purpose to be 

(vy) z=H - s- 

(Vr)z=o 
> 0. 95 (3.80) 

Since 

and (Vr)2 = 0 = -T^t^HSj-^fH-J)*] 

Equation (3.80) becomes 

Zfi(S*-2HS) 
> 0.?S 

or 

(3.81) 

which represents the upper limit of the lubricant viscosity. 

Therefore, the conditions (3.77) and (3.81) together 

determine the range of the viscosity of the lubricant which 

should be used to produce a nearly biaxial extensional flow 

in the central viscous fluid, to the extent that the 

rheology of both fluids can be taken to be Newtonian. 



CHAPTER 4 

UNLUBRICATED COMPRESSIVE FLOW 
OF VI3COELA3TIC MATERIALS 

We consider the unlubricated compressive flow, in 

which the no-slip boundary condition is satisfied by the 

viscoelastic materials. First, we consider a linearized 

viscoelastic case, in which an approximate solution can be 

obtained, which gives us much useful information. The 

contravariant convected Maxwell fluid will then be examined, 

since this model is on the side of convenience with a modest 

approach toward realism, even though it cannot predict the 

stress overshoot and the second normal stress difference in 

shear flow. In this case a numerical solution of the 

partial differential equations is inevitable. A finite 

element method, which has been tested in Section 3.3, will 

be used. 

4.1 A linearized viscoelastic case 

4.1.1 Assumptions and governing equations 

First it will be assumed that the velocity profiles 

are the same as those of a Newtonian fluid;  that is, 

90 
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(4.1) 

where 

V2   =    f(z,t; 

V,,   =  -±ri'u,t) (4.2) 

fu,t, = X[(|f3(zf] (4.3) 

The priiiie in equation (4.2) implies partial differentiation 

with respect to z. The term V in (4.3) is the downward 

velocity of the top plate. The coordinate system used here 

is given in Fig. 4.1. 

We will also assume that the fluid inertia is much 

less important than the load inertia. This will be shown 

later to be observed in most of the experimental conditions. 

From equations (4.1) and (4.2), the deformation rate 

tensor is given by 

-if -irf" °\ 
6   = '-irf" -if  o 

(4.4) 

0 0 f / 

Using  the  constitutive  equation  (3.23),   the   non-zero 

components of the stress are: 

?„.+ A,4Ä= --)(f'+A^) (4.5) 

7„*\>&--H *'+**& (4-6) 
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-*.r 

Fig. 4.1 The domain used in the unlubri- 

cated compressive flow of viscoelastic 

materials. 
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<zz + Ai -^r - 2>*i \ f + Az. at ; 

7^^1=4)^^) (4.3) 

from which each component of the extra stress tensor  7  is 

obtained as 

7 =_27 (4.10) 

From equation (4.9) ^r = 0 and 7^-7^= 0.  Therefore,  the 

equations of motion become (neglecting fluid inertia): 

1L - l2a (4.12) 
ar  az 

& - £ &0-7«) + T^ (4.13) 

or 

(4.14) 

(4.15) 

Integrating equations (4.14) and  (4.15),  the  pressure  is 

obtained as 
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To determine p0(t),  the boundary condition at the  free 

surface (at r=R) is applied as 

J (Vrr)tsR dZ    = 0 (4.17) 

9 fr«ri-&ft%^htt))«rtä* 
We thus have 

?°(t) = f t 
+ ^^F(-&|o

i(V + Ai^-)exp(±)dt     (4.18) 

The   total   force   exerted  by     the     fluid     On     the     top 

plate   is  given  by  the   following   integration. 

=  /    ( p-7zz)ZsZH2n,rdr (4.19) 
' 0 

Substituting  equations  (4.10),  (4.16),  and  (4.18)  into 

(4.19) and performing the integration one obtains 

+ i*T«K-^[V + ^]«p(^}A       (4.20) 

This force is balanced by the one exerted by the load, 

F = mid-%) (4.2D 

Equating equations (4.20) and (4.21) we have 
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Multiplying this equation by exp( -j-) and differentiating 

with respect to time gives the following second order 

dynamical equation: 

dt 

+ JV^i, + f'^v =m3 
(4.23) 

When R/H>>1, equation (4-23) reduces to 

d3V ^ «r, . i 3713 R*1 dv , jre^«*, m X i_V 4. mr, , x 3713 R* 1 dv       JJllBZv -  ma 

or 

fm A, d{* + & [ I + 2,   ^J Jt + i Ha V - rmJ        ^ 

where Pm{= ^.mÄ ) is a pseudo-fluid density corresponding to 

the amount of the load in the unlubricated compressive flow. 

The group fim arises when we compare the load inertia to the 

fluid inertia, that is, 

dv load inertia =  m -rr- 
d"t 

fluid  inertia =    (7tR2) -~ I    [[f-^drj        dz 

~   &JL° H   dt 
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When Ai= 0, equation (4.24) reduces further to 

P \ j£l 4. p iy. + i-i-v = P 9 /m^i jtx r rm dt 
r 2. H* v   'm^ (4.25) 

This equation is to be  compared  to  the  counterpart  for 

lubricated flow, equation (3.29), 

or since V=4HGfe from equation (3.2) 

P1ÜV.4..4I + ZA2L v - ÜÜLH - _ p a 

It is to be  noted  that Pm    is  equal  to     »   in  the ]£m_H 

lubricated case. 

Equations (4.25) and (3.29A) have very similar forms 

except for the coefficients of the third terms. Equation 

(4.25) has ?/H*, while (3.29A) has °f/R2. This difference 

comes from the different origin of this third term in each 

equation; the term in equation (4.25) is from the shear 

stress, and the term in equation (3.29A) is from the normal 

stresses. 

The condition under which equation (4.24) predicts 

the occurrence of oscillatory motion is given by: 

3 -) 
Pm
2(H- iihf-^^^TTF  < ° PmH3 

If the  fluid  inertia  is  included  in  the  more  general 
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development, this becomes 

/""('♦iA^)1- effy <  ° 
or 

£^Al_ >   /  1+ 4-#|)Ä (4.26) 

6 T?   >   ( ,+ 1~Rl) (4.27) 

Here       p* =   /» + />„, 

Ra     = * r— (modified   Reynolds  No.) 

Rd     =       Vy (Retardation  No.) 
H 

De     =       Y. ' (Deborah  No.) 
H 

When 6   } *L >>(| + |- j-~)* ,   equation   (4.24)   has   the 

following approximate oscillatory solution. 

Va^itf+«p[-^(i+f^)]-[^S^c.*Ö^J 
The  oscillation  period     is     obtained     as   A-nM\i r^ or,      in fin A, 

*7 
general, as 4£H\hry- . This again has a different 

dependence of the length scale from the period in the 

lubrxcated case,  AKN g-* • 

The condition (4.27) is conservative for the  reason 

that has been discussed in Section 3.2.2;  that is, the time 
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scale of the damping needs to be larger than the time  scale 

of the oscillation for the oscillation to be observed.  The 

more useful condition is obtained by 

2   _L_(i+1. -o%) > 4/tHRy 
or 

°-s# > o+£#f (4.30) 

Here we have again chosen the factor 2 in front of the 

lefthand side of equation (4.28), which has resulted in a 

coefficient of 0.6 in equation (4.30). If one chooses 1 or 

3 instead 2 in equation (4.28), we will have 0.15 or L.4, 

respectively, instead 0.6 in (4.30). 

4.1.2 Numerical solution 

Numerical solutions of equation (4.24) are given in 

this section. H/H0 VS. time curves are shown in Fig. 4.2 at 

various values of relaxation times ( X| = 0.003, 0.01, 0.03) 

and zero retardation time, and compared to the corresponding 

Newtonian curve.  When 0.6 Jtilz    is less than unity, the curve 
r   H 

does not oscillate, as expected from the condition (4.29). 

As 0.6 A„t increases, the oscillation begins and becomes 

severe.   The  oscillation  period  is about the same as the 

[7*% calculated   value  of  T=47IH|/~7ir.        Most     of     the     viscoelastic 



99 

Curves remain below the corresponding Newtonian curve. 

The effect of the retardation time is shown in 

Fig. 4.3. Here, the relaxation time (Ai ) is kept constant 

and the retardation time (A2) varies ( Az= 0., 0-001, 0.003, 

0-01). A small increase of the retardation time reduces the 

oscillation amplitude greatly, as expected from the 

condition (4.30), and the response approaches the Newtonian 

curve as Aa approaches Ai. 

4.2 Gontravariant convected Maxwell fluid 

4.2.1 Governing equations 

With the following kinematics, 

Vr= Vr(r,z,±) ,     V2  = Vz(r,z,t), \lB = 0 (4.31) 

the non-zero components of the deformation  rate  tensor  a 

are  drr / ^9$ •     ^zz>   and ^rz>   from which we also assume that 

the non-zero components of the extra stress  tensor  7  are 

%-f      7es '  ^zz' and ^z-  The unlubricated compressive fl ow 

of a contravariant convected Maxwell fluid is then  governed 

by the following equations and the boundary conditions: 

Continuity: 

T arMJ + f* = o (4.32) 

Momentum: 
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r Dt ~ 
it + 12-(r7\- ^as 4- -^2 (4.33) 

/° DVfe 
Dt az      r sr S>Z (4.34) 

Constitutive: 

3r 
(4.35) 

Vfc 7H*A[^?-*TS.f]-2? r (4.36) 

^^[^"27.^-27«^] = ^ (4.37) 

o-z + AL Dt  rr ar '« az  M sr * sz. / ~ /Uz r »r/ (4.38) 

in which D-fc is the material time derivative. 

Boundary conditions 

Vr = 0   at z = 0, 2H 

V, = 0   at z = 0 

V, = -V  at z = 2H 

Vr = 0   at r = 0 

^p = 0   at r = 0 

All the stresses vanish at 

the free surface, 

(4.39) 



103 

Here we consider the region (0,R)x(0,2H) (the shaded portion 

in Fig. 4.1). Note that we do not have flow symmetry with 

respect to z=H (the center plane) because we wish to include 

the fluid inertia and the load inertia, while the top plate 

is moving down and the bottom plate is stationary. 

In the linear viscoelastic case, it was possible to 

solve for the stress components explicitly, assuming that 

the velocity profiles are the same as for a Newtonian fluid. 

Then, substituting into the momentum equation, we were able 

to compute the closing rate. In the present problem we 

cannot obtain the stress components explicitly because of 

the nonlinearity of the constitutive equations. Therefore, 

we have to solve seven partial differential equations 

(4.32-4.38) simultaneously under the given condition (4.39). 

The finite element numerical technique, which has been 

tested in Section 3.4, will be applied to solve this 

problem. 

4.2.2 Finite element simulation 

In section 3.4, we were able to solve the lubricated 

compressive flow of a contravariant convected Maxwell fluid 

using a finite element numerical technique. We now wish to 

solve the unlubricated compressive flow problem using the 

same finite element  routine  but  with  different  boundary 
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conditions. The no-slip boundary conditions along the solid 

wall (see (4.39)) are imposed in the present problem, while 

the slip boundary conditions were used in the lubricated 

case. Since the no-slip boundary conditions cause the 

stress singularity at the edge of the disk, we use small 

elements around the edge of the disk to relax the 

singularity within a small neighborhood of the edge. 

The initial grid used in the calculation and the 

shapes of the boundaries at later times are shown in 

Fig. 4.4 and the calculated results are given in Fig. 4.5, 

in which H/H0 is plotted against time. This is- compared to 

the linear viscoelastic case. It is seen from this figure 

that the overall behavior of the Maxwell fluid is about the 

same as in the linear viscoelastic case, except that the 

Maxwell case shows a somewhat smaller amplitude of the 

oscillation, which may be due to the non-linear behavior of 

the Maxwell fluid. Both viscoelastic curves remain below 

the corresponding Newtonian curve. 

The shear rate in this flow depends upon the 

position and the time. The maximum shear rate occurs at the 

edge of the disk and at the time when the closing speed 

reaches the highest value. In the calculation presented in 

Fig. 4.4 and 4.5, this maximum value of shear rate, tma.x > is 

210 sec"1 at time t=0.22. Since the relaxation time( A ) 

used in this calculation is 0.1 sec, 7«.«» A. turns out  to be 
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t = 0. 
H/H0 = 1. 

t = 0.018 
H/H0 = 0.885 

t = 0.038 
H/H0 = 0.756 

t = 0.066 
H/H0 = 0.866 

Fig. 4.4 The initial grid and the shapes of the 
■boundaries at later times in the unlubricated 
compressive flow of a contravariant convected 
Maxwell fluid. 
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21. This high value of fmax A , under which the solution 

converges, is not surprising if one considers that this flow 

is an oscillatory transient flow. The value of imMk is 

zero at t=0, it increases as the squeezing goes on, and it 

reaches the maximum, then it decreases, etc. Higher values 

of 7mAXA were tried, but the solution didn't converge after 

several time step when 3"mox A reaches 36. In the steady- 

state calculation of Maxwell fluid, the highest value of 

Z\ , under which the solution converges, has been known as 

around 1 to 2 depending upon the type of the flow (see 

Crochet and Keunings, 1982; Mendelson et. al., 1982; 

Viriyayuthakorn and Caswell,1980). It is desirable to do 

the computation with higher JmaxA in the future, when the 

convergence problem at high TA # which is one of the major 

problem in the numerical calculation of viscoelastic 

materials, is resolved. 

At this point, one can conclude that approximating 

the overall behavior (H/H0 VS. time) of the Maxwell fluid by 

the linear viscoelastic prediction is favorable at the 

values of rmaxA at least up to 21, since the finite element 

calculation of Maxwell fluid is several orders of magnitude 

more expensive than th-s linear viscoelastic case. 



CHA.PTER 5 

EXPERIMENTS 

Experiments on the unlubricated compressive flow of 

Newtonian and viscoelastic materials under a constant load 

have been carried out to obtain the film thickness as a 

function of time. The apparatus and the materials used are 

described in Sections 5.1 and 5.2, respectively. The 

experimental results are shown and compared to the 

theoretical predictions in Section 5.3. 

Experiments on the lubricated compressive flow were 

attempted; these were unsuccessful, since the lubricant 

along the wall surface was expelled quickly during the early 

moments of squeezing, after which the central test material 

began to stick to the wall. To perform this type of 

experiment successfully, the viscosity ratio of the 

lubricant and the test material must be chosen very 

carefully (see Section 3.5), or a sophisticated device which 

can supply the lubricant to maintain almost constant 

thickness of the lubricant layer through the squeezings 

needs to be designed. 

5.1 Apparatus 

108 
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The apparatus used in the experiments  is  shown  in 

the picture (Fig. 5.1). There are three parts: the 

squeezing equipment (A), the thickness measuring device (B), 

and the recording equipment (C). 

5.1.1 Squeezing equipment (see Fig. 5.2) 

The squeezing equipment is composed of a rigid 

stationary part and a moving part. The central cylindrical 

rod (Al), at the bottom of which a flat circular disk (A2) 

is attached, moves through two linear ball bushings (A3,A4) 

which provide the straight movement of the moving rod. The 

test material is placed between the bottom plate (A5) and 

the circular disk. At the instant t=0, the load (all the 

moving parts) on the material is released. The upper plate 

falls down under the influence of the gravitational 

acceleration, with the test material being squeezed out. 

5.1.2 Thickness measuring device (LVDT, see 

Fig. 5.3) 

Continuous measurement of the film thickness during 

squeezing is accomplished with the LVDT (linear variable 

differential transducer), which is manufactured by Schaevitz 

Eng. Go. The specifications of the LVDT used are given in 

Table 5.1. The LVDT is composed of two parts, the body (Bl) 

and the core (B2). The body is fixed on the stationary part 

of the squeezing equipment and the core is attached  to  the 
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Fig. 5.1  The apparatus used in the squeezing 
experiments: (A)squeezing equipment, (B)thickness 
measuring device, (G)recording equipment. 
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**w 

Fig. 5.2  The squeezing equipment: (Al)cylindrical 
moving rod, (A2)circular disk, (A3,A4)linear ball 
bushings, (A5)bottom plate. 
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Fig. 5.3  The thickness measuring device 
(LVDT): (Bl)body, (B2)core. 
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Manufacturer :  Schaevitz Engineering Co. 

Model no. :  200 DC-D 

Calibration data by manufacturer 

Linear range :  ±0.200 in. 
Sensitivity :  51.500 V/in. 
Linearity :  <0.25% of full range 
AC ripple :  <10 mV (max.) 

Dimensions 

Body :  0.75 in. d * 3.80 in. 1 
Core :  0.187 in. d * 1.80 in. 1 

Weight 

Body :  73 g 
Core :  5 g 

Operated by ±15 V DC 

Table 5.1 The specifications of LVDT used 
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moving cylindrical rod, so that the core moves with the rod. 

5.1.3 Recording equipment 

The continuous measurement from the LVDT is sent to 

the oscilloscope (Textronix 531h) and appears as a moving 

spot on the screen. The picture of the trace of the moving 

spot is taken with the Tektronix C-13 camera and a Polaroid 

Land pack film camera back. 

5.2 Materials 

Two Newtonian fluids have been used as the standards 

to test the apparatus. Three different viscoelastic 

materials have been used in the experiments to investigate 

viscoelastic effects in the compressive flow. 

5.2.1 Newtonian materials 

Viscasil 30000 : This is a viscous silicone fluid 

manufactured by General Electric Co., whose viscosity is 

constant and known as 60000 cs (at 25°C) and density is 0.97 

g/cnr3 . 

Dow Corning 200 fluid, 12500 : manufactured by Dow 

Corning Co. Its viscosity is 12500 cs (at 25°G) and density 

is 0.975 g/cnr . 

5.2.2 Viscoelastic materials 
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Silicone Polymer : This is a three phase material 

(silicone resin, plasticizer, and filler) manufactured by 

ICI, England. This material is known to have rheological 

properties close to those of linear Maxwell fluid, based 

upon the oscillatory shear measurements (see also Fig. 19-2 

of Denn(1980)). 

The oscillatory shear data have been obtained 

through the courtesy of Dr. K. F. Wissbrun of the Celanese 

Research Corporation. Appendix F.l contains a tabulation of 

the storage modulus(G'), the loss modulus(G") and the 

absolute value of the complex viscosity(7*) as a function of 

the circular frequency(cü) at three different temperatures. 

By taking 23°C as a reference temperature, |3*|«J could be 

superposed on to one mastercurve with the help of the 

horizontal shift factors(ay) (see Gupta(1980)), which is 

shown in Fig. 5.4. And furthermore we know from the linear 

viscoelastic theory that 

k*|^ =  ?" (5.1) 

or 

jw = 17*|co ( l + ^A*)^ (5i2) 

Using (5.2), Jn) vs. u>dj is plotted in Fig. 5.5, from which 

one can see that the viscosity is nearly constant in the 

given range of the circular frequency. We will use this 

constant viscosity to analyze the squeeze film data later. 
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TLA-227 : A concentrate of a methacrylate copolymer 

in petroleum oil, manufactured by Texaco, Inc. The steady 

shear measurements at low shear rate range were made on the 

Rheometrics Mechanical Spectrometer (of Celanese) and the 

capillary measurements were made at high shear rates. The 

shear stress and the normal stress data are tabulated as a 

function of the shear rate in Appendix F.2. The end 

correction (see Bagley, 1957) in the capillary measurement 

was unnecessary since the capillary tubes used were long 

enough (L/R=160, 268). The results are shown in Fig. 5.6 at 

various temperatures. At 27°C, the spectrometer data and 

the capillary data agree well, which illustrates the 

correctness of both data. The material shows slightly shear 

thinning behavior(n=0.86) at high shear rates. 

PAA-water solution : 3.3 wt. % Separan AP-30 (a 

partially hydroiyzed polyacrylamide manufactured by Dow 

Chemical Company) in water solution was made and 

characterized with a Weissenberg Rheogoniometer. The shear 

stress and the first normal stress data are given in 

Appendix F.3 and shown in Fig. 5.7. This material is highly 

shear thinning(n=0.267) and highly elastic. 

5.3 Experimental results and discussion 

Experimental results on Newtonian fluids are 

tabulated  in  Appendix  G.l and shown in Fig. 5.8, in which 
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Fig.   5»6    Shear stress vs.   shear rate of 
TLA-227. 
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H/H0 is plotted against dimensionless time,  t  ( = ^- j^z(-jf) y) • 

Thay  agree well with the Stefan equation, which illustrates 

the quality of the apparatus and technique used. 

Experimental results on viscoelastic materials are 

given in Appendix G.2 and shown in Figs. 5.9-5.13. The 

corresponding inelastic curves (analytical or numerical) are 

also shown in each figure for comparison purposes. The 

values of 7me9iJ\  for each run are also given in Appendix G.2. 

Figs. 5.9 and 5.10 show the squeezing of Silicone 

polymer. It is seen from Fig. 5.9 that the material seems 

to be squeezed instantaneously at t=0. The details of this 

initial movement have been obtained by expanding the time 

axis and are shown in Fig. 5.10, in which the linear 

viscoelastic prediction is also shown for comparison 

purposes. Since "W A in this experiment is 9, we expect 

that the Maxwell prediction would be close to the linear 

viscoelastic one based upon the conclusion drawn in Section 

4.2.2. It shows that the initial movement is not the 

instantaneous squeezing, but the oscillatory squeezing, and 

that the linear viscoelastic theory predicts the correct 

oscillation period, but a larger oscillation amplitude than 

the experimental result. Both experimental results on 

silicone polymers stay below the corresponding Newtonian 

curve and it is likely that this material is close to a 

Maxwell type of fluid,  as  expected  from  the  oscillatory 
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shear data. 

The squeezing curves of TIA-227 are shown in 

Figs. 5.11 through 5.13. One can see that the experimental 

curves stay above the corresponding inelastic curves. 

Fig. 5.14 shows the result for the PAA-water solution, which 

has the similar characteristic as TIA-227. Most data on 

these two solutions show an inflection point which probably 

reflects a very weak oscillation. In Section 4.2.2 we have 

seen that the Maxwell model predicts the faster squeezing at 

ä^A ( = 21) which is higher than those(=2 —10) in these 

experiments. Thus, it is not likely, at least in this type 

of transient flow, that these two polymer solutions are 

close to Maxwell, or in general White-Metzner, type of 

fluids. 

It is desirable to try more realistic and thus 

complex models, which can describe the transient behavior 

more precisely, in finite element calculations in the 

future. The Phan-Thien-Tanner, Johnson-Segalman, and 

Marrucci structural models would all be candidates for this 

purpose. 



CHAPTER 6 

SUMMARY AND RECOMMENDATION'S 

6•1 Summary of präsent work 

1. The unlubricated coraprassive flows of Newtonian 

fluids and power-law fluids have been simulated by a finite 

element technique, verifying that the Stefan equation 

(Newtonian) and the Scott equation (power-law) based upon an 

assumption of parallel squeezing are good provided the R/H 

ratio is large enough. When R/H is small, the edge affect 

causes slower squeezing than predicted from the Stefan 

equation or the Scott equation. 

2. When there exists a substantial transverse 

viscosity gradient in the fluid charge, two different flow 

regimes are predicted depending upon whether the 

dimensionless group, 3 (= ■'"** )V) is small or large compared 

to unity. When S is small compared to unity, the parallel 

squeezing assumption is valid and the maximum velocity 

occurs at the center plane. When S is large compared to 

unity, the parallel squeezing assumption breaks down and the 

maximum velocity occurs in the low viscosity fluid near the 

disks.   Thus, a new analysis is necessary in this case.  In 
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the two fluids case, new assumptions other than the parallel 

squeezing assumption have been made to derive an analytical 

solution which is found to be in good agreement with the 

finite element numerical solution. 

3. The partially-filled compressive flow of 

Newtonian fluid has been solved numerically. The flow 

patterns in the partially-filled compressive flow, or the 

flow in the mold cavity, are essentially the same as those 

one observes in the fully-filled case except near the front 

: here we observe the expected fountain flow phenomenon in 

the partially-filled case. 

4. The lubricated compressive flow of linear 

viscoelastic material has been solved analytically and 

numerically. The compressive motion under a constant amount 

of load may or may not be oscillatory, depending upon the 

conditions as predicted by equations (3.49-52). When 

oscillation occurs, it is due to the combined effects of 

inertia, the elasticity, and the viscosity. The oscillation 

period is given by 7lRy?7~. The retardation time plays an 

important role in the damping of the oscillatory motion. 

5. The lubricated compressive flows of non-linear 

viscoelastic model fluids, including the contravariant 

convected Maxwell model, White-Metzner model, 

Johnson-Segalman  model (with and without retardation time), 
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and Marrucci structural model, have been solved numerically. 

The contravariant convected Maxwell model and White-Metzner 

model predict faster oscillatory squeezing than the 

corresponding inelastic cases, except at very small H/H0 

under the extraordinarily high loading conditions. The 

Johnson-Segalman model and the Marrucci structural model 

predict slower oscillatory squeezing than the corresponding 

inelastic cases at high squeezing speed. These different 

responses seem to be due to the stress overshoot phenomena, 

since Johnson-Segalman model and Marrucci structural model 

do predict stress overshoot, but the contravariant convected 

Maxwell model and White-Metzner model do not. 

6. The unlubricated compressive flow of linear 

viscoelastic materials has been solved analytically, 

assuming that the velocity field is the same as the 

Newtonian one. The behavior is very similar to the 

lubricated case except that the principal length scale is 

different   from  the  lubricated  case.   When oscillation 

tJEk 
occurs, the oscillation period is given by £/cH\l ej  • 

7. The unlubricated compressive flow of the 

contravariant convected Maxwell model has been solved 

numerically, using a finite element technique. The results 

are about the same as in the linear viscoelastic case except 

that the oscillation amplitude of the Maxwell fluid is 

somewhat smaller than for the linear viscoelastic material. 
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4-„   nr->       f-he   viscoelastic 3. Squeezing   experiments   on  tne 

materials have  shown  two different behaviors,  silicone 

polder, which can be «11  characterized by the  linear 

Maxwell «d.i.  shows faster oscillatory squeezing than the 

corresponding Newtonian cases, while TL»-«7  and Paa-water 

solution show weax bounces  and slower squeezing than the 

corresponding inelastic cases.   The behavior of  silicone 

polymer  is predictable  from the Maxwell model, but the 

responses of TLa-227 and PaA-water  solution  are different 

from  those predicted by the Maxwell model.  To explain the 

l.tt.r behavior, we might need a constitutive equation which 

can predict  the  transient responses.  such as the stress 

overshoot, more precisely. 

, -^„ t-hp   slower   squeezing   of 9. In  conclusion,   tne   s^^w-*.    -i 

viscoelastic material,  or higher load-bearing capacity of 

„iscoelastic  lubricants,  seems  to be not due  to  the 

. _i,i   hnf äu^     to  the  transient 
elasticity  of  the material,  but  du_ 

.. -*,i     Tn  other  words,   the 
responses  of   the   »aterial.    In 

dimensionless group ^A alone may not be the proper 

dimensionless group to describe the whole features of the 

squeezing of viscoelastic materials. We require the ratio 

of oaborah number to Reynolds number to describe the 

oscillatory behavior and also require at least one more 

dimensionless group which can describe  the  transient 

„  of  the materials  such as  stress overshoot 
responses   or   cn<s  mai-= 

phenomenon. 
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6.2 Recommendations for future work 

1. The use of the Phan-Thien-Tanner model, Johnson- 

Segalman model, or Marrucci structural model is recommended 

for the further study of the compressive flow problems. 

2. In all transient problems it may be important to 

use constitutive equations which describe the transient 

fluid behavior precisely. 

3. The development of a constitutive equation, which 

can describe the transient responses more precisely, is 

desirable. 
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APPENDIX ß 

GOVERNING EQUATIONS IN THE LUBRICATED GPMPRESSIVE 
FLOW OF NON-LINEAR MODEL FLUIDS. 

Assuming the kinematics given by equations (3.1-3), 

the lubricated compressive flow of non-linear model fluids 

are governed by equations (3.19, 16, 22), and the 

corresponding constitutive equations which calculate Trr and 

7zz. The constitutive equations which will be considered 

here include White-Metzner model, Johnson-Segalman model 

(with or without retardation term), and structural model. 

Since the contravariant convected Maxwell model is just a 

special case of White-Metzner model (when ^(1^ )=J0), or 

Johnson-Segalman model (when|=0), it will not be dealt with 

separately. 

B.l White-Metzner model 

Rewriting equations (3.19, 16, 22), 

dk =    m(8+6Hef) - -^Tip R* L* + §rcfR*H%* -ft/for-2a) (3#19} 

i**[r*'mr+j?i!h] 
dH = -2Hi (3-15> 

Tne   Irr   and   7zz  in   (3.19)   are  calculated   using  White-Metzner 
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constitutive equation given by equation (3.6 ) 

2+f 2= a?0.)d 

In the lubricated compressive flow, 

d = M  W + VVT) = 

and 

ild = -±[(trdf - tr(d2)] = +34' 

(3.6 ) 

(B.l) 

(B.2) 

If one assumes that the viscosity is given by the  power-law 

relationship, that is, 

7 (Id) = K|+4lj| 
n-i 

2. (B.3) 

where K is the consistency factor and n is the power-law 

index, the radial and axial components of equation (3.65) 

are written as 

J% \-n 
dt 
Ft-=2$6t-_3-3-141' "7     + 2$, 7rr 

K(/2) 

4^=-**- K(/2)- 

ii-n 
6tl 7^-4^% ZL 

(B.4) 

(B.5) 

Equations (3.19, 16, 22) and (B.4, 5) are all first 

order ordinary differential equations and they can b^ solved 

simultaneously using the Runge-Kutta method or Gear's 

method. 
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ß. 2 Johnson-Sagalman model 

Equations (3.19, 16, 22) remain the same and the 

stress components (rr and zz) of Johnson-Segalman 

constitutive equation with retardation term (3.55), in the 

lubricated compressive flow, are given by 

7M + A1L*+4(i-W&T5.]=-*?[ft+M# + «'-«^f] 

or 

dt     Aj 
2Z 
(B.7) 

Again it is not difficult to solve the equations (3.19,  16, 

22) and (B.6, 7) simultanuously. 

s' 3 Structural model 

First we need to rearrange equation  (3.19)  in  the 

following form, 

since the constitutive equations are  written  in  terms  of 

frr(= ?H/G) and 7„(= Zz/3) . 

In the lubricated compressive flow, the constitutive 

equations (3.67) become 
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4s     ,   1  r d7,r _      •   *  -, .   • (B.9) 
<rr + A L "dt ^ <™-J       ^ £* 

<q- =   €c° X     , A = \o X 

dx '    /.     .,       „       '     /£" (B.10) 
dT= —<'-x;) -a*Tfr 

All the equations are the first order ordinary differential 

equations again, which can be solved easily. 

Computer programs for each model are found in the 

Appendix E.3. Here, Gear's method has been used to solve 

given ordinary differential equations simultaneously. 



APPENDIX C 

THE LUBRICATED COMPRESSIVE FLOW OF MAXWELL 
FLUID UNDER VERY HIGH LOADING CONDITIONS 

The numerical results of the lubricated compressive 

flow of Maxwell fluid under very high loading conditions are 

given here. The geometry and the material properties are 

kept constant as given below. The load varies from 100 to 

10000. 

Geometry and material properties': 

R = 3. 

H0 = 0.05 

/ = 1. 

*l   = 10. 

A = o.i 
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m=100. 
(H/H0)Max 

t (H/H0)Newt (H/H0)Maxwall 
V 

(H/H0)Newt 

0.00 1.000 1.000 0.00 1.00 
0.01 0.899 0.893 10.93 0.99 
0.02 0.694 0.665 17.55 0.96 
0.03 0.507 0.459 18.89 0.91 
0.04 0.327 0.318 17.59 0.85 
0.05 0.281 0.228 15.64 0.81 
0.07 0.175 0.131 12.13 0.75 

0.1 0.109 0.710E-01 8.60 0.65 
0.15 0.522E- -01 0.358E-01 5.46 0.69 

0.2 0.323E- -01 0.226E-01 3.86 0.70 
0.3 0.161E- -01 0.124E-01 2.36 0.77 

0.4 0.979E- -02 0.830E-02 1.72 0.85 
0.6 0.473E- -02 0.474E-02 1.18 0.99 
0.8 0.286E- -02 0.313E-02 0.93 1.09 
1.0 0.191E- -02 0.230E-02 0.79 1.20 

. m=500. 

• 
(H/HQ)Max 

t (H/HQ)Newt (H/HQ)Max ^b^Max (H/H0)Newt 

0.00 1.000 1.000 0.00 1.00 
0.01 0.746 0.738 30.13 0.99 
0.02 0.368 0.345 40.18 0.94 
0.03 0.187 0.167 32.12 0.89 
0.05 0.721E-01 0.604E-01 20.09 0.84 
0.1 0.188E-01 0.155E-01 9.48 0.82 
0.2 0.488E-02 0.449E-02 4.18 0.92 
0.3 0.221E-02 0.233E-02 2.61 1.05 
0.4 0.126E-02 0.149E-02 1.93 1.18 
0.6 0.569E-03 0.793E-03 1.33 1.53 
0.8 0.324E-03 0.497E-03 1.04 1.53 
1.0 0.209E-03 0.341E-03 0.86 1.63 
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m=1000. 

(H/HQ)Max 

t ^^o^ewt . ^/Ho^Max ^ eb * Max (H/HQ)Newt 

0.00 1.000 1.000 0.00 1.00 
0.01 0.677 0.670 41.76 0.99 
0.02 0.251 0.236 51.40 0.94 
0.03 0.110 0.988E-01 36.51 0.90 
0.05 0.376E-01 0.327E-01 21.26 0.87 
0.1 0.903E-02 0.796E-02 9.72 0.88 
0.15 0.398E-02 0.372E-02 6.02 0.93 
0.2 0.223E-02 0.225E-02 4.27 1.01 
0.4 0.560E-03 0.728E-03 1.98 1.30 
0.6 0.251E-03 0.381E-03 1.36 1.52 
0.8 0.142E-03 0.236E-03 1.06 1.66 
1.0 0.911E-04 0.161E-03 0.87 1.77 

4. m=10000. 
(H/H0)Max 

t (H/H0)Newt (H/HQ)Max (^fc^Max (H/H0)Newt 

0.00 1.000 1.000 0.00 1.00 
0.01 0.541 0.539 80.30 0.996 
0.02 0.552E-01 0.534E-01 87.82 0.97 
0.03 0.156E-01 0.150E-01 47.25 0.96 
0.05 0.414E-02 0.399E-02 24.00 0.96 
0.07 0.187E-02 0.184E-02 15.85 0.98 
0.1 0.846E-03 0.859E-03 10.30 1.02 
0.15 0.353E-03 0.386E-03 6.31 1.09 
0.2 0.193E-03 0.228E-03 4.46 1.18 
0.4 0.465E-04 0.703E-04 2.06 1.51 
0.6 0.204E-04 0.358E-04 1.41 1.75 
0.8 0.114E-04 0.219E-04 1.09 1.92 
1.0 0.729E-05 0.147E-04 0.89 2.02 



APPENDIX D 

FINITE ELEMENT FORMULATIONS. 

Since our flow of interest is the axisymmetric flow 

(in r-z coordinate), we will limit ourselves to the 

axisymmetric flow of incompressible fluids. First, we will 

consider the flow of generalized Newtonian fluid. The flow 

of viscoelastic materials will then be considered. The 

excellent treatments on these subject are given by 

Crochet(1981), and Zienkiewicz(1977). 

D.1 Generalized Newtonian flow 

Governing equations : In the compressive flow of 

inelastic generalized Newtonian fluid, the fluid inertia is 

considered negligible (Re<<L). The momentum equations then 

become the quasi-steady state equation, even though the flow 

itself is time dependent. The momentum equations are given 

by 

-f^f^)-^!^^     (D-D 

where fr  and fz represent the components of the body  force 

per unit volume. 

148 



149 

The  constitutive  relations  of generalized     Newtonian 

fluids  are given by 

%r =  2*f dU>   drr 

7ee = 2 | (Id )   d ee 

(D.3) 

(D.4) 

7a = 27 (Ij)   da 

7« = 2 ^ (Ij)  d« 

(D.5) 

(D.6) 

where 

Id  -  " (tr  df -  tr(d2) 

-i- (   d*    +  dee   +  d^ )   +  dKZ (D.7) 

and 

dKr = 

de© = 

3Vy 
dr 

_ 2^k. dzz — 

drz = _L (ML ±Mz_\ 
2.  [ dz    ^  ar / 

(D.8) 

(D.9) 

(D.10) 

(D.ll) 

The mass conservation is given by 

5r 
+ r T az   u (D.12) 

Galerkin  formulation Let   us   consider   the 

approximations of Vr , Vz , and p given by 
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Vr a Z Uj tr (D'13) 

p ~ 4 PJ^J (D
-
I5) 

where "ft. and ^; are the interpolation functions for the 

velocity components and the pressure, respectively, and Uj, 

V: , and Pi are the nodal values of the velocity components 

and the pressure. The Galerkin formulation of the momentum 

equations is then given by 

where the brackets denote the integrations over the given 

domain. 

Performing the integration by parts on equations 

(D.16) and (D.17) and using the divergence theorem, one 

obtains 

<rlF, -P + 7'rr> + <''#>^>+<fi,%e>-<^,P> 

= <rfi,fr> + «rfi)tr»  
(D'18) 

where tr and tz are the r and z component of the contact 

force vector and the double brackets denote the integrations 
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along the boundary of the domain. 

Substituting the constitutive relations (D.3-6) into 

equations (D.18) and (D.19) gives the final form of Galerkin 

equations, 

-<t, P>   =  <ri>;, f,>  + € rtfs,   ir» (D'20) 

* rar ,  U 97. + sr)> + ^r az,   r+^/ 52 ' (D.2D 

= <rfh fz> + <r^   t2» 
Galerkin  form of  the mass  conservation becomes 

Further substituting the approximations of (D.13-15) 

into   (D.20-22),   one  obtains   the   following   algebraic   system 

| (AyOj + CJJVJ)   -rDrjPj    =    X; ^   i:i~M (D.23) 

J5 C Cj? tly + ByVp   -JE EüPj    =    Y;,    J •" I -M (°-24' 

M   ,...,-.. . _      „ ;. ,^M (D.25) 

where 

2(-DjiaJ-EJ.^0 =    °^      h'~H 

A.. - ,/^M  i3JU + <-»r2&   i&> t <^-   -W-> AU ~ 2</rTF,T7> + KY at , 5>z / r' > r J 

R..   ,   a<ari^l     i*>+   <»r2*       »&> 

&^      < r "ST,   % > 

Xi * < ri>i ,$>> + «r^;,^» ,   Y =<^;J*>+«^;J-tz» 
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The solution of the system (D.23-25) can be obtained 

by a certain iteration technique, since the viscosity is a 

function of the velocity field in general. One can assume a 

constant viscosity to obtain the velocity field in the first 

iteration and the new viscosities are obtained from the 

previously obtained velocity field. One then repeats this 

procedure until the solution or the viscosity converges 

within a given error allowance. This technique has been 

used successfully to solve the unlubricated compressive 

flows of the power-law fluids in Section 2.3. 

Solving equations (D.23-25) requires the calculation 

of all the matrices, which are the integrations in the 

domain, and the selection of the appropriate elements and 

shape functions i>; and j>] . Numerical integration, using 

quadrature points, is the effective way of performing 

integations. Two types of elements have been successful in 

the past. The first element is a triangle on which the 

velocity components are represented by complete second order 

polynomials, while the pressure is given by complete first 

order polynomials. The second element is a quadrilateral 

with biquadratic velocity components and bilinear pressure. 

The functions ^\ and 4>] are given in Tables D.l and D.2 for 

the triangular and the quadrilateral element, respectively. 
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D.2 Viscoelastic flow : Maxwell fluid 

Governing equations : Let us consider the 

compressive flow of the contravariant convected Maxwell 

fluid. One then requires to retain the material time 

derivative terms in the momentum equations and in the 

constitutive equations.  They are given in the following. 

Momentum: 

Constitutxve: 

786*A[#-n.^]=2^ (D.29) 

7rz + AL of" ~ ""5T ~fs~äz"    f"l ar ^ 32./J (D.31) 

The continuity equation is given by 

2V, ^ V*.   ,    cNz   _ 

•m+& 
„^+^=0 (D-32' 

A mixed finite element method  :   In  this  method, 

first proposed by Kawahara and Takeuchi, the extra stress 
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components are considered as unknown functions to the same 

degree as the velocity components and the pressure. Thus, 

we consider 7 unknown fields for axisymmetric flow: 4 

stress components, 2 velocity components, and the pressure. 

We use the following approximations for these unknown 

fields, 

Vr « 2 Ujl£ (D.33) 

V2 * X Vjfj '(D.34) 

p ~  21 PJ& (D.35) 

7rr « 2 £,-7,- (D.36) 

7zz ~ Z.SJ7J (D.37) 

7« = Z TjTj (D.38) 

%6 ~ Z &j7J (D.39) 

The Galerkin form of the constitutive  and  field  equations 

may then be obtained as follows, 

< rr,, l^Xl^-X^-^-k) -J7 ft > - «   <D-40> 

< r7; , 7„ +A[ ^ -2%, £] -^ £->-0 (D-41) 

<I-T,,   7=+A[£f-A^-*r«#]-^> = o     (D.42, 
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<«•*,#>+<'*, ■£>+<*>, ^>-*     (D-45) 

By replacing Vr , Vx , 7rr , 7^, Z*, 76e , and p in terms of 

their approximations given by (D.33-39) it is possible to 

obtain a non-linear algebraic system of equations in terms 

of the unknowns, Uj , Vj , Rj , Sj , Tj , Qj , and p. , which is 

solved by means of Newton-Raphson iterative method. 

The material time derivatives are treated by a 

finite difference scheme in the time coordinate. Their 

discretization, using the implicit three point recurrence 

scheme with variable time steps, is given by equation 

(3.72). 

The same types of elements as used in the 

generalized Newtonian flow have been shown to work well with 

the mixed method, using the same interpolation functions for 

the velocity components and the stress components; that is, 

7\   -ft • 
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I       4      z 

parent triangular element 

-s-7 

= s 

? 

Table D.l Shape functions, <?; and f] ,   in 
the parent triangular element. 
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1 
+1 

-1 •H 

parent quadrilateral element 

4>3* d-sxi-'})/*   ,       <£+= (H-va-p/i 

%=  5(1-5)^1-^/4 ,   Y,3 

5 (l + $)(l-f)/j2. 

Table D.2 Shape functions, ^; and 1^; , in 
the quadrilateral element. 
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APPENDIX 

COMPUTER PROGRAMS 

The computer programs for the lubricated compressive 

flows of the White-Metzner, Johnson-Segalman, Marrucci 

structural models, and their corresponding inelastic cases 

are given here. Subroutine DGEAR, the differential equation 

solver by Gear method, from IMSL subroutine package has been 

used in these programs. Each program deals with the 

following case: 

Program Description 

WM3LP.F0R White-Metzner model with 

power-law viscosity 

PWL3LP.F0R inelastic power-law fluid 

JS3LP.F0R Johnson-Segalman model 

NJSSLP.FOR inelastic case corresponding to 

Johnson-Segalman model 

SMSLP.FOR Marrucci structural model 

NSMSLP.FOR inelastic case corresponding to 

Marrucci model 
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Programs used in the lubricated compressive flows 

£************************************************************** 
C 
C     PROGRAM WMSLP.FOR 
C 
C LUBRICATED SQUEEZING OF WHITE-METZNER FLUIDS. 
C c************************************************************* 

INTEGER N,METH,MITER,INDEX,IWK(5),IER,IRV 
REAL Y(5),WK(115),T,TOL,TEND,DELT 
DOUBLE PRECISION PRINT,THHO 
EXTERNAL FCN,FCNJ 
COMMON/AB/A,B 
COMMON/AM/AMASS 
COMMON/G/GM 
COMMON/VR/VISC,GSHEAR,PLI 

Q************************************* 

TYPE 10 
10 FORMAT(' INITIAL CONDITIONS'/' ENTER T0,EB0,PRR0 

1,PZZ0,H0,R0') 
ACCEPT *,T0,EB0,PRR0,PZZ0,H0,R0 
TYPE 11 

11 FORMAT(' ENTER DENSITY, SHEAR MODULUS, VISCOSITY OR' 
1        ' CONSISTENCY FACTOR, POWER LAW INDEX, MASS') 
ACCEPT *,DENS,GSHEAR,CONF,PLI,AMASS 
VISC=CONF*(12. )**( (PLI-D/2.) 
TYPE 12 

12 FORMAT(' ENTER TOLERANCE, DELT') 
ACCEPT *,TOL,DELT 
TYPE 15 

15 FORMAT(' ENTER NPRT,INTERVAL') 
ACCEPT *,NPRT,AINTR 
TYPE 16 

16 FORMATC ENTER FILENAMES FOR PRINT / T VS. HHO') 
ACCEPT 117,PRINT,THHO 

117   FORMAT(Al0/A10) 
Q************************************ 

OPEN(UNIT=31,DEVICE='DSK',FILE=PRINT) 
OPEN(UNIT=32,DEVICE='DSK',FILE=THH0) 
WRITE(31,17) 

17 FORMATC LUBRICATED SQUEEZING OF WHITE-METZNER FLUID') 
WRITE(31,25) DENS,GSHEAR,CONF,PLI,AMASS 

25    FORMATC DENSITY = ',E14.5/' SHEAR MODULUS = ',E14.5/ 
1   ' CONSISTENCY FACTOR = ',E14.5/' POWER LAW INDEX = ', 
1   E14.5/' MASS = ',E14.5) 
WRITE(31,27) TOL 

27    FORMATC TOLERANCE = ',E14.5) 
C******************************************* 

PI=3.14159265357989 
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N=5 
METH=1 
MITER=0- 
INDEX=1 
WRITE(31,28) METH,MITER,INDEX 

28   FORMAT(/' METH = ',14/' MITER = ',14/' INDEX = ',14/) 

T=T0 
Y(1)=EB0 
Y(2)=PRR0 
Y(3)=PZZ0 
Y(4)=H0 
Y(5)=R0 

GM=980.*AMASS 
A=PI*DENS 
B=PI*VISC 

EB=Y(1) 
PRR=Y(2) 
PZZ=Y(3) 
H=Y(4) 
R=Y(5) 
HH0=H/H0 
WRITE(5,20) 
WRITE(31,20) 

20 F0RMAT(//7X,'TIME',12X,'EB,,11X,,PRR',11X,'PZZ', 
1 13X,'H',13X,'R',10X,'H/H0',10X,'DELT'/) 
WRITE(5,21) T,EB,PRR,PZZ,H,R,HH0,DELT 
WRITE(31,21) T,EB,PRR,PZZ,H,R,HHO,DELT 
WRITE(32,*) T,HH0 

21 FORMAT(8E14.5) 
£************************************ 

DO 100 I=1,NPRT 
TEND=FLOAT(I)*AINTR+TO 
CALL DGEAR(N,FCN,FCNJ,T,DELT,Y,TEND,TOL,METH,MITER, 

1 INDEX,IWK,WK,IER) 
EB=Y(1) 
PRR=Y(2) 
PZZ=Y(3) 
H=Y(4) 
R=Y(5) 
HH0=H/H0 
WRITE(31,21) TEND,EB,PRR,PZZ,H,R,HHO,DELT 
WRITE(32,*) TEND,HH0 

100   WRITE(5,21) TEND,EB,PRR,PZZ,H,R,HH0,DELT 
CLOSE(UNIT=31,DISPOSED PRINT') 
CLOSE(UNIT=32) 
STOP 
END 

Q********************************************** 
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SUBROUTINE FCN(N,T,Y,YPRIME) 
C********************************************* 

INTEGER N 
REAL Y(5),YPRIME(5),T 
COMMON/AB/A/B 
COMMON/AM/AMASS 
COMMON/G/GM 
COMMON/VR/VISC,GSHEAR,PLI 

c************************************** 
PI-3.14159265357989 
EB=Y(1) 
EB2=EB*EB 
PRR=Y(2) 
PZZ=Y(3) 
H=Y(4) 
H2=H*H 
R=Y(5) 
R2=R*R 
R4=R2*R2 

YPRIME(1)=(GM+4.*AMASS*H*EB2~A*R4*EB2/4. 
1 +4.*A*R2*H2*EB2/3.-PI*R2*(PRR-PZZ)) 
1 /(A*R4/4.+2.*A*R2*H2/3.+2.*AMASS*H) 
YPRIME(2)=2.*GSHEAR*EB-GSHEAR/VISC*ABS(EB)**(1.-PLI)* 

1 PRR+2.*EB*PRR 
YPRIME(3)=-4.*GSHEAR*EB-GSHEAR/VISC*ABS(EB)**(1.-PLI)* 

1 PZZ+-4.*EB*PZZ 
YPRIME U) =~2. *EB*H 
YPRIME(5)=EB*R 

RETURN 
END 

Q*********************************************** 

SUBROUTINE FCNJ(N,T,Y,PD) 
INTEGER N 
REAL Y(5),PD(N,N),T 
RETURN 
END 
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Q********************************************************* 

C 
C     PROGRAM PWLSLP.FOR 
C 
C LUBRICATED SQUEEZING OF POWER LAW FLUIDS. 
C 
Q********************************************************* 

INTEGER N,METH,MITER,INDEX,IWK(3),IER,IRV 
REAL Y(3),WK(63),T,TOL,TEND,DELT 
DOUBLE PRECISION PRINT,THHO 
EXTERNAL FCN,FCNJ 
COMMON/AB/A,B 
COMMON/AM/AMAS S 
COMMON/G/GM 
COMMON/P/PLI 

Q************************************* 

TYPE 10 
10 FORMATC INITIAL CONDITIONS'/' ENTER TO,EB0,H0,R0') 

ACCEPT *,T0,EB0,H0,R0 
TYPE 11 

11 FORMATC ENTER DENS, VISC OR CONSISTENCY FACTOR,' 
1 ' POWER LAW INDEX, MASS OF LOAD') 
ACCEPT *,DENS,VISC,PLI,AMASS 
TYPE 12 

12 FORMATC ENTER TOLERANCE, DELT') 
ACCEPT *,TOL,DELT 
TYPE 15 

15 FORMATC ENTER NPRT, INTERVAL') 
ACCEPT *,NPRT,AINTR 
TYPE 16 

16 FORMATC ENTER FILENAMES FOR PRINT & T VS. HHO' ) 
ACCEPT 117,PRINT,THHO 

117   FORMAT(Al0/A10) 
Q************************************ 

OPEN(UNIT=31,DEVICE='DSK',FILE=PRINT) 
OPEN(UNIT=32,DEVICE='DSK',FILE=THH0) 
IF(PLI.EQ.l.) WRITE(31,17) 
IF(PLI.NE.l.) WRITE(31,18) 

17 FORMAT(/' LUBRICATED SQUEEZING OF NEWTONIAN FLUID'//) 
18 FORMAT(/' LUBRICATED SQUEEZING OF POWER LAW FLUID'//) 

IF(PLI.EQ.l.) WRITE(31,25) DENS,VISC,AMASS 
IF(PLI.NE.l.) WRITE(31,26) DENS,VISC,PLI,AMASS 

25 FORMATC DENSITY = ',E14.5/' VISCOSITY = ',E14.5/ 
1 ' MASS = ',E14.5) 

26 FORMATC DENS =',E14.5/' CONSISTENCY FACTOR =',E14.5/ 
1 ' POWER LAW INDEX = ',E14.5/' MASS = ',E14.5) 
WRITE(31,27) TOL 

27 FORMATC TOLERANCE = ',E14.5) 
Q************************************ 

PI=3.14159265357989 
N=3 
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METH=1 
MITER=0 
INDEX=1 
WRITE(31,28) METH,MITER,INDEX 

28   FORMAT*/' METH = ',14/' MITER = ',14/' INDEX = ',14) 

T=T0 
Y(1)=EB0 

' Y(2)=H0 
Y(3)=R0 

GM=980.*AMASS 
A=PI*DENS 
B=PI*VISC 

EB=Y(1) 
H=Y(2) 
R=Y(3) 
HH0=H/H0 
WRITE(5,20) 
WRITE(31,20) 

20 FORMAT(//7X,'TIME',12X,'EB',12X,'H*,13X,'R',10X, 
1 'H/HO',10X,'DELT'/) 
WRITE(5,21) T,EB,H,R,HH0,DELT 
WRITE(31,21) T,EB,H,R,HH0,DELT 
WRITE(32,*) T,HH0 

21 FORMAT(6E14.5) 
Q************************************ 

DO 100 I=1,NPRT 
TEND=FLOAT(l)*AINTR 
CALL DGEAR(N,FCN,FCNJ,T,DELT,Y,TEND,TOL,METH,MITER, 

1 INDEX,IWK,WK,IER) 
EB=Y(1) 
H=Y(2) 
R=Y(3) 
HHO=H/HO 
WRITE(31,21) TEND,EB,H,R,HH0,DELT 
WRITE(32,*) TEND,HH0 

100   WRITE(5,21) TEND,EB,H,R,HH0,DELT 
CLOSE(UNIT=31) 
CLOSE(UNIT=32) 
STOP 
END 

C********************************************** 
SUBROUTINE FCN(N,T,Y,YPRIME) 

Q*************************************** ****** 

INTEGER N 
REAL Y(3),YPRIME(3),T 
COMMON/AB/A,B 
COMMON/AM/AMASS 
COMMON/G/GM 



164 

COMMON/P/PLI 
Q************************************** 

EB=y(i) 
EB2=EB*EB 
H=Y(2) 
H2=H*H 
R=Y(3) 
R2=R*R 
R4=R2*R2 
AAA=1. 
IF(ABS(EB).EQ.O.) AAA=0. 

YPRIME(1)=(GM+4.*AMASS*H*EB2~A*R4*EB2/4. 
1 +4.*A*R2*H2*EB2/3.-6.*B*R2* 
1 (12.)**((PLI-1.)/2.)*EB* 
1 ABS(EB)**(AAA*(PLI-1.))) 
1 /(A*R4/4.+2.*A*R2*H2/3.+2.*AMASS*H) 
YPRIME(2)=-2.*EB*H 
YPRIME(3)=EB*R 

RETURN 
END 

Q*********************************************** 

SUBROUTINE FCNJ(N,T,Y,PD) 
INTEGER N 
REAL Y(3),PD(NfN)",T 
RETURN 
END 
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C******************************************************* 
C 
C    PROGRAM JSSLP.FOR 
C 
C LUBRICATED COMPRESSIVE FLOW OF 
C JOHNSON-SEGALMAN MODEL. 
C 
C******************************************************* 

INTEGER N,METH,MITER,INDEX,IWK(5),IER,IRV 
REAL Y(5),WK(115),T,TOL,TEND,DELT,MASS 
DOUBLE PRECISION PRINT,THHO 
EXTERNAL FCN,FCNJ 
COMMON/AB/A,B 
COMMON/M/MASS 
COMMON/G/GM 
COMMON/VR/VISC,RTIMEl,RTIME2 
COMMON/MP/G,RTIME,XI,EPS 

Q************************************* 

7     TYPE 10 
10 FORMAT(' INITIAL CONDITIONS'/' ENTER TO,EB0,PRR0,PZZ0,H0,R0*) 

ACCEPT *,T0,EB0,PRR0,PZZ0,H0,R0 
TYPE 11 

11 FORMAT(' ENTER DENSITY, AND MASS OF LOAD') 
ACCEPT *,DENS,MASS 
TYPE 111 

111 FORMAT(' ENTER SHEAR MODULUS, RELAXATION TIME, AND', 
1 ' RETARDATION TIME') 
ACCEPT *,G,RTIMEl,RTIME2 
TYPE 112 

112 FORMAT(' ENTER XI') 
ACCEPT *,XI 
TYPE 12 

12 FORMAT(' ENTER TOLERANCE, DELT') 
ACCEPT *,TOL,DELT 
TYPE 15 

15 FORMAT(' ENTER NPRT,INTERVAL') 
ACCEPT *,NPRT,AINTR 
TYPE 16 

16 FORMAT(' ENTER FILENAMES FOR PRINT / T VS. HHO') 
ACCEPT 117,PRINT,THH0 

117   FORMAT(Al0/A10) 
Q************************************ 

OPEN(UNIT-31,DEVICE='DSK',FILE=PRINT) 
OPEN(UNIT=32,DEVICE='DSK',FILE=THH0) 
WRITE(31,17) 

17 FORMAT(/' LUBRICATED COMPRESSIVE FLOW OF JOHNSON-', 
1 'SEGALMAN MODEL'//) 
WRITE(31,25) DENS,G,RTIME1,RTIME2,XI,MASS 

25    FORMAT(' DENSITY = ',E14.5/' SHEAR MODULUS = ', 
1        E14.5/' RELAXATION TIME = ',E14.5/ 
1 ' RETARDATION TIME = ',E14.5/' XI = ', 
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1 E14.5/'   MASS  =   ',E14.5) 
WRITE(31,27)   TOL 

27 FORMATC   TOLERANCE   =   ',E14.5) 
Q*************************************** 

PI=3.14159265357989 
N=5 
METH=2 
MITER=0 
INDEX=1 
WRITE(31,28) METH,MITER,INDEX 

28 FORMAT(/' MWTH = ',14/' MITER = f,I4/' INDEX - ',14/) 

T=T0 
Y(1)=EB0 
Y(2)=PRR0 
Y(3)=PZZ0 
Y(4)=H0 
Y(5)=R0 

GM=980.*MASS 
A=PI*DENS 

EB=Y(1) 
PRR=Y(2) 
PZZ=Y(3) 
H=Y(4) 
R=Y(5) 
HH0=H/H0 
WRITE(5,20) 
WRITE(31,20) 

20 FORMAT(//7X,'TIME',12X,'EB',11X,'PRR',11X,'PZZ', 
1 13X,'H',13X,'R',10X,'H/H0',10X,'DELT*/) 
WRITE(5,21) T,EB,PRR,PZZ,H,R,HH0,DELT 
WRITE(31,21) T,EB,PRR,PZZ,H,R,HH0,DELT 
WRITE(32,*) T,HH0 

21 FORMAT(8E14.5) 
C************************************ 

DO 100 I=1,NPRT 
TEND=FLOAT(I)*AINTR+TO 
CALL DGEAR(N,FCN,FCNJ,T,DELT,Y,TEND,TOL,METH,MITER, 

1 INDEX,IWK,WK,IER) 
EB=Y(1) 
PRR=Y(2) 
PZZ=Y(3) 
H=Y(4) 
R=Y(5) 
HH0=H/H0 
WRITE(31,21) TEND,EB,PRR,PZZ,H,R,HH0,DELT 
WRITE(32,*) TEND,HH0 

100   WRITE(5,21) TEND,EB,PRR,PZZ,H,R,HH0,DELT 
CLOSE(UNIT=31,DISPOSE='PRINT') 
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CLOSE(UNIT=32) 
STOP 
END 

C********************************************** 
SUBROUTINE FCN(N,T,Y,YPRIME) 

C********************************************* 
INTEGER N 
REAL Y(5),YPRIME(5),T,MASS 
COMMON/AB/A,B 
COMMON/M/MASS 
COMMON/G/GM 
COMMON/VR/VISC,RTIME1,RTIME2 
COMMON/MP/G,RTIME,XI 

Q************************************** 

PI=3.14159265357989 
EB=Y(1) 
EB2=EB*EB 
PRR=Y(2) 
PZZ=Y(3) 
H=Y(4) 
H2=H*H 
R=Y(5) 
R2=R*R 
R4=R2*R2 

YPRIMEd) = (GM+4 . *MASS*H*EB2-A*R4*EB2/4 . 
1 +4.*A*R2*H2*EB2/3.-PI*R2*(PRR-PZZ)) 
1 /(A*R4/4.+2.*A*R2*H2/3.+2.*MASS*H) 
YPRIME(2)=2.*G*(EB+RTIME2*(YPRIME(1)-2.*(1.-XI) 

1 *EB2))+2.*(1.-XI)*EB*PRR-PRR/RTIME1 
YPRIME(3)=-4.*G*(EB+RTIME2*(YPRIME(1)+4.*(1.-XI) 

1 *EB2))-4.*(1.-XI)*EB*PZZ-PZZ/RTIME1 
YPRIME(4)=-2.*EB*H 
YPRIME(5)=EB*R 

RETURN 
END 

C*********************************************** 
SUBROUTINE FCNJ(N,T,Y,PD) 

Q*********************************************** 
INTEGER N 
REAL Y(5),PD(N,N)rT 
RETURN 
END 
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Q************************************************************* 

C 
c 
c 

PROGRAM NJSSLP.FOR 

LUBRICATED SQUEEZING OF INELASTIC FLUIDS 
c WITH JOHNSON-SEGALMAN VISCOSITY. 

r************************************************************* 
INTEGER N,METH,MITER,INDEX,IWK(3),IER,IRV 
REAL Y(3),WK(63),T,TOL,TEND,DELT 
DOUBLE PRECISION PRINT,THHO 
EXTERNAL FCN,FCNJ 
COMMON/AB/A,B 
COMMON/AM/AMASS 
COMMON/G/GM 
COMMON/RX/RTIME1,RTIME2,XI 1           c************************************* 
TYPE 10 

10 FORMATC INITIAL CONDITIONS'/' ENTER TO,EB0,H0,R0') 
ACCEPT *,T0,EB0,H0,R0 
TYPE 11 

11 FORMATC ENTER DENS, ZERO VISC, MASS OF LOAD') 
ACCEPT *,DENS,VISCO,AMASS 
TYPE 111 

111 FORMATC ENTER RTIME1 ,RTIME2 ,XI ' ) 
ACCEPT *,RTIME1,RTIME2,XI 
TYPE 12 

12 FORMATC ENTER TOLERANCE, DELT') 
ACCEPT *,TOL,DELT 
TYPE 15 

15 FORMATC ENTER NPRT, INTERVAL') 
ACCEPT *,NPRT,AINTR 
TYPE 16 

16 FORMATC ENTER FILENAMES FOR PRINT & T VS. HHO') - 
ACCEPT 117,PRINT,THH0 

117 FORMAT(Al0/A10) 
r************************************ 

OPEN(UNIT=31,DEVICE='DSK',FILE=PRINT) 
OPEN(UNIT=32,DEVICE='DSK',FILE=THH0) 
WRITE(31,17) 

17 FORMAT(/' LUBRICATED SQUEEZING OF INELASTIC FLUIDS', 
1        /' WITH JOHNSON-SEGALMAN VISCOSITY') 
WRITE(31,18) DENS,VISCO,AMASS 

18 FORMATC DENSITY = *,E14.5/' ZERO VISCOSITY = ',E14.5/ 
1         ' MASS OF LOAD = ',E14.5) 
WRITE(31,25) RTIME1,RTIME2,XI 

25 FORMATC RELAXATION TIME = ',E14.5/ 
1         ' RETARDATION TIME = ',E14.5/' XI = ',E14.5) 
WRITE(31,27) TOL 

27 FORMATC TOLERANCE = ',E14.5) 
c************************************ 
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PI«3.14159265357989 
N=3 
METH=1 
MITER=0 
INDEX=1 
WRITE(31,28) METH,MITER,INDEX ,   } 

28    FORMAT*/' METH - ',14/' MITER = ',14/' INDEX -  ,14) 

T=TO 
Y(1)=EB0 
Y(2)=H0 
Y(3)=R0 

GM=980.*AMASS 
A=PI*DENS 
B=PI*VISCO 

BB-Y(l) 
H=Y(2) 
R=Y(3) 
HHO=H/HO 
WRITE(5,20) 
WRITE(31,20) .,_ ,R, 10x 20 FORMAT(//7X,'TIME' 12X 'EB  12X, H ,13X, R ,10X, 

i 'H/HO',10X,'DELT'/) 
WRITE(5,21) T,EB,H,R,HHO,DELT 
WRITE(31,21) T,EB,H,R,HHO,DELT 
WRITE(32,*) T,HHO 

21 FORMAT(6E14.5) ^^.a.* 
c************************************ 

DO 100 I=1,NPRT 

SS"SSSiS!^!^.T.I«LT.«.T«D.tOL.«TB.WTE., 
1 INDEX,IWK,WK,IER) 
EB=Y(1) 
H=Y(2) 
R=Y(3) 
HHO~H/HO 
WRITE(31,21) TEND,EB,H,R,HH0,DELT 
WRITE(32,*) TEND,HH0 

100   WRITE(5,21) TEND,EB,H,R,HHO,DELT 
CLOSE(UNIT=31,DISPOSE='PRINT') 
CLOSE(UNIT=32) 
STOP 

c******S*.v************************************ 
SUBROUTINE ?CN(N,T,Y,YPRIME) 

c**************************************** 
INTEGER N ' 
REAL Y(3),YPRIME(3),T 
COMMON/AB/A,B 
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COMMON/AM/AMASS 
COMMON/G/GM 
COMMON/RX/RTIME1,RTIME2,XI 

£************************************** 
EB=Y(1) 
EB2=EB*EB 
H=Y(2) 
H2=H*H 
R=Y(3) 
R2=R*R 
R4=R2*R2 

YPRIME (1) = (GM+4.*AMASS*H*EB2-A*R4*EB2/4. 
1 +4.*A*R2*H2*EB2/3.-6.*B*R2*EB 
1 *(1.+12.*XI*(2.-XI)*RTIME1* 
1 RTIME2*EB2) 
1 /(1.+12.*XI*(2.-XI)*RTIME1* 
1 RTIME1*EB2)) 
1 /(A*R4/4.+2.*A*R2*H2/3.+2.*AMASS*H) 
YPRIME(2)=-2.*EB*H 
YPRIME(3)=EB*R 

RETURN 
END 

c*********************************************** 
SUBROUTINE FCNJ(N,T,Y,PD) 

Q*********************************************** 

INTEGER N 
REAL Y(3),PD(N,N),T 
RETURN 
END 
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C*********************************************************** 
C 
C    PROGRAM SMMSLP.FOR 
C 
C LUBRICATED COMPRESSIVE FLOW OF 
C MARRUCCI STRUCTURAL MODEL. 
C 
Q*********************************************************** 

INTEGER N,METH,MITER,INDEX,IWK(6),IER,IRV 
REAL Y(6),WK(144),T,TOL,TEND,DELT,MASS 
DOUBLE PRECISION PRINT,THHO 
EXTERNAL FCN,FCNJ 
COMMON/AB/A,B 
COMMON/M/MASS 
COMMON/G/GM 
COMMON/VR/VISC,RTIME1,RTIME2 
COMMON/MP/G0,RTIME0,XI,EPS 

Q************************************* 
TYPE 1 

I FORMAT(' LUBRICATED COMPRESSIVE FLOW OF'/ 
1 ' MARRUCCI STRUCTURAL MODEL'// 
1 ' ALL INPUT DATA IN CGS UNITS'/) 

7     TYPE 10 
10    FORMAT(' INITIAL CONDITIONS'/ 

1 ' ENTER T0,EB0,PRR0,PZZ0,H0,R0,X0') 
ACCEPT *,T0,EB0,PRR0,PZZ0,H0,R0,X0 
TYPE 11 

II FORMATC ENTER DENSITY, AND MASS OF LOAD') 
ACCEPT *,DENS,MASS 
TYPE 111 

III FORMATC ENTER ZERO SHEAR MODULUS, ZERO RELAX TIME') 
ACCEPT *,G0,RTIME0 
TYPE 12 

12    FORMATC ENTER TOLERANCE, DELT') 
ACCEPT *,TOL,DELT 
TYPE 15 

15 FORMAT(' ENTER NPRT,INTERVAL') 
ACCEPT *,NPRT,AINTR 
TYPE 16 

16 FORMATC ENTER FILENAMES FOR PRINT / T VS. HHO') 
ACCEPT 117,PRINT,THH0 

117   FORMAT(Al0/A10) 
C************************************ 

OPEN(UNIT=31,DEVICE-'DSK',FILE=PRINT) 
OPEN(UNIT=32,DEVICE='DSK',FILE=THH0) 
WRITE(31,17) 

17 FORMATC/' LUBRICATED COMPRESSIVE FLOW OF ', 
1 'MARRUCCI STRUCTURAL MODEL'//) 
WRITE(31,25) DENS,GO,RTIMEO,MASS 

25    FORMATC DENSITY = ',E14.5/' ZERO SHEAR MODULUS = ', 
1 E14.5/' ZERO RELAXATION TIME = ',E14.5/ 
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1        ' MASS ■ ',E14.5) 
WRITE(31,27) TOL 

27 FORMATC TOLERANCE = ',E14.5) 
Q*************************************** 

PI=3.14159265357989 
N=6 
METH=2 
MITER=0 
INDEX=1 
WRITE(31,28) METH,MITER,INDEX 

28 FORMAT(/' METH = ',14/' MITER = ',14/' INDEX = ',14/) 

T=T0 
Y(1)=EB0 
Y(2)=PRR0/(G0*X0) 
Y(3)=PZZ0/(G0*XO) 
Y(4)=X0 
Y(5)=H0 
Y(6)=R0 

GM=980.*MASS 
A=PI*DENS 

EB=Y(1) 
PRRH=Y(2) 
PZZH=Y(3) 
X=Y(4) 
H=Y(5) 
R=Y(6) 
G=G0*X 
PRR=PRRH*G 
PZZ=PZZH*G 
HH0=H/H0 
WRITE(5,20) 
WRITE(31,20) 

20 FORMATt/^X/TIME'^X/EB' ,11X,'PRR? ,11X,'PZZ', 
1 13X,'H',13X,'R',10X,'H/HO',10X,'DELT',12X,'X'/) 
WRITE(5,21)   T,EB,PRR,PZZ,H,R,HH0,DELT,X 
WRITE(31,21)   T,EB,PRR,PZZ,H,R,HH0,DELT,X 
WRITE(32,*)   T,HH0 

21 FORMAT(9E14.5) 
Q************************************ 

DO 100 I=1,NPRT 
TEND=FLOAT(I)*AINTR+TO 
CALL DGEAR(N,FCN,FCNJ,T,DELT,Y,TEND,TOL,METH,MITER, 

1 INDEX,IWK,WK,IER) 
EB=Y(1) 
PRRH=Y(2) 
PZZH=Y(3) 
X=Y(4) 
H=Y(5) 
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R=Y(6) 
G=GO*X 
PRR=PRRH*G 
PZZ=PZZH*G 
HHO=H/HO 
WRITE(31,21) TEND,EB,PRR,PZZ,H,R,HHO,DELT,X 
WRITE(32,*) TEND,HHO 

100   WRITE<5,21) TEND,EB,PRR,PZZ,H,R,HHO,DELT,X 
CLOSE(UNIT=31) 
CLOSE(UNIT=32) 
STOP 
END 

C********************************************** 
SUBROUTINE FCN(N,T,Y,YPRIME) 

C********************************************* 
INTEGER N 
REAL Y(6),YPRIME(6),T,MASS 
COMMON/AB/A,B 
COMMON/M/MASS 
COMMON/G/GM 
COMMON/VR/VISC,RTIMEl,RTIME2 
COMMON/MP/G0,RTIMEO,XI,EPS 

Q************************************** 

PI=3.14159265357989 
EB=Y(1) 
EB2=EB*EB 
PRRH=Y(2) 
PZZH=Y(3) 
X=Y(4) 
X14=X**1.4 
RX14=RTIME0*X14 
H»Y(5) 
H2=H*H 
R=Y(6) 
R2=R*R 
R4=R2*R2 

YPRIME(1)=(GM+4.*MASS*H*EB2~A*R4*EB2/4. 
1 +4.*A*R2*H2*EB2/3.-PI*R2*G0*X*(PRRH-PZZH)) 
1 /(A*R4/4.+2.*A*R2*H2/3.+2.*MASS*H) 
YPRIME(2)=2.*EB-PRRH/RX14+2.*EB*PRRH 
YPRIME(3)=-4.*EB-PZZH/RX14-4.*EB*PZZH 
YPRIME(4)=(1.-X)/RX14-0.25*X*SQRT(2.*PRRH+PZZH)/RX14 
YPRIME(5)=-2.*EB*H 
YPRIME(6)=EB*R 

RETURN 
END 

C*********************************************** 
SUBROUTINE FCNJ(N,T,Y,PD) 
INTEGER N 
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REAL Y(6),PD(N,N),T 
RETURN 
END 
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C*********************************************************** 
C 
C    PROGRAM NSMSLP.FOR 
C 
C LUBRICATED SQUEEZING OF INELASTIC FLUIDS 
C WITH STRUCTURE-DEPENDENT VISCOSITY. 
C c*********************************************************** 

INTEGER N,METH,MITER,INDEX,IWK(3),IER,IRV 
REAL Y(3),WK(63),T,TOL,TEND,DELT 
DOUBLE PRECISION PRINT,THHO 
EXTERNAL FCN,FCNJ 
COMMON/AB/A,B 
COMMON/AM/AMASS 
COMMON/G/GM 
COMMON/RT/RTIMEO 
COMMON/X/X 

C************************************* 
TYPE 10 

10 FORMATC INITIAL CONDITIONS'/' ENTER TO,EB0,H0,R0,X0') 
ACCEPT *,T0,EB0,H0,R0,X0 
TYPE 11 

11 FORMATC ENTER DENSITY, MASS OF LOAD') 
ACCEPT *,DENS,AMASS 
TYPE 111 

111   FORMATC ENTER ZERO VISCOSITY, ZERO RELAXATION TIME*) 
ACCEPT *, VISCO, RTIMEO 
TYPE 12 

12 FORMATC ENTER TOLERANCE, DELT') 
ACCEPT *,TOL,DELT 
TYPE 15 

15 FORMATC ENTER NPRT, INTERVAL') 
ACCEPT *,NPRT,AINTR 
TYPE 16 

16 FORMATC ENTER FILENAMES FOR PRINT & T VS. HHO' ) 
ACCEPT 117,PRINT,THHO 

117   FORMAT(Al0/A10) 
Q************************************ 

OPEN(UNIT=31,DEVICE='DSK',FILE=PRINT) 
OPEN(UNIT=32,DEVICE='DSK*,FILE=THH0) 
WRITE(31 25) 

25 FORMAT(/' LUBRICATED SQUEEZING OF INELASTIC FLUIDS' 
1 /'WITH STRUCTURE-DEPENDENT VISCOSITY.') 
WRITE(31,26) DENS,VISCO,AMASS,RTIMEO 

26 FORMAT(/' DENS = ',E14.5/' ZERO VISC = ',E14.5/ 
1 ' MASS OF LOAD = ',E14.5/ 
1 ' ZERO RELAXATION TIME = ',E14.5) 
WRITE(31,27) TOL 

27 FORMATC TOLERANCE = ',E14.5) 
c************************************ 

PI=3.14159265357989 
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N=3 
METH=1 
MITER=0 
INDEX=1 
WRITE(31,28) METH,MITER,INDEX 

28    FORMAT(/' METH "■ ',14/* MITER = ',14/' INDEX = ',14) 

T=TO 
Y(1)=EB0 
Y(2)=H0 
Y(3)=R0 
X=XO 

GM=980.*AMASS 
A=PI*DENS 
B=PI*VISC0 

EB=Y(1) 
H=Y(2) 
R=Y(3) 
HH0=H/H0 
WRITE(5,20) 
WRITE(31,20) 

20 FORMAT(//7X,'TIME',12X,'EB',12X,'H',13X,'R',10X, 
1 'H/HO',10X,'DELT',12X,'X'/) 
WRITE(5,21) T,EB,H,R,HHO,DELT,X 
WRITE(31,21) T,EB,H,R,HHO,DELT,X 
WRITE(32,*) T,HH0 

21 FORMAT(7E14.5) 
C************************************ 

DO 100 I=1,NPRT 
TEND=FLOAT(I)*AINTR 
CALL DGEAR(N,FCN,FCNJ,T,DELT,Y,TEND,TOL,METH,MITER, 

1 INDEX,IWK,WKfIER) 
EB=Y(1) 
H=Y(2) 
R=Y(3) 
HH0=H/H0 
WRITE(31,21) TEND,EB,H,R,HH0,DELT,X 
WRITE(32,*) TEND,HH0 

100   WRITE(5,21) TEND,EB,H,R,HH0,DELT,X 
CLOSE(UNIT=31) 
CLOSE(UNIT=32) 
STOP 
END 

C********************************************** 
SUBROUTINE FCN(N,T,Y,YPRIME) 

C********************************************* 
INTEGER N 
REAL Y(3),YPRIME(3),T 
COMMON/AB/A,B 
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COMMON/AM/AMASS 
COMMON/G/GM 
COMMON/RT/RTIMEO 

C.....S2SS5Ä2.«««.«««*»"»» 
EB«Y(1) 
EB2=EB*EB 
H=Y(2) 
H2=H*H 
R=Y(3) 
R2=R*R 

,nn,  VM-X-(1 38564*RTIME0*EB*X**2.4+X-1.)/ 

IF(ABS((XN-X)/XN).LT.0.001) GO TO 1001 

1005 X=XN 
GO TO 1002 

1001 X=XN 

woo YPPIMB(i)-(«;*;;«g^S5J-,*:r^i' 
i (l'-X)/(1.38564*RTIME0)) 
1 /(A*R4/4.+2.*A*R2*H2/3.+2.*AMASS*H) 
YPRIME(2)=~2.*EB*H 
YPRIME(3)=EB*R 

RETURN 

INTEGER N 
REAL Y(3),PD(N,N),T 
RETURN 
END 



APPENDIX F 

RHEOLOGICAL DATA 

F.l Oscillatory shear data on silicone polymer 

(1) Temperature = 18 C 

CIRCULAR STORAGE 
FREQUENCY,0) MODULUS,G 
(RAD/3EC) (DYN/CM2) 

0.1 0.750E+04 
0.31 0.400E+05 
1.0 0.275E+06 
3.1 0.145E+07 
10. 0.395E+07 
31. 0.600E+07 

100. 0.620S+07 

LOSS 
MODULUS, G* 
(DYN/CM2) 

0.113E+07 
0.360E+07 
0.107E+07 
0.230E+07 
0.275E+06 
0.185E+06 
0.860E+06 

COMPLEX 
VISCOSITY,Y 
(POISE) 

0.113E+07 
0.117E+07 
0.110E+07 
0.877E+06 
0.481E+06 
0.203E+06 
0.626E+05 

Horizontal shift factor (#y) = 1.60 

(2) Temperature = 23 C 

CIRCULAR STORAGE 
FREQUENCY, a) MODULUS,G 
(RAD/SEC) (DYN/CM2) 

0.1 0.240E+04 
0.31 0.130E+05 
1.0 0.101E+06 
3.1 0.710E+06 
10. 0.296S+07 
31. 0.590E+07 
100. 0.650E+07 

LOSS 
MODULUS, G" 
(DYN/CM2) 

0.730E+05 
0.230E+06 
0.700E+06 
0.185E+07 
0.310S+07 
0.265E+07 
0.135E+07 

COMPLEX 
VISCOSITY,7 
(POISE) 

0.730E+06 
0.743E+06 
0.707E+06 
0.639E+06 
0.429E+05 
0.208E+06 
0.664E+05 

Horizontal shift factor (<^T) = 1»0 
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(3) Temperature = 35°C 

CIRCULAR 
FREQUENCY,^ 
(RAD/SEC) 

0.1 
0.31 
1.0 
3.1 
10. 
31. 
100. 

STORAGE t 
MODULUS,G 
(DYN/CM2) 

0.100E+03 
0.305E+04 
0.109E+05 
0.173S+06 
0.115E+07 
0.390E+07 
0.570S+07 

LOSS    „ 
MODULUS,G 
(DYN/CM2) 

0.325E+05 
0.100E+06 
0.330S+06 
0.940E+06 
0.230S+07 
0.320E+07 
0.210E+07 

COMPLEX    y 
VISCOSITY,^? 
(POISE) 

0.325E+06 
0.323E+06 
0.330E+06 
0.308E+06 
0.257E+06 
0.163E+06 
0.607S+05 

Hor izontal shift factor (#T) = 0.44 
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F.2 Steady shear data on TLA-227 

(1) Temperature = 23.5 C 

SHEAR SHEAR NORMAL REMARK 
RATE, 1 STRESS, 7,z STRESS, YM- ■u 
(SEC-1) (DYN/CM2) (DYN/CM *> 

32.1 0.934E+04 — CAPILLARY 
37.6 0.105E+05 - (L/R = ae8) 
51.0 0.136E+05 - » 
74.8 0.192E+05 - * 
118.2 0.286E+05 - v 

(2) Temperature = 27 G 

SHEAR SHEAR NORMAL REMARK 
RATE, t STRESS, 7U STRESS, ?ii-?aa. 
(3EGH) (DYN/CM*) (DYN/CM3-) 

1.0 0.260E+03 0 110E+03 CONE & PLi 
2.5 0.600E+03 0 300E+03 // 

6.3 0.145E+04 0 120E+04 ,, 

16. 0.336S+04 0 440E+04 a 

25. 0.463E+04 0 880E+04 /, 

34.5 0.751E+04 - CAPILLARY 
70.5 0.140S+05 - (Vk-*CÖ> 
98. 1.83E+05 - ,/ 

122.8 Ö.224E+05 - // 

168. 0.291E+05 - '/ 
195.3 0.333E+05 - * 
62.8 0.119E+05 - CAPILLARY 
123.3 0.212E+05 - (L/R = I6D) 
194.5 0.316E+05 - /i 

259.1 0.423E+05 - ii 

357.9 0.557E+05 - u 



(3) Temperature = 30 G 
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SHEAR 
RATE, t 
(3EG"1) 

1.6 
2.5 
6.3 
10. 
16. 
25. 

SHEAR 
STRESS,?! a 
(DYN/CMa) 

0.304S+03 
0.500E+03 
0.113E+04 
0.1852+04 
0.272S+04 
0.400E+04 

NORMAL 
STRESS, Til-?** 
(DYN/CM2) 

0.800E+02 
0.180E+03 

0.150E+04 
0.320E+04 
0.588S+04 

REMARK 

GONE & PLATE 

// 

(4) Temperature = 35
WC 

SHEAR . 
RATE, *■ 
(SEC"') 

1.6 
4. 
10. 

SHEAR" 
STRESS, 7i* 
(DYN/CM*) 

0.216E+03 
0.488E+03 
0.115E+04 

NORMAL 
STRESS, To-7» 
(DYN/CM*) 

0.206E+03 
0.940S+03 

REMARK 

GONE & PLATS 
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F. 3 Steady shear data on 3.3 v/t. _% PAA in water solution 

Temperature = 25  C 

SHEAR SHEAR NORMAL REMARK 
RATE,t STRESS, Tu STRESS,?.."?«. 
(SECT1) (DYN/CMa) (DYN/CMa) 

1.05 0.262S+03 — CONE & 
2.1 0.330E+03 - // 
5.28 0.447E+03 - » 
10.5 0.561E+03 - /, 
21. 0.683E+03 - '1 

52.3 0.879E+03 0.574E+04 o 

105. 0.105S+04 0.862E+04 '/ 

210. 0.126E+04 0.137E+05 >f 

419. 0.151S+04 0.211S+05 ll 



APPENDIX G 

EXPERIMENTAL DATA ON THE SQUEEZING FLOW 

G-1 Newtonian Fluids 

(1) Viscasil 50000 

Run   1 
R  =  i.252   cm 
2H0   =  0.102   cm 
m =  6289   g 

7- 580 poise (at 25°C) 

t (sec) 2H (cm) 

0. 0.1021 
0.0388 0.0760 
0.102 0.0584 
0.204 0.0455 
0.306 0.0385 
0.408 0.0340 
0.612 0.0282 
0.816 0.0247 

Run 2 : 
R = 1.252 cm 
2H0 = 0. 101 cm 
m = 6289 g 

1  " 580 poise (at 25°C) 

t (sec) 2H (cm) 

0. 0.101 
0.0408 0.0750 
0.112 0.0569 
0.214 0.0448 
0.316 0.0375 
0.418 0.0329 
0.520 0.0297 

183 
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(2) Dow Corning 200 fluid, 12500 

Run 1 

R = 2.534 cm 
2H0 = 0.211 cm 
m = 3676 g 
^ = 130 poise (at 22.5°G) 

t (sec) 2H (cm) 

0. 0.211 
0.0214 0.188 
0.0897 0.148 
0.2254 0.112 
0.3274 0.0969 
0.429 0.0855 
0.5314 0.0775 
0.633 0.0719 

Run 2 

R = 1.252 cm 
2H0 = 0.122 cm 
m = 6290 g 
->j =   121 poise (at 25.5°C) 

t (sec) 2H (cm) 

0. 0.122 
0.0612 0.0403 
0.1632 0.0244 
0.2652 0.0201 
0.3672 0.0171 
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G.2 Viscoelastic materials 

(1) Silicone polymer 

Run 1 

R = 0.505 cm 
2H0 = 0.128 cm 
m = 17480 g 
^ = 920000 poise (at 20 C) 
X = 0.12 sec 

t (sec) 2H (cm) 

0. 0.128 
0.02 0.111 
0.05 0.109 
6.25 0.0986 
0.55 0.0858 
0.95 0.0740 
1.55 0.0617 
2.05 0.0543 
2.55 0.0486 
3.05 0.0444 

Vmftx = 1. cm/sec 
ifmax =105. sec-1 

tmaxA =   12.6 



186 

Run  2 

R = 0. 505 cm 
2H0 = 0.26 cm 
m = 8612 g 
")  =  665000 poise (at 24.4°C) 
X = 0. 1 sec 

t (msec) 2H (cm) 

0. 0.26 
9.2 0.258 
14.3 0.250 
18.9 0.240 
21.9 0.230 
24.5 0.224 
27.8 0.220 
31.1 0.224 
34.4 0.230 
35.7 0.234 
39.8 0.236 
44.9 0.234 
47.4 0.230 
50.0 0.224 
52.5 0.220 
55.6 0.218 
61.0 0.220 
67.9 0.224 
75.5 0.220 
80.6 0.216 
84.7 0.215 
90.3 0.216 
93.8 0.216 
102. 0.214 
111.2 0.211 
116.3 0.211 
134.1 0.207 
152. 0.204 
162.2 0.203 
172.9 0.20 

Vnax   =   3.3   cm/sec 
*max  =  90. 
j m*x X =   9 
ffmax  =  90.      sec"' 
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(2) TLA-227 

Run 1 

R = 2.534 cm 
2H0 = 0.14 cm 
m = 9307 g 
^ = 455(t)0,e6"' (at 23.4°C) 

t (sec) 2H (cm) 

0. 0.14 
0.0306 0.126 
0.102 0.1124 
0.161 0.1005 
0.306 0.0864 
0.510 0.0724 
0.714 0.0636 
0.918 0.0570 
1.122 0.0519 

V™uc=   0.46 cm/sec 

w= 218- sec"1 

ä'MAxA ~    2-2 

Run  2 

R = 1.25 cm 
2H0 = 0.0584 cm 
m = 3143 g 
^ = 455 (7)°'8e-1 

t (sec) 

0. 
0.01275 
0.06375 
0.1148 
0.1658 
0.2168 
0.2678 

2H (cm) 

0.0584 
0.0549 
0.0490 
0.0458 
0.0429 
0.0404 
0.0382 

=  0.275   cm/sec 
2Twxx =   347 . 
I =2 . 95 

sec" 
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Run 3 

R = 1.252 cm 
2H0 = 0.143 cm 
m = 3143 g  _ 

= 455 m°- ? 

t   (sec) 2H   (cm) 

0. 0.148 
0.02 0.105 
0.025 0.103 
0.032 0.0986 
0.065 0.0829 
0.0875 0.074 

VmftX =  2.16   cm/sec 
ywax =594.      sec-1 

3W*A =3.6 
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(3) PAA-water solution 

Run 1 

R = 6.35 cm 
2H0 = 0.2915 cm 
ra = 4751 g 
% = 302.7 (jr)0-2"""' 

t (sec) 2H (cm) 

0. 0.2915 
0.0115 0.2693 
0.0265 0.261 
0.0335 0.2584 
0.053 0.2466 
0.112 0.2145 
0.162 0.1864 
0.212 0.1618 
0.262 0.1435 
0.312 0.131 

Vn,ftj(= i-93 cm/sec 
*m«uc = 398.  sec"' 
^m*xA= 3.7 


