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ABSTRACT

The compressive flow of viscoelastic materials
between two parallel ﬁlat disks under a constant load has
been investigated analytically, numerically, and experi-
mentally. This process simulates a number of compression
molding and lubrication experiments; the purpose of our
study was to assess the effects of fluid viscoelasticity and

of temperature gradients in these applications.

_ Imax H")
- ’7nin Ra

very useful for determining the flow regimes when there

A dimensionless group S ( has Dbeen found
exists a substantial transverse viscosity gradient in the
fluid charge, such as in the nonisothermal compression

molding processes.

Compressive flow of linear viscoelastic materials

has been analyzed analytically. It shows that the squeezing

‘motion becomes oscillatory when the ratio of the Deborah

number to the Reynolds number 1is larger than a critical
value, and that tae 1linear viscoelastic materials vare

squeezed faster than the ccrresponding Newtonian cases.

Compressive flow of various non-linear model fluids

has also been analyzed numerically. The Maxwell fluid

xiv




Xv

behaves much Llike Llinear viscoelastic materials, except
under extraordinarily high 1loading conditions. But, the
Johnson- 3egalman model and the Marrucci structural model
show that slower squeezing may arise after the initial rapid
transient under moderate loading conditions. This slower
squeezing must be due to the special features of these
models, which the Maxwell model does not exhibit, such as

stress overshoot in the transient flows.

Experimentally two different observations ha?e been
made. A silicone polymer shows the oscillatory and the
faster squeezing, which is predictable by the Maxwell type
of model fluid. Two other polymer solutions show an
inflection point, which probably reflects a very weak
oscillation, and a slower squeezing than for the
corresponding inelastic cases. The slower squeezing of
these solutions seems to be due to the transient behavior of
these materials such as stress overshoot. The use of those
models, which can predict the transient behavior more
precisely, is recommended to describe the transient

responses of these materials.




NOMENCLATURE

Symbols
Qa acceleration of the top plate
ar horizontal shift factor
Ci constants
d, dy deformation rate tensof, and its components
£ function £ defined by (4.3)
F force on the top plate
g gravitational acceleration
G shear modulus
Go G at the equilibrium in (3.67)
G’ storage modulus
G” loss modulus
H half of the total film thickness
Ho half of the initial film thickness at t=0
K consistency factor of power-law fluid
m mass of the load on the top plate
n power-law index of power-law fluid
P pressure
r radial position
R radius of the disk
Re initial radius of the disk

XVi




Xvii

dimensionless number defined by (2.14)

w0

t time

t dimensionless time defined by (2.19)
At time incrément

Aatg time increment defined by t,, - tj
T ’ oscillation period

Y 3 speed of the top plate

v velocity vector

Vyr radial velocity

Vg axial velocity

Vi descritized V at node i

Vn descritized V at t=t,

X structural variable

X spacial coordinate

z ‘ axial position

Greek symbols

¥ shear rate in simple shear flow

. , wall shear rate

Fmax maximum shear rate

b} - thickness of the lubricant layer

€p biaxial e.tensional rate

& °  material parameter in equation (3.53)
7 viscosity

A zero shear viscosity




7p
Psv
K
72

Ay, Ag

A2

Ao

xviil

complex viscosity

viscosity of the polymer

viscosity of the solvent

viscosity of the lubricant (less viscous layer)
viscosity of viscous layer

angular position

relaxation time

retardation time

A at the equilibfium defined by (3.67)
material parameter in equation (3.53-55)
density of the material

pseudo-fluid density defined by (3.47) of (4.24)
apparent density (=P +4,)

total stress tensor, and its components

extra atress tensor, and its components

descritized 7 at node i

descritized 7 at t=t,

o~

7 due to the polymer

7 due to the solvent

T/G, Tj/e

linear interpolation functions

quadratic interpolation functions

angular frequency

second invariant of the deformation rate tensor ¢
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Xix

material time derivative
contravariant convected Oldroyd time derivative
contravariant convected Oldroyd time derivative

covariant convected Oldroyd time derivative




' CHAPTER 1
INTRODUCTION

1.1 Relevance of the problem

The problem to be considered in this work is that of

* . . ’
the compressive flow of viscoelastic fluids between two

horizontal circular flat disks, shown schematically in
Fig. l.L. .The test fluid is contained between two disks
which are at rest for times t<0; at t=0 the upper disk 1is
released and falls under the normal load F. The spacing

between the disks is measured as a function of time.

This compressive flow between disks is of interest

for many reasons.

(1) 1t is encountered in the popular plastometer

method, which has been used to determine the material

properties of highly-viscous materials.

(2) It 1is also encountered 1in certain polymer

*The term "compressive flow" stands for the flow in the
opposite sense of the extensional flow, not for the flow of
compressible fluids. It is equivalent to "squeezing flow"
or "squeeze film flow" which has been used more often in the
literature.




Fig. 1.1 Schematic diagram of
the compressive flow.




3
processing operations such as compression molding, injection
molding, stamping, etc. The polymeric charges 1in these
processes are frequently filled with fibers, whose
orientation will determine the material properties of final
products, and the orientation of the fibers is believed to

be determined by the flow behavior of the polymeric medium.

(3) It also arises in lubrication systems, and there

has been a controversy as to whether or not viscoelastic
lubricants will perform better than Newtonian lubricants,
since modern motor oils often contain polymeric additives

which render them viscoelastic..

(4) Most of all, this flow is of particular interest

to rheologists since both shearing and extensional
deformations are present undef transient conditions, the
flow being dominated by shear ﬁear the wall and by extension
in the middle of the gap. Therefore, the compressive flow
is a good candidate to Dbe wused 1in evaluating proposed
constitutive equations, especially transient responses, and

further improving them.

It will be assumed throughout that the £fluid is

incompressible.

1.2 Review of previous work

In this section we will review the principal




. ’ 4
theoretical studies and experimental work which have been

published.

Stefan(1874) appears to be the first to have dealt
with this problem. He analyzed the flow for Newtonian
fluids and derived the equation

L ‘
[ l6F ¢ 2
H(t) = [H:+37I7R‘*] (L.1)

which is known as the Stefan equation after him. A complete
list of symbols and their meanings are found in the
Nomenclature. A more systematic derivation of equation
(L.1), based upon the creeping flow approximation and the
parallel squeezing assumption, is given by Denn(1980). Here
the term "parallel squeezing" implies that material planes
which are initially horizontal remain so during the
subsequent deformation. This assumption is not always
valid, even though it is very wuseful in many cases. In
Section 2.2, we will consider an example in which the
parallel squeezing assumption fails. This has been also
mentioned by Brindley et. al.(1976). The Stefan egquation
has been tested and verified experimentally for Newtonian
fluids by many authors, including Parlato(1969),

Leider(1974), Brindley et. al.(1976), and Grimm(1977).

In 1931, the squeezing of power-law fluids was

analyzed by Scott(l1931), who developed an equation similar




to equation (l1.1) given by

n
LES) T RET

_ Py n 2(n+1) __F(n+3)

where K and n are the consistency factor and the power-law
index of the given power-law fluid, respectively. The
derivation of equation (1.2) will not be repeated ﬁere since
complete developments of .the Scott equation are given
elsewhere (Scott,1931; Leider and Bird,1974; Grimm, 1977).
Experimental work on power-law fluids has been carried out
by Parlato(1969), Leider(1974), Brindley et. al.(1976), and
Grimm(1977). In general, experimental data agree‘well with

the Scott equation.

Various researchers have considered the case of
viscoelastic fluids 1in the compressive flow. All of them
except Metzner(l968a) predict that viscoelastié fluids
squeeze out faster than the corresponding inelastic fluids,
which 1is the opposite of many available experimental

results.

Tanner(1965) analyzed the flow for contravariant
convected Maxwell fluids with a power-law viscoéity and a
constant relaxation time. He argued that the normal stress
effects are small compared to the shear stress effects and
predicted faster squeezing of viscoelastic fluids than the

corresponding power-law fluids.




Metzner(1963a) appears to be the first to have
recognized the possible importance of the extensional flow
as well as the shearing flow in this problem. He mentioned
that extraordinarily high stresses are predicted to be
required for rapid extensional deformation of viscoelastic
fluids, and he predicted slower squeezing of viscoelastic
fluids (contravariant convected Maxwell fluids) Dbasad wupon
the "extensional primary field" approximation
(Metzner,1971). Williams and Tanner(lQ?O) also considered a
combination of shear and extensional effects but concluded
that extensional effects are small compared to the shearing

effects.

Kramer's analysis(1974) is unique in that the
particle path equations. are numerically solved using a
convected coordinate system without neglecting any of the
normal stresses. He used the integral constitutive equation
of Lodge's rubberlike liquid(see Lodge, 1964) with a single
exponential memory function, - which is identical to the
contravariant convected Maxwell £luid. By assuming parallel
squeezing and negligible inertia, he predicted an initial
instantaneous drop and more rapid squeezing of viscoelastic
fluids. The initial drop implies that the material has no
resistance at the instant t=0 except its own 1inertia; noc
resistance of the material implies zero apparent viscosity,

hence infinite Reynolds number. Thus, the inertia should be




taken into account in the compressive flow of viscoelastic
materials under a constant load, even though the creeping
flow approximation (negligible inertia) is very useful in

the inelastic cases.

Leider and Bird(1974) have suggested that the use of

a rheological model which can describe stress overshoot in

simple shear flow 1is imperative to explaih- the slower
squeezing of viscoelastic fluids. The models used in the
three analyses cited above do predict the presence of a
first normal stress difference, Dbut do not predict the
stress overshoot phenomena or a second normal stress
difference 1in shear flows. Leider and Bird proposed an
empirical equation with an overshoot correction factor to be

used in squeeze film problems.

Brindley et. al.(1976) analyzed the flow for the
second order fluid and again predicted faster squeezing of
viscoelastic fluids. The second order fluid shows the first
and second normal stress differences in shear flows, but no
stress overshoot. They also presented some very interesting
experimental results which show solid-like bouncing behavior
under some severe loading conditions, Dbut they did not

provide a theoretical explanation of this bouncing behavior.

Experimental studies on viscoelastic materials

include those of Parlato(l1969), Leider(1974), Brindley
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et. al.(1976), and Grimm(1978). In general, with slow
squeezing (low Deborah number), the squeezing behavior of
viscoelastic fluids is close to the corresponding inelastic
case. With fast squeezing (high Deborah number) most of
experimental results show that viscoelastic materials
squeeze out much slower than the corresponding inelastic
fluids, and under very severe loading conditions some

materials even bounce back after some amount of squeezing.

Some authors (Leider,1974; Leider and Bird,1974)
have used the "“half time", which is the time required for
the disks to move from a separation He to Ho/2, to represent
their experimental results. The "half time" is very useful
in representing the data of purely viscous materials, but it
is not recommended in the viscoelastic cases since it may
conceal interesting elastic effects. This has been pointed

out by Binding et. al.(1976a).

Tichy and Winer(1978) studied constant speed
squeezing flow instead of constant load squeezing, using
Lodge's rubberlike liquid model with a single relaxation
time. They predicted that the load-bearing capacity of a
viscoelastic fluid may be increased due to normal stress
effects or decreased due to a delayed response of shear

o

stress to a change in shear rate.

Shirodkar(1981), and Shirodkar and Middleman(1982)
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also considered constant speed squeezing flow. They used a
constitutive equation due to Wagner(1976), which 1is an
empirical modification to the Lodge's rubberlike ligquid
model. Even though Wagner's model is capable of exhibiting
non-Newtonian viscosity, normal stress in simple shear flow,
and stress overshoot in transient simple shear flow, the
principal drawback in this model is the absence of a general
form of the damping function. They predicted that fluid
elas;icity can increase the force resisting the approach of
the boundaries of a squeeze film at high shear rate. They
also suggested that generalizations regarding the role of
viscoelasticity .may be impossible and the effect of
polymeric additives on load-bearing capacity appears to
depend upon whether the motion is under constant load or

constant speed, or some combination thereof.

The properties of polymeric materials responsible
for the slower squeezing found experimentally are still in

question and need to be studied more systematically.

There has been a somewhat different question in the
compression molding process (usually nonisothermal) which
concerns the flow in the mold. It is important to identify
the portion of the material that flowe preferentially to
fill the remainder of the mold cavity: the fluid near the
wall or that in the central portion of the mold. The answer

will depend upon factors such as geometry, material
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properties, and temperature gradient in the mold. Both
cases have been observed experimentally. There has been no

quantitative analysis of this flow.

1.3 Objectives and approaches of present work

Several basic problems in compressive flow remain
unsolved. Resolving those problems will be the main

objectives of this work, as follows:

(1) We require a better qualitative
understanding of the behavior in compressive
flow of viscoelastic materials between disks

under isothermal conditions.

(2) Furthermore, we wish to analyze this flow
quantitatively to explain the experimental
observations of slower squeezing and bouncing

behavior of viscoelastic materials.

(3) Finally, in the compression molding
processes, we wish to understand the
preferential flow of some portion of the

material in the mold cavity.

In chapter 2 we will consider the compressive flow
of purely viscous fluids, including Newtonian and power-law
fluids. The flow in the mold cavity will be also examined

quantitatively in this chapter.
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Compressive flow between disks is not simple; it is
a combination of shearing and extensional flow under
transient conditioné, and the viscoelastic nature of the
materials of primary interest makes the problem even more
complex. Before dealing with this complex problem we
consider a rather simple, but closely related problem in
Chapter 3; this is lubricated compressive flow. Since
lubricated compressive flow between disks is essentially
biaxial extensional fLow, various kinds of non-linear
viscoelastic constitutive equations can be treated without
great difficulty. The unlubricated problem will be
considered in Chapter 4. Numericai computation is required
in this case. The finite element numerical technique, which
will be tested in the simple lubricated problem in Chapter
3, will be applied to solve the continuity, momentum, and
constitutive equations simultaneouély. In Chaéter 5,
experimental results will be compared to the theoretical

predictions.




CHAPTER 2

COMPRESSIVE FLOW OF
PURELY VISCOUS FQUIDS
The compressive flow of purely viscous fluids will

be treated in this chapter, focusing on the following:

(1) We will investigate the validity of the
Stefan equatioh (for a Newtonian fluid) and
Scott equation (for a power-law f£luid) by
finite element calculations, in Section 2.1 and

2.3, respectively.

(2) We will analyze the flow in the mold cavity
for the compression molding process in Sections

2.2 and 2.4.

(3) Throughout this chapter we will test the
finite element and other numerical schemes used

to solve compressive flow problems.

2.1 Newtonian fluid

The compressive flow of an isothermal inelastic
fluid, neglecting fluid inertia, 1is governed by the

following equations and boundary conditions:

12
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Continuity:

()
L2(ry) + 22 = o (2.1)

Navier-Stokes (variable viscosity, 7=7(r,z)):

2 2 WV a\e aw
0 =~—2‘§ +T-"9‘F[ r.}" it h(ar az](z.z)
2 | 2 Ve , 3V, 2V
0 = -2 + L2[3r(3E+35)]+ &2 ’) (2.3)
Boundary conditions (see Fig. 2.1 for

description of the coordinate system used):

V= 0 , -9—!2-=o‘ atr =0 (2.4)
or
— Ve _ -
V=10, SF =0 at z = 0 (2.5)
V.= 0, V, = -V at z = H (2.6)
All the stresses vanish at the free (2.7)
surface

The second condition in (2.4) comes from the
requirement of zero shear stress along the axis of symmetry.
In the case of the parallel squeezing assumption(Section
2.2.1) this condition is automatically satisfied. This
problem has been solved, based upon the parallel squeezing

assumption, to give the Stefan equation (1.1).
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constant force

l

Fig. 2.1 The domain used in the
numerical calculations.
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We wish to solve the problem numerically with no
assumptions in order to compare the solution to the Stefan
equation. A finite element technique will be used: the
finite element formulation for generalized Newtonian fluids

is given in appendix D.I.

Because of flow symmetry, the domain of interest in
numerical calculations will be confined to a quarter of
entire domain (shaded portion 1in Fig. 2.1). Neglecting
fluid inertia, the problém becomes a quasi-steady state
problem even though the flow itself is transient.
Therefore, at each time instant we solve the steady state
equations (2.1-2.3) under the boundary conditions (2.4-2.7)
on the given domain. Then, after a given time
increment(at ), we move the boundary of the domain by
z::At , solve the problem on the new domain, and proceed to
the next time step. The numerical algorithm is given in
Fig. 2.2. Between time steps, a predictor-corrector method
is used; since the problem 1is entirely 1linear, the top
plate velocity(V) is adjusted linearly to produce the given

constant force.

Numerical calculations have been carried out for
three different values of R/Hqo(=5,15,50). The results are
compared to the Stefan equation in Fig. 2.3, 1in which
dimensionless film thickness(H/Ho) 1is plotted against

lbii).

dimensionless time, E(=%§~ﬁ%;(R 7 At large values of




Read data ( X(I), FORCEO, % etc.)

Time zero ? 1O

yes

—>Finite element solution (V(I), p(I))
Calculation of force (FORCE)

Linear adjustment of solution
V(I)=V(I)*(FORCEO/FORCE)
p(I)=p(I)*(FORCEOQ/FORCE)

Print solution

no
Next time step ? ——> STOP
yas

\ 4
X (1)=X(1) Read previous
yorS (1)=¥(1) < solution (Y(I),p(1))

Enter At

Move boundary nodes (predictor part)
X new=X o1at¥ 019 ¥4t

Finite element solution (Vo (I), Ppe,(I))
Calculation of force (FORCE)

Linear adjustment of solution

L—Move bouadary nqdes (corrector part)
X new Eo1a Tz ¥o1a t¥new ) *AL

Fig. 2.2 Numerical algorithm to solve compres-
sive flow of Newtonian fluids.
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—— STEFAN EQ’N
4 F- El R/HOBS
- F. E. R/Ho=13
+ F.E. R/Ho=3B

Fig. 2.3 Dimensionless plate spacing versus
dimensionless time for isothermal squeezing
of Newtonian fluids.
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R/Hy, numerical results agree well with the Stefan equation,
but as R/H, decreases the discrepancy between the numerical
solution and the Stefan equation increases. This
discrepancy is due to the velocity rearrangement caused by
the stress singularity at the edge of the disk and becomes
small as R/H, increases, wh%ch is also seen in the pressure
profiles (see Fig. 6 and 7 in Appeﬁdix A). In other words,
the parallel squeezing assumption is a good one as long as

R/H is large enough.

In the next section we will see a typical example in
which the parallel squeezing assumption no longer holds and
the boundary condition at the edge of the disk plays an

important role.

2.2 Compressive flow between parallel disks with a

transverse viscosity gradient

Let us consider the flow in the mold cavity in the
compression molding process, which is depicted schematically
in Fig. 2.4. There have been two different observations on
the flow patterns induced as the mold is closed; Marker and
Ford(1977) observed the preferential.flow of hot material
near the mold faces, while Denton(193') and Denn, Tadmor,
and Edelist{198l1) reported no preferential flow of the fluid
near the wall and found the maximum velocity at the center

plane. These flow patterns are shown schematically in
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polymer
charge

Fig. 2.4 Schematic diagram of the
compression molding process.
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Fig. 2.5. Qualitatively it is obvious that both cases are
possible, depending upon the material properties, geometry,

and processing conditions.

A detailed quantitative analysis of this problem is
given in Appendix A, and only its essence will be discussed
in this section. Here we consider the flow between
approaching disks whenr there 1s a substantial viscosity
gradient in the fluid charge; this viscosity difference may
result from the temperature difference caused by.the hot
plates, or it may represent an approximation to the
properties of a viscoelastic charge in which the resistance
to a biaxial deformation will be much greater than to

shearing.
2.2.1 Parallel squeezing assumption

As already mentioned, The parallel squeezing
assumption has been a conventional approach in the squeeze
film problem. It can be shown that it is a direct
consequende of the parallel squeezing assumption that low
viscosity fluid near the disks cannot flow out
preferentially, regardless of the viscosity difference
between the center plane and the wall (see Appendex A).
Therefore, we can see that the parallel squeezing assumption
will not be valid when the viscosity difference and geometry

ara such as to generate a preferential flow of the low
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Fig. 2.5 Flow patterns observed
experimentally.

(a) preferential flow of centra. fluid.

(b) preferential flow of the fluid
near the wall.
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viscosity fluid near the wall.
2.2.2 Squeezing force and boundary condition

The force required to bring the plates together 1is
obtained by integrating the axial total stress over the
surfaces of the disks. The calculation of this force
requires a knowledge of the boundary condition at the outer

edge of the disks.

The usual boundary condition employed at the disk
edge is shown schematically in Fig. 2.6(a); the normal
stress at the free surface, (3;=-p+7%z., is balanced against

atmospheric pressure. This gives

szt;%LBi (2.8)

where -1

0 qu
¢ = VI j zdz
! Hdu y 73 (2.9)

For the case of constant viscosity, we obtain

4
F= —%%-‘H\au— (2.10)

At constant force, this leads to the Stefan equation.

This boundary condition gives a paradoxical
prediction for the case in which there is a large viscosity

difference between the central plane and the walls. From
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R o
" p=0.
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(z= -p +T&== O.
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g = 0.

along free surface

(b)

Fig. 2.6 Boundary condition at the
edge of the disk.

(a) conventional one

(b) real situation
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(2.8) and '(2.9) the force required is of the order of the
smallest viscosity that exists over the finite portion of
the gap, even if the central portion of the gap contains

fluid of arbitrarily large viscosity. Obviously this can

not be true.

A better boundary condition at the outer edge is the
vanishing of all streﬁses on the free surface of the
extruded sheet, shown schematically in Fig. 2.6(b).
Assuming that the velocity rearrangement is restricted to a
small neighborhood near the edge, we can approximate this
condition by requiring that the net radial force component

be zero at r=R; that is,
H
( m'rd2=0 at r = R (2-11)
0

With the parallel squeezing assumption, this gives

0 2
_ rCR* [, _ 8(HP 3G R? xdz
F= =3 [’ 3(R)]+ H LWZHZJH 26)  (2.12)

The second term in (2.12) corresponds to the stress from the

biaxial extension of the central viscous fluid.
When viscosity is constant,
4 2
xC R le(H
F= ZLUR _____)

As long as 5ﬁ<<l, (2.10)and (2.13) are identical. Thus, the

Stefan equation 1is wunchanged by the alternate boundary
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condition.

.

The situation 1is quite different, however, when

there is a large viscosity variation across the gap. The
. 4

first term in (2.12) is of order Qlﬁﬁ%g— and the second 1is

Imax V R? . .
of order H R . Thus, the first or second term dominates

depending upon whether the group

2
S = —1"&‘14—;— (2.14)
’7mln R

is small or large, respectively, compared to unity.

2.2.3 The dimensionless group S

When S is small compared to unity, the stress from
the Dbiaxial extension of the center fluid is negligible and
the maximum velocity occurs at the center plane. Thus the
parallel squeezing assumption and the conventional boundary

condition are both valid.

As S 1increases, the new boundary condition 1is
necessary to compute the correct order of magnitude for the
force, although the parallel squeezing assumption 1is still

valid.

When S is large compared to wunity, the parallel
squeezing assumption breaks down since the maximum velocity
occurs in the low viscosity fluid near the disks. This has

been shown numerically for the case of two fluids; 1i.e., in
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which the viscosity is constant in each of two regions, but
changes discontinuously at an interface that is initially
planar (see appendix A for the. details). Thus, a new
analysis is necessary in this case. In the two fluids case,
new assumptions other than the parallel squeezing assumption
have been made to derive an analytical solution which is
found to be in good agreement with the finite element

numerical solution.

Thus, we now have a quantitative criterion for the
two different flow regimes observed experimentally; that

is,

.

* 3 << 1 : flow regime of Fig. 2.5(a)
* 3 >> 1 : flow regime of Fig. 2.5(b)

2.3 Power-law fluid

In this section, the Scott equation (for a power-law
fluid) will be tested by numerical computation, just as the

Stefan equation has been tested in section 2.1.

Governing equations and boundary conditions are the
same as 1in Newtonian case, except that the viscosity is

given by
n-|

M0y = K40, * (2.15)

where
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I = “Zzl“[(tri)z - tr(d,z):] | (2.16)
and
drr 0 drz
,Ci = 0 deg O (2.17)
drz 0 dzz

The fluid is assumed to be incompressible, so that

Ty = (4 = £(dlrdos’+ ) + 4 (2.18)

In solving the problem numerically, an iterative
scheme is used to evaluate the viscosity function. That is,
the viscosity is initially based on the previous solution
for an earlier time step. One then solves for the new
velocity and pressure profiles, calculates the viscosity
from this new velocity field, and repeats ;his procedure
until the solution (velocity and pressure field) converges
within a given error allowance. The numerical algorithm is

given in Fig. 2.7.

Numerical computations have been carried out for two
different walues of R/Ho(5,15) and two different values of
the power-law index(0.7,0.5). The results are given in
Fig. 2.8, in which the Newtonian case (n=1.0) 1is also
plotted for the comparison. In the figure, the

dimensionless time t is defined by
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Read data ( X(I), FORCEG, 7, etc.)
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Xnew Eora t¥o1g At

Finite element solution (V w
Calculation of force (FORCE%

!

Adjustment of solution

|

no
Convergence test ?

lyes

(1)) Prgy (1))

L——Move boundary nodes (corrector part)

= ] *
Bnew Zo1a T2 %1q thew ) AL

Fig. 2.7 Numerical algorithm to solve compres-
sive flow of power-law fluids.
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ol

Fig. 2.8 Dimensionless plate spacing versus
dimensionless time for isothermal squeezing
of power-law fluids.
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- n+i nz+nl
t=[|+ Ho " (”g')kt} - | (2.19)
. n _l_
n
k = [EK};M,(;:'_‘) (n+3)] (2.20)

With these definitions, the Scott equation as well as the

Stefan equation become

_L .
-ﬂ'-———(l‘f‘—t_) z (2.21)

Again we can see that the edge effect is more
significant at smaller values of the R/H, ratio. The effect
increases as‘the power-law index decreases, or as shear
thinning behavior increases. This can be explained by
considering the viscosity difference Dbetween the fluids
inside and outside the edge of the disk. As the power-law
index decreases, the fluid outside the edge has a higher
viscosity than the fluid inside the edge, which implies that
the fluid inéide experiences more resistance from the fluid
outside. Therefore, the squeezing speed becomes slower as
the power-law index decreases. This effect dJdecreases as
R/He 1increases, and at large values of R/He the Scott

equation is still adequate.

2.4 Partially-filled compressive flow of Newtonian fluids.

In this section we consider the flow with a moving
front in the mold cavity, depicted in Fig. 2.9. We will

focus on the moving free surface and the flow near this
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Fig. 2.9 Schematic diagram of the
flow of a Newtonian fluid in the
mold cavity under the isothermal
condition.
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moving front. Numerical calculations are therefore
inevitable, and the proper numerical scheme has to be
developed to determine the new contact point between the
fluid and the surface, as well as the shape of the free
surface, for each time step. It will be assumed that the

fluid is Newtonian and isothermal.
2.4.1 Numerical scheme

At any instant of time, the velocity and pressure
distributions can be obtained by finite element calculation,
as long as the domain is given beforehand At time t=0, we
start with a domain of recténgle shape with a flat free
surface, as shown in Fig. 2.9, and solve for the velocity

and the pressure.

After a small time increment(at), the boundary of

the domain is changed by

Xnew = Xold + V-at (2.22)

The new contact point is determined by quadratic
interpolation of three adjacent nodes, which is shown in
Fig. 2.10. That is, after at the nodal point 1 moves to lﬁ
2 to 2, and 3 to 3, etc., and a point p between 1 and 2 will
move and just contact the wall; point p’is the new contact
point Dbetween the fluid surface and the solid wall. The

solution and the boundary shape are then improved through
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old contact point

Fig. 2.10 Movement of the frontal
nodes and contact point.
--=----- 0ld front

new front after at
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the predictor-corrector method. These procedures are
repeated at each time step. This numerical algorithm 1is

given in Fig. 2.11.
2.4.2 Numerical calculation results

Two sets of calculations have been carried out, one
at a small value of Re/He(=5), the other at a large value of

Ro/He (=15) .

In the case of Ry,/Hp=5, the movement of the boundary
and the frontal free surface are shown in Fig. 2.12 at
various stages of squeezing. The radial velocity profiles
of the present case are compared in figures 2.13 through
2.16 to the corresponding fully-filled case, which has an
extra amount of fluid outside the edge of the disks; the
radius for the fully-filled calculation 1is based on the
contact point, o8 At the beginning of squeezing
(Fig. 2.13), the radial velocity in the partially-filled
case 1s somewhat larger than 1in the fully-filled case,
especially near the centerplane at the edge of the
disks(z=0, r=R). This can be understood, considering that
the fully-filled case experiences some resistance from the
fluid outside the edge of the disks. This diffoerence
becomes simaller and smaller as squeezing goes on (see
Fig. 2.14 2.16), since the partiall?—filled case begins to

build up a "bulge" of fluid near the front, which acts 1like
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Fig. 2.11 Numerical algorithm to solve the
partially-filled comprressive flow of Newto-
nian fluids.
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Fig. 2.12 Movement of the boundary in the partially-
filled compressive flow, Ro/Ho=5.
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Fig. 2.14 The radial velocity profiles of the partially-
filled compressive flow compared to the fully-filled case.
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Fig. 2.16 The radial velocity profiles of the partially-
filled compressive flow compared to the fully-filled case.
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the fluid outside the disks in the full-filled case.
Fig. 2.17 shows the pathlines of some material points as the
squeezing goes on. The material points near the front are
moving upwards, which represents the same phenomenon as
observed in the injection molding process, known as the
“fountain effect". The term "fountain effect" was coined
and discussed by Rose(l96l) and is important in determining
the quality and morphology of the surface of the molded

article.

The movement of the boundary and the comparisons of
the radial velocity profiles are shown in figures 2.18
through 2.21 for a large value of Ro/He(=15). We see
similar phenomena as for Ro/Hy=5, Dbut the effect of the
fluid outside the disks is rather small in this case and it
becomes much smaller as the squeezing goes on (see
Fig. 2.21). We can therefore conclude that as long as Ro/Ho
is large enough, the flow patterns in the partially-filled
compressive flow are essentially the same as those one
observes in the fully-filled case except near the front:
here we observe fountain flow phenomenon in the

partially-filled case.
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4

Fig. 2.17 The pathlines of material points in
the partielly-filled compressive flow of
Newtonian fluid : the fountain effect 1s seen

- .at -the moving front.
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Fig. 2.20 The radial velocity profiles of the partially-
filled compressive flow compared to the fully-filled case.
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Fig. 2.21 The radial velocity profiles of the
partially-filled compressive flow compared to
the fully-filled case.




CHAPTER 3

LUBRICATED COMPRESSIVE FLOW OF
VISCOELASTIC FLUIDS

3.1 Problem formulation

Let us consider that the material is compressed
between two circular disks under a constant load and assume
that there exist thin 1lubricant or low viscosity £fluid
layers near the wall. The schematic diagram is shown in
Fig. 3;1, in which the radius of the disk may or may not
vary in time. If the viscosity of the lubricant is given in
the proper range, which will be discussed 1in Section 3.5,
the flow in the viscous material may be assumed as biaxial
extensional flow with negligible shear.  The velocity

profile in the cylindrical coordinate is then written as

Vy = €,(¢) F (3.1)
Vo = —26,(4) 2 (3.2)
V% = 0 ' (3.3)

in which éb(t) is the biaxial extensional rate and varies in

time. The deformation rate tensor d is given by

44
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Fig. 3.1 Schematic diagram of the
lubricated compressive flow.

(a) R varies in time

(b) R=Ro (constant)
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éb(t) 0 0
d=2(vy+wN=| o &w o (3.4)
0 0 -26,¢)

Since d is uniform in space, the extra stress tensor

7 may be also assumed uniform in space. Hence,
v-7 =0 (3.5)

The equations of motion are then reduced to the form

d€ . 2 ap
/Ol:r'—J:Eb-+r'€;,]= ~ 37 (3.6)
f[—zz—ééi+4zéz] = - 2P

dt b 82 (3.7)

in which the fluid inertia terms are included.

Integrating (3.6) and (3.7), the pressure

distribution is obtained as

2¢ d€ 2 2, d€ 22
prz,t) = -2 pr* (S8 + &7) + p2* (52 —267) + po(t) (3.8)
To determine po(t), which is the pressure at r=z=0 (see
Fig. 3.1), the boundary condition at the free surface(at
r=R) is applied in the following form:

2H

J (G}r)r=RdZ = 0 (3.9)
[}

where (y,(=-pt+7y) is the radial component of the total
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stress tensor (. Evaluating the integration in (3.9),

sz
o (m"')l':g dZ

2H 2 7 * 2
j [ PR (“e"+e,,)-,oz (4 -26.%) - po + '7,.,] dz

0

fR H(deb"‘e ) H(aeb 26 )"‘2FoH+27rr-H“‘o

i

Thus, we obtain the equation for polt), B

ott) = o (S i) - $(Heaiht 1 7 10
Substituting into (3.8) then gives

pinzt) = p(r*-r*) (52 2 +67) - 5P 4H- sz)(—-zeb)+7,.,,(3.11)

The total force exerted by the fluid on the upper

disk is calculated through the following integration:

F

R .
fo (=02 )yopy 270dr

R
- }o (P = Tez )z=oyq 271N (3.12)

Substituting equation (3.11) into (3.12) and performing the

integration, one obtains

One of the easiest ways to apply the force on the
upper disk is to place a mass on it. In that case, the

force is given by
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F=m(g-a) (3.14)

where m = the total mass on and in the disk
g = the gravitational acceleration
2
@ = the acceleration of the disk (= -2 itg)
Equivalently,
F=m(g- 4Hde“+8Héf) ~ (3.15)
since
dH .
dt (VZ)z=H = -~2HE§g (3.16)
and
- - _4_#_4)
a = -2 ¢ (48
dés
= 4H3 8HE, (3.17)

Now, equating equations (3.13) and (3.15), we have
(g -4H9S + BHE?) = Lrpr® (4% +67) + Snpri* (S -2 &)

+ F—Rz<7rr‘ T2z )
(3.18)

or :2 / 422, 16 222 2
dé, _ m(§+8HE?) - zrpRYe  + FRPRHE. ~ AR (Tp~ Taz)

dt L 32(H\*>, I6mH
M PEVE (R s o

(3.19)
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Frequently, equations (3.18) or (3.19) can be simplified as

follows:

(a) When R>H, the term including H on the
righthand side of (3.18) can be neglected compared to the
first term to give

. 22 | . 42 2
dé, _  m(9+8HE) - zapRYES = AR (T~ V)

dt _ (3.20)
2£ar*(p + ———7,-’;",;” )

(b) When the compression 1is not very fast, the
inertia of the fluid and the load can be neglected, in which

case equation (3.18) is simplified to

_ .=
mg = AR ( U~ ez ) (3.21)
When the radius of disk varies in time (see
Fig. 3.1(a)), the expression for the radius change is

obtained from mass conservation; that is,

2

R*H = constant

or
2 (r*H) = 0

or

Qia.
<

= R& (3.22)
Here equation (3.16) has been used.

The next step is to solve equation (3.19) or the
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simplified form ((3.20),(3.21)) together with (3.16),
(3.22), and appropriate constitutive equations which relate
Trr and Tz to the aeformation. In the next section, we’
will consider the linear viscoelastic case, since 1in the
limit of small deformations the response of polymeric
materials may be considered 1linear. The non-linear case

will be considered in Section 3.3.

3.2 A linearized viscoelastic case

For sufficiently small values of the deformation,
the mechanical behavior of polymeric matertals is entirely
described by the constitutive equation of linear

viscoelasticity.
3.2.1 Constitutive equation

A particular case of the constitutive equation of

linearized viscoelasticity is given by
T+ NSE=2%(d + A 5) (3.23)

where )\, stands for the relaxation time and A, stands for
the retardation time. Ooften A, is set to be zero. Note
that as A, approaches )|, eguation (3.23) approaches the

. . *
Newtonlian equation.

* Wnen Az=\,, equation (3.23) is simply the sum of the
Newtonian constitutive equation and the first time
derivative multiplied by A,.
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In the present problem, the radial and axial

components of the constitutive equation are

e dé€
7rr+ A‘%—éfz,?.?(éb“sz b) (3.24)
7, . ]
Gz +’\'d7€*z=”47(é"+>‘2%%) (3.25)
from which it follows that
721 = "2-7,-,« (3'26)
and
v = exp(-£)2 7;
rr = CXPLITNT (eb*)\zdt)exp( ,) (3.27)

3.2.2 Analytical solution

Let us consider the case (b) in Fig. 3.1, in which
the radius 1is constant, and that R=Rg>>H. Further assume
that the compression is not very fast, so that éfc({?%—, and
that the inertia of the 1load 1is small compared to the
inertia of fluid (l%ﬁ¥}<</9 in 3.20). Then equation (3.18)

or (3.20) becomes

mg = -Ln/’R"'deb + SRS T

4
or
dé, _ _4md__ _i2
= 7T Kq' Rz rr
dt P Rs r (3.28)
Here equation (3.26) has been wused. Substituting (3.27)

into (3.28) then gives
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. t
d&y _ _4m8 _ 247 _t de,
dtb = SR FREN, exp(_ /\')f(éb'l'/\z )exp(,\‘)dt
or +
dép  _ 4 24 .
exp(3) G = exp(3) ﬁ:Ra;* B /’Roz/\l j (& +Xadrexp () dt
o

Differentiating this with respect to time gives

exp () 2+ 1 exp ()98 = exp(d) 205

- 2D h ) exp (L)

PRAA
or
de 243 Az cléb 24? s 4mg
P +p(1+ PRA ) Rz & = T R% | (3.29)

which is a second order dynamical equation.

The solution of equation (3.29) is given by

s + Ciexp(Dit) + Caexp(Dat)
7 Ro when Di¥ D2

(3.30)

°-
"

myg
e RZ + €XF(D|'f) . (C3't + Cq)
€77 R when Dy=D2

where D) and D, are the roots of the characteristic equation

of (3.29), that is,

A
PND +p(1+ 202 p 4+ B 20 (5 g,

Cy are constants to be determined by the

€+ Czr C3s

following initial conditions:




éb(O) = 0

dés

* _ 4”"
qt L=o— —ﬁ from (3.28)

(3.32)

The characteristic feature of the solution (3.30)
-~ may be divided into the following three cases, depending

upon the values of D, and D,.

Case I. (l-%%?i) %‘L © (3.33)
The D; are real, negative, unequal and given by
2 §3A
o= ok [~ 282 + /(4 2422007 - 224 ]
= 1 |_ 24-2/\2 2.42/\2 _ ?6‘2/\,]
The solution decays exponentially to a constant rate; that
is,
éb(‘f) = _m_\?___ + C QXP(D,‘t) ‘f“CzeXP(th)
677 RA : (3.34)
where
| mJ3 4my
‘i = (v )
! D,=Dx \ 2 61IRS Y X
|
D,~D; O 5717&92 * 7C/°Ro4

Note that the solution approaches the Newtonian solution as

A, approaches to ,X,, and at long times for any A, and A,.
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Newtonian solution is given by

€(t) = ﬁ%?—[l ~exp (- %f}]

Case II. (|- 2;’;&1)2_ 9;;’)’ = 0 (3.35)
Q -]
D, and D, are equal and negative,
47A
D1=D2="2)\‘( '7%)
and '
Sy = M ) . (3.36)
€ (t) = 7R +exp(Dt) - (Cat+ Cy)
[} .
where
- 4m9 m3
C = JprA ThiTmaRZ
Cp = — mJ

6n7Rf
That is, the fluid is gradually accelerated to a steady

state deformation rate.

2
Case III. (l+2—;'%);‘l-“—) - iﬁ;%’%— < 0 (3.37)

D, and D, are complex conjugates, given by

ov= [ (1e 242 iy 24 - (1+ 2]

D, 2.)%,[“'( 2430 \/96‘?/\, (14 2 )]

IQRJ. pkz
and the solution is an oscillatory one in which we are

particularly interested. The following case 1is of

particular interest:

?G 2/\, >>(l+‘ 2.42)\:. )2-

P R&* PR (3.38)




55

2 o _md_ _ 4am3h [ PR Ly 242k “N ¢t
€ = ELIRy  WPRL*T NV 2434 exF[ z /’R‘)/\:] szR‘ A

(3.39)
and, from (3.16)
H- exP[-z[*e‘,, dt ]
=op[- selerl er[srdRa fop(- £ - BR) 5 o052 £ - 1]
LR R R e P 2

(A) (B) (C) (D)
(3.40)

Each term in equation (3.40) represents different features
of the lubricated compressive flow of linear viscoelastic
materials under the condition (3.38). The first term (A)
represents Newtonian viscous damping, the second (B) is
related to the initial amplitude, and the third (c)

represents the damping of the oscillatory term (D), whose

’PA
oscillation period is IR, 65'

This oscillatory motion originates from the
coexistence of the unsteady 1inertia term (p%%—) and the
unsteady elastic relaxation term (A ) These two time
derivatives interact to generate the second order time

derivative in equation (3.29).

The condition (3.37) is rather conservative for the
oscillatory motion, since the solution (3.40) will behave as
the non-oscillatory one if the damping term (C) is fast

enough to make the product (C)*(D) very small in a time
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which is smaller than the oscillation period. From this
fact, we can develop a more useful necessary condition for

the oscillatory motion: that is,
time scale of damping > oscillation period

or

| LA
a. e L
L 4 22 2a > 7R, €7 (3.41)
2\ P REA

Here the choice of the factor a in front of the lefthand
side is rather arbitrary, and one may choose a value between
1 and 3. The value 1 gives 63%, 2 gives 86%, and 3 gives
954 of decay 1in the exponential term. Choosing a=2,

equation (3.41) becomes

IO—;E4— > (li--éé%ééoz : oscillation (3.42)
o °

and

10—2—-'— ( 24942 ’\2)

P R.2 P RS> : no oscillation (3.43)

When AM,=0, equations (3.42) and (3.43) become

lo.%ﬁ%z. > : oscillation (3.423)
(-]
and
[0 ’\';<I |
£ Ro : no oscillation (3.43A)

It is usaful to rewrite the condition (3.42) and
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(3.43) in terms of the dimensionless groups defined below:

2
lo-g% (TZ?) > [l +2‘1~—§§' (_%)zjl : oscillation (3.44)

2

De 'H Rs /H 2 2
IOEE GZﬂ < [I*-2475-6Ej ] : no oscillation (3.45)

where

o HVP
7

liél (Deborah No.)

H

(Reynolds No.)

De

i

VA

RA ='——n- (Retardation Wo.)

Note that De/&e or RJ/Re depends on the material properties
and the geometry only, but not on the squeezing speed, even
though each group does depend on the squeezing speed. Also
note that the dimensionless group De/ge is similar to the
first elasticity number given by Astariﬁa and
Marrucci(1974), which has been defined by the ratio of the
Weissenberg and Reynolds numbers in quasi-viscometric flows.
This elasticity number was employed by Denn and
Porteous(1971) to identify conditions under which elasticity
can be expectad to be important in viscoelastic fluid flow.
Also it is seen in the paper by Tordella(l1958) who used this
number to predict the onset of melt fracture, and in the
paper by Boger(1977) who tried to correlate pressure losses

dus to the elasticity in the capillary rheometer to the




elasticity nunmber.

The equation (3.29) and the conditions (3.42-3.45)
can be modified to include the load inertia term, which has
been neglected in the above by assuming —%E%Q— <<P. First,

we define several different densities,

P*= J0-+ P (3.46)
o _ I6mH
/o'”—' ERI" (3.47)

p 1is the fluid density, and Pm 1is a pseudo-fluid density
corresponding to the mass of the load (m) in the lubricated
compressive flow; P* is the apparent density which
represents both effects of the fluid inertia and the load
inertia. If we use p* instead of using £ in the equation

(3.29) to include both inertia effects, we have

F*/\l dd.fi + )O*(l‘f‘ 24-7}\1) 0(65 + 2:2 é‘b = 4m3 (3.48)

Here the constant radius condition also has been relaxed to
include the situation of Fig. 3.1(a). Then the conditions

(3.42-45) become

/0—33ﬂ—- > (l—#-éiz&£)2 : oucillation (3.49)

P*R* P*R*
A 2
/szﬂér < 1+ i%%%%%) :.no oscillation (3.50)

or
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De (HYV Rd [H = : oscillation (3.51)
logs (=1 2 [‘*24Rg(g)]

De (H R (H2T*
'OTé‘ ('E‘)l < [!*’24"@? (T{)] : no oscillation (3.52)

where
%
Re = —lL%?fL— (modified Reynolds No.)
P¥A

The oscillation period is also modified to @R 67

At this point we may note several interesting
aspects of the 1lubricated compressive flow of linear

viscoelastic materials :

(L) The compressive motion under a constant amount
of load may or may not be oscillatory, depending upon the
conditions (the material properties, the amount of the load,

and the geometry) as predicted by equations (3.49)-(3.52).

(2) When oscillation occurs, it 1is due to the
combined effects of the 1inertia, the elasticity, and the
viscosity. The oscillation period depends only on geometry,

inertia, and the elastic modulus.

(3) The retardation time may play an important role
in the damping of the oscillatory motion (see term (C) in

equation (3.40)).

(4) As A, approaches A,, the response of linear

viscoelastic materials approaches the Newtonian one.
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In the next section, numerical solutions will be
considered with no assumptions made, and this will further

support and refine the conclusions noted.
3.2.3 Numerical solution

“ Equation (3.19), together with (3.16), (3.22), and
constitutive equations (3.24) and (3.25), can be solved
simultaneously by the Runge-Kutta method or the method of
Gear(1970). Many differen£ combinations of material
properties and geometrical factors have been considered to
investigate the characteristic features of this flow in the

case of Fig. 3.1(a), in which the radius varies to keep the

total mass of the fluid constant.

In Fig. 3.2, curves of H/H, vs. time are shown at
various values of relaxation times (‘A‘; 0.003, 0.03, 0.1,
0.3) and zero retardation time, and compared to the
corresponding Newtonian curve ( A,= 0.). When /a?%ég-is
less than the unity, the curve does not oscillate (see curve
4), as expected from the condition (3.50). As /0?&%&
increases, the oscillatory motion begins and becomes severe
as the relaxation time, and hence the value of the group
/07%%%, increases (see curves 1 to 3 ). The oscillation
period 1is about the same as the calculated value from

eguation (3.40), if we consider the change of radius in

these calculations [equation (3.40) was derived on the basis




*QWT] UOTIEBXETDI Byl
JO 31093J® 2yl : STETISIRW OTISBTIODSTA IBDUTT FO MOTI
oaTssoadwod pe3edTiqnT Y3z uTl awil °sa °H/H Z°c *b1d

IWTL
21 80 91 A" b | 2P
T _ 100 "0
- -1G2 '@
o
B _ —10S @
'R EEEEN «ﬁmmﬁi )
0 |eco €€ | |ee | =Ha o) UB TUORMON
‘0| e |0} 0|0 Y
B ‘0 |€o0o|goco| 10 | €0 Y m&&m - om 1S4 70
'€ = oY
N1+ A N 4 } 201 = |
- o
| ] |

P31



62

2°1

Jo 30833° oyl

aaTsseadwod pejeoTaqny oyl ul swil 'sA °H/H €€ *bB14d

*BWT3 UOTIRPIERIBI OU3I

¢ STeTasjew DTISBTHSO0DSTA JI€BUTT JO MOTT

AWI L
80 90 L 2’0 aa..
_ | _ _ 00 "0
[ -1G2 "0
1
<
o Hes@ T
T Tese| 18 T'er | «?w«.mnitv D °
) T N ‘H i N.& (] CDﬂCOP?QZ
o |10 lgo0|loo] O Y a5 W
i 16 = +5L "D :
0 |10 |10 [1ro]io Y sep -t 7\ \ |-
221 = |
| _ _ _

va "1




63
of a constant radius]. Note that most of the viscoelastic
curves remain below the corresponding Newtonian curve,

though the difference is minor at large times.

In Fig. 3.3, the effect of the retardation time has
been illustrated. All the conditions are the same as
pefore, except that A, is kept constant (at 0.1) in all
these calculations, and A, varies (A;= 0., 0.01, 0.05,
0.1). We can recognize that a small increase of the
retardation time reduces the oscillation amplitude greatly,
and the response approaches the Newtonian curve as A,
approaches Ap All curves rémain below the corresponding

Newtonian curve (A =XA2=0.).

3.3 Non-linear viscoelastic cases

3.3.1 Constitutive equations

Since the linear model does not predict some of the
important non-Newtonian behavior of polymeric materials,
such as shear thinning, normal stresses in simple shear
flows, and high extensional viscosity in extensional flows,
various kinds of non-linear models have been proposed. We
3nall now consider some of the currently popular and

promising models.

Oone of the most successful models is the one

proposed by Phan-Thien and Tanner(1977) and
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Phan-Thien(1978), which has the following form with a single

relaxation time:

v exP[-%):—tr 7] + M-z T+ 33 7] =23.d  (3.53)

~

v A » .
Here, 7 and 7 are the contravariant and . covarlant

~

convected derivatives given by 0ldroyd(1950), respectively,

and denoted by

v DZ . T

'Z = Dot wWI-1IVY

A DZ T

Z - Dt "‘V\.(Z‘*' vy
This equation has four material parameters, 7,., A, ¥, and
€. J, is the zero shear viscosity and A 1is the relaxation

time. The parameter ¥ can be determined from normal stress
data in simple shear flow, since 7§é is simply the ratio of
the second normal stress difference to the first normal
stress difference, or from the deviation of the viscosity
from 70. & 1s related to the limiting value of extensional

viscosity by é@f; % = cwwt~(y%)
&

When £ vanishes, (i.e., when the extensional
viscosity has no limit), the Phan-Thien-Tanner model reduces

to the one by Johnson and Segalman(1977), represented by

X+ /\[“'%3),{( t éifz] = 27,d (3.54)

o~




By adding a retardation term to the righthand side of

(3.54), a modification of the Johnson-Segalman model is

obtained as
Y+AJ-3n) 2+ 557] = 23,4 D fu-ind+ 25d}] s

where Az is the re;ardation time and é and g are defined
in the same way as é and % . The existence of the
retardation term can be explained if one considers a polymer
solution made up of a Newtonian solvent and a polymeric
solute which is described by (3.54). The total stress in
the solution would be the sum of the polymeric contribution

and Néwtonian solvent contribution, that is,

T =T t To (3.56)
where
A2 Ll 37 - 3.57
T+ Af0 3T +IF] _17',5!, ( )
,’Isv'—‘ 2’75vé : (3.58)

Here the subscript p stands for the polymer and sv for the

solvent.

Differentiating equation (3.58)

A

Tw=2%d  and T =2%wd
or

(3.59)

1S

| v - !
(1-23) A\ Tsy = 275v( I-Z¥)A
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L3 2. = 27“‘215/\'2 (3.60)

By adding (3.57-60) together, we get (3.55) in which
% = Ip + Fsy (3.61)
Az = Ay e (3.62)

7p+‘%v

The Johnson-Segalman model((3.54)) further reduces
to the contravariant convected, covariant convected, and

corotational Maxwell model as % has the Qalues of 0, 2, 1,

respectively.
=0 T+ AT = 274 (3.63)
=2 T+ AT —272( (3.64)
3= 7T+ A2[T+ 7] = 274 (3.65)"

An equation of the form of (3.63) has been modified
by wWhite and Metzner(1963) to accomodate a non-Newtonian

viscosity function:

v 4 134 3 - 27@3)% (3.66)

~ —q'."'

| v ) . o .
# [T+ 2] is often denoted by 7 and is known as
corotational Jaumann derivative (see Zaremba(l903) and
Fromm(1947)) .
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‘where I4 is the second invariant of the deformation rate
tensor and G is the shear modulus. This model is useful in
situations in which the non-Newtonian viscosity plays an

important role.

The model proposed by Acierno et. al.(l1976a), often
called the "structural model", is also very promising. The

model, with a single relaxation time, is represented by

| S (L -,

G = G, x A= A°XL4

_j__)é_ = __)l\_“__x) - ax.x'_\/__ét (a= 0,25 ~.O.4- )
E =3t7

where é%; is the contravariant convected time derivative,
and the scalar dimensionless quantity x( <1.) is regarded as
a structural variable which describes how far the existing
structure is from  equilibrium. Go and ), are the

equilibrium values of G and A (when x=1.).

For comparison, we summarize the responses of each

model fluid in simple shear flow in Table 3.1.

The covariant convected Maxwell model predicts too
large a value Of 7, - Ta3 in comparison to what is found in
most polymeric materials. The corotational model exhibits a

shear viscosity which depends upon the shear rate too
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Stress
N2 T — Tz T2 = %3 |overshoot
Phan-Thien- No explcit expression, but
Tanner very close to Johnson-Segalman ves
Johnson- 70 7 23, A7 ~-¥3.A7*
Segalman [+ X27523)| 1+ X2F3@ | 1eX775(2-3) yes
Johnson-Segalman Li’llﬂ,k;f;(%‘ﬂ 23, (MM T2 | =33, (AmAL) 7
with retard. time| eX27%(2-3) | 1+X85(2-3) | 1+A75%3(2-3) | Yes
Contravariant . .2
convected Maxwell 77 237 0 no
Covariant . .2 2
convected Maxwell 77 2907 =237 no
Corotational Y, T 29, A7 -3 A7t
Maxwell |+ A2 1+ 7> |+ N3F2 yes
White pli ')2
-  y s ¥) 52
Metzner VA2 ks 2 G o no
Marrucci 2.4 . 2 3.8.2
structural G'o/\o X7F |26 A X7 0 yes

* Structural variable x satisfies

where A4=0.25~0.4.

Table 3.1 Comparison of non-linear models in
simple shear flow.




strongly; it also predicts spurious oscillations after
strass overshoot and much too large a value of Tz = 7a .
Therefore, we shall disregard these two models in our

numerical calculations.

The contravariant convected Maxwell model and its
modification, the White-Metzner model, predict zero Tm=~-7s
and no stress overshoot during startup. The
Phan-Thien-Tanner model and 1its simplified form, the
Johnson-3egalman model, predict non-zero values of ?g-??n
and also a stress overshoot. The structural model predicts

zaro Tas -~ (a3 but it does predict a stress overshoot.
3.3.2 Numerical calculations

Lubricated compressive flows of the viscoelastic
model fluids mentioned above, including the contravariant
convected Maxwell model, the White-Metzner model, the
Johnson-Segalman model {with and without retardation term),
and the structural model, are solved numerically in this
section. Since thé equations to be solved in each case,
which are given 1in appendix B, consist of first order
ordinary differential equations, the Runge-Kutta or Gear
method can be used. Here, we consider the situation given
in Fig. 3.1(a), and the initial ccnditions are given by

€= Br=Taz=10 } at  t=o,
H=H, , R=R,
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The results are shown in Figs. 3.4 through 3.10, in
which H/Ho is plotted against time in each case. The curves
for the contravariant convected Maxwell fluid are given in
Fig. 3.4 and 3.5, those for the White-Metzner model in
Fig. 3.6,.the Johnson-Segalman model in Figs. 3.7-3.9, and

the structural model in Fig. 3.10.

When A is small enough, the oscillation does

F*RZ
i%%r is not

small, oscillation does occur. When the squeezing rate 1is

not occur, as shown in Fig. 3.4. But if

slow or moderate, the oscillatory curves stay below the
corresponding inelastic ones in all cases (see Fig. 3.5,
3.6, 3.7, 3.10). In fast squeezing, each model behavior is

distinct.

The Maxwell model results in oscillation and stays
below the Newtonian curve (Fig. 3.5). In contrast, tﬁe
Wnite-Metzner model does not give oscillation at all for the
power-law index of 0.5 and stays below the corresponding
power-law curve (Fig. 3.6). The absence of oscillation in
the White-~Metzner model in fast squeezing seems to be due to
the large decrease of the viscosity and the relaxation time
at high deformation rates. These effects, plus the
increases in R as time progresses, combine to make 72%%r
very small, under which condition no oscillation would be

expected.
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The faster squeezing of the Maxwell model may 1look
unusual to those who consider that the Maxwell model
predicts very large elongational viscosities. But, if one
remembers correctly, the large elongational viscosities of
Maxwell fluids are obtained at large values of ébk after a
long time. In other words, in a short time or at_small
values of éA‘ the elongational viscosity 1is even smaller
than in the Newtonian case (57). In the squeezing flow, é,
is large initially, but this lérge éb can not be maintained
for a long time since the film thickness is getting thinner
very quickly. Thus, it is very difficult to build up a
large elongational viscosity in this geometry. This is why
the Maxwell fluid is squeezed faster than the Newtonian
fluid even with the high initial value of éA. But, under
the extraordinarily high 1loading conditions, the Maxwell
curves are crossing over the corresponding Newtonian ones at
very small values of H/H, (see Appendix C for the detail).
Even théugh the absolute differences between (H/Ho) maxwell
and (H/Hg)Newtonjan 2re very small (in the order of 1572 or
less), the relative differences between them are around 2 in
the cases of Appendix C. This fact may be important in the

field of lubrication technology.

The rapid squeezing of the Johnson-Segalman mcdel
(Fig. 3.7-3.9) and the structural model (Fig. 3.10) are

particularly interesting, because those curves move above
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the corresponding inelastic ones after some amount of
initial faster squeezing. The effect is more prominent in
the Johnson-Segalman model. The slower squeezing of these
models must be due to the specific features which are not
found in other models: that 1is, the predictions of the
stress overshoot phenomenon and non-zero T, — T3 in simple
shear flow of the Johnson-Segalman model, and the stress
overshoot in the structural model. Figs. 3.8 and 3.9 show
the effect of non-zaro  retardation time in the

Johnson-Segalman model, which damps the oscillation.

3.4 FPinite element simulation (Maxwell)

The main purpose of this section is to develop and
test a finite element numerical scheme, to be used in
.solving the wunlubricated problem in chapter 4. In
particular, we will consider the coﬁtravariant convected
Maxwell model. The problem has been already solved in the
lubriéated case in Section 3.3.2. Thus, the numerical
scheme is tested by solving that same problem and comparing

the result to the one obtained in Section 3.3.2.

The problem becomes complicated since we wish to
include the unsteady inertia and the unsteady elasticity
terms in the equations of motion and the ronstitutive
equations, respectively. Numerically, it Dbecomes more

complicated because the domain changes as time goes on and
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unsteady transient equations have to be solved between time
steps. Thus, we will pose the problem in a more natural
way, following the pathlines of each material point in
Lagrangian coordinates. In other words, each nodal point in
the initial grid moves along its own pathline as time goes
on, and we use material time derivatives instead of using

the partial time derivatives in the equations.

The equations to be solved are

V-! = 0 (3.68)
DY ;
/o'b—t'::—VP + V-7 (3.69)
DT T] o T
7+ M2z —vwr-aw ] =13[winwT]  .70)

Initial conditions have to be specified (since we have time

derivatives). These initial conditions are given by

T=V =20 at + = 0. (3.71)

The time derivatives are treated by a finite
difference scheme in the time coordinate. We use the
implicit three point recurrence scheme with variable time
steps, which requires at least two previous solutions. To
solve for the solution at t=t,,, based on two previous
solutions (at tn and t,., ), the material time derivative 1is

discretized (on the time axis) by
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(DA] — I [Atmq(ZAtn+'Atnﬁ)AnH

Dt/ﬂ‘H— Atn A'tn-l (Atn"'Atn-l)

- (Atn + Atn-l)zAn +(At") A"“]

(3.72)
where at ., = th = ta-
aty =  thn — ta
Ai = A ot t=ti

All other terms in the equations involve the unknown
variables at t=tpy. The discretized (in time) forms of

equations (3.68)-(3.70) are given by

V-Vay =0 (3.73)
oVyYy _ .
P (—D_'E—) - _VRH-[ - V-ZIH-I (3.74)

D7 T _ T

Z,,H + A [ (_D?)nu = W T = Tom Vym-l] - 7 [V,Ynﬂ +VVau _] (3.75)
The whole system has to be solved simultaneously on the
given domain. The Newton-Raphson method is used to treat
the nonlinear terms, and the predictor-corrector method 1is

used to improve the shape of the grid in each time step.

The mixed finite element method, which was first

introduced by Kawahara and Takeuchi(1977) and further
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studied by Crochet and Bezy(l979), and Crochet and
Keunings(1980), has been adopted to solve the system
(3.73)-(3.75). This method differs from the displacement
method used by Chang et. al.(l97%a,b) in terms of the
unknown fields. 1In the mixed method, the pressure, the
velocity components, and the stress components are the
unknown fields, while in the displacement method, the
pressure and the velocity components are the unknown fields
and the stress components are .calculated by means of an
iterative technique. In particular, we have chosen the
triangular elements and the same shape functions as those of
Crochet and Keunings; that is, the linear shape function in
the pressure and the quadratic shape function in the
velocity and the stress components (see Fig. 3.11). The
Galerkin finite element formulation of system (3.59)-(3.61)
is straightforward and 1is given in Appendix D. The
resulting simultaneous linear algebraic system is solved by
the frontal elimination technique proposed by Irons(1970) to
reduce the use of the central core memory. The numerical
algorithm to solve the lubricated compressive flow of the
contravariant convected Maxwell fluid under a constant 1load

is given in Pig. 3.12.

The initial grid used in the calculation and the
deformed grids at later times are shown in Fig. 3.13, in

which one can easily see that the deformation of the
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Kl(vryvz)
21 (Trr, Tzz, Tz, (os)
P1

¥3,73,P3

6

v = § Y Y.

igl ¥, &+ quadratic
I = E VZ~¢

- ¢ : linear

4.-1 <
P~ éﬂ%

<=1

Fig. 3.11 A triangular element and nodal
variables.
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Read data ( X, f, mass, 7, A, etc.)

Read previous solutions ( Yn, T Pn )
( ¥n-1» T-1» Pn-1 )

> Enter At

Move nodal points ( Xn+1 )
Finite element solution ( Vp+1, h+ls Pn+l )

Calculation of force

Adjust top disk
Convergence test ? —> velocity

yes

Print solution

no

Next time step ? —3> STOP

lyes

Yn-1=V¥n» Tn-1=Tn» Pn-1=Pn
Vn=Vn+l» Zn=Tn+l» Pn=Pn+1

Fig. 3.12 ©Numerical algorithm to solve
the lubricated compressive flow of Maxwell
fluid.
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H/Ho = 1.0 z

Time = 0.0

H/Ho = 0.7641
Time = 0.075

H/Ho = 0.8198
Time = 0.120

H/Ho = 0.6938
0.230

Time

Fig. 3.13 The initial grid and the deformed
grids (at later times) in the lubricated com-
pressive flow of contravariant convected
Maxwell fluid.
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material 1is indeed Dbiaxial extension. Small numbers of
elements have been used in this calculation because the
stress field is uniform throughout the domain, and there is
no stress singularity in this problem. Fig. 3.14 shows the
oscillatory finite element result (H/H, vs. time curve)
compared to the semianalytical solution obtained in Section
3.3.2. The agreement between them is very good. Now, we
can proceed to the next, more complicated problem, which 1is

the unlubricated compressive £flow of the contravariant

convected Maxwell fluid.

3.5 Viscosity range of the lubricant to produce the biaxial

extensional flow

If the viscosity of the lubricant is too low, the
lubricant layer will Dbe expelled quickly during the early
time of the squeezing. Oﬁ the other hand, if the viscosity
is too high, then the flow in the viscous testing fluid will
no longer be extensional flow. Therefore, to generate a
lubricated compressive flow, or a biaxial extensional flow,
a lubricant with the proper range of viscosity has to Dbe

used.

We know from Section 2.2 that the less viscous fluid
near the wall is expelled preferentially when the
extensional stress in the central viscous fluid 1is greater

than the shear stress in the less viscous fluid near the
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wall. In other words, in order to ensure that the lubricant
layer is not preferentially expelled during the early time
of the squeezing, we require the following condition:

extensional stress in the viscous fluid
<

shear stress in the lubricant

or, for Newtonian fluids,

2 3

PLINE (3.76)
4 R <
where 7, 1is the viscosity of the lubricant, 32 1is the

viscosity of the central viscous material, and § is the

thickness of the lubricant layer. From this we have

2 3 '
% > 40 (& (3.77)

which gives us the lower limit of the lubricant viscosity.

If the condition (3.77) is satisfied, parallel
squeezing would be expected and hence the radial velocity

profile is given by
Ve = —-r;f ]H——Es (3.78)

where
o) u -1

(3.79)

See Appendix A for the details of deriving the above

velocity profile.
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In order to have nearly extensional flow in the
central viscous fluid, the radial velocity at the interface
between two fluids (at z=H-§) should be very close to the
one at the centerplane (at z=0). Thus we can set a

criterion for this purpose to be

(VMelz=n-5 | 4 o5 (3.80)
(VF)Z:O
Since
(Vr)z=H-g=L?r —%(8 -2H3)
and (Vo) oo = = E0[ 35 (87-2H8) = o3 (H-2)°]

Equation (3.80) becomes

—(8%-2H8)
1 27’ > 0.95
;.%'(S-ZHS)— 7(H sy
or
? | -0.95 oy ]
-;,-i- < d.95 [(l— H) , (3.81)

which represents the upper limit of the lubricant viscosity.

Therefore, the conditions (3.77) and (3.81) together
determine the range of the viscosity of the lubricant which
should be used to produce a nearly biaxial extensional flow
in the central viscous fluid, to the extent that the

rheology of both fluids can be taken to be Newtonian.




CHAPTER 4

UNLUBRICATED COMPRESSIVE FLOW
OF VISCOELASTIC MATERIALS

We consider the unlubricated compressive flow, in

which the no-slip boundary -condition is satisfied by the

viscoelastic materials. First, we consider a linearized
viscoelastic case, 1in which an approximate solution can be
obtained, which gives us much useful information. The

contravariant convected Maxwell fluid will then be examined,
since this model is on the side of convenience with a modest
approach toward realism, even though it cannot predict the
stress overshoot and the second normal stress difference 1in
shear flow. In this case a numerical solution of the
partial differential equations is inevitable. A finite
element method, which has been tested in Section 3.3, will

be used.

4.1 A linearized viscoelastic case

4.1.1 Assumptions and governing eguaations

First it will be assumed that the velocity profiles

are the same as those of a Newtonian fluid; that is,

90
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Vo, = f(z,t) (4.1)

V, = ——;—rf'(z,t) (4.2)

where tz,t) = _y__[(_z_)3_3(_z__)2.] (4.3)
) 7 L{H H :

The prime in equation (4.2) implies partial differentiation
with respect to z. The term V in (4.3) is the downward
velocity of the top plate. The coordinate system used here

is given in Fig. 4.1.

We will also assume that the fluid inertia is much
less important than the load inertia. This will be shown

later to be observed in most of the experimental conditions.

From equations (4.l) and (4.2), the deformation rate

tensor is given by

__l__F/ ":';""F” 0

2
(4.4)
= [
é —;';r{” —I'F/ (v}
0 o £’
Using the constitutive equation (3.23), the non-zero
components of the stress are:
3 _ / af’
7r-r+/\t";‘t¢- '7('F+Az’a_t—) (4.5)
3% / of’ .6
'790+Azjtﬁ‘“7(++}‘23;) (4.6)




92

»
~ __,dH
| =

load| m

Fig. 4.1 The domain used in the unlubri-
cated compressive flow of viscoelastic
materials.
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T+ NSE = 29 (¢4 55

(4.7)

" 4
Tz + A;a'?rz =- 73”({: "‘/\z%ﬁt—) (4.8)

from which each component of the extra stress tensor 7

obtained as

is

T = 739="%€XP J(f“'/\a )EXP(-;)J‘L' (4.9)

Tz = =2 Tpp (4.
=_L 2 £ A2 )ex( £)dt
Tz 2 ,\lrexP( ) ( +t A2 PAX (4
From equation (4.9) %%?'= 0 and 7,,- Te¢= 0. Therefore,

equations of motion become (neglecting fluid inertia):

P _ 3%z (4
or 22
P L2y 2 (4
2z ~ r art 'rz 2z '
or
2 12 t
2= L Zregl-$){ (£ eplF) & (4

2 < 2enpl-5) (I eplE) &

oz Al

Integrating equations (4.14) and (4.15), the pressure

obtained as

t
_.rzexp(-,\_)J (f"’+)\ )exp( I)o(*!:

(4.

Zexpl- £ )J (£ 4 a2 exp (£)dE + Pot) (4.

10)

.11)

the

12)

13)

.14)

15)

is

16)
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To determine p,(t), the boundary condition at the free

surface (at'r=R) is applied as
EH(V”"}HR dz =0 (4.17)
We thus have
roct) = § espl-£) [ (36 +0 3 (58] )expl) e
+2Fexp(- )[(vw\z—%) exp(£)dt (4.18)

The total force exerted by the fluid on the top

plate is given by the following integration.

F

R
j (-Gz), .y 27 dr

R
= L (P= Tz)ye,y27irdr (4.19)

Substituting equations (4.10), (4.16), and (4.18) into

(4.19) and performing the integration one obtains

Fe2 Zarepl-£)] [ + A2 G ]exp(£)de
.’.%ﬁ%exf(—%)f [V+’\2 ]exP(—;\é-)Jt (4.20)

This force is balanced by the one exerted by the load,
F=m(\9-5—¥-) ' (4.21)
Equating equations (4.20) and (4.21) we have
n(e- 3= & Do 5)[ [ + gl

.+ %n-ﬁ—ex?(-— J [V'l' >‘z at]EXP(‘f‘ (4.22)
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Multiplying this equation by exp(f%r) and differentiating
with respect to time gives the following second order

dynamical equation:

dt? 16mH3

ma £¥ 4 m[l +/\,ﬁt—lﬁ-(|+ L3 H")]

3:{63H§ ['+\(3_6‘(g)z:}v = mg (4.23)

When R/H>>1, equation (4.23) reduces to

mh S ]| ASERRET LY | Smagt, o

gt /6 mH3 1€ H3 mg
or
3 A 5{_2_ -
PMAI d-t2+ 2_ Pm J 2 sz“ng
(4.24)
where f,’n(=—%'%fi—) is a pseudo-fluid density corresponding to

the amount of the load in the unlubricated compressive flow.
The group A, arises when we compare the load inertia to the

fluid inertia, that is,

load inertia = mgd_\/_
2H_ r
. . C 2, | Vi
fluid inertia = (/IR )EITS [5 F-Eﬁrdr] R dZ
o 0
= L ,R* 4V
= B8 H 4
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When Az = 0, eguation (4.24) reduces further to

dv
NS+ S+ T Ly = fm (4.25)

This equation is to be compared to the counterpart for

lubricated flow, equation (3.29),

_2_ _ 4m3
PG rp e radd - 200
or since V=4HE, from equation (3.2)
JEmH
2 _?_
PAl d'!:" +/’T+ 4 /"R43 le (3.29A)
. . [6mH .
It is to be noted that p, 1is equal to xR in the

lubricated case.

Equations (4.25) and (3.29A) have very similar forms
except for the coefficients of the third terms. Equation
(4.25) has 7/Hz, while (3.29A) has 7/R*. This difference
comes from the different origin of this third term in each
equation; the term in equation (4.25) 1is from the shear
stress, and the term in equation (3.29A) is from the normal

stresses.

The condition under which equation (4.24) predicts

the occurrence of oscillatory motion is given by:

P (14 2 22y brhE L <o

If the fluid inertia is 1included 1in the more general
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development, this becomes

PR 2 e 2 (o

F*Hz
or
A 3 32"
6 2k > (]+ 2 P*Hi) (4.26)
De 3 Rd 2
s (1+3 =F) (4.27)

Here p*=p+ f,

*
Re = HVE (modified Reynolds No.)

7

RA = J%§5- (Retardation No.)

De = ;%%L (Deborah No.)

A 3 })\3_ 2 .
When 6-?%T#—>>(4+-E-FZE;) , equation (4.24) has the

following approximate oscillatory solution.

2P 9H ¢ M2\ Tr ot f2 30t 3 % ¢
ve 2R vepl-ay (i 2 LR {GamE A 5 o3 3 5]

The oscillation period 1is obtained as 4EH\f%%L or, 1in

»
general, as 4EHV%%L. This again has a different

dependence of the length scale from the period in the

, ’Fﬂ
lubricated case, AR Ti"

The condition (4.27) is conservative for the reason

that has been discussed in Section 3.2.2; that is, the time
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~scale of the damping needs to be larger than the time scale
of the oscillation for the oscillation to be observed. The

more useful condition is obtained by

| _ lp*)\ (4.28)
‘z—A"'(’ 2 l,gHﬂ-
or
A Az \*
o.e;,%{'—; > (n+%;2:,j—z) (4.29)
0.6 De_ > ([+ §.J§L)z
> RE 2 RS (4.30)

Here we have again chosen the factor 2 in front of the
lefthand side of equation (4.28), which has resulted in a
coefficient of 0.6 in equation (4.30). If one chooses 1 or
3 instead 2 in equation (4.28), we will have 0.15 or 1.4,

respectively, instead 0.6 in (4.30).
4.1.2 Numerical solution

Numerical solutions of equation (4.24) are given in
this section. H/Hy vs. time curves are shown in Fig. 4.2 at
various values of relaxation times ( A, = 0.003, 0.01, 0.03)
and zero retardation time, and compared to the corresponding

Newtonian curve. When aé;L&— is less than unity, the curve

F#HZ
does not oscillate, as expected from the condition (4.29).
As aéj%%% increases, the oscillation begins and becomes
severe. The oscillation period is about the same as the

Pk/\ .
calculated value of T=4HHM6 ‘. Most of the viscoelastic
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curves remain below the corresponding Newtonian curve.

The effect of the retardation time is shown in
Fig. 4.3. Here, the relaxation time (A,) is kept constant
and the retardation time (\,) varies (A2= 0., 0.001, 0.003,
0.01). A small increase of the retardation time reduces the
oscillation amplitude greatly, as expected from the
condition (4.30), and the response approaches the Newtonian

curve as A; approaches A .

4.2 Contravariant convected Maxwell fluid

4.2.1 Governing equations

With the following kinematics,

Ve=Velrz,t) | Vo = Valnz,t), Vo= 10 (4.31)

the non-zero components of the deformation rate tensor é
are dyrs dess dz, and dyz, from which we also assume that
the non-zero components of the extra stress tensor 7 are
Trr Too 721, and 'zq. The unlubricated compressive flow
of a contravariant convected Maxwell fluid is then governed

by the following equations and the boundary conditions:

Continuity:

I oV;
) %(Y‘V,.) +3F =0 (4.32)

Momentum:
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pt —  or r er 2
DVz 2P | 2 9z
Poe="52 % yorl Wt 5%

or
T + AL -2 % E ] =27 ¥

T + N[ B -2, 36 2%, 3] = 29 2

(4.

(4.

(4.

(4.

+)\[D7rz aVz 7223Vr 7(%+3Vz)_7(;;_vzr+33‘/_:-_)(4

T Sr 3z

in which Tg? is the material time derivative.

Boundary conditions:

Vp = 0 at z 0, 2H

Nz

aF — 0 at r = 0

All the stresses vanish at

the free surface.

(4.

33)

.34)

35)

36)

37)

.38)

39)
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Here we consider the region (0,R)x(0,2H) (the shaded portion
in Fig. 4.1). Note that we do not have flow symmetry with
respect to z=H (the center plane) because we wish to include
the fluid inertia and the load inertia, while the tép plate

is moving down and the bottom plate is stationary.

In the linear viscoelastic case, it was possible to
solve for the stress components explicitly, assuming that
the velocity profiles are the same as for a Newtonian fluid.
Then, substituting into the momentum equation, we were able
to compute the closing rate. In the present problem we
cannot obtain the stress components explicitly because of
the nonlinearity of the constitutive equations. Therefore,
we have to solve seven partial differential equations
(4.32-4.38) simultaneously under the given condition (4.39).
The finite element numerical technique, which has been
tested in Section 3.4, will Dbe applied to solve this

problem.
4.2.2 Finite element simulation

In section 3.4, we were able to solve the lubricated
compressive flow of a contravariant convected Maxwell fluid
using a finite element numerical technigue. We now wish to
solve the wunlubricated compressive flow problem using the

same finite element routine but with different boundary
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conditions. The no-slip boundary conditions along the solid
wall (see (4.39)) are imposed in the present problem, while
the slip Dboundary conditions were used in the lubricated
case. Since the no-slip boundary conditions cause the
stress singularity at the edge of the disk, we use small
elements around the edge of the disk to relax the

singularity within a small neighborhood of the edge.

The initial grid used in the calculation and the
shapes of the boundaries at later times are shown in
Fig. 4.4 and the calculated results are given in Fig. 4.5,
in which H/H, is plotted against time. This‘is'compared to
the linear viscoelastic case. It is seen from this figure
that the overall behavior of the Maxwell fluid is about the
same as in the linear viscoelastic case, except that the
Maxwe11. case shows a somewhat smaller amplitude of the
oscillation, which may be due to the non-linear behavior of
the Maxwell fluid. Both viscoelastic curves remain below

the corresponding Newtonian curve.

The shear rate in this flow depends upon the
position and the time. The maximum shear rate\occurs at the
edge of the disk and at the time when the closing speed
reaches the highest value. In the calculation presented in
Fig. 4.4 and 4.5, this maximum value of shear rate, ¥max, 1S

-

210 sec at time t=0.22. Since the relaxation time( )

used in this calculation is 0.1 sec, &mxA turns out to Dbe
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H/Hg = 1.
e
—
t = 0.018
H/Ho, = 0.885
t = 0.038
H/Ho = 0.756

t = 0.066
H/Ho = 0.866

Fig. 4.4 The initial grid and the shapes of the
boundaries at later times in the unlubricated
compressive flow of a contravariant convected
Maxwell fluid.
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21. This high value of &MXA , under which the solution
converges, is not surprising if one considers that this flow
is an oscillatory transient flow. The value of Tmax A 1is
zero at t=0, it increases as the squeezing goes on, and it
reaches the maximum, then it decreases, etc. Higher values
of 5@uA were tried, but the solution didn't converge after
several time step when fmax A reaches 36. In the steady
state calculation of Maxwell fluid, the highest value of
¥A, under which the solution converges, has been known as
around 1 to 2 depending upon the type of the flow (see
Crochet and Keunings, 1982; Mendelson et. al., 1982;
Viriyayuthakorn and Caswell,1980). It is desirable to do
the computation with higher ihwpk in the future, when the
convergence problem at high #A , which is one of the major

problem in the numerical calculation of viscoelastic

materials, is resolved.

At this point, one can conclude that approximating
the overall behavior (H/H, vs. time) of the Maxwell fluid by
the linear viscoelastic prediction 1is favorable at the
values oOf ¥pA at least up to 21, since the finite element
calculation of Maxwell fluid is several orders of magnitude

more expensive than th: linear viscoelastic case.



CHAPTER 5
EXPERIMENTS

Experiments on the unlubriéated compressive flow of
Newtonian and viscoelastic materials under a constant load
have been carried out to obtain the film thickness as a
function of time. The apparatus and the materials used are
described in Sections 5.1 and 5.2, respectively. The
experimental results are shown and compared to the

theoretical predictions in Section 5.3.

Experiments on the lubricated compressive flow were
attempted; these were unsuccessful, since the lubricant
along the wall surface was expelled quickly during the early
moments of squeezing, after which the central test material
began to stick to the wall. To perform this type of
experiment successfully, the viscosity ratio of the
lubricant and the test material must be chosen very
carefully (see Section 3.5), or a sophisticated device which
can supply the lubricant to maintain almost constant
thickness of the 1lubricant layer through the squeezings

needs to be designed.

5.1 Apparatus

108
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The apparatus used in the experiments 1is shown in
the picture (Fig. 5.1). There are three parts: the
squeeszing equipment (A), the thickness measuring device (B),

and the recording equipment (C).
5.1.1 Squeezing equipment (see Fig. 5.2)

The squeezing equipment is composed of a rigid
stationary part and a moving part. The central cylindrical
rod (Al), at the bottom of which a flat circular disk (A2)
is attached, moves through two linear ball bushings (A3,74)
which provide the straight movement of the moving rod. The
test material is placed between the bottom plate (A5) and
the circular disk. At the instant t=0, the load (all the
moving parts) on the material is released. The upper plate
falls down under the influence of the gravitational

acceleration, with the test material being squeezed out.

5.1.2 Thickness measuring device (LVDT, see

Fig. 5.3)

Continuous measurement of the film thickness during
squeezing is accomplished with the LVDT (linear variable
differential transducer), which is manufactured by Schaevitz
Eng. Co. The specifications of the LVDT used are given in
Table 5.1. The LVDT is composed of two parts, the body (B1)
and the core (82). The body is fixed on the stationary part

of the squeezing equipment and the core is attached to the
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Fig. 5.1 The apparatus used in the squeezing
experiments: (A)squeezing equipment, (B)thickness
measuring device, (C)recording equipment.
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Fig. 5.2 The squeezing equipment: (Al)cylindrical
moving rod, (A2)circular disk, (A3,A4)linear ball
bushings, (A5)bottom plate.
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Fig. 5.3 The thickness measuring device
(LVDT): (Bl)body, (B2)core.
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Manufacturer : Schaevitz Engineering Co.

Model no. : 200 DC-D

Calibration data by manufacturer
Linear range : £0.200 in.
Sensitivity : 51.500 V/in.
Linearity : <0.25% of full range
AC ripple : <10 mV (max.)

Dimensions

Body : 0.75 in. d * 3.80 in. 1
Core : 0.187 in. d * 1.80 in. 1

Weight

Body : 73 g
Core : 5 g

Operated by +15 V DC

Table 5.1 The specifications of LVDT used
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moving cylindrical rod, so that the core moves with the rod.

5.1.3 Recording equipment

The continuous measurement from the LVDT is sent to

.the oscilloscope (Textronix 531A) and appears as a moving
spot on the screen. The picture of the trace of the moving

spot is taken with the Tektronix C-13 camera and a Polaroid

Land pack film camera back.
5.2 Materials

Two Newtonian fluids have been used as the standards
to -test the apparatus. Three different viscoelastic
materials have been usad in the experiments to investigate

viscoelastic effects in the compressive flow.
5.2.1 Newtonian materials

Viscasil 50000 : This is a viscous silicone fluid

manufactured by General Electric Co., whose viscosity is
constant and known as 60000 cs (at 25°C) and density is 0.97

g/cm? .

Dow Corning 200 fluid, 12500 : manufactured by Dow

Corning Co. 1Its viscosity is 12500 cs (at 25°C) and density

is 0.975 g/cms.

5.2.2 Viscoelastic materials
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Silicone Polymer : This is a three phase material

(silicone resin, plasticizer, and filler) manufactured by
ICI, England. This material is known to have rheological
properties close to those of linear Maxwell fluid, based
upon the oscillatory shear measurements (see also Fig. 19-2

of Denn(1980)).

The oscillatory shear data have Deen obtained
through the courtesy of Dr. K. F. Wissbrun of the Celanese
Research Corporation. Appendix F.l contains a tabulation of
the storage modulus(G'), the 1loss modulus(G") and the
absolute value of the complex viscosity(j*) as a function of
the circular frequency(w) at three different temperatures.
By taking 23°C as a reference temperature, |7*lw could be
superposed on to one mastercurve with the help of the
horizontal shift factors(&y) (see Gupta(l1980)), which is
shown in Fig. 5.4. And furthermore we know from the linear

viscoelastic theory that

7w

7w = (1+w*A\*)7? (5-1)
or
jw = |7*'|au(;+w‘/\‘)yz (5.2)

Using (5.2), 7w vs. wdt is plotted in Fig. 5.5, from which
one can see that the viscosity is nearly constant in the
given range of the circular frequency. We will wuse this

constant viscosity to analyze the squeeze film data later.
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TLA-227 : A concentrate of a methacrylate copolymer
in petroleum oil, manufactured by Texaco, Inc. The steady
shear measurements at low shear rate range were made on the
Rheometrics Mechanical Spectrometer (of Celanese) and the
capillary measurements were made at high shear rates. The
shear stress and the normal stress data are tabulated as a
function of the shear rate inu Appendix F.2. The end
correction (see Bagley, 1957) in the capillary measurement
was unnecessary since the capillary tubes used were long
enough (L/R=160, 268). The results are shown in Fig. 5.6 at
various temperatures. At 27°C, the spectrometer data and
the capiilary data agree well, which illustrates the
correctness of both data. The material shows slightly shear

thinning behavior(n=0.86) at high shear rates.

PAA-water solution : 3.3 wt. % Separan AP-30 (a

partially hydrolyzed polyacrylamide manufactured by Dow
Chemical Company) in water solution was made and
characterized with a Weissenberg Rheogoniometer. The shear
stress and the first normal stress data are given in
Appendix F.3 and shown in Fig. 5.7. This material is highly

shear thinning(n=0.267) and highly elastic.

5.3 Experimental results and discussion

Experimental results on Newtonian fluids are

tabulated in Appendix G.l and shown in Fig. 5.8, in which
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H/H, is plotted against dimensionless time t (=§-£%ﬁ¥£0.
° ’ 3 AR \R! %
They agree well with the Stefan equation, which illustrates

the quality of the apparatus and technique used.

Experimental results on viscoelastic materials are
given in Appendix G.2 and shown in Figs. 5.9-5.13. The
corresponding inelastic curves (analytical or numerical) are
also shown in each figure for comparison purposes. The

values of iM*A for each run are also given in Appendix G.2.

Figs. 5.9 and 5.10 show the squeezing of Silicone
polymer. It is seen from Fig. 5.9 that the material seems
to be squeezed instantaneously at t=0. The details of this

initial movement have Dbeen obtained by expanding the time

axis and are shown in Fig. 5.10, in which the Llinear
viscoelastic prediction is also shown for comparison
purposes. Since Tmax A in this experiment is 9, we expect

that the Maxwell prediction would be close to the linear
viscoelastic one based upon the conclusion drawn in Section
4.2.2. It shows that the 1initial movement 1is not the
instantaneous squeezing, but the oscillatory squeezing, and
that the Llinear viscoelastic theory predicts the correct
oscillation period, but a larger oscillation amplitude than
the experimental result. Both experimental results on
silicone polymers stay below the corresponding Newtonian
curve and it is 1likely that this material is close to a

Maxwell type of fluid, as expected from the oscillatory
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shear data.

The squeezing curves of TLA-227 are shown in
Figs..S.ll through 5.13. One can see that the experimental
curves stay above the corresponding inelastic curves.
Fig. 5.14 shows the result for the PAA-water solution, which
has the similar characteristic as TLA-227. Most data on
these two solutions show an inflection point which probably
reflects a very weak oscillation. 1In Section 4.2.2 we have
seen that the Maxwell model predicts the fasﬁer squeezing at
Jwx A (=21) which is higher than those(=2~19) in these
experiments. Thus, it is not likely, at least in this type
of transient flow, that these two polymer solutions are

close to Maxwell, or in general White-Metzner, type of

£fluids.

It is desirable to try more realistic and thus
complex models, which can describe the transient behavior
more precisely, in finite element calculations in the
future. The Phan-Thien-Tanner, Johnson-Segalman, and

Marrucci structural models would all be candidates for this

purpose.




CHAPTER 6

SUMMARY AND RECOMMENDATIONS

6.1 Summary of present work

1. The unlubricated compressive flows of Newtonian
fluids and power-law fluids have been simulated by a finite
element technique, verifying that the Stefan equation
(Newtonian) and the Scott equation (power-law) based upon an
assumption of parallel squeezing are good provided the R/H
ratio 1is large enough. When R/H is small, the edge =ffect
causes slower squeezing than predicted from the Stefan

equation or the Scott equation.

2. When there exists a substantial transverse
viscosity gradient 1in the fluid charge, two different flow
regimes are predicted depending upon whether the
P (= '711“ Hz

dimensionless group, S T
7»\3» R

to unity. When S is small compared to unity, the parallel

) is small or large compared

squeering assumption is wvalid and the maximum velocity
occurs at the center plane. When S 1is large comparad to
unity, the parallel squeezing assumption breaks down and the
maximum velocity occurs in the low viscosity fluid near the

disks. Thus, a new analysis is necessary in this case. 1In

130
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the two fluids case, new assumptions other than the parallel
squeezing assumption have been made to derive an analytical
solution which is found to be in good agreement with the

finite element numerical solution.

3. The partially-~-filled compreésive flow of
Newtonian £fluid has been solved -numerically. The flow
patterns in the partially-filled compressive flow, or the
flow in the mold cavity, are essentially the same as those
one observes in the fully-filled case except near the front
: here we observe the expected fountain flow phenomenon in

the partially-=filled case.

4. The 1lubricated compressive flow of linear
viscoelastic material has been solved analytically and
numerically. The compressive motion under a constant amount
of loadv may or may not be oscillatory, depending upon the
conditions as predicted by equations (3.49-52). When
oscillation occurs, it 1is due to the combined effects of
inertia, the elasticity, and the viscosity. The oscillation
period 1is given by RRJ%?%l The retardation time plays an

important role in the damping of the oscillatory motion.

5. The lubricated compressive flows of non-linear
viscoelastic model fluids, including the contravariant
convected Maxwell model, White~Metzner model,

Johnson-Segalman model (with and without retardation time),
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and Marrucci structural model, have been solved numerically.
The contravariant convected Maxwell model and White-Metzner
model predict faster oscillatory squeezing than the
corresponding inelastic cases, except at very small H/Hq
under tﬁe extraordinarily high 1loading conditions. The
Johnson-Segalman model and the Marrucci structural model
predict slower oscillatory squeezing than the corresponding
inelastic cases at high squeezing speed. These different
responses seem to be due to thé stress overshoot phenomena,
since Johnson-Segalman model and Marrucci structural model
do predict stress overshoot, but the contravariant convected

Maxwell model and White-Metzner model do not.

6. The unlubricated compressive flow of linear
visco=lastic materials has been solved analytically,
assuming that the velocity field 1is the same as the
Newtonian one. The Dbehavior 1is very similar to the
lubricated case except that the principal Llength scale is
different from the Llubricated case. When oscillation
occurs, the oscillation period is given by ¢=xH %;%Z

7. The unlubricated compressive flow of the
contravariant convected Maxwell model has Dbeen solved
numerically, using a finite element technique. The results
are about the same as in the linear viscoelastic case except
that the oscillation amplitude of the Maxwell fluid 1is

somewhat smaller than for the linear viscoelastic material.
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8. Squeezing experiments on the viscoelastic
materials have shown two different behaviors; silicone
polymer, which can be well characterized by the linear
Maxwell model, shows faster oscillatory squeezing than the
corresponding Newtonian cases, while TLA-227 and pAA-water
solution show weak pbounces and slower squeezing than the
corresponding inelastic cases. The Dbehavior of silicone
polymer 1is predictable from the Maxwell model, but the
responses of TLA-227 and PAA—wéter solution Aare different
from those predicted by the Maxwell model. To explain the
latter behavior, we might need 2a ;onstitutive equation which
can predict the transient responses, such as the stress

overshoot, more precisely.

9. In conclusion, the slower squeezing of
viscoelastic materials, OF higher load-bearing capacity of
viscoelastic lubricants, seems to Dbe not due to the
elasticity of the material, but due to the transient
responses of the material. In other words, the
dimensionless group Fpax A alone may not be the proper
dimensionless group to Jdescribe the whole features of the
squeezing of viscoelastic materials. We require the ratio
of Deborah number to Reynolds number toO describe the
osciliatory Dbehavior and also require at least one more
dimensionless Jroup which can describe the transient
responses of the materials such as strass overshoot

phenomenon.
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5.2 Recommendations fog future work

1. The use of the Phan-Thien-Tanner model, .Johnson-
Segalman model, or Marrucci structural model is recommended

for the further study of the compressive flow problems.

2. In all transient problems it may be important to
use constitutive equations which describe the transient

fluid behavior precisely.

3. The development of a constitutive equation, which
can describe the transient responses more precisely, is

desirable.
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APPENDIX B

GOVERNING EQUATIONS IN THE LUBRICATED CPMPRESSIVE
FLOW OF NON-LINEAR MODEL FLUIDS.

Assuming the kinematics given by equations (3.1-3),
the lubricated compressive flow of non-linear model fluids
are governed by equations (3.19, 16, 22), and the

corresponding constitutive equations which calculate 7 and

Tz . The constitutive equations which will be considered
here include White-Metzner model, Johnson-3egalman model
(with or without retardation term), and structural model.

Since the contravariant convected Maxwell model is just a
special case of White-Metzner model (when ‘7(I‘)=7o), or
Johnson-3egalman model (when 3¥=0), it will not be dealt with

separately.

B.1l white-Metzner model

Rewriting equations (3.19, 16, 22),

Zléb _ _m(3+8HE?) - LrprtG? + Lnpr WG - AR (%= %a) (3.19)
t = e -
Lrrt[pep B (L) Li0Y

LR
dH _ 2 3.16
j?.__qu (3.16)
dR _ ., ¢
g —RS& (3.22)

The 7rr and 7zz in (3.19) are calculated using White-Metzner
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constitutive equation given by equation (3.6 )

7+ 7 = 23004 (3.6 )

In the lubricated compressive flow,

€& o0 O
ad=Hvw+w)=|o & o (B.1)
(o] —Zéb
and
0 =-+(eraf - er(g®] = +34* (B.2)

If one assumes that the viscosity is given by the power-law

relationship, that 1is,

n-i
% (Ig) = k|+4a]y| * (B.3)

where K is the consistency factor and n 1is the power-law
index, the radial and axial components of equation (3.65)

are written as

d%r _ . G :
—g}m—ZGés*mIIlébl " + 26, Trr (B.4)

d72__4q_ b‘—_ﬁ:l_—l L,ln7z“4€b7zz (B.5)

Equations (3.19, 16, 22) and (B.4, 5) are all first
order ordinary differential egquations and they can he solved
simultaneously using the Runge-Kutta method or Gear's

method.
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8.2 Johnson-Segalman model

Equations (3.19, 16, 22) remain the same and the
stress components (rr and zz) of Johnson-Segalman
constitutive equation with retardation term (3.55), in the

lubricated compressive flow, are given by
. . dé, *2
Tt N[ =20-96%0] = 23[4+he{ G2 -20-0)67}]

. . dé. ey 2
Tz T A [‘wa +401-1) 6 Ta] = ~4) [€+ A +4I-3)E7} ]

or
. J -2 | - .
%%’-:z%[ebh\z{%% —2(1-5)& }] - -X‘—7,,+z(l 3)e %r (.6)
%—- 4’1'[651"/\2{ 6 4 4-9062}] - “Ta —4(l-§)é,,7zz(B .

Again it is not difficult to solve the equations (3.19, 16,

22) and (B.6, 7) simultanuously.

B.3 Structural model

First we need to rearrange equation (3.19) in the
following form,

dé _ m(3+8HE?) - smpR*E’ t Enp’H e -k (7, 7;,_)&

dt — —L/IR4[,°+P‘32{Ji)+/ri2H]

since the constitutive equations are written in terms of

(= Tn/G) and Cue(= T%z/3)

8)

In the lubricated compressive flow, the constitutive

equations (3.67) become
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AL 2637 - g (5.9)
Tee tA LS 446, 7.7 = 406,

G=6Gx , A=dx"?

d ] A I [E .

All the equations are the first order ordinary differential

equations again, which can be solved easily.

Computer programs for each model are found in the
Appendix E.3. Here, Gear's method has been used to solve

given ordinary differential equations simultaneously.




APPENDIX C

THE LUBRICATED COMPRESSIVE FLOW OF MAXWELL
FLUID UNDER VERY HIGH LOADING CONDITIONS
The numerical results of the lubricated compressive
flow of Maxwell fluid under very high loading conditions are
given here. The geometry and the material properties are
kept constant as given below; The load varies from 100 to

10000.

Geometry and material properties :

R =3
Ho, = 0.05
P =1.
7 =10
A = 0.1
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., m=100.

t (8/Ho) yewt
0.00 1.000
0.01 0.899
0.02 0.694
0.03 0.507
0.04 0.327
0.05 0.281
0.07 0.175
0.1 0.109
0.15 0.522E-01
0.2 0.323E-01
0.3 0.1061lE-01
0.4 0.979E-02
0.6 0.4738E-02
0.8 0.286E~02
1.0 0.191E-~02

. m=500.

€ (H/Ho) eyt
0.00 1.000
0.01 0.746
0.02 0.368
0.03 0.187
0.05 0.721E-01
0.1 0.188E-~01

0.2 0.488E-02
0.3 0.221E-02
0.4 0.126E-02
0.6 0.569E-03
0.8 0.324E-03
1.0 0.209E-03

146

(H/HO)Maxwell

1.000
0.893
0.665
0.459
0.318
0.228
0.131
0.710E~-01
0.358E-01
0.226E-01
0.124E-01
0.830E-02
0.474E-02
0.313E-02
0.230E-02

-(H/Ho)Max

1.000
0.738
0.345
0.167
0.604E-01
0.155E-01
0.449E-02
0.233E-02
0.149E-02
0.793E-03
0.497E-03
0.341E-03

(H/Ho ) Max
(eb)Max (H/HO)NeWt
0.00 1.00
10.93 0.99%
17.55 0.96
18.89 0.91
17.59 0.85
15.64 0.81
12.13 0.75
8.60 0.65
5.46 0.69
3.86 0.70
2.36 0.77
1.72 0.85
1.18 0.99
0.93 1.09
0.79 1.20
) (H/Hg) Max
(éb) Max (H/Ho ) Newt
0.00 1.00
30.13 0.99
40.18 0.94
32.12 0.89
20.09 0.84
9.48 0.82
4.18 0.92
2.61 1.05
1.93 1.18
1.33 1.53
1.04 1.53
0.86 1.63




m=1000.

t ’ (d/do)Newt
0.00 1.000
0.01 0.677
0.02 0.251
0.03 0.110
0.05 0.376E-01
0.1 0.903E-02
0.15 0.398E-02
0.2 0.223E-02
0.4 0.560E-03
0.6 0.251E-03
0.8 0.142E-03
1.0 0.911E-04

. m=10000.

t (H/Ho) Newt
0.00 1.000
0.01 0.541
0.02 0.5528-01
0.03 0.156E-01
0.05 0.414E-02
0.07 0.187E-02
0.1 0.846E-03
0.15 0.353E~03
0.2 0.193E-03
0.4 0.465E~-04
0.6 0.204E-04
0.8 0.114E-04
1.0 0.729E-05
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.(H/Ho)Max

.000

.670

.236

.988E-01
.327E-01
.796E~-02
.372E8-02
.225E-02
.728E-03
0.381E-03
0.236E-03
0.1618-03

oNoNeoNoNeoNeoNeoNe N

(H/Ho)Max

. 000

.539

.534E-01
.150E-01
.399E-02
.184E-02
.859E-03
.386E-03
+228E-03
.703E-04
.358E-04
.219E-04
0.147E-04

[eNeoNeoNoNoNoRoNoNoNoNol o

. (H/Ho)Max
(eb)Max (H/Ho)Newt
0.00 1.00

41.76 0.99
51.40 0.94
36.51 0.90
21.26 0.87
9.72 0.88
6.02 0.93
4,27 1.01
1.98 1.30
1.36 1.52
1.06 1.66
0.87 1.77
(H/Ho)Max

(eb)Max (H/Ho)Newt

0.00 1.00
80.30 0.996
87.82 0.97
47.25 0.96
24.00 0.96
15.85 0.98
10.30 1.02

6.31 1.09

4.46 1.18

2.06 1.51

1.41 1.75

1.09 1.92

0.89 2.02




APPENDIX D

FINITE ELEMENT FORMULATIONS.

Since éur flow of interest is the axisymmetric flow
(in r-z coordinate), we will 1limit ourselves to the
axisymmetric flow of incompressible fluids. First, we will
consider the flow of generalized Newtonian fluid. The flow
of viscoelastic materials will then be considered. The
excellent treatments on these subject are given Dby

Crochet(1981), and Zienkiewicz(1977).

D.l1 Generalized Newtonian flow

Governing equations : 1In the compressive flow of

inelastic generalized Newtonian fluid, the fluid inertia is
considered negligible (Re<<l). The momentum equations then
become the quasi-steady state equation, even though the flow

itself is time dependent. The momentum equations are given

by
2 L2 Teo . 90z -
—SE Tl - P =0 (.1)
2z T ¥ 3r r’4 Z z - (D.2)

where f,. and f; represent the components of the Dbody force

per unit volume.
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The constitutive relations of generalized Newtonian

fluids are given by

7rr=27(ﬂd)

799=27(L)

Tz = 27(1[4)

Trz = 27 (L)
where

14 =--‘.-Iz~|:(tr

= ?lZ( as

and

dpp = 2¥;

dge = Jél

az = 5F

o (avr
drz= 3"

IZ

ay - tr(gz)J

2 2 2
+ dee + dzz ) + drz

+28)

The mass conservation is given by

L))
o

Galerkin

Vi 9 V.
A

formulation : Let us

approximations of V., Vz, and p given by

consider

(D.

(D.

(D.

(D.

(D.

.3)

4)

5)

6)

.7)

8)

9)

(D.10)

(D.11)

(D.12)

the




M

- ] D.13

Ve = 2y (2 ( )
M

— 3 D.14

Vo = :‘y; 5 Y ( )
N

where '¢

/. and 96 are the interpolation functions for the

velocity components and- the pressure, respectively, and ;,
zﬁ, and P; are the nodal values of the velocity components
and the pressure. The Galerkin formulation of the momentum

equations 1s then given by

7
(rt -~ L+ L2 )-B+ ER R >0 (06
2
< Mﬁ.’, - ££ +';'=§7-’("7rz)+*—"aa§zz+fz >=0 (D.17)

where the brackets denote the integrations over the given

domain.

Performing the integration by parts on egquations
(D.16) and (D.17) and using the divergence theorem, one

obtains
¢ r%lé‘.’ P+ T + <r_¥i, %2> <Y, %> - ¥, P

=<rw/ri,f,>+<<r¢;,tr>> (p-18)
<r%%, 7rz> +<r%’z§, -P+7zz> = <r¢;)¥z>+<?¢;,tz> (D.l9)

where t, and t, are the r and z component of the contact

force vector and the double brackets denote the integrations




along the boundary of the domain.

Substituting the constitutive relations (D.3-6) into

equations (D.18) and (D.19) gives the final form of Galerkin

equations,
V 9
_<1P;, P> = <r",b;, f.> + «}"’lﬁ;, £ > (D.20)
oY MW 2 ab Ve

Kr3tl A (SE+SF)>+<rgd -pr2y 5> 1)

=<V'7P;) fz> + «r'(Pi) tz »

Galerkin form of the mass conservation becomes
<ré; -a-\:i+-\-/,:’:+%\—;z—> =0 (D.22)

Further substituting the approximations of (D.13-15)

into (D.20-22), one obtains the following algebraic system

M N .
=z (Ay g+ C5p) - X DgR = X, diieM (D.23)
M N

- i = Fa A D.24
f;(Cu t ByV;) JZﬂEUpJ Yo, ici~M ( )
s D.25
Z(-D"%—EJ‘UJ) = O) N 1 ~N ( 25)

where

= z<7raw’ ilL’L>7:~<7 éf‘ﬁn + <% kY

L WJ>+ <7r§f, LN

>
[ngd
|

By = 2<3r 37

J
_ a#’.
I X e ey
Eﬁ"‘(f"aa“ﬁ) ¢J>
Xi = <rih > +«rd; te», N =<i’7ﬁi)7°z>+<<”/’i,*=>>
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The solution of the system (D.23-25) can be obtained
by a certain iteration technique, since the viscosity is a
function of the velocity fiéld in general. One can assume a
constant viscosity to obtain the velocity field in the first
iteration and the new viscosities are obtained from the
previously obtained velocity field. One then repeats this
procedure until the solution or the viscésity converges
within a given error allowance. This technique has been
used successfully to solve the unlubricated compressive

flows of the power-law fluids in Section 2.3.

Solving equations (D.23f25) requires the calculation
of all the matrices, which are the integrations in the
domain, and the selection of the appropriate elements and
shape functions ¥, and ¢;. Numerical integration, using
quadrature points, 1is the effective way of performing
integations. Two types of elements have been successful in
the past. The first element is a triangle on which the
velocity components are represented by complete second order
polynomials, while the pressure is given by complete first
order polynomials. The second element is a quadrilateral
with biquadratic velocity components and bilinear pressure.
The functions ’% and ¢; are given in Tables D.l and D.2 for

the triangular and the quadrilateral element, respectively.
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D.2 Viscoelastic flow : Maxwell fluid

Governing equations : Let us consider

the

compressive flow of the contravariant convected Maxwell

fluid. One then requires to retain the material time
derivative terms in the momentum equations and in the
constitutive equations. They are given in the following.
Momentum:
DV, _ ap | 2 799 37,-7_
PBE="3F* Farlrt)-—F+5 +f  (D.26)
DV; k . 1 2 a7zz
P th ‘5;+75-;(sz) + f2 (D.27)
Constitutive:
Yot N[ L - 27,2 27,24 ] 27 3% (D.28)
Dl Vel o V
oo+ AL 52 2% ] =27 (D.29)
D7, Vi 3V, Vs
Tat A 52 2T 5 22 32| = 27 = (D.30)
T oV, V, Ve 2
7rz+)\[Drz 'z;_r z Tzar ?rz( r+__a_\_(zr_._)] 5.31)
Vie | 2V )
= 7(9 roy 1)
The continuity equation is given by
Vi
9' ¥ v"-{-——-——-aa\;z =0 (D.32)
A mixed finite element method : In this method,

first proposed by Kawahara and Takeuchi, the extra stress
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components are considered as unknown functions to the same
degree as the velocity components and the pressure. Thus,
we consider 7 unknown fields for axisymmetric flow: 4
stress components, 2 velocity components, and the pressure.
We use the following approximations for these unknown
fields,
Vo = S U ’!/JJ (D.34)
p =X pe (D.35)
-~ { T . o
T = Z R (D.35)
Yz = Z-QIZI (D.37)
% =205 (D.38)
793’3 z QJ’{}' (D.39)
The Galerkin form of the constitutive and field equations
may then be obtained as follows,
D% V; v,
KT, Tt A By -2 2% 3] -2 2 y=0 (D.40)
D7 .
< r7, T A58 "-7ee°\{'—r -2 er‘ = (D.41)
DZ aVz >V, aV.
<r7T, 72’*')‘[ ot 27"1 5r 20z a; —273—2'2- 2 =0 (D.42)
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Y, 3
<r 7,.24-)\[ -7,.,.3\/‘ —'Tzzaa\ﬁ' - Tz (%—,’:’- + —5\;-5)] (D.43)
(53
-<¢.,P> <H/.,ﬁ>+<< ¢;,tr>>
a;ﬁ, Tz > + <F ‘;;; P+ T - <, PDVZ (D.45)
=<y, fao b <, By

<r-¢ ar>+<r¢ >+<»—¢,, V >=0 (D.46)

By replacing Vi, Vo, Tr, Tzz+ Gz, Tee, and p in terms of
their approximations given by (D.33-39) it is possible to
obtain a non-linear algebraic system of equations in terms
of the unknowns, Y 1.3-, RJ-, SJ, 'I:;, QJ, and P s which 1is

solved by means of Newton-Raphson iterative method.

The material time derivatives are treated by a
finite difference scheme 1in the time coordinate. Their
discretization, using the implicit three point recurrence
scheme with variable time steps, 1is given by equation

(3.72).

The same types of elements as used in the
generalized Newtonian flow have been shown to work well with
the mixed method, using the same interpolation functions for

the velccity components and the stress components; that is,

=% .
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(0,0) X (1,0
) 4 2

parent triangular element

I

|-%-7

3

7

1-3(5+7) +z(§+7)2

45.
¢,
%

=
i

%= 3(23-1)
‘1/3.-. 7(27—0>
Y, = 43(1-3-7)
Y= 43)

Y, = #701-37)

Table D.1l Shape functions, ¢;and #ﬁ, in
the parent triangular element.
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+]
2 5 I
6 7
g AL 3
3 7 4
-1

parent quadrilateral element

@ = (D0t /4, 2= (1-5201+3) /4

¢, = (l-§)(l-7)/4 , By = (;+5)(1-7>/4

Y= 30 /e, H=3U3209) /4
Yo= 501330 /4 Y, =-5(1+5)7 (1= /4
Yp= (1-3970+0)/2,  Fe=-30-DU-)D /2
Y= -0-590-p/2, =3 (#5015 /2
i

it

(/—f*)(/~72)

Table D.2 Shape functions, ¢;and'¢;, in
the quadrilateral element.
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APPENDIX =

COMPUTER PROGRAMS

he computer programs for the lubricated compressive
f the White-Metzner, Johnson-Segalman, Marrucci
1 models, and their corresponding inelastic cases

here. Subroutine DGEAR, the differential equation

solver by Gear method, from IMSL subroutine package has been

used 1in

following

these programs. Each program deals with the
case:
Program Description
WMSLP.FOR White-Metzner model with
power-law viscosity
PWLSLP.FOR inelastic power-law fluid
JSSLP.FOR Johnson-Segalman model
NJSSLP.FOR inelastic case corresponding to
Johnson-Segalman model
SMSLP.FOR Marrucci structural model
NSMSLP.FOR inelastic case corresponding to

Marrucci model
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Programs used in the lubricated compressive flows

C**************************************************************

C
C PROGRAM WMSLP.FOR

c

C LUBRICATED SQUEEZING OF WHITE-METZNER FLUIDS.
C

C

kkkkhkkhhhhkhhhkhhhhkhkhhhhhkhhdhhkhkdhrhrkhkkkhhkhkhhhkhhhdhrhhdhiikx

INTEGER N,METH,MITER,INDEX,IWK(5),IER,IRV

REAL Y(5),WK(115),T,TOL,TEND,DELT

DOUBLE PRECISION PRINT,THHO

EXTERNAL FCN,FCNJ

COMMON/AB/A,B

COMMON/AM/AMASS

COMMON/G/GM .

COMMON/VR/VISC,GSHEAR, PL
C*************************************

TYPE 10
10 FORMAT(' INITIAL CONDITIONS'/' ENTER TO0,EBO,PRRO

1,P220,H0,R0'")

ACCEPT *,T0,EBO,PRR0O,PZZ0,H0,RO0

TYPE 11
11 FORMAT(' ENTER DENSITY, SHEAR MODULUS, VISCOSITY OR'

1 ' CONSISTENCY FACTOR, POWER LAW INDEX, MASS')

ACCEPT *,DENS,GSHEAR,CONF,PLI,AMASS

VISC=CONF*(12.)**((PLI-1.)/2.)

TYPE 12
12 FORMAT(' ENTER TOLERANCE, DELT')

ACCEPT *,TOL,DELT

TYPE 15
15 FORMAT(' ENTER NPRT,INTERVAL')

ACCEPT * ,NPRT,AINTR

TYPE 16

16 FORMAT(' ENTER FILENAMES FOR PRINT / T VS. HHO')
ACCEPT 117,PRINT, THHO

117 FORMAT(A10/A10)

C************************************
OPEN(UNIT=31,DEVICE='DSK',FILE=PRINT)
OPEN(UNIT=32,DEVICE="DSK',FILE=THHO)

WRITE(31,17)

17 FORMAT(' LUBRICATED SQUEEZING OF WHITE-METZNER FLUID')
WRITE(31,25) DENS,GSHEAR,CONF,PLI,AMASS

25 FORMAT(' DENSITY = ',E14.5/' SHEAR MODULUS = ',El4.5/

1 ' CONSISTENCY FACTOR = ',El4.5/' POWER LAW INDEX = ',
1 El4.5/' MASS = ',El4.5)
WRITE(31,27) TOL
27 FORMAT(' TOLERANCE = ',El4.5)
C*******************************************

PI=3.14159265357989
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N=5

METH=1

MITER=0-

INDEX=1

WRITE(31,28) METH,MITER, INDEX |
FORMAT(/' METH = ',14/' MITER = ',I4/' INDEX = ',I14/)

T=T0
Y(1)=EBO
Y(2)=PRRO
Y(3)=P220
Y(4)=HO
Y(5)=R0

GM=980.*AMASS
A=PI*DENS
B=PI*VISC

EB=Y(1)

PRR=Y(2)

P22=Y(3)

H=Y(4)

R=Y(5)

HHO=H/HO

WRITE(5,20)

WRITE(31,20)
FORMAT(//7%,'TIME',12X,'EB',11X,'PRR',11X,'P22",
1 13X,'H',13X,'R',10X, 'H/H0',10X, 'DELT' /)
WRITE(S,21) T,EB,PRR,PZZ,H,R,HHO,DELT
WRITE(31,21) T,EB,PRR,P2Z,H,R,HHO,DELT
WRITE(32,*) T,HHO

FORMAT(8E14.5)

C************************************

100

DO 100 I=1,NPRT

TEND=FLOAT(I)*AINTR+TO

CALL DGEAR(N,FCN,FCNJ,T,DELT,Y,TEND,TOL,METH,MITER,
1 INDEX, IWK,WK, IER)

EB=Y(1)

PRR=Y(2)

P22=Y(3)

H=Y(4)

R=Y(5)

HHO=H/HO

WRITE(31,21) TEND,EB,PRR,PZZ,H,R,HH0,DELT
WRITE(32,*) TEND,HHO

WRITE(5,21) TEND,EB,PRR,PZZ,H,R,HHO0,DELT
CLOSE(UNIT=31,DISPOSE="'PRINT')
CLOSE(UNIT=32)

STOP

END

C**********************************************
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SUBROUTINE FCN(N,T,Y,YPRIME)
C*********************************************

INTEGER N '

REAL Y(5),YPRIME(5),T

COMMON/AB/A,B

COMMON/AM/AMASS

COMMON/G/GM

COMMON/VR/VISC,GSHEAR, PLI
C**************************************

PI=3.14159265357989

EB=Y(1)

EB2=EB*EB

PRR=Y(2)

PZZ=Y(3)

H=Y(4)

H2=H*H

R=Y(5)

R2=R*R

R4=R2*R2

YPRIME(1)=(GM+4.*AMASS*H*EB2-A*R4*EB2/4.

1 +4 ,¥A*R2*H2*EB2/3.-PI*R2* (PRR-PZZ))

1 /(A*R4/4.+2 . *A*¥R2*H2/3,+2,*AMASS*H)

YPRIME(2)=2.*GSHEAR*EB-GSHEAR/VISC*ABS(EB)**(1,-PLI)*
PRR+2.*EB*PRR

YPRIME(3)=-4.*GSHEAR*EB~-GSHEAR/VISC*ABS(EB)**(1,-PLI)*

1 pPZ2Z+-4 ,%¥EB*P22Z

YPRIME(4)=-2.*EB*H

YPRIME(5)=EB*R

-

RETURN

END
C***********************************************

SUBROUTINE FCNJ(N,T,Y,PD)

INTEGER N

REAL Y(5),PD(N,N),T

RETURN

END
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C*********************************************************

PROGRAM PWLSLP.FOR

C
C
C
C LUBRICATED SQUEEZING OF POWER LAW FLUIDS.
C
C

Tk KA IKEKEEIIARKIRA I A A A A Tk EA XAk hhhkhhdhhhhdhhkhhdx
'

INTEGER N,METH,MITER,INDEX,IWK(3),IER,IRV
REAL Y¥(3),WK(63),T,TOL,TEND,DELT
DOUBLE PRECISION PRINT, THHO
‘EXTERNAL FCN,FCNJ
COMMON/AB/A,B
COMMON/AM/AMASS
COMMON/G/GM
COMMON/P/PLI
C*************************************
TYPE 10 _
10 FORMAT(' INITIAL CONDITIONS'/' ENTER TO,EBO,HO,RO')
ACCEPT *,T0,EBO,HO,RO0

TYPE 11

11 FORMAT(' ENTER DENS, VISC OR CONSISTENCY FACTOR,'
1 ' POWER LAW INDEX, MASS OF LOAD')
ACCEPT *,DENS,VISC,PLI,AMASS
TYPE 12

12 ~ FORMAT(' ENTER TOLERANCE, DELT')
ACCEPT *,TOL,DELT
TYPE 15

15 FORMAT(' ENTER NPRT,INTERVAL')
ACCEPT * ,NPRT,AINTR
TYPE 16

16 FORMAT(' ENTER FILENAMES FOR PRINT & T VS. HHO')
ACCEPT 117,PRINT, THHO

117 FORMAT(A10/A10)

C************************************
OPEN(UNIT=31,DEVICE='DSK',FILE=PRINT)
OPEN(UNIT=32,DEVICE="'DSK' ,FILE=THHO)

IF(PLI.EQ.1.) WRITE(31,17)
IF(PLI.NE.1.) WRITE(31,18)

17 FORMAT(/' LUBRICATED SQUEEZING OF NEWTONIAN FLUID'//)

18 FORMAT(/' LUBRICATED SQUEEZING OF POWER LAW FLUID'//)
IF(PLI.EQ.1.) WRITE(31,25) DENS,VISC,AMASS
IF(PLI.NE.1.) WRITE(31,26) DENS,VISC,PLI,bAMASS

25 FORMAT(' DENSITY = ',E14.5/' VISCOSITY = ',El4.5/

1 ' MASS = ',El4.5)
26 FORMAT(' DENS =',El14.5/' CONSISTENCY FACTOR =',6El4.5/
1 ' POWER LAW INDEX = ',El4.5/' MASS = ',6El4.5)

WRITE(31,27) TOL
27 FORMAT(' TOLERANCE = ',El4.5)
C************************************
PI=3,14159265357989
N=3
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METH=1
MITER=0
INDEX=1
WRITE(31,28) METH,MITER,INDEX
28 FORMAT(/' METH = ',14/' MITER = ',6I4/' INDEX = ',6I4)

T=T0

¥(1)=EBO
' ¥(2)=HO

¥(3)=R0

GM=980.*AMASS
A=PI*DENS
B=PI*VISC

EB=Y(1)
H=Y(2)
R=Y(3)
HHO=H/HO0
WRITE(5,20)
WRITE(31,20)
20 FORMAT(//7X,'TIME',12X,'EB',12X%,'H',13%,'R',10X%,
1 'H/HO',10X, 'DELT'/)
WRITE(5,21) T,EB,H,R,HHO0,DELT
WRITE(31,21) T,EB,H,R,HHO,DELT
WRITE(32,*) T,HHO
21 FORMAT(6E14.5)
C************************************
DO 100 I=1,NPRT
TEND=FLOAT(I)*AINTR
CALL DGEAR(N,FCN,FCNJ,T,DELT,Y,TEND,TOL,METH,MITER,
1 - INDEX, IWK,WK,IER)
EB=Y(1)
H=Y(2)
R=Y(3)
HHO=H/HO
WRITE(31,21) TEND,EB,H,R,HHO,DELT
WRITE(32,*) TEND,HHO
100 WRITE(5,21) TEND,EB,H,R,HHO0,DELT
CLOSE(UNIT=31)
CLOSE(UNIT=32)
STOP
END
C**********************************************

SUBROUTINE FCN(N,T,Y,YPRIME)
C***************************************k*****

INTEGER N

REAL Y(3),YPRIME(3),T

COMMON/AB/A,B

COMMON /AM/AMASS

COMMON/G/GM
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COMMON/P/PLI

C**************************************
EB=Y(1)
EB2=EB*EB
H=Y(2)
H2=H*H
R=Y(3)
R2=R*R
R4=R2*R2
AAA=1,
IF(ABS(EB).EQ.0.) AAA=0,

YPRIME(1)=(GM+4,*AMASS*H*EB2-A*R4*EB2/4.
+4 ,*A*R2*H2*EB2/3.-6.*B*R2%
(12.)**((PLI-1.)/2.)*EB*
ABS(EB)** (AAA*(PLI-1.)))
/(A*R4/4.+2 ,*A*R2*H2/3,+2.*AMASS*H)
YPRIME(2)=-2,*EB*H :
YPRIME(3)=EB*R

(-

RETURN

END :
C***********************************************

SUBROUTINE FCNJ(N,T,Y,PD)

INTEGER N

REAL Y(3),PD(N,N),T

RETURN

END
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C*******************************************************

PROGRAM JSSLP.FOR

LUBRICATED COMPRESSIVE FLOW OF
JOHNSON~-SEGALMAN MODEL.

QOO0 0n

Gk kkk kIR Ak ARk k ko kkhkhdhhkhkhhhkkhkhhhkkkhddhkkhdhddk

INTEGER N,METH,MITER,INDEX,IWK(5),IER,IRV

REAL Y(5),WK(115),T,TOL,TEND,DELT,MASS

DOUBLE PRECISION PRINT, THHO

EXTERNAL FCN,FCNJ

COMMON/AB/A,B

COMMON /M/MASS

COMMON/G/GM

COMMON/VR/VISC,RTIMEl,RTIME2

COMMON/MP/G,RTIME, XI ,EPS
C*************************************
7 TYPE 10
10 FORMAT(' INITIAL CONDITIONS'/' ENTER TO0,EB0O,PRRO,PZ20,HO,R0')

ACCEPT *,T0,EBO,PRRO,PZZ0,H0,RO

TYPE 11
11 FORMAT(' ENTER DENSITY, AND MASS OF LOAD')

ACCEPT *,DENS,MASS

TYPE 111
111 FORMAT(' ENTER SHEAR MODULUS, RELAXATION TIME, AND',

1 ' RETARDATION TIME')

ACCEPT *,G,RTIMEl,RTIME2

TYPE 112
112 FORMAT(' ENTER XI')

ACCEPT *,XI

TYPE 12
12 FORMAT(' ENTER TOLERANCE, DELT')

ACCEPT *,TOL,DELT

TYPE 15
15 FORMAT(' ENTER NPRT,INTERVAL')

ACCEPT *,NPRT,AINTR

TYPE 16 ' :
16 FORMAT(' ENTER FILENAMES FOR PRINT / T VS. HHO')

ACCEPT 117,PRINT,THHO
117 FORMAT(Al10/Al0)
C************************************

OPEN(UNIT=31,DEVICE="DSK' ,FILE=PRINT)

OPEN(UNIT=32,DEVICE="DSK',FILE=THHO)

WRITE(31,17)
17 FORMAT(/' LUBRICATED COMPRESSIVE FLOW OF JOHNSON-',

1 ' SEGALMAN MODEL'//)
WRITE(31,25) DENS,G,RTIME1l,RTIMEZ,XI,MASS
25 FORMAT(' DENSITY = ',El4.5/' SHEAR MODULUS = ',
1 E14.5/' RELAXATION TIME = ',E14.5/

1 ' RETARDATION TIME = ',E1l4.5/' XI = ',
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1 E14.5/' MASS = ',El14.5)

WRITE(31,27) TOL
27 FORMAT(' TOLERANCE = ',El4.5)
C***************************************

PI=3,14159265357989

N=5

METH=2

MITER=0

INDEX=1

WRITE(31,28) METH,MITER, INDEX
28 FORMAT(/' MWTH = ',I4/' MITER = ',I4/' INDEX = ',I4/)

T=T0
¥(1)=EBO
Y(2)=PRRO0
Y(3)=PZ20
Y(4)=HO
Y(5)=R0O

GM=980.*MASS
A=PI*DENS

EB=Y(1)
PRR=Y(2)
P2Z=Y(3)
H=Y(4)
R=Y(5)
HHO=H/HO0
WRITE(5,20)
WRITE(31,20)
20 FORMAT(//7X%,'TIME',12X,'EB',11X,'PRR',11X,'P22",
1 13X,'H',13X%,'R',10X,'H/H0',10X, 'DELT'/)
WRITE(5,21) T,EB,PRR,PZZ,H,R,HH0,DELT
WRITE(31,21) T,EB,PRR,P2Z,H,R,HHO,DELT
WRITE(32,*) T,HHO
21 FORMAT(8El1l4.5)
C************************************
DO 100 I=1,NPRT
TEND=FLOAT(I)*AINTR+TO
CALL DGEAR(N,FCN,FCNJ,T,DELT,Y,TEND,TOL,METH,MITER,
1 INDEX, IWK,WK,IER)
EB=Y(1)
PRR=Y(2)
P22=Y(3)
H=Y(4)
R=Y(5)
HHO=H/HO0
WRITE(31,21) TEND,EB,PRR,PZZ,H,R,HHO,DELT
WRITE(32,*) TEND,HHO
100 WRITE(5,21) TEND,EB,PRR,PZZ,H,R,HHO,DELT
CLOSE(UNIT=31,DISPOSE="'PRINT')
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CLOSE(UNIT=32)

STOP

END
C**********************************************

SUBROUTINE FCN(N,T,Y,YPRIME)
C*********************************************

INTEGER N

REAL Y(5),YPRIME(5),T,MASS

COMMON/AB/A,B

COMMON /M/MASS

COMMON /G/GM

COMMON/VR/VISC,RTIMELl,RTIME2

COMMON/MP/G,RTIME, XI
c**************************************

PI=3.14159265357989

EB=Y(1)

EB2=EB*EB

PRR=Y(2)

P22=Y(3)

H=Y(4)

H2=H*H

R=Y(5)

R2=R*R

R4=R2*R2

YPRIME(1)=(GM+4 ,*MASS*H*EB2-A*R4*EB2/4.
+4 ,*A*R2*H2*EB2/3.-PI*R2* (PRR-PZ2Z))
/(A*R4/4 . +2 ,*A*R2*H2/3,.+2,*MASS*H)
YPRIME(2)=2.*G* (EB+RTIME2* (YPRIME(1)-2.*(1.-XI)
*EB2) )+2.%(1.-XI)*EB*PRR-PRR/RTIME]l
YPRIME(3)=-4.*G*(EB+RTIME2* (YPRIME(1)+4,*(1.-XI)
*EB2))-4.*(1.~-XI)*EB*PZZ~-PZZ/RTIME]l
YPRIME(4)=-2.*EB*H
YPRIME(5)=EB*R

O e

RETURN
END
CHrEFIXIIIKIKKIIKIIXKIXRIKE AR R IR I A XX I IR IF X H R A K

SUBROUTINE FCNJ(N,T,Y,PD)
C***********************************************

INTEGER N

REAL Y(5),PD(N,N),T

RETURN

END
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C*************************************************************

PROGRAM NJSSLP.FOR

c

C

c

c LUBRICATED SQUEEZING OF INELASTIC FLUIDS
C WITH JOHNSON-SEGALMAN VISCOSITY.

C
C

dekhkkhkhkkkhkhkkhkhkkkhhkkdkhhdhhhhhdhkdhddhhhhhhhhhhhhkhhhhkhkhhhhhkhhkkktk

INTEGER N,METH,MITER,INDEX,IWK(3),IER,IRV
REAL Y(3),wWK(63),T,TOL,TEND,DELT
DOUBLE PRECISION PRINT,THHO
EXTERNAL FCN,FCNJ
COMMON/AB/A,B
COMMON/AM/AMASS
COMMON/G/GM
COMMON/RX/RTIME1l,RTIME2,XI
C*************************************
TYPE 10
10 FORMAT(' INITIAL CONDITIONS'/' ENTER TO,EBO,HO,RQ')
ACCEPT *,T0,EBO,HO,R0O
TYPE 11
11 FORMAT(' ENTER DENS, ZERO VISC, MASS OF LOAD')
ACCEPT *,DENS,VISCO,AMASS
TYPE 111
111 FORMAT(' ENTER RTIMEl,RTIME2,XI')
ACCEPT *,RTIMEl,RTIME2,XI
TYPE 12
12 FORMAT(' ENTER TOLERANCE, DELT')
ACCEPT *,TOL,DELT
TYPE 15
15 FORMAT(' ENTER NPRT,INTERVAL')
ACCEPT * NPRT AINTR
TYPE 16
16 FORMAT(' ENTER FILENAMES FOR PRINT & T VS. HHO') -
ACCEPT 117,PRINT,THHO
117 FORMAT(AIO/AIO)
C************************************
OPEN(UNIT=31,DEVICE='DSK',FILE=PRINT)
OPEN(UNIT=32,DEVICE='DSK',FILE=THHD)
WRITE(31,17)
17 FORMAT(/' LUBRICATED SQUEEZING OF INELASTIC FLUIDS',
1 /' WITH JOHNSON-SEGALMAN VISCOSITY')
WRITE(31,18) DENS,VISCO,AMASS
18 FORMAT(' DENSITY = ',6El4.5/' ZERO VISCOSITY = ',El4.5/
1 ' MASS OF LOAD = ',El4.5)
WRITE(31,25) RTIME1l,RTIME2,XI
25 FORMAT(' RELAXATION TIME = ',6El4.5/
1 ' RETARDATION TIME = ',El14.5/' XI = ',6El4.5)
WRITE(31,27) TOL
27 FORMAT(' TOLERANCE = ',El4.5)

c************************************
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P1=3.14159265357989
N=3
METH=1
MITER=0
INDEX=1
WRITE(31,28) METH,MITER,INDEX
28 FORMAT(/' METH = ',I4/' MITER = ',14/' INDEX = ',I4)

T=T0
Y(1)=EBO
Y(2)=HO
Y(3)=R0O

GM=980.*AMASS
A=PI*DENS
B=PI*VISCO

EB=Y(1)
H=Y(2)
R=Y(3)
HHO=H/HO
WRITE(5,20)
WRITE(31,20)
20 FORMAT(//?X,'TIME',lZX,'EB',12X,'H‘,13X,'R',1OX,
1 "H/HO',10X, 'DELT'/)
WRITE(S,21) T,EB,H,R,HHO,DELT
WRITE(31,21) T,EB,H,R,HHO,DELT
WRITE(32,%) T,HHO
21 FORMAT(6E14.5)
C************************************
DO 100 I=1,NPRT
TEND=FLOAT(I)*AINTR
CALL DGEAR(N,FCN,FCNJ,T,DELT,Y,TEND,TOL,METH,MITER,
1 INDEX, IWK,WK,IER)
EB=Y(1)
H=Y(2)
R=Y(3)
HHO=H/HO
WRITE(31,21) TEND,EB,H,R,HHO,DELT
WRITE(32,*) TEND,HHO
100 WRITE(S5,21) TEND,EB,H,R,HHO0,DELT
CLOSE(UNIT=31,DISPOSE='PRINT')
CLOSE(UNIT=32)
STCOP
END :
c*********k************************************

SUBROUTINE ®CN(N,T,Y,YPRIME)
C*********************************************

INTEGER N . :

REAL Y(3),YPRIME(3),T

COMMON/AB/A,B
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COMMON/AM/AMASS

COMMON/G/GM

COMMON/RX/RTIMEl,RTIME2, XI
C**************************************

EB=Y(1)

EB2=EB*EB

H=Y(2)

H2=H*H

R=Y(3)

R2=R*R

R4=R2*R2

YPRIME(1)=(GM+4,*AMASS*H*EB2-A*R4*EB2/4.
+4 ,*A*R2*H2*EB2/3.~6.*B*R2*EB
*(1.,+12,.%*X1*(2.-XI)*RTIME1l*
RTIME2*EB2)
/(1.412,*XI1*%(2.-XI)*RTIMELl*
RTIME1*EB2))
/(A*R4/4 ,+2 ,*A*R2¥H2/3,+2,*AMASS*H)

YPRIME(2)=-2.*EB*H

YPRIME(3)=EB*R

e ]

RETURN
END
Chxkhkkrkrhhxhhkthhhhhkhxkhhhhhhhhhhhkhrhhkhhkrhkx

SUBROUTINE FCNJ(N,T,Y,PD)
C***********************************************

INTEGER N

REAL Y(3),PD(N,N),T

RETURN

END
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C***********************************************************

PROGRAM SMMSLP.FOR

LUBRICATED COMPRESSIVE FLOW OF
MARRUCCI STRUCTURAL MODEL.

OO0O0OO0O00

B A R L R a2 R RIS L2222 222 2R L sttt

INTEGER N,METH,MITER,INDEX,IWK(6),IER,IRV
REAL Y(6),WK(144),T,TOL,TEND,DELT,6MASS
DOUBLE PRECISION PRINT,THHO

EXTERNAL FCN,FCNJ

COMMON/AB/A, B

COMMON/M/MASS

COMMON /G /GM

COMMON/VR/VISC,RTIMEl,RTIME2

COMMON/MP/GO,RTIMEO, XI ,EPS
Chhrrrrrrdhhhxh kR khhhhhhhh kXA I kA *

TYPE 1
1 FORMAT(' LUBRICATED COMPRESSIVE FLOW OF'/
1 ' MARRUCCI STRUCTURAL MODEL'//
1 ' ALL INPUT DATA IN CGS UNITS'/)
7 TYPE 10
10 FORMAT(' INITIAL CONDITIONS'/
1 ' ENTER TO,EBO,PRRO,PZZ0,H0,R0,X0")
ACCEPT *,T0,EBO,PRRO,PZ20,H0,R0,X0
TYPE 11

11 FORMAT(' ENTER DENSITY, AND MASS OF LOAD')
ACCEPT *,DENS,MASS
TYPE 111

111 FORMAT(' ENTER ZERO SHEAR MODULUS, ZERO RELAX TIME')
ACCEPT *,GO0,RTIMEO
TYEE 12

12 FORMAT(' ENTER TOLERANCE, DELT')
ACCEPT *,TOL,DELT
TYPE 15

15 FORMAT(' ENTER NPRT,INTERVAL')
ACCEPT *,NPRT,AINTR
TYPE 16

16 FORMAT(' ENTER FILENAMES FOR PRINT / T VS. HHO')
ACCEPT 117,PRINT, THHO

117 FORMAT(A10/A10)

C************************************

OPEN(UNIT=31,DEVICE="DSK',FILE=PRINT)
OPEN(UNIT=32,DEVICE='DSK',FILE=THHO)
WRITE(31,17)

17 FORMAT(/' LUBRICATED COMPRESSIVE FLOW OF ',

1 *MARRUCCI STRUCTURAL MODEL'//)
WRITE(31,25) DENS,GO,RTIMEO,MASS
25 FORMAT(' DENSITY = ',El14.5/' 2ZERO SHEAR MODULUS = ',

1 El4.5/' ZERO RELAXATION TIME = ',E14.5/
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1 _ ' MASS = ',El4.5)
WRITE(31,27) TOL
FORMAT(' TOLERANCE = ',El4.5)

C***************************************

28

20

21

PI=3.14159265357989

N=6

METH=2

MITER=0

INDEX=1

WRITE(31,28) METH,MITER,INDEX

FORMAT(/' METH = ',I4/' MITER = ',I4/' INDEX = ',I14/)

T=T0

Y(1)=EBO
Y(2)=PRR0O/(G0*X0)
Y(3)=P220/(G0*X0)
Y(4)=X0

Y(5)=H0

¥(6)=R0O

GM=980.*MASS
A=PI*DENS

EB=Y(1)

PRRH=Y(2)

PZZH=Y(3)

X=Y(4)

H=Y(5)

R=Y(6)

G=GO0*X

PRR=PRRH*G

PZZ=PZZH*G

HHO=H/HO

WRITE(5,20)

WRITE(31,20)
FORMAT(//7X,'TIME',12X,'EB',11X,'PRR',11X,'P2Z2Z2"',
1 13x,'H',13%,'R',10X,'H/H0',10X, 'DELT',12X,'X'/)
WRITE(5,21) T,EB,PRR,P22,H,R,HHO,DELT,X
WRITE(31,21) T,EB,PRR,P2Z,H,R,HHO,DELT,X
WRITE(32,*) T,HHO

FORMAT(9E14.5)

C************************************

DO 100 I=1,NPRT

TEND=FLOAT(I)*AINTR+TO

CALL DGEAR(N,FCN,FCNJ,T,DELT,Y,TEND,TOL,METH,MITER,
1 INDEX, IWK,WK, IER)

EB=Y(1)

PRRH=Y(2)

PZZH=Y(3)

X=Y(4)

H=Y(5)




173

R=Y(6)

G=G0*X

PRR=PRRH*G

PZZ=P2ZH*G

HHO=H/HO

WRITE(31,21) TEND,EB,PRR,PZZ,H,R,HH0,DELT,X

WRITE(32,*) TEND,HHO
100 WRITE(5,21) TEND,EB,PRR,PZZ,H,R,HHO,DELT,X

CLOSE(UNIT=31)

CLOSE(UNIT=32)

STOP

END
C**********************************************

SUBROUTINE FCN(N,T,Y,YPRIME)
C*********************************************

INTEGER N ,

REAL Y(6),YPRIME(6),T,MASS

COMMON/AB/A,B

COMMON/M/MASS

COMMON/G/GM

COMMON/VR/VISC,RTIMEl,RTIME2

COMMON/MP/G0, RTIMEO, XI ,EPS
C**************************************

PI=3,14159265357989

EB=Y(1)

EB2=EB*EB

PRRH=Y(2)

PZZH=Y(3)

X=Y(4)

X14=X**1,4

RX14=RTIME0*X14

H=Y(5)

H2=H*H

R=Y(6)

R2=R*R

R4=R2*R2

YPRIME(1)=(GM+4,*MASS*H*EB2-A*R4*EB2/4.

1 +4 ,XA*R2*H2*EB2/3.~-PI*R2*G0*X* (PRRH-PZZH))
1 /(A*R4/4 ,+2 . *A*R2*H2/3.+2,*MASS*H)
YPRIME(2)=2.*EB-PRRH/RX14+2,.*EB*PRRH
YPRIME(3)=-4,*EB~PZZH/RX14-4.*EB*PZZH
YPRIME(4)=(1.-X)/RX14-0.25*X*SQRT(2.*PRRH+PZZH) /RX14
YPRIME(5)=-2,*EB*H

YPRIME(6)=EB*R

RETURN

END
C***********************************************

SUBROUTINE FCNJ(N,T,Y,PD)

INTEGER N
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REAL Y(6),PD(N,N),T
RETURN
END
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C***********************************************************

PROGRAM NSMSLP.FOR

LUBRICATED SQUEEZING OF INELASTIC FLUIDS
WITH STRUCTURE-DEPENDENT VISCOSITY.

sXeXekeXeXeKe!
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INTEGER N,METH,MITER,INDEX,IWK(3),IER,IRV
REAL Y(3),WK(63),T,TOL,TEND,DELT
DOUBLE PRECISION PRINT, THHO
EXTERNAL FCN,FCNJ
COMMON/AB/A,B
COMMON/AM/AMASS
COMMON/G/GM
COMMON/RT/RTIMEQ
COMMON/X/X _
C*************************************
TYPE 10
10 FORMAT(' INITIAL CONDITIONS'/' ENTER TO,EB0,H0O,R0,X0')
ACCEPT *,T0,EB0,H0,R0,X0
TYPE 11
11 FORMAT (' ENTER DENSITY, MASS OF LOAD')
ACCEPT *,DENS,AMASS
TYPE 111 _
111 FORMAT(' ENTER ZERO VISCOSITY, ZERO RELAXATION TIME')
ACCEPT *, VISCO, RTIMEO
TYPE 12
12 FORMAT(' ENTER TOLERANCE, DELT')
ACCEPT *,TOL,DELT
TYPE 15 )
15 FORMAT(' ENTER NPRT,INTERVAL')
ACCEPT * ,NPRT,AINTR
TYPE 16
16 FORMAT(' ENTER FILENAMES FOR PRINT & T VS. HHO')
ACCEPT 117,PRINT,THHO
117 FORMAT(A10/A10)
C************************************
OPEN(UNIT=31,DEVICE='DSK',FILE=PRINT)
OPEN(UNIT=32,DEVICE="DSK' ,FILE=THHO)
WRITE(31,25)
25 FORMAT(/' LUBRICATED SQUEEZING OF INELASTIC FLUIDS'
1 /' WITH STRUCTURE-DEPENDENT VISCOSITY.')
WRITE(31,26) DENS,VISCO,AMASS,RTIMEO
26 FORMAT(/' DENS = ',El4,5/' ZERO VISC = ',6El4.5/
1 ' MASS OF LOAD = ',El4.5/
1 ' ZERO RELAXATION TIME = ',El4.5)
WRITE(31,27) TOL
27 FORMAT(' TOLERANCE = ',El4.5)
C************************************

PI=3.14159265357989
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N=3
METH=1
MITER=0 -
INDEX=1
WRITE(31,28) METH,MITER, INDEX
28 FORMAT(/' METH = ',I4/' MITER = ',I4/' INDEX = ',I4)

T=T0
Y(1)=EBO
Y(2)=HO
¥(3)=R0O
X=X0

GM=980.*AMASS
A=PI*DENS
B=PI*VISCO

EB=Y(1)
H=Y(2)
R=Y(3)
HHO=H/HO
WRITE(5,20)
WRITE(31,20) .
20 FORMAT(//7X,'TIME',12X,'EB',12X,'H',13%,'R', 10X,
1 'H/HO',10X,'DELT',12X,'X"'/)
WRITE(5,21) T,EB,H,R,HHO,DELT,X
WRITE(31,21) T,EB,H,R,HH0,DELT,X
WRITE(32,*) T,HHO
21 FORMAT(7E14.5)
C************************************
DO 100 I=1,NPRT
TEND=FLOAT(I)*AINTR
CALL DGEAR(N,FCN,FCNJ,T,DELT,Y,TEND,TOL,METH,MITER,
1 INDEX,IWK,WK,IER)
EB=Y(1)
H=Y(2)
R=Y(3)
HHO=H/HO
WRITE(31,21) TEND,EB,H,R,HHO,DELT,X
WRITE(32,*) TEND,HHO
100 WRITE(5,21) TEND,EB,H,R,HHO,DELT,X
CLOSE(UNIT=31)
CLOSE(UNIT=32)
STOP
END
C**********************************************

SUBROUTINE FCN(N,T,Y,YPRIME)
C*********************************************

INTEGER N

REAL Y(3),YPRIME(3),T

COMMON/AB/A,B
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COMMON/AM/AMASS

COMMON/G/GM

COMMON/RT/RTIMEOQ

COMMON/X/X
C**************************************

EB=Y(1)

EB2=EB*EB

H=Y(2)

H2=H*H

R=Y(3)

R2=R*R

R4=R2*R2
1002 XN=X-(1.38564*RTIMEO*EB*X**2.4+X-1.)/

1 (2.4*1.38564*RTIMEO*EB*X**1.4+1.)

IF(ABS((XN-X)/XN).LT.0.00l) GO TO 1001
1005 X=XN

GO TO 1002
1001 X=XN

1000 YPRIME(1)=(GM+4.*AMASS*H*EBZ-A*R4*EB2/4.
1 +4 ,*A*R2*H2*EB2/3.-6.*B*R2*
1 (1.-%X)/(1.38564*RTIMEO))
1 /(A*R4/4.+2.*A*R2*H2/3.+2.*AMASS*H)
YPRIME(2)=-2.*EB*H
YPRIME(3)=EB*R

RETURN
END .
C***********************************************

SUBROUTINE FCNJ(N,T,Y,PD)
C***********************************************

INTEGER N

REAL Y(3),PD(N,N),T

RETURN

END




F.1l Oscillatory shear data on silicone polymer

APPENDIX F

RHEOLOGICAL DATA

(1) Temperature =

CIRCULAR
FREQUENCY,w
(RAD/SEC)

0.1
0.31
1.0
3.1
10.
31.
100.

dorizontal shift factor (dr)

(2) Temperature =

CIRCULAR
FREQUENCY, @
(RAD/SEC)

dorizontal shift factor (&4r)

18°.

STORAGE
MODULUS, G’
(DYN/CM2)

0.750E+04
0.400E+05
.275E+06
.145E+07
.395E+07
.600E+07
.620E+07

[eNoNeNoNe

23°c

STORAGE
MODULUS, G’
(DYN/CM2)

0.240E+04
0.130E+05
0.101E+06
0.710E+06
0.296E+07
0.590E+07
0.650E+07
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LOSS ,
MODULUS, G
(DYN/CM2)

0.113E+07
0.3608+07
0.107E+07
0.230E+07
0.275E+06
0.185E+05
0.860E+06

= 1.60

LOSS ,
MODULUS, G
(DYN/CM2)

0.730E+05
0.230E+06
0.700E+06
0.185E+07
0.310E+07
0.265E+07
0.135E+07

= 1.0

ejoNoReNeNoNe]

COMPLEX
VISCOSITY, %™
(POISE)

.113E+07
.117E+07
.110E+07
.877E+06
.481E+06
.203E+06
.626E+05

COMPLEX

VISCOSITY,?"

(POISE)

. 730E+06
. 743E+06
.707E+06
.639E+06
.429E+095
. 208E+0¢€
.664E+05

loNeoNoRoNoNoNo
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(3) T'emperature = 35°C

CIRCULAR STORAGE LOSS p COMPLEX

FREQUENCY,®w MODULUS, G MODULUS, G VISCOSITY,?%

(RAD/SEC) (DYN/CM2) (DYN/CM2) (POISE)
0.1 0.100E+03 0.3253E+05 0.325E+06
0.31 0.3058+04 0.100E+06 0.323E+06
1.0 0.109E+05 0.330E+06 0.330E+06
3.1 0.1738+06 0.940E+06 0.308E+06
10. 0.115E+07 0.230E+07 0.257E+06
31. 0.390E+07 0.320E+07 0.163E+06
100. 0.5708+07 0.210E+07 0.6072+05

Jorizontal shift factor (4r) = 0.44
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F.2 Steady shear data on TLA-227

[}

el
A

(L) Temperature = 23.5

SHEAR SHEAR NORMAL REMARK
RATE, ¥ STRESS, 72 STRESS, tu- T

(SEC™) (DYN/CM?) (DYN/CM?)

32.1 0.934E+04 - CAPILLARY
37.6 0.105E+05 - (LR =268)
51.0 0.136E+05 - 9

74.8 0.192E+05 - ”
118.2 0.286E+05 - v

(2) Temperature = 27°%
p

SHEAR SHEAR NORMAL REMARK
RATE, ¥ STRESS, 02 STRESS, Ti~Taz

(3EC™) (DYN/CM*) (DYN/CM*)

1.0 0.260E+03 0.110E+03 CONE & PLATE
2.5 0.6008+03 0.300E+03 "

6.3 0.145E+04 0.120E+04 "

16. 0.336E+04 0.440E+04 "

25. 0.463E+04 0.880E+04 u”

34.5 0.751E+04 - CAPILLARY
70.5 0.1408+05 - (L/r =268)
98. 1.83E+05 - v
122.8 0.224E+05 - "

168. 0.291E+05 - P
195.3 0.333E+05 - p

52.8 0.119E+05 - CAPILLARY
123.3 0.212E+05 - (L/R =160)
194.5 0.316E+05 - P
259.1 0.423E+05 - “

357.9 0.557E+05 - "




(3) Temperature = 30°%C

SHEAR SHEAR
RATE, ¥

(sEC™)

1.6 0.304E+03
2.5 0.500E+03
6.3 0.113E+04
10. 0.1858+04
16. 0.272E+04
25. 0.400E+04

(4) Temperature = 35%

SHEAR | SHEAR

RATE, 7 STRESS, T2
(sec™) (DYN/CM*)
1.6 ' 0.216E+03
4. 0.488E+03

10. 0.115E+04

STRESS, Ti2
(DYN/CM*)
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NORMAL
STRESS, Tu— (22
(DYN/CM*)

0.800E+02
0.180E+03

0.150E+04
0.320E+04
0.5888+04

NORMAL
STRESS, Tu= T2z
(DYN/CM*®)

0.206E+03
0.940E+03

REMARK

CONE & PLATE
u
“
”
”

”

REMARK

CONE & PLATE
“

o”
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F.3 Steady shear data on 3.3 wt. 3 PAA ﬁ water solution

Temperature = 25 °¢c

SHEAR SHEAR NORMAL REMARK
RATE, ¥ STRESS, Tz STRESS, Cu~ Taa

(sEC™) (DYN/CM?) (DYN/CM*)

1.05 0.2628+03 - CONE & PLATE
2.1 0.330E+03 - "

5.28 0.4478+03 -~ R

10.5 0.561E+03 ' - v

21. 0.683E+03 - "

52.8 0.879E+03 0.574E+04 “

105. 0.105E+04 0.862E+04 v

210. 0.126E+04 0.137E+05 "

419. 0.1515+04 0.211E+05 “




APPENDIX G

EXPERIMENTAL DATA ON THE SQUEEZING FLOW

G.l Newtonian Fluids

(1) Viscasil 60000

Run 1 :

R = 1.252 cm

2H, = 0.102 cm

m= 6289 g

) = 580 poise (at 25°C
t (sec) 2H (cm)
0. 0.1021
0.0338 0.0760
0.102 ' 0.0584
0.204 0.0455
0.306 0.0385
0.408 0.0340
0.612 0.0282
0.816 0.0247

Run 2 :

R = 1.252 ¢cm

2He = 0.101 cm

m = 6289 g

% = 580 poise (at 25°¢C)
t (sec) 2H (cm)
0. 0.101
0.040C8 0.0750
0.112 0.0569
0.214 0.0448
0.316 0.0375
0.418 0.0329
0.520 0.0297
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(2) Dow Corning 200 fluid, 12500

Run i

0 =
m= 3576 g o
3 = 130 poise (at 22.5°C)
t (sec) 2H (cm)
0. 0.211
0.0214 0.188
0.0897 0.148
0.2254 0.112
0.3274 0.0969
0.429 0.0855
0.5314 0.0775
0.633 0.0719

Run 2
R = 1.252 cm
2H, = 0.122 cm
m= 0290 g
7 = 121 poise (at 25.5°C)
t (sec) 2H (cm)
0. 0.122
0.0612 0.0403
0.1632 0.0244
0.2652 0.0201
0.3672 0.0171




G.2 Viscoelastic materials

(L) silicone polymer

Run £
R = 0.505 cm
2Hp = 0.128
m= 17480 g
7’ =
X = 0.12 sec
t (sec)
0.
0.02
0005
0.25
0.55
0.95
1.55
2.05
2.55
3.05
Vnax = 1. ocm
3max = 105.

Fmax A = 12.6

cm

/ sec
sec™!

1
920000 poise (at 20°C)
0

2H (cm)

.128

<111

.109

.0986
.0858
.0740
.0617
.0543
. 0486
. 0444

QOO QQO0OOO000




o
o
o]

|

0

= 0.26
86l2 g
66
0

.1 sec
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.505 cm

cm

Vmax = 3.3 cm/ sec

sec™

5000 poise (at 24.4°C)

2H (cm)

0.26
0.258
0.250
0.240
0.230
0.224
0.220
0.224
0.230
0.234
0.236
0.234
0.230
0.224
0.220
0.218
0.220
0.224
0.220
0.216
0.215
0.219%
0.216
0.214
0.211
0
0
0




(2) TLA-227

Ho = 0.14 cm

m = 9307 g

2 = 455(¥)*%-t (at 23.4°C)
t (sec) 2H (cm)
0. 0.14
0.0306 0.126
0.102 0.1124
0.161 : 0.1005
0.306 : 0.0864
0.510 0.0724
0.714 0.0636
0.918 0.0570
1.122 0.0519

Vmax= 0.46 cm/sec
Tmax= 218. sec™

ém,\= 2-2

R =1.25 cm

2H, = 0.0584 cm

m = 3143 g o]

2 = 455 (7)8¢"

t (sec) 2H (cm)
0. 0.0584
0.01275 0.0549
0.06375 0.0490
0.1148 0.0458
0.1658 0.0429
0.2168 0.0404
0.2678 0.0382
Vmax = 0.275 cm/sec

T mox 347. sec-!
| =2.95
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R 1.252 cm
2H, = 0.143 cm
m = 3143 g

7 = 455(3)* %77

t (sec)

2H (cm)

.148
.105
.103
.0985%
.0829
.074

[eNoleNoNoNe]
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(3) PAA-water solution

Run 1
R =6.35 cm
2Hy = 0.2915 cm
m= 4751 g '
3 = 302.7(F)%%* 7!
t (sec) 2H (cm)
0. 0.2915
0.0115 0.2693
0.0265 - 0.261
0.0335 0.2584
0.053 0.2466
0.112 0.2145
0.162 0.1864
0.212 0.1618
0.262 0.1435
0.312 0.131

Vmax= 1.93 cm/sec
Tmax = 898. sec™!
a.'mux/\= 8.7




